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Preface

This book commemorates the conference Nolineal2016: International Conference
on Nonlinear Mathematics and Physics, that took place in Sevilla, Spain, from 7 to
10 July 2016. There were delegates from many different countries in Europe and
also three other continents.

At the end of the conference, the decision was taken of writing a book to provide
the readers with a landscape of the many different fields in which nonlinear science
is being developed with great success. Contributions would not be proceedings but
present an introduction to the different subjects, provide context, present the state of
art and certainly the own research of the authors in the field.

Although the mathematics and physics of nonlinear systems are closely inter-
twined, it has been considered convenient to divide the matter in two volumes:

e Nonlinear Systems, Vol. 1. Mathematical Theory and Computational Methods in
Nonlinear Systems, edited by Victoriano Carmona, Jesus Cuevas-Maraver,
Fernando Fernandez-Sanchez and Elisabeth Garcia-Medina

e Nonlinear Systems, Vol 2. Nonlinear Phenomena in Biology, Optics and
Condensed Matter, edited by Juan F. R. Archilla, Faustino Palmero, M. Carmen
Lemos, Bernardo Sanchez-Rey and Jesus Casado-Pascual

The present book is the first volume, it deals with the theory of nonlinear
systems, especially from mathematical and computational approaches, and it is
divided into four large areas of knowledge, namely bifurcation analysis, wave
equations, differential or difference equations and computational methods. From
Lorenz system and its bifurcations to applications of cellular automata to laser
dynamics, from fast—slow systems to dark matter, from integrability and normal
forms to gravitational waves and solitons, this book oscillates between theoretical
analysis of nonlinear phenomena and the most current topics in science today.

vii



viii Preface

The outline of the book is as follows:
1. Bifurcation Analysis

e “A Review on Some Bifurcations in the Lorenz System” by A. Algaba,
M. C. Dominguez-Moreno, M. Merino and A. J. Rodriguez-Luis

e “Normal Form for a Class of Three-Dimensional Systems with Free-
Divergence Principal Part” by A. Algaba, N. Fuentes, E. Gamero and
C. Garcia

e “Piecewise-Linear (PWL) Canard Dynamics: Simplifying Singular
Perturbation Theory in the Canard Regime Using Piecewise-linear
Systems” by M. Desroches, S. Fernandez-Garcia, M. Krupa, R. Prohens
and A. E. Teruel

2. Wave Equations

e “Solitary Waves in the Nonlinear Dirac Equation” by J. Cuevas-Maraver,
N. Boussaid, A. Comech, R. Lan, P. G. Kevrekidis and A. Saxena

e “On Nonlinear Schrodinger Equation as a Model for Dark Matter:
Comments on Galactic Collisions, Supermassive Black Holes and
Analogue Laboratory Implementations” by A. Paredes and H. Michinel

e “Adiabatic Invariants of Second Order Korteweg-de Vries Type Equation”
by P. Rozmej and A. Karczewska

e “Nonlinear Gravitational Waves and Solitons” by F. R. Villatoro

3. Differential and Difference Equations

e “Local Integrability for Some Degenerate Nilpotent Vector Fields” by
A. Algaba, I. Checa and C. Garcia

e “A Logistic Non-linear Difference Equation with Two Delays” by
F. Balibrea

e “Diffusive Limits of the Master Equation in Inhomogeneous Media” by
L. Salasnich, A. Bonato and F. Sattin

4. Computational Methods

e “Anticipating Abrupt Changes in Complex Networks: Significant Falls in the
Price of a Stock Index” by A. Cordoba, C. Castillejo, J. J. Garcia-Machado
and A. M. Lara

e “On the Numerical Approximation to Generalized Ostrovsky Equations: I
by Angel Duran

e “On the Numerical Approximation to Generalized Ostrovsky Equations: II”
by Angel Durén

e “Simulating Laser = Dynamics with  Cellular ~ Automata” by
F. Jiménez-Morales, J. L. Guisado and J. M. Guerra



Preface ix

Chapters will provide an opportunity for the readers to understand subjects
which are normally dispersed in different journals for specialists. We expect them to
feel the fascination of nonlinear physics and its broad applicability, stimulating their
curiosity and perhaps extending their own research to unexpected territory.

The editors of this book do not want to miss the opportunity to acknowledge the
University of Seville and the Instituto de Matemadticas de la Universidad de Sevilla
Antonio Castro Brzezicki for the financial and administrative support.

Sevilla, Spain Victoriano Carmona
July 2017 Jesus Cuevas-Maraver
Fernando Fernandez-Sanchez

Elisabeth Garcia-Medina
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In memoriam of Prof. Antonio Castellanos Mata (07.03.1947-27.01.2016), Full Professor of
Electromagnetism at the University of Seville, and Director of the group of Electrohydrodynamics

and Cohesive Granular Media
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A Review on Some Bifurcations )
in the Lorenz System L

Antonio Algaba, M. Cinta Dominguez-Moreno, Manuel Merino
and Alejandro J. Rodriguez-Luis

Abstract In this chapter, we review some bifurcations exhibited by the classical
Lorenz system, where the parameters can have any real value. Analytical results on
the pitchfork, Hopf and Takens—Bogdanov bifurcations of the origin, as well as the
Hopf bifurcation of the nontrivial equilibria, are summarized. These results serve as
a guide for the numerical study that reveals other important organizing centers of
the dynamics: Takens—Bogdanov bifurcations of periodic orbits, torus bifurcations
and the resonances associated, homoclinic and heteroclinic connections with several
degeneracies, etc. We also point out that the analysis of the Hopf-pitchfork and the
triple-zero bifurcations of the origin cannot be performed with the usual tools and
propose a way to carry out this study avoiding the structural singularities exhibited
by the Lorenz system.

Keywords Lorenz - Bifurcation - Pitchfork - Hopf - Takens—Bogdanov + Torus
Resonances - Hopf-pitchfork - Triple-zero

1 Introduction

The famous Lorenz system was derived from a simplified model of convection in
the atmosphere: a two-dimensional fluid cell is warmed from below and cooled
from above and the resulting convective motion is modeled by a partial differential

A. Algaba - M. C. Dominguez-Moreno (X)) - M. Merino
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equation. This system is obtained after a Galerkin approximation, that is, the variables
are expanded into an infinite number of modes and all except three of them are put
to zero [86, 97]:

x=o0(y—x),
y=px—y—xz, (D)
7z =—bz+ xy.

Thus, the variable x is proportional to the intensity of convective motion, y is propor-
tional to the temperature difference between ascending and descending currents and
z is proportional to the distortion from linearity of the vertical temperature profile.
The dimensionless parameters have a physical interpretation: o is a Prandtl number
(the ratio of kinematic viscosity and thermal diffusivity), p is a Rayleigh number
(proportional to the temperature difference across the fluid layer and the gravita-
tional acceleration acting on the fluid) and b is a ratio of the height and width of the
fluid layer. Consequently, the three parameters considered by Lorenz were positive.

The Lorenz equations also arise in simplified models in a variety of fields, for
instance, lasers [73], dynamos [77], thermosyphons [71], chemical reactions [93],
electric circuits [49] and brushless DC motors [75]. They have even been proposed
very recently in the thermodynamic modelling of leukaemia malignancy [1].

The complex dynamics exhibited by the Lorenz system has fascinated to a large
number of scientists in such a way that, in the last 50 years, hundreds of studies
have examined this emblematic dynamical system. To illustrate this fact without
pretending to be too exhaustive, we cite several of them, indicating briefly the topic
considered: Lorenz chaotic attractor [39—41, 100, 103], T-point heteroclinic cycle
and some degeneracies [16, 48, 69], global invariant manifolds and chaos visualiza-
tion [54-56, 88], dimension of the global attractor [83], its relation with Kolmogorov
systems [90], numerical modeling of its dynamics [91] and its preeminence over other
proposed Lorenz-like systems [11, 13]. However, among so many papers, there are
some that present incorrect results. For example, in Ref. [104, Appendices A and B]
the authors claim to have proved the presence of a Shilnikov heteroclinic orbit in the
Lorenz system, via the undetermined coefficient method. Unfortunately, this method
(used for the first time in Refs. [105, 106]) is wrong as it is demonstrated in Refs.
[7, 9, 10, 12, 15] (see also references therein).

On the other hand, even if this fact is less known, the Lorenz system also appears,
wheno < 0, in the study of traveling-wave solutions in the Maxwell-Bloch equations
[57] and in the analysis of a thermosolutal convection model [78]. This is one of
the reasons why the Lorenz system is also considered for negative values of the
parameters. Moreover, from a dynamical point of view, it is also stimulating to
analyze the behavior of this iconic system when the parameters can take any real
value. In this context, several aspects on the dynamics of the Lorenz system have
been investigated, for instance, in the following works: invariant algebraic surfaces
[43, 84, 85, 98], degenerate heteroclinic cycles [79, 87], Hopf bifurcation [2, 14,
101], Takens—Bogdanov and global bifurcations [3], resonances of periodic orbits
[24] and superluminal periodic orbits [36].
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The aim of this survey is to comment some results on the Lorenz system obtained
by means of the Local Bifurcation Theory (see, for instance, [72, 82, 102]), in the way
we briefly summarize below. When an autonomous system is analyzed an usual target
is the knowledge of its dynamics in certain zones of the parameter space. In practice,
the parameter space is divided in regions, bounded by bifurcation loci, and the goal
is to determine the qualitative behaviour in each of such regions. This can be done in
several steps. First, the detection of the equilibrium points and the analysis of the lin-
earization around such equilibria, allow to show the presence of linear degeneracies
(nonhyperbolicities) for some values of the control parameters. Second, the computa-
tion of approximations of the center manifold (and also of the reduced system on the
center manifold) enables to reduce the dimension of the problem, transforming the
reduced system into the corresponding normal form by means of changes of variables
(sometimes a reparametrization of the time is also needed). Symbolic computation
algorithms greatly facilitate this task. Third, the analysis of the unfolding of the nor-
mal form in the nondegenerate cases, provides local information on the bifurcation
sets. Furthermore, possible nonlinear degeneracies giving rise to a higher codimen-
sion bifurcation problem can be detected at this step. Finally, from the information
achieved in the study of local bifurcations, good starting points for the application
of adequate numerical techniques can be obtained. This will provide a global picture
of the dynamics of the system in the parameter space (see, for instance, [64]).

To illustrate how the method described above allows to obtain a deep knowledge of
the dynamical system under consideration, we mention now two three-dimensional
systems with a very rich dynamics. On the one hand, for a modified van der Pol-
Duffing electronic oscillator, interesting information can be found in the following
references on some local and global bifurcations: Hopf and Takens—Bogdanov [17],
Hopf-pitchfork [18, 19, 21], triple-zero [67], periodic orbits bifurcations [4, 32,
59], homoclinic connections and some degeneracies [45, 65], T-points and some
degeneracies [5, 8, 58, 60, 62]. Secondly, in the case of the widely studied Chua’s
equation, the following references clarify how to deal with the corresponding local
and global bifurcations: Hopf [27], Takens—Bogdanov [20], Hopf-pitchfork [28],
triple-zero [29], homoclinic connections and some degeneracies [33-35], T-points
and some degeneracies [6, 25, 26, 61].

This work is organized as follows. In Sect. 2 we enumerate the linear degeneracies
that the equilibrium at the origin of the Lorenz system can exhibit. The analysis of the
pitchfork bifurcation is considered in Sect. 3. In Sect.4 we present results on Hopf
bifurcations. Section5 is devoted to Takens—Bogdanov bifurcations of equilibria as
well as of periodic orbits. Section 6 is dedicated to the study of resonances, whose
presence is motivated by the existence of torus bifurcations of periodic orbits. Finally,
some conclusions are reported in Sect. 7.
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2 Linear Degeneracies

Along this work we consider Lorenz system (1) where o, p and b are real parameters.
We exclude two degenerate situations: the system is linear if o = 0 and non-isolated
equilibria on the z-axis exist for b = 0.

The Lorenz system (1) is invariant to the change (x, y, z) — (—x, —V, z). The
origin Ey = (0, 0, 0) is always one equilibrium point and, for b(p — 1) > 0, two
symmetric nontrivial equilibria, E+ = (£+/b(p — 1), £/b(p — 1), p — 1), exist.

The linearization matrix of system (1) at the origin is

-0 o 0
p —1 0 |, (2)
0 0 —b

whose characteristic polynomial is
p =%+ pia’ + pah + ps,

where

pi=b+14+0, pp=c(l+b—p)+b, p3=—-bo(p—1).

It is easy to check that the following nonhyperbolic situations may arise:

e A simple zero eigenvalue, and the other two with nonvanishing real part. This case
comes up if p; # 0, p» # 0, p3 = 0, that, in terms of the parameters, occurs into
thesetp=1,0 #0,—1,b # 0.

The corresponding codimension-one pitchfork bifurcation gives rise to the appear-
ance of the two nontrivial equilibria E in the region b(p — 1) > 0.

e A pair of imaginary eigenvalues and the third one nonzero. This degeneration
occurs when pypr = p3, po > 0, p3 #0,ie.,foroc =—1,p > 1,b #0.

The analysis of the corresponding Hopf bifurcation of the origin was carried out
in Ref. [2], where the Hopf bifurcation exhibited by the nontrivial equilibria £
is also studied.

e A double-zero eigenvalue and the third one nonzero. This case appears when
p2 = p3 =0, p; #0, or, in terms of the o, p, b parameters, in the set 0 = —1,
p=1,b#0.

The associated Takens—Bogdanov bifurcation, both in the homoclinic and in the
heteroclinic case, has been analyzed in Ref. [3].

e A pair of imaginary eigenvalues and the third one zero. This situation corresponds
to p1 = p3 =0, p» > 0, that is, it occurs when o = —1,b =0, p > 1. A Hopf-
pitchfork bifurcation is exhibited but, as non-isolated equilibria appear when b =
0, this bifurcation cannot be analyzed by the standard procedures.

e A triple-zero eigenvalue. This situation arises if p; = p, = p3 = 0, which, in the
parameter space, corresponds to the pointo = —1, p =1,b = 0.

This bifurcation cannot be studied by the standard methods because, for b = 0,
the origin is a non-isolated equilibrium.
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3 Pitchfork Bifurcation

For p = 1, the linearization matrix (2) has the eigenvalues 0, — (o + 1), —b. There-
fore, as a consequence of its symmetry, the Lorenz system (1) exhibits a pitchfork
bifurcation. To study this bifurcation, we examine the Lorenz system at the critical
values of the parameters and use the linear change of variables given by

X 100 u
y|l=[1-10 Y 3)
z 001

in order to obtain the linearization matrix in canonical form.
Thus, the Lorenz system is transformed into

i 0 0 0 u —U"jw(u +ov)
v]=10—-(@+1 0 v+ | agwetov) |. 4)
i 0 0 —b w u—vYu+ov)

Assuming that o + 1 # 0, b # 0, the second-order approximation to the center
manifold is given by

3 1, 3
v=04+ 0W), w:l—)u + O (u),

and the third-order reduced system on the center manifold is

o 3
=,
b(o +1)

Consequently, the bifurcation is supercritical when the coefficient of u? is negative
and subcritical if it is positive.
The above results can be summarized in the following theorem.

Theorem 1 The locus in the (o, p, b)-parameter space where the origin of the
Lorenz system undergoes a nondegenerate pitchfork bifurcation is defined by

p=1, 06 #0,—1, b#0.

This bifurcation is supercritical if:

(i) oe(=1,0),b<0;
(ii) o € (=00, —1)U (0, 0), b > 0.

It is subcritical when:

(i) o€ (=00, —1)U(0,00), b <O0;
(i) o€ (—=1,0),b>0.
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4 Hopf Bifurcations

In this section we precis the principal results obtained in Ref. [2], devoted to the
analysis of Hopf bifurcations and their degeneracies in the Lorenz system (to do
that, the computation of some Lyapunov coefficients of the corresponding normal
form is needed [70, 72, 82, 102]). First, we consider the Hopf bifurcation of the
origin and later, the Hopf bifurcation exhibited by the nontrivial equilibria E .

As was mentioned in Sect. 2, the origin E( undergoes a Hopf bifurcation if o =
—1, p>1, b #0. The corresponding normal form to third order, obtained with
the recursive algorithm developed in Ref. [66] is (see the details in Ref. [2, Sect.2])

F=aird+---,

where the first Lyapunov coefficient is given by

—b-2
C8/p—1(4p— 1) +b?)’

A degeneracy occurs if a; = 0, i.e.,if b = —2.

In this case, as the center manifold is an algebraic invariant surface, the Hopf
bifurcation has infinite codimension: the Lorenz equations have a center at the origin
(see Fig. 1). In fact, it can be easily proved that x*> + 2z = 0 is the only polynomial
center manifold for the Hopf bifurcation of the origin in the Lorenz system. To prove
this fact it is enough to consider the six invariant algebraic surfaces the Lorenz system
has [85, 98] and apply the conditions for the Hopf bifurcation (b = -2, 0 = —1,
p > 1). Thus, it is easily obtained that the only solution is x> + 2z = 0.

aj

Fig.1 Two different perspectives of the phase space of the Lorenz system (1) forb = —2,0 = —1,
p = 2 where the origin undergoes a degenerate Hopf bifurcation of infinite codimension. Some
periodic orbits on the center manifold are drawn. Reproduced with permission from [2]. Copyright
(2015) by Springer
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The following statement sum up all the results on the Hopf bifurcation of the
origin.

Theorem 2 ([2, Theorem 1]) The locus in the (o, p, b)-parameter space where the
origin of the Lorenz system undergoes a Hopf bifurcation is defined by

oc=—1, p>1, b#0.

This bifurcation is supercritical when b > —2 and subcritical if b < —2. A degen-
erate Hopf bifurcation of infinite codimension occurs if b = —2.

The rest of this section is devoted to the Hopf bifurcation of the nontrivial equilibria
(all the details can be found in Ref. [2, Sect.3]). The standard techniques used in
the study of a Hopf bifurcation allow to determine, in a first step, the locus where it
occurs and to compute, in a second step, the Lyapunov coefficients that lead to the
detection of all the degeneracies this bifurcation can have. The results obtained are
summarized below.

Proposition 1 ([2, Proposition 2]) The nontrivial equilibria of the Lorenz system
experiment a Hopf bifurcation in the surface parameterized in explicit form by

—o2 -3 — —
Shm={<a,p,b= o> —@B—po p>:(0’p)eg}’
o+ p

with 2 = 2, U 2, U 23 U 24 U 25, where

243
le{(a,p)eR:0<—l,p<u},

o—1
2, ={(o,p)eR:0=-1,p <1},
25 ={(o,p)eR:—-1<0<0,p < —0},

2+3
Q4={(o,p)eR:O<a<l,p<u},
o—1
243
QSZ{(U,,O)GR:J>1,,0>G+—IG}.
O’_

The region §2 is drawn in Fig. 2.
The study of the first Lyapunov coefficient of the third-order normal form for the
reduced system [see Eq. (5)], given by

_ (0 +D)V=A(0+p)Ni(o, p)
B D1(a, p) ’

(6)

ap
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Fig. 2 Region §2 which :
corresponds to the projection — p=0(c+3)/(c-1)
onto the (o, p)-plane of the
surface Sp,; where the Hopf
bifurcation of the nontrivial
equilibria occurs. To get that

surface recall that
p= —90=G=pa=p

- .
Reproducgd evith permission
from [2]. Copyright (2015)
by Springer

where

A=c>+3—-p)o+p,
N1(o, p) = 60* +156% +90°p + 3502 p + 02 p*
+2100% 4+ 20p 4+ 0p> + 50 + p*,
Dl(o.p) = 8(p — D[0*(p = 1)* = (0 + p)°4]
x [40%(p = 1)* = (0 + p)*4].

and of the second Lyapunov coefficient a, of the fifth-order normal form for the
reduced system (whose expression appears in Ref. [2, Appendix A]) allow to find all
the degeneracies this Hopf bifurcation may experiment. This information is summa-
rized below.

Theorem 3 The nontrivial equilibria of the Lorenz system undergo a degenerate
Hopf bifurcation in the following cases:

1. The first Lyapunov coefficient a; vanishes for all the values (o, p) € §2 where
the polynomial N1(o, p) is zero. A codimension-two bifurcation occurs in this
case when the second Lyapunov coefficient a, is nonzero.

2. On the two points (o, p, b) € Sy, given by

P ~ (—0.646547, —6.605871, —1.709567)

and

P, =~ (—0.0100012, —0.0396965, —1.408456)
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15 0.1

—p=0(c+3)/(c-1) ! —p=0(c+3)/(c-1)

0.05¢

-0.05

-0.06 -0.04 -0.02 0.02 0.04 0.06

I
0
(&)

Fig. 3 (Left) Projection onto the (o, p)-plane of the locus where the first Lyapunov coefficient a;
is zero. When this curve is inside the region 2, it corresponds to a degenerate Hopf bifurcation.
(Right) Zoom in a neighborhood of the origin. Reproduced with permission from [2]. Copyright
(2015) by Springer

a codimension-three Hopf bifurcation occurs because the first and the second
Lyapunov coefficient vanish simultaneously and the third one as is nonzero.
These are the unique codimension-three Hopf bifurcation points.

3. On the half-line given by 0 = —1, b = =2, p < 1 a Hopf bifurcation of codi-
mension infinite occurs because the reduced system on the center manifold is
Hamiltonian (centers on center manifolds).

We would like to do several remarks on the above result. First, the region 2 is
split in six zones (see Fig. 3). A subcritical Hopf bifurcation occurs in the zones (A),
(C), (E) and (F), while on the contrary it is supercritical in the zones (B) and (D).
Remark that it is well-known that the Hopf bifurcation in the region where the three
parameters are positive (our region (A) that corresponds to §2s) is always subcritical
[89, 95, 99].

Second, to guarantee the existence of the two codimension-three points P; and P,
the Poincaré-Miranda theorem was used [81]. A detailed analysis of the roots of a
polynomial of degree 104 (it appears in the computation of the resultant of N1(o, p)
and the numerator of a,) is also needed.

Finally, as it occurs for the origin, the Hopf bifurcation of the nontrivial equilibria
has infinite codimension because the center manifold is an algebraic invariant surface,
namely x? + 2z = 0 (see Fig.4). Moreover, the Hopf bifurcation of the nontrivial
equilibria only has this polynomial center manifold in the Lorenz system.

In the following we provide the results of some numerical continuations, obtained
with AUTO [52], in order to illustrate the dynamical consequences of the presence
of a Hopf bifurcation of codimension-three (that occurs at P; and at P,). From this
degeneracy, a curve of cusp bifurcations of periodic orbits appears [70]. Thus, two
curves of saddle-node bifurcation contact tangentially at the cusp point, giving rise to
a semicubic parabola. Three periodic orbits exists in the system for proximate param-
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4 5
-10 -5 0 5 4 -3 2 -1 0 1 2 3

Fig. 4 Two different perspectives of the phase space of the Lorenz system (1) for b = -2, 0 =
—1, p = —2, where the nontrivial equilibria undergo a degenerate Hopf bifurcation of infinite
codimension. Some periodic orbits on the center manifold appear. Reproduced with permission
from [2]. Copyright (2015) by Springer

-0,52

-0,65 T T

-0,53

n n n n 1 n n n n N n n n 1 n n n n 1 n n n n
6.6 6.4 6.2 0,66 6.6 6.4 6.2

Fig. 5 Two partial bifurcation sets in the (p, o)-plane in a neighborhood of the point P;: (Left)
for b = —1.6; (Right) for b = —1.72. Reproduced with permission from [2]. Copyright (2015) by
Springer

eter values. These orbits disappear in pairs by means of saddle-node bifurcations.
The existence of hysteresis phenomenon is associated with the cusp bifurcation.

As similar results are obtained in the vicinity of P; and P, we only consider here
the point P;. Thus, we show for b = —1.6 and b = —1.72 (values at both sides of
by =~ —1.709567) the corresponding partial bifurcation sets in the (p, o)-plane.

A degeneracy in the Hopf curve of the nontrivial equilibria h occurs at the point
Dhy when b = —1.6 > b; (see Fig.5 (Left)). Thus, if we move along h from left
to right, the Hopf bifurcation changes from subcritical to supercritical. A curve of
saddle-node of periodic orbits sn; arises from Dh; and remains below h. It collapses
with the saddle-node curve sn; into the cusp cu;.

To be placed on the other part of the point P;, a value b < b; has to be taken, for
instance b = —1.72 (see Fig.5 (Right)). In this situation, as a consequence of the
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degenerate point Dhy on the curve h, the Hopf bifurcation varies from subcritical
(on the left) to supercritical (on the right). Now the saddle-node curve sn, emerges
from Dh; and remains above h.

5 Takens—-Bogdanov Bifurcations

In this section we summarize the results obtained in Ref. [3], devoted to the analysis of
Takens—Bogdanov bifurcations in the Lorenz system. In the first part we mention the
analytical results in the case of the Takens—Bogdanov bifurcation of the equilibrium
at the origin. Secondly, we precis some numerical results on the existence of Takens—
Bogdanov bifurcations exhibited by periodic orbits.
As was stated in Sect.?2, the origin E( exhibits a Takens—Bogdanov bifurcation
when
co=—-1, p=1, b#0. @)

The corresponding normal form to third order for the reduced system on the center
manifold, obtained with the recursive algorithm developed in Ref. [66], is (see the
details in Ref. [3, Sect.2])

u=v,
| 0

v = asu’ + byuPv,

with
1 b_—2—b
613—b, 3E T

Whereas the coefficient a3 cannot vanish, a degenerate Takens—Bogdanov bifur-
cation occurs when b3 = 0, i.e. when b = —2.

As it is well known (see, for instance, [47, 72]), when b3 # 0, the nondegenerate
Takens—Bogdanov bifurcation is of heteroclinic type if a; > 0 and of homoclinic
type for a3 < 0. Therefore, a nondegenerate Takens—Bogdanov of heteroclinic type
exists in the Lorenz system if » > 0 and of homoclinic type for b < 0 (b # —2).

In symmetric systems, the Takens—Bogdanov point TB appears when a curve of
pitchfork bifurcations of the origin Pi collapses with a curve of Hopf bifurcations of
the same equilibrium H. In the heteroclinic case (see Fig. 7 (Left)), a curve of hetero-
clinic connections of the nontrivial equilibria He emerges from TB. In the homoclinic
case (see Fig. 10 (Left)), three curves emerge from TB: h (of Hopf bifurcations of
the nontrivial equilibria), Ho (of homoclinic connections to the origin) and SN (of
saddle-node bifurcations of symmetric periodic orbits).

When the coefficient b3 of the normal form (8) vanishes (if » = —2) a nonlinear
degeneracy appears. Specifically, as the center manifold is an algebraic invariant
surface, the Takens—Bogdanov bifurcation has infinite codimension: the origin is a
center in the Lorenz system when b = —2,0 = —1 and p = 1. This fact is illustrated
in Fig.6.
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y 5 -2 X

Fig. 6 Two different perspectives of the phase space of the Lorenz system (1) forb = —2,0 = —1,
p = 1, where the origin undergoes a degenerate Takens—Bogdanov bifurcation of infinite codimen-
sion. Some periodic orbits on the center manifold x> 4+ 2z = 0 appear. Reproduced with permission
from [3]. Copyright (2016) by Elsevier
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Pi
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DHe,
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p X

Fig.7 (Left) For b = 1, partial bifurcation set on the (p, o )-plane in a neighborhood of the Takens—
Bogdanov point TB (heteroclinic case). Three degeneracies DHe1, DHe, and DHes are present
on the curve of heteroclinic connections He. (Right) For b = 1 and p = 15, projection onto the
(x, z)-plane of the Shilnikov heteroclinic loop He existing for o &~ —3.874338. Reproduced with
permission from [3]. Copyright (2016) by Elsevier

All the information on the Takens—Bogdanov bifurcation is condensed in the
following result.

Theorem 4 The locus in the (o, p, b)-parameter space where the origin of the
Lorenz system undergoes a Takens—Bogdanov bifurcation is defined by

oc=—-1, p=1, b#0.

This bifurcation is nondegenerate if b # —2: of heteroclinic type when b > 0 and
of homoclinic type when b € (—oo, —2) U (=2, 0). A degenerate Takens—Bogdanov
bifurcation of infinite codimension occurs if b = —2.

We summarize now the results mentioned in Sects.4 and 5 on bifurcations of
infinite codimension. All three cases appear on the straight line b = -2, 0 = —1:
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a Hopf of the origin if p > 1, a Hopf of the nontrivial equilibria when p < 1 and a
Takens—Bogdanov of the origin for p = 1.

On the other hand, it is interesting to comment that, in these three situations,
it is possible to find analytical expressions for the period of the orbits existing in
the center manifold x? + 2z = 0 (see Figs. 1, 4 and 6). Thus, by taking limit in the
corresponding expressions, for finite values of the parameter p, the existence of
superluminal periodic orbits (periodic orbits with unbounded amplitude and whose
period tends to zero) is demonstrated. All the details can be found in Ref. [36]. In
this work, it is also numerically shown that superluminal periodic orbits also exists
in other situations of physical interest when the parameter p tends to infinity.

In the rest of this section, we highlight the most important numerical results on the
Takens—Bogdanov bifurcation of the origin presented in Ref. [3, Sect. 3], which have
been obtained with AUTO [52]. Specifically, we present two partial bifurcation sets
in the (p, o)-parameter plane. The first one, for b = 1, illustrates the heteroclinic
case (b = 1) whereas the second one, for b = —1.6, corresponds to the homoclinic
case. Note that, as for b = 0 a triple-zero degeneracy occurs, we obtain information
on both sides of such rich bifurcation.

In Fig.7 (Left), for b = 1, a partial bifurcation set is drawn in a neighborhood
of the Takens—Bogdanov point on the (p, o)-plane. According to the well-known
results in the heteroclinic case [47, 72], the Takens—Bogdanov point TB is placed on
the curve where the origin exhibits a pitchfork bifurcation Pi. From that point a curve
of Hopf bifurcation of the origin H emerges. As it is a supercritical Hopf bifurcation, a
stable symmetric periodic orbit arises at H. This periodic orbit disappears in the curve
He, where a heteroclinic orbit to the nontrivial equilibria occurs. In Fig. 7 (Right) a
heteroclinic loop is drawn for p = 15.

Three degeneracies are numerically detected on the curve He. For their descrip-
tion, the eigenvalues of the nontrivial equilibria are denoted by « £ i, A, and the
saddle-quantity § = |o/A| is considered. The first degeneracy He; appears when the
nontrivial equilibria change from real saddle to saddle-focus. As § > 1, this global
connection remains fame [44] and, in this way, a symmetric stable periodic orbit is
born from the curve He. A second degeneracy, He,, is present when § = 1, namely
the eigenvalues are resonant. At this point the heteroclinic orbit changes from tame
to chaotic Shilnikov [82, 102].

The third degeneracy Hes occurs because § = 1/2 (null divergence). Since the
expression of the divergence in the Lorenz system (1) is divF = —(b 4+ o + 1) and
we have fixed b = 1, then divF = 0 along the straight line 0 = —2. Observe that
divF has no dependence on the spatial variables but only on the system parameters.
This fact has important consequences on the bifurcations of the periodic orbits as we
briefly explain in the following. If y(¢) denotes a periodic orbit in the autonomous
system x = F'(x), then the variational equation is defined by the linear system

y=DF(y(#)y = A(t)y.
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As it is known (see, for example, [74, Lemma III.7.3]), in a three-dimensional
autonomous system, the product of the three Floquet multipliers of a periodic orbit
fulfills:

mimams = olo 1r(AG)ds _ ,fy divF(y(s)ds

Therefore, on the assumption divF = 0 we can infer that the two Floquet multipliers
of all the periodic orbits must verify m;m, = 1 (note that in a 3D autonomous
system the third Floquet multiplier is at any time m3 = +1). Consequently, one of
the following three scenarios can take place:

@ 0<m<1<my;
(b) my <—1<m; <0
© m1,2=05:i:i,8,withoc2+,32= 1.

In this last case, when § = 0, a double Floquet multiplier (+1 or —1) appears and, in
symmetric systems, a Takens—Bogdanov bifurcation of periodic orbits is present if
the double Floquet multiplier is nondiagonalizable (see, for instance, [42, 47, 50]). If
B # 0, a torus bifurcation of periodic orbits is present. Note that, in a 3D continuous
parameterized autonomous system, a periodic orbit undergoes a torus bifurcation
(named secondary Hopf bifurcation too, or more appropriately, secondary Poincaré—
Andronov—Hopf bifurcation) if its two Floquet multipliers traverse the unit circle
subject to generical assumptions on the bifurcation parameter (see, for instance, [72,
82]).

In the dynamics of the Lorenz system we consider in the rest of this survey,
Takens—Bogdanov and torus bifurcations of periodic orbits are important organizing
centers. We have just seen that the only locus where these bifurcations can occur
corresponds to the parameter plane defined by o + b+ 1 = 0.

Takens—Bogdanov bifurcations of periodic orbits are placed on curves of saddle-
node, symmetry-breaking and period-doubling bifurcations and permit the change
of stability of the periodic orbits involved. These codimension-two points have been
detected in several systems (see, for instance, [18, 32, 35, 68]). Remark that inter-
esting dynamical behavior can also appear if a diagonalizable double +1 Floquet
multiplier occurs (see, for instance, [19, 21, 80]).

Our goal now is to acquire numerically new information on the bifurcation set
near the degenerations He, and Hes;. To achieve this aim (see the details in Ref.
[3, Sect.3.1]), the continuation for certain values of the parameters of the symmet-
ric periodic orbit born at the Hopf bifurcation of the origin H shows that it exhibits
symmetry-breaking PPO, saddle-node SN and torus bifurcations HH® before it disap-
pears in a heteroclinic loop He. For its part, the asymmetric periodic orbit emanated
in the first PPO bifurcation undergoes period-doubling PD, saddle-node sn and torus
bifurcations HH? before it disappears in a homoclinic orbit to the nontrivial equilibria
Hnt.

The loci where some of the bifurcations just mentioned above exist are drawn in
Fig. 8 (Left). Specifically, in comparison with Fig. 7 (Left), five new curves appear: the
first two symmetry-breaking bifurcations give rise to a single curve whose branches
are labelled PPO, and PPOg; the first two period-doubling bifurcations give rise to
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Fig. 8 For b = 1: (Left) For b = 1, partial bifurcation set on the (p, o)-plane in a vicinity of
o = —2. (Right) Zoom of the bifurcation set in a neighborhood of the point TBPO, situated on the
branch PDa. Reproduced with permission from [3]. Copyright (2016) by Elsevier

a single curve whose branches are labelled PD, and PDg; a curve of the homoclinic
connections of the nontrivial equilibria Hnt; the torus bifurcation of the symmetric
periodic orbits occurs on the curve HHY; the torus bifurcation of the asymmetric
periodic orbits occurs on the curve HH]. These two curves of torus bifurcations are

located, as was predicted above, on the line 0 = —2 where the divergence vanishes.
On the other hand, as was also anticipated above, the Takens—Bogdanov bifurca-
tions of periodic orbits also occurs when o = —2. Thus, the points marked TBPO,

(on the branches PPO, and PPOg) correspond to a nondiagonalizable double +1 Flo-
quet multiplier (1:1 resonance) whereas the points marked TBPO, (on the branches
PD, and PDg) correspond to a nondiagonalizable double —1 Floquet multiplier (1:2
resonance). Moreover, the global connections to the nontrivial equilibria are also
degenerate on o = —2. Thus, two points DHnt 3 appears on the curve Hnt because
8 = 1/2. Note that both curves HH] and HHJ starts at the Takens-Bogdanov point
TBPO, placed on the curve PPO,. Specifically, the curve HHY is unbounded whereas
the curve HHS ends at the Takens—Bogdanov point TBPO,, situated on the curve PDj.

In Fig. 8 (Right), a zoom in the vicinity of the point TBPO, marked on the branch
PD, is shown. As we can see, this point is essential since it is the birth of a Feigen-
baum cascade of flip bifurcations (PDa, PDy, PDg, . . .), in addition to infinitely many
torus bifurcation curves (of double pulse HH;, quadruple pulse HHy, . . .). The accom-
panying Takens—Bogdanov bifurcations of periodic orbits that originate the curves
of torus bifurcations TBPO3, TBPOQy,, ... are all situated on the half-line 0 = —2,
p > 0 (see [37, 82)).

An important final comment on the bifurcations existing when b = 1 refers to
the significant role as organizing centers of the points DHe; and DHnts. In Fig.9
(Left) the first curves of saddle-node bifurcations of symmetric periodic orbits (SN,
SNy, SN3 and SN,) are drawn. We notice in Fig.9 (Left) that the points of Takens—
Bogdanov bifurcation of periodic orbits TBPOZ, situated on the curves SN, collect
to the degenerate point DHes. A similar situation occurs with the Takens—Bogdanov
points TBPO, placed on the curves of saddle-node bifurcations of asymmetric peri-
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Fig. 9 For b = 1, partial bifurcation set on the (p, o)-plane in a neighborhood of the point: (Left)
DHes. (Right) DHnt 3 situated on the right branch of Hnt. Reproduced with permission from [3].
Copyright (2016) by Elsevier
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Fig. 10 For b = —1.6, partial bifurcation set in a neighborhood of: (Left) the Takens—Bogdanov
point TB (homoclinic case). (Right) the degeneracies DHo, and Dh1 situated, respectively, on the
curves Ho and h. Reproduced with permission from [3]. Copyright (2016) by Elsevier

odic orbits sn;. As can be seen in Fig.9 (Right), they accumulate to the degenerate
point DHnts.

Another remarkable fact that occurs outside the windows shown in Fig. 9 is that
the curves of saddle-node bifurcations of periodic orbits disappear in pairs (SNy
with SN;, SN; with SNy, sn; with sn,, sn; with sny) in cusp bifurcations that
accumulate to the degenerate point DHe,.

It is worthy to note that a family of invariant tori, existing on the locus where
the divergence of the system is null (a degenerate situation present in the Lorenz
equations), exists too in the numerical simulation presented in Ref. [96], in a vicinity
of the triple-zero degeneracy of a truncated normal form for Z,-symmetric systems
considered in the paper [29].

In the following we comment the results obtained for b = —1.6, when the Takens—
Bogdanov bifurcation of the origin is of homoclinic type (see the details in Ref. [3,
Sect. 3.2]). In the vicinity of this point TB (see Fig. 10 (Left)) five curves are present
[72]: Pi (pitchfork bifurcation of equilibria), H (supercritical Hopf bifurcation of the
origin from which a saddle symmetric periodic orbit emerges), h (subcritical Hopf
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bifurcation of the nontrivial equilibria from which a pair of repulsive asymmetric
periodic orbits is born), Ho (homoclinic orbit to the origin where, in a neighborhood
of the point TB, the two periodic orbits risen from h disappear) and SN (saddle-node
bifurcation of two symmetric periodic orbits, the saddle one is born in H and the
unstable one that is present after Ho).

The numerical continuation of the curve Ho reveals the existence of two degenerate
points (see Fig. 10 (Right)). In an analogous way as we did above for the study of
the degeneracies of the global connections related to the nontrivial equilibria, let
us denominate the eigenvalues of the origin by A; < 0 < A, < A3 and take into
account the saddle quantity 6* = |A,/A;|. The origin Ej is a saddle equilibrium,
with 6* > 1, when the curve Ho emanates from TB. A first degeneracy occurs on
the point DHo; due to the presence of a double eigenvalue A, = A3 = —1.6. In this
case, the homoclinic bifurcation remains fame because this double eigenvalue is not
determining [44]. Thus, a single symmetric unstable periodic orbit arises from the
curve Ho to the left whereas two asymmetric unstable periodic orbits are present on
the right part of Ho.

The second degeneration occurs at the point DHo, when §* = 1 (homoclinic orbit
at resonance A; = —A, = —1.6). Due to the fact that the homoclinic orbit is non-
twisted close to DHo,, a curve of saddle-node bifurcation of asymmetric periodic
orbits sn; emerges from DHo, (see [46]) and ends at the point Dh; situated on the
Hopf curve h.

To recapitulate the bifurcations that act as principal organizing centers in this area
of the parameter space in the Lorenz equations, we draw in Fig. 11 the projection
onto the (b, o) and the (b, p) planes of the curves where codimension-two bifurca-
tions exist. Thus, we find the following curves: TB Takens—Bogdanov bifurcation of

Fig. 11 Projection of the loci where the Takens—Bogdanov bifurcation of the origin, TB, degenerate
homoclinic orbits of the origin (DHo; and DHoz) and degenerate heteroclinic connections of the
nontrivial equilibria (DHe1, DHe, and DHes) exist. These curves are organized by a triple-zero
degeneracy TZ and by a codimension-three homoclinic connection of the origin TDHo. (Left) On
the (b, o) parameter plane. (Right) On the (b, p) parameter plane. In this case, we have also drawn
the curves of degenerate homoclinic orbits of the nontrivial equilibria (DHnt3 and DHnt%) that do
not appear in panel (Left) for the sake of clarity. Reproduced with permission from [3]. Copyright
(2016) by Elsevier



20 A. Algaba et al.

the origin; DHe; and DHo; where the heteroclinic orbits to the nontrivial equilibria
and the homoclinic orbits to the origin, respectively, exhibit a double-real leading
eigenvalue degeneration (solid line) and a double-real nonleading eigenvalue sin-
gularity (dashed line); DHe, and DHo, where the heteroclinic connections and the
homoclinic of the origin undergo, respectively, ad = 1 and §* = 1 degeneracy (reso-
nant eigenvalues); DHe; where the heteroclinic orbits exhibita § = 1/2 degeneracy;
DHnt} and DHnt3 where the homoclinic connections of the nontrivial equilibria
experiment the degeneracy § = 1/2 (these connections appear in Fig.7 (Left) and
superscripts r and [ refer to the right and to the left branch, respectively, of that
figure).

A remarkable fact is that all the curves of degenerate homoclinic and hetero-
clinic orbits likely are born from the triple-zero bifurcation point TZ = (1, 0, —1).
Moreover, another codimension-three point, TDHo = (—3, —2, —1), where a double
degeneration of the homoclinic orbits to the origin exists (resonant eigenvalues and
double real eigenvalue since A} = —X, = —A3 = b = —2) is marked. Whereas the
double eigenvalues are not determining in the portion of the curve DHo; between
TZ and TDHo, they become determining on the other side of TDHo (in this situ-
ation, curves of saddle-node and flip bifurcations arise from DHo,). Note that the
point where TB undergoes a degeneration of infinite codimension (o = —1, p = 1,
b = —2) is not indicated.

Notice that analogous arrangements of curves of codimension-two global bifur-
cations close to a triple-zero degeneracy TZ have been detected in other systems [29,
30].

We terminate this section with some comments on Shilnikov chaos (see more
details in Ref. [3, Sect.3.3]). As it is widely known (see, for example, [76, Sect.
5.1.2]) infinitely many saddle periodic orbits exist in every vicinity of a Shilnikov
homoclinic/heteroclinic orbit. The existence of chaotic behavior is assured because
these periodic orbits are contained in suspended horseshoes that cumulate onto the
homoclinic/heteroclinic connection.

Consequently, according to the results commented in this review, Shilnikov homo-
clinic and heteroclinic connections exist in the Lorenz system. However, for negative
values of the parameters, further studies are needed on the global dynamics of the
Lorenz system because, as far as we know, there is no result on the existence of
a compact invariant set. For instance, unlimited orbits in both onward and reversed
time are obtained in most numerical simulations when o < 0. To exemplify the cases
where bounded dynamics occurs, we draw in Fig. 12 two chaotic attractors (whose
basin of attraction is somewhat little) emerged from successions of flip bifurcations
structured by Shilnikov global orbits (see a similar situation, for instance, in Ref.
[53]). The divergence is negative in the region where these two chaotic attractors
exist. The attractor presented in Fig. 12 (Left) is associated to a Takens—Bogdanov
bifurcation of heteroclinic type while on the contrary the attractor drawn in Fig. 12
(Right) corresponds to a Takens—Bogdanov of homoclinic type.
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Fig. 12 Projection onto the (x,z)-plane of two chaotic attractors obtained integrat-
ing in a time interval of 2000 s, for the parameter values and initial conditions
given: (Left) (p,0,b) = (2.54,-14,1), (x,y,2)=(1.4,1.68,1.25). (Right) (p,0,b) =
(—=30.83, —0.03, —0.957), (x,y,z) = (2,87.4, —39.7). Reproduced with permission from [3].
Copyright (2016) by Elsevier

6 Resonances of Periodic Orbits

As it was shown in Ref. [3] (see Sect. 5 of this survey) when o < 0, the periodic orbit
emanated from the Hopf bifurcation of the origin exhibits a torus bifurcation. The
locus where this bifurcation occurs is a curve in a bidimensional parameter plane.
On this curve, the pair of conjugate complex Floquet multipliers of the periodic orbit
moves on the unit circle. Each time they meet a root of unity, a couplet of curves of
saddle-node bifurcation of periodic orbits arises from the corresponding point on the
torus curve. This originates a resonance region (Arnold’s tongue) locally bounded
by those curves of saddle-node bifurcation [47, 51, 72, 82]. The dynamical effects
of the presence of torus bifurcations in some relevant autonomous systems has been
considered in the literature (see, for instance, [22, 23, 31, 32]).

The aim of this section is to highlight important features on the resonances of
periodic orbits that appear in the Lorenz system (all the details can be found in Ref.
[24]). In the following, we will focus on the torus bifurcation curve HH] drawn in
Fig. 8 (Left) for b = 1. This unbounded curve exists for & = —2 on the right of the
Takens-Bogdanov point TBPO; (prero, ~ 11.6960), placed on the curve PPO,.

To know what resonances will appear we analyze the evolution of the Floquet
multipliers along the unit circle on the torus curve HHY (see Fig. 13 (Left)). The
argument Arg (angle between the horizontal axis and the Floquet multiplier of the
complex conjugate pair with positive imaginary part) is represented versus parameter
p. Note that a maximum, 180°, is reached for p,, & 21.4623. Consequently, when
we move along the torus curve, the Floquet multipliers change from +1 (Arg = 0°)
to —1 (Arg = 180°) on the unit circle in the interval /4 = [prgpo,, o] and from
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Fig. 13 For b = 1: (Left) Argument of the Floquet multipliers of the principal periodic orbit versus
p along the torus bifurcation curve HHF. It reaches its maximum, 180°, at p,, &~ 21.4623. (Right)
Projection onto the (x, z)-plane of the principal periodic orbit exhibiting the torus bifurcation when
p =15, 0 = —2. Reproduced with permission from [24]. Copyright (2016) by Springer

—1 to +1 in the interval I = [p,,, 00). It seems numerically that lim,_, ., Arg =
0°, that is, a Takens—Bogdanov bifurcation of periodic orbits (with a double +1
Floquet multiplier) is present at infinity. Therefore, all the resonances occur in the
two intervals /4 and Ip.

A projection of the principal periodic orbit undergoing the torus bifurcation when
(p,0) = (15, —2) is depicted in Fig. 13 (Right). Remark that, because the geometry
this periodic orbit has and the Z,-symmetry exhibited by the Lorenz system, it is not
possible that symmetric periodic orbits of period 2n-T bifurcate from this principal
periodic orbit. According to this argument, symmetric periodic orbits of period 3T,
ST, 7T, ... will emerge in the resonances of the principal periodic orbit, but not of
period 2T, 4T, 6T, ....

In this section we employ the following notation for the corresponding curves. In
the case of the torus bifurcations, the superscript s is used when the periodic orbit
involucrated is symmetric and the superscript a if it is asymmetric. In the case of the
1: p resonances, a subscript n signifies that it corresponds to an nT -periodic orbit. In
the case of curves of period-doubling bifurcations, curves of pitchfork bifurcations
and Takens—Bogdanov points, so as not to unduly complicate the notation, super-
scripts to indicate the resonance concerned are not included (even though identical
names are used in different figures, there is no place for error).

We start considering the periodic orbit emanated from the 1:2 resonance that
occurs in a vicinity of p,, ~ 21.4623 (see all the details in Ref. [24, Sect.3.1]).

The bifurcation diagram of the asymmetric 2T periodic orbit born in the 1:2 res-
onance is represented in Fig. 14a. The first two saddle-node bifurcations are labelled
sn2, and sn2g (we use lowercase letters for saddle-node bifurcations of asymmetric
periodic orbits and uppercase letters if they are symmetric) and the first two period-
doubling bifurcations are marked as PD, and PDg. The wiggles of this diagram are
organized by a pair of Shilnikov homoclinic orbits to the nontrivial equilibria, Hnt
and Hntg.
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Fig. 14 For b = 1: a Bifurcation diagram of the 2T asymmetric periodic orbit of the resonance 1:2
when 0 = —1.999. b Partial bifurcation set of the 1:2 open resonance zone sn2 in a vicinity of
o = —2. ¢ Partial bifurcation set for the 2T periodic orbit emerged at the resonance 1:2. d Argument
of the Floquet multipliers versus p along the torus bifurcation curve HHS. It reaches its maximum,
180°, at p,, &~ 21.9. Reproduced with permission from [24]. Copyright (2016) by Springer

The numerical continuation of these bifurcations allows obtaining the partial bifur-
cation set depicted in Fig. 14b for b = 1. The curves sn2, and sn2z collapse in a
turning point in a similar way as the curves of period-doublings (PD, and PDg) and
the curves of homoclinic connections of the nontrivial equilibria (Hnt, and Hntg)
do. Remark that all these curves present a degeneracy when o = —2 (they are only
marked on the right branches of the corresponding curves): the saddle-node curves
have a non-diagonalizable double +1 Floquet multiplier TBPO;, the flip curves
undergo a non-diagonalizable double —1 Floquet multiplier TBPO, and the homo-
clinic connections curves exhibit a § = 1/2 degeneracy DHnt. The unbounded torus
curve HHY is drawn as a dashed line emanating from the point called TBPO for eas-
iness (it correspond to the point TBPO; of Fig. 8 (Left)). Observe that on the curve
HHS, that exists between the points TBPO; and TBPO,, a 2T periodic orbit emerged
in the 1:2 resonance undergoes a torus bifurcation.

A zoom in the vicinity of the curve HHj appears in Fig. 14c. The succession
of flip bifurcations PD,, PD,, PDg, ... originates a sequence of Takens—Bogdanov
points TBPO,, TBPO3, TBPOy, . .. (all correspond to non-diagonalizable double —1
Floquet multiplier). A torus bifurcation of a 2 x 2T periodic orbit occurs on the
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Fig. 15 Poincaré sections in the plane y = 0 of the Lorenz system with b = 1: (Left) resonance 1:2
of the principal periodic orbit & = —1.999 and p = 22.5. (Right) resonance 1:5 of the 2T periodic
orbit when p = 22.54, 0 = —1.9999. Reproduced with permission from [24]. Copyright (2016) by
Springer

curve HH; between the points TBPO, and TBPO;. Similarly, a torus bifurcation
of a 4 x 2T periodic orbit appears between the points TBPO; and TBPO4 on the
curve HHE. Deserves to be highlighted that all the torus bifurcation curves HH3, HHZ,
HHS, ... overlap with the principal torus curve HHJ because all are situated on the
straight-line o = —2.

In Fig. 14d, the evolution of the Floquet multipliers on the curve HHS is shown.
As they evolve from +1 (Arg = 0° at TBPO;) to —1 (Arg = 180° at TBPO,), we
infer that the 2T periodic orbit also exhibits all the resonances.

In Fig. 15 a pair of Poincaré sections on the plane y = 0 are represented. In all the
Poincaré sections considered in this review, found with DsTool [38], a value of o a
bit greater than —2 is considered. Thus, the periodic orbits are stable (the modulus
of the complex Floquet multipliers is nearby one) or saddle. A filled circle indicates
a stable periodic orbit of focus type whereas a cross corresponds to a saddle periodic
orbit. In Fig. 15 (Left) the black circle identifies the principal periodic orbit. The two
asymmetric 2T stable periodic orbits are indicated by red and blue circles, severally,
whereas the corresponding 2T saddle orbits are identified with red and blue crosses.

In Fig. 15 (Right) a zoom of the left-up part of the region shown in Fig. 15 (Left)
is presented. Magenta circles and crosses correspond to periodic orbits emerged in
the resonance 1:5 of the 2T periodic orbits.

In the following we consider the 1:3 resonance of the principal symmetric periodic
orbit that takes place in the interval I4. In this case, the 3T periodic orbit emanated
from this resonance is symmetric. Its numerical continuation when o = —1.9995
affords the bifurcation diagram drawn in Fig. 16a, organized by a couple of Shilnikov
heteroclinic loops of the nontrivial equilibria, He, and Heg. The first two saddle-
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Fig. 16 For b = 1: a Bifurcation diagram of the 3T symmetric periodic orbit born in the resonance
1:3, for 0 = —1.9995. b Partial bifurcation set of the 1:3 open resonance zone SN3 in a vicinity of
o = —2. c Partial bifurcation set for the 3T periodic orbit emerged from the resonance 1:3 placed

on the interval 74 (on the left of the resonance 1:2). d Argument of the Floquet multipliers versus
p along the torus bifurcation curve HHS of the 3T periodic orbit. It reaches its maximum, 180°, at
om ~ 15.89. Reproduced with permission from [24]. Copyright (2016) by Springer

node bifurcations are marked as SN3, and SN3p and the first two symmetry-breaking
bifurcations are labelled PPO, and PPOg.

The corresponding loci where these bifurcations occur, obtained by numerical
continuation, are represented in Fig. 16b.

The curves SN3, and SN33 collapse in a turning point in a similar way as the
curves of symmetry-breakings (PPO, and PPOg) and the curves of heteroclinic con-
nections of the nontrivial equilibria (He, and Heg) do. Remark that all these curves
present a degeneracy when o = —2: the saddle-node curves and the symmetry-
breaking curves have a non-diagonalizable double +1 Floquet multiplier (they are
only marked on the right branches of the corresponding curves, named TBPO; and
TBPO,, respectively) and the heteroclinic loop curves exhibit a § = 1/2 degeneracy
DHe. The unbounded torus curve HHY is represented by the dashed line emanating
from the point TBPO. Observe that the curve HHS, that exists between the points
TBPO; and TBPOx, is a torus bifurcation of a 3T symmetric periodic orbit emerged
in the 1:3 resonance.
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Fig. 17 Poincaré sections in the plane y = 0 of the Lorenz system with b = 1: (Left) Resonance
1:3 of the principal periodic orbit for p = 16.1, 0 = —1.9999. (Right) Resonance 1:3 of the 3T
periodic orbit for p = 15.707, 0 = —1.99995. Reproduced with permission from [24]. Copyright
(2016) by Springer

A zoom in the vicinity of the curve HHS appears in Fig. 16¢c. The concatenation
of flip bifurcations PD, PDy, ... originates a sequence of Takens—Bogdanov points
TBPO3, TBPOy, ... (all correspond to non-diagonalizable double —1 Floquet multi-
plier). A torus bifurcation of a2 x 3T asymmetric periodic orbit occurs on the curve
HHZ between the points TBPO; and TBPO,. Remark again that all the torus bifurca-
tion curves HHS, HHS, HHZ, ... cooccur with the principal torus curve HHS because
all of them are situated on the line 0 = —2.

In Fig. 16d, the evolution along the curve HHS of the Floquet multipliers is shown.
As they move from +1 to +1, attaining its maximum, 180°, at p,,3 =~ 15.89, all
the resonances of the 3T periodic orbit also occur twice, once when p < p,3 and
again for p > p,,3. The situation is analogous to that drawn in Fig. 13 (Left) for the
principal periodic orbit although now the torus curve is finite.

InFig. 17 (Left) aPoincaré section taken on the plane y = Ois drawn for p = 16.1,
o = —1.9999. A black circle indicates the principal periodic orbit whereas the pair
of 3T symmetric periodic orbits born in the 1:3 resonance are tagged by red circles
(stable focus-type periodic orbit) and by red crosses (saddle periodic orbit).

In Fig. 17 (Right) the symmetric 3 x 3T periodic orbits, emerged in the 1:3 reso-
nance of the 3T periodic orbit, are represented when p = 15.707. The drawn region
is a zoom of the left-up part of Fig. 17 (Left). The magenta circles and crosses corre-
spond to these periodic orbits (stable and saddle, respectively). The red circle stands
for the 3T symmetric periodic orbit that undergoes this secondary resonance.

Now we briefly comment on the resonance 1:4 of the principal symmetric periodic
orbit that takes place in the interval 1. A partial bifurcation set for this 4T asymmetric
periodic orbit appears in Fig. 18 (Left). Remark that one of the saddle-node curves
sn4l remains over HH] whereas the other one is under it. Normally, the two curves
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Fig. 18 For b = 1: (Left) Partial bifurcation set for the 4T asymmetric periodic orbit born in the
resonance 1:4 of the principal periodic orbit, exhibited in the interval 14. (Right) Poincaré section
in the plane y = 0 of the Lorenz system for p = 12.78, 0 = —1.9999. Reproduced with permission
from [24]. Copyright (2016) by Springer
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Fig. 19 For b = 1: (Left) Partial bifurcation set for the periodic orbits born at the resonances
1:p (5§ < p <9) on the interval /4. (Right) Partial bifurcation set for the periodic orbits born at
the resonances 1:p, with 3 < p < 8, on the interval /5. Reproduced with permission from [24].
Copyright (2016) by Springer

of saddle-node bifurcations emanated from a tip stay situated on the same side of the
torus curve [47, 82]. A cascade of period-doublings PD, PDy, .. ., and another one of
Takens—Bogdanov bifurcations (non-diagonalizable double —1 Floquet multiplier)
TBPO,, TBPOs, ..., are present. The torus bifurcation curves HH3, HH, . .. coexist
with HHS. In Fig. 18 (Right) a Poincaré section on the plane y = 0 for p = 12.78
and 0 = —1.9999 is drawn. The principal periodic orbit (stable and symmetric) is
indicated with a black circle and the two asymmetric 4T stable/saddle periodic orbits
are marked with red and blue circles/crosses.

Now we represent in Fig. 19 (Left) the curves of saddle-node bifurcations emanated
from the first weak resonances 1:p (5 < p < 9) undergone by the principal periodic
orbit in the interval I4. Observe that the curves of symmetric periodic orbits (capital
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Fig.20 For b = 1: (Left) Partial bifurcation set of the 1:3 open resonance zone sn3 corresponding
to the 3T asymmetric periodic orbit of the resonance 1:3 of the interval /. (Right) Zoom of panel
(Left) in a neighborhood of the Takens—Bogdanov bifurcation TBPO;. A small closed resonance
zone organized by two cusps exists. Reproduced with permission from [24]. Copyright (2016) by
Springer

letters) separate faster from the torus curve HHS than those of the asymmetric peri-
odic orbits (lowercase letters). On the other hand, near the related tip, always one of
the saddle-node curves emanates and continues above the torus curve HH] and the
other one comes out and stays below it.

In the following, we briefly focus on resonances in the interval Iy = [p,,, 00),
where p,, & 21.4623 [24, Sects.3.4 and 3.5]. First, in Fig. 19 (Right) the curves of
saddle-node bifurcations arisen from the resonances 1:p (3 < p < 8) of the principal
periodic orbit on the curve HHS in the interval /5 are superimposed (note that all the
periodic orbits born are asymmetric). In this situation, the comportment evidenced
for all the curves is identical for 4 < p < 8: the curves of saddle-node bifurcations
appear from a tip; in every single case, in the neighborhood of the tip, one of the
saddle-node curve comes out and stays over the curve HH whereas the other one
emanates and continues under it; the velocity of separation from the curve HHY is
always alike (recall that in /, it depends on the parity of p); ulteriorly the curves
have turning points giving rise to new Takens—Bogdanov points when they intersect
the line 0 = —2. On the other hand, the saddle-node curve sn3 does not emanate
from a tip on the curve HHS. It crosses the torus curve, as it is habitual in the case of
the strong resonance 1:3 (see, for example, [47, 82]).

Now we specifically consider the resonance 1:3. In Fig.20 (Left) the window
of Fig. 19 (Right) is enlarged in the neighborhood of the intersection of the right
branch of curve sn3 with o0 = —2 (labelled here as sn3,). The 3T asymmetric
periodic orbits live on the left side of sn3,. The Takens—Bogdanov points TBPO,
(non-diagonalizable double 41 Floquet multiplier) and TBPO, (non-diagonalizable
double —1 Floquet multiplier) are the limits of the curve of torus bifurcation exhibited
by these 3T periodic orbits, HHS. The succession of flip bifurcations PDa, PDy, ...
originates a chain of Takens—Bogdanov points TBPO,, TBPOs, .. .. A torus bifurca-
tion of 2 x 3T periodic orbits occurs on the curve HHZ. Recall that the torus curves
HHS, HHZ, ... coexist with the curve HHJ.
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Fig. 21 For b =1, 0 = —1.9999, Poincaré section in the plane y = 0, in a neighborhood of the
pT asymmetric periodic orbits emerged in the resonance 1:p of the principal periodic orbit in the
interval /p: (Left) p = 3 when p = 40.5. (Right) p = 4 when p = 65. Reproduced with permission
from [24]. Copyright (2016) by Springer

But a more detailed study in the vicinity of the point TBPO; (see [24, Fig. 13])
reveals the striking partial bifurcation set shown in Fig. 20 (Right). On the one hand,
two interconnected cusps appear when the curves sn3cy, and sn3cg collapse. This
originates the existence of a relatively small closed resonance zone (the letter ¢
means ‘closed’ in the labels of this figure). Note that the saddle-node bifurcation
curves sn3cg appear from a tip on the curve HHS, exactly at the point TBPOF,
where the argument of the Floquet multipliers of the principal periodic orbit is 120°.
This is an abnormal situation for a strong resonance (1:3). On the other hand, a new
torus curve HH3, is limited by the Takens-Bogdanov points TBPOY_ and TBPOY..
It coexists with HHS between the points TBPO}, and TBPO;. As the maximum of
the argument along the curve HHS,. is more or less 3.3155°, these 3T periodic orbits
will merely undergo very high resonances (namely 1:p where p > 109). This is a
strange fact in the Lorenz system since, in almost all the cases reported in Ref. [24],
the maximum of the argument is 180°.

A Poincaré section obtained with the plane y = 0, when 0 = —1.9999 and p =
40.5,isdrawnin Fig. 21 (Left). The black circle stands for the principal periodic orbit.
Blue and red circles indicate, respectively, the two asymmetric 3T stable periodic
orbits whereas the corresponding 3T saddle periodic orbits are marked by blue and
red crosses. A similar Poincaré section appears in Fig.21 (Right), to illustrate the
4T asymmetric periodic orbits emerged in the 1:4 resonance of the interval Iy, for
o = —1.9999 and p = 65.

A new remarkable fact is that the resonances 2:(2n + 3), forn > 1, in the interval
Ip originates symmetric periodic orbits. This is exemplified in Fig.22 where two
Poincaré sections, related to resonances 2:5 and 2:7, are drawn: a 5T symmetric
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Fig. 22 Poincaré sections in the plane y = 0 of the Lorenz system with b = 1, 0 = —1.9999:
(Left) Resonance 2:5 in the interval /g when p = 30.9. (Right) Resonance 2:7 in the interval /p
when p = 52. Reproduced with permission from [24]. Copyright (2016) by Springer

periodic orbit appears in the first case (Left) and a 7T symmetric periodic orbit in
the second one (Right).

To finish this section we summarize the main results on resonances of periodic
orbits in the Lorenz system, obtained for b = 1 (see [24, Conclusions]): (i) Various
curves of torus bifurcations related to different periodic orbits coexist because all the
torus curves are placed ato = —2 and the principal torus curve HHf is unbounded. (ii)
When the torus curves exist between curves of saddle-node and symmetry-breaking
bifurcations (both Takens—Bogdanov points correspond to nondegenerate double +1
Floquet multiplier) mostly all the resonances occur twice because the maximum of
the argument is 180°. If one of the limit curves corresponds to period-doublings (a
nondegenerate double —1 Floquet multiplier occurs) all the resonances occur one
time in every case found. (iii) The presence of a concatenation of flip bifurcations
implies the existence of a sequence of torus curves. (iv) Most of the time the resonance
regions (limited by the curves of saddle-node bifurcations) are open. However, in
some cases, two cusp points organize small closed regions and, thus, an angular
degeneracy on the torus curve might lead to the existence of closed Arnold’s tongues
[32, 92]. This possibility should be investigated in the future. (v) For the strong
resonances (1:3, 1:4 and 2:5) there are cases where the curves of saddle-node intersect
transversely with the related torus curve as well as situations where they come out
from a tip on the torus curve. (vi) The ordinary situation in a tip is that the two saddle-
node curves emanate towards the same part of the torus curve. However, in the Lorenz
system, in all the tips found, one of the curve arises over the torus curve and the other
one emerges under it. Moreover, in almost all the cases, both curves emanate towards
the left side. (vii) Symmetric periodic orbits emerge from resonances 1:p (with p
odd) for the interval /4 and from resonances 2:g (with ¢ odd) for the interval /.
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7 Conclusions

The goal of this chapter is to review some bifurcations exhibited by the classical
Lorenz system, when the parameters can have any real value. On the one hand, we
have described analytical and numerical results recently obtained. The theoretical
study of the pitchfork, Hopf and Takens—Bogdanov bifurcations of the origin, as well
as the Hopf bifurcation of the nontrivial equilibria, has been successfully completed.
Moreover, from the information achieved in the study of the above local bifurcations,
other important organizing centers of the dynamics have been found with the help
of the adequate numerical techniques: Takens—Bogdanov bifurcations of periodic
orbits, torus bifurcations and the resonances associated, homoclinic and heteroclinic
connections with several degeneracies, etc.

However, as pointed out in Sect. 2, the analysis with the usual tools of the Hopf-
pitchfork and the triple-zero bifurcations of the origin cannot be performed because
it is not an isolated equilibrium when b = 0. Furthermore, other symptoms of the
singularity of the Lorenz system have also been mentioned in this work. For instance,
the presence of bifurcations of codimension infinite (Hopf and Takens—Bogdanov)
and the coexistence of torus bifurcation curves of different periodic orbits (a direct
consequence of the fact that the divergence in the Lorenz system does not depend on
the spatial variables but only on the parameters).

In the next future our objective is to analyze the Hopf-pitchfork bifurcation in
the Lorenz system. A way to avoid the degeneration present when b = 0 is the
introduction of new nonlinear terms so that the Lorenz system is embedded in the
structurally stable system obtained. After analyzing the Hopf-pitchfork bifurcation
in this new Lorenz-like system, it will suffice to take the appropriate limit to obtain
valuable information for the Lorenz system. This same idea should be valid to study
the triple-zero bifurcation (a partial study of this bifurcation in the famous Rossler
system can be found in Ref. [63]). Remark that, in this new system, all the bifurcation
of codimension infinite will disappear. For instance, a codimension-three degeneracy
will occur in the case of the Takens—Bogdanov bifurcation, as the one considered in
Ref. [94]. At the same time, the simultaneous existence of torus bifurcation curves
of distinct periodic orbits will also disappear.
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1 Introduction

A wide class of disciplines, among which we can mention electronics, mechanics,
chemistry,... use magnitudes for describing certain type of phenomena which obey
laws that can be expressed by means of dynamical systems.

In this chapter we focus on autonomous dynamical systems, that arise as models
of systems whose laws do not change in time. Mathematically, they consist in a
system of ordinary differential equations of the form

. dx(t)
t) = = F(x(1)), 1
X(1) I x(n) (D
where X = (x1, X2, ..., x,) € R" and the right-hand side does not explicitly depends

on the independent variable ¢ (usually called time).

Roughly, the aim of dynamical systems theory is determine the structure of the
solutions set of these models. This study usually starts by simplifying the system
(i.e,. by finding a simplification in the analytical expression of the vector field F(x)).
The most important of these simplifications is the reduction to normal form. The
Normal Form Theory (also called classic normal form) was introduced by Poincare
and was later developed by Dulac, Lyapunov, Birkhoff...

The basic idea of the Normal Form Theory is to use changes of variables to simplify
the analytical expressions of a given vector field degree by degree, by removing the
nonlinear terms which are non-essential in the dynamic behavior of the system. This
procedure, called smooth conjugation, is the main subject of the present chapter.

There is another possibility of simplifying the analytical expression of the vector
field by considering not only changes in the state variables but also transformations
in time (this procedure is called smooth equivalence) that is considered in Algaba
etal. [5, 7, 8].

We must mention three significant features concerning to the simplification pro-
cedure. Firstly, it is a local method. This means that the coordinate transformations
are valid in a neighborhood of some solution, which we assume that is an equilibrium
point (which is determined by the equation df% =Fx) =0).

Secondly, the coordinate transformations are usually nonlinear functions of the
dependent variables. However, these coordinate transformations are obtained by solv-
ing a sequence of linear problems.

Finally, the structure of the normal form is determined by the principal part of the
vector field (in the classical theory, the principal part reduces to the linear part).

Let us consider a quasi-homogeneous tridimensional system of some type
t = (11, 1, t3) and degree r of the form

).C —%(x, )’)
V= 6w
< fx,y)
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where & and f are quasi-homogeneous scalar functions of type t = (11, 1) and
degrees r + t; + t, and r + t3, respectively. We observe that the vector field of this
system is independent on z and has zero divergence. In this chapter we analyze normal
forms for quasi-homogeneous higher-order perturbations of the above system:

)'C _%(xa )’) +F()C, Y, Z)
V=1 L@n+6ay.0 | )
z Fo,y) +Hx, y,2)

where (F, G, H)T contains the higher-order quasi-homogeneous terms of type
t = (11,12, 13).

This kind of systems embeds some interesting situations.

For instance, the normal form for the non-degenerate Hopf-zero singularity can
be obtained following our approach if we use the type t = (1, 1, 2), and write the
singularity as

X —y+F(x,y,2)
vy | = x+Gx,y,2) ,
Z x>+ y*+H(x,y,2)

where (F, G, H)T contains higher-oder quasi-homogeneous terms of the quoted
type. Notice that it corresponds to 2/ = f = x? 4 y? (which is quasi-homogeneous
of type t=(1,1) and degree r = 2). This case has been analyzed in Algaba et al.
[1], Chen et al. [16, 17] and Gazor and Mokhtari [22].

Also, the normal form for a triple-zero singularity with geometric multiplicity
two (that corresponds to the coupling of a Takens-Bogdanov and a saddle-node
singularities) can be obtained following our approach. It is enough to use the type
t = (2, 3, 5) and write the singularity as

X y+F(x,y,2)
y|= x4+ G(x, y,2)
z x3/3 —y*/2 4+ H(x,y,2)

Now, we have h = f = x3/3 — y?/2, that is quasi-homogeneous of type t=(2,3)
and degree 6. This case will be analyzed in Sect. 6.

We have structured this chapter as follows. In the next section, we summarize the
main concepts of the classical Normal Form Theory. Later, in Sect. 3, we extend the
ideas for vector fields developed in quasi-homogeneous terms. Section 4 is devoted
to describe several decompositions of quasi-homogeneous vector fields, that we use
which allow to calculate normal forms for planar and tridimensional systems. The
main goal of this chapter is considered in the Sect. 5, where we determine normal
forms for tridimensional systems whose principal part does not depend on the last
variable and has free divergence. Finally, as commented before, in Sect. 6 we consider
a case that falls in this situation, corresponding to a triple-zero singularity.
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2 Classical Normal Forms

The properties and concepts that are presented below are known and can be seen, for
more details, in Chua and Kokubu [20] and Golubitsky and Shaeffer [23].

Definition 1 Let J7" be the vectorial space of n-dimensional homogeneous poly-
nomial vector fields n variables of degree k. We define the Lie Bracket of two differ-
entiable vector fields F and G as

[F, G](x) = DF(x) G(x) — DG(x) F(x), forall x € R".

Moreover, it is a simple matter to show that, given F € " and G € %ﬂj”, then
[F, G] € 72} T

The Lie product has the following properties.
1. Bilinearity. If ay, ap, b] , b2 € R and F] , F2, G] s G2 € jfjn, then

[aiF| + aFy, b1Gy + b,Gy] = a1 bi[Fy, Gi] + a1b:[Fy, G2l + axby[F, G]
+ aby[F7, Gy].

2. Antisymmetry.
[F,G] = —[G,F], withF, Ge 7.
3. Jacobi Identity.
[[F,G], H] + [[G, H], F] + [[H,F],G] =0, withF, G, H e J7".

Next, we present the basic ideas of the classical theory of normal forms (see Takens
[30], Chow and Hale [18], Guckenheimer and Holmes [24], Elphick et al. [21], Iooss
and Adelmeyer [25] and Chow et al. [19]). Roughly, it consist into simplifying the
analytical expression of a vector field degree by degree through changes of variables.
Hence, let us assume that the vector field F of system (1) is written in homogeneous
components, by its Taylor expansion. Then, the quoted system is expressed as

x=Ax+F,Xx)+F;x)+---, 3)

where A = DF(0) is the Jacobian matrix at the origin of F(x) and Fy (x) represents
the k-degree terms of the Taylor expansion of F(x).

The starting point in the simplification procedure consist into simplifying the
lowest degree term, using linear transformations. Let 7 be the matrix that transforms
A = DF(0) into real Jordan canonical form J. Then, the linear transformation
x = T'X brings system (3) into
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=T 'ATR+ T 'Fy(TR) + T 'F5(TR) + - = JR+ T X) + F3%) + - - -,
“)
where we have defined Fy (X) = 7 ~'F;(TX). Dropping the tildes, the above system
can be written as

X=]X+F2(X)+F3(X)+"'. (5)

This first step in the simplification procedure is not essential. In fact, the further
simplification procedure is applicable for other canonical forms for the matrix A (for
instance, the Frobenius normal form could be selected) and even the initial matrix A
could be chosen as it is.

Next, we fix k > 2 and use a near-identity transformation x =y + Py (y), with
P, € 22", in order to simplify the terms of degree k. The transformed system is

V= +DyPey) Ty +Pey) + Y (I + DyPe(y) "Fe(x)(y + Pe(y))
k>2

=Jy+ ) Gu(y). (6)

k>2

where Gy are the k-degree terms of the transformed system. It can be shown (see
Guckenheimer and Holmes [24]), that this transformed vector field does not change
up to order k — 1, 1.e.:

Ga2(y) = F2(y), G3(y) =F3(y), ..., Ge1(y) = Fier (y). )

Moreover, k-degree terms of the transformed vector field are:

Gi(y) = Fi(y) — (DyPr(y) Jy — JPi(y)). ®)
This expression suggest to define the homological operator:
L,{ WA — T 9)
P, — L (Py) = DxPi(x)Jx — JPi(x), = [Py, J](%).

It is easy to prove that L; is linear. Therefore, we can write the k-degree terms of
the transformed vector field (8) as

Gi(y) = Fi(y) — L] (Pp). (10)

We observe that we could achieve G; = 0 by selecting P, such that L,{ P;) = Fy.
Nevertheless, in general we can not eliminate all the k-degree terms since the above
equation can be incompatible, but we can proceed as follows:

e We consider a complementary subspace Cor(L,{ ) to the range of the homological
operator in (9), i.e.: S = Range(L,{) ® Cor(L,{).
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e We decompose F; = F; + F{, where F; € Range(L]) and F{ € Cor(L}).
e We select P, € 77" verifying the homological equation

L] (P;,) =F,. (11)

In this way, we obtain G, = F;, — L,{ (Py) = Fy. In other words, we have simplified
F; by eliminating the part belonging to the image of the homological operator.

Repeating this procedure for k = 2, 3, 4, ... and using a version of Borel’s The-
orem (see Vanderbauwhede [32]), we obtain the normal form Theorem .

Theorem 1 There exists a €*°-diffeomorphism @ verifying ®(0) =0 and
D®(0) = I such that the change of variables x = ®(y) transforms system (5) into
(6) where G, € Cor(L,{ ), for all k > 2. In this case, we say that (6) is a normal form
for system (3).

The homological equation (11) and, consequently, the corresponding normal form
are based on the linear part of the vector field. This equation does not have, in gen-
eral, an unique solution. Then, its solution will depend on arbitrary terms belonging
to the kernel of the homological operator. These terms can be used later to make
simplifications in the normal form terms of order higher than k (see Takens [30],
Ushiki [31], Chua and Kokubu [20], Baider [13], Algaba et al. [1-4]) giving rise to
simplified normal forms. We notice that these simplified normal forms are not only
determined by the linear part, but they are also influenced by the nonlinear terms.

In the next subsection, we present a new approach that sometimes provides the
simplified normal forms directly because the homological equations have unique
solutions. Moreover, the new approach allows to work with systems having null
linearization matrix, where the classical normal form theory does not provides any
advantage.

3 Quasi-homogeneous Normal Forms

The use of quasi-homogeneous expansions of vector field instead Taylor expan-
sions has several benefits. For instance, it allows to manage linear and nonlinear
terms at once (because monomials with different degrees may have the same quasi-
homogeneous degree).

Moreover, the linear part does not play a predominant role because instead we
use the principal part of the vector field.

In this section, we extend the ideas of the Normal Form Theory for vector fields
expanded in quasi-homogeneous terms. These ideas have been used in the case of
the Bogdanov-Takens singularity (see Baider and Sanders [14], Kokubu et al. [26],
Wang et al. [33]), Lombardi and Stolovich [27] and Strozyna and Zoladek [29]) and
in the case of degenerate vector field (see Algaba et al. [6, 7, 10, 11], Basov and
Slutskaya [15] and Strozyna [28]).



Normal Form for a Class of Three-Dimensional Systems ... 43

We start with some definitions and properties about quasi-homogeneity that we
will use later. For more details, see Algaba et al. [5].

3.1 Some Properties About Quasi-homogeneity

Letconsideratypet = (t1, 15, ..., t,) € N (here, Nis the set of natural numbers not
including zero, whereas Ny will denote the set of natural numbers including zero). We
define its module as |[t| = #; + 1, + - - - 4 1,,. We use standard multi-index notations:
a multi-index is an element a = (ay, as, ..., a,) € Nj. We write the monomials as
x? = xi", ..., xg, the canonical basis of R" is denoted by {ei,...,e,}, and the
canonical basis of polynomial vector fields by

B ={x"¢;:aeNj,1<j=<n}.

Here we perform a formal analysis of normal forms, which means that we will not
address any question about the convergence of the expansions.

Definition 2 A scalar function f is quasi-homogeneous of type t and degree k if its
monomials x? satisfy

a-t=aty +mtr+---+ayt, =k. (12)

The vector space of quasi-homogeneous polynomials in n variables of type t and
degree k is denoted by P}.

Avector field F = (Fy, F», ..., F,) is quasi-homogeneous of type t and degree k
if its components F; € iPz 1) forall j =1,2,...,n. We denote Q}( the vector space
of quasi-homogeneous vector fields of type t and degree k.

Next result present an alternative characterization for quasi-homogeneous func-
tions and vector fields. Let us consider the diagonal matrix

E = diag (¢",&",...,&").
Proposition 1 (a) The function f is quasi-homogeneous of type t and degree k if
and only if
fEX) =& f(%). (13)
(b) The vector field F is quasi-homogeneous of type t and degree k if and only if

F(Ex) = ¢*EF(x). (14)

Proof (a) If f € P!, then
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f(x) = E aax? = E o X' X3 L Xy,
aeNj aeNj
at=k at=k

In consequence:

FOEX) = f(e"x1,6%x2, ..., 6" x,) = Z 0 (8" X)) (82 x2)™ ... (87 x,)

aeNj
a-t=k
= E e Mgl ghny x| xn = gk E aaX® = e f(x).
aeNj aelNg
at=k at=k

The converse can be proven analogously.
(b) Note that F = (Fy, F5, ..., F,)" € QL if, and only if, F; € P4,,. Using item
(a), the proof can be easily completed.

Next, we show the behavior of the Lie product for quasi-homogeneous vector
fields. The quoted result requires a previous lemma:

Lemma 1 Let us consider F € Q%. Then: DF(EX) = e*EDF(x)E~".
Moreover, the j-th column of the matrix DF is a quasi-homogeneous vector field
of degree k — t; with respect to the type t.

Proof Differentiating (14) with respect to x, we obtain the equality.
In addition, the column j of DF(x) is given by DF(x)e;. Then:

DF(Ex)e; = ' EDF(x)E"'e; = ¢ EDF(x)e "e; = ¢ EDF(x)e;.

The result follows from Proposition 1(b).
Proposition 2 Let us consider F € Q} and G € Q. Then, [F,G] € Q.

Proof From Lemma 1, we obtain DF(EX) = ¢*EDF(x)E~! and DG(EX) =
e EDG(x)E~". Then:

[F, Gl(Ex) = DF(Ex)G(Ex) — DG(Ex)F(ExX)
e EDFX)E~'¢*EG(x) — & EDG(x)E~'¢' EF(x)

= " E (DF®)G(x) — DGXF(x)) = &' E[F, G] (x).

Using Proposition 1(b), we complete the proof.

Next result is a version of Euler’s theorem in the quasi-homogeneous case. Let
us denote Dy = (t1x1, hxa, ..., t,x,) 7 € QF.
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Lemma 2 Let us consider f € PL. Then: V f - Dy = kf.

Proof As f € Pt, we have f(EX) = &* f(x). Differentiating with respect to &,we
obtain
V f(EX) - (D,E)x = ke* ! f(x).

Taking ¢ = 1, we obtain the result.

Definition 3 The divergence of the vector field F is

. oFy J0F, 0F,
divlF) = —+ —+ ...
(F) 0x1 + 0x> + 0x,

3

i.e., it is the trace of matrix DF (x): tr (DF (x)).
Lemma 3 Let us consider F € Q. Then: div (F) € P%.

Proof From Lemma 1, we have:
div (F) (Ex) = tr (DF(Ex)) = tr (! EDF(x)E™") = ¢"tr (DF (x)) = &"div(F)(x).

Using Proposition 1(b), we complete the proof.

Lemma 4 Let us consider F € Q}. Then: [F,Dg] = kF.
In particular, if F € Q¢, then [F,Dg] = 0.

Proof Consider j =1, ..., n. Applying Lemma 2 , we obtain the following expres-
sion for the j-th component of the Lie bracket [F, Dy]:

[F,D0]~ej=VF-ejD0—VDO-eJ-F=(k+tj)F~ej—thoej=ij.

3.2 Quasi-homogeneous Normal Form for Vector Fields

To adapt the procedure for determining normal forms using quasi-homogeneous
expansions, we first explain how obtain such expansion for system (1).

Let us include a parameter ¢ by the scaling x = EX, with X € R". Thus, we get
the system ¥ = E~!'F(EX). Developing in powers of &, we can write this system in
the form )

X = Fr(f)gr + Fr+l()’z)8r+l +--,

where it is easy to prove that F; Q}. Taking ¢ = 1, we write system (1) as a sum
of quasi-homogeneous polynomials of type t:

X=F&+F4(x)+--. 5)
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Definition 4 The lowest-degree nonzero term F, in the quasi-homogeneous expan-
sion (15) is called the principal part of the vector field F with respect to the type t.

The quasi-homogeneous degree r of the principal part F, is a integer number (i.e.,
in general r ¢ N). For example, let us consider a two-dimensional vector field with
a nilpotent singularity:

X =y +axx® +apxy +any’ +---,
Y = bax® + biixy + bepy* +-- -,

and take the type t = (1, 3). It can be verified that the principal part of the above
vector field F with respect to this type is F, (x, y) = (0, byox?®)T, where r = —1.

It is a simple matter to show that the classical Taylor expansion is a particular case
of quasi-homogeneous expansion that corresponds to the unity typet = (1, 1, ..., 1).
In this case, there is a shift in the degree: linear terms have quasi-homogeneous degree
0, quadratic terms have quasi-homogeneous degree 1, and so on.

Next, we describe the process to obtain a normal form for system (15). Let us
consider k > 1 and perform a near-identity transformation x =y + P, (y), where
P, € Q}. The transformed system is

V=G =U+DPy) ' Y F;(y+Puy). (16)

j=r

Let us consider the quasi-homogeneous expansion in terms of type t for the above
system:
y=G6WM+Ghny+---, a7

with Gy (y) € Qt, for all k > r. The following result holds:
Proposition 3 With the above notation,

e G,=F, forj=rr+1,...,r+k—1,

° Gr+k = Fr+k - (DPkFr - DFlPk) = Fr+k — [Py, F, 1.

Proof Performing the scaling y = E'y, system (16) becomes )7 = E"'G(Ey). We
observe that

G(Ey) = (I + DP(Ey))"' ) F; (Ey + Pi(Ey))

j=r
= (E(I+£"DPy) E™") ' Y Ee/F; (v + £ Pi(y))

j=r

= E (I — &' DPy(y) + & (DPL(y)* —-+) Y _&/F; (y + £*Pr(y)) .

jzr
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Moreover,
F; (y +&Pi(y)) = F;(y) + DF; (0P (y)e* + O (¢1).
Therefore,

ET'G(Ey) = (I — e DP(y) + £ (DPc(y))> —---) Y &/F; (y + £“Pr(y))

jzr
= (I =" DPu(y) )&/ (F;(v) + DF;0Puv)e') + 6 (7441)
jzr
=Y &l (F;(y) + DF;(y)Pc(y)e*) — e DPL(Y)F, (y) + O ()

j=r
—F, (e +F e+ +Fry (y)€r+k—l
+ (Fr+k(y) + DFr (Y)Pk(Y) — DPk(y)Fr (y)) €r+k + ﬁ (8r+k+1) )

This result suggests to introduce the homological operator

L, :Qp — QL (18)
P, — L, (Py) = DPF, — DF,P; = [P}, F,].

This is a linear operator that only depends on the principal part F,.

Proposition 3 states that the quasi-homogeneous terms up to order » + k — 1 do
not change, and the quasi-homogeneous term of degree r 4 k in the transformed
vector field is

Gk =Frpp — [P, F 1 = Fo g — L (Py).

Following the same ideas of the classical Normal Form Theory, we can achieve that
G, 1« belongs to a complementary subspace to the range of the linear operator L, ¢,
simply by annihilating the part of F,; that belongs to the range of the linear operator
L, 1, through an appropriate choice of Py.

Performing the near-identity transformations described above for k = 1,2, ...,
we obtain the following result.

Theorem 2 There exists a € *°-diffeomorphism ® verifying ®(0) = 0and D (0) =
I such that the change of variables x = ®(y) transforms system (15) into (17) where
G, =F, and G, € Cor(L,1), acomplementary subspace to the range of the linear
operator L, 1y, for all k > 1. In this case, we say that (0) is a quasi-homogeneous
normal form for system (3) corresponding to type t.
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4 Decompositions of Quasi-homogeneous Vector Fields

Let us introduce some definitions.

Definition 5 We denote the Hamiltonian vector field corresponding to a Hamilton

function & by
an an\"
Xp=(—7—.—) .
ay 0dx

13
k[t
We define the wedge product of two vector fields F = (P, Q)T and G = (P, Q)7

by FAG:=PQ — QP. Wenotice that if F € O}, G € Qf, then FAG € P} .

It is easy to show that X, € Q; if, and only if h € P

Recall that we are interested in obtaining normal forms for the tridimensional
system (2), whose principal part is

—%(x,y)
a8 X (x,

F.(x,y)= %y(x, y) = <%) € Q} (19)
fGx,y) ’

This means that R R X
t : t t

X, €9, (1.e., h e Tr+|f|) ,and fe P, .

In this section we present two decompositions for planar quasi-homogeneous vector
fields that allow us generate a new decomposition for three-dimensional vector fields.
Looking at the principal part (19), we observe that we need to work with two
and three-dimensional quasi-homogeneous vector fields. As we are using at once
functions of two and three variables, we need to distinguish its quasi-homogeneity
type. For this reason, given the type t = (¢, 12, 13), we will denote t = (71, t,), that
will appear when we deal with functions depending on two variables. In the same
99

. T
way, we denote the planar gradient by V := (5 @) in order to distinguish it from

T
the tridimensional gradient V := (ai i, .i) .
x’ dy’ 9z

4.1 Decompositions of Planar Quasi-homogeneous Vector
Fields

Given a type t, any planar quasi-homogenous vector field can be decomposed
uniquely as the sum of two quasi-homogeneous vector field: one of them having zero
divergence (conservative part) and the other one with divergence equal to the original
vector field (dissipative part). This decomposition, called conservative-dissipative
splitting, can be seen in more details in Algaba et al. [12].
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Proposition 4 Let us assume that Py, € Qi. Then, there exist unique polynomials
Wk € TP and hy 4 € ka i such that:

P =X, ., + Do, (20)

Do APy) and py = —le(Pk)

where hk+|f| = Py

k+|t|

Proof First, we prove the unicity. Let us suppose that there are © € P} and h € P}
verifying (20). Then:

k+r|

d 9
div(Py) = div(Xy) + div(uDo) = 0 + I (Hhx) + —(/sz)

ou ou
ety + +8—tzy +ult] = V- Do+ plt] = -k + plt] = k + [t)p.

D()/\Pk=DQ/\Xh=Vh~D0=(k+|t|)h,

(above, we have used Lemma 2).
Next, we prove the existence. Using again Lemma 2, we obtain the following
expression for the first component of the vector field Py:

dh HPy e+ (k+1)P; - e
(Xh+MD0)'el=—_+Mt1x=2k 1 ( i l)k 1
9y k+ |l
k+t t
+1T2Pk e =P -¢
k + |t

The result for the second component follows analogously.

Next lemmas analyze the conservative-dissipative splitting for some kind of vector
fields, namely the Lie product of two quasi-homogeneous Hamiltonian vector fields
and the product of a quasi-homogeneous scalar function and a quasi-homogeneous
Hamiltonian vector field.

Lemma 5 Let us consider p € Pt pE f]’f,. Then:

(@) [Xp, X, ) =Xy, with f =Vp-X, Pl

(b) pX, =X, + uDy, with h = ”‘” TP and =

—L__VpX
k14|t k-1t PAq-

Proof (a) We have:

)
X, X,]= < DPyxqy — Pyyqx — qyxPy + qyyPx ) — ( Tx(pqu = Py4x) )
P —Pxxqy + Pxydx + qxx Py — qxyPx _%(Px‘Iy — Pyqx)
= _X[’,VCI,\'_P,\*qx = X@p-xq'

(b) From Proposition 4, the conservative part of pX, is
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1 [+t
h=————[DgAXp+uDg)] = ————[Dg A (pXg)] = ———— pq,
P IRt e A B L i G L L
and the dissipative part is
div(X;, + uDy) ! div(pX,) VpX
n=———7div(X;, + uDg) = ———div(p = —7VpX,.
k+ 1+ i) k+ 1+ i) SO ITR G

Next, we present a new decomposition of planar quasi-homogeneous vector fields

(for more details, see Algaba et al. [8]). To this end, we show that the space Q}; can
be decomposed as a direct sum of three subspaces. Let us define

WP, = (h(x, )y, y) € P gty € Pl b 1)
and let denote by A, ; a complementary subspace of hfPfc_,, ie.

t _ . t
P = Dusiy © WL,

Let us also define the subspaces

,%j = [AF, eQi:)\efP};_r].
9,2 = [nDerizneiPi}.
‘g,f = [Xg GQ};:ge Ak+|i|}'

The following propositions provides the quoted decomposition, and their proof can
be found in Algaba et al. [8].

Proposition 5 Let us assume that ¥, = X, + uDg and h € T£+|i| \ {0}. Then

d—4tegesl

Moreover, given Py € Q;‘(, there exist unique polynomials g € Ay 4, 1 € ﬂ’% and
A€ fPi_r, such that
P, =X, +nDg + AF,, (22)

where
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_ ProyAker Dy A Py)
8= K+ 10l
Proyh?i,, Do A Py)
T+ IEDA
_ div(Py) — VAF, — Adiv(F,)
= k + It] '

4.2 Decompositions of Three Dimensional
Quasi-homogeneous Vector Fields

Next, we present a decomposition similar to (22), that applies to three-dimensional
quasi-homogeneous vector fields. For this purpose, we define the following set:

WPy, = (h(x, )y (. y,2) € P g iy € P b

(compare with to (21)), and denote by A, a complementary subspace to hPt_in
t
kRS
Let us introduce the following subspaces:

X _dglxyd)
o ¢ = {(Tg> €9 g€ 80,0,2) = 0},where Xe =\ ses |-

ax
¢ {(“go) eQt : Mewz}.
2.5 e Q! : Ae?}(_r}.

.@:KO
. %,(‘:{(%) €Q - geﬂ’}(“}}.

Next proposition generalizes the decomposition given in Proposition 5 for three-
dimensional vector fields. The proof can be can be found in Algaba et al. [8].

1S
Il

Proposition 6 Let us consider F, € Qi given in (19), where h %% 0. Then
A =¢'e 20 Flad.

Moreover, given Py € Q, there exist unique polynomials 8i+ii| € Diyyiy C TZHE\’

ik € P Mr € Ph_ys Skany € Py with g114(0,0, 2) = 0, such that:

X, . D Me—r X 0
P, = ( %ﬂ) + (Mko 0) +( k = h) + <§k+ )
15}
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Next lemma, that we state without proof (it can be found in Algaba et al. [8]) will
be used later in order to obtain a matrix representation for the homological operator.

Lemma 6 The following properties hold:

1. Ifgk-ﬁ-\f\ € Ak-ﬁ-\f\’ with gk‘Hfl(O’ 0,z) =0, then

Xe, i .5 ir+Do X, 0
() ] = () = (55) + (9) - o)

where
s _p Vo . . X, 4 il gk+|t\ cA
rkatil = PIOYa, o \ Vi - A r+k+\t|f rkHE?
Pk = r+k+m <Vf ngkﬂt\ Vj“k : Xh) € UJ:Jrk’ (23)

¥ ki) & . Kl 8k t
e = (r+|t|)hPrOyh Pt (vg"ﬂl X + r+k+|t|f ) €T

. 1D (Vi FoDo\  (rmXa) 0

2. Ifur € ? ,then[<—0 )Fr] = ( 0 ) ( 0 ) ((r+t3)ukf>'
Me—r Xy _ (Vhj—y -F)XpY 0

3 Ifhp—r € Py r,then[( 0 )’Fr:|_< 0 ) <)»k_er‘Xh>.

0 0
4 If o €P.  th F|=(—2 )
If Skt € Py, then [(gk%) ] <v§k+z3 'Fr>

5 Three-Dimensional Normal Forms

In this section, we plain to obtain the normal form for the tridimensional system (2),
whose principal part is given in (19), by using the decomposition obtained in the
previous section.

We start analyzing the homological operator (18)

t t
LrJrk Q — Qr+k’

defined by L, 1, (Py) = [Py, F,].
From Proposition 6, this operator can be expresed as

Lr+k:%kt@@]:@g]:@gt—)%rt+k€9@t+k®yrt+k r+k7

where, if we write P, = (Xg(k)“> + (ng) 0) + (Ak_éxh) + (5‘0 >, then
k+t3
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oo = | () o [ (400) | [ (™) o ] [ (G2) )

From Lemma 6 we obtain the following matricial structure for this operator:

X, i

itr Do (Vi - F,)Do

O .
2 X 7 g Xp (Vai—r - FXj ¢
() | (%) (=) o

o) Comiong)| G vrsa) | (veee) |
V- Xg ) |\ +D)uif )|\ =k V- Xy Vit - F, Tk

X wiDo Ak—r Xp 0
8kt t Liatidmd t Sok—rXn at t
B et | () ezt | (5™ <2t | () <4

where §r+k+\f|’ Hrtks Ay are given in (23).
Let us introduce the Lie derivative operator associated to the principal part F,
given in (19) of the vector field (2), by:

4P, — Py (24)
Wi—r —> V/»‘kar : Fr~

Moreover, let us define the following modified Lie derivative operator:

Ek,A Z'Pz_ —> :Pz

r

a:U“kr
Mkr—)vﬂkr Xh+Af 9z

Observe that £ 4 is the Lie derivative operator corresponding to the vector field
F, + (ﬁ) Therefore, taking A = 1, we get the operator ¢; defined in (24).

Using this new operator we can write the above matrix as

BT 5 [ v [ v |-
iy Do £y () Do
< 0 ) 0 0 0 7 rt+k

Xy Lok (M) X
B E= o

Cor x| Coeiomn)| Gvrs) (e
VX o/ \=C+ ) f )|\ =ty VI X0 ) [\t (o) J| T

Xe i wiDo A—r Xp, 0
Bh+lil t t ot t
(or)eat | () 2t | (5 e 7| () =4
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where
&rikiit) = ProyAme (Er+k+|f| Ao (gk+\f|)) )
[Lr+k = r+k+|t\ (Vf X"ékﬂll %ik 'Xh) )
b = :jf‘al)‘}!Proyh i (€ a0 ()
being Ag = rizljlltl‘

From the structure of the above matrix is deduced the following proposition.

Proposition 7 Let us consider F, given in (19) with h #£ 0. Then, a complementary
space of the range of the homological operator L, is given by

XCor(t, 1 4)NA, 4vii Cor(£,4) Do Cor(4;) X, 0
( 0 ® 0 U0 )% o)

where Ay = rf_;:—mtl and Cor (£, 4 4,) is a complementary subspace to Range (€, 1k a,)
in Pt '+ Such that Cor(L, 4 4,) N Ar+k+|f\ has maximal dimension.

Next theorem provides a formal normal form for system (2).

Theorem 3 A formal normal form for system (2) is x = G(x), where

r+k Do M X 0
oo () () () ()
;(( 0 0 Srdk+13

with 8rik+li| € Cor(ﬁrJrkHﬂ’Ao) N Ar+k+|f|’ Urik € Cor(£,4r), Mg € Cor(£y),

Srtktt; € COr(€yqpys,); being Ag = ri-l:Jl:lltl and Cor (€, 4, o,) a complementary sub-

space to Range({; ¢ 4,) in fPfH, such that Cor(€y4 a,) N Ar+k+|i| has maximal
dimension.

5.1 The Operator £, i, 4

In this section, we will study the linear operator £, 4 4 for A # 0, since the co-range
of the homological operator L, ;; depends on the co-range of this operator. We recall
that £, 4, 1 = £, 4 1s the Lie derivative operator ¢, defined in (24), which is associated
to the principal part (19) of the tridimensional vector field (2).

Let us introduce the Lie derivative operator associated to the planar Hamiltonian
vector field X,:
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P — P (25)

i —> L (=) = Vi, - Xy,
Let us consider the subspace Ker(2,+k). We observe that the elements of this
subspace are the (r + k)-degree quasi-homogeneous polynomial first integrals of

X, The first integrals of X, are of the form C h*, where C, o € R. Then, impossing

that they are polynomials, we obtain that o = ﬁ and

Ker(ér+k) = Span {h%\ﬂ} , if k is a multiple of r + It].

Otherwise, we have Ker(f,Jrk) = {0}
Let us denote by & a complementary subspace of Ker(¢,) in P}, i.e.,

Tﬁ = & ® Ker(f,41)

Let also define the subspace & = z! &_y,, and % = 7' Ker({,44_;;,). Then:

ki ki ki
P = @ 7 P, = @Zl (Gx—ir, ® Ker(lyix—ir,)) = @ & ® A,
1=0 1=0 1=0
where ky = | k/t3 | (| -] is the floor function).
Hence, given p; € iP}(, we can express it in the form
pee,y) = pl () + p(x. ). (26)

where p,(cl) € & and p,(cz) € Ker(f,Jrk).
Given p € P, itis easy to show that it can be expressed as

Lk/t3]
ey, ) = Y 2 e (x, ),
1=0
with py_, € Tiflts. Let us denote by ki, k, the quotient and the remainder of the
division k = t5, that is:

k =kitz +ky, withQ <k, < 3. 27

Then, using (26), we can write
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k] kl
M (X, y,2) = ZZZ Pi-i5y (X, y) = ZZZ Pla—Ds+ky (X, Y)

1=0 =0

ki

N~ @

=)z <P<kl—1>r3+kz(x’y)+P(kl—l>t3+k2(x’y)>’
=0

() (2) N
where p/ . r, € Stk and Py o € Ker(bry g —nith)-

After some computations, we obtain

0
0z
ki—1
) L(Vpth
=V X+ ) 2 (vp<k,—l>t3+kz X
=0

Copalp) = Vg - X, + A f

ky
1 (@) -1 (€))
U+ DL ALPG) i) + 212 ASP i
=0

Consequently, we have the following matrix expression for £, 4:

0 0 0 0 0 0 [P s
d, 0 0 0 0 0 FP

0 dy, 1 0 0 0 0 |t (Pi+k—(k1—l)t3
0 : : d 0 0o | e,

0 0 e 0 do 0 L9,

b | @A - | E@S| GOH| K

Here, we have denoted

2 (1 5 1
di, =" Vp,(cz) X, =2~ L (PI(Q)) , and

dkl*l = Zklil (ﬁpl(tla)Jrkz X + (kl -+ DA fpélzil)l3+kz

)

_ ~ 1 2
= Zkl l (Er+113+k2 (pl(t:Jrkz) + ki —1+1A f pflll),ﬁ_kz) s

forl=1,..., k.

. 2 ; 2
Moreover, using that Pgllnzﬁkz € Ker(£, 1 ¢—1y1,41,), we have pék])flfl)tﬁkz €

(=Dr3+hky

Span {h r+il } if (I — 1)t3 4 k, is a multiple of » + |f|, or zero otherwise.
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Remark 1 The elements of J% = Ker(f,+k) are not used in the matrix. Moreover,
if dy,—; = 0 for some [, then

- 2 ; /
Vpl(t3)+k2 Xp=—ki—Il+DAf pglil)tg+kz € Range(Cr-yir; 1) N COr(lrtiryp,)-
Therefore, p" , = p = 0and

> Pitytk, = Pu-vn+k, =

B s\ _ [ Span{h"}, if k = n(r + [t]),
Ker (£r+4.4) = Ker (EH']‘) o { {0}, otherwise

From the structure of the above matrix, we obtain the following result:

Theorem 4 Let us consider the subspace ¥, defined by

N ket N
Y, = Range(,4) @ Span {f hr+i }, if k — t3 is a multiple of r + |t|, or
Yk = Range(é,+k), if k — t3 is not a multiple of r + |t|.

Let us denote by "/7,+k a complementary subspace of ¥V, .. Then, a complementary
subspace to the range of the operator £, i 4 is

ki—1

ki+1 k 7 [~y
Cor(yira) = 2P iy, @ 29Corlrr,) © Y 2 Vi
=0

where k| = |_k/[3 1, ky = k — k5.

Remark 2 We claim that, without loss of generality, we can assume that f €
Cor <ér+,3): a complementary of the range of the Lie derivative operator ﬁ,+,3.

Namely, if we transform the system (2) by the change of variables X = x, y =y,
Z=2z— p,(x,y), with p,, € (P}}, then the principal part of the transformed system

becomes
I v s Il v s )
Fr = = s
f _vpl3 'Xh f _£r+t3 (pt3)

and we can annihilate the part of f that belongs to the range of f,+t3 by selecting p;,
adequately.

Moreover, through this work we assume that the factorization of & in C[x, y]
only has simple factors. In Proposition 3.18 of Algaba et al. [9] has been shown that,

under this generic assumption, we have Cor (ér +k +\f|) = hCor (fk> This property

is important because, in this case, the study of the co-range of this operator can be
accomplished in a finite number of steps.
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A - =
Remark 3 If k — t3 is a multiple of r + |t|, then Range(¢,,4) N Span {f B } =

A~

{0}. Indeed, assuming that f € Cor (£,+,3), from Proposition 3.18 of Algaba et al.
k—r ~
[9] we have f ki € Cor(f,4z).

Remark 4 Although the linear operator £, 4 depends on A, the above complemen-
tary subspace Cor (¢, 4) does not depend on A, whenever A # 0. Hence, in the
applications we can select A = 1. In others words, we can substitute Cor(¢{,x 4) by
Cor(l, 41).

Remark 5 Observe that, if f = 0, then ¥, = Cor({,).

6 Normal Form for a Triple-Zero Singularity

Finally, we study the normal form for a triple-zero singularity with geometric mul-
tiplicity two (i.e., they correspond to the coupling of a Takens-Bogdanov and a
saddle-node singularities). We consider the following system, expanded in quasi-
homogeneous terms of type t = (2, 3, 5):

x=F+F +--, (28)
where the principal part is
Y
Fl = x2 = (—Xh(;xl’ y)> € Qtl
X/3-y7/2

We notice that t = (2,3), 7 = land h = x3/3 — y2/2 € PL.

Firstly, following the ideas presented in Sect. 5.1, let us obtain bases for the
complementary subspaces Cor({,4z).

The Lie derivative operator ék is studied in Algaba et al. [6]. It is obtained that a
complementary subspace to the range of this operator is

Cor(4;) = Span {hé } if k is a multiple of 6,
Cor(fk) = Span {xh%z} if k — 2 is a multiple of 6, and
Cor(fk) = {0} otherwise.

According to Theorem 4, we must distinguish if k — 3 =k — 5 is a multiple of
r + |t| = 6. This suggest us to write

k = 5(6k; 4 kp) + k3,
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with0 < k> < 6and 0 < k3 < 5. We notice that 1= = JCHR=0+0,
Let us consider the subspace
¥ = Cor(f;) ® Span {h%} if K — 5 is a multiple of 6, or
Vi = Cor(ék) otherwise,

and denote by ¥ a complementary subspace of ¥ in P%.
Then, we have

6k +ky—1
Cor(typ) = LM @ eColiu) @ ) e (29)
i=0

Next result presents bases for the subspaces Cor(£14) for the different values of
ko and k3.

Proposition 8 Let us write k = 5(6k; + ky) + k3, with0 < ky < 6and0 < k3 < 5.
Then, the following are bases for the subspaces Cor(€14;):

ka ks |Cor(£144)

0 < k» < 4lks = O[Span {xz®®@DFeFTRT=T 7 =1 k],
k=5 ks = 0[Span [xz0®=DHtlpSI=T 1 — 1k 41
0 < ky < 5|ks = 1|Span {xz0®i=DFRAORI=S - | — 1k 41
k=0  |ks = 2[Span {xz8®DFRFSpT=3 1 =1 k]

1 <k < 5|ks = 2[Span {x8® =D+t 1 =1 k) + 1]

0 < ky < 1|k3 = 3[Span {xz0®=DHRHR=3 | = 1, k]

2 < ky < 5lks = 3[Span {xz0® Dt =,k 4 1]

0 < ky < 2|ks = 4[Span {O Rty SE=DFREIRI=2 ) =1 k]

3 < ky < 5]ks = 4[Span [Pt xS0 DR BRI2 = 1,k + 1]

Proof We consider the case k3 = 0, or equivalently k = 5(6k; + k»). For the remain-
ing values (k3 = 1, 2, 3,4, 5, 6), we omit the proof since it is similar.
For k3 = 0, the expression (29) becomes

6k1+ky—1

Cor(brisek+kn) = O 2 Paekithoist-
i=0

By writing i = 6m +n withm € Ny and 0 < n < 6, we have

k=1 5 fo—1
_ 6m+n 7 6k1+n ~7
Cor(€145(6k+k)) = E E 2"V 6y +ky—6m—n) 1 E 2T 6y 4y —6ky =)+
m=0 n=0 n=0
k=1 5 fo—1

=Y " sr-myrko-mt + 2T oy

m=0 n=0 n=0
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(a) If k, =0, then

ki—1 5
Cor(Lrsr) = 2 D 2" " oot —my-my+1-

m=0 n=0
We distinguish two cases:

(a.1) If n = 5, then “/75(6(k1 —m)—5)+1 18 @ complementary subspace to
V5600 —m)=5)+1 = Range(EG(S(klfm)fﬁ) @ Span {hs(k‘ _m)_4} .

As Cor(éé(i(kl—nl)—ll)) = Span {h>F1=m =4} we get Pa(6(t—m-5)+1 = {0}
(a.2) If n # 5, then #5(6(k,—m)—n)+1 1S a complementary subspace to

V5600 —m)—nm)+1 = Range (s, —m)—n)+1)-

Hence ”/;5(6(;(1_,")_,1)“ = Cor(fs(e(k,_m)_nw) and the co-ranges are the trivial
space, except for n = 1 where Cor ({5, —m)—1)+2) = Span {xh>*1=m=1} n
summary, for k, = 0 we obtain

Cor(€1430¢,) = Span {z®" Hlxp?® =M= i =0, ...k — 1}.

(b) If ko = 1, then

k=15
i
Cor(Lrast+n) = D Y 2" " Paoity—my+1-my+1-

m=0 n=0

We distinguish two cases:

(b.1) If n = 0, then 775(6(k|—m)+1)+1 is a complementary subspace to
Va6 —m+1+1 = Range(Z(s,—my+1)) @ Span {ptimmt)

As Cor(é6(5(k],m)+1)) = Span {hs(""’")H }, we get %(6(k|—m)+l)+1 = {0}.
(b.2) If n # 0O, then #56k,—m)+1-n)+1 1S @ complementary subspace to

V5600 —m)+1-m+1 = Range sk, —m)+1-n)+1)-
Hence 725(6(k1—m)+17n)+1 = Cor(és(6(k|7m)+lfn)+]) which is the trivial space,
except for n = 2 where Cor(£e(5k,—m)—1)+2) = Span {xhs(""”’)’1 } In sum-

mary, for k, = 1 we obtain

Cor (€306, ) = Span {z®" F2xn>® == im =0,k —1}.
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(c) If k, =2, then

k=15 1
6mn o 6k1-+1
Cor(Cris@r2) = Y 22" " Pastr-mrsz-m1 + Y 2" P 1.
m=0 n=0 n=0

‘We notice that ”/75(2_,1)“ = {0} for n = 0, 1. To determine ”V;(s(k,_m)+2—n)+1, we
distinguish two cases:

(c.1) If n = 1, then %(6(/{1,,")“”1 is a complementary subspace to

P56k —m+n+1 = Range(l(se,—my+1)) @ Span {2E =+ ]

As Cor(é()(S(kl—In)-&-])) = Span {311~} we get Vo, —my+1)+1 = {0}.
(c.2) If n # 1 then Y5(6(k,—m)+2—m)+1 is @ complementary subspace to

V5600 —m)+2-m+1 = Range (€5, —my+2-m)+1)-
Thus 560k, —m)+2—m+1 = Cor(€ssk, —m)+2—n)+1) Which is the trivial space,
except for n = 3 where Cor(£e(s(k,—m)—1)+2) = Span {xh>k1=m =11,
In summary, for k, = 2 we have

Cor(€y1430k,) = Span {*" Pxp?b =M=t =0, ..k — 1}

(d) If k, = 3, then

k=1 5 2
6 % 6k
Cor(£145(6k43)) = Z ZZ S 6 —m)+3—m)+1 T ZZ Y eyt
m=0 n=0 n=0

Observe that "/75(3_n)+1 = {0} for n = 0, 1, 2. To characterize “/75(6(k,_m)+3_,,)+1, we
distinguish two cases:

(d.1) If n = 2 then 775(6(k1_,,,)+1)+1 is a complementary subspace to

h — 1
V56t -my++1 = Range(Le(s,—my+1)) @ Span {R*®© =+ ]

As Cor(Le(st,—my+1)) = Span {RPh=m+1Y we get Yot —my+n+1 = {0}
(d.2) If n # 2 then ¥5(64k, —m)+3-n)+1 iS a complementary subspace to

V5600 —m)+3—-m)+1 = Range sk, —m)+3—n)+1)-

Hence 756k, —m)+3—-n)+1 = COr(€s(6k,—m)+3—n)+1) Which is the trivial space,
except for n = 4, where Cor (€45, —m)—1)+2) = Span {xh>* ==} Tn sum-
mary, for k, = 3 we obtain
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Cor(€16+30k,) = Span {*" Hxpb1=m= i =0, ..k — 1}

(e) If k, =4, then

ki—1 5 3
6 ; 6k 41147
Cor(L1156k,+4)) = E E 22" s 6k —my+4—my+1 + E 2 41
m=0 n=0 n=0

‘We notice that 7;5(4,,1)“ = {0} forn =0, 1, 2, 3. To determine ”175(6(;(,,,,,”4,,,)“, we
distinguish two cases:

(e.1) If n = 3 then “/25(6(k1_m)+1>+1 is a complementary subspace to

; Stk —m)+1
V5600 —m+1)+1 = Range(Co(sk,—m+1)) @ Span {R>* =+

As Cor(é6(5(k],m)+1)) = Span {hs(k'_m)-H }, we get %(G(klfm)+l)+l = {0}
(e.2) It n # 3 then 56(x,—m)+4—n)+1 1S @ complementary subspace to

V5600 —m)+4—m+1 = Range (s, —m)+a—n)+1)-
Hence, 7564, —m)+4—n)+1 = COr (€5(6(k, —m)+4—n)+1) Which is the trivial space,
except for n = 5 where Cor(£e(5k,—m)—1)+2) = Span {xhs(k""’)’l}. In sum-
mary, for k, = 4 we have

Cor(€a1430k,) = Span {" BSxpb=m=t i =0, ..k — 1}

(f) If ky = 5, then

ki—1 5 4
6 % 6k %
Cor(Crysn+s) = Y 3 2" " Paot-myrs-m1 + 3 25" Fas .
m=0 n=0 n=0

We have ”125(5,,1)“ = {0}ifn =1, 2, 3, 4. Forn = 0, we obtain ”175(5,n)+1 = ”125.5+1 =
Cor(£e.4+2) = Span {xh*}. To characterize 5, —m)+s5—n+1, We distinguish two
cases:

(f.1) If n = 4 then ”/75(6(;(1_,”)“)“ is a complementary subspace to

; Stk —m)+1
V5600 —m+1+1 = Range(lo(sk,—m+1)) @ Span {R>*1 =+

As Cor(£(s(ky—my+1)) = Span {5 =+ 'we get Hg, —my+1)+1 = (0.
(f.2) If n # 4 then Y56k, —m)+5—n)+1 1S @ complementary subspace to

V560 —m)+5-m+1 = Range (s, —my+5-n)+1)-
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Thus, 7/5(6(/(1_,”)4,_5_,1)_,_1 = COI'(E5(6(kl_m)+5_n)+]) which is the trivial Space,
except for n = 0 where Cor(£o(s(t,—m)-+4)+2) = Span {xh>Ci=m+41,

In summary, for k; = 5, we obtain
Cor(€26430,) = Span {™"xh>0=m o m =0, ... ki }.

From Theorem 3 and Proposition 8, we can state the following result:

Theorem 5 A formal normal form for system (28) is:

o) B )6

X y
where
o 5
6k+1
g =2 > arxa®t,
k=11=0

5
o= 20@) +x2°h®g (8, h%) + xh* @5 00, h%) + Y xF Tty (0 1Y)

k=0
5 5 1
n szkfbk,l(z(’, 1) + szk—lhq)k’z(z()’ ) + szk+4h2q)k’3(zé7 1)
k=0 k=1 k=0
5 2 5
+ szk72h2q>k’3(z6’ hS) + szk+3h3(bk)4(z6, hS) + Z szi3h3¢’k,4(26, hS),
k=2 k=0 k=3
g = 2U() + xh4\114,0(z6, m) + xzh4‘ll5,o(16, m) + xWs (26, n) + xzshz\lfo,g(zf’, h)
3 4 5
+ Z xzk+2h4\l—'k,0(z6, n) + Z xzk+1\l/k,1(z6, n) + Z xzkh\l/k,z(z6, )
k=0 k=0 k=0
5 1 5
+ Z xzk_lhzlllk,3(z6, h5) + Z xzk+4h3\11k,4(z6, h5) + Z xzk_2h3\llk,4(zé, hs),
k=1 k=0 k=2

with ar; € R, and ®(-), V(-), Or;(-, ), Yii(:, ), are power series that vanish at
the origin and ) has the same structure that [1.
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Abstract In this chapter we gather recent results on piecewise-linear (PWL) slow-
fast dynamical systems in the canard regime. By focusing on minimal systems in
R? (one slow and one fast variables) and R? (two slow and one fast variables), we
prove the existence of (maximal) canard solutions and show that the main salient
features from smooth systems is preserved. We also highlight how the PWL setup
carries a level of simplification of singular perturbation theory in the canard regime,
which makes it more amenable to present it to various audiences at an introductory
level. Finally, we present a PWL version of Fenichel theorems about slow manifolds,
which are valid in the normally hyperbolic regime and in any dimension, which also
offers a simplified framework for such persistence results.
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1 Introduction

Singularly perturbed systems of ordinary differential equations are written in standard
form as

. dx ¢ . dy !
X =g = x,y,€), Y—dt—g(x,y,S), (1
where (x,y) € R? x R’ are the state variables, f and g are sufficiently smooth func-
tionsand 0 < ¢ < 11isasmall parameter. From the expression above, the coordinates
of x and y evolve with a different speed, provided that ¢ is small enough. Thus, the
coordinates of x are called fast variables, while the coordinates of y are called slow
variables. The time variable ¢ is referred to as the slow time.
Changing the time ¢ to the fast time t = t /¢, system (1) is written as

=Bty v=2 —epy.o. )
dt dt

Systems (1) and (2) are differentiably equivalent and their phase portraits are the

same. Both dynamics exhibit an slow-fast explicit splitting. In this setting, systems

(1) and (2) are called slow-fast systems. Often, system (1) is referred to as the slow

system whereas system (2) is called the fast system.

Fenichel’s geometric theory [11] allows to analyse the dynamics of the perturbed
system (1) by combining the behaviour of the singular orbits, corresponding to the
limiting cases given by ¢ = 0. In particular, by setting ¢ = 0 in Egs. (1) and (2), we
get respectively the differential algebraic equation (DAE)

0=£(xy,0), y=gxy,0), 3)

typically referred to as the slow subsystem or reduced problem, and the fast subsystem
or layer problem
X =f(x,y,0), y=0. 4)

The reduced problem consists of an s-dimensional vector field defined on the
critical manifold .¥ = {(x,y) € RI™ | f(x,y, 0) = 0}, which is assumed to be an
s-dimensional manifold. Regarding the layer problem, its dynamical behaviour takes
place along g-dimensional fibers which are formed by considering y constant. Hence,
both limiting problems have dimension lower than that of the perturbed system.
Moreover, the critical manifold .¥ plays a key role in both limiting problems: it is
the phase space of the reduced systems and it corresponds to singular points of the
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layer problem. A singular point (X, yo) € - is said to be normally hyperbolic if the
eigenvalues of the Jacobian matrix fy (X, yo, 0) have nonzero real part.

The flow of the reduced problem can be analysed by differentiating the equation
of the critical manifold . with respect to the slow time 7, which yields

x = +f 'fig(x,y,0), y=g(x,y,0), )

where fy (resp. fy) denotes the differential of f with respect to the fast (resp. slow)
variables. Then, system (5) is clearly singular at non-hyperbolic points (in particular
in the fold set .%), which can be remedied by rescaling time by a factor + det(fy)
(owing to Kramer’s rule). This brings the so-called desingularised reduced system
(DRS)

x=fg(x,y.0), y==detg(x,y,0), ©6)

which by construction is regular everywhere including in the fold set, and has the same
orbits as the reduced system with simply an opposite direction along the repelling
sheet . of the critical manifold.

Consider . C . a compact set such that every point in . is a normally hyper-
bolic singular point. From Fenichel’s Theorems [11], the submanifold . persists
as a locally invariant slow manifold .%,, of the perturbed system (1) for every small
enough ¢. Moreover, the restriction of the flow of the perturbed system (1) to the
slow manifold .#; is a small smooth perturbation of the flow of the reduced problem
(3). Fenichel also proved that there exists an invariant foliation with basis ., with
the dynamics along each fiber being a small smooth perturbation of the flow of the
layer problem. See also Jones [18], for a survey on geometric singular perturbation
theory (GSPT).

In Sect. 2, we show that these results apply when the assumption of smoothness
of the vector field is relaxed. In particular, we state a variant of Fenichel theorem
in the context of piecewise-linear slow-fast systems, with slow dynamics given by a
linear differential equation and a critical manifold given by the graph of a piecewise
linear (PWL) function. A key aspect of this result is that, due to the PWL setting,
explicit formulation are obtained for canonical linear slow manifolds.

Following Fenichel results, under normal hyperbolicity conditions, orbits of the
perturbed system (1) are composed by slow and fast segments. The former ones
evolving close to the flow defined over the slow manifold, while the latter ones are
following the flow defined over the fast fibers. A general question is: what does
remain of this dynamical behaviour when normal hyperbolicity is lost? in particular,
at points (X, yo) € -/ where the critical manifold is folded, that is, at which the
determinant of the Jacobian matrix fy (X¢, yo, 0) vanishes. Typically, when the critical
manifold .7 folds, then the fold set (a point or a curve in the most examples treated
here) separates branches with different stability properties. Consequently, attracting
(resp. repelling or saddle-type) branches of .% perturb to attracting (resp. repelling or
saddle-type) slow manifolds . (resp. .} or .). Then, in the vicinity of the fold
set of ., conditions can be obtained for slow manifolds with different stability to
connect, hence allowing for the existence of orbits which closely follow an attracting
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slow manifold ., pass close to fold set of ., and subsequently follow closely a
repelling slow manifold, .. These orbits are called canards and they play a crucial
role in explaining complicated slow-fast dynamics organising the transition between
stationary and relaxation regimes in planar systems (see Sect. 3) or the transition
between different oscillatory regimes (see Sect. 4).

The aforementioned conditions for slow manifolds with different stability to con-
nect, are obtained by the linear analysis of certain equilibria of the DRS (6), namely
those lying on the fold set .# and hence satisfying det(fy) = 0. Such equilibria are
called folded singularities and they appear due to the (singular) time rescaling which
transforms (5) into (6). Note that folded singularities are not equilibria of the slow
flow. Therefore, depending on the local behaviour in a neighbourhood of the folded
singularity, trajectories starting on .’ may cross them in finite time and continue
flowing along ., which is a singular canard behaviour. These singular canards
allow for the existence of canard solutions in the original system for small enough
& > 0; see Sect. 4 for details.

Seminal and classical papers on canards in planar systems are those of Benoit et
al. [3], Dumortier and Roussarie [10], and Krupa and Szmolyan [21, 22]. Regarding
canards in higher- dimensional systems with (at least) two slow and one fast variables,
see [2, 4, 28]; a recent survey can be found in [8].

Singularly perturbed PWL systems exhibiting canard dynamics are considered
in Sects. 3 and 4 in the two and three dimensional cases with two slow variables,
respectively; a brief summary of initial results on an example of three-dimensional
case with two fast variables (in the context of bursting) is briefly mentioned in
the conclusion section. Through these examples one can conclude that the PWL
framework is able to reproduce all salient dynamical features present in the smooth
case, both qualitatively and quantitatively, while allowing for a substantial level of
simplification. What is more, these examples also suggest elements that naturally
appear in the PWL setting and help revisiting unsettled questions from the smooth
case. To paraphrase Diener in [9], the natural biotope of canards is that of PWL
vector field. At least, it seemingly appears as the simplest environment in which
one can understand the essence of canard dynamics while dropping all unnecessary
refinements.

2 Canonical Fenichel Slow Manifolds

Under suitable conditions (most importantly, normal hyperbolicity of the unperturbed
manifold), Fenichel theory guarantees the existence of slow manifolds perturbing
from the critical manifold, when ¢ > 0 is sufficiently small. These slow manifolds
are locally invariant by the flow of the smooth system (1); however, just like centre
manifolds, Fenichel slow manifolds are not necessarily unique. A proof of these
results can be found in [18, 19].

In this section a version of Fenichel Theorem is stated in the context of slow-fast
PWL systems. In particular, we consider slow-fast PWL systems with s slow and 1
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Fig. 1 3D representation of the critical manifold . of system (7). From the fast subsystem, it
can be noticed that the attracting branch of the critical manifold .#“ corresponds to the half—plane
contained in the half—space {x > 0}, the repelling branch of the critical manifold . corresponds
to the half—plane contained in the half—space {x < 0}, and the fold manifold .# corresponds to the
segment contained in the switching manifold {x = 0}

fast variables, of the form
x'=—|x| +ely, o
y = e(ax + Ay + b),

where A = (a;;)1<;, j<s is an s X s real matrix, e is the first element of the canonical
basisinR*,a = (ai)ngi, j<s andb = (b,-)lTSl.‘ j<s are vectors in R*, and the superscript
T stands for the transposed vector. Note that system (7) is linear on each side of the
switching manifold {x = 0}.

The critical manifold associated with system (7) is . = {(x,y) : |x| = elTy}. It
is formed by the union of the two s-dimensional manifolds

S ={(x,y): x>0, x=ely},

S ={(x,y):x <0, x = —ely}, ®)
connected by the (s — 1)-dimensional fold set .# = {(0,y) : elTy = 0}, see Fig. 1
for a three-dimensional representation.

The critical manifold . is normally hyperbolic, except in the fold set .%; the
branch . is attracting and the branch .#” is repelling. Since the vector field defined
by (7) is smooth in each of the half—spaces {x > 0} and {x < 0} (itis linear), Fenichel
theory applies locally to each of these systems. Therefore compact submanifolds of
the two branches . and .#" persist under the flow of system (7) as locally invariant
slow manifolds for small enough ¢ > 0.

A strong gain of using the PWL setting is that one can prove the persistence of
the entire manifolds .’* and .#" as locally invariant slow manifolds, and not just
compact submanifolds; we denote these slow manifolds by . and .#] , respectively.
Since these manifolds are contained in the half—spaces where the system is linear,
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their dynamical behaviour can be deduced from the spectra of the corresponding
matrices, that is,
—1 el 1 el
+_ 1 - _ 1
B, _<ea eA) and B, _<eaeA>’ ©)
respectively.

Following [27], we can obtain explicit equations for these slow manifolds by
proceeding as follows. The spectrum of BZ decomposes into two parts: one composed
by areal eigenvalue of O (1) and the other one formed by s eigenvalues (counted with
multiplicity) of O(g). We consider the spectra of both B} and B, simultaneously
(see [27, Lemma 3]) and write the eigenvalues as

AME=F14+0(@) and Af =BFfe+ 0@, k=2,...,5+ 1.

The eigenvalue Ali is responsible for the fast dynamics whereas the s eigenvalues
k,f are responsible for the slow dynamics. Consequently, for small enough ¢ > 0
the slow dynamics in the half-space {x > 0} is restricted to the half-hyperplane
defined by the generalized eigenvectors associated with the eigenvalues {)\,j}‘,ii;.
From [27, Lemma 5], we conclude that the slow manifold in {x > 0} is given by the

half-hyperplane
£
S = {(x,y) ceR": x>0, x = elT(gA — )LTI)_l (Eb+y>} , (10)

see [27] for more details. As mentioned above, the fast dynamics in {x > 0} is
organized by the fast negative eigenvalue A;". Therefore, .7 is an attracting slow
manifold.

Similarly, the slow dynamics in the half-space {x < 0} is restricted to the half—
hyperplane defined by the generalized eigenvectors associated with the eigenvalues
{A; i} and given by

S = {(x,y) eR": x<0, x =e1T(e3A—)L1_I)’1 (%b%—y)}. (11D
1

In this case, the fast dynamics is organized by the positive eigenvalue A|, and hence,
7 is arepelling slow manifold.

A 3-dimensional representation of the slow manifolds is shown in Fig. 2. The
slow manifolds in the 3-dimensional PWL system have been explicitly computed in
[26].

One can prove that /" are Fenichel slow manifolds and that they possess similar
properties as Fenichel slow manifolds in smooth systems. Therefore, one can extend
Fenichel’s theorem to the case of PWL system, as stated below; see [26, 27] for a
proof of this result.
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the attracting slow manifold
¢ and the repelling slow
manifold .} of system (7)

Fig. 2 3D representation of A
Y1

W\

Theorem 1 (Fenichel theorem for PWL systems). For e > 0 and sufficiently small,
the manifolds /" satisfy the following:

(a) &7 is locally invariant under the flow of system (7).

(b) The restriction of the flow of system (7) to S&" is a regular perturbation of the
Sflow of the reduced problem defined on the critical manifold ..

(c) S/ is a repelling slow manifold and 7 is an attracting slow manifold.

(d) Givenacompact subset S (resp. ST )of L (resp. /"), there exists a compact
subset S (resp. ) of the slow manifold 7 (resp. /) which is diffeomorphic
to .4 (resp. j’) such thath(ﬁ’?E”, <7?“) = 0 (¢e) (resp. dH(gy?E’, j’) = 0(¢g)),
where dy denotes the Hausdorff distance.

2.1 Simplification in the PWL Setting

Contrary to the original Fenichel’s Theorem, Theorem 1 offers an explicit expression
for .#*". These slow manifolds are canonical in the sense that they are uniquely
defined, they are the only linear slow manifolds as well as the only ones on which
the dynamics has no influence from the fast eigenvalues. In other words, solutions
on any other invariant manifold contain a component of the form e’ *'. Hence, as
soon as this component becomes dominant, the orbit is not part of a slow manifold
any more. That is why all other (nonlinear) slow manifolds are only locally invari-
ant. Hence, /""" are canonically slow and, to a certain extent, they are the “best”
Fenichel manifolds that one can hope for in any singularly perturbed system. This
is a major difference with the smooth case and the existence of such unique linear
slow manifolds offers a key advantage. Indeed, their explicit equations (10) and (11)
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are very useful to locate maximal canard solutions, which are specific orbits passing
from the attracting slow manifold . to the repelling slow manifold . ; see Sects. 3
and 4 below and [6, 26, 27] for details.

2.2 A Necessary Perturbation to Obtain Canard Dynamics

Within the PWL setup presented in the previous section, one can entirely reproduce
relaxation oscillations that are typical in van der Pol (VDP) type systems. One only
needs to consider in place of the cubic critical manifold of the VDP system, the graph
of a piecewise-linear function with three pieces; in other words, one approximates
the quadratic fold points of the VDP critical manifold by corners. Then, relaxation
oscillations can be generated and their properties are perfectly similar to those gen-
erated by the VDP system. Moreover, when the slow nullcline is non-vertical, then
the resulting PWL caricature of the VDP system is typically called the McKean
model and it has been thoroughly studied in the relaxation regime since the early
1970s [23]. In fact, the McKean model is a caricature of the so-called FitzHugh-
Nagumo model, which amounts to the VDP system where the slow nullcline is not
vertical and gives a simple phenomenological model of action potential generation
in neurons [15, 25]. However, when attempting to reproduce canard dynamics from
the VDP system, approximating the quadratic fold points of the associated critical
manifold by corners is not sufficient and a refinement is required in order to recover
the slow passage from the attracting side to the repelling side of the critical manifold,
as we explain below. Indeed, since the late 1990s with the work of Arima et al. [1], it
is known that three linearity zones are needed to approximate locally the van der Pol
system in order to get canard dynamics. In order words, the PWL critical manifold
must locally have three segments in order to correctly approximate the quadratic
critical manifold of the van der Pol system and open the possibility for canard cycles
to appear.
We now consider the following slow-fast PWL systems,
{x: = _|x|8+e{y’ (12)
y =e¢(ax + Ay +b),

where the generalized absolute value function |x|s is defined as follows

—x—(m+ 18" x < =67,
Ix|ls =14 mx -8~ <x <48,
x4+ (m—18" 5t < «x,

sand § = (8, m, 8T) is a continuous function of ¢ such that §(0) = 0.
Since the function |x|¢ coincides with the absolute value function, the layer and
the reduced problems associated with system (12) are identical to those associated
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with system (7). Thus, the critical manifold . also coincides with that defined for
system (7).

For ¢ > 0 small enough, system (12) is a slow-fast PWL system, locally linear in
the three closed regions {x < —§7}, {—8~ < x < 8%}, and {x > 8}, which we will
refer to from now on as the left, central and right zones, respectively. Therefore, the
dynamics of system (12) in the lateral regions can be deduced from the spectra of
the matrices (9), whereas in the central region it is deduced from the spectrum of the

matrix ;
B() _ m el
€ cacA )’

As previously shown, the slow behaviour in the lateral regions is reduced to
linear manifolds, which are defined by the eigenvectors associated with the slow
eigenvalues. Therefore, the canonical slow manifolds in the lateral regions are parallel
to those defined in (10) and (11), namely we have

1 —m)ét
S = {(x,y) eR": x>4§T, x:e:lT(‘sA—)xfrl)_1 (;_b-i—y) —()L:r_l)},
1 1

13)

S = {(x,y) eER":x <8, x=el(cA—2; D) <€b+y> - (Hm)‘S] )

)“l )”l
Note that the eigenvalue )L]L is the fast one in the right zone {x > §*} and the eigen-
value A| is the fast one in the left zone {x < —67}.

Regarding the dynamics in the central region, every non zero eigenvalue of B? is
0 (&%), a € R. Hence, in order for the flight time in the central region not to diverge
to infinity as ¢ — 0, we assume that §* and 8§~ have greater order in ¢ than the
smaller non-zero eigenvalue. Recent work has allowed to refine the results from [1]
and find that the optimal of the central zone is O (/) [6].

Arima and co-authors have computed numerically small (so-called headless)
canard cycles in a PWL approximation of the van der Pol system similar to (12)
as well as large canard cycles (so-called canards with head) in a four-zone system.
They gave arguments to justify the need for the three-piece critical manifold in order
to make sense of a repelling slow manifold and, hence, find canards. However, they
did not develop GSPT arguments proving the existence of canards in this planar
context and they did not investigate three-dimensional canard systems either. This
has been done more recently in [6, 13]. We summarise the results obtained in these
two papers in the next two sections, which will then be entirely focused on canards
in slow-fast PWL systems.



76 M. Desroches et al.

3 Canard Explosion

Canard dynamics can be loosely described as a complicated mix of local passage
(near non-normally hyperbolic regions of the critical manifold) and global return
(or reinjection) mechanism, which allows for recurrent dynamics. Note that need
not be part of recurrent dynamics. Their main feature is this local passage and it is
well approximated by linear dynamics, as we shall see below. In the smooth case,
the dynamics during this local passage is organised by the Weber equation, obtained
(after a coupled of changes of variables) by linearising the system along the so-
called “weak canard” (axis of rotation for trajectories during this local passage).
It is interesting to notice that solutions to the Weber equation can be expressed in
terms of parabolic cylinder functions, while in the three-dimensional PWL slow-fast
system that we propose in Sect. 4, solutions in the central zone (approximating the
local passage) are organised by invariant cylinders. In this context, canard- induced
mixed-mode oscillations (MMOs, see Sect. 4) are a combination of small-amplitude
oscillations (SAOs) near a fold curve, a passage near a repelling slow manifold
and a global return that reinjects trajectory on an attracting slow manifold. In this
context, the SAO part can be purely explained by linear dynamics. As already men-
tioned, generally speaking canards arise due to connections between an attracting
slow manifold and a repelling slow manifold. These are rare events and the associ-
ated connecting orbits are called maximal canards; other canard solutions exist in
an exponentially small neighbourhood of maximal canards. It turns out that con-
nections between two such slow manifolds can be perfectly reproduced with PWL
systems, however with an additional linearity zone in between them so as to make
the passage and, hence, the connection possible. Therefore, by decomposing the
dynamics of canard systems in phase space into several linear zones, one cannot
only reproduce all canard phenomena—planar, three-dimensional, canard-induced
MMOs, canard-induced bursting trajectories, etc.—but also properly zoom into these
intricate dynamics and extract their essential features. Overall, one can say that the
PWL setup offers a simpler alternative to method of “geometric desingularisation”
(blow-up) studied in smooth canard systems [10, 21, 22, 28]. To this extent, the
small zone in between the attracting region and the repelling region can be seen (in a
loose sense) as a blow-up of the corner that one would naturally use to approximate,
in the relaxation regime, the quadratic fold of the van der Pol oscillator with a PWL
system.

In this section, we summarise the results published in [13] about canard cycles
in planar slow-fast PWL systems. We consider the following planar version of sys-
tem (12)

X = —lxls + .
ey @

for the parameter vector
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where |b| < 2/e anda € (—¢/(1 — b), /(1 + b)).

System (14) possesses exactly one equilibrium point which is in central zone
namely, p¢ = (a, —ab)”. The topological type of this equilibrium depends on
parameter b: if b = 0, the equilibrium point p© is a center; If b < 0 (resp. b > 0) it
is a stable (resp. unstable) focus.

Using the method described in Sect. 2, we can compute the canonical slow man-
ifolds .#/*" associated with system (14) and obtain formulas equivalent to (13),
namely,

& £
Y“:{(x,y)eRZsz ,y:——(x_a)+a_£},
’ 1+b A
15)
€ &
%’:{(x,y)eRz:xf— ,y:——_(x—a)—a—s}.
1-b A5

Here ] < Oand A, > Oare the slow eigenvalues of the matrices B and B, defining
the lateral linear systems, equivalent to (9).

When parameters a and b are zero, system (14) is reversible with respect to the
involution x +— —x and the time change ¢t — —t. In such a case, the slow manifolds
S are also images of one another under this involution and this time change.
Therefore, they can connect by forming a maximal canard. The maximal canard
splits the phase plane into two regions: one region contains the equilibrium point and
is foliated by periodic orbits (see Fig. 3), the other one is fully foliated by unbounded
orbits ([13, Theorem 4.1]).

By perturbing this non-generic situation, it is possible to find a curve a = a(b, €)
in parameter space, with Taylor series expansion at b = 0 given by

a=ab,e) = (%«/E+ 0©) b+ 00, (16)
(a) e (b) "
gé //.I’ 0| r
-lw\//,ﬂ.],—/—/n.s 0.8 0.4 0.4 0.8

Fig. 3 a Continuum of canard periodic orbits bounded by the canonical slow manifolds .7"
(adapted from [13, Fig. 4]). b Stable (headless) canard limit cycle together with the canonical slow
manifolds and two trajectories approaching the canard cycle in forward time (adapted from [13,
Fig. 5])
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such that, the maximal canard orbit persists ([13, Theorem 4.2 and Prop. 4.4]).

By breaking the connection that corresponds to the maximal canard, one can prove
the existence of a family of canard cycles in system (14), as stated below (see [13,
Theorems 4.3 and 4.5] for a proof).

Theorem 2 For each point (0, yo) with yo > 0, there exists U C R? containing
(b, &) = (0, 0), such that, for (b, e) € U N {e > 0}, there exists a curve a(b, €) in
parameter space, with the same first terms in its Taylor series expansion as a(b, ¢€),
such that system (14) possesses a canard cycle passing through (0, yo). Moreover,
the family of canard limit cycles is asymptotically stable if b > 0 and unstable if
b < 0.

The main conclusion one can draw from the results stated so far is that canard
phenomena in the PWL framework and in the classical (smooth) context have very
similar features. In particular in the way they are born: a Hopf bifurcation in the
smooth case, and a two-zonal Hopf-like [16, 17] bifurcation in the PWL case, which
occurs when the real equilibrium point enters the central zone from either of the
lateral zones, by suitably moving parameter a. If we then consider b = 25\/5, then
we obtain the following:

e if b > 0, a two-zonal supercritical Hopf-like bifurcation takes place when the
equilibrium enters the central zone from the right, at

1
agy(b€) = 7 = e+ 0™

Maximal canard

(a) \/ (b)

No cycles Hopf-like bifurcation 05
Canard cycle 04 P
03
No cycles s |
E 02
a
) L‘“\M
0
a 0 0.02 0.04 0.06 0.08 0.1

a

Fig. 4 a Bifurcation diagram for b > 0. Consider ¢ > 0 fixed and a > 0 in the rightmost sector.
By decreasing a, a Hopf-like bifurcation takes place, giving rise to a small stable limit cycle. The
limit cycle is growing as a decreases. When a reaches the grey-shaded region, the limit cycle
becomes a canard cycle. Along the leftmost line the family of canard cycles ends at a maximal
canard connection. b Explosive branch of limit cycles obtained by direct simulation when varying
parameter a for fixed ¢ = 0.1 and » = 0.009944 (adapted from [13, Fig. 6])
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e if b < 0, a two-zonal subcritical Hopf-like bifurcation takes place when the equi-
librium enters the central zone from the left, at

ah(be) = ——— = —¢ + 0(e¥2),
1-b

In both cases, subsequently to the Hopf-like bifurcation, the amplitude of the two-
zonal limit cycle grows linearly in the two regions until it becomes a three-zonal
limit cycle. Then, the third linear system affects dramatically the dynamics and the
limit cycle starts to grow very rapidly, explosively (in terms of parameter variation),
as it becomes a canard. While a increases within an exponentially small range, the
amplitude of the canard cycle increases by an O (1) amount until the a-value where
the maximal canard occurs, a(b, €); see (16). Past the maximal canard, the limit
cycle disappears. Figure 4 presents the bifurcation diagram corresponding to the
case b > 0.

4 Folded Singularities and Their Canards

Canards have been also extensively studied in systems with more than one slow and
one fast variables. In particular, much is known about maximal canards in the context
of three-dimensional systems with two slow variables where they appear through the
presence of folded singularities, which are the equivalent to the 3D setting of canard
points in VDP type systems; see [2, 4, 8, 28]. This section presents a summary
of results recently published in [6] about folded singularities in 3D PWL slow-fast
systems.
We consider the following PWL slow-fast system

x'=|xls—y,
y =e(pix + p22), (17)
Z/ = E&p3

which then corresponds to system (12) after the change of variable x — —x and

with
_(—m _ (0 p> (0
=(75) 4=(%) »=():

and § = (4,0, §) fora given § > 0.

Given that system (17) can be recasted as system (12) for suitable values of matrix
coefficients, we can readily apply the Fenichel analysis performed on this latter
system and conclude that system (17) possesses canonical Fenichel slow manifolds
4" given by Eq. (13). Slow-fast systems of this form are minimal three-dimensional
systems with two slow variables displaying canard dynamics. Minimal here means
that the z-dynamics is a simple slow drift. Therefore system (17) can be seen as
a two-dimensional canard (VDP type) system where the parameter controlling the
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slow nullcline moves slowly. Such systems were first studied in [2] where conditions
for connections between attracting and repelling slow manifold, that is, for maximal
canards, were obtained in link with the presence of special points located along
the fold curve and called folded singularities. These special points arise due to the
existence of a non-normally hyperbolic set (the fold set) on the critical manifold, and
they are defined in the singular limit, from the flow of the reduced system (3) (also
referred to as the slow flow). Indeed, typical points on the fold set are jump points in
the sense that the slow flow is directed towards the fold set on both sides (attracting
and repelling) of such points without being defined at these points; this is because
the slow flow is typically singular on the fold set. When perturbing in ¢ > 0, these
points give rise to relaxation dynamics. However, one can find algebraic conditions
for which points on the fold set at which the slow flow is not singular and has the
same direction on both sides, hence allowing for a passage from one side of the
critical manifold to the other. These special points are folded singularities (or folded
equilibria) and they can be obtained as true equilibria of the DRS (6), which has the
same trajectories as the slow flow but with opposite orientation on the repelling side;
therefore, an equilibrium of the DRS corresponds to a point of the reduced system
at which the slow flow crosses from .¢ to .#”. When switching on ¢ with a small-
enough positive value, these points give rise to canard dynamics: “true” canards if
the trajectory goes from attracting to repelling and “false” (or faux) canards when
the trajectory goes in the opposite direction. Depending on the topological type of
the equilibrium point of the DRS on the fold set, one has folded equilibria of folded,
saddle, focus, etc., type; see [8] for details on folded singularities and associated
maximal canards.

In order to find maximal canards due to folded singularities (essentially of node
and saddle type) in PWL slow-fast systems like (17), we first have to be more precise
on the size of § relative to ¢ so as to match an important result from the smooth case,
namely that the number of maximal canards that exist for small enough € near a folded
singularity, does not depend on the specific value of ¢. In particular in the folded-node
scenario where multiple maximal canard can appear with both segments along .7
and .} and small-amplitude oscillations (SAOs) in the fold region. The maximal
number of SAO determines the type of canard solution and does not depend upon
the specific value of . By construction, the system that we consider in the central
zone is linear and the angular velocity is constant, hence the number of oscillations
that trajectories make in this zone is obtained by considering the time it takes to go
from one boundary of this zone to the other. This give a formula involving both § and
¢ and forces a particular relationship between the two in order for this value to be
independent of ¢. Namely, 8 has to scale like /¢; more precisely, we find that § has to

Pl pl.Thisisa

key result as it fixes the optimal size of the central zone in order to magg}ll)iesults from
the smooth case, that is, the optimal distance between . and .%] in order to find
connections (maximal canards) entirely similar to those found in smooth slow-fast
systems. We find that this optimal distance is O (1/¢), which interestingly agree with
the well-known result from the smooth case allowing to extend the Fenichel slow

be equal to 7 /¢ for which the maximal rotation number y is then
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manifold up to a similar distance to the fold set before establishing conditions for
them to intersect along maximal canards (using blow-up); see [4, 21, 28].

Once we have the correct scaling for the size of the central zone, we can obtain
conditions for maximal canards to exist in the folded-node and in the folded-saddle
cases, and verify that we have a complete similarity with these cases in smooth sys-
tems. This result is gathered in the following proposition, whose proofs are detailed
in [6].

Proposition 1 Consider system (17) with p3 > 0, § = w/¢ and & small enough.
Assuming that different maximal canards have different flight times, the following
statements hold.

(a) Maximal canards y are reversible orbits.

(b) If p1 > 0 and p, < O, for every integer k with 0 < k <[], where u is the
maximal rotation number, there exists a maximal canard yy intersecting the
switching plane {x = —§8} at px = (=3, Yk, zx) where

1\ paps3 3 s
=—((k+= - - 24 0(e2),
Yk (( +2> oy + p1)wer — pap3e” + O(e?)

(18)

1
k= —<k+§) %ﬂ\/gﬁ- O(e).

Moreover, yy turns k times around the weak canard y,,.

(c) If p1 > 0and p, > 0, there exists a unique maximal canard y, intersecting the
switching plane at py = (=6, Yo, 20) Where the coordinates yy and z satisfy Eq.
(18) with k = 0.

(d) If p1 < O, there are no maximal canards.

This result establishes the existence of maximal canards near folded singularities
of system (17) that are qualitatively and quantitatively similar to those found in the
smooth case [8]. In the case of a folded saddle, only one maximal canard persists
for small enough ¢ > 0; near a folded node, many more do and, except for the
simplest one called the strong canard, all other maximal canards have SAOs in the
central zone and they are called secondary canards. In order to characterise these
maximal canards, one can write a series expansion in &. However, we can exploit
the PWL structure a bit further and exhibit “selected” maximal canards by taking
special values of § (within the correct scaling), each special §-value giving rise to
one selected maximal canard for which the series expansion is exact and all terms
but the very first few vanish. We show four examples of such exact maximal canard
solutions in Fig. 5, for four specific values of § selecting the strong canard and the
first three secondary canards, respectively. This is one more aspect of simplification
brought about by the PWL framework and that could potentially be exploited in
applications.

The above results enable a full comparison between three-dimensional smooth
and PWL slow-fast systems in terms of number and geometry of maximal canard
solutions near both folded-node and folded-saddle singularities. However, it does
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Fig.5 Canonical slow manifolds and selected maximal canards (only central segment shown) with
0, 1, 2 and 3 SAOs in panels (a) to (d), respectively; y; is then the strong canard, and y; the ith
secondary canard (i = 1, 2, 3). Also shown are the switching planes at {x = £4} (modified from [6,
Fig. 4.2])

not address the question of what are folded singularities in the PWL context, that is,
how to define them in systems (17). This was the other main result from [6], where
we introduce a strategy in order to identify the equivalent of folded singularities
for three-dimensional PWL slow-fast systems with two slow variables. In brief, the
main issue is to properly define the slow flow—for the ¢ = 0 limit of the fast-time
system obtained from (17) by a time rescaling as described in the introduction—and
exhibit conditions for singular trajectories passing from .#“ to .#", that is, singular
canards which all intersect at the folded singularity. The linearity zone in question
is of course the central zone, which we take to be of size § = O(4/¢) in order to
keep similar properties as in the smooth case. However, this implies that § — 0 as
& — 0 and therefore the central zone shrinks to the switching planes in the singular
limit, hiding information about the slow flow and, hence, about folded singularities.
In order to remedy this, we artificially keep the central zone open in the singular
limit and consider inside the &¢ — 0 limit of the flow defined in there for ¢ > 0. This
limiting flow allows us to find conditions, depending on p;, p, and ps3, to obtain
singular phase portraits entirely compatible to those of smooth singular systems near
folded-node, folded-saddle and folded-saddle-node singularities, hence allowing to
define the equivalent of these points in the PWL context; see [6, Sect. 4.4] for details.

Finally, we can also highlight the level of simplification brought by the PWL
setting in this three-dimensional context. As explained above, we can “select” exact
maximal canard solutions by appropriately choosing the value of § within the cor-
rect scaling in ¢. This offers almost for free maximal canards, of any type (strong
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(@) (b)

<y

Fig. 6 Robust MMO solution y of the three-dimensional slow-fast PWL system (17) with added
linear terms in the z-equation and a fourth piece on the critical manifold, in order to ensure a global
return mechanism on top of the local passage through a folded node. Also shown are the critical
manifold . as well as the so-called weak canard (axis of rotation) y,, (modified from [6, Fig. 5.1])

or secondary), with a simple and explicit time parametrisation only depending on
system parameters and ¢. This is substantial gain from the smooth case, where no
such explicit canards are available. We anticipate that this could be of potential in
applications as maximal canards form boundaries between different activity regimes
and, hence, a direct analytical access to them could help to understand and control
such a dynamical system. Another gain obtained from the PWL setting in this three-
dimensional case is to be able to revisit unresolved questions from the smooth case.
As explained in [6], we could prove with very simple arguments that the so-called
“weak canard” associated with a folded node—a solution that plays the role of rota-
tion axis for secondary canards and whose existence as a maximal canard was not
proven in smooth system—is in fact not a maximal canard. Indeed, we can compute
explicitly the perturbation for small & > O of the rotation axis defined in the cen-
tral zone (in which the dynamics in restricted to the cylindrical leaves of a foliated
structure) and verify that this trajectory enters the left zone at an O (¢) distance to
the canonical slow manifold, which makes it impossible for this trajectory to be a
maximal canard since for that to happen it would need to be exponentially close
to the canonical slow manifold. Given the total parallel of the canard structure in
system (17) compared to smooth minimal systems for folded nodes, we conjecture
that this result of the non-existence of this special trajectory as a maximal canard
is also valid in the smooth context. The second question that we could revisit from
the smooth concerns the possibility for SAOs near a folded-saddle singularity, which
was not reported in previous studies and has been developed in the smooth case in
an independent paper soon to appear in [24]. This result came naturally and easily
from the PWL setting.
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As an opening towards future work, we close this section by mentioning the pos-
sibility for constructing robust MMO systems by using the local dynamics previous
defined and analysed, near folded nodes. It suffices to add a fourth linearity zone,
immediately to the left zone of system (17), that is, adding a fourth piece to the
previous critical manifold so that the new one has a corner line in the new switching
plane; see Fig. 6 panel (a). This is because one only needs a relaxation segment dur-
ing the global return. Then, adding to the z-equation of system (17) suitable linear
terms creates a global return mechanism that re-injects the trajectory near the right
attracting part of the critical manifold so that it can pass again near the folded node
while making SAOs. Direct simulation of this extended system indicated that one
indeed obtains an MMO limit cycle whose SAOs are organised by the folded node.
This is only a numerical example and we plan to prove the existence of such MMOs
as well as investigate their bifurcation structure in future work.

S Summary and Perspective

In this chapter, we have presented a compendium of recent results on PWL slow-fast
systems displaying canard solutions, both in the planar and the three-dimensional
cases, with more general results on Fenichel slow manifolds, valid in any dimen-
sions. Our work [6, 13, 26, 27] summarised here demonstrates that one can recover
all essential results from the smooth case while gaining a substantial level of simpli-
fication in the way objects are defined and in their essential properties. This ground
work has allowed us to construct minimal slow-fast systems in the PWL setup pos-
sessing maximal canard solutions by using a mix of local passage near the equivalent
of the fold set and globally defined slow manifolds. These results can be used to con-
struct complex oscillations using PWL vector fields adequately designed. We have
shown the case of an MMO system with canard-induced behaviour in Fig. 6. Another
gain of the PWL setting is to be able to better control a given system through a more
quantitative knowledge of its dynamics, which we have applied to a four-dimensional
model of secreting neuron demonstrating the use of this approach [12, 14]. We have
also obtained preliminary results on canard-induced bursting oscillations, that is, in
the context of slow-fast systems with one slow and two fast variables. In [5], we
constructed minimal PWL slow-fast systems in order to reproduce a spike-adding
canard explosion and all salient features of square-wave bursting organised by canard
solutions [7]. Surprisingly, we proved that this scenario could not be obtained in such
aminimal setup with the assumption of continuity of the vector field across all linear-
ity zones. This is a first step into investigating canard-induced complex oscillations
of bursting type; ongoing and future work will involve looking at other forms of
bursting with PWL systems, in particular elliptic bursting, whose understanding is a
key stage towards studying canard phenomena within fast oscillations, namely, torus
canards [20]. This case is interesting given that numerous questions are still open
in the smooth case and, hence, where we believe that the PWL framework could
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once more prove useful with its simplification power without altering the essential
dynamics.
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Abstract In the present work, we consider the existence, stability, and dynamics
of solitary waves in the nonlinear Dirac equation. We start by introducing the Soler
model of self-interacting spinors, and discuss its localized waveforms in one, two,
and three spatial dimensions and the equations they satisfy. We present the associated
explicit solutions in one dimension and numerically obtain their analogues in higher
dimensions. The stability is subsequently discussed from a theoretical perspective
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and then complemented with numerical computations. Finally, the dynamics of the
solutions is explored and compared to its non-relativistic analogue, which is the
nonlinear Schrédinger equation.

Keywords Solitons - Solitary waves + Vortices - Nonlinear Dirac equation
Stability + Soler model

1 Introduction

In the last three decades, there has been an enormous interest in the study of waves in
nonlinear dispersive media. Arguably, two of the most paradigmatic equations that
describe such waves are the nonlinear Schrédinger equation (NLS) and the sine—
Gordon equation. The first among these equations covers a broad range of settings
including atomic physics [130, 131], nonlinear optics [99, 101], condensed matter
physics, and mathematical physics [2, 156]. The sine-Gordon equation also covers
settings in condensed matter physics and mathematical physics apart from high-
energy physics models [31, 50]. A principal focus of the relevant properties of these
equations has been the study of the existence, stability, and dynamics of solitary waves
(i.e., spatially localized waves supported by the nonlinearity and dispersion), both
in lower-dimensional settings (such as one-dimensional solitons and multi-solitons)
and in higher dimensional settings (vortices, vortex rings, and related structures)
[53, 99].

By comparison, far less attention has been paid to the nonlinear Dirac equation
(NLD), despite its presence for 90 years in the realm of high energy physics. The
nonlinear Dirac equation with scalar-type self-interaction was initially introduced by
Ivanenko [90]. Following the ideas of Finkelstein et al. [73], Heisenberg [87] used
this NLD model in an attempt to formulate a unified theory of elementary particles. In
1958, a completely integrable one-dimensional model known as the Massive Thirring
Model (MTM) [158], based on vector-type self-interaction of spinor field, was intro-
duced. This model possesses solitary wave solutions. Curiously, the fundamental
solutions of the MTM can be transformed into solitons of the sine—-Gordon equation
by means of a bosonization process [38]. In 1970, Soler re-introduced Ivanenko’s
model with scalar-type self-interaction in the context of extended nucleons [152] and
also provided the numerical analysis of solitary wave solutions. The one-dimensional
version of the Soler model, known as the Gross—Neveu model [78], was introduced
in 1974 as a toy model of quark confinement in quantum chromodynamics, and
explicit solitary wave solutions in the corresponding massive model were found by
Lee et al. [104]. We can not complete this quick review of NLD models in high-
energy physics without mentioning the recent work of [121] (see also [114]), where
a variant of the NLD is applied to the study of neutrino oscillations. Related systems
are the Dirac-Maxwell system [23, 41, 60, 79, 166], the Einstein—Dirac system
[140, 155], and Einstein—Dirac—-Maxwell system [141]. In quantum chemistry, the
Dirac—Hartree—Fock model [63, 64, 105] takes into account the fermionic properties



Solitary Waves in the Nonlinear Dirac Equation 91

of electrons (describing the exchange interaction, which is a fundamental effect of
purely quantum nature) and is used for accurate computation of the electronic energy
[134, 164]; this model has also started to receive mathematical attention [63—-65].

In recent years, the study of nonlinear Dirac type models has received a renewed
thrust for a variety of reasons. Both one-dimensional [27, 29, 40, 128] and two-
dimensional variants of the model have been examined from the perspective of
solitary wave solutions and their stability [17, 27, 127]. Furthermore, the compu-
tational examination of solitary wave solutions and their dynamics has provided
numerous insights on the NLD [44, 47, 149, 168] also on its variant in the pres-
ence of external fields [120]. Thirdly, the NLD is emerging as the model of rel-
evance in a variety of settings including the dynamics of Bose—Einstein conden-
sates in honeycomb lattices [81, 82], as well as in atomically thin 2D Dirac mate-
rials [71, 167]. Relevant examples include, but are not limited to graphene, sil-
icene, germanene, borophene, and transition metal dichalcogenides [111]. One of
the most intriguing applications of the model has arisen in recent years in so-
called photonic graphene [1, 3], i.e., the examination of light propagation in honey-
comb photorefractive lattices. This direction has led to the investigation of con-
ical diffraction [124] and the exploration of nonlinear phenomena [1, 3]. It is
worth highlighting, however, that the nonlinearity in this context breaks the Lorentz
symmetry (that is, such models are not invariant under Lorentz transformations;
for the explicit form of the Lorentz transformations of the spinor fields see e.g.
[20, 157]).

Another recent application involving the interplay of the Dirac and Schrédinger
operators is that of spin-orbit coupled Bose—Einstein condensates [51]. Their experi-
mental realization [103, 107, 133] and interplay with nonlinearity (due to interatomic
interactions) has led to the exploration of a diverse host of nonlinear states includ-
ing bright, dark and gap solitons [4, 5, 72, 95, 170], self-trapped states [117], vor-
tices [136, 137, 169], Skyrmions [96], as well as Dirac monopoles [42]. The complex
interplay of these different effects may even stabilize vortex solitons against collapse
in free space, under attractive interactions [144].

From a mathematical perspective, Dirac models are described by systems (rather
than by scalar equations) that correspond to the Hamiltonian functionals unbounded
from below. This unboundedness makes all the aspects of the analysis of these models
(well-posedness, existence of localized solutions, stability, numerical simulations)
much more challenging. This has fueled an increasing interest in the nonlinear Dirac
equation and more general models of self-interacting spinor fields, with many results
on the existence of solitary waves [36, 62, 118] and well-posedness in (3 4+ 1)D
[59, 108] and in (1 4+ 1)D [33, 89, 109, 125, 147].! The stability of solitary wave
solutions of the nonlinear Dirac equation was approached via numerical simulations
[8, 9, 11, 29, 37, 120, 135, 168] and via heuristic arguments [21, 22, 44, 115,
154], but it is still not settled. Recently, the first stability results in the context of
self-interacting spinor fields started appearing [24, 25, 27-29, 40, 127].

1With the notation (N + 1) D we want to denote that the system possesses N + 1 dimensions, with
N spatial ones plus time.
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The NLD can also be viewed as a relativistic generalization (or extension) of the
NLS, or, alternatively, the NLS can be seen as a special case limit of the NLD at
the low-energy limit. Nevertheless, it has turned out that the Dirac equation as a
result of its matrix nature and the fact that it is only first order in spatial derivatives
(as opposed to second order in the NLS) has proven far more computationally (and
theoretically) challenging, on a number of grounds, than its NLS counterpart. This
difficulty has hindered the progress in the study of solitary waves, particularly in
two-dimensional and three-dimensional settings. However, recent developments are
gradually enabling the study of the stability and dynamical properties of solitary
waves in two-dimensional and even three-dimensional Soler models; see [49] for a
relevant example. Clearly, however, this process requires numerous additional steps
that will present several challenges over the coming years.

The aim of this chapter is to give areview of recent results developed by the authors
and their collaborators in the last few years, as well as to present a basic framework
of the NLD theory, mainly focused on the Soler model and its variants; this is our
principal workhorse model. The content of the chapter covers a wide spectrum of
results ranging from existence and stability of solitary waves to numerical methods
and dynamics of unstable solutions.

This chapter is organized as follows: in Sect. 2 we start with an introduction to the
main nonlinear Dirac equation, namely the Soler model, and tractable expressions
for the determination of solitary waves and linearizations at solitary waves in one,
two, and three spatial dimensions. Section 3 is devoted to the existence properties of
solitary waves and numerical methods for their calculation. Stability analysis from
a theoretical and numerical point of view is the topic of Sects.4 and 5, respectively.
The dynamics of solitary waves is analyzed in Sect. 6. We finalize the chapter with
a summary of the considered results and an outlook on future directions on solitary
waves in the NLD equations.

2 The Soler Model of Self-interacting Spinors

In this section we start with the linear Dirac equation and move on to the Soler model
as a principal, Lorentz-invariant variant of the model with scalar self-interactions.
We give explicit expressions of linearization at solitary waves in one-, two-, and
three-dimensional cases.

2.1 The Dirac Equation

In December 1927, Paul Dirac arrived at the idea of the first-order relativistically
invariant equation [57] that describes massive spin-1/2 relativistic fermionsin (3 + 1)
space-time dimensions:
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0 o 2 4 3
lhgw(t,x)— (—ihca -V +mc?B) ¥ (t,x), Y(t,x)eC’, xeR’,

with ¢ being the spinor-valued wavefunction, o - V = Z i1 o’ dx, ,and m > 0 the
mass of the particle. As usual, we choose in what follows the physical units so that
Planck’s constant A and the speed of light c are both equal to one. The self-adjoint
4 x 4 matrices o/, 1 < j < 3, and B satisfy

{o/,d"y =28uls,  {o/, B} =0, B*=1L,
with Iy being the N x N identity matrix and {A, B} = AB + B A the anticommuta-
tor. According to the Dirac—Pauli theorem (see [57, 122, 165], [157, Lemma 2.25],
and also [97, Theorem 7] for a general version in odd spatial dimensions), different

choices of the matrices o/ and B are equivalent. The most common choice, known
as the Dirac—Pauli representation, is

i 0 o; 12 0
i — J _
“=(0%) #=(5%)
with the Pauli matrices given by
01 0—i 10
In the covariant form, the Dirac equation is written as
iy"a, ¥ = my,

where y#0, = ZZ:O y#0,, dp = 9, with y# being the Dirac y-matrices

. . 0 o;
0 _ J— J = J R
y =8 vy =pa _<—0‘;0>’ ji=12.3.

Matrices y* fulfill the anticommutation relation {y*, y"} = 2n*" 14, with n*¥ being
the Minkowski tensor [54]. In other words, (%)% = I, and (y )2 y)r=@wH?=
—1,. There exists another matrix which anticommutes with y and yf , 1 <j <3,
which plays an important role in the parity transformation. It is the y> matrix, defined

by
01
_ 0,.,1.,2.,3 2
Y’ lVVVV—(120>-

This matrix is self-adjoint and satisfies (y°)* = I4.
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One can immediately generalize the ideas of Dirac to an arbitrary spatial dimen-
sion n > 1, writing the Dirac equation

i =Dy =—i Y ;¥ +pmy,  Y@t,x)eC", xeR,
j=1
witha/, 1 < j < n, and B being self-adjoint matrices satisfying the relations
o/, a*} =28ly, {a/.B}=0, @)V’ =p"=1Iy; 1=<jk=n.

The smallest number of spinor components N for the spatial dimension n > 1 is
obtained in the Clifford algebra theory (see e.g. [70, Chap. 1, Sect.5.3]) and is given
by

N = 2la+D/2} 2)

Notice that this relation implies that in the three-dimensional case (n = 3), the num-
ber of spinor components N must be at least four.
The Dirac equation is derived from the following Lagrangian density:

gDirac = J/(iyuau - m)llf,
where the so-called Dirac conjugate 1 is defined by
v =y

with ¢* the Hermitian conjugate of /.

2.2 The Soler Model

In 1938, Russian physicist Dmitri Ivanenko proposed a nonlinear model of self-
interacting electrons, introducing the nonlinear term (1)1 into the Dirac equation
[90]. This self-interaction term is based on the quantity ¥y = y*B1 which trans-
forms as a scalar under Lorentz transformations. In 1970, Spanish physicist Mario
Soler re-introduced this model in order to study, from a classical point of view,
extended nucleons interacting with their own electromagnetic field [152, 153]. Now
this equation (or, rather, its version with an arbitrary function of 1) is known as
the Soler model [36, 62, 118]:

i0y = Du¥ — fFYY)BY, Y. x)eC", xeR", 3)

or, in the covariant form,
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iy, = (m — fPY)Y,

where f € C(R) N C'(R\ {0}), £(0) = 0. Equation (3) admits solitary wave solu-
tions of the form v (¢, x) = ¢, (x)e ™", with ¢, (x) exponentially localized in space
[26, 36, 62, 118, 152, 162]. In addition, the equation is a U(1)-invariant, relativisti-
cally invariant hamiltonian system, with the Hamiltonian represented by the density

Holer (V) = YDy — F(Y™BY), “4)

with R
F(s):/ f@)dt
0

the antiderivative of f. Because of the ¥* D,,r-term, this Hamiltonian functional is
unbounded from below. The Soler model (3) is also characterized by the Lagrangian
density

Looter = Y(Ay" 0, — m)y + F(Y).

The U(1)-symmetry of the Soler equation leads to the conservation of the value of
the charge functional, given by

QW (1) = Y(t, x) (t, x)dx.
]Rn

whichis conserved in time. If ¥ (¢, x) is a solution to (3), then both the charge Q (¥ (¢))
and the energy E (¥ () = f Holer (W (¢, x)) dx are conserved in time (formally; that
is, as long as v is sufficiently smooth, allowing one the integration by parts).

A common choice of the nonlinearity is f(s) = |s|*, k > 0 this leads to F(s) =
s|s|¥/(k + 1). We note that the absolute value is needed when k is not an integer
since the quantity s = 11 could be negative. Let us mention that for k € (0, 1), the
function f(s) = |s|¥ is not differentiable at s = 0, which leads to certain difficulties
in the construction of the solitary waves; see [26].

We want to remark that the cubic Soler model

i,y = D — Yy BY, ©)
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which appeared in [90, 152], differs from (3) with f(s) = sk, k = 1:

0,y = Dy — |V Y| BY. (6)

Both Egs. (5) and (6) are relativistically invariant Hamiltonian systems. In particu-
lar, they are invariant under the time reversal and parity transformation, which are
elements of the full Lorentz group, given respectively by (see e.g. [20])

Yrt,x) =iy 'y Ky (—t,x),

with K : C* — C* the complex conjugation, and

Yp(t,x) = 'y, —x).

At the same time, since V¢ /¢ = —r, where the charge conjugation is given by
[20]
Ve(t.x) = =iy’ Ky (1, x).

Equation (6) is invariant under the charge conjugation, while Eq. (5) is not. Let us
mention that the choice of unitary factors in all these three transformations is not
important.

We also point out that the stationary waves ¢,e "' constructed in [36] in the
three-dimensional case satisfy ¢,,¢,, > 0 for all x € R, thus being solutions to both
(5) and (6).

2.3 One-Dimensional Soler Model

The Soler model in one spatial dimension, Eq. (3) with n = 1, is also known as the
Gross—Neveu model [78]. According to relation (2), one can take N = 2, so that
the wavefunction is represented by a bi-spinor (i.e., a spinor with only two complex
components). We will choose a! = —0,, B = 3. In this case, the nonlinear Dirac
equation (3) can be written as a system of coupled partial differential equations of
the form

iy = Y + (m — f(yl> — [V,

(7)
0y = =891 — (m — fUY [ = Y)Y,

where ¥, ¥, € C denote the two components of ¥ (¢, x) € C2.
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The focus of the present chapter is on solitary wave solutions. To this aim, we
will search for standing waves of the form

Y, %) = po(X)e™,  Pox) = [V(x’ ‘“)] o

u(x, w)
with v(x, ) and u(x, w) satisfying

= +[m— fO —ud)y,
wv u+[m-— fOo —u’)v ®

ou = —0,v—[m— f(v2 —u®)u.

Once such standing wave solutions are calculated using the methods explained in
Sect. 3.2, their linear stability is considered by means of a Bogoliubov—de Gennes
(BdG) linearized stability analysis. That is, given a solitary wave solution ¢, (x)e !
with ¢, (x) € R?, we consider its perturbation in the form ¥ (¢, x) = (¢, (x) +
p(t, x))e ™ with p(¢, x) € C>. Then, the linearized equations on R(t,x) =
[Re(p), Im(p)]” € R* can be written as (see e.g. [29])

%R =, R, )
with
[ 0 L.
%= w0 (1

where L (w) and L_(w) are the following self-adjoint operators:

L(mz(m—ﬂﬂ—w 9, )

—0dy -m+ f(7) —w
2 _
Li(@) =L-(@) = 2f'(1) (_VW MV!’) ,

with f(t) and f'(t) evaluated at T = v? — u?.

The potential presence of an eigenvalue with non-zero real part in the spectrum
of 27, suggests the dynamical instability; the corresponding solitary wave is called
linearly unstable. If all the eigenvalues are purely imaginary, then the solitary wave
is called spectrally (neutrally) stable.

2.4 Two-Dimensional Soler Model

Taking into account the relation given by expression (2), in two spatial dimensions
one can again consider two-component spinors. Following [39], a convenient choice
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for o and B matrices is o' = o1, a®> = 03, B = 03. With this in mind, Eq. (3) is
expressed as

10,91 = — (idx + 32 + [m — fUYn1? = Y2 D],

(11)
0y = — (i0, — 3)Y1 — [m — f(Y1I* — [¥2 )]

In order to simplify further analysis, we use the polar coordinates r = |r| and 6;
then Eq. (11) takes the form

. —io | 80 2 2
10,y = —e <18r+7> Vo + [m — f(ynl” — [¥2l )],
(12)

; 0
iy = —e” (iar - %) Y1 — lm — f(ynl® = [¥2) 1Yo,

with r € (0, 00) and 6 € [0, 27r). The form of this equation suggests searching for
standing wave solutions in the form

13)

Y T) = o (e, o (r) = [ V(r, @)e's? :| |

i I/t(l", a))ei(SJrl)O

with v(r, w) and u(r, @) real-valued. The value S € Z is associated with the vorticity
of the first spinor component. Thus, according to Egs. (12) and (13), the equations
for the stationary solutions read as follows:

S+1
r

wv=(8r+ )u+[m—f(v2—u2)]v,

S (14)
wu = — (8, — T)v— [m—f(vz—uz)]u.

This set of equations only depends on the radial coordinate r. The absence of angular
coordinates turns the determination of stationary solutions into an effectively one-
dimensional problem, substantially simplifying the numerics.

To examine the spectral stability of a solitary wave, we consider a solution ¥ in
the form of a perturbed solitary wave:

[ (o) 80 +im@r0)eY ]
v = [i(u(n 0) + Exlt.7.0) +im(t. r. ) STV [ €

with small perturbations £(z, r, 0) = [&], £&]7 € R%, n(t,r,0) = [, n2]" € R2.
The linearized equation on R(¢, r, 0) = [&, &, 11, m]T e R* has the form

R = ,R, (15)
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with o7, (r, 0, 9,, 09) a matrix-valued first order differential operator

—o
o0, = | e L] (16)

r

where

_ m_f(-[)—a) ar+¥
L(a))—< _(3r_§) —m—i—f(f)—w)’

2
Li(@) = L_(0) — 2f'(2) (_VW MZ“) :

with f(7) and f'(t) evaluated at T = v> — u?.

To find the spectrum of the operator .27,, we consider it in the space of C*-valued
functions. The key observation which facilitates a computation of the spectrum is
that the explicit form (16) of <7, contains r, d,, dg, but not 6. As a consequence,
4, is invariant in the spaces which correspond to the Fourier decomposition with
respect to 6,

2y = {lar(r); ax(r); bi1(r); b2}, g € L.
The restriction of <7, to each such subspace is given by

—o1 L (w)

Ay q(r,0,) = Aol o, = |:—L+(a)) —0, 4

:| , q €, (17

and this allows to compute the spectrum of .27, as the union of spectra of the one-
dimensional spectral problems,

o (,) = U o (da),q),

qeZ

where the operators <, , do not contain the angular variable.

2.5 Three-Dimensional Soler Model

In three spatial dimensions, it is convenient to consider Eq. (3) in spherical coordi-
nates. We consider the 4-spinor solitary waves in the form of the Wakano Ansatz
[166]:
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4 v(r, w) <0>
(1, 1) = do()e™,  dy(r) = cosd ,
fu(r, ) <e’¢ sin9)

with real-valued v(r, w), u(r, w) satisfying

wy = (3r+g)u+[m—f(v2—u2)"]v,
r

wu =—0,v—[m— f(v2 — uz)k]u.

(18)

To study the linearization operator in the invariant space which has the same
angular structure as the solitary waves, we consider the perturbed solutions in the
form

. 1
v(r,w) + & @, r) +im(t,r)) (0)
—iwt

Y, r) =

i(u(r, ) + &, r) +inm,r)) <e’f"ossirele>

with real-valued & = [&), &]7 € R?, n = [n1, 12]7 € R? (note that the considered
perturbation only depends on r but not on the angular variables). The linearized
equation on R(¢,r) = (&1, &, 11, n2)7 is similar to Egs. (15) and (16):

_ . _ 0 L_(w)
R = 4/,R with "QZ"_|:—L+(a)) 0 i|,

and

_ m—f(l')—(,() 8r+%
L-(@) = < —0, —m—i—f(r)—co)’

2
Ve —vu
Li(w)=L_(w)—2f'(1) (_W 12 ) ,
with f(t) and f'(t) evaluated at T = v> — u>. We point out that above we only
considered the setup for finding the spectrum of the restriction of the linearization
operator onto a particular (“radial”) invariant subspace. The resulting spectrum is
presented on Fig. 19 below.

2.6 One-Dimensional & 7 -symmetric Soler Model

To finish this section, we present a connection between the budding area of research
of open & .7 -symmetric systems and the nonlinear Dirac equation. Open systems
that feature a combination of gain and loss have become a focal point of numerous
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recent studies [12, 14, 74, 113]. A principal reason for this was the introduction
of the notion of &7 -symmetry and its proposition by Bender (and collaborators)
as an alternative to the postulate of hermiticity in quantum mechanics. Its principal
realization, though, came at the level of optical systems [102, 112, 142], where they
were experimentally implemented in the context of waveguide arrays [80, 139, 143].
Since this first set of efforts, numerous additional experiments emerged in the context
of electronic circuits [145, 146], in whispering-gallery microcavities [129], as well
as in mechanical settings [13].

In Ref. [49], we introduced a generalized &2 .7 -symmetric 1D Soler model, which
in covariant form reads as follows:

(iy“a,t —m+g(1/71//)k+w5)w =0. (19)

Alternatively, written in the standard form as a function of the bispinor components
¥ = [Y1(x), Y2 (x)]”, the equations assume the following form:

0y = 3y — (Y 1> — WD Y1 + myy + iy,

. 2 24k : (20)

10,y = =0 Y1 + gV 1” — [Vl ) Y2 —mipn + iy 1.

Equations (20) are 2.7 -symmetric due to their invariance under the transforma-
tion

P x > —x, Y1 — Y, Y2 — —Yn

and

T:it——t, Y19, Yo Yl

Comparing the present model to the standard Soler setting, we note the inclusion of
the gain-loss term proportional to y through the Dirac matrix y> (cf. [12]) multiplying
the spinor 1 in (19). For our two-component spinors, 7 is represented by the Pauli
matrix
o1 (1).

Itis straightforward to see that in the linear case (of g = 0), plane waves ¥ (f, x) =
Ae' =D and v, (¢, x) = i Be'®*~“" are solutions provided the dispersion relation
® = £/m? 4+ k? — y?is satisfied. Not only does this formula have the characteristic
Dirac form, but it also is consistent with the equivalence of the linear &2.7 -Dirac
equation with effective mass m = /m2 — 2, as per the above discussion.

To determine the stability of stationary solitary wave solutions, we consider
infinitesimal perturbations to potentially calculated numerically solutions u(x), v(x)
of the form:

i, x) = 7 [vx) + 8(ar (e + b (x)et )]
ot x) = e [u(x) + 8(ar(x)e™ + b3 (0)e*™)],
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where § denotes a formal small parameter. The relevant linearization equations are
derived to order O(§) [by substitution of the above Ansatz into Eq. (20)] and are
subsequently solved as a matrix eigenvalue problem

Mai (x), ax(x), by (x), ba(X)]" = M ai(x), ar(x), by (x), b2 (x)]",

with .# being
Ly L, 5
e-(50) )
—L; -L}
and
FUVP = ul®>) —m+ A —0x
L=
Oy m— f(v]* = |ul*) + A
V> —v*u
+ f(P = ul?) :
—v'u |ul?
v —vu

Ly = f'(vf* — [ul®)
—Vu M2

From the dynamical equations (20) it is straightforward to show that the charge
is not preserved. Instead, the following “moment equation” is satisfied:

do .
— =4yfRe(V U)dx . 1)

Note that in the case of a stationary state, d Q /dt = 0 and charge is conserved.
Although the charge is not generally conserved, remarkably there is a conserved
quantity in the form of the energy:

E= %f [x/f;*axv/z — o+ m(yal? = al) = P - |1//2\2]k+1] dx.

Notice the absence of a term proportional to y in this expression. Nevertheless,
this energy is conserved not only for y = 0, but also for y # 0, a feature that appears
to be due to the use of the matrix y to introduce the &.7 -symmetry. As an additional
observation associated with the unconventional nature of this system, we note that
considering only the time-dependence and the terms proportional to y, the result-
ing form reads: i 9,y = iy, and i9;v, = iy ;. This makes the two components
appear as if they have both gain and loss.

Numerical results for this model can be found in [49].
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3 Solitary Waves: Exact Solutions and Numerical Methods

Solitary wave solutions of the form ¢,,(x)e™***, w € (0, m), are known to exist in
(3) and in other important systems based on the Dirac equation (see e.g. the review
[61]). In the one-dimensional case, for pure power nonlinearity, the solutions are
available in a closed form; see Sect.3.1. However, for higher-dimensional cases,
solitary wave and vortex solutions must be obtained by means of numerical methods.
These methods can also be applied to 1D models with a general nonlinearity f in
(7) when the solutions are not available in a closed form.

3.1 One-Dimensional Soler Model: Exact Solutions

In [104] it was shown for the cubic nonlinearity, i.e., k = 1 in (7), and later in [37,
44, 120] for generic value k > 0, that the solitary wave solutions can be found in a
closed form for any w € (0, m):

(m + ) k+np>
m + w cosh(2kBx) |:m + a)cosh(2k,3x):| ’

(m — w) k+Dp> 7
m + w cosh(2kBx) |:m + a)cosh(2k,3x):| ’

v(ix) = cosh(k,Bx)\/

u(x) = sinh(kBx) /

where B = +/m? — w?. In the special case of k = 1, waveforms in Eq. (22) reduce
to

V2(m — w) ) = 21 (m — w) tanh(Bx)
[l — panh2(Bx)] cosh(Bx)’ "~ [I — jztanh®(Bx)] cosh(Bx)’

v(x) =

with © = (m — w)/(m + w). Figure 1 shows the profiles of solitary waves given by
the expression (22) for k = 1 and k = 3. Notice that the first component of the spinor,
v(x), is spatially even, whereas the second component u(x) is spatially odd. More-
over, v2(x) — u?(x) > Oforall x € R, so that the solitary waves satisfy the nonlinear
Dirac equation (3) (withn = 1) with both f(s) = s and f(s) = |s|. Evaluating p” at
x = 0, one can check that the charge density profiles p(x) = ¢, (x)* ¢, (x) (cf. (3))
become double-humped for v < wy, (k), with wy, (k) = mk/(k + 1). The dependence
of the charge and energy with respect to w for different values of k € N are shown
in Fig.2.
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Fig. 1 Profile of solitary waves in the 1D Soler model. Figures depict the first and second spinor
components together with the solitary wave density. Left (right) panels correspond to k = 1 (k = 3)

3.2 Two-Dimensional Soler Model: Numerical Solutions

No explicit solitary wave solutions are known for the Soler model in 2D (12). For
this reason, one must rely on numerical results. We show in Sect. 3.2.1 the numerical
methods used for the numerical determination of stationary solutions in (14). These
methods can easily be adapted for numerically solving the Soler 3D model (18) (in
the particular case of zero vorticity) and for finding solitary wave solutions in 1D
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Fig. 2 Charge and energy of solitary waves (left and right panel, respectively) as functions of the
frequency w for 1 < k < 5. Notice the existence of a minimum in the curve Q(w) for k > 2, which
is related to the change in stability properties (see Sect. 5)

models where additional terms to the equation (8) have been added, such as external
fields [120] or in the &7 -symmetric Soler model [48].

3.2.1 Brief Summary of Spectral Methods

Prior to explaining the numerical methods used for calculating stationary solutions,
we will proceed to present a summary of spectral methods needed for dealing with
derivatives in continuum settings. For a detailed discussion on these methods, the
reader is directed to [30] and references therein.

Spectral methods arise due to the necessity of calculating spatial derivatives with
higher accuracy than that given by finite difference methods. As shown in [46], finite
difference methods cannot be used for the stability and dynamics analysis of solitary
waves in the NLD equation.

In order to implement spectral derivatives, a differentiation matrix D = {D,, ,}
must be given together with N collocation® (i.e., grid) points x = {x,}, n =
1,2, ..., N, which are not necessarily equi-spaced. Thus, if the spectral derivative
of a function f(x) = { f,,(x,)} needs to be calculated, it can be cast as:

N
f@)=0.f(@) < fi= Dymfn:
m=1

where f,, = f(x,,) and f, = f'(x,). If x € [-L, L] and the boundary conditions
are periodic, the Fourier collocation can be used. In this case,

2Notice that this value of N is not related to the dimension of the NLD, although the same symbol
is used in both cases.
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2L N
X, =—\n——1), n=1,2,...,N 23)
N 2

with N even. The differentiation matrix is

0 ifn=m,

— —1 n+m
Dum=yx DTy
2L tan[(x, — x,,)/2]

Notice that doing the multiplication Df is equivalent to performing the following
pair of Discrete Fourier Transform applications:

Df = .7 ' (kZ(f)) , (24)

with .# and .Z ~! denoting, respectively, the direct and inverse discrete Fourier trans-
form [160]. The vector wavenumber k = {k,} is defined as:

nrw
Tlfl’l < N/2,
0 ifn=N/2

ky =

The computation of the direct and inverse discrete Fourier transforms, which is
useful in simulations, can be accomplished by the Fast Fourier Transform. On the
contrary, the differentiation matrix is used for finding the Jacobian and stability
matrices. Notice that the grid for a finite difference discretization is the same as in
the Fourier collocation; and, in addition, there is a differentiation matrix for the finite
difference method, i.e.,

1 2L

Dnm = 57 5mn _am n— 3}1 am _Sn (Sm ) h=_7 25
, Zh( n+1 -1+ 6n,10m,N NOm.1) N (25)

with § being Kronecker’s delta. It can be observed from the above discussion that in
the Fourier spectral method, the banded differentiation matrix of the finite difference
method is substituted by a dense matrix, or, in other words, a nearest-neighbor inter-
action is exchanged with a long-range one. The lack of sparsity of differentiation
matrices is one of the drawbacks of spectral methods, especially when having to
diagonalize large systems. However, they have the advantage of needing (a consid-
erably) smaller number of grid points N for getting the same accuracy as with finite
difference methods.

For fixed (Dirichlet) boundary conditions, the Chebyshev spectral methods are
the most suitable ones. There are several collocation schemes, the Gauss—Lobatto
being the most extensively used:

nmw
x, = L cos , n=1,2,...,N,
N+1

with N being even or odd. The differentiation matrix is
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xﬂ
2
2L(1 —x72)
(_ l)n+m
L cos(x, — x,,)

ifn=m,
Dn,m=
if n = m.

The significant drawback of Chebyshev collocation is that the discretization matrix
possesses a great number of spurious eigenvalues [30]. They are approximately equal
to N/2. These spurious eigenvalues also have a significant non-zero real part, which
increases when N grows. This fact naturally reduces the efficiency of the method
when performing numerical time-integration. However, it gives a higher accuracy
than the Fourier collocation method when determining the spectrum of the stability
matrix (see e.g. [46]).

Several modifications must be introduced when applying spectral methods to polar
coordinates. They basically rely on overcoming the difficulty of not having Dirichlet
boundary conditions at » = 0 and the singularity of the equations at that point. In
addition, in the case of the Dirac equation, the spinor components can be either
symmetric or anti-symmetric in their radial dependence, so the method described
in [88, 160] must be modified accordingly. As shown in the previously mentioned
references, the radial derivative of a general function f(r, #) can be expressed as:

N
O f(rny0) =Y Dy f rm:0) + Dy f (rm, 0 + 7). (26)

m=1

Notice that in this case, the collocation points must be taken as

ni
r,=Lcos| —— ), n=1,2,...,2N,
2N +1

but only the first N points are taken so that the domain of the radial coordinate
does not include r = 0. Analogously the differentiation matrix would possess now
2N x 2N components, but only the upper half of the matrix, of size N x 2N is used.

If the function that must be derived is symmetric or anti-symmetric, i.e., f(r, 6 +
) = % f(r, 0), with the upper (lower) sign corresponding to the (anti-)symmetric
function, Eq. (26) can be written as follows:

N

O f(rs0) =Y [(Dnm £ Duav-m) f(rm: 0)]. 27)

m=1

Thus, the differentiation matrix has a different form depending on whether f (r, 9)
is symmetric or anti-symmetric:

af(r,0) =DPFf if f(r,0) =+f(r 0 +mn),

withr = {r,}, f(r) = {f(r,)} and D®f defined as in (27).
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3.2.2 Fixed Point Methods

Among the numerical methods available for solving nonlinear systems of equations
we have chosen to use fixed point methods, such as the Newton—Raphson one [132],
which requires the transformation of the set of two coupled ordinary differential
equations (14) into a set of 2N algebraic equations; this is performed by defining the
set of collocation points r = {r, }, and transforming the derivatives into multiplication
of the differentiation matrices D" and D® (to be defined below) times the vectors
u = {u,} and v = {v,}, respectively, being u, = u(r,) and v, = v(r,) as explained
in the previous subsection. Thus, the discrete version of (14) reads:

S+1

FY = (m —wyv, —gthv, + Z DPu,, + u, =0,

I'n

nm”m

m
S
F,fz) = (m + w)u, — gr,fu,, + Z DDy, + r—vn =0,
m n

with 7, = v — u?. Itis important to notice that matrices D"’ and D® correspond to

either D or D, depending on the symmetry of v and u, which, at the same time,
depend on the value of the vorticity S. If S is even, then v and u are symmetric and
antisymmetric, respectively, being DV’ = D™ and D® = D). On the contrary,
if S is odd, then u is symmetric and v is antisymmetric, being D’ = D) and
D® =D,

In order to find the roots of the vector function F = ({FV}, {F®})T, an analytical
expression of the Jacobian matrix

F) AONF) a0 S+1
3 3 (m — w) — gtF 1 [2kv2 + 7] 2kgvurk—! + D® 4 +
J= u \4 _ r
@ Hp® N
oF " oF “2kgvur* !+ DD — 2 (4 w) — gth [T — 2602
Ju av r

must be introduced, with the derivatives expressed by means of spectral methods
and the matrix is evaluated at the corresponding grid points. The roots of F, @ =
(v,u)7, are found by successive application of the iteration @ — & — J~'F until
convergence is attained. In our case, we have chosen as convergence condition that
IFlloo < 10710

Spectral stability is analyzed by evaluating the functions appearing in matrix
o, of Eq. (16) at the collocation points and substituting the partial derivatives by
the corresponding differentiation matrices. At this point, one must be very cautious
because, as also occurred with the Jacobian, there will be two different differentiation
matrices in our problem. Now L_ (w) will be represented by the following matrix:

—w D® 45t
L (@)= (_{};L 5 iy _'w> .
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3.2.3 Solitary Waves and Vortices

This section deals with the numerically found profiles for solitary waves (S = 0)
and vortices (S = 1) in the two-dimensional Soler model. Figure 3 shows, in radial
coordinates, the profiles of each component of S = 0 solitary waves with k = 1
and k£ = 2; the left panels of Fig.4 depict those components for S = 1 vortices. As
explained in Sect. 3.2.1, the first spinor component is spatially symmetric whereas the
second component is anti-symmetric as long as the vorticity of the first component,

S=0k=1 w=0.20 §=0k=2 —w=10.20
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2 —w=1050 . —w =050
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Fig. 3 Radial profile of S = 0 solitary waves in the 2D Soler model. Figures depict the first and
second spinor components together with the solution density. Left (right) panels correspond to k = 1

(k=2)
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Fig. 4 (Left panels) Radial profile of S = 1 vortices in the cubic 2D Soler model. (Right panels)
Radial profile of S = 0 solitary waves in the cubic 3D Soler model. Figures depict the first and
second spinor components together with the solution density

S € Z, is even. The spatial symmetry is inverted if S is odd. Notice also that in the
S = 0 case, the solution profile has a hump for » > 0 whenever w is below a critical
value. It manifests as the transformation of the solitary wave density from a circle to
aring. The ring radius increases when w decreases, becoming infinite when v — 0.
For this reason, computations are progressively more demanding for smaller values
of w.

The right panels of Fig.4 show the radial profile of S = 0 solitary waves in 3D.
We have not included solitary waves with higher vorticity because, as explained in
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Fig. 5 Dependence of the charge of S = 0 solitary waves in the 2D and 3D Soler models (left and
right panels, respectively) with respect to the frequency for 1 < k < 5. Notice the existence of a
minimum in the 2D (3D) curve for k > 1 (k > 1), which will be related to stability changes (see
Sect.5)

Sect. 2.5, the Soler equation in radial coordinates can only be expressed in the S = 0
case. Figure 5 shows the charge for the S = 0 solitary waves in the 2D and 3D Soler
models for different values of k.

It is worth mentioning that, despite the absence of an explicit analytical form of
3D solitary waves, their existence has been rigorously proven in [36, 62, 118].

4 Stability of Solitary Waves: Theoretical Results

In Sect.2, we presented the equation governing the linear stability analysis of sta-
tionary solutions. In the present section, we will show the theoretical background
related to spectral and orbital stability. Many of the results proposed herein will be
numerically checked in Sect. 5.

4.1 Spectral Stability of Solitary Waves

Prior to proceeding to the spectral stability analysis, we introduce some definitions.
The linearization of (3) at a solitary wave solution ¥ (¢, x) = ¢, (x)e™"*" is rep-
resented by non-self-adjoint operators of the form

J(D, — o+ Vix,w)), with J skew-adjoint , J? =1, 28)
where the matrix J commutes with D,, but not necessarily with the potential V (x, w).

We say that the solitary wave is spectrally stable if the spectrum of its linearization
operator has no points with positive real part. The spectral stability is the weakest
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type of stability; it does not necessarily lead to actual, dynamical one. The essen-
tial spectrum is easy to analyze: the application of Weyl’s theorem (see e.g. [138,
Theorem XIII.14, Corollary 2]) shows that the essential spectrum of the operator cor-
responding to the linearization at a solitary wave starts at =(m — |w|)i and extends
to £ooi. Thus, the spectral stability of the corresponding solitary wave would be
a corollary of the absence of eigenvalues with positive real part in the spectrum of
J(D,, — o + V(w)) in (28). The major difficulties in identifying the point spectrum
op (J Dy, — 0 + V(w))) are due to the spectrum of D,, extending to both +o0; this
prevents us from using standard tools developed in the NLS context.

In the absence of linear stability (that is when the linearized system is not dynami-
cally stable), one expects to be able to prove orbital instability, in the sense of [77]; in
[76], such instability is proved in the context of the nonlinear Schrédinger equation;
such results are still absent for the nonlinear Dirac equation.

Since the isolated eigenvalues depend continuously on the perturbation, it is con-
venient to trace the location of “unstable” eigenvalues (eigenvalues with positive real
part) considering w as a parameter. One wants to know how and when the “unstable”
eigenvalues may emerge from the imaginary axis, particularly from the essential
spectrum; that is, at which critical values of w the solitary waves start developing an
instability. Below, we describe the possible scenarios.

4.1.1 Instability Scenario 1: Collision of Eigenvalues

The well-known Vakhitov—Kolokolov stability criterion [161] keeps track of the colli-
sion of purely imaginary eigenvalues at the origin and a subsequent birth of a positive
and a negative eigenvalue. This criterion was discovered in the context of nonlinear
Schrodinger equations, in relation to ground state solitary waves ¢, (x)e "' (“ground
state” in the sense that ¢, (x) is strictly positive; for more details, see [16]). When
0,0 (w) < 0,with Q(w) = ||¢e ||i2 being the charge of the solitary wave (3), then the
linearization at a solitary wave has purely imaginary spectrum; when 9,0 (w) > 0,
there are two real (one positive, one negative) eigenvalues of the linearization opera-
tor. The vanishing of the quantity d,, O (w) at some value of w indicates the parameter
value for the collision of eigenvalues, when the Jordan block corresponding to the
zero eigenvalue has a jump of two in its size. A nice feature of the linearization at a
ground state solitary wave in the nonlinear Schrodinger equation is that its spectrum
belongs to the imaginary axis, with some eigenvalues possibly located on the real
axis; thus, the collision of eigenvalues at A = 0 is the only way the spectral instability
could develop. In the NLD context, such a collision does not necessarily occur at
A = 0; both situations as in Fig. 6 are possible.

In [18], it was shown that in NLD (and similar fermionic systems) the collision of
eigenvalues at the origin and a subsequent transition to instability is characterized not
only by the Vakhitov—Kolokolov condition d Q /dw = 0, but also by the condition
E(w) = 0, where E is the value of the energy functional on the corresponding solitary
wave.
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eigenvalues out of collisions

of imaginary eigenvalues.

When the frequency w of the !
solitary wave ¢e '
changes, the “unstable”, X v
positive-real-part
eigenvalues in the linearized i
equation could be born from : <o0>
the collisions of discrete

imaginary eigenvalues

Theorem 1 The algebraic multiplicity of the eigenvalue . = 0 of the linearization
o, at the solitary wave ¢,,(x)e™'" has a jump of (at least) 2 when at a particular
value of w either 9, Q(¢,) = 0 or E(¢p,) =0, with Q(¢,,) and E(¢p,) being the
charge and the energy of the solitary wave ¢, (x)e ",

Fig. 6 Birth of “unstable” |

The eigenvalues with positive real part could also be born from the collision
of purely imaginary eigenvalues at some point in the spectral gap but away from
the origin. This is expected to lead to an oscillatory instability due to the resulting
complex eigenvalues; we have recently observed this scenario in the cubic Soler
model in two spatial dimensions [49]. Presently we do not have a criterion for such
a collision of eigenvalues.

4.1.2 Instability Scenario 2: Bifurcations from the Essential Spectrum

The most peculiar feature of the linearization at a solitary wave in the NLD context is
the possibility of bifurcations of eigenvalues with nonzero real part off the imaginary
axis, out of the bulk of the essential spectrum.

The article [27] gives a thorough analytical study of eigenvalues of the Dirac
operators, focusing on whether and how such eigenvalues can bifurcate from the
essential spectrum. Generalizing the Jensen—Kato approach [91] to the context of the
Dirac operators, it was shown in [27, Theorem 2.15] that for |w| < m the bifurcations
from the essential spectrum are only possible from embedded eigenvalues (Fig. 7,
center), with the following exceptions: the bifurcation could start at the embedded
thresholds located at i (m + |w|) (Fig. 7, left), or they could start at A = +im when
o = 0 (Fig. 7, right; this situation corresponds to the collision of thresholds). Indeed,
bifurcations from the embedded thresholds have been observed in a one-dimensional
NLD-type model of coupled-mode equations [11, 37]. The bifurcations from the
collision of thresholds at +im (when w = 0) were demonstrated in [94] in the context
of the perturbed massive Thirring model.



114 J. Cuevas-Maraver et al.

Fig. 7 Possible bifurcations ;
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One can use the Carleman—Berthier—Georgescu estimates [19] to prove that there
are no embedded eigenvalues (hence no bifurcations) in the portion of the essential
spectrum outside of the embedded thresholds [27].

As to the bifurcations from the embedded eigenvalues before the embedded thresh-
olds, as in Fig.7 (center), we do not have any such examples in the NLD context,
although such examples could be produced for Dirac operators of the form (28) (with
V kept self-adjoint).

4.1.3 Instability Scenario 3: Bifurcations from the Nonrelativistic Limit

The nonzero-real-part eigenvalues could be present in the spectrum of the lineariza-
tion operators at small amplitude solitary waves for all w < m, being born “from the
nonrelativistic limit”. It was proved in [27, Theorem 2.19], under very mild assump-
tions, that the bifurcations of eigenvalues for w departing from +m are only possible
from the thresholds A = 0 and A = £2mi; see Fig. 8.

‘We now undertake a detailed study of these bifurcations; let us concentrate on the
case A = 0. It is of no surprise that the behaviour of eigenvalues of the linearized
operator near A = 0, in the nonrelativistic limit w < m, follows closely the pattern
which one observes in the nonlinear Schrodinger equation with the same nonlinear-
ity. In other words, if the linearizations of the nonlinear Dirac equation at solitary
waves with @ < m admit a family of eigenvalues A, which continuously depends
on w, such that A, — 0 as w — m, then this family is merely a deformation of an
eigenvalue family ANLS of the linearization of the nonlinear Schrédinger equation
with the same nonlinearity (linearized at corresponding solitary waves). To make this
rigorous, one considers the spectral problem for the linearization at a solitary wave
with w < m, applies the rescaling with respect to m — w < 1, and uses the reduc-
tion based on the Schur complement method, recovering in the nonrelativistic limit
o — m the linearization of the nonlinear Schrodinger equation, and then applying
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4

Fig.8 Bifurcations from A = 0 and hypothetical bifurcations from A = £2mi in the nonrelativistic
limit, @ <m. The nonzero-real-part eigenvalues could be present in the spectrum of the linearization
at a solitary wave ¢,,e ' for o arbitrarily close to m; these eigenvalues would have to be located
near A = 0 or near the embedded threshold at A = +2mi

the Rayleigh—Schrodinger perturbation theory; in [39], this approach was developed
to prove the linear instability of small amplitude solitary waves ¢,,(x)e " in the
“charge-supercritical” NLD, in the nonrelativistic limit w < m.

Theorem 2 Assume that f(s) = |s|¥, where k € N satisfies k > 2/n (and k < 2
for n = 3). Then there is w, < m such that the solitary wave solutions ¢, (x)e !
(in the form of the Wakano Ansatz from Sect. 2.5) to NLD are linearly unstable
for w € (w1, m). More precisely, let <7, be the linearization of the nonlinear Dirac
equation at a solitary wave ¢,,(x)e~'“". Then for w € (w;, m) there are eigenvalues

*ho € 0,(H,), Ao >0, Ao = O(m — w).

Let us remark here that the restriction in the above theorem that k is a natural
number was needed to make sure that the solitary wave family of the form of the
Wakano Ansatz indeed exists. Theorem 2 extends to £ (s) = als|* + O(|s|%),a > 0,
withk € 2/n, 2/(n —2)) (k > 2/n whenn < 3) and K > k. The existence of the
corresponding families of solitary waves was proved in [26]. In that article, a general
construction was given for small amplitude solitary waves in the nonlinear Dirac
equation, deriving the asymptotics which we will need in the forthcoming stability
analysis of such solitary waves. This is a general result proved for nonlinearities
which are not necessarily smooth, thus applicable to e.g. critical and subcritical
nonlinearities.

We point out that the instability stated in Theorem 2 is in a formal agreement
with the Vakhitov—Kolokolov stability criterion [161]; one has d Q(w)/dw > 0 for
o < m. Conversely, we expect that the presence of eigenvalues with nonzero real
part in the vicinity of A = 0 for @ < m, is prohibited by the Vakhitov—Kolokolov
stability criterion % <0, 0w <Sm.

Similarly to how the NLS corresponds to the nonrelativistic limit of NLD, in
the nonrelativistic limit of the Dirac-Maxwell system one arrives at the Choquard
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equation [106]; see [41] and the references therein. The Choquard equation is known
to be spectrally (in fact, even orbitally) stable [35]; we expect that this implies absence
of unstable eigenvalues bifurcating from the origin in the Dirac-Maxwell system.

As we pointed out above, in the nonrelativistic limit w < m, there could be
eigenvalue families of the linearization of the nonlinear Dirac operator bifurcat-
ing not only from the origin, but also from the embedded threshold (that is, such
that lim,,—,,, A; (®w) = £2mi). Rescaling and using the Schur complement approach
shows that there could be at most N/2 such families bifurcating from each of £2mi,
with N the number of components of a spinor field (in 3D Dirac, one takes N = 4).
Could these eigenvalues go off the imaginary axis into the complex plane? While for
the nonlinear Dirac equations with a general nonlinearity the answer to this question
is unknown, in the Soler model we can exclude this scenario. One can show that there
are exact eigenvalues A (w) = +2wi, each being of multiplicity N/2; thus, we know
exactly what happens to the eigenvalues which bifurcate from +2mi, and expect no
bifurcations of eigenvalues off the imaginary axis. The details are given in [28].

Let us finish with a very important result: the existence of eigenvalues £2wi of
the linearization at a solitary wave in the Soler model (3) is a consequence of having
bi-frequency solitary wave solutions in the Soler model, in any dimension and for
any choice of f in (3). For more details, see [28].

4.2 Orbital and Asymptotic Stability of Solitary Waves

The spectral analysis is one aspect of global analysis of the dynamical stability. In
principle any spectral instability around a stationary solution should lead to a dynam-
ical instability, namely the stationary solution is orbitally unstable. The contrapuntal
statement that a stable stationary state has a spectrally stable linearized operator
needs to be analyzed carefully.

If the Dirac operator D,, is perturbed by some zero-order external potential, the
perturbation theory provides tools which allow one to analyze the linear stability of
linearized operators of the form (28). Still some important restrictions on the poten-
tial appear (decay, regularity, and absence of resonances). Even if the perturbation
analysis needs some work, it is much less involved compared to the complete spectral
characterization of the linearized operator. This opens the gates to the analysis of the
nonlinear stability.

Prior to a bibliographical review of the available works in this direction, we
make a remark. While in many models the orbital stability is obtained by using the
energy as some kind of a Lyapunov functional, this is no longer possible for models
of Dirac type since the energy is sign-indefinite. Even if there are some conserved
quantities which allow one to control certain negative directions of the Hessian of the
energy, the latter are in infinite number (“infinite Morse index”) and in most cases
the conservation laws are not enough. The route “use linear stability to prove the
asymptotic stability” seems to be the only one available for the sign-indefinite systems
such as nonlinear Dirac, Dirac—Hartree—Fock, and others. As a result, due to the
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strong indefiniteness of the Dirac operator (the energy conservation does not lead to
any bounds on the H'!/2-norm), we do not know how to prove the orbital stability [77]
but via proving the asymptotic stability first. The only exceptional case in nonlinear
Dirac-type systems seems to be the completely integrable massive Thirring model in
one spatial dimension [158], where additional conserved quantities arising from the
complete integrability allow one to prove orbital stability of solitary waves [43, 127].
Note that these conserved quantities are used not to control the negative directions
but rather to construct a new Lyapunov functional. More precisely, by [127], there is
a functional R defined on H'!(R, C?) (which contains terms dependent on powers of
components of 1 € C? of order up to six) which is (formally) conserved for solutions
to the massive Thirring model, and it is further shown that there is wy € (0, m] such
that for w € (—wy, wp) the solitary wave amplitude is a local minimizer of R in
H' under the charge and momentum conservation, and hence the corresponding
solitary wave is orbitally stable in H'!(R, C?). Moreover, in [43], using the global
existence of L2-solutions for the (cubic) massive Thirring model [33], the orbital
stability of solitary waves in L?(R) has been shown, with the proof based on the
auto-Bécklund transformation. Now we turn to the asymptotic stability. In [40],
the asymptotic stability was proved for the small energy perturbations to solitary
waves in the Gross—Neveu model. The model is taken with particular pure-power
nonlinearities when all the assumptions on the spectral and linear stability of solitary
waves have been verified directly. This is, referring to the previous discussion, also
the “proof of concept: it is shown that there are translation-invariant systems based
on the Dirac operator which are asymptotically stable; this is in spite of the energy
functional being unbounded from below.

First results on asymptotic stability were obtained in [24, 25] in the case n =
3, in the external potential. There, the spectrum of the linear part of the equation
D,, + V is supposed to be, beside the essential spectrum R \ (—m, m), formed by
two simple eigenvalues; let us denote them by Ay and A, with 4y < A;. From the
associated eigenspaces, there is a bifurcation of small solitary waves for the nonlinear
equation. The corresponding linearized operators are exponentially localized small
perturbations of D, + V, so that the perturbation theory allows a precise knowledge
of the resulting spectral stability. Depending on the distance from X to A; compared
to the distance from A to the essential spectrum, the resulting point spectrum for
the linearized operator may be discrete and purely imaginary and hence spectrally
stable, or instead it may have nonzero-real-part eigenvalues if a “nonlinear Fermi
Golden Rule” assumption is satisfied (similarly to the Schrodinger case, see [32, 150,
151]); in the latter case, linear and dynamical instabilities can occur. In the former
case, the linear stability follows from the spectral one via the perturbation theory. In
any case, using the dispersive properties for perturbations of D,,, there is a stable
manifold of real codimension 2. Due to the presence of nonzero discrete modes,
even in the linearly stable case, the dynamical stability is not guaranteed. Before
considering the results on the dynamics outside this manifold, for perturbations
along the remaining two real directions, one could ask what might happen if D,, +
V had only one eigenvalue. The answer follows quite immediately with the ideas
from [24, 25]. In this case, there is only one family of solitary waves and it is
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asymptotically stable. Notice that the asymptotic profile is possibly another solitary
wave but close to the perturbed one. In the one-dimensional case, this was studied
properly in [127]. Note that the one-dimensional framework suffers from relatively
weak dispersion which makes the analysis of the stabilization process more delicate.
As for the dynamics outside the above-mentioned stable manifold, the techniques
rely on the analysis of nonlinear resonances between discrete isolated modes and
the essential spectrum where the dispersion takes place. This requires the normal
form analysis in order to isolate the leading resonant interactions. The former is
possible only if the “nonlinear Fermi Golden Rule” is imposed. Such an analysis
was done in [17] but in a slightly different framework: instead of considering the
perturbative case the authors chose the translation-invariant case, imposing a series
of assumptions that lead to the spectral stability of solitary waves. These assumptions
are verified in some perturbative context with V' # 0. This case is analyzed in [45].
The asymptotic stability approach from [17, 40, 127] is developed under important
restrictions on the types of admissible perturbations. These restrictions are needed to
avoid the translation invariance and, most importantly, to prohibit the perturbations
in the direction of exceptional eigenvalues +2wi of the linearization operator at a
solitary wave ¢, (x)e~'“". These eigenvalues are a feature of the Soler model (see [52,
75]); they are present in the spectrum for any nonlinearity f in the Soler model (3),
see [29, 52, 75]. These eigenvalues are embedded into the essential spectrum when
|w| > m /3 and violate the “nonlinear Fermi Golden Rule”: they do not “interact” (that
is, do not resonate) with the essential spectrum; the energy from the corresponding
modes does not disperse to infinity. This does not allow the standard approach to
proving the asymptotic stability.

S Stability of Solitary Waves: Numerical Results

Once the theoretical background on linear stability has been presented, we review
in this section some very recent numerical results on this topic. To this aim, we first
include a brief introduction to the Evans function formalism [66], and then, detailed
results based on numerical analysis of BdG-like spectral stability are shown for both
1D and 2D Soler models.

Let us recall some notation regarding the spectral stability, as we will make an
extensive use of them in what follows. The essential spectrum corresponds to A €
i(—o0, |w| —m]Ui[—|w| + m, c0). Embedded eigenvalues can be in the region
A € Li[—|w| + m, |w| + m] of the essential spectrum; for abbreviation, we denote
this region as the embedded spectrum and the remaining part of the essential spectrum
as non-embedded spectrum.

In what follows, without lack of generality we will take g = m = 1 unless stated
otherwise.
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5.1 Evans Function Approach to the Analysis of Spectral
Stability

The study of the spectral stability of the cubic 1D Soler model was performed in
[29], with the aid of the Evans function technique. This was the first definitive linear
stability result (as well as the first definite stability result) in the context of the
nonlinear Dirac equation.

Let us give more details. In order to compute o (7,) we can employ the Evans
function which provides an efficient tool to locate the point spectrum. The Evans
function was first introduced by Evans [66—69] in his study of the stability of nerve
impulses. In his work, Evans defined D (1) to represent the determinant of eigenvalue
problems associated with traveling waves of a class of nerve impulse models. D (1)
was constructed to detect the intersections of the subspace of solutions decaying
exponentially to the right and the subspace of solutions decaying exponentially to
the left. Jones [93] used Evans’ idea to study the stability of a singularly perturbed
FitzHugh—Nagumo system. Jones called it the Evans function, and the notation E (1)
is now common. The first general definition of the Evans function was given by
Alexander et al. [6] in their study of the stability for traveling waves of a semi-
linear parabolic system. Pego and Weinstein [123] expanded on Jones’ construction
of Evans function to study the linear instability of solitary waves in the Korteweg—
de Vries equation (KdV), the Benjamin—-Bona—Mahoney equation (BBM), and the
Boussinesq equation. Generally, the Evans function for a differential operator & is
an analytic function such that E(}) = 0 if and only if X is an eigenvalue of &, and
the order of zero is equal to the algebraic multiplicity of the eigenvalue.

Let us give a simple example which illustrates the nature of the Evans function.
Consider the stationary Schrodinger equation

— 22u(x) = Hu(x), (29)
where H = —8? + VwithV € CR),supp(V) C (=1, 1).Forix € C\ {0},Re(r) >
0, it has the solutions J; (A, x) and J_(A, x), x € R, defined by their behaviour at
+o0:

J.x)=e™, x>1; J (0, x)=e™, x<-—1.

We should note that J,. and J_ decay exponentially as x — £o0, respectively, and
they have the same asymptotics at 00 as the solutions to the equation

—2%u(x) = Hou(x),

where Hy = —8)%, which agrees with H on R \ [—1, 1]. We call J; and J_ the Jost
solution to (29) and define the Evans function to be the Wronskian of J, and J_:

EMW) =Wy, Jo)(x, A) = Jo (e, Ao J_(x, ) — J_(x, A)dy J4(x, 1),
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where the right-hand side depends only on A. Vanishing of E at some particular
A € C, Re(A) < 0 shows that the Jost solutions J; and J_ are linearly dependent,
and there is ¢ € C \ {0} such that

b) = Ji(x, A), x>0
cJ_(x, A7), x <0
is C! and thus is an eigenfunction corresponding to an eigenvalue A% of H.

The construction for the one-dimensional Soler model is done by decomposing
L?*(R, C*) into two invariant subspaces for the operator .27, introduced in (9): the
“even” subspace, with even first and third components and with odd second and
fourth components, and the “odd” subspace, with odd first and third components and
with even second and fourth components; the direct sum of the “even” and “odd”
subspaces coincides with L2 (R, C*). The Evans function corresponding to the “even”
subspace is defined by

Eeven()\) = det (Ri1, R3, J1, J2), (30)

where R;(x), 1 < j <4, are the solutions to the equation AR = .27, R with the initial
data
Ril,—o=¢;, 1=<j<4,

where e;, 1 < j < 4, is the standard basis in C*. J; and J are the Jost solutions of
7, which are defined as the solutions to AW = o7, ¥ with the same asymptotics at
+o00 as the solutions to A¥ = (D,, — w)¥ which decay as x — 400, where

D, 0 | moo | .
Dm=|:0 Dm:|7 Dm_|:—8X _m:|_—t(—02)8x+mo3.

The Evans function corresponding to the “odd” subspace is constructed by using in
(30) functions R, and Ry instead of R; and R3. We note that, by Liouville’s formula,
the right-hand side in (30) does not depend on x.

Figure 9 shows the zeros of the Evans function which are plotted alongside with
the essential spectrum for the linearization at the solitary waves in the 1D Soler
model.

Later, in [49], it was observed that the linearized operator admits invariant sub-
spaces which correspond to spinorial spherical harmonics. This allows one to fac-
torize the operator, essentially reducing the consideration to a one-dimensional set-
ting, and to perform a complete numerical analysis of the linearized stability in the
nonlinear Dirac equation in two spatial dimensions and give partial results in three
dimensions, basing our approach on both the Evans function technique and the linear
stability analysis using spectral methods.

For the two-dimensional Soler model, we can use the same process as the one-
dimensional case to construct the Evans function. Recall (see (17)) that 7, acts
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Fig. 9 Eigenvalues corresponding to zeros of the Evans function in the upper half of the spectral
gap as a function of w. Yellow area represents the part of the continuous spectrum that corresponds
to i L4+ (w), while the green area represents the (doubly-covered) part of the continuous spectrum
corresponding to both iL4(w) and —iL4(w). The eigenvalues A = 2wi (red straight line) are
embedded into the essential spectrum for @ > m/3

invariantly on 2, for each g € Z and <, , = 4,| 2,- We consider the case S = 0.
The Evans function for each 7, , is defined by
E,(A) = det(R], R, Y1, Y2).

Here R; and R, are linearly independent solutions to the equation AR = Ay qR
with the following linearly independent initial data at r = 0

—h—(@+ fo)if 0
x4
0 and l}‘-‘q‘+w+f0 i
ilq| lq]
q iq

where fo = m — g (u*(0) — v*(0)). The Jost solutions Y} and Y; of 7, , are defined
as the solution to AY = <, ,Y with the same asymptotics at 400 as the solutions to
AY =D,Y where

D_

[ -0t Dy —owh
g =

: s e 7.
—D,, + ol —01% :| 1

5.2 Bogoliubov—de Gennes Analysis: The One-Dimensional
Case

Let us recall from the analysis shown in Sect.4 that near the non-relativistic limit
(w < m), the stability of solitary waves formally agrees with the Vakhitov—Kolokolov
stability criterion d,, Q(¢,,) < 0 [161]. In particular, there is no positive eigenvalue
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Fig. 10 Spectrum of the stability matrix (10) for solitary waves in domain [—L, L] with L = 40
obtained using finite differences with N = 800 grid points in the cubic (k = 1) case. Dots correspond
to Evans function predictions. Right panel displays only the maximum values of Re(}) (i.e., the
growth rates) and includes the values for L = 40, L = 100, and L = 150

emerging from A = 0 for w < m as long as k < 2 (and, consequently, the solitary
waves are spectrally stable), while in the case k > 2 there is a pair of (a positive
and a negative) eigenvalues which result in linear instability. As it turns out, in the
one-dimensional case, the Vakhitov—Kolokolov stability criterion agrees with the
observed stability of solitary waves not only in the nonrelativistic limit, but for all
frequencies w € (0, m), as our numerical calculations show below. Evans function
analysis presented above also shows that solitary waves do not present oscillatory
instabilities (i.e., there are no complex A’s with nonzero real part) in the 1D case; the
instability could only develop when eigenvalues collide and bifurcate from the origin.
Additionally, for any k, the existence of an eigenvalue A = +2wi is a consequence
of the SU(1, 1)-invariance of the Soler model [52, 75]. This mode, which does not
give rise to any instability, is embedded into the essential spectrum for w € (m /3, m)
(see Fig. 10).

Let us mention that it was shown in [120, 149] that attempts to apply Derrick’s
argument [56] to stability of solitary waves in the context of the nonlinear Dirac
equation [22, 154]—in particular, the so-called Bogolubsky criterion—do not seem
to work. This is not particularly surprising, given that Derrick’s empirical argument,
based on singling out one family of perturbations of a solitary wave and checking
whether the solitary wave corresponds to the energy minimum on this curve, was
introduced in the context of the second order systems, appealing to our Newtonian-
world intuition. Apparently, this approach does not necessarily work in the context
of the first order systems, such as the Dirac equation.

Examining the finite difference discretization of the 1D Soler model, we replace
the spatial derivatives 9, f(x) in (7) by the central difference ( f,+1 — fu—1)/(2h).
This method is tantamount to using the collocation points of (23) and (25) with
N collocation points, a domain x € [—L, L] and h = 2L/N. Figure 10 shows the
stability eigenvalues for k = 1 and L = 40 while the spacing 7 = 0.1. We do not
consider here instabilities that disappear in the infinite domain, continuum limit.
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In the case of small w, the solitary waves are identified as unstable. The “size”
of the instability decreases as the frequency is increased. This is because of a mode
colliding with the essential spectrum around w ~ 0.037 and leading to the formation
of eigenfrequency quartets. For w & 0.632, the stability of the solitary wave is briefly
restored, only to be lost again at w ~ 0.634. Subsequently, “bubbles” of instability
arise (with decreasing amplitude as w is increased). To identify the relevant trend,
we have examined in the right panel of Fig. 10 the cases of different length for
L =40, 100 and 150. As L increases, so does the number of bubbles, while the
width decreases, with their envelope tending to zero when w approaches 1, in a way
reminiscent of the corresponding scenario for dark solitons in the discrete nonlinear
Schrodinger equation (DNLS) case [92]. From this trend, it is not straightforward to
infer whether the unstable solution becomes stabilized at a critical w or whether it is
asymptotically approaching the stable NLS limit of o — 1.

In order to find out a strategy which assures a spectral accuracy of BdG stability
analysis which is also correlated to the Evans’ function analysis, we used spectral
collocation methods in [46]. We utilized two case examples of such methods therein:
the Fourier Spectral Collocation Method, which implicitly enforces periodic bound-
ary conditions, and the Chebyshev Spectral Collocation Method, which enforces
(homogeneous) Dirichlet boundary conditions (see Sect.3.2). The advantage of the
Finite Difference Method with respect to the other ones concerns the fact that the
resulting stability matrix is sparse. In the computations performed in that work and
that will be presented below, N = 800 collocation points were taken in a domain
[—L, L], with a discretization parameter 7 = 1/(2L); this value coincides with the
distance between grid points in the Fourier collocation and finite difference methods,
but not in the Chebyshev collocation as the grid points are not equidistant. Increasing
the node numbers to N = 1200 does not seem to qualitatively improve the findings.

In Fig. 11 we examine the dependence of the imaginary part of the eigenvalues
A with respect to the frequency w of the solution for both spectral methods in the
cubic case of £k = 1. In addition to the A = +2wi mode, the different methods have

Fig. 11 Imaginary part of the spectrum of the stability matrix (10) for solitary waves in domain
[—L, L] with L = 40 obtained using Fourier (left) and Chebyshev (right) spectral collocation
method with N = 800 grid points in the cubic (k = 1) case. Dots correspond to Evans function
predictions



124 J. Cuevas-Maraver et al.

-3

40 - . . S x 10 -
| 1 2 i
20 g . mmnmlﬁlll‘m mllﬂm““““' ] |
% 0 | 210 — ; : |
20
R o 0 0.1
Re())

Fig. 12 Spectral plane of a solitary wave with @ = 0.1 (cubic case, L = 40,and N = 800) obtained
using the Fourier spectral collocation method (left panel). The typical profile of two modes cor-
responding to spurious eigenvalues is depicted in the right panel. In particular, we have included
the mode with Re(A) = 0 which does not arise in the Evans’ function analysis of Sect.5.1 together
with the largest real part eigenvalue, which is also spurious

additional modes which can be compared also with the Evans function analysis out-
come of Fig.9. We thus find that the comparison of the Fourier spectral collocation
method with the Evans function analysis (Fig. 9) seems qualitatively (and even quan-
titatively) to yield very good agreement with the exception of a mode that seems to
initially grow steeply (for small w) and subsequently to slowly asymptote to the band
edge (as w increases). This mode is shown in the right panel of Fig. 12, while the left
panel of the figure illustrates a prototypical example of the Fourier spectral colloca-
tion method spectrum for @ = 0.1. From the above panel, we can immediately infer
that this mode is, in fact, spurious and an outcome of the discretization as it carries a
staggered profile that cannot be supported in the continuum limit. In the left panel of
the same figure, we can see the existence of additional spurious modes forming bub-
bles of complex eigenvalues. However, the fact that these bubbles are occurring at the
eigenvalues of the continuous spectrum assures us that these are spurious instabilities
due to the finite size of the domain and ones which disappear in the L — oo, h — 0
limit. This is confirmed by Fig. 13 which shows that as we decrease & (and increase
the number of lattice sites, approaching the continuum limit for a given domain size)
the growth rate of such spuriously unstable eigenmodes accordingly decreases.
Remarkably, the finite difference spectrum of Fig. 10 is the one that seems most
“distant” from the findings of the Evans function method. While all four of the internal
modes of the latter spectrum seem to be captured by the finite difference method,
three additional modes create a nontrivial disparity. Two of them are in fact “benign”
and maintain an eigenvalue below the band edge of the continuous spectrum for all
values of w € (0, m). However, as explained in [47], we also observe the existence
of an eigenmode embedded in the essential spectrum. Unfortunately, this mode is
accompanied by a real part in the corresponding eigenvalue and hence gives rise to a
spurious instability. Figure 14 presents a graph analogous to Fig. 12 but for the finite
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Fig. 13 Growth rates (i.e., maximum of the real part of the eigenvalues) for a solitary wave with
L = 40 in the cubic case using the Fourier spectral collocation method. The number of grid points
is either N = 800 or N = 200
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Fig. 14 Spectral plane of a solitary wave with @ = 0.1, L = 40 and N = 800 in the cubic case,
using finite difference discretization (left panel). The typical profile of three modes corresponding
to spurious eigenvalues is depicted in the right panel. In particular, we have included the two modes
with Re(A) = 0 which do not arise in the Evans function analysis together with the embedded
spurious mode

difference method. The undesirable unstable mode, as well as additional spurious
modes are explicitly indicated through the eigenvector profiles of the right panel.

The scenario of the Chebyshev spectral collocation method bears advantages and
disadvantages in its own right. Although it gives an accurate result for the imaginary
part of the eigenvalues, their real part grows for large Im(}), as is also shown in
Fig. 15. Additionally, as indicated in [30], approximately half of the values of the
spectrum are spurious within the Chebyshev collocation method, so they should be
excluded from consideration. Furthermore, one can observe that in this case as well,
spurious instability bubbles arise (see the right panel of Fig. 15), yet we have checked
that these disappear in the continuum limit of 7 — 0.
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Fig. 15 Spectral plane of a solitary wave with w = 0.4, L =40, and N = 800 in the cubic case,
using the Chebyshev spectral collocation method. The right panel is a zoom of that on the left,
illustrating the weak, spurious instabilities (which disappear as the continuum limit is approached)

As a final aspect of the spectral considerations that we provide herein, we have
examined the instability that arises e.g. from the Chebyshev spectral collocation
method for larger values of k. Recall that the Chebyshev spectral collocation method
predicts (at least as regards the point spectrum out of the non-embedded spectrum)
that there is no instability for any w in the case of k = 1, in agreement with the Evans
function analysis and [126]. The method identifies an instability for such point spec-
trum eigenvalues only for k > 2. The relevant instability predicted numerically in the
k-w plane is illustrated in Fig. 16. We note that this instability is precisely captured
by the Vakhitov—Kolokolov criterion, i.e., it precisely corresponds to the condition
0,0 (w) = 0, in agreement with [18]. Hence, by analogy with the nonrelativistic
limit ® — m = 1, we expect this to be an instability associated with the collapse
of the latter model (however, we will observe a key dynamical difference, in com-
parison to the NLS, in Sect. 6). Nevertheless, it is relevant to point out here that the
NLD, contrary to the NLS, does not exhibit an instability for all @ when k > 2. The
instability is instead limited to w > w.(k), as characterized by the curve of Fig. 16.
Hence, it can be inferred that the instability is mitigated by the relativistic limit of the
NLD and only occurs in an interval of frequency values including the non-relativistic
limit ® — m = 1, yet not encompassing the full range of available frequencies in
the relativistic case.

5.3 Bogoliubov—de Gennes Analysis:
The Two- and Three-Dimensional Cases

From the experience acquired with the study of the stability of solitary waves in one
spatial dimension, it is clear that a Chebyshev spectral collocation method must be
followed in order to analyze the stability in higher-dimensional solitary waves. This
is the approach followed in the present section, which summarizes the results of [49].
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Fig. 16 Exponential bifurcation loci in the w.-k plane for the 1D Soler model. The solitary waves
under the curve are linearly (spectrally) stable, while the ones above the curve are linearly unstable.
Full line corresponds to the application of the Vakhitov—Kolokolov criterion (i.e., points for which
9, Q(w) = 0), whereas the dots correspond to the stability calculations

Let us remember that the spectrum of <7, is the union of spectra of the one-

dimensional spectral problems (17): o (#,) = Uyez 0 (Jz/w,q). In our numerics we
have analyzed values of g € [—6, 6], although the main phenomenology is captured
by |g| < 4 and those are the values shown in the next figures for the sake of better
visualization.

We start by considering the stability of S = 0 structures in the case of cubic
nonlinearity. In Fig. 17, we can see in the top panels how the real and imaginary
parts of the eigenvalues depend on w. Based on this we can make some observations.
Contrary to the case of the 2D NLS where the zero eigenvalues are degenerate [156],
in the present NLD setting this degeneracy is lifted. As the frequency decreases, the
pair of g = 0 eigenvalues depart from the origin (where they are at @ = 1). Since
these eigenvalues become marginally stable, the mechanism of charge-critical NLS
self-similar blowup [119] is no longer “available”. Moreover, the translation and
gauge symmetry lead to two pairs of eigenvalues at the origin, for both fundamental
and excited solutions. An additional (SU(1, 1)) symmetry is responsible for the
presence of eigenvalues A = £2wi. It is relevant to note that as w is decreased for
o < 0.121, Hamiltonian-Hopf bifurcations for |g| = 2 lead to a complex eigenvalue
quartet, with an additional one arising for |¢g| = 3 at @ = 0.0885 and so on.

On the other hand, vortex solutions with S > 0 were found to be generically
unstable due to quartets of complex eigenvalues. This was true not only for S = 1
solutions, but also for cases with S > 2 that we do not analyze further. Notice that
the eigenvalues A = +2wi generally correspond to the particular mode with ¢ =
FQ2S+1).

Importantly, the quintic (k = 2) NLD model was also found to possess stable
intervals in two dimensions. Here, the NLS limit is itself unstable and in fact the
relevant instability emerges (for the g = 0 perturbations) already for w > 0.890. In
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Fig. 17 Dependence of the (left) imaginary and (right) real part of the eigenvalues with respect
to the frequency w of solitary waves in the 2D Soler model with cubic (k = 1) nonlinearity. Top
(respectively, bottom) panels correspond to S = 0 solitary waves (S = 1 vortices). For the sake
of clarity, we only included the values |g| < 4. Full (dashed) lines in left panels represent the
eigenvalues for ¢ > 0 (¢ < 0). The correspondence between colors and |g| is indicated in the
legend of right panels

the small w realm, the instability sets in (via Hamiltonian Hopf bifurcations again)
for w < 0.312 (Fig. 18).

Perhaps even more remarkably, Fig. 19 shows that the radial perturbations do not
destabilize NLD solitary waves even in the case of 3D Soler models for suitable
frequency intervals (entirely contrary to what is the case for the non-relativistic
NLS limit). More specifically, the stability to radial perturbations arises below some
dimension-dependent critical value w. = w,.(n, k), with n being the number of spatial
dimensions.

Figure 20 shows those critical frequencies as a function of the nonlinearity param-
eter k for n =2 and n = 3. For w € (w,, 1), the NLD solitary waves are linearly
unstable. Below w, the linear instability disappears. In the particular case of cubic
(k = 1) 3D Soler model, we have that w. ~ 0.936. This value was identified by Soler
in his original paper [152] as the parametric value of the occurrence of the energy
and charge minimum.
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Fig. 18 Dependence of the (left) imaginary and (right) real part of the eigenvalues with respect to
the frequency w of § = 0 solitary waves in the 2D Soler model with quintic (k = 2) nonlinearity.
For the sake of clarity, we only included the values |g| < 4. Full (dashed) lines in the left panel
represent the eigenvalues for g > 0 (g < 0). The correspondence between colors and |g| is indicated

in the legend of the right panel
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Fig. 19 Dependence with respect to w of the (left) imaginary and (right) real part of the eigenvalues
of the one-dimensional invariant radial subspace of solitary waves in the 3D Soler model with cubic

(k = 1) nonlinearity
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Fig. 20 Ceritical frequency for radially-symmetric exponential bifurcations in the 2D and 3D Soler
model, as a function of the exponent k. For (w, 1), the solitary waves are linearly unstable. For
k < 2/n, with n being the system dimension, there is no linear instability for @ < 1, according to

the Vakhitov—Kolokolov criterion (see Sect.4)
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6 Dynamics

Once the stability properties of solitary waves and vortices of the Soler model have
been elucidated, it is now natural to turn our attention towards the observation of their
dynamical properties. In the one-dimensional case, we will analyze some integration
schemes in order to observe their suitability for simulation of solitary waves in non-
linear Dirac equations. In addition, the dynamics of unstable solutions in equations
with high-order instabilities (i.e., kK > 1) will be shown. Finally, the dynamics of
unstable solitary waves and vortices for the 2D Soler model will be considered.

6.1 One-Dimensional Solutions

This subsection is divided into two parts. In the first one, we will show the evolution
of stable solitary waves within several numerical integrators in the cubic (k = 1)
Soler model. The second part deals with the evolution of unstable solitary waves
with k > 1. Most of the results presented herein are taken from [46].

6.1.1 Stable Solutions

We turn here our attention to the implications of spectral collocation methods to the
nonlinear dynamical evolution problem. We focus on the case of k = 1. Given the
large (yet spurious) growth rate of the modes emerging from the Chebyshev spectral
collocation method and the spurious point spectrum instability of the finite difference
method, for our dynamical considerations, we will focus our attention to the Fourier
spectral collocation method results. As discussed in Sect.5.2, in that method too,
there exist spurious modes which, as expected, are found to affect the corresponding
dynamics. As a dynamical outcome of these modes, the solitary waves are found to
be destroyed after a suitably long evolution time, although the time for this feature is
controllably longer in comparison to the one observed in [149]. This, in turn, suggests
the expected stability of the solitary wave solutions, in accordance with what was
proposed in Sect. 5.

As a prototypical diagnostic of the dynamical stability of solitary waves in a finite
domain [—L, L], we have monitored the L?-error in a similar fashion as in [149]:

12
ext) = ([ 1ot = po.0f ax)

with p = ¥*¢ being the charge density.

A first approach to the dynamics problem is accomplished by choosing a fixed-
step 4th order Runge—Kutta method. We observe that the lifetime is longer when the
frequency w is fixed and the domain length L is increased. This is associated with
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Fig. 21 Stable solitary waves simulations in cubic 1D Soler model using a 4th-order Runge—Kutta
integrator with a Fourier spectral collocation method. The norm error is compared for different
domain sizes and frequencies. In every case, the time step of the integrator is At = 0.05

the decrease of the size of spurious instability bubbles, as we approach the infinite
domain limit. A similar decrease of the growth rate is observed for a given L, when
the discretization spacing % is decreased (i.e., as the continuum limit is approached),
in accordance with the spectral picture of Fig. 13. In addition, if L is fixed, the lifetime
is longer when w is increased. These facts are summarized in Fig. 21. Obviously, this
is in consonance with earlier observations such as those of [ 149], however, our ability
to expand upon the lifetimes as the domain and discretization parameters are suitably
tuned suggests that in the infinite domain, continuum limit such instabilities could
be made to disappear upon suitable selection of the numerical scheme. As a final
comment, we note that the growth rates observed in Fig.21 are consonant with the
maximal (yet spurious) instability growth identified in Fig. 13. This is yet another
indication that this growth featured in the time dynamics is a spurious by-product of
the discretization scheme, rather than a true feature of the corresponding continuum
problem.

In Table 1 we compare the critical time for which &, > 10~ within the Fourier
spectral collocation method and the corresponding time for the 4th order operator
splitting algorithm used in [149] for frequencies w = 0.1 and @ = 0.5 and different
domain lengths L. As can be seen from the comparison, although in some cases
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Table 1 Comparison between the critical times for which &, > 1073 using the Fourier spectral
collocation method with a 4th-order Runge—Kutta integrator (1) and the operator splitting method
of [149] (12)

L w=0.1 w=0.5

13 n A 5]
50 1220 121 5620 6614
75 1320 122 8480 8724
100 1990 122 14,660 9937
125 2540 120 14,660 11,670
150 3120 122 14,660 13,560

(e.g. for w = 0.5 and L = 50) the observed destabilization may happen later for the
scheme of [149], generally the Fourier spectral collocation method code explored
herein allows to enhance the wave lifetime, in some cases by an order of magnitude.
This can be further improved by tweaking parameters such as / and the time spacing
of the integrator At, as discussed above. Hence, our conclusion is that despite the
artificial instabilities existing in the spectral picture and their dynamical manifesta-
tion, it is anticipated that the continuum, real line variant of the problem is spectrally
stable for all w € (0, m) in the case of k = 1.

A tweak to the problem could be, on the one hand, to use adaptive step-size
integrators [85]. The case of 4th—5th order Dormand—Prince integrator [58] does not
improve significantly the solitary wave lifetime. On the other hand, when using a
2nd-3rd order Runge—Kutta integrator supplemented by a TR-BDF2 scheme (i.e.,
a trapezoidal rule step as a first stage and a backward differentiation formula as a
second stage) [148], many of the spurious eigenvalues can be damped out and the
lifetimes are strongly enhanced.

6.1.2 Unstable Solutions for High-Order Nonlinearity

Having observed that the solitary wave solutions of the problem with k = 1 are
dynamically stable, we now turn our attention to the dynamics associated with the
instability in the case k > 2, for w > w,.(k), as per Fig.16. Figure22 shows the
evolution of an exponentially unstable solitary wave with k = 3 and w = 0.9. We
can observe the existence of oscillations around a stable fixed point. This fixed
point approximately corresponds to the solitary wave with frequency v ~ 0.82, for
which the solution is spectrally stable. This is in stark contrast with the supercritical
dynamics of the nonlinear Schrodinger equation. There, the instability directly leads
to collapse and an indefinite growth of the amplitude of the solution. On the contrary,
in the case of the Soler model, for any value of k for which the solution may become
unstable, there exists (for the same k) an interval of spectrally stable states of the
same type. Hence, the solution to the Soler model does not escape towards collapse
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Fig.22 (Left) Time evolution of a 1D solitary wave with nonlinearity exponent k = 3 and frequency
o = 3. (Right) Spectral plane of the solitary wave whose evolution is traced in the left panel

but rather departs from the vicinity of the unstable fixed point solution and finds itself
orbiting around a center, i.e., a stable solitary wave structure.

6.2 Two-Dimensional Solutions

This subsection reviews the results on the dynamics of 2D solitary waves and vor-
tices shown in [49]. In order to simulate their dynamics, Chebyshev spectral methods
and finite difference methods are not the most suitable ones, because of the pres-
ence of many spurious eigenvalues, and the dimensionality of the problem makes the
TR-BDF2 schemes difficult to implement because of the high memory requirements.
Thus, it seems that the optimal way to proceed is to use a Fourier spectral colloca-
tion method, which, as shown for the 1D problem, works fairly well as long as the
frequency w is not close to zero.

Consequently, periodic boundary conditions must be supplied to our problem. This
is less straightforward when working in polar coordinates in the domain (0, L) X
[0, 27). For this reason, we opt to work with a purely 2D problem in rectangular
coordinates in the domain (—L, L] x (=L, L]. The simulations we show below have
been performed with a Dormand—-Prince numerical integrator using such a spectral
collocation scheme with the aid of Fast Fourier Transforms (24).

A prototypical example of the evolution of the instability of the fundamental
solitary waves for k = 1 is shown in Fig. 23. As can be observed, the radial symmetry
in the density of S = 0 solitary waves is spontaneously broken and, as a result, the
coherent structures acquire an elliptical shape, rotating around the density center
of the original coherent structure, as may be expected by the quadrupolar (g = 2)
nature of the unstable mode (see spectrum at the left panel of Fig. 24). The dynamical
outcome of S = 1 vortices for k =1 is shown in Fig.25, whose instability (see
spectral plane at right panel of Fig. 24) leads to the splitting into three smaller ones;
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Fig. 23 Snapshots showing the evolution of the density of an unstable S = 0 solitary wave with
o = 0.12 in the cubic 2D Soler model. The solitary wave which initially had a circular shape
becomes elliptical and rotates around the center of the original solitary wave
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Fig. 24 Spectral planes of the unstable solitary waves whose dynamics are depicted in Figs. 23 and
25 (left and right panels, respectively). Each color represents a different value of ¢ as in Fig. 17

Fig. 25 Snapshots showing the evolution of the density of an unstable S = 1 vortex with w = 0.6
in the cubic 2D Soler model
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Fig. 26 Snapshots showing the evolution of the density of an unstable S = 2 vortex with w = 0.6
in the cubic 2D Soler model

Fig. 27 Isosurface for the
density of the § = 0 solitary
wave in the quintic 2D Soler
model with w = 0.94

in particular, the first spinor splits into fundamental structures, while the second
one leads to the formation of vortices in a way preserving the total vorticity across
the components. In the case of an S = 2 vortex, five similar structures arise, again
preserving the total vorticity (see Fig.26).

As a final example, we showcase the effect of radial k = 2 perturbations in the
unstable case of w > w, (see Fig.27). We can see that the relevant dynamics amounts
to a breathing pattern, without featuring collapse (similarly e.g. to Fig.22).

7 Summary and Outlook

In the present work, we have reviewed some of the principal properties of the non-
linear Dirac equation and its similarities, as well as differences, in comparison to its
extensively studied cousin, namely the nonlinear Schrodinger equation. We have dis-
cussed nonlinear models that possess solitary wave solutions and vortices, and have
placed particular emphasis on their spectral stability, also mentioning the orbital and
asymptotic stability thereof and the corresponding issues that arise. We have seen
that especially in higher dimensions the stability properties of solitary waves in the
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nonlinear Dirac equation can be fundamentally different from the NLS case, and
may not feature collapse scenarios. Moreover, solitary waves may be spectrally sta-
ble for suitable parametric (i.e., frequency) regimes. For the three-dimensional case,
the stability properties are just starting to be explored (in suitable subspaces), yet
this problem is extremely interesting, also due to its connections with the dynamics.
In the context of the latter, we explored some of the delicate features that arise from
different types of discretizations (finite-difference, Fourier and Chebyshev spectral
schemes) and the implications for the evolutionary dynamics. Generally, we hope to
have exposed some of the significant complications arising in dynamically propa-
gating such a system, especially when trying to do so for long time scales.

From every perspective that we can think of, nonlinear Dirac systems pose sig-
nificant challenges ahead of us. From the point of view of the mathematical analysis,
understanding the spectral properties observed herein and their dynamical implica-
tions is already a formidable problem. Computing efficiently and systematically both
the solutions and their linearization eigenvalues emerges as a significant and upcom-
ing challenge. This is especially true in three spatial dimensions. Devising numerical
schemes—possibly based on integrable (semi-discrete or genuinely discrete) vari-
ants of the model—could prove to be of paramount importance towards future robust
computations of the dynamics. Finally, combining some of the cutting edge themes
in nonlinear waves (such as for instance rogue waves [100]) with relevant scenar-
ios involving Dirac-type nonlinear models opens another highly promising vein of
research for future studies [55].
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On Nonlinear Schrodinger Equation )
as a Model for Dark Matter oo

Comments on Galactic Collisions, Supermassive Black
Holes and Analogue Laboratory Implementations

Angel Paredes and Humberto Michinel

Abstract In this chapter, we present an overview of the problem of dark matter
and the scalar field dark matter model, which assumes the existence of a cosmo-
logical matter wave describing a condensate of ultralight axions. The mathematical
description is in terms of a nonlinear Schrodinger-Poisson system of equations. We
introduce the framework in a pedagogical way, for readers interested in nonlinear
science assuming no prior knowledge of cosmology. We describe a split-step pseu-
dospectral numerical method which is useful to compute the evolution in time of dark
matter distributions. We then discuss two aspects of the model: an explanation of the
so-called offsets between dark matter and stars in galactic clusters and the laws relat-
ing supermassive black holes and dark matter distributions. Finally, we emphasize
the formal connections to particular situations of other physical systems, including
cold atom Bose-Einstein condensates and laser beam propagation in thermo-optical
media, which may lead to tabletop laboratory analogues of cosmological phenomena.

Keywords Dark matter + Axion-like particle - Solitons + Nonlinear Schrodinger
equation + Schrodinger-Poisson equation - Nonlocal nonlinearities - Scalar field
dark matter

1 Introduction

These first decades of the twenty-first century are an exciting time for cosmology.
Understanding the forces that have shaped our Universe and control its evolution
from galactic to cosmological scales is one of the most important open problems of
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fundamental physics. A definitive solution will need increasingly precise observa-
tions and experiments. The good news is that many such experiments are underway
or are projected for the near future [9]. Thus, there is a clear need of research on
models that take into account and explain new cosmological data.

In this chapter, we intend to summarize the current status of cosmology for read-
ers who, despite not being experts in dark matter theories, have a background in the
nonlinear Schrodinger equation (NLSE) and its variants (like the authors ourselves).
In particular, we will discuss the role of the Schrédinger-Poisson equation (SPE) in
different cosmological scenarios and provide some concrete examples of its usage
for particular dark matter problems. The goal is to introduce this framework to physi-
cists with different expertise, with the hope that mathematical methods or physical
intuitions developed in other contexts can provide insights on certain aspects of the
quickly developing field of astrophysics and cosmology, and vice versa. We believe
that numerical computations of Schrodinger-Poisson in the cosmological context
can be of importance in the coming years. We emphasize that different versions of
nonlinear Schrodinger equations have been thoroughly discussed in many physical
and mathematical frameworks as, just to mention a few, optics, ocean waves, cold
atoms or even finance. Understanding formal coincidences between the equations
utilized in different fields can spark collaborations and new ideas.

In Sect.2, we present an overview of the present understanding of cosmology
and some of its open problems. In Sect. 3, we introduce the scalar field dark matter
model and the role of Schrédinger-Poisson equation. In Sect.4, we introduce some
numerical methods that can be used to solve it. In this framework, we then discuss
some aspects in the scalar field dark matter context: collisions of galaxies in relation
to galactic offsets [81] (Sect.5) and supermassive black holes (Sect.6). Section7 is
devoted to the exploration of formal analogies with other disciplines of nonlinear
physics where similar equations appear. All the sections are (mostly) independent
from each other and can be read separately. Finally, in Sect.8, we summarize the
presentation of this chapter.

2 A Glimpse of Our Current Understanding of Cosmology

Cosmology is the branch of science that studies the Universe as a whole, and it has
a long history from Ptolemy and Copernicus to Einstein and the Hubble telescope.
Since the second half of the twentieth century and especially in the last two or three
decades, it has experienced a revolution, relying on increasingly richer and more
precise observations. We start here by providing a qualitative overview of what is,
at present, the standard model of cosmology and some of the facts that still require
a better explanation. We certainly do not intend to be rigorous nor exhaustive in the
presentation or the referencing. There are excellent books that provide comprehensive
introductions to this topic, including those honored by time as, e.g., [83, 108] or those
including the developments associated to the most recent observations [63, 93].
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The mathematical framework to study the evolution of the Universe is that of Ein-
stein’s theory of general relativity. An extremely simplifying assumption is that of
the cosmological principle. It states that, when considering large scales, no observer
sits at a special place; that is, the Universe is homogeneous and isotropic. This prin-
ciple agrees rather well with observations when for large scales we mean hundreds of
Megaparsecs (Mpc). (One parsec & 3.26 light years &~ 3.1 x 10'® m). The evolution
of the Universe at large is encoded in a single function, the scale factor a(¢), which
determines the cosmological geometry through the so-called Friedmann-Lemaitre-
Robertson-Walker metric. The evolution of a(¢) depends on the density of matter and
energy following Einstein’s equations, which, for this particular setting, are called
Friedmann equations. It has been known for almost a century that the Universe is
expanding and therefore the time derivative of the scale factor is positive. The value of
a(t)/a(t) today is called the Hubble constant Hy ~ 70 (km/s)/Mpc. Another impor-
tant notion is that of the cosmological redshift z, which, roughly speaking, is the
general relativistic generalization of the Doppler effect z = AL /A. The light arriving
at Earth today from distant galaxies was emitted in the far past and had to surmount
the gravitational potential, getting redshifted to smaller frequencies. The value of z
from a distant source can be related to the value of the scale factor at the time of
emission a(t) = 1/(1 + z) (the scale factor today is taken to be one by definition).
Therefore, the value of z for a given observation indicates its time of emission and
the distance from the source.

A fundamental quantity defining the geometry of the Universe is the density p of
matter-energy, as compared to the critical density that has the value p. ~ 9 x 107
kg/m3. If p > p,, the curvature of space would be positive and, therefore, we would
live in a hypersphere. On the contrary, p < p. the space would be a hyperboloid of
negative curvature. However, it is known today that p & p. to a very high accuracy
and therefore a fixed time slice of spacetime looks like a Euclidean three dimensional
space. This means that the Universe is flat.

A crucial aspect of the standard model of cosmology is the combination of different
forms of matter and energy that adds up to the density p & p.. The model takes its
name, ACDM (cosmological constant-cold dark matter), from this composition. The
most up-to-date estimates [ 1] are based on observations of the Planck mission and are
as follows: Around 68% of the total energy budget is in the form of a cosmological
constant, also called dark energy, which pushes the Universe outwards (a sort of
“anti-gravity”) and is responsible for the accelerated expansion (¢ (¢) > 0, a shocking
discovery that led to the Nobel Prize in Physics 2011). Another 27% is in the form
of cold dark matter (CDM), where the word “cold” means non-relativistic. This
CDM gravitates and behaves like ordinary matter but, apart from gravity, it does not
interact with standard matter or only does so in an extremely weak way. In fact, in
the standard ACDM modeling, it only interacts gravitationally with baryonic matter
and with itself. As of today, its nature is unknown although there are of course many
possible theories, see below. Finally, a meager 5% is in the form of baryons (say,
ordinary protons and neutrons) of which only a fraction are packed in stars and emit
light. Other forms of known matter or energy like photons and neutrinos are also
present but only contribute to a negligible fraction, well below 1%. It should be said
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that these are the fractions today. They have changed during the universal expansion
since they scale differently with the size of the Universe.

A non-trivial cosmological evolution has taken place and can be summarized in
the following history of the Universe. The modeling starts with a Big Bang at an
extremely large temperature. Since then until today, the Universe is expanding and
cooling down. After the Big Bang, there was an epoch of rapid accelerated expan-
sion, the so-called inflationary period. When inflation ended, and as the temperature
dropped, the known forms of matter sequentially assembled. Shortly after inflation,
protons and neutrons formed from the cooling down of the quark-gluon plasma. Later
light nuclei appeared, as described by the successful theory of Big Bang nucleosyn-
thesis. At a later time, around z = 1100, and with a much smaller temperature, the
protons and electrons combined to form atoms. This is usually called recombination.
At this point, with the absence of free electrons, the Universe became mostly trans-
parent. Most of the photons that were present at that time have freely propagated
until today, getting redshifted by the cosmological expansion. They constitute the
cosmic microwave background (CMB), whose detailed observation is one of the fun-
damental sources of information about the evolution of the Universe. A few hundred
million years after that, gravitational attraction started forming structures, ultimately
producing the stars, galaxies, clusters, etc., that we observe today. The estimated age
of the Universe since the Big Bang is around 14 Gyr (14 x 10° years).

Weird as it may seem, the A CDM roughly introduced above is extremely suc-
cessful in the explanation of many independent sets of observations. As the author
of [88] puts it: “what we do know is now so well confirmed by diverse data that it
is likely to be true”. In the same Ref. [88], there is a brief historical account of how
theoretical predictions and observations interplayed since the first half of the 20th
century. The observations leading to the present cosmological model include, among
others, the details of the CMB spectrum and its anisotropies [1], the formation of
structure [10], the formation of galaxies at different redshifts [19], the abundance of
different nuclei [27] or the redshift of light from distant supernovae [91]. Moreover,
evidence for dark matter does not come only from cosmological considerations, but
also from the physics at galactic scales. Indeed, the suggestion that it could exist
came originally from the rotation of stars within galaxies, that cannot be explained
with standard dynamics if only ordinary matter is taken into account. The dynamics
of galactic clusters needs also some form of dark matter. Maybe the most spectacu-
lar confirmation comes from strong lensing, from which the existence of extremely
massive clumps of matter can be inferred for places where not enough ordinary mat-
ter is present. Most of the aforementioned data stem from the detection of photons
from distant sources. In the future, new windows to the Universe like the detection
of cosmic neutrinos or gravitational waves might get opened.

Despite its successes, the picture presented above leads to an embarrassing conclu-
sion: we do not understand the nature of 95% of the Universe. Quantum field theory
predicts the existence of a cosmological constant, but the predicted value is around
sixty order of magnitude larger than the A inferred from cosmological observations.
This is the cosmological constant problem, see e.g., [18], which certainly calls for a
better understanding. Concerning dark matter, there is the obvious question: what is
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it made off? The observables described above only require that it is non-relativistic
and weakly interacting but do not constrain, for instance, the mass of its basic con-
stituents. A great number of possibilities have been proposed and thoroughly studied
[32]. Just to mention some of the most popular models, the elementary dark mat-
ter particle could be an axion (with mass m ¢* &~ 107> eV), a right-handed neutrino
(m c* ~ 10° eV), a weakly interacting massive particle (WIMP, with m ¢ ~ 10'2
eV) or even a primordial black hole heavier than the Sun. Many experimental possi-
bilities have been explored for the direct or indirect detection of these hypothetical
particles. For instance, one of the motivations of the Large Hadron Collider at CERN
is to discover supersymmetric particles that could play the role of WIMPS. But nei-
ther the LHC nor any other experiment has given a clear signature to be identified
with a dark matter particle. Several experiments are projected to scan the space of
possible theories and parameters, as e.g., the International Axion Observatory [6].
It could well be that the discovery is around the corner but, at present, it is fair to
say that nothing is known for sure. In fact, a serious alternative is that dark matter
does not exist but that the conventional dynamics based on Newton and Einstein
equations fails at large scales. That is the idea of Modified Newtonian Dynamics
(MOND) [74], proposed more than thirty years ago but which accurately fits recent
data [72] (although it fails to explain other phenomena attributed to dark matter).
In summary, despite many efforts, the nature, the dynamics and even the existence
of dark matter remain a mystery whose understanding is one of the most important
open problems for fundamental physics today. Other unsolved issues of ACDM con-
cerning the early Universe are the nature of the field that drove inflation or the origin
of matter-antimatter asymmetry (why do we observe baryons but not antibaryons?).

Apart from these theoretical conundrums, ACDM also faces some observational
problems whose solution might be useful in the resolution of the explained dilemmas.
Among them, there are the so-called small-scale crises [107], which are differences
between CDM simulations and observations at galactic or sub-galactic scales. For
instance, the cusp-core problem [30] is that CDM predicts cusp profiles with large
densities at galactic centers while observations seem to favor smoother distributions.
This might be because CDM phenomenology is not sufficiently well understood or
could be pointing to other kind of physics. That is the motivation for the scalar field
dark matter scenario to which we turn now.

3 Scalar Field Dark Matter and Schriodinger-Poisson
Equation

Let us now focus on one of the proposed scenarios and assume that the elementary
dark matter particle is a spin-0 ultra-light boson (sometimes called axion-like particle)
of mass around m, ¢* &~ 10722 eV or a similar order of magnitude [60, 101]. This is
the basis of a model that has been described under different names: scalar field dark
matter (SFDM) [102], wavelike dark matter (v DM) [97], fuzzy dark matter (FDM)
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[49, 50], ultra-light axion dark matter (ULA DM) [68] or Bose-Einstein condensate
dark matter (BEC-DM) [17, 23, 44]. In this section, we will introduce the essentials
of the model, its motivations and its formalism. Necessarily because of its limited
extent, this introduction will be somewhat superficial. For much more complete
presentations and lists of references, we refer the reader to three comprehensive
reviews which have been written in recent years under different perspectives [66, 68,
102] and to the appealing papers [14, 50], that also include useful review material
and general considerations.

We start by discussing the motivation for the model in terms of cosmological and
astrophysical observations. As described in Sect. 2, ACDM is extremely successful in
many aspects, including the description of large structures and the CMB. But it suffers
from some problems at small scales, where small means sizes of several kiloparsecs,
comparable to galaxies. In particular, there is the cusp-core problem mentioned in
Sect.2. There is also the missing satellite problem [57, 75] which consists in that,
typically, CDM simulations give rise to a number of satellite galaxies for the Milky
Way well above the number of observed ones. Thus, it seems that ACDM over-
predicts the amount of structure at these scales. It could be that this only happens
because observations are not precise enough or because the modeling is not perfect
and could, for instance, be missing important effects from baryonic physics. Maybe
the discordance means that dark matter is not completely cold and there are fractions
of hot (relativistic) or warm (semi-relativistic) dark matter. Or it could be that it
is not collisionless, as suggested by self-interacting dark matter theories. There are
numerous works studying all these hypothesis, see e.g., [65, 71, 86] and references
therein.

SFDM considers a rather simple possibility: that dark matter satisfies a wave
equation, where self-gravitation appears as a nonlinear nonlocal term. If this is the
case, itis natural to expect that all the CDM phenomenology is recovered above some
length scale but differences are found at shorter distances. This can be heuristically
understood with an optical analogy: when all other scales are much larger than the
wavelength, the dynamics of light can be easily interpreted as that of a bunch of
photons or in terms of geometrical optics. The wavelike nature of light becomes
manifest when probing scales comparable to A. In the dark matter framework, the
length scale for which the wavelike underlying nature start playing a role grows with
1/m,, and that is the reason why such tiny masses m, c> &~ 10722 eV are needed to
affect the physics of galaxies. In this context, the formation of structure is impeded
below the axion Jeans scale [54], related to m,, (in the optics language, one would say
that the diffraction term opposes the modulation instability). Thus, SFDM can address
the missing satellite problem in a natural way. On the other hand, the nonlinear
Schrodinger-Poisson equation supports stable solitons [31], which can be identified
with galactic cores to address the cusp-core problem [43, 69]. Recently, a remarkable
numerical simulation has borne out the SFDM expectations of solving small scale
problems while keeping the large scale successes of CDM [97].

It is also interesting to briefly present the motivation for such a light boson from
the particle physics point of view. This paragraph just wants to state that a value of
m, c? ~ 10722 eV is not crazy, even if it is so many orders of magnitude below any
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known massive form of matter. A motivation comes from string theory, in which
the standard model for particles should emerge from a compactification of a higher-
dimensional theory. At the classical level, those compactifications typically produce
many massless bosonic fields which do not transform under the standard model gauge
group and therefore are, at most, very weakly coupled to it. And moreover, the masses
are protected by symmetry from acquiring perturbative quantum corrections. Only
non-perturbative corrections can give a mass which, accordingly, is naturally tiny
compared to other scales. A mass of around m, ¢*> ~ 1072? eV appears naturally in
this context [50], although there is a large model dependence that can shift this value
by several orders of magnitude. These considerations have led to the hypothesis of
the string axiverse [7], dominated by many light scalar fields. However, the essential
motive for having light scalars is not particularly linked to string theory, as it comes
from the mass protection due to symmetry and can naturally arise in field theory, see
e.g., [4]. (Pseudo-)Goldstone bosons resulting from symmetry breaking are typically
light (that is why pions are much lighter than protons and might be the reason why
the Higgs mass is not much larger). Ultra-light axions are assumed to appear with
non-relativistic initial conditions in the early Universe from some symmetry breaking
of this sort. For instance, Ref. [56] proposes that the ultraviolet completion of the
standard model is a random quantum field theory with a large gauge group. It is
shown that light pseudoscalars are a rather general consequence of the postulate. In
[56], they are interpreted in terms of the quantum chromodynamic (QCD) axion, but
the argument can be readily generalized. In fact, the light scalars we are discussing
here are expected to emerge from the symmetry breaking mechanism proposed in
the QCD axion context [82], and that is why they are sometimes called axion-like
particles (ALPs) or ultra-light axions (ULAs) [68]. The difference is that symmetry
breaking is not linked to QCD dynamics but to some other hidden theory.

‘We now turn to the basic mathematical formalism. The Schrodinger-Poisson sys-
tem arises as the non-relativistic limit of the equations governing a massive scalar
coupled to gravity [95]. This implies that all relevant velocities are well below ¢ and
that gravitational fields are not large. This is a good approximation for most of the
dynamics related to dark matter, although it breaks down near black holes, where the
gravitational field becomes strong and the full general relativistic formalism must be
used. The Einstein-Hilbert action coupled to a real massive scalar reads:

&3
167G

h? 1
S = /d“x«/_—g [ R+ ﬁ(ad))z + §m§¢>2} (1)
c
Many works consider more general forms for the scalar potential but we do not
include them here. See [14] for references on variants of the model. The Euler-
Lagrange equation for the scalar is:

hz LV
mau (8"'V/—g8d,) ¢ =m’¢ 2)

In order to continue, we will use a Newtonian gauge to describe small perturbations
of the Friedmann-Lemaitre-Robertson-Walker metric:
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where @ « ¢? is the gravitational potential for Newton’s equations. In order to take
the non-relativistic limit, we insert in Eq. (2) the following ansatz for the scalar:

b= |5 (ve "y )

A straightforward derivation leads to:

2

:
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We have taken the non-relativistic limit with 821/1 < m“cz d;¥ (the equivalent of

m“L

paraxial approximation in optics) and & < . On the other hand, the usual weak
field limit of Einstein equations leads to P01sson equation for the gravitational poten-
cial sourced by the scalar:

V2P = 4nGmaa® |y |? (6)

The quantity [ a®|y|*d®x is a constant of motion that can be identified with the
number of bosons in a given volume. It is worth remarking that these equations
have been written in the literature using multiple conventions for how to include the
factors of a in the fields and coordinates. For instance, Eqs. (5) and (6) coincide with
the conventions of [39] but those of [97] are obtained by 1// = agdf dt = a™?dt,
V = a ®. Schrodinger-Poisson Egs. (5) and (6) constitute the foundation of the
SFDM scenario. Formally, the nonlinearity is given by a nonlocal term that has
been studied in other fields of physics, see Sect.7. Local nonlinearities of the Kerr
form |1p|2w in Eq. (5) have been studied in many contributions, e.g., [12, 37, 60].
Depending on the underlying theory leading to the light scalar, they could be either
attractive [50] or repulsive [4], but we will not include them in the following.

Undoubtedly, Eq. (5) resembles the mean field description of a gas of Bose con-
densed cold atoms [28] and, certainly, if dark matter is made of ultra-light particles,
the typical distance between particles is orders of magnitudes smaller than the de
Broglie wavelength. Therefore, it is natural to interpret this kind of dark matter as a
cosmological Bose-Einstein condensate [17, 23, 44]. However, even if the quantum
nature of the underlying theory is an interesting issue, it should be clear that Eqgs.
(5) and (6) are just classical equations for the scalar field. In fact, & enters in the
equations through the combination 2/m, and h itself plays a role when interpreting
the matter wave in terms of particles.

The consequences of Egs. (5) and (6) have been thoroughly analyzed in the liter-
ature. We present an upshot here, mentioning that detailed descriptions and lists of
references can be found in the reviews [50, 68, 102]. The model gives a compelling
solution for small scale (~few kpc) crises. We have already mentioned the cusp-core
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problem and the missing satellite problem, but SFDM also addresses the “too big to
fail” problem or the survival of globular clusters around the Fornax dwarf galaxy. For
the moment, there is no obvious observational evidence against the model and typical
mass estimates are in the range m, ~ 1-10 x 10722 eV. If the mass is smaller, the
missing satellite problem would be over-solved, meaning that the amount of predicted
structure would be smaller than the observed one. If the mass is larger, the model
cannot be relevant to the cusp-core problem (we will come back to this question in
Sect.5). Of course, this is based on the simple form of the model presented here and
for the ULA comprising all or a large fraction of dark matter. Possible variations of
the modeling or a better understanding of baryonic physics could open a little bit the
allowed parameter space. In any case, there are two points that are worth mention-
ing: first, this is a testable theory and the increasing precision of the observations can
disprove it or favor it in the coming years. Second, there is a need for massive and
precise numerical studies of the nonlinear Schrodinger-Poisson system or variations
thereof. CDM simulations have been developed for many years based on N-body
methods, but SFDM requires a change of computational paradigm, at least for some
observables. In words of [68] “the field of study of (SFDM) simulations is simply
young compared to that of CDM N-body simulations”. In our opinion, this is inter-
esting for researchers in nonlinear science and opens the possibility of collaboration
between experts in simulations of nonlinear Schrédinger equation, widely studied in
many physical contexts for decades, and cosmologists. Methods and insights inher-
ited from other fields might be useful and result in interdisciplinar cross-fertilization.

The most spectacular signature of any kind of dark matter particle would be
its direct detection at Earth. There are many experiments designed with that goal,
trying to prove the existence of WIMPs or QCD axions. Nevertheless, if ultra-light
axions constitute dark matter, it does not seem possible to verify their presence
that way. It is therefore important to understand which indirect evidence can be
sought for to confirm or disprove the hypothesis. That can be accomplished by
comparing the increasingly precise data concerning observations as those described
in the previous paragraph with increasingly precise computations from the theoretical
model, as it was done in [98] for galaxy formation at high z. Apart from that, there
is a remarkable possibility put forward in [55]: the rapid oscillation of frequency
mgyc?/h~ 1.5 (m,c*/10722eV) x 1077 Hz, see Eq. (4), can induce an oscillating
delay in arrival time of pulsar signals that, despite being tiny, could be measured in
the near future. Which other astrophysical signatures would be clearly distinctive for
the ULA scenario is an interesting open question.

We close this section with an important remark. Up to this point, we have discussed
the scalar field dark matter scenario. The same equations are applicable to other light
scalars like the quantum chromodynamic (QCD) axions of mass m ¢> ~ 10~ eV. For
ultra-light axions or QCD axions, the Schrédinger-Poisson equation is a fundamental
equation describing the non-relativistic limit of the elementary degrees of freedom.
But we want to stress here that the applicability of Schrodinger-Poisson is much
more general. Numerical computations for the evolution of other cold dark matter
types typically rely on the so-called N-body simulations. It was pointed out long ago
[29, 109] that the Schrédinger-Poisson system reproduces, above some scale, the
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results of N-body computations and can be competitive in terms of computational
cost. In this setting, the mass entering Eqs. (5) and (6) is not the property of any
elementary particle, but just an effective parameter that can be fitted to data. The
coincidence between N-body simulations and Schrodinger-Poisson equations has
been recently based on firmer grounds by appealing to Nelson quantization and the
Calogero conjecture [21]. Therefore, we emphasize that, even if it turned out that
scalar field dark matter is not the correct theory, efficient numerical computations of
Schrédinger-Poisson would be relevant for astrophysics and cosmology anyway.

4 Numerical Methods

The goal of this section is to provide an introduction to the numerical methods that
can be used to deal with Egs. (5) and (6). It is addressed to non-experts in numerical
computation that are interested in getting started in performing simulations of the
partial differential equations that govern the evolution in time. With that aim, we
propose and describe the split-step Fourier method (also called beam propagation
method), which is widely used for the NLSE in nonlinear optics [2] because of its
good properties of stability and accuracy [2, 103]. It is possible to perform fully
three-dimensional simulations as those shown in Sect.5 in a desktop computer in
reasonable time. Moreover, its actual implementation is rather simple and provides a
benchmark and a good starting point if, afterwards, one wants to apply more advanced
methods. This split-step method has been applied in the context of SFDM to describe
structure formation [111] and galactic collisions [81]. At the end of this section we
also provide a short, biased and incomplete discussion of state-of-the-art computing
methods for the problem at hand.

The first step of course is to write the equations in dimensionless form. For simplic-
ity, we will restrict ourselves to the case where cosmological evolution is negligible
(a = 1) and write:

i, :—%V2w+¢>1ﬂ @)
Vi =dx |y (8)

This form of the equations is obtained by taking:

i=ct, ﬁ=,/h—§x, = (Gm, ) VY, b= " o )
mg ma{

where for clarity we have written the dimensionful quantities of (5) and (6) with hats.
We have introduced an arbitrary constant ¢ with units of time. This freedom means
that for any solution of (7) and (8), one can build a one-parameter family of solutions
by appropriate rescaling.
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The split-step Fourier method relies on the fact that the separate numerical evolu-
tion associated to each of the two terms on the right hand side of (7) is rather simple.
The Laplacian is readily integrated in Fourier space while the term without deriva-
tives is integrated in spatial coordinates. For a time interval Az, one can compute in
turn both contributions by transforming to Fourier space and back. This induces an
error related to the commutator of the operators, that is of order At?. Therefore, we
compute:

Y+ A =7 [N T 0y )] 4 oa) (10)

where .% stands for the three-dimensional discrete Fourier transform that can be
calculated with a standard fast Fourier transform algorithm. Notice that the form of
(10) ensures the exact conservation of the norm N = | |¥|?d3x. The step (10) is
repeated until the desired value of ¢ is reached. The numerical integration depends
on At and also on the widths of the computational window (w; x wy X w3) and the
number of grid points N x N, x N3.Obviously, the method cannot resolve distances
smaller than Ax; = w;/N;. The grid in Fourier space has a spacing Ak; = 1/w;.
Taking smaller values of At increases the accuracy but also the computational time.
If At is too large the algorithm can become unstable. The convergence of the method
can be checked by comparing a computation performed more than once with different
values of Ar and Ax;. The choice of A¢, Ax; has to be made carefully in order to
preserve the desired accuracy and not to unnecessarily increase the computational
cost. The precision of the method can also be tested, for instance, by tracking the
evolution of a soliton, whose form should be preserved. The soliton profile will be
discussed in detail in the next section. In Fig. 1, we plot the result of a check, by
depicting the maximum value of || for a soliton moving with a certain velocity.
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It is also important to comment on boundary conditions. Since (10) relies on
Fourier transformation, it automatically introduces periodic boundary conditions
for 1. Typically, this is not a good approximation to reality. In some simulations,
e.g., soliton collisions, it is possible to avoid that a non-negligible fraction of the
energy reaches the edge of the computational box, making irrelevant the boundary
conditions for yr. However, in other situations, this problem has to be dealt with.
The usual solution is to introduce a sponge, namely a term —i V (x)v in (7) that
produces an extra factor of e~V ®4" in (10). V(x) has support in the vicinity of the
boundary and artificially absorbs the energy that escapes the window. This procedure
is customarily used in optics [2] and it was introduced in the SFDM context in [13,
41, 42].

We still have to discuss how to solve (8) in order to compute @ at each time
step. One possibility would be to write & (7, x) = — [ @xOp )‘ d3x', but performing
this integral with a standard trapezoidal method is prohlbltlve There are different
numerical methods to deal with Poisson equation and here we will mention two.
The simplest one is just to use again discrete Fourier transform and write @(¢) =
_ %yﬂ [k++835[| W (t) |2]] where we have introduced ¢ <« wi_2 to avoid the infinity
at k = 0. Notice that k = 0 corresponds to an additive constant for @ that only
contributes as a global phase to . This method for computing @ is simple and
fast, but it implements periodic boundary conditions for @. This is not bad for a
cosmological simulation where energy is not confined to a region in space, but it is
not realistic, for instance, in the computation of a galactic merger. In that case, it is
more accurate to utilize monopolar boundary conditions, where the boundary values
of @ are fixed as if all the mass was concentrated at the center of the computational
box D@|poundgary = N/|X| for all times ¢. The procedure makes sense if the center
of mass coincides with x = 0 and the total linear momentum is zero (conditions
that can always be met by a translation and a Galilean transformation). This leads
to an elliptic equation with Dirichlet boundary conditions that can be solved in a
finite difference scheme where the derivatives are approximated in terms of nearest
neighbor stencils. The problem gets reduced to a linear system A - & = B where @ is
a(N; — 2)(N, — 2)(N3 — 2) vector with the unknown values of @ at the grid points.
A is a square heptadiagonal matrix and B includes the boundary conditions and the
values of the source 47 |/ (¢, x)|. This is a huge linear system but, since A is sparse,
it can be efficiently solved with standard techniques of linear algebra. For instance,
we propose to use an iterative symmlq algorithm that is included in typical linear
algebra packages. @ (, x) can be used as a good starting point for the iteration to
solve for @ (t + At, x). Notice that the two kinds of boundary conditions mentioned
above (periodic and monopolar) tend to each other and to the exact solution when the
computational window becomes much larger than the region where |v/|> has support.

Surely, there are more powerful methods than the one described above to deal
with (7) and (8). The state-of-the-art simulation of the cosmological evolution of
wavelike dark matter is [97], where a highly optimized adaptive mesh refinement
algorithm and computation in graphics processing units were used. The adaptive
mesh refinement allowed the authors to resolve very disparate length scales. There
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are also recent developments in computing science that might find application in
further improving the algorithms used in the dark matter context, as for instance
the method for evaluation of the Coulomb potential using non-uniform fast Fourier
transform [52]. Finally, let us mention that [58, 64] provide codes for the efficient
integration of three-dimensional NLSE with nonlocal interactions. The second of
these papers uses parallelization and acceleration with graphic processing units.

5 Soliton Dynamics Confronted with Galaxies and Clusters

In this section, we first discuss the spherically symmetric ground state soliton solution
of Egs. (7) and (8). In the SFDM scenario, this can be related to the mass distribution
at the core of galaxies, potentially solving the cusp-core problem. We review this issue
in Sect.5.1. In Sect. 5.2, we present the results of simulations of soliton collisions,
which are relevant for the encounter of galaxies. Wave interference during those
collisions is a plausible explanation for a mysterious observation, see Sect.5.3. This
section is mostly based on [81].

5.1 Soliton Solutions and Galactic Cores

The nonlinear system (7) and (8) supports a one-parameter family of robust, self-
trapped, spherically symmetric, stationary and stable solitary waves (which are
usually called solitons in an abuse of language). They have the form ¥ (7, x) =
ePt f(r), @(t,x) = o(r) where r = |x|. With this ansatz, the equations read:

L&) 1df()
T2 drr r o dr
_ d’e(r) | 2dy(r)

2
0= —"—+-— = —4nf() (12)

+ o) f(r) +Bf(r) 1)

The propagation constant 8 can be included as an additive constant in the Poisson
potential p(r) = ¢ (r) + B.Defining lim, _, », ¢ (r) = 0, the parameter 8 is associated
to the asymptotic value of ¢(r) In view of the residual rescaling in (9), it is enough
to look for the regular and normalizable solution with f(r = 0) = 1, which can be
found by standard algorithms (e.g., a shooting technique). We find 8 = 2.454. The
solution is plotted in Fig.2.

The most general soliton solution is found with | (r = 0)| = « for any positive
o and with any constant velocity v:

Y(t, X) = af (Valx — vi))e @I g x) = ap(Valx —vi)  (13)
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The norm of the soliton is N;,; = fooo | [2d3x = 3.883./a and its radius, defined
as the half width at half of the maximum of [|? is 7y, = 0.69//a. Multiplying
these quantities and going back to the dimensionful quantities using (9) and M;,; =
ma [ 1§ 2d%, we find:
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where Mg ~ 1.99 x 10°° kg is the mass of the Sun. This soliton solution, and its
generalization to the case of having a cubic local nonlinearity, has been rediscovered
a number of times in different contexts, including quantum mechanics [76], cold
atoms [79] and dark matter [24, 39]. In the SFDM context, it is identified with the
dark matter distribution in a galaxy [60]. More precisely, such a soliton lives at
the center of the galaxy. Around it, with smaller density, there is a gravitationally
trapped pseudo-stationary DM distribution evolving incoherently, that constitutes
most of the galactic halo. It has been shown by numerical simulation that that is
end state of soliton mergers [99, 100]. The incoherent distribution density falls as
power law, like the Navarro-Frenk-White profile deduced in the CDM scenario from
N-body simulations. Thus, the DM distribution in SFDM looks like the one for CDM
except near the center where it is smoother, and therefore, it can naturally solve the
cusp-core problem.

Different authors have tried to estimate the ultra-light axion mass by (indirectly)
matching this profile to observations, see e.g., [35, 69, 97] and [14] for more ref-
erences. Being based on different sets of data, observables and methodologies, the
results are not always consistent, but all estimates lie in the approximate range 10724
eV < m,c? < 10722 eV. For larger masses, the diffraction term is not strong enough
to solve the cusp-core problem. On the other hand, from cosmological observables,
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the bound m,c? > 10722 eV has been obtained, we will come back to this point in
Sect.5.3.

5.2 Soliton Collisions and Galactic Mergers

Since the solitons can be associated with galactic cores, soliton collisions play a
role for galactic collision and mergers. This possibility was first studied in [12],
where it was demonstrated than interference patterns appear and this can lead to
observational differences when compared with other fluid models of dark matter
[36]. In this subsection, we will present simulations which include also the luminous
matter modeled as a test particle governed by a classical equation of motion [81]. This
isinteresting because how dark and luminous matter get displaced from each otheris a
very important observable in galactic clusters, as we will explain in detail in Sect. 5.3.
It is interesting to notice that a more elaborate model for the luminous matter, based
on N-body simulations, was put forward in [40]. The collisional dynamic of this
kind of solitons was also studied in [26].

Figures 3, 4 and 5 present results for six simulations of Eqs. (7) and (8) with initial
conditions:

Yt =0,%) = af (Valx —xo)e' "™ + af (Va|x + xo[)e AP (15)

We have taken two solitons of equal mass colliding head-on for simplicity. We
introduce a relative phase A¢ between both. For a collision within a cluster, this
value is essentially random. The relative velocity is 2|v|. In the captions of the
figures, we display the dimensionful parameters associated to each collision. We fix
mgc* = 0.2 x 10723 eV in all the cases.

The left column of Fig. 3 corresponds to a collision with both solitons in phase.
Due to constructive interference a blob of matter appears at the center when the test
particles have not arrived yet. Continuing the evolution, the dark matter solitons cross
each other and recapture the luminous matter. The right column corresponds to an
encounter in phase opposition. The solitons bounce back from each other. While they
are getting stopped, the luminous matter goes ahead due to its own inertia. After the
bounce, it gets trapped again by the gravitational potential of the soliton.

The fact that luminous matter moves ahead of dark matter does not need a fine
tuned phase opposition. We show that in Fig. 4, where we repeat the simulations with
relative phases of 37 /4 and 77 /8. In these cases, the symmetry is lost and matter can
be transferred from one of the blobs to the other one. Notwithstanding, the dynamics
is not very different from the A¢ = & case: the dark matter concentrations bounce
back and, during the process, the test particles move away from the DM maxima.

In Fig. 5, we show an example with a larger initial relative velocity. In the case of
phase coincidence, the velocity is enough to produce an interference pattern, similar
to [12, 36]. The collision in phase opposition can be described again as a bounce due
to the repulsion induced by destructive interference.
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Fig. 3 Simulation of the collision of two solitons in phase coincidence (panels a—d) and in phase
opposition (panels e-h). The lines of the contour plot represent the dark matter density (integrated
along the z-direction). The dots are test particles moving according to classical mechanics in the
gravitational potential generated by dark matter, and the arrows are an indication of the direction of
their motion. They are a toy representation of the stars in galactic collisions, see Sect.5.3 for more
details. Initially, the center of the solitons are separated by 40 kpc, their initial relative velocity
is 200km/s and the mass is 10'! M, for each soliton. The mass of the ultra-light axions has been
taken to be m,c? = 0.2 x 10723 eV. The computation was done as described in Sect. 4 considering
a computational box of (100 kpc)® discretized in a 360 x 360 x 128 grid. The time step At
corresponds to 0.1 Myr. Reproduced with permission from [81]. Creative Commons Attribution
License (CC BY)
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Fig. 4 Simulation of the collision of two solitons with relative phases A¢ = 37 /4 (panels a—d)
and A¢ = 77 /8 (panels e-h). The rest of parameters are as in Fig.3

The conclusion is that, even if the dark matter axions only feel the gravitational
force, their wavy nature makes a difference with respect to the point particles, which
only feel gravity too. The difference is due to classical wave interference and pro-
duces, as a natural result, relative displacements between both. We explore the phys-
ical consequences of this statement in Sect.5.3.
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Fig. 5 Simulation of the collision of two solitons in phase coincidence (panels a—d) and in phase
opposition (panels e-h). The initial relative velocity is 600 km/s. The rest of parameters are as in
Fig.3 except for the At that has been reduced to 0.033 Myr

5.3 A Discussion on Galactic Clusters: The Abell 3827 Puzzle

The observation of galactic collisions can provide non-trivial information about how
dark matter interacts with itself and with ordinary matter. They provide non-trivial
checks for any model of dark matter. The time scales involved are much larger than
the human scale and therefore deductions are made based on a fixed picture. The
total mass can be divided in three groups: dark matter, which can be mapped by
gravitational lensing; stars, that emit in the visible spectrum; and gas, that can be
mapped with X-ray telescopes. The gas interacts electromagnetically and is subject
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to ram pressure. The stars are essentially point-like, do not collide with each other,
and only interact gravitationally. In the standard cold dark matter model, the DM
only feels gravity as well. Thus, the expectation is to have stars and DM distributions
together while the gas can be displaced from them. This is confirmed by most of the
observations, including the famous Bullet cluster [67], but also many others [46].
This has been used to set upper limits in the DM self-interaction cross-section [46].

A notable exception is the Abell 3827 cluster [22]. It presents some lucky pecu-
liarities: it is nearby (in cosmic scale) and its casual alignment with a bright source
has allowed the astronomers to deduce from strong gravitational lensing a rather
detailed map of the dark matter density, resolving structures of the order of some
kiloparsecs. This contrasts with other clusters, where this level of detail is typically
not achievable. It came as a surprise that there is an offset of around 1.6 kpc between
the stars and the dark matter clump associated to one of the merging galaxies [110].
Despite careful analysis, no plausible explanation in terms of standard physics was
found [70], and it was proposed that the cluster was the first evidence of DM self-
interaction [70, 96, 110]. This interpretation, however, is not free of problems [53]
and the puzzle still requires a better explanation. Since the involved length scales
are of about a few kiloparsecs, it could potentially be a new small scale crisis of
ACDM and it is natural to wonder whether SFDM can solve it. That was the goal
of [81], where we showed that DM-stars offsets can be naturally expected because
of effective forces due to interference during soliton collisions, see Figs. 3, 4 and 5.
This is of course very well known in many nonlinear coherent systems, where the
importance of relative phases has been emphasized many times, see e.g., [78, 80].
Without any need of fine tuning, it is easy to propose some initial conditions that
generate dynamically an offset similar to the one observed in Abell 3827, see Fig. 6
[81].

We have shown that the Schrodinger wave equation naturally generates offsets
between DM and stars due to interference. We now discuss in more detail whether it
can possibly explain the of Abell 3827 cluster. Loosely speaking, the strong lensing
analysis of that observation tells the following [70]: there is an offset of 1.6 kpc for
the stars of a galaxy which is about 10 kpc away from another one. The masses in the
DM clumps are of the order of 10" M. In order to have a natural explanation, we
would need cores of radii of a few kpc since, otherwise, they would not affect each
other at these distances. If we insert r;,; = 5 kpc, M, = 10“M@ into Eq. (14) we
getm,c? ~ 0.2 x 10723 eV. This is a rough order of magnitude estimate of the axion
mass needed to produce the pattern. The value is consistent with the most recent
estimates from rotation curves [14] and velocity dispersions in dwarf galaxies [35].
It is also consistent with CMB constraints [48]. On the other hand, cosmological
probes like formation of high-z galaxies [20, 98] or the Lyman-« forest [5] point
towards a moderately larger mass m,c*> > 10722 eV [50]. This seems to rule out
the simplest explanation by about one order of magnitude in the axion mass. This
discrepancy is not huge and it could be alleviated by departing from the simplest
modeling. For instance, axions could be just a fraction of dark matter, there could
be a local interaction term of the form ||y, modeling the core in terms of the
ground state soliton could be too naive, there could be several axions at play with
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Fig. 6 Result of a simulation that generates dynamically an offset between stars and dark matter
similar to the one observed in Abell 3827. The initial conditions consist of four separated solitons
representing the cores of the merging galaxies. Initially, the stars, represented by the dots, are
at their center, but the interference during the collision generates non-trivial displacements. The
importance of relative phases and wave interference in soliton collisions is well known in many
coherent nonlinear systems. Reproduced with permission from [81]. Creative Commons Attribution
License (CC BY)

different masses, etc. Thus, whether the Abell 3827 offset might possibly come from
soliton interference at the galactic scale remains an open question and an undoubtedly
appealing possibility.

Finally, let us comment on another yet unexplained observation. Gravitational
lensing analysis suggests that the Abell 520 cluster presents a large concentration of
dark matter at its center, which seems to coincide with the gas and not with the stars
and, therefore, presents a problem for standard cold dark matter [51]. In [62, 105],
it was suggested that this could be explained in SFDM due to wave effects. In fact, a
matter distribution of that sort can appear naturally in that context, see panels c and d
of Fig. 3. Nevertheless, Abell 520 consists of a collision of hundreds of galaxies and
therefore it is not clear that the effect can be explained in terms of individual soliton
collisions. Moreover, the length scales involved are much larger than in Abell 3827,
of the order of hundreds of kpc. For a natural modeling, we would need cores of
those sizes, which, regarding the discussion above, are not expected to exist. Thus,
it seems unlikely that the Abell 520 and the Abell 3827 puzzle can be explained in
terms of the same physics of wave interference.

6 Scalar Field Dark Matter and Supermassive Black Holes

At the center of most of the massive galaxies, there is a so-called supermassive
black hole (SMBH). Typical SMBHs have masses in the range 10° — 10'°M,. Ques-
tion about their formation and their relation to galactic evolution are under intense
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research in astrophysics. In this section, we will comment on some intriguing ques-
tions connecting the scalar field dark matter model with SMBHs, more with the
goal of arousing the curiosity of the reader than of presenting rigorous results. We
overview some progress that has been made in the literature and include some further
remarks.

As we have discussed, in the SFDM model the inner part of the galactic dark matter
distribution is a self-trapped soliton. A question of concern is whether it can coexist
with the SMBH at its center [104]. In general relativity, there is a “no-hair” theorem,
roughly stating that there cannot be stationary distributions of energy surrounding a
black hole (notice that Eqs. (5) and (6) lose their validity in the vicinity of a black hole
because the Newtonian approximation to gravity breaks down for large gravitational
fields). This means that, eventually, the scalar field must either be absorbed by the
SMBH or get dispersed to infinity. But the theorem does not say how long does
that take and, if the absorption rate is low [104], the SMBH + soliton configuration
can persist for cosmological time. In that case, it is said that, instead of having hair,
the black hole has a “wig” [8]. The authors of [8] performed the relevant numerical
computations with the general relativistic equations and found a relation between the
black hole mass and m, for the wig to stay in place for times comparable to the age
of the Universe. Indeed, that is what happens for the typical SMBH masses and the
typical ULA mass. This is a non-trivial self-consistency check of the SFDM model.

Another interesting question is whether the collapse of a scalar field distribution
might be at the origin of the SMBHs themselves. In order to provide an estimate, we
may wonder whether the soliton of Schrodinger-Poisson equation can be subject to
a collapse instability. That would happen is the soliton mass is confined within its
Schwarzschild radius Rge, = 2 G M/c?. Inserting R,y < Rsep in Eq. (14) we find a
condition for black hole collapse.

myM
73

> (16)

where M is to be associated with the black hole mass and Mp = % ~ 2.2 x

1078 kg is the Planck mass. This order of magnitude estimate is confirmed by more
elaborate computations as a variational approach to the breathing of a dark matter
clump [38] or computations in numerical relativity [47]. Inserting benchmark values
my, = 1072 eV/ic2, Msypn = 108MO, we find maM/M%, ~ 10~*. It is curious that
this value is not so far from one, taking into account the immensely disparate masses
included in the formula (16). In this context, [38, 47] have proposed that axions
a few orders of magnitude heavier than m, = 1072% eV/c? could have collapsed
in SMBHs, potentially solving some difficulties of other models concerning the
formation of massive objects in the far past (with redshift z 2 6). The authors of
[38] also point out that an eventual observation of a SMBH with 10'2 M, could be
an indirect indication of the existence of ultra-light axions. In any case, modeling
the coevolution of galaxies and SMBHs, including the accretion of matter by the
black hole and other important issues is an extremely complicated problem which
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should be addressed before reaching solid conclusions. In any case, the scalar field
dark matter model opens interesting possibilities in this framework.

A separate interesting issue is that of the M — o relation, an empirical finding that
states that Mgy gy ~ ac”, where o is the velocity dispersion of the galactic bulge
and «, B are constants that can be estimated from data. Initially, it was assumed that
B = 4 but more recent analysis give 8 =~ 5.1. The authors of [61] have suggested
that the scalar field halos can naturally explain this observation. The essence of the
argument is that the black hole singularity affects the whole wave-like dark matter
distribution. More massive black holes produce tighter bulges and therefore larger
velocity dispersions. From the corrected soliton profiles, the authors of [61] derive a
version of the M — o relation for an axion mass m, = 5 x 10722 eV. In our opinion,
the argument of [61] is somewhat heuristic but indeed interesting. We thus find
convenient to present the scalar field profiles in the presence of a central black hole.
They have been discussed in [61] (and previously in [104]), but we will do it here
in a more systematic way, clearly extracting the dependence of the size of the dark
matter clump in terms of the rest of physical quantities. We write:

: maMsypn

I
ihdy = =) V2 +m,®y — GTw, V2P = 4nGmg |y > (17)
mgy X

where we have included the Newtonian potential for a point-like mass at the origin, to
be associated to the black hole. This equation breaks down near the black hole horizon
and general relativistic corrections impede the existence of stationary solutions for
the scalar. However, as said above, the absorption rate can be extremely small and
(17) constitutes a good approximation for most of the space and for long times. It is
transformed into:

1 1
ia,¢=—§v2w+cpw—mlp, V2P = dx|y|? (18)

by the rescaling (9) with¢ = A’/ (szg M § wen)- Welook for ground state stationary
solutions of the system (18) by writing ¢ = e’ f(r), ® = ¢(r) — B:

O__f//_zf/_i_zf_zf 0__//_%/+4 2 (19)
= " of =~ f =-—¢ - ¢ tanf

Requiring that f and ¢ are finite at » = 0, we find the following behaviour in terms
of two integration constants fo, @o:

A +—r2( +1) —r3(4 +1)+
— 11—/ _
fo 3% g%

27

2
<p=<0o+?f02r2—7f02r3+~-~ (20)
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Fig. 7 On the left f(r)/fo profiles for the stationary ground state solutions of (19) for different
values of fy. From top to bottom: fi = 0.1 (magenta), fy = 1 (blue), fo = 3 (red), fo = 10 (yel-
low), fo = 30 (purple), fo = 100 (green). The black dashed lines correspond to the asymptotic
forms of the profile as mentioned in the text. On the right, we plot the radius of the dark mat-
ter distribution (defined as half width at half of the maximum for f 2y as a function of the norm
Nso1 = 41 f rzf(r)zdr. The curve interpolates between log?2 at Ny, — 0 and rgo =~ 2.68/ Ny
(plotted as a dashed black line), and is well approximated by Eq. (21)

Requiring lim,_, o, f(r) =0 and f’(r) < O for all r, there is a unique solution for
every fo > 0. The corresponding value of ¢y can be found by a shooting technique.
The family of solutions interpolates between the ground state of the Coulomb poten-
tial f(r) = foe™" for fy < 1 and the profile without Coulomb potential of Fig.2
(fo > 1). Some results are depicted in Fig.7.

By fitting the curve for the radius of the dark matter distribution, we find:

9+ 2.68N,,
26 + 8.65N,, + N2

sol

21

Fsol =

Taking into account that the unit of length is 7>G~ m’zM smpn and that the total
dark matter mass in the stationary solution is M, = Mg pn Nsor, Eq. (21) provides
an approximation for the size of the ground state of a dark matter clump with mass
M, surrounding a black hole of mass Mgy py.

As a final remark, let us comment on another empirical relation for SMBHs,
which states that Mgy gy th , where M,,, is, essentially, the mass of the halo,
see e.g., [16] for more precise definitions. If we assume that the M — o relation holds
Mgypn o« of and that the bulge velocity dispersion is related to the soliton mass and
radius by the virial theorem Gléw“'l ~ o2, we find that Mgy gy Vi 01> Where we have
used M, o< 1/R,1, Eq. (14). Now results of galaxy formation with Schrédinger-

Poisson equation suggest M;,; Mhalo [99], leading to Mgy gy X Mfa/i) that, taking
into account 8 & 5.1, comes really close to the empirical relation. Plainly, this para-
graph is just heuristic wishful thinking, but this coincidence might deserve a more
serious consideration.
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7 Physical Analogues

In this section, we briefly comment on the different uses that the Schrodinger-Poisson
system of equations has found in physics. This digression is particularly suitable for
a multidisciplinary book in nonlinear science. We also discuss the possibility of
implementing tabletop experiments that (partially) mimic aspects of cosmological
or astrophysical evolution like the formation of structure or the collision of galaxies.

In previous sections, we have introduced the usage of SPE as a classical equation
for gravity coupled to a scalar which applies to boson stars [95], QCD axion DM
[39], ultra-light axion DM [60, 101] or as an approximation to any kind of cold
dark matter [21]. Long ago, it was also proposed that the SPE can have implications
for the foundations of quantum mechanics [31], since including the gravitational
term in the quantum Schrodinger equation can help in interpreting the collapse of
the wave-function [84]. The concept can be defined as a gravitization of quantum
mechanics rather than a quantization of gravity [85]. It should hinder the spread of
a free wave-function that is unavoidable in the linear picture leading to measurable
consequences whose observation constitutes a serious technological challenge [34,
73]. This line of research led to efforts in numerical implementations that have an
obvious overlap with those in the DM context [45].

The SPE has also appeared in contexts where gravity plays no role and where the
local nonlinearity typically appears in relation to a transport process. For instance,
in one dimension it has been widely used for the modeling of electrons in semicon-
ductors, e.g., [59].

In nonlinear optics, nonlocal nonlinearities have been subject of comprehensive
studies (e.g., [3]) and the SPE has appeared in relation to liquid nematic crystals
[25] and thermo-optical media [94]. This last setting has already been used with the
goal of simulating gravitational effects [11, 92]. The dynamics in this case is two-
dimensional, with the propagation distance playing the role of time and the laplacian
acts on the plane transverse to propagation. || is associated to the optical intensity
and the Poisson potential @ is related to temperature. In [77], it has been pointed out
that the setup provides an opportunity for a tabletop experiment with many analogies
with the phenomena discussed in the DM framework. Even if the equations differ
in the number of dimensions, there are many qualitative similarities as, for instance,
the formations of solitonic cores surrounded by extended incoherent halos [77].

Another interesting framework is that of Bose-Einstein condensed cold atoms.
The impressive experimental control developed in the last decades paves the way for
the simulation of gravitational phenomena like event horizons [33] or the nonlinear
dynamics underlying black hole collapse [15]. In particular, the SPE can be engi-
neered by averaging out the anisotropic nonlinear interactions leaving just Newtonian
attraction [79] and leading to another possible tabletop simulation of gravity, Egs.
(5) and (6). More recently, it has also been shown that certain cold atoms systems
in microwave cavities are governed by a kind of SPE in one [89] or two dimensions
[90].



On Nonlinear Schrodinger Equation as a Model for Dark Matter 169

8 Summary and Outlook

The goal of this chapter has been to emphasize the relevance of (versions of) the

nonlinear Schrodinger equation for cosmology and, in particular, for the modeling
of dark matter. In our opinion, there are possibilities for collaboration and cross-
fertilization with other areas of physics, where the NLSE is an essential tool. For
instance, other chapters of this book deal with its usage in optics and cold atom
condensates. We have tried to provide a first introduction of the cosmological setting
for non-experts who might be interested in this long-standing problem of fundamental
physics. We have also given a succinct presentation of a simple numerical method for
the integration of Egs. (5) and (6). This could be useful for people interested in getting
started in the algorithms and computational schemes that are useful for dealing with
the NLSE. We envisage the possibility of cross-disciplinary implications along two
different lines: from the formal point of view, insight and methods developed in one
physical framework might be transferred to a different one with related governing
equations. On the other hand, it is interesting to implement laboratory experiments
that, to some extent, reproduce cosmological dynamics, see Sect.7.

Several factors underscore the timeliness of research in the topic covered in this
chapter. First, astrophysical and cosmological observation are getting more and more
precise and they call for a more accurate theoretical understanding and more powerful
computations including, in particular, dark matter dynamics. Let us quote for instance
the words of [87]: “The interpretation of cosmological observations increasingly
requires a precise understanding of non-linear structure formation”. Also, Earth-
based experiments will soon be helpful in confirming or setting more stringent limits
in order to discriminate between the many hypothesis that have been formulated
for DM. At the same time, hardware and software are rapidly developing and it is
possible to perform computations that were out of reach one decade ago.

In this context, we have mostly discussed the scalar field dark matter scenario,
that uses the Schrodinger-Poisson system as a non-relativistic description of a cos-
mological matter wave. This model been studied for some time, starting with the
seminal papers [49, 60, 101]. In the last few years, it has experienced an upsurge,
partly motivated by more powerful numerical techniques and by the persistent lack of
evidence for other forms of dark matter in facilities like the LHC. We have presented
some examples of astrophysical phenomena that can be interpreted with the cosmic
matter wave hypothesis. In particular, in Sect.5, we have exposed the work of [81],
that shows that interference between solitons can produce large effective forces that
can be relevant for galactic encounters and suggests that the mysterious behavior
of the Abell 3827 cluster could be a natural consequence of this phenomenon. In
Sect. 6, we have reviewed the relation between black holes and the dark matter con-
densate and presented the ground state eigenfunctions of Schrédinger-Poisson in the
presence of the Newtonian potential generated by a point-like mass concentration.

The NLSE is also useful in other scenarios. The more standard cold dark mat-
ter theory heavily relies on N-body simulations. Above some length scale, the
Schrodinger formalism gives the same results [21, 97, 109] and, thus, the NLSE can
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provide an alternative computational scheme. Roughly speaking, the differences are
the “quantum pressure” (namely the diffraction term, that avoids the concentration
of energy in small volumes) and the appearance of interference. An intermediate
possibility is that of a fluid equation with the quantum pressure term but without
displaying interference [106]. Discriminating between these sometimes subtle char-
acteristics might shed light on our understanding of the Universe.

Dark matter, ultra-light axions, solitons and nonlinear wave equations are exciting
topics. We hope that this contribution has been able to convey their importance and
the timeliness of active research in these related areas.
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Abstract In this chapter we analyze the existence and forms of invariants of the
extended Korteweg-de Vries equation (KdV2). This equation appears when the Euler
equations for shallow water are extended to the second order, beyond Korteweg-de
Vries (KdV). We show that contrary to KdV for which there is an infinite number of
invariants, for KdV2 there exists only one, connected to mass (volume) conservation
of the fluid. For KdV?2 we found only so-called adiabatic invariants, that is, functions
of the solutions which are constants neglecting terms of higher order than the order
of the equation. In this chapter we present two methods for construction of such
invariants. The first method, a direct one, consists in using constructions of higher
KdV invariants and eliminating non-integrable terms in an approximate way. The
second method introduces a near-identity transformation (NIT) which transforms
KdV?2 into equation (asymptotically equivalent) which is integrable. For the equation
obtained by NIT, exact invariants exist, but they become approximate (adiabatic)
when the inverse NIT transformation is applied and original variables are restored.
Numerical tests of the exactness of adiabatic invariants for KdV2 in several cases
of initial conditions are presented. These tests confirm that relative changes in these
approximate invariants are small indeed. The relations of KdV invariants and KdV2
adiabatic invariants to conservation laws are discussed, as well.
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1 Introduction

The celebrated Korteweg-de Vries equation (KdV) [31], whose origin is the set of
Euler’s shallow water and long wavelength equations, now enjoys a paradigmatic
status in the field of nonlinear partial differential equations. There is a huge number
of research papers concerned with weakly nonlinear, dispersive and long wavelength
problems in which KdV is shown as the lowest approximation of wave motion in a
number of fields of physics, see, e.g., monographs [8, 22, 36, 39, 41] and references
therein.

It is accepted fact that KdV gives an infinite number of invariants or conservation
laws also referred to as integrals of motion [4, 8, 35, 37]. The two first KdV invariants
concern the preservation of mass (volume) of the fluid and conservation of its total
momentum. The next one is related to energy conservation. The higher KdV invari-
ants have no simple interpretation. KdV is, however, the result of an approximation
of the set of the Euler equations within the perturbation approach, limited to the first
order in expansion with respect to parameters assumed to be small. KdV has been
extended to the second order (KdV2) by a number of authors, e.g., [6, 21, 25, 33, 34,
42]. In [23, 24, 26, 28] the authors have derived the KdV2 equation for an uneven
bottom, introducing an additional small parameter related to bottom variation. Here
the term second order is defined as the order of perturbation expansion with respect
to small parameters. However, this advanced form is lacking in exactly conserved
quantities except for the ubiquitous mass law.

Many papers, e.g., [4, 7, 9-11, 13, 16-19, 29, 30, 44] assert integrability of
second order KdV type equations and existence of higher invariants. Specifically
Benjamin and Olver [4] have discussed Hamiltonian structure, symmetries and con-
servation laws in respect of water waves. A near-identity transformation (NIT), first
published by Kodama [29, 30] and since used by many other authors, e.g., [7, 9-11,
13, 16-19, 44], makes it possible to transform the second order KdV type equa-
tions into Hamiltonian forms which are asymptotically equivalent. The existence of
the Hamiltonian form for the transformed equation supplies the full hierarchy of
invariants, which appear to be adiabatic invariants in respect of the original equation.

The lack of exact invariants in the system forces one to look for adiabatic (approx-
imate) ones, as in [5]. Recently we developed a simple method to calculate such
adiabatic invariants, allowing us to derive them directly using the original ‘physical’
equation (equally applicable to equations expressed in dimensional variables) [21].
Our method is as follows: one constructs the KdV2 in a similar fashion as one does
for KdV invariants and then applies the addition of KdV, multiplied by a small param-
eter, to cancel the non-integrable terms. In [21] we focused on this direct method
mentioning NIT-based derivation of adiabatic invariants rather briefly. In this chapter
the NIT method is discussed more broadly with particular attention paid to energy
conservation law.

It is shown in [40] that KdV2 for uneven bottom [23, 26] is not symmetry-
integrable since it admits no genuinely generalized symmetries.
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The chapter substantially extends results published recently in [25]. In order to
introduce the reader to higher order nonlinear equations beyond KdV several earlier
achievements [23, 24, 26, 28] are recalled in Sect.2. The set of Euler’s equations
for the inviscid and incompressible fluid and irrotational motion is introduced and
the perturbation technique leading to KdV and KdV2 equations is described. Then
analytic solutions for KdV and the recently obtained ones for KdV2, solitonic [23]
and periodic [21], are presented and their properties compared.

In Sect. 3 we recall derivations of lowest invariants of KdV and their relations to
conservation laws. In Sect. 4 a direct extension of the methods used in Sect. 3 for the
KdV2 equation is presented. Particular forms of second and third adiabatic invariants
for KdV2 are obtained.

In Sect. 5 near-identity transformation is introduced and applied to find general
forms of lowest adiabatic invariants for KdV2. Relations of adiabatic invariants of
KdV2 to formulas for the momentum and energy of the system are discussed, as
well. The quality of adiabatic invariants is tested in numerics in Sect. 6. The main
results are summarised in Sect.7.

2 KdV and KdV2 Equations

First, we will recall briefly the derivation of KdV and KdV2 equations.

The natural assumptions in the shallow water wave problem are the following.
Since water viscosity and compressibility are very small the fluid is assumed to be
inviscid and incompressible. For gravity waves velocities of fluid particles are small,
as well, therefore the motion can be considered as irrotational. This property allows
us to introduce velocity potential ¢. The velocity potential fulfils the Laplace equation
for entire fluid volume. The set of Euler’s equations contains also the kinematic and
dynamic boundary conditions at the free surface and the kinematic boundary condi-
tion at the impenetrable bottom. The full set of equations for the velocity potential
¢ (x,y,z, 1), as well as its derivation, is published in many textbooks, for instance,
see [39, Chap. 5]. A typical procedure consists in introducing two small parameters
o =a/hand B = (h/1)* and in application of perturbation approach with respect to
these parameters. Here a is the amplitude of a surface wave 1, h is water depth and
[ is a typical surface waves wavelength.

An approximation in deriving KdV and higher order nonlinear wave equations is
correct when two small parameters « and § are of the same order of magnitude. The
definitions of small parameters « and 8 and the geometry of the problem are shown
in Fig. 1. The parameters «, 8 have the same meaning as the parameters ¢, 5%1in [39],
respectively. These notations follow those in the paper [6], in which a systematic
method for the derivation of wave equations of different orders is given. In [23, 26]
we have introduced a third parameter § = a;,/h, where a; denotes the amplitude of
bottom changes. This new parameter allowed us to derive second order equation for
surface waves over a non-flat bottom using the same perturbative approach as for
derivation of KdV or higher-order KdV-like equations.
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nx.t)
undisturbed surface
T](X,t) bottom - ----
//Ta\
h a=a/h
B=(h/l)*

Fig. 1 Schematic view of the geometry of the problem

In what follows we restrict discussion to the 2-dimensional flow, ¢ (x, z, ) (which
means translational symmetry with respect to y axis). Here, the horizontal coordinate
is denoted by x and the vertical one is denoted by z.

A convenient way of studying the problem is introducing non-dimensional vari-
ables. They are defined as follows

i =nja. §=0/U5\sh.
f=x/l, Z=z/h, T=1/(/gh). (1)

The set of hydrodynamic equations for 2-dimensional flow in the non-dimensional
variables takes the simpler form (henceforth all tildes have been omitted)

B + ¢. =0, @

1
ot ad 50 =0, for 2= 1+an G

I 5, la,
b+ 3adt 3502 0 =0, for 2= 14an @
¢. =0, for z=0. (5)

The Laplace equation (2) is valid for the entire volume of the fluid. The Eq. (3) repre-
sents so called kinematic boundary condition at the (unknown) surface whereas the
Eq. (4) is so called dynamic boundary condition at the surface. The Eq. (5) expresses
the boundary condition at the impenetrable flat bottom. For abbreviation the partial
derivatives with respect to corresponding variables are denoted by subscripts, i.e.
Py = ’;"7‘7’ and so on.

Next, the velocity potential is postulated in the form of power series
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¢z, =) "™ 0). 6)

m=0

The Laplace equation (2) permits the expression of all ™ functions by the deriva-
tives ¢5.), and all $@"*D functions by the derivatives ¢\ . Since the boundary
condition at the bottom (5) sets ¢! = 0, all ®"*+D vanish and one obtains the
following velocity potential

1 1 1
_ @ _ 15 2,0 2,4 4(0) 3,6 40) 7
¢p=0¢ 2/31%+24ﬁ1¢4x+720ﬁzd>6x+~-~ @)

The presence of small parameters «, § in the set of hydrodynamic equations (2)—
(5) and (7) allows us to apply the perturbation technique and to derive equations in first
and second order with respect to these parameters. Next we insert ¢ (x, z, f) given by
(7) into (3) and (4) retaining only terms up to second order in small parameters «, .
The Eq. (4) is then differentiated with respect to x and finally w(x, t) is substituted
in place of ¢¥(x, ¢) in both equations. By this procedure one obtains a set of two
coupled nonlinear differential equations which, in general, can be studied at different
orders of approximation. This is a second order Boussinesq system

1 1 1
M Wt () — 2 Bwsy = SaBwad.+ mﬁZWSX: 0, (8)

1 1 1
Wit Foaww, — EﬂszHr gﬁzwxﬁ Eaﬂ[_z(nth)x"‘wxwh —ww3,]=0. (9)

Burde and Sergyeyev [6] show a way of eliminating sequentially the w(x, t)
variable and deriving a single equation for 1 (x, ¢) using the higher order perturbative
approach. In their method the properties of solutions to lower order equations for w
and 7 are used in derivations of corrections to equations in the next order. In theory
this method can be used up to an arbitrary order. For the reader’s convenience we
will present it briefly below.

2.1 KdV Equation

Limitation of the Boussinesq system (8), (9) to first order in «, 8

1

Nt +w, + Ol(UW)x - EIBWS)C = O, (10)
1

W + 1y + awwy — Eﬂszt=0 (11)

results in the derivation of a KdV equation. First, notice that in zeroth order the above
equations
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n+we=0, w+n=0 (12)
hold when n = w and 5, = w;. It follows that n, = —n, and w, = —w,.
Next, one seeks solutions of the first order set (10), (11) requiring that w, n fulfil
(12) and introducing first order corrections C®, C#

w=n+aC®+pCPH. (13)

Insertion of (13) into (10), (11) and neglection of higher order terms gives

1

o (CF +20my) + B (Céﬁ) - 6773):) =0 (14)
. 1

o (I + ) + (Ci” - 5U2n> =0. (15)

Because of the correction functions appearing already in first order, it is enough to
use a zeroth order formula relating their space and time derivatives. Therefore we use
C® =—c@, cP =—_cP (liken, = —ny, w, = —wy)in(14), (15). (Otherwise, if
one takes, for instance, C,(“) = —C}") + «C; + BC,, then terms with Cy, C, appear
in second order and consequently are neglected). Inserting these relations, subtracting
(14) form (15) and equating separately to zero terms with coefficients @ and 8 one
obtains

1 1
CY=——np. and CP = -ps,. (16)
2 3
Integration gives
1 1
C®=——p? d P =_n,. 17
g7 an x 3 a7
Then Egs. (11) and (10) take the final form
Lo + 2 B (18)
=n—can + B,
w=n 4 n 3 13
3 1
N+ Ny + 50”777)( + 65773): =0. (19)

Equation (19) is the famous Korteweg-de Vries (KdV) equation in fixed reference
frame (and scaled dimensionless variables). There are several forms of KdV equation
in the literature. Transformation X = x — ¢, t = ¢ converts (19) into

3 1
n + S + 6,3773& =0. (20

Additional scaling by x = ,/ %', I = j—‘\/gcxf transforms (20) into
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TIZ+677775(+§T)3}=0 or M+6nnz+niz=0, when B=o (21)

Equation (20) gives the form of KdV in the reference frame moving with a character-
istic velocity (equal to 1 in dimensionless variables, which corresponds to 1/gH in
original variables). Forms like (21) or similar are preferred in mathematical papers.
Sometimes the inverse transform to dimensional variables is applied yielding

2

3¢
N +cne + NN+ N3 =0, (22)

2H 6
where ¢ = /gH is the limiting long wave speed [3]. Then, solutions of (22) can be
directly compared to experimental data.

2.2 Extended KdV (KdV2)

Extending considerations of the Boussinesq equations (8), (9) to second order we
make use of first order solutions (18) and (19). So, applying the perturbation technique
described by [6], we postulate w in the form (18) plus higher order corrections, that
is

1 1
W= = e’ + o+ o’ C) +apC e 4 p2CP, (23)

where C©@") , C@p) CB ") are yetunknown functions of n and its derivatives. Proceed-
ing similarly as in first order equations and using the same properties of relations for
time and space derivatives of correction functions, that is, C,(‘) = —C)E') one obtains
them in the form

1 3 1 2 1
C(Olz) P 3’ ch — 24 - CcB) — - 24
Y TR o™ (24)
Then the final form of second order equations is
W= = san? + S pns+ va?nd +ap (o + 2 ) + — 2 (25)
4 37Ty 16 T M ) TP e

M+ 0y + %annx + éﬂrm - %oﬂaﬁ (g’bﬂnx + %nm) + %ﬂznsx =0. (20
Equation (26) was derived by Marchant and Smyth [33] (directly from the set of
Euler equations and alternatively from Luke’s Lagrangian [32]) and called by the
authors the extended KdV. This is a second order extension of KdV in dimensionless
variables and fixed reference frame. We call it in short KdV2. In principle KdV2
solutions should be a better approximation of the solutions to the Boussinesq set than
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KdV solutions. They should be, as well, reasonable approximations in a wider range
of small parameters o, S.

2.3 Analytic Solutions of KdV and KdV2

KdV gained enormous success as an approximation common for many problems
in nonlinear physics. KdV is integrable and has solutions exhibiting a rich variety
of properties. The standard derivation of analytic solutions in the form of single
solitonic functions (in terms of hyperbolic functions) and periodic functions (Jacobi
elliptic functions) is presented in many textbooks or monographs, see, e.g., [1, 8,
20, 36, 39, 41]. It consists in the introduction of the new variable £ = x — vt. Then
KdV is transformed to a nonlinear ordinary differential equation (ODE) which can
be integrated two times leading to the equation

p 2
3 (06)" = —n"+2ei* + 45, @7
where ¢; = v;—l r and s are integration constants. The particular case r = s =0

leads to the soliton solution

n(x, t):ASechz( /%%[x—t(wg)]). (28)

When one is interested only in mathematical properties of KdV solutions A can be an
arbitrary positive constant. However, if physical properties are considered A should
be close to one, otherwise the resulting solution contradicts the basic assumption for
the derivation (% =a K1)

When integration constants are nonzero a thorough analysis shows the existence
of periodic solutions in terms of Jacobi elliptic functions cn? (or equivalently dn?).
The solutions have the form (cnoidal wave)

n(x, 1) =Acn*[B(x — vt), m] + D, (29)

where A, B, D, v are constants and m € [0, 1] is the elliptic parameter. Constant
D < 0 is necessary in order to ensure that the volumes of water elevations and
depressions with respect to the undisturbed water level are the same (volume conser-
vation condition). When the elliptic parameter m — 1 the distance between crests of
cnoidal wave increases to infinity resulting in a soliton solution as the limit. When
m — 1 the limiting profile is the usual cosine wave.

KdV possesses one more important property. There exist exact n-soliton solutions
which can be derived from the inverse scattering theory, see, e.g., [1, 2, 12, 14, 38].
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Not much was known about analytic solutions to KdV?2 till recently. In [23] we
showed that KdV2 has an exact single soliton solution of the same form as KdV (28)
but with different coefficients. The derivation is following. Proceeding similarly as
in the KdV case, that is, introducing & = x — vt one transforms (26) into ODE.
Postulating the solution in the form 7(£) = A Sech?(B £) results in an equation of
the form

C> Sech*(B&) + C4 Sech*(B£) + C Sech®(BE) = 0, (30)

where C,, C4, Cq are functions of unknowns A, B, v and coefficients of the KdV2
equation. Equation (30) holds when all C; vanish simultaneously. Then, solving the
set C; =0, C4 =0 and Cg = 0 one obtains formulas for the coefficients A, B, v

which determine the solution. Condition C¢ = 0O implies a quadratic equation for
2

z = —— with solutions
Aa

43— /2305

43 + /2305
“ 152 52

~ —0.033, 2= 1

~ 0.599. 31)

Then the final formulas are

3 3
=7z B = =7z
11 - 1

A= ——2 —t
az(lf — o) Bl K2 f =5

3 3
g (2,38 27
=1+ <3+45 (141_1390) (32)

Solutions obtained with z = z; have to be rejected. In this case B is imaginary,
B = iB. Then Sech?[B(x — vt)] = (cosz[B(x — vt)])fl. The solution has poles for
some arguments, so it has no physical sense.

There is an important difference between solitonic solutions to KdV2 and KdV.
There is no freedom for the former ones, and for a given «, 8 three equations C; = 0
completely determine the coefficients A, B, v of the solutions. For derivation of KdV
coefficients the equation analogous to (30) contains only two lower order terms. Then
there are only two equations for three coefficients A, B, v. This means that there is
one parameter family of solutions. Usually B, v are expressed as functions of positive
A which can be arbitrary within some interval (as long as it does not contradict the
basic assumption% < 1). Moreover, for KdV2 solitons the ratio %2 =%~ 0.6%

B
and v ~ 1.1145 whereas for KdV %2 = 0.75% andv =1+ 7.

The exact periodic solutions of KdV2 obtained by us in [21] are very fresh.
Encouraged by the success of the method used in [23] to derive the soliton solution
to KdV2 we postulated periodic solutions to KdV2 in the same form as periodic
solutions to KdV (29). Then with a similar procedure as that described above for the
solitonic case one arrives at an equation analogous to (30)

Fo+ F,cn*(BE) + Fyen*(BE) =0, (33)
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where F; = F;(A, B, D, v). Then the set of equations F; = 0 supplemented by the
volume conservation condition allows us to determine all four unknown coefficients

A, B, D, v of the solution as functions of the elliptic parameter m. The condition

F4 = 0 gives the same quadratic equation for 7’ = f—f% as the equation Cg = 0 for
the solitonic case. Therefore roots 2}, zj are the same as zy, 2 in (31).

The periodicity of cn function ensures A/2 = 2K (m)/B, where A is the wave-
length and K (m) is the complete elliptic integral of the first kind. Then the volume

conservation condition i
/ (A cn?(BE, m)IdE = 0 (34)
0

yields relations between A, D and m

p=_4 (Em 1 35
——Z(K(m)+m— ) (35)

where E(m) is the complete elliptic integral. In explicit formulas for coefficients
A, B2, D the factor EK(m) = 3% + m — 2 appears. The function EK(m), m €
[0, 1] has the root m; &~ 0.96115 and is positive when m < m, and negative when
m > my. Then because two 7’ roots have different signs there are two branches of

KdV2 solutions.

1. The branch with 7/ = z,. B> > 0 and then the real B is obtained only when
EK(@m) < 0, that is when m > my. Therefore A > 0, D < 0, and the solution is
a ‘normal’ cnoidal wave with amplitude of crests larger than depressions.

2. Branch with 7/ = z;. B is real-valued when m < my. This impliesA < 0, D > 0,
and the solution is an inverted cnoidal profile. Such solutions do not exist for
KdVv.

For both branches there exist such intervals of m that B> < 0. However, these solu-
tions (after transforming them to functions of real arguments) exhibit singularities
for some arguments and therefore have no physical sense.

For detailed derivation of the analytic periodic solutions of KdV2 and discussion
of their properties, see [21].

3 KdV Invariants

It is widely known, see, e.g., [8, Chap. 5], that an equation with a form analogous to
the form of the continuity equation

or 30X

— 4+ =—=0, 36
Jat ox (36)
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corresponds to some conservation law. In (36) T and X are analogs to density and
flux, respectively. Functions 7 and X may depend on x, ¢, n, 1y, N2, . .., but not
on 7,. The Eq.(36) can be applied, in particular, to KdV and to the equations of
the KdV type, such as (47). If functions 7 and X, are integrable on x € (—00, 00)
and lim X = const (this case corresponds to soliton solutions), then integration of

x—Fo0o
d o0 o0
— (/ de) =0 or / T dx = const. 37
dr —00 —00

Eq. (36) gives
oo
since / X,dx =X (00,1) — X (—00,t) =0. (38)

oo

The same conclusion can be drawn for periodic solutions (cnoidal waves). In this
case limits in the integrals (37), (38) have to be replaced by (a, a + A), where A is
the wave length of the cnoidal wave and a is arbitrary.

For the KdV equation (20) the first two invariants are easily obtainable. When
(20) is presented in the form

am d 30, 01
—+— = —Bn. ) =0, 39
8t+8x(n+40“7 +6,3n> (39)

the conservation of mass (volume) law is immediately obtained

o0
I = f 1 dx = const. (40)

Multiplication of (20) by n leads to

(1, (1, 1 5 1 5 1
—\3 — 15 Son — — —Bnnw | =0, 41
5 (2">+ax (277 +5om 12ﬁnx+6ﬁnn 41)

which results in the following form of the second invariant
oo
1P = / n? dx = const. (42)
—00

Invariants /(" (40) and 1® (42) have the same form both in fixed and moving
reference frames.
Denoting by KDV (x, ¢) the left hand side of (20) and taking

) 28 )
3n® x KDV(x,t) — =—n, x —KDV(x,t) =0 43)
3a ox

one obtains
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0 3 113 2

— __C 44
at(” 3anx)+ (44)
(9 4 1 2 2 s, 1B, 1P 18 >

. lo Py X - Jo . — a3 T 5T =0.

™ (8an +2ﬂnzn Bnin+n +18an2x 5o M~ 3,

This gives the third invariant for KdV (20) in the fixed reference frame

© 1
% = / (;73 - —é;ﬁ) dx = const. (45)
oo 3a

The same formula is obtained for the third KdV invariant in the moving frame [24].

Inthe subject literature, see, e.g., [3, 8], 1 @ is attributed to conservation of momen-
tum and /® to conservation of energy. However, as pointed out in [24] they are not
exact momentum and energy, respectively.

For any solutions of KdV preserving their shapes during the motion, that is, for
single soliton solutions and cnoidal solutions, integrals of any power of the solution
n(x, t) and any power of its arbitrary derivative with respect to x are invariants. That
is,

o0
[P0 = / (k)P dx = const, (46)

where p € R is an arbitrary real number, and k =0, 1,2, ... . An arbitrary linear
combination of /% is an invariant, as well.

4 KdV2 Adiabatic Invariants—Direct Method

We now consider the KdV2 equation [24, Eq. (1)]

3 1
Mt + Nx + Ea nNx + 8:3 M3x (47)

St v ap (Bt PRLCIES
— = x T & 7 Nxh2x A X 260 x = YU
3 nn 2477 n2 ]277773 360 ns

named as the extended KdV by Marchant and Smyth [33, Eq. (2.8)]. They derived
(47) both from Euler’s hydrodynamic equations and Luke’s Lagrangian [32]. The
equation has been considered by several authors, see, e.g., [6, 21, 23-26, 28, 33,
34]. As stated above, we call it KdOYZ.

In [24], we note that IV = / n dx is the exact invariant of (47) representing

—0oQ
the conservation of mass as it does for KdV.
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4.1 Second Invariant

o0
The second invariant of KdV, I® = / n2 dx is not an invariant of KdV2, because,

see [24, Sec. III B], after rnultiplicati(;no<> of Eq. (47) by n one obtains

3 (1, a1, 1 1 3
5(?7 >+a[§71 +2 n® + 5<——71x+71772x>—§0f n (48)
19 5 ., 1
+ﬁﬁ ( Mo — Nallax + mm) + Eaﬁ n 772x:| + gaﬁ Mz = 0.

0
Itis not possible to express the final term in (48) as B_X (7, Ny, - - .). Then contrary to
X
+00
KdV case the quantity n°dx is not conserved. There are no exact higher order

invariants of (47) as well.Oo

It is possible, though, to determine approximate invariants of (47), whose terms
which violate the invariance are of the third order in «, 8. Our simple method allows
us to determine such approximate invariants without big effort. It works by forming
an equation which contains functions 7 and X by means of some manipulations with
KdV2. In this equation there are terms in X which are non-integrable with respect
to x similarly as the last term in (48). By adding a linear combination of the form
(croe + c2B8) x KdV?2(x, t) to that equation, dropping the third order terms we can
determine ¢; and/or ¢, such that the non-integrable terms cancel. (Equivalently, we
add a linear combination of the form (c; + ¢ 8) x KdV (x, t) without dropping any
term.) This action yields a new 7" function and an approximate conservation law for
/ _oooo T'dx.

The first approximate invariant can be obtained by adding to (48) Eq.(47) mul-
tiplied by c;an?, neglecting terms of third-order and selecting a proper value of

¢ in order to cancel the term gaﬁ nN.N2.. When this is done we are left with the

expression

3 1
cranm® + cran®n, + ¢ Eazn% + ¢ gaﬂnznax- (49)

In integration over x of (49), terms cjan’n, and i tafn’ns, are integrable with
respect to x and then can be included into the flux function X .
The last term in (49) can be transformed to —%claﬁnnxmx. It cancels with

3
%aﬂ nNxN2x When ¢; = 3 Then the first term in (49) yields

0 (1

cramm? = o (gouf) . (50)
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Due to integrability of the other terms the approximate invariant of KdV2 is obtained
as (% is omitted)

o 1
15" = / <n2 + i 173> dx =~ const. (1)
—00

However, there is another way to remove the last term in (48) and get an alternative
form of the second approximate invariant. This goal can be achieved by adding to
(48) Eq. (47) multiplied by ¢, 81,., dropping again third-order terms and selecting a

proper value of ¢, to remove the term ga,B NNxN2x. Then new terms are

3 1
2B + 2802 + 2 505,3’777)(772)( +c 6ﬂ2n2x773x- (52)

In integration over x of (52), the terms ¢, 87,12, and czé B2 nacn3y are integrable
with respect to x and then can be included into X . The cancellation of non-integrable
terms

3 1
625a,37777x772x + gaﬁ Mo =0

implies ¢; = —%.
Integration of the first term in (52) over x gives

/ c2Bnmxdx = 2B (mnxli"m —/ nmnx) = —62/3/ o (ﬂf)- (53)

Since terms with 7,72, and 7,73, can be expressed as (—%]ﬁ)x and (—%nzi)x,

2
respectively, one gets finally

o 1/, 1 ) .
9 J o2 P ) dx+ F O ne mo) % = O(@), 54
ot oo2(774_12'377%> x4+ F (1, 0, 20| 2 () (54)

where F (1, 0y, n2x) results from the integration of the flux term. Since solutions to

KdV?2 are either solitonic or periodic then this term vanishes.
This gives an adiabatic (approximate) invariant of KdV2 (47) in the form

o0 1
189 = / <772 +—B 77x2> dx ~ const. (55)
. 12

The existence of two independent adiabatic invariants Iﬁa) and Iﬁ,s ) means also
that

) 00 1 1
12 =618 4+ 1 -e)P = / (n2 + sﬁarf +(1-e)p nf) dx  (56)
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is an adiabatic invariant for any e, that is, there exists one parameter family of
adiabatic second invariant of KdV2.

4.2 Third Invariant

In order to find the third invariant for KdV2 one can follow the procedure described
in Sect. 3, Eqgs. (43)—(45), but for KdV2 equation. Take

2 0
3772 x KDV2(x, t) — —énx x —KDV2(x, 1) =0 &)
3a dx

and consider a simpler case, when 8 = «. The result is

0 3 1 2 J 3 1 2 9 4 2 9 5
- —(-= R 58
ot <” 3’7’C)+ax ('7 R T (58)
1 1 25 23
3 -2 2( 2.3 =2 _ = 2
+Ol( N 7777X772x+ 277 n3x) + <2flﬂx + 3 N NxN2x 3677x772x

5 5 11, 5 19 ,
+Zr} N3x — Enxn3x - 1_87“7)6774)( + mﬂ 775):) .

In (58) we omitted terms which vanish under integration over x. All terms in the
second and third rows of (58) are non-integrable. However, taking an integral of
the form f_oooo ... dx and integrating by parts they can be reduced to two types of
non-integrable terms. All terms in the bracket with o become proportional to n79,1;.
All terms in the bracket with o reduce to 77,7, and 1,15%. Then using procedures
described above for second adiabatic invariant, that is, by adding to (58) the KdV
multiplied by proper factors one can cancel these non-integrable terms. The added
terms supply additional terms in the 7 function. As in the case of second invariant
this action is not unique and there is some freedom in the form of final adiabatic
invariant. One of admissible forms is

% = = 3_12_ 4+l 2)d (59)
ad — n 377): an 120”777): X
—00

It should be noted that the first two terms in (59) are the same as the third KdV
invariant.

The method presented enables us to derive higher order adiabatic invariants, as
well.
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5 Near-Identity Transformation for KdV2 in Fixed Frame

Our research was performed in the fixed reference frame. It was motivated by two
facts. First, already pointed out in [24, Eq. (39)], even for KdV energy has nonin-
variant form (Ali and Kalisch [3] showed this fact in dimension variables). Second,
our purpose is to study invariants, and approximate invariants not only for KdV and
KdV2, but also for the KdV2 equation with non-flat bottom, derived in [23, 26]. For
this equation it is only the fixed reference frame that makes sense.

Second order versions of KdV type equations are not unique since there exist
transformations which transform the given equation into an equation of the same form
but with some coefficients altered. These equations are asymptotically equivalent,
that is, their solutions converge to the same form when small parameters tend to zero.
Therefore such transformation, called near-identity transformation (NIT), is often
used to convert higher order nonlinear differential equations to their asymptotically
equivalent forms which can be integrable. Such NIT was first introduced by Kodama
[29, 30] and then used and generalized by many authors, see, e.g., [9-11, 13, 15,
16, 19, 34]. Below we apply NIT in the form suitable for the KdV2 equation.

Introduced below is the near-identity transformation in the form used by the
authors of [9]

n=n+aan?+ by +..., (60)

where a, b are some constants. (Here, we choose + sign. The inverse transformation,
up to terms of second order, is ' = n — aan® — Bbny + ...).

NIT should preserve the form of the KdV?2 (47), at most altering some coefficients.
Then it is possible to choose coefficients a, b of NIT such that the transformed
equation possesses a Hamiltonian (see the consequences in the Sect.5.2).

Insertion (60) into (47) yields (terms of order higher than the second in «, 8 are
neglected)

/ / 3 1.7 1.7 1 / /
mtn t+a [(5 +2a> n'm, + 2an m] +A [(g +b) M3 +bnm} (61)
23 3 , 5 1 3\,
+oe,3H:(ﬂ—i-a—i—zb)n;nh}+|:(E+§a+§b>ﬁ'7§x:|}
3.9 19 1
2 2.7 2 /
242 — 4 b =0.
+ ( 8+2a>n n+8 |:<360+6 )nsx}

Since terms with time derivatives (1;, 1.,,) appear in first order with respect to small
parameters we can replace them by appropriate expressions obtained from KdV2
(47) limited to first order, that is from KdV (20)

/ / 3 ! ! 1 /
M= TN T NN, — gﬂngx (62)
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and

3 1 3 1
Mexr = Or (—n} - son'n, = gﬁnéx) = =3 = 5aGneny 05 = 2Bns. (63)

Inserting (62) and (63) into (61) one obtains

3 1 3 3 n
n 4.+ Ean’r}; + gﬁngx +a? (_g + §a> nn. (64)
23 5
+ ap [( s ta- 3b> Ny + En’néx} ﬁ N5, =

Equation (64) for n’ has the same form as KdV2 (47) with only two coefficients
altered The coefficient in front of the term with «?5?#, is changed from —3 to

-2 + a and the coefficient in front of the term with «87,1,, is changed from to
23
53 +a—3b.

5.1 NIT—Second Adiabatic Invariant

For the NIT-transformed KdV2 equation (64) one can find the second invariant in
the same way as previously, that is multiplying (64) by 1’ and requiring that the
coefficient in front of the non-integrable term vanishes. This gives

/‘00 > + 23+ 3b) nin,. |dx=0 (65)
12 n n3x 24 a nxn2x - M
Since
o0 o0
/ 0, dx = =2 / '), dx (66)
—00

one obtains

5 23 ., 1
25+ﬁ+a—3b _Donnxnmdx—o == a—3b+§=0- (67)

Then under the condition {
a—3b=—- 68
3 (68)
o
the integral / n"dx is the exact invariant of the Eq. (64).

Using inve_rgoe NIT
n =n—aan’ — Bbnu+ ..., (69)
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and neglecting higher order terms, one gets

oo o o0
/ n%dx %/ [n2 —2aan® — Zﬂbnnxx] =f [;72 —2aan® + Z,anf.] dx, (70)

oo (o] —00

where the last term was obtained through integration by parts. The r.h.s. of (70) is
the most general form of the second adiabatic invariant of KdV2 under the condition
(68), that is, one parameter family of adiabatic invariants

o0
Ly = / [7* — 2aan® + 2Bbn;] dx ~ const. (71)
—0oQ0
In particular, witha =0, b = ﬁ
@ AT S 28)
Ly = P ) dx =1 (72)
and withb =0, a = _%
* 1
L = / ("2 " _0”73) dx =I5, (73)
. 4

These adiabatic invariants are the same as those obtained in the direct way in (51)
and (55).

The above formulas come from NIT (60) in which the sign 4+ was used. However,
if in (60) the sign — is chosen then the condition (68) is replaced by a — 3b = %
The signs of the inverse NIT become opposite and then the final forms of adiabatic
invariants remains the same as in (71)—(73).

5.2 NIT—Third Adiabatic Invariant

NIT-transformed KdV2 (64) describes waves in the fixed frame. In order to determine
its Hamiltonian form let us convert (64) to a moving frame by transformation

X=x—t, t=t, 0¢=20, 0 =—0;+ 0. (74)
Then (64) can be written in more general form as

i + aAnnz + BBn3z + a*Ain*nz + BBinsz + B (Ginmsz + Ganzioz) = 0, (75)

where
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3 1 3 3 19 5 23
! T Pi=3e 1T 2Tt (76)
In the following we drop bars over ¢ and x, remembering that now we work in the
moving reference frame.
In particular, the parameters a, b of NIT can be chosen such that

G, =2G;. (77)

In this case the Hamiltonian for the Eq.(75) exists. The condition (77) with (76)

gives
23 + 3b=2 > - 3b !
—+a-3b=2— a—3b=—-.
24 12 8

This is the same condition as (68). This condition supplies one parameter family of
NIT, assuring Hamiltonian form of the NIT-transformed KdV2 (75) in the moving

frame.
, o (8
n ) (78)

This Hamiltonian form is
=5 Vo

where the Hamiltonian H = [ % dx has density

1 1 1 1 1
H = —EOlA’?/3 + 5,3377;2 — —a?At - 5,3231'7;3 + Ea,BGln/n;z.

12
(79
Since & = (', 1}, n.,), then the functional derivative in (78) is

SH A DA | 9 A (80)

sy T A Ox ank  Ox2 AN

1 1 1
= —edn? = BB — se’A'> — afGy (517}2 + n’n;x> — B*Builj,.
Insertion (80) into (78) yields

n, = —aAn'n, — BB, — A" n), + B*Bins, — aBG1 20l + n'ny). 1)

We see that the Hamiltonian form of KdV2 in the moving frame exists under the
condition that the coefficient at the term 7’5’ is two times larger that the coefficient
at the term 7n'n,,,. This is obtained by a proper choice of a, b parameters of NIT,
which is the condition (68).

Now, the Hamiltonian is the exact constant of motion for the NIT-transformed

equation (75) under the condition (68)

o | 1 1 1 1
/ ——aAn’3 + S BBy? — —o? Ayt — S B2Bin}2 + SaBGin'nj*|dx = const.  (82)
L6 2 2 2 2
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In order to obtain the adiabatic invariant of the original Eq.(47) it is necessary to
perform the inverse NIT, that is

n' =n—aan® — Bbn. (83)

and then to neglect in the Hamiltonian density all higher order terms. This yields

1 1 1 1
H = — —aAn’ + —BBn* +a? | —aA — —A 84
coAn +2f3 n, +a ik A n* (84)

1 1 1
+8 <—§Bl772%c - anxnax) +ap [(561 - 2aB> i+ EbAﬂznzx} ,
with the condition (68).

Now, we restore the original notation A = 1 and numerical values of coeffi-
cients (76). Using relations which come from integration by parts

(o) o0 o0 o0
f Men3e dx = —/ Ny dx, / n* oy dx = —2/ nn; dx
—00 —00 —00 —o0

and changing irrelevant sign one obtains finally
T 1 5 19 1
2= [l - L g (121,
w = 2T ’8”" 2 8T TP 720 60 )
1 3 5
+ap (—a +ib-— —) nnf} . (85)

‘We obtain one parameter family (68) of adiabatic invariants related to energy.
In a particular case, when in (68), we seta =0, b = i and then

T
1§§)=/ [4 an’ ——ﬁnx 3¢ a’nt + /3 an——aﬁnnx} . (86)
—00

When, in (68), we seta = — b = 0, then we obtain

1
g
1(3)_/00 lan __’3,7 _|__/3 ny —laﬁmf dx. (87)
W L4 * T 5 7200 TR 47T

Another particular form of (85) can be obtained when one sets

Then, (85) reduces to
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*T11
1(”:/ [ arn’ ——ﬂnx—— ? 4+—Oéﬂn77x] X, (88)
ad |4 240

In a similar way one can set

1 3 5 1 7
Ca42b—2 =0 b= —, a=—.
3920y = 100 ‘T 10

In this case the adiabatic invariant has the form

o 9
lﬁ):/ [Z an’ ——ﬂnx ¢ o’nt + ﬁ nzx} X. (89)
—00

5.3 Momentum and Energy for KdV2

Relations between invariants and conservation laws are not as simple as might be
expected, even for KdV. In this subsection we present these relations for motion in
a fixed reference frame. Expressions of energy for KdV and KdV2 in the moving
frame can be found in [24, 28].

5.3.1 KdV Case

The first KdV invariant, ffooo n dx = const, represents volume (mass) conservation
of the incompressible fluid.

When components of momentum are calculated as integrals over the fluid volume
from momentum density the results are as follows.

% 3 3
Px = Po/ [77 + Zanz} dx = po [11 + 7 Iz} and p, =0, (90)

o0

where py is a constant in units of momentum. Since the vertical component of the
momentum is zero and the horizontal component is expressed by the two lowest
invariants we have the conservation of momentum law.

The total energy in the fixed frame is, see, e.g., [24, Eq. (39)] (Ey is a constant in
energy units)

o0 1
Eot = Eo/ (an + (an)® + Z(om)3> dx 1)

o0

1 1 o
=Ey[al® + a1 + -1 + —azﬁ/ nydx ).
4 12 o
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The energy (91) in the fixed reference frame has noninvariant form. The last term
in (91) generates tiny deviations from energy conservation only when 7, changes in
time in the soliton frame of reference, which occurs during soliton collisions only.

5.3.2 KdV2 Case

Volume conservation, I} = ffooo n dx = const, is fulfilled for KdV2, too.

Calculation of momentum components within second order approximation of
Euler’s equations gives also a vanishing vertical component p, = 0. For a horizontal
component one gets

o 3 1
Dx =P0/ (n + an® — —a’n’ — —aﬁnx (92)
. 4 8

_. I 3 [ 1
—po[1+1a/_m<n—gn——ﬂm> }

The total momentum of the fluid is composed of two terms. The first is proportional
to the volume. The second, an integral in the lower row of (92), contains the same
functional terms 12, n°, n? as the expressions for the second adiabatic invariants (56)
and (71) but with slightly different coefficients. Analogously to the KdV case (90)
one can write

3
Dx(ad) = Po [11 + Zalﬁ)} . (93)

We will see in Sect. 6 that py,q), given by (93) has much smaller deviations from a
constant value than p, given by (92).

Energy, Ei, =T + V, for the system governed by KdV2 is, see, e.g., [24,
Eq. 9],

Eiot = Eo/ (an + (@n)? + - (om) — —(om)4 - Ea 57777x> dx. 94)

This expression can be written as

© /7 3 7
E = Eo|aly + o Idd +o? —an? ——ﬂnx a’nt — — ﬂnnx dx
oo\ 4 32

~Eya [+ (1f +ald)]. 95)

where 127 . 1S given by (55) and 1 was chosen in the form (88). Equation (95) shows
that the energy of the system descrlbed by KdV2 in a fixed frame is approximately
given by the sum of exact first invariant and combination of second and third adiabatic
invariants. Since there is one parameter freedom in these adiabatic invariants other
particular approximate formulas for the energy are admissible, as well. Because of
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the approximate character of adiabatic invariants the energy of the system is not a
conserved quantity. When motion of several solitons is considered the largest changes
in the energy occur when solitons change their shapes during collisions, see, e.g.,
[24, Fig. 4].

6 Numerical Tests

One might question how good these invariants are. The calculations given below
offer some insight.

To start with we calculated the time evolution, governed by Eq. (47), for three
particular waves. The finite difference method (FDM) of Zabusky [43], generalized
for precise calculation of higher derivatives [23, 26] was used. The finite element
method (FEM) used for the same problems in [27] give the same results for soliton’s
motion. 1-, 2- and 3-soliton solutions of KdV were chosen as initial conditions. For
the 3-soliton solution the amplitudes were chosen to be 1.0, 0.6 and 0.3, for the 2-
soliton solution the amplitudes were chosen as 1.0 and 0.3 and for the single soliton
the chosen amplitude was 1.0. The profiles of these waves evolving according to (47)
at some instants are presented in Fig.2. Vertical shifts by 0.2 and horizontal shifts
by 30 were used on the figure to avoid overlaps. All these results were obtained for
small parameters « = = 0.1.

1.4

1.2} R

1, 4

0.8 1

nx.t)

0.6 l 4

. T
; T |

-0.2 I I I I I I I
-400 -300 -200 -100 0 100 200 300 400

X
t=-300 —— t=-100 —— t=100 —— t=300 ——
t=-200 —— t=0 —— t=200 ——

e —
——Fr—

Fig. 2 Time evolution of initially 1-, 2- and 3-soliton KdV solution according to KdV2 (47).
Reproduced with permission from [21]. Copyright (2017) by Elsevier
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Fig.3 Numerical precision of the volume conservation law for the three waves displayed in Fig. 2.
Reproduced with permission from [21]. Copyright (2017) by Elsevier

Since the volume should be conserved exactly its presentation can verify the
precision of numerical evolution. The numerical values of this invariant shown in
Fig. 3 are constant up to 10 digits.

6.1 Momentum (Non)Conservation and Adiabatic Invariant

2)
Iad

To study approximate invariants Iﬁﬁ ) and I;ja) we write each of them as the sum of
two terms

2 o0 o0 1
5% = / n?dx + / —an’dx =:le(t) + la(?), (96)
. o4
2 o0 o0 l
159 = / n?dx + f L n?dx =: Ie(t) + Ib(1). 97)

The first terms in (96) and (97) are the same as the exact KdV invariant.

The changes of adiabatic invariants Iﬁa) (96) and I;dzﬂ ) (97) presented in Fig.4
correspond to waves displayed in Fig. 2. In this scale both adiabatic invariants look
perfectly constant. To verify how good these invariants are we show how they change
with respect to the initial values.

Figure5 shows changes in the quantities Ie, Ia and Ib for all three 1-, 2-, and
3-soliton waves presented in Fig. 2. These relative changes are defined as

 le(r) — 1e(0) _ la(t) — Ia(0) _Ib(r) — Ib(0)
‘T 10 +1a00) T 1) +1a00) T 1e(0) + 1a(0)



Adiabatic Invariants of Second Order Korteweg-de Vries Type Equation 199

55
50E EHE ]
45 E
40 + E
30$ S S S 6666666 6666¢
0 100 200 300 400 500 600
t
letla -1sol —— le+la -2sol —6— le+la -3sol —&—
le+lb -1sol —— le+lb -2sol —6— le+lb -3sol —&—

Fig. 4 Absolute values of the adiabatic invariants (96) and (97) for the time evolution shown in
Fig.2. Reproduced with permission from [21]. Copyright (2017) by Elsevier
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Fig. 5 Relative changes of /a and /b as a functions of time for the three waves presented in Fig. 2.
Reproduced with permission from [21]. Copyright (2017) by Elsevier

The figure shows that the corrections /a, Ib to the KdV invariant /e have almost the
same absolute values as le but with opposite sign. Therefore one can expect that their
summations with /e should only produce small variations of approximate invariants
I(2a) and 1(25)

ad ad -

Figure 6 confirms this expectation. For long term evolution, the relative variations

of presented approximate invariants are less than the order of 0.00025.
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Fig. 6 Relative changes of the approximate invariants: Iﬁa), denoted as le + la and I;jﬂ ) denoted
as le 4 Ib for the three waves displayed in the Fig.2. Reproduced with permission from [21].
Copyright (2017) by Elsevier
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Fig. 7 Relative changes of p, (92) as a function of time for the three waves presented in Fig.2

As we have already mentioned the fluid momentum is related to the adiabatic
invariant Iﬁ). Let us compare the momentum given by definition (92) with its approx-
imation expressed by adiabatic invariant (93). The former is presented in Fig.7. In
the latter, displayed in Fig. 8, for Iﬁ) we used (56) with ¢ = % It is clear that the
approximate momentum expressed by exact first invariant and adiabatic invariant
Ig) suffers much smaller fluctuations than the exact momentum (92).
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Fig. 8 Relative changes of p,(aq) (93) as a function of time for the three waves presented in Fig. 2
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Fig. 9 Relative changes of energy as a function of time for the three waves presented in Fig. 2

6.2 Energy (Non)Conservation and Adiabatic Invariant Igl)

How close to constant values are adiabatic invariants I;g) and IS)? The relative
changes of the energy (94) for three waves shown in Fig. 2 are displayed in Fig. 9.

The energy (94) can be approximated by a linear combination of three terms
(95), exact invariant /; and adiabatic invariants I,ﬁ) and IS). Relative changes of that
approximate energy (95) are displayed in Fig. 10. Comparing Figs.9 and 10 we see,
that, as in the case of momentum, the approximate energy expressed by adiabatic
invariants varies less than the exact one.
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Fig. 10 Relative changes of energy approximated by adiabatic invariants (95) for the three waves
presented in Fig.2

Other than volume conservation, which maintains virtually numerical precision
(see, Fig. 3), the adiabatic invariants presented in Figs. 6 and 10, and the energy shown
in Fig. 9 over longer periods slowly decrease with time. In our assessment the reason
can be found in the fact that 1-, 2-, 3-soliton solutions of the KdV equation, taken
as initial conditions, are not exact solutions of the KdV2 equation. The 1-soliton
analytic solution of KdV2 equation derived in [23] preserves exactly its shape and
then possesses the infinite number of invariants. The same is true for recently found
[21] exact analytic periodic solutions of KdV2. However, we doubt the existence of
exact n-soliton solutions for KdV2 as it does not belong to a hierarchy of integrable
equations. Additionally the 2- or 3-soliton solutions of an integrable equation like
those obtained through NIT are likewise not exact solutions of (47). Therefore the
deviations from exact solutions will lead to dissipation.

7 Summary and Conclusions

In this chapter several properties of solutions to the KdV2 equation (extended KdV
equation) are discussed. First, the shallow water problem is formulated within the
framework of the motion of ideal fluid under gravitational force with proper boundary
conditions. After introducing appropriate scaled variables this model can be consid-
ered at different stages of approximation. Next, a general method for derivation of
the wave equation is described which can be applied up to arbitrary order in the
perturbative approach. Limitation to the first order results in the KdV equation (19),
while a second order approach gives KdV2 (26). Then, solutions to KdV are referred
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to and compared to analytic solutions to KdV2 found by us recently (solitonic [23]
and periodic [21] ones). Next, in the main part of the paper, invariants of KdV and
adiabatic invariants of KdV2 are described in detail.

Presented is a means of direct calculation of adiabatic invariants for KdV2 which
was developed in [25]. This method can be applied directly to equations expressed
in the fixed reference frame. Small parameters of « # S should be of similar order
but not necessarily equal.

The method does not depend on a transformation to a particular moving frame,
nor on a near-identity transformation. This makes calculations of second invariant
simpler. It can be used also to calculate invariants of higher order.

The NIT-based method, developed in Sect.5, seems to be more suitable for the
adiabatic invariant related to energy since it gives directly the most general form of
this invariant.

Numerical tests have verified that the second and third adiabatic invariants related
to momentum and energy, respectively, have indeed almost constant values. The small
deviations from these almost constant values are largest during soliton collisions.

Because the KdV2 equation has non-integrable form, the energy is not an exact
constant (see, e.g., Fig.9).

There is, however, an intriguing kind of paradox with KdV2 invariants. On the one
hand, exact invariants related to momentum and energy do not exist, only adiabatic
ones are found. On the other hand, despite the non-integrability of KdV2, there exist
exact analytic solutions of KdV2. The form of the single soliton solution of KdV2
was found in [23, Sect. IV]. Recently, in [21], we found analytic periodic solutions
of KdV2 known as cnoidal waves. These KdV2 solutions have the same form as
corresponding KdV solutions, but with different coefficients. Both of these solutions
preserve their shapes during motion, so for such initial conditions the infinite number
of invariants like those given by (46) exist. When initial conditions have the form
different from analytic solutions only adiabatic invariants are left.

Acknowledgements The authors thank Prof. Eryk Infeld and Prof. George Rowlands for inspiring
discussions.
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“Ladies and gentlemen. We have detected gravitational waves!
We did it!”

—David Reitze, aLIGO Executive Director, February 11, 2016.

Abstract Gravitational wave astronomy is born in 2016. The laser interferometers
of Advanced LIGO have detected two gravitational waves, each one generated by
two black hole pairs. The observed wave profiles result from the fusion of two stellar-
mass black holes into a single rotating black hole, with the emission of gravitational
radiation with energy in the solar-mass scale. Indeed, they are the most violent
astrophysical events recorded to date. Since gravitational waves solve the weak-field
approximation of the Einstein equations in vacuum, in this limit, they evolve as linear
waves. However, gravitational waves are intrinsically nonlinear waves; in fact, the
chirp of the signal, the change in frequency observed by Advanced LIGO detectors, is
due to the nonlinearity at the sources, even being negligible far away from them. Both
cylindrical and planar nonlinear gravitational waves can be interpreted as soliton
solutions of Einstein’s equations outside the sources. Actually, even black holes,
the main sources of gravitational radiation, are two-soliton solutions of Einstein’s
equations in vacuum. Gravitational solitons differ from standard nonlinear solitons
in several aspects, including new phenomena such as multi-soliton coalescence, a
phenomenon that emits low-amplitude radiation. Indeed, the pair-of-pants solution
for the fusion of two black holes can be interpreted in such a way. In conclusion,
although gravitational waves propagate in spacetime like linear waves, at their sources
they are nonlinear gravitational waves and, even, gravitational solitons.
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1 Introduction

The birth of a new black hole was the most violent astrophysical event ever recorded
by Humanity. GW 150914, The Event, results from the collision of a pair of stellar-
mass black holes with about 30 and 35 solar masses, that merges into a Kerr black
hole with about 62 solar masses [6]. Three solar masses in energy were radiated
in less than two tenths of a second; this is more than fifty times more energy than
the combined light power from all the stars in the observable Universe, in terms of
radiated power during the same time interval. This major scientific breakthrough
was announced on Febrary 11, 2016, but the signal was recorded on September 14,
2015 by the two detectors of the Advanced Laser Interferometer Gravitational-wave
Observatory (aLIGO).

A new window on the Universe has been open, the field of gravitational-wave
astronomy. During the alLIGO Run O1 not one but two signals has been observed.
The second one, GW 151226, was produced by the coalescence of two black holes
with about 8 and 14 solar masses, resulting in one with 21 solar masses and the
emission of 1 solar mass in energy during one second [4]. The evidence for the
existence of gravitational waves was strongly supported by studying the motions of
tightly orbiting pairs of neutron stars in our Galaxy. Their orbits shrink exactly as
predicted by Einstein’s theory for the emission of gravitational wave energy. Two
astronomers, Russel Hulse and Joseph Taylor were awarded with the 1993 Nobel
Prize in Physics for this indirect confirmation using the binary star system known as
PSR 1913 + 16.11, the orbit of a pulsar and a neutron star.

The direct detection of gravitational waves by aLIGO provides new and more
stringent ways to test general relativity under the most extreme conditions. Several
predictions of Einstein’s theory of gravitation have been confirmed at once by aLIGO.
In fact, the previous evidence for the existence of black holes was circumstantial,
being based on the effects of black hole candidates on their immediate surroundings.
Gravitational waves GW 150914 and GW 151226 are the first evidence for the exis-
tence of event horizons, Kerr black holes, and binary black hole systems. Moreover,
black holes can collide and merge to create a new one, emitting gravitational waves
with a waveform that exactly matches alLIGO observations, as previously shown by
computer simulations using numerical relativity.

This chapter summarizes my plenary talk at NoLineal 2016, Seville, 07-10th
June, 2016. My goal was to review the current status of gravitational waves from the
point of view of nonlinear physics. The contents of this chapter are as follows. The
history of gravitational waves is summarized in Sect.2; in more detail, after a pre-
sentation of the theory for linear waves in Sect. 2.1, the problem of the existence of
nonlinear waves is discussed in Sect. 2.2, and the current definition of nonlinear grav-
itational waves in Sect. 2.3. The birth of gravitational wave astronomy is reviewed in
Sect. 3; more precisely, the working operation of interferometric gravitational detec-
tors is recapitulated in Sect. 3.1, the estimated astrophysical parameters of the signal
GW150914 are discussed in Sect. 3.2, and those of GW151226 and LVT151012 in
Sect. 3.3. Section4 is devoted to the fusion (or coalescence) of two black holes; the
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history of black holes is briefly summarized in Sect. 4.1; the two-body problem in
general relativity is very different from Newtonian theory, as surveyed in Sect. 4.2;
during the fusion of two blakck holes regions with nontrivial topology could tem-
porally appear as shown in Sect. 4.3. Nonlinear gravitational waves and black holes
could be understood as gravitational solitons as reviewed in Sect. 5; after a brief sum-
mary of soliton theory in nonlinear physics presented in Sect. 5.1, its application to
gravitation is sketched in Sect. 5.2, with emphasis in planar and cylindrical gravita-
tional waves in Sect. 5.3, and in black holes in Sect. 5.4. Finally, Sect. 6 summarizes
this chapter and focuses in the next future of gravitational wave astronomy.

2 Brief History of Gravitational Waves

The cosmological constant was considered Einstein’s biggest blunder. However, it
was not his only one. The existence of gravitational waves and black holes bothered
him during his whole life. He thought that they are unphysical phenomena because, in
both cases, the known exact solutions of the fully nonlinear equations of gravitation
have singularities. The answers of these conundrums were clarified by a younger
generation of physicists after Einstein’s death. The turning point in the history was
the famous Conference on the Role of Gravitation in Physics, held at the University
of North Carolina at Chapel Hill on January 18-23, 1957. But everything started two
years before, in the first conference dealt almost exclusively with general relativity;
ajubilee celebration of the 50th anniversary of the theory of special relativity, held in
Berne (unfortunately, Einstein could not attend either). After these two conferences
several scientific breakthroughs convince the majority of the relativists that both,
gravitational waves and black holes, exist in the Universe.

Let me briefly review the historic milestones on gravitational waves. For the
readers interested in a detailed presentation, I recommend the books by Weinstein [37]
and Kennefick [24]; for a briefer summary, my recommendation is the papers by
Thorne [33], and Hill and Nurowski [19]. In this section, for brevity, I will not cite
the major original references; they can be consulted in the bibliographies of the
recommended sources. My main intention is to highlight the most significant ideas
and issues from the point of view of nonlinear waves.

2.1 Linear Gravitational Waves

Gravitation is instantaneous in Newton’s theory. Hence, it predicts the nonexistence
of gravitational waves. The gravitational field is governed by a scalar potential ¢ (x, 7)
that solves a linear, elliptic, partial differential equation, the widely known Poisson’s
equation given by

—V2p(x,1) =47 Gp(x,1),
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where G is Newton’s universal gravitation constant, p is the mass density (the source
of gravitation in Newton’s theory), V? is the Laplacian, x is the position in space,
and ¢ is time. In this elliptic equation time is a dummy variable.

The wave equation was introduced by Euler in 1756, as an extension to three
spatial dimensions of the one-dimensional wave equation proposed by d’Alembert
in 1746. Curiously, Poisson’s equation was first introduced in 1813 as the limit of
the wave equation when the speed of propagation is infinite. At the epoch it was
natural to consider the case of a finite, but very large, speed for gravitation. This
idea was stated by Laplace in the volume IV of his Treatise in Celestial Mechanics
(1805); moreover, using the orbit of the Earth, Laplace’s estimates that ¢, is at least
seven million larger than the speed of light in vacuum, c. But Laplace did not write
explicitly the wave equation for gravitational waves; it was first written by Riemann
in 1858 (published posthumously in 1867) and Lorenz in 1861. The resulting linear,
hyperbolic, partial differential is given by

1 3%p(x,
Do = oo
8

—Vp(x,1) =471 G p(x,1). (1)

Weber, Gauss, Riemann, Maxwell, Lévy, and Gerber, among others 19th century
physicists, independently estimated the speed of gravitation [24]. The best published
result was ¢, ~ 305,000 km/s, nearly the current value of c. It was obtained by Gerber
in 1898 by using the perihelion shift of Mercury’s orbit (although his calculation
contains an error that makes this result doubtful).

The theory of relativity introduced by Einstein in 1905 postulates that the max-
imum speed of a signal coincides with ¢, a limit that the speed of gravitational
waves cannot exceed. Obviously, the most natural possibility is ¢, = c, the case
considered by Poincaré, Abraham, Nordstrom, and other physicists; they propose
Eq. (1) as a relativistic scalar field theory that reconciles Newton’s gravitation with
special relativity. However, in 1907 Einstein suggested that gravitation must affect
time, the so-called gravitational time dilation, by using a beautiful and indisputable
gendanken problem. Since time can be measured by a light clock, a flash of light
bouncing between two mirrors, light must gravitate, in contradiction with Newton’s
theory (because light has no mass).

In order to incorporate Maxwell’s electromagnetism as a source of gravitation in
Eq. (1), a scalar magnitude built from the electromagnetic energy-momentum tensor
T, should be used instead of the density of mass. The most obvious possibility is
the trace of such a tensor, so Eq. (1) should be written as ¢ =47 G T, where
T=TF = n“ﬁ Top, With n,g is the Minkowski metric. However, this idea has a big
problem, the electromagnetic energy-momentum tensor is traceless (7 = 0); in mod-
ern language, the photon is massless. In order to solve this problem the gravitational
field should be governed by equations more complicated than a scalar wave equation.
At the epoch it is widely known that a vector field equation similar to Maxwell’s
electromagnetism cannot be used, since Maxwell himself showed that, in such a case,
masses should repel instead of attract.
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Einstein accepted in 1912 the concept of space-time introduced by Minkowski
in 1908. He understood then that the gravitational field, beyond the curvature in
time suggested by gravitational time dilation, should be the result of the curvature
of both space and time. Several mathematicians and physicists started the search for
the space-time field equations, including Nordstrom and Hilbert. Einstein initiates
his own path by asking for help from his friends Grossmann and Besso. Let me
emphasize that, at the time, Einstein was aware that the future field equations should
allow the propagation of gravitational waves. In fact, in a congress in Vienna in 1913,
Born asked Einstein about the speed of propagation of gravitation [37]. He answers
Born that, in the weak field approximation, the linear field equations can be used
to approximate a small disturbance propagating in a flat space-time. The resulting
gravitational wave should propagate exactly at the speed of light in vacuum.

General relativity, the current theory of gravitation, was developed by Einstein
between 1907 and 1915. The field equations were presented in November 1915, a
set of 16 coupled hyperbolic-elliptic nonlinear partial differential equations for the
ten components of the metric gqg4 of space-time in 3+1 dimensions given by

1 87 G

Raﬂ - E 8up R = o4 Totﬂ ) (2)

where R,g is the Ricci tensor, the contraction of the Riemann curvature tensor,
and R is the scalar curvature, the contraction of the Ricci tensor. The mathematical
explanation and physical interpretation of Eq. (2) is outside the scope of this chapter.
Usually, Wheeler is quoted: “mass tells space-time how to curve, and space-time
tells mass how to move.” But let me highlight here that the most important difference
with Newton’s theory is that the source of gravitation is not mass density, but energy
and momentum densities, incorporated into the energy-momentum tensor 7,g. Since
energy is always positive, like mass, it results in a positive curvature. Notice that
negative curvature cannot be the result of negative energy (or mass), which do not
exist in Nature. However, negative pressure do exist (the so-called dark energy),
resulting in a negative curvature (the acceleration of cosmic expansion).

Einstein’s field Eq. (2) is highly redundant; the Bianchi identities throw out four
components and the diffeomorphism invariance (also referred to as the general covari-
ance) of the metric throw out another four, so only two degrees of freedom have
physical meaning. These nonlinear equations are elliptic (gravitational field equa-
tions) or hyperbolic (gravitational wave equations) depending on the gauge used
to deal with their redundancy. In the last case, Einstein’s Principle of Equivalence
(locally, space-time follows special relativity) ensures that gravitational perturbations
propagate exactly at the speed of light in vacuum.

Gravitational waves were considered by Einstein in June 1916. He linearized the
full non-linear field equations using the so-called harmonic condition, a suggestion
to him by de Sitter. Einstein’s paper contains a mathematical error (something under-
standable since he wrote 15 publications in 1916). This error leads him to conclude
that there are three different types of gravitational waves: longitudinal, transverse,
and mixed. Apparently, no energy is transported by the longitudinal and transverse



212 F. R. Villatoro

waves, so they were fictitious waves reflecting vibrations of the reference system.
Only the mixed gravitational waves should be physical, being produced by a point
mass. Einstein’s error was found by Nordstrom in 1917 and by Schrodinger in 1918,
after carefully repeating the original calculations [37]. They communicate it to Ein-
stein, who finally accepted their results and published in 1918 a corrected version
of his 1916 paper. Like electromagnetic waves, gravitational waves are transverse
waves; mixed waves do not exist and longitudinal waves are an artifact (they are
equivalent to flat space-time after a change of coordinates). However, several physi-
cists, like Eddington in 1922, considered that even transversal gravitational waves
are ripples in the coordinates with no physical meaning.

Einstein’s paper studies a very small perturbation of the Minkowski metric 744
given by the metric tensor gug = 14p + hap, Where |hqog| < 1. Equation (2) after
neglecting the quadratic and higher-order terms in 4,4, reduces to the set of decoupled
linear wave equations

_ 1 92 - 167 G
Ohep = (—— — +v2) hop = —3—Top 3)

where ﬁaﬂ = hgp — Naph/2 s tl}e so-called trace-reversed metric perturbation, and
the Lorentz gauge condition dhap/0xg = 0 has been used. In vacuum, the wave
equation [ h.g = 0 has plane wave solutions given by the real part of the expression

hag = Agp exp(ik, x7),

where the components of the amplitude polarization tensor A,g and the wave vector
k¥ = (—w/c, k') are all constants. The gauge condition implies that this gravita-
tional wave is transversal, Aqg k? =0, ie., the amplitude and the wave vector are
orthogonal. Moreover, gravitational waves propagate exactly at the speed of light in
vacuum, since the wave vector is light-like, k” k,, = 0 (equivalent to ? = ¢? [k|?).

The Lorentz gauge condition does not fully fix the metric, since only two
components of the polarization tensor are independent. Usually, the transverse-
traceless (TT) gauge Ao, = 0 is used; in this gauge A;; k/ = 0 (spatially transverse
wave), A; = 0 (traceless wave), and Zaﬁ = hyp. For a gravitational wave moving in
the z-direction k* =k, = w/c, and k, = ky =0, the TT gauge conditions lead to
Ay =A,=0,A,, =—A,,, and A,, = A,,. The two independent components
of the polarization tensor are A, and A,,, corresponding to the pure polarization
waves

hy = A e @090 and  hy = A, e 00T

and referred to as plus- and cross-polarizations, respectively. Both polarizations can
be illustrated by using an animation of the movement of a circular ring of free particles
inthe (x, y) plane during the passage of the gravitational wave. The tidal deformation
of the circular ring deforms into an elliptical ring of the same area alternatively both
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in the horizontal and in the vertical directions for plus-polarization, and both in the
diagonal and in the counterdiagonal directions for cross-polarization.

Gravitational waves are generated by time-varying quadrupole moments, due to
the conservation of mass and linear momentum forbid the emission of either monopo-
lar or dipolar radiation. Let us recall that in acoustics, radiation is dominated by
monopolar emission, and that in electromagnetism, it is dominated by dipolar radia-
tion, due to charge conservation. Already in 1918, Einstein studied the generation of
gravitational waves by slowly varying sources. He obtained the so-called quadrupole
formula, the solution of Eq. (3) when the energy-momentum tensor corresponds to a
ball of perfect fluid in linearized gravity. Specifically, the spatial components of l:laﬂ
are given by

- 2G d?

hij=;c—4ﬁQij(l—”/C), 4)
where r?> = x; x; is the radial distance, Q; is the quadrupole moment that in the TT
gauge is written as

1 2 3
Q,’j(l‘) = /p(t,xi) (x,- Xj— 55,'_,'7' ) d’x.

The quadrupole formula (4) shows that spherical bodies cannot emit gravitational
waves. The non-spherical part of an emitter is characterized by an asymmetry fudge
factor 0 < s < 1, such thats = 0 corresponds to a spherically symmetric source. The
order-of-magnitude of the amplitude % of gravitational waves generated by a non-
spherical source of mass M, with typical size R, quadrupole moment Q ~ s M R?,
and typical internal velocity v is given by

2G 2 R R 2
h~—(1) sMR2~——S(K) s, 5)
ctr \R r R \c

where the Schwarzschild radiusis Rg =2 G M/ c*. Hence, the main sources of grav-
itational waves are nonspherical (s < 1), compact sources (R 2 Ry), moving at rel-
ativistic speeds (v < ¢). For example, for the coalescence of two neutron stars in a
distant galaxy, the estimate gives 7 < 10722, Such a tiny value is the main barrier
that current observatories have had to overcome.

2.2 Nonlinear Gravitational Waves

The existence problem for nonlinear gravitational wave solutions of the fully non-
linear Eq. (2) always burdened Einstein [19]. If such solutions do not exists, it makes
no sense the use of the linearized theory, being their solutions pure artifacts of the
linearization. In the 1920s Brinkmann, a mathematician, published several papers
on a class of Ricci flat metrics having radiative properties. Nowadays they are called
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pp-waves, but at that time these papers were unnoticed by physicists, including Ein-
stein. Indeed, their physical interpretation has to wait until 1957 when Bondi, Pirani
and Robinson discovered nonlinear, plane gravitational waves, noticing that they are
a special case of pp-waves. Perhaps, if Einstein had noticed Brinkmann’s papers the
history of gravitational waves could have been completely different.

In June 1936, Einstein and Rosen submitted a paper on gravitational waves to the
journal Physical Review [37]. They found a family of exact solutions of the non-linear
field equations, but they not satisfy the harmonic condition and contained singulari-
ties. Einstein changed his mind with regard to gravitational waves and claimed they
did not exist. However, the paper was rejected after peer review (the anonymous
referee was Robertson). Einstein becomes furious and preferred to publish the paper
elsewhere. In 1936 Infeld replaced Rosen as Einstein’s assistant. Infeld met Robert-
son who clarified to him the mistake in Einstein’s paper (without revealing his role
as anonymous reviewer). In Cartesian coordinates (¢, x, y, z) the metric has singu-
larities, but after a change to cylindrical coordinates (¢, p, ¢, z), the singularities
disappear, only remaining that at p = 0, which is associated with the point source of
the waves. Hence, Einstein—Rosen metric describes cylindrical gravitational waves
rather than plane gravitational waves. Infeld told to Einstein, who replied that he
also had found the problem (in fact he refused to read the reviewer’s report). Einstein
corrected the paper with Rosen that appeared in 1937 in the Journal of the Franklin
Institute with another title (“On Gravitational Waves” instead of “Do Gravitational
Waves Exist?”).

Einstein was not completely convinced on the existence of gravitational waves,
neither Infeld, due to his influence [19]. In 1954 Infeld suggested to his Ph.D. student
Trautman the rigourous study of this matter. In 1957 Trautman extended Sommer-
feld’s outgoing radiation conditions from electromagnetism to gravitation, proving
that gravitational radiation exists, propagates at the speed of light, and carries energy.
Also in 1957, but independently, Bondi published in the journal Nature a singularity-
free solution of a plane gravitational wave. A subsequent paper by Bondi, Pirani and
Robinson, published in 1958, introduces a rigourous definition of a plane gravita-
tional wave in the full Einstein theory [16]: a space-time which satisfies vacuum
Einstein’s equations with a 5-dimensional group of isometries (isomorphic to the
corresponding group for the electromagnetic field); this group acts transitively on
the space-time, so it is a homogeneous space (nonsingular at every point).

In the early 1960s, after the works of Trautman, Bondi, Pirani, Robinson, and oth-
ers the theoretical arguments for the existence of gravitational waves were accepted
by the whole community of relativists. However, its observation is extremely diffi-
cult because they pass through surrounding matter with impunity, by contrast with
electromagnetic waves and even neutrinos [33]. The first experiments to detect grav-
itational waves began with Weber and his resonant mass detectors in the 1960s. In
1969 he announces the first candidate detection. During a six-year period of excite-
ment, 15 other research groups around the world tried to reproduce the detection by
using similar bar-detectors. Sadly, no convincing evidence of a direct detection was
reached.
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The unsuccessful experimental efforts of the early 1970s pointed the way toward
new detectors based on laser interferometers. M. Gerstenshtein and V. 1. Pustovoit
were the pioneers who published in 1962 a paper with this idea, but in Russian [31].
Independently, Weber and Forward also consider the idea in 1964. Weiss analyzed the
noise sources and sensitivity in 1969, determining that scale-kilometre arm lengths
are required. Weiss, today considered the father of laser interferometers for gravita-
tional wave detection, effectively invented LIGO in his famous unpublished report
in MIT’s Lincoln Research Laboratory of Electronics in 1972. The National Science
Foundation (NSF) funded several research proposals of Weiss from 1974 to 1983.
After meeting Thorne and Drever in the late 1970s, the general features of LIGO
were defined, including the Fabry-Pérot design and the technique of laser power recy-
cling. The Troika (Thorne, Drever, and Weiss) managed the project until it requires
Big Science management. Vogt, Barish, and Reitze were the subsequent executive
directors.

By the early 2000s, a set of interferometric detectors was completed, includ-
ing TAMA 300 in Japan, GEO 600 in Germany, LIGO in the United States, and
Virgo in Italy. Combinations of these detectors made joint observations from 2002
through 2011 into a global network [17]. However, only upper limits on a variety
of gravitational-wave sources were set. Fortunately, after a long road to success,
in September 2015, Advanced LIGO directly detects a gravitational wave, the first
direct observation of a binary black hole system merging to form a single black hole.

2.3 The Definition of Gravitational Waves

In 1916 Einstein posed the following problem: when a metric gq4 solving the Einstein
equations (2) can be interpreted as gravitational waves on a background? He knew
that the answer is nontrivial. For example, in Cartesian coordinates (¢, x, y, z), with
¢ = 1, the metric gog = 1ap + hap With

hop dx*dx? =cos(t — x) (2 + cos(t — x)) dt* + cos*(t — x) dx*
—2cos(t —x) (1 4+ cos(t — x))dtdx

is a solution of both Egs. (3) and (2). Apparently, it represents a gravitational wave
in spacetime moving at the speed of light. However, it was created from the flat
Minkowski metric in Cartesian coordinates (7, x, y, z) by the change of variables
f =t + sin(t — x). Hence, it is equivalent to flat spacetime and it does not represent
any gravitational wave.

Currently, there are several mathematical definitions of the concept of gravita-
tional wave. For physicists, the most useful is the asymptotic definition developed
by Trautman [36]. For simplicity of the exposition, let us take a spacetime in cylin-
drical coordinates (¢, r, 8, z), with a metric g, = Nop + hop. It satisfies Trautman’s
radiative boundary conditions if, as r — 00, the metric satisfy
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8ap =77a,3+0(1/"), argaﬁ :haﬁkl‘+0(1/r2)v
(6)

h 5 2
haﬂ 0(1/1’), haﬂkﬁ=§naﬁk +0(1/r)’
where h = n*# hep. These equations generalize the Sommerfeld’s radiative condition
for electromagnetic waves.

The energy-momentum tensor for linear gravitational waves is usually calculated
by the second-order quantity introduced by Landau and Lifshitz [25] given by

4

top = 35— (0 liap) (9 1") ,

where hqg solves the linear wave Eq. (3). But, essentially, gravitational waves are a
nonlinear phenomenon, so the physical interpretation of this tensor is not straightfor-
ward. Instead, Trautman defines a gravitational radiation energy-momentum tensor
given by

B B 3 c* B h?
t.P =tk k? + 0(1/7%), = WP heg — — )
’ +oda/r) ’ 3271G< p 2)

where 7 is non-negative. The total energy momentum tensor Tyg + 4 is conserved
and

Pa =/<Taﬁ+ra">dsﬂ,
>

taken over a time-like “cylindrical” hypersurface X at spatial infinity, is the total
energy and momentum radiated through X. It can be shown that the total energy
po > 0, as expected.

Following the ideas of Trautman, the existence of gravitational radiation is char-
acterized by p, # 0. Linear electromagnetic waves cannot transport is own source,
the electric charge, but their energy-momentum tensor is not restricted to be linear.
Similarly, linear gravitational waves cannot transport its own source, the energy and
momentum [12]; in fact, their energy-momentum tensor is null at first-order, with
a non-null result requiring that nonlinear, higher-order terms be taken into account.
Hence, the propagation of gravitational energy results from the nonlinearity of the
field equations, i.e., gravitational waves are intrinsically a nonlinear phenomenon.
However, the analysis of the detection of gravitational waves using laser interferom-
eters in the Earth is based on the linear (weak field) approximation.
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3 Gravitational Wave Astronomy

The direct detection of gravitational waves was Science’s 2016 Breakthrough of the
Year. The discovery of gravitational waves was already recognized with the 1993
Nobel Prize in Physics, thanks to the discovery and analysis of the binary pulsar
PSR B1913+16 by Hulse and Taylor. However, in my opinion, a new prize will be
awarded for the birth of gravitational wave astronomy. It not only coincides with
the centenary of the prediction of gravitational waves by Einstein and the discovery
of the black hole solution by Schwarzschild; it is also the culmination of over forty
years of observational effort.

The Troika, the three physicists who conceived of LIGO, Rainer Weiss of the
Massachusetts Institute of Technology (MIT) in Cambridge, and Ronald Drever and
Kip Thorne of the California Institute of Technology (Caltech) in Pasadena, were
in the red carpet for the 2017 Nobel Prize in Physics. Unfortunately, Drever passed
away on March 7, 2017, in Edinburgh, Scotland. Hence, the Nobel Prize committee
must decide to award Weiss and Thorne alone, like in the case of the 2013 Nobel to
the Higgs boson, that excluded the deceased Brout, or to include a third candidate;
in the last case, the most promising researcher is Barry Barish of Caltech, the father
of LIGO’s hardware.'

Let me briefly review how aLLIGO detectors work and the main properties of
the gravitational waves observed to date [18]. I will cite the original references,
where further details are presented. The most relevant fact to take into account is
that new signals from the coalescence of stellar-mass black holes are expected in the
next years. Such signals will revolutionize our current knowledge of the nonlinear
dynamics of compact astrophysical objects.

3.1 The aLIGO Detectors

Advanced LIGO is the world’s largest gravitational wave observatory [1]. Its design
goal is to reach a factor of ten increase in sensitivity over a broad frequency band
than (Initial) LIGO. However, in the aLIGO Run O1, which spanned September 12,
2015 through January 12, 2016, and the aLIGO Run O2 started in November 30,
2016, ending on August 25, 2017, only a factor of three has been achieved. LIGO
sensitivity is limited by photon shot noise at frequencies above 150 Hz, and by a
superposition of multiple noise sources. The volume of the region of the universe
explored by the detectors increases as the cubic power of the sensitivity; so aLIGO
Run O1 has explored a volume nine times larger than the one explored in the last run
of LIGO, being is future goal to reach a factor of one hundred in volume.

Figure 1 shows a simplified scheme of the LIGO detector. They are composed of
two giant laser interferometers located three thousands of kilometres apart, one in
Livingston, Louisiana, and the other one in Hanford, Washington. Each detector has

I'Weiss, Thorne and Barish were awarded the Nobel Prize in Physics 2017.
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Fig. 1 Simplified diagram of an advanced LIGO detector (not to scale). Inset a location and
orientation of the LIGO detectors at Hanford, WA (H1) and Livingston, LA (L1). Inset b the
instrument noise for each detector during aLIGO Run O1. Reproduced from [6]; published by the
American Physical Society with a Creative Commons Attribution 3.0 License

two orthogonal arms with a length of 3994.5 m (4 km). They are illuminated with the
light of a Nd: YAG laser at wavelength 1064 nm (282 THz) in continuous-wave mode;
its power is increased from 20 to 700 W by using a power-recycling mirror before it
enters through a beam splitter into the two arms (1.2-m diameter ultra-vacuum tubes
with a pressure below 1 Pa = 10~ torr; in volume, the second largest ultra-vacuum
after that of LHC tubes at CERN). Each arm contains two test mass mirrors acting
as a Fabry—Pérot resonant cavity, where the light power increases up to 100 kW; this
value is the major limitation of the sensibility of Runs O1 and O2, being the plan
to go up to 750 kW in future runs. The test masses are ultrapure cylinders of fused
silica with 34 cm diameter, 20 cm height, and 40kg weight, polished to nanometre
smoothness; they are suspended in a quadruple-pendulum system for seismic noise
isolation. At the output the two light beams are recombined by using a partially
transmissive signal-recycling mirror, which optimizes the gravitational wave signal
at the photodetector.

Let me clarify two common misconception related to laser interferometers. First,
they do not act as rulers, but as clocks. Usually it is stated that they directly measure
the difference in length between two perpendicular arms. However, for a detector
with an arm length L = 4 km and a gravitational wave with a maximum amplitude
of h = 1072! the change in the length of one arm is about 4 L/2 ~ 2 x 107!8 m,
a lengths smaller than a thousand the width of a proton. Such an extremely small
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distance cannot be directly measured by a ruler using the interference of laser pulses
with a wavelength of ~ 107® m; the measurement must be indirect. Specifically,
LIGO’s interferometers act as clocks that measure the travel time variation of light-
signals between the two freely falling mirrors. They are observed as phase shifts in
the returning light. In fact, the changes in the arm length do not enter into the equation
for the phase difference responsible of the interference pattern at the detector.

The second misconception is the so-called interferometer paradox [21]. The grav-
itational wave changes the length of arms in exactly the same amount that the wave-
length of the light resonating between the mirrors at their extremes, so these effects
might cancel and there would be no measurable effects. The solution of the apparent
paradox is as simple as the first one. The gravitational wave has a wavelength in the
km scale, do not affecting the wavelength and properties of the light pulses inside the
arms that are in the pm scale. There is no light resonating between the mirrors; the
observable magnitude in the detectors is the time of flight between the test masses,
thanks to the constancy of the speed of light in vacuum. The golden rule to remember
is that weak gravitational fields always can be understood as time curvature, being
the spatial curvature usually negligible.

Let me clarify the above misconceptions by using a simple calculation. Let us
assume that the arms of the interferometer with a common length L are in the x and
y directions, aligned with the polarization of the incident gravitational wave [20,
32]. A gravitational wave propagating along the z-axis, with its polarizations aligned
with the x- and y-axes, is described by the space-time metric given by

ds®> = —=c*dt* + (1 + h(0)) dx®> + (1 — h(2)) dy* + dZ*,

where the small wave amplitude /44 is such that /1 £ h(t) ~ 1 £ h(t)/2, the met-
ric gop = Nap + hap, With 14 is Minkowski’s flat space-time, and h(f) = hy(t) =
—h(t) is a oscillatory function of local time. The physical interpretation of this
metric is that the wave of amplitude /() causes that the distance between freely
falling test masses to change by factors of 1 4 h(¢)/2 and 1 — h(¢)/2 inthe x and y
arms of the interferometer, respectively.

The frequency of the gravitational wave h(¢) is between 10 Hz and 1 kHz, which is
very tiny compared to that of the laser light beam (about 282 THz). Hence, during the
travel time of a light wave crest through the arms the function £(¢) is approximately
constant. The path of a light ray between the test masses follows ds? = 0, then

dr* = (1 +h@)dx* + (1 — h(@t))dy* +dz*.

The round-trip travel time for two pulses separated at the beam splitter and returning
to it after travelling each arm is given by

Atx=<1~|—@>2—L, AtV=<1—@>2—L,
2 c ’ 2 c
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such that their time difference yields

2L
At = Aty — Aty = — h(1).
C

Hence, the phase difference between the two beams of light is given by

47 L

It depends only on the arrival times of wave crests (the return time). The changes of
the length L of the interferometer arm do not enters directly into Eq. (7). The quotient
between the arm length and the wavelength of the light amplifies the amplitude of
the gravitational wave in order to allow its detection. The phase shift for A = 1 pum,
L=4kmandh = 10"2"is A¢ ~ 5 x 10~!! rad. For an interferometer with Fabry-
Pérot cavities there is an additional gain factor 2 .% /7, where .% is the so-called
finesse of the cavity [27]. For a typical value of .% = 200 the measured phase shift
is Ag ~ 1078 rad, accessible to current metrology technologies.

Gravitational wave astronomy requires the determination of the direction on the
sky of the source. Since, the detectors are essentially omni-directional, like micro-
phones for sound instead of conventional telescopes for electromagnetic waves, they
have nearly all-sky sensitivity. The sky localization of the source is largely deter-
mined by the time delay between different observatories. Ideally, all ground-based
interferometers should operate as a global network. However, the signals observed
during aLIGO Run O1 have only been recorded by its two detectors. Hence, cur-
rent uncertainty in their location is very large. During aLIGO Run O2 in 2017 a
third detector, Virgo, a single 3-km detector at Cascina, near Pisa, Italy, will start its
operation. And in 2018, KAGRA, in the Kamioka Observatory, Gifu, Japan, a single
3-km detector like Virgo, is expected to enter in operation as well. The future global
network of interferometric detectors during the 2020 s promise a brilliant future for
gravitational wave astronomy [26].

3.2 The Event: GW150914

The Event, GW150914, was a textbook-like gravitational wave signal [6]. It was
observed by the two detectors of the aLIGO on September 14, 2015 at 09:50:45
UTC, arriving first at Livingston detector, and 6.9703 ms later at Hanford detector.
Serendipity accompanied the discovery, since the official start of aLIGO Run O1 was
scheduled to 18 September 2015. Fortunately, the signal was observed during the
engineering run ER8 (a commissioning phase not intended to detect astrophysical
signals, but that does not preclude this possibility). About 8 cycles of the signal was
observed during 0.2 s. It is a chirp, a signal with increasing frequency and amplitude
from 35 to 250 Hz. The peak gravitational-wave strain was 1.0 x 102! The p-value,
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Table 1 Parameters of the three most significant events observed by aLIGO Run O1. Quoted with
90% credible intervals. The parameters have been taken from Refs. [2] and [5]

Event GW150914 GW151226 LVT151012
Signal-to-noise 23.7 13.0 9.7

ratio r

False alarm rate <6.0 x 1077 <6.0 x 1077 0.37
p-value 7.5%x 1078 7.5 %1078 0.045
Significance >5.30 >5.30 1.70
Reference source | Abbott et al. [2] | Abbott et al. [S] | Abbott et al. [2] | Abbott et al. [2]
Primary mass 36.21’;% 35.43:2 1421’?:; 23:1)8
mi/Mg

Secondary mass 29,15{:1 29.8fi:§ 7.5f§:§ l3f‘51
my /Mg

Effective inspiral | —0.06%¢:13 —0.047014 0.217949 0.0793
spin &t

Final mass 62.337 62.2+37 20.8%¢1 35T
My /Mo

Final spin a s 0.68"00° 0.687000 0.74750¢ 0.66"0%
Radiated energy 3.0703 3.0103 10751 15792
Eraa/ (Mo c”)

Luminosity 410115 4401180 4401150 10007300
distance Dy, /Mpc

Source redshift z | 0.097003 0.09370 030 0.097003 0.201959

called false alarm probability by LIGO Collaboration, the probability that random
noise fluctuation was confused as a signal, was estimated <2 x 1077, corresponding
to a significance greater than 50, as shown in Table 1. Moreover, the estimation of
the signal-to-noise ratio (SNR) was 24; let us recall that the detection of a signal by
aLIGO requires SNR > 10.

The interpretation of the signal, shown in the top left plot in Fig. 2, was obtained
by using Bayesian inference, based on waveform models for binary black hole
fusions [8]. The models are calibrated using full numerical solutions of Einstein’s
equations. The initial analysis was done using two methods [7]: A non-precession
EOBNR technique, based on an effective-one-body (EOB) analytical approximation
with parameters tuned by numerical relativity (NR), and a precession IMRPhenom
technique, that incorporates the effects of spins aligned with the orbital angular
momentum of the black hole binary into the EOBNR model. Both methods agree, so
the overall results come from averaging the two. An improved analysis of GW 150914
using a precessing EOBNR model was published later [5]. Furthermore, a direct com-
parison with the results from numerical relativity solutions of Einstein’s equations
for binary black hole coalescence has also been published [3]. The last process is
computationally very expensive, but all the methods yield very similar results.
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Fig.2 The waveforms of the three signals observed in aLIGO Run O1 (right) and the corresponding
sensitivity of the detector (left). Reproduced from [2]; published by the American Physical Society
with a Creative Commons Attribution 3.0 License

Let me explain the notation used in Table 1 for the newcomers. The statistical
results are written as the median value plus the range needed to safely enclose the
90% of the probability, therefore, the resulting interval contains the true value with
equal probability above or below the median with a 10% chance to be outside this
range. For example, the mass of the bigger black hole shown in Table 1 is given by
36JjZM@, where M indicates the mass of our Sun; the meaning of this notation is
that there is a 5% chance that the mass is below 32My = (36 — 4)M, and a 5%
chance that it is above 41Mg = (36 4+ 5) M.

The waveform of the signal GW150914 corresponds to the inspiral and merger
of a pair of black holes, and the ringdown of the resulting single black hole. Table 1
shows that the initial black hole masses at 90% C.L. are m| = 36J_r2 M, (the primary),
and m, = 29J_riMo (the secondary). The final black hole (the remnant) has a mass
of My = 6275 My, with 3.0703 Mo c? ~ 5.3%0% x 10*7 J of energy radiated away as
gravitational waves. Notice that the improved analysis [5] prefers m; = 35f§M@,
my = 303M@, and M, = 62f‘3‘M@; this result is consistent with the original one.

Astrophysical black holes are described by their mass and their spin (how much
they rotate). The three black holes responsible for the signal GW150914 are the
largest observed stellar-mass black holes to date. Their (dimensionless) spins a;
are defined to be between O (no spin) and 1 (the maximum value); the final black
hole’s spinis a; = 0.6770;. The spins of the initial black holes cannot be measured
precisely because the signal is too short, and it is not known the orientation of the
binary. For these reasons, the estimated spins are compatible with spinless black
holes, specifically, a; = O.3f8;§, and a; = O.ngzi. Another interesting parameter
related to the spin of the black hole binary is the so-called effective inspiral spin &.gf;
it has a value of 41 if both black holes have maximal spin values, and are rotating
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the same way as the binary is orbiting, and a value of —1 if the black holes have
maximum spin values and are both rotating exactly the opposite way to the binary’s
orbit. It is found that the effective spin of the signal GW150914 is compatible with
a null value, —0.06™ 7. This could mean that both black holes have small spins, or
that they have larger spins that are not aligned with the orbit (or between each other).

The analysis of the signal GW 150914 estimates that the source lies at a lumi-

nosity distance of 4101’{28 Mpc (a megaparsec is a unit of length equal to about 3

million light-years). The corresponding redshift z = 0.0970-% is small, so the effect
on the source parameters is negligible. Therefore, the merger happened sometime
between 700 million years and 1.6 billion years ago. Note also that it is very diffi-
cult to localize the position in the sky of the source by using only the two aLIGO
detectors. A possibility to obtain a precise localization is by means of a neutrino or
electromagnetic counterpart, but none is expected from a binary black hole. However,
searches for astrophysical counterparts of the signal GW150914 have been prose-
cuted. As expected they were fruitless. No high-energy neutrinos were observed
by ANTARES (Mediterranean sea), IceCube (Antarctica), KamLAND (Japan), the
Pierre Auger Observatory (Argentina) and Super-Kamiokande (Japan) [11]. Neither
electromagnetic signals in gamma-ray, X-ray, optical, infra-red, or radio observato-
ries [10]. The exception is a weak transient source above 50 keV, observed by the
Fermi gamma-ray telescope about 0.4 s after the GW150914 event was detected by
aLIGO, with a significance of 2.9 o [10]. However, the non-detection of this event by
INTEGRAL/SPI-ACS suggests that this counterpart is consistent with a background
fluctuation; hence, the most plausible explanation is a chance coincidence.

3.3 The Christmas Gift and the Candidate

Serendipity is part of the scientific endeavour. The signal GW 150914 could be easily
missed if alLIGO Run Ol start a little later as scheduled. The signal GW151226,
too, might be missed if the Run O1 were not continued during Christmas holidays
(an stop already done during aLIGO Run O2). Let me summarizes the main features
of this second gravitational wave [4] that arrived at Earth 03:38:53 GMT on 26
December 2015. First observed in Livingston and 1.1 = 0.3 ms later in Hanford.
About 55 cycles of the signal was observed during a whole second. The signal is a
chirp with increasing frequency and amplitude from 35 up to 450Hz. Specifically,
45 cycles for the inspiral phase with frequency from 35 up to 100Hz, and about 7
cycles for the merger and 3 for the ringdown. The peak gravitational-wave strain was
Nmax = 3.4 x 10722, The signal-to-noise ratio (SNR) was 13, with a p-value similar
to that of GW150914, so the significance was greater than 5o, as shown in Table 1.

The analysis of the signal GW 151226 results in an estimation of the masses of the
initial black holes of m; = 14.2f§_‘3M@ and my, = 7.5f§€M®; the two black holes
merge to form a final black hole of mass M, = 20.8’:?:;M@. Across the entire coa-
lescence, gravitational waves carry away 1.01’81;M®cz ~ 1.81”8:3 x 10%" J of energy.
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Note that usually the black hole masses are rounded to 14 and 8 solar masses, result-
ing in one with 21, emitting 1 solar mass. The spin measurements for GW151226,
allows the determination of at least one of the black holes, although it cannot be said
which; it had to have a spin of greater than 0.21 with 99% probability (as shown in
Table 1 for the effective inspiral spin). The estimation of the luminosity distance of
the signal was 4407 |5 Mpc, and its redshift z = 0.0970-02, both very similar to those
of GW150914.

During the aLIGO Run O1 there were another signal, LVT151012, but only a
candidate (the name “LVT” is short for LIGO-Virgo trigger). LVT151012 was seen
first by Hanford detector then at Livingston. Table 1 shows an estimation its signal-to-
noise ratio of 9.6 (hence, it is a candidate because it is smaller than 10), with a signal
significance of only 1.7¢. Under the assumption that it is astrophysical in origin, it
corresponds to another binary black hole merger. Table 1 shows that the component
masses are m; = 23fé8 Mg and my = 13f§M®, merging into a final black hole with
mass M, = 357, M, emitting 1.5703 M, in energy. The spin of the final black
holes was estimated in a; = 0.667)%, but the spin of the initial ones is unknown
(the effective spin xef = 0.0fgé is compatible with zero). The luminosity distance
was larger than the other two signals, specifically IOOOfggg Mpc, corresponding to

a redshift z = 0.201’8:83, meaning it is about twice as far away as GW150914 and
GW151226 sources.

4 Black Hole Binary Coalescence

The existence of black holes is currently accepted by the majority of astrophysi-
cists [23]. Even if until 2016 the only evidence was indirect, like the movement of
stars around a supermassive black hole or the electromagnetic emissions from the
accretion disk in binaries. Nowadays, alLIGO has attained the first direct observation
of black holes thanks to the detection of gravitational waves. Obviously, isolated
black holes do not radiate gravitationally, but they emit radiation during their inter-
action with other black holes or neutron stars in black hole binaries.

Let me briefly review the current knowledge on the dynamics of black hole binaries
obtained from numerical general relativity simulations [30]. First, the history of black
holes is summarized here following Ref. [23]. Then, I stress a very interesting feature
of the event horizon during the fusion of two black holes that it is not discussed in
the current reviews on the topic: the appearance of an unstable toroidal topology, a
ringhole, in the classical pants solution for black hole coalescence; it is very unstable,
strongly emitting gravitational waves [15].
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4.1 Black Holes

Black holes as compact massive objects with an escape velocity equal to the speed of
light in vacuum were first discussed by Michell in 1784, although the mathematical
calculations in Newton’s gravitation were first made by Laplace in 1796. In Einstein’s
general relativity the concept appear in the first exact (spherically symmetric) solution
of Einstein’s equations in vacuum obtained by Schwarzschild in 1916, given by

ds® = — (l — Vr_s) cdr* + (1 — :—S> : dr? + r? do® + r? sin® 6 do?,
where r¢ =2G M /c2 is the Schwarzschild radius, M is the mass and spherical
coordinates (x°, x!, x2, x3) = (¢, r, 6, ¢) has been used. Black holes are extremely
compact astrophysical objects. The Earth has a Schwarzschild radius of 9 mm, stellar-
mass black holes are just a few kilometres across, and Sagittarius A*, the supermas-
sive black hole at the centre of the Milky Way, with four million solar masses is
smaller than 10% of Earth’s orbital radius.

Let me stress that in general relativity a black hole is not a massive object, but just
vacuum, pure curved space-time. They do not have a surface or physical boundary,
being their size associated to its event horizon, where the scape velocity equals the
speed of light in vacuum; hence, in this point of no return not even light can scape
of the black hole’s gravitational field. Since the black hole is an asymptotically flat
solution, the total energy associated to its curvature, or equivalently to its gravitational
field, can be properly defined. This total energy is referred to as mass, although it
has no relation with the mass of a physical body. Arnowitt, Deser and Misner in
1959 clarified this point introducing the so-called ADM mass M, associated with the
energy of the curvature field calculated asymptotically from infinity.

Einstein and other physicists refuse black hole solutions due to the presence of
two singularities, one at the center of symmetry » = 0, and another one on the event
horizon r = rg. The general idea in the 1920s is that the Schwarzschild singularity
do not exist in physical reality because matter cannot be concentrated arbitrarily.
But during the 19305, the Chandrasekhar limit for the mass of a compact massive
star results in the study of the gravitational collapse by Oppenheimer and Snyder in
1939. Using interior co-moving coordinates, the collapse proceeds to zero radius in
a finite proper time; however, for the external viewer the contraction slows down and
freezes exactly at the gravitational radius.

Officially, Wheeler coined the term black hole in a lecture in late 1967, in order
to avoid the longest term gravitationally completely collapsed object. However, the
term was already used in December 1963 at the Texas Symposium on Relativistic
Astrophysics in Dallas. The term first appears in print in the January 18, 1964 issue of
Science News Letter, bandied in Cleveland at a meeting of the American Association
for the Advancement of Science (the author was the reporter Ann Ewing). A few
days later, it also appears in the January 24, 1964, issue of Life magazine (the author
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was the editor Al Rosenfeld). Both reporters listen the term in the Dallas meeting,
but they do not remember the original author.

Black holes are not considered astrophysical objects until the 1960s. One of
the fathers of the soliton concept, Kruskal, introduced new coordinates that remove
the apparent singularity at the event horizon in 1960. Kerr discovered in 1963 the
solution for a rotating black hole, physically more appropriate for an astrophysical
object. Novikov and Zel’dovich, Shklovsky, Burbidge, among others, proposed the
hypothesis that some X-ray emitting binary systems are black holes with accretion
disk from a close star. The discovery of the first astrophysical black hole is associated
to such an interpretation for the X-ray binary Cygnus X-1, discovered in 1964; today
it is widely accepted that it is a black hole with more than ten solar masses accreting
matter from a blue supergiant star.

The strongest evidence for the existence of black holes comes from Sagittarius A*,
the bright and very compact astronomical radio source at the center of the Milky Way.
Discovered in 1974 and named in 1982, its mass has been determined by monitoring
stellar orbits around it during the last twenty years. In particular, the star S2 has an
elliptical orbit with a period of 15.2years and a closest distance of 17 light hours
from the center of the central object. From its motion, Sgr A* mass is estimated in
about four million solar masses.

4.2 The Two-Body Problem in General Relativity

In general relativity the two-body problem is unstable, eventually resulting in the
decay of the orbit and the collision of the two bodies. This fact is in contrast with
Newtonian gravitation, where the two-body problem is stable and exactly solvable
in closed form by using conic sections. Fortunately, the time scale of the instability
in general relativity is larger than the Hubble time, except for very close compact
objects, like neutron stars and black holes. In the last case, black hole binaries, the
final result will always be a single rotating black hole described by the Kerr metric.

Figure3 shows a reconstruction of the signal GW150914 observed by aLLIGO
at Hanford and its interpretation by the best-matching waveform computed by the
numerical solution of Einstein field equations [6]. The signal starts when the two
black holes are separated by only five Schwarzschild radii, with a relative velocity
over a 30% of the speed of light in vacuum. The speed increases as both black holes
approach each other until they merge; the result is not a black hole, but an unstable
gravitational object that decays into one in a few tenths of a second.

The dynamics of black hole binaries can be broken down into four stages: New-
tonian, inspiral, plunge/merger, and ringdown (see the top plots in Fig. 3). The grav-
itational wave emission is too weak to be detected in the Newronian stage, where
the two black holes are very far apart. In the inspiral regime the gravitational wave
emission dominates driving the black holes to closer separation. This phase is well-
modelled by post-Newtonian methods resulting in the so-called effective one body
(EOB) theory. This theory yields waveforms surprisingly close to full numerical
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Fig. 3 The interpretation of the signal GW150914 as seen at Hanford over the three stages of the
event: inspiral, merger and ringdown. The separation and velocity of the black holes are illustrated
in the lower plot. Reproduced from [6]; published by the American Physical Society with a Creative
Commons Attribution 3.0 License

results even until very close to the plunge/merger phase. The black holes plunge
together to form a single object, the merger, with a strong emission of gravitational
waves; the luminosity is on the order of one-hundredth of the Planck luminosity
(about 10° ergs/s), making black hole mergers by far the most energetic events in
the post-big-bang era of the Universe. This phase is very short, lasting on the order of
one to two gravitational wave cycles. For equal mass black holes upwards of 3% of
the rest mass energy of the system is radiated away. A single black hole results as the
consequence of a merger in the ringdown stage. This phase could be calculated using
perturbative techniques, since the remnant black hole is a perturbed Kerr spacetime
with quasi-normal modes in its event horizon. The ringdown frequency is several
times higher than the orbital frequency in the last few inspiral cycles, and the decay
time is quite short, so the majority of the energy lost during ringdown (1-2% of the
rest mass) is emitted quite rapidly.

The collision of two black holes is usually referred to as either the trousers or the
pair of pants solution, illustrated in Fig. 4. It cannot be treated analytically, although
topological arguments can yield a general picture [22, 29]. The analysis by using
numerical relativity, that solves Einstein’s equations for general relativity, begins
with the works of Hahn and Lindquist in 1964. However, the first calculations of
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Fig.4 A (2+1)-dimensional pair of pants representation of slices of constant time S; and S; through
a binary black hole event horizon. The spatial hypersurface of crossover points 2 is surrounded on
both sides by lines of caustics %. The event horizon is toroidal, being &2 the center of the hole in
the torus. Reproduced with permission from [15]. Copyrighted by the American Physical Society

the gravitational radiation during the collision of two black holes was first obtained
by the Binary Black Hole Alliance in 1995, published by Matzner et al. [28]. Of
course, the precise track of the coalescence and merger in a circular orbit as they
spiral together was not solved until recent teraflop supercomputers were available.

There are two methods of formulating Einstein’s equations amenable to stable
numerical integration of binary black hole spacetimes [30]. The first one is based on
the use of generalized harmonic coordinates to re-express Einstein’s equations into
a set of wave-like equations with constraint-preserving boundary conditions. The
second one is the Baumgarte-Shapiro-Shibata-Nakamura formalism with moving
punctures, based on the use of a conformal decomposition of the spatial metric to
separate the extrinsic curvature into “radiative” versus “non-radiative” degrees of
freedom. It is beyond the scope of this chapter to discuss either method in detail. But
let me emphasize that both methods yield similar results in practice, so the choice
between them is a matter of personal preference or aesthetics [30].

4.3 Ringholes in the Pair of Pants Solution

Numerical relativity has a prohibitive cost, so the interpretation of the waveform sig-
nals observed by gravitational wave interferometers are regularly done by using post-
Newtonian approaches that only require a fine adjustment of their parameters from
numerical simulations. Nevertheless, there are some features that a post-Newtonian
approach cannot deal with, like nontrivial topology horizons that appear before the
merger formation, as shown in Fig.4 and the numerical simulations of Ref. [38].
Indeed, a numerical simulation of the signal GW 150914 shows that a toroidal topol-
ogy, a ringhole, appears in the event horizon, as shown in Fig.5 from Ref. [15].
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Fig. 5 Toroidal event horizon found in a GW 150914 consistent SpEC simulation. The inset figure
in the bottom left corner shows a zoomed in and slightly rotated viewpoint of the hole in the event
horizon. Reproduced with permission from [15]. Copyrighted by the American Physical Society

The topological censorship theorem states that the ringhole must collapse faster than
it would take light to traverse it. Hence, they emit a large amount of gravitational
radiation.

In 1998 Siino, and in 1999 Husa and Winicour predicted that the event horizon
of a generic binary black hole system should develop a brief toroidal event horizon
due to the distribution of caustics and crossover points during the merger phase.
Recently, Bohn, Kidder, and Teukolsky [15] has simulated with the Spectral Einstein
Code (SpEC) a binary black hole with a mass ratio of 1.25 and spin parameters
consistent with the source of the signal GW150914. Figure 5 shows that main result
of their simulation, the emergence in a spacelike foliation of the spacetime of a
toroidal topology inside the event horizon of the merger. The event horizonisa?2 + 1-
dimensional hypersurface whose localization requires a proper coordinate system
with a specific time slicing, i.e., an event horizon finding code. A new one has been
developed in Ref. [15] to be incorporated into SpEC in order to resolve fine-scale
features of the event horizon. Figure5 is the result of this new feature in the last
version of SpEC; in fact, when using the standard SpEC time coordinate slicing such
aringhole is not observed. In the context of this chapter, the most important feature
of the toroidal event horizon is that it transforms into a spherical event horizon in a
few milliseconds, accompanied by an intense emission of gravitational radiation.
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5 Gravitational Solitons

Black holes and nonlinear gravitational waves are solitons of the Einstein’s field equa-
tion. Gravitational solitons are exact solutions for spacetimes with a two-parameter
group of isometries. Surprisingly, the whole set of known exact solutions to Ein-
stein’s equations are particular cases of soliton solutions. Schwarzchild and Kerr
black holes, and their generalizations, exact and cylindrical gravitational waves, and
cosmological solutions are solitons. Despite the term soliton being used to describe
gravitational solitons, their behaviour is very different from other (classical) soli-
tons in nonlinear physics. In particular, gravitational solitons do not preserve their
amplitude and shape in time, neither their collisions are elastic, admitting inelastic
phenomena, like soliton fusions, at least in some circumstances.

Let me briefly review the inverse scattering transform for solitons in nonlinear
evolution equations; my focus is to compare it with the inverse scattering method
developed in 1978 by Belinski and Zakharov to generate exact solutions of the
vacuum Einstein’s field equation. Both exact gravitational waves and black hole
metrics are discussed in the context of gravitational solitons with emphasis in their
fusion or coalescence, a phenomenon not observed in classical solitons. This section
is based on the book by Belinski and Verdaguer [14], highly recommended to the
reader interested in a detailed presentation; a briefer one can be found in Ref. [13].

5.1 Solitons

Solitons are nonlinear waves with particle-like behaviour [9]. Specifically, they have
finite and localized energy, a finite velocity of propagation, and a persistent shape
even after they collide. Its prehistory starts in the XIX-th century, but the soliton
concept was introduced by Zabusky and Kruskal in 1965. These researchers made a
numerical analysis of the Korteweg—de Vries (KdV) equation as a continuous model
of the Fermi—Pasta—Ulam-Tsingou problem. The particle-like behaviour observed
in their simulations was understood around 1967 thanks to the work of Gardner,
Greene, Kruskal, and Miura (GGKM). They develop the so-called Inverse Scattering
Transform (IST) to obtain the general solution of the Cauchy problem for the KdV
equation. In 1968, Lax showed that the equations solvable with the IST of GGKM
correspond to the compatibility condition of a pair of linear operators, the so-called
pair of Lax operators.

The IST developed by GGKM applies to first-order evolution equations. Each
nonlinear, one-dimensional, partial differential equation (PDE) solvable by the IST
is the compatibility condition of the pair of Lax operators (£, <7). Let us write the
equation as

Pi(u) = du — F(u, d,u, du,...) =0,
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where 7 is the time variable, x is the space coordinate, and F is a nonlinear function.
The IST interprets this equation as the compatibility condition

QL+ L — ALY = Pr(u) ¥,

of a pair of linear differential operators .Z(d,) and <7 (3,), both with coefficients
depending on u(x, t) and its derivatives, associated to the linear problems

LY =rv, =Y.

The IST requires that the eigenvalues of the problem £’y = A ¢, do not change in
time, i.e., 9, A = 0, and that ¥ = 9,3 — /¢ be an eigensolution, i.e., LY =2,
For example, for the KdV equation

ou —6udu—+ afu =0,
the Lax operators discovered by GGKM are
L =-+u, oA =-49+6ud, +3u,.

In 1972 Zakharov and Shabat showed that the IST of GGKM is applicable to
the IVP for the cubic nonlinear Schrodinger equation. Wadati showed in 1972 that
the method extends to the modified Korteweg—de Vries (mKdV) equation. In 1973
Ablowitz, Kaup, Newell, and Segur (AKNS) showed that the [IVP for the sine-Gordon
equation can be solved in the same way, but instead of using a Lax pair, they introduce
the so-called pair of AKNS operators. Since then, many other nonlinear evolution
equations have been discovered to be solvable by the Inverse Scattering Transform
which is currently interpreted as a nonlinear generalization of the Fourier Transform.

For second-order evolution equations the IST developed by AKNS should be
used, which is applicable to first-order ones too. The nonlinear PDE solvable by the
IST is the compatibility condition of the AKNS operators (%, 7). The equation

Pr(u) = 9u — G(u, du, u,..) =0,
must be the compatibility condition
OU =0V +UYV — VUV = Pru)V,

of a pair of linear differential operators % (d,; A) and ¥/ (9,; 1), both with coefficients
depending on u(z, t) and its derivatives, associated to the problems

V=V, V=V,

The AKNS method requires that the spectral parameter A in the problem 9, =
V¥ do not change in time, i.e., ;A = 0, and that ¥ = 9,V — ¥y be a solution
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of 3, = % . For example, for the sine-Gordon equation 8u — d%u = sin(u),
written as 9,0, u = sin u, after using light-cone coordinatest = v — zandx = 7 + z,
the AKNS pair is given by

o —ix —0d.u/2 _ 1 fcosu sinu (oY
%_(azuﬂ iA )’ 7/_4A(sinu—cosu>’ lIl_(w>.

5.2 Gravisolitons

The inverse scattering method (ISM) developed by Belinski and Zakharov (BZ) in
1978 was inspired in the IST of AKNS. The gravisolitons, or gravitational solitons,
are metrics gqg, foro, $ =0, 1, 2, 3, admitting two commuting Killing vectors, i.e.,
two Lie symmetries. Basically, there are four spacetimes admitting these symmetries:
cylindrical gravitational waves, exact plane waves, inhomogeneous cosmologies, and
stationary axisymmetric spacetimes. In the first three cases, both Killing vectors are
space-like, while in the last case, one Killing vector is space-like and the other one
is time-like. In order to compare the IST with the ISM, in this section only the last
case will be considered, i.e., gravisolitons representing black hole solutions over a
Minkowski spacetime [14].

Let us take a four-dimensional metric in cylindrical coordinates (x°, x!, x2, x3) =
(t,r, 0, 2), using relativistic units with ¢ = 1. The metric is stationary and axisym-
metric if it has the two Killing vectors 9, and 9y, that generate the time flow and,
locally, the axial symmetry. Such a metric can be written as

ds® = gup(r, 2) dx" dx" + f(r,2) (dr? + d2?) ®)
where g5, fora, b = 0, 2, is a Lorentz metric with determinant det g,,(r, z) = —r?
(the last condition can be taken without loss of generality). Notice that this metric is a
generalization of the Schwarzschild metric for a spherical, stationary black hole, first
published in 1916; it also generalizes the Kerr metric for an axisymmetric, rotating
black hole, first published in 1963.

The Einstein equations in vacuum R, = 0 with metric (8) transform into simple
equations for g, (7, z) and f (r, 7). Specifically, a2 x 2 matrix, elliptic, partial differ-
ential equation for the metric g, (7, z), and two scalar, hyperbolic, partial differential
equations for f(r, z). The metric g, (r, z) solves

0,U+93,V=0, )
where U and V are the 2 x 2 matrices
U=r@gwg”. V=r@gm s, (10)

and g“® is the inverse of the matrix g,;. And the function f solves
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mf:—i+iqu—vﬂ, @f:iﬁamq, (11)
r 4r 2r
where Tr is the trace operator. In order to obtain a soliton solution, first Egs. (9)
and (10) are solved for g,;, and subsequently Eq. (11) for f. Notice that the applica-
tion of the trace operator to Eq. (9) results in a linear wave equation for the absolute
value of the square root of the determinant of the metric g,;, whose solution is
(r—2)+ h(r+2).
Apparently, Egs. (9)-(11) are not related to the IST developed by AKNS. However,
Belinski and Zakharov interpreted Eq. (9) as the compatibility condition for an AKNS
pair of linear differential equations given by

rU+AV rvV—aU

DYy=—"" Y, Dy =— ", 12
w )\’2+r2 ’lp Zw )\’2+r2 W ( )

where X is a complex constant independent of the coordinates r and z, ¥ (r, z; X) is
the so-called generating matrix, such that g(r, z) = ¥ (r, z; 0), and the differential
operators D, and D, are defined as

2Ar 222
)\2—4_,.281, DZ:87

D=0+ Ao

3 . (13)

The determination of the general solution of Egs. (9)—(11) is outside the scope
of this review; the interested reader is referred to Ref. [14]. Let me only highlight
the main difference between the ISM of BZ and the IST of both GGKM and AKNS.
The IST, when applicable to a given nonlinear evolution equation, can be used to
obtain the general solution of its Cauchy problem; this solution is composed of
a multisoliton solution (a finite number of solitons in pairwise interaction) over a
radiation background. However, the ISM cannot be used to obtain the general solution
of Einstein field equation with two Killing vectors, but only to obtain gravitational
multisoliton solutions. Indeed, the ISM is reminiscent of the Backlund transformation
or the dressing operator methods that allow the construction of multisoliton solutions
by explicit combination of individual solitons.

The ISM allows the construction of multisoliton solutions over a given background
metric, the so-called “seed solution,” by combining individual gravisolitons. From
a seed gy, the matrices Uy and V, are computed by solving Egs. (9) and (10), and
the generating matrix ¥ (r, z; A) by solving Eqs. (12) and (13). For the Minkowski
metric go = diag(—1, 7?), fo = 1,and ¥y = diag(—1, r> — 2z A — A?). Next, anew
generating matrix i = x v is determined, where the dressing matrix x (r, z; A) is
a2 x 2 matrix admitting, for multisoliton solutions, the form

n

Ry
x=I+Z , (14)
Pl U
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where I stands for the identity matrix, and the residue matrices Ry and the poles
are independent of A, i.e., they depend only on the coordinates r and z. The n poles
are usually referred to as “pole trajectories” since they are nonconstant functions
Wi (r, ) that satisfies the pair of differential equations given by

-2} 27

oy = 55—, Oy = —5—, 15
Ik o Mk P 15)

whose solutions are the roots of the quadratic algebraic equation
Hi+2G@—o) e —r’=0, (16)

where wy are arbitrary, generally complex, constants. Hence, the two pole trajectories
for each wy are given by

up = wp —z £/ (wp —2)> +r2. 17

The matrices R; in Eq. (14) are degenerate and determined by two vectors, i.e.,
(R)ap = n® mgk); the vector m® depends only on the seed metric gy, but the vector
n® has arbitrary values, the so-called BZ parameters of each soliton. After some
algebra [14], the metric (8) can be written as

"R

k=1

The determinant of the matrix g is

detg = (=1)" r* (]‘[ iz) det go , (19)

k=1 "k

where the condition det gy = —r? implies that the number of gravisolitons n must
always be even; an odd number leads to an unphysical metric signature with the
opposite sign (which is equivalent to flat space without gravisolitons). All stationary
axisymmetric solitons in Eq. (18) appear in pairs forming two-soliton bound states.

The simplest case for the metric (8) is the two-soliton solution, i.e., two poles
on a flat spacetime background. For two complex poles, i.e., with w; complex, the
metric presents a naked singularity without a horizon, so it is forbidden by the cosmic
censorship hypothesis. In the case of two real poles, i.e., with wy real, the singularity
in the metric (8) is hidden behind an event horizon, so it corresponds to a black
hole solution. Specifically, the Kerr—-NUT (Newman—Unti—Tamburino) black hole is
obtained as the most general two-soliton solution with real-valued pole trajectories
w1 and u, in Eq. (14). Let me omit the detailed mathematical expression, but only
emphasize that it has three real parameters m, a, and b. In the Kerr metric (b = 0) and



Nonlinear Gravitational Waves and Solitons 235

the Scharzchild metric (a = b = 0) the parameter m corresponds to the ADM mass
of the black hole. The Taub—NUT metric (a = 0, b # 0) and the general Kerr—NUT
metric (a # 0, b # 0) are not asymptotically flat so they cannot be interpreted as
physical black holes.

For further details on the construction and the analysis of the general properties
of gravitational n-soliton solutions obtained by the ISM my best recommendation
for the reader is the book by Belinski and Verdaguer [14].

Let me clarify why, in physical applications of general relativity, gravisolitons do
not have the key role that solitons have in nonlinear physics. From the mathematical
point is understandable that gravitational solitons are localized perturbations on a
gravitational background described by the ISM that behave like solitons described by
the IST. However, their physical interpretation have several drawbacks. Specifically,
it is difficult to define concepts like amplitude, velocity of propagation, or even shape
for gravisolitons in analogy to those concepts in solitons. Even there is no notion of
energy (or mass) for the gravisolitons; although the root of this problem is that energy
cannot be defined locally in general relativity, but only globally in asymptotically
flat spacetimes (isolated systems). Moreover, for real-pole trajectories, the field of
the gravisolitons is not smooth in spacetime, presenting discontinuities in the first
derivatives at some null hypersurfaces. In fact, there is no time evolution of the
gravisolitons from a free state at r = —oo to a free state at + — 0o, without the
appearance of singularities in some regions.

Gravisolitons share some properties with classical solitons in nonlinear physics
but they cannot be considered true solitons, since the poles in the ISM are not constant,
but pole trajectories. In the collision of two gravisolitons their shapes change, instead
of the shape preservation property of solitons. The usual shift in the positions of
solitons after their collisions, in the case of gravisolitons, corresponds to a change in
shape and a shift in time. Furthermore, gravisolitons show surprising properties, from
the point of view of classical solitons, like soliton coalescence, or pole fusion [14].
Concretely, two pole trajectories can coincide at some point in spacetime and fuse
together transforming into a single pole trajectory, i.e., a single pole. The fusion of
two solitons into only one is not observed in other physical systems having solitons.

5.3 Cylindrical and Planar Gravitational Waves

Exact, nonlinear, gravitational waves are referred to as either cylindrical waves or
planar waves. The first ones are cylindrically symmetric gravisolitons, referred to as
cylindrical waves by Kompaneets in 1958, who introduced the metric

ds* ="V (—dt* +dr*) +r* e ?V do* + &V (dz + wdb)*,  (20)
where the functions y, v, and @ depend on ¢ and r only; this metric, for w = 0,

reduces to the Einstein—Rosen metric published in 1937. The second ones are plane-
fronted gravitational waves with parallel rays (pp-waves), first studied by Brinkmann
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in 1925, and Baldwin and Jeffery in 1926, but currently referred to as planar waves.
Both cylindrical and planar waves have two polarizations, like linear gravitational
waves, reducing to them asymptotically.

Cylindrical and planar gravitational waves are gravisolitons for adynamical metric
with two commuting, space-like, Killing vectors. Cylindrical solitons are given by

ds® = f(t,r) (—dt* + dr?) + gap(t, r) dx“ dx? , (21)

where g5, fora, b = 2, 3,1is an Euclidean metric with determinantdet g, (¢, r) = r.
This dynamical and cylindrical metric has the Killing vectors dy and 9., that generate,
locally, the cylindrical symmetry. The Einstein equations in vacuum R,g = 0 with
the metric (22) transform into simple differential equations for g, (¢, r) and f (¢, r);
concretely, a2 x 2 matrix, hyperbolic (instead of elliptic like in black hole solitons),
partial differential equation for the metric g, (¢, r), and two scalar, hyperbolic, partial
differential equations for f(t, ). The ISM proceeds similarly to the case presented
in the previous section, but with small and significant differences; let me omit further
details and, again, refer to the book by Belinski and Verdaguer [14].
Planar solitons are given by

ds®> = f(u,v)dudv + gap(u,v)dx*dx’, (22)

where u =t —z, v=1t+z, and g., for a, b = 1, 2, is an Euclidean metric with
determinant det g, (u, v) = ¥ (u, v)*. This dynamical metric has the Killing vectors
d, and 9y, that generate, locally, the planar symmetry (in cylindrical coordinates).
The exact gravitational waves obtained by the ISM of BZ generally have the prob-
lems already found by Einstein and other physicists, the appearance of singularities
during their mutual interactions. When two of such nonlinear waves collide, due
to mutual focusing, the interaction region becomes locally isometric to the interior
of the Schwarzchild metric, with a singularity or Cauchy horizon where det g = 0.
The current interpretation of this phenomenon is that a black hole forms when two
pp-waves, or two cylindrical waves, collide. This interpretation has resulted from
the analysis of multisoliton gravitational solutions obtained by the ISM; although, it
was pioneered by Tomimatsu and Sato in 1972 before the development of the ISM.

5.4 The Fusion of Black Hole Solitons

The source of the gravitational waves observed by aLIGO, the coalescence of two
stellar-mass black holes, in principle, can be described by an exact solution using
the ISM of BZ applied to the metric (8). Astrophysical black holes are described by
either Schwarzchild or Kerr gravisolitons, that corresponds to two pole solitons. A
reasonable proposal is that black hole binary systems be interpreted as four pole soli-
tons (14). However, the physical interpretation of these metrics, already discovered
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before the development of the ISM by Tomimatsu and Sato [34], has been a subject
of controversy.

The double Kerr solution is a four soliton solution with two pairs of pole trajec-
tories (w1, wo) and (w3, we). The fusion or coalescence of both Kerr black holes
into a single one results from taking the limit w3 — w; and w4 — w,, keeping
the NUT parameter b = 0 for asymptotic flatness; after this limit process, the pole
trajectories coincide at some point (r*, z*), i.e. when w(r*, z*) = pu3(r*, z*) and
Wa(r*, z%) = ua(r*, z*), where a final Kerr-like solution results. Apparently, the
process is straightforward, however, there is a physical problem, the appearance of a
naked ring singularity and closed-time curves near the horizon in the final solution;
the cosmic censorship hypothesis forbidden this kind of black hole gravisoliton.

Let me conjecture a new physical interpretation of the pole fusion. The 2-soliton
Kerr solution has two non-null parameters, the mass m and the spin a (recall that
b = 0). However, the asymptotically flat, 4-soliton, double Kerr solution has five
parameters; additionally to the masses (1| and m;) and the spins (a; and a,), there is
a positive distortion (or deformation) parameter §. Originally, Tomimatsu and Sato
interpreted this parameter as an integer equal to half of the number of solitons (6 = 1
for the Kerr solution and § = 2 for the double Kerr solution). The physical difficulty
with this parameter is the appearance of a ring naked singularity outside the horizon
for § > 1; note that this singularity is similar to the ringhole discussed in Sect. 4.3.

The fusion of the double Kerr solution results in a single Kerr solution, but with § =
2 instead of 6 = 1. Hence, for the majority of physicists, the Tomimatsu—Sato fusion
solution is unphysical [14]. However, there is nothing that forbids non-integer values
for 6. In fact, the distortion parameter is related to the total quadrupole momentum
Q of the 4-pole gravisoliton, given by

0=Mm a2+<1—a2>52_1 ,
342

where M = m| + m, and a = J/M is the total angular momentum of the binary
system. The stability analysis of the Tomimatsu—Sato has not been published, but
the cosmic censorship hypothesis suggests that the § = 2 Kerr solution resulting
from the fusion must be unstable; in such a case, I conjecture that it can dynamically
change into a § = 1 Kerr solution. In this process the quadrupole momentum reduces
its initial value in an amountof AQ = M? (1 — a?)/4 by the emission of gravitational
waves.

The detailed analysis of the continuous change of the distortion parameter from
8 =2 to § =1 for the double Kerr solution during pole fusion has not been pub-
lished yet. The process requires numerical simulations similar to those presented by
Tomizawa and Mishima for the fusion of cylindrical waves [35]. They have shown
that the fusion of two ingoing solitons at past null infinity result in a single outgoing
soliton at near future null infinity, including the loss of some energy in the form of
linear gravitational waves. Further research in this topic is welcome.
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6 Conclusions

The direct detection of gravitational waves generated by the fusion of two black
holes by both interferometers of Advanced LIGO was Science’s 2016 Breakthrough
of the Year. Gravitational waves solve the weak-field approximation of the Einstein
equations in vacuum, a limit in which they evolve as linear waves. However, exact
gravitational waves can be obtained by means of using the inverse scattering method
developed by Belinski and Zakharov. These nonlinear gravitational waves behave
as gravitational solitons, or gravisolitons, propagating energy and momentum like
an intrinsically nonlinear phenomenon. Moreover, Kerr black holes are also soliton
solutions of Einsteins equation in vacuum. Surprisingly, there is an exact solution for
the fusion of two black holes; its physical interpretation is controversial, since ring
singularities appear outside the event horizon. However, numerical simulations of
the collision of two black holes in general relativity also show a ringhole in the pair
of pants solution. It is very unstable, radiating energy in the form of gravitational
waves and transforming into a standard horizon. This author has conjectured that
a similar interpretation can be done for the exact multisoliton solution modelling
the coalescence of two black holes. The confirmation of this conjecture requires
gravisoliton numerical simulations.

The future of gravitational wave astronomy is brilliant. In 2017, the three-
kilometre laser interferometer Advanced Virgo, in Italy, has joined the two four-
kilometre interferometers of Advanced LIGO, making easy the precise localization
of the sources in the sky. In 2018, the three-kilometre interferometer Kamioka Grav-
itational Wave Detector (KAGRA), in Japan, is expected to enter operation. And
in 2020, another four-kilometre Advanced LIGO interferometer must be listening
gravitational waves in India. Moreover, a consortium of European partners is plan-
ning a 10 Km laser interferometer, the Einstein Telescope, for the late 2020 s. Finally,
the European Laser Interferometer Space Antenna (eLISA), a constellation of three
satellites forming a triangular interferometer with one-million-kilometre arms, is cur-
rently in development by the European Space Agency, to be deployed in space in the
mid-2030s. What new astrophysical phenomena will gravitational wave astronomy
give us in the future? Nobody knows, but the field is really exciting.
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Local Integrability for Some Degenerate )
Nilpotent Vector Fields L

Antonio Algaba, Isabel Checa and Cristébal Garcia

Abstract This work is about the analytic integrability problem around the origin in
a family of degenerate nilpotent vector fields. The integrability problem for planar
vector fields with first Hamiltonian component having simple factors in its factor-
ization on C[x, y] is solved in Algaba et al. (Nonlinearity 22:395-420, 2009) [5].
Nevertheless, when the Hamiltonian function has multiple factors on C[x, y] is an
open problem. In this second case our problem is framed. More concretely, we study
the following degenerate systems:

2n +}’ly2)+ , _)'):)C2’171(X2n +I’ly2)+ ,

X =—-y
with n € N, where its first quasi-homogeneous component has Hamiltonian func-
tion given by (x> + ny?)?/(2n). The analytic integrability of the above system is
not completely solved and only partial results are obtained. The results are applied
to some particular families of degenerate vector fields for which the integrability
problem is completely solved.
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1 Introduction

The study of the integrability is to find the existence of first integrals and finding the
functional class which this first integral of a given differential system must belong
to. This is one of the main open problems in the qualitative theory of differential
systems in R? (see [5, 13, 15, 22, 38] and references therein).

A method for determining the phase plane of a given planar system around an
equilibrium point consists in obtaining a first integral; that is, a function which is
nonconstant, defined in some nonempty open subset of R, which is constant along
the solution curves of the system.

Another open problem is the center problem, which consists in the distinction
between a center and a focus. This problem is closely related to the integrability and
the reversibility problem (see [3, 4, 6, 7, 16, 21, 22, 34, 39] and references therein).

In this work, we will denote the system as

x = F(x), (D

where x = (x, y)” € R? and F = (P, Q)7 with P and Q analytic functions that
vanish at the origin.

The above system is formally (analytically) integrable if there exists a formal
(analytical) first integral. Clearly, H is a ¢! first integral if, and only if, it satisfies
VH - F = 0 (integrability equation).

With regard to the center problem, a system has a center at a singular point only if it
has linear part of center type, i.e. with imaginary eigenvalues, or nilpotent linear part
or null linear part and it also is monodromic. Any nondegenerate center has always
a local analytic first integral in a neighborhood of its singular point (see [7, 22, 31,
35-38]), that is, the center problem and the integrability problem are equivalent to a
nondegenerate singular point. However, there exist nilpotent and degenerate centers
that do not have a local analytic first integral (see [23, 27-30, 33, 34, 38, 40] and
references therein). There exist methods to determine nondegenerate and nilpotent
centers of a given polynomial system (see [1, 10, 12, 17, 25, 26, 30, 33, 34]).
Nevertheless there is not any method to determine centers for a general degenerate
singular point.

The characterization of a nilpotent center in terms of its normal form is due to
Moussu [33] and Berthier and Moussu [19]. Strézyna and Zotadek [39] have obtained
the orbital normal form of nilpotent centers with analytic first integral. Any nilpotent
center has a local analytic first integral if, and only if, it is analytically equivalent
to the Hamiltonian system X = y, y = —x?~! where k > 1. Chavarriga et al. [23]
study the analytical integrability for reversible nilpotent centers. The integrability
problem has been studied for a few families of degenerate singular points (see [2, 5,
8, 9, 25, 26] and references therein).

In [5], it is studied the integrability problem for a class of planar systems and there
are established the following results.
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Theorem 1 Suppose that the first quasi-homogeneous component of the degenerate
system F is F, = X;, = (—0h/dy, dh/dx)T, where h has only simple factors in its
factorization on Clx, y]. Then, the quoted system is formally integrable if, and only
if, it is formally conjugated, via dissipative transformations, to a divergence-free
system.

Theorem 2 Suppose that the first quasi-homogeneous component of the degen-
erate system F is F, =X, = (—=dh/dy, dh/dx)T, where h has only simple fac-
tors in its factorization on Clx, y]. Suppose that the quoted system is analyt-
ically (or formally) integrable. Then, one of the first integrals is of the form
I = h+ ---, where the dots denote higher-order quasi-homogeneous terms.

Using these results, the integrability problem for the next families can be solved.
In [8], degenerate systems of the following form were considered

i=y +3ux’y +o(x,y),  y=—x"=3uxy’ +o(x,y’),  weR,
)
and the analytic integrability problem for them was analyzed establishing the fol-
lowing result.

Theorem 3 System (2) is analytically integrable if, and only if, it is formally orbital
equivalent to ¥ = y*> 4+ 3ux?y, y = —x> — 3uxy>.

In [9] it was considered degenerate systems of the form
=y +2ax3y+---, y=—x>—3ax*y* + .-, a € R, 3)

and the analytic integrability problem for them was also studied where here the
dots mean terms of higher order than the first component in the quasi-homogeneous
expansion (see definition of quasi-homogeneous expansion below). The next result
was obtained in [9].

Theorem 4 System (3) is analytically integrable if, and only if, it is formally orbital
equivalent to X = y* + 2ax3y — 2Box*y, y = —x° — 3ax?y* + 4Box>y?, where o
is a function of the parameters of the first quasi-homogeneous components of system

Q).

Theorem 1 solves the integrability problem for F = F, + - - -, in the case that
F, = X, where all the irreducible factors of 4 on C[x, y] are simple. The case
div (F,) # 0 orF, = X}, where h has multiple factors on C[x, y] is an open problem.

Nevertheless a necessary condition so that F be integrable is that F, be also
integrable. The integrability problem for quasi-homogeneous vector fields, F, =
X, + uDy with Dy = (t1x, )T, i # 0, is resolved in [13].

It is known, see [2], that the study of the integrability of a system whose quasi-
homogeneous vector field has non null divergence is equivalent to study the integra-
bility of a system whose quasi-homogeneous vector field is Hamiltonian where its
Hamilton function has multiple factors on C[x, y].
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In [2], the analytic integrability problem around the origin in a family of degenerate
centers was studied and we showed the difficulty of the integrability problem even
inside this family of degenerate centers. Concretely, there we considered degenerate
systems of the form

i=—y@ )+, Y =x )+ 4)

where the dots signify terms of higher order than the first component in the homo-
geneous expansion and which corresponds to X, + - - - whose & = (x* + y*)?/4.1In
[41], this type of systems was studied and it was proved that there are centers inside
this family that do not have an analytic first integral.

Recall that if & has not simple factors on C[x, y] Theorem 1 can not be applied. In
[2], we obtain an useful result to the integrability problem for this kind of systems,
because it gives us some necessary conditions to have formal integrability and also the
value of n € Nto have firstintegrals of the form / = (x? 4+ y?)" + - - - . Nevertheless,
there is a particular case which remains open.

Summarizing, the nodes and saddle-nodes are not analytically integrable. A sin-
gular point with linear part of center type is analytically integrable if, and only if, it
is a center and if, and only if, it is orbitally linearizable. System (1) is not analyti-
cally integrable around a non-resonant saddle singular point, but a resonant saddle
has an analytic first integral around the singular point if, and only if, it is orbitally
linearizable. A nilpotent vector field, with first quasi-homogeneous component non-
reducible, is analytically integrable if, and only if, it is orbitally equivalent to its
first quasi-homogeneous component, see [5, 11]. The remaining global open case is
the case when we have a degenerate singular point. However there are some partial
results. The analytic integrability problem when F, = X}, with & having only sim-
ple factors on C[x, y] is completely solved in [5]. The case F, = X, with & having
multiple factors on C[x, y] is still open, although in [2] there are some partial results.

We have structured this chapter as follows. In the next section, we summarize
some preliminary definitions and some technical results. In the third section, we
present our system and we give a formal orbital equivalent normal form for it. We
transform this system to obtain an irreducible first quasi-homogeneous component
and we analyze the different Newton diagrams. In the fourth and fifth sections we
provide integrability conditions for our system. First, we study when this system
is reducible and then, we suppose it irreducible, give necessary conditions for the
integrability. Finally, we finish the chapter with an application to a particular family
of degenerate vector fields.

2 Preliminary Definitions and Technical Results

In this section we remember the following concepts.
Given t = (1, t,) non-null with #; and #, non-negative integer numbers without
common factors, a function f of two variables verifying f(e"x, e2y) = ek f(x, y)
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is called a quasi-homogeneous function of type t and degree k and we denote by
f € P AvectorfieldF = (Fy, F,)" verifying Fy € Z;,, and F, € P}, iscalled
a quasi-homogeneous vector field of type t and degree k and we denote by F € 2}.

Abasis for the vector space 7} is givenin[13]: 27} = span{xfi+ata=iylarniyhs |
if there exist ki, k», k3 integer numbers with 0 < k| < £,,0 < ky < t;, k3 > 0 where
k = kit; + katr + kztitp; otherwise ‘@It = {0}.

We can expand any vector field F into quasi-homogeneous terms of type t of
successive degrees. So, we write the vector field F as

F:Fr+Fr+1+"'v

forsome r € Z, withF; = (P, Qj_HZ)T € Q; and F, #£ 0. Such expansions will
be expressed as F = F, + ¢ — h.h.o.t.

We will write Dy = (t1x, by)" € 2§ and X, = (—dh/dy, dh/0x)", adissipative
quasi-homogeneous vector field and the Hamiltonian vector field associated to the
polynomial &, respectively. X, € 2%, if h € P! 411> Where [t| = 7 4 1. Even more,
any F, € 2} can be written as

Fr. =X + uDg )

where h = (Dg A Fy)/(k + |t]) and u = div(Fy)/(k + |t|), being Dy A Fy € ﬂ,:Hﬂ
the wedge product of both vector fields and div(Fy) € @,ﬁ the divergence of Fy, see
[5]. This sum is called the conservative-dissipative splitting of a quasi-homogeneous
vector field.

The method to obtain a normal form under orbital equivalence for the system (1)
is explained in, for example, [14]. However, we will remember some notions.

In the problem of getting a normal form for the system (1), we analyze the effect
of a near-identity transformation x = y + P;(y) and a reparametrization of the time
given by dt/dT = 1 4 i (x), where Py € Q,‘( and pu; € 2, withk > 1.

In the transformed system y = G(y), the quasi-homogeneous terms agree with
the original ones up to » 4+ k — 1 order and for the degree r + k it has

Grix = Frp — L (P, i)
where we have introduced the homological operator under formal orbital equivalence:

LD x Py — D,
Py, ux) = L P, i) = [P, Fr] — i o (6)

Following the ideas of the classical normal form theory, we choose (P, uy) €
2! x P} adequately to simplify the (r + k)-degree quasi-homogeneous term in
system (1), by annihilating the part belonging to the range of the linear operator .Z;.
In this case, it is said that this term is in normal form under orbital equivalence. So,
by means of a sequence of near identity transformations and time-reparametrizations
system (1) can be formally carried out to normal form under orbital equivalence.
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We define the following linear operators, to study the homological operator in the
case F, = Xy with H = h>, h € 2%,
2z

by P, —> P byt P, — P
2
Mig—r  —> V,Mkfr 'XH Mk—r —> V,U,](_r ‘Xh,

i.e. the Lie derivative of the lowest degree quasi-homogeneous term of Xy and
X, respectively.
As in [14], we have the following lemma modified to our purposes.

Lemma 1 Suppose that the lowest-degree quasi-homogeneous term of system (1)
isF, =Xy € 2, where H € 2! 41t A complementary subspace to the range (co-
range) of %, with k > 1, can be written as

Cor(%) = X @ Cor(¢£;)Do,

rHt+k

being S, ¢+« a subspace verifying
Cor(€ii i) = Sryit1+x ® (HCor(€y—,) N Cor(Exiy))

where Cor(€_,) is a complementary subspace to the Range({;_,) in 9, such that
HCor(Ly—,) N Cor(£yyy) has maximal dimension.

Proposition 1 Suppose that the lowest-degree quasi-homogeneous term of system
() isF, =Xy € 2!, with H=h? h € 2',,. A complementary subspace of the
2

range of Ly_, is

Cor(£y_,) = hCor({y_,) & Ay,
where Ay is such that Pf = Ay @ h - '@;,L\w'
2

Proof Forall u € 3”,:4, wehave £, () = Vu - X2 =2V - X, = 2h£7k_,(,u),
from where we deduce Range(€y_,) C h - Range(fk_,).

Reciprocally, & - Range(fk_,) C Range({y—,) because h ~l7k_, (Wy=h-Vu-
X, = V% X = Ek,,(%).

Hence we have the equality Range(ly—,) = h - Range(fk,r). The result follows
from here.

3 A Family of Perturbed Degenerate Centers

The goal of this chapter is to study the formal integrability problem around the origin
of an analytic system of the form

9" ="+ )=y, x> Y + g —hhout. (7)
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First we remember that if an analytic vector field is formally integrable around an
isolated singular point then it is analytically integrable, see [32]. Then, the formal
integrability and the analytic integrability are equivalent.

We start computing a formal orbital equivalent normal form for system, to study
the formal integrability.

Theorem 5 A formally orbital equivalent normal form for system (7) is

o0
&N = 0P )=y, DT 4 Y X ey ity + (057 +dix T Do +

Jj=3n
2n—-2 oo 2n-2 )
Z efl)xihDo + Z Z efj)xitho, (8)
i=n j=2 i=0

where h = ﬁ(xzn + nyz).

Proof Inthiscase,r =3n —land [t| =n + 1.

In order to calculate a co-range of .%;, that is, a complementary subspace of
the range of the homological operator .%;, we apply Lemma 1, i.e. we have that
Cor(%) = Xs,,,, ® Cor(£x)Dy with k > 1. Therefore, we must compute Cor (£;)
and the subspace Sa;,.

From Proposition 1, we obtain

Cor(¢y) = hCor(€x—,) ® Aptan—1,

k > 1, where we can choose A; =< x/,x/™"y >, j > n.
From [14], Cor(£;_,) is

< xktn=1 ifl<k<n-—1,
<xiht> ifk+n—1=2nl+j 0<j<2n—-2 1leN
0 otherwise

So, Cor(¥;) is:
e lfl<k<n-—1,

Cor(ty) =< xF3n-1, xk+2n71y7xk+nflh -
o Ifk+3n—1=2nl+j,0<j<2n—-21¢€N,

Cor(ty) =< xk+3n—l’xk+2n—1y’xjhl+l -
o Ifk+3n—1=2nl+2n—1,1 e NU{0},

Cor(ek) —< xk+3n—l’xk+2n—1y > .



250 A. Algaba et al.
The subspace S+« is such that

Cor(brsnt1) = Santk @ (HCor(€y—3,41) N Cor(€pynt1)) -

Considering the previous calculations, we can deduce
Sunar =< x¥Hk x3nrky S withk > 1.
Therefore, a co-range of the homological operator is:

elfl<k<n-—1,
Cor(Z4) =< Xy, Xyerany, XKDy 2= ypg, =1 hDy >
e lfk+3n—1=2nl+j,0<j<2n-2,l €N,
Cor(Z) =< Xyrrin, Xyhsmy, xkB3n=lpg xkH2=lypg xR Dy >
o Ifk+3n—1=2nl+2n—1,1 e NU{0},
Cor(L) =< Xy, Xperany, XK 71Dg 27 1ypy >

The following result is obtained as a consequence.

Theorem 6 System (7) is formally integrable if and only if, system (8) is formally
integrable.

We will analyze the formal integrability of system (8). In the following result we
apply the blow-up technique and we transform system (8) into another one with first
quasi-homogeneous component irreducible.

Lemma 2 The blow up x = u, y = u"v, the scaling of time dT = u®>'~'dt and then
the translation x, = /nv + io, where 0 = £1 withi = \/—1 transforms system (8)
into

2 3io 1
o 2 Jj— 3n+2 Jj—3n+2
u = —uxy + —uxy — fuxz Z bju Z(c, — —d u
n n f Jj=3n f Jj=3n [
1 ) 2n—2
+; Z dju]—3n+2 f Z e(l) i— n+2x2(x2 —2io)
Jj=3n i=
2n—-2
(J) pit2nj=3n+2, J _ J
Z Z (2n)/ ¢ 3 (2 = 2ig)’,
j>2 i=0
Xy = 43 —4iox3 +x5 + 3G +n+ D(aj — byl
Jj=3n ﬁ
+—f§:Q+n+Dbu’hH2 ©)

Jn

Jj=3n
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To study the integrability problem of system (8), we analyze the different Newton
diagrams in function of the parameters of system (9), and we give some definitions
that depend on the vector field in orbital normal form.

The Newton diagram of system (9) (see [20, 24]), has an inner vertex Vy = (1, 2),
associated to the vector (%uxg, —4x§)T, from which leaves a non compact edge.

We consider the following non-negative integers

1
m := min jeN,jz3n:a%+fb§7é0
7 n

1
[ := min jeN,szn:c?-i—fdjz-;éO s
n

) i=0,..., 2n =2 if j =2,
k := min 2nj+i:el.(1)7é0,jeNand or . (10)

where min () := 4o0.

e In the case m < 2/ — 3n + 1 with m < 400 the Newton diagram has a exterior
vertex V, = (m — 3n + 2, 0) associated to the vector field (0, m +n + 1)(a,, —
ilbm)um—3n+l)T.

n

e The case 2] — 3n + 1 < m < 400 has also the inner vertex V; = ({ —3n + 2, 1)
associated to the vector field (%ﬁ (¢c; — %d;)u’ —342 0)T and two compact edges.

e Inthecasem =2/ — 3n + 1 < +o00, the Newton diagram has only a unique com-
pact edge, because the vector field (ﬁ(cl - %d;)ul —3n+2 )T is not associated
to any vertex.

e Ifm = +o00, we will see by Theorem 9 that system (7) is integrable if/ = k = +o00.
In this case the system is formally orbital equivalent to system (x> 4 ny*)(—y,
x2n—l )T .

Hence the system has a first integral of the form I = (x> +ny?) + - - -.

e Ifm < +o00, withl = k = +o00, system (7) is formally integrable because system

(8) is Hamiltonian of the form

o0
G =y (—y DT+ X ey
Jj=3n

0
=nXp + E Xajxj+n+l+hjxj+ly
j=3n

where h = (x*" 4 ny?)/(2n). Hence system (7) has a first integral of the form
I =(x2n+ny2)2+“"

Consequently, from now on, we assume / < 400 or k < 4-00; i.e., we suppose
that the vector field is not formally equivalent to a Hamiltonian one (Fig. 1).
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(a) (b) (c)
(1,2) (12) (1,2)
@ (I-3n+2,3) (1-3n+2,1) (I-3n+2,1)
(m-3n+2,0) '(rn-3n+2,0] '{m-3n+2,0]
(d) (e)
(1,2) 1,2

I-3n+2

Fig. 1 acasem <2l —3n+1,bcasem =2/ —3n+1,ccasem > 2l —3n+ 1, d) case m <
+00,l = +o0,ecasem =1 = +00

4 The Main Results

First we consider the case when system (7) is reducible.

Definition 1 The vector field F is reducible if there exists a scalar function f, with
f(0) =0, such that F = f - G. In this case, f is the reducibility factor of F.

Theorem 7 Suppose that system (7) is formally integrable and suppose that its
associated vector field is F = (x*" 4+ ny?)(—y, x*' )T + ... System (7) has a first
integral of the form I = (x*" 4+ ny?) + - - - if and only if F is reducible.

Proof We suppose that the vector field F is reducible. Then it can be written
F=("+ny’+- )=y x" )+ ]=f-G.

As F is formally integrable, the vector field G is formally integrable too. Even more,
by Theorem 2, a first integral of G is of the form I = (x>" + ny?*) + - - - . Therefore,
I = (x*" 4+ ny?) + - - is a first integral of system (7).

Now, we assume that / = (x*" + ny®) + - - - is afirst integral of F. By the Arnold
Theorem, see [ 18], there are a change of variables (x, y) = ¢ (u, v) with I (¢ (1, v)) =
h(u,v), where we denote h = x>" + ny?, being I (¢ (u, v)) = h(u, v) a first integral
of the transformed vector field G = ¢,F.

We write G as G = (x> +ny*)(—y, x> DT + 37, 5 G;.
We prove that G; = f; - (—y, x> )T, Vj > 3n.

If h is a first integral of G, then it is a first integral for each G ;. So, Vi - G = O and
then Vi - (x* + ny*)(—y, x* HT + 3. . Vh-G; =0 and then Vi -G; =0,
for all j > 3n.

Jj>3n
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We writenow eachG; asG; = X, + u;Do + A, (—y, x>~ 17 withg; € A}, for
all j > 3n, (seedefinitionin Proposition 1). Then, Vi - G; = Vh ~Xg/. +2u;h =0;
therefore, h is an invariant curve of X, and we can write g; = f; - h,Vj > 3n. But
this contradicts g; € Aj; so, we have g; = 0,Vj > 3n. In consequence, Vi - G; =
2ujh =0, hence ; =0, for all j > 3n.

From here G; = A;(—y, x>, Vj > 3n.

Thus we have

G = (x2n +ny2)(_y’x2n71)T + Z )\'j(_y’x2n71)T —

j>3n
(x2n +ny2 + Z Aj)(_y’xanl)T.
Jj>3n
Summary, we can write G = f . (_y’ x2n71)T'

Undoing the change ¢, we obtain F= fl(=y, x> HT 4 ...], where
f=o"(fH)=x"+ny*+---.
Finally, we can write F as

F: (x2n +ny2+) . [(_y’x2n71)T _’_]7
thus the vector field F is reducible.

Next, we suppose that the vector field F associated to system (8) is irreducible.
We remember the following result proved in [13] that we have modified to our

purpose.

Theorem 8 The quasi-homogeneous systemx = F, = (P, Q)T, withF, ,@ﬁ P,Q
coprimes, PQ # 0 and div(F,) # 0O, is polynomially integrable if, and only if,

Do AF,) (x,y) = ex™y TTON = nix, (1)

i=1

with r + |t| = 118, + 128, + titom, ¢ #0, 8,8, € {0,1}, 6. + 6, +m >2 and
AL, ..., Ay distinct complex numbers not zero and exist ny,ny, n;, i =1,...,m
non-negative integers, not all zero, verifying

I (e + D@ +t])

Res[n(x,1),0] = —— + iféy =1,
1 o+ 06 1t

Res[n(1,),0] = — — (ny—f iféy, =1, (12)
2 nM t

Restn(1, ), al/m = L - ik DD,y

151 nm

div(F,)
Dy AF, ’

where M = ti(ny + Dé; +t2(ny + 18y, + 111 Z?;l(nj + 1) andn =
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Moreover a first integral is of the form

m
I = x8<v(nx+1)y8)'(”}-+1) l_[(yfl _ kixtz)ni+1. (13)

i=1

We write as G the vector field associated to system (9). Remember that if system
(8) is formally integrable then system (9) is formally integrable too.

Next result we give integrability necessary conditions of system (8), (a formal
normal form of system (7)). To prove it we will use Theorem 8.

Theorem 9 Let F be the associated vector field of system (8) and consider m, I,
k defined in (10). We suppose F irreducible. If ¥ is formally integrable then the
following conditions are verified.

e min{l/,m} <k, k < 400,
em <2l—-3n+1,1 < 4o,
e Ifm=2l—-3n+1, m < +00, then

io (I —3n+1)? ioc
(am — ﬁbm) + m(q — ﬁdl) # 0.

Proof We will prove the contrary result, that is, if any of the following conditions is
verified, then system (8) is not formally integrable.

e min{l,m} >k, k < +o0,
em>2l—3n+1,1 < +o0o,

(I =3n+1)7> ioc ., io
em=2—3n+1,m< 400 and ————(c; — —d;)* + (@ — —=by)

16(1 —n + 1)2 Jn Jn
=0.

We assume that min{/, m} > k. If F is the associated vector field of system (8),
then wehave F = F5,_ + F, +--- withF3,_; = %hXh, h=x"+ny>and F, =
(efoj(’)x""hjo + w)Do + X,, , where

o ¢ # 0 where jo > 2andig =0,...,2n —2o0r jo= landip =n,...,2n — 2,
o 1 =cix! +dix!7"y if k = I, otherwise j1; = 0,
o g, = a,x""*! £ b, x"*y if k = m, otherwise g,, = 0.

In the case that the system were integrable, I = h” + Zj>2np I;withI; € 4@;] ",

would be a firstintegral, by Theorem 7 we have that p > 2. The integrability condition
(VI - F = 0) is checked and at the lower degree 2np + k is

0= Vh? - Fy+ Vhupii—sns1 - Fanoi
= 2npef(‘)"°)xi°hp+j° +2nppih? + ph?~'Vh - X, 4+ hV Dupk—3nt1 le

= (2npel/VxOhP P! 4 onpph? =t = 2ph? Vg X g + Vhprk-susi - X ]

(Jo)

which is compatible only if e;”" = 0; this is a contradiction.
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Now, we suppose that m > 2] — 3n 4 1. The Newton diagram of (9) in this case
would have two compact edges (if m < +00) or one (if m = 400). In any case,
we consider in the edge of type r = (1,/ — 3n + 1), because it is common to both
situations. The vector field

2 1 '
G, = (Cuxy + —=(c1 — ~Zdpyu! =2, —4x)7,
n n n

Vo n

where r =1 — 3n + 1, is associated to this edge.
If F is formally integrable then G is formally integrable and G, is also formally
integrable. To apply Theorem 8, first we compute the Hamiltonian function of G,

! 21 —n+1) )

= , (-3 1 T/\G,:—— _)\l3n-&-l7

T |t|(u ( n+ 1)xz) 2 _6n+3)ux2[x2 u ]
where A = _%(01 - %d;).

On the other hand, the dissipative part of G, is

e i - - 204n — 1) [xz_

ﬁ(l —3n+ 2) (Cl _ iid[)ll173n+]

r =+ |t| n2l — 6n + 3) 2(4n — 1) Jn ] ’

Applying Theorem 8 and calculating the expressions of the residues, we have

dn—1  —M+Ql—6n+3)n, +1
Res[n(u, 1), 0] = — _ M+ Q@ —6n+3)@: +1)

[=n+1 (I —3n+ )M

l—3n4+2 M—Ql—6n+3 1
RES[r](l,)Cz),O]:— n+ — ( I’l~+ )(nv+ )’

[ —3n+1 M

P+20—9n>+2n+1 M- 2l —6n+3 1
Res[n(1, x2), A] = * n”+2n+ — ( n~+ Y(n1 + )7

I—n+1(I-3n+1) i

where M = (n, + 1) + (I — 3n + Dy + 1D+ 1 —=3n4+1)(n +1).

The second equation gives us ny + 1 = —(I — 3n + 1)(n; + 1) and considering
that [ > 3n, we would have that n, should be a negative value which implies a
contradiction. Hence G, is not formally integrable.

Finally we suppose that m = 2/ — 3n + 1 and

(I =3n+1)? ioc ., io
S N S L = Zpy=o0.
160 —n 12 ) @ = mbu)

In this case, G, = (P, Q)T is

G — %sz + \/L;(Cz — i/—",—ld;)ul—3"+2
T\ 4 20— n D@y — b, )

n
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Moreover we can write the following dissipative-conservative decomposition:

=20 —n+1) VAl =3n+1) o g0 2
T LT v
. 2¢n-—1 WVl =3n+2) o I=3n+1
TRty T 2@y @t A

We will see that G, is irreducible. Otherwise G, = g - (/’;‘X, with (/;Y € Q; and g €
P

Thus we have Dy A G, = (r + [t])) h = gDy A f}s; s0, the irreducible factors of g
are irreducible factors of /. That is, the possible reducible factors of G, are u or f. But
u is not a factor of Q and f is not a factor of P = 2u(x, + ‘/TE(CI - %d;)u“”“);
otherwise (x; + 4(61 — %d;)u”““) = f, from where [ = —(n + 1), which is a
contradiction.

By Theorem 8, as G, is irreducible and Dy A G, has not simple factors on C[x, y],
G, is not polynomially integrable and then system (9) is not formally integrable.

Next result gives us necessary conditions of integrability for system (7).

Theorem 10 Let F be the associated vector field of system (8) irreducible. Consider
m and l defined in (10). If F is formally integrable, then it is verified

(a) If m <2l —3n 41, withm — 3n + 1 odd, then a first integral of system (8) is
of the form I = (x> +ny?)> +---.

(b) If m <2l —3n+ 1, withm — 3n + 1 even, then a first integral of system (8) is
of the form I = fi > where fi £ £y fi = (x** +ny?) + - ~2f0ri =1,2.

(¢) Ifm=21—3n+1and (an — Zb,) # 372 <c, - %d,) then exist M €
Nand N € N, with M # N, such that

S JMAN? ) . 1,
I = T6l —n+ 1) <(l+”+1) N (=3n+17) (] = ~dp).
- - 2(M+N)2_ - 2)

In this case, afirst integral of system (8) is of the form I = fM £N where fi # f>
and f; = (x> +ny*) +--- fori =1,2.

The proof of Theorem 10 is given in the next section.

Remark 1 The case m = 21 —3n + 1 with (a,, — %bm) = s (e — %d,)z,
that is the case where the principal part of system (9) is reducible, continues open.
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5 Proof of Theorem 10

(1) If m <2l —3n+ 1, in the Newton diagram of system (9), there is a unique
compact face of type (2, m — 3n + 1) which is associated to the vector field

2 io r
G =1 — ,—4 2 1 = by m—3n+1

with the Hamiltonian function % and the dissipative function u (conservative and
dissipative part of G,,_3, respectively) given by

m-+n+1 2 io 3
= —DyAG,_ - — [ m—3n+1 ,
1t 0 m—3n+1 n(m_3n+2)”|:x2 n(am x/;l m)U
1 4n — 1
= —div(G 3 = X). 14
% Ty iV(Gp—3n+1) n(m_3n+2)x2 (14)

Here we distinguish if m — 3n + 1 is odd or even.

e Ifm — 3n + 1isodd, the Hamiltonian function has the factor [x% — ku'"’3”+1],
where A = n(a, — %bm), which is irreducible. Now, in order to apply
Theorem 8, we calculate the residues

dn — 1 —M 2 -3 2 1
Restn(u, 1),0] = —— 1 _ =M H2m=n+ 2t D
4n —1 M—2(m—3n+2 1
Res[n(1, x2), AY?] = n _ (m n~+ Y(ny + )’
2(m+n+1) Y

where M = 2(n, + 1) +2(m — 3n + D(n; + 1). ~
Matching the expressions of the residues and considering the value of M, we
obtain

(ny+1)=4n(n; +1).

Then, by Theorem 8, a first integral of G,,_3,+; is of the form

I = l/ln}-’»l (.X% _ )\,Mm_3n+l)nl+l — u4n(n1+l) (xg _ )\,Mm_3n+l)nl+l —
(u4n(x§ _ )\‘um73n+1))n1+1 — (M4I‘l (xg _ Aum73n+1))N’
where N = ny + 1. Then, I = (u*" (x5 — Au" ¥ +1)N 4 ... isafirstintegral

of system (9). By abuse of notation, we use the same letter / to refer to the
first integral of the different vector fields.
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We can write 1 = (u* (x3 — Au™=3"*1) 4 ...)N . U, because the first com-
ponent of the vector field is integrable, where U is a unity in the ring of the
formal series of the variables u, x,. In consequence, a first integral of system
(9) is of the form

I =u™ (x5 — a2y 4o (15)

On the other hand, if system (7) is formally integrable, a first integral is of the
form I = (x*" + ny?*)N + .., with N € N. Applying the change of variables
described in Lemma 2, this first integral becomes I = u*"N x (xy — 201)N +
O (u?*N+1) that we can write as

I=uNx) + 0w™*). (16)

Considering the type t = (3, 1) in system (9), the first quasi-homogeneous
component of the vector field is G| = (%uxz, —4x§)T. Ordering respect to
this type the first integral (15), we get [ = u*'x3 + - -.

Now we consider (16) with respect to the type t = (3, 1) and we have I =
MZanéV -

Matching both expressions we conclude that N = 2.

Then, for system (7) a first integral is of the form I = (x** 4+ ny?)? + --- and
this corresponds to case (a).

If m — 3n + 1 is even, then we can factorize 4. From the expression of (14)

we have
m+n+1) io I
=—————ulx— |n(a, — —=bp)u 2 X
nim —3n+2) N
+ ( iU b ) /11—32n+l
X n(a, — —=b,)u .
2 N

Consider R* = \/n2a’, + nb2 and « such that

R? cos(2a) = na,,,

R?sinQRa) = —/nob,,.

Thereby _/n(a,, — %bm) = R(cos(a) + i sin(a)).
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Then, we have

m+n-—+1 m=3n+1 m=3n+1
- —X 2 Qlxy — Au 2],
n(m_3n+2)u[xz 1u 1lx2 — 22 ]

n — 1
e ——— 1
n(m —3n + 2)

h =
M:

where A1 = R cos(a) + iR sin() and A, = —R cos(«) — i R sin(«).

Considering the type t = (1, ”“32”“) and applying Theorem 8 we obtain

Res[n(u, 1),0] = 2n—1)  —2M +2(m —3n+2)(n, + 1)

’

m4n+1 (m—3n+ DM

dn —1 M—(m—=73n+2)n+1) .
R 17 7)\'i = = ~ ) =112a
es[n(l, x2), A;] e 7 i

where M = (n, + 1) + 2= () 4 1) 4+ 23 (n, 4 1),
Defining M :=n; + 1, N := n; 4+ 1 and solving the equations we get

1
N=—m,+1),
4n(n+)

M

M

1
—m+n+ D, +1).
4n

Hence by Theorem 8, a first integral of G,,_3,+; is of the form

m—3n+1 m—3n+1
€ R VYA T LA

I =u"(x, — 1u

that we can write as
m—3n+1 m—3n+1
I=@"(xy—hu 2 Yo —du = )V =

_ — N
[(Manz o A,]Mm 3n+l)(u2nx2 o )\zum 3n+1)] )

Therefore, analogously to the previous case, it can be proved that a first integral
of system (9) is of the form

I = (MZH)CZ _ )\lum—3n+l 4. )(u2nx2 _ )\zum—3n+l 4. )

As in the previous case, considering the type t = (3, 1) in system (9), it is
easy to prove that system (7) has a first integral of the form

1:(x2n+ny2+_._)(x2n+ny2+_._)_

This is case (b).
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(i) If m =21 —3n + 1, in the Newton diagram of system (9), there is a unique
compact edge of type (1,/ — 3n + 1) which is associated to the vector field

G B quxy + = (e — S dpu' 7T
[—3n+1 — _4x§ +2(l —n4+ 1)(am _ i_}bm)u2(l—3n+l) .

n
As (a, — %bm) * m(q — %d,)z, the vector field associated to system
(9) is irreducible because its first quasi-homogeneous component is irreducible.
Then, we can apply Theorem 8, being the Hamiltonian function and the dissipative
term of Gy_3,41:

__2=zntl) Sl =3n+1)  io 5 ’
B mu[<x2+7m(q ﬁdl)u

2 : /
B (n(l —3n+1) (€ — gdl)z 4 n(a, — ib,,,)) u2(l—3n+l):|’
n

16 —n + 1)? Jn NG
_ 2@n-1 B Vn(l —3n +2) _ o 13n+1]
T T haQl—6n+3) [xz 2n—1) Jn i '

By Theorem 9, we have that %(cl - %dz)2 + (a, — %bm) # 0, hence

we can write /i as

—2(—n+1) I=3n+1 -3
h = — dqu' " — dou! T3
n(21—6n+3)u[x2 I
where
-3 1 [-3 1
A= _Mq — Rcos(a) + Mcxdl — Rsin(a) ) i,
40 —n+1) 41—-n+1)
Jn(l —=3n+1) Jn(l —3n+1) . )
M=—— R —~0d;+ R
> 20 —ntD ¢; + Rcos(a) + 20 —ntD od; + Rsin(@) ) i,

and « is an angle such that

n(l —3n+ 1)2 b 1,
R? 20) = m+ ————(c; — —d ,
cos(ar) (na 160 —nt+1)2 (c] . )

(I =3n+1)?
sa—n+ 12 %) V"

2 2
n(l —3n+ 1)2 1 (I =3n+1)>2
R? = + (- =dP)| +n|bm+ —cd| .
J('m’" 60 —n 2@ @) Falbm+ g zad

R%sinQa) = — (bm +
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Now, applying Theorem 8, there exist ny, n,, n, non—negative integers, not all
zero, verifying

_ dn—1 _ —M4QI—6n+3)(n,+1)
Res[n(u, 1),0] = = = (—3n+D)M ’
J/n(l—=3n+2) i
Un—Dlh =" Ty (= 7zd))] 21—6n43)(n, +1
Res[n(1, x2), M] = (l—n-&-lr;(kl—kz) NG =1 ( n M)(m )’
Jald=3n+2)
@n—Dlha—"77 =1y~ (a—Fd)] Q1=6n+3)(na+1)
Res[n(1, x2), k2] = T=ntD -1 - W ’

where M = (n, + 1) + (I = 3n+ D[(n; + 1) + (n2 + D].
From these equations we get

¢ sin(a) + %d, cos(a) = 0, (17)
41R ii‘n i 1f(c; cos(a) — le sin(a)) = —H, (18)

where M =n;+1,N=ny+landn, +1=2n(M + N)
We distinguish four cases:

ey

@

Casec; #0,d; = 0.

From (17) we have sina = 0 and | cos(x)| = 1, hence cos(2a) = 1 and
sin(2a) = 0.

From the expression R? sin(2cr) = (b + é[(l 3"132 cldl) J/no, wededuce
b, = 0.

And from the expression R? cos(2a) = (nam + W—ZIBZ (7 — L1a? ))

_ p2 _ n(l=3n+1)2 2
getna, = R Tod-nt12Ci

On the other hand, condition (18) can be written as

Jn(l +n+ e cos(@)(M + N) = —4R(I —n+ 1)(M — N).

Vn(+n+1) M4N

We multiply by cos @ and we isolate R cos(«) = — oo rn < (M #
N).

1=3n+1) 1=3n+1
We have na,, = R*> — %Q R? cos*(ar) — %cl,andreplac—

ing R cos o, we get the expression given in the statement.

Casec; =0,d; # 0.

Analogously, from (17) we have cosae =0 and |sin(«)| = 1, hence
cos(2a) = —1 and sin(2x) = 0.

From the expression R?sinQRe) — (b + g(l %ZIBZ cld/) /no, we deduce
b, =0.



262

3

“

A. Algaba et al.

And from the expression R? cos(2oc) = (nam + W—ZIBZ (7 — 1d; ))

_ (=3n+1y
getnam = fer_p 11, sdff —

Condition (18) can be written as

( +n+ Dodsin(@)(M + N) = 4R(l —n + 1)(M — N).

We multiply by sin & and we isolate R sin(a) = 45”::1) Milod (M # N).

1-3n+1)? 1—3n+1
We have na,, = ﬁ 2 —R*= wdz R? sin?(«) and replac-

ing R sin «, we get the expression given in the statement.

Case ¢} +d? #0,c} — 1d? = 0.
From (17) we have cos? « = sin” «.
From the expression R”cos(2a) = (nam + ’;g(f—jjj}; ( d2)> we

deduce a,, = 0.
. _ d ( . .
In (17) we can isolate ¢; = —%, and replacing in (18) we get
(I+n+1)od; __ M-N
4I—n+1DRsin(@) — M+N*

As M # N, we can isolate R sin(«) = %%.

On the other hand, if we multiply (17) by sina, we can isolate sina =
—gdicos@sin@) ' ap replacing into the last equality we obtain

\/’76‘1
_R od; cos() sin(a) _ (l+n+ 1)20712 (M + N)?
N 160 —n+ 12 (M —N)2'
From here we can isolate R2 cos(a) sin(a) = — - LD AN o).

16(—n+ D2 (M—N)?

Replacing this last equality in the expression — (bm + g&fﬁﬁ;z c dl) Jno =

R?sin(2a) = 2R? cos(o) sin(e), we can isolate b, and we obtain the
expression given in the statement.

Case ¢ +d} #0,¢} — La? #0.
From (17) we have tano = _%% Moreover
2 tan() —20¢d
t 2 = —
an(2a) I—an’@ a1
On the other hand,
1 (I— 3n+1)
tan(2a) = SlIl(ZOt) — (b + STniD? C]d[)fo’

n(—3n+1) 2y
cos(20) " na,, + 16— n+1)2( 7= adD)
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Equating both expressions and isolating a,,, we deduce that

ct—L1q?
am = ———by,.
chdl

Following the same idea as in the previous case, we get the expression of
b,, given in the statement, and replacing it in the last equality we obtain the
expression of a,, given in the statement.

Then in this case, system (7) has a first integral of the form
I = u? M+ (g 3 =M (0 3N
Following the same idea as in previous cases, we can write
I = u2n(M+N)(x2 _ )\’lu173n+1 4 )M(.X2 _ )\.214173”4»1 R )N

ie.,
I = (u2nx2 _ )L]Ml_n-H 4. )M(u2nx2 _ )Lzul—n-&-l 4. )N’

because the first quasi-homogeneous component of the vector field is polynomi-
ally integrable.
Considering the type t = (3, 1), this first integral becomes

I = (Manz + . ')M(u2nx2 + . .)N — (uanz)M+N + el
On the other hand, we know that system (7) has a first integral of the form
I=0x"+mHN +...,NeN.
After theL ch~ange of variables glescribed in Lemma 2, it can be written as
I=M2’1N.X£v+"':(uzn)Q)N—f-"' _
Matching both expressions, we deduce that N = M + N.
Then, system (7) has a first integral of the form

I = (x2rl +ny2+ ...)M(XZV! +ny2+)N

This is the case (c).

6 Application

We study the following system

. 5 3

X 4 o =Y as1x”y + ajzxy

.| = 2 . 19
()’> @7+ 2y )<x3>+<b80x8+b42x4y2+b04y4) (19)
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Theorem 11 System (19) has a first integral of the form I = x* + 2y> + - - - if. and
only if, one of the following conditions is satisfied

(1) a1z = 2as1, bgo = 0, bog = 2by,.
(2) bgo = —asy, bar = —ai3, bos = 0.

Proof To obtain the necessary conditions we apply Theorem 7, that is, F must be
reducible. The second component must be reducible, because the first component is
reducible. Thus we obtain:

e a3 = 2as;, bgy =0, bos = 2bsy; and in this case, (x* + 2y2) is the factor of
reducibility,

e orbgy = —asi, by = —ay3 and byy = 0;inthis case, (x* + 2y — as1x
is the common factor of both components.

S —apxy?)

On the other hand, we first suppose that a3 = 2as;, bgg = 0 and by = 2b4;. In
this case system (19) becomes

()-een|(R)+G)] @

which is integrable with a first integral of the form I = x* + 2y? + - -.
We assume now that bgy = —as;, byy = —ay3 and bgs = 0. With these values
system (19) yields

'X': —
<y.) = (x* +2y” —as51x° — apxy?) ( x3y> ; @b

which is integrable. Moreover, as it is reducible, applying Theorem 7, a first integral
is of the form 7 = x* +2y? + . ...

Theorem 12 System (19), in generic conditions (A # 0), is analytically integrable
if, and only if, one of the following conditions is verified.

(1) 4as; — 2a3 + 4bgo — 2bas + bos # 0.

(2) ai3 = 2asy + 2bgy — bay + 3bos,  16as; — 4bsy + 10bsy — 9bos # 0, 2as; +
4bgy — by # 0, 64as; + 164bgy — S0byy + 9byy # 0 and exist M, N € N, with
M # N, such that 4(—4as; — 4bgy + bos) N + 5(dbgy — 2bsn + bog) M = 0.

(3) ai3 = 10as; + 4bsy — 4bos, by = 4as) + by — boy, 2as; + bay — bos # 0,

where A = —811)84 + 1296!7%0 + 324as,bos — 648as1bsr + 1296as,bgy + 162bg,
byy — 648b4ybyy.

Moreover in the Cases 1 and 3 a first integral of system (19) is of the form
I = (x*4+2y%)? + ... and in the Case 2 is of the form I = (x* +2yH)M*+N 4 ...,
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Proof The normal form of system (19) has the following first coefficients:

1
as :%(4(,151 —2ay3 + 4bgy — 2bsy + boy), bs =0,
1
c6 =0, de = E(IOQSI — a3 + 4byy — 4bos). (22)

First we consider the case aq # 0, thatis, 4as; — 2a3 + 4bgy — 2bs; + bos # 0, and
we apply Theorem 10 statement (a), since m = 6 and m < 2/ — 5 for all / > 6. In
this case we conclude that system (19) is integrable and a first integral is of the form
=04 42972 4.

We now assume that ag = 0, that is, a;3 = 2as; + 2bgy — bsp + %bm. The coef-
ficients of the normal form for system (19) are now

ag = 0, b6 = 0,
1
Ce = O, ds = %(16051 - 4b80 + 10b42 — 9b()4),

1
as; = _m(zail + 4bgy — bap) (64as; + 164bgy — 50b4s + 9bos), b7 = 0.

We first consider the case a7 # 0 and dg #~ 0. In this case we are under the conditions
of Theorem 10 statement (c¢), that is, m = 2/ — 5 with/ = 6 y m = 7. Therefore we
have that

(M + N)?

o (M — Ny

((l +3)? — (- 5)2> (c] — %df).

T 160 —1)2

In our case this implies

1 M+N?T1 ,
= |1-s1— 2
@ 400[ (M—N)2}26

If we replace the values of a7 and dg, we can write itas 4(—4as; — 4bgy + bos) N +
5(4bgy — 2bsy + bos) M = 0. Then, it is satisfied the relation given in statement (2).
We now assume that ag = 0, d¢ = 0 and a7 # 0. We apply Theorem 10 statement
(b) and we deduce that system (19) is formally integrable with a first integral of the
form I = (x* + 2y + - )(x* +2y2 + ).
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A Logistic Non-linear Difference )
Equation with Two Delays L

Francisco Balibrea

Abstract In this chapter we analyze the state of art of logistic first and second order
difference equations with two delays. They model the evolution of populations with
respect to seasons in time n € N. Of special interest are those non-linear equations
with two delays, particularly due to the effect of food in the evolution of the popu-
lation. As an adequate tool to understand the behaviors of solutions of the equation,
we use an unfolding of it obtaining a discrete dynamical system of dimension two,
defined in the unit square. We review some dynamical properties already known like
periodic solutions and local linear analysis around the fixed points of the unfolding.
Besides we also introduce new results and analysis of behavior of invariant curves.
All analysis depend on a parameter a. Our study is mainly devoted to the range
a € (0, 2], the setting where we give some revised results. Some open problems
remain for the range when a > 2.27 where 2.27 is a critical value.

Keywords Non-linear difference equations - Unfolding
Periodic solutions - Invariant curves

1 Introduction

Some phenomena described in Population Dynamics may be modeled using dif-
ference equations and systems of them with some delays which means that what
happens in one time depends on what has happened several times before. By times
we mean seconds, weeks, months, years, seasons, etc, depending on the nature of
the considered phenomena.
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In the literature on difference equations modeling the evolution of populations,
some examples are of the form

Xng1 = X f (Xn) = F(xn) &)

where f is generally a continuous monotone decreasing map. Such type of equations
are called logistic because most of known models in Population Dynamics are formu-
lated in this way. If the nonlinearity of f is strong enough, then the sets of solutions
of the equations, associated to different maps f are composed of sequences of values
(xn)n>0 computed using the equations and taking a starting value x, or a vector of
them, may contain periodic solutions of arbitrary period, aperiodics or chaotics.

The behaviours of solutions can be very complicated as May in [13] and
Beddington et al. in [5] mention. They may be formulated also as coupled or inde-
pendent pairs of equations of the former type to obtain models on two population
systems. In these last models, very often it is possible to appreciate more bizarre and
chaotic behaviours.

On next sections we are considering some models of populations composed of
one or more species and having one or several delays.

2 Logisted Models for One and Several Species

Two of the most employed logistic models for one species are:

Xnt+1 = ax,(1 —x,)a >0 (2)

a(l—x,)

X+l = Xpe€ a>0 3)
where x, is measured in terms of a percentage of the carrying capacity of the envi-
ronment given in numbers of individuals. The model (3) was discussed in [14] and
(2) in [8] and in many other references (see for example [7] and [19]). Equation
(2) with 0 < a < 4 modelizes the evolution of a single species in a territory and
x means the relative population living on it, being always a number belonging to
the interval [0, 1] = I. For 0 < a < 1 we have lim,_, ,x, = 0 (see [19]) and the
population is on its way to extinction. In fact (2) can be seen as the one dimen-
sional discrete dynamical system (f, [0, 1]) where f(x) = ax(1 — x). In this case,
the sequence (f"(x))n,>0 = Orb(xo) is called the orbit of the value xq by f where
f*= fo f*!forn > 1and fOis the identity on I. A value xo is a periodic value of
fisthereisa p suchthat f"*? = f” for all n. The minimal p holding such condition
is called the period of xo. When p = 1 then x is a fixed value. Instead of using the
term value we may use the term point. Further we will use both terminology.

Concerning fixed values or points or further periodic orbits, we give the following
notions of attractive or repulsive points for the dynamical system (X, f) where X is
a compact metric space and f continuous map from X into itself.
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Definition 1 A fixed point xy € X is said attractive if there is a neighborhood U (x()
such that for any x € U (x¢) the Orby(x) converges to xj.

Definition 2 A fixed point xo € X is said repulsive if there is a neighborhood U (x()
such that for every x € U (xo) with x # xo we have f"(x) ¢ U (xp) for some n.

Definition 3 Let {x;, x5, ..., xx} = A be a periodic orbit of period k& < 1. Such
orbit is said attractive if at least one value in A is an attractive value for f.

Definition 4 The orbit is repulsive if every value in A is a repulsive point for f*.

In dynamical systems (I, ) where f € C'(I) if pisafixed pointand | f'(p)| < 1,
then there exists an open interval U (p) such that whenever x € U(p), then f"(x)
converges to p. If | f/(p)| > 1, then there exists an open interval containing p such
that all points in the interval y % p must leave such interval under interaction of f.
These conditions are sufficient for p to be attractive or repulsive. Nothing can be
assured if | f'(p)| = 1. Such definitions can be extended to periodic orbits of periods
greater than one (for more detailed information, see [11]).

When a € [0, 3], the function f from (2) always has an attractive fixed point,
namely o = 0 and another g = “T_l =X if a € (1, 3). For the range of parameter
(0, 3) the function f has no periodic orbits of higher periods, which means that a
population governed by this model with a € [0, 3] is stable (its behaviour does not
change by small perturbations) and therefore the number of individuals approaches
in time to an equilibrium (i.e. to a fixed point of f). When a > 3 the function f has
cycles of higher periods and even chaotic behaviours (see [19]).

Let now consider another example of logistic behaviour by the difference equation

X1 = Xn f () = ax; (1 — x,) 4)

It is not difficult to see that when a € [0, 2] the function
fu = [ax(1 —x)]x = ax*(1 — x)

describing the population growth, maps continuously [0, 1] into itself. The fixed
points of f, are obtained solving the equation x(ax*> — ax + 1) = 0. Since « = 0 is
a solution of the former equation, it is a fixed point of f, (the map f for parameter
a). It is immediate that f, has a zero derivative in « and in [19] it is proved that
always « is an attractive fixed point.

In order to find other possible fixed points, we solve the equation ax
1 = 0. We have the following solutions:

2—ax+

1. Whena < 4 then o = 0 is the unique fixed point of f,. It is immediate to see that
forall x > O we have f,(x) < x and then any solution (x,),>¢ where xo € [0, 1],
converges to .

2. When a = 4 the former second order equation has 8 = % as a unique solution.
Since is f,(B) = 1 it is difficult to see if such point is attractive or repulsive.
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In figure we represent three cases fora =3,a =4 and a = '3—6 The diagram,
as well a direct computation, show that f,(x) < x for x < 8, x #0 and as a
consequence, 8 can not be a repulsive fixed point. In an analogous way, for x >
and being x sufficiently close to 8, then the sequence generate by xy converges
to B and it can not be repulsive.

3. For a > 4, the former fixed point § splits into two fixed points

1 1 1%
/31—5—(2—;)
1 1 |
B2 3 (Z__)

itiseasytoseethatO < 8; < B, < land f;(B1) > 1. Thus B, is arepulsive fixed
point for any value a € (4, 24—7]. For the other fixed point 8, we have

By =3 — La— La? — 4a)t
fa(ﬁz)— —za—z(a —4a)?

we see that f/(8,) > —lifandonlyifa < 13—6 and f](B,) < 1 forall a. Therefore
fora € (4, %), B> is an attractive fixed point of f,. Although f,(B,) = —1 for
a= 13—6, B, is an attractive fixed point. To see it we use a Sharkovskii’s theorem
[18] proving that f% has no periodic points of period greater than one.

4. If a > '3—6 we have f/(B,) < —1, hence B, is a repulsive fixed point. For this
range of parameters, f, has a two cycle (the two different point of it are separated
by B,). Fora > 5.76 . .. the first 4-cycle appears and so on. Ata = 5.89... the
function becomes chaotic (we use such terminology in the sense of Li and Yorke
which it is a weak notion of chaos) (see definitions in [19]).

5. Fora > 4itis interesting to study and interpret the role of the fixed points 8; and
Ba. As f,(1) = Oitis evident that there is apoint y € (8, 1) holding f,(y) = Bi.
If (x,)n>0 is the sequence starting in x¢, then

lim,, oox, = O when xo € [0, B1) U (v, 1] (5

lim,, , o x, = Brifxg = Brorxg = 14 (6)

The property (5) is obtained from the fact that f, (x) < B; forx € [0, ;) U (y, 1],

since f, is increasing in [0, B;] and deceasing in [y, 1]. The condition (6) is

evident. If we can back to (B, y), it is immediate that there is a critical value
a. = 6.6. .. such that

fa(x) € (B1, ) wheneveranda € (4, a.) (7)

After this, and take into account (5), (6) and (7), they imply that 8, and y are
threshold values. If the population would not attain at least 8, then it will die out.
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This situation occurs rather often, a small population is likely to extinct under the
influence of various disturbing factors. If the population would attain exactly the
value B, it would be in equilibrium, in fact theoretically since the equilibrium is
very unstable. This means that a small perturbation suffices to push it away from
B to one side or the other.

If the population would exceed the second threshold value y, something similar
similar to the first case would happen and the population would die out. This is
often the case in reality. We can imagine an over population of some herbivorous
animals in a desert with very poor vegetation. The result would be the extinction
of the vegetation and the population could not reproduce at a sufficient rate. As a
consequence very likely the animals would die out too.

If the population would attain a value in (B, y), it would tend for a < '—f to the
equilibrium B, which is stable. This means that when the population would remove
from that state slightly by a small perturbation, it will return to it after some time.
In case thata € (13—6, ac), the population may behave variously, even chaotically, but
can not die out. In last case it varies between 8; and y. If a would exceed a., the
population may die out in this case as well. We can observe that in fact the model given
by Eq.(4) is nearer to reality that (2), but its dynamics is much more complicated
and difficult to understand.

Frequently in the literature, we may find variants of the former models, which
are transformed in variants in the respective difference equations. One of them is the
model given by

Xn+1 = aXp — bxz (8)

n

with a, b > 0 constants. This equation may be written in the form
Xn
X1 = X[l + V(l - ?)] (9)

with r, K > 0 constants. Besides x = 0, the other equilibrium value is ¥ = K. K is
interpreted as the capacity of the environment and r is the growth coefficient. With
a suitable change of variable, (8) and (9) can be reduced to (4).

Equation (9) may be obtained using an exponential function

— 0%
Xn41 = Xp€ K

with a dynamical treatment similar to the previous models.

3 Models for Epidemics

In this subsection we are obtaining different models on spreading of diseases depend-
ing on different assumptions. Simple models may be obtained with the follow-
ing assumption. In every period of time, each individual has the same number of
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contacts with other individuals, this means to be in equal chance of getting infected
with the disease. Additionally we will suppose that the population is constant, i.e.
the number of individuals considered does not change in time.The period during
which a sick person is contagious is also suppose to be constant in time and its length
equals the unit of time (it may be one day, a week, fifteen days, etc). After overcom-
ing the disease, depending on the kind of disease, the individual may either remain
permanently immune or return without immunity to the group of susceptible people.
Further we will study the second case.

First divide the population in two groups. Let denote by / () the number, depend-
ing on time, of infected persons and with S(#) the number of individuals who can get
infected in time ¢t and T the total population. Now suppose that if two individuals
are arbitrarily chosen, one being healthy and the other sick, then the probability of
the healthy person of getting infected from the sick within a unit of time is p and
does not depend on the choice of the two individuals. Now ¢ = 1 — p = ¢~ where
a > 0. The probability, denoted by P, that a given susceptible individual will not get
infected in a unit interval of time (¢, r 4+ 1) depends on the total number of infected
persons at the time ¢. The larger such number is, the less will be P. In fact we will
have P = ¢'. Then the probability for one healthy individual to get infected in
the chosen unit of time willbe 1 — P = 1 — ¢’®, and the probable number of new
cases of disease will be proportional to the total number of healthy persons, that is

SO —q'"") =St —e ")
we have also that
It +1)= S —e D)

since those individuals who were ill at time ¢ will be well again after a period of a
unit time, that is at time ¢ + 1. Also is evident that

St=T—1@t)

and introduction the notation

1 S
00 =12 b =20

and
ol =a

from the last two equations we have

x1(t+1)=x2()(1 — efaxl(t))
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and
() =1-x()
and eliminating x,(¢) we obtain
xt+1D)=1-x10)1 —e ),

that is

Yot = (1= yo) (1 — e ") (10)
where y, denotes the relative number of sick individuals at time 7.

Some variants of (10) may be considered modifying slightly it. Suppose that the
infected person is contagious for a period of a unit of time and the next period of unit
of time the individual is isolated or immune (depending of the type of disease) and
becomes susceptible again. This is taken into account introducing a new function
J () in the former example, meaning the number of those which are immune at time

t, getting the system of equations

It+1)=SEt)1 —e D)

J(t+1)=J()

SO+JO+10)=T
introducing a new relative value x3 = % we have
X1t +1) =01 — e ™0)
x3(t + 1) = x1(7)
x1(0) +x2(0) + x3(1) =1
eliminating x3, the second and third equations yield
x1() +x() +x(0 —1) =1

and the first equation becomes

xt+D=>0—-x0) —x;t — 1) — e—ux,(t))
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or
Yar1 = (1L =y = yu)(1 — ™)

where y, denotes again the relative number of sick persons at time n. We observe
that this equation is the second order, in the sense that has two delays.

In some diseases, the immunity period lasts longer than the disease itself. For
example one unit of time for the duration of disease and two for the period of immunity
or isolation. The previous equations remain the same except the second which is

Ja+1)=I0)+1¢—-1)
applying the same process we reach

Yn+1 = (11— Yn = Yn—-1 — )%*2)((1 - e—ay,,)

with the same meaning than in former cases. Of course such procedure may be
extended to k delays.

Coming back to the first Eq. (9), we will analyse what happens and interpret the
results. For doing this it is necessary to understand the dynamics of the function

fax) = (A =x)(1 —e™™)

the proof of next properties can be found, for example in [19]

1. For all values @ > 0, f, maps [0, 1] = [ into itself

2. For0 < a <1, f : a has aunique fixed point x = 0 and every orbit of f, starting
at xo € I converges to 0.

3. If a > 1 then f, has two fixed points, a repulsive fixed point at x = 0 and an
attractive one 8 € (0, %) and every orbitof f, starting atany xo € (0, 1) converges

to B.

The graph of f, for several values of a can be seen in figure.

These properties allow us to interpret (5). Whena < 1, thenlogg = — % > —%,
thus, if ¢ is large enough which means little probability of getting infected, then the
disease will completely disappear after some time. But if ¢ falls under some limit,
the disease will not disappear, but the percentage of sick individuals will stabilize
after a sufficiently long time at a non-zero value of 1008. Such value is stable. This
means that if the percentage of sick persons is changed due to some temporary very
unfavourable or very favourable circumstances and it will back to that value after
some time.

The analysis of the rest of equations is not easy because we face to difference
equations of order bigger than one and will partially do on next sections. For detail
account of such analysis can be seen for example in [9].
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4 Discrete Population Growth Models for Two Species

The most studied relation between two biological species is that of a predator and
its prey where the second serves as food for the former. Under the assumption that
both population are homogeneous in age and genetic structure and the same for the
environment, that is, natural conditions,it is possible to obtain rather simple systems
of equations which model the evolution in time of both populations.

Let us denote by x; the number of prey and by y; the number of predator in a given
territory at time i. Let us suppose that the reproduction of preys follows a logistic
model and thus, the Eq. (5) occurs. Therefore,

Xit] = ax; — bxi2
with a > 1 and b > 0. Next, assume that the number of predators is proportional to
the number of preys and predators at a unit period of time before, the is,

Yi+1 = CX;Yi

where ¢ > 0 and assume that dx; y; with d > 0 animals become victims of the preda-
tors, as a result we have

2
Xip1 = ax; — bx; —dx;y;

For simplifying the calculations, we introduce another notation for the constants.
The final system of equations is

Xit+1 = (1 + A)Xi - BD)Cl2 - CD)Cl‘yi
Vi1 = Cxiyi

where all constants are positive numbers.
To analyse such systems, we start obtaining the fixed points which consists on
solving the algebraic system of equations

x = (14 A)x — BDx* — DCxy
y=Cxy

We obtain two fixed points x' = 0 and szib. If y # 0 then the fixed point has
coordinates X = %, y = AC;Lf with A > B withisiny > 0. Thus the system has three
fixed points, (x', 0), (x2, 0) and (¥, ). Now it is interesting to test the existence or
not of orbit of period two and greater. But these are difficult problems. For more
detailed results, see the Refs. [6, 12, 15].
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5 Models of Behaviour of One Species Given by Difference
Equations of Order Two and Delay

First, let us consider a general difference equation with k delays
Xn+1 = F(xl’w Xn—1s «ovy Xn—k—1> xn—k)

with a general function F : A¥ — A¥and A C R which may modelize the dynamics
of a population where the population in time n 4 1 depends on the influence of the
same population in previous times until k times. It may be due to several effects
delayed in time.

In most models, F' is a polynomial P depending on k variables. One example of
interest is

Xpy1 = ax, (B — Xp—1)

when r € N denotes the delay of the equation and «, § are real positive constant
depending of the nature of the population. These examples are called equations of
logistic type or simply logistic, since when r = 0 we have what is known in the
literature as the logistic equation and considered in the former subsection by Egs. (2)
and (4). In particular a great interest has been shown for case » = 2, trying to study
some variations in the number of individuals of the population provoked by effects
which are not effective on next period of time, but after two times.

One of such cases concerns the influence that food of the population in one time has
in two times after, (see for example [16] for an interested account of such problem).
As a general discrete model of evolution of the population is represented by

Xn+1 = Xn (sn + bn)

where n is measured as seasons, s, denotes the probability that members which are
alive in n continue being in time n + 1 and b, denotes the birth rate in time 7.
If 5, is small in comparison with b, then we simplify the model and obtain

Xntl = bnxn

which is a non-autonomous discrete difference equation. In general, b,, can depends
on {x,, X,—_1, Xp—2, ..., X,—r}. When we are considering only the effects of birth
rate and food we have that r = 2. Of course other effects can be considered, not only
food.

Further in this paper, we will concentrate to the case where b, = g(x,—1, X,—-2)-
In this setting, x,, will denote and represent the rate of the total number of individuals
of the population in time n. Therefore is 0 < x,, < 1.

The dynamics of the difference equation is complete when we know the behav-
ior of all solutions. One important property to test is the boundness or unbounded
character of solutions. In first case, the phase space of the equation is a compact
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subinterval of R because all solutions are contained on it. This happens with the
logistic equations for some values of parameters «, 8. In second case is R. Using a
change of variable, the Eq. (1) is obtained in the easiest form

Xp1 = axp (1 — x,—1) (11)

where a is a positive real number

Also for some values of a it could be x,, > 1. But this is not possible in logistic
setting. In this case will take x, = 1 which means that x,;, = 0 and from it all
component of the solution would be 0 that is the population extincts. In such case
we wonder for set of pair of initial points for which the population extincts. The
complementary set is the set of persistent points, that is, the set of points whose
whole orbits remain in a compact interval of the form [0, K].

If x,, denotes the number of members of the population in instant » and fix a com-
pactinterval of [0, K] C R where the pairs of initial conditions have to be taken, then
X, can reach any positive value. For (11) we will take K = 1 and as a consequence
X, 1s a rate of population.

In order to understand the dynamics behind this equation we introduce an unfold-
ing of it taking

Xn—1 =X, Xp =Y

and instead of considering directly the Eq.(2) we will deal with the planar transfor-
mation in order to see in two dimension what happens if the initial conditions are
taken in the unit square Q| = Q.

Ly(x,y) = (y,ay(l —x))

where (x, x9) = Py and Py € R?, (x,_1,x,) = P, € R% that means the first quad-
rant of the plane. In such case, the values of x,, can be obtained by the second
projection in the coordinate axes of P, or the first projection of P,_;. As a con-
sequence, we will consider the two dimensional dynamical system (Q, L,) where
Q =1[0,11%and L : Q — R?is given by

Ly(x,y) = (y,ay(l —x)) (12)

The role played by Q is that of phase space and the set where the initial conditions
are taken. It is immediate that L, has an inverse in the interior of Q given by

-1 __a
L, (x,y)=(

_y,X)
ax

Generalizing, it would be considered the same transformation from R? into itself
given by (12).
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5.1 Dynamics of the Equations x,, = f(x,—y) with k > 2

Let
Xn = f(xn—k) (13)

a delayed difference equation where f : X — X and X is any set. It is immediate to
test that

fr (X5) = Xgqrk

We wonder for the solution of the equation generate by the initial condition Cy =
(x1, %2, ..., xx) € X*. The simplest case is when all solutions are periodic, that is,
Xp4p = X, for all initial conditions, some p € N and all n € X. The minimum of
such p is called the minimal period or simply period of (x,),>1. We will denote by
Perg.(f), the set of periods of the difference equation and will stated the problem of
study its Periodic Structure, if possible. This is an important problem in Dynamics,
first stated and solved by A.Sharkovsky for interval maps. In the general case of (10),
the problem was totally solved for any k > 2 and in any X. In particular, for I" and
S", where I = [0, 1] € R and S! is the unit circle (see [2—4]).

Here we will concentrate in k = 2 (difference equations with two delays) in the
cases I which is the main aim of this paper. The results may be extended to S'. The
key point in the proof is study properties of the map

F(zi,22, oy 2) = (22,235 -+ 2k f(21))

in particular the general expressions of its iterations
FRI (b)) = (@), £ () oo S0, ST e, 7 o), T g
forn > 0and 1 < j < k. With this formula can be proved that
Per(F) = Per(f)

where with Per(g) we denote the periods of all periodic orbits of a map g.

5.2 Dynamics of (11) for0 <a <2

The main aim of this paper is to study some dynamics properties of the dynamical
system (Q, L) like existence of periodic points, linear analysis around them and
existence in Q of invariant curves.
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52.1 TheCase0) <a =<1

It is easy to see that the unique fixed point in Eq.(11) is (0, 0) which is a global
attractor in Q which means that independently of the initial point P € Qis Py,00 —
Py = (0, 0). This can be seen proving that given ¢ > 0 there is N > 0 such that for
n > Nisd(P", Py) < ¢, where d denotes the euclidean distance. Analytically it is
immediate that in R? the unique periodic point of L is the fixed point P,.

5.2.2 TheCasel <a <2

To obtain periodic orbits in Eq.(12) we use the analytic expressions of the iterates
of L, which leads to solve algebraics equations the more and more degrees. Unfor-
tunately this procedure is limited in effectiveness.

The equation L, (x, y) = (v, ay(l — x)) has only two fixed solutions, these start-
ing in th points Py = (0,0) and (P, = “a;l, “a;l) which are placed in the diagonal
of the first quadrant of the plane contained in Q. In particular, when a = 2 we have
(4,5,

’ V%’hen we want to obtain analytically the periodic points of period 2, it is necessary
to solve the equation

L2(x,y) = (x,)

doing thr adequate calculus we reach the equation (1 — x)(1 — y) = aiz which apart
(0, 0) it has uniquely the solution (”a;l, “a;l). This means that L, has not periodic
orbits of minimal period 2. Although the difficulties, can be proved (see [16]), that
(12) has only an orbit of minimal period 3 in R?, but since the first coordinate on
one of the points in negative, this means that the Eq.(2) has no periodic point of
minimal period 3. Since it is difficult the analytic approach, we do not know if there
are periodic orbits of minimal period greater than 2. We claim that the answer is
partially negative, that is, (2) has no solutions of periods less than 7 except 1. After
7 there are periodic orbits of not all periods only for some values of the parameter a
(see for example, [16]) but when a > 2.

We conjecture that (11) has at least two solutions of minimal period 4, three of
period 5 and in general n — 2 of period n.

5.2.3 The Case a* ~ 2.27

For approximately a* ~ 2.27 the unstable and instable manifolds to (0, 0) (see [20],
for such notions) intersect tangentially, the stable manifold is [0, 1] and the instable
manifold is a curve tangent to the sides of Q except {(0, y) : y € [0, 1]}. Morse-
Smale theorem applies and as a consequence in a small neighborhood of such inter-
section, there are points that are the initial points of solutions periodic of all periods,
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Fig. 1 Fora = 2.27 the
stable and instable manifolds
to (0, 0) are tangent. Infinite
many periodic orbits appear
in a neighborhood of the
tangency point

Fig. 2 The curve attracts all
orbits started in points
inside it

(see [17] and [20]). See Figs. 1 and 2 where it is represented the orbit of the initial
point (0.3, 0.3) which it is internally attracted by the drawn curve which it is the
image of the segment {[0, y] : 0 <y < 1}.

6 A Local Linear Analysis

The difference equation (11) has two equilibrium solutions which corresponds to
constant sequences (0);° and (“a;l);',‘i1 . To find solutions of the equation it is needed
to know the initial values x_; and xy. An analytic expression of x,, depending on a
and on initial values is very difficult. In fact x,, is a polynomial P, (a) with coefficients
depending of certain factors obtained from the initial conditions. If we denote by d,,
the degree of P, (a), it can be proved by induction on n that

dnJrl =d, +1+d,

withd; = 1 and d, = 2.

The nature of the fixed solutions can be seen trough a local linear approxima-
tion in each of the fixed points of the unfolding transformation L, and also for the
Eq. (11). In fact we will take a neighborhood W (0, 0) = W where the transformation
is L,(x,y) = (y,ay). When a > 1 taking any point in W, then the distance of the
successive iterations to (0, 0) is increasing, that is (0, 0) is a repelling point. For
a < 1, givenapoint P € W the successive iterations have distances to (0, 0) tending
to zero, that is, such point is an attracting point. If a = 1, then the linear analysis
does not decide what it is the behavior of any orbit of a point P € W. Nevertheless,
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the nonlinear analysis made in the previous subsection proves that for such value of
a, (0, 0) is also an attracting point.

To study the stable character of the point P, = ("T_l , “a;l) we will use the approach
of linear stability considering the form and the sign of the eigenvalues of DL, (x, y)
(see [7]). To this end we calculate in P, the eigenvalues of the jacobian matrix in P,

that is
—A 1
det (—ay a(l —x)— A)

from which A; = Livs—da V25*4“ and A\, = 1=v5—da V2574”. The characteristic equation =1+

(a — 1) = 0 can have two real solutions for 1 < A < %, one double real solution in
A= 451 and two conjugate complex values for a > %. As a consequence, using again
[7], P. is a stable node for 1 < a < %, a stable focus since |1, M| < Va —1 <
1 for % < a < 2 and an unstable focus since |ri|, |A2| > v/a—1>1 for a > 2.
Roughly speaking a node is a fixed point attracting in a neighborhood and the orbit
starting in it converges monotonically and for a node, the convergence is oscillatory.
For values a = 1, % and 2 we have phenomena of bifurcations. A detailed account
can be seen in [1].

To illustrate the former paragraph, consider the equation A2 — A 4+ (@ — 1) =0
can be seen as the characteristic equation associated to the linear difference equation

Xn+1 Xy +@—DX,1 = 0

which general solution is of the form X, = C|A} 4+ C,A;. We will consider the
variable X putinthe form X = pcos 6. Inthiscaseif R_; and R, are initial conditions
of the equation, chosen in a neighborhood of P., and consider the variable X put in
the form X,, = p,cos 6, and also the initial conditions are

R%, = p° cosh’,
and
R) = pJcos 6]
the solution of the equation is
X(n) = CiA] + Co),

where A1, = % + i@.

The former formulas are interesting since allow us to understand how are the
trajectories of points that are attracted by the point P,. In particular, when4a — 5 < 0
then the iterates of P. spiral out the point, while in the case 4a — 5 > 0 there is a

direct trajectory in the approach.
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6.1 Invariant Curves

We are dealing with interesting subsets in the phase space in planar difference equa-
tions. They are the invariant curves whose dynamics behavior give us an approximate
idea of the whole dynamics of the system.

Consider the linear system

Xntl = AXp

Yn+1 = UYn+1

where A, u are real numbers. The system can be seen as the two dimensional dynam-
ical system

T(x,y) = (Ax, uy)

An invariant curve is a plane curve y holding the following condition: if (x, y) € y,
then (Ax, ny) belongs also to the curve. If the curve is given by the graph of the map
y = F(x), then uy = F(\x) thatis

wF(x) = F(Ax)

which is the functional equation of all curves defined by functions F' holding the
former condition.
It is very easy to check that the general solution of the equation is

y =kx

where

r= logM

[y

Unfortunately it is difficult or even impossible in most cases of difference and
systems of difference equations, to obtain explicit formulas in the say way that the
former. That is the case we are dealing in this paper.

We will be devoted with again with the equation

x(t+2)=ax(@+ 1)1 —x(t))
where ¢t € C. Introducing the change of variable a’ = z we have x(¢) = x(log, s) =

f(z). Then we are looking for solutions of the equation of the form f(z). Then such
function verifies

f(@*2) = af (@)1 - f(2)) (14)

and we have
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Theorem 1 f is an entire function on C and in such class, it is the unique solution
of (14) if are given the values ¢, ¢ € C.

Proof Let us suppose that f(z) can be written as the formal power series
o0
f@ =) ¢
j=0

where c¢; € C. Our task is compute such coefficients. It is necessary that

DUTCEETD WOEITED DUEIED STLERN) DU SOR)
J=0 J=0 J=0 J=0 j=0 J=0

where with last product of series we mean the Cauchy product.

We have
o0 o0 o0
E cja*z — E cjal 'zl = — E (cja’co+ cjmialcr + cjaal e+
=0 j=0 j=0
3 2 i
+eoa’ciy +ciacio + cocj) z’/ (15)

It is usual take cp = O (the graph of f passes trough 0) and c¢; = 1. Identifying
coefficients,

2j i+1 i+1 i i—1
cja”’ —cja’ =—(Cja’ co+cjmia’ci+cjal o+
3 2
+ca’cio+clatcioy + coacj) (16)

where j > 0. Applying this formula we get in a unique way the coefficients of the
power series. Giving ¢y = 0, ¢; = 1. we have

1 + 242

_ ! e a0 — 1! e —
cr=—2ala—1)"",c3=4@@—1)" ", c4 @a D@ tarnT

Proceeding by induction on j we obtain a general expression for the coefficients. It
is easy to see that we obtain an immediate evaluation for such coefficients

2 1—j
cj<(a —a)y™’

for j € N. As a consequence the radius of the convergence is at least of (a> — a) and
that the series converges for |z| < a®> — a. Once a is fixed using (14) it is immediate
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that the series converges also for all z € C. Itis also obtained that the series of second
side of (14) converge for |az| < a(a® — a) and |a’z] < a*(a* — a).
Now we introduce the map /& because it has no singularities

_[r@ iflz] <a’ —a;
o= {ah@(l —h(Z)iflz] > @ —a.

The maps f and & coincide in the points where f converges. Using the principle of
analytic extensions the two series converges for all z € C.

Let us consider now that z = a' is a real positive variable. Introduce now para-
metrically the curve

_)x=f@;
y(@) = {y:f(az).

Then y (0) = 0 and it is verified the interesting property

La(y(2)) =y ()

that is, the curve is invariant and it can be used to understand the asymptotic behavior
of the original difference equation.

The points of the curve y(z) coincides with the points of the graph of the map
y = F(x) up the value where x does not increase, which means until the first local
maximum of x = f(z) (see [16]). It is clear that if change the notation z by x, then
we can obtain the inverse of the power series denoted by f~! and then

y = f(az) = flaf '(x)) = F(x)

6.2 Analysis of the Invariant Curves

We are denoting by Q, the set L"(Q) N Q for n € N that is, the set of points that
remains in Q after n-iterations. Such are the persistent points after such number
of iterations. Denote the closed unit square Q by OABC where O = (0,0), A =
0,1),B=(,1),C =(1,0), A persistent trajectory is a trajectory (P,);2, of
points such that for all n € N, P, remains in Q and strictly persistent trajectory that
for which all point including Py = (x_1, xo) remains in the interior of Q. The rest
of trajectories are called non persistent. It is evident that for having a non-persistent
trajectory it is necessary that Py € OC or on some preimage by L, of such segment
and in this case the trajectory must converge to the origin O. The complement of all
persistent trajectories composes the spacing set.

If yy ={(x,ax) : x € [0, 1]} and A; denotes the triangle bounded by [y = 0,
x=1,y=1]=Aand y;,then Q; = QU A.Lety;, = L,(y;— fori =2,3,4 and
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Fig. 3 The three first images -
of the segment {(0, y)} with

the maps defining the

boundary for a = %

¥=1.5"x

Q1

y=1.5"x*(1-x/1.5)

Q2

Q3

y=1.5"x*(1-0.5%(1.5 * sqrt(2.25-4"x)))

0.0 0.5 1.0

respectively Q; = Q U A; where 4; is the domain whose boundary is composed of
y; and A.
It is interesting observe that

s = La(y3) = (p3(), aps () (1 = v)) = (u, p* (u))

where with p}” and p, we denote the concave and convex curves composing the
boundary of y4. The shape of this set has a drop shape and in fact it is a simply
connected Jordan set. The same situation happens from i > 4 and also is easy to see
that

QIDQZD"'DQnD"'

the set Q, for all n < 4 is a simply connected Jordan set of a drop shape bounded
by the curves p. It is easy to prove by induction on n that maps p; are concave.
Generally the functions p, have a part of concavity and another of convexity. In
Fig.3 we represent the three first regions Q; for i = 1, 2, 3 and the give the analytic
expression of the corresponding curves boundaries.

Lemma 1 Functions p; are concave for n > 3.

Proof We proceed by induction on n > 3.
For n = 3, calculating the derivative of p; leads to
P @ =al(l — &)+~ (Va® —du — ——)
3 2 2 va?r —4u,
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from which we see that the derivative is negative so that the function is decreasing
and (p;)’(a) = a. Therefore (p;)”(u) <0 for all u. Let j > 3 and suppose that
P (1) be concave, that is (p}“)’(u) is decreasing. Since

(P ) = all — (pD) ) — (p3) W]
and
(P )} =1

then we have

1
(P10

M;_(V) =

and

v

/ +
P =all —u; (v) = ————1

- T ) )y
Therefore we have that p;. 4+1(v) is decreasing because uj' it is and also the same

. S . . . N
is valid using the induction hypothesis for IO

With the previous observations we prove in next result that there is a relationship
between the area of Q,, denoted by |Q,,| and the distance between the curves p; and
py @y, py))-

Theorem 2 Leta € (1,2]. Then

limy—cd(py s py) =0
if and only if
limy 00| Q0| =0

Proof Let suppose that lim,_«|Q,| =0 and that lim,_..d(p;, p,) # 0. This
means that there is d > 0 such that for each n there is u,, holding p (u,) — p; (u,) >
d.

Let

this set is invariant by L, that is, L(A) = A and besides L|A is injective. It is
immediate that the point PC(”a;l, “a;]) for a € (1, 2) is a local attractor since the

1+/5—4a
2

eigenvalues of DL(P,) are A, = which verifies |A; 2| < 1.



A Logistic Non-linear Difference Equation with Two Delays 289

For each Q, let ¢, be the critical point of p; and w, = p;'. Note that max{x :
(x,y) € Q,} = w,—y and since is Q, O O, we have w,, < w,_;. Besides, A con-
tains a vertical segment of length greater or equal thand. Letxp € I and S = {x¢ € /
where I = [«, 8] such that 8 — « > d. The set

L) =101 - ﬂ, - xx)
axo axo

is an horizontal segment since the set

L2S) = (o :1-2 yea—L 12
ay axo axo

is a subset of an hyperbola.

Since p;f(x) is a concave map, the set M bounded by the subset of hyperbola
and the segments joining the extreme points of L 2(S) belongs to A. Then is |A| >
|M| > O that is in contradiction with the fact that |A| can be done as small I wanted
since is lim, . |Q,| = |A| = 0.

Next result proves that one of the conditions of the theorem always occurs.
Theorem 3 Ifa € (1, 2], then lim,_.|Q,| = 0.

Proof Denote by Jr,(x,y) the jacobian of L, in (x,y). It is immediate that
Jp, (x,y) =ay and

n—1
Jip (e, y) =] Jan
k=0

where L’; (x,y) = (xt, yr). Since it is interesting for what follows, we will compute
Jr,2n42(x, y). Such jacobian is calculated using the two relations:

1.

2n+1
JZ:H_Z(‘X’ y) = g2 +2 H e
k=0
2.
2n+1 2n—1 2n+1
([T =a> [T =yl [ ] yelyiyan
k=0 k=0 k=0
from last formulas we obtain
3.

2n+1 2n—1 1
l_[ e =a*" 1_[ eI = y)lyiya < aznﬁyw’zn
k=0 k=0

and finally from (1) and (12)
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2,4 4n
Jrong2(x,y) <a (5)

When a < 2 we obtain that lim,,_, oo J. L5n+z(Pc) = 0 and therefore is lim,,_, oo Jy»
(P) = 0 for every P € Q4. From this

10, = lim, o / / Jpe(x,y) =0
4

When a = 2, then the set Q4 = T U R where

R = {P € Q4 . hm,,_MX,LZ(P) 75 Pc}

Then given ¢ > 0 there exists a subset 7, C T such that |7;| > |T|(1 — ¢) and
holding that d (L] (P), P,) converges uniformly to zero on 7. As a consequence if
n>NisL! € B.(P.) forall P € T,. This implies

L2(T)| = / / 77 G y)dxdy < 76+ esuppeg, I (P)
T
for n > N. This means that
lim,,_, oo | L, (T)| =0

Analogously, for R we have

Ll = [ [t pdsay =0
R
Therefore
[Qn < |LI(T)| + |LE(R)| — 0

Remark 1 1. Fora € (1, 2] the set A is a continuous curve I such that L,(I") =
I" and joining the points Py and P, in the sense of approaching them. Moreless,
such approaching to P. is made in a spiral form for (a < %) or monotonously
for (% < a < 2). Also the set A is a local attractor for the system defined by
L,.

2. In general, for a > 0 it is easy to see that A is also a global attractor for L,
which means that such set attracts all point of Q. To see it is sufficient to prove
that for every subset C such that C () I" # @itis hold J:(C) — 0 for all points
in C.
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Fig. 4 Orbit when a = 2 for iigs
the initial point (0.3, 0.3). It 0:60
is observed that many 0.55
invariant curves appear 0.50
tending to the fixed point Y o045
(3:1) 0.40 -
0.35
0.30

2 - :
0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65

Fig. 5 The same orbit of 0.65
(0.3, 0.3) joining the dots, 0.60
being attracted by the fixed 0.55
point (3. 3) 050
) 0.45

0.40

0.35

0.30

- ]
0.30 0.35 0.40 045 0.30 0.55 0.60 0.65
X

3. When a = 2, the system has a supercritic Hopf-Neimark-Sacker bifurcation
(see for example [1] or [10]). From values of a and closed to 2 but greater,
the system has another invariant curve around P, which is a repulsive point
while the points of the curve I" are attracting. The dynamics in this curve is
interesting, particularly the appearance of periodic points of many periods (see
[1] for a complete analysis of such case). Also in Figs.4 and 5, observe the
graphs of the corresponding invariant curve for a = 2.

After a value of a closed to 2 the curve starts to be highly non-differentiable and
appears and disappears after an intermittent process (see a numerical approach
also in [1]).

After the critical value of 2.38 then most of points of O become scaping points
out of Q and the persistent points (point which stays inside Q for all iterations
of L,) belong to a Cantor like set (a set homeomorphic to the ternary Cantor
set). These facts have not been yet sufficiently clarified in the literature.

4. All results obtained for L, has to be interpreted in the setting of the Eq. (14).

5. Another open problem is to consider the non-autonomous version of (14)

Xn4+1 = q(n)xn(l - xn—l)

where in particular, (g(n));2, is a sequence of real numbers. It may be inter-
esting to study those cases where the sequence ¢ (n) be periodic, bounded or
convergent.
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7 Summary

After a revision of the dynamics of several equations modelling the evolution of
populations with one or more species, we have considered a logistic two delays
equation and studied some topics of its dynamics.

Periodic solutions of nonlinear difference equations like (11) are difficult to obtain
analytically. But the existence of invariant curves in the range of a less or igual to 2
can be obtained analytically and geometrically. There exists a curve joining the two
fixed points which is introduced as a power series. The special interest is the case
a=227.
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Diffusive Limits of the Master Equation )
in Inhomogeneous Media L

Luca Salasnich, Andrea Bonato and Fabio Sattin

Abstract Diffusion is the macroscopic manifestation of disordered molecular
motion. Mathematically, diffusion equations are partial differential equations describ-
ing the fluid-like large-scale dynamics of parcels of molecules. Spatially inhomoge-
neous systems affect in a position-dependent way the average motion of molecules;
thus, diffusion equations have to reflect somehow this fact within their structure. It
is known since long that in this case an ambiguity arises: there are several ways of
writing down diffusion equations containing space dependence within their param-
eters. These ways are all potentially valid but not necessarily equivalent, meaning
that the different diffusion equations yield different solutions for the same data. The
ambiguity can only be resolved at the microscopic level: a model for the stochastic
dynamics of the individual molecules must be provided, and a well-defined diffusion
equation then arises as the long-wavelength limit of this dynamics. In this work we
introduce and employ the integro-differential Master Equation (ME) as a tool for
describing the microscopic dynamics. We show that is possible to provide a parame-
terized version of the ME, in terms of a single numerical parameter («), such that the
different expressions for the diffusive fluxes are recovered for different values of «.
This work aims to fill a gap in the literature, where the ME was shown to deliver just
one diffusive limit. In the second part of the paper some numerical computer models
are introduced, both to support analytical considerations, and to extend the scope of
the ME to more sophisticated scenarios, beyond the simplest «-parameterization.
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1 Introduction

Let us attempt to describe the dynamics of some fluid, quantified by its concen-
tration n(x, t) evolving in time and space. For simplicity, throughout this work we
will restrict ourselves to one space dimension. In the absence of sink and sources,
n fulfils the conservation law

on aj

ot ox
The kind of dynamics involved depends upon the analytical expression of the flux
Jj- In the case of a collective motion where all the fluid parcels drift with the same
velocity V, j = nV. Superimposed to this motion, the single fluid particles may
experience disordered independent movements: Diffusion is the name given to the
macroscopic realization of the random movement of large numbers of particles in
space. The first experimental investigations on diffusion date back to the first half
of nineteenth century, prominently with Thomas Graham’s studies on the mixing of
gases and of salts in water [12, 27, 28, 30, 32], and with Robert Brown and his studies
on the movement of small pollen particles in aqueous suspension, which were to be
explained later by Einstein [7, 30]. Another fundamental advancement was brought
forth around the middle of the same century by Adolf Fick, who unified the diffusion
in fluids with the conduction of heat in solids, studied earlier by Joseph Fourier
[11, 30]. The Fick-Fourier’s (FF) law relates the flux j with the gradient of the

diffusing density n through:
on

j=-D x ey
The coefficient D compactly summarizes the effect of the interaction between the
individual particles and the surrounding milieu. In principle, if inter-particle inter-
actions are not negligible, it may depend from 7, too, but we will not consider this
possibility here. In thermodynamics, Eq. (1) is an instance of a linear relationship
between the flux and a thermodynamic force (the gradient of the free energy).
Equation (1) was derived by Fick as a purely empirical relation. Alternatively,
one can tackle a formal approach: the motion of each individual particle is modelled
as a sequence of uncorrelated jumps, an instance of a Markovian stochastic process.
This mathematical formalization leads to describing the trajectory of each individual
particle through a Langevin equation. Then, the average over a large ensemble of
such particles leads to the Fokker-Planck (FP) Equation [17, 31]:

a szax

a aj a [d(nD

n_ 0 [ (n )—nVi| )
ax

In this expression, we may identify the overall flux as done by two contributions,

that we will label as diffusive (—d(nD)/dx) and convective (nV). Analogously, we

may generalize Eq. (1) by adding a convective contribution:
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. on

j=—-D—+Vn 3)
0x

So far, no consideration has been made of the homogeneity of the background. As
a matter of fact, the law (1) was worked out in contexts where it was impossible to
discriminate experimentally any consequence of the inhomogeneity of the medium
upon the dynamics of particles; implicit in it is therefore the postulate of the homo-
geneity of the medium. In homogeneous systems, D, V, must be constant, since they
are postulated to be dependent by the properties of the medium alone. It is straight-
forward to acknowledge that, in this case: (I) The fluxes j appearing in Egs. (2) and
(3) are identical; (II) There is a clear-cut unambiguous definition of convective and
diffusive fluxes.

Just like (1)—(3) were got by experiment and by theory, the coefficients D, V
appearing therein may be regarded either as unknown quantities to be fixed by
matching with experiments, or as known from some more fundamental theory. Real
systems, however, are often inhomogeneous. This prompts to consider the possibility
that the parameters quantifying the strength of the interaction with the background,
D, V,become position-dependent: D = D(x), V = V(x). In this case, the fluxes in
(2) and (3) are no longer identical although they are still closely related:

on a |:8(nD) —nV:|

3 ox | ox
a on on a on ,
=—|D—+n—-nV|=—|D——-nV
8x|: ax oD ] 8x|: ax :|

Thus, the flux initially written, e.g., in the Fokker-Planck form may ultimately be
written in the Fick-Fourier one through a redefinition of the convective term:

dD

V=V—-—.
dx

“)
This interchangeability may lead to speculate that the question of which flux to use
is actually devoid of relevance: it has been argued in literature that only the total
flux must be given physical meaning, not the diffusive and convective contributions
separately [23]. This is trivially true as long as D and V are seen as pure fitting coeffi-
cients. However, the terms entering Eq. (4) come from distinct sources. Following van
Kampen, we divide them in geometric and thermal terms [3, 18]. The latter expression
originally implied that diffusion was caused by thermal agitation of the molecules.
Since the gas we are considering is not necessarily made of real molecules, we will
be employing it here in a broader acceptation, meaning any mechanism that acts
on the microscopic disordered motion of the particles and thus affect the diffusivity
D. Geometric terms, conversely, refer to the biasing on particle motion caused by
background geometry such as external forcing, ratchet effects . . . ordinarily on large
scales. Therefore, although formally, on the basis of Eq. (4) a varying diffusivity is
indistinguishable from a genuine convection, we may expect to be potentially able
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to discriminate between the two on the basis of the physical mechanisms acting on
the system under consideration. In this work we will postulate that geometric effects
are not involved. This removes the previous ambiguity. For clarity we rewrite here
down the versions of Eqgs. (2), (3) that we will be considering from now on:

on 0 on
— = —|D— (5)
at 0x 0x

- 6
Jt 0x 0x ©)

on 0 |: a(nD) i|
At this stage, Egs. (5), (6) are no longer equivalent: when one and the same D is
inserted in each of them, the resulting solutions n(x, t) are different (for the same
boundary and initial conditions, of course). Furthermore, some classes of solutions
are specific to the one or the other of these equations. One example is provided
by uphill transport, sometimes observed in high-temperature magnetized plasmas,
where the (matter or heat) flux goes along the same direction of the local gradient.
This phenomenon is unexplainable within Eq. (5), since therein the flux flows only
opposite to the gradient. Hence, in order to cope with this evidence, one has to enlarge
the scope of Eq. (5) by allowing for some convection to exist, thereby reverting to
Eqg. (3), or equivalently to (6) [9, 10] (For completeness we mention that it has been
speculated also that other kind of transport might be at work here, producing Lévy
flights, and therefore somewhat outside of the diffusive-convective paradigm).

The question: which expression between (5) and (6) is to be used, acquires there-
fore importance in this framework. The recent paper [2] highlights its relevance in
the context of the modelling of ecological systems, assessing to which extent dif-
ferent choices for the diffusive fluxes do affect the results of several predefined test
problems. Thus, it would be very convenient to have some guidelines telling us in
advance of our analysis whether, in the system under consideration, it is more appro-
priate to use the one rather than the other equation. These guidelines have to be
extracted from some knowledge of the microscopic physics driving the systems, and
are accordingly expected to potentially be largely system-specific and non-universal.
It is instead possible to answer on quite general grounds a weaker question: it is
possible to establish a simple parametrization such that a single numerical param-
eter uniquely identifies whether a generic system is driven by the one or the other
Egs. (5), (6). This numerical parameter has a close connection with the microscopic
stochastic dynamics, hence it is possible to assess its value only after a thorough
knowledge of the system’s microphysics.

There are several ways of introducing this formalism. One way is from the
Lagrangian point of view, as adopted, e.g., by Lancgon et al. [21, 22]. They modeled
the motion of each individual particle as a Brownian motion with space dependent
diffusion coefficient. An ambiguity arises in this case. Namely, the rule for updating
the walker position writes:

x(t +dt) = x(t) + nv/2Ddt 7)
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where 1 is a white noise of unit amplitude. At this stage the question arises: at
which location D(x) should be evaluated? At the initial position, x(#); at the final
one, x(t + dt), or somewhere else? The need of making such a choice goes under
the name of It6-Stratonovich convention. Adhering to the one or the other choice
ultimately leads to Egs. (5) or (6) when one goes from the single particle to the
fluid-like picture of the motion. Details can be found in Lancon et al.

An Eulerian viewpoint is possible as well. This time the location of space is held
fixed, and accounting is done of fluid elements entering and leaving it according
to given stochastic rules. The resulting balance equation is named Master Equation
as introduced by van Kampen [16]. The Master Equation (ME) formalism and the
Brownian walker one are, of course, different ways of expressing the same physics
(although the former one is more flexible) and therefore are expected to produce
the same results. To the best of our knowledge, however, the exercise of extracting
diffusion equations (5), (6) from the ME has been fulfilled so far only partially, by
van Milligen et al., who recovered Eq. (6) [40]. No analogous result for (5) has been
produced. This led van Milligen et al. to argue that perhaps Eq. (5) does lack a true
microscopic justification. In this work, instead, we will complete this exercise by
showing how Eq. (5) can be extracted from the ME in analogy with the Brownian
walker result.

Section 2 provides a brief introduction to the ME. Sections 3 and 4 are devoted to
show how Eqgs. (6), (5) respectively do arise as suitable limits of the ME. Section5
supplements the previous analytical results with numerical exercises: lattice models
are designed and implemented as computer codes and we will show that, on the
basis of the stochastic rules imposed, the numerical simulations do conform to the
predictions done in the previous sections. Indeed, we have remarked earlier that the
ME is fairly a flexible tool for the investigation of stochastic system. Still in Sect. 5
we will validate this claim, by producing an instance of a system whose dynamics
is modelled by the ME and that cannot be reduced to either Egs. (5) or (6). Finally,
Sect. 6 provides a brief recap of the results.

2 The Master Equation

The ME is an integro-differential equation expressing the rate of change for the local
scalar density 7 in terms of transition probabilities. In one spatial dimension and with
consideration of just one transported quantity it writes

8n(x,t)_ n(x,t)
a

P(x,2) ®)
T

+ f dzn(z,t)

In (8), P(x, z) represents the probability for the lump of matter dz n(z) to be moved
from z to x, and t sets the corresponding temporal scale, which may depend upon x
as well.
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Thus the first term in the r.h.s. of (8) represents the rate of particles leaving the
location x, whereas the integral stands for the total rate of particles that, started
elsewhere, land on x. Equation (8) does not account for the presence of any source
and/or sink; we will not consider them in this work although they can be added
straightforwardly. We cursorily note that P may be considered as a transfer function
without necessarily a connection with probability. A deterministic version of Eq. (8)
is used, e.g., in biophysics, where it is known as Amari’s equation [1].

The limits of integration in Eq. (8) are left unspecified. The reader may assume
that they range from —oo to +00; we will not address here such issues as finite-size
boundary effects (some related analysis can be found in [34]).

Equation (8) may contain virtually all the information available about the system,
except for the velocity degrees of freedom of the particles. It is fairly flexible, too:
depending on the functional form chosen for P, 7, it can accommodate a wide range
of dynamics, from sub- to super-diffusive transport, including possibly nonlineari-
ties. Indeed, in the form (8) it has already been circumscribed from a more general
expression (Generalized Master Equation) [19] that involves a convolution not only
over space, but over time as well: P = P(x, z, t, t'). Explicit consideration of a finite
temporal memory may lead to the emergence of a vastly more complicated dynamics,
varying from diffusive to wave-like, as argued by Maxwell, Cattaneo and Vernotte
[4, 13-15, 20, 29, 38, 41].

3 From the Master Equation to the Fokker-Planck Flux

In most practical applications, one has available just coarse-grained information; i.e.,
not knowledge of the full P, 7, but just averages <P >, <7> over finite regions of
the system. Mathematically, this amounts to saying that only the long-wavelength
limit of Eq. (8) is actually relevant. In this and the next section we will derive the
result that by removing small-scale details-i.e. taking its long-wavelength limit-Eq.
(8) reduces a parabolic partial differential equation, the diffusion equation, and that
can be either in the form (5) or (6).

For simplicity, throughout this work, we will drop any dependence of T from space
or time: it will just play the role of a constant, characteristic time scale of the process.
Accordingly, the whole physical content of the theory is brought by P. Since we are
dealing with position-dependent systems, one could legitimately wonder whether
dropping any spatial dependence from t does impose too severe constraints upon the
dynamics we may model. Setting T = t(x) does-of course-affect quantitatively the
shape of the resulting equations, since additional terms proportional to t/(x), T”(x)
do appear. However, conclusions drawn in the next sections will remain qualitatively
unaffected.

In order to carry out any further analysis one needs first to make explicit the
dependence of P upon its arguments. In spatially homogeneous systems, the only
dependence can enter through the jump length (x — z) since P is invariant under
translations. In inhomogeneous systems, instead, this invariance must be broken,
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and explicit dependence of P upon x, z separately must appear. The most intuitive
choice is to make P dependent from the starting location as well:

Px,z2) =P(x—2z2) &)

Heuristically, this choice is close to the standard way of looking at problems in
dynamics-or in computer programming: the evolution of a system is determined
(although, in this case, only on a statistical basis) by the law of motion (P) and by
the initial conditions (z).

It is convenient switching to the variable A = z — x in Eq. (8):

8n(x,t)_ n(x,t)
a

+fdAn(x+A,z)w (10)

The long-wavelength limit is taken by postulating that the jump probability P is
virtually zero beyond some maximum jump length A,,,,, and that both n and P
vary slowly over lengths lesser than A,,,.. Therefore, the argument of the integral
in (10) is expanded around x in powers of A, and the Taylor expansion is stopped
to some finite order. Pawula theorem [31] warrants that, by stopping to the second
order, no such unphysical artefacts as locally negative densities may occur. The true
justification for the truncation to the second order, however, has been provided only
quite recently by Ryskin [33]. Ryskin’s proof is essentially a consequence of the
Central Limit Theorem, and states that for analytic P’s and over time scales just
moderately longer than 7, the dynamics always converges to be diffusive. Since
Ryskin’s result is essential for this paper, we will provide in the Appendix a sketch
of his proof.
Armed with these results we eventually carry out the expansion of (10):

on(x,t ,t 1 1 a(nP 1 A% 9*(nP
neen __ne )+—/dAnP+—/dAA (n )+—/(J1A—L
at T T T dx T 2 9x?
(1)
In Eq. (11), for brevity, we have not written explicitly the arguments of n and P:
n=n(x,t),P=P(—A,x).
The two first terms in the r.h.s. of (13) mutually cancel by virtue of the normal-
ization

/dA P(—A;x)=1
Equation (11) takes thus the form of a conservation equation:

an *(D(x)n) AU (x)n)
ar  9x? dx

with
2

Ux) = %/dAAP(—A;x); D(x) = %/dA% P(—A;x)  (12)
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In accordance with the guidelines set up in the Introduction, we will restrict to
scenarios without convective flux. This is achieved by imposing unbiased jump prob-
ability: P(A; x) = P(—A; x), thus U(x) = 0, and

on  3*(D(x)n)
ar  ax2 (13
Equation (13) is thus a continuity equation for n, the flux being written in the FP
form (6); It comes fairly straightforwardly from the postulate (9), which looks like
quite natural. We add a comment in order to avoid potential confusion about this
regard. The complete transition probability P(x — z; x; z) may be-and usually is in
inhomogeneous environments-biased: ['dA A P # 0, but the average defining U in
Eq. (12) involves the reduced probability P(x — z’; x; z = x) in which z is set equal
to x in all arguments but in the step length. It is this reduced probability that has to
be unbiased.

This result thus may suggest that the FP is the natural long-wavelength limit of the
ME-within the above constraint of unbiased P. Van Milligen et al. [40] supported
this conclusion both by recalling earlier numerical results-namely, the computer
simulations of particles hopping on a lattice by Collins et al. [6]-as well as carrying
out and modelling some experiments of viscous fluids dynamics [39].

‘We mention that this kind of question (which choice is physically motivated) has
often occurred in the literature [31, 37]. We have repeatedly stated throughout this
work that the question has no answer, since both choices may be valid. Actually,
unambiguous evidence for Fickian transport in inhomogeneous media with unbiased
P does exist in literature. For instance, one may mention (i) generic one-dimensional
Hamiltonian systems [8, 24]; (ii) the experiments on the dynamics of colloidal parti-
cles [21, 22]; (iii) the analytical and computer models of particles scattering against
a Lorentz background made by Bringuier [3], as well as (iv) the extensive study by
Schnitzer [35]. Several of these results are based upon microscopic models of the
stochastic dynamics, thus there is no doubt that the Fick’s flux is a valid limit for
some classes of systems.

4 From the Master Equation to the Fick-Fourier Flux

It is therefore clear that we have not yet exhausted all the physics potentially embed-
ded into Eq. (8). The purpose of this section is to make explicit the constraints
imposed for the derivation of Eq. (13) and see how they have to be relaxed to allow
for wider classes of solutions. To this purpose, we will outline a recipe patterning
the classical Ito-Stratonovich [5, 17, 31] one within the framework of the Master
Equation.

Let us start by looking at the structure of the arguments of the transition probability
P within a particle-hopping picture: a generic particle is bound to location z for a
duration 7, and then is propelled away. The initial conditions of the particle are
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completely fixed (although only in a statistical sense) by the local background at
the starting point z (whence the appearance of z as second argument of P in Eq.9),
whereas during its travel it suffers an interaction with its environment that damps its
motion up to a complete stop at point x, whence the meaning of the first argument of
P as the total length travelled: xz. This picture is fairly intuitive, and for some classes
of systems it provides a close approximation of the real dynamics, but we should
remember that Eq. (8) is meant generically to give just a coarse description for the
actual dynamics, which is much more complicated since involves kinetic degrees of
freedom, too: we are neglecting, for instance, all effects related to the finite inertia of
the moving particles. It is the same kind of ignorance about the true path travelled by
the particle that, in Brownian motion (Eq. 7), leads to choosing between the different
Itd or Stratonovich recipes. Therefore we should expect that P depends explicitly
not only on the starting location z but potentially all the points between z and the
final one, x. It is intuitive that such a detailed accounting would likely lead to a fairly
complicated expression when inserted into Eq. (8). However, since only the initial
(z) and the final (x) locations are well defined, not the exact trajectory between the
two a more reasonable argument is that just them should appear as arguments of P.
The simplest ansatz is to allow for a linear combination of the two:

P=Px—-zx), x=(l-a)ztax, 0<a=l (14)
Thus, with A = z — x and G = P/t the ME writes

on(x,1t) . _n(x, t)
ar

+/dAn(x—|—A,t)G(—A,x+(1 —a)A)

Now we expand the terms inside the integral in power series around x dropping as
customary all terms involving odd powers of A. In order to keep expressions short,
in the next lines we label the spatial derivative with the apex sign: ' = 9/dx and the
time derivative as 9, = 9/d¢. We get

AZ
qn = /dA > {2(1 —a)G'n+Gn" +(1 - OI)ZG”I’l} —i—/dA {nG} — n

T
15)
By replacing the integrals in (15) using D given in (12) we get

an = {Dn' +D'(1 —2a)n} + |:a2D”n —|—fdA (nG} — ﬂ (16)

The normalization condition for particles jumping from the fixed location z to an
arbitrary one x reads

/de(z;x) =1 (17)
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After inserting Eq. (14) for P:
1 :/de(x—z; (1 —-aw)z+ax) (18)

We rewrite in this expression the arguments of P as P = P(—A;z —aA), and
expand (18) up to the second order in A:

d 5 d? A?
1 =fdAP(—A;z)—a—fdAAP(—A;z)—i—a —/dA—P(—A;z)—i—...
dz dz? 2
19)
The first-order term in « vanishes by virtue of the symmetry of P. After the multi-
plication by n(z)/t and the replacement of the second integral with D we get

n_ /dA (nG} + «>D"n.
T

Therefore the term inside square brackets in Eq. (16) vanishes and we are left with
dn = {Dn' +D'(1 — 2a)n} (20)

Let us now specialize Eq. (20): first consider the case « = 0. We get accordingly
on = (nD)" 21

which is just the FPE once again, as expected since Eq. (14) reduces now to (9). The
choice a = 1/2 yields instead:
on = (Dn'y

i.e, the FF diffusion. We can thus conclude that the ME may actually produce Fickian
transport as long as its diffusive limit makes sense.
For completeness, let us add some brief comments about the third special case
a=1.
on = (Dn’ — D'n), (22)

Itis interesting to perform a comparison between (21) and (22). Both are instances of
flux without a gradient, i.e., fluxes can be sustained even in the absence of a gradient
in the concentration . By setting n’ = 0 in both we get respectively

on=nD", 0n=—nD".

Hence, the two cases (¢ = 0, 1) are related by the mirror symmetry D" <> —D".
We conclude this section with a minor comment about the parallels between our
procedure and that of Langon et al. [21, 22] using the Brownian walk formalism. We
point out how the ME approach grants a small advantage: namely, their derivation
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could retain terms containing D, D’ but not higher derivatives (unlike ours) since it
would turn the Brownian walker algorithm updating the position (x(t) — x(¢ + dt))
into an algebraic equation for x (¢ + dt) of order larger than one, with related issues
of multiple roots.

5 Numerical Experiments: Lattice Models of Diffusion

The ansatz (14) suggests that final conditions are to be involved in order to recover
the FF flux. One might wonder which systems do fulfil it. In this section we design
two different models for particles hopping between nodes of a one-dimensional
lattice, hence variants of the Collins’ model [6]. Differences are in the statistical
rules obeyed by the particles. Model 1 provides a flexible knob easily interpolating
between different dynamics. Model 2 is somehow less amenable to direct inspection
of its emergent dynamics, but implements perhaps a more realistic mechanism.

5.1 Model 1

At each time step, particles perform a random jump from their starting node to some
neighbouring one. The width of the jump, i.e. the number of nodes the particle can
travel, is picked randomly from a uniform distribution [—£(i), £(i)], where i is the
starting node, and £ a maximum jump length that depends on the starting location.
Furthermore, each node j is assigned an acceptance rate 0 < P,(j) < 1. Once a
particle has been chosen to hop from node i to node j, a second statistical test is
performed based upon the acceptance rate: it succeeds with probability P,(j), and
the particle moves from i to j, whereas with probability 1 — P, () the test fails, and
in this case the particle does not move. The hopping probability thus writes

P(jli) = Pj(i = jli) x Pa(j)-

Provided that ¢ is small with respect to the length of the lattice, we can consider a
continuous version of the ME (where we set T = 1)

on(x,t)
ot

= —n(x,t) +/dA nx+ A, t) Pi(—A,x + A)Py(x)

which, after the usual Taylor expansion, writes
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an(axt, 2 =_n(x,t)+_/dA”(xJ) Pj(=A, x) Py(x) 23)

—l—/dAA Pa(x)% (n(x, ) P;(—A, x))

1 92
+ 3 / dA A? 11,(x)—8x2 (n(x,1)P;(—A, x))
9 92
=P,(x) [—a (n(x,l‘)Uj)—l—@(n(x,t)Dj)] 24)

The odd moment U; vanishes because P; has mirror symmetry and (24) reduces to

on(x,t) 92
o Pa(x)@ (n(x, t)Dj) (25)

Eq. (25) is obviously not in the form of a Fokker-Planck Equation unless P, is a
constant—but can be cast into it by defining the auxiliary functionsv =n/P,, D =
Pa D j:

av 3%2(vD)

e 26
ot dx2 (26)

We check now that the presence of the P, function outside the derivative term in (25)
does not cause problems with the particle conservation. We postulate P,(x) to be
a smooth function. To lowest order, we can get P, constant, which obviously turns
Eq. (25) into a continuity equation for n. Then, we go to the next order by linearly
expanding P, around some fixed point, conventionally x =0 : P,(x) = P,(0) +
P/ (0)x. This allows rewriting Eq. (25):

on(x,t) _ ad

ot a |:Pa(-x)

d(nD;) dP, } 8|:8(nD) lndPa}

n = — —2nD
0x dx 0x ox dx

27
which is still in conservative form.

The convective flux is still geometric in nature, since is proportional to space
derivatives of the jumping probabilities, but it has a more elaborated dependence
than just from dD/dx, hence cannot be derived from within the It6-Stratonovich
a-parametrization.

Equation (27) reduces to the FPE when d P,/dx = 0. Conversely, if P, is not
constant, the probability for a particle to jump between two nodes depends on the
arrival site as well as the departure one, and we expect non-FP features to arise.
Fick’s flux arises in connection with the condition:

dln D _ZdlnPa

D, xP, 28
dx dx Bthe (28)
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This, together with D;(x) = 1/2 < €% >= ¢*(x)/6, that comes from our choice of
the statistical distribution, establishes that Fick’s diffusion arises for just a specific
functional form of the jumping length:

¢ o /. (29)

In the following we show the result of a numerical simulation done tracking the
evolution of N, = 10° particles over a lattice with N = 2048 nodes: a Monte Carlo
implementation of solution of the Master Equation. All particles are initially located
ati = N/2 and reflecting boundaries are imposed at both sides. As far as the accep-
tance rate is concerned, we consider two scenarios:

(A) variable acceptance rate: P, = 0.1+ 0.85(i/N) (B) constant acceptance
rate: P, =1Vi The jump length is instead taken in both cases as
¢ =[12,/0.T+0.85(i/N)] (where [...] means the integer part); thus it fulfils con-
straint (29) in the scenario (A), whereas yields Fokker-Planck flux in scenario (B).
There is nothing special about these numerical values; they have simply been chosen
on the basis of the following fairly trivial considerations: (i) the larger A¢/Ai, the
more any effect related to inhomogeneity shows up. However, £(i) must be small
enough in order for D to make sense as a local quantity: hops must not be too large.
With the choice above we get that D,,,, > 100D,,;, and £,,,,/N = 1/200, which
fulfil both these constraints. (ii) The same rationale applies to P, as well: the larger
dP,/dx, the more clearly the departure from FP flux appears, but P, must stay in
the range 0 < P, < 1, and values too close to zero make the numerical treatment
cumbersome, since particles take very long times to sample accurately these regions.

We compare the particle simulation with the numerical solution of the diffusion
equation for both the choices Fokker-Planck (Eq. 6) and Fick-Fourier (Eq.5). In the
Fig. 1 the dots are the number of particles found at the different nodes after t = 10*
time steps, the black (red) curves the FP and FF solutions respectively. There is a
clear agreement between expectations and numerical results in both cases.
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Fig. 1 Left plot, particle distribution after 10* steps for scenario (a) with variable acceptance rate;
right plot, the same for scenario (b) with constant acceptance rate. Dots are from the numerical
simulation of the particle model; red solid curve is the solution of fluid diffusion equation using
FF’s flux (Eq.5); black dashed curve, the same using FP flux (Eq. 6)
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5.2 Model 2

In model 1 the particle is required to pass a test relative to the destination node before
it actually reaches the node itself. This time, we restore the locality in the model: all
the tests are taken at the node occupied by the particle.

We consider a lattice version of mono-energetic particle motion: at each time
clock particles are moved of exactly one node: say (j — 1 — j). However, after
the displacement is done a test is carried out: with probability 1 — g () the particle
conserves its direction during the next time clock, whereas with probability g (j) it
will reverse its direction. The next step, in the two cases, will be either (j — j + 1) or
(j = Jj — 1). Thus, the total jump of the particle is defined by summing the number n
of nodes travelled between two successive changes of direction, its probability being
P =q(j)[],.;(1 —q(0)), where the index [ stands for the nodes’ indices between
the starting and the final one; therefore P will depend on all the nodes visited as well.
This way, the appearance of the final location between the arguments of P appears
clearer: it is not necessary that the particle collects information about the arrival site
in advance of its hopping, like in model 1. The model built this way is a version
of random walk, thus its large-scale dynamics has to be diffusive. Unlike model 1,
in this case, we were not able to guess an explicit expression for the diffusivity;
however, since P is position-dependent, D must be as well, D = D(x).

We have carried out a numerical Monte Carlo simulation for this system, which
yields the solution of the Master Equation. Starting from a collection of particles all
placed exactly in the middle of the lattice, we have let them to move randomly over
times so long that the final stationary equilibrium is reached. The equilibrium density
is shown in Fig. 2, and is spatially constant. Furthermore, at equilibrium, the flux
must be null. Although we do not know explicitly the diffusivity D, we know that the
stationary solution using the FP flux is —d(Dn)/dx =0 — n o 1/D # constant.
Hence, regardless of the value of D (x), the flux cannot be in the Fokker-Planck form.
Conversely, the FF flux is —Ddn /dx, and is consistent with the stationary solution
n = constant.

6 Summary

In this paper we have provided a simple procedure to derive diffusion equations as
several different limits from within the single framework of the ME. We have worked
out an analytical expression, Eq. (20), that can interpolate between both Fick-Fourier
and Fokker-Planck limits in dependence of a single numerical parameter «. We have
highlighted that the value of « should arise from the knowledge of the microscopic
physics of the system examined. In most actual situations, it is likely difficult to
extract it, but we have already provided several instances where this exercise was
carried out [3, 6]. Other examples include [36] and-fairly recently-[42], although
these results have been latter questioned [25, 26, 43].
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Fig.2 Dots: particle distribution for the model 2 after 2.5 x 10 time steps. Parameters of the simu-
lation are: number of nodes N = 1024; number of particles N, = 40 x 1024; particles initialized at
j=N/2;q(j) =0.1 +0.4 % j/N.Reflecting boundaries are used. The resulting final distribution
is uniform within the statistical noise: for reference, the black line is the perfectly constant density.
This result is at a variance with expectations from Fokker-Planck flux, whereas it is consistent with
Fick-Fourier flux

Regardless of the fact that one is able to determine a priori which is the best
expression for the diffusive flux to be employed, the main conclusion stressed in this
work is that both choices are legitimate long-wavelength limits of some underlying
microscopic model. Furthermore, we have shown that the ME formalism is much
more comprehensive than the Langevin equation one.

The analytical conclusions have further been supported by implementing and
solving numerically simple intuitive models.
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Appendix

The rationale of Ryskin’s result is based upon the Central Limit Theorem (CLT).
The total displacement of a particle is approximated as the sum of several uncor-
related jumps. The single jumps are not necessarily identical, but picked up from
some statistical distribution. Regardless of the details of the distribution, provided
that the variance of the jumps remains finite, the CLT warrants that the total dis-
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placement distributes according to a statistical distribution that quickly approaches a
Gaussian distribution after even a moderate numbers of steps.

For brevity we will sketch Ryskin’s proof for homogeneous systems only. Its
generalization to inhomogeneous systems adds some mathematical labour but does
not differ conceptually. In homogeneous systems P depends just from the difference
of its arguments: P = P(x — z), as explained in Sect. 3. This allows for a dramatic
simplification after the Fourier transform of Eq. (8) is taken:

ank, 1) ik, 1) ik, 1)Pk)
=- +
at T T

(30)
Equation (30) can be solved analytically:
. - tdt - o
n(k,t) =n(k,t =0) x exp </ ?(P(k) — l)) = exp (;(P(k) — 1)) (31)
0

Formally, n(x, t) comes from the inverse transform of (31) and it does not appear
analytically computable for generic P. However, we can write

P(k) = / dze*P(R) =) (ik),m / dzz" P(2) (32)
m=0 '

m

We will be considering just specularly symmetric transitions, as customary:
P(x — z) = P(z — x); the moments in Eq. (32) become

/dzP:I:f’(k=O) (33)
/dzzP =0 (34)

f 4z 2P = o 35)
/dzsz =<7">=u,, m=>3 (36)

and p,, = 0 for all odd m’s.
Let us now rewrite Eq. (32) using the trigonometric expression of the exponential:
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P(k) = / dz cos(kz) P(z) + i / dz sin(kz) P () (37)

2 2
— |P()|)? = (/ dz cos(kz)P(z)) + (/ dz sin(kz)P(z)>

= < cos(kz) >> + < sin(kz) >>
This implies that |P (k)| < 1 for generic k # 0. Furthermore,
|P(k)| — 0,k — oo (38)
To demonstrate this, let us note that sin(kz), cos(kz) are periodic with wavelength

A =2m/k — 0,k — oo, while P is a smoothly varying function, hence is almost
constant over A: P(z) = P(z + 1) = Py. Therefore

A A
/ dz cos(kz)P(z) =~ PO/ dz cos(kz) = 0 (39)
0 0

(the same holds for sin(kz)).
We define m, At suchthatr = j At, with j integer and At =~ O(t). Equation (31)
becomes

ro~ At~ /
exp (;(P(k) - 1)) = |:exp <7(P(k) - 1)>] = (40)

At [ K2o? & k)™ g
on(2 (2 o5 )

In the last line of (41) we have taken advantage of (33)—(36).
Let us define £ = j'/?k. Equation (41) becomes

ik, 1) . p|:£ (_5202 +i 1 (ié)mﬂ )} )
T .m_ ] m

iki=0) 2 AT

Then, we consider separately the two limits £ > 1 and £ < 1 (Notice that the bound-
ary between £ > 1 and £ < 1 is a dynamical one: it varies with time, i.e. with j).
The former limit corresponds, for any fixed time, to taking k — oo and therefore
the result (38) holds: there is not contribution to the density from features at these
wavelengths. Conversely, when & < 1 the first term inside the exponent in Eq. (41)
dominates over the others hence we can retain just it and, reverting to the original

variables
t (ko)?
T 2

n(k,t) =n(k,t) x exp |:

which is the propagator of the diffusion equation, with diffusivity = o>/2t. This
concludes the proof.
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Abstract Early prediction of abrupt changes in complex systems is of great inter-
est in preventing unwanted effects. This has recently led to the establishment of
indicators whose evolution may be indicative of some of such changes. Here we
present a criterion to predict the sharp fall in the prices of a stock market index.
We have studied the moving networks constituted by the companies included in
several indexes (IBEX35, CAC40, DAX30 and Euro Stoxx50), constructing the cor-
responding “Minimal Spanning Tree (MST)”. When the number of leading nodes in
the network decreases in a substantial manner, the network has few leaders, and if
those suffer any fall, the index might fall as well. By means of this hypothesis, we are
looking for a rotation direction beforehand, a downward rotation. Using daily clos-
ing price series from 2007 to 2017 for these indexes, we can point out that when the
number of leading nodes is small, and the average correlation of companies forming
an index decreases, placing itself below 0.4-0.5, depending on the index, and this
decrease is accompanied by a significant increase in the correlation deviation, the
price tends to fall at around 70% of reliability.
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1 Introduction

Dynamic systems and, in particular, dynamic networks that evolve over time can
undergo abrupt changes in their behavior for a given value of a set of parameters
that at a given instant characterize the behavior of the system. This affects both
natural and social systems, with well-defined evolutionary rules or with empirical
values recorded and represented by time series. These critical thresholds—also called
tipping points—often point to the onset of catastrophic situations such as earthquakes,
species extinction, climate change, etc., and in particular sudden and significant falls
in share prices in stock markets.

It is very important to be able to predict these changes so that one can avoid or
minimize their damage or even take advantage of them (for example, by trading prof-
itably in the stock market). In cases of systems with well defined rules of evolution,
embodied in a set of differential equations, this task, without being easy in general,
can be carried out in a systematic way. However, in cases where only empirical time
series are available, without knowledge of the mechanisms that originate them, the
problem of making predictions is a huge challenge [5, 8, 31]. With this objective, a
set of indicators, of a statistical nature, applied in isolation or in concurrence with
others, has been defined for different systems in order to try to predict with certain
probability of reliability the occurrence of one of these critical changes.

The list of indicators applied to complex systems of different nature is broad:
recovery rate or return time of the system state when is subjected to a disturbance,
dominant eigenvalue, rate of change of amplitude, autocorrelation at lag 1, spatial
correlation, analysis of fluctuations, variance, skewness, spectral analysis, spectral
reddening, Fisher information, Shannon index ... A catalog of these indexes and their
applicability to different systems to anticipate critical transitions has been published
by Scheffer et al. [32]. Another approach is to establish a measure of the resilience
of the system and, in particular, of a complex network [16] with the idea that if at
any given time the resilience is low the system is more fragile when it has to react
to perturbations of nature unknown or unforeseen, and thus, it is more likely that in
these situations there will be a collapse of the whole complex network. Bardoscia
et al. [3], using a parallelism with ecological systems, have recently analyzed the
emergence of instability in financial systems.

In any case, as it has been indicated, there is no method that anticipates with
certainty the advent of these abrupt changes, there is only partial success of a proba-
bilistic nature for certain systems, so that continual attempts are made to design new
indicators that can serve as early warnings of the occurrence of unwanted collapses.
This is of great importance, both for policy makers and traders, to anticipate signifi-
cant falls in the financial markets due to their great economic impact. One aspect that
has often been addressed in network theory and which is relevant to our study is how
we can identify subsets of the network formed by elements more closely connected
to each other than to the other elements of the network, forming functional groups or
cliques that are more or less compact or linked through a hub that plays the leading
role of the group and establishes a certain hierarchy [15, 39]. Heiberger [17] has
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analyzed S&P100 index and concludes that collective shifts precede structural
changes in stock market networks and that this connection is mostly carried by
companies that already dominate the development of the S&P100. A metric between
nodes can be defined, which allows the clustering of the closest ones by different
grouping techniques, by a relevance index introduced by Roli et al. [29] or by the
method used by Bonanno and Mantegna [6] to draw a minimal spanning tree (MST),
which we will apply here.

Since the 1960s, many theories and models of investment have been developed,
some of them more successful and operative than others, or more sophisticated, with
greater amount of data needed, and so on. Starting from the well-known models of
Markowitz and Sharpe, through CAPM (Capital Asset Pricing Model), APT (Arbi-
trage Pricing Theory) and OPT (Option Pricing Theory), to the Technical Analysis
and Chartism (also known as “behavioral finance”), there have been many academics,
researchers, statisticians, economists, professionals and investors who have tried to
develop a model or methods in order to explain the markets’ behavior and to adopt
some trading strategy, allowing them to take a competitive advantage and obtain
benefits from the stock market investment.

The models based on the behavior of the investor, in the “Big Data”, etc., are
among the latest advances that try to seek advantage of the incorporation of psychol-
ogists, mathematicians, physicists and engineers to the teams of Research in Financial
Markets, to find their patterns of behavior. Recent advances found a method, in order
to observe the most suitable values of the same index to obtain diversified portfolios.
In addition, this breakthough could predict the collapse point of a particular market.
One of the most interesting aspects of these theories is the possibility of predicting
sudden changes in the system, forcing it to develop a modified structure.

The different financial markets are interconnected through the network. In the
“theory of networks”, stock values are connected to each other, according to their
degree of correlation. This theory’s main goal is to identify market leaders and predict
the values that will set behavioral patterns in other markets. The study is based on a
series of mathematical filters used to detect who are the leaders and followers of a
stock market, according to the quotation of each value. Moreover, it is verified that
the market consist of united organizations, meaning that the collapse of a market
directly affects the development of others. The “backbone” of these network (the
main nodes), and for different markets, would be the banking sector, as well as the
“mid and small cap” in their ramifications.

What does it consist of? A good example would be the comparison between our
system and Facebook. In this social networks, the users relate to each other through
links or request for friendship. Some of these individuals are influencers, that is,
their opinion has more impact and reaches a greater number of users, and therefore
they are considered “leaders”, who lead the way in the systematic behavior of an
interconnected group. Something similar happens in the financial markets. In this
area, stock exchanges are connected with each other, according to their degree of
correlation. Here, Big Data plays a very important role. Its constant development
produces more accesible information to improve the model and results offered by
network theory.
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So, how can this theory improve the optimization of Trading? When applying
this method, professionals can detect not only the network structure generated in
a particular financial system, but also it allows them to study the risk of a possible
collapse in a stock exchange network. Thank to this advance, a strategy can be created
and adapted to the most optimal values, depending on the client” portfolio and the
degree of exposure to risk.

In this chapter, we consider the structure of different financial systems as moving
networks, their nodes, edges, relationships and their behaviour in the previous peaks
to a fall in the prices of their market indexes. This paper is organized as follows.
We start reviewing the conceptual framework and related literature as theoretical
background in Sect.2. Next, in Sect.3, we describe the methodology used in this
study. After carrying out a general description of the model, we provide a more
detailed description of each kind of information and how it is obtained (extraction
of index’s data) and processed in order to create the model in the two following
subsections: “construction of the networks” and “use of the number of leading nodes
in the network as a possible indicator of a fall in index prices”. Finally, Sect.4
present empirical results, and a summary and conclusions are provided in Sect.S5,
respectively.

2 Conceptual Framework

In the last decades, many studies have been carried out on financial markets, and
many diverse techniques and hypotheses have been applied in an attempt to explain
the behavior of the price of diverse financial products. At the same time, many
professionals outside the finance world have carried out many studies in an attempt
to apply advances within their own fields. These professionals range from economists
(who are naturally the most common ones), mathematicians, statisticians, or, as in
this case, physicists.

The irruption of these professionals has allowed us study financial markets as
groups of elements that are interwined and influence each other. From the 70s on,
we can find studies (Levine [21]) in which the behavioral patterns applied had only
been applied to physical systems, until then. This opened the doors for a new way of
studying financial markets.

In recents years, much progress has been made in this sense, and studies (such
as Fiedor [12-14], for instance) make reference to how companies in a sector or
stock market index behave in a nolineal manner, which dynamically causes them to
affect each other. This has been proven through the application of the hierarchical
network theory to the system. The appearance of artificial intelligence, alongside
the possibility to teach systems to take decisions according to a historical basis
was also brought to the studies of financial markets by neural network theories
(Siripurapu [33]).

Another contribution with which Physics has contributed to the study of financial
markets has been that of the phase transitions and critical phenomena, which in this
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case can be applied to prevent possible changes in the trend of asset prices. This
allows us to interpret them as the end of a trend or market phase by using model that
are at the forefront in physical studies, such the Ising model, percolation theory and
other studies (Sornette [36]).

Barrio et al. [4] analyze how buyers and sellers relate to each other, and which
allows us to draw some general conclusions about how different commercial strate-
gies could affect the distribution of wealth in different types of societies. Lemieux
et al. [20] have explored the application of three different portfolio formation rules
using standard clustering techniques. Musmeci et al. [26] analyze the best methods
of creating a portfolio and the best hierarchical structures, as well as the different
ways in which sectors react to events, such as a financial crisis. Ren et al. [28] has
also recently proposed a new dynamics portfolio strategy based on the time-varying
structure de networks in Chinese stock markets.

Other studies (Alkan and Khashanah [1]) refer to the temporary development of
modelled indexes, such as networks, along with their change over time when they
are affected by external facts. In addition, not only the influence of companies con-
stituting an index and the index itself have been studied, but also the influence of
different indexes have upon each other (Sandoval et al. [30]). Fiedor [13] has intro-
duce a way to incorporate nonlinear dynamics and dependencies into hierarchical
networks to study financial market using the concepts mutual information and mutual
information rate and and applying them to two stock indexes.

Carlsson and Memoli[7] have studied hierarchical clustering schemes under an
axiomatic view. Huang et al. [18] has done a study of MST comparing the algorithms
of Prim and Kruskal to define a metric, expressing that Kruskal algorithm is more
suitable for sparse edged networks. Song et al. [35] have introduced a graph-theoretic
approach to extract clusters and hierarchies in complex data-sets in an unsupervised
and deterministic manner, without the use of any prior information, and have con-
structed networks containing the subset of most significant links and analyzed the
network structure to differentiate meaningful clusters and hierarchies in a variety of
real data-sets. Mantegna et al. have addressed the study of different aspects of finan-
cial markets to extract relevant information from a broad set of stock indices based
on the construction and analysis of correlation graphs [23, 34, 38]. Tse et al. [37]
have constructed a network using US stock prices, price returns and trading volumes
and established that the variations of the stock prices are strongly influenced by a
relatively small number of stocks and report that all network based on connecting
highly correlated stock prices display a scalefree degree distribution, in a similar way
that other self-organized systems [2]. Cimini et al. [9] have designed a method to
reconstruct financial networks from partial information through statistical mechan-
ics methods to improve the possibility of correctly estimating the resilience of these
systems to events such as financial shocks, crises and cascade failures. Other recent
studies on this matter are Lima Dias [22], Donnat et al. [10], and Marti et al. [25].

In this chapter we have focused on how the network behaves in the moments right
before a fall in the prices of the index. In order to do this, we have focused on the use
of the network as our starting point obtaining both the correlations of the companies
and the existing nodes in each moment in the network.
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Regarding the structuring of financial systems as network, Peralta [27] also offers
information on the correlations and behaviors of the companies that form the network.

3 Methodology

On the basis of diverse studies and articles on financial markets, we have combined
characteristics and conclusions from a new model to obtain an indicator that will
allow us to predict, with enough reliability and anticipation, the maximums that
occurs in an index price by studying the companies that form that index.

Firstly, we have carried out a study on the network constituted by the companies of
an index in such a way that the correlated behavior between all these companies can
be observed. Consequently, we can obtain the average correlation between them and
the average deviation of said correlation. After that, we have studied the disposition
of the companies from the point of view of a network. Thus, we can affirm that there
are situations in which the network has more or less leading nodes. We call leading
nodes those that in the MST have more than two links. In the following, for brevity,
we will refer to the leading nodes simply as nodes in the network (the total of nodes
in the network is always the total of companies that compose the index and does
not change). This variation in the number of nodes in the network for differentes
situations of the market provides extra information, as will be discussed later.

Once the information about both strands has been obtained, tests have been carried
out on various stock indexes around the world. These results have been analyzed,
providing us with relevant conclusions. In addition to numerical results, the possi-
bility of choosing a securities that is close to the optimal is also obtained through
the network’s graphic layout. This can be accomplished by choosing companies that
are as minimally correlated as possible, something that in this case can be attained
by selecting the companies located as far as possible from the next graph.

As can be observed in Fig. 1, leading companies, in the form of nodes, are the ones
located at the center, and from which several edges sprout up. At the same time, nodes
located at the ends represent follower companies. This distribution, which unites
the more correlated companies, causes companies to unite themselves by sectors.
This creates various sectors in the graph. Some studies (Sornette [36]) address the
importance of sectors in the development of business prices, thus causing companies
of the same sector to be placed in a very correlated way. Therefore, BEL.DE is less
related to DBK.DE than to CON.DE, which implies that if we want to obtain an
optimal portfolio, we would better choose BEI.DE and DBK.DE rather BEI.DE and
CON.DE, since risk would be more diversified this way.

The network study is based fundamentally on two sets of data. One of them is
an index (such as IBEX35 or NASDAQ), and the other is a “moving network™ or
“moving candlestick chart” built up from data from the companies that this index
takes into consideration. This network is a moving network in the same sense as a
moving average, for example. By using this moving network, the characteristics of
different networks structures (observed at different instants), may be observed and
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analyzed. Such analysis shows that, over time, this structure undergoes significant
changes. The basic idea behind the model is that certain changes in this structure
may constitute signals that anticipate the future behavior of the market. The goal is
to combine information from both the index and the changing structure, to try to find
some clues which will hopefully allow us to predict abrupt changes in the closing
price, all this with a certain probability of success.

One important decision to make is, therefore, the “length” of the moving network,
which will be later explained in detail. Basically, this governs the size of the data set
used to calculate the moving network in each instant of time. Previous research from
one model considering the “minimal spanning trees of stock portfolios at different
time horizons”, shows that many parameters that can be calculated from a network
change when the length of the network (called “time horizon” in the model) is
altered. With regard to this fact, we have considered that the length chosen should be
large enough so that it does not suffer too much the “Epps effect” (the Epps effect,
named after T. W. Epps (Epps [11]), is the phenomenon that the empirical correlation
between the returns of two different stocks decreases as the sampling frequency of
data increases), in order to give useful information, but also small enough so that
it provides sufficiently frequent changes in the structure of the moving network.
We believe that a seemingly working value for this purpose is comprised between
approximately ten to twenty days.

After this general description of the model, we provide a more detailed description
of each kind of information, how it is obtained, and how it is processed in order to
create the model. This is explained in the following subsections: “construction of
the networks”, and “use of the number of leading nodes in the network as a possible
indicator of a fall in index prices”.

3.1 Construction of the Networks

In order to build the network, historic candlestick data are used. This data comes from
Yahoo Finance®, thanks to an API (Application Programming Interface) provided
by MATLAB. The candlestick contain the closing, open, maximum and minimum
price for a given day. The volume will also be considered. Let’s suppose, for example,
that candlesticks from 01-Jan-2008 to 01-Jan-2009 are downloaded.

It is important to bear in mind that the network is a moving network. That mean
that only a limited selection of this data are used to create a given network. The
exact amount is defined by a parameter that we will call “length”. For example, a
length of 15 days would mean that the first network would have to be built up to
data comprising the dates from 01-Jan-2008 to 16-Jan-2008, that is, the starting and
ending days of the network. Since it is a moving network, the next network will
comprise dates from 02-Jan-2008 to 17-Jan-2008, the next one from 03-Jan-2008 to
18-Jan-2008, and so on, until the limit of the data 01-Jan-2009 is reached. Obviously,
only those days in which the corresponding market is open are considered. Days in
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Table 1 Example of the correlation matrix (R) for an index with three companies

Company A Company B Company C
Company A 1.00 0.54 —0.48
Company B 0.54 1.00 0.58
Company C —0.48 0.58 1.00

which the market is closed are simply skipped. The purpose of this moving network
is to study the market as it evolves in the time.

Now, let’s examine the process of creating the network for one of the given time
ranges. A matrix of correlation coefficients is calculated from each company’s closing
price every day of the time range. This correlation matrix is not calculated directly
from prices, but from logarithmic rate of return instead:

[ = 1n(c(j;i>1))

where [ is the logarithmic rate of return (in the analyzed sesion), and c(d) the closing
price for a given day. This expression was already used by King [19] to analyze the
observed covariance matrix of a large set of series of monthly changes in closing
prices and to see the kind of association that is present in the movement over time of
a cross-section of security price changes. As shown in Table 1, each row or column
of this correlation matrix R corresponds to a certain company, and the correlation of
two companies, for example, A and B, is given by the element located at row A and
column B or conversely row B and columna A, since the matrix is symmetric.

The “meaning” of the network, that is, the data that is going to be somehow
encoded in the distance matrix, is going to be a correlation that was previously
computed. So, from this correlation matrix, we define an intermediate matrix (I) of
size n X n, in which the element in the i-th row and j-th column in the distance matrix

is defined as follow:
lij =v2(1 — R;j)
Then, we define the elements of the distance matrix as:

I,',j if i <j
di,j(x) =
0 ifi>]

That means that the elements of the distance matrix are the upper triangular matrix
of the intermediate matrix. From this distance matrix, with the help of MATLAB, a
minimum spanning tree is made from this distance matrix, in a similar way as the one
shown in Mantegna and Stanley [24]. The algorithm implemented in MATLAB starts
from the daily quotes of companies that compose an index arranged in a matrix in
which in each column corresponds to the quotes of a company ordered temporarily.
This matrix is transformed into another one in which in each column the variations
of the logarithms of the quotes of each company are represented (a matrix m x n,
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Fig. 1 Example of a minimal spanning tree (MST) for the DAX index from which centrality,
number of edges and number of leading nodes will be extracted

where m is the number of days quoted and n the number of companies that compose
the network). Then the Kruskal theorem is applied to this matrix to eliminate the
noise and later its correlation matrix is obtained. This new matrix is represented
graphically. An example of such a tree is shown in Fig. .

From both the correlation matrix and the minimum spanning tree, some parameters
are extracted to be used in the study. Beginning with the correlation matrix, the
following parameters are calculated:

e Maximum distance: It is simply the maximum of all elements in the distance
matrix.

e Minimum distance: As before, it is simply the minimum of all elements in the
distance matrix.
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e Mean distance: It is given by the mean of all the non-zero elements in the distance
matrix.

e Standard deviation of the distance: It is the standard deviation of all the non-zero
elements in the distance matrix.

e Maximum correlation: It is the maximum of all the elements in the correlation
matrix.

e Minimum correlation: It is the minimum of all the elements in the correlation
matrix.

e Mean correlation: It is the mean of all the elements in the upper triangular matrix
of the correlation matrix.

e Standard deviation of the correlation: It is the standard deviation of all the elements
in the upper triangular matrix of the correlation matrix.
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From the minimum spanning tree, the following parameters are calculated:

e Centrality.
e Number of edges
e Number of nodes

Also, by an application implemented in MATLAB the quantities appearing in the
example of Fig.2 are calculated and represented graphically.

3.2 Use of the Number of Nodes in the Network as a Possible
Indicator of a Fall in Index Prices

By building a network with the companies that make up an index, we can obtain infor-
mation about the companies arrangement. As result, we would adquire information
about which companies are leading companies and which are follower companies.
Depending on the moment, the same network can have a different number of leading
companies. Moreover, companies regarded as leaders in a specific moment can cease
to be so in the next minute. This fact is obtained through the network nodes. One
must remember that when we are talking about nodes we refer to leading nodes. If
a network has various nodes, it means that it has various leaders. When a network is
made up of a few nodes, it means that the index leadership falls on a few number of
companies, and this implies that if there is a few number of leading companies and
they happen to suffer a fall, the whole index can be affected, since the other com-
panies are following the leaders (Peralta [27]). However, when the index leadership
is distributed among many companies, the remaining leading companies can sustain
a possible fall of the whole index if one of the leaders suffers a fall. To measure
the fall in prices, the volatility of the index is taken as a reference and measured by
establishing a ratio of n times said volatility, adjusting this ratio in each index.

In this study, we try to unite the directions provided by both strands so that we
will be able to predict when a fall in the index prices will occur, that is, when the
index will achieve its maximum.

4 Results

Results obtained in these tests have proven that when the average correlation of
companies forming an index suffers a fall, placing itself below 0.4 or 0.5 (depending
on the index), and this fall is accompanied by a significant increase of the correlation
deviation, the price tends to range at around 70% reliability.

We could benefit from this significant reliability through, for example, the use
of financial options that would allow us to use strategies such as “long straddle” or
“long butterfly”, which will result in benefits of substantial volatility. These strategies
consists of buying call and put options in order to benefit from price changes in
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spite of not knowing their direction. Through the use of the number of nodes in the
network, the rotation direction can be established. This would establish the hypothesis
mentioned above, that is, when the number of nodes decreases in a substantial manner,
the networks has few leaders, and if those suffer any fall, the index might fall as well.
By mean of this hypothesis, we are looking for a rotation direction beforehand, a
downward rotation. Thus, combining the reduction of the number of nodes in the
network with a decrease in the mean correlation below 0.4 or 0.5, according to the
index, accompanied by a significant increase of the correlation deviation, we can
establish a criterion that anticipates a significant fall in the price of the index with a
high reliability. In this sense, this is the main contribution of this study.

Mean  Deviation of Max Mean Deviation of Mean Index Index

Start Date  End Date Rama . Nodes Centrality Radio Diameter Frice PR
13/03/2007 28/03/2007  0.50 0.31 0.97 0.65 0.21 5 480 | 023 165 | 555269 1731229200
11/08/2008 22/08/2008  0.87 0.38 0.98 0.65 0.30 5 4.40 0.21 181 440045 1216451900
30/03/2010 14/04/2010 104 0.30 0.97 0.53 0.25 5 480 023 164 40S7.70

15/10/2010 28/10/2010 121 0.29 0.95 0.27 0.3 5 4.60 0.30 1.85 383350 1281326600
28/10/2011 11/11/2011  0.76 0.35 1.00 0.77 0.16 5 660 | 0.00 149  3149.38 2178432600
31/10/2011 14/13/2011  0.78 0.35 1.00 0.75 0.17 5 6.40 0.00 146 3108.55 2122820200
20/02/2014 07/03/2014 107 0.28 0.92 0.43 0.24 5 440 | 040 161 436642 1503118600
24/02/2015 11/03/2015 109 0.28 0.96 0.45 0.28 5 440 | 030 L79  4997.75 716054000
08/07/2007 23/07/2007  0.96 0.32 0.96 0.58 0.25 6 433 027 L7  6009.16 1359213000
16/07/2007 31/07/2007  0.50 0.30 0.97 0.65 0.19 6 400 | 024 153 S575L08 1815822800
15/08/2007 30{08/2007  0.50 0.29 0.97 0.65 0.18 6 450 | 023 142 | 559253 1770437700
13/09/2007 28/08/2007 101 0.31 0.95 0.52 0.28 6 400 | 030 182 | 571569 2084068000
23/06/2008 04/07/2008 109 0.33 0.97 0.42 0.35 (4 450 | 023 178 4266.00 1343443500
30/06/2008 14/07/2008  0.58 0.30 0.98 0.56 0.24 6 383 018 L73 414253 1992200800
09/07/2008 24/07/2008  1.02 0.32 0.35 0.51 0.31 6 400 032 181 4347.93 2469601500
08/08/2008 22/08/2008  0.89 0.38 0.97 0.63 0.32 6 383 025 L83 440045 1375416500
15/06/2009 30/06/2009 104 0.31 0.97 0.52 0.26 6 400 026 166 314044 1646311300
17/06/2009 02/07/2003  0.52 0.33 0.97 0.65 0.20 6 433 | 024 163 311641 1672818400
27/07/2009 11/08/2009  1.20 0.25 0.92 0.31 0.29 6 417 | 040 167 345618 1635297200
08/02/2010 22/02/2010  1.20 0.30 0.93 0.30 0.35 6 433 | 038 188  3I7S6.70 1777430500
16/06/2010 01/07/2010  0.83 0.34 0.97 0.75 0.14 6 4.50 0.25 141 | 3339.90 1853220000
23/06/2010 08/07/2010  0.75 0.36 1.00 0.77 0.19 6 550 | 0.00 158 353825 1756330300
02/08/2010 13/08/2010  1.00 0.31 0.96 0.54 0.26 6 417 0.27 161 | 361081 1197627000
12/08/2010 27/08/2010  0.52 0.30 0.96 0.62 0.21 6 433 | 027 149 3507.49 1364284000
12/10/2010 27/10/2010 118 0.29 0.34 0.29 0.34 6 433 036 188 381577 1460836100
17/01/2011 28/01/2011 1 0.29 0.92 0.27 0.35 6 350 040 L86  4002.32 14630838300
08/o2/2011 23f02/2010 127 0.24 0.92 0.20 0.30 6 3.83 040 186 401312 2104246500
24/10/2011 04/11/2011  0.72 0.35 1.00 0.81 0.13 6 417 | 009 141  3123.55 1955005200
24/10/2011 08/11/2011  0.76 0.33 0.97 0.78 0.13 ] 4.50 0.26 141 3143.30 | 2339387400
28/11/2011 13/12/2011  0.87 0.35 0.97 0.65 0.26 6 333 | 026 158  3078.72 1893805400
07/12/2011 22/13/2011  0.82 0.35 0.97 0.71 0.22 ] 467 0.26 149 3071.80 1761057300
08/05/2012 24/05/2012 100 0.35 0.97 0.43 0.36 6 367 | 026 182 | 303825 2201108500
16/08/2012 31/08/2012 116 0.29 0.95 0.32 0.33 6 417 | 031 151  3413.07 1341289600
15/10/2012 26/10/2012 116 0.32 0.35 0.33 0.38 6 367 030 192 343509 1616097400
25/10/2012 09/11/2012 114 0.30 0.94 0.36 0.34 6 383 | 035  L87 342357 1630735000
21/11/2012 06/12/2012  1.20 0.24 0.30 0.30 0.28 6 417 045 188  360L65 1712701400
27/12/2012 11/01/2013 108 0.29 0.97 0.45 0.29 6 350 | 026 180 | 3706.02

16/05/2013 31/05/2013  1.08 0.23 0.92 0.43 0.25 [ 383 | 041  L78 394859 1120847400
02/12/2013 16/12/2013 102 0.34 0.97 0.52 0.31 3 433 025 184  4115.88 989606800
24/02/2014 10/03/2014 105 0.30 0.97 0.51 0.25 6 400 025 163 4370.84 1407298300
23/06/2014 04/07/2014 122 0.29 0.97 0.27 0.35 6 383 | 025  L80 446898 1044701200
21/05/2015 05/06/2005 0.7 0.31 0.35 0.60 0.24 6 433 032 176 | 4920.74 1249282900
04/08/2015 15/08/2015  0.86 0.33 0.97 0.68 0.20 6 433 023 151 488410 1056702700
01/09/2015 16/09/2015  0.81 0.33 0.98 0.73 0.17 6 383 021 141 464584 1201983800
11/09/2015 25/08/2015  0.75 0.40 0.98 0.75 0.32 6 383 020 L83 4480.66 1355045600
03/11/2015 24/11/2005  0.97 0.34 1.00 0.53 0.34 6 533 007 157  4520.28 1218475400
15/02/2016 01/03/2016  1.00 0.28 0.96 0.51 0.25 6 417 028 L70 440684 1347311700
27/06/2016 11/07/2016  0.84 0.30 0.97 0.68 0.20 6 433 023 148 4264.53 1270292000
28/06/2016 13/07/2016  0.51 0.29 0.96 0.61 0.22 6 400 | 028 152 433526 1385685700
31/08/2016 15/08/2016  1.01 0.28 0.93 0.51 0.26 6 417 037 174 437322 1057363300

Fig. 3 Extract of data IBEX35 index between 2007 and 2017
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Fig. 4 Distribution of the number of nodes between 2007 and 2017 in IBEX35, CAC40, DAX30
and Euro Stoxx50

In order to carry out several tests, the following stock indexes have been studied:
IBEX35, DAX30, CAC40 and Euro Stoxx50, between years 2007 and 2017.

Once a study about a specific index and its constituent companies has been carried
out, the results are presented in three different ways so that each one of them provides
a different kind of information.

e Graph of the disposition of the companies: in the same way that can be seen in the
previous Fig. 1.

e Graph showing the price of the index, the average correlation of its constituting
companies, the average deviation of the correlation, the index’s traded volume,
and its volatility. It can be seen in an example in Fig. 2.

e Spreadsheet with the following information: average distance, distance deviation,
maximum correlation, average correlation, correlation deviation, correlation vari-
ation, number of nodes, average centrality, radius, diameter, closing price, total
volume, price variation and volume variation. It can be seen in an example in
Fig.3.

After carrying out the study about the different indexes, it is clear that the number
of nodes belonging to the network in each moment is similar to a normal distribution.
Therefore, it can be observed how those are distributed in IBEX35, CAC40, DAX30
and Euro Stoxx50 (Fig. 4).

In order to carry out this tests, the days when the number of nodes is at minimum
have been analyzed. The way in which the average correlation and the correlation
deviation behave in each case has also been studied.
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In the case of IBEX35, we have studied the days when the number of nodes is
3, 5 and 6. In the case of CAC40, we have studied the days in which the number of
nodes is 5. In the case of DAX30 we have studied the days in which the number of
nodes is 2 and 3, and in the case of Euro Stoxx50 we have studied the days in which
the number of nodes is 6 and 7. In total, 145 cases have been analyzed.
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Fig. 5 Results for the index. Time interval is split into two parts to improve display
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Table 2 Details of the index between 2007 and 2017 according to the number of nodes in the

networks
IBEX35
Number of Mean Mean Mean distance | Mean distance | Mean
nodes correlation correlation deviation maximum
deviation correlation
3 0.548 0.272 1.272 0.334 1.000
5 0.408 0.319 1.124 0.313 0.960
6 0.421 0.298 1.149 0.294 0.953
IBEX35

In the IBEX35, the average number of nodes is 9, but it decreases to the point of
reaching 3 in the extreme cases.

We have analyzed the characteristics of the index network, observing how the
average correlation and the average correlation deviation varies these days. Our
conclusion is that out of 64 days in which the number of nodes was 3, 4 or 5,
in 16 occasions the average correlation decreased significantly, coinciding with an
increase in the deviation. And in those 16 occasions, the price fell on 12 of them.
This translates into 75% reliability.

In Fig. 5 and Table 2, we can observe that each vertical line corresponds to a day
in which the number of nodes was at its minimum, out of which the ones in black are
the ones that did not coincide with a fall in the average correlation and an increase
in its deviation. The green lines are the ones in which, both facts coinciding, a fall
in the price happened, and the red ones are the ones in which no fall in the prices
happened depite both facts coinciding.

CAC40

In the CAC40, the average number of nodes is 10, varying between 5 and 15. For
the purposes of this study the days in which it decreases down to 5 and 6 have been
selected. Out of the 48 cases studied, 13 occasions show a decrease in the correlation
and an increase in the correlation deviation. Prices fell in 8 occasions, which trans-
lates into a 62% reliability. In Fig. 6 and Table 3, we can observe a part of the result
obtained.

DAX30

DAX30 has an average of 7 nodes, varying between 2 and 11. In this case, the days
with 2 and 3 nodes have been studied, a fact that has been repeated in 11 occasions,
out of which 6 have coincided with a fall in the average correlation and an increase
in its deviation. Out of those 6, 4 have seen a fall in the prices, so we can obtain
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Table 3 Details of the CAC40 index between 2007 and 2017 according to the number of nodes in

the networks

CAC40
Number of Mean Mean Mean distance | Mean distance | Mean
nodes correlation correlation deviation maximum
deviation correlation
5 0.570 0.244 0.963 0.318 0.969
0.522 0.267 1.998 0.312 0.959




Anticipating Abrupt Changes in Complex Networks ... 333

Index DAX30
-
i
. ™ {
S
"
2 -
=
-
- 11 1
‘o— | 1 N — Mean correlation
E ! g - Desv. of correlation)|
: 4] yaNes
o L)
E = l
E] i
© L o e 1 o AP
s S, E— | 1
0
-
z ‘ = Volatility {2 days)
s = \ Volatility (10 days)
- | L
o il L ry
> Lo il oot 00 e bl Mad T i ~v-m.n~l-kh '1"'4J.'1‘. o AR e 3 e el s G e
o 200 400 G600 800 1000 1200
s
-
o
3 |
]
> ) 1
P
-
,,w 1
§ | — Mean correlation
] E \ Desv. of correlation
o b g y
-] ¥ ¥] : o
Z | ko
o 1 | ]
g
= r
E sf -
-
= — volatiity (2 days)
T;( - Velatiity (10 days)
2 "l 4 | i M 1 A i
> et o e Sdni i tra (G Ll ML e i bl e bl ot Ml
1200 1400 1600 1800 2000 2200 2400

Fig. 7 Results for the DAX30 index. Time interval is split into two parts to improve display

a 67% reliability. In this index we have noticed a delay of a few days between the
signal of the nodes fall and the decrease in the average correlation (Fig. 7 and Table 4).

Euro Stoxx50

In order to prove this study’s consistency, a test on the Euro Stoxx50 has been carried
out. Due to the fact that it is constituted by companies located in different countries,
it has some characteristics that are different from the indexes discussed above. In this
case, we have analyzed 21 days in which the number of nodes decreased to 6 or 7.
Out of those, 7 times correspond to a fall in the average correlation and an increase
in its deviation. A fall in the prices happened in 5 occasions, which translates into a
71% reliability (Fig. 8 and Table5).
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Table 4 Details of the DAX30 index between 2007 and 2017 according to the number of nodes in

the networks

DAX30
Number of Mean Mean Mean distance | Mean distance | Mean
nodes correlation correlation deviation maximum
deviation correlation
0.380 0.559 0.917 0.554 1.000
3 0.472 0.273 1.983 0.271 0.948
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Fig. 8 Results for the Euro Stoxx50 index. Time interval is split into two parts to improve display
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Table 5 Details of the Euro Stoxx50 index between 2007 and 2017 according to the number of
nodes in the networks

Euro Stoxx50

Number of Mean Mean Mean distance | Mean distance | Mean
nodes correlation correlation deviation maximum
deviation correlation

0.480 0.381 0.906 0.383 0.987

7 0.547 0.289 1.884 0.307 0.977

Table 6 Summary of results

Summary of results

Stock index | Cases in the | Cases in which the average Fall in the Reliability
reduction of | correlation decreased and the prices (%)
nodes correlation deviation increased
IBEX35 64 16 12 75
CAC40 48 13 8 62
DAX30 11 6 4 67
Euro 21 7 5 71
Stoxx50

From the four indexes analyzed, we have obtained that 42 out of the 144 cases that
have been studied, the decrease in the number of nodes coincided with a decrease in
the average correlation of the companies constituting the index, and in 29 occasions
a fall in the prices of the corresponding index happened, which translates into a 70%
reliability (Table6).

5 Discussion and Conclusions

In this paper, we study the structure of different financial systems as moving networks
offering information on the correlations and behaviors of the companies that form
that network.

Physics has contributed to the study of financial markets in different ways, such
as the phase transitions, which in this case can be applied to prevent possible changes
in the trend of asset prices. This allows us to interpret them as the end of a trend or
market phase by using models that are at the forefront in physical studies.

The different financial markets are interconnected through a network. In the theory
of networks, stock values are connected to each other, according to their degree of
correlation. This theory’s main goal is to identify market leaders and predict the
values that will set behavioral patterns in other markets. The study is based on a
series of mathematical filters used to detect who are the leaders and followers of
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a stock market, according to the quotation of each value. In this research, we have
focused on how the network behaves in the moment right before a fall in the prices
of the index. In order to do this, we have focused on the use of the network as our
starting point obtaining both the correlations of the companies and the existing nodes
in each moment in the network.

We have studied the networks constituted by the companies included in several
indexes (IBEX35, CAC40, DAX30 and Euro Stoxx50), in such a way that the Min-
imal Spanning Tree (MST) and the correlated behavior between all companies that
make up them, have been able to be observed. Therefore, we can obtain the average
correlation between them and the average deviation of said correlation. After that, we
have studied the disposition of the companies from the point of view of a network. If
this network is made up of few leading nodes (those having more than two links), it
means that the index leadership fall on a few number of companies, and this implies
that if there is a few number of leading companies and they happen to suffer a fall,
the whole index can be affected, since the other companies are following the leaders.

Using daily closing price series from 2007 to 2017 for these main European
indexes, we have obtained that in 42 of the 144 cases that have been studied, the
decrease in the number of nodes coincided with a decrease in the average correlation
of the companies constituting the index, and that in 29 occasions a fall in the prices
of the corresponding index happened. Hence, we can point out that when the number
of leading nodes is reduced, and the average correlation of companies forming an
index suffers a fall, placing itself below 0.4-0.5 (depending of the index), and this
fall is accompanied by a significant increase of the correlation deviation, then the
price tends to fall at around 70% of reliability.

We think that our findings provide empirical evidence on the determinants to
understand the behavior of the financial market through their indexes moving net-
works and have relevant trading implication for investors, hedgers and speculators.
On the other hand, this criterion could be complemented by other indicators or
applied in other systems than financial markets, described by empirical time series.
We believe that this is an interesting line of research that is still in its beginnings and
we are sure that it will produce surprising results and conclusions in the near future.

Acknowledgements AC acknowledges Junta de Andalucia (Spain) by partially funding to his
research group (FQM-122).
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On the Numerical Approximation m
to Generalized Ostrovsky Equations: 1 L

A Numerical Method and Computation
of Solitary-Wave Solutions

Angel Duran

Abstract In the present chapter, two numerical procedures to simulate the dynamics
of generalized versions of the Ostrovsky equation are presented. First, a numerical
method to approximate the corresponding periodic initial-value problem is intro-
duced. The scheme consists of a spatial discretization based on Fourier collocation
methods, which is justified by the presence of nonlocal terms. Due to the stiff char-
acter of the semidiscretization in space, the time integration is performed with a
fourth-order, diagonally implicit Runge-Kutta method, which provides additional
theoretical and computational properties. The second point treated in this chapter
concerns the solitary-wave solutions of the equations. Their numerical generation is
carried out by using a Petviashvili-type method, along with acceleration techniques.
The resulting procedure is able to compute both classical and generalized solitary
waves in an efficient way. The speed-amplitude relation and the asymptotic behaviour
of the waves are studied from the computed profiles.

Keywords Generalized Ostrovsky equation * Fourier collocation
Petviashvili-type methods - Solitary waves

1 Introduction

There are many references about the Ostrovsky equation (also called the Rotation-
Modified Korteweg-de Vries equation or RMKdV)

(I/t, - ﬁuxxx + uux)x =yu, xe ]Ra (1)
from the original paper by Ostrovsky [45]. In (1) 8 and y are constant parameters.

Equation (1) was proposed as a one-dimensional model for the propagation of gravity
waves of small amplitude in a rotating fluid in a horizontal channel. If the variables x
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and ¢ are proportional to distance along the channel and time respectively, then u (x, ¢)
represents the fluid velocity in the x-direction. A way to understand (1), adopted by
several references, [15, 25, 26, 29] (see also the introduction in [44]) is starting from
the KdV approximation (the KdV equation appears in (1) when y = 0) that includes
the balance between the small-scale Boussinesq dispersion, proportional to 8, and the
nonlinear effects, represented by the quadratic term. Then, Eq. (1) incorporates in the
balance the dispersion due to a rotation (large-scale Coriolis dispersion), proportional
to y and comparable to the previous effects. We assume for simplicity that y, the
physical parameter that measures the effect of Earth’s rotation, is positive. Then the
type of dispersion is determined by the sign of the parameter 8. With the minus sign in
the corresponding term in (1), the equation with § < 0 (negative dispersion) models
surface and internal waves in the ocean and surface waves in a shallow channel with
uneven bottom, [5, 23, 30, 45]. When 8 > 0 (positive dispersion), then (1) is applied
to model capillary waves on the surface of liquid or oblique magneto-acoustic waves
in plasma, [20-22]. Some other references for (1) are [4, 24, 27, 46]. The list is far
from being complete.
The present chapter is concerned with a generalized version of (1) of the form

(s — Butxex + f))x =yu, xe€R @)

where f is a twice continuously differentiable, real-valued and homogeneous func-
tion of degree p > 2 in the sense that

fs)=APf(s), A>0, selR. 3)
According to [39], condition (3) implies that f can be written in the form
f) = aclul” +apul”"'u, a,,a, €R. (4)

The particular case f(s) = =£|s|? is emphasized since for p = 2 this corresponds to
the Ostrovsky equation (1). The relevance of (2), (4) as mathematical model includes
the propagation of internal waves in the ocean with cubic nonlinearities, see [20] (and
some references therein, like [37, 52, 53]); see also [15].

We first summarize some mathematical properties of (2). Local in time well-
posedness of (1) is proved (see [60]) in the spaces

€ H*(R)},

X, ={f e H'®)/ 7 (—3}];@))

with norm || f||x. = || f|ls + Hg;—l (i(éxs))
Sobolev space H* = H*(R) is given by

, where s > 3/2; the norm in the
5

oo 1/2
||f||x=</ (1+‘§2)SI3‘\(f)(E)I2dE> ;
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where .Z stands for the Fourier transform, defined on H° = L*(R),

oo

F()E) = / e f()dx. f e HY,

—0Q

and with .Z ! as the inverse Fourier transform.

Related results of existence and well-posedness can be seen in [33, 41, 59]. In
[41], Linares and Milanés study the initial-value problem for (1) obtaining local
well-posedness in {f € H*(R)/d_ ! f € L>(R)} for s > 3/4 and a global result for
the case s = 1, By > 0. The operator 3,! is defined by using the Fourier symbol as

FO NHE =T F(NHE), &R0}, FO,'N0)=0, ®)

Isaza and Mejia ([33] and references therein) prove local well-posedness in H*(R)
for (1) with g = 1, withs > —1/2 for y > Oand s > —3/4 for y < 0, along with
global well-posedness in H*(R), s > —3/10 for both cases. Finally, in [59], well-
posedness is proved in X, s > —3/4.

On the other hand, Levandosky and Liu [39], refer the study of the associated
Cauchy problem to a generalization of the results presented in the literature con-
cerning (1), whose main references may be [33, 41, 60]. Thus, the derivation in
[60] of some conservation laws for (1) can be generalized to obtain the zero mass
conservation

I(u) = /OO ux, t)ydx =0, (6)

o0

along with the preservation of the momentum and the total energy

Vu(t)) = foo u(x, 1)dx, (7)

]

E@u(t)) = /oo (gux(x, 0*+ %(a;lu(x, N+ F(u(x, z))) dx, (8)

o]

for sufficiently smooth and decaying at infinity solutions of (2). In (8), F' =
f, F(0) = 0. Equation (2) can also be written in the Hamiltonian form (see [14]
for the case of (1))

d SE,
U = ——»

ox du
where % denotes variational derivative. Choudhury and collaborators in [14] prove
also the nonintegrable character of (1).

In this chapter particular attention will be paid to solitary-wave solutions of (2).
They are solutions u of the form u(x, t) = ¢.(x — ct) for some profile ¢, and speed
c. This function ¢, must satisfy
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(—cd. — Bo!' + f(@)) — yée =0, 9)

which can be written as a fourth-order ordinary differential equation

. 1
¢?—Q%+P@=—Eﬂ@ﬂ (10)

where P =y /B8, Q = —c/B.

Some results on the existence of these waves are now reviewed. Equation (10)
is analyzed in [13, 14] for the case of the classical Ostrovsky equation (f(u) =
u?) by using normal form theory, [32, 43]. This leads to the existence of several
types of traveling wave solutions of (1). This paper will be focused on classical
and generalized solitary waves. Note that Eq.(10) can be written as a first-order
differential system

U'=V(U,cy B)=LU+RU), (1)

where U = (¢, gL, ¢/, ¢!)" and

c

0100 0

0010 0
L:ZL(Cayv/S)Z 0 001 ) R:ZR(UaCa/S)Z 0

~P0QO —5 [ ()

The normal form theory establishes that under certain conditions the qualitative
behaviour of the transformed system is determined by the analogous behaviour of
the associated linearized system, [6, 32]. In this case, the linearization of (11) at the
equilibrium point U = 0 leads to the linear system U’ = LU. The eigenvalues A of
L will satisfy

A —0oxr+P=0.

Four regions in the (Q, P) plane where L has different spectrum can be derived,
[13]. They are separated by four curves, see Fig. 1:

e Co={(Q, P)/P =0, Q > 0}, where > = 0is a double eigenvalue and addition-
ally there are two simple, real eigenvalues.

e C,={(Q, P)/P =0, QO <0}, where > = 0 is a double eigenvalue and addition-
ally there are two simple, pure imaginary eigenvalues.

e &, ={(Q,P)/P>0,0= —Zﬁ}, where there are two double, pure imaginary
eigenvalues.

e C3:={(0Q,P)/P>0,0= 2+4/P}, where there are two double, real eigenvalues.

(At the origin, L has a quadruple eigenvalue 1 = 0.) See [13] to relate the properties
of V(U, ¢, y, B) with the question of existence of different types of solitary waves. In
particular, the existence of classical solitary wave solutions when y, 8 > 0 and ¢ <



On the Numerical Approximation to Generalized Ostrovsky Equations: 1 343

Fig. 1 Regions in the
(Q, P) plane where L in -
(11) has different spectrum, o
[13, 14]

00060

w v

2./By, previously derived in [42] and which also holds in the generalized case (2),
[39], corresponds to the region above C, and C3. (The result in [42] on nonexistence
of classical solitary waves when 8 < 0, y > 0 and ¢ < /140y p] is also included
here, as the region below Cy.) On the other hand, Boyd and Chen [8, 12], consider
the RMKdV equation

(Mt + uuy + uxx)c)x - 82“ = 07 (12)
along with the equation satisfied by the ‘steadily-translating’ solutions # = u(X),
—cuxx +uk +uuxx +uxxxx —&u =0, (13)

also called stationary RMKdV equation, where X = x — ct. Note that (12) corre-
sponds to (1) for y = 2 >0, B = —1 and uu, instead of 2uu,. Therefore, for
positive speeds c¢, the solutions of (13) are associated to the region in the (Q, P)
plane with P < 0, Q > 0 (below Cj). Boyd and Chen mention two types of solu-
tions: weakly nonlocal solitary waves (these are the generalized solitary waves, in
the sense described e. g. by [43]; they are homoclinic to periodic orbits as | X| — oo,
in contrast with the classical solitary waves of region above C;, and Cj, that decay
to zero at infinity) and spatially periodic solutions. (They call them ‘microterons’
and ‘microteroidal’ waves, respectively.) The first have only a single large peak on
(—00, 00). They are observed and generated by Hunter [31], of an asymptotic form
(forc =1)

u ~ 3sech?(X/2) — 6¢ (sin(e|X|) + x cos(eX)), (14)

with arbitrary x (which is zero for the microteron wave of minimum amplitude). In
[8, 12], the authors extend to matched asymptotic expansions of Hunter to third order
and describe the periodic traveling waves in terms of the parameters of the equation.
They use a Fourier Galerkin algorithm, thought as both a numerical method and an
explicit analytic approximation, see also [7].
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We additionally emphasize that the nonexistence of classical solitary wave solu-
tions of the Ostrovsky equation (1) when y > 0, 8 < 0 (actually, when y8 < 0) was
previously obtained in [20, 37]; the first one extends the proof to the generalized
case (2) with f(u) = u?/p, p > 1. (The proof contains basically the arguments of
the theory explained, in a more general way, in [13] and previews the existence of
generalized solitary waves.) Finally, concerning the asymptotic decay of the classi-
cal solitary waves (when 8, y > 0, ¢ < 2./By), Liu and Varlamov [42], for (1) and
Levandosky and Liu [39], for (2), (4), prove that the profiles are in fact in H*°(R).

In order to study, by computational means, some aspects of the dynamics of
(2), the present chapter develops two numerical tools. The first one is a scheme to
approximate the corresponding periodic initial-value problem for (2). The method
makes use of a Fourier pseudospectral discretization in the spatial variable, which is
anatural choice because of the nonlocal terms. Since the semidiscretization leads to a
stiff differential system, numerical approximation in time should be carried out with
implicit methods. Thus, the spatial discretization is coupled with an implicit, fourth-
order accurate time-stepping integrator, based on the Implicit Midpoint Rule. The
resulting method is diagonally implicit, satisfies suitable stability and conservation
properties and provides the computational advantage of the iterative resolution of
the discrete systems for the intermediate stages with the fixed-point algorithm, [19].
Since no explicit solutions of the Ostrovsky-type equations are known, the accuracy of
the method is first checked in two classical equations: the generalized KdV equation
and the Benjamin-Ono equation. The inclusion of the last one is justified by the aim
of studying the influence of the presence of nonlocal terms in the performance of the
method. The construction of the fully discrete scheme, some of its properties and
tests for accuracy are explained in Sect. 2.

The second issue is concerned with the numerical generation of traveling-wave
solutions of (2) and is treated in Sect. 3. The lack of exact formulas for the waves moti-
vates the design of efficient numerical techniques to approximate the corresponding
profiles. First, the one considered in this chapter is introduced; it consists of the so-
called Petviashvili’s method, already used in the literature to this end, see e. g. [20],
combined with an acceleration technique based on minimal polynomial extrapola-
tion. The inclusion of the acceleration technique is justified in terms of efficiency:
there are some cases where the Petviashvili’s method by itself is too slow or directly
does not converge. The use of acceleration techniques for these situations was dis-
cussed in [3] as an alternative to other procedures presented in the literature, like
shooting methods, [40]. The performance of the accelerated Petviashvili’s scheme is
checked by studying the numerical generation of different types of traveling waves:
classical and generalized solitary waves as well as multi-pulse solitary waves (also
both classical and generalized). From this accuracy, some properties of the waves,
like the speed-amplitude relation or some additional information on the asymptotic
behaviour, are suggested from several numerical experiments.
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2 The Numerical Method

For simplicity, the 27 periodic initial-valiue problem for (2)

(t; — Bltxxx + f(“)x)x =Yyu, x¢ [—m, 7], t >0, (15)
ulx,0) =ug(x), x€[—m, x],

where f is of the form (4) and u is a real-valued, 2mr—periodic function, will be
considered. For a general period P = 2/, (15) can be posed on (—I, [) with the usual
change of variable x = (r/[)y, y € [, ] and the corresponding scaling. We will
assume that (15) is well-posed, for some s > 0, in

X, (=, ) ={f € H),, (=7, m)/3;' f € H},, (=7, 1)},

per

where

Hy, (—m, ) = (f : [-m ] > R/ Y (A + k(DK < o).

keZ

Fork € Z, f(k) denotes the k-th Fourier coefficient of f

T

f(k)zf e f(x)dx, ke,

-7

and the operator 9 !is defined by using the Fourier coefficients, cf. (5)

- f (k) = () F. ke Z\0), 35 f(0) =0,

The norm in H;er(—n, ) is

1/2
1/ Wiy, (=) = (Z(l +k2)f|f(k)|2) :

keZ

while the norm in X(—m, ) is given by

1,y = W as, oy + 1005 fllas, cnmys f € Xo(—7, 7).

per per

Similarly, the quantities

I,(u(t)) = /n u(x,t)dx =0, (16)

T
T

V,(u(t)) = / u(x, 1)*dx, (17)

-7
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T

EﬂMﬁﬁ:/ (%“qu+g@QMLnP+quJ»>w; (18)

are conserved by smooth enough solutions of (15), cf. (6)—(8). In (18), F' =
f, F(0) = 0. The Hamiltonian formulation of (15) also holds. Additionally, (-, -)
will denote the usual L? inner product in (—z, 7r) with || - || standing for the corre-
sponding norm.

2.1 Space Semidiscretization

The description and analysis of the spatial discretization will require, for N a positive
integer, to consider the spaces

Sy = span{e’™, —N <k < N},

and

SY = (¢ € Sy/P(0) = ﬂ¢umx=m=gmmﬂ%—N5k5Nw¢oy

-7

Note that, due to periodicity, if ¢ € Sy then 9,¢ € S}\’,. Thus, the operator 9, : S% —
89, is invertible.

The semidiscrete Fourier-Galerkin approximation to (15) is defined as a map
u™ : [0, o0) — Sy such that, for all x € Sy,

@, x) + (—pul, + f@™) ) —yu, x) =0, >0, (19)
u™ (x,0) = Pyug(x),

or, equivalently (due to periodicity)

@y, x) + (=pu + f@™)), x) + (yu, x) =0, t>0, (20)
u™ (x,0) = Pyuo(x),

where Py is the orthogonal projection of L? onto Sy.
If we choose x = e kg =—N,...,N,k # 0 then (19) becomes an initial value
problem of a differential system for the Fourier coefficients of u",

GV (k, 1) — (BK* + )N (k, 1) — K2 f @)k, 1) =0, t>0, (21)
ul (k, 0) = ity (k).

On the other hand, if we take x = 1 in (20) we obtain ﬁ (0, t) = 0. Therefore
uN(-,t) € 8%, t > 0 and an alternative definition of the semidiscrete approximation
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would be to consider u® : (0, 00) — S satisfying (20) forall x € S%. Anequivalent
form to (21) is also
—i

Sk = (B ko +RT@G ), @)

t>0, k=—N,...,N,k #0,
ul(k,0) = uo(k), keZ,
uN@©0,t) =0, t>0,

The form (4) of f implies that the right hand side of (22) is at least locally Lip-
schitz continuous with respect to the L? norm in Sy. Then using standard theory
for differential equations we obtain the existence of a unique, local in time solu-
tion of (22). Also, standard arguments, [48, 49], prove the existence of a global in
time solution if the semidiscretization preserves the L? norm. In our case, this is a
consequence of the following result.

Lemma 1 The solution u™ of (19) satisfies, for t > 0,

(i) % Z(uN(x,r»de =0,

(ii) %/n (B (x, 1) + F™ (x, 1) + y (@7 'u" (x,1)*) dx = 0,

where F' = f, F(0) = 0.

Remark 1 Since u®™ () € S, ¢ > 0, then u” satisfies the zero mass conservation
property (16). Now Lemma 1 means that the semidiscretization preserves the other
two invariants of the periodic problem (17) and (18). Note also that (i) means that
[l (-, 0)]] = || Pyuoll.

Remark 2 The statement (ii) requires the definition of vV = 0 4™ As mentioned
above, this has sense because u” (1) € S, ¢ > 0 and 3, : S?, — SR, is invertible; in
practice vV is defined via the Fourier coefficients as expected: If

W= Y Nk e,

—N<k<N
then

uN (k, 1)

Wen= 3 Wk e Wik, = . k#0; vN(0,1) =0.

—N<k<N
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Proof of Lemma 1 If we take x = v" in (19) and use the periodic boundary conditions,
we have

1d
@V, Ny = —@l vy = ‘Ed_,””N(" NP,

and
(=Budey + f @05 ™) = (e V) = =B, ul) — (f @)e, ™) — ¥ V7).
Note that integration by parts and again periodicity imply

@, uy =0,

XX

(f @)y, u™) = FuN(m, 1)) — Fw" (=m, 1)) =0,
W, vy = % (OGN @, ) = 0V (=7, 1)) = 0.
Therefore j—tlluN(~, H)|)*> = 0 and this proves (i).

Now we consider Py the orthogonal projection of L? onto S% and take x in (19)
such that

dex = Bul — Py f™) +ya v,
Then

N, x) = -l x)
m
T

—/ (ﬁui\; — PI(\),f(uN)—i—yBx_lvN)ufvdx

M2
/ (ﬂuivuivt + P](\),f(uN)uiv + yvatN) dx
-7

_ﬁ " é Ny2 Ny Y a—1 N2
= _ﬂ<2(u") + F(u )+2(8x u ))dx,

where =7, = . On the other han , usin t eproperty
(where F' F(0) = 0). On the other hand, using th
(Pyu,v) = (u,v), u,vesy,

and that P,?, commutes with 9, and, consequently, with 9. I then we have
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(—Bulee + FaM))x —yu, 0 = —(=Bulley + F@™)) x0) + Y, xx)
— /n (ﬂuﬁx) (ﬁuivx — Pl(\),f(uN) + yax_lvN) dx

s
[ (puld = PR ra) + yac v ) ax
-7
T OON(aN _p0 s N 1N
+/ o (Bull = PRA@N) +yor oY) dx
-7
T 1N TN 1N
=/3/ UxxxOy V *V/ fw)xo, v'dx
—TT —TT
s
—y/ SNy wNdx =o.
—TT

and this proves (ii). O

2.2 Time Discretization

The system (22) is stiff and then considering implicit time stepping integration is
recommended. Our choice consists of a composition of three steps of the one-stage,
second-order accurate Gauss-Legendre implicit Runge-Kutta method, also called
implicit midpoint rule (IMR), to integrate from ¢, to f,,1;. A brief description is made
in this section; see [19] for more details.

2.2.1 The Implicit Midpoint Rule (IMR)

Given 0 < t* < 00, a step size At and M such that t* = M At, we consider a dis-
cretization of the interval [0, #*] with the points t,, = mAt,m =0, ..., M. The fully
discrete solution given by the IMR is defined as the sequence {U™}M_ of elements
of Sy satisfying, forevery x € Syandm =1,..., M

Um+l -u” m+1/2\N m+1/2
((T) ) X) + ((_ﬂ(U )xxx + f(U )x)x

—yU™ 2 ) =0, (23)

Um+l um
where U"+1/2 = T—i_ Note that if

N
Unx) =Y Um(k)e™,
k=—N

then the system for the Fourier coefficients m(k) has the form (m = 0,1, ..., M)
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— )At = = (0 + BEYTT2 ) + 2 £ U)K ).

—N <k<N,k #0. (24

System (24) can be written in a fixed point type formulation for Z = U™+1/2

Z(k) = oy ()T (k) + %ou(k)f/(?)(k), ~N <k <N, (25)
where
k ik?
a1 (k) = (k) = — (26)

k— 5y + Bk’ (k=55 + pEh)

and if it is possible to solve (25), (26) for 2(1(), we recover lﬁ’:l(k) = 22(k) —

lj]?(k). Note that taking x = 1 in (23) leads to 2(0) = 0. Therefore, the hypothesis
U%(0) = 0 on the initial condition and the resolution of (25) imply

U™ (0) = f Um(x)dx =0, m>1, 27
—7T
forallm = 1,2..., M. In addition, if we take x = 3 U™/ in (23) then
1
— 5 (WU P = U™ 1P) = ((f (U2, U2y =0,

2At

and by periodicity, if F' = f, F(0) = 0, then

b4

((f (Uerl/z))x, Um+1/2) — _(f (Um+1/2) , U)lc’n+1/2) - _F (Um+1/2) - =0.
Therefore, we obtain the preservation of the quadratic invariant (17), that is
o™ =1um|, m=0,1,...,M. (28)

2.2.2 Fourth-Order Composition Method

The method considered here consists, for the step m — m + 1, of a consecutive
computation of (23) with step lengths 8; Az, i = 1, 2, 3, where, [19],

pr=@2+2"7+2717)3 = Br=1-281, Bs=pi.

221
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This leads to the fourth-order, diagonally implicit Runge-Kutta composition method
with tableau

Bi1/2
B B2/2
Bi B B3/2

B B Bs

The method inherits several properties of the IMR, such as the conservation prop-
erties (27), (28) and simplecticity, see [51] and references therein.

2.3 Numerical Experiments

In this section the convergence of the fully discrete scheme is checked and its per-
formance is explored. The fixed-point algorithm for the iterative resolution of (25)

Z0 (k) = oy ()T (k) + Ataa (k) f(ZN) (),
—-N<k<N, v=0,1,..., 29)

will be used. Although other alternatives can indeed be implemented, fixed point
iteration converges in all the cases studied and provides a simple way to solve the
iteration. Thus, the method will require three iterative steps of the form (29), with the
corresponding step sizes B; Az, i = 1, 2, 3,instead of At, see [19] for implementation
details.

Since no explicit formulas for the solitary waves of the Eq.(2) are known, the
order of the method will be first checked by simulating solitary wave solutions of
the generalized Korteweg-de Vries (gKdV) equation, corresponding to y =0, 8 =
—1, f(u) = u? in (2). In this case, the solitary wave solution with speed ¢; > 0 has
the form

n(x,t) = Asech(K (x — cgt — xo)¥?,

Cs 1/p

A=(Fr+Dp+2) " k=16, (30)

with a free parameter xo € R. For xg = 0, ¢, = 4 and (30) as initial condition with
several values of p, the error in Euclidean norm

U™ — 0l

E,) =
" 1m0l

€29

between (30) and the corresponding numerical approximation U" (where 7y, , stands
for the vector-valued function with entries given by the solution (30) at the collocation
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Table 1 Euclidean error (31) at t* = 10 for the gKdV equation and with respect to (29) with

cs=4,x0=0

p At E(t*) Rate
2 2.5E-02 1.066976 E—03
1.25E—-02 6.805057E—05 3.971
6.25E—03 4.268835E—06 3.995
3.125E-03 2.675602E—07 3.996
1.562525E—-03 1.681784E—08 3.992
3 2.5E-02 1.925805E—02
1.25E-02 1.310532E—03 3.878
6.25E—03 8.136197E—05 4.010
3.125E-03 4.984519E—-06 4.030
1.562525E—-03 3.112465E—07 4.002

(o]

IN
=

Momentum Error
(4]
—

40 60 80

t

Energy Error

60

t

80 100

Fig. 2 aEnergy (|E,(U") — E;(U®)]) and b momentum (|1, (U") — I, (U°)|) errors versus time,
where I, Ej are given by (32), (33) resp. and the initial condition U 0 is the exact (29) at t = 0
withxg =0,¢c5, =2, p =2

points and attime f,,) at r* = 10 and different time steps is shown in Table 1. (The step
size in space is h = 128/1024.) The results confirm the fourth order of convergence.

The conservation properties of the method are illustrated in Fig. 2a, b. They show,
respectively, the behaviour in time of the error in the discrete versions of the momen-

tum and energy invariants of the gKdV equation, defined as
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Fig.3 a Amplitude and b speed errors versus time, for the numerical integration described in Fig.2
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B0 ;(2(DU)J+(p+1><p+z)Uf ’ &9

(where D stands for the pseudospectral differentiation matrix, [11]). Note that since
the method is based on the IMR, its behaviour with respect to the invariants of the
problem can be analyzed as was made in [10] for the nonlinear wave and nonlinear
Schrodinger equations. In particular, in order to avoid the growth with time of the error
in the invariants, the conservation properties of the method have been strengthened
by including a projection technique, [28], with respect to the first quantity (32). Then,
the behaviour observed in Fig. 2a, b is justified by this additional projection onto the
level set of I}, determined by its value at the exact solitary wave (30), the symplectic
character of the method and, finally, by the fact that the solitary waves are generated
as critical points of the energy subject to fixed value of the momentum, see [39].
The time behaviour of the error is related to the simulation of the parameters of the
solitary wave, [18]. Figure 3a, b display, respectively, the errors in the amplitude and
speed between the exact solution and the numerical approximation as function of
time and for At = 6.25 E—03 (other time steps give similar results). The parameters
are computed in a standard way, see e.g. [16]. Observe that the errors in the first two
parameters are small and do not grow with time (at least up to moderate times, like
that of this case r* = 100).

The Ostrovsky equations contain nonlocal terms and it may be worth including a
short experiment to check if such property affects the performance of the numerical
method, [17]. To this end and since the gKdV equation contains only local terms,
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Table 2 Normalized Euclidean error E»(¢*) and error in maximum norm E. (¢*) at t* = 50 for
the BO equation (34) and the simulation of (36) with [ = 16, ¢ = 1, using N = 1024 collocation
points and exact initial condition

At E>(t%) RATE Eoo(t) Rate
SE—02 2.2536E—06 2.1422E—06

2.5E—02 1.4092E—07 3.999 1.3278E—07 4.012
1.25E—02 8.8095E—09 3.999 8.2618E—09 4.006
6.25E—03 5.5082E—10 3.999 5.1348E—10 4.008
3.125E—03 3.3451E—11 4.042 3.1199E—11 4.041

some tests with the 2/-periodic initial-value problem of the Benjamin-Ono (BO)
equation, used in [57]

u, +uuy —%u,, =0, xeR, t>0, (34)
u(x,0) =up(x), x eR, (35)

have been made. In (35), u is 2/-periodic and ¢ is the periodic version of the
Hilbert transform

l

. 1 Ty
Gv(x) == PVZ_Z g cot (g) v(x — y)dy.

The periodic problem for (34) admits periodic traveling wave solutions of the explicit
form

2¢8?
1 — /1= 82cos(cs(x — ct))’

where § = m/(cl), c arbitrary. For ¢ = 1,/ = 16, the profile (36) at r = 0 has been
taken as initial condition and the fully discretization above has been adapted to inte-
grate (34). At+* = 50 the normalized errors, cf. (31), in the Euclidean and maximum
norms and with N = 1024, have been measured with several time steps. The results
are displayed in Table 2. They confirm the fourth-order accurate of the method and
suggest that this is not affected by the presence of the nonlocal term in (34) given by
¢, at least when approximating traveling-wave solutions.

u(x,t) = (36)

3 Numerical Generation of Solitary Waves

This section deals with the numerical generation of several types of traveling-wave
solutions of (2).
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3.1 A Numerical Technique to Generate Solitary Waves

Described here is the numerical method considered in this paper to generate approx-
imations to traveling wave solutions of the generalized Ostrovsky equation (2) with
homogeneous nonlinearities of the form (4).

3.1.1 The Petviashvili’s Method

To our knowledge, the first application of the Petviashvili’s method, [50], in equa-
tions of the form (2), was made in [20] to generate approximate generalized solitary
waves. The Petviashvili’s method is also used in [38] to compute approximations
to classical solitary waves with speeds c¢ far from the limit ¢* = 2,/By. Due to the
highly oscillatory character of the solitary wave profile when c is close to c*, this
algorithm fails in those cases and the authors consider a shooting method as an alter-
native. Here we will overcome this difficulty in a different way, by using acceleration
techniques.

First we make a brief description of the Petviashvili’s method, see e.g. [1, 35, 36,
47, 50] for details. Note that (9) can be written in the form

,,2’4) = </V(¢)’ L = 14 + cOxx + ,Baxxxm JV(d’) = axxf(¢) 37

Due to the homogeneous character of f, the operator .4” in (37) is also homogeneous
of degree p. For y # 0, the linear operator .% is invertible and if ¢, is a solution of
(37) then

LN (@b = pN (P) = pée, (38)

which means that ¢, is an eigenfunction of the iteration operator with eigenvalue
p > 1. Therefore, the classical fixed-point algorithm, applied to (37),

Lwyr =N (@), n=0,1,..., (39)

will not converge in general. In these situations, the Petviashvili’s iterative method
is sometimes an alternative. Its formulation for this case is

(L)
") = ). de)
Lusr = m(@)* N ($). n=0.1,.... A1)

(40)

for a given initial iteration ¢y and some parameter « to be specified later. As men-
tioned in [2], the inclusion of the so-called stabilizing factor (40) in the fixed-point
type formula (41) has the goal of modifying the spectrum of the iteration operator
S =271 4"(¢.), in such a way that the iteration operator of the new iterative pro-
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cedure (41) shares the spectrum of S except the eigenvalue A = p, which for some
suitable values of « is converted into an eigenvalue with modulus less than one.
In particular, the choice « = p/(p — 1) (that will be considered in the experiments
below) transforms the eigenvalue 1 = p of S to A = 0 as eigenvalue of the iteration
operator of (41) at a solution profile ¢.. Thus, if A = p is the only eigenvalue of §
with magnitude above one, then thie resulting method is locally convergent method;
see [2] for details.

In practice, formulas (40), (41) are implemented in Fourier space for the periodic
problem of (9) on a sufficiently long interval (—/, /). Thus if q’;n (k) denotes the k-th
Fourier coefficient of ¢,, then (40), (41) become

Xy — ek + BRI (k)

m(¢y) = — (42)
> k2 f (@) () (K)
— zz/j k
Opg1(k) = —m(pp)” 7 (@) &) (43)

y — ck? + Bk*’

where k = %k, k € Z. The computation of (42), (43) with Discrete Fourier Trans-

form (DFT), [58], will be used to generate approximations to both classical and
generalized solitary waves. In all the experiments below, the performance has been
measured according to three quantities:

e The discrepancy between one and the stabilizing factor m, := m(¢,). (Note that,
in the case of convergence, this factor (40) must tend to one.)
e The Euclidean error between two consecutive iterations

ERROR:(n) = |l — ¢n-1ll-
e The residual error (also in Euclidean norm) at the n—th iteration

RES(n) = ||Lo(¢n)Il,  Lo(p) = ZL¢ — N ().

The discrete version of (42), (43) is carried out by using Fourier pseudospectral
approximation, in such a way that the corresponding approximation operators are

% =yIy +cDy + BDY, Ni(gn) = Dy f (o),

where ¢, is a N-vector approximation to the profile ¢, at the collocation points
xj=—l+jh,j=0,...,N—1,h=2I/N, Iy is the N x N identity matrix and
Dy stands for the pseudospectral differentiation matrix of size N, [11, 58]. For the
computations below, three parameters are emphasized: the speed c, the amplitude of
the resulting wave and the degree of homogeneity p.
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3.1.2 Acceleration Techniques

As mentioned before, the difficulties of the Petviashvili’s method to generate classical
solitary waves when the speed c is close to the limit ¢* (see [39]) have been overcome
here by incorporating some acceleration techniques to the iterative procedure. Some
of the most widely used methods in the literature to this end are the so-called Vector
Extrapolation Methods (VEM). They introduce the extrapolation as a procedure to
transform the original sequence of the iterative process ¢, from (40), (41) by some
strategy. For a more detailed analysis and implementation of the methods see e. g.
[9, 34, 54-56] and references therein. The application of acceleration techniques for
traveling wave computations can be seen in [3]. Briefly described here are the main
stages of the procedure. This is carried out in a cycling mode. A cycle of the iteration
is performed by the following steps: Given a width of extrapolation mw > 1, for
k=0,1,...and for the advance k — k + 1:

1. Set ¥y = ¢y and compute mw steps of the fixed-point algorithm:
ij-ﬁ-l = m(lﬂj)aN(w]‘),j = 0, ...mw — 1.

2. Compute the extrapolation steps:

n
Yk = Zﬂj,klﬂj,n =0,...,mw,

j=0

for some B; .
3. Set ¢rs1 = Vmw,k> Yo = Pry1 and go to step 1.

The cycle 1-2-3 is repeated until the error (residual or between two consecutive iter-
ations) is below a prefixed tolerance or a maximum number of iterations is attained.

On the other hand, in these methods, the coefficients 8, of the extrapolation
steps are (linear or nonlinear) functions of some previous steps of the iteration. The
derivation is usually established for linear systems and follows different criteria.
Some examples are the minimal polynomial extrapolation (MPE), the reduced rank
extrapolation (RRE) and the modified minimal polynomial extrapolation (MMPE);
they belong to the so-called polynomial methods, [34, 54-56]. These calculate the
extrapolation steps as weighted average of the iterations and the weights are deter-
mined by setting orthogonality conditions on the generalized residual, [34]. In prac-
tice, since the width of extrapolation is not known, the methods are implemented with
relatively small values of mw and the one with the best performance is taken.This
width of extrapolation was experimentally set as mw = 3 or mw = 4 in the examples
below, where the MPE method was used.
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3.2 Numerical Results

Displayed here are numerical experiments to analyze the performance of the method
and some properties of the waves suggested by the results.

3.2.1 Classical Solitary Waves

Recall that classical solitary waves exist when y, 8 > 0 and speeds ¢ < c* = 2./By.
Here y =1/4, B =1 (thus ¢* = 1) have been taken to illustrate the plethora of
computations made with different parameters values. In [38], Levandosky shows
that without loss of generality, the homogeneous nonlinearity f can be alternatively
written in the form

fo = cos(0) f. +sin(@®) f,, —
L) =1, fols) =1s”"s, p> 1. (44)

<9<£,
- T4

SRS

Although experiments with several values of 6 were performed, for simplicity only
those with & = 0 will be shown here. This corresponds to taking a, = 1,a, = 0 in
4).

The first results study the case of negative speed c. By way of illustration, we
consider the parameter values p = 2 with ¢ = —0.75. (Other values of p give similar
results.) The performance of the method is shown in Fig.4a—d. As displayed in
Fig.4a, the solitary wave profile is even, with maximum negative excursion at x = 0
and two maximum lobes. As p increases, the maximum negative excursion increases
(Fig.5) and the amplitude of the lobes decreases. The profiles also contain negative
excursions to the left and to the right, see Fig. 4b. These oscillations are more intense
as the speed tends to c* (suggesting an oscillatory decay of the profiles) and their
formation occurs for any p > 1. The convergence of the method is verified by Fig. 4c,
d. The first one displays the residual error as function of the number of iterations
and in semi-log scale, while Fig. 4d calibrates the computational effort by displaying
the residual error (in semi-log scale) as function of the CPU time (in seconds). (The
behaviour of the other two quantities that control the iteration, that is, the discrepancy
in the error for the stabilizing factor and the error between two consecutive iterations,
is similar and will not be shown here.)

In the case of negative c, acceleration techniques were not necessary (although
they improved the efficiency of the iteration). This also happens when ¢ > 0 but still
far from c*. Since here the behaviour is similar to that of the previous experiments
for negative c, this case will be used to illustrate the asymptotic decay of the waves.

Figure 6 displays the phase portraits of the computed solitary waves for two values
of pwithy = 0.25, 8 = 1 and c = 0.5. (The derivative is computed by using spectral
differentiation.) The results suggest, as mentioned above for the case of negative c,
and for all the values of p considered (including those of experiments made but not
shown here), an exponential, damped decay of the waves at infinity.
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Fig. 4 Generation of classical solitary waves of (2), (4) with y =1/4,8=1, p =2 with a, =
1,a, = 0and ¢ = —0.75. a Computed solitary-wave profile. b Magnification of (a). ¢ Residual error
versus number of iterations and in semi-log scale. d Residual error versus cpu time (in seconds)

When c is closer to c¢*, the solitary wave profiles contain more and more oscilla-
tions and the Petviashvili’s method starts to be much slower or to fail. Some reasons
for that can be seen in Tables 3 and 4.

For y =0.25,8 = 1(¢* = 1) and p = 3, 4 (respectively) Tables3 and 4 show
the six largest magnitude eigenvalues of the iteration matrix § = £, ! N/ (¢n) of the
classical fixed-pointiteration (39) evaluated at the last computed iterate ¢, for several
values of the speed c close to c¢*. We observe thatas ¢ — ¢* the spectrum of S changes
and, besides the eigenvalue which is given by the degree p of homogeneity, see (38)
(and which becomes zero in the spectrum of the iteration matrix for the Petviashvili’s
method) and the eigenvalue A = 1 (which corresponds to the translational invariance
of the equation and that affects the convergence only in the orbital sense, see [2]),
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Fig. 5 Minimum (maximum negative excursion) of the computed solitary-wave profile of (2), (4)
withy =1/4,8=1,a, =1,a, =0 and c = —0.75 as function of p
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Fig. 6 Generation of classical solitary waves of (2), (4) withy = 1/4, 8 = 1 witha, = 1,a, =0
and ¢ = 0.5. Phase portraits of the computed profiles:a p =2;b p =3

the other eigenvalues grow in magnitude, being eventually above one and therefore
making the iteration much slower or fail. This behaviour is attenuated as the degree
of homogeneity p is increasing. For example, when p =2 and ¢ = 0.8, there is
already an eigenvalue A* = —1.1329E4-00 above one in magnitude while when
p = 3andc = 0.95, the third largest (in magnitude) eigenvalue is still below one. (For
p = 4 this holds even when ¢ = 0.995.) Then, in order to improve the performance
of the method, the numerical experiments have been implemented with the MPE
acceleration procedure, described above. As an example, with this technique, the
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Table 3 Six largest magnitude eigenvalues of the matrix S at the last computed iterate: p = 3, y =
0.25, 8 =1 (¢* = 1), u;y, is the maximum negative excursion of the resulting profile

c 0.7 0.8 0.9 0.95
3.0000E+00 2.9999E+00 2.9999E+00 2.9999E+00
9.9999E —01 9.9999E—-01 9.9999E—-01 1.0000E+-00
—6.0465E—-01 —7.0854E—01 —8.6278E—01 —9.8560E—-01
—3.9358 E—-01 —4.6988 E—01 —6.0089E—01 —7.2570E—01
—3.2451E-01 —3.8129E-01 —4.7673E—-01 —5.6446 E—01
—3.0712E-01 —3.4696 E—01 —4.0090E—-01 —4.3818E—-01

Um —1.1071 —9.8725E—01 —8.3355E—-01 —7.2277E—-01

Table 4 Six largest magnitude eigenvalues of the matrix S at the last computed iterate: p = 4, y =
0.25, 8 =1 (c* = 1), uy, is the maximum negative excursion of the resulting profile

c 0.9 0.95 0.99 0.995
3.9999E+00 3.9999 E+00 4.0000E£4-00 4.0000E4-00
9.9999E-01 9.9999E—-01 1.0000E+00 1.0000E+-00
—6.4641E—01 —7.8456 E—01 —9.4861 E—01 —9.9262E—-01
—4.5054E—-01 —5.9275E—-01 —8.7971E—-01 —9.6064E—01
—29135E-01 —3.8085E—01 5.8402E—-01 8.8998E—01
—2.4150E—-01 —2.8448 E—01 —5.7376 E—01 7.0979E—-01

Um —8.9107E-01 —8.0239E—-01 —6.5046 E—01 —5.7459E—-01

resulting iteration is able to generate solitary wave profile approximations for the
case p =4, c = 0.995 (with ¢* = 1), see Fig.7a, b.
Another advantage of the application of the acceleration techniques is the reduc-

tion of the computational cost. This can be illustrated by Fig. 7c, d, which correspond
to the same computation as in Fig. 7a, b but without acceleration.

A final experiment concerning classical solitary waves illustrates the behaviour
of the amplitude of the computed profiles with respect to the speed. This is shown
in Fig. 8 for different values of p. In all the cases the amplitude is decreasing in
magnitude as ¢ tends to ¢*. The approximation to zero amplitude as ¢ — ¢*, ¢ < ¢*
looks faster when p = 2.

3.2.2 Generalized Solitary Waves

As mentioned above, the classical Ostrovsky equation (1) admits generalized solitary
wave solutions. According to [14], these traveling waves, homoclinic to periodic
orbits as | X| — oo, are associated, in the (Q, P) plane, to region below curve Cy,
see the Introduction.
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Fig. 7 Generation of classical solitary waves of (2), (4) with y =1/4,8 =1, p =4 with @, =
1,a, =0, c =0.995. In a, b the (MPE) has been used as acceleration technique, while in ¢, d, no
acceleration technique is implemented. a, ¢ Computed solitary-wave profile. b, d Residual error,
displayed as function of the number of iterations and in semi-log scale

In this case, the Petviashvili’s method does not need the help of acceleration
techniques to generate numerically these profiles, although the MPE scheme has
been used in order to improve the computational cost.

Some figures will illustrate the generation of approximate profiles with an initial
iteration of the form (14). The experiments also give numerical evidence of existence
of such waves for higher values of p; since the resulting profiles are similar, only
those corresponding to p = 3 will be shown here.

The first group of results (Fig. 9a, b) corresponds to the case P < 0, @ > 0. Note
that Fig. 9b, which shows a wave of elevation, is obtained by considering opposite
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Fig. 8 Maximum negative excursion of the computed solitary-wave profile of (2), (4) as function
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Fig. 9 Generation of generalized solitary waves of (2), (4). Computed profiles with p = 3, a, =
l,a, =0and:ay =—-0.002,8=1,c=—-1.by =0.002,8 =—-1,c=1

values of the parameters used for Fig.9a (a wave of depression) but both are in the
same region. We also note that in the region with P, Q < 0 (below curve C;) only
periodic traveling waves were generated.

The corresponding phase portraits confirm the asymptotic behaviour of the pro-
files, homoclinic to small amplitude periodic waves, see Fig. 10.

Additional experiments can give more information on this behaviour. By way
of illustration, the part of the oscillations displayed in Fig.9b from x = —1024 to
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Fig. 10 Generation of generalized solitary waves of (2), (4) with y = 0.002, 8 = —1, p = 3 with
a, = 1,a, =0, c = 1. a Phase portrait. b Magnification of (a)

Table 5 Coefficients and goodness of fit for the fitting curves of Fig.9(b): f(x) =

Z;:] ajsin(bjx + c;). SSE and RMSE denote, respectively, the statistical parameters of the sum
of squares due to error and the root mean squared error

Coefficients Coefficients Coefficients g.of.

a; =0.1715 b1 =0.04517 c1 = —2.339 SSE=1.983 x 10~*
ar = 0.0202 by =0.09116 ¢z = 0.405 R-squared = 1

a3 = 0.0039 by =0.1392 c3 =4.131 RMSE = 6.01 x 10~*

x = 0 has been fitted to a sinusoidal sum. The one that gave the best goodness of fit
corresponds to the data shown in Table 5. This represents the oscillations as a sum of
three sinusoidal functions containing several frequencies; there exists a fundamental
one associated to by, while b, and b3 approximate 2b; and 3b,, respectively.

3.2.3 Multi-pulse Traveling Waves

Some multi-pulse classical and generalized solitary waves can also been generated.
The existence of these waves was derived in [13] for the classical Ostrovsky equation
using the reversibility of (1), which forces to admit multi-humped classical and gen-
eralized solitary waves in regions above curves C;, and C3 and below Cy respectively.
The numerical generation is represented by Figs. 11a, b and 12a, b, both for p = 2
and where the superposition of two single-pulse profiles (classical and generalized,
respectively) generated by the method, has been taken as initial iteration.
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Fig. 11 Generation of multi-pulse solitary waves. Two-pulse classical solitary wave of (2), (4)
withy = —-0.25,8 = —1,¢ =0.9, p =2 witha, = 1, a, = 0. a Computed solitary-wave profile.
b Residual error, displayed as function of the number of iterations and in semi-log scale

(@ (b)

1. 10
8
1
6
038 4
2
06 ®
w o
< 4
0.4 2
-4
0.
-6
WMWMWWMVWW\WANWWMMWMNW .
-10 "
-0.2Li
500 5 500 0 5 10 15 20 25 30
X

iter

Fig. 12 Generation of multi-pulse solitary waves. Two-pulse generalized solitary wave of (2), (4)
with y =0.1, 8 = -0.001,c =1, p =2 with a, = 1, a, = 0. a Computed solitary-wave profile.
b Residual error, displayed as function of the number of iterations and in semi-log scale



366 Angel Durén

Acknowledgements This work was supported by Spanish Ministerio de Economia y Competitivi-
dad under the Research Grant MTM2014-54710-P. The author would like to thank Professors V.
Dougalis, D. Dutykh and D. Mitsotakis for fruitful discussions and so important suggestions.

References

1. Ablowitz, M.J., Musslimani, Z.H.: Spectral renormalization method for computing self-
localized solutions to nonlinear systems. Opt. Lett. 30, 2140-2142 (2005)

2. Alvarez, I., Durdn, A.: Petviashvili type methods for traveling wave computations: L. Analysis
of convergence. J. Comput. Appl. Math. 266, 39-51 (2014)

3. Alvarez, J., Durdn, A.: Petviashvili type methods for traveling wave computations: I Accel-
eration techniques. Math. Comput. Simul. 123, 19-36 (2016)

4. Apel, J.R., Ostrovsky, L.A., Stepanyants, Y.A., Lynch, J.F.: Internal solitons in the ocean.
WHOI Tech. Rep. (2006)

5. Benilov, E.S.: On the surface waves in a shallow channel with an uneven bottom. Stud. Appl.
Math. 87, 1-14 (1992)

6. Bona, J.L., Dougalis, V.A., Mitsotakis, D.E.: Numerical solution of KdV-KdV systems of
Boussinesq equations I. The numerical scheme and generalized solitary waves. Math. Comput.
Simul. 74, 214-228 (2007)

7. Boyd, J.P.: Weakly nonlocal solitary waves and beyond-all-orders asymptotics: generalized
solitons and hyperasymptotic perturbation theory. In: Mathematics and Its Applications, vol.
442. Kluwer, Amsterdam (1998)

8. Boyd, J.P,, Chen, G.Y.: Five regimes of the quasi-cnoidal, steadily translating waves of the
rotation-modified Korteweg-de Vries (“Ostrovsky”) equation. Wave Motion 35, 141-155
(2002)

9. Brezinski, C.: Convergence acceleration during the 20th century. J. Comput. Appl. Math. 122,
1-21 (1975)

10. Cano, B.: Conserved quantities of some Hamiltonian wave equations after full discretizations.
Numer. Math. 103, 197-223 (2006)

11. Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods in Fluid Dynamics.
Springer, New York, Heidelberg, Berlin (1988)

12. Chen, G.Y., Boyd, J.P.: Analytical and numerical studies of weakly nonlocal solitary waves of
the rotation-modified Korteweg-de Vries equation. Physica D 155, 201-222 (2002)

13. Choudhury, S.R.: Solitary-wave families of the Ostrovsky equation: an approach via reversible
systems theory and normal forms. Chaos, Solitons Fract. 33, 1468—1479 (2007)

14. Choudhury, S.R., Ivanov, R.I., Liu, Y.: Hamiltonian formulation, nonintegrability and local
bifurcations for the Ostrovsky equation. Chaos, Solitons Fract. 34, 544-550 (2007)

15. Costanzino, N., Manukian, V., Jones, C.K.R.T.: Solitary waves of the regularized short pulse
and Ostrovsky equations. SIAM J. Math. Anal. 41(5), 2088-2106 (2009)

16. Dougalis, V.A., Duran, A., Lépez-Marcos, M.A., Mitsotakis, D.E.: A numerical study of the
stability of solitary waves of the Bona-Smith family of Boussinesq systems. J. Nonlinear Sci.
17, 569-607 (2007)

17. Dougalis, V.A., Duran, A., Mitsotakis, D.E.: Numerical solution of the Benjamin equation.
Wave Motion 52, 194-215 (2015)

18. Duran, A., Sanz-Serna, J.M.: The numerical integration of relative equilibrium solutions. The
nonlinear Schrodinger equation. IMA J. Numer. Anal. 20, 235-261 (2000)

19. de Frutos, J., Sanz-Serna, J.M.: An easily implementable fourth-order method for the time
integration of wave problems. J. Comput. Phys. 103, 160-168 (1992)

20. Galkin, V.N., Stepanyants, Y.A.: On the existence of stationary solitary waves in a rotating
fluid. J. Appl. Math. Mech. 55, 939-943 (1991)



On the Numerical Approximation to Generalized Ostrovsky Equations: 1 367

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.
46.

47.

Gilman, O.A., Grimshaw, R., Stepanyants, Y.A.: Approximate analytical and numerical solu-
tions of the stationary Ostrovsky equation. Stud. Appl. Math. 95, 115-126 (1995)

Gilman, O.A., Grimshaw, R., Stepanyants, Y.A.: Dynamics of internal solitary waves in a
rotating fluid. Dyn. Atm. Ocean 23(1), 403-411 (1995)

Grimshaw, R.H.: Evolution equations for weakly nonlinear, long internal waves in a rotating
fluid. Stud. Appl. Math. 73, 1-33 (1985)

Grimshaw, R.H.: Internal solitary waves. In: Liu (ed.) Advances in Coastal and Ocean Engi-
neering, pp. 1-30. World Scientific, Singapore (1997)

Grimshaw, R.H., He, J.M., Ostrovsky, L.A.: Terminal damping of a solitary wave due to radi-
ation in rotational systems. Stud. Appl. Math. 10, 197-210 (1998)

Grimshaw, R.H., Helfrich, K.R., Johnson, E.R.: Experimental study of the effect of rotation on
nonlinear internal waves. Phys. Fluids 25, 0566,021-05660,223 (2013)

Grimshaw, R.H., Ostrovsky, L.A., Shira, V.I., Stepanyants, Y.A.: Long nonlinear surface and
internal gravity waves in a rotating ocean. Surv. Gheophys. 19, 289-338 (1998)

Hairer, E., Lubich, C., Wanner, G.: Geometric numerical integration. In: Structure-Preserving
Algorithms for Ordinary Differential Equations. Springer, New York, Heidelberg, Berlin (2004)
Helfrich, K.R.: Decay and return of internal solitary waves with rotation. Phys. Fluids 19,
026,601 (2007)

Helfrich, K.R., Melville, W.K.: Long nonlinear internal waves. Ann. Rev. Fluid Mech. 38,
395-425 (2006)

Hunter, J.K.: Numerical solutions of some nonlinear dispersive wave equations. In: E.L. All-
gower (ed.), K.G.E. Computational Solutions of Nonlinear Systems of Equations. Lectures in
Applied Mathematics, vol. 26, pp. 301-316. AMS, Providence (1990)

Iooss, G., Adelmeyer, M.: Topics in Bifurcation Theory and Applications. World Scientific,
Singapore (1998)

Isaza, P., Mejia, J.: Global Cauchy problem for the Ostrovsky equation. Nonl. Anal. 67, 1482—
1503 (2007)

Jbilous, K., Sadok, H.: Vector extrapolation methods. applications and numerical comparisons.
J. Comput. Appl. Math. 122, 149-165 (2000)

Lakoba, T., Yang, Y.: A generalized Petviashvili method for scalar and vector Hamiltonian
equations with arbitrary form of nonlinearity. J. Comput. Phys. 226, 1668-1692 (2007)
Lakoba, T., Yang, Y.: A mode elimination technique to improve convergence of iteration meth-
ods for finding solitary waves. J. Comput. Phys. 226, 1693-1709 (2007)

Leonov, A.L: The effect of earth rotation on the propagation of weak nonlinear surface and
internal long oceanic waves. Annal. New York Acad. Sci. 373, 150-159 (1981)

Levandosky, S.: On the stability of solitary waves of a generalized Ostrovsky equation. Tech-
nical Report. (2006)

Levandosky, S., Liu, Y.: Stability of solitary waves of a generalized Ostrovsky equation. SIAM
J. Math. Anal. 38, 985-1011 (2006)

Levandosky, S., Liu, Y.: Stability and weak rotation limit of solitary waves of the Ostrovsky
equation. Disc. Cont. Dyn. Syst. Ser. B 7, 793-806 (2007)

Linares, F.,, Milanés, A.: Local and global well-posedness for the Ostrovsky equation. J. Diff.
Eq. 222, 325-340 (2006)

Liu, Y., Varlamov, V.: Stability of solitary waves and weak rotation limit for the Ostrovsky
equation. J. Diff. Eq. 203, 159-183 (2004)

Lombardi, E.: Topics in Bifurcation Theory and ApplicationsOscillatory Integral and Phenom-
ena Beyond all Algebraic Orders. Springer, Berlin (2000)

Obregon, M.A., Stepanyants, Y.A.: On numerical solution of the Gardner-Ostrovsky equation.
Math. Model Nat. Phenom. 7(2), 113-130 (2012)

Ostrovsky, L.A.: Nonlinear internal waves in a rotating ocean. Okeanologia 18, 181-191 (1978)
Ostrovsky, L.A., Stepanyants, Y.A.: Nonlinear surface and internal waves in rotating fluids. In:
Nonlinear Waves 3, pp. 106—128. Springer, New York (1990)

Pelinovsky, D.E., Stepanyants, Y.A.: Convergence of Petviashvili’s iteration method for numer-
ical approximation of stationary solutions of nonlinear wave equations. SIAM J. Numer. Anal.
42, 1110-1127 (2004)



368 Angel Durén

48. Pelloni, B., Dougalis, V.A.: Numerical solution of some nonlocal nonlinear dispersive wave
equations. J. Nonlinear Sci. 10, 1-22 (2000)

49. Pelloni, B., Dougalis, V.A.: Error estimates for a fully discrete spectral scheme for a class of
nonlinear, nonlocal dispersive wave equations. Appl. Numer. Math. 37, 95-107 (2001)

50. Petviashvili, V.I.: Equation of an extraordinary soliton. Soviet J. Plasma Phys. 2, 257-258
(1976)

51. Sanz-Serna, M., J., Calvo, M.P.: Numerical Hamiltonian Problems. Chapman & Hall, London
(1994)

52. Shira, V.: Propagation of long nonlinear waves in a layer of a rotating fluid. Iza. Akad. Nauk
SSSR, Fiz Atmosfery i Okeana 17, 76-81 (1981)

53. Shira, V.: On long essentially nonlinear waves in a rotating ocean. Iza. Akad. Nauk SSSR, Fiz
Atmosfery i Okeana 22, 395-405 (1986)

54. Sidi, A.: Convergence and stability of minimal polynomial and reduced rank extrapolation
algorothms. SIAM J. Numer. Anal. 23, 197-209 (1986)

55. Sidi, A., Ford, W.F,, Smith, D.A.: Acceleration of convergence of vector sequences. SIAM J.
Numer. Anal. 23, 178-196 (1986)

56. Smith, D.A., Ford, W.E,, Sidi, A.: Extrapolation methods for vector sequences. SIAM Rev. 29,
199-233 (1987)

57. Thomée, V., Vasudeva Murthy, A.S.: A numerical method for the Benjamin-Ono equation. BIT
38, 597-611 (1998)

58. Trefethen, L.N.: Spectral Methods in MATLAB. SIAM, Philadelphia (2000)

59. Tsuwaga, K.: Well-posedness and weak rotation limit for the Ostrovsky equation. J. Diff. Eq.
247, 3163-3180 (2009)

60. Varlamov, V., Liu, Y.: Cauchy problem for the Ostrovsky equation. Disc. Dyn. Syst. 10,731-751
(2004)



On the Numerical Approximation to )
Generalized Ostrovsky Equations: 11 L

Dynamics of Solitary-Wave Solutions

Angel Durén

Abstract In this chapter generalized versions of the Ostrovsky equations are consid-
ered. These were shown to admit classical and generalized solitary wave solutions.
The periodic initial-value problem for the equations is numerically solved with a fully
discrete scheme based on pseudospectral discretization in space and a fourth-order
composition Runge-Kutta method as time integrator. The resulting scheme is checked
and applied to study numerically the dynamics of the solitary wave solutions. Specifi-
cally, we analyze the stability of classical and generalized solitary waves under small
perturbations, the resolution of initial data into several solitary pulses (the so-called
resolution property) and various aspects of the interaction of the solitary waves.

Keywords Generalized Ostrovsky equation * Fourier collocation method
Petviashvili-type methods - Solitary waves - Stability - Resolution property

1 Introduction

In a previous chapter of this volume [20], the following generalized Ostrovsky equa-
tion

(ut - /Buxxx + f(u)x)x =yu, xe¢ R (1)

was introduced. Equation (1) is used as mathematical model for the propagation
of internal waves in a rotating fluid in a horizontal channel. The variables x and ¢
represent, respectively, the distance along the channel and the time, u (x, ) is the fluid
velocity in the horizontal direction at position x and time #, 8 and y are constant
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parameters (where y > 0 is assumed) which govern, respectively, the small-scale
Boussinesq dispersion and the dispersion due to rotation. Finally f, standing for the
nonlinear effects in the model, is a twice continuously differentiable, real-valued,
homogeneous function of degree p > 2, in the sense that

fOs)=APf(s), A>0, seR. 2)
Condition (2) implies that f can be written in the form [38]
) = aclul” +aolul”'u, a.,a, €R. 3)

In particular, the choice f(s) = =s? corresponds to the classical Ostrovsky equation
[5, 27, 33, 47].

Equation (1) in its general form was introduced by Levandosky and Liu [38],
where the study of the corresponding Cauchy problem is referred to that of the
classical Ostrovsky equation [34, 40, 57, 58]. Thus, Eq. (1) is well-posed in suitable
Sobolev spaces (see [20] and references therein), satisfies the zero-mass condition

I(u) = /00 ulx, t)ydx =0,

o0

and for smooth and decaying enough solutions, the momentum and energy

Vu(t)) = foo u(x, n)dx, 4)

oo

Eu(t)) = foo (gux(x, 2+ %(8;114()6, )2 + F(u(x, t))) dx. (5

o]

are conserved. In (5), F’ = f, F(0) = 0 and the operator 8! is defined by using the
Fourier symbol as

FO NHE =G FNHE), &R0}, FO,'N0)=0,

where .% stands for the Fourier transform

o0

F(f)E) = f e ' f(x)dx.

—00

The last quantity (5) provides a Hamiltonian structure for (1), see [20] for details.

Another relevant property of (1) is the existence of solitary wave solutions. They
are solutions u of the form u(x,t) = ¢.(x — ct) for some function ¢.(X), X =
x — ct and speed c. The profile ¢. must satisfy

(—cg. — B! + f(@)) — v = 0. ©)
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Existence results on solitary waves are mainly concerned with the classical Ostro-
vsky equation, with [13, 15-17, 38, 42] as main references. In particular, normal
form theory is applied in [16, 17] to prove the existence of classical solitary waves
(CSW), for which ¢ — 0 as | X| — oo, when y, 8 > 0 and ¢ < ¢* = 2./By. This
was previously derived in [42] and also holds in the generalized case (1). On the other
hand, generalized solitary waves (GSW), for which ¢, is homoclinic to small oscil-
lations at infinity, are discussed in [15] as microterons, see also [16]. Their existence
is suggested in [23] for the case of f(u) = u”/p, p > 1.

An additional point on the solitary waves concerns their stability. Here a brief
discussion between two types, orbital and asymptotic stability, is made. Orbital sta-
bility concerns stability of the waves modulo the symmetry groups associated to
the equations, in case they exist. (In our case, we have the group of spatial transla-
tions; this essentially means that if u(x, ¢) is a solution, then any spatial translation
u(x + xo, 1), xo € Ris also a solution. This is sometimes related to the preservation
of invariants [46].) The definition for the case of the Ostrovsky equations (1), (3) can
be seen in [38]. It is therefore a concept of stability for the orbits by the symmetry
group. Essentially, it says that a solitary wave is orbitally stable if, given small per-
turbations of the initial profile, the corresponding solution of (1) is, in some norm,
close to any element of the orbit of the solitary wave (that is, in our case, close to
some translation of the solitary wave profile) at any time ¢ > O.

The rigorous theory of orbital stability of the solitary waves for the Korteweg-de
Vries (KdV) and the Benjamin-Bona-Mahony (BBM) equations appears in [6, 7],
by using variational theory and the characterization of the solitary waves as extremal
of some invariant of the problem constrained to a fixed value of a second conserved
quantity and with the speed of the solitary wave as a Lagrange multiplier. The method
was extended to many other specific and more general situations in many papers, see
e.g. [1, 12, 26, 59, 60]. This theory was applied to the classical Ostrovsky equation
in [42] (see also [39, 41]) and to (1), (3) in [38].

When the solitary waves are generated as solutions of a constrained variational
problem of a functional (energy), constrained to some fixed value of another one
(momentum), then this theory claims that orbital stability can be measured in terms
of the speed as Lagrange multiplier [26]. Specifically, in the case of (1), solitary
waves @(x — ct) are critical points of

Lu)=E@)—cV(u),

where V and FE are given by (4) and (5), respectively, and c is the speed of the wave.
Then, defining the function

d(c) =d(B,c,y) = E(p) —cV(gp), (7

in [39] it is proved that, for B8, y > 0 and ¢ < c*, ¢ is orbitally stable when

82
ﬁd(ﬁv c, V) > 07
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and unstable when

82
md(ﬂ, Cc, )/) < 0.

The quantity (7) can be computed by using the definition or any of the alternatives
provided in [38] along with, (see [38], Theorem 3.1)

ad
a—(ﬁ, c,y)=-V(p),
C

and then approximating ?:T‘f by a numerical differentiation formula of second order
(central differences). The discrete versions of V and E will be used (see Sect. 3).
The results corresponding to the nonlinearity f(u) = |u|? (a. = 1,a, = 0 in (3))
are shown in Fig. 1. The main results of orbital stability are summarized in the
Introduction of [37], points (i)—(v). They establish stability for CSWs of speed ¢
close to ¢*, y small and 2 < p < 5, while for p > 5 (and y small), the waves are
unstable. In the same paper, there are two other conjectures (Conjecture 7.1), as a
consequence of the numerical experiments. The numerical results shown in Fig. 1
are in accordance with Table 1 in [37], fifth column (that corresponds to the chosen
nonlinearity).

The second concept of stability, asymptotic stability, gives more information about
the long time behaviour of solutions u of (1) from initial small perturbations of the
solitary wave profiles. The theory assumes that for long times, u behaves like

u(x,1) = Wsm(x — Cool +x0,oo) +z(x,1)
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where ¢;_ is a solitary wave with some speed c, (close to the speed ¢, of the original
solitary wave profile) and xp  is a phase shift. The second term z(x, ) represents a
remainder consisting of small amplitude dispersive oscillatory waves and probably
smaller solitary waves. Thus the solitary wave is said to be asymptotically stable when
z — 0 ast — oo in a suitable sense. We refer to the Introduction of [19] for a more
detailed explanation and many references. Essentially, in the case of asymptotically
stable solitary waves, what one would typically see, from initial small perturbations of
the profile, is an emerging wave that evolves to a solitary wave profile plus ripples or
tails and probably other smaller nonlinear waves; the asymptotic behaviour should
tend to the persistence of the main wave, evolving to a real asymptotic solitary
wave profile, and the disappearance of the remaining waves. The theory requires an
exhaustive analysis of the linearization of the equation at the solitary wave, along
with estimates of the decay of solutions of the equations satisfied by z, see e.g. [45,
48, 49] (and [21, 43] for a different approach, more related to the use of modified
equations satisfied by the asymptotic profile).

To our knowledge, this type of stability has not been studied in the case of classical
solitary waves of the Ostrovsky equations (1). In the particular case of GSWs, com-
putational or theoretical studies on the dynamics are less common in the literature,
see e.g. the experimental results in [9, 10], for a type of Boussinesq system.

Remark 1 'We also mention that the evolution of a KdV solitary-wave profile as initial
condition under the classical Ostrovsky equation has been studied, numerically and
analytically, in many references [24, 25, 28-30, 32], as a way to analyze the effect
of rotation, governed by the parameter y.

In the first chapter of this study [20], two numerical tools to analyze the dynamics
of (1) were introduced. The first one is a scheme of approximation to the solutions,
based on a pseudospectral discretization in the spatial variable and a fourth-order,
simply diagonally composition method of Runge-Kutta type to integrate in time the
resulting semidiscrete system. These choices are justified by the nonlocal character
of (1) and the suitability of the time integrator for nonlinear wave problems [22]. The
second tool is a numerical technique to generate approximations to classical and gen-
eralized solitary wave profiles ¢ satisfying (6). The procedure is based on the Petvi-
ashvili’s method [51], combined with acceleration techniques to improve the per-
formance and to approximate efficiently highly oscillatory classical solitary waves.
Properties concerning the speed-amplitude relation and the asymptotic behaviour of
the waves are suggested by the numerical simulations.

In this second chapter, the two procedures will be used to study by numerical
means the dynamics of the classical and generalized solitary waves of (1). The study
will be focused on the effect of small and large perturbations as well as collisions of
the waves. The experiments are mainly devoted to shed some light on the stability
of the waves and the dependence of the dynamics on the speed and the degree of
homogeneity p.

From the plethora of experiments performed (some of them are shown in this
chapter) we derive the following conclusions.
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e Both classical and generalized solitary waves are asymptotically stable under small
perturbations of the amplitude (and speed) parameters. Perturbed initial data evolve
to a new solitary pulse. Small ripples and tails that tend to disperse as time goes
by are observed behind and in front of the main pulse (in the case of CSWs) and
just behind (in the case of GSWs).

e For larger perturbations, the so-called resolution property is observed in both the
CSW and GSW cases: the profiles resolve into a train of solitary waves plus
dispersive tails to the left and to the right, along with apparently nonlinear ripples
which may monitor the generation of new pulses.

e Interactions of CSWs and of GSWs are inelastic, as expected. (The classical Ostro-
vsKky equation is proved to be nonintegrable in [17].) In the case of overtaking col-
lisions of CSWs (that is, the two waves travel in the same direction), the degree of
inelasticity depends on the speed (or amplitude) of the waves to be collided, being
low when both pulses are slow, a bit higher when they are both faster and clearly
strong when the difference in speeds grows. In the first two cases, some not dis-
persive ripples are apparently formed, leading to an increment of the energy of the
perturbed wave. This is not observed in the fast-slow interaction. On the other hand,
head-on collisions of CSWs (when the two waves travel in opposite directions)
show, according to the speed-amplitude relation for that case, the same behaviour.

The chapter is structured as follows. Section 2 is devoted to summarize the descrip-
tion of the numerical techniques implemented for the computations, explained in
more detail in [20]. This is complemented by some additional experiments of val-
idation. The computational study of the dynamics of the solitary waves makes up
Sect. 3. To this end the behaviour of small solutions of (1) is first estimated by using
the corresponding linearized equation. Then small and large perturbations of classi-
cal and generalized solitary waves are illustrated and analyzed. Small perturbations
of the parameters suggest stability of the waves for long times, while the case of large
perturbations include experiments leading to the resolution property and experiments
of weak and strong interactions. We refer to [20] for the notation used.

The numerical study was perfomed for values of the nonlinearity parameter up
to the limit p = 5, obtained by Levandosky and Liu [38], for the orbital stability of
CSWs. This excludes from this computational work, for instance, the analysis of the
possible singularity formation for larger values of p, obtained in generalized versions
of other classical nonlinear dispersive wave equations [8, 11]. This approach would
take part (along with a more exhaustive analysis of some phenomena observed in
this numerical study) of a future research.

2 The Numerical Procedures

In this section we give a brief review of the fully discrete pseudospectral scheme
that is used to discretize the periodic initial-value problem for (1) as well as of
the accelerated Petviashvili’s iteration to generate approximate solitary wave profile
solutions of (6). See [20] for details.
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2.1 Discretization of the Periodic Initial-Value Problem

Let N be a positive integer,/ > 0 and consider the space of trigonometric polynomials
of degree N

Sy = span{ei%kx, —N <k < N},

and the subspace of Sy consisting of zero-mean polynomials

1 )
S = {¢ € Sy/P(0) = / ¢ (x)dx =0} = span{e ¥, —N <k < N,k # 0}.
-1

The semidiscrete Fourier-Galerkin approximation of the 2/—periodic initial-value
problem for (1) with initial condition given by a 2/ —periodic function u is defined
as the map u” : [0, co) — Sy such that for all x € Sy,

@, )+ (=Bu, + f™))y —yu", x) =0, t>0, (8)
uN(x,0) = Pyuo(x).

The periodic conditions lead to the equivalent formulation

@, x0) + (=pul + F@™)), x) + u, x) =0, t>0, ©)
u™ (x,0) = Pyug(x),

where Py is the orthogonal projection of L? onto Sy . By taking x = 1in (9) we obtain
that u™ (-, 1) € S%, t > 0. This means that u" satisfies the zero-mass condition
!
LW (1) = / uV(x,t)dx =0, t>0.
-1

Standard arguments prove the local existence and uniqueness of solutions of (9). The
solution is global in time by using the preservation of the L% norm of the discretization

1
Vi (1)) =/ uV (x, 1)%dx = Vi(uo), t > 0.
—1

The conservation of the energy

Eiw" (1) = f

(guiv(x, 0%+ %(B;IMN()C, N>+ F@u® (x, t))> dx = E;(up),
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also holds, where F’ = f, F(0) = 0 and if

W= Y Nk e,

—N<k<N
then

N — e = uN(k, 1) —
wWaon= Y wWkne™, Wk =—"—, k#0: w0, =0.

—N<k<N

The system of ordinary differential equation derived from (8) is stiff and for a sta-
ble time discretization, the use of implicit schemes is required. The fourth-order,
diagonally implicit Runge-Kutta method of tableau

B1 B2/2

1
5 g2 P =g P=1-28 (10)

has been shown to be suitable for nonlinear wave problems [22]. The method (10) is
a composition of three stages of length 8 Az, B At and B At, of the second-order
Gauss-Legendre implicit Runge-Kutta method (or implicit midpoint rule), with Az
standing for the time step-size. Thus (10) inherits simplecticity and, as a consequence,
the preservation of the discrete L? norm [52]. Additionally, it satisfies the discrete
version of the zero-mass condition and the implicit systems of the intermediate stages
can be numerically solved by using the classical fixed point iteration.

2.2 Numerical Generation of Solitary Waves

In order to describe the iterative technique to approximate solitary wave profile
solutions of (6), let N be a positive integer and define a uniform grid on a long
enough interval (—1,[),l > 0byx; =—l+ jh,j=0,...,N—1,h=2l/N.For
v=(v,...,vy_1)" € R" we consider the operators

Zv = (yIy +cDy + BDY)V,  Ai(v) = D3 f(v),

where Iy is the N x N identity matrix, Dy stands for the pseudospectral differenti-
ation matrix of size N [14, 56], and the evaluations involved in f(v) are understood
in the Hadamard sense. We define the approximation of the profile solution ¢, at the
gridx;, j =0,..., N — 1, as the vector ¢, € RN satisfying

Ln — N () = 0. (1)
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The system of algebraic equations (11) for the components of ¢, is solved iteratively
by using the Petviashvili’s method [36, 50, 51]: if d)lo] stands for an initial iteration,

then the iterative step v — v + 1, v =0, 1, ... is implemented as
Lo, )
m(¢[v]) — M, (12)
(ACIDN B
L = m@") T M), n=0,1,..., (13)

where (-, -) denotes the Euclidean inner product in R The use of (12), (13) provides
a simple iterative technique of fixed-point type that overcomes the general lack of
convergence of the classical fixed-point algorithm [3]. The iteration is implemented
in Fourier space by using the Discrete Fourier Transform (DFT) [56], and is com-
plemented by the inclusion of an acceleration technique based on extrapolation [35,
53-55]. The acceleration improves in general the performance and in some cases is
able to transform initial divergent processes into convergent iterations. This is par-
ticularly interesting in solitary wave generation, see [4]. The convergence of (13)
was checked in [20] with the generation of approximations to classical and general-
ized solitary wave solutions of (1) as well as multi-pulse classical and generalized
profiles.

2.3 Some Experiments of Validation

The accuracy of both the numerical profiles generated by (13) and the fully discrete
method described in Sect. 2.1 is now checked with some numerical experiments.
The first profile considered, by way of illustration, approximates a solitary wave
solution of the classical Ostrovsky equation (p =2,a, = 1,a, = 0 in (3)) with
parameter values y = 0.25, 8 = 1 and speed ¢ = 0.5. The computed profile has
been taken as initial condition of the time stepping code in the (spatial) inter-
val [—128, 128] and evolved up to a final time * = 100 with three time steps
At = 6.25E—-03,3.125E—-03, 1.5625E—03. As a result of this evolution, several
figures have been generated. Figure 2a shows the numerical approximation at times
t =0, 20, 40, 60, 80, 100 and At = 6.25E—03, representing the evolution of the
initial computed wave. We observe that the numerical solution does not look to
develop any relevant backward or forward disturbance, which may be a good sign of
the accuracy of both the initial profile (as approximation to the exact solitary wave)
and the numerical integration from it (as approximation to the evolution of the exact
wave). This apparently good accuracy of the profile and the evolution is somehow
confirmed by the following additional experiments. Figure 2b shows, for several
values of At, the evolution of the error between the amplitude (maximum negative
excursion) of the initial profile and that of the numerical approximation at time ¢,
computed as in e.g. [19]. According to the results, we can confirm the preservation
of the amplitude (up to the final computed time * = 100) in an accurate way, which
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in the worst case is of order of 5E—09. This good behaviour of the numerical inte-
gration is also observed in the evolution of the speed error, shown in Fig. 2c. Finally,
the error in the phase, displayed in Fig. 2d, suggests a linear growth with time, which
is in agreement with the expected behaviour for the global error, observed for the
case of the generalized KdV equation in [20] and mentioned in the literature [2].

The last experiments for this case concern the time behaviour of the method with
respect to the invariant quantities of the periodic problem. The corresponding discrete
versions are

N—1
h 2 T
vh<U>=EZOU_., U= U.....Uy-D", (14)
N-1 8 y
Ex(U)=h) (5(DNU)§ + (DR U); + F(U),-) : (15)
j=0
where V = D;,lU =W, ..., Vy_DT represents the solution of the system Dy V =
U with
N—1
Vo=)_V;=0, (16)
j=0

where V denotes the DFT of V. (Note that since U (0) =0, then the system
DyV = U is compatible and when the condition (16) is imposed, it also has a
unique solution: this corresponds indeed to take the inverse DFT of the vector v
with % =0and ﬁk = ﬁk /(ik) when k # 0.) Figure 2e shows the behaviour in time
of the difference between the value of (14) at the initial condition and that of the
numerical approximation at times f, = nAt for three time steps and up to a final
time t* = 100. (Formula (14) is computed at each unit of time.) The evolution of the
error confirms the virtual preservation of (14) (the error is always below 8 E—15).
The time behaviour of the error in the Hamiltonian (15), observed in Fig. 2f, is similar
and can be explained by the preservation of (14) and the relation between the two
quantities at the solitary wave, see the Introduction. This behaviour would then be
an additional sign of the high accuracy in the computation of the numerical profiles.
The same experiments have been performed for higher degrees of homogeneity p,
leading to the same conclusions.

In an analogous way, we illustrate the simulation of generalized solitary wave
solutions with the numerical profile obtained in the case y = 0.002, 8 = —1,c =1
and p = 2,a, = 1, ap = 0,onaninterval [—1024, 1024] with N = 4096 collocation
points. The time stepping code has been run from this profile as initial condition and
up to a final time #* = 100. The results are displayed in Fig. 3. (The phase error is
not shown, but its behaviour is similar to that observed in the simulation of classical
solitary waves.)
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3 Dynamics of Solitary Waves. A Numerical Study

The aim of this section is to study by numerical means the dynamics of solitary wave
solutions of (1). The experiments will involve both the classical and generalized
solitary waves and will concern the stability of the waves under small perturbations
of the parameters, the resolution of initial data into a train of solitary waves (the
so-called resolution property) and the interactions of solitary waves (along with
properties of the emerging waves after the collisions). The degree p of homogeneity
of the nonlinearity used in the computations is limited to 2 < p < 5, the bound
established for the orbital stability results of CSWs in [38]. The dynamics for p > 5
is expected to be analyzed in the future.

3.1 Study of Small Tails and Ripples

In order to try to explain the results suggested by the experiments below, it may
help to describe the behaviour of small amplitude solutions of (1). Assume first that
B,y > 0 and take a (classical) solitary wave of speed ¢ = ¢, < ¢* = 2,/By. Then
small amplitude solutions of (1) evolve, in a frame moving with the solitary wave,
y = x — ¢4t, according to the linearized equation

0, ((0; — ¢;0y)u — B0yyyu) — yu = 0.
For plane wave solutions u(x, t) = ¢/®=*® k¢ R, we have
ik (—iw(k) —icgk)u — B(ik)*u) — yu = 0.
That is, for k #~ 0,

w(k) = —ck + BK® + %

The local phase speed, relative to the speed of the solitary wave, is therefore

k
v(k) = %) =—c,+ oK), ¢(x)=px+ g

The function ¢ (x), x > 0 has a minimum at x* = /y /B, see Fig. 4a. Thus

d(x) > p(x*) =2/By >0, x>0.

Then, for k # 0 and since ¢; < c*,
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v(k) = —¢; + ¢ (K> > —c, +2y/By > 0.

Therefore v(k) > 0 for all wavenumbers k # 0 and the solution component
e ky=o(®D ig leading the solitary pulse. This suggests the existence of propagating
ripples in front of the main pulse.

Since ¢ is decreasing for 0 < x < x* and increasing for x > x* (going to infinity
with x) then for the components with wavenumbers k > x*, those corresponding
to longer wavelengths (smaller k) are slower than those of shorter wavelength. If
x* is small, then all the components will eventually have wavenumbers k > x*, so
the phase speed is fast. This generates a computational drawback, observed in some
numerical experiments.

The associated group velocity is, in this frame of reference, of the form
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’ 2 4
w (k) = —c; + P (k), 1/f(x)=3>/3x—;, x > 0.
The function ¥ is increasing for all x > 0 with
lim ¥ (x) = —o0; lim y¥(x) = 4o0.
x—0+ Xx—>+00

(See Fig. 4b.) Furthermore, ¥ (x) < Oifx < x, = /y/(3B)and ¥ (x) > Oifx > x,.
(Note that x. < x*.) Note that ¥ (x) > ¢, is satisfied when

P(x)=3,3x2—cxx—y >0, x>0.

The polynomial P(x) has two zeros at some x = x— < 0 and x = x*. Thus, if
x > x*,then P(x) > 0 and ¥ (x) > c;, ¥ (x) > 0 (since x* > x.). There is a group
traveling to the right and in front of the solitary wave. Note that if x < x. then
¥ (x) < 0 and for those k with k? < x. we have ' (k) < —c, so the group travels to
the left.

If x < x* then ¥ (x) < ¢, and those components with k such that k> < x* satisfy
o' (k) = —c; + ¥ (k*) < 0. They may travel to the left (if 1 (k*) < 0) or to the right
(if ¥ (k?) > 0) but behind the solitary wave. Note also that the difference between
the phase speed and the group velocity is

W' (k) —vk) =2r(k>), r)=px—-X, x>o0.
X

The function r (x) is increasing, positive when x > x* and negative when x < x* (see
Fig. 4c). Therefore, the group velocity exceeds the phase speed for those components
k with k2 > x*.

Remark 2 On the other hand, the behaviour for the case of generalized solitary
waves has been studied in some references, see e.g. [23, 31] and references therein.
By way of illustration, assume that 8 < 0, ¥ > 0. In this case, the function ¢ is
always decreasing and the phase speed v(k) is positive when R(k?) < 0 being

R(X)=x2~|—Qx+P, Q:—%>0’ P=%<O

The polynomial R has tworeal zeros x; withx_ < 0 < x4 andthen R(x) < Ofor0 <
x < x. Therefore, for some wave number, we will have k> > x, and consequently
R(k*) > 0. Then the phase speed v(k) will be negative: the solution component
¢! ky=® will be behind the pulse.

As for the group velocity o' (k) note that now v (x) is negative for all x > 0; thus
' (k) < —cy for all k and the group travels to the left (relative to the generalized
solitary pulse).
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3.2 Some Aspects of the Dynamics of Classical Solitary Waves

The first part of the computational study is concerned with the dynamics of classical
solitary waves.

3.2.1 Small Perturbations of Classical Solitary Waves

In the following numerical experiments a first approach to the stability of the classical
solitary waves under small perturbations is made. Among all the possibilities in this
sense, see e.g. [19], we will focus on the dynamics of waves from small perturbations
of the amplitude. The implementation will consist of computing an approximate
profile ¢o with the accelerated Petviashvili’s method (13). Then the initial condition
for the time stepping code will be of the form

u(x,0) =reo(x), a7)

with a perturbation parameter r > 0; thus, u is obtained from ¢ with a perturbation
of the amplitude via the factor . The code is run and the corresponding numerical
solution is monitored up to a final time of integration. As mentioned above, we limit
our approach tothe cases2 < p < Sandc < c¢* inthe case of classical solitary waves
[37, 38]. Finally, among the experiments performed with nonlinearities of the form
(3), only those with a, = 1, ap = 0, for which f(«) = |u|”, and several values of p
will be, for the sake of clarity, shown here.

In order to study by computational means the dynamics of the waves under small
perturbations, several values of r have been used, By way of illustration, we take Eq.
(1) with y = 0.25, 8 = 1 (thus ¢* = 1). In the first experiment, the corresponding
classical solitary wave profile ¢y with speed ¢ = 0.5 and p = 2 is computed. From
the perturbed wave (17) with r = 1.05, the numerical method is run with At =
1.5625 x 1073 and up to a final time ¢ = 100. In Fig. 5a—d the form of the numerical
approximation at several times is displayed. Figure 5b is a magnification of Fig.
5a and Fig. 5d is a magnification of Fig. 5c. Confirming the results in Sect. 3.1,
some ripples are observed behind and in front of the main emerging wave. Those
in front of it travel very fast and this makes the computation harder. (The spatial
interval is [—1024, 1024].) The ripples look to disperse as time evolves. Figure 6a
shows the evolution of the difference between the amplitude of the initial profile

(without perturbation, about u,, = —1.55818) and that of the emerging wave. Note
that this discrepancy is stabilized in some below 0.1. (The amplitude of the emerging
wave at t* = 100 is about u), = —1.635783.) This is an argument in favour of the

idea that a solitary wave profile, close to the unperturbed one, is generating. This is
also confirmed by Fig. 6b, which displays the evolution of the difference between
the speed of the unperturbed profile (¢ = 0.5) and that of the main emerging wave.
The results suggest that this last one evolves with a constant speed, approximately
c* = 0.4465 (then the profile is slower than the unperturbed one). On the other hand,
the preservation of the quantities (14) and (15) is under admissible thresholds, as
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Fig.5 Evolution of numerical approximation to a perturbed solitary wave fory = 0.25, 8 =1,¢c =
0.5, p = 2. The initial condition is of the form (17) with r = 1.05. a Numerical solution at different
times; b magnification of (a); ¢ numerical solution at times ¢t = 0, 100; d magnification of (c)

shown in Fig. 6¢, d. This behaviour is essentially preserved when p is increasing,
p < 5. The results corresponding to y =0.25,8=1,¢=0.75,p=3,r = 1.05
are shown in Figs. 7 and 8. Since the speed is higher, the ripples on the right go faster
(they cross the computational window in a shorter time). See also the differences
in the behaviour of the evolution of the speed and of the Hamiltonian error. In this
case, while the unperturbed wave has amplitude and speed u,, = —1.049969, ¢ =
0.75, respectively, the emerging wave at#* = 100 has values u);, ~ —1.115819, ¢* ~
0.625.

We observe that for moderate r, the initial perturbed wave evolves to the forma-
tion of only one classical solitary wave. The perturbation affects the amplitude (the
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|V (U™) — V), (UO)I) error; d Energy (|E,(U") — Ey, (U0)|) error. All are displayed against time,
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maximum negative excursion increases) and the speed (which decreases, becoming
negative in some cases; the emerging wave travels to the left, see Table 1) but does
not apparently generate more than one solitary pulse. In all the computed cases, the
ripples look to disperse as t — oo.

3.2.2 Large Perturbations of Classical Solitary Waves

For larger perturbations, other types of behaviour are observed. This section is
devoted to illustrate the phenomena of the resolution property and the collisions
of classical solitary pulses.
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Table 1 Amplitude and speed of the emerging classical solitary wave from (17) with ¢ the
computed profile corresponding to y = 0.25, = 1, p = 2, ¢ = 0.5. The computed amplitude of
o is u, = —1.55818

r ull cN

1.2 —1.95231 0.2805

1.5 —2.528343 —0.072
Resolution property.

Resolution of arbitrary initial data into sequences of solitary waves plus some other
tails is a typical property to study in the dynamics of the models and in some sense is
related to the stability of solitary waves (see [ 19] and references therein). A typical ini-
tial data from which the solution resolves into a train of solitary waves are Gaussian-
type functions. In this case, the resolution into more than one pulses is numerically
observed when initial conditions of the form (17) with r large are considered. This is
illustrated by Figs. 9 and 10a, which show the numerical results corresponding to con-
sidering a perturbed initial data (17) for (1) with p =2,c=0.5,y =0.25,8 =1
and r = 4. The evolution displays a clear formation of two solitary wave profiles,
one traveling to the left and the other one to the right. Both develop ripples and tails
to the right and to the left and the formation of new solitary wave profiles hidden into
the ripples for longer times does not look to be dismissed. The maximum negative
excursion of the first profile is u{}) ~ —7.518072 with speed ¢! ~ —3.45, while the
second profile has amplitude u ,(ﬂz) ~ —1.291566, see Fig. 10c, d. Some of the ripples
might also contain smaller solitary wave profiles, not completely form by the final
time of simulation.
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Fig. 8 Numerical approximation to a perturbed solitary wave for y = 0.25, 8 =1,c¢ =0.75, p =
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Collisions of solitary waves

Interactions between solitary waves are usually studied with two main goals: the
integrable/nonintegrable character of the equation and the stability of the solitary
waves. In the first case, it is known [17], that the classical Ostrovsky equation is
nonintegrable and it is reasonable to think that generalized versions (1), (3) will also
be. Thus one can expect that when initial data consist of two solitary wave profiles
with different speed and traveling in the same direction then the corresponding solu-
tion will evolve with the faster overcoming the slower one in an inelastic way. This
means that the emerging waves will have, compared to the original, new amplitudes
and speeds.
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Fig. 9 Resolution into solitary waves. Numerical approximation at several times of (1) with p =
2,y =0.25, 8 = 1, ¢ = 0.5 and initial condition of the form (17) with r = 4

According to the computations, the evolution after the interaction resolves in
different ways. We observe that this behaviour depends on the speeds of the waves
to interact (and therefore the amplitudes) in such a way that three categories, using
the terminology speed ¢ of the second wave-speed ¢V of the first wave (with
the second overtaking the first one), can be distinguished: slow-slow, fast-slow and
fast-fast. The behaviour observed in the computations suggests a different stability
of the waves for larger perturbations, always in terms of their speed/amplitude. We
recall (see [20]) that as the speed approaches the limiting value c¢*, the oscillatory
decay of the classical solitary pulse increases and the maximum negative excursion
decreases in magnitude. The slow-slow case is illustrated in Fig. 11. They correspond
to the interaction of two classical solitary waves of (1) for p =3,y =0.25,8 =1
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Fig. 11 Overtaking collision of solitary waves (slow-slow case). Numerical approximation of (1)
with p = 3, y = 0.25, B = 1 and initial condition given by a superposition of two solitary profiles
with speeds ¢ = 0.1, ¢® = 0.3 centered at xo = 10 and —10 respectively. a Initial condition. b
Numerical solution at # = 200. ¢ Numerical solution at # = 400. d Magnification of (c)

with speeds ¢’ = 0.1, ¢® = 0.3 centered at xo = 10 and —10 respectively. The
initial maximum negative excursions are, respectively, u'!) ~ —2.2688 and u'? ~
—1.9204. The results suggest the following conclusions:

e After the collision, two solitary pulses emerge. The evolution of the amplitudes
(not displayed here) shows that by = 400 they have stabilized at approximate
new values 1> ~ —1.9224 and u}) ~ —2.2569. Therefore there is an exchange
with the taller wave (the slower one) decreasing the maximum negative excursion
in magnitude while for the smaller emerging wave this minimum slightly increases
in magnitude. According to the speed-amplitude relation observed and analyzed
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Fig. 12 Overtaking collision of solitary waves (slow-slow case). Numerical approximation of
(1) with p =3,y =0.25, 8 =1 and initial condition given by a superposition of two solitary
profiles with speeds ¢V = 0.1, ¢® = 0.3 centered at xo = —10 and 10 respectively. a Momentum
[V (U™) — Vi, (U®))) error; b Energy (|E,(U™) — Ej,(U%)]) error. All are displayed against time,
and Vj,, Ej, are given by (14), (15) respectively

in [20], this affects the speeds of the emerging waves with respect to those of the
original pulses. For instance, the speed of the taller emerging wave changes to
¢V~ 0.1007.

e By r =400, small tails are formed (see Fig. 11d) in front of and behind the new
pulses. Indeed the presence of the tails and the changes in amplitude (and speed)
after the collision imply an inelastic interaction, but with a low degree of inelas-
ticity, suggesting that collisions with slow pulses are close to elastic. This was
observed and explained in other nonintegrable models [44].

e The behaviour of the conserved quantities (14), (15) before and after the interac-
tion is displayed in Fig. 12. Observe that while the difference in the momentum
remains small and bounded in time during the simulation (a virtual preservation)
the collision leads to a slight growth with time of the energy functional. Two con-
jectures for this behaviour are concerned with the tails formed after the collision.
One would say that a longer simulation will disperse the ripples and stabilize the
energy error small and bounded. The second one would suggest that some of the
radiated tails are not dispersive and will generate some growth with time of the
energy.

The case fast-slow is illustrated in Fig. 13. Here the initial condition is a superpo-
sition of two classical solitary pulses of (1) for p = 3, y = 0.25, § = 1 with speeds
¢ =0.1,c% = 0.9 centered at xo = 10 and —10 respectively. Compared to the
slow-slow case, some differences are observed:
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Fig. 13 Overtaking collision of solitary waves (fast-slow case). Numerical approximation of (1)
with p = 3, y = 0.25, B = | and initial condition given by a superposition of two solitary profiles
with speeds ¢ = 0.1, ¢® = 0.9 centered at xo = 10 and —10 respectively. a Initial condition.
b Numerical solution at # = 200. ¢ Numerical solution at ¢ = 400. d Magnification of numerical
solution at t = 250

e After the interaction the faster wave suffers a strong reduction in amplitude (and,
consequently, a strong increment of speed) from (2 ~ —0.7169 to u!?) ~ —0.06
(by t = 400) while the maximum negative excursion for the slower pulse changes
at t = 400 from u{}) ~ —2.2790 to u'V ~ —2.4027, moving very slowly, with a
final speed of ¢V & 0.02. These data suggest a strongly inelastic collision.

e In this case, long dispersive tails, backwards and forwards, emerge and, as dis-
played in Fig. 14a, the evolution of the difference between the energy (15) of the
initial data and that of the numerical approximation shows a bounded behaviour
and a virtual preservation by the final time of simulation. The momentum (14)



394 Angel Durén

(a) (b) |

2.5 14

0.8

HE(
HE(

| "I A )f\\ e
W

0 0
0 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400

t t

Fig. 14 Overtaking collision of solitary waves. Numerical approximation of (1) with p =3,y =
0.25, 8 = 1. Energy (|E,(U") — En(UY)) error against time, with Ej, given by (15). a Fast-slow
case. b Fast-fast case

is also preserved; the corresponding figure, very similar to Fig. 12a, will not be
shown here.

Finally, the fast-fast case corresponds to Fig. 15, where the superposition of two
classical solitary pulses of (1) for p =3,y = 0.25, 8 = 1 with speeds ¢!’ = 0.8
(u') ~ —0.9718) and c® =09 (uf,f) ~ —0.7169) centered at xo = 10 and —10
respectively, is taken as initial condition and evolved up to ¢ = 400. After the inter-
action, the two emerging pulses have amplitudes uP ~ —1.0460, u(? ~ —0.5747.
The degree of inelasticity is then between the other two cases (the speed of the slower
emerging wave is reduced to ¢! = 0.76. In this case, the energy error also shows a
slight growth with time see Fig. 14b), suggesting similar conjectures to those of the
slow-slow case. By the final time, however, this error looks to stabilize.

Remark 3 In the case of head-on collisions (that is, when the profiles travel in oppo-
site directions) we notice that the speed-amplitude relation for negative speeds is,
compared to the case of positive speeds, the reverse: the taller (in magnitude) the
wave the faster it travels. Taking this into account, our experiments of head-on inter-
actions do not reveal a different behaviour from the overtaking collisions above.
(For instance, the slow-slow head-on collision is compared to a fast-slow overtaking
collision, etc.)

3.3 Generalized Solitary Waves

Our purpose now is to study computationally the stability of generalized solitary
waves. In this case the experiments will concern perturbations of initial GSWs, which
somehow cover several phenomena: stability under small and large perturbations,
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Fig. 15 Opvertaking collision of solitary waves (fast-fast case). Numerical approximation of (1)
with p = 3, y = 0.25, B = 1 and initial condition given by a superposition of two solitary profiles
with speeds ¢ = 0.8, ¢® = 0.9 centered at xo = 10 and —10 respectively. a Initial condition. b
Numerical solution at t = 200. ¢ Numerical solution at ¢ = 400. d Magnification of (c)

resolution property and also some of interactions. (Note that the existence theory
[16], forces to have in this case overtaking collisions only.) Since the experiments
concerning this last phenomenon are not conclusive at all and it is hard to distinguish
some correspondence with amplitudes or speeds of the waves (mainly because of the
interactions of the oscillating tails) then specific computations of collisions will not
be considered below, although they will be observed in some experiments concerning
the resolution property.

In some models, see for instance [10], small perturbations of GSW resolve into
radiating solitary waves (which are not waves in the classical sense, since they dis-
sipate). A main pulse is formed, with dispersive tails to the left and to the right.
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Fig. 16 Perturbations of generalized solitary waves. Numerical approximation of (1) with p =
2,y =0.002, B = —1 and initial condition is given by (17) with ¢p a GSW with speed ¢ = 1 and
r = 1.1. a Initial condition. b Numerical solution at ¢ = 200. ¢ Numerical solution at t = 400. d
Magnification of (c)

Additionally, ripples of larger magnitude appear mainly in front of the main pulse.
The magnitude of the ripples grow with the size of the perturbation.

The evolution of perturbations of generalized solitary wave solutions of (1) is
illustrated in the experiments below. In all the cases, a GSW profile ¢, with amplitude
of the main pulse of u,, & 1.4152, for p =2,y =0.002, 8 = —1 and ¢ = 1. The
perturbed initial data were taken of the form (17) with several values of r. As a check
of accuracy of the computations, the discrete momentum and energy, (14) and (15)
respectively, are preserved to at least eight digits up to the final time (¢ = 400) of
simulation. (For an interpretation of these quantities in the context of generalized
solitary waves, see e.g. [18].)
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Fig. 17 Perturbations of generalized solitary waves. Numerical approximation of (1) with p =
2,y =0.002, B = —1 and initial condition is given by (17) with ¢9 a GSW with speed ¢ = 1.
Evolution of the amplitude of the perturbed wave.ar = 1.1.br =15.¢r =2.dr =3

3.3.1 Small Perturbations

Figure 16illustrates the case r = 1.1 (the perturbed initial wave has then an amplitude
uy =~ 1.5567). The numerical approximation evolves to a new GSW form, with a
main pulse of approximate amplitude 1.5737 and a slightly slower speed of about
0.97. The oscillating tail is also slightly perturbed by an apparently small dispersive
term traveling to the left (with respect to the GSW) along the oscillations. Figure 17a
shows the evolution of the amplitude of the main pulse. When the parameter r grows
to r = 1.5, the perturbation in the oscillating tail is more intense and the oscillating
character of the GSW tail is suggested to be broken somehow, see Fig. 18. This
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Fig. 18 Perturbations of generalized solitary waves. Numerical approximation of (1) with p =
2,y =0.002, 8 = —1 and initial condition is given by (17) with ¢p a GSW with speed ¢ = 1 and
r = 1.5. a Initial condition. b Numerical solution at = 150. ¢ Numerical solution at t = 250. d
Numerical solution at t = 400

behaviour appears to betoken the formation of additional not dispersive structures,
always to the left (cf. Sect. 3.1). The amplitude of the main pulse goes in this case
from that of the perturbed initial data (approx. 2.1228) to approx. 2.0480, see the
evolution in Fig. 17b, while the speed increases to approximately 1.17. Compared to
the previous experiment, we can conclude that increasing the factor r leads, among
other properties, to an increment of the speed of the emerging GSW profile.
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Fig. 19 Perturbations of generalized solitary waves. Numerical approximation of (1) with p =
2,y =0.002, B = —1 and initial condition is given by (17) with ¢p a GSW with speed ¢ = 1 and
r = 2. a Initial condition. b Numerical solution at # = 150. ¢ Numerical solution at t = 250. d
Numerical solution at ¢ = 400

3.3.2 Larger Perturbations

As in the case of classical solitary waves, experiments with larger values of the per-
turbation parameter » show new phenomena. The formation of nonlinear structures
suggested by the last case r = 1.5 is confirmed in Fig. 19, corresponding to r = 2.
The most relevant feature is the generation of three main pulses, in a sort of resolu-
tion property for generalized solitary waves. From a perturbed GSW of amplitude
2.8304, the resulting main pulses have approximate amplitudes 2.5548 (see Fig. 17¢),
1.1345 and 1.5072. It is clear that the new generalized solitary wave profiles inter-
act, although it is not easy to observe, from the experiments performed, additional
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Fig. 20 Perturbations of generalized solitary waves. Numerical approximation of (1) with p =
2,y =0.002, 8 = —1 and initial condition is given by (17) with ¢p a GSW with speed ¢ = 1 and
r = 3. a Initial condition. b Numerical solution at # = 150. ¢ Numerical solution at r = 250. d
Numerical solution at t = 400

effects from these collisions. The tendency to this resolution property of GSWs by
using large perturbations, is finally confirmed in the last experiment, shown in Fig.
20 and corresponding to r = 3. Note that up to a time of simulation of approximately
t = 200, the approximation evolves, from a perturbed wave of approximate ampli-
tude 4.2455 of the main pulse to a structure of two main pulses with a nice train of
periodic forms with small asymmetric humps on the oscillations, see Fig. 21. For
longer times, the structure is affected by the unavoidable interactions. The amplitude
of the final main pulse (at t = 400) is approximately 3.9563.
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Fig. 21 Perturbations of generalized solitary waves. Numerical approximation of (1) with p =
2,y =0.002, B = —1 and initial condition is given by (17) with ¢9 a GSW with speed ¢ = 1 and
r = 3. a Numerical solution at # = 50. b Numerical solution at # = 150 (magnification)
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Abstract The long-established approach to study laser dynamics uses a set of dif-
ferential equations known as the laser rate equations. In this work we present an
overview of an alternative model based on a cellular automaton (CA). We also
present a panorama of different variants of the model: the original one, designed
to simulate general laser dynamics; an additional one, that was proposed to simu-
late pulsed pumped lasers; and finally a new model to simulate lasers that exhibit
antiphase dynamics, which is proposed here. Despite its simplicity, the CA model
reproduces qualitatively the phenomenology encountered in many real laser systems:
(i) the existence of a threshold value of the pumping rate R;; (ii) the exact dependence
of R, on the life times of the photons and the inversion population; (iii) the two main
laser regimes: a steady state and an oscillatory one.

1 Introduction

Laser devices are one of the paradigmatic examples of a complex system, capable of
showing many different dynamic behaviors. They are traditionally described macro-
scopically by the laser rate equations which model the time evolution of aggregate
variables like the laser beam intensity and the total population inversion. However, we
introduced a new type of model to describe laser dynamics based on cellular automata
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(CA) [9]. The CA approach describes the system as composed of many individual
component parts that interact with each other and with their local environment to
produce emergent behaviors.

In the following chapter we review a panorama of different specific CA mod-
els of particular laser systems and the results obtained by using them. We begin in
Sect. 2 by introducing laser devices, their dynamics and their traditional descrip-
tion based on rate equations. The alternative CA model of general laser dynamics
and the results that it has generated is presented in Sect.3. In Sect.4 we define a
variation of the model to simulate a special type of laser devices, pulsed pumped
lasers, and present its results. Another version is defined in Sect. 5 in order to simu-
late antiphase dynamics observed in certain laser devices, and results are presented.
Finally, conclusions are drawn in Sect. 6 and future prospects are discussed.

2 Laser Dynamics

Lasers are devices that generate or amplify coherent electromagnetic radiation based
on the stimulated emission phenomenon, at frequencies that can range from the
infra-red to the X-ray region of the spectrum [17, 20].

A laser system is made of three basic components:

1. Pump source that provides energy to the laser medium.

2. Active medium composed of any kind of particles (atoms or molecules) whose
electrons can be excited from the ground level to a higher level.

3. Optical resonator that provides feedback of the light.

The principle behind the laser action is the stimulated emission. This process is
the interaction of a photon with an excited atom. If the energy of the photon is equal
to the gap between the two energy levels of the atoms, the atom decays to the lower
energy state and a second photon is emitted. The newly produced laser photon can
induce a new stimulated emission in another atom of the laser medium, and so on. As
a result, a chain reaction can give rise to a coherent laser beam, with characteristic
properties of high monochromaticity, uniform polarization and phase (established
by the optical cavity design) and high collimation.

In a laser stimulated emission competes with the absorption process, in which
atoms in the lower energy state can be excited by absorbing the incoming photon.
Stimulated emission and absorption have the same probability and hence, in order to
have laser action, some pumping process must produce excited atoms and a popula-
tion inversion condition must be fulfilled. Figure 1 shows a schematic energy level
diagram of a typical four level laser.
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Fig.1 Four-level laser medium. Atoms in the ground state E¢ are pumped to level E3, from where
they decay by a fast non-radiative transition into level E5. The lifetime of the laser transition between
levels 3-2 is much lower than the corresponding lifetime between levels 2—1. Therefore, excited
atoms accumulate in level E5. From level E; the atoms may decay to level E and from there to
the ground laser level Eq by another fast non-radiative transition

2.1 Laser Rate Equations

The laser rate equations [17, 20] is a set of two coupled differential equations that
describes the temporal evolution of the number of photons n(¢) and the population
inversion N (t).

dt T
NG _ g NO e N n) 2)
dt Ty

The other variables in these equations are: K a gain coefficient, 7, and 7. the
life time of the atoms and photons respectively and R the pump strength. In the
stationary state both the inversion population and the number of photons are constant:

N, = % andng =1, (R — #) It is clear that to achieve lasing action n(¢) must

be a positive value and thus the pump strength R should be higher than a threshold

value R, given by:
1
R, = 3
X 3)

Another important result, obtained by a linear stability analysis of the laser rate
equations [9], is that n(¢) and N(¢) can display relaxation oscillations when the
following condition is fulfilled:
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Fig. 2 The parameter space
for the laser. Blue area: there
is no lasing. Green area:
over-damped non-oscillatory
behavior. Yellow area:
relaxation oscillations. The
black line is the stability
curve defined by Eq.4
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On the other hand, if this condition is not satisfied, a non-oscillatory over-damped
behavior is found. The different laser outputs can be located in Fig. 2 which plots the
fraction between the life times of the atoms and photons versus the pumping strength
normalized by its threshold value. In the blue region there is not lasing action (R
is lower than R;). The green region corresponds to the non-oscillatory behaviour
whereas the oscillatory state corresponds to the yellow region.

2.2 Limitations of the Laser Rate Equations

The use of the laser rate equations to model laser dynamics has limitations that reduce
its applicability, making it very difficult or even impossible to offer satisfactory results

in the following cases:

1. Lasers for which the normal numerical methods for solving them are numerically
unstable (they magnify approximation errors) [14]. Special procedures must be
used and in some cases they are very difficult to integrate [2, 3, 8, 13, 21].

2. Systems with a laser cavity that does not have a simple geometry, or with a
non-homogeneous active medium. These conditions are normally assumed in the
derivation of the laser rate equations. When they are not fulfilled, the equations

are not perfectly valid.

3. Very small size laser sources for which the use of field optics and the Maxwell
equations lead to inaccurate conclusions.
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To avoid all of those drawbacks of the laser rate equations, an alternative point
of view based on a discrete model such as a cellular automaton was proposed in [9],
that is free from these limitations.

3 The Cellular Automata Model

Cellular Automata (CA) are computational systems spatially and temporally dis-
crete characterized by local interactions [12, 15, 22]. Formally a CA is given by
a tuple {¢, ., 4, @} where ¥ is the cellular space, . is the set of states, .4
is the neighborhood of a cell and @ is the local transition function. Despite their
simplicity, CA can show complex emergent behaviors that arise from the interac-
tions among their constituents. They have been used in numerous and different fields
of science and technology: biomedicine [18], fluid dynamics [5], magnetization in
solids [7], reaction-diffusion phenomena [6], telecommunications networks [19],
biological population dynamics [1], economics [16], etc.

3.1 Cellular Space

Although the real laser systems are three dimensional we made a simplification and
the space of our computational system ¢ is a two dimensional array of N, = L x L
cells with periodic boundary conditions.

3.2 Set of States

The state of a cell i at time ¢ is a vector of 2 dimensions: s;(t) = {a, c}. Where
a € {0, 1} is the electronic state (ground or excited) and ¢ =€ {0, ..., M} is the
number of photons that are present in that cell. Associated with every electron there
is a temporal variable a € {0, ..., t,} where 7, is the life time that an electron can
stay in the excited state. Each photon has also a life time . and another time variable
¢ e{0,..., ]} is associated with them.

3.3 Neighborhood

The neighborhood specifies with which surrounding cells can each particular cell
interact locally. We use the Moore Neighborhood which is composed of the cell
itself and the eight cells around it.
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3.4 Transition Function

The transition function @ determines the state of each cellatatimer + 1:5;(t + 1) =
@ (s;(t)). The transition function is the most important ingredient of any realistic CA
model. In our case @ can be divided in four differentrules ® = &, ® &, D3 D4
each one representing a particular physical process.

e @ ;: The Pumping. Each electron in the ground state (¢ = 0) can go to the excited
state (a = 1) with a probability A.

e &,: The stimulated emission. If an electron is in the excited state (¢ = 1) and is
surrounded in its neighborhood by more than a photon, then the electron decays
to the ground state and a new photon is created.

e @;: The decaying of photons. A given photon can only be present during a time
7., after that the photon is destroyed.

e &,: The decaying of electrons. Excited electrons can only be in that state during
a time 1, after that the electron decays to the ground state. In this process no
photons are created.

And finally, to make the model more realistic, a very small number of noise
photons (71,,, ~ 10~*N,) are introduced in random positions.

3.5 Results

We have used arrays of 200 x 200 and 400 x 400 lattice cells with periodic bound-
ary conditions. The simulations of the CA model are studied varying the parameters
T,, To and A.

First of all we have to check if the model reproduces the existence of a threshold
pumping probability which is one of the main characteristics of the lasers. After that,
we identify the different kinds of behaviors exhibited by the CA in the space of the
parameters. And finally we compare the CA outputs with those predicted by the laser
rate equations.

3.5.1 Threshold Pumping

An essential feature of lasers is that there is a specific threshold pumping probability
value, that will be denoted by A,. It is necessary that the pumping probability is higher
than this threshold value to have laser action.

In order to compute A,, after a transient time 7y, the system is let to evolve during
At = 200 time steps and the average number of laser photons 7 is recorded:

Dovel, ictipran Cr(®)
At

n=

®)
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The average number of photons 7 will depend linearly with the pumping proba-
bility A, therefore for small values of A it is expected that n ~ n,,. We consider that
A, is the minimum value of the pumping for which the photon average 7 is a 25%
higher than the noise level represented by 7,,,,.

The results can be seen in Fig. 3, that shows the resulting values of the threshold
pumping probability A, obtained in this way for different values of 7, and .. The
values of A; decrease with 7, and 7. as expected from Eq. (3).

In order to investigate if the exact dependence of the threshold pumping probability
A, with 7, and 7, is the same as the dependence of the threshold pumping rate in
Eq. (3) we have plotted, in Fig.4, A, versus 7, 7. on a logarithmic scale. Here, all
the different curves of Fig. 3 collapse in a unique straight line with a slope close to
—1in Fig. 4. This is in good agreement with the behavior predicted by the laser rate
equations, i.e. Eq. (3), showing that the CA model reproduces the threshold pumping
behavior that is a characteristic of the dynamics of laser.
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Fig. 4 Log-log plot of the 10°
threshold pumping

probability A, versus t,, T..

The comparison between the 10" . 4
simulations results of the CA
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theoretical result of the laser < 1021
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3.5.2 Characterization of the Behavior Using the Entropy

The outcome of the CA simulation is given in terms of the time series of the number
of photons, n(t), and the population inversion N (z), values that are dependent on the
parameters A, 7, and t.. To characterize the whole set of possible behaviors one of
the most commonly used quantity is the entropy function defined by [11]:

S Te ta) = — _ fi log, f; 6)

i=I

where f; is the frequency of a given value of n(¢) and m is the number of non-void
bins. Values of n(t) that differ by less than 1072 are taken as the same in order to
calculate f; and so the number of bins is m = 10°.

Figure 5 shows a contour plot of the entropy obtained from the time series of n(t)

as a function of the relative pumping ( ) and the quotient between the life time of

the electrons and photons ( ) For simplicity we take the value of 7. = 10. Similar

pictures of the entropy are found for other values. For a comparison with the results
of the laser rate equations the stability curve is also plotted, where it has been taken
into account that , as shown in [9].

For values of the pumplng X less than A,—pumping below threshold—the entropy
has a very low value, the number of photons n(¢) is almost zero and there is not laser
action. An increase in A results in a growth in the number of photons and in the value
of entropy. The highest values of S are found in the darkest regions (r, > 7. and
A & 7A;) where the most complex laser behaviors are expected to be found.
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Fig. 5 Contour plot of the entropy as a function of the relative pumping (%) and % . The value

of 7. has been fixed to 10. The stability curve obtained by the laser rate equations is plotted as the
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Fig.6 Steady state behaviorin lasers. a Time series of the number of photons n(7) and the population
inversion N (t). b Plot of n(¢) versus N (). After a transient time n(¢) and N (¢) both show a constant
value. Parameters: A = 0.192, t, = 30, t. = 10

3.5.3 Spiking Behavior

It is remarkable that the CA model, besides its simplicity, is able to capture the main
results obtained by the laser rate equations which are found in lasers.

Time series of the number of photons n(¢) and the population inversion N () are
shown in Figs. 6 and 7. The first one is an example of the stationary constant regime
that is found for low values of S. While the second one corresponds to an oscillatory
behavior, known as laser spiking, found for high values of S.
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Fig. 7 Oscillatory behavior (relaxation oscillations or laser spiking). a Time series of the number
of photons n(t) and the population inversion N (¢). b Phase space of n(f) versus N(f) showing

a cyclic limit with a decreasing amplitude of the oscillation. Parameters: A = 0.0125, 7, = 180,
7. =10

4 Pulsed Pumped Laser

In the previous sections the pumping rate R takes a constant value. In this one we
describe a modification to study a particular type of laser systems, pulsed pumped
lasers, in which the pumping rate changes in time according to a pulse function R (#)
of width t, > 7,. A typical example of this kind of pumping is given by:

i
R(t):{R’”‘COS (27Ttp>‘ O0<t<t, )
0 t>t,

Unlike in the previous cases, now we also have to contemplate that a small fraction

¢ of the spontaneous emission process is radiative. Thus the laser rate equations for
pumped laser [10] reads:

d':;) ELION K N(t)n(t) — o ®)
dNG __NO | ok Nen @
dt Ta

Figure 8 shows the results of the numerical integration of the Egs. (8) and (9). The
dynamics of the laser intensity () follows the shape of R(#) whereas the population
inversion N (¢), after a transient time, grows until a constant value is achieved. Once
the pumping diminishes below a threshold value both n(#) and N(¢) go to zero

without any relaxation oscillations. This kind of regime is known as quasistationary
pumped laser.
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Fig. 8 Time series of the 1,6 T T T T T T T
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4.1 CA Rule

The CA rule @ that simulates the pulsed laser can be expressed as composed of four
different processes: @ = @ ® P, Q @3 @ P4, where:

e Rule @;—the pumping—considers a time dependent probability A(¢) for the elec-

trons to be in state 1:
t
cos (271 —> ‘
Iy

e Rule @,—the stimulated emission—and rule @;—the temporal evolution of
photons—are the same rules of the original CA model.

e Rule @4, the decaying of the electrons, is considered now to be a radiative process
with a probability 6 for the emission of a new photon.

)‘-(t) = Am

4.2 Results of Pulsed Pumped Lasers Dynamics Using CA

Figure 9 shows a typical result of the CA simulation, with the parameters A,, = 0.1
and 6 = 0.01 starting from an initial state in which every electron is in the ground
state and there is not any photon. Due to the discrete nature of the model and the
probabilistic rules, both time series of n(¢) and N (¢) have a small noise not seen in
the numerical integration.

Qualitatively there is a very good agreement between the analytic calculations
shown in Fig. 8 and the CA simulations. The discrete model is able to reproduce the
phenomenology observed in real pulsed pumped lasers: (i) The number of electrons
in the excited state reaches a maximum value, afterwards decreases and maintains an
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Fig. 9 Time series of the
population inversion (in
blue), the laser photons (in
red) and the pumping rate (in
black) in arbitrary units
obtained by the CA model.
The set of parameters used
An =0.1,6 = 0.01. Lattice
size of 400 x 400 cells
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almost constant value that will decrease towards zero when the pumping R () is low
enough; (ii) The evolution of the number of photons, 7n(¢), shows a direct dependence
on the pumping R(¢), as it was found by the laser rate equations.

S Antiphase Dynamics in Lasers

5.1 Laser Rate Equations for the Antiphase Dynamics

in Lasers

Antiphase phenomena in lasers is an interesting subject of nonlinear dynamics.
Experimentally it has been observed in many solid-state lasers, for example, in a
class B Nd:YAG laser [4]. In this type of lasers it has been shown that the polariza-
tion of the beam plays an important role and thus the theoretical framework used to
study this antiphase dynamics considers the laser as composed of two subsystems
(v and h). Each subsystem is associated with a different polarization state which
are coupled by their intensities and population inversions. Phenomenologically the
antiphase dynamics in laser can be described by the following set of equations:

dn,

dt

dl/lh

dt

dN,
dt

dN,,
dt

k(Ny+ B+ Np) -y — Z— (10)
K(Nh-i-ﬂ-Nv)'nh—Z—f (1)
YIR— (1 +n,+ B-ny) - Nyl (12)
= y[R— (1L +ny+B-n) - Nyl (13)
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where n, (n,) and N, (N},) are the intensity and the population inversion correspond-
ing to each state of polarization, % and % are the lifetimes corresponding to the
photons and the population inversion, R is the pumping power and 0 < 8 < 1 is the
parameter that characterizes the coupling between both populations.

The main result obtained from the set of the laser equations is the existence of
relaxation oscillations in the total intensity (n, + n;) and in the total population
inversion (N, 4+ Nj), both with the same rapid frequency fr which is given by:

1
fr= E*/VK[R“ +8) —1] (14)

whereas the difference of the intensities (n, — ny) and the difference of population
inversion (N, — N;) between the two polarization states exhibit also relaxation oscil-
lations but with a lower frequency f;. The relationship between both frequencies
depends only on the coupling parameter $ and it is given by:

1
o= (%) i (15)

5.2 CA Model for the Antiphase Dynamics

For the case of antiphase dynamics in laser we consider a CA model in which there
are two different kinds of photons and atoms (v and /) in each lattice node. Also it is
considered that the evolution rule @ is a totalistic rule. For this purpose the following
variables are defined:

'o= Y c@+Bw (16)

neighbours

Q=Y a()+pa)1) (17)

neighbours

I’ (t) represents the photonic state surrounding cell “1” at time ¢ and £2}(¢) stands
for the atomic state. 0 < 8 < 1 is the coupling parameter between both polarization
states. For the other polarization state (/) there are two other similar functions Fih (1)
and Q! (1).

As in the previous sections the CA transition function @ can be split in four rules
D=0, R P, QR P; ® D4, each one representing a different physical process.
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@ |: Pumping Process.

In the original CA model if an atom is in the ground state (a; (t) = 0) it will be
pumped to the activated state (a; (t 4+ 1) = 1) with a probability p. But now it will
happen if the condition £2/(t) > .th () is also fulfilled. For the other polarization
state (al'(t 4+ 1) = 1) with probability p if 2/'(r) > 2} (z).

@, . Stimulated Emission:

For each polarization state a photon will be created if there is an excited atom and
the photonic state surrounded it is higher than a threshold value § = 2. The polariza-
tion of the photon will be v if 'Y (¢) > Fih (1), otherwise a photon with polarization
h will be emitted. While the atom will go to the ground state.

@5 and @ 4: The decaying of photons and excited atoms:
For both subsystems photons are destroyed after a time 7. since they were created
and the excited atoms can only remain in that state during a time t,,.

5.3 Simulations of Antiphase Dynamics with the CA Model

A lattice size of N =200 x 200 cells has been used. The simulations begin with
every cells in the null state but a small number of noise photons (0.001%) are intro-
duced at random positions, the CA evolves for 6000 time steps. We found that for low
pumping parameters (p < 0.001) no laser action is observed. Relaxation oscillations
are observed for p > 0.01.

Figure 10 shows the time series of the number of photons of each polarization (n,
and nj) and the inversion population (N, and N,) for a pumping of p = 0.02 and a
coupling parameter 8 = 0.6. We have used the parameters t. = 10, 7, = 2500. It can
be observed that after a transient time n,, oscillates in antiphase with nj. Antiphase
dynamics is also seen between N, and Nj,.

Figure 10 also shows the total intensity (n, + ny), the total inversion population
(N, + Nj) and the differences (n, — nj) and (N, — Nj). The total intensity shows
rapid oscillations with a frequency fr whereas the difference (n, — n;,) oscillates
with a low frequency f;. Those two frequencies are clearly seen in Fig. 11 which
shows the power spectrum of the time series corresponding to Fig. 10.

To study the dependence of fg and f; onthe coupling parameter S we focus on the
low frequency f; . Figure 12 shows the power spectrum of the difference (n, — n;)
in the low frequencies range. Our CA model reproduces qualitatively the fact that the
low frequency of the oscillation decreases when the coupling parameter 8 increases

(fr o< 17587,
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Fig. 10 To model antiphase dynamics in lasers with a CA two laser subsystems are considered.
Time series of the intensity of both populations, the total intensity and the difference of intensities.
The pumping probability is p = 0.02 and the coupling parameter 8 = 0.6
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Fig. 11 Power Spectrum of
the time series of the total
number of photons n, + ny
(red) and the difference

n, — ny, (blue) for a
simulation of the CA. The
coupling parameter is

B = 0.6 and the pumping
probability p = 0.02. The
CA simulations show that
n, + ny, oscillates with a
frequency fg which is
higher than f; that is the
corresponding to n, — ny,
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6 Conclusions and Future Work

In this work we have presented a panorama of variants of a discrete model of a laser
system: (i) a CA model of general laser dynamics; (ii) a modification to study pulsed
pumped lasers; and (iii) another version to simulate antiphase dynamics observed in
certain laser devices.

This type of models does not describe the system from a macroscopic point of
view, like the standard modeling approach based on coupled differential equations,
but instead it describes the elementary components of the system and their local
interactions, specified by simple rules. As it is a characteristic of complex systems,
the macroscopic behavior displayed by the system arises from the interaction of the
elementary components as an emergent and cooperative phenomena.

Although simplified, the model is able to capture the main features of laser phe-
nomenology, as shown by the simulation results: existence of a threshold pumping
rate which depends inversely on the decaying life time of the atoms and the photons;
constant or oscillatory behavior with relaxation oscillations (spiking), depending on
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these life times and on the pumping rate; reproduction of the qualitative popula-
tion dynamics behavior of pulsed pumped lasers; and reproduction of the antiphase
dynamics shown by some class B Nd: YAG lasers. It can also be used to study spatio-
temporal pattern formation. The main drawback of the CA model approach is that
it is a fully particle-like description. Therefore, it would be interesting to introduce
wave-like properties in the CA model as a future work.

The CA modeling approach can be a good complement to the classical analysis
that relies on the laser rate equations for situations in which it may be difficult or even
impossible to obtain satisfactory results: (i) when there are stiff differential equations
and the normal numerical methods for solving them are numerically unstable, so that
they magnify approximation errors [2, 8, 14, 21]; (ii) when the equations are not
perfectly valid if the assumptions that the laser cavity has a simple geometry and that
the active medium is homogeneous are not fulfilled; (iii) for very small-size laser
devices for which the use of Maxwell’s equations and field optics, which involve
many approximations, produce results that are not very accurate.
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