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Preface

Adiabatic theory of both classical and quantum systems plays an important role in
addressing various problems with multi-time-scale characteristics, ranging from
atomic and molecular processes to the evolution of the universe. In the classical
case, the well-known adiabatic theorem states, in terms of action-angle variables,
that the action is the adiabatic invariant and that if the Hamiltonian is taken around a
given cycle in parameter space, then the angle variable conjugate to the action
acquires a purely geometrical quantity, which is termed the Hannay angle. The
adiabatic theorem of quantum systems, however, becomes much more intricate due
to the involvement of the complex-valued wave function/probability amplitude.

A complete theory for the adiabatic evolution of quantum systems rests on three
pillars. First, Born and Fock proved the quantum adiabatic theorem shortly after the
discovery of the Schrödinger equation. The adiabatic theorem states that the
probability on each instantaneous (nondegenerate) eigenstate remains constant
when the external condition changes slowly in time. Second, in addition to the
typical dynamical phase, given by the time integral of the eigenenergy, the phase of
an evolving eigenstate has a geometric part, called the Berry phase, that depends
only on the geometric path in the parameter space. Third, this geometric phase can
be interpreted as the flux of a virtual magnetic monopole field through the surface
enclosed by the closed circuit in the parameter space. The adiabatic theory has
played a crucial role in the preparation and control of quantum states. The Berry
phase and related geometric phases have important applications in modern physics,
such as in high-precision quantum measurement, quantum information processing,
quantum computing, and condensed-matter physics.

In this book, we generalize the adiabatic theory to the nonlinear evolution of
quantum systems. In physics, the nonlinearity has been introduced as possible
modifications of quantum mechanics on the fundamental level. However, our
motivation derives mainly from the practical applications of adiabatic control of
Bose-Einstein condensates (BECs), which can often be accurately described by the
nonlinear Schrödinger equation. Here, the nonlinearity stems from a mean-field
treatment of the interactions between coherent atoms. The appearance of nonlin-
earity leads not only to the lack of unitarity but also to the absence of the
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superposition principle. We overcome these challenges by combining ideas from
classical adiabatic dynamics and quantum geometric phases. The developed theory
of nonlinear quantum adiabatic evolution is expected to be useful in guiding adi-
abatic manipulation of the condensate atoms and other nonlinear systems.

The book is organized as follows. In Chap. 1, we introduce the basic concepts of
adiabatic theory, such as the adiabatic invariant, the Hannay angle, the adiabatic
theorem, the Berry phase, and the virtual magnetic monopole. Some typical
examples of adiabatic evolution are presented. In Chap. 2, we discuss the physical
origins of the nonlinearity in quantum many-body systems. The nonlinear adiabatic
theory, including the adiabatic evolution of the quantum states and the nonlinear
geometric phase, is introduced. In Chap. 3, we discuss the commutability between
the adiabatic limit and the semiclassical limit. We show the relationship between
the quantum Berry phase, the classical Hannay angle, and the mean-field geometric
phase of an interacting bosonic many-body system. In Chap. 4, we introduce exotic
virtual magnetic monopoles and fields such as the disk-shaped virtual magnetic
field, fractional virtual magnetic monopole, and virtual magnetic monopole chain.
In Chap. 5, we describe selected important applications of nonlinear adiabatic
evolution in the geometric phase, in tunneling dynamics, and in quantum inter-
ference. We anticipate that readers will find this book useful in providing basic
concepts and important applications on nonlinear adiabatic evolution of quantum
systems.

I am deeply indebted to my beloved family for their continued support. I am also
grateful to my students Li-Da Zhang, Fu-Quan Dou, Hui Cao, Qiang Wang, and
Wen-Yuan Wang for reading parts of the manuscript and contributing useful
remarks. In particular, I thank Profs. Q. Niu, B. Wu, B. B. Hu, and B. W. Li for
long-term fruitful collaborations. Some of our previous collaborating works are
included in this book.

Beijing, China Jie Liu
January 2018
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Chapter 1
Introduction to Adiabatic Evolution

Abstract In this chapter, we introduce the basic concepts of adiabatic theory in both
classical and quantum systems. We discuss classical adiabatic motion, introduce the
concepts of the classical adiabatic invariant and the Hannay angle, and give three
examples: the one-dimensional harmonic oscillator, the celestial two-body problem,
and the Foucault pendulum. We describe quantum adiabatic evolution, present the
quantum adiabatic theorem, and describe the adiabatic geometric phase (specifically,
the Berry phase) and the virtual magnetic monopole. Five examples of quantum
adiabatic evolution are shown. We also discuss classical-quantum correspondence.

1.1 Classical Adiabatic Motion

1.1.1 Classical Adiabatic Invariant

We introduce the adiabatic invariant, which is the conserved quantity in adiabatic
evolution. For convenience, we consider one-dimensional finite motion of a mechan-
ical system and use the parameter R to describe the properties of the system or of
the external field in which it is placed [1]. We assume that the parameter R(t) slowly
varies with time because of the external field influence. In other words, the change
of the parameter R is very small during one motion period of the system T , i.e.,

dR

dt
� 1. (1.1)

Clearly, if the parameter R is time independent, then the energy of the system
E is conserved, and the system executes periodic motion. If the parameter R is
time dependent, then the energy of the system is not conserved. However, because
the parameter changes very slowly with time, the rate of the energy change dE /dt
should also be very small. Averaging this rate of change over the motion period and
eliminating the fast oscillation part, one can obtain the stable value of dE /dt denoting
the slow change of the system energy; this value is proportional to the rate of the
parameter dR/dt . In fact, the slowly varying quantity E is a function of the parameter

© Springer Nature Singapore Pte Ltd. 2018
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2 1 Introduction to Adiabatic Evolution

R, and the dependence of E on R can be expressed in terms of their combination
equaling a constant quantity. The quantity that remains invariant during the evolution
of a system with a slowly varying parameter is called the “adiabatic invariant”.

TheHamiltonian of the system is H(p, q; R) (here, p and q are a pair of canonical
variables corresponding to the generalized momentum and the generalized coordi-
nate, respectively), and the derivative of energy versus time is

dE

dt
= ∂H

∂R

dR

dt
. (1.2)

The right-hand side of the equation depends not only on the slow variable R but
also on the fast variables p and q. To find the stable variation rule for the system
energy, one must apply averaging to (1.2) over the entire motion period T . The
parameter R changes very slowly; therefore, the change of dR/dt is also slow. As a
result, one can bring dR/dt out of the averaging operation, i.e.,

dE

dt
= ∂H

∂R

dR

dt
. (1.3)

Note that when one applies averaging to the function ∂H/∂R, one considers
only p and q as variables. In other words, this averaging operation is used when the
parameter R remains constant. In explicit form, one has

∂H

∂R
= 1

T

∫ T

0

∂H

∂R
dt. (1.4)

From the Hamilton equation dq/dt = ∂H/∂ p, one has

dt = dq

∂H/∂ p
. (1.5)

Applying this equation, the integration (1.4) with respect to the time t can be
replaced with integration with respect to the generalized coordinate q. Furthermore,
one can rewrite the motion period T in the following integral form:

T =
∫ T

0
dt =

∮
dq

∂H/∂ p
, (1.6)

where
∮
denotes the integral over the whole region of the change of the generalized

coordinate during one period of motion. (For rotation, the coordinate q becomes the
rotation angle φ, and the integral is over a cycle, i.e., from 0 to 2π). Based on this
transformation, the Eq. (1.3) can be rewritten as

dE

dt
= dR

dt

∮ ∂H/∂R
∂H/∂ p dq∮

1
∂H/∂ p dq

. (1.7)
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Note that the integral in this equation is applied along the trajectory of motion for
a fixed parameter R. Clearly, when the motion follows such a trajectory, the Hamilto-
nian retains a constant E . As a result, the generalized momentum p can be expressed
as a given function of the generalized coordinate q and the independent parameters
E and R, i.e., p(q; E, R). Then, by computing the derivative of H(p, q; R) = E
versus the parameter R, one has

∂H

∂R
+ ∂H

∂ p

∂ p

∂R
= dE

dR
= 0, (1.8)

i.e.,
∂H/∂R

∂H/∂ p
= − ∂ p

∂R
. (1.9)

Substituting this equation back into the integral in the numerator on the right-hand
side of Eq. (1.7) and expressing the core of the denominator as ∂ p(q; E, R)/∂E , one
obtains

dE

dt
= −dR

dt

∮ ∂ p
∂R dq∮ ∂ p
∂E dq

, (1.10)

i.e., ∮ (
∂ p

∂E

dE

dt
+ ∂ p

∂R

dR

dt

)
dq = 0. (1.11)

One introduces the integral along the motion trajectory for the given parameters
E and R:

I = 1

2π

∮
pdq. (1.12)

Equation (1.11) can be expressed as

d I

dt
= 0. (1.13)

This result implies that if the parameter R slowly varies with time, then I remains
constant, i.e., I is the adiabatic invariant of the system.

We now employ the concept of phase space to show the geometric meaning
of the integral in Eq. (1.12). For a system with one degree of freedom, the phase
space simplifies to the phase plane spanned by the generalized coordinate p and
the generalized momentum q, and the phase trajectory for the periodic motion is a
closed orbit in this phase plane. The integral (1.12) along this orbit gives the area
enclosed by the closed trajectory. Thus, the adiabatic invariant can be expressed in
the following integral form:
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I = 1

2π

∫ ∫
dpdq. (1.14)

We now discuss a near-integrable Hamiltonian for small perturbations and for
slow (or “adiabatic”) perturbations [2]. For small perturbations, the Hamiltonian has
the general form

H = H0(I, t) + εH1(I,θ, t) + · · · , (1.15)

where H0 describes completely integrable motion, I and θ are the N -dimensional
actions and angles, and ε is a small parameter characterizing the magnitude of the
nonintegrable part of H . For small perturbations, the derivatives of H0 and H1 are
assumed to be of the same order as H0 and H1 themselves, i.e.,

∣∣∣∣∂H0

∂t

∣∣∣∣ ∼ |H0|,
∣∣∣∣∂H1

∂t

∣∣∣∣ ∼ |H1|, etc. (1.16)

For slow perturbations, the terms produced by differentiation are assumed to be
smaller by order ε than the terms from which they are derived, e.g., for slow time
variation, ∣∣∣∣∂H0

∂t

∣∣∣∣ ∼ ε|H0|, etc. (1.17)

To keep track of this ordering, one can often insert the small parameter ε and write

H0 = H0(εt) (1.18)

such that
∂H0

∂t
= εH ′

0, (1.19)

where the prime notation denotes differentiationwith respect to the argument τ = εt .
In this section, we are interested in systems for which the variation in all but one

of the degrees of freedom, as well as in time, is slow [2]. Accordingly, one can write
the Hamiltonian in the form

H = H0(I, εη, εt) + εH1(I, θ, εη, εt) + · · · , (1.20)

where I and θ are the action-angle variables for the unperturbed (ε = 0) motion in
the single fast degree of freedom and η = ( p, q) are the “slow” canonical variables,
not necessarily in action-angle form, for the remaining degrees of freedom. Since
the system is effectively one-dimensional when ε = 0, this system is integrable, and
I and θ can always be found. The small parameter ε in (1.20) “automatically” keeps
track of the ordering when one differentiates H to construct the perturbation series;
this parameter can be set to unity at the end of the calculation.

One can construct to first order the classical adiabatic invariant for theHamiltonian
(1.20). In zero order, the invariant is the action I associated with the fast degree of
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freedom. To calculate the effect of the perturbation εH1, one can find a transformation
from (I, θ,η) to ( Ī , θ̄, η̄) such that the new Hamiltonian

H̄ = H̄0 + εH̄1 + · · · (1.21)

is independent of the “fast” phase variable θ̄. Introducing the near-identity generating
function

S = Īθ + p̄ · q + εS1( Ī , θ, p̄, q, t) + · · · , (1.22)

one has, to first order, the transformations

I = Ī + ε
∂S1
∂θ̄

, (1.23)

θ = θ̄ − ε
∂S1
∂ Ī

, (1.24)

p = p̄ + ε
∂S1
∂q̄

, (1.25)

q = q̄ − ε
∂S1
∂ p̄

. (1.26)

Inserting these into H0 and expanding to first order in ε, one has

H0(I, εη, εt) = H0( Ī , εη̄, εt) + εω
∂S1
∂θ̄

, (1.27)

where ω = ∂H0/∂ Ī is the fast frequency. Note that the terms in

− ∂H0

∂q̄
· ∂S1

∂ p̄
,

∂H0

∂ p̄
· ∂S1

∂q̄
(1.28)

are second order in ε and can be neglected. The canonical transformation equation
is

H̄( Ī , θ̄, εη̄, εt) = H(I, θ, εη, εt) + ε
∂S( Ī , θ, ε p̄, εq, εt)

∂(εt)
. (1.29)

Expanding H̄ , H , and S using the above transformations and equating like powers
of ε, to zero order, one obtains

H̄0( Ī , εη̄, εt) = H0( Ī , εη̄, εt), (1.30)

and to first order, one has

H̄1( Ī , θ̄, εη̄, εt) = ω
∂S1
∂θ̄

+ H1( Ī , θ̄, εη̄, εt), (1.31)
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where S1 = S1( Ī , θ̄, εη̄, εt). Again, the term ∂S1/∂t in (1.29) is second order and
has been omitted from (1.31).

To make H̄1 independent of θ̄, one can choose S1 to eliminate the oscillating part
(in θ̄) of H1. Holding the slow angle variables fixed, one can define the average over
θ̄ alone as

〈H̄1〉θ̄ = 1

2π

∫ 2π

0
H1d θ̄ (1.32)

and the oscillating part over θ̄ as

{H1}θ̄ = H1 − 〈H̄1〉θ̄. (1.33)

Separating (1.31) into its average and oscillating parts yields, for H̄ to first order,

H̄( Ī , εη̄, εt) = H0 + ε〈H̄1〉θ̄ (1.34)

and, for S1,

ω
∂S1
∂θ̄

= −{H1}θ̄, (1.35)

which is easily integrated. To zero order, the adiabatic invariant is I . To first order,
the new invariant is Ī , which is given in terms of the old variables as

Ī (I, εη, εt) = I − ε
∂S1
∂θ

. (1.36)

Substituting (1.35) into (1.36) andwriting θ for the dummy variable θ̄, one obtains

Ī = I + ε{H1}θ
ω

. (1.37)

In fact, any function of Ī can be chosen as the adiabatic invariant.

1.1.2 Adiabatic Geometric Angle—Hannay Angle

In the phase space (p, q), the particle races around a track (i.e., a contour of the
instantaneous Hamiltonian H(p, q; t)) of fixed area 2π I (with I being the action
variable) but slowly changing shape. Given the rule of conservation of action I for
the contour that the particle lies on, it seems natural to explore the development of
the complementary variable, the angle variable, which describes the location of the
particle on the contour; that is, one might ask how many circuits the particle has
made [3].
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When the Hamiltonian H(p, q; t) is “frozen”, the instantaneous frequency of
motion of the particle that can be obtained can be expressed by the derivative
(2π)−1dH/d I . Thus, it is tempting to write the total angle traversed over time T as
simply ∫ T

0

dH(p(t), q(t); t)
d I

dt =
∫ T

0

dH(I ; t)
d I

dt, (1.38)

where, in the last form, H is considered a function H(I ; t) of the area of its con-
tours and the adiabatic invariant and I (t) = I (constant) is invoked. Since the angle
variable can be changed by virtue of the changing (I, θ) coordinate system in phase
space, this framework (1.38) is obviously incomplete. To reveal the true structure
of the situation, it is necessary to interpret the time dependence of the Hamiltonian
function (and the (I, θ) coordinate system) as being produced by carrying them along
a path R(t) in a parameter space R ≡ (R1, R2, . . .) of two or more dimensions in
which the functions H(p, q; R), I (p, q; R), and θ(p, q; R) are uniquely defined.
The point of making R more than one dimensional is that one wishes to consider
closed evolutions R(T ) = R(0) in which R(t) forms a loop. With just one parame-
ter (the length of the shortening pendulum, for instance), the only way to restore the
original length is to reverse the shortening, in which case the holonomy effect is not
realized.

The exact rates of change of a particle’s action and angle in this framework are
as follows:

İ = −∂H

∂θ
+ Ṙ · ∂ I

∂R
= Ṙ · ∂ I

∂R
, (1.39)

θ̇ = ∂H

∂ I
+ Ṙ · ∂θ

∂R
, (1.40)

where the overdot denotes the time derivative. The last terms in both (1.39) and
(1.40) are the rates of change of action and angle coordinates at a fixed point (p, q)

in phase space. These equations for nonadiabatic evolution of the Hamiltonian lead
to changes in both I and θ that depend on the trajectory selected, i.e., on the initial
values of both I and θ. For adiabatic evolution, the equations become

İ = 0 + Ṙ ·
〈

∂ I

∂R

〉
= 0, (1.41)

θ̇ = ∂H

∂ I
+ Ṙ ·

〈
∂θ

∂R

〉
, (1.42)

where the average brackets denote the average around the Hamiltonian contour on
which the particle lies. For any function f (p, q), one can define a function 〈 f 〉 of
action I by

〈 f 〉 = 1

2π

∮
contour through(p,q)

f dθ ≡ 1

2π

∫
f (p, q)δ(I (p, q) − I )dpdq. (1.43)
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The average in (1.41) vanishes identically by Liouville’s theorem and yields İ = 0
as required. There is no reason, however, why the average in (1.42) should vanish;
therefore, the integration of this equation gives the dynamical angle change antici-
pated in (1.38) plus the additional angular change (namely,Δθ) that we are interested
in:

Δθ =
∫

Ṙ ·
〈
∂θ(p(t), q(t); R(t))

∂R

〉
dt =

∫ 〈
∂θ

∂R

〉
· dR. (1.44)

In the last expression, time t has been completely eliminated because by definition
(1.43), the average is a function of a conserved parameter (i.e., the initial action I ).
A different field 〈∂θ/∂R〉 exists for each I , on which Δθ therefore depends. This
parameter does not depend on the initial angle.

For fixed I , the field 〈∂θ/∂R〉 depends on the angle variable coordination
θ(p, q; R), which is to some extent arbitrary. Unlike the lines of constant action
I (p, q; R), which, for fixed R, are fully determined as the contours of the Hamilto-
nian H(p, q; R), the lines of constant angle are specified only after one of them (say
θ = 0) is chosen. This one, and thus all the others, can be arbitrarily twisted into a
spiral, for example. Thus, the angle variable change Δθ inevitably depends on the
angle coordinates chosen for the initial and final parameters R(0) and R(T ). Only if
these coordinate systems are identical, which in turn requires R(0) = R(T ) (barring
especially favorable circumstances), can one expect to make coordinate-independent
statements about Δθ. The evolutions must be closed loops.

1.1.3 Example I: One-Dimensional Harmonic Oscillator

As the first example, we introduce the one-dimensional harmonic oscillator. To show
the general method, we calculate to first order the adiabatic invariant for the slowly
varying linear oscillator [2], whose Hamiltonian is

Hho = 1

2
g(τ )p2 + 1

2
f (τ )q2, (1.45)

where the small parameter ε has been inserted using τ = εt to order the perturbation
series. To prepare the system, one can transform to the action-angle variables I and
θ of H0 = Hho(ε = 0). In treating the harmonic oscillator, we adopt the generating
function F(q, θ, τ ) given by

F = 1

2
Rq2 cot θ, (1.46)

where R(τ ) = √
f/g. Using p = ∂F/∂q, I = −∂F/∂θ, and H(I, θ, τ ) = Hho

(p, q, τ ) + ∂F(q, θ, τ )/∂t , one obtains q = √
2I/R sin θ and p = √

2I/R cos θ.
As a result, the transformed Hamiltonian is
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H = ω0 I + ε
1

2

R′

R
I sin 2θ, (1.47)

where ω0(τ ) = √
f g. The prime notation denotes differentiation with respect to τ .

To zero order, the adiabatic invariant is just

I = H0

ω0
= const.. (1.48)

This result implies that the number of quanta �ω0 is conserved as the frequency of
oscillation slowly varies. To find the first-order invariant, we apply (1.37) to (1.47)
and obtain

Ī = I (1 + εP sin 2θ) = const., (1.49)

with P(εt) = R′/(2ω0R). This expression shows that to first order, I contains a small
component oscillating at twice the frequency of the fast variable. One can verify the
constancy of the quantity Ī by taking the time derivative of (1.49),

˙̄I = İ + εṖ I sin 2θ + 2εP I cos 2θ + O(ε2), (1.50)

where the overdot denotes d/dt . If one applies Hamilton’s equations to (1.47), the
first and third terms on the right cancel, leaving to first order in ε

˙̄I = εṖ I sin 2θ. (1.51)

When the standard slow perturbation ordering Ṗ ∼ εP is used, ˙̄I is of order ε2.
Therefore, Ī is a first-order invariant.

1.1.4 Example II: Celestial Two-Body Problem

The two-body problem is a special case of the motion of a particle in a central force
field. Because of the conservation of angular momentum, the motion occurs on an
invariant plane [4]. In the plane polar coordinates, the Hamiltonian for the motion of
the particle is

H = 1

2m

(
p2r + p2θ

r2

)
+U (r), (1.52)

where m is the mass of the particle, the momentum components are pr = mṙ and
pθ = mr2θ̇ (with the overdot denoting the time derivative), andU (r) is the potential
function for the central force field. The Hamilton-Jacobi equation reads
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1

2m

[(
∂Sr
∂r

)2

+ 1

r2

(
∂Sθ

∂θ

)2
]

+U (r) = E, (1.53)

where S(r, θ) = Sr (r) + Sθ(θ) is a variable-separated generating function. One can
rewrite the above Hamilton-Jacobi equation as follows:

(
∂Sθ

∂θ

)2

= 2mr2
[
E − 1

2m

(
∂Sr
∂r

)2

−U (r)

]
. (1.54)

The arbitrary choices of both θ and r require

(
∂Sr
∂r

)2

= 2m [E −U (r)] − l2

r2
, (1.55)

(
∂Sθ

∂θ

)2

= l2. (1.56)

Applying the definitions of action-angle variables, i.e.,

Ir = 1

2π

∮
prdr =

∮
∂Sr
∂r

dr, (1.57)

Iθ = 1

2π

∮
pθdθ =

∮
∂Sθ

∂θ
dθ, (1.58)

one has

Ir = 1

2π

∫ 2π

0

[
2m(E −U (r)) − l2

r2

]1/2

dr, (1.59)

Iθ = 1

2π

∫ 2π

0
ldθ = l. (1.60)

If the central force field takes the formU (r) = −μ/r with a constant quantity μ,
then the action variable becomes

Ir = −l + μ

2

√
2m

−E
. (1.61)

The corresponding Hamiltonian is given by

H = E = − mμ2

2(Ir + Iθ)2
. (1.62)

The frequency of particle motion in both the r and θ directions is
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ω = ∂H

∂ Ir
= ∂H

∂ Iθ
= mμ2

(Ir + Iθ)3
. (1.63)

One finds that the motion of the particle in an inverse-square force field is simply
due to the identical motion frequency in two directions. Thus, we can view the two-
body motion with a Newton inverse-square gravity as a reduced motion. Substituting
the familiar two-body elliptic motion energy E ′ = E/m = −μ/(2a) (with a being
the semimajor axis) back into the equation for the action variable Ir , one has

Ir + Iθ = √
μa = L , (1.64)

which implies conservation of the angular momentum L . Combining this variable
with the frequency equation and Kepler’s third law n2a3 = μ, one has

ω = n = 2π

T
, (1.65)

where T is the period of the elliptic motion; thus, n is the angular speed. For typical
celestial motions, T is often large, and thus, ω is very small. This fact implies that
the motions are nearly adiabatic.

1.1.5 Example III: Foucault Pendulum

The Foucault pendulum provides a simple and effective example of the anholon-
omy present in an adiabatically cycled system because the parameter space used to
describe its motion is the physical space in which it moves. The Foucault pendulum
is commonly considered from a rectangular coordinate system (x, y, z) fixed to the
rotating Earth with its origin at the pendulum bob in its rest position and its z-axis
pointing outward from the Earth along the axis or rest orientation of the pendu-
lum. The x- and y-axes point south and east, respectively. The pendulum is treated
in the small-oscillation limit, and the fictitious centrifugal force proportional to the
square of the angular frequency of the Earth (and hence very small) can be neglected.
The Foucault pendulum is then characterized as a simple two-dimensional harmonic
pendulum with an added Coriolis force. The Lagrangian for this system reads [5]

L = m

2
(ẋ2 + ẏ2) − mΩ2

2
(x2 + y2) + mωz(x ẏ − yẋ), (1.66)

where the overdot denotes the time derivative, m is the mass of the pendulum bob,
Ω = √

g/ l is the angular frequency of the unperturbed pendulum, with g being the
acceleration of gravity and l being the length of the pendulum, and ωz = ω cos θ is
the z-component of the angular frequency of the Earth (i.e., ω) at colatitude θ. Since
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the Earth’s rotation is an adiabatic perturbation of the pendulum, the frequencies
obey ωz � Ω .

The symmetry about the pendulum axis allows a transformation to polar coordi-
nates as follows: x = ρ cosφ and y = ρ sin φ. The Lagrangian in polar coordinates
becomes

L = m

2
(ρ̇2 + ρ2φ̇2) − mΩ2

2
ρ2 + mωzρ

2φ̇. (1.67)

The generalized momenta and the desired Hamiltonian in polar coordinates are

pρ = ∂L

∂ρ̇
= mρ̇, pφ = ∂L

∂φ̇
= mρ2(φ̇ + ωz), (1.68)

H = p2ρ
2m

+ p2φ
2mρ2

− ωz pφ + m

2
(Ω2 + ω2

z )ρ
2. (1.69)

Because φ is cyclic in the Hamiltonian and pφ is a constant of the motion, the
Hamilton-Jacobi equation is separable, and action-angle variable analysis is possible.
In fact, one can write the Hamiltonian in terms of the action variables defined by

Iφ = 1

2π

∮
pφdφ = pφ, Iρ = 1

2π

∮
pρdρ. (1.70)

The desired form of the Hamiltonian in terms of the action variables determined
by the energy E is

H = E = (2Iρ + |Iφ|)
√

Ω2 + ω2
z − Iφωz . (1.71)

Since the angle variables are always cyclic in an action-angle Hamiltonian, the
Hamilton equations for the action variables show these variables to be constants
of the motion. The fundamental frequencies of the system are determined by the
Hamilton equations for the angle variables.

For clockwise motion, the angular momentum of the bob is negative; thus, one
has ∂|Iφ|/∂ Iφ = −1. The Hamilton equation for φ is

φ̇ = ∂H

∂ Iφ
= −

√
Ω2 + ω2

z − ωz = −ω1, (1.72)

yielding upon integration
φ = −ω1(t − t1). (1.73)

For counter-clockwise motion, the angular momentum of the bob is positive; thus,
∂|Iφ|/∂ Iφ = 1. The Hamilton equation for φ is
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φ̇ = ∂H

∂ Iφ
=

√
Ω2 + ω2

z − ωz = ω2, (1.74)

yielding upon integration
φ = ω2(t − t2). (1.75)

Once the fundamental frequencies of the system have been calculated, one can
examine the effect of a cyclic adiabatic change on the angular precession of the bob
by computing the Hannay angle. The Hannay angle for both normal modes can be
found by choosing the integration constants t1 and t2 such that φ = 2π at t = 0 and
by then substituting the time for one revolution of the Earth (the cycle of the adiabatic
perturbation) t = 2π/ω to obtain

φ = ±2π

ω

√
Ω2 + ω2 cos2 θ + 2π(1 − cos θ). (1.76)

The first term is the dynamic phase of either of the modes, which is interpretable
as the angle swept out in the adiabatic limit by a simple conical pendulum in one
day if it were fixed to a nonrotating frame. The second term is the geometric phase
(or the Hannay angle), which is dependent only on the colatitude of the bob and is
independent of both the initial conditions imposed on the bob and the duration of the
adiabatic perturbation. The Hannay angle is the solid angle of the cone of the half
angle θ swept out by the pendulum axis during one day.

1.2 Quantum Adiabatic Evolution

1.2.1 Quantum Adiabatic Theorem

Aneutron or an atommoving in an inhomogeneous field is acted on by a time-varying
field in the reference system of the particle. If the variation in the field is sufficiently
slow, according to the adiabatic theorem, then the particle remains in the same state
with respect to the instantaneous value of the field [6]. The adiabatic theorem is an
important concept in quantum mechanics. Its original form, as formulated by Born
and Fock, was stated as follows [7]:

“A physical system remains in its instantaneous eigenstate if a given perturbation
is acting on it slowly enough and if there is a gap between the eigenvalue and the
rest of the Hamiltonian’s spectrum.”

In simpler terms, a quantum mechanical system subjected to gradually changing
external conditions adapts its functional form. However, when subjected to rapidly
varying conditions, there is insufficient time for the functional form to adapt, so the
spatial probability density remains unchanged.

The adiabatic theorem, as a fundamental theorem in quantum mechanics, plays
a crucial role in our understanding and manipulation of the microscopic world
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[8–12]. Recent years have witnessed its growing importance in the quantum control
of newly formed matter—the Bose-Einstein condensate [13] and adiabatic quantum
computation [14]. However, Marzlin and Sanders warned that application of the the-
orem can lead to inconsistency [15]. A subsequent work [16] explicitly formulated
a “counter-example” with a two-level model illustrating that the adiabatic condition
that is widely recognized and commonly used is not sufficient to ensure the accuracy
of the adiabatic approximation.

In the present section, we formulate the quantum adiabatic evolution within a
parameter domain rather than the time domain [17]. Within this new formulation,
we can state the quantum adiabatic theorem consistently and investigate the fidelity
of the adiabatic approximation quantitatively, naturally avoiding the above issues.

The system we consider is a Hamiltonian containing slowly varying dimen-
sionless parameters R(t) belonging to a given regime [R0, R1], say, H(R(t)).
We initially have a state, for example, the ground state |E0(R(t0))〉 with energy
E0(R(t0)). The wave function |�(t)〉 fulfills the usual Schrödinger equation, i.e.,
i(d|�〉/dt) = H(R(t))|�(t)〉 with � = 1. The above problem has a well-known
adiabatic approximate solution:

|�ad〉 = e−i
∫ t E0dteiλ0 |E0(R(t))〉, (1.77)

where λ0 = i
∫ t dt〈E0|Ė0〉 is the geometric phase term [18] with the overdot denot-

ing the time derivative. The above equation is the explicit formulation of the adiabatic
theorem stating that the initial nondegenerate ground state remains the instantaneous
ground state and evolves only in its phase, given by the time integral of the eigenen-
ergy (known as the dynamical phase) and a quantity independent of the time duration
(known as the geometric phase).

The problems is to determine how close the above adiabatic approximate solution
is to the actual solution |�(t)〉. To clarify this question and formulate it quantita-
tively, we introduce two physical quantities, namely, the adiabatic parameter and the
adiabatic fidelity.

The dimensionless adiabatic parameter is defined as the ratio between the change
rate of the external parameters and the internal characteristic time scale of the quan-
tum system (i.e., the Rabi frequency |Em − En|), used to measure how slowly the
external parameter changes with time:

ε = max
|Ṙ|

|En(R) − Em(R)| , m 	= n. (1.78)

The case of ε → 0 corresponds to the adiabatic limit. Following this definition,
the adiabatic condition can be written as (� = 1 throughout)

max |Ṙ| � |En(R) − Em(R)|, m 	= n. (1.79)
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Fig. 1.1 Schematic
illustration of the quantum
adiabatic evolution
formulated in the parameter
domain; see the text for a
detailed description

The adiabatic fidelity is introduced to measure how close the adiabatic solution
is to the actual one, Fad = |〈�(t)|�ad〉|2. The convergence of the adiabatic fidelity
to unity uniformly over the range R ∈ [R0, R1] in the adiabatic limit (ε → 0) indi-
cates the validity of the adiabatic approximation. Evaluation of the fidelity function
provides an estimate of how satisfactory the adiabatic approximation is.

In Fig. 1.1, we schematically illustrate the physical process described above. Our
main result is that the distance between the adiabatic solution and the actual one
comprises two parts: a fast oscillation term and a secular term. The time scale of
the oscillation is the Rabi period, and its amplitude is proportional to the square of
the adiabatic parameter. The amplitude of the secular term is exponentially small
(∼e−1/ε), supposing that the Berry connections of the system are regular, and tran-
sitions to a power-law (∼εx , x < 2) if the Berry connections have singularity or if
the external parameters vary in time nonlinearly.

We start our statement by writing the wavefunction as a superposition of the
instantaneous eigenstates

|�(t)〉 =
∑
n

Cn(t)e
−i

∫ t dt (En−i〈En(R)|Ėn(R)〉)|En(R(t))〉, (1.80)

with the overdot denoting the time derivative, and we suppose that the initial state
is the ground state, i.e., C0(t = 0) = 1, Cn(t = 0) = 0, with n 	= 0. Then, the adi-
abatic approximate solution takes the form of (1.77), and the adiabatic fidelity is
Fad = |〈�(t)|�ad〉|2 = |C0|2 ∼ 1 − |ΔCn|2, where n 	= 0. To evaluate the adiabatic
fidelity, we need to quantitatively evaluate the change of the coefficients Cn with
respect to time.

Substituting the above solution into the Schrödinger equation, we have the fol-
lowing differential equation for the coefficients:

d

dt
Cn = i

∑
m 	=n

ei
∫ t

((En−αnn Ṙ)−(Em−αmm Ṙ))dtαnm(R)
dR
dt

Cm, (1.81)

where αnm(R) are the Berry connections. Both the off-diagonal and diagonal
Berry connections have clear physical meaning and important applications [19].
We first suppose that these Berry connections and the gradient of the instantaneous
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Fig. 1.2 Integral paths and
singular points in the
complex plane

eigenenergies are not singular (NS) as functions of the external parameters, i.e.,

αnm(R) = 〈En|i∇R|Em〉; βn(R) = ∇REn(R), NS. (1.82)

The right-hand side of (1.81) contains the unknown Cm . To the first order approx-
imation, we take C0 = 1 and Cm = 0,m 	= 0 on the right-hand side of (1.81). Then,
Eq. (1.81) shows that the change consists of two parts: the fast oscillation term and
the secular term. The time scale of the oscillation is the Rabi period, whose ampli-
tude is proportional to the adiabatic parameter under the condition that the Berry
connections are regular with limitation. In contrast, the secular term may be expo-
nentially small and of the form e−1/ε or of a power-law form depending on the Berry
connections, as shown below.

Let us denote θn = ∫ t
(En − E0)dt ; the upper bound of the increment on the

coefficients (n 	= 0) can then be evaluated as follows:

ΔCn ∼
∫ θn(R1)

θn(R0)

eiθn

En − E0
αn0 Ṙdθn (1.83)

=
∫ ∞

−∞
· · · dθn −

(∫ θn(R0)

−∞
+

∫ ∞

θn(R1)

)
· · · dθn, (1.84)

where we set on the right-hand side of (1.81) the coefficients Cm ∼ 0 for m 	= 0 and
C0 ∼ 1 since we wish to estimate the upper bound of the adiabatic approximation.
For simplicity and without loss of generality, in the following deductions, we regard
the slow-varying parameter as a scalar quantity, andwe assume that dR/dt ∼ εg(R),
with the function g(R) being regular with limitation.

The first term on the right-hand side of (1.84) is an infinite integral that can be
estimated by extending the integral to the upper half-plane with a closed path at
infinity, as shown in Fig. 1.2. The integral along the upper horizontal path of the
closure is zero because e−Imθn → 0 there. Furthermore, the integrals along the ver-
tical paths also vanish because of the fast oscillation of the function e−iReθn → 0
at infinity [1]. Hence, the main contribution to the first term comes from the
pole point, θcn = ∫ tc(En − E0)dt ∼ ε−1

∫ Rc [(En − E0)/g(R)]dR, determined by
the equation En(θ

c
n) − E0(θ

c
n) = 0. Under the assumption of nondegeneracy, the
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solutions of the above equation are complex with nonzero imaginary parts. Let
ω0 be the singularity closest to the real axis, i.e., the one with the smallest (posi-
tive) imaginary part (see Fig. 1.2). Then, the first term is approximately bounded by
e−Imω0 ∼ e−ε−1| ∫ |Im(Rc )|[(En−E0)/g(R)]dR|, which contributes to the secular term with an
exponentially small quantity in the adiabatic limit.

The second term on the right-hand side of (1.84) depends on the boundary condi-
tion. If the boundary values are large enough, the terms in the parentheses of (1.84)
will be small relative to the first term. For an infinite boundary of the parameter
domain, such as that in the well-known Landau-Zener model [20], i.e., R1,0 → ±∞,
the integral vanishes because θn(R1,0) = ±∞; for a finite boundary condition, we
obtain a quantity of order ε.

Now, we consider the situation that the Berry connection contains a singularity
of form 1/Rα at R(t∗) = 0. We then evaluate the above integral in the neighborhood
domain [−Δt + t∗,Δt + t∗] of the singular point; the integral over other regimes is
regular and contributes a quantity of order ε. Near the singular point,

|ΔCn| ∼
∣∣∣∣
∫ Δt+t∗

−Δt+t∗
ei

∫ t
(En−E0)dtαn0(R)dR

∣∣∣∣
=

∣∣∣∣
∫ ΔR+

ΔR−
ei

∫ t
(En−E0)dtαn0(R)dR

∣∣∣∣
∼ ε(1−σ). (1.85)

In the above deduction,we have taken advantage of the relationΔR± = R(±Δt +
t∗) ∝ ±ε.

The situation is divided into two cases: σ < 0 and σ ≥ 0. For σ < 0, this type of
singularity can be removed because the integral is finite. The integral in the neigh-
borhood domain [−ε, ε] of the singularity contributes a quantity of order ε(1−σ). We
thus expect that the adiabatic fidelity approaches unity uniformly in the 2(1 − σ)

power law of the adiabatic parameter, i.e.,

1 − Fad ∼ ε2(1−σ). (1.86)

For the case of σ ≥ 0, the singularity is irremovable, and the adiabatic approximation
is expected to break down.

The above discussion is readily extended to the case that the slow-varying parame-
ters change nonlinearly with time, i.e., R = εtσ, where σ is any positive number. The
nonlinear time-dependent parameter has multiple physical origins; in the molecule
spin system, for example, the effective field varies nonlinearly in time [21]. Another
fieldwith a broad number of examples is quantumoptics, inwhich theRabi frequency
coupling different levels (i.e., stimulated Raman adiabatic passage) often depends
nonlinearly on time [22]. Here, we suppose that the Berry connections of a quan-
tum system are regular with limitation as a function of the parameter R and that the
level spacings are of order 1. To apply our theory, we introduce the new parameters
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R′ and ε′ through the expressions ε′ = ε1/σ and R′ = ε′t . Consequently, R = R′σ .
As a function of the new parameter R′, the singularity of the Berry connections
is determined by dR/dR′ ∼ 1/R′1−σ . Our discussion is divided into two cases: (i)
σ > 1 and (ii) σ < 1. In the former case, the Berry connections as functions of the
new parameter are regular, so the adiabatic fidelity is determined by the short-term
oscillation and is expected to converge to one in a power law of ε′2. Then, we have

1 − Fad ∼ ε
2
σ . (1.87)

In the latter case, the Berry connections as functions of the new parameter are
singular, of the type 1/R′1−σ . Fortunately, this singularity is removable, resulting in
an upper bound of the adiabatic fidelity of ε′2σ , i.e.,

1 − Fad ∼ ε2. (1.88)

Note that in this case, the upper bound of the adiabatic fidelity is independent of
the nonlinear index σ.

1.2.2 Adiabatic Geometric Phase—Berry Phase

A quantum system in an eigenstate, slowly transported around a circuit by varying
parameters in its Hamiltonian, in addition to the familiar dynamical phase factor,
ultimately acquires a geometric phase factor [18].

Let the Hamiltonian H be changed by varying parameters R = (R1, R2, . . .), on
which it depends. Then, the evolution of the system between times t = 0 and t = T
can be interpreted as movement around a closed path R(t) in parameter space with
the Hamiltonian H(R(t)) and such that R(T ) = R(0). This path is henceforth called
a circuit and denoted byC . For the adiabatic approximation to apply, T must be large
enough.

The quantum state |ψ(t)〉 of the system evolves according to Schrödinger’s
equation,

H(R(t))|ψ(t)〉 = i�|ψ̇(t)〉, (1.89)

where the overdot denotes the timederivative.At any instant, the natural basis consists
of the eigenstates |n(R)〉 (assumed to be discrete) of H(R) for R = R(t) that satisfy

H(R)|n(R)〉 = En(R)|n(R)〉, (1.90)

with energies En(R). This eigenvalue equation implies that no relation exists between
the phases of the eigenstates |n(R)〉 at different R. For present purposes, any (dif-
ferentiable) choice of phases can be made, provided that |n(R)〉 is single-valued in
a parameter domain that includes the circuit C .
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Adiabatically, a system prepared in one of these states |n(R(0))〉 evolves with H
and is thus in the state |n(R(t))〉 at t . Therefore, |ψ〉 can be written as

|ψ(t)〉 = e− i
�

∫ t
0 dt

′En(R(t ′))eiλn(t)|n(R(t))〉. (1.91)

The first exponential is the familiar dynamical phase factor. The object of attention
is the second exponential. The crucial point is that its phase λn(t) is nonintegrable;
λn cannot be written as a function of R and in particular is not single-valued under
continuation around a circuit, i.e., λn(T ) 	= λn(0).

The function λn(t) is determined by the requirement that |ψ(t)〉 satisfies
Schrödinger’s equation; direct substitution of (1.91) into (1.89) leads to

λ̇n(t) = i〈n(R(t))|∇Rn(R(t))〉 · Ṙ(t). (1.92)

The total phase change of the state |ψ〉 around C is

|ψ(T )〉 = e− i
�

∫ T
0 dt En(R(t))eiλn(C)|ψ(0)〉, (1.93)

where the geometric phase change is given by

λn(C) = i
∮
C
〈n(R)|∇Rn(R)〉 · dR. (1.94)

Thus,λn(C) is expressed as a circuit integral in parameter space and is independent
of how the circuit is traversed (provided of course that this movement is slow enough
for the adiabatic approximation to hold). The normalization of the state |n〉 implies
that 〈n|∇Rn〉 is imaginary, which guarantees that λn is real.

Direct evaluation of |∇Rn〉 requires a locally single-valued basis for |n〉. This
difficulty can be avoided by transforming the circuit integral (1.94) into a surface
integral over any surface in parameter space whose boundary is C . To apply familiar
vector calculus, the parameter space is taken as three-dimensional, and this condition
turns out to be the most important case in applications.

Applying Stokes’s theorem to (1.94), one has

λn(C) = −Im
∫ ∫

C
dS ·

∑
m 	=n

〈∇n|m〉 × 〈m|∇n〉, (1.95)

where dS is the area element in R space and the exclusion in the summation is
justified by 〈n|∇n〉 being imaginary. The off-diagonal elements are obtained from
(1.90) as follows:

〈m|∇n〉 = 〈m|∇H |n〉
En − Em

, m 	= n. (1.96)
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Therefore, λn can be rewritten as

λn(C) = −
∫ ∫

C
dS · Bn(R), (1.97)

where

Bn(R) ≡ Im
∑
m 	=n

〈n(R)|∇RH(R)|m(R)〉 × 〈m(R)|∇RH(R)|n(R)〉
(Em(R) − En(R))2

. (1.98)

Clearly, λn(C) is zero for a circuit that retraces itself and so encloses no area.
Equations (1.97) and (1.98) are the central results. Since the dependence on |∇n〉

has been eliminated, the phase relations between eigenstates with different param-
eters are immaterial, and (as is evident from the form of (1.98)) it is no longer
necessary to choose |m〉 and |n〉 to be single-valued in R: any solutions of (1.90)
may be employed without affecting the value of Bn . This is a surprising conclusion,
as can be seen by comparing (1.97) with (1.95), which shows that Bn is the curl
of a vector, 〈n|∇n〉, and that this vector certainly does depend on the choice of the
phase of the (single-valued) eigenstate |n(R)〉. The dependence on the phase is of the
following kind: if |n〉 → eiμ(R)|n〉, then 〈n|∇n〉 → 〈n|∇n〉 + i∇μ (in another con-
text, the importance of such gauge transformations was emphasized byWu and Yang
[23]). Hence, the vector is not unique, but its curl is. The quantity Bn is analogous
to a “magnetic field” (in parameter space) whose “vector potential” is Im〈n|∇n〉.
As described elsewhere (1.98), ∇ · Bn vanishes, thus confirming that (1.97) gives a
unique value for λn(C).

1.2.3 Virtual Magnetic Monopole

The denominators in (1.98) imply that if the circuit C lies close to a point R∗ in
parameter space at which the state |n〉 is involved in a degeneracy, then Bn(R)

and, thus, λn(C) are dominated by the terms m corresponding to the other states
involved. We discuss the most common situation, where the degeneracy involves
only two states [18], to be denoted by | ± (R)〉, where E+(R) ≥ E−(R). For R near
R∗, H(R) can be expanded to first order in (R − R∗), and one has

B+(R) = Im
〈+(R)|∇RH(R)| − (R)〉 × 〈−(R)|∇RH(R)| + (R)〉

(E+(R) − E−(R))2
. (1.99)

Clearly, one also has B−(R) = −B+(R), and thus, λ−(C) = −λ+(C).
Without loss of generality, one can set E±(R∗) = 0 and R∗ = 0. Indeed, H(R)

can be represented as a 2 × 2 Hermitian matrix coupling the two states. The most
general such matrix satisfying the given conditions depends on three parameters: x ,
y, and z, which are taken as the components of R and by linear transformation in R
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space can be brought into the following form:

H(R) = 1

2

(
z x − iy

x + iy −z

)
. (1.100)

The eigenvalues are given by

E±(R) = ±1

2
(x2 + y2 + z2)1/2 = ±1

2
R. (1.101)

Therefore, the degeneracy is an isolated point at which all three parameters vanish.
This result corresponds to a well-known result of Von Neumann andWigner [24]: for
generalHamiltonians (Hermitianmatrices), it is necessary to change three parameters
to cause a degeneracy to occur accidentally, that is, not on account of symmetry.
Alternatively stated, degeneracies have co-dimension three.

The form (1.100) was chosen to exploit the fact that

∇H = 1

2
σ, (1.102)

where σx , σy , and σz denote the Pauli spin matrices, which are the components of the
vector operator σ. When computing the matrix elements in (1.99), one can greatly
simplify the calculations by taking advantage of the isotropy of spin and temporarily
rotating the axes (so that the z-axis points along R) and by employing the following
relations, which come from the commutation laws between the components of σ:

σx |±〉 = |∓〉, σy|±〉 = ±i |∓〉, σz|±〉 = ±|±〉. (1.103)

With these rotated axes, Eq. (1.99) gives

⎧⎨
⎩

Bx+ = Im〈+|σy |−〉〈−|σz |+〉
2R2 = 0,

By+ = Im〈+|σz |−〉〈−|σx |+〉
2R2 = 0,

Bz+ = Im〈+|σx |−〉〈−|σy |+〉
2R2 = 1

2R2 .

(1.104)

Reverting to unrotated axes, one has

B+(R) = R
2R3

. (1.105)

The use of (1.97) illustrates that the phase change λ+(C) is the flux through C
of the magnetic field of a monopole with strength − 1

2 located at the degeneracy.
Hence, for the natural choice (1.100) of the standard form for H , one can obtain the
satisfying result that the geometric phase factor associated with C is given by

eiλ±(C) = e∓iΩ(C)/2, (1.106)
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where Ω(C) is the solid angle that C subtends at the degeneracy, that is, a measure
of the view of the circuit as seen from the degeneracy. Since Ω can change only in
multiples of 4π (when the surface is deformed to pass through the degeneracy), the
phase factor is independent of the choice of surface spanning C .

1.2.4 Nonadiabatic Geometric Phase—Aharonov-Anandan
Phase

In thepreceding sections,we introduced theBerryphase [18] in thequantumadiabatic
process and its classical analog—the Hannay angle [3]. By relaxing the adiabatic
approximation, these concepts were then generalized by Aharonov and Anandan
[25] to study the phase associated with a cyclic evolution (which occurs when a state
returns to its initial condition) in quantum mechanics.

The significance ofAharonov andAnandan’s generalization is twofold.On the one
hand, the cyclic evolution of a physical system, both experimentally and theoretically,
is of high interest in physics. On the other hand, the universal existence of the
cyclic evolution is guaranteed for any quantum system. This condition can be easily
recognized by considering the eigenvectors of the unitary evolution operator for a
quantum system.An explicit example is the time-periodic Hamiltonian systemwhere
the Floquet theorem applies. The eigenfunctions of the Floquet operator, which are
referred to as Bloch wave functions in condensed matter physics, are cyclic solutions
of great interest in physics.

The Aharonov-Anandan (AA) phase [25] is a universal geometric phase in the
sense that it is the same for an infinite number of possible motions along the curves
in the Hilbert space H that project to a given closed curve Ĉ in the projective
Hilbert space P of rays of H and the possible Hamiltonians H(t) that propagate
the state along these curves.We assume that the normalized state |ψ(t)〉 ∈ H evolves
according to the Schrödinger equation,

i�
d

dt
|ψ(t)〉 = H(t)|ψ(t)〉, (1.107)

such that |ψ(τ )〉 = eiφ|ψ(0)〉, where φ is real. Let Π , i.e., H → P , be the projec-
tion map defined by Π(|ψ〉) = {|ψ′〉 : |ψ′〉 = c|ψ〉, c is a complex number}. Then,
|ψ(t)〉 defines a curve C : [0, τ ] → H , with Ĉ ≡ Π(C) being a closed curve in
P . Conversely, given any such curve C , one can define a Hamiltonian function
H(t) so that (1.107) is satisfied for the corresponding normalized |ψ(t)〉. Now define
|ψ̃(t)〉 = e−iλ(t)|ψ(t)〉 such that λ(τ ) − λ(0) = φ. Then, |ψ̃(τ )〉 = |ψ̃(0)〉, and from
(1.107), one has

− dλ

dt
= 1

�
〈ψ(t)|H |ψ(t)〉 − 〈ψ̃(t)|i d

dt
|ψ̃(t)〉. (1.108)
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Thus, if one removes the dynamical part from the phase φ by defining

α ≡ φ + 1

�

∫ τ

0
〈ψ(t)|H |ψ(t)〉dt, (1.109)

then it follows from (1.108) that

α =
∫ τ

0
〈ψ̃(t)|i d

dt
|ψ̃(t)〉dt. (1.110)

It is clear that the same |ψ̃(t)〉 can be chosen for every curveC for whichΠ(C) =
Ĉ through an appropriate choice of λ(t). Therefore, α, defined by (1.109), called
the AA phase, is independent of φ and H for a given closed curve Ĉ . Indeed, for a
given Ĉ , H(t) can be chosen so that the second term in (1.109) is zero, which may be
regarded as an alternative definition of α. In addition, from (1.110), α is independent
of the parameter t of Ĉ and is uniquely defined up to 2nπ (n = integer). Thus, eiα is
a geometric property of the unparameterized image of Ĉ inP only.

Consider a slowly varying H(t), with H(t)|n(t)〉 = En(t)|n(t)〉, for a complete
set {|n(t)〉}. If one writes

|ψ(t)〉 =
∑
n

cn(t) exp

(
− i

�

∫
Endt

)
|n(t)〉 (1.111)

and uses (1.107) and the time derivative of the eigenvector equation, one has

ċm = −cm〈m|ṁ〉 −
∑
n 	=m

cn
〈m|Ḣ |n〉
En − Em

exp

[
i

�

∫
(Em − En)dt

]
, (1.112)

where the overdot denotes the time derivative. Assume that

∑
n 	=m

∣∣∣∣ �〈m|Ḣ |n〉
(En − Em)2

∣∣∣∣ � 1. (1.113)

Then, if cn(0) = δnm , the last term in (1.112) is negligible, and the system therefore
continues as an eigenstate of H(t) to satisfactory approximation. In this adiabatic
approximation, (1.112) yields

cm(t) � exp

(
−

∫
〈m|ṁ〉dt

)
cm(0). (1.114)

For a cyclic adiabatic evolution, the phase i
∫ τ

0 〈m|ṁ〉dt is independent of the cho-
sen |m(t)〉; Berry regarded this property as a geometrical property of the parameter
space ofwhich H is a function.However, this phase is the same as (1.110) on choosing
|ψ̃(t)〉 � |m(t)〉 in the present approximation. The parameter α, defined by (1.109),
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does not depend on any approximation, and thus, (1.110) is exactly valid. Moreover,
|ψ(t)〉 need not be an eigenstate of H(t), unlike in the limiting case studied by Berry.
In addition, it is neither necessary nor sufficient to go around a (nontrivial) closed
curve in parameter space to have a cyclic evolution, with the associated geometric
phase α. For these reasons, AA regarded α as a geometric phase associated with a
closed curve in the projective Hilbert space and not the parameter space, even in the
special case considered by Berry. Given a cyclic evolution, an H(t) that generates
this evolution can be found so that the adiabatic approximation is valid. Then, α can
be calculated with the use of the expression given by Berry in terms of the eigenstates
of this Hamiltonian.

1.2.5 Example I: Born-Oppenheimer Approximation

The Born-Oppenheimer (BO) approximation is ubiquitous in quantum chemical cal-
culations of molecular wavefunctions [26]. The approximation consists of two steps.

In the first step, the nuclear kinetic energy is neglected. This step is often justified
by stating that the heavy nuclei move more slowly than the light electrons. Classi-
cally, this statementmakes sense only if themomentum p of electrons and nuclei is of
the same order of magnitude. In that case,mn � me implies p2/(2mn) � p2/(2me)

(with mn and me being the mass of the nucleus and the mass of the electron, respec-
tively). It is straightforward to show that for two bodies in circular orbits around their
center of mass (regardless of individual masses), the momentum of the two bodies
is equal and opposite and that for any collection of particles in the center of mass
frame, the net momentum is zero. Given that the center of mass frame is the lab
frame (where the molecule is stationary), the momentum of the nuclei must be equal
and opposite to that of the electrons. Recall that the corresponding operators do not
contain mass, and consider the molecule to be a box containing the electrons and
nuclei (as in the particle-in-a-box idealization). Since the kinetic energy is p2/(2m),
it follows that the kinetic energy of the nuclei in a molecule is indeed typically much
smaller than the kinetic energy of the electrons, the mass ratio being on the order
of 104. Thus, the corresponding operator T̂n is subtracted from the total molecular
Hamiltonian. In the remaining electronic Hamiltonian Ĥe, the nuclear positions enter
as parameters. The electron-nucleus interactions are not removed, and the electrons
still “feel” the Coulomb potential of the nuclei clamped at certain positions in space.
This first step of the BO approximation is therefore often referred to as the clamped
nuclei approximation.

The electronic Schrödinger equation

Ĥe(r, R)χ(r, R) = Eeχ(r, R), (1.115)

is solved (out of necessity, it is solved only approximately). The quantity r corre-
sponds to all electronic coordinates and R to all nuclear coordinates. The electronic
energy eigenvalue Ee depends on the chosen positions R of the nuclei. Varying
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these positions R in small steps and repeatedly solving the electronic Schrödinger
equation, one obtains Ee as a function of R. This is the potential energy surface
(PES): Ee(R). Because this procedure of recomputing the electronic wave functions
χ(r, R) as a function of an infinitesimally changing nuclear geometry is reminiscent
of the conditions for the adiabatic theorem, this manner of obtaining a PES is often
referred to as the adiabatic approximation, and the PES itself is called an adiabatic
surface. It is assumed, in accordance with the adiabatic theorem, that the same elec-
tronic state (the electronic ground state, for instance) is obtained upon small changes
of the nuclear geometry. The method predicts a discontinuity (jump) in the PES if
electronic state-switching occurs.

In the second step of the BO approximation, the nuclear kinetic energy T̂n (con-
taining partial derivatives with respect to the components of R) is reintroduced; in
addition, the Schrödinger equation for the nuclear motion is time independent, and
the stationary wavefunctions φ(R) for the nuclei are obtained. It is traditional to
use the word “motion” in this context even though (classically) motion implies time
dependence. We solve the equation

[
T̂n + Ee(R)

]
φ(R) = Eφ(R), (1.116)

This second step of the BO approximation involves separation of vibrational,
translational, and rotational motions, which can be achieved by application of the
Eckart conditions. The eigenvalue E is the total energy of the molecule, including
contributions from electrons, nuclear vibrations, and the overall rotation and trans-
lation of the molecule.

1.2.6 Example II: Aharonov-Bohm Effect

We consider a magnetic field consisting of a single line with fluxΦ. For the positions
R not on the flux line, the magnetic field is zero; however, there must be a vector
potential A(R) that satisfies

∮
C
A(R) · dR = Φ (1.117)

for circuits C threaded by the flux line. Aharonov and Bohm [27] showed that such
vector potentials in quantum mechanics have physical significance even though they
correspond to zero field. We show here how their effect can be interpreted as a
geometric phase change [18].

Consider the quantum system consisting of particles with charge q confined to a
box situated at R and not penetrated by any flux line (see Fig. 1.3). In the absence
of flux (A = 0), the Hamiltonian for the particle depends on the position r and its
conjugate momentum p [18], i.e.,
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Fig. 1.3 Aharonov-Bohm
effect in a box transported
around a flux line

H = H( p, r − R), (1.118)

and the wavefunctions have the form ψn(r − R)with energies En independent of R.
With nonzero flux, the states |n(R)〉 satisfy

H( p − qA(r), r − R)|n(R)〉 = En|n(R)〉, (1.119)

an equation whose exact solutions can be obtained by multiplying ψn by an appro-
priate Dirac phase factor, giving

〈r|n(R)〉 = ei
q
�

∫ r
R d r ′ ·A(r ′)ψn(r − R). (1.120)

These solutions are single-valued in r and (locally) in R. The energies are unaf-
fected by the vector potential.

Let the box be transported around a circuit C threaded by the flux line. In this
special case, it is not necessary to consider the transport adiabatic. After completion
of the circuit, a geometric phase change is accumulated, which can be calculated
from

〈n(R)|∇Rn(R)〉 =
∫ ∫ ∫

d3rψ∗
n(r − R)

[
−i

q

�
A(R)ψn(r − R) + ∇Rψn(r − R)

]

= −i
qA(R)

�
. (1.121)

The normalization of ψn leads to the vanishing of the second term in braces.
Evidently, in this example, the analogy between Im〈n|∇|n〉 and a magnetic vector
potential becomes a reality. As a result, one has

λn(C) = q

�

∮
C
A(R) · dR = qΦ

�
. (1.122)
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It is shown that the phase factor is independent of n and of C if this winds once
around the flux line. The phase factor can be observed based on interference between
the particles in the transported box and those in a box that is not transported around
the circuit.

1.2.7 Example III: Adiabatic Quantum Computing

In quantum mechanics, a quantum state |ψ〉 evolves according to the following
Schrödinger equation:

i
d

dt
|ψ(t)〉 = H(t)|ψ(t)〉. (1.123)

The adiabatic theorem [28] tells us how to follow this evolution when the Hamil-
tonian H(t) varies slowly enough. Here, one can consider a smooth single-parameter
family of Hamiltonians H̃(s) with 0 ≤ s ≤ 1 and take [29]

H(t) = H̃(
t

T
). (1.124)

Thus, T controls the rate at which H(t) varies. The instantaneous eigenstates and
eigenenergies of H̃(s) are determined by

H(s)|�; s〉 = E�(s)|�; s〉, (1.125)

with
E0(s) ≤ E1(s) ≤ · · · ≤ EN−1(s), (1.126)

where N is the dimension of the Hilbert space. Assume that |ψ(0)〉 is the ground
state of H̃(0), that is,

|ψ(0)〉 = |� = 0; s = 0〉. (1.127)

According to the adiabatic theorem, if the gap between the two lowest levels, i.e.,
E1(s) − E0(s), is strictly greater than zero for all 0 ≤ s ≤ 1, then one has

lim
T→∞ |〈� = 0; s = 1|ψ(T )〉| = 1. (1.128)

This condition implies that if T is large enough, then the existence of a nonzero
gap ensures that |ψ(t)〉 obeying (1.123) remains close to the instantaneous ground
state of H(t) of the form (1.124) for all t from 0 to T . One can define the minimum
gap by

Δmin = min
0≤s≤1

(E1(s) − E0(s)). (1.129)

A closer look at the adiabatic theorem tells us that if
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T � E

Δ2
min

, (1.130)

where

E = max
0≤s≤1

∣∣∣∣∣〈� = 1; s|d H̃
ds

|� = 0; s〉
∣∣∣∣∣ , (1.131)

then one can make
|〈� = 0; s = 1|ψ(T )〉| (1.132)

arbitrarily close to 1. For all of the problems that we discuss here, E is on the order
of a typical eigenvalue of H and is not too large, so the size of T is determined by
Δ−2

min .
One can now apply adiabatic evolution to shift from the known ground state of HB

to the unknown ground state of HP . Suppose that the ground state of HP is unique.
Consider

H(t) = (1 − t

T
) · HB + t

T
· HP . (1.133)

From (1.124), one has

H̃(s) = (1 − s) · HB + s · HP . (1.134)

Prepare the system so that it begins at t = 0 in the ground state of H(0) = HB .
According to the adiabatic theorem, if Δmin is not zero and the system evolves
according to (1.123), then for sufficiently large T , |ψ(T )〉will be close to the ground
state of HP , that is, the solution to the computational problem [29].

1.2.8 Example IV: Geometric Quantum Computation

The physical realization of quantum computation requires a series of accurately
controllable quantumgates. These gates can be implemented experimentally by using
controlled geometric operations. It is remarkable that geometric operations based
on adiabatic passages depend only on the global feature of the path executed [18]
and thus provide a possible fault-tolerant way to perform quantum gate operations
[30–33]. Similar to the case with adiabatic passage, the geometric gates based on
nonadiabatic cyclic operations also depend only on some global features, making
them robust to certain computational errors [25].

For a spin- 12 particle subjected to an arbitrary magnetic field B, the nonadiabatic
cyclic geometric (or AA) phase [25] is just the solid angle determined by the evo-
lution curve in the projective Hilbert space—a unit sphere S2. Any two-component
“spin” state |ψ〉 = [e−iφ/2 cos(θ/2), eiφ/2 sin(θ/2)]T may be mapped into a unit vec-
tor n = (sin θ cosφ, sin θ sin φ, cos θ) in the projective Hilbert space via the relation
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n = 〈ψ|σ|ψ〉, with the vector operator σ denoting the Pauli spin matrices. By vary-
ing the magnetic field, the AA phase is given by λ = − 1

2

∫
C(1 − cos θ)dφ, where

C lies along the actual evolution curve on S2 and is determined by the equation
∂tn(t) = −μB(t) × n(t)/�. This phase recovers the Berry phase in adiabatic evo-
lution [34].

For universal quantum computation, one need achieve only two kinds of non-
commutable single-qubit gates and one nontrivial two-qubit gate [35]. The single-
qubit Hamiltonian H is selected to pass through a cyclic evolution with period τ in
the parameter space {B}. One considers the process in which a pair of orthogonal
states |ψ±〉 can evolve cyclically. A phase difference between the two orthogonal
states can be introduced by cyclically varying H . The phases acquired in this way
contain both a geometric component and a dynamical component. The dynamical
phase accumulated over the whole process can be removed by a simple method,
and therefore, only the geometric phase needs to be considered. By taking into
account the cyclic condition for |ψ±〉 and removing the dynamical phase, one has
U (τ )|ψ±〉 = e±iλ|ψ±〉, whereU (τ ) is the evolution operator. Here,we have also used
the result thatλ[−n(0)] = −λ[n(0)] at any time if the two initial states correspond to
±n(0) [34]. One can write an arbitrary initial state as |ψi 〉 = a+|ψ+〉 + a−|ψ−〉, with
a± = 〈ψ±|ψ〉, and express the two cyclic initial states as |ψ+〉 = cos ϕ

2 |0〉 + sin ϕ
2 |1〉

and |ψ−〉 = cos ϕ
2 |1〉 − sin ϕ

2 |0〉, where |0〉 and |1〉 constitute the computational basis
for the qubit. The final state at time τ is found to be |ψ f 〉 = U (ϕ,λ)|ψi 〉, where

U (ϕ,λ) =
(
eiλ cos2 ϕ

2 + e−iλ sin2 ϕ
2 i sinϕ sin λ

i sinϕ sin λ e−iλ cos2 ϕ
2 + eiλ sin2 ϕ

2

)
. (1.135)

It is straightforward to verify that the two operations U 1(ϕ1,λ1) and U 2(ϕ2,λ2)

are noncommutable unless sin λ1 sin λ2 sin(ϕ2 − ϕ1) = 0. Because two kinds of
noncommutable operations constitute a universal set of single-bit gates, one can
achieve the universal single-bit gates by choosing ϕ1 	= ϕ2 (mod 2π) for any non-
trivial phases λ1 and λ2. For example, the phase-flip gate U1 = e−2πλ1|1〉〈1| (up to
an irrelevant overall phase) can be achieved at ϕ = 0; the gate U2 = eiλ2σx can be
obtained at ϕ = π/2, which produces a spin flip (NOT operation) when λ2 = π/2
and an equal-weight superposition of spin states when λ2 = π/4.

In terms of the computational basis {|00〉, |01〉, |10〉, |11〉}, the unitary operator to
describe the two-qubit gate is given by Utq = diag[U (λ0,ϕ0),U (λ1,ϕ1) under the
condition that the control qubit is far from the resonance condition for the operation of
the target qubit. Here, λδ(ϕδ) represents the geometric phase (the cyclic initial state)
of the target qubit as long as the state of the control qubit corresponds to δ = 0, 1
(where δ denotes the state of the control qubit). Following Ref. [35], one finds that
the unitary operator Utq is a nontrivial two-qubit gate if and only if λ1 	= λ0 or
ϕ1 	= ϕ0 (mod 2π). Hence, all elements of quantum computation may be achievable
by using nonadiabatic cyclic geometric operations [36].
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1.2.9 Example V: Superadiabatic Quantum Driving

Quantum adiabatic processes are a powerful strategy to implement quantum state
control, which aims at manipulating a quantum system to attain a prescribed target
state in a controlled and optimal way [22, 37, 38]. However, often, such an adiabatic
process may be too slow, and in nearly all adiabatic techniques, the population trans-
fer is incomplete, with the fidelity close to, but less than, 1 [39]. Therefore, various
protocols have been devised to speed up the process and to enhance the fidelity of
quantum manipulation processes [40–45]. Superadiabatic (also known as transition-
less or counterdiabatic) quantum driving [42, 43] is a valuable tool to speed up the
adiabatic quantum behavior. The protocol suppresses the nonadiabatic transitions
between energy eigenstates and ensures perfect adiabatic following by constructing
an auxiliary field (Hamiltonian) [46].

The two-level system driven by an external coherent field is described by the
dimensionless Schrödinger equation

i
∂

∂t

(
a
b

)
= H(t)

(
a
b

)
, (1.136)

with the Hamiltonian being

H(t) = γ(t)σz + v(t)σx , (1.137)

where a and b are the probability amplitudes of diabatic states |0〉 and |1〉, respec-
tively. The total probability |a|2 + |b|2 is conserved and set to be 1. σx and σz are
Pauli matrices, and γ(t) and v(t) are the energy bias and coupling strength between
the two diabatic levels, respectively.

The system has instantaneous adiabatic eigenstates |ψ±(t)〉 that satisfy

H(t)|ψ±(t)〉 = ε±(t)|ψ±(t)〉, (1.138)

where the eigenvalues ε±(t) = ±√
γ2 + v2 and the subscripts − and + stand for

the ground state and the excited state, respectively. Their difference ε(t) = ε+(t) −
ε−(t) = 2

√
γ2 + v2 defines the energy splitting.

Assume that the system is initially prepared in the adiabatic ground state |ψ−(tini )〉
at time t = tini . The final state at time t = t f in is the state |ψ f in〉 after an evolution
of duration t f in − tini . Our aim is to realize a superadiabatic protocol that ensures
a perfect following of the instantaneous adiabatic ground state |ψ−(t)〉 for all time.
The protocol can drive the system from the starting state |ψ−(tini )〉 to the final state
|ψ f in〉 in an accelerated way and with high fidelity, i.e., the final state |ψ f in〉 is as
close as possible to the adiabatic ground state |ψ−(t f in)〉, realizing a fidelity close to
unity. Here, the fidelity function Ff in is defined as follows:

Ff in = |〈ψ f in|ψ−(t f in)〉|2, (1.139)
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which can be used to characterize the protocol efficiency.
The Hamiltonian (1.136) can be diagonalized using unitary transformation to a

new basis (A, B), which is the adiabatic basis, given by

(
A
B

)
= U−1

0 (t)

(
a
b

)
, (1.140)

where U0 is a rotation matrix that can be taken as

U0 =
(− sin θ cos θ

cos θ sin θ

)
. (1.141)

Here, the mixing angle θ = 1
2 arctan(v(t)/γ(t)). The Hamiltonian of the system

in an adiabatic basis is

H ′(t) = U−1
0 H(t)U0 − iU−1

0 U̇0, (1.142)

where the overdot represents the derivative with respect to time t . The first term
is the diagonal part, while the second term is the non-diagonal part representing a
nonadiabatic correction. The Schrödinger equation in the adiabatic basis reads

i
∂

∂t

(
A
B

)
= H ′(t)

(
A
B

)
=

(
ε− −i θ̇
i θ̇ ε+

)(
A
B

)
. (1.143)

Adiabatic evolution occurs when the nonadiabatic coupling in the Hamiltonian is
negligible relative to the eigenenergy splitting. Mathematically, adiabatic evolution
requires the off-diagonal elements of the Hamiltonian (1.143) to be negligible rela-
tive to the diagonal ones, i.e. |θ̇| � ε, which expresses the adiabatic condition [42].
The efficiency of this transfer is limited by the adiabatic condition, which requires
slow evolution. When the adiabatic condition cannot be fulfilled, a complete popu-
lation transfer does not occur due to the effect of one or more nonadiabatic terms in
the Hamiltonian. To overcome this challenge, one can construct an auxiliary Hamil-
tonian Hcd (also called a counter-diabatic field) that cancels the nonadiabatic part
of the evolution under H alone [42, 43]. This process thus ensures a transitionless
adiabatic following such that the system evolving under H + Hcd always remains the
instantaneous adiabatic ground state of H with probability 1, even for a finite dura-
tion of the protocol. In general, Hcd can be given by Hcd = iU̇0U

−1
0 . For a two-level

system of the form described previously (1.136), one finds that [42, 43]

Hcd(t) = ∂θ

∂t
σy, (1.144)

where σy is the Pauli matrix. The total driving Hamiltonian is in the following form:
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Htot (t) = H + Hcd

= γ(t)σz + v(t)σx + θ̇σy

=
(

γ(t) v(t) − i θ̇
v(t) + i θ̇ −γ(t)

)
. (1.145)

The Hamiltonian (1.145) can be described as a combination of an effective cou-
pling and a phase term,

Htot (t) =
(

γ(t) ve f f (t)e−iφ

ve f f (t)eiφ −γ(t)

)
, (1.146)

where ve f f (t) =
√

v2(t) + θ̇2. To eliminate the phase dependence, we apply the
following transformation [47]:

U1 =
(
e−iφ/2 0
0 eiφ/2

)
, (1.147)

which again provides a new set of basis functions; the resulting Hamiltonian is

Htot (t) =
(

γe f f (t) ve f f (t)
ve f f (t) −γe f f (t)

)
, (1.148)

where γe f f (t) = γ(t) − φ̇/2, with φ = arctan(θ̇/v(t)). This result implies that the
effect of the extra field can also be achieved through an appropriate transformation
γ → γe f f and v → ve f f .

Note that the shortcut to adiabaticity [44] is also a valuable tool to speed up the
adiabatic quantum behavior. This method implements another reverse engineering
approach using the Lewis-Riesenfeld (LR) invariant to carry the eigenstates of a
Hamiltonian from a specified initial state to a final configuration and to then design
the transient Hamiltonian from the LR invariant. Although different in form, these
driving methods can be shown to be essentially equivalent to each other by prop-
erly adjusting the reference Hamiltonian [44]. Recently, these protocols have been
extended to many quantum systems [47–54]. Experiments with superadiabatic pro-
tocols have been demonstrated for a Bose-Einstein condensate loaded into an accel-
erated optical lattice [55, 56], the electron spin of a single nitrogen vacancy center
in diamond [57], a large single-photon detuning system with a cold atomic ensemble
[58], and a continuous variable system for adiabatic transport of a trapped ion [59].
To illustrate this approach, some models have been adopted in these experiments, for
instance, the Laudau-Zener model, the Allen-Eberly model, and the cosine model
[55, 56, 58].
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1.3 Classical-Quantum Correspondence

1.3.1 Bohr-Sommerfeld Quantization Rule

Planck introduced the constant (h or � = h/(2π)) that now bears his name to elim-
inate the ultraviolet divergence in the black-body radiation spectrum. This constant
defines a fundamental scale of action that allows us to relate kinematic and wave
properties of quantum mechanical objects,

p = h/λ, p = �k; (1.149)

E = hν, E = �ω, (1.150)

where the momentum p and the energy E describe the kinematic properties of the
object, while the wavelength λ (or k = 2π/λ) and the frequency ν (or ω = 2πν)
describe the wave properties of the object. Quantum mechanical waves obey the
superposition principle and may therefore exhibit quantum mechanical interference.

Experimentally, the emission and absorption spectra of atoms were known to
exhibit discrete lines, which satisfied the Rydberg-Ritz combination principle,
namely, ν = Ai − A j , where Ai and A j are empirically determined terms. This
discrete spectrum could not be explained by classical models, and one can now
understand these terms as the energy levels of the atom. The arithmetic relationships
among certain groups of lines were identified as early as 1885, when Balmer showed
that certain lines were predicted by the formula 1/λ = RH (1/22 − 1/n2), with RH

being the Rydberg constant for hydrogen and n = 3, 4, . . .. (Balmer, unaware of
h, focused on the wavelength.) Similar series are associated with Lyman, Paschen,
Brackett, and Pfund. Other experimental indications of quantization are as follows:

• Franck-Hertz Energy lost by electrons in inelastic collisions with atoms
• Stern-Gerlach Quantization of magnetic moment, spatial quantization
• Photoelectric effect Ultraviolet photons in, electrons out: photons as kinematic
particles

• Compton effect Inelastic X-ray scattering: photon kinematics (Compton wave-
length λC ≡ h/mc � 0.024Å, with m being the electron rest mass and c being
the speed of light)

Bohr proposed that the electrons in atoms can exist only in certain well-defined,
stable orbits that satisfy the Bohr-Sommerfeld quantization condition,

∮
p · dq = h(n + m

4
), n,m = 0, 1, 2, . . . , (1.151)

where p is the momentum and q is the position coordinate of an electron in three-
dimensional space. The integral is performed over some closed orbit in phase space
{ p, q}; the integer n is the quantum number, and the integer m is the familiar
Maslov index. Considering the electron as a wave with wavelength λ = h/p, this
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Bohr-Sommerfeld quantization condition ensures that the wave is described by a
function that is single-valued.

Although the Bohr atom is a crude approximation of the full solution to the
Schrödinger equation in a central 1/r potential, this model does produce several
correct results. Bohr required that his formulation of quantum mechanics satisfy the
tested principles of classical mechanics in the limit of large quantum numbers, where
the scale of action set by Planck’s constant is small. This requirement is known as
the correspondence principle.

1.3.2 Relation Between the Berry Phase and the Hannay
Angle

In the previous sections, the adiabatic Berry phase and its geometrical meaning have
been introduced from the perspective of quantum mechanics. Indeed, in classical
mechanics, a geometrical angle exists that corresponds to the Berry phase. Based on
both the adiabatic principle and Liouville’s theorem, Hannay introduced the concept
of a classical adiabatic angle in 1984 [3]. In the followingyear,Berry further discussed
this classical angle (also called the “Hannay angle”) and formulated its connection
to the quantum adiabatic geometric phase [60].

Following Berry’s derivations [60], we consider a quantum or classical system
with N degrees of freedom whose Hamiltonian H( p, q; R) depends on a set of
slowly varying parameters R = (R1, R2, . . .) in addition to the dynamical variables
or operators p = (p1, . . . , pN ) and q = (q1, . . . , qN ). The evolution of the system is
governed by the adiabatic theorem. In the quantum case [61], this theorem states that
a system initially in an eigenstate, labeled by one or more parameters n = {ni }, will
remain in the same eigenstate |n; R(t)〉, with energy En(R(t)) as the R change. In
the classical case [62], the theorem states that an orbit initially on an N -dimensional
phase-space torus with actions I = {I j } [63] will continue to explore the tori with
the same values of I (adiabatic invariants), in spite of the varying Hamiltonian
corresponding to R(t), provided that such tori continue to exist (for example, if the
system remains integrable for all parameters R).

These well-known adiabatic theorems fail to describe an important feature of the
evolution, which manifests itself if the Hamiltonian returns to its original form after
a (long) time T , i.e., R(T ) = R(0). One can describe such changes as taking the
system around a circuit C in the space of parameters R.

In quantum physics, the feature is a geometric phase factor eiλn(C) accumulated
around C by a system in the nth state: if the state is initially |�(0)〉, then the state at
T is

|�(T )〉 = eiλn(C)e− i
�

∫ T
0 dt En(R(t))|�(0)〉. (1.152)
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The second factor, which contains the familiar dynamical phase, is present even
if the parameters remain constant, and the third factor |�(0)〉 is an expression of the
adiabatic theorem.

Classically, the feature that the adiabatic theorem does not describe is the shifts
Δθ(I;C) in the angles θ = {θ j } conjugate to the actions I , in addition to those
expected on the basis of the instantaneous frequencies ω = {ω j (I; R)}: if the initial
angles are θ(0), then after the circuit C , the position of the system on its torus I is
given by

θ(T ) = θ(0) +
∫ T

0
dtω(I; R(t)) + Δθ(I;C). (1.153)

The existence of Δθ as a general feature of slowly cycled integrable systems was
discovered by Hannay in 1984 [3].

The evolution of the angle variables, which by (1.153) determines the classical
adiabatic angles Δθ, can be determined by making a canonical transformation to
action-angle variables. This transformation can be achieved in terms of a generating
function Sα(q, I; R(t)) according to the scheme [1]

( p, q) ← Sα(q, I; R(t)) → (I,θ), pα = ∂Sα

∂q
, θα = ∂Sα

∂ I
. (1.154)

In these formulae, the superscript α labels the branches of S, a function whose
unavoidable multivaluedness reflects the fact that for a given torus I , q does not
uniquely determine p.

The new Hamiltonian H̄(I,θ; t) differs from the old Hamiltonian H( p, q; R) in
value and in functional form because the canonical transformation is time dependent
through the slowly varying parameters R(t). In fact,

H̄(I,θ; t) = H (I; R(t)) + ∂Sα(q, I; R(t))

∂R
· dR
dt

, (1.155)

where
H (I; R(t)) ≡ H( p(I,θ; R(t)), q(I,θ; R(t)); R(t)) (1.156)

is the (angle-independent) “action” Hamiltonian corresponding to constant R. At
any time t , the branch α and the value of q occurring in (1.155) are uniquely defined
by θ and I .

To obtain an explicit form for H̄ , one can define the single-valued function

S (I,θ; R) ≡ Sα(q(I,θ; R), I; R), (0 ≤ θ < 2π) (1.157)

so that
∂Sα

∂R
= ∂S

∂R
− ∂Sα

∂q
· ∂q
∂R

= ∂S

∂R
− pα · ∂q

∂R
. (1.158)
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Finally, the new Hamiltonian reads

H̄(I,θ; t) = H (I; R(t)) + dR
dt

·
(

∂S (I,θ; R)

∂R
− p(I,θ; R) · ∂q(I,θ; R)

∂R

)
.

(1.159)

This expression is globally single-valued because q and p are periodic functions
of θ, and the increment of S around a circuit is

S (θ + 2π, I; R) − S (θ, I; R) =
∮

pdq = 2π I, (1.160)

which does not depend on R.
Hamilton’s equation for the angle variables is

θ̇ j = ∂ H̄

∂ I j
, j = 1, 2, . . . , N , (1.161)

where the overdot denotes the time derivative. When applied to (1.159), the first
term gives the part of the evolution that would occur even if the parameters remained
constant, arising from the frequencies

ω j (I; R) = ∂H (I; R)

∂ I j
. (1.162)

What we are seeking, however, is the angle shift defined by (1.153), and this
parameter arises from the second term in (1.159):

Δθ j =
∫ T

0
dt

dR
dt

· ∂

∂ I j

(
S

∂R
− p · ∂q

∂R

)
. (1.163)

As it stands, this integral is challenging to evaluate because the integrand depends
on time implicitly through the changes inθ and I and explicitly through the variations
of R. It is natural at this point to invoke the adiabatic technique [63] of averaging
over the implicit (fast) variations by integrating over the torus at each time t . We now
give a brief introduction to this technique. Assume a classical system H0(I) subject
to a perturbation of εH1(I,θ) (ε is a small quantity); the corresponding Hamilton’s
equations are

θ̇ = ω(I) + ε f (I,θ), İ = εg(I,θ), (1.164)

where

ω(I) = ∂H0

∂ I
, f (I,θ) = ∂H1

∂ I
, g(I,θ) = −∂H1

∂θ
. (1.165)

According to the adiabatic averaging technique, one can replace Eq. (1.164) with
another set, i.e.,
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J̇ = εḡ(J), ḡ(J) = 1

(2π)N

∫ 2π

0
· · ·

∫ 2π

0
g(J,θ)dθ1 · · · dθN . (1.166)

Arnold concluded that Eq. (1.166) are a suitable approximation for Eq. (1.164)
[63]. The adiabatic averaging techniqueadiabatic averaging technique means that
in the general case, the motion described by Eq. (1.164) includes two parts: the
evolution part—as demonstrated in Eq. (1.166)—and the small oscillation part. For
general equations, this argument is not accurate.However, for the canonical equations
this method works well, and

ḡ(J) = 1

(2π)N

∫ 2π

0

∂H1(J,θ)

∂θ
· dθ = 0. (1.167)

When the above technique is applied to the Hamilton equation conjugate to
(1.161), the actions I remain constant in spite of the (slow) variations in R—which
is of course the familiar adiabatic theorem. When applied to (1.97), one obtains

Δθ j (I;C) =
∮

dR · ∂

∂ I j

1

(2π)N

∮
dθ

(
∂S

∂R
− p · ∂q

∂R

)
, (1.168)

where
∮
dθ = Π N

j=1

∫ 2π
0 dθ j . Equation (1.168) has the form of a line integral over a

single-valued function in parameter space. Thefirst termvanishes because∂S /∂R is
a gradient. The second term can be transformed by Stokes’ theorem into an integral
over any surface A in parameter space whose boundary is C . In the language of
differential forms [63],

Δθ j (I;C) = − ∂

∂ I j

∫ ∫
A(C)

dA · W(I; R), (1.169)

where dA is the area element and W(I; R) is the angle 2-form, which is given by

W(I; R) = 1

(2π)N

∮
dθ

(∇R p j (I,θ; R) ∧ ∇Rq j (I,θ; R)
)
. (1.170)

The formulae (1.169) and (1.170) for the classical adiabatic angles constitute one
version of the expressions obtained by Hannay [3]. It is straightforward to show
that Hannay’s angles are invariant under parameter-dependent and action-dependent
deformations of the (arbitrary) origin from which the angles θ are measured, i.e.,
under

θ → θ + β(I; R), (1.171)

provided that β(I; R) is single-valued across the area A in parameter space. This
classical invariance corresponds to the invariance of the quantum phase factor
under parameter-dependent changes in the phases of the eigenvectors |n, R〉 →
eiχ(R)|n, R〉 (see the appendix of [18]).
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We now discuss the relation between the Hannay angle and the Berry phase. The
quantum geometric phase λn(C) defined by Eq. (1.152) is written in the form

λn(C) = −
∫ ∫

A(C)

dA · B(n; R), (1.172)

where
B(n; R) = Im∇R ∧ 〈n; R|∇R|n; R〉. (1.173)

Clearly, Eqs. (1.172) and (1.173) are analogous toEqs. (1.169) and (1.170), respec-
tively. In position representation, one defines the wavefunction ψn by

ψn(q; R) ≡ 〈q|n; R〉, (1.174)

so the phase 2-form becomes

B(n; R) = Im∇R ∧
∫

dqψ∗
n(q; R)∇Rψn(q; R), (1.175)

where ∫
dq ≡ Π N

j=1

∫ +∞

−∞
dq j . (1.176)

Semiclassically, ψn is associated with a torus whose actions are quantized by the
corrected Bohr-Sommerfeld rule [64],

I j = (n j + m j )�, (1.177)

where m j are N constants whose values are unimportant in the present context.
The wavefunction is obtained from the torus by projection from phase space to q
space according to the method of Maslov (see [65] and as expressed in the simplified
presentations by [66, 67]):

ψn(q; R) =
∑

aα(q, I; R)e
i
�
Sα(q,I;R), (1.178)

where Sα is the classical generating function, the summation over α corresponds
to all branches pα contributing at q, and the amplitudes are given in terms of the
projection Jacobian by

a2α = 1

(2π)N

dθα

dq
= 1

(2π)N
det

(
dθi

dq j

)
. (1.179)

This quantity may be positive or negative, corresponding to π/2 phase shifts
across turning points.
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When the wavefunction (1.178) is substituted into (1.175), products of contribu-
tions from different branches α give rapid oscillations and cancel semiclassically
upon integrating over q, leaving

B(n; R) = 1

�
∇R ∧

∫
dq

1

(2π)N

∑
α

dθα

dq
∇RSα(q, I; R). (1.180)

Transformation of the variables of integration from q to θ and use of the formulae
(1.157) and (1.158) give

B(n; R) = 1

�
∇R ∧ 1

(2π)N

∮
dθ(∇RS − p · ∇Rq)

= − 1

�(2π)N

∮
dθ∇R p j (I,θ; R) ∧ ∇Rq j (I,θ; R)

= −1

�
W(I; R), (1.181)

thus relating the phase 2-form to the angle 2-form (1.181).
Finally, this relation, together with formulae (1.169) and (1.172), immediately

gives the connection between Hannay’s angles and the geometric phase:

Δθ j (I;C) = −�
∂

∂ I j
λn(C) = −∂λn(C)

∂n j
, (1.182)

where the association (1.177) enables the quantum numbers n j to be considered
continuous variables.

1.3.3 Nonadiabatic Geometric Phase and Hannay Angle
in the Generalized Harmonic Oscillator

In this section, we study the nonadiabatic geometric phase of the general cyclic evolu-
tions of a generalized harmonic oscillator and demonstrate its relation with the Han-
nay angle [68]. To this end, an alternative method—the squeezed state approach—is
introduced and applied.

The squeezed state approach has been successfully applied in many branches
of physics, including quantum optics, high-energy physics, and condensed matter
physics. The past several years have witnessed a growing application of the squeezed
state to study chaotic dynamical systems [69–72]. In this section, we shall employ
this approach to discuss the geometric phase and the Hannay angle for a generalized
harmonic oscillator [68]. The reason for this choice is that this system admits the
squeezed state as an exact solution. The squeezed state approach [73–75] starts from
the time-dependent variational principle (TDVP) formulation,
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δ

∫
dt〈Φ, t |i� ∂

∂t
− Ĥ |Φ, t〉 = 0. (1.183)

Variation with respect to 〈Φ, t | and |Φ, t〉 gives rise to the Schrödinger equation
and its complex conjugate, respectively. The squeezed state is chosen as the trial
wave function, which is defined by the ordinary harmonic oscillator displacement
operator acting on a squeezed vacuum state |0〉:

|�〉 = eαâ†−α∗â|φ〉, |φ〉 = e
1
2 (βâ†2−β∗â2)|0〉, (1.184)

where â† and â are, respectively, boson creation and annihilation operators that satisfy
the canonical commutation relation: [â, â†] = 1.

From the TDVP, we obtain the dynamical equations for the expectation values
(q, p) and the quantum fluctuationsΔp2 ≡ 〈�, t |( p̂ − p)2|�, t〉 = �( 1

4G + 4Π2G)

and Δq2 ≡ 〈�, t |(q̂ − q)2|�, t〉 = �G,

q̇ = ∂Hef f

∂ p
, ṗ = −∂Hef f

∂q
; �Ġ = ∂Hef f

∂Π
, �Π̇ = −∂Hef f

∂G
, (1.185)

where the overdot denotes the time derivative. The effective Hamiltonian Hef f is
defined on the extended space (q, p,G,Π), taking the form Hef f = 〈�, t |Ĥ |�, t〉.

The time-dependent variational principle leaves an ambiguity of a time-dependent
phase λ(t), which can be resolved with the aid of the Schrödinger equation,

λ̇(t) = 〈�, t |i ∂

∂t
|�, t〉 − 1

�
〈�, t |Ĥ |�, t〉. (1.186)

This phase is well defined for general nonadiabatic and noncyclic evolution of a
squeezed state. It represents a phase change of the squeezed state during a time evo-
lution. Clearly, the phase consists of two parts. The second part, which characterizes
the time of evolution, is the dynamical phase and can be rewritten as

λD(t) = −1

�

∫ t

0
Hef f dt. (1.187)

The first part can be viewed as a difference of the total phase and the dynamical
phase. We call this component the geometric phase since it is just the Aharonov-
Anandan’s phase for the case of cyclic evolution. From the expression of the squeezed
state, the geometric phase is equal to

λG(t) =
∫ t

0

[
1

2�
(pq̇ − q ṗ) − Π̇G

]
dt. (1.188)

It is clear that the evolution of both the expectation values (q, p) and the quantum
fluctuations (G,Π) contribute to the geometric phase. The contribution from the
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former one is explicitly � dependent, while the contribution from the latter one is
� independent. For the case of cyclic evolution of the squeezed state, the quantum
phase is equal to the sum of the projection areas on the coordinates plane (q, p) and
fluctuation plane (G,Π) swept out by a periodic orbit of the effective Hamiltonian.

The Hamiltonian of the generalized harmonic oscillator takes the form

Ĥ(q, p, t) = 1

2
[a(t)q̂2 + b(t) p̂2 + c(t)(q̂ p̂ + p̂q̂)], (1.189)

where the real parameters a(t), b(t), and c(t) are time-periodic functions with
common period T . Our discussions are restricted to the elliptic case, namely,
a(t)b(t) > c2(t).

Applying the squeezed state to this system, one obtains from (1.189) an effective
Hamiltonian in the extended phase space (q, p;G,Π),

Hef f (q, p;G,Π; t) = Hcl(q, p, t) + �Hf l(G,Π, t), (1.190)

where

Hcl = 1

2
[a(t)q2 + b(t)p2 + 2c(t)qp] (1.191)

describes the motion of the expectation values;

Hf l = 1

2
[a(t)G + b(t)(

1

4G
+ 4Π2G) + 4c(t)GΠ ] (1.192)

depicts the evolution of the quantum fluctuations.
Starting from this effective Hamiltonian, it is straightforward to analyze the

dynamical properties. The motions of both degrees of freedom are decoupled. In
the fluctuation plane (G,Π), whole motions are restricted on the invariant tori
except for a unique T -periodic solution denoted by [Gp(t),Πp(t)]. The Hamil-
tonian Hcl , which describes the motions of the expectation values (q, p), is iden-
tical to the Hamiltonian of the classical version of the system (1.189). The point
(q = 0, p = 0) is clearly a fixed point. Other motions are quasiperiodic trajecto-
ries confined on the tori. Through a canonical transformation, q = q( Ī , φ̄, t) and
p = p( Ī , φ̄, t), the Hamiltonian Hcl(q, p, t) can be transformed to a new Hamilto-
nian H̄( Ī , t) that does not contain the angle variable φ̄. Its solution is described by
Ī = Ī0; φ̄(t) = φ̄0 + ∫ t

0 (∂ H̄( Ī0, t)/∂ Ī0)dt . Because this canonical transformation is
explicitly time dependent, the new Hamiltonian H̄ differs from the old one Hcl both
in value and in functional form. Here, we introduce a function A to measure the
difference:

A(φ̄, Ī , t) = H̄( Ī , t) − Hcl(φ(φ̄, Ī , t), I (φ̄, Ī , t), t). (1.193)

Therefore, the classical nonadiabatic Hannay angle is
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ΘH =
〈∫ T

0

∂A

∂ Ī
dt

〉
φ̄0

, (1.194)

where the bracket denotes averaging around the invariant torus: 〈· · · 〉 = 1
2π

∫ 2π
0

· · · dφ̄0.
We now turn to the quantum system (1.189). Since this system is a time-periodic

Hamiltonian system, the Floquet theory applies. A unitary time evolution operator
referring to one period T , the so-called Floquet operator Û (T ), is worthy of consid-
eration. We can construct a state as a superposition of an infinite number of squeezed
states,

|S1〉 = c
∫ 2π

0
e(i/�) Ī0φ̄0 | Ī0, φ̄0;G0,Π0〉dφ̄0, (1.195)

where | Ī0, φ̄0;G0,Π0〉 represents a squeezed state centered at q( Ī0, φ̄0, t = 0) and
p( Ī0, φ̄0, t = 0)with fluctuations G0 andΠ0. The parameters G0 andΠ0 are chosen
on the unique periodic orbit [G0 = Gp(t = 0),Π0 = Πp(t = 0)]; c is a normaliza-
tion constant.

Consider the situation that Û (mT ) [or Ûm(T )] acts on the state |S1〉,

Û (mT )|S1〉 = c
∫ 2π

0
e(i/�) Ī0φ̄0eiλ| Ī0, φ̄0 + φ̄m;G0,Π0〉dφ̄0, (1.196)

where φ̄m = ∫ mT
0 (∂ H̄( Ī0, t)/∂ Ī0)dt and λ = λD(mT ) + λG(mT ). The dynamical

part is λD(mT ) = − 1
�

∫ mT
0 Hef f dt , and the geometric part is λG(mT ) = 1

�

∫ mT
0

1
2

(pq̇ − q ṗ)dt − ∫ mT
0 Π̇pG pdt . These parts can be expressed correspondingly as

λD(mT ) = 〈λD(mT )〉φ̄0
+ {λD(mT )}(φ̄0), (1.197)

λG(mT ) = 〈λG(mT )〉φ̄0
+ {λG(mT )}(φ̄0), (1.198)

where 〈· · · 〉φ̄0
denotes the average over φ̄0 as in (1.194); {· · · }(φ̄0) represents the

terms relating to φ̄0. Then,

〈λG(mT )〉φ̄0
= m

�

〈∫ T

0
[1
2
(pq̇ − q ṗ)]dt

〉
φ̄0

− m
∮

GpdΠp. (1.199)

Making the variable transformation φ̄′
0 = φ̄0 + φ̄m , we have

Û (mT )|S1〉 = c · eiλ1m
∫ 2π+φ̄m

φ̄m
e(i/�) Ī0φ̄

′
0 ei{λD(mT )}(φ̄′

0)+i{λG (mT )}(φ̄′
0)| Ī0, φ̄′

0;G0, Π0〉dφ̄′
0,

(1.200)

where λ1
m = m(λR

G + λR
D). The geometric part and the dynamical part take the fol-

lowing forms:
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λR
G = 1

�

{〈∫ T

0
[1
2
(pq̇ − q ṗ)]dt

〉
φ0

− Ī0

∫ T

0

∂ H̄

∂ Ī0
dt

}
−

∮
GpdΠp, (1.201)

λR
D = −1

�

〈∫ T

0
Hef f dt

〉
φ0

. (1.202)

The integral in (1.200) can be written as
∫ 2π
0 · · · + ∫ 2π+φ̄m

2π · · · − ∫ φ̄m

0 · · · . The last
two terms cancel each other if and only if e(i/�) Ī02π = 1, which gives rise to

Ī0 = n�, (1.203)

which is simply the quantization rule without Maslov-Morse correction.
The motion of the expectation values (q, p) confined on the invariant torus Ī0 is

quasiperiodic. The ergodicity of the motion guarantees that the temporal average is
equivalent to the spatial average over a sufficiently long time. From the ergodicity
principle, we can choose an integer r that is large enough that the phase change
[see (1.197) and (1.198)] during the time interval rT does not relate to φ̄0. We then
construct a state |Sr 〉 as in [68]:

|Sr 〉 = |S1〉 + · · · + e−iλ1
m Û (mT )|S1〉 + · · · + e−iλ1

r−1Û ((r − 1)T )|S1〉, (1.204)

and under condition (1.203), one can prove that [68]

Û (T )|Sr 〉 = ei(λ
R
D+λR

G )|Sr 〉. (1.205)

In fact, the above relation indicates that the state |Sr 〉 is an eigenstate of the Floquet
operator and that n is the state number. The parameters λR

D and λR
G are, respectively,

the dynamical phase and the geometric phase relating to the cyclic states.
To interpret the geometric phase λR

G expressed by (1.201), let us consider the fol-
lowing differential 2-form that is preserved under the canonical transformation, i.e.,
dp ∧ dq − dH ∧ dt = d Ī ∧ dφ̄ − d H̄ ∧ dt . We rewrite this expression in another
form:

dp ∧ dq − d Ī ∧ dφ̄ = −d(H̄ − Hcl) ∧ dt. (1.206)

Let us first integrate the above equation over one period T and then average over
the variable φ̄0. Keeping in mind the area meaning of the differential 2-form, one
finds immediately that the term bracketed in the expression of the geometric phase
(1.201) corresponds to the left-hand side of this equation, whereas the right-hand
side is equal to n� times the classical Hannay angle [see (1.194)]. The 1

2 relation
between the last term in (1.201) and the classical angle is given by Ge and Child
[76] and verified by our explicit perturbative results as follows. We can then obtain
a simple relation between the geometric phase and the nonadiabatic Hannay angle:
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λR
G = −

(
n + 1

2

)
ΘH . (1.207)

We now take a specific choice of the periodic parameters as an example to
demonstrate the above approach and verify our findings. Set a(t) = 1 + ε cos(ωt),
b(t) = 1 − ε cos(ωt), and c(t) = ε sin(ωt). Our discussions are restricted to the
elliptic case, namely, a(t)b(t) > c2(t), i.e., ε < 1. The perturbation method is
employed in the following discussions. Our solutions of power series are accurate to
second order.

We rewrite the classical Hamiltonian in terms of the action-angle variables, i.e.,
q = √

2I sin φ and p = √
2I cosφ,

Hcl = H0(I ) + εH1(I,φ), (1.208)

where H0 = I and H1 = −I cos(ωt + 2φ). It is convenient to employ the Lie trans-
formation [2]method tomake a canonical transformation so that the newHamiltonian
H̄( Ī ) contains the action variable only:

H̄( Ī ) = Ī − Ī

ω + 2
ε2. (1.209)

The generating functions are w1 = I sin(ωt+2φ)

ω+2 and w2 = 0. The relation between

the old variables and the new variables is given by (φ, I ) = I −1(φ̄, Ī ), where the
transformation operator I −1 = 1 + εL1 + ε2(L2/2 + L 2

1 /2). The operatorLn is
the Lie operator defined byLn = [wn, ], with [ , ] representing the Poisson bracket.
Applying (1.194), (1.208), and (1.209), we arrive at the analytical expression of the
classical angle,

ΘH = 2πε2

(ω + 2)2
. (1.210)

Clearly, this classical nonadiabatic Hannay angle is independent of the action.
A T -periodic solution [Gp(t),Πp(t)] of the Hamiltonian Hf l can be derived by

using the power-series expansion

Gp(t) = 1

2
− cos(ωt)

ω + 2
ε, Πp(t) = − sin(ωt)

ω + 2
ε. (1.211)

Note that an arbitrary ω can be approached by a series of rational numbers such
as q/p; we can repeat the above process by constructing a state as in (1.204), where
r = q [68]. Finally, we obtain the analytic expression of the geometric phase,

λR
G = −

(
Ī0
�

+ 1

2

)
2πε2

(ω + 2)2
. (1.212)
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Considering the quantization rule Ī0 = n� and the explicit expression of Hannay’s
angle (1.210), the above equation coincides with relation (1.207).

The quantum phases are obtained explicitly and found to be −(n + 1/2) times
the Hannay angle. In the adiabatic limit, our (n + 1/2) relation is identical to the
elegant formula of Berry [60]. However, the semiclassical approximation has not
been invoked. Furthermore, the quantum phase can be interpreted as a sum of the
area difference on the expectation value plane through a canonical transformation
and the area on the quantum fluctuation plane swept out by a periodic orbit. This
interpretation gives a unified picture of the geometric meaning of the quantal phase
for the adiabatic and nonadiabatic cases [68].
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Chapter 2
Nonlinear Adiabatic Evolution
of Quantum Systems

Abstract In this chapter, we discuss the physical origins of the nonlinearity in
quantum many-body systems. Based on the nonlinear Schrödinger equation, we
introduce the adiabatic evolution of the quantum states, including both eigenstates
and noneigenstates, and we introduce the nonlinear geometric phase acquired by an
eigenstate during the adiabatic evolution. A nonlinear two-mode model for Bose-
Einstein condensates (BECs) is used to demonstrate the nonlinear adiabatic theory.

2.1 Physical Origins of Nonlinearity

The nonlinearity may be introduced as possible modifications of quantummechanics
on the fundamental level [1]. Here, we consider the physical origins of the nonlin-
earity that stems from a mean-field treatment of the interactions between atoms and
other components.

2.1.1 Nonlinear Gross-Pitaevskii (GP) Equation

The experimental realization of BECs in dilute atomic gases provides a suitable
opportunity to study quantum phenomena on a macroscopic scale. The investigation
of BECs has become one of themost active areas of research in contemporary physics
and draws on many different subfields of physics. Since the interactions between
atoms play a key role in the behavior of ultracold atomic clouds, the concepts and
methods from condensed matter physics are used extensively [2].

The GP equation [3] describes the zero-temperature properties of the nonuniform
Bose gas when the scattering length a is much less than the mean interparticle
spacing. One can derive the GP equation by treating the interaction between atoms
in a mean-field approximation. The effective interaction between two atoms at low
energy isU0 = 4π�

2a/m, with m being the mass of the atom, which corresponds to
a contact interaction,U0δ(r − r ′), where r and r ′ are the positions of the two atoms.
With the help of the Hartree or mean-field approach, in the fully condensed state,
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all bosons are in the same single-particle state φ(r), and one can express the wave
function of the N -particle system as

Ψ (r1, r2, . . . , rN ) =
N∏

i=1

φ(ri ). (2.1)

The normalized condition is given by
∫
d r|φ(r)|2 = 1. In the mean-field treatment,

the effective Hamiltonian reads

H =
N∑

i=1

[
p2i
2m

+ V (ri )
]

+U0

∑

i< j

δ(ri − r j ), (2.2)

where pi is themomentumof the i th particle and V (ri ) denotes the external potential.
The energy of the state (2.1) is given by

E = N
∫

d r
[

�
2

2m
|∇φ(r)|2 + V (r)|φ(r)|2 + (N − 1)

2
U0|φ(r)|4

]
. (2.3)

Consider the uniform Bose gas of volume V ; the wave function of an atom in the
ground state is V−1/2, and thus, the interaction energy of a pair of atoms is U0/V .
The energy of a state with N bosons all in the same state can be approximated by

E = N (N − 1)

2V
U0 ≈ 1

2V
n2U0, (2.4)

where n = N/V . Here, we have assumed that N � 1. For convenience, one can
introduce the concept of the wave function of the condensed state

ψ(r) = N 1/2φ(r). (2.5)

The density of the atoms is given by n(r) = |ψ(r)|2. By neglecting the terms of
order 1/N , the energy of the system can be written as

E(ψ) =
∫

d r
[

�
2

2m
|∇(r)|2 + V (r)|ψ(r)|2 + 1

2
U0|ψ(r)|4

]
. (2.6)

To find the optimal form of ψ , one can minimize the energy (2.6) with respect to
the variations of ψ(r) and its complex conjugate ψ∗(r) subject to the condition
that N = ∫ d r|ψ(r)|2 be constant. One writes δE − μδN = 0, where the chemical
potential μ is the Lagrange multiplier that ensures constancy of the particle number,
and the variations of ψ and ψ∗ may thus be taken as arbitrary. This procedure is
equivalent to minimizing the quantity E − μN at fixed μ. Equating to zero the
variation of E − μN with respect to ψ∗(r) gives
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− �
2

2m
∇2ψ(r) + V (r)ψ(r) +U0|ψ(r)|2ψ(r) = μψ(r), (2.7)

which is the time-independent GP equation. Note that the eigenvalue is the chemical
potential, not the energyper particle as it is for the usual (linear) Schrödinger equation.
For noninteracting particles all in the same state, the chemical potential is equal to
the energy per particle, but for interacting particles, it is not. For a uniform Bose gas,
the GP equation (2.7) becomes μ = U0|ψ(r)|2 = U0n, which can also be obtained
by using the thermodynamic relation μ = ∂E/∂N to (2.4).

To treat dynamical problems, one can adopt the time-dependent GP equation as
follows:

i�
∂ψ(r, t)

∂t
= − �

2

2m
∇2ψ(r, t) + V (r)ψ(r, t) +U0|ψ(r, t)|2ψ(r, t), (2.8)

which is the basis for the discussion of the dynamics of the condensate. The time-
dependent GP equation (2.8) can also be derived from the action principle

δ

∫ t2

t1

Ldt = 0, (2.9)

where the Lagrangian L is given by

L =
∫

d r
i�

2

(
ψ∗ ∂ψ

∂t
− ψ

∂ψ∗

∂t

)
− E

=
∫

d r
[
i�

2

(
ψ∗ ∂ψ

∂t
− ψ

∂ψ∗

∂t

)
− E

]
. (2.10)

Here, E is the energy (2.6), and the energy density is given by

E = �
2

2m
|∇ψ |2 + V (r)|ψ |2 + U0

2
|ψ |4. (2.11)

With a physically motivated choice of trial function for ψ , this variational principle
provides the foundation for approximate solutions of dynamical problems. The phys-
ical content of the GP equation (2.8) can be revealed by reformulating the equation
as a pair of hydrodynamic equations [2].

2.1.2 Nonlinear Optical Fibers

Optical fibers are made of isotropic silica; furthermore, all optical fibers are weakly
birefringent. The phase velocity birefringence causes continuous changes of the
polarization of a mode propagating along the fiber. Random deformations of the
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fiber cause the two so-called principal polarizations to propagate at different veloci-
ties. Environmental effects change both the delay and the orientation of the principal
polarizations. A digital optical transmission pulse along the fiber has components
along each of the two principal polarizationmodes. The polarizationmode dispersion
(PMD) pulls these components apart. Thus, even small PMD becomes significant as
the bit rate is increased. However, the peak pulse energy also increases with the bit
rate such that the Kerr nonlinearity can become important. The pulses that propagate
along an isotropic fiber with (anomalous) dispersion propagate without spreading in
conjunction with the Kerr nonlinearity. Such pulses are called solitons. The solitons
propagating along a birefringent fiber with phase velocity birefringence undergo con-
tinuous polarization change butmay still maintain their pulse envelope; these solitons
are called Manakov solitons. The Kerr effect provides a binding force between the
two pulse polarizations that opposes pulse separation caused by the PMD. This pro-
cess can prevent pulse breakup if the PMD is not excessive. This property of the
Manakov solitons prompts their use in high bit-rate optical communication [4].

In the presence of strong polarization mixing by birefringence, the pulse propaga-
tion along a fiber with anomalous dispersion and the Kerr effect obeys the Manakov
equation; i.e., the cross coupling between the two polarizations u and v along two
orthogonal vectors ê(1) and ê(2) is equal to the self-coupling [5]

i
∂u

∂t
= 1

2
ω′′ ∂2

∂x2
u + κ(|u|2 + |v|2)u, (2.12)

i
∂v

∂t
= 1

2
ω′′ ∂2

∂x2
v + κ(|u|2 + |v|2)v. (2.13)

The evolution in time is described to emphasize the correspondence with the non-
linear Schrödinger equation. Here, ω′′ is the second derivative of the frequency with
respect to the propagation constant, ω′′ = d2ω/dβ2, where ω′′ is positive when the
dispersion is anomalous; κ is the Manakov Kerr coefficient.

In introducing the PMD perturbation, we interpret (2.12) and (2.13) in a very
specific way [4]. We consider a section of fiber that is shorter than the coherence
length of the PMD and, a fortiori, shorter than the soliton period. Within this short
section of fiber, the two polarizations are interpreted as expressed in terms of the
principal eigenvectors ê(1) and ê(2) of the PMD. The field vector ψ̂ is ψ̂ = u ê(1) +
vê(2). Within this short distance, the PMD generates a perturbation term due to the
group delay difference. This perturbation is introduced into the two equations

i
∂u

∂t
= 1

2
ω′′ ∂2

∂x2
u + κ(|u|2 + |v|2)u + iξ ′

u

∂

∂x
u, (2.14)

i
∂v

∂t
= 1

2
ω′′ ∂2

∂x2
v + κ(|u|2 + |v|2)v + iξ ′

v

∂

∂x
v, (2.15)

where ξ ′
u and ξ ′

v are the group velocity deviations of the two principal polarizations.
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2.1.3 Nonlinear Atom-Molecule Conversion

Let us consider a bosonic atom-molecule conversion system. The model is schemat-
ically sketched in Fig. 2.1a. The initial state |a〉 (atomic state) and the intermediate
state |e〉 (excited molecular state) are coupled by a pump laser with Rabi frequency
Ω2, while the state |e〉 and the target state |g〉 (ground molecular state) are coupled
by a Stokes laser with Rabi frequency Ω1. The frequencies of the applied lasers are
expressed in terms of the single- and two-photon detunings 
 and δ. Without loss of
generality, we assume that the Rabi frequencies Ω1,2 are real and positive. Under the
two-photon resonance condition, i.e., δ = 0, the Hamiltonian in second-quantized
form reads [6, 7]

Ham = −�
ψ̂†
e ψ̂e + �

2
(−Ω2ψ̂

†
e ψ̂aψ̂a + Ω1ψ̂

†
g ψ̂e + H.c.), (2.16)

where ψ̂i and ψ̂
†
i (i = a, e, g) are the annihilation and creation operators for state |i〉,

respectively. Under the mean-field approximation, in which ψ̂i and ψ̂
†
i are replaced

by c number ψi and ψ∗
i , the nonlinear Schrödinger equations (with � = 1) are

iψ̇a = −Ω2ψ
∗
aψe, (2.17)

iψ̇e = −
ψe − Ω2

2
ψ2

a + Ω1

2
ψg, (2.18)

iψ̇g = Ω1

2
ψe, (2.19)

Fig. 2.1 a Three-level system coupled by two lasers. Ω1 and Ω2 are the Rabi frequencies for the
pump and Stokes lasers, and 
 and δ are single- and two-photon detunings, respectively. b Time
dependence of Ω1 and Ω2. t1 and t2 are the corresponding centers of the two pulses, and 
t is the
time delay between the two pulses
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where the overdot denotes the time derivative. In the above model, the nonlinear
collisions between the particles are neglected, so nonlinearity arises solely because
it takes two atoms to form one molecule. Mathematically, the Hamiltonian in the
above Schrödinger equations is a function of the instantaneous wave function and its
conjugate.

For the above Λ system, because the Hamiltonian is a function of both the wave
function and its conjugate, the U (1) invariance is broken. Instead, the system is
invariant under the following transformation:

U (φ) = eiΘ(φ), Θ(φ) =
⎛

⎝
φ 0 0
0 2φ 0
0 0 2φ

⎞

⎠ . (2.20)

Under this transformation, |ψ ′〉 = U (φ)|ψ〉 = (ψaeiφ, ψee2iφ, ψge2iφ)T . In fact,
when the diagonal terms in the above matrix are identical, the transformation U (φ)

degenerates to the U (1) transformation.

2.2 Nonlinear Adiabatic Evolution of Quantum States

The adiabatic evolution has been an important method for the preparation and con-
trol of quantum states [8, 9]. The main guidance comes from the adiabatic theorem
of quantum mechanics [10], which dictates that an initial nondegenerate eigenstate
remains as an instantaneous eigenstate when the Hamiltonian changes slowly rela-
tive to the level spacings. More precisely, the quantum eigenstate evolves only in its
phase, given by the time integral of the eigenenergy (dynamical phase) and a quan-
tity independent of the time duration (geometric phase). The linearity of quantum
mechanics then immediately allows a precise statement on the adiabatic evolution
of noneigenstates through the superposition principle.

Our focus in this section is how the adiabatic theorem is modified in the nonlinear
evolution of quantum states [11]. The challenges in the theoretical study of adiabatic
control of the quantum states arise not only from the lack of unitarity (although the
norm of a state is conserved, the inner product of two states changes with time) but
also from the absence of the superposition principle [12, 13].

Here, we attempt to overcome these challenges by combining ideas from classi-
cal adiabatic dynamics and quantum geometric phases. Noting that the eigenstates
correspond to the extremum points of the system energy, we find that their adiabatic
condition depends on the Bogoliubov excitation spectrum about such points and
is independent of the level spacings between the eigenstates. In addition, because
of the nonlinearity, the adiabatic evolution of noneigenstates cannot be expressed
as a superposition of such eigenstates with conserved probabilities as in the linear
case [11]. We find that the Aharonov-Anandan phases [14], which can be defined for
the cyclic or the quasicyclic quantum states (at fixed control parameters) can serve
as the adiabatic invariants analogous to canonical actions in classical systems [15].
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2.2.1 General Formalism

The Schrödinger equation, linear or nonlinear, can bewritten in the form (with � = 1)
[11]

i
∂

∂t
Ψ (r, t) = H(Ψ,Ψ ∗, r, t)Ψ (r, t). (2.21)

By “nonlinear”, we mean that the Hamiltonian H is not only a function of space r
and time t but also explicitly depends on the wave function Ψ itself. For practical
usage, one can typically separate the spatial and temporal variables by expanding the
wave function over an orthonormal basis set ϕk(r), i.e.,

Ψ (r, t) =
N∑

k=1

ψk(t)ϕk(r), (2.22)

where ψk(t) is the kth amplitude of the wave function Ψ (r, t). Inserting Eq. (2.22)
into Eq. (2.21), multiplying the left- and right-hand sides by ϕ∗

j (r) ( j = 1, . . . , N )
simultaneously, and then integrating both sides over r, one obtains

i
dψ j (t)

dt
=

N∑

k=1

Hjk(ψ,ψ∗, t)ψk(t), (2.23)

where Hjk(ψ,ψ∗, t) = ∫ ϕ∗
j (r)H(Ψ,Ψ ∗, r, t)ϕk(r)dr. In matrix form, one obtains

(for simplicity, we omit the variable t hereafter when not otherwise specified)

i
d

dt

⎛

⎜⎜⎜⎝

ψ1

ψ2
...

ψN

⎞

⎟⎟⎟⎠ =

⎡

⎢⎢⎢⎣

H11 H12 · · · H1N

H21 H22 · · · H2N
...

...
. . .

...

HN1 HN2 · · · HNN

⎤

⎥⎥⎥⎦

⎛

⎜⎜⎜⎝

ψ1

ψ2
...

ψN

⎞

⎟⎟⎟⎠ . (2.24)

In the following, we are interested in the adiabatic evolution of a quantum system.
We thus change the variable t to R, which denotes all the system parameters subject
to adiabatic change, and we rewrite the Schrödinger equation as

i
dψ j

dt
= ∂

∂ψ∗
j

H (ψ,ψ∗, R) (2.25)

and its complex conjugate form as

i
dψ∗

j

dt
= − ∂

∂ψ j
H (ψ,ψ∗, R), (2.26)
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whereH is the energy of the system. For the linear case, one obtains the simple rela-
tion H =∑N

j=1

∑N
k=1 ψ∗

j (t)Hjk(t)ψk(t) = 〈ψ |H |ψ〉 from Eqs. (2.23) and (2.25).
For the nonlinear case, however, H is a matrix that depends on the wave function,
and thus, the above simple relation no longer holds.

The Schrödinger equation (2.25) and (2.26) has a canonical structure of classical
dynamics. One can show, for example, that for each j , the probability Pj = |ψ j |2
and phase Q j = arg(ψ j ) form a canonical pair that satisfies Hamilton’s equations
of motion with the energy H serving as the classical Hamiltonian. This result can
be proven as follows:

dQ j

dt
= ∂Q j

∂ψ j

dψ j

dt
+ ∂Q j

∂ψ∗
j

dψ∗
j

dt
= 1

2iψ j

dψ j

dt
− 1

2iψ∗
j

dψ∗
j

dt
, (2.27)

∂H

∂Pj
= ∂H

∂ψ j

∂ψ j

∂Pj
+ ∂H

∂ψ∗
j

∂ψ∗
j

∂Pj
= −i

2ψ∗
j

dψ∗
j

dt
+ i

2ψ j

dψ j

dt
, (2.28)

dPj

dt
= ψ j

dψ∗
j

dt
+ ψ∗

j

dψ j

dt
= ψ j

(
i
∂H

∂ψ j

)
+ ψ∗

j

(
−i

∂H

∂ψ∗
j

)
, (2.29)

∂H

∂Q j
= ∂H

∂ψ j

∂ψ j

∂Q j
+ ∂H

∂ψ∗
j

∂ψ∗
j

∂Q j
= iψ j

∂H

∂ψ j
− iψ∗

j

∂H

∂ψ∗
j

; (2.30)

thus,
dQ j

dt
= −∂H

∂Pj
,

dPj

dt
= ∂H

∂Q j
, ( j = 1, . . . , N ). (2.31)

In this proof, we have applied Eqs. (2.25) and (2.26) in addition to ψ j = √PjeiQ j

andψ∗
j = √Pje−i Q j , which lead to the relationships ∂ψ j

∂Pj
= 1

2
√

Pj
eiQ j = 1

2ψ∗
j
,

∂ψ∗
j

∂Pj
=

1
2
√

Pj
e−i Q j = 1

2ψ j
, ∂ψ j

∂Q j
= i
√
PjeiQ j = iψ j , and

∂ψ∗
j

∂Q j
= −i

√
PjeiQ j = −iψ∗

j , and,

reversely, Q j = 1
2i ln

ψ j

ψ∗
j
, ∂Q j

∂ψ j
= 1

2i

ψ∗
j

ψ j

1
ψ∗

j
= 1

2iψ j
, and ∂Q j

∂ψ∗
j

= 1
2i

ψ∗
j

ψ j
(−1) ψ j

(ψ∗
j )

2 =
− 1

2iψ∗
j
. Due to Eq. (2.31), the nonlinear Schrödinger equation is often termed classi-

cal, although the linear Schrödinger equation has not been described in this way. In
fact, one often regards the mean-field equation as the classical analog of the original
many-body quantum problem [16]. However, we do not address this correspondence
in the present section.

Our original system is quantum mechanical, which is expected to impose addi-
tional structures in the corresponding canonical dynamics. Specifically, the system
has the gauge symmetry thatH is invariant under a shift in the overall phase of the
wave function. This condition implies that the total probability must be conserved
and that the dynamics of the overall phase can be separated from the remaining
degrees of freedom. For example, in a finite dimensional problem, we can choose a
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new set of variables: p j = |ψ j |2 = Pj , q j = arg(ψ j ) − arg(ψN ) = Q j − QN , j =
1, 2, . . . , N − 1, and pN =∑N

j=1 |ψ j |2 =∑N
j=1 Pj , qN = arg(ψN ) = QN . It is

then straightforward to prove that

{qm, qn}P,Q =
N∑

j=1

(
∂qm
∂Pj

∂qn
∂Q j

− ∂qm
∂Q j

∂qn
∂Pj

)
= 0, (2.32)

{pm, pn}P,Q =
N∑

j=1

(
∂pm
∂Pj

∂pn
∂Q j

− ∂pm
∂Q j

∂pn
∂Pj

)
= 0, (2.33)

{pm, qn}P,Q =
N∑

j=1

(
∂pm
∂Pj

∂qn
∂Q j

− ∂pm
∂Q j

∂qn
∂Pj

)
= δmn, (2.34)

where {·} is the Poisson bracket, m, n = 1, 2, . . . , N , which indicates that P, Q →
p, q are canonical transformations. Because the Hamiltonian is independent of qN ,
so pN is conserved and can be set to unity, the other variables form a closed set of
Hamiltonian dynamics:

dq j

dt
= ∂H

∂p j
,

dp j

dt
= −∂H

∂q j
, ( j = 1, . . . , N − 1). (2.35)

The gauge symmetry also allows the introduction of a geometric phase for the quan-
tum state. Let λ be the overall phase of the wave function; we took this parameter
to be arg(ψN ) in the above discussion. We decouple this overall phase by writing
ψ j = eiλφ j ; then, φ j belongs to the so-called projective Hilbert space. From (2.25),
we obtain

i
dψ j

dt
= i

deiλ

dt
φ j + i

dφ j

dt
eiλ = −dλ

dt
eiλφ j + i

dφ j

dt
eiλ

= ∂H

∂ψ∗
j

= ∂H

∂φ j

∂φ j

∂ψ∗
j

+ ∂H

∂φ∗
j

∂φ∗
j

∂ψ∗
j

= ∂H

∂φ∗
j

eiλ; (2.36)

that is,
dλ

dt
φ j = i

dφ j

dt
− ∂H

∂φ∗
j

. (2.37)

Multiplying the above equation by φ∗
j and summing over j from 1 to N , we obtain

dλ(t)

dt
=

N∑

j=1

φ∗
j i

∂

∂t
φ j −

N∑

j=1

φ∗
j

∂

∂φ∗
j

H . (2.38)
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For a linear quantum system, the second term is the same as the energy; the corre-
sponding time integral gives the so-called dynamical phase. The time integral of the
first term,

∫ τ

0 dt
∑N

j=1 φ∗
j i

∂
∂t φ j , gives an additional contribution to the overall phase

and is called the Aharonov-Anandan phase.We retain this term for the nonlinear case
[14], and we show that this geometric phase plays the role of the classical action in
the canonical dynamics and is thus an adiabatic invariant [11].

2.2.2 Eigenstates

For an instantaneous R (quasi-static), the quantum eigenstate is defined by

⎡

⎢⎢⎢⎣

H11 H12 · · · H1N

H21 H22 · · · H2N
...

...
. . .

...

HN1 HN2 · · · HNN

⎤

⎥⎥⎥⎦

⎛

⎜⎜⎜⎝

ψ1

ψ2
...

ψN

⎞

⎟⎟⎟⎠ = μ

⎛

⎜⎜⎜⎝

ψ1

ψ2
...

ψN

⎞

⎟⎟⎟⎠ , (2.39)

where μ is the chemical potential [17]. In addition to the ground state, which has
clear physical significance, the higher eigenstates (also called nonlinear coherent
modes) can be prepared experimentally [18]. According to Eqs. (2.24) and (2.39),
one obtains i d

dt ψ = μψ . Thus, for an eigenstate, its time evolution involves only
a phase, ψ(t) = e−iμtψ(0). With the erasure of the overall phase, the projected
state φ(t) does not change with time; i.e., φ(t) = φ(0), or equivalently, dq j

dt = 0 and
dp j

dt = 0 ( j = 1, . . . , N − 1). This condition indicates, according to Eq. (2.35), that

∂H

∂p j
= 0,

∂H

∂q j
= 0, ( j = 1, . . . , N − 1). (2.40)

Therefore, the eigenstates correspond to the extremum energies or the fixed points
of the classical HamiltonianH at a given R. This connection may have been known
to many, e.g., see [19]. The nonlinearity in our quantum problem, however, not only
makes different eigenstates nonorthogonal but also can producemore eigenstates than
the dimension of the Hilbert space. Moreover, the eigenstates can be either dynami-
cally stable or unstable. To determine the stability of the quantum eigenstates, one can
linearize Eq. (2.35) about the fixed point [15] with p j = p0j + δp j and q j = q0

j + δq j ,
where (p1, q1, . . . , pN−1, qN−1) is the fixed point, (δp1 , δq1 , . . . , δpN−1 , δqN−1) is a
small perturbation about the fixed point, and j = 1, . . . , N . Substituting these terms
into Eq. (2.35) and retaining the Taylor expansion up to the first-order term, one
obtains
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d

dt

⎛

⎜⎜⎜⎜⎜⎝

δp1
δq1
...

δpN−1

δqN−1

⎞

⎟⎟⎟⎟⎟⎠
=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

− ∂2H
∂q1∂p1

− ∂2H
∂q2

1
· · · − ∂2H

∂q1∂pN−1
− ∂2H

∂q1∂qN−1

∂2H
∂p21

∂2H
∂p1∂q1

· · · ∂2H
∂p1∂pN−1

∂2H
∂p1∂qN−1

...
...

. . .
...

...

− ∂2H
∂qN−1∂p1

− ∂2H
∂qN−1∂q1

· · · − ∂2H
∂qN−1∂pN−1

− ∂2H
∂q2

N−1
∂2H

∂pN−1∂p1
∂2H

∂pN−1∂q1
· · · ∂2H

∂p2N−1

∂2H
∂pN−1∂qN−1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎛

⎜⎜⎜⎜⎜⎝

δp1
δq1
...

δpN−1

δqN−1

⎞

⎟⎟⎟⎟⎟⎠
.

(2.41)
The above matrix is often termed the Hamiltonian-Jacobi matrix HJ . The stability
of the fixed points is then determined by the property of the eigenvalue of HJ , which
is identical to the Bogoliubov excitation spectrum of the corresponding eigenstate.

If all eigenvalues of HJ are purely imaginary, one calls the fixed point an elliptic
point and anticipates it following adiabatically the control parameter provided that
the latter changes slowly relative to the fundamental frequencies of periodic orbits
around the fixed point. In linear quantum mechanics, these frequencies are just the
level spacings; thus, the breakdown of adiabaticity occurs by level crossing. In the
nonlinear quantum problem, the fundamental frequencies are generally different
from the level spacings; thus, adiabaticity can often be maintained even if the energy
levels cross [11].

If some of the eigenvalues of HJ are complex, however, then these additional
eigenstates correspond to hyperbolic points in the classical dynamics, characterized
by complex fundamental frequencies and high sensitivity to small perturbations. One
thus expects that such eigenstates cannot adiabatically follow the control parameter.
The complex fundamental frequencies correspond to a complex Bogoliubov spec-
trum in addition to the mean-field solution, signifying spontaneous production of
quasiparticles. In practice, we need to traverse the dynamical instability regime fast
enough to avoid the quasiparticle production and slow enough to avoid nonadiabatic
excitations [20].

2.2.3 Cyclic and Quasicyclic States

Relative to eigenstates, the adiabatic evolution of noneigenstates is in general very
complex, as the motions given by (2.35) may be chaotic [19]. We choose to focus
on the states around an elliptic point, where the classical orbits are regular. Here, the
motions are confined on the (N − 1)-dimensional torus, and we introduce a set of
action-angle variables, I = (I1, I2, . . . , IN−1) and Θ = (Θ1,Θ2, . . . , ΘN−1) [15].
The angular variables change in time with frequencies ω = (ω1, ω2, . . . , ωN−1),
while the actions I are constants. Notably, according to the classical adiabatic theo-
rem [15], the actions I are adiabatic invariants in the sense that they remain constant
even if the control parameter R changes (slowly) in time. The existence of these
adiabatic invariants strongly constrains the motion and ensures that a state initially
close to an eigenstate (elliptic point) remains close as the system is changed slowly.
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Furthermore, we can attach a physical meaning to these adiabatic invariants in
the effective classical description by making a connection to the Aharonov-Anandan
(AA) phase of the states. The AA phase is defined as the time integral of the first
term in (2.38) for a periodic orbit,

γAA(R) =
∫ τ

0
dt

N∑

j=1

φ∗
j i

∂

∂t
φ j . (2.42)

We can rewrite this expression with the canonical variables (q j , p j ) and further with
the action-angle variables

γAA =
N∑

j=1

∫ τ

0
p jdq j = I · Ω, (2.43)

where Ω = (ω1τ, ω2τ, . . . , ωN−1τ) and τ is a time period. Therefore, the actions
are related to the AA phase γAA, which is an observable physical quantity [21]. In
the special case of N = 2, there is only one independent action, so the AA phase
is simply γAA = 2π I . This simple connection can be expanded to the general case
of N > 2, where one can identify a particular cyclic state that involves only one
action I j . For this cyclic state, we again have the simple relation γAA = 2π I j . For
quasiperiodic motions, where the frequencies ωi are not commensurate, one can use
rational numbers n/m to approach the ratios ωi/ω j as closely as possible. In this
spirit, (2.43) also holds for quasicyclic motion [11].

How do the above adiabatic invariants connect to the familiar notions in the stan-
dard linear quantum mechanics? Consider the time evolution of a general state in a
linear quantum system for a given R, i.e.,ψ j (t) = ψ j (0)e−i E j t with j = 1, 2, . . . , N ,
where E j are the eigenenergies. These are (quasi-)cyclic states with the projective
wave functions given by Φ j (t) = ψ j (0)e−i(E j−EN )t with j = 1, 2, . . . , (N − 1) and
ΦN (t) = ψN (0). Their AAphases can be computed from (2.42); through comparison
with (2.43), we immediately find that I j = |ψ j (0)|2. Therefore, in linear quantum
mechanics, these adiabatically invariant actions I j represent the probabilities on the
energy levels. In this way,we have again derived the adiabatic theoremof linear quan-
tummechanics. This expression is different from the semiclassical relation discussed
in [22].

2.2.4 Two-Level Model Illustration

As an illustration, let us consider a nonlinear two-level model,
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i
∂ψ1

∂t
=
[
R

2
+ c

2

(|ψ2|2 − |ψ1|2
)]

ψ1 + v

2
ψ2,

i
∂ψ2

∂t
= v

2
ψ1 −

[
R

2
+ c

2

(|ψ2|2 − |ψ1|2
)]

ψ2. (2.44)

This model was proposed to describe the tunneling of a BEC in an optical lattice
[23] or in a double-well potential [24]. The parameter c characterizes the interaction
strength between atoms; v is the coupling strength between the two modes. The
parameter R can be the Bloch wave number or energy difference between the two
wells. We are interested in the tunneling between the energy levels shown in the top
panels of Fig. 2.2 when R is increased slowly from the far negative end to the far
positive end [11].

Following our general formalism, we choose the total phase as λ = arg(ψ2)

and introduce a pair of canonical variables, q = arg(ψ1) − arg(ψ2) and p = |ψ1|2.
The total energy of the system is H = v

2 (ψ
∗
1ψ2 + ψ∗

2ψ1) + R
2 (|ψ1|2 − |ψ2|2) −

c
4 (|ψ1|2 − |ψ2|2)2. The wave function without the total phase takes the form φ1 =√
peiq and φ2 = √

1 − p. We then have the equivalent classical Hamiltonian as in
(2.35),

H = v
√
p(1 − p) cos q + R

2
(2p − 1) − c

4
(2p − 1)2. (2.45)

Fig. 2.2 The two top panels show the eigenenergies as a function of R for the two cases c < v
and c > v. The two bottom panels show the corresponding phase space portraits at a given value of
R = 0.05. The arrows on the fixed points indicate the directions of their movements as R increases.
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In Fig. 2.2, the structure of the eigenenergy levels of (2.44) is shown in the top
panels, while the phase space orbits of the corresponding classical system (2.45) are
shown in the bottom panels. When c < v, there are only two eigenstates and two
fixed points. Since both f1 and f2 are elliptic with finite fundamental frequencies,
the corresponding quantum states are expected to follow adiabatically with R. This
finding is corroborated by our numerical simulations [11].

When c > v, there are two additional eigenstates, which form a loop structure; in
the phase space portrait, two more fixed points appear, with one of them, f3, being
hyperbolic. Because of this structural change, the adiabatic evolution becomes very
different here. First, the eigenstate corresponding to f3 cannot follow the adiabatic
change of R since f3 is hyperbolic. This result is confirmed by our numerical inte-
gration of (2.44). Second, the fixed point f1 can annihilate itself by colliding with
f3 as R changes slowly, leading to the breakdown of adiabaticity of the tunneling as
reported numerically in [23]. Finally, we note that there is a level crossing between f1
and f4 at R = 0; however, our calculation shows that their fundamental frequencies
are v[(c/v)2 − 1]1/2 �= 0. This result clearly illustrates our statement in the general
formalism that the fundamental frequencies are not related to the level spacing in the
nonlinear case.

In the abovementioned two-level model, at the two ends with |R| � c, the non-
linear term can be ignored, and the system is effectively linear. For c < v, where all
fixed points are elliptic, the fundamental frequency ω for the periodic orbit remains
finite, and the AA phase (action) is conserved [see lines (a) in the right panels of
Fig. 2.3]. The initial and final probabilities on each level are indeed the same (see
Fig. 2.3a), although they oscillate in the intermediate range of the parameter where
the system is nonlinear. As the nonlinearity becomes substantial, the occurrence of
tunneling begins to depend on the choice of the initial state. In Fig. 2.3b, where one
starts with probability I = 0.1 on level two, tunneling occurs; however, in Fig. 2.3c,
where one starts with probability I = 0.8 on level two, no tunneling occurs. The
difference is whether a collision occurs with the hyperbolic point f3. In Fig. 2.3b, the
initial noneigenstate falls on a periodic orbit surrounding the fixed point f1, which
later collides with the hyperbolic point f3, where the fundamental frequency drops
to zero and the AA phase exhibits a finite jump [see lines (b) in the right panels of
Fig. 2.3]. The jump height is proportional to the tunneling probability. In Fig. 2.3c,
the initial state falls on a periodic orbit around the fixed point f2, which does not
collide with f3 [11].

2.3 Nonlinear Adiabatic Geometric Phase

During the past decades, the Berry phase and related geometric phases [14, 25] have
received renewed interest due to their important use in the implementation of quan-
tum computing gates [26] and applications in condensed-matter physics [27]. For a
nonlinear quantum system described by the nonlinear Schrödinger equations, how-
ever, the Berry phase issue is still far from being thoroughly understood. Historically,
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Fig. 2.3 The left panels show the change of probabilities on the two levels with R, which changes
with the rate α = 0.0001, for three different cases. The right panels show how the AA phases and
the fundamental frequencies change with R in these three cases.

the geometric phase for the cyclic evolution with a finite time duration T (i.e., nona-
diabatic motion) in nonlinear systems was studied many years ago [28]. It was found
that the nonadiabatic geometric phase takes the form of − ∫ T0 i〈φ| ∂

∂t |φ〉dt , analo-
gous to its linear counterpart [14]. Here, φ is the wave function in the projective
Hilbert space satisfying the cyclic requirement φ(t = 0) = φ(t = T ). A similar for-
mula was deduced in investigating the geometric phase in a Bose-Einstein-Josephson
junction [29]. However, the Berry phase associated with the adiabatic evolution of
an eigenstate in nonlinear systems is still uncharacterized. In line with the consid-
erations of [28], one might imagine that when the parameter R vector moves in a
circuit adiabatically, the adiabatic geometric phase acquired by an eigenstate takes
the usual form of− ∮ i〈φ(R)| ∂

∂R |φ(R)〉dR [30]. Here, φ(R) denotes one eigenstate
of the nonlinear system, and i〈φ(R)| ∂

∂R |φ(R)〉 is called the Berry connection. The
expression indicates that the Berry phase still equals the circuit integral of the Berry
connection. In a study of the Berry phase for a specific BEC system described by a
nonlocal Gross-Pitaevskii (nonlinear) equation with a quadratic potential, the exact
solutions were constructed, and the Berry phase was calculated in explicit form [31].
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The obtained adiabatic geometric phase, however, does not equal the above expres-
sion; an additional term emerges that is directly imparted by the presence of non-
linearity. The reason has not yet been determined [31], and this controversy is not
properly resolved, prompting further investigation. The discrepancy may indicate
that some subtle and important aspects were missed in previous theoretical consid-
erations.

In the present section, we have made a thorough analysis of the Berry phase
issue for nonlinear systems. Our analytic deduction clearly indicates that the Berry
phase is dramatically modified by the nonlinearity. The underlying mechanism has
been revealed: for a nonlinear system, because the Hamiltonian is a functional of
the instantaneous wave functions, the Bogoliubov excitations induced by the slow
change of the system are allowed to feed back to the Hamiltonian. These excitations
are accumulated during an adiabatic evolution and ultimately contribute a finite phase
of geometric nature [32].

2.3.1 Adiabatic Parameter Expansion

Without loss of generality, let us consider the Schrödinger equation with a quadratic
nonlinear term [32],

i
∂ψ

∂t
= H0ψ + g|ψ |2ψ, (2.46)

where H0 = − 1
2∇2 + V (R; r), with R being the parameter vector that varies slowly

in time, and g is the nonlinear parameter representing the interaction between the
coherent atoms. The total energy of the system ET = ∫ dr E(ψ∗, ψ), where the
energy density E(ψ∗, ψ) = ψ∗H0ψ + 1

2g|ψ |4. The above system is invariant under
gauge transformations of the first kind, i.e.,ψ(r, t) → eiηψ(r, t)with constant η. The
gauge symmetry implies that the total atom number is conserved, i.e.,

∫
dr |ψ |2 = 1.

Let λ be the overall phase of the wave function. We may take this parameter to be
the phase of thewave function at a fixed position r0, for example,λ = −arg[ψ(r0, t)].
We decouple this overall phase by writing ψ = e−iλφ, where φ belongs to the so-
called projective Hilbert space. From (2.46), we obtain

dλ

dt
= −i〈φ| ∂

∂t
|φ〉 +

∫
dr E(φ∗, φ) + g

2
〈φ|φ∗φ|φ〉. (2.47)

The eigenequation of the system is

H0ψ̄ + g|ψ̄ |2ψ̄ = μψ̄, (2.48)

where ψ̄ is the eigenfunction and μ is the eigenvalue (or chemical potential).
We now assume that the parameter vector R varies slowly in time, and we intro-

duce the dimensionless adiabatic parameter of ε ∼ |dR/dt | ∼ 1/T as themeasure of
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how slow the parameters change. The adiabatic parameter tends to zero, i.e., ε → 0,
indicating the adiabatic limit. T is the time duration.

Consequently, the expression of the total phase can be expanded in a perturbation
series in the adiabatic parameter, i.e.,

dλ

dt
= α0(ε

0) + α1(ε
1) + O(ε2). (2.49)

When the parameters move in a circuit, the eigenstate evolves for an infinitely long
time duration in the adiabatic limit. The time integral of the zero-order term gives the
so-called dynamical phase because it is closely related to the temporal process of the
evolution. The time integral of the first-order term makes an additional contribution
to the overall phase, which will later be shown to be of a geometric nature; that
is, it depends only on the geometry of the closed path in the parameter space. The
contribution of the higher-order term vanishes in the adiabatic limit.

In the quantum evolution with slowly changing parameters, we assume that
φ = φ̄(R) + δφ(R), where φ̄(R) is thewave function of the instantaneous eigenstate
corresponding to the local minimum energy. δφ(R) denotes the secular part of the
Bogoliubov excitations induced by the system’s slow change, while the rapid oscil-
lations in the excitations are ignored because they vanish after long-term averaging.
δφ(R) depends on the adiabatic parameter and is of order ε; thus, from (2.47) and in
conjunction with relation (2.48), we obtain the explicit expressions as follows [32]:

α0(ε
0) = μ(R), (2.50)

α1(ε
1) = −i

∫
dr

(
φ̄∗ ∂

∂t
φ̄

)
+ g
∫

dr
(
φ̄2φ̄∗δφ∗ + (φ̄∗)2φ̄δφ

)
. (2.51)

2.3.2 Projective Hilbert Space Description

From the above expressions, we observe that the dynamical phase has been modified
to be the time integral of the chemical potential rather than the energy. This condition
arises because the instantaneous eigenstates are fed back to theHamiltonian.Notably,
the first-order term, i.e., the Berry phase term, has been modified due to the feedback
of the Bogoliubov excitations to the Hamiltonian. To evaluate the Berry phase term
qualitatively and express the modified geometric phase explicitly, we introduce a
set of orthogonal bases |k〉 with k = 1, 2, . . . , N and the variable ψ j , which is the
j th component, i.e., ψ j = 〈 j |ψ〉. Without loss of generality, the projective Hilbert
space is set to be of a specific gauge such that the phase of the N th component
is zero. In the projective Hilbert space, the new variables (n j , θ j ) are introduced

through φ j = √
n jeiθ j . Substituting the expression of ψ j = √

n jeiθ j e−i
∫ t

βdt into
the nonlinear equation and separating the real and imaginary parts, we obtain the
following differential equations for the density n j and the phase θ j [32]:
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dn j

dt
= f j ,

dθ j

dt
= h j , j = 1, 2, . . . , N − 1, (2.52)

where f j and h j are functions of the amplitudes, relative phases, matrix elements
C jk(R) = 〈 j |H0(R)|k〉, and theoverlap integralDj,k,l,m = 〈 j |〈k|l〉|m〉. Their explicit
expressions can be readily deduced but are not given here.

The norm conservation condition nN = 1 −∑N−1
k=1 nk has been used to remove

the variable nN in the above equations. In the representation of new variables, (n̄ j , θ̄ j )

satisfy equations of the equilibrium state, i.e.,

(
dn j

dt
,
dθ j

dt

)∣∣∣∣
(n̄ j ,θ̄ j )

= 0, (2.53)

where (n̄ j , θ̄ j ) are functions of the parameter R corresponding to the eigenstates of
the system. We make a perturbation expansion around the eigenstate with

n j = n̄ j (R) + δn j (R), θ j = θ̄ j (R) + δθ j (R). (2.54)

Here, φ̄ j (R) = √n̄ j (R)ei θ̄ j (R), δn j (R) and δθ j (R) are the excitations of order ε.
Then, inserting the above expansion into equations (2.52), ignoring higher-order
terms such as ∂δn j/∂t and ∂δθ j/∂t , and denoting v = (n1, θ1; · · · ; nN−1, θN−1), we
obtain

dv̄

dR
· dR
dt

= L δv, (2.55)

where the matrix takes the form

L = {L jk}(N−1,N−1), L jk =
(

∂ f j
∂nk

∂ f j
∂θk

∂h j

∂nk

∂h j

∂θk

)

v=v̄

. (2.56)

Then, inversely, we have

δv = L −1 · dv̄

dR
· dR
dt

. (2.57)

The differential relation between the new variables and old ones takes the form
(

δφ j

δφ∗
j

)
= Π j

(
δn j

δθ j

)
, (2.58)

in which

Π j =
⎛

⎝
1

2
√

n̄ j
ei θ̄ j i

√
n̄ jei θ̄ j

1
2
√

n̄ j
e−i θ̄ j −i

√
n̄ je−i θ̄ j

⎞

⎠ . (2.59)
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2.3.3 Nonlinear Adiabatic Geometric Phase

Substituting (2.57) and (2.58) into (2.51), we obtain the explicit expression of the
adiabatic geometric phase that contains two terms [32],

γg = γB + γNL , (2.60)

where the first term is the usual Berry phase formula, i.e.,

γB = −i
∮

〈φ̄|∇R|φ̄〉 · dR =
∮ N−1∑

j=1

n̄ j · ∂θ̄ j

∂R
dR, (2.61)

and the additional term is from the nonlinearity, taking the form

γNL = g
∮

〈Λ|Π · L −1| dv̄
dR

〉 · dR. (2.62)

Here,

Λ =
⎛

⎝(n̄1 +
N−1∑

j=1

n̄ j − 1)
√
n̄1e

i θ̄1 , (n̄1 +
N−1∑

j=1

n̄ j − 1)
√
n̄1e

−i θ̄1 , . . .

⎞

⎠ ,

dv̄

dR
=
(
dn̄1
dR

,
d θ̄1

dR
, . . . ,

dn̄N−1

dR
,
d θ̄N−1

dR

)T

,

and diagonalmatrixΠ = diag(Π1,Π2, . . . ,ΠN−1). Note that to simplify the expres-
sion of Λ, we use the approximation that the overlap integral Dj,k,l,m 
 0 when the
subscripts are not all identical.

Both γB and γNL have the geometric property of the parameter space. The novel
second term indicates that the Bogoliubov excitations induced by the slow change of
the system, which is negligible in the linear case, can be accumulated in the nonlinear
adiabatic evolution and can contribute to the finite phase of a geometric nature [32].

2.3.4 Two-Mode Model Illustration

As an illustration of our theoretical formalism, we consider the simple two-mode
BEC model described by the nonlinear equation [33]

i
d

dt

(
Ψ1

Ψ2

)
= H(Ψ1, Ψ2)

(
Ψ1

Ψ2

)
, (2.63)
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with

H(Ψ1, Ψ2) =
(
Z |Ψ1|2 ρ

2 e
−iϕ

ρ

2 e
iϕ Z |Ψ2|2

)
, (2.64)

and R = (X = ρ cosϕ,Y = ρ sin ϕ, Z) are parameters. For simplicity, we fix ρ and
Z and change the parameter ϕ from 0 to 2π adiabatically.

The eigenequations read

H(Φ̄1, Φ̄2)

(
Φ̄1

Φ̄2

)
= μ

(
Φ̄1

Φ̄2

)
. (2.65)

For the nonlinear system, the number of eigenstates may be larger than the dimension
of the Hilbert space, and the eigenstates may be unstable [11]. We have obtained four
eigenstates for the case Z > ρ by solving the above eigenequations. Three of these
eigenstates are stable, and one is unstable. We choose the following stable eigenstate
to illustrate our theory:

Φ̄1 =
√√√√1

2

(
1 −
√
1 − ρ2

Z2

)
,

Φ̄2 = eiϕ

√√√√1

2

(
1 +
√
1 − ρ2

Z2

)
, (2.66)

with the eigenvalue of μ = Z .
The Berry’s term of the geometric phase is readily deduced:

γB = −i
∫ 2π

0

(
Φ̄∗

2
∂

∂ϕ
Φ̄2

)
dϕ = π

(
1 +
√
1 − ρ2

Z2

)
. (2.67)

Wenowderive the additional term γNL of the geometric phase. Let us introduce the
new variables (n, θ) through (Φ1, Φ2) = (

√
1 − n,

√
neiθ ). Substituting (Ψ1, Ψ2) =

e−i
∫ t

βdt (Φ1,Φ2) into (2.63) and separating the real and the imaginary parts, we obtain
four differential equations, two of which are identical due to the norm conservation:

dn

dt
= −ρ

√
n − n2 sin(θ − ϕ), (2.68)

dθ

dt
= −ρ

√
1 − n

2
√
n

cos(θ − ϕ) − Zn + β, (2.69)

β = Z(1 − n) + ρ

2

√
n

1 − n
cos(θ − ϕ). (2.70)
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The eigenstate comprises the fixed point of (2.68) and (2.69), i.e.,

n̄ = 1

2

(
1 +
√
1 − ρ2

Z2

)
, θ̄ = ϕ. (2.71)

We perform a perturbation expansion around the eigenstate with n = n̄(ϕ) + δn and
θ = θ̄ (ϕ) + δθ . Then, inserting the above expansion into (2.68) and (2.69),we obtain

(
∂ n̄
∂ϕ
∂θ̄
∂ϕ

)
dϕ

dt
= L

(
δn
δθ

)
, (2.72)

with

L =
(

0 −ρ
√
n̄ − n̄2

−2Z + ρ

4(n̄−n̄2)3/2 0

)
. (2.73)

Then, we have

γNL = Z
∫ 2π

0
〈Λ|Π · L −1 · (

∂ n̄

∂ϕ
,
∂θ̄

∂ϕ
)T 〉 · dϕ, (2.74)

where Λ = ((2n̄ − 1)
√
n̄e−iθ , (2n̄ − 1)

√
n̄eiθ ). Finally, we obtain

γNL = πρ2

Z
√
Z2 − ρ2

. (2.75)

Combining formulas (2.67) and (2.74), we arrive at an explicit expression of the
adiabatic geometric phase:

γg = π

(
1 +
√
1 − ρ2

Z2
+ ρ2

Z
√
Z2 − ρ2

)
. (2.76)

This new geometric phase has been verified by numerically solving the nonlinear
Schödinger equation (2.63). This phase can also be interpreted as the flux of a virtual
magnetic field M through the surface enclosed by the close circuit in the parameter
space. The virtual field has been deduced to take the form of [32]

M = R
2(Z2 − ρ2)3/2

, (2.77)

in contrast to the Dirac monopole field R/(2R3) described by Berry for the linear
case [34].
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We now discuss the geometric meaning of the new phase. The state vector ψ can
be parametrized in a Bloch sphere according to

|ψ〉〈ψ | = 1

2
(I + s · σ ), (2.78)

where |ψ〉 = (cos α
2 e

−iδ/2, sin α
2 e

iδ/2), s = (sin α cos δ, sin α sin δ, cosα), and I and
σ are the unit and Pauli matrices, respectively. In the new variables, the nonlinear
phase can be expressed as a function of the solid angle in a Bloch sphere [i.e.,
ΩB = 2π(1 − cosα)] and the solid angle in the parameter space [i.e.,ΩP = 2π(1 −
Z/
√

ρ2 + Z2)]. The two angles are typically not identical in the nonlinear case. To
understand this condition, we first consider the linear case Z = 0. The system can
be viewed as a spin s driven by an external magnetic field B = (ρ cosϕ, ρ sin ϕ, Z).
When the magnetic field varies in time adiabatically, the dynamical equation

ds
dt

= B × s (2.79)

indicates that the spin remains parallel to the field. In this case, ΩB = ΩP . In the
presence of the nonlinearity, the magnetic field is modulated self-consistently by the
spin, and the effective field B∗ = (ρ cosϕ, ρ sin ϕ, Z cosα). This result is presented
in (2.64), where parameter Z has been renormalized by |Ψ1|2 − |Ψ2|2 = cosα. The
adiabatic evolution of the spin is expected to remain parallel to the modulated field
B∗ rather than B. Thus, for a cyclic adiabatic evolution of the spin, the solid angles
in the Bloch sphere and the parameter space are generally not identical. On the
other hand, from (2.67) and (2.74) and using the relations n̄ = ΩB/(4π) and ρ/Z =
tan[arccos(1 − ΩP/2π)], we can express our nonlinear geometric phase in terms of
these solid angles, i.e.,

γg = ΩB

2
+ π(1 − ΩB

2π )(1 − ΩP
2π )

(1 − ΩP
2π ) −

√
(2 − ΩP

2π )(ΩP
2π )/[(2 − ΩB

2π )(ΩB
2π )]3/2

. (2.80)

For the linear case Z = 0,ΩP = 2π , the above expression reduces to thewell-known
relation γg = ΩB/2, i.e., the Berry phase equals half the solid angle.

Finally, we discuss these results. Let us first recall the nonadiabatic geometric
phase for a cyclic motion. By inserting ψ = e−iλφ into the Schrödinger equation
i ∂ψ

∂t = Hψ , one can readily obtain that dλ
dt = −i〈φ| ∂

∂t |φ〉 + 〈φ|H |φ〉. Here, φ is
the wave function in the projective Hilbert space satisfying the cyclic requirement
φ(t = 0) = φ(t = T ). The total phase acquired during the cyclic evolution con-
tains two parts: − ∫ T0 i〈φ| ∂

∂t |φ〉dt and ∫ T0 〈φ|H |φ〉dt . The former has no relation to
Hamiltonian H and can therefore be regarded as the geometric phase for the cyclic
state [28]. The above deduction is correct regardless of nonlinearity, requiring only
that the system be invariant under a gauge transformation (the H = H0 + g|ψ |2 dis-
cussed in this work has this symmetry, for example). A question arises as to why the
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above simple deduction does not apply to our adiabatic case. The main reason is that
the adiabatic limit is a process, i.e., one can approach this limit but cannot reach it.
That is, for any small adiabatic parameter ε, i.e., R sweeping at any small rate, the
dynamical solution obtained by solving the Schrödinger equation deviates from the
adiabatic solution by a small quantity of order ε. This point has been clarified by
the discussion in previous sections and expressed explicitly by φ = φ̄(R) + δφ(R).
Moreover, as revealed by our previous discussion, in the presence of nonlinearity,
this infinitesimal deviation can accumulate to contribute a finite phase during an
infinitely long time evolution T ∼ 1/ε → ∞. In contrast, for the cyclic evolution
with a finite time duration, this kind of accumulation cannot emerge. Therefore, the
adiabaticity is crucial to the emergence of our nonlinear correction [32].
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Chapter 3
Quantum-Classical Correspondence
of an Interacting Bosonic Many-Body
System

Abstract In this chapter, we discuss the adiabatic limit and the semiclassical limit,
and we investigate the commutability between these two limits with a second-
quantized two-mode bosonic model. We deduce the adiabatic Berry phase and the
classical Hannay angle of an interacting bosonic many-body system , and we discuss
the relationship between the quantum Berry phase, the classical Hannay angle, and
the mean-field nonlinear geometric phase of this system.

3.1 Commutability Between the Semiclassical Limit
and the Adiabatic Limit

3.1.1 Hamiltonian

Let us consider a quantum system whose Hamiltonian is time dependent,

i�
∂

∂t
|ψ〉 = H(R(αt))|ψ〉, (3.1)

where the adiabatic limit is the limit of slow change, i.e., α → 0, and the semiclas-
sical limit refers to the limit under which the quantum theory reduces to classical
mechanics, i.e., � → 0. As we discussed in Chaps. 1 and 2, two adiabatic theorems
exist, one for classical systems and the other for quantum systems. It is then natural
and interesting to ask the following: Can one connect these two adiabatic theorems
under the semiclassical limit?

In 1977, Hwang and Pechukas claimed that the above two limits are equivalent [1].
Their argument is based on the scaling law that if ψ(t, �) is a family of solutions to
Eq. (3.1) for α = 1 and variable �, then φ(t, α) = ψ(αt, α�) is a family of solutions
to Eq. (3.1) for fixed � and variable α. Thus, it is expected that one can eliminate
α from the above Schrödinger equation with a scaled time τ = αt and an effective
Planck constant �̃ = α�.

This point, however, was refuted by Berry [2], who noted that these two limits are
not equivalent because the Hamiltonian H may depend implicitly on � if one recalls
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the expression of kinetic energy operator T = �
2

2m∇2. Moreover, Berry showed that
these two limits are incommutable in a simple double-well model: the Landau-Zener
(LZ) tunneling rate is zero if the adiabatic limit α → 0 is taken first; the rate becomes
one if one takes the semiclassical limit � → 0 first [2].

Wenowrevisit the commutability between the semiclassical limit and the adiabatic
limit with a second-quantized two-mode tunneling model. This model can be used
to describe a BEC system in which only two quantum states are important, such as
in a double-well potential or a system with two internal quantum states [3, 4]. In
this model, the semiclassical limit is N → ∞, with N being the number of bosons.
In the large N limit, the second-quantized model becomes a two-level mean-field
model. We show that one can recover the second-quantized model by quantizing this
mean-field model with the Sommerfeld rule. As N can be changed in experiments,
the semiclassical limit becomes experimentally accessible [5].

Notably, the commutability between the two limits, N → ∞ and α → 0, in this
second-quantized model depends on its mean-field interaction strength c. If c is
small, the two limits are commutable; if c exceeds a critical value, the two limits
become incommutable. Such a dependence on c is related to a topological change in
the structure of the energy bands.

The second-quantized two-mode model is

Ĥ = γ

2
(â†â − b̂†b̂) + v

2
(â†b̂ + âb̂†) − λ

2
(â†â − b̂†b̂)2, (3.2)

where generators (annihilators) â† and b̂† (â and b̂) are related to two different
quantum states. In the Hamiltonian Ĥ , the energy offset γ between the two quantum
states changes with time as γ = αt . The parameter v measures the coupling between
the two states, whileλ > 0 is the interacting strength between bosons. Theminus sign
before λ indicates that the interaction is attractive. In this system, the total number
of bosons N is conserved.

3.1.2 Semiclassical Limit and Adiabatic Limit

For the second-quantized model (3.2), the semiclassical limit is N → ∞. In such a
limit, the system’s dynamic behavior is described by the following nonlinear two-
level model:

i
d

dt

(
a
b

)
=

{[
γ

2
− λ

2
(|a|2 − |b|2)

]
σz + v

2
σx

} (
a
b

)
, (3.3)

where c = Nλ and |a|2 + |b|2 = 1. This model is often called a mean-field model.
To obtain the mean-field model, one focuses on the Gross-Pitaevskii (GP) states
[2] |ΨGP〉 = 1√

N ! (aâ
† + bb̂†)N |vac〉. By computing the expectation value 〈Ĥ〉 =
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〈ΨGP |Ĥ |ΨGP〉, one obtains the mean-field Hamiltonian Hmf = Ĥ/N (up to a trivial
constant) in the limit of N → ∞. The Hamiltonian Hmf leads to the dynamics in
(3.3). For a rigorous account of the large N limit as a semiclassical limit in models
such as (3.2), we refer readers to [6].

We emphasize that the semiclassical limit N → ∞ is taken with the mean-field
interaction strength c = Nλ kept constant. Physically, this procedure ensures that
the series of systems with different N have the same physics. If λ were kept constant
instead of c, then the last term in (3.2) would become too dominating at the large N
limit, completely changing the physics of the system. When the model (3.2) is used
to describe a BEC in a double-well potential, the limit N → ∞ at a constant c is
equivalent to having a larger trap for more atoms in the BEC or to tuning λ smaller
with the Feshbach resonance technique [7].

We are interested in how the second-quantized model (3.2) behaves in the two
limits N → ∞ and α → 0 and in particular whether the model’s behavior depends
on which limit is taken first. For this purpose, we follow Berry’s methodology [2] to
focus on the tunneling behavior of the quantized model.

3.1.3 Tunneling Rates

In Fig. 3.1, the tunneling rates are plotted as a function of the mean-field interaction
strength c [5]. Two sets of tunneling rates are calculated: one with the quantized
model (3.2) for a fixed number of bosons and the other with the mean-field model
(3.3). In computing the tunneling rate, we assume that the system is completely in
state a at t → −∞; the tunneling rate is the probability of remaining in state a at
t → ∞, the end of dynamical evolution. At a fixed number of bosons, the dynamics
of the quantized model (3.2) can be found by expanding a quantum state in terms of
Fock states |Na, Nb〉, where Na and Nb are the number of particles in quantum states
a and b, respectively.

Upon careful examination of the data in Fig. 3.1, one observes that c = v is a
critical value. When c < v, the tunneling rate goes to zero in the adiabatic limit
α → 0 for both the mean-field model and the quantized model. However, when
c > v, the tunneling rate for the mean-field model is always nonzero, while the
tunneling rate can be zero for the quantized model. Since the mean-field model is
the semiclassical limit of the quantized model, the mean-field result can be regarded
as the result from the quantized model with the limit N → ∞ having been taken.
Therefore, the results in Fig. 3.1 show that the tunneling behavior in the quantized
model (3.2) depends strongly on the order of the limits taken, while this dependence
itself relies on the value of the mean-field interaction strength c [5].
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Fig. 3.1 Tunneling rate as a function of the mean-field interaction strength c for v = 0.2. The solid
lines are obtained with the mean-field model (3.3) for α = 0.005, 0.001, 0.0001, and 0.00001 (from
top to bottom); the dot-dashed lines are obtained with the quantized model (3.2) for α = 0.001,
0.0001, and 0.00001 (from top to bottom) with N = 10. The inset shows the tunneling rates for
the mean-field model and the quantized model with different N at α = 0.0001, demonstrating the
convergence

3.1.4 Energy Band Structure

To understand the results shown in the section above, we first examine the energy
levels of the second-quantized model (3.2) as functions of γ , the slowly changing
system parameter. These energy levels, which can be found by directly diagonalizing
the Hamiltonian Ĥ , are plotted in Fig. 3.2. A sharp change appears in the structure of
energy levels as the mean-field interaction c changes: a net of anticrossings appears
in the lower part of the quantized energy levels when c > v. As described previously
[8], when c > v, a loop structure emerges in the energy band of the mean-field model
(3.3). When the mean-field energy levels (circles) are also plotted in Fig. 3.2, we find
that the quantized energy levels are bounded by themean-field energies. In particular,
the mean-field energy levels envelop the net of anticrossings in the quantized energy
levels. Such a correspondence was first reported in [4].

The structural change in the energy bands is associated with a change in the phase
space of the mean-field model (3.3) as shown in Fig. 3.3. In plotting this figure, we
note that the mean-field model, in fact, has only two independent variables and that
its Hamiltonian can be reduced to [9]

Hmf = γ p − cp2 + v

2

√
1 − 4p2 cos q, (3.4)

where p = (|a|2 − |b|2)/2 and q = θb − θa , with θa,b being the phases of a and b.
It is clear from Fig. 3.3 that when c < v, there is one minimum and one maximum;
when c > v, we observe two local minima, one maximum and one saddle point.
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Fig. 3.2 Energy levels from the second-quantized model with N = 20 and the mean-field model.
The solid lines are quantized energy levels; the open circles are mean-field energy levels. Note that
for comparison with the mean-field theory, the quantized energy levels from Ĥ have been divided
by N

Fig. 3.3 Energy contours of the mean-field model Hmf . Left: c = 0.1, v = 0.2, and γ = 0.0; right:
c = 0.4, v = 0.2, and γ = 0.0. The gray colors indicate the relative values of the mean-field energy,
with darker gray for smaller energy values

Since these extremal points correspond to the eigenstates in the mean-field energy
bands in Fig. 3.2 [9], we conclude that the structural change in the phase space is
connected with the structural change in the energy levels.

This connection can be further explored by requantizing the mean-field model
Hmf with the Sommerfeld theory, which states that the quantum motions are the
periodic motions in the classical phase space that satisfy

1

2π

∮
pdq = n�

N
, n = 0, 1, 2, . . . . (3.5)



78 3 Quantum-Classical Correspondence of an Interacting Bosonic Many-Body System

Fig. 3.4 Comparison
between the energy levels of
the second-quantized model
(dashed lines) with N = 40
and the Sommerfeld energy
levels (open circles). a
c = 0.1, v = 0.2; b c = 0.4,
v = 0.2. For clarity, we have
plotted only a portion of the
energy levels

The division by N comes from the fact that the mean-field Hamiltonian is an average
for one particle, Hmf = 〈Ĥ〉/N . One can view �e f f = �/N as the effective Plank
constant for Hmf . In our calculations, the natural unit � = 1 is used. For convenience,
we call the energy levels obtained from (3.5) the Sommerfeld energy levels. These
levels are shown and compared with the quantized energy levels of Ĥ in Fig. 3.4.

When c < v, the mean-field Hamiltonian has exactly one maximum (q = 0) and
one minimum (q = π). The Sommerfeld quantization around the maximum pro-
duces energy levels lower than the maximum energy, while the quantization around
the minimum generates energy levels higher than the minimum. This condition
explains why the mean-field energy levels bound the quantized energy levels in
Fig. 3.2. We also observe that the energy gap arises from the different quantization
number in (3.5), from which we estimate that the energy gap between the lowest two
energy levels at γ = 0 is Δ � v

√
1 − c/v, independent of N , which is consistent

with the numerical results shown in Fig. 3.5a.
When c > v, the phase space of Hmf becomes very different: two local minima

existwith an additional saddle point. In this case, theSommerfeld quantization around
the two local minima gives rise to two sets of Sommerfeld energy levels. In the lower
part of Fig. 3.4, for clarity, we have plotted only one set. If two sets were plotted, they
would form a net of crossings, matching closely with the anticrossing net from Ĥ . In
implementing the Sommerfeld quantization, we have ignored the tunneling through
the energy barrier between the two local minima. Once the tunneling is considered,
degeneracies are lifted, and the crossings becomeanticrossings. This result shows that
the energy gaps inside the triangular net have a different origin from the energy gaps
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Fig. 3.5 a Energy gap between the lowest two eigenenergies in the second-quantized model at
γ = 0. The squares represent c = 0.1, and the dots represent c = 0.4, with v = 0.2 for both. The
solid line is the approximate result Δ = v

√
1 − c2/v2 for c < v. b Ratio of the bosons in the right

well at the end of the tunneling process. The computation is performed with the second-quantized
model Ĥ with a sweeping rate α = 0.0001

outside the net or in the case of c < v. The energy gaps produced at these crossings
can be estimated with theWKBmethod. Since the effective Planck constant for Hmf

is �/N , we expect that the gaps decrease exponentially with N , which is exactly
what the numerical results in Fig. 3.5a indicate [5].

3.1.5 Commutability Between Two Limits

It is now straightforward to understand the tunneling behavior shown in Fig. 3.1. Let
us recall the Landau-Zener (LZ) tunneling in a two-level model [10]. As γ changes
with time as γ = αt , the LZ tunneling rate is rLZ = e−πΔ2/2α , where Δ is the energy
gap between the two levels. For a multilevel system such as our second-quantized
model Ĥ , the above equation remains a satisfactory approximation for the tunneling
rate between two consecutive energy levels. We use the tunneling between the two
lowest energy levels as an example. As already analyzed, the energy gap changes
with N as follows [5]:

Δ =
{

κ1v, c < v;
Nκ2e−ηN , c > v.

(3.6)

The parameter κ1 � √
1 − c/v. The other two parameters, κ2 and η, can be computed

with the WKB method as in [2] or with a more sophisticated method [11]. This
approach leads to the following tunneling rate:
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r ∼ rLZ =
⎧⎨
⎩
e− πκ21 v2

2α , c < v;
e− πN2κ22

2αe2ηN , c > v.

(3.7)

For the case of c < v, it is clear that we have

lim
N→∞ lim

α→0
r = lim

α→0
lim
N→∞ r = 0, (3.8)

which shows that the two limits α → 0 and N → ∞ are commutable. This finding
explains why when c < v, both sets of the tunneling rates in Fig. 3.1 become zero as
α → 0.

For the other case, c > v, the tunneling rate takes different values at two different
limits: {

limN→∞ limα→0 r = 0;
limα→0 limN→∞ r > 0.

(3.9)

This expression reveals that the two limits are no longer commutable. In the first limit,
where the adiabatic limit α → 0 is taken at a fixed number of bosons, the energy
gap is finite, and the system proceeds slowly enough not to cause tunneling. In the
second limit, since the energy gap is already closed at N → ∞, tunneling occurs
regardless of how slowly γ changes, which explains why the tunneling rate from the
mean-field model is always nonzero for c > v (Fig. 3.5b). The incommutability of
these two limits also implies that the mean-field theories, such as the GP equation
for BECs, can be invalid for the adiabatic limit. One example is the Bloch states for a
BEC in an optical lattice. In such a system, the Bloch wave number k can be regarded
as an adiabatic parameter. If the GP equation was always valid in the adiabatic limit,
it would mean that stable Bloch states should exist for all possible k. However, as
shown in [12], a significant portion of Bloch states are unstable.

3.2 Quantum-Classical Correspondence of the Adiabatic
Geometric Phase

3.2.1 Interacting Bosonic Many-Body System

We consider an interacting boson system described by the second-quantized Hamil-
tonian [13],

Ĥ = Z

2
(â†1 â1 − â†2 â2) + c

4
(â†1 â1 − â†2 â2)

2 + ρ

2
(eiφ â†1 â2 + e−iφ â†2 â1), (3.10)
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where â† (â) and b̂† (b̂) are the bosonic creation operators (annihilation operators) for
two quantum states, labeled |1〉 and |2〉, respectively. Z is the energy offset between
the two quantum states. The parameter ρe±iφ measures the coupling between the
two atomic states, and c = g/V , with g being proportional to the atomic s-wave
scattering length and V being the quantized volume of the atoms; n = N/V is the
mean density of the boson atoms, and the total number of atoms N is conserved.
The above model can be derived from the bosonic-field Hamiltonian [14] and has
received extraordinary attention in the literature on BECs. For φ = 0, model (3.10)
reduces to thewell-known boson Josephson junction (BJJ)model [15, 16], which has
been used to describe the tunneling dynamics of boson atoms between double-well
potentials or two internal quantum states [3, 17].

The dynamics of system is governed by the Schrödinger equation, i�∂|Ψ 〉/∂t =
Ĥ(R)|Ψ 〉, where R = (Z , ρe±iφ, c) denotes the system parameters. The i th eigen-
state |ψ̄i (R)〉 satisfies the eigenequation Ĥ(R)|ψ̄i (R)〉 = Ei (R)|ψ̄i (R)〉, with Ei

being the eigenenergy. For convenience, we can expand |ψ̄i (R)〉 by Fock states; that
is, |ψ̄i (R)〉 = ∑N

m=0 c
i
m(R)|m, N − m〉, where cim is the probability amplitude of the

corresponding Fock state |m, N − m〉 = [(N − m)!m!]−1/2(â†1)
m(â†2)

N−m |0〉, with
m = 0, 1, . . . , N and N − m being the particle numbers in quantum states |1〉 and |2〉,
respectively. The symbol |0〉 denotes the vacuum state, which is defined by â1|0〉 =
â2|0〉 = 0. The Hamiltonian Ĥ(R) can thus be expressed as an (N + 1) × (N + 1)
matrix, and the matrix element is given by Hm,n = Z(2n − N )/2 · δm,n + c[n2 +
(N − n)2 − 2n(N − n)]/4 · δm,n + ρeiφ

√
(N − n)(n + 1)/2 · δm,n+1 + ρe−iφ√

n(N − n + 1)/2 · δm,n−1, with δi, j being the delta function. The coefficients cim(R)

satisfy the normalization condition
∑

m |cim(R)|2 = 1. Even though these coefficients
can be readily obtained by numerically diagonalizing the Hamiltonian matrix, they
typically cannot be expressed in explicit forms analytically. However, with some
approximations, we can derive their explicit forms [13].

3.2.2 Mean-Field Hamiltonian

For quantum many-body boson system (3.10), we define the trial state |Ψ 〉 in terms
of the SU(2) coherent states (CSs) [6], i.e., |Ψ 〉 = 1√

N ! (αâ
†
1 + βâ†2)

N |0〉, where |0〉
denotes the vacuum state as defined in the previous section. A variational scheme
based on the above SU(2) CSs leads to the Hamiltonian [18]

HCS = N Z

2
(|α|2 − |β|2) + Nce

4
(|α|2 − |β|2)2

+Nρ

2
(eiφα∗β + e−iφαβ∗), (3.11)

where α and β are complex probability amplitudes of states |1〉 and |2〉, respectively,
that satisfy the normalization condition |α|2 + |β|2 = 1. The parameter ce = cN
denotes the effective atom-atom interactions.
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According to [19], we define for convenience the total population probability
p1 = |α|2 + |β|2 and the total phase q1 = arg(α); these two quantities form a pair of
canonical variables. The other pair of canonical variables can be defined by the pop-
ulation probability p2 = |β|2 and the relative phase q2 = arg(α) − arg(β). (Indeed,
p2 = α2 − β2 and q2 = arg(β) − arg(α) also form a pair of canonical variables, and
this choice is equivalent to our choice; see [19] for details.) Using these canonical
variables, a classical Hamiltonian can be obtained from (3.11):

HC(p1; p2, q2) = HCS

N
= Z

2
(p1 − 2p2) + ce

4
(p1 − 2p2)

2

+ρ
√

(p1 − p2)p2 cos(q2 − φ). (3.12)

The fixed points of the classical Hamiltonian are given by p1 = 1 and ( p̄2, q̄2), which
satisfy the following equations:

∂HC(1; p2, q2)
∂ p2

∣∣∣∣
( p̄2,q̄2)

= ∂HC(1; p2, q2)
∂q2

∣∣∣∣
( p̄2,q̄2)

= 0. (3.13)

Following (3.13), we rewrite the fixed point equations as

ce(1 − 2 p̄2) + Z − (1 − 2 p̄2)ρ cos(q̄2 − φ)√
1 − (1 − 2 p̄2)2

= 0, (3.14)

1

2

√
1 − (1 − 2 p̄2)2ρ sin(q̄2 − φ) = 0. (3.15)

We treat Z as a perturbative parameter and expand the solution in the first order of
Z around the fixed point for Z = 0, which takes the form

p̄2 = p̄(0)
2 + δp · Z , (3.16)

where p̄(0)
2 is the solution of (3.14) for Z = 0. There are three solutions to p̄(0)

2 , and
we express them as follows:

p̄(0)
2,0 = 1

2
, p̄(0)

2,± = 1

2

(
1 ±

√
1 − ρ2

c2e

)
. (3.17)

Substituting (3.16) back into (3.14) and neglecting the higher-order terms of Z , one
can obtain the solutions of δp corresponding to the above three solutions of p̄(0)

2 .
Note that the change of the fixed points (q̄2 = φ) → (q̄2 = φ + π) is equivalent to
the transformation ρ → −ρ. We therefore only consider the situation ρ > 0 and
ce < 0. For q̄2 = φ + π , the three solutions of δp are

δp0 = 1

2(ce + ρ)
, δp+ = δp− = − ρ2

2ce(c2e − ρ2)
. (3.18)
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Inserting these solutions into the classical Hamiltonian (3.12) and comparing the
values of each HC( p̄2, q̄2), we obtain the fixed point that corresponds to the highest
excited state (HES) [or the ground state (GS)] of the quantum system.

We now focus on the case of ce < 0 and ρ > 0. Under this condition, when
|ce| < ρ, there are only two fixed points, and two more fixed points appear when
|ce| > ρ. The phase space of the above classical Hamiltonian for varied parameters
is discussed in [9, 19]. When the parameter Z is small, we use the perturbation
approach to calculate the fixed points analytically. By neglecting the higher-order
terms of Z , forρ < |ce|, we have

( p̄2, q̄2) =
⎧⎨
⎩

(
1
2 [1 ±

√
1 − ρ2

c2e
− Zρ2

ce(c2e−ρ2)
], π + φ

)
;(

1
2 (1 + Z

ce−ρ
), φ

)
,

(3.19)

and forρ > |ce|,

( p̄2, q̄2) =
⎧⎨
⎩

(
1
2 (1 + Z

ce+ρ
), π + φ

)
;(

1
2 (1 + Z

ce−ρ
), φ

)
,

(3.20)

where the sign ± in the first line of (3.19) indicates the situations Z > 0 and Z < 0,
respectively. From the perspective of classical-quantum correspondence, the two
branches of fixed points (3.19) or (3.20) correspond to the GS and the HES of
quantummodel (3.10), respectively, because the fixed points correspond to the global
minimum energy and the global maximum energy of the classical Hamiltonian [5].

We now give the explicit formula of the SU(2) CSs in terms of Fock states as
follows [18]:

|Ψ 〉 = 1√
N ! (αâ

†
1 + βâ†2)N |0〉 =

N∑
m=0

√
N !

(N − m)!m!α
mβN−m |m, N − m〉. (3.21)

For the eigenstates |ψ̄i (R)〉, following (3.21) and using fixed points (3.19) and (3.20),
the expressions of the coefficients cim(R) for the GS and the HES of quantum model
(3.10) are given by

|cim(R)|2 = N !
(N − m)!m! (1 − p̄2)

m p̄N−m
2 . (3.22)

We note that the above equation provides a convenient approximation of the quantum
eigenstateswhen |ce| ≤ 1 and |Z |√N ≤ 1. The analytical result (3.22) has been com-
pared with the numerical results from direct diagonalization of the second-quantized
Hamiltonian Ĥ(R). The agreement is satisfactory, as shown in Fig. 3.6 [13].

Wenowshow thevalidity of the aboveCSdescription.Whenφ = 0, (3.10) reduces
to the model discussed by Leggett in a review article [3]. By defining the oper-
ators Ĵx ≡ (â†1 â2 + â†2 â1)/2, Ĵy ≡ −i(â†1 â2 − â†2 â1)/2, and Ĵz ≡ (â†1 â1 − â†2 â2)/2,
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(a) (b)

Fig. 3.6 Comparison between the numerical results from direct diagonalization of the second-
quantized Hamiltonian Ĥ and the analytical solution given by (3.22) for the GS (a) and the HES
(b). The parameters are Z = 0.001, ρ = 0.5, N = 100, and ce = −0.2

the phase operator ϕ̂ can be introduced as Ê ≡ ei ϕ̂ = [(N/2 − Ĵz)(N/2 + Ĵz +
1)]−1/2( Ĵx + i Ĵy). Then, the Hamiltonian can be rewritten in terms of these new
operators as

Ĥ( Ĵz, ϕ̂) = Z Ĵz + c Ĵ 2
z + ρ

√(
N

2

)2

− Ĵ 2
z cos ϕ̂. (3.23)

The phase operators ϕ̂ and Ĵz are canonical variables of the above system that satisfy

[ Ĵz, ϕ̂] = −i. (3.24)

It was proved in [3] that the state |Ψ 〉 is a CS and has the following property:

Ê |Ψ 〉 = eiϕ|Ψ 〉 + δ · |Ψ 〉⊥, (3.25)

where ϕ is a real number, |Ψ 〉⊥ is a normalized state orthogonal to |Ψ 〉, and δ is of
order N−1/2. Thus, one can prove that the uncertainty of the phase operator for state
|Ψ 〉 is of order N−1/2, that is, Δϕ̂ ∼ N−1/2.

Since state |Ψ 〉 is a CS, the quantity Δ ĴzΔϕ̂ for such a state has the following
relation:

Δ ĴzΔϕ̂ ∼| [ Ĵz, ϕ̂] | . (3.26)
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It is straightforward to determine that Δ ĴzΔϕ̂ ∼ 1 and therefore that the uncertainty
of Ĵz for state |Ψ 〉 is of order N 1/2, that is, Δ Ĵz ∼ N 1/2. Then, we can estimate the
uncertainty of Ĥ( Ĵz, ϕ̂) for the CS |Ψ 〉, which is

ΔĤ ∼ ZΔ Ĵz + c(Δ Ĵz)
2 + ρΔ ĴzΔϕ̂ ∼ Z

√
N + cN + ρ. (3.27)

For |c|N = |ce| ≤ 1, |Z |√N ≤ 1, and ρ ∼ 1, we observe thatΔĤ ∼ 1. Considering
that 〈Ψ |Ĥ |Ψ 〉 is of order N , one has ΔĤ/〈Ψ |Ĥ |Ψ 〉 ∼ 1/N , which implies that if
the total particle number N � 1, then (3.22) gives a satisfactory approximation of
the quantum eigenstates of model (3.10).

3.2.3 Quantum Berry Phase

To calculate the Berry phase of the system, for simplicity, we fix the parameters Z ,
ρ, and c and change only the parameter φ adiabatically from 0 to 2π . We introduce
the dimensionless adiabatic parameter v ∼ |dφ/dt | ∼ 1/T (T is the time duration)
as the measure of how slow the parameter changes. The adiabatic parameter tends
to zero, i.e., v → 0, indicating the adiabatic limit. The quantum adiabatic theorem
states that if the quantum system is initially prepared in an eigenstate |ψ̄i (R(0))〉,
then at time t = T , the system will be found in the eigenstate |ψ̄i (R(0))〉, and a
geometric phase factor will be acquired during the adiabatic process. This phase
factor is independent of the time duration T and is related only to the geometric
property of the closed path in parameter space. To calculate this geometric phase
factor, we first make the variable transformation â′

2 = â2eiφ and substitute it back
into (3.10); then, we obtain a new Hamiltonian Ĥ(R′) with a new parameter vector,
R′(Z , ρ, c). Ĥ(R′) is not an explicit function of the time-dependent parameter φ(t).
According to theFock-state bases definedpreviously,we can rewrite the i th eigenstate
of the system as |ψ̄i (R)〉 = ∑N

m=0 c
i
m(R′)e−i(N−m)φ |m, N − m〉. Clearly, cim(R) =

cim(R′)e−i(N−m)φ , and |cim(R′)|2 = |cim(R)|2. Finally, for our interacting N -particle
system, the Berry connection reads

AN (R) = i〈ψ̄i (R)|∇R|ψ̄i (R)〉 =
N∑

m=0

(N − m)|cim(R′)|2. (3.28)

The Berry phase for the i th eigenstate is the circuit integral of the Berry connection
(3.28), that is,

γN =
∮

AN (R) · dR = 2π
N∑

m=0

(N − m)|cim(R′)|2. (3.29)
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It is clear that this quantum Berry phase is time independent and is explicitly N
dependent. By applying the previous explicit expression of |cim(R)|2, for both the GS
and the HES, we obtain the analytical results of γN for arbitrary particle number N .

3.2.4 Classical Hannay Angle

To find the classical analogy of the quantum Berry phase (3.29), we calculate the
Hannay angle from the classical Hamiltonian HC .We know that the classical Hannay
angle determined by the evolution of angle variables can be obtained by making
a canonical transformation to action-angle variables. This transformation can be
achieved in terms of a generating function S = ∑

i Si (qi , Ii ;φ(t)) according to the
scheme {pi , qi } → Si (qi , Ii ;φ(t)) → {θi , Ii }with i = 1 and 2. To find the canonical
transformation between the old variables and the action-angle variables, we need to
simplify the Hamiltonian HC by expanding it around the fixed points.

We first consider the HES denoted by the fixed point q̄2 = φ. Let us make a
perturbation expansion around this fixed point by p2 = p̄2 + p̃ and q2 = q̄2 + q̃ .
Inserting these expansions into (3.12) and ignoring the terms of third order (i.e., p̃3

and q̃3) and higher, we obtain

HD(p1; p2, q2) = H0(p1) + T (p1) p̃ + G(p1) p̃
2 + F(p1)q̃

2, (3.30)

where

H0(p1) = Z

2
(p1 − 2 p̄2) + ce

4
(p1 − 2 p̄2)

2 + ρ
√

(p1 − p̄2) p̄2, (3.31)

T (p1) = ρ

2

(2 p̄2 − 1)
√
p1 − p̄2 + (p1 − 2 p̄2)

√
1 − p̄2√

(p1 − p̄2)(1 − p̄2) p̄2
+ ce(1 − p1), (3.32)

G(p1) = ce − ρp21
8[ p̄2(p1 − p̄2)]3/2 , (3.33)

F(p1) = −ρ

2

√
p̄2(p1 − p̄2). (3.34)

Considering E = HD(p1; p2, q2) to be a constant, we have

p1 = Γ ( p̃, q̃; E) = l, (3.35)

where Γ ( p̃, q̃; E) can be obtained by setting (3.30) as a constant E . Since p1 is
independent of p̃ and q̃ , the above equation implies that l should be a constant, and
then, we have

E − H0(l) + T 2(l)

4G(l)
= G(l)

[
p̃ + T (l)

2G(l)

]2

+ F(l)q̃2. (3.36)



3.2 Quantum-Classical Correspondence of the Adiabatic Geometric Phase 87

For our system, one can assume that the generating function takes the form of
S(q1, I1, q2, I2;φ(t)) = S1(q1, I1;φ(t)) + S2(q2, I2;φ(t)), where S1 and S2 satisfy
the equations p1 = ∂S1(q1, I1;φ(t))/∂q1 and p2 = ∂S2(q2, I2;φ(t))/∂q2, respec-
tively. According to (3.35) and (3.36), we have

∂S1(q1, I1;φ(t))

∂q1
= l, (3.37)

∂S2(q2, I2;φ(t))

∂q2
=

√
Eh(l) − F(l)q̃2

G(l)
+ p̄2 − T (l)

2G(l)
, (3.38)

where Eh(l) = E − H0(l) + T 2(l)/(4G(l)). By setting ph = p̃ + T (l)/(2G(l)),
(3.36) becomes a harmonic-typeHamiltonian Eh(l) = G(l)p2h + F(l)q̃2, andwe can
define a new generating function by ph = ∂S′

2(q̃, I2;φ(t))/∂q̃
= √

(Eh(l) − F(l)q̃2)/G(l). With the help of the definition of actions, we have

I1 = 1

2π

∮
∂S1(q1, I1;φ(t))

∂q1
dq1 = l, (3.39)

I2 = 1

π

∫ √
Eh(l)/F(l)

0

∂S′
2(q̃, I2;φ(t))

∂q̃
dq̃ (3.40)

= Eh(l)

2
√
G(l)F(l)

.

From(3.37) and (3.38),we canobtain the branches of the generating functionbyusing
the relation p2 = ∂S2(q2, I2;φ(t))/∂q2 = ∂S′

2(q̃, I2;φ(t))/∂q̃ + p̄2 − T (l)/(2G(l))
and considering the fact that (p2, q2) are periodic evolutions around ( p̄2, φ).

S1(q1, I1;φ(t)) = I1q1, (3.41)

S2(q2, I2;φ(t)) = Sg +
[
p̄2 − T

2G

]
(q2 − φ), (3.42)

where

Sg =
∫ q2

φ

[
Eh(I1) − F(I1)(q2 − φ)2

G(I1)

]1/2

dq2 = 2I2

∫ �

0

√
1 − x2dx, (3.43)

with � = √
F(I1)/Eh(I1)(q2 − φ). We can now express the generating function as

S(q1, I1, q2, I2;φ(t)) = I1q1 + 2I2

∫ �

0

√
1 − x2dx +

[
p̄2 − T

2G

]
(q2 − φ).(3.44)
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Finally, through a canonical transformation, we obtain a new Hamiltonian, H̄(I1, θ1,
I2, θ2; t), that differs from the old Hamiltonian HD(p1; p2, q2) both in value and in
functional form since the canonical transformation is time dependent through the
slowly changing parameter φ(t). In fact,

H̄(I1, θ1, I2, θ2; t) = HI (I1, I2;φ) + dφ

dt

∂S(q1, I1, q2, I2;φ)

∂φ
, (3.45)

where HI (I1, I2;φ) ≡ HD(p1; p2, q2), which is the angle-independent Hamiltonian
related to the parameter φ, takes the form

HI (I1, I2;φ(t)) = 2I2
√
G(I1)F(I1) + H0(I1) − T 2(I1)

4G(I1)
. (3.46)

The Hamilton’s equation for the angle variables is dθi/dt = ∂ H̄/∂ Ii , with i = 1 and
2. We apply this equation to (3.45); the first term gives the part of the evolution that
would occur even if the parameters remained constant, arising from the frequencies
ωi (Ii ;φ) = ∂HI (I1, I2;φ)/∂ Ii , with i = 1 and 2. Furthermore, from the second term
in (3.45), we can obtain the Hannay angle by

θ i
H =

∫ T

0
dt

dφ

dt

∂

∂ Ii

(
∂S

∂φ

)
. (3.47)

Note that the Berry phase is the shift of the total phase; thus, this phase corre-
sponds to the Hannay angle for the action I1. From (3.44), we have ∂(∂S/∂φ)/∂ I1 =
∂(∂Sg/∂φ)/∂ I1 + ∂[T (I1)/(2G(I1))]/∂ I1. Note that the term of ∂(∂Sg/∂φ)/∂ I1 in
(3.47) is proportional to the action I2; therefore, this term makes no contribution to
the Hannay angle for I1. By using the explicit expressions of (3.32) and (3.33) and
then considering I1 = 1 and I2 = 0 for the eigenstates, a straightforward but tedious
calculation gives the Hannay angle for the HES as follows:

θ HES
H =

∮
ρ p̄2 − 4ce[(1 − p̄2) p̄2]3/2
−ρ + 8ce[(1 − p̄2) p̄2]3/2 dφ. (3.48)

Similarly, we can obtain the Hannay angle for the GS (i.e., q̄2 = π + φ) as well; this
expression takes the form

θGS
H =

∮ −ρ p̄2 − 4ce[(1 − p̄2) p̄2]3/2
ρ + 8ce[(1 − p̄2) p̄2]3/2 dφ. (3.49)

To express the above integrals in explicit form, we substitute (3.19) into (3.48)
and (3.49); keeping the terms of first order in parameter Z , we have
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Fig. 3.7 Comparison
between the approximate
analytical solutions and the
exact numerical solutions of
the Hannay angle for both
the GS and the HES.The
parameters are ρ = 0.1 and
ce = −1

θ HES
H = −π

[
1 − Zρ

(ce − ρ)2

]
, (3.50)

θGS
H = −π

[
1 − 2ceZρ2

(c2e − ρ2)2
∓ ce

√
c2e − ρ2

c2e − ρ2

]
. (3.51)

To check the above two approximate analytical results, we solve (3.13) numerically;
the results are shown in Fig. 3.7. The analytical results are suitably accurate in the
small-Z region [13].

3.2.5 Connection Between the Berry Phase and the Hannay
Angle

With the explicit expressions of the Berry phase and Hannay angle at hand, we can
determine the relation between them. We first calculate the number derivative of
the quantum Berry phase. Substituting our previously obtained analytical solutions
(3.22) into (3.29), we can obtain the particle number derivative of the quantum Berry
phase analytically for the GS,

∂γ GS
N

∂N
= π

[
1 − 2ceZρ2

(c2e − ρ2)2
∓ ce

√
c2e − ρ2

c2e − ρ2

]
, (3.52)

and for the HES,
∂γ HES

N

∂N
= π

[
1 − Zρ

(ce − ρ)2

]
. (3.53)
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Fig. 3.8 Difference between
the number derivative of the
Berry phase and the minus
Hannay angle versus the
particle number for both the
GS and the HES. All results
shown here use the exact
numerical solutions. Solid
lines are plotted to guide the
eye, with the slope being −2.
The parameters are
Z = 0.01, c = −0.1, and
ρ = 0.1

Comparing these results with the Hannay angles given by (3.31) and (3.32), we
notably find that they are identical except for a sign difference. Even though the
analytical relation shows that ∂γN/∂N exactly equals −θH , there indeed exists a
small difference proportional to the quantum fluctuation of order (1/N ) between the
two quantities because of the approximation that was used in deriving the analytical
expressions of the quantum eigenstates.

We have numerically calculated the quantum eigenstates (i.e., cim) and the classical
fixed points [i.e., ( p̄2, q̄2)] and obtained the exact numerical values of ∂γN/∂N and
−θH for both the GS and the HES. The results show that the difference between
the minus classical Hannay angle and the particle number derivative of the quantum
Berry phase tends to 0with increasing particle number N .Moreover, their differences
converge to 0 in the power law of 1/N 2 (see Fig. 3.8). Therefore, we present the
relation between the classical Hannay angle and the quantum Berry phase as follows
[13]:

θH = −∂γN

∂N
+ O(N−2). (3.54)

This formula is the key result of the present section; we now provide some explana-
tion.According to adiabatic theory,we know that an N -bodywave function acquires a
total phase λN = ∫

ENdt + γN during a cyclically adiabatic evolution. In the SU(2)
coherent-state description, the corresponding single-particle wave function has a
phase shift λ = ∂λN/∂N = ∫

μdt + ∂γN/∂N , where μ = ∂EN/∂N is the chemi-
cal potential; its time integral gives the dynamic phase. The second term, ∂γN/∂N ,
characterizes the geometric change and corresponds to the classical Hannay angle
θH .

Our relation θH ∼ −∂γN/∂N is similar to the well-known relation established by
Berry at the semiclassical level [20], where the classical action has been replaced by
the total particle number in our many-body case. For our many-body system, the total
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Table 3.1 Comparison of the adiabatic geometric properties with different descriptions for the
interacting many-body bosonic system

System Interacting many-body bosonic system

Description Second-quantized
model:
Ĥ = Ĥ(â j , â

†
j ; R), â†j

(â j ) is the bosonic
creation (annihilation)
operator, R is the
parameter vector

Mean-field model:
HMF (R) =
limN→∞ 〈Ψ |Ĥ |Ψ 〉

N , with

n = N
V = constant,

|Ψ 〉 =
1√
N ! (

∑
j α j â

†
j )

N |0〉 is
the SU(2) coherent
state, V is the quantized
volume

Classical Hamiltonian:
HC (N ; R) = 〈Ψ |Ĥ |Ψ 〉

N ,
N is the total number of
particles, |Ψ 〉 is the
SU(2) coherent state

Adiabatic
geometric
property

Quantum Berry phase:
γN = ∮

AN (R) · dR,
AN (R) = i〈ψ̄ |∇R|ψ̄〉 is
the Berry connection,
|ψ̄(R)〉 is the eigenstate

Nonlinear geometric
phase: γG = γ − γD =
γB + γNL , γ is the total
phase and
γD = ∫

μ(R)dt is the
dynamical phase with μ

being the chemical
potential. γNL is the
nonlinear correction,
Berry phase is
γB = i

∮
ψ̄∗∇Rψ̄ · dR

with ψ̄ being the
eigenstate in projective
Hilbert space

Classical Hannay angle:
θH = ∫ T

0 dt dRdt
∂
∂ I

(
∂S
∂R

)
,

I is the action variable,
S is the generating
function, T is the period
of the cycle evolution

Connection For N � 1, θH = − ∂γN
∂N + O(N−2); for N → ∞ and n = N

V = const.,
θH = −γG

particle number N together with the total phase exactly forms a pair of canonical
conjugate variables, and the number of particles is naturally quantized as an integer.

We add two remarks. First, we note that the classical Hamiltonian HC reduces to
the mean-field Hamiltonian in the thermodynamic limit N → ∞, while the particle
density n = N/V is kept constant [5]. In this limit, we compare our classical Hannay
angle with themean-field Berry phase obtained in [21] and find that they are identical
except for a sign difference (see Table3.1). Second, in practical experiments, the
single-particle phase is expected to affect the interference of the condensates and
can be measured in BEC systems [22]. From this perspective, we anticipate that
our classical Hannay angle will be detected in experiments in many-body systems
because this angle is just the single-particle phase change during the adiabatic process
in the thermodynamic limit.
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Chapter 4
Exotic Virtual Magnetic Monopoles
and Fields

Abstract In this chapter, we introduce exotic virtualmagneticmonopoles and fields;
these phenomena are formed in two typical systems. The disk-shaped virtual mag-
netic field is found in a long-range interacting spin-half system with a mean-field
description. The fractional virtual magnetic monopole occurs in a mean-field ultra-
cold atom-molecule conversion system. The virtual magnetic monopole chain is
demonstrated in a quantum many-body ultracold atom-molecule conversion system.

4.1 Disk-Shaped Virtual Magnetic Field

In this section, we analytically calculate the Berry phase of a long-range interacting
spin-1/2 system in the mean-field perspective. This mean-field Berry phase reduces
to the Berry phase of the single spin-1/2 system when the interaction vanishes.
The magnetic-like flux interpretation of the Berry phase shows that the source and
sink of the relevant magnetic-like field are located, respectively, at the disk-shaped
level-crossing region, where the first-order quantum phase transition occurs, and its
boundary, where the continuous quantum phase transition occurs. Specifically, one
part of the field originates from the level-crossing region and ends at its boundary,
while the other part comes from infinity and also ends at its boundary. The shape of
the interface between these two parts reflects the critical property of the system. From
the asymptotic distribution of the field at infinity, we find that the source and sink
as a whole can be interpreted as a disk-shaped monopole with a negative magnetic
charge. We emphasize that all these results generalize the abovementioned classic
paradigm to the interacting spin-1/2 system and that the analogues of the disk-shaped
monopole and its exotic magnetic-like field can generally exist in other interacting
spin systems [1].

We consider a long-range interacting spin-1/2 system in an adjustable external
magnetic field R = (x, y, z) = (ρ cosφ, ρ sin φ, z). In appropriate units, the corre-
sponding Hamiltonian takes the form
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H =
N∑

i=1

R · σ i + K

N

N∑

i �=j=1

σ z
i σ

z
j , (4.1)

where σ i = (σ x
i , σ

y
i , σ z

i ) is the Pauli matrix vector of the ith spin, K is the reduced
interaction constant, and N (� 1) is the spin number. Expressing the state of the
system as |Ψ 〉 = |ψ〉N and applying the mean-field approximation to the
Hamiltonian (4.1), we obtain the mean-field Hamiltonian Hm = G · σ , where G =
R + (0, 0,K〈ψ |σ z|ψ〉). Then, the Schrödinger equation id |Ψ 〉/dt = H |Ψ 〉 (with
� = 1) reduces to the mean-field Schrödinger equation id |ψ〉/dt = Hm|ψ〉. Insert-
ing |ψ〉 = e−iλ(cos α

2 , sin α
2 e

iβ)T into this equation yields

dα

dt
= −2ρ sin(β − φ), (4.2)

dβ

dt
= 2z + 2K cosα − 2ρ cot α cos(β − φ), (4.3)

dλ

dt
= z + K cosα + ρ tan

α

2
cos(β − φ). (4.4)

For a fixed K , (4.2) and (4.3) connect the projective Hilbert space spanned by (α, β)

with the parameter space spanned by (ρ, φ, z). If we introduce the mean spin vector
s = (sx, sy, sz) = 〈ψ |σ |ψ〉 = (sin α cosβ, sin α sin β, cosα), (4.2) and (4.3) can be
expressed in the following compact form:

ds
dt

= 2G × s. (4.5)

We now assume that the point (ᾱ, β̄) is a fixed point of the projective Hilbert space,
i.e., d ᾱ/dt = 0, and d β̄/dt = 0. At this point, (4.2) and (4.3), respectively, become

β̄ = φ or β̄ = φ + π, (4.6)

z + K cos ᾱ = ±ρ cot ᾱ, (4.7)

where the upper sign corresponds to β̄ = φ and the lower sign corresponds to β̄ =
φ + π . Similarly, (4.5) becomes Ḡ × s̄ = 0, where s̄ = (s̄x, s̄y, s̄z) = (sin ᾱ cos β̄,

sin ᾱ sin β̄, cos ᾱ) and Ḡ = R + (0, 0,K cos ᾱ). Because the fixed point of the pro-
jective Hilbert space corresponds to the eigenstate of Hm, (4.6) and (4.7) actu-
ally determine all eigenstates of Hm. Furthermore, from (4.6) and (4.7), we find
that the eigenvalue corresponding to the eigenstate |ψ̄〉 = (cos ᾱ

2 , sin ᾱ
2 e

iβ̄ )T can be
expressed as

μ = 〈ψ̄ |Hm|ψ̄〉 = ± ρ

sin ᾱ
, (4.8)

where the sign convention is the same as in (4.7).
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Table 4.1 Eigenvalues and eigenstates of Hm when z = 0

Eigenstate s̄z = cos ᾱ β̄(K > 0) β̄(K < 0) μ

|1〉 0 φ φ ρ

|2〉 0 φ + π φ + π −ρ

|3〉 −√
1 − ρ2/K2 φ φ + π K

|4〉 √
1 − ρ2/K2 φ φ + π K

When z = 0, the eigenstates and eigenvalues of Hm are shown in Table 4.1. Here,
we stress that the eigenstates |3〉 and |4〉 exist only when ρ < |K |. From Table 4.1,
we can find the ground state, i.e., the eigenstate with the minimum μ. For the ferro-
magnetic interaction case where K < 0, the disk-shaped region determined by z = 0
and ρ < |K | is the level-crossing region where the eigenstates |3〉 and |4〉 serve as the
degenerate ground states and the first-order quantum phase transition occurs [2, 3].
Outside this region, the eigenstate |2〉 serves as the ground state instead of eigenstates
|3〉 and |4〉. When ρ crosses the boundary of this region determined by z = 0 and
ρ = |K | from the outside to the inside, s̄z of the ground state changes continuously
from zero to a nonzero value and can thus be used as the order parameter to indicate
that a continuous quantum phase transition occurs at the boundary [1]. Actually, sim-
ilar quantum phase transitions occur widely in interacting spin systems [2–4]. When
z �= 0, the eigenstates and eigenvalues ofHm can be numerically obtained from (4.6),
(4.7), and (4.8), and no other quantum phase transition is found. In general, we can
analytically prove thatHm has two eigenstates when K2/3 < ρ2/3 + z2/3 and has four
eigenstates when K2/3 > ρ2/3 + z2/3.

Wenowconsider that the external fieldR changeswith time, andweuse the dimen-
sionless adiabatic parameter ε ∼ |dR/dt| to measure its rate of change. Furthermore,
we assume that ε is small enough that—according to the adiabatic evolution condi-
tion in mean-field models [5, 6]—the system, which is initially in an eigenstate of
Hm, can remain in this eigenstate and can thus evolve simultaneously withR.WhenR
returns to its initial value, the system acquires a mean-field Berry phase γ . Here, we
note that because Hm includes α and is thus state dependent, γ cannot be expressed
in the conventional form, i.e., γ �= −i

∮
L〈ψ̄ |∇|ψ̄〉 · dR = 1

2

∮
L(1 − cos ᾱ)dφ, where

L is the evolution loop of the system in the parameter space. To obtain the expression
for γ , we use the method introduced in [7] to separate the γ -related term from the
expression for dλ/dt. To proceed, we first note that because the adiabatic parameter
ε is small but finite, the system fluctuates around the eigenstate during the evolu-
tion,which implies thatα = ᾱ + δα andβ = β̄ + δβ, where δα ∼ δβ ∼ O(ε). Then,
from (4.4), (4.7), and (4.8), we obtain

dλ

dt
= μ +

[
μ

2 cos2(ᾱ/2)
− K

]
sin ᾱδα + O(ε2), (4.9)
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where the zero-order term μ has been completely decoupled. Integrating this term
over the evolution time, we obtain the corresponding dynamical phase. Furthermore,
from (4.3), (4.7), and (4.8), we obtain

d β̄

dt
= 2μ − 2K sin2 ᾱ

sin ᾱ
δα + O(ε2). (4.10)

Here, we note that dδβ/dt ∼ O(ε2). Combining (4.9) and (4.10) yields

dλ

dt
= μ + 1

2

[
1 − cos ᾱ

1 − (K/μ) sin2 ᾱ

]
d β̄

dt
+ O(ε2), (4.11)

where the first-order term, i.e., the γ -related term, has been completely decoupled.
Integrating this term over the evolution period and using (4.6), we find that the
mean-field Berry phase is

γ = 1

2

∮

L

[
1 − cos ᾱ

1 − (K/μ) sin2 ᾱ

]
dφ. (4.12)

Since the above derivation does not involve any restrictions on the eigenstate or
the evolution loop L, (4.12) is a general analytical expression for the mean-field
Berry phase of the system. In contrast to the previous result [8], (4.12) includes the
accumulative effect of the fluctuation during the evolution.

WhenK = 0, i.e., the interaction vanishes, (4.12) clearly reduces to the expression
for the Berry phase of the single spin-1/2 system. When K �= 0, the accuracy of
(4.12) can be confirmed by a numerical calculation if we consider γ as the difference
between the total phase and the dynamical phase in the adiabatic limit. For simplicity,
we assume that φ = 2π t/T with both ρ and z fixed. Under this assumption, the
numerical calculation consists of the following steps: (i) solve β̄ and ᾱ from (4.6)
and (4.7), and substitute ᾱ into (4.8) to obtain μ; (ii) integrate (4.2), (4.3), and (4.4)
from 0 to T with the initial values α0 = ᾱ, β0 = β̄ and λ0 = 0 to obtain λ; and (iii)
compare the result of (4.12) with the value that (λ − μT ) approaches at large T .

The integrand in (4.12) diverges when

μ = K sin2 ᾱ. (4.13)

From (4.7), (4.8), and (4.13), we obtain that

K2/3 = ρ2/3 + z2/3, (4.14)

μ = K1/3ρ2/3, (4.15)

cos ᾱ = −z1/3/K1/3, (4.16)

where (4.14) determines the divergence-related region in the parameter space and
(4.15) and (4.16) determine the divergence-related μ and eigenstate as functions
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of the parameters. Here, we emphasize that (4.14), (4.15), and (4.16) apply to all
eigenstates of Hm. From the previous description about eigenstates, we know that
the divergence-related region determined by (4.14) is exactly the region where the
number of the eigenstates changes, which indicates that the behavior of γ accurately
reflects the properties of the eigenstate.

From the derivation of (4.12), we conclude that the Berry phase γ is closely
related to the fluctuation δα. Substituting (4.6) and (4.13) into (4.10), we find that
at the divergence-related region, a slow change of φ leads to an infinite fluctuation
δα. For the present mean-field model, an infinite fluctuation around the ground state
arises only when the continuous quantum phase transition occurs. Therefore, the
divergence of the ground-state Berry phase γg can be interpreted as the consequence
of the quantum criticality. Here and below, the subscript g refers to the ground state.

From the form of (4.12), we find that the mean-field Berry phase γ is not propor-
tional to any solid angle and thus has no solid angle interpretation. Nevertheless, we
can always interpret γ as the flux of a magnetic-like field in the parameter space as
long as the field takes the appropriate form. This magnetic-like flux interpretation
actually serves as the differential formulation for γ . In the following, we perform
the interpretation of the ground-state Berry phase γg and reveal the relation between
this interpretation and the quantum phase transitions of the system.

We first define the vector potential Ag satisfying
∮
L Ag · dR = γg . Because β̄g =

φ + π , we have

Ag =
(

1

2ρ
− cos ᾱg

2ρ + 2K sin3 ᾱg

)
êφ, (4.17)

where êj denotes the unit vector in direction j, with j = ρ, z, and φ. We emphasize
that Ag is independent of the evolution loop L. We then define the magnetic-like field
Bg satisfying Bg = ∇ × Ag − δg , where δg denotes the contribution from the Dirac
string. A direct calculation gives

Bg =
(
U

∂ᾱg

∂ρ
+ V

)
êz −

(
U

∂ᾱg

∂z

)
êρ, (4.18)

where

∂ᾱg

∂z
= ρ cos2 ᾱg

(z + K cos ᾱg)2 + Kρ sin ᾱg cos2 ᾱg
, (4.19)

∂ᾱg

∂ρ
= − (z + K cos ᾱg) cos2 ᾱg

(z + K cos ᾱg)2 + Kρ sin ᾱg cos2 ᾱg
, (4.20)

U = 3K sin2 ᾱg cos2 ᾱg + K sin4 ᾱg + ρ sin ᾱg

2(ρ + K sin3 ᾱg)2
, (4.21)

V = − K sin3 ᾱg cos ᾱg

2ρ(ρ + K sin3 ᾱg)2
. (4.22)
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Fig. 4.1 Field-line
distribution of Bg in the
x − z plane when K = −1.
The arrows indicate the
direction of Bg

In addition, from the distribution ofAg at the largeR limit, we find that a Dirac string
exists along the positive z-axis.

Because the real antiferromagnetic ground state of the original system cannot be
described under the presentmean-field approximation,we focus on the ferromagnetic
interaction case where K < 0. Without loss of generality, we take K = −1. Then,
the field line distribution of Bg (see Fig. 4.1) shows that the source and sink of Bg

are located at the disk-shaped level-crossing region and its boundary, respectively.
Specifically, one part of Bg originates from the level-crossing region and ends at its
boundary, while the other part comes from infinity and also ends at its boundary.
From (4.7) and the condition that γg = 2π or 0, with the evolution loop L being
azimuthally symmetric, we find that the interface between these two parts, which we
call the flux-free surface, is determined by ρ = √

1 − |z|(1 + √|z|).
At the large-R limit, the interaction between the spins can be ignored. Then,

the distribution of Bg is the field distribution of the point-like monopole with the
elementary magnetic charge (−1/2). This asymptotic distribution indicates that the
source and sink of Bg as a whole can be interpreted as a disk-shaped monopole
located at the region of the quantum phase transitions. Actually, similar deformed
monopoles were reported in [9]. From the distribution of Bg near the level-crossing
region, we find that the surface-density of the magnetic charge on this region is

σg = 1

4π(1 − ρ2)3/2
, (4.23)

where ρ < 1. When ρ → 1, (4.23) gives σg ∼ (1 − ρ)−Λ with the critical exponent
Λ = 3/2. The surface-density σg , together with the total magnetic charge of the
monopole, determines Bg completely. Therefore, we can say that σg is the central
quantity in the differential formulation for γg and that Λ is the corresponding cen-
tral critical exponent. Since the Berry phase can provide the key ingredients of the
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criticality in principle [10], it is promising—albeit challenging—to investigate the
relation between Λ and other critical exponents.

Because the ground state is twofold degenerate on the level-crossing region, any
evolution loop L on this region corresponds to two different values of γg . It is straight-
forward to show that their difference Δγg = 4πQL

g (modulo 2π), where QL
g is the

magnetic charge enclosed by L. This finding indicates that the magnetic charge of
the monopole originates from the phase difference Δγg . From (4.23), we find that
the charge on the level-crossing region is divergent. Combining this divergence with
the distribution of Bg at the large R limit, we find that the negative charge on the
boundary of this region must also be divergent.

From the previous results, we can easily recognize that both the disk-shaped
monopole and the exotic distribution of Bg are the natural consequences of the
physical properties of the system. These properties include the following: (i) the
asymptotic behavior of the system at the large R limit; (ii) the degeneracy of the
ground state; and (iii) the criticality that leads to the divergent γg . Because similar
properties exist in many interacting spin systems, the analogues of the disk-shaped
monopole and its exotic magnetic-like field also exist generally in these systems [1].

On the other hand, the structure of the monopole and the distribution of Bg nat-
urally reflect the properties of the system. In particular, the shape of the flux-free
surface reflects the critical property of the system. Approximately speaking, both
the external field R and the interaction between the spins affect γg , and the flux-free
surface is located at the region where their effects on γg cancel each other out. In
essence, the criticality of the system is exactly the consequence of the competition
betweenR and the interaction. Therefore, the shape of the flux-free surface can reflect
the critical property of the system, providing the possibility to measure the criticality
by the Berry phase without having the system undergo the quantum phase transition.

4.2 Fractional Virtual Magnetic Monopole

We consider the following two-mode model, namely, the atom-diatomic molecule
conversion system, as an example to demonstrate our theory [11]. The following
deduction, in principle, can be extended to the case of multiple modes and multi-
atomic molecule formation. The energy of the system reads

H = R cos θ

2

(
ψ̂

†
1 ψ̂1 − ψ̂

†
2 ψ̂2

)
+

√
3

8

R sin θ

2

(
eiϕψ̂

†
1 ψ̂

†
1 ψ̂2 + h.c.

)
, (4.24)

where h.c. denotes the Hermitian conjugate of the term in brackets and ψ̂ =
(ψ̂1, ψ̂2) and ψ̂† = (ψ̂

†
1 , ψ̂

†
2 ) are the annihilation and creation operators for the

atom and molecule, respectively. These expressions obey the commutation relations
[ψ̂i, ψ̂

†
j ] = δij for bosons. Here, R = (R sin θ cosϕ,R sin θ sin ϕ,R cos θ) is a vector

in three-dimensional (3D) parameter space. The terms ψ̂
†
1 ψ̂

†
1 ψ̂2 + h.c. describe the
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coupling between atom pairs and diatomic molecules, which brings a new gauge
structure to the system. With these terms, the system is invariant under the transfor-
mation

U (η) = eiΘ(η), Θ(η) =
(

η 0
0 2η

)
. (4.25)

Under the mean-field limit, i.e., replacing ψ̂ and ψ̂† by complex numbers ψ and ψ∗
that correspond to the coherent states of these operators, we rewriteH (ψ,ψ∗;R) =∑

i,j ψ
∗
i Tij(ψ,ψ∗;R)ψj, where the matrix elements T11 = −T22 = R cos θ/2 and

T12 = T ∗
21 = √

3/8(R sin θ/2)e−iϕψ∗
1 , and obtain the nonlinear Schrödinger equation

as follows (� = 1):

i
d

dt

(
ψ1

ψ2

)
= H (ψ,ψ∗;R)

(
ψ1

ψ2

)
, (4.26)

with

H (ψ,ψ∗;R) =
⎛

⎝
R cos θ

2

√
3
8 e

iϕR sin θψ∗
1√

3
8 e

−iϕR sin θ
ψ1

2 −R cos θ
2

⎞

⎠ . (4.27)

The projective Hilbert space is spanned by the vector na = (2
√
2Re(ψ∗

1
2ψ2),

2
√
2Im(ψ∗

1
2ψ2), |ψ1|2 − 2|ψ2|2). Clearly, every point in this space corresponds to

a class of quantum states, among which the states are only different in co-diagonal
total phases (see (4.25)). With the normalization condition |ψ1|2 + 2|ψ2|2 = 1, one
can find that the projection space is a teardrop-shaped surface [12].

Note that even though thematrix in (4.27) is not conjugate symmetric, the original
system represented by (4.24) is Hermitian, and the total system energy is bound. The
analogous nonlinear Schrödinger equations have beenwidely applied in the Feshbach
molecular formation [6, 13].

The eigenstates of the above system φ̄(R) = (φ̄1, φ̄2) satisfy the following
eigenequations:

H (φ̄, φ̄∗;R)

(
φ̄1

φ̄2

)
=

(
μ 0
0 2μ

)(
φ̄1

φ̄2

)
. (4.28)

The above eigenequations define the eigenfunction φ̄ and the eigenvalue (or chemical
potential) μ that are functions of the adiabatic parameter R. The eigenequations are
solved, and the eigenfunctions are obtained as follows:

φ̄±
2 = − cos θ ± 1√

6 sin θ
, φ̄±

1 = eiϕ/2
√
1 − 2|φ̄±

2 |2, (4.29)

with the eigenvalue (or chemical potential for an atom) μ± = R
4 (cos θ ± 1).
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Now, let us suppose that the parameter vector R(t) varies slowly in a time interval
t ∈ [0,T ]. For simplicity, we fix R and θ , and we change ϕ slowly from 0 to 2π ,
forming a loop in the parameter space, i.e., R(0) = R(T ). The sweep rate α = 2π/T
measures how slowly the system evolves, and α → 0 indicates the adiabatic limit.
Initially the system populates in an eigenstate, i.e., ψ(0) = φ̄(R(0)), and remains
close to the eigenstate during an adiabatic process, as ensured by the adiabatic the-
ory [6, 14]. That is, ||ψ(t) − φ̄(R(t))|| ≡ 1 − |〈ψ(t)|φ̄(R(t))〉|2 ∼ α2. This result
indicates that |〈ψ(T )|ψ(0)〉|2 = 1 in the adiabatic limit. Moreover, a total phase is
acquired over the course of the cycle. As we show below, the total phase (for the
atomic component) arg(〈ψ(T )|ψ(0)〉) can be decomposed into two parts in the adi-
abatic limit, i.e., limα→0 arg(〈ψ(T )|ψ(0)〉) = −(γd + γg). The former is dynamical
and can be expressed as the time integral of the chemical potential for an atom; the
latter is of geometric property, and its explicit expression will be derived analytically
and shown to be dramatically different from the usual Berry phase formula.

We find that (4.26) and its conjugate construct a canonical structure of classical
dynamics with the energy H (ψ,ψ∗;R) as a classical Hamiltonian and (ψ, iψ∗)
as a canonical variable pair. The gauge symmetry of H given by (4.25) implies
that the total atom number is conserved |ψ1|2 + 2|ψ2|2 = 1 and that the dynamics
of the overall phase can be separated from the rest of the degrees of freedom [5].
For simplicity and without loss of generality, we denote λ = argψ1 and set the total
phase as λ for the atomic component and 2λ for the molecular component. The other
variables form a closed set of Hamiltonian dynamics with the canonical pair defined
as q = −argψ2 + 2argψ1 and p = |ψ2|2. From (4.26) and its complex conjugate, we
obtain

dλ

dt
= p

dq

dt
− H (p, q) − Λ(p, q), (4.30)

dp

dt
= −∂H

∂q
,

dq

dt
= ∂H

∂p
, (4.31)

in which H (p, q) = R cos θ(1 − 3p)/2 + √
3/8R sin θ(1 − 2p)

√
p cos(q − ϕ),

Λ(p, q) = Re[∑i,j,k
√
pi(pj∂T̃ik/∂pj − i∂T̃ik/∂qj)

√
pk ] and T̃ik = ei(argψk−argψi)

Tik . After a series of calculations, we obtain Λ(p, q) = √
3/8(R sin θ/2)(1 − 2p)√

p cos(q − ϕ). The fixed point of the above Hamiltonian can be derived by set-
ting the right-hand functions equal to zero in (4.31). We readily obtain p̄ = |φ̄±

2 |2
and q̄ = ϕ. These fixed points are local energy minima of the system and therefore
correspond to the eigenstates defined by (4.28).

For a linear quantum case, both matrices {Hij} and {Tij} are functions of the
parameterR only; thus, the last term in (4.30) vanishes, i.e.,Λ(p, q) = 0. The second
term on the right-hand side of (4.30) is the energy, whose time integral gives the so-
called dynamical phase. The time integral of the first term is the Aharonov-Anandan
phase for a cyclic quantum evolution [15]. The above observation is readily extended
to the adiabatic evolution of a quantum eigenstate because the adiabatic theorem
of quantum mechanics dictates that an initial nondegenerate eigenstate remains an



102 4 Exotic Virtual Magnetic Monopoles and Fields

instantaneous eigenstate and that the evolution is cyclic when the parameters move
slowly in a circuit. In this case, the second term is the eigenenergy, and the first term
is just the Berry connection, i.e., i〈φ̄(R)|∇|φ̄(R)〉. The Berry phase equals the circuit
integral of the Berry connection.

However, for our atom-molecule system, the contribution of the last term in (4.30)
should be taken into account.Note that the chemical potential is typically not identical
to the energy, while the dynamical phase represents the time integral of the chemical
potential, and we need to evaluate the following quantity in the adiabatic limit:

Ξ(p, q;R) = H (p, q) + Λ(p, q) − μ(R). (4.32)

We set p = p̄(R) + δp and q = q̄(R) + δq. Here, p̄(R) and q̄(R) are the fixed points
corresponding to the eigenstates defined by (4.28). The vector (δp, δq) represents
the corrections to the adiabatic eigenstates in the order of α [16]. As will be shown,
(δp, δq) contain secular terms in addition to the rapid oscillations. These secular
terms are accumulated in the nonlinear adiabatic evolution and contribute to the
geometric phase.

We expand the quantity Ξ(p, q;R) around the fixed point:

Ξ(p, q;R) =
√
3

8

R sin θ

2

1 − 6p̄

2
√
p̄

δp + O(δp2, δq2). (4.33)

Here, we have used the relations H (p̄, q̄) + Λ(p̄, q̄) = μ(R), ∂H (p, q)/∂p|(p̄,q̄)
= ∂H (p, q)/∂q|(p̄,q̄) = 0 and ∂Λ/∂q|(p̄,q̄) = 0. On the other hand, (δp, δq) can be
evaluated from the following Hamiltonian equations:

dq

dt
= ∂2H

∂p∂p

∣∣∣∣
(p̄,q̄)

δp + ∂2H

∂p∂q

∣∣∣∣
(p̄,q̄)

δq + O(δq2, δp2), (4.34)

dp

dt
= −∂2H

∂q∂p

∣∣∣∣
(p̄,q̄)

δp − ∂2H

∂q∂q

∣∣∣∣
(p̄,q̄)

δq + O(δq2, δp2). (4.35)

By averaging the fast oscillations, one can omit the higher-order terms and retain
the secular terms; then, (〈δp〉, 〈δq〉)T = Ω−1((∂ p̄/∂R)(dR/dt), (∂ q̄/∂R)(dR/dt))T ,

with the matrix Ω =
√
8√

3R sin θ

(
0 −2p̄

√
p̄/(1 + 6p̄)

1/[(1 − 2p̄)
√
p̄] 0

)
. We then have

δp = −(
√
8/(

√
3R sin θ))(2p̄

√
p̄/(1 + 6p̄))(dR/dt). Therefore, by substituting the

result into (4.33), from (4.30), we obtain the total phase acquired by the eigenstate
in the adiabatic limit, λ = −γd + γg with γd = ∫

μdt, and the geometric phase,

γg =
∮

p̄dϕ +
∮

(1 − 6p̄)p̄

1 + 6p̄
dϕ (4.36)

= 1

6

∮
(1 ∓ cos θ)dϕ. (4.37)
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In contrast to the previous works [17], the adiabatic geometric phase in the atom-
molecule system is dramatically modified. The first term on the right-hand side of
(4.36) is the typical expression of the Berry phase that can be rewritten as the circuit
integral of the Berry connection i〈φ̄(R)|∇|φ̄(R)〉. The second novel term indicates
that the higher-order correction to the adiabatic approximate solution (which is neg-
ligible in the linear case) can be accumulated in the nonlinear adiabatic evolution
with an infinite time duration in the adiabatic limit and contributes a finite phase with
a geometric nature.

The above theoretical formulation on the Berry phase has been verified numeri-
cally by directly integrating the Schrödinger equation along the circle path in param-
eter space with both R and θ fixed and with ϕ varying with a very small sweeping rate
α, i.e., ϕ = αt. In Fig. 4.2, we show the numerical results and compare them with
theoretical predictions for the adiabatic geometric phase of the eigenstate of μ+, in
which the sweeping rate is α = 0.0001. The inset figure shows the convergence of
the adiabatic geometric phase with the sweeping rates.

For linear systems, the Berry phase has been interpreted as the flux of a magnetic
field of a quantized monopole through the surface enclosed by a loop in parameter
space. This interpretation is demonstrated by the spin-half system, i.e.,H = R · σ/2,
where σ denotes Pauli matrices and R = (R sin θ cosϕ,R sin θ sin ϕ,R cos θ) is a
vector in the 3D parameter space. The eigenvalues of the system are E = ±R/2,
and their eigenstates are |ψ±〉 = (±√

(1 ± cos θ)/2e−iϕ/2,
√

(1 ∓ cos θ)/2eiϕ/2)T .
The Berry phase equals the circuit integral of the Berry connection i〈ψ(R)|∇|ψ(R)〉
and can be interpreted as the flux of the magnetic field of a virtual monopole with
charge g0 = 1/2. In general, the degeneracies of the spectrum in parameter space

Fig. 4.2 Comparison between the numerical results and the theoretical predictions for the adiabatic
geometric phase of the eigenstate for μ+, in which the sweeping rate is α = 0.0001. The insert
figure shows the convergence of the geometric phase with the sweeping rate
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are the singularities of the virtual magnetic field, and these degeneracies therefore
play an important role in connection with the geometric phase. Each degeneracy can
be interpreted as a charge distribution located at the contact point between energy
surfaces. Because the eigenstates are smooth and single-valued outside the degen-
eracies, the total charge of the distribution, i.e., the monopole charge, is necessarily
an integer multiple of the elementary charge g0 = 1/2. Nonelementary monopoles
with integer multiples of g0 have been found in the cases of light propagation and
condensed matter physics [18, 19]. The mechanism for the production of monopole
charges that are larger than the elementary g0 is due to the constraints that act on the
system [20].

Fig. 4.3 Parameter space (a) and Bloch sphere (b) for a spin-half particle in a magnetic field.
a′ and b′ are the parameter space and Bloch sphere for the atom-molecule conversion system,
respectively. The parameters change adiabatically along a closed path, shown as the green circles
in the parameter spaces or the Berry spheres. Accordingly, the eigenstate evolves and forms a
closed path schematically plotted as green circles on the Bloch spheres. The gray cone in (a′) is the
boundary for which θ = 2π/3, inside which (corresponding to θ > 2π/3) no eigenstate exists. See
the text for details



4.2 Fractional Virtual Magnetic Monopole 105

For our nonlinear system, when the parameters R = (R, θ, ϕ) are considered as
the spherical coordinates of a vector in a 3D space, from (4.37), we obtain the vector
potential

A = 1

6

(1 − cos θ)

R sin θ
êϕ, (4.38)

where êϕ is the unit vector in the direction ϕ. For convenience, we consider only the
case forμ+.Hence, theBerry phase canbe interpreted as thefluxof amagnetic field of
a virtual monopole through the surface enclosed by a closed path in parameter space
(see Fig. 4.3a′), B = ∇ × A = gR/R3. Here, the monopole charge g = g0/3 is the
fractional elementary charge of the quantized monopole. The fractional charge of the
monopole in this system is due to the symmetry breaking of the parameter space by
the boundary. From (4.29), we find that |ψ̄2|monotonically increases with increasing
θ . When θ = 2π/3, |ψ̄2| = 1/

√
2 reaches its extreme value (since |ψ̄1|2 + 2|ψ̄2|2 =

1). This result implies that no eigenstate exists in the regime θ > 2π/3, i.e., the
Berry sphere of this system is a deformed sphere with a forbidden cone bounded
by θ = 2π/3. We illustrate this structure in Fig. 4.3a′. The strange string lies on the
negative Z-axis, i.e., θ = π .

4.3 Virtual Magnetic Monopole Chain

In this section, we discuss the monopoles in a bosonic atom–heteronuclear-molecule
conversion system. This condition may be even more interesting than the atom–
homonuclear-molecule system discussed in the proceeding section because the het-
eronuclear molecules can be either bosons or fermions; thus, quantum statistics can
be expected to play an important role [21], and a large electric dipole moment will
be induced with the potential to create a dipolar superfluid [22]. In the quantum
theory, we calculate the virtual monopole field and its charge for the ground state.
In particular, we explore the effects of the particle-number imbalance between two
atomic species on the monopole field. We find that the monopole field in this system
is not spherically symmetrical and that the charge of the monopole depends strongly
on the particle-number imbalance [23].

We adopt a three-mode model to describe an atom–heteronuclear-molecule sys-
tem. The basic assumption here is that the spatial wave functions for three modes
are fixed so that one can associate each mode with an annihilation operator âj of
a particle in atomic modes j = 1 and 2 and in molecular mode j = m. Under this
three-mode approximation, the second-quantized Hamiltonian of the system reads
(with � = 1 throughout) [24]

Ĥ = ΔN̂m +
∑

i,j

χij

N
N̂iN̂j +

(
Ωeiϕ√

N
â†1â

†
2âm + h.c.

)
, (4.39)
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where h.c. denotes the Hermitian conjugate of the term in brackets. N̂j = â†j âj. The
detuning Δ represents the energy difference between the molecular and atomic
levels, which can be tuned by an external field. The parameter Ωeiϕ specifies the
atom-molecule coupling. The parameters χij describe s-wave scattering, taking into
account the intraspecies (i = j) and interspecies (i �= j) with χij = χji. Note that the
model (4.39) can be mapped to a trilinear Hamiltonian describing the nondegenerate
parametric down-conversion in quantum optics [25]. In this analogy, the molecular
mode plays the role of the pump photon, while the two atomic modes denote the
signal and idler photons. The collisional terms correspond to the Kerr-type cubic
nonlinearity that is present in the optical system with some nonlinear medium [26].
In experiments, the model (4.39) may apply to the 85Rb-87Rb system in which the
ultracold heteronuclear Feshbach molecules were produced starting with a 87Rb
Bose-Einstein condensate (BEC) and a cold atomic gas of 85Rb [27]. These ultra-
cold heteronuclear molecules in low-lying vibrational states are of particular interest
since they could be a permanent dipole moment due to the unequal distribution of
electrons. The Hamiltonian (4.39) commutes with N̂ = â†1â1 + â†2â2 + 2â†mâm; thus,
the total atomic numberN = 〈N̂ 〉 is a conserved quantity of the system. Indeed, there
exists another conserved quantity, namely, D = 〈â†1â1〉 − 〈â†2â2〉, which denotes the
particle-number imbalance between two atomic species. Using these two conserved
constants and neglecting the trivial constant terms that are proportional to D or N ,
the Hamiltonian (4.39) can be simplified as follows:

Ĥ = ZN̂m + χ

N
N̂ 2
m +

(
X + iY√

N
â†1â

†
2âm + H .c.

)
, (4.40)

where X + iY = Ωeiϕ , Z=Δ − (D + N )(χ11 − χ1m) − 2Nχ12 + (D − N )(χ22 −
χ2m), and χ = χ11 + χ22 + χmm + 2(χ12 − χ1m − χ2m). For our atom-molecule sys-
tem, the Bloch space is expanded by the following three angular momentum oper-
ators: L̂X = 2

√
2â†1â

†
2âm + â†mâ1â2/N

3/2, L̂Y = i2
√
2â†1â

†
2âm − â†mâ1â2/N

3/2, and
L̂Z = 2â†mâm − â†1â1 − â†2â2/N . These operators compose a generalized Bloch rep-
resentation [28, 29], and the Hamiltonian in this representation (4.40) becomes Ĥ =
(N/4)(Z + χ

2 )L̂Z + (Nχ/16)L̂2Z + [N/(4
√
2)][(X + iY )(L̂X − iL̂Y ) + h.c.]. The

corresponding parameter space is spanned by the vector R = (X ,Y ,Z), which rep-
resents the influence of an external field.

In the following discussion, we focus only on themonopoles for the ground states.
For convenience, we restrict ourselves to the states with evenN andD, whereD = 0,
2, . . ., N − 2. From the Hamiltonian (4.40), one can compute the ground-state MB
curvature (i.e., the virtual magnetic field) by using the formula [30]

BN (R) = Im
∑

m�=0

〈0|∇RĤ |m〉 × 〈m|∇RĤ |0〉
(Em − E0)2

, (4.41)

where |0〉 denotes the quantum ground state. Em specifies the eigenenergy of
the eigenstate |m〉 and satisfies the eigenequation Ĥ |m〉 = Em|m〉. The energy
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denominator in (4.41) implies that the virtual magnetic field typically diverges at
the degenerate point where the energy levels cross and may be maximized at avoided
level crossings. These level structures are reflected in the geometry of the Hilbert
space of the system, which can be captured by the virtual magnetic field of the
ground-state monopole.When particle interaction is absent, i.e., χ = 0, only a point-
like magnetic monopole exists in our system, which is located at the origin R = 0
in the parameter space. We have numerically computed the virtual magnetic field
of the ground-state monopole from (4.40) and (4.41) by using the exact diagonal-
ization method in double-precision arithmetic in the Fock-state representation. The
results are shown in Fig. 4.4a–c. We find that the virtual magnetic field is symmetric
with respect to the Z-axis in our atom-molecule system, which is different from the
isotropic field generated by a standard point-like monopole. However, the symmetry
of the virtual field approaches spherical symmetry as the atom-number imbalance
parameterD increases.WhenD = N − 2, a spherically symmetric field is recovered.
The similarity between the upper panels and the lower panels of Fig. 4.4 reveals that
the properties of the virtual field are determined mainly by the structure of the level
gap between the ground state and the first excited state [23].

In the presence of the particle interaction, i.e., χ �= 0, the ground state of the
system exhibits a monopole chain that includes (N − D)/2 point-like monopoles on
theZ axis, which are located at the points (X = Y = 0,Z/χ = −n/N ) with n = N −
D − 1, N − D − 3, . . ., 1. When the particle-number imbalance between two atomic
species increases, the number of monopoles decreases. When D = N − 2, there is

(a) (b) (c)

(a ) (b ) (c )

Fig. 4.4 (Color online) Magnitude of the virtual field for the ground state (upper panels) and
the level gap between the ground state and the first exited state (lower panels) with N = 10 and
χ = Y = 0. a and a′: D = 0; b and b′: D = 2; c and c′: D = 4. In the upper panels, the contours
denote the rescaled quantity log10 |BN /N |, and the values are −1.5, −1.2, −0.9, −0.6, −0.1, and
0.5 from the outside to the core
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(a) (b) (c) (d) (e)

Fig. 4.5 (Color online) Level gap between the ground state and the first excited state with N = 10
and Y = 0. From a to e, D = 0, 2, 4, 6, and 8. The interaction parameter χ = 1 has been used

only one monopole located at the point (X = Y = 0,Z/χ = −1/N ). The level gap
between the ground state and the first excited state for this case is demonstrated in
Fig. 4.5.

We now numerically calculate the monopole charge. According to Gauss’s law,
the charge gN of the monopole can be defined by

∮

S
BN · dS = 4πgN , (4.42)

where dS is the area element and S denotes any surface boundary enclosing all
monopole points. To numerically calculate the monopole charge from (4.42), we first
compute the monopole field from (4.40) and (4.41) with the exact diagonalization
method, and then, we choose a sphere as the closed surface enclosing all monopoles.
With increasing radius of the sphere, the numerical tests demonstrate satisfactory
convergence and accuracy of the results for gN . The results of the monopole charge
for χ = 0 with different total atom numbers are demonstrated in Fig. 4.6. Note that
the monopole charge in our system is not equal to the elementary charge g0 = 1/2.
In the special case D = 0, the charge gN = −N/4 = −Ng0/2. In the general case
D �= 0, the charge of the monopole decreases smoothly from −Ng0/2 to −g0 as
the atom-number imbalance between the two atomic species increases. The general
formula for the monopole charge of the ground state in our system is given by [23]

gN = −N − D

4
= −N − D

2
g0, (4.43)

which is determined by the property of ((N − D)/2 + 1)-fold degeneracy of the
ground states; the degenerate states are |(N + D − 2m)/2, (N − D − 2m)/2,m〉with
m = 0, 1, . . ., (N − D)/2.This result implies that one can create amagneticmonopole
with nonelementary monopole charge in an atom–heteronuclear-molecule system.
Note that the total charge of themonopole for the ground state in the second-quantized
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Fig. 4.6 (Color online)
Monopole charge of the
ground state in the model
(4.40) as a function of the
total particle number N , with
χ = 0. For each N , the
points shown from bottom to
top correspond to the cases
D = 0, 2, . . ., and N − 2.
Inset shows the rescaled
charge as a function of the
rescaled population
imbalance between the two
atomic species

model is Q = 4πgN = −(N − D)π and that the Chern number is −(N − D)/2. We
find that the Chern number is also an integer in our system, which is similar to the
result derived for an interacting boson system [9].

When χ �= 0, we choose a closed surface that encloses all (N − D)/2 degen-
erate points, and the monopole charge of the ground state for χ = 1 is obtained,
as shown in Fig. 4.7. For D = 0, the number of the degenerate points is N/2, and
the charge is −N/4. For D �= 0, the degenerate points reduce to (N − D)/2, and
the charge becomes −(N − D)/4. This result implies that the result (4.43) obtained
for χ = 0 is also appropriate for the case χ �= 0. Clearly, the total charge of the
monopoles for the ground state is also −(N − D)π , and the Chern number is also
−(N − D)/2. In fact, the quantum ground state is doubly degenerate at (N − D)/2
points in this case. At each degenerate point, the two degenerate eigenstates are
|(N + D − n + 1)/2, (N − D − n + 1)/2, (n − 1)/2〉 and |(N + D − n − 1)/2,
(N − D − n − 1)/2, (n + 1)/2〉.

In themean-field limit, i.e.,N → ∞, the atom-molecule systembecomes classical
[31] and can be accurately described by the following semiclassical Hamiltonian
[24, 32]:

Hc = lim
N→∞

〈Ĥ 〉
N

= Z|am|2 + χ |am|4 + [(X + iY )a∗
1a

∗
2am + c.c.], (4.44)

where c.c. denotes the complex conjugate of the term in brackets. Here, aj are com-
plex amplitudes for the system in the three quantum modes, and the normalized
condition is given by |a1|2 + |a2|2 + 2|am| = 1.

Note that the mean-field model (4.44) does not admit the U (1) gauge transfor-
mation, which is an especially interesting point about our atom-molecule system. In
fact, this model is invariant under the gauge transformation as follows:

|ψ〉 → U (φ1, φ2)|ψ〉 = eiΘ(φ1,φ2)|ψ〉, (4.45)
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Fig. 4.7 (Color online)
Monopole charge of the
ground state in the model
(4.40) as a function of the
population imbalance
parameter D, with χ = 1

where

Θ(φ1, φ2) =
⎛

⎝
φ1 0 0
0 φ2 0
0 0 φ1 + φ2

⎞

⎠ . (4.46)

This type of gauge transformation includes two nonidentical phase parameters (i.e.,
φ1 and φ2), which is different from the so-called skewedU (1) gauge transformation
introduced in [11, 33], where the transformation depends on only one parameter.
However, we observe that the nonlinear model (4.44) has a classical Hamiltonian
structure (i.e., we can introduce three pairs of conjugate variables through pj =√
ia∗

j and qj = √
iaj). Following [33, 34], we can define for our system the Berry

connection A and determine its general properties by making a gauge transformation
as follows:

A = i ¯〈ψ |∇R|ψ〉 → A′ = i ¯〈ψ ′|∇R|ψ ′〉
= A − (|a1|2 + |a2|2 + 2|am|2)∇Rφ1

+1

2
[1 − (|a1|2 − |a2|2)]∇R(φ1 − φ2), (4.47)

where |ψ ′〉 = U (φ1, φ2)|ψ〉 and the overbar indicates an average over all initial
angles with the same actions. It is found that the second term and the last term
in (4.47) are trivial total derivatives due to the conservation of the total particle
number and the constant particle-number imbalance between two atomic species
(i.e., d = |a1|2 − |a2|2). This result implies that theBerry connection defined above is
gauge invariant under the transformationU (φ1, φ2). For an instantaneous eigenstate,
the unnecessary averaging operation can be safely neglected because the population
probabilities of different eigenstates are just the classical actions, which are found
to be the adiabatic constants in an adiabatic evolution [5].
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Fig. 4.8 (Color online) Contour lines of (|BN+2| − |BN |) for the ground state at Y = 0, with
χ = D = 0. Each set of contour lines with the same value includes the data with N = 10 (blue
dashed-dotted line), N = 20 (red dashed line), and N = 30 (black solid line). Solid circles indicate
the intersection points. Inset shows the dependence of (|BN+2| − |BN |) on the parameter Z/

√
2X

for different N . The gray straight line (with slope −1) is plotted to guide the eye

From the definition (4.47), one can calculate the mean-field curvature B and the
monopole charge g for the ground state through B = ∇R × A and its closed surface
integral, respectively. Actually, the mean-field and quantum virtual fields satisfy the
relation limN→∞(BN/N − B) = 0, which can be proved from the fact that Hc is the
semiclassical limit of the second-quantized model Ĥ (for details, see [9, 33]) and by
following Berry’s argument about the semiclassical connection between the Berry
phase and the Hannay angle [35, 36]. Our numerical simulations have shown that
this relation indeed holds everywhere in the parameter space except at the degenerate
points. For the monopole charge, we have

lim
N→∞

(gN
N

− g
)

= 0, (4.48)

with

g = lim
N→∞

gN
N

= −1

4
(1 − d) = −1

2
(1 − d)g0, (4.49)

where the population-imbalance parameter d = limN→∞ D/N . Equation (4.49)
implies that the ground-state monopole in our system in the mean-field limit can
carry an arbitrary charge ranging from zero to −(1 − d)/4 (i.e., the discrete points
in Figs. 4.6 and 4.7 are connected to form continuous lines).

We now present selected discussion points. When D = 0, our system reduces to
the homonuclear molecule system. In this case, the system exhibits a quantum phase
transition from a mixture phase to a pure molecule phase at the critical point Zc =
−√

2(X 2 + Y 2) [37]. To show the connection of the virtual field to the quantumphase
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transition, we plot the contour lines of the magnitude (|BN+2| − |BN |) for the ground
state in Fig. 4.8. We find that the contours with the same values for different particle
numbers cross at the phase transition point. This result is independent of the system
size, which implies that even though a quantum phase transition is only rigorously
defined in the thermodynamic limitN → ∞, the virtual field of themonopole exactly
marks the changes in the ground states of the system for a finite particle-number case
[38]. However, in the case of D �= 0, no quantum phase transition occurs even in the
semiclassical limit [24].

In fact, the degeneracies of the spectrum in the parameter space are the singu-
larities of the virtual field, and therefore, the monopoles play an important role in
connection with the geometric phase. Each degeneracy can be interpreted as a charge
distribution located at the contact point between energy surfaces. Because the eigen-
states are smooth and single valued outside the degeneracies, the monopole charge
is necessarily an integer multiple of the elementary charge g0. In the generic case of
a diabolical contact [30], the monopole charges are precisely ±g0. However, higher
integer multiples of g0 may occur [39]. For instance, for light propagating through
a twisted anisotropic dielectric medium, experimental situations arise [18] in which
the monopole charges are ±2g0. Our present discussion provides a perfect example
for higher integer multiples of g0 in ultracold atom-molecule systems.We emphasize
that even though our results are obtained with a specific three-level boson model, the
results are expected to hold in a general interacting atom–heteronuclear-molecule
boson system where many heteronuclear molecules in high vibrational states are
included. The reason is that our system is the simplest atom–heteronuclear-molecule
system; we consider only the zero-temperature homogeneous case so that all the
bosons are condensed into zero center-of-mass momentum states. In particular, the
monopole as the degeneracy point in the Brillouin zone is found to play a pivotal role
in the anomalous Hall effect [40]. This fact implies that it may be possible to observe
our predicted virtual monopole fields in experiments by configuring a bosonic Hall
system with a molecular BEC in a rotating optical lattice.
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Chapter 5
Applications of Nonlinear Adiabatic
Evolution

Abstract In this chapter, we show selected applications of nonlinear adiabatic evo-
lution in the geometric phase, in tunneling dynamics, and in quantum interference.
We introduce the adiabatic geometric phase in a nonlinear coherent coupler and
illustrate the nonlinear adiabatic tunneling with four cases, namely, Landau-Zener
tunneling, Rosen-Zener tunneling, atom-molecule conversion, and composite adia-
batic passage. Adiabatic nonlinear Ramsey interferometry is also discussed.

5.1 Nonlinear Coherent Optical Coupler

In the previous chapters, motivated partly by the studies of Bose-Einstein conden-
sation [1–3], both the adiabatic theorem and the adiabatic geometric phase have
been extended to nonlinear systems [4–7]. Here, we further extend these theories to
study the effect of nonlinearity on the adiabatic process in coupled waveguide sys-
tems, which can also be described by the nonlinear Schrödinger equation. Nonlinear
waveguide systems can serve as direct analogies to various other quantum processes
[8] and provide ideal models to study nonlinear adiabatic evolution [9].

One of the simplest nonlinear waveguide systems is known as the nonlinear coher-
ent coupler, which consists of two parallel optical waveguides with Kerr nonlinearity
[10]. When the two waveguides in the coupler are different, the coupler is called an
asymmetric coupler. In this section, we consider the phase mismatch in the asym-
metric coupler changing adiabatically with distance, and we calculate the adiabatic
geometric phase associated with the supermode of the coupler analytically. We find
that the phase is dependent on the input light intensity, and we show the character-
istics of the phase at the critical light intensity where different supermodes merge
and at the low- and high-intensity limits [9]. Because the nonlinear coherent coupler
performsmultiple useful functions in optical communications, including power divi-
sion, power coupling, and switching [11], we expect the geometric phase presented
here to have many prospective practical applications.

The model describing the propagation of the laser field inside the coupler can be
derived from the standard coupled mode theory [12]. To be clear and self-contained,
we first introduce this model briefly. We begin by considering a linearly polarized
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laser field propagating inside the coupler along the +z-direction. According to the
coupled mode theory, the electric field can be expressed as

E(x, y, z, t) = 1

2

∑

l

Al(z)El(x, y)e
i(βl z−ωt) + c.c., (5.1)

where c.c. denotes the complex conjugate of the term in brackets, ω is the frequency,
El (with l = 1, 2) is the only confinedmode of waveguide l, andAl and βl > 0 are the
corresponding amplitude and propagation constant, respectively. The mode function
El satisfies the orthonormalization relation (βl/(2ωμ0))

∫
E∗
l · El′dxdy = δll′ and

the wave equation
(∇2

⊥ + (ω2/c2)[1 + χl(x, y)]
)
El = β2

l El , where∇2
⊥ = ∂2/∂x2 +

∂2/∂y2, and the susceptibility distribution is

χl(x, y) =
{

χl, waveguide l,
0, otherwise.

(5.2)

The electric field E itself satisfies
(

∇2 + ω2

c2

[
1 +

∑

l

χl(x, y)

])
E = μ0

∂2

∂t2
PNL, (5.3)

where PNL is the nonlinear polarization. Because the laser field is linearly polarized,
there is only one component of the third-order nonlinear susceptibility, denoted by
χ

(3)
l , responsible for the Kerr nonlinearity, and the nonlinear polarization

PNL = 3

2

∑

l

χ
(3)
l (x, y)|E|2E + c.c., (5.4)

where the nonlinear susceptibility distribution is

χ
(3)
l (x, y) =

{
χ

(3)
l , waveguide l,

0, otherwise.
(5.5)

We now take the scalar product of (5.3) with E∗
l (x, y) and integrate over the

entire x − y plane. Moreover, using the slowly varying amplitude approximation
|βl(dAl/dz)| � |d2Al/dz2| and assuming that

∫
χ

(3)
l (x, y)|El |4dxdy is much larger

than the other integrals related to the nonlinearity, we obtain the coupled nonlinear
Schrödinger equations [9]

i
d

dz
A1 + α1A1 + k12e

i(β2−β1)zA2 + γ1|A1|2A1 = 0, (5.6)

i
d

dz
A2 + α2A2 + k21e

−i(β2−β1)zA1 + γ2|A2|2A2 = 0, (5.7)
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where

α1 = ωε0

4

∫
χ2(x, y)|E1|2dxdy, (5.8)

α2 = ωε0

4

∫
χ1(x, y)|E2|2dxdy, (5.9)

k12 = ωε0

4

∫
χ1(x, y)E∗

1 · E2dxdy, (5.10)

k21 = ωε0

4

∫
χ2(x, y)E∗

2 · E1dxdy, (5.11)

γ1 = 3ω

4

∫
χ

(3)
1 (x, y)|E1|4dxdy, (5.12)

γ2 = 3ω

4

∫
χ

(3)
2 (x, y)|E2|4dxdy. (5.13)

Before proceeding further, we comment on (5.6) and (5.7) and the parameters given
in (5.8)–(5.13). First, we note that the phase mismatch factors in the coupling terms
of (5.6) and (5.7) exist only when β1 �= β2. Second, the parameters α1 and α2 serve
only to modify β1 and β2. Third, from the conservation of the total light intensity
I = |A1|2 + |A2|2 in the z-direction, we find k12 = k∗

21. For simplicity, we assume that
k12 = k21 = k > 0. Fourth, if χ

(3)
l > 0 and, thus, γl > 0, we describe the nonlinear

mechanism of waveguide l as being self-focusing; if χ
(3)
l < 0 and, thus, γl < 0,

we describe the mechanism as being defocusing [13]. In the self-focusing case, the
refractive index increases locally with the power, while in the defocusing case, it
decreases.

Because the concept of the adiabatic geometric phase originates from quantum
mechanics, we need tomap the abovemodel into a nonlinear quantummodel. Specif-
ically, introducing the nonlinear Hamiltonian

H (|A1|2, |A2|2) = −
(

α1 + γ1|A1|2 kei(β2−β1)z

ke−i(β2−β1)z α2 + γ2|A2|2
)

, (5.14)

we can express the coupled nonlinear Schrödinger equations (5.6) and (5.7) as

i
d

dz

(
A1

A2

)
= H (|A1|2, |A2|2)

(
A1

A2

)
. (5.15)

Here, we note that the evolution of (A1,A2)
T in the +z-direction corresponds to

the time evolution of a nonlinear two-level system in quantum mechanics. The
eigenequation of H (|Ā1|2, |Ā2|2) reads

μ

(
Ā1

Ā2

)
= H (|Ā1|2, |Ā2|2)

(
Ā1

Ā2

)
, (5.16)
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where μ is the eigenvalue and (Ā1, Ā2)
T is the eigenstate or the supermode of the

coupler [11].
For convenience and without loss of generality, we further write

(
A1

A2

)
= √

I

(
cos(θ/2)e−iφ1

sin(θ/2)e−iφ2

)
= √

I

(
cos(θ/2)

sin(θ/2)e−iφ

)
e−iφ1 , (5.17)

where 0 ≤ θ ≤ π , φ = φ2 − φ1, and φ1 has been decoupled as the overall phase.
From (5.17), we know that the state of the system, except for an overall phase, can
be denoted by (θ , φ). Because θ and φ span a unit sphere, called the Poincaré sphere
[11, 12, 14], the evolution of the system without the overall phase corresponds to
the movement of the system on the Poincaré sphere. Introducing β = β2 − β1 and
α = α2 − α1 and substituting (5.17) into (5.15), we obtain

dθ

dz
= −2k sin(φ − βz), (5.18)

dφ

dz
= −α − 2k cot θ cos(φ − βz) − Iγ2 + I(γ1 + γ2) cos

2(θ/2), (5.19)

dφ1

dz
= −α1 − k tan(θ/2) cos(φ − βz) − Iγ1 cos

2(θ/2). (5.20)

Similar to (5.17), we write (Ā1, Ā2)
T = (cos(θ̄/2), sin(θ̄/2)e−iφ̄ )T so that we can

denote the supermode by (θ̄ , φ̄). From (5.16), we have

φ̄ = βz and φ̄ = βz + π, (5.21)

±2k cot θ̄ = −α − Iγ2 + I(γ1 + γ2) cos
2(θ̄/2), (5.22)

μ = −α1 ∓ k tan(θ̄/2) − Iγ1 cos
2(θ̄/2). (5.23)

Here andbelow, the upper sign corresponds to φ̄ = βz, and the lower sign corresponds
to φ̄ = βz + π .

Introducing t = tan(θ̄/2), we can rewrite (5.22) as

t4 ∓ α + Iγ2
k

t3 ∓ α − Iγ1
k

t − 1 = 0. (5.24)

Because 0 ≤ θ̄ ≤ π , only t ≥ 0 corresponds to the supermode of the coupler. Note
that if t0 is a solution to (5.24) for the upper sign, then −t0 is a solution for the lower
sign. Therefore, we can find all supermodes by solving (5.24) for either sign and
changing the signs of the minus solutions. Actually, without having to solve (5.24),
we can analytically prove that only when

[
2α + I(γ2 − γ1)

]2/3 + (4k)2/3 = [
I(γ1 + γ2)

]2/3
(5.25)
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does Eq. (5.24) have three solutions for either sign. If the left-hand side of (5.25)
is greater (less) than the right-hand side, then (5.24) has two (four) solutions for
either sign. This result indicates that (5.25) determines the parameter region where
the number of supermodes changes.

We consider an asymmetric coupler so that the phasemismatchβz is nonvanishing
and the supermode changes with z according to (5.21). Mathematically, the super-
mode corresponds to the fixed point on the Poincaré sphere; therefore, the change
of the supermode corresponds to the movement of the fixed point on the sphere.
Moreover, we assume that β is small enough that—according to the nonlinear ver-
sion of the adiabatic evolution condition [4]—the system, which is in a fixed point
at z = 0, can remain in this fixed point and thus also moves on the Poincaré sphere
as z increases. When z reaches 2π/β, the system returns to its initial position on the
Poincaré sphere, and the overall phase φ1 acquires an increasing component that con-
sists of an adiabatic geometric phaseΦ in addition to the dynamical phase. To obtain
the expression for Φ, we need to use the method introduced in [6] to separate the Φ-
related term from (5.20). This process is equivalent to calculatingΦ as the difference
between the overall phase and the dynamical phase [15]. To proceed, we first note
that because β is small but finite, the system fluctuates around the supermode during
the evolution process, i.e., φ = φ̄ + δφ and θ = θ̄ + δθ , where δφ ∼ δθ ∼ O(β).
Then, using (5.18)–(5.23) and ignoring the terms ∼ O(β2), we have

d θ̄

dz
= ∓2kδφ, (5.26)

d φ̄

dz
= 1

2

[ ±4k

sin2 θ̄
− I(γ1 + γ2) sin θ̄

]
δθ, (5.27)

dφ1

dz
= μ − 1

2

[ ±k

cos2(θ̄/2)
− Iγ1 sin θ̄

]
δθ. (5.28)

Combining (5.27) and (5.28), we have

dφ1

dz
= μ − β

2

[
1 − cos θ̄ ∓ (I/4k)(γ2 − γ1) sin3 θ̄

1 ∓ (I/4k)(γ1 + γ2) sin3 θ̄

]
. (5.29)

Integrating the zero-order term μ over z from 0 to 2π/β, we obtain the dynamical
phase. Similarly, integrating the Φ-related first-order term, we obtain the adiabatic
geometric phase [9]

Φ = −π

[
1 − cos θ̄ ∓ (I/4k)(γ2 − γ1) sin3 θ̄

1 ∓ (I/4k)(γ1 + γ2) sin3 θ̄

]
. (5.30)

From (5.30), we know that the geometric phaseΦ depends on the total light intensity
I . For the low-intensity limit I → 0, the nonlinear effect is negligible. In this case,
(5.30) reduces toΦ = −π(1 − cos θ̄ ), which denotes half of the area on the Poincaré
sphere enclosed by the evolution loop of the system except for a sign difference due
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Table 5.1 Supermodes and Φ values in the high-intensity limit I → ∞ with γ1γ2 < 0

φ̄(γ1 > 0, γ2 < 0) φ̄(γ1 < 0, γ2 > 0) cos θ̄ → Φ →
βz βz + π 1 0

βz + π βz −1 −2π

Table 5.2 Supermodes and Φ values in the high-intensity limit I → ∞ with γ1γ2 > 0

φ̄(γ1, γ2 > 0) φ̄(γ1, γ2 < 0) cos θ̄ → Φ →
βz βz γ2−γ1

γ1+γ2
− 2γ1

γ1+γ2
π

βz + π βz + π
γ2−γ1
γ1+γ2

− 2γ1
γ1+γ2

π

βz βz + π 1 0

βz βz + π −1 −2π

Table 5.3 Supermodes and Φ values when α = 0 and γ1 = γ2 > 0

φ̄ cos θ̄ Φ

βz + π 0 −π

βz 0 −π (unless Iγ1 = 2k)

βz [1 − ( 2k
Iγ1

)2] 1
2 −π + π [1 − ( 2k

Iγ1
)2]− 1

2

βz −[1 − ( 2k
Iγ1

)2] 1
2 −π − π [1 − ( 2k

Iγ1
)2]− 1

2

to the definition of the overall phase. Noting that this result is in accordance with
the result obtained in linear systems [16–18], we conclude that the geometric phase
Φ is a nonlinear extension of its linear counterpart. In the low-intensity limit, from
(5.22), we have cos θ̄ → ∓α/

√
α2 + 4k2, and thus, Φ → −π(1 ± α/

√
α2 + 4k2).

In the high-intensity limit I → ∞, the nonlinear effect is dominant. Then, using
(5.22) to obtain cos θ̄ , we find that (5.30) still reduces to Φ = −π(1 − cos θ̄ ). That
is, the geometric meaning of Φ remains the same as in the low-intensity limit.

To illustrate the geometric phaseΦ and the supermode in the high-power-intensity
limit, we list these components in Tables5.1 and 5.2. We find that the supermodes
in Table5.1 and in the last two lines of Table5.2 confine the laser field in one of the
two waveguides. In this case, Φ = 0 or −2π trivially. The supermodes in the first
two lines of Table5.2 have an intensity distribution determined by the ratio between
γ1 and γ2. The values of Φ are also determined by this ratio.

In contrast to the geometric phases in linear systems, a remarkable feature of Φ

lies in its divergence when

sin3 θ̄ = ± 4k

I(γ1 + γ2)
. (5.31)

From (5.22) and (5.31), we obtain
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Table 5.4 Supermodes and Φ values when α = 0 with γ1 = γ2 < 0

φ̄ cos θ̄ Φ

βz 0 −π

βz + π 0 −π (unless Iγ1 = −2k)

βz + π [1 − ( 2k
Iγ1

)2] 1
2 −π + π [1 − ( 2k

Iγ1
)2]− 1

2

βz + π −[1 − ( 2k
Iγ1

)2] 1
2 −π − π [1 − ( 2k

Iγ1
)2]− 1

2

cos3 θ̄ = 2α + I(γ2 − γ1)

I(γ1 + γ2)
. (5.32)

Combining (5.31) and (5.32) yields (5.25) exactly. Consequently, only when (5.25)
holds can the geometric phase Φ diverge. Noting that (5.25) determines the param-
eter region where the number of supermodes changes, we find that the divergence
of Φ is caused by the merging of the supermodes. Actually, in addition to the diver-
gence condition, from (5.31) and (5.32), we can determine the merged supermode
completely, which indicates that the geometric phaseΦ characterizes the supermode
precisely.

To illustrate the divergence of Φ when the supermodes merge, we take α = 0 and
γ1 = γ2, and we list all supermodes and Φ values in Tables5.3 and 5.4. Note that the
supermodes and Φ values in the last two lines of these two tables exist only when
|Iγ1| > 2k and that the geometric phase Φ values in the second lines diverge when
|Iγ1| = 2k. At the critical intensity I = 2k/|γ1|, the supermodes in the last three
lines of these two tables have the same φ̄ and cos θ̄ and thus merge together. On the
other hand, at the same critical intensity, the geometric phase Φ values in the last
three lines diverge.

From the perspective of spontaneous symmetry breaking [19], the supermodes in
the first two lines of Tables5.3 and 5.4 are symmetric supermodes, and the super-
modes in the last two lines are broken supermodes. As the total intensity I increases
adiabatically, the system, which is initially in a symmetric supermode, can ultimately
settle in a broken supermode. This process is actually a continuous phase transition
that occurs when |Iγ1| = 2k. The divergence of Φ can be interpreted as the signal of
the phase transition. Recently, a relation between geometric phases and phase transi-
tions was proposed [20]. The geometric phase Φ in the continuous phase transition
provides a paradigm for this relation, and the general correspondence between the
divergence of Φ and the merging of the supermode can be regarded as an extension
of this relation.

To illustrate the geometric phase Φ in other cases, we need to calculate the super-
mode and Φ numerically. As an example, in Fig. 5.1, we show the changes of cos θ̄

and Φ as γ2 tends to γ1 = 1 with α = 0 and k = 1. From this figure, we can confirm
the following features of cos θ̄ and Φ. First, in the low-intensity limit I → 0, we
have cos θ̄ → 0 and Φ → −π for both φ̄ = βz and φ̄ = βz + π , as given before.
Second, when the intensity I is large enough, cos θ̄ and Φ tend to the values given in
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(a')

(b')

(c')

(d')

(a)

(b)

(c)

(d)

Fig. 5.1 Changes of cos θ̄ (left panels) and Φ (right panels) as γ2 tends to γ1 = 1 with α = 0 and
k = 1. a, a’ γ2 = 2, b, b’ γ2 = 1.1, c, c’ γ2 = 1.01, d, d’ γ2 = 1.001

Table5.2. Third, when two supermodes merge at the critical intensity obtained from
(5.25), the geometric phase Φ diverges. Fourth, when γ2 tends to γ1, cos θ̄ and Φ

tend to the values given in Table5.3.
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5.2 Nonlinear Landau-Zener Tunneling

5.2.1 Two-Level System

It is common in the study of quantum systems to consider only a finite number
of energy levels that are strongly coupled. The special case of two coupled levels
is of enormous practical interest, and a vast amount of literature has been devoted
to the dynamical properties of such two-level systems [21]. One of the interesting
phenomena is the Landau-Zener tunneling between energy levels. As a basic physical
process [22], this effect has found wide applications in various systems, such as
current-driven Josephson junctions [23], atoms in accelerating optical lattices [24],
and field-driven superlattices [25].

A nonlinear two-level system, in which the level energies depend on the occupa-
tion of the levels, may arise in a mean-field treatment of a many-body system where
the particles predominantly occupy two energy levels. For example, such a model
arises in the study of the motion of a small polaron [26], a Bose-Einstein conden-
sate (BEC) in a double-well potential [27–29] or in an optical lattice [30, 31], or a
small-capacitance Josephson junction where the charging energy may be important.
In contrast to the linear case, the dynamical property of a nonlinear two-level model
is far from being fully understood, and many novel features have been revealed [2,
32], including the discovery of a nonzero Landau-Zener tunneling probability even
in the adiabatic limit when the nonlinear parameter C exceeds a critical value V .

In this section, we present an analytic discussion on nonlinear Landau-Zener
tunneling. For the behavior near the critical point C = V , we find that the adiabatic
tunneling probability between the two energy levels rises as a 3/2 power law of the
function C/V − 1. Below the critical point, the tunneling probability as a function
of the sweep rate α follows an exponential law (as in the linear case) but with the
exponentmodified due to the nonlinearity. The explicit expression of themodification
factor is obtained analytically, is found to decrease monotonically with the nonlinear
parameter and tends to zero at the critical point, indicating the breakdown of the
exponential law. Indeed, our analysis shows that the exponential law breaks down at
the critical point and transforms into a 3/4 power law. Beyond the critical regime,
i.e., for C > V , we employ the stationary phase method and obtain a closed-form
solution of the nonlinear tunneling probability. This solution is compared with the
numerical solution by integrating the Schrödinger equation; the two solutions exhibit
satisfactory agreement for a wide range of parameters [3].

Our model consists of two levels (as in the standard Landau-Zener model) but
with an additional energy difference depending on the population in the levels. This
configuration is described by the following Hamiltonian [2]:

H (γ ) =
(

γ

2 + C
2 (|b|2 − |a|2) V

2
V
2 − γ

2 − C
2 (|b|2 − |a|2)

)
, (5.33)
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Fig. 5.2 Adiabatic energy
levels (solid lines) for two
typical nonlinear cases: a
C = 0.1, V = 0.2; b
C = 0.4, V = 0.2. The
dashed lines are for the linear
case (C = 0). The
corresponding eigenstates
are the fixed points Pi
(i = 1, · · · , 4) of the He
system (5.36) as shown in
(b): OXT → P1,
MXW → P4, WT → P3.
Only P3 is an unstable saddle
point; the others are stable
elliptic points

where a and b are the probability amplitudes. The Hamiltonian is characterized by
three parameters: the coupling V between the two levels, the level bias γ , and the
nonlinear parameter C describing the level energy dependence on the populations.
The amplitudes a and b satisfy the Schrödinger equation,

i
d

dt

(
a
b

)
= H (γ )

(
a
b

)
, (5.34)

which conserves the total probability |a|2 + |b|2, which is set to 1.
We wish to examine the nonlinear Landau-Zener tunneling, i.e., how the system

evolves when the level bias γ changes with time as γ = αt. We define a sweep rate
α. In this section, we focus on the adiabatic limit, that is, the case in which the sweep
rate α tends to zero.

As in the linearmodel, it is useful to find the adiabatic levels ε(γ ) by diagonalizing
the Hamiltonian (5.33). It is readily found that in the nonlinear model, there are two
eigenvalues when C < V , while there can be four eigenvalues when C > V , as
demonstrated in Fig. 5.2. At C/V = 2 (Fig. 5.2b), because of the four eigenvalues,
a loop appears at the tip of the lower level in the regime −γc ≤ γ ≤ γc, where

γc = (C2/3 − V 2/3)3/2. (5.35)
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Fig. 5.3 Evolution of the phase-space motions of the Hamiltonian system He at C/V = 0.5 as γ

changes adiabatically. The arrows indicate the shifting direction of the fixed pointsPi as γ increases.
The closed curves are the periodic trajectories. In this case, no collision between fixed points occurs,
implying zero adiabatic tunneling probability
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The corresponding eigenstates are not orthogonal to eachother for finiteγ but become
so in the limits of γ → ±∞, where ε → ±|γ |/2. For instance, at the lower level,
we have (a, b) → (1, 0) at γ → −∞ and (a, b) → (0, 1) at γ → +∞.

The direct consequence of the loop structure in Fig. 5.2b, as first discussed in [2],
is that as a quantum state moves along the lower lever to the singular point T , no
options remain for further movement except to jump to the upper and lower levels.
As a result, the nonlinear Landau-Zener tunneling is not zero even in the adiabatic
limit α → 0. The underlying mechanism of this interesting phenomenon is revealed
with an equivalent classical Hamiltonian, where the nonzero adiabatic tunneling
probability is viewed as the result of collision between fixed points.

With a = |a|eiθa and b = |b|eiθb , we introduce the population difference s =
|b|2 − |a|2 and the relative phase θ = θb − θa. In terms of s and θ , the nonlinear
two-level system is expressed as a classical Hamiltonian system [28, 32],

He(s, θ, γ ) = C

2
s2 + γ s − V

√
1 − s2 cos θ, (5.36)

which has the form of a Josephson Hamiltonian. The fixed points of the classical
Hamiltonian correspond to the eigenstates of the nonlinear two-level system and are
given by the following equations:

θ∗ = 0, π, γ + Cs∗ + V s∗√
1 − (s∗)2

cos θ∗ = 0. (5.37)

The number of fixed points depends on the nonlinear parameter C. For weak non-
linearity, C/V < 1, there exist only two fixed points (P1 and P2 in Fig. 5.3, corre-
sponding to the maximum and minimum of the classical Hamiltonian). These points
are elliptic points, each being surrounded by closed (elliptic) orbits. The fixed points
are located on the lines of θ∗ = π and 0, implying that the two corresponding eigen-
states of the two-level system have a relative phase of π . As the level bias changes
from γ = −∞ to +∞, P1 moves smoothly along the line θ∗ = π from the bottom
(s = −1) to the top (s = +1), corresponding to the lower energy level in Fig. 5.2a;
the other point, P2, moves from the top to the bottom, corresponding to the upper
level.

For stronger nonlinearity, C/V > 1, two more fixed points appear in the window
−γc < γ < γc. As shown in Fig. 5.4c–e, both of the new fixed points lie on the
line θ∗ = π , one being elliptic (P4) and the other being hyperbolic (P3) as a saddle
point of the classical Hamiltonian. One of the original fixed points, P2, still moves
smoothly with γ , corresponding to the upper adiabatic level in Fig. 5.2b. The other
point, P1, moves smoothly up to γ = γc, where it collides with P3, corresponding to
the branch OXT of the lower level in Fig. 5.2b. The new elliptic point P4, created at
γ = −γc together with P3, moves up to the top, corresponding to the branch WXM
of the lower level. The hyperbolic point P3 moves down away from its partner P4

after creation and is annihilated with P1 at γ = γc, corresponding to the top branch
WT of the lower level. The collision between P1 and P3 leads to nonzero adiabatic
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Fig. 5.4 Evolution of the phase-spacemotions of theHamiltonHe system atC/V = 2 as γ changes
adiabatically. The arrows refer to the moving directions of the fixed points as γ increases. In this
case, the fixed points P2 and P3 collide at the singular point γc and form a homoclinic orbit with
nonzero action. This jump of the action leads to nonzero adiabatic tunneling probability

tunneling from the lower level to the upper level, which is determined by the ultimate
fate of the fixed point P1.

For adiabatic changes of the level bias γ , a closed orbit in the classical dynamics
remains closed, and the action

I = 1

2π

∮
sdθ (5.38)

stays invariant in time according to the classical adiabatic theorem [33]. The change
of γ is adiabatic as long as the relative change of γ in a period of the orbit is small.
The action equals the phase-space area enclosed by the closed orbit and is therefore
zero for a fixed point. Since the closed orbits surrounding an elliptic fixed point all
have finite periods T , these orbits evolve with the area of each fixed in time. We
thus expect an elliptic fixed point to remain a fixed point during the adiabatic change
of the level bias γ . For the case of C/V < 1, the two fixed points (both elliptic)
evolve adiabatically throughout the entire sweeping of γ , implying the absence of a
transition between the eigenstates in the adiabatic limit. This condition is still true
for the fixed point P2 in the case of C/V < 1, meaning that a state starting from the
upper level remains in the upper level.

The adiabaticity is broken, however, when P1 collides with the hyperbolic fixed
point P3 to form a homoclinic orbit where the period T diverges. Nevertheless, the
classical “particle” remains on this orbit because the orbit is surrounded from both
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outside and inside by closed orbits of finite periods, which form barriers to prevent
the particle from escaping. After this collision, the homoclinic orbit turns into an
ordinary closed orbit of finite period and evolves adiabatically for γ > γc according
to the rule of constant action, which is now nonzero. This orbit ultimately evolves
into a straight line of constant s.

With these observations, we can obtain the tunneling probability in the adiabatic
limit [3]:

Γad = 1

2
I(sc) = 1

4π

∮
s(θ,Ec)dθ, (5.39)

where

sc = −
√
1 − (V/C)2/3, (5.40)

and

Ec = C

2
s2c + γcsc − V

√
1 − s2c . (5.41)

The above analysis is consistent with the nonlinear hysteresis phenomenon presented
in [32], where a similar formula for adiabatic tunneling probability was obtained.

The adiabatic tunneling probability can be evaluated analytically in the critical
region of δ = C/V − 1 → 0. The singular point of the level bias is found to leading
order as follows:

γc � V (
2

3
δ)3/2. (5.42)

The homoclinic orbit is confined near the critical point, with its top at

st � sc + √
6δ. (5.43)

We expand the classical Hamiltonian to leading orders of (s − sc) and (θ − π) and
find

θ − π �
√
2γc(s − sc)

V
+ 1

2

√
2γc
V

(s − sc)
3/2. (5.44)

From the area of this orbit, the adiabatic tunneling probability for this limiting case
is found to be

Γad = 1

2π

∫ st

sc

(θ − π)ds = 4

3π
δ3/2. (5.45)
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Clearly, both Γad and its first-order derivative are continuous at the critical point.
However, its second-order derivative is discontinuous.

In the linear case of C = 0, an exact formula exists that prescribes an exponential
dependence of the tunneling probability on the sweep rate [22]:

Γlz = exp

(
−πV 2

2α

)
. (5.46)

It is interesting to consider how this exponential law is changed due to the nonlin-
earity. We focus first on the near-adiabatic case (i.e., α �= 0 and α � 1).

For this purpose, we need to investigate the evolution of the fixed point P1 in
addition to the nearby periodic orbits by introducing the angle variable φ, which is
the canonical conjugate of the action variable I . As in the adiabatic case considered
above, the transition probability is still given by the increment of the action, i.e.,
Γ = 1

2ΔI . According to the standard theory on the nonadiabatic correction [33], we
have

ΔI =
∫ +∞

−∞
R(I , φ)

dγ

dt

dφ

φ̇
, (5.47)

where R(I , φ) is the periodic function of φ with zero average and is related to the
generating function of the canonical transformation from variables (s, θ) to (I , φ).
The concrete form of the function R is unimportant in the following discussion.

To evaluate the above integral, we need to express φ̇ as a function of φ itself. In
the near-adiabatic limit, the change of the angle variable is equal to the frequency of
the fixed point P1, i.e., φ̇ = ω∗. The frequency can be calculated by linearizing the
equations of motion (5.36) near the fixed point (5.37),

ω∗ = V

(
1

1 − (s∗)2
− C

V

√
1 − (s∗)2

)1/2

. (5.48)

On the other hand, by substituting θ∗ = π into Eq. (5.37) and differentiating this
equation with respect to time, we have

dt

ds∗
= V

α

(
1

[1 − (s∗)2]3/2 − C

V

)
. (5.49)

Combining these equations, we can relate s∗ to φ and thus express φ̇ as a function
of φ itself.

The principal contribution to the integral comes from the neighborhood of the
singularities of the integrand, which are the zeros of the frequency φ̇ = ω∗(γ ). These
zero points are easily found from Eq. (5.48) as follows:

s∗0 = [1 − (V/C)2/3]1/2. (5.50)
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Fig. 5.5 Dependence of the tunneling probability on the scaled sweep rate V 2/α a forC/V = 1 and
b other values of C/V . In (b), we observe a clear breakdown of the exponential law for C/V > 1.
The open circles are obtained with the integration of Eq. (5.34); the solid squares are the numerical
results of a Bose-Einstein condensate in an accelerating optical lattice, where α is the acceleration

The integral (5.47) is exponentially small if there are no real singularities andbecomes
a power law in the sweep rate if there is a singularity on the real axis.

We consider the case of critical nonlinearly, C/V = 1, for which the singular
point occurs at s∗ = 0. Near this point, we find from Eq. (5.49) that ω∗ � √

3/2V s∗
and φ � (1/4)(3/2)3/2(V 2/α)(s∗)4. Then, we have an approximate relation ω∗ ∼
α1/4φ1/4 near the singularity. Substituting these expressions back into Eq. (5.47) and
using the fact that ∂R/∂φ is independent of α, we find a power-law behavior for the
tunneling probability,

Γ ∼ α3/4. (5.51)

This power law, which indicates a sharp change of tunneling behavior beyond the
critical regime C = V , is verified by our numerical calculations (Fig. 5.5a).

We shift our attention to nonadiabatic tunneling for subcritical nonlinearity, C <

V , where the zeros of the frequency ω∗ are complex. The principal contribution to
the integral (5.47) comes from the neighborhood of this point, and the integral can
be evaluated by deforming the contour of integration into the complex plane [33].
The tunneling probability is found to be exponential,

Γ ∼ exp

(
−q

πV 2

2α

)
, (5.52)

where the factor in the exponent is given by



5.2 Nonlinear Landau-Zener Tunneling 131

Fig. 5.6 Dependence of the
factor q on C/V
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0
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(
1

(1 + x2)3/2
− C

V

)3/2

dx. (5.53)

For the linear caseC = 0, the factor q is exactly unity, consistent with the standard
Landau-Zener formula (5.46). For the nonlinear case, C/V > 0, this factor becomes
less than one, showing the enhancement effect on the nonadiabatic tunneling. As
C/V increases to 1, the critical point, this factor vanishes, signaling the breakdown
of the exponential law. Near the critical point C/V = 1, we have the approximate
expression q � 3

4

√
2/3(1 − C/V )2, i.e., the factor converges to zero with a square

power law.
With numerical integration of the nonlinear Schrödinger equation (5.34), we show

in Fig. 5.5 the sweep rate α dependence of the tunneling probability, where the slope
of the curve tends to be zero for C/V > 1, clearly indicating the breakdown of
the exponential law. We read the factor q from the slope and compare it with our
analytical results in Fig. 5.6, finding reasonably good agreement.

We now discuss the nonlinear Landau-Zener tunneling beyond the critical regime
and derive the tunneling probability using the stationary phase approximation. We
concentrate on the case of strong nonlinearity with C/V � 1, where there is a near-
unity tunneling probability to the upper adiabatic level even in the adiabatic limit.
This probability can only increase when the sweep rate is finite. We thus expect the
amplitude b in the Schrödinger equation (5.34) to remain small and for |a| ∼ 1 to
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always hold, and a perturbation treatment of the problem becomes adequate. We
begin with the variable transformation,

a = a′e−i
∫ t
0 [ γ

2 + C
2 (|b|2−|a|2)]dt, (5.54)

b = b′ei
∫ t
0 [ γ

2 + C
2 (|b|2−|a|2)]dt . (5.55)

As a result, the diagonal terms in Hamiltonian are transformed away, and we have

b′ = V

2i

∫ t

−∞
dte−i

∫ t
0 [γ+C(|b|2−|a|2)]dt . (5.56)

We need to evaluate the above integral self-consistently. Because of the large C,
the nonlinear term in the exponent generally imparts a rapid phase oscillation, which
makes the integral small. The dominant contribution comes from the stationary point
t0 of the phase, around which we have

− γ + C(1 − 2|b|2) = −ᾱ(t − t0), (5.57)

with

ᾱ = α + 2C

[
d

dt
|b|2

]

t0

. (5.58)

We thus have

|b|2 =
(
V

2

)2 ∣∣∣∣
∫ t

−∞
dte− i

2 ᾱ(t−t0)2
∣∣∣∣
2

. (5.59)

We can differentiate this expression and evaluate its result at time t0, obtaining several
standard Fresnel integrals with the result [(d/dt)|b|2]t0 = (V/2)2

√
π/ᾱ. Combining

this result with the relation (5.58), we obtain a closed equation for ᾱ,

ᾱ = α + 2C

(
V

2

)2 √
π

ᾱ
. (5.60)

The nonadiabatic transition probability Γ is given by

Γ = 1 − |b|2+∞ = 1 −
(
V

2

)2 ∣∣∣∣
∫ +∞

−∞
dte− i

2 ᾱ(t−t0)2
∣∣∣∣
2

= 1 − πV 2

2ᾱ
. (5.61)

This result yields a closed equation for Γ [3]:

1

1 − Γ
= 1

P
+

√
2

π

C

V

√
1 − γ , (5.62)
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Fig. 5.7 Comparison between our analytic results and the numerical integration of the Schrödinger
equation (5.34)

where P = πV 2/(2α). In the adiabatic limit, i.e., 1/P = 0, we find that Γ = 1 −
1.7(V/C)2/3; in the sudden limit, 1/P → ∞, we have Γ = 1 − P, which is exact.
In Fig. 5.7a, we compare the above analytical results with that obtained from directly
solving the Schrödinger equation (5.34) and observe that the results are consistent.

The above deduction is made for the case of strong nonlinearity; however, the
corresponding result can be extended to a wide range of parameters if we take the
quantity P as 1 − Γlz = 1 − e−πV 2/(2α), representing linear Landau-Zener tunneling.
Then, the above equation indicates that the nonlinear tunneling probability is a func-
tion of both the linear Landau-Zener tunneling and the ratio between the nonlinear
parameter and the energy gap. This relation is confirmed by our numerical calcula-
tions. We have calculated the nonlinear tunneling probability using (5.62) with 2500
pairs of Γlz and C/V , randomly distributed in the ranges (0.05, 0.95) and (1, 20),
respectively. These results are compared with the tunneling probabilities obtained by
directly integrating the Schrödinger equation (5.34) in Fig. 5.7b, where a very good
agreement is observed.

5.2.2 Three-Level System

We consider the simplest multilevel system—the three-level system—to investigate
its complex tunneling dynamics in the presence of nonlinearity. Because quantum
transitions may occur between several levels simultaneously, the Landau-Zener tun-
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neling in the nonlinear three-levelmodel showsmany striking properties distinct from
those of the two-level case. We consider the following dimensionless Schrödinger
equation:

i
d

dt

⎛

⎝
a1
a2
a3

⎞

⎠ = H

⎛

⎝
a1
a2
a3

⎞

⎠ , (5.63)

with the Hamiltonian given by

H =
⎛

⎝
γ

2 + c
4 |a1|2 − v

2 0
− v

2
c
4 |a2|2 − v

2
0 − v

2 − γ

2 + c
4 |a3|2

⎞

⎠ , (5.64)

where v is the coupling constant between the neighboring levels; c is the nonlinear
parameter; the energy bias γ is assumed to be perturbed by a linear external field,
i.e., γ = αt, where α is the sweep rate; a1, a2, and a3 are the probability amplitudes
in each level; and the total probability |a1|2 + |a2|2 + |a3|2 is conserved and set to
be unity.

When the nonlinear parameter vanishes, our model reduces to the linear case, and
the adiabatic energy levels ε(γ ) = 0,± 1

2

√
γ 2 + 2v2 (Fig. 5.8a), derived by diago-

nalizing the Hamiltonian (5.64). The tunneling probability Γnm (n,m = 1, 2, 3) is
defined as the occupation probability on the mth level at γ → +∞ for the state ini-
tially on the nth level at γ → −∞. For the linear case, the above system is solvable
analytically, and the tunneling probabilities can be explicitly expressed as [34]

Γ11 =
[
1 − exp

(
−πv2

2α

)]2
, (5.65)

Γ12 = 2 exp(−πv2

2α
)

[
1 − exp

(
−πv2

2α

)]
, (5.66)

Γ13 = exp(−πv2

α
), (5.67)

Γ22 =
[
1 − 2 exp

(
−πv2

2α

)]2
. (5.68)

The others are Γ21 = Γ23 = Γ32 = Γ12, Γ31 = Γ13, and Γ33 = Γ11 due to the sym-
metry of the levels.

With the presence of the nonlinear terms, we wish to know how the tunneling
dynamics in the above system are affected. In our discussions, the coupling param-
eter is set to unity, i.e., v = 1. Therefore, the weak nonlinearity case and strong
nonlinearity case correspond to c � 1 and c � 1, respectively.
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Fig. 5.8 Adiabatic energy
levels at v = 1.0: a linear
case, b weak nonlinearity
case of c = 0.1, c strong
nonlinearity case of c = 10.0

Similar to the linear case, we need to analyze the adiabatic levels of the nonlin-
ear model first. With a1 = √

s1eiθa1 , a2 = √
1 − s1 − s2eiθa2 , and a3 = √

s2eiθa3 , we
introduce the relative phases θ1 = θa1 − θa2 and θ2 = θa3 − θa2 . In terms of s1, θ1, s2,
and θ2, the nonlinear three-level system is cast into a classical Hamiltonian system,

He =
(γ

2
+ c

8
s1
)
s1 + c

8
(1 − s1 − s2)

2 +
(
−γ

2
+ c

8
s2
)
s2

− v
√

(1 − s1 − s2)s1 cos θ1 − v
√

(1 − s1 − s2)s2 cos θ2. (5.69)

s1, θ1 and s2, θ2 are two pairs of canonically conjugate variables of the classical
Hamiltonian system, governed by the following differential equations:

ṡ1 = −v
√

(1 − s1 − s2)s1 sin θ1, (5.70)

θ̇1 = γ

2
− c

4
(1 − 2s1 − s2) − 1 − 2s1 − s2

2
√

(1 − s1 − s2)s1
v cos θ1 + s2

2
√

(1 − s1 − s2)s2
v cos θ2,

(5.71)

ṡ2 = −v
√

(1 − s1 − s2)s2 sin θ2, (5.72)

θ̇2 = −γ

2
− c

4
(1 − s1 − 2s2) + s1

2
√

(1 − s1 − s2)s1
v cos θ1 − 1 − s1 − 2s2

2
√

(1 − s1 − s2)s2
v cos θ2.

(5.73)
The fixed points of the nonlinear classical Hamiltonian correspond to the

eigenstates of the nonlinear three-level system. By setting ṡ1 = ṡ2 = θ̇1 = θ̇2 = 0
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 5.9 The tunneling probabilities Γ11, Γ22, and Γ33 (full circles) as functions of α for different
nonlinear parameters at v = 1.0. The dashed lines represent the results from the linear Landau-Zener
model for comparison

in Eqs. (5.70)–(5.73), the eigenstates of the system are obtained. Accordingly, the
eigenenergy is obtained via ε = He, i.e., the energy levels are obtained, as shown in
Fig. 5.8.

For weak nonlinearity, the levels’ structure is similar to its linear counterpart
(Fig. 5.8b). For strongnonlinearity (Fig. 5.8c), in themiddle level, a double-loop topo-
logical structure emerges; in the upper level, a butterfly structure appears. Because
of these topological distortions on the energy levels, we expect that the tunneling
dynamics will dramatically change.

In the adiabatic limit, the characters of the tunneling probabilities are expected
to be entirely determined by the topology of the energy levels and the eigenstates’
properties (corresponding to the stability of the fixed points in the classical Hamil-
tonian system), according to the adiabatic theorem [4]. Thus, we expect that for
the weak-nonlinearity case, an initial state starting from any level (upper, middle or
lower) follows the levels and evolves adiabatically; as a result, no quantum transition
between levels occurs. For the strong nonlinearity case, an initial state from the lower
level is expected to evolve adiabatically and remain on the ground state, leading to
zero adiabatic tunneling probability, whereas the state initially corresponding to the
middle or upper level cannot move smoothly from the left side to the right side due
to the topological change of the level. A transition to other levels occurs at the tip of
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Fig. 5.10 Poincaré section of the trajectories for c = 10 before and after the tip of the butterfly
structure of the upper level in Fig. 5.8c

the loop or butterfly. Consequently, the adiabatic tunneling probability is expected
to be nonzero.

However, this picture is only partly corroborated by our direct solution of the
Schrödinger equation using a 4–5th-order Runge-Kutta adaptive-step algorithm, as
shown in Fig. 5.9.

On the one hand, as we expect, Fig. 5.9 clearly shows—for the strong nonlinearity
case—no tunneling for the state from the lower level; however, substantial adiabatic
tunneling is observed for the states from the upper two levels. In particular, we find
that the tunneling probability as a function of the sweep rate shows an irregular
oscillation. This oscillation was also reported by Graefe et al. [35]. We associate this
irregularity with the chaotic state. To demonstrate this state, we plot in Fig. 5.10 the
Poincaré section of the trajectories for c = 10 before and after the tip of the butterfly
structure of the upper level in Fig. 5.8c. Before the tip, the eigenstate corresponds to
the fixed point surrounded by the quasiperiodic orbit; therefore, this state is stable.
As the state evolves to the right-hand tip of the butterfly, it makes contact with the
chaotic sea, and the states subsequently become chaotic. The characteristics of the
chaos are sensitive to the input parameters; therefore, the chaotic state is responsible
for the irregular tunneling probability revealed by Fig. 5.9h and i.

On the other hand, Fig. 5.9 also shows that for the case of weak nonlinearity,
even though the adiabatic levels keeps the same topological structure as in the linear
case, a nonzero tunneling probability remains for the state starting from the middle
level. The tunneling also shows some kind of irregularity. This phenomenon contrasts
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Fig. 5.11 Variation of s1
with γ when the eigenstate
(0, 1, 0)T evolves
adiabatically at v = 1.0,
α = 0.0001. a Linear case. b
Nonlinear case at c = 0.1. c
Real parts of the eigenvalues
of HJ

with our naive conjecture developed from observing the topological structure of the
adiabatic levels.

To explain this unusual phenomenon, we conduct a detailed analysis of the prop-
erties of the fixed points of the classical system Hamiltonian (5.69), corresponding
to the eigenstates of the middle level.

We plot the quantity s1 as a function of γ in Fig. 5.11a and b and observe that the
adiabatic evolution of the eigenstate breaks down at approximately γ = −2 due to
the nonlinearity (Fig. 5.11b). This adiabaticity breakage is caused by the change in
the properties of the fixed point corresponding to the eigenstate of the middle level.
This aspect is revealed by investigating the Hamiltonian-Jacobi matrix obtained by
linearizing the nonlinear Eqs. (5.70)–(5.73) at fixed points:

HJ =

⎛

⎜⎜⎜⎝

− ∂2He
∂s1∂θ1

− ∂2He
∂2θ1

− ∂2He
∂s2∂θ1

− ∂2He
∂θ2∂θ1

∂2He
∂2s1

∂2He
∂θ1∂s1

∂2He
∂s2∂s1

∂2He
∂θ2∂s1

− ∂2He
∂s1∂θ2

− ∂2He
∂θ1∂θ2

− ∂2He
∂s2∂θ2

− ∂2He
∂2θ2

∂2He
∂s1∂s2

∂2He
∂θ1∂s2

∂2He
∂2s2

∂2He
∂θ2∂s2

⎞

⎟⎟⎟⎠ . (5.74)

We obtain the eigenvalues of HJ for different γ and plot our results in Fig. 5.11c.
These eigenvalues can be real, complex or purely imaginary. Only purely imagi-
nary eigenvalues correspond to the stable fixed point; others indicate unstable ones.
Figure5.11c shows that the eigenvalues are complex numbers (i.e., their real parts
are not zero) around γ = 0,±2. The corresponding fixed points are unstable. For
other regions, the eigenvalues ofHJ are purely imaginary. Therefore, even though the
topological structure does not change in terms of the level structures, the instability
of the fixed point corresponding to the middle level leads to the breakdown of the
adiabaticity, manifested in the irregular nonzero tunneling probability revealed by
Fig. 5.9e in the adiabatic limit.
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The above instability mechanism occurs for any small nonlinear perturbation.
We present selected analytic deductions as follows. Note that the fixed points of
Eqs. (5.70)–(5.73) can be accurately calculated if c = 0: s01 = s02 = 1

2+γ 2 , θ0
1 = 0

and θ0
2 = π for γ > 0, and θ0

1 = π and θ0
2 = 0 for γ < 0. By employing perturba-

tion theory using c as the small parameter, we obtain the fixed points for small c:
s01 = 1

2+γ 2 − (1−γ 2)2

4(2+γ 2)
cγ , s02 = 1

2+γ 2 + (1−γ 2)2

4(2+γ 2)
cγ , θ0

1 = 0, and θ0
2 = π for the nonlin-

ear case. Substituting these points into Eq. (5.74), we can obtain the eigenvalues of
HJ by solving the following quartic equation:

(64 + 1280γ 4)x4 + (64 + c2 + 1344γ 2)x2 + (16 + c2 + 352γ 2) = 0. (5.75)

The useful quadratic discriminant is Δ = 4096γ 4 − 2432c2γ 2 + (c4 − 128c2). In
the linear case, c = 0, Δ = 4096γ 4 is always larger than zero, which means that the
solutions for x are purely imaginary; thus, the fixed points are stable. For small c,
limγ→0Δ < 0, the real part of the solutions∼c/16,while the imaginary part∼√

2/2.
As a result, the fixed point corresponding to themiddle level becomes unstable around
γ = 0 for any small nonlinearity, implying the breakdown of the adiabatic evolution
of states for the middle level.

5.2.3 Spatially Magnetic Modulated Trap

In this subsection, we study the nonlinear Landau-Zener tunneling of a Bose-Einstein
condensate in a spatially magnetic modulated trap as shown in Fig. 5.12, which is
a single well with a spatially modulated scattering length, actually called a pseudo
double-well potential [36]. In regions (a) and (c), the s-wave scattering length as = 0;
in region (b), however, as �= 0, which allows tuning with a magnetic-field Feshbach
resonance. The wave function satisfies the following nonlinear equation:

i
∂Ψ

∂t
= − d2

dx2
Ψ + V (x)Ψ + as(x)|Ψ |2Ψ. (5.76)

For the present pseudo double-well potential, the wave function Ψ (x, t) is described
by a superposition of the two modes of different symmetry, i.e., symmetric and
antisymmetric [37]:

Ψ (x, t) = c1(t)φL(x) + c2(t)φR(x). (5.77)

Here, φL,R(x) = [φ1(x) ± φ2(x)]/
√
2 with φ1,2(x) are the symmetric and antisym-

metric functions, respectively [37, 38]. In Eq. (5.77), c1 and c2 are the probability
amplitudes of atoms in each of the effective two wells. The leading goal of this work
is to investigate the effect of the scattering length as, which can be widely tuned with
a magnetic-field Feshbach resonance, on the energy landscape and corresponding
Landau-Zener tunneling, so we take the potential energy V (x) = 0 for convenience.
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Fig. 5.12 Schematic sketch of ourmodel. In regions (a) and (c), the s-wave scattering length as = 0;
however, in region (b), as �= 0, which allows tuning with a magnetic-field Feshbach resonance. We
call this model a pseudo double-well potential, where 2γ is the level separation of the zero-point
energy. In this work, we focus on the case of repulsive interaction between atoms, i.e., as > 0

The effective double-well system is described by a dimensionless Schrödinger
equation,

i
d

dt

(
c1
c2

)
= H (γ )

(
c1
c2

)
, (5.78)

with the Hamiltonian given by

H (γ ) =
(
H11 H12

H21 H22

)
, (5.79)

where
H11 = γ + c|c1|2 + ηΔ + ω|c2|2, (5.80)

H12 = H21 = −v + η + ωΔ, (5.81)

H22 = −γ + c|c2|2 + ηΔ + ω|c1|2, (5.82)

with
Δ = c∗

1c2 + c1c
∗
2. (5.83)

The total probability |c1|2 + |c2|2 is conserved and is set to unity. In the above
derivation, 2γ is the level separation, v is the number-independent coupling con-
stant between the two levels, η and ω describe the coupling energy dependence on
the level population difference due to the exchange energy between atoms of different
states, and c is the nonlinear parameter representing the interactions between atoms
belonging to the same state [3]. For the symmetric case γ = 0, the expressions of v,
c, η, and ω are as follows:
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Fig. 5.13 Adiabatic energy levels for differentη. Here,we set v = 1,ω = 0, and interaction strength
c = 2v

v =
∫ 2L

0
φL

d2φR

dx2
dx =

∫ 2L

0
φR

d2φL

dx2
dx, (5.84)

c = as

∫ L+r

L−r
φ4
Ldx = as

∫ L+r

L−r
φ4
Rdx, (5.85)

η = as

∫ L+r

L−r
φLφ

3
Rdx = as

∫ L+r

L−r
φRφ

3
Ldx, (5.86)

ω = as

∫ L+r

L−r
φ2
Lφ

2
Rdx. (5.87)

Relative to previous models, the introduction of the parameters η and ω makes
the energy landscape more complex. With this effective two-level model, the energy
as a function of the level bias has different structures corresponding to different
parameters, as shown in Figs. 5.13 and 5.14. The consequence of the loop structure
shown in Fig. 5.13a, as discussed in [3], is that a quantum state moves along the upper
level by changing γ so slowly that little tunneling to the lower level is generated. The
state gains energy until reaching the singular point X in Fig. 5.13a, and no options
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Fig. 5.14 Adiabatic energy levels for different ω, with v = 1, c = 2v, and η = 1.01v. In a and d,
Pi points correspond to stable elliptic points, and Xi points are unstable saddle points

remain for furthermovement except to jump to the lower and upper levels. As a result,
the nonlinear Landau-Zener tunneling probability is not zero even in the adiabatic
limit α → 0. For another typical nonlinear case, as shown in Fig. 5.14, the lower level
develops a horizontal structure. In this structure (shown in Fig. 5.13d, for example),
notably, the quantum state starting from the lower level can never move to T because
it remains in a stable state after arriving at A.

To avoid the challenges associated with nonlinearity, we place our analysis
on a firm mathematical basis by studying an equivalent classical Hamiltonian. In
this transform, the eigenstates become fixed points in the classical problem, and
the nonzero adiabatic tunneling probability is interpreted as the result of collision
between fixed points.

With c1 = √
s1eiθ1 and c2 = √

s2eiθ2 , we introduce the population difference

n = s2 − s1 (5.88)

and the relative phase
θ = θ2 − θ1. (5.89)
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Fig. 5.15 Evolution of the phase-space motions of the Hamilton Hc system as γ changes adiabati-
cally for the same parameters as in Fig. 5.14a. Points Xi are saddle points, and points Pi are elliptic
points. The arrows indicate the shifting direction of the fixed point as γ increases

In terms of n and θ , the effective nonlinear two-level system is cast as a classical
Hamiltonian system,

Hc = 2γ n − 1

2
(c − 2ω)n2 + 2(v − η)

√
1 − n2 cos θ − 1

2
ω(1 − n2) cos 2θ,

(5.90)
where n and θ are a pair of canonically conjugate variables of the classical Hamilto-
nian system. The fixed points of the nonlinear classical Hamiltonian correspond to
the eigenstates of the quantum system and are given by the following equations:

ṅ = 2(v − η)
√
1 − n2 sin θ − ω(1 − n2) sin 2θ, (5.91)

θ̇ = 2γ − (c − 2ω)n − 2(v − η)n√
1 − n2

cos θ + ωn cos 2θ. (5.92)

By solving Eqs. (5.91) and (5.92), the eigenstates of the system are obtained. We
restrict our interest to the region enclosed by −1 ≤ n ≤ 1 and 0 ≤ θ ≤ 2π . Many
interesting results emerge during the study of this set of equations.
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Fig. 5.16 Evolution of the phase-space motions of the Hamilton Hc system as γ changes adiabati-
cally for the same parameters as in Fig. 5.14d. Points Xi are saddle points, and points Pi are elliptic
points. The arrows indicate the shifting direction of the fixed point as γ increases

Deriving the analytical expressions of the fixed points is challenging; however,
we can readily obtain the equivalent results numerically. The numerical results are
shown in Figs. 5.15 and 5.16, corresponding to Fig. 5.14a and b, respectively. Points
Xi are saddle points, and points Pi are elliptic points, each being surrounded by a
closed (elliptic) orbit. In Fig. 5.15, the collision between P2 and X6 leads to nonzero
adiabatic tunneling from the upper level to the lower level, which is determined by
the ultimate fate of the fixed point P2. As the level bias changes from γ = −∞ to
γ = +∞, P2 in Fig. 5.16 moves smoothly along the line θ = 0 from the top (s = 1)
to the bottom (s = −1), corresponding to the upper level in Fig. 5.14d. The original
fixed point P1 moves smoothly up to C [in Fig. 5.14a] or A [in Fig. 5.14d], where two
more fixed points appear at θ = π/2 and 3π/2 [P3 and P4 in Figs. 5.15b–d or5.16b–
d, corresponding to the line CD in Fig. 5.14a or the line AB in Fig. 5.14d], all being
elliptic. The state along CD or AB is stable, i.e., any deviation of the initial condition
of the system cannot cause the trajectory in the phase space to move away from this
line. The state continues to move along the line as γ increases, and no tunneling
occurs.

We now turn to Landau-Zener tunneling in the pseudo nonlinear two-level system.
In the following discussion, we focus on the case of repulsive interaction between
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atoms, i.e., c > 0. As in the linear Zener model, we take v to be independent of time,
and we wish to examine the nonlinear Landau-Zener tunneling, i.e., how the system
evolves when the level bias γ changes with time as γ = αt. We take α to be the
sweep rate. In this work, we focus on the adiabatic limit, that is, the case in which
the sweep rate α tends to zero. In the adiabatic limit, the characters of the tunneling
probabilities are determined entirely by the topology of the energy levels and the
eigenstates properties, which correspond to the stability of the fixed points in the
classical Hamiltonian system [3, 4]. In the study of the tunneling probability for the
nonlinear Landau-Zener model, we are interested in the long-time solution of Eq.
(5.78) provided that the system is prepared at t → −∞ in the high- or low-energy
stationary state. For example, we choose the low-energy c1, i.e., c01(t → −∞) = 1,
and the tunneling probability is thus PT = |c1(t → ∞)|2. In the linear case, the
tunneling probability is independent of whether the system starts in the low- or high-
energy state; an initial state starting from any level (upper or lower) follows the level
and evolves adiabatically. As a result, no quantum transition between levels occurs.
For the nonlinear case, the energy levels (upper and/or lower) develop a loop structure
corresponding to special parameters. An initial state from the level that is a smooth
curve is expected to evolve adiabatically while remaining in the ground state, leading
to zero adiabatic tunneling probability, whereas for the state initially from the level
developing a loop, due to the topological change of the level, the state cannot move
smoothly from the left side to the right side. A transition to another level occurs at
the tip of the loops. Consequently, the adiabatic tunneling probability is expected to
be nonzero.

The breakdown of adiabatic evolution is confirmed by numerical calculation of
the tunneling probability directly from Eq. (5.78) for two initial states, (c01, c

0
2) =

(1, 0) and (c01, c
0
2) = (0, 1), corresponding to the initial state starting from the lower

and upper levels, respectively. The numerical results of the probability for different
parameters are shown in Figs. 5.17, 5.18 and 5.19. The small fluctuations appearing
in the curves occur because the numerical simulation must start at some finite time
instead of the ideal limit of t = −∞.

As mentioned above, in the linear case c = 0, the instantaneous eigenvalue inde-
pendence of γ = αt (the so-called adiabatic levels) form a consecutive avoided cross-
ing; consequently, the transition probability for the linear case is independent of other
parameters. This condition no longer holds in the nonlinear case since the influence of
the nonlinearity, e.g., the emergence and structure of the loops, depends on v,η,ω, and
γ . This relationship is confirmed by our numerical results shown in Fig. 5.17, where
PT (α) is plotted for different values of ω for the same parameters as in Fig. 5.14. For
the state initially from the lower levels (c01, c

0
2) = (1, 0) as shown in Fig. 5.17a, there

appears a damped oscillating tunneling probability that still tends to zero in the adia-
batic limit (PT → 0 for α → 0) for small values of the sweep rate α with decreasing
α. These results can be understood through the following argument. As shown in
Fig. 5.14, the lower energy level develops a horizontal structure. For example, in
Fig. 5.14d, the quantum state on the horizontal segment AB of the lower level is a sta-
ble state, while the state corresponding to AT is unstable. The quantum state starting
from the lower level can never move to T because once it arrives at A, it remains at
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Fig. 5.17 Tunneling probability as a function of the sweep rate α for different values of ω for an
initial state starting from the lower level (a) and upper level (b), with c = 2v and η = 1.01v

Fig. 5.18 Tunneling probability for different nonlinear parameters c, with η = 1.01v andω = 0.8v
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Fig. 5.19 Tunneling probability for the same parameters as in Fig. 5.13

a stable state, i.e., the state continues moving along line AB as γ increases and then
moves smoothly from the left side to the right side alongM − A − B − N , leading to
zero adiabatic tunneling probability. The numerical results for an initial state starting
from the upper levels are shown in Fig. 5.17b; here, the tunneling increases with
decreasing ω. Most strikingly, the tunneling probability for ω ≤ 0.65v is not zero in
the adiabatic limit α → 0 for the appearance of loops shown in Fig. 5.14, while it
goes to zero for ω ≤ 0.65v [ω = 0.8v in Fig. 5.17b], as no loops have occurred yet.
At the critical value ω = 0.65v, the transition probability vanishes with a nonzero
slope.

Figure5.18 plots the dependence of the probability on α for different values of
the nonlinear parameter c, with η = 1.01v and ω = 0.8v. As shown in Fig. 5.18a, for
the state initially starting from the lower levels, a novel feature is the appearance of
a pronounced damped oscillation of the tunneling probability with decreasing α for
small values of α. A stronger interaction strength corresponds to a broader oscillating
region. Notably, the tunneling probabilities for c ≥ v are zero in the adiabatic limit
α → 0, while the probability is assumably not zero for one critical value of c < v.
The numerical results of tunneling for an initial state starting from the upper level
increases with increasing interaction strength. For weak nonlinearities, e.g., c = 1v
and 2v in Fig. 5.18b, the probability still tends to zero in the adiabatic limit, i.e.,
PT → 0 for α → 0, as no loops have occurred yet. This condition is no longer true
after the appearance of the loops (c = 3v and 4v) such that PT (α → 0) > 0.

We calculate the probability for the same parameters as in Fig. 5.13. The numerical
results are shown in Fig. 5.19. For ω = 0 and η = 1v, the off-diagonal component of
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the Hamiltonian is zero; thus, an initial state starting from the lower or upper levels
cannot follow the level and inevitably transitions to another level, i.e., the tunneling
probability PT = 1. For other values of η, the lower energy levels do not develop
loop structures, so the probability for the initial state tunneling from a low energy
is zero. In contrast, for an initial state from the upper level, the adiabatic tunneling
probabilities are not zero because of the loop structures. For η < 1v, the energy gap
decreases with increasing η, so the probability is large for large values of η. The
results for η > 1v are reversed.

5.3 Nonlinear Rosen-Zener Tunneling

The Rosen-Zener model was first proposed to study the spin-flip of two-level (hyper-
fine Zeeman energy level) atoms interacting with a rotating magnetic field by Rosen
and Zener to account for the double Stern-Gerlach experiments [39]. In contrast to
the well-known Landau-Zener model that depicts the tunneling dynamics between
two avoided-crossing energy levels [22], in the Rosen-Zener model, the energy bias
between two levels is fixed, and the coupling between two modes is time dependent
as described by a rectangular [40], Gaussian [41], exponential [42], or hyperbolic-
secant function [39]. This model has attracted much attention not only because it
has an exact analytic solution, which provides a way to understand complex mul-
timode systems [43], but also due to its versatile applications in the nonresonant
charge exchange of ion-atom collisions [44], laser-induced excitation [45], nuclear
magnetic resonance techniques [46], and quantum computation [47], to name only
a few.

In the present section, we extend the Rosen-Zener model to the nonlinear case
and examine how nonlinearity affects the quantum transition dynamics. We find
that the nonlinearity can affect the quantum transition dramatically. At a certain
level of nonlinearity, 100% population transfer between two levels is observed and
found to be robust over a very wide range of external parameters. On the other
hand, the quantum transition can be completely blocked by a strong nonlinearity.
In the adiabatic limit, we have derived analytical expressions for the transition
probability [48].

The nonlinear two-mode systemwe consider is described by the following dimen-
sionless Schrödinger equation:

i
∂

∂t

(
a
b

)
= H (t)

(
a
b

)
, (5.93)

with the Hamiltonian given by

H (t) =
[γ

2
+ c

2
(|b|2 − |a|2)

]
σ̂ z + v

2
σ̂ x, (5.94)
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Fig. 5.20 Numerical results
for the transition probability
versus the scanning period
with different nonlinear
parameters c/v0 b 0.6, c 0.9,
and d 1.3. For comparison,
we also include the results of
the linear case in (a), which
accurately reproduces the
results predicted by formula
(5.97)

where σ̂ x and σ̂ z are the Pauli matrices. γ and v are the energy bias and coupling
strength between the twomodes, respectively. c is the nonlinear parameter describing
the interatomic interaction. The total probability |a|2 + |b|2 is conserved and set to
1 without loss of generality.

In contrast to the nonlinear Landau-Zener model, where the coupling strength
remains constant and the energy bias varies linearly in time [2, 3, 22], in this model,
the energy bias γ and nonlinear parameter c are set to be constant, whereas the
coupling strength v is time dependent and governed by an external pulse field of the
form [48]

v =
{
0, t < 0, t > T ,

v0 sin2
(

π t
T

)
, t ∈ [0,T ], (5.95)

where T is the scanning period of the external field.
In the following discussion, we assume that the quantum state is prepared on

one mode initially. With the external field turned on, a quantum transition between
different modes emerges. Our focus is the population dynamics in the presence of
the external field. The transition probability Γ is defined as the probability of the
particle occupying the other mode after the coupling field has been turned off.

We start our analysis with the simplest case, in which both the energy bias and
nonlinear parameter vanish (γ = 0 and c = 0). In this case, the Schrödinger equa-
tion denoted by (5.93) is solvable analytically. Setting (a, b) = (1, 0) as the initial
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condition, we readily obtain the probability of the particle populated on the other
mode as a function of time,

p(t) = |b(t)|2 = sin2
(
v0
2π t − T sin 2π t

T

8π

)
. (5.96)

Then, the total transition probability is obtained by substituting t = T into the above
equation:

Γ = p(T ) = sin2
(
v0T

4

)
. (5.97)

This expression demonstrates a perfect Rabi-like oscillation of the transition prob-
ability versus the pulse duration or scanning period T of the external field. The
oscillation frequency is proportional to the maximum coupling strength v0.

For the degenerate case γ = 0, with the emergence of nonlinearity, the transition
dynamics dramatically changes. In this case, (5.93) is no longer analytically solvable.
We therefore exploit a 4–5th-order Runge-Kutta algorithm to trace the quantum
evolution numerically and calculate the transition probability. In our calculation,
we choose the maximum coupling strength v0 as the energy scale; thus, the weak
nonlinearity and strong nonlinearity refer to c/v0 � 1 and c/v0 � 1, respectively.

Our numerical results are presented in Fig. 5.20, where the transition probability
as a function of the scanning period is plotted against the nonlinear parameters that
range from weak nonlinearity to strong nonlinearity. Figure5.20a shows a regular
oscillating pattern, consistent with the analytic prediction of formula (5.97). This
regular periodic pattern is disrupted with the emergence of nonlinearity. For the weak
nonlinear case c/v0 < 1, the periodicity is lost only in the short pulse regime, i.e.,
0 < T < 50 at c/v0 = 0.9. In contrast, in the regime of the large scanning period, a
rectangular periodic pattern emerges instead. The period of the rectangular oscillation
increases with increasing nonlinearity. This pattern is of particular interest in practice
because it represents a complete population transfer between twomodes robustly over
a wide parameter regime.

For the case of strong nonlinearity, i.e., c/v0 > 1 (see Fig. 5.20d), the quantum
transition between twomodes is even more strongly affected by the nonlinearity. The
oscillation pattern is completely broken, and when the scanning period T > 15, the
quantum transition is completely blocked.

The above phenomena are intriguing and need detailed consideration. Our further
analysis focuses only on the adiabatic limit,which implies that the external field varies
slowly relative to the intrinsic motion of the system. The formula (5.97) indicates a
period of intrinsic motion that is characterized by 4π/v0, while the external field is
characterized by T . Thus, the adiabatic limit implies that T � 4π/v0 or v0T � 4π .
In the following, we derive selected analytical formulas for the transition probability
and explain the above phenomena.
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According to the adiabatic theory of nonlinear quantum mechanics [4], the char-
acteristics of a quantum transition in the adiabatic limit should be entirely determined
by the structure of the energy levels and the properties of the corresponding eigen-
states. The eigenstates of the system satisfy

[ c
2
(|b|2 − |a|2)σ̂ z + v

2
σ̂ x

](a
b

)
= μ

(
a
b

)
. (5.98)

Solving the above nonlinear equations together with the complete particle conser-
vation condition |a|2 + |b|2 = 1, we readily obtain the chemical potential μ and the
eigenstate (a, b). The eigenenergies can be derived according to the relationship
ε = μ − c(|a|4 + |b|4)/2, and their dependence on the input parameters is plotted in
Fig. 5.21 for the cases of linearity, weak nonlinearity, and strong nonlinearity. Strik-
ing phenomena are induced by the introduction of nonlinearity: First, the structure
of the energy levels changes dramatically. In the linear case, two energy levels are
symmetric about a horizontal axis [see Fig. 5.21a]. However, the symmetry breaks
down in the presence of nonlinearity, and a new branch of eigenenergies emerges.
In the case of weak nonlinearity [see Fig. 5.21b], two levels exist at the two ends
and near the peak of the field pulse; three energy levels exist in the other regime.
When the nonlinearity is strong [see Fig. 5.21c], apart from at the two ends, three
energy levels exist. Second, the eigenstates of themiddle level (e.g., those denoted by
the dashed line in Fig. 5.21) are unstable. This finding is evaluated by investigating
the Hamiltonian-Jacobi matrix obtained by linearizing (5.98) around the eigenstates.
The eigenvalues of the Hamiltonian-Jacobi matrix can be real, complex or purely
imaginary. Only purely imaginary eigenvalues correspond to stable states; others
indicate unstable ones [49].

The changes of the energy level in the presence of nonlinearity are expected
to strongly affect the quantum transition between levels. However, because of the
degeneracy of our states of interest of (1, 0) and (0, 1), from the above diagram of
the energy levels, we cannot draw a definite conclusion about the adiabatic evolu-
tion of the initial state (1, 0). In the following, we introduce an equivalent classical

Fig. 5.21 Typical eigenenergy level structure in the a linear case, b weak nonlinearity case, and c
strong nonlinearity case. The dashed lines correspond to the unstable eigenstates
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Hamiltonian instead, and by analyzing its phase space, we achieve insight into the
adiabatic evolution of the above nonlinear quantum system.

Following the theoretical methodology proposed in [4], we construct the effec-
tive classical Hamiltonian by introducing two quantities: the probability of particles
staying in the (0, 1) mode, p = |b(t)|2, and the relative phase of the two modes,
θ = θa − θb. These quantities form a pair of canonical variables of the following
classical Hamiltonian and satisfy the canonical equations, i.e., dθ/dt = ∂H/∂s,
ds/dt = −∂H/∂θ , and

H = v
√
p(1 − p) cos θ − c

4
(2p − 1)2. (5.99)

The above classical system is capable of completely describing the dynamic prop-
erties of the nonlinear quantum Rosen-Zener system (5.93) on a projective Hilbert
space [4]. Its fixed points, i.e., energy extrema of the classical Hamiltonian, corre-
spond to the quantum eigenstates. For example, in Fig. 5.22, the stable elliptic fixed
point P1 corresponds to the upper level of Fig. 5.21. The energies associated with
P2 and P4 are identical; therefore, they correspond to the same energy level, i.e., the
lower one in Fig. 5.21. The saddle point P3 is unstable, corresponding to the middle
level denoted by a dashed curve in Fig. 5.21. The adiabatic evolution of the quantum
eigenstates can therefore be evaluated by tracing the shift of the classical fixed points
in the phase space when the parameter v varies slowly in time [3].

The analytic expressions of the fixed points are obtained from dp/dt = 0 and
dθ/dt = 0:

θ∗ = 0, π, (5.100)
v(1 − 2p∗)

2
√
p∗(1 − p∗)

cos θ∗ + c(1 − 2p∗) = 0. (5.101)

The number of fixed points depends on the instantaneous coupling strength v and
the nonlinear parameter c. If c/v < 1, there exist only two fixed points (θ∗, p∗) =
(0, 1/2), (π, 1/2). However, when c/v > 1, there exist four fixed points [P1,P2,P3,
and P4 in Fig. 5.22a and b]: (θ∗, p∗) = (0, 1/2), (π, 1/2), [π, 1

2 (1 ± √
1 − v2/c2)].

One of them (P3) is a saddle point, while the other three (P1, P2, and P4) are all
elliptic points corresponding to the local maximum (P1) and minima (P2 and P4) of
the classical Hamiltonian.

When we increase v, P2, P3, and P4 merge into a new stable fixed point P234

in a regime satisfying the condition v/c > 1, as shown in Fig. 5.22a → b → c
→ d. An interesting question arises when the parameter v decreases to less than
c again: Which point does the state follow when P234 bifurcates into P2, P3, and
P4 (Fig. 5.22d → c → b → a)? The state that follows only P2 corresponds to zero
adiabatic transition probability, whereas the state that follows only P4 corresponds
to a complete population transfer. This classical picture could explain why we see a
rectangular pattern in Fig. 5.20.
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Fig. 5.22 Evolution of the phase space motions as c/v changes adiabatically: a 10, b 2, c 1, d 0.5.
The second column is the corresponding energy curve at θ = 0 (thin line) and π (heavy line). The
arrows indicate the shifting direction of the fixed points as v increases
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Fig. 5.23 Evolution of the
particles and the fixed points
at c/v0 = 0.9. Entirely
different transition
probabilities are observed for
a slight variation of the
scanning period: a T = 2024
and b T = 2025

The above scenario is further supported by directly tracing the evolution of par-
ticles, as shown in Fig. 5.23, where we also demonstrate the temporal evolution of
the fixed points. In the early stage, the state faithfully follows the fixed point P2.
The state starts to show a small oscillation when the fixed points P2, P3, and P4

merge. Subsequently, the state follows either the fixed point P2 or P4. Notably, at
a certain parameter value, a slight change in the period T can thoroughly change
the final transition probability, a signature of the appearance of a bistable state [see
Figs. 5.22c’ → b’].

Our results show that whether the state follows P2 or P4 is determined by the total
dynamical phase accumulated during the oscillation motion around P234, i.e., from
t∗ to t∗∗. Here, t∗ is the time when P2, P3, and P4 merge into P234, and t∗∗ is the
moment when P234 bifurcates into P2, P3 and P4. The results are obtained by setting
c = v(t∗) = v(t∗∗),

t∗ = T

π
sin−1

√
c

v0
,

t∗∗ = T − t∗. (5.102)

To obtain the total phase, we first need to calculate the instantaneous frequency
that characterizes the oscillations around the fixed point. To this end, we expand
the classical Hamiltonian around the fixed point with p = 1/2 + δp and θ = π + δθ ,
leading to

δH = 1

4
(v − c)δ2p + 1

4
vδ2θ , (5.103)

ignoring the higher-order terms. The instantaneous frequency is then derived as
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Fig. 5.24 Periods of the
rectangular oscillation as
shown in Fig. 5.20 under the
adiabatic limit. The
numerical results are
obtained by directly
observing Fig. 5.20, while
the analytical curve is the
plot of function 4π/(v0 − c),
where v0 = 1. The results
agree well with each other

ω(t) = 1

2

√
v(t)[v(t) − c]. (5.104)

Integrating ω(t) from t∗ to t∗∗ gives the total phase

ϕ =
∫ t∗∗

t∗
ω(t)dt = v0 − c

4
T . (5.105)

This expression indicates that the total phase increases linearly with the scanning
period. A π -value change in the phase changes the choice of the state to follow
either fixed point P2 or P4. Thus, the period of the rectangular oscillation observed
in Fig. 5.20 under the adiabatic limit can be expressed as

Trectangular = 4π

v0 − c
. (5.106)

To verify the above theory, we have numerically solved the nonlinear Schrödinger
equation for a wide range of parameters. The comparison between the analytical
results and the numerical data in Fig. 5.24 shows good agreement.

The complete suppression of a quantum transition under the adiabatic limit in
Fig. 5.20d can also be explained from the above picture. We briefly state this expla-
nation as follows. For the strong nonlinearity associated with c/v0 > 1, the phase
space evolution only follows Fig. 5.22a → b → a as v increases and decreases. Dur-
ing the process, no collision between the fixed points occurs. Thus, the state initially
populated on P2 can safely remain on the fixed point and ultimately return smoothly
to the original state. Thus, no transition is observed [48].
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5.4 Nonlinear Ramsey Interferometry

The technique of Ramsey interferometry with separated oscillating fields was first
proposed to investigate molecular beam resonance [50]. The key feature of the
observed Ramsey pattern in the frequency domain is that thewidth of the central peak
is determined by the inverse of the time taken by the particle to cross the intermedi-
ate drift region [51]. Indeed, the Ramsey interference experiments can be operated
either in the time domain with temporally separated pulses and a fixed particle or
in the space domain with spatially separated fields and a moving particle [52]. The
Ramsey interferometric method provides the basis of atomic fountain clocks that
now serve as time standards [53, 54] and has stimulated rapid advancement in the
field of precision measurements in atomic physics. Since applying the laser cool-
ing techniques to trapped atoms, the atomic interferometers with cold atoms have
been used to measure rotation [55], gravitational acceleration [56, 57], the atomic
fine-structure constant [58], the atomic recoil frequency [59], and atomic scattering
properties [60], to name only a few applications.

On the other hand, the experimental realization of the Bose-Einstein conden-
sate (BEC) in a dilute atomic gas [27, 30, 61] brings a fascinating opportunity for
the purpose of precision measurement due to the very slow atoms and changes the
prospects of frequency standards entirely. Recently, Ramsey fringes between atoms
and molecules in the time domain were observed by using a trapped BEC of 85Rb
atoms [62] in an experiment. This approach offers the possibility of the precise mea-
surement of the binding energy of the molecular state in BECs [63, 64]. With the
development of atomic interferometry techniques, researchers are seeking to exploit
new interferometric methods using trapped BECs [65, 66]. With the emergence of
nonlinear interaction between the coherent ultracold atoms, BECs show intriguing
nonlinear tunneling and interference properties that are distinct from those of the
traditional quantum systems. Motivated by the discussion on the nonlinear Rosen-
Zener (RZ) transition [48], we conceptually construct in this section a nonlinear
Ramsey interferometer by applying a sequence of two identical nonlinear RZ tun-
neling processes (i.e., RZ pulses). In our interferometry scheme, two RZ pulses are
separated by an intermediate holding period of variable duration; by varying the hold-
ing period, we have observed diversiform Ramsey interference patterns contrasting
with the standard Ramsey fringes. Using a simple nonlinear two-mode model, we
thoroughly discuss the physics underlying the interference patterns both numerically
and analytically.We show that the frequency of the nonlinear Ramsey fringes exactly
reflects the strength of nonlinearity in addition to the asymmetry of the system. This
observation suggests a potential application in calibrating atomic parameters, such as
the scattering length and energy spectrum, via measuring the frequency of Ramsey
fringes [67].

We consider that a condensate, for example, 87Rb atoms in a magnetic trap, is
driven by microwave coupling into a linear superposition of two different hyperfine
states. Since themicrowave source injects very large numbers of photons, the electro-
magnetic field can be treated as a completely classical object. We can then identify
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the two basis states |1〉 and |2〉 of the (F = 1,mF = −1) and (F = 2,mF = +1)
hyperfine states, respectively. We denote the corresponding boson creation (annihi-
lation) operators â† (â) and b̂† (b̂). Considering that the laser fields are time depen-
dent, we treat the Hamiltonian in the rotating frame, that is, the frame in which the
laser field is constant over the time of the pulse. Under this condition, the oper-
ators Ĵx = (â†b̂ + b̂†â)/2, Ĵy = i(â†b̂ − b̂†â)/2, and Ĵz = (â†â − b̂†b̂)/2 can form
a complete set of number-conserving Hermitian operators for the system, and the
Hamiltonian can be expressed as a function of these operators. Within the standard
rotating-wave approximation, the Hamiltonian describing the transition between the
two internal states can be written [68] as

Ĥ = −γ Ĵz − cĴ 2
z + vĴx, (5.107)

where γ = −δ + (4Nπ�
2/m)(a11 − a22)η is the energy difference between two

states characterizing the asymmetryof the system, c = (2π�
2/m)(a11 + a22 − 2a12)η

is the nonlinear strength describing atomic interactions, and v denotes the coupling
strength, which is proportional to the intensity of the near-resonant laser field. δ is the
detuning of lasers from resonance; aij is the s-wave scattering amplitude of hyperfine
species i and j; η is a constant of order 1 independent of the hyperfine index, relating
to an integral of the equilibrium condensate wave function; N is the atomic number;
and m is the mass of the atom.

To obtain the model (5.107), the single mode approximation (SMA) is applied,
that is, the density profiles of two component condensates are assumed to be identical
and to remain constant during temporal evolution. The validity of the SMA for the
spinor-1 atomic condensate, such as 87Rb, has been previously investigated [69]. The
results showed that the SMA works well under typical experimental conditions for
87Rb atoms.

In the limit of large particle number, the operators in the above field equations can
be replaced by complex numbers; we thus obtain the following mean-field equations
that effectively describe the evolution of the above two-component BEC system:
(� = 1),

i
d

dt

(
a
b

)
= H (v)

(
a
b

)
, (5.108)

with the Hamiltonian

H (v) =
(

γ

2 + c
2 (|b|2 − |a|2) v

2
v
2 − γ

2 − c
2 (|b|2 − |a|2)

)
, (5.109)

where a and b denote the amplitudes of probabilities for two components and the
total probability |a|2 + |b|2 = 1. Using the above two-component BEC system, we
are capable of realizing a nonlinear Ramsey interferometer in which the nonlinearity
represents the interparticle interaction. The main structure of our nonlinear Ram-
sey interferometer is illustrated in Fig. 5.25, in which the variation of the coupling
strength is governed by two Rosen-Zener pulses of the form
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Fig. 5.25 (Color online) Schematic plot of a nonlinear Ramsey interferometer with a two-
component trapped BEC in the time domain, starting with an RZ pulse, operating through a holding
period, and ending with another RZ pulse

v(t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0, t < 0,
v0 sin2

(
π t
T

)
, t ∈ [0,T ],

0, t ∈ (T ,T + τ),

v0 sin2
(

π t
T

)
, t ∈ [T + τ, 2T + τ ],

0, t > 2T + τ.

(5.110)

The above RZ pulses are characterized by the following parameters: v0 is the maxi-
mum strength of the coupling, T is the scanning period of the RZ pulse, and τ is an
alterable time interval between two pulses.

This scheme is analogous to a normal Ramsey interferometer inwhich theRamsey
pulses at the beginning and end of the sequence that couple the two components
and redistribute the populations on each component are replaced by the so-called
nonlinear RZ tunneling process [48]. The two tunneling processes are separated by
a holding period, during which there is no coupling between the two components,
and the BEC on each component evolves independently and only acquires different
additional phases. In the course of the simulation experiments, the system is prepared
in one internal state initially, and the final populations of atoms in each state is
recorded when the second pulse is turned off. The measurements are repeated with
a variable time interval τ . The final populations are sensitive to the phase difference
that accumulates between the two components during the intermediate period; as a
result, the Ramsey fringe pattern is expected to emerge in the time domain.

The nonlinear Schrödinger equations (5.108) that govern the temporal evolution
of the two-component BEC system are solved numerically using a standard 4–5th-
order Runge-Kutta algorithm. We set the initial condition (a, b) = (1, 0) and take
the maximum coupling strength as the energy scale, namely, v0 = 1. The Ramsey
fringe patterns are obtained by recording the final transition probability |b|2 versus
the holding time τ .

We begin our numerical simulations with c = 0.6 and T = 1500 for both the
symmetric case γ = 0 and the asymmetric case γ = 0.1. With the emergence of
nonlinearity, the Ramsey fringe pattern distinctly deviates from that of the linear
case due to the dramatic changes of the transition dynamics. In this case, the system
described in (5.108) is no longer analytically solvable. Our numerical results are dis-
played in Fig. 5.26, which shows that both nonlinearity and symmetry can affect the
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Fig. 5.26 (Color online) Ramsey fringe patterns for the a symmetric case and b asymmetric case
with c = 0.6 and T = 1500

pattern and frequency of Ramsey fringes significantly. In our slow scanning case of
T = 1500, the Ramsey fringe pattern exhibits a rectangular oscillation. This diver-
siform interference pattern is distinct from the normal Ramsey fringes of sinusoidal
or cosinusoidal forms and is clearly generated by the nonlinear atomic interaction.

Here, we present a thorough analysis of these striking interference patterns. In
practical experiments, in contrast to the oscillating amplitudes and shapes of the
fringe patterns, the frequencies of the patterns are ofmore interest and can be recorded
with relatively high resolution and contrast; therefore, we focus our theoretical analy-
sis on the frequencyproperty extracted from theRamsey interference patterns through
the Fourier transformation (FT). We find that the frequencies of patterns that are dra-
matically modulated by the interplay of nonlinearity and symmetry contain much
information about the intrinsic properties of the BEC system.

Through investigating the nonlinear Ramsey patterns presented above, we find
that the time scale of the period of the RZ pulse plays an important role in forming
the striking patterns. The following discussion focuses only on the adiabatic limit,
which refers to the case in which the RZ pulse is much slower than the intrinsic
motion of the system, i.e., T � 2π/v0.

For convenience, we introduce a phase shift φ(τ) to describe the different phase
accumulations between two components during the holding period. Considering that
the two components evolve independently during this period, we obtainφ(τ) = |γ +
cs|τ from (5.108), where s = |b(T )|2 − |a(T )|2 denotes the population difference
between two components when the first pulse has been turned off. This phase shift
is proportional to the holding time. The angular frequency of the Ramsey fringes is
expected to be

ω = |γ + cs|. (5.111)

This result implies that the frequency of Ramsey fringes is entirely determined by
the population difference s and the parameters γ and c.

One important phenomenon in the adiabatic limit case is that the FT of the Ramsey
fringes reveals multiple frequency components, namely, ω = nω0, where ω0 is the
fundamental frequency (i.e., basic or first frequency) of the fringes and n is a pos-
itive integer. We interpret this result in terms of the interplay between nonlinearity
ascribed to the interatomic interaction and the coupling energy from the external laser
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Fig. 5.27 (Color online)
Fundamental angular
frequency of Ramsey fringes
as a function of the nonlinear
strength c for the adiabatic
limit case. The inset
demonstrates the details for
γ = 0.1 with c from 0.05 to
0.2

Fig. 5.28 (Color online)
Population difference s
versus nonlinear parameters
from 0 to 1 for the symmetric
case (red circles) and the
asymmetric case (blue
triangles) with T = 1500.
The dotted and dashed lines
refer to theoretical
predictions from (5.116)

field. Figure5.27 illustrates only the fundamental frequencies of Ramsey fringes for
different nonlinear parameters.

An irregular fluctuation appears near the c = γ region (see the inset in Fig. 5.27).
We hypothesize that the adiabatic assumption is violated in this region. To test this
hypothesis, we trace the population difference s after the first RZ pulse with the
nonlinear parameter increasing. The results are presented in Fig. 5.28, which shows
an irregular oscillation of s occurring in the region where |γ − c| is also very small.
With the nonlinear parameter increasing from 0.25 to 1, s jumps between the two
points+1 and−1 in the symmetric case. However, for the asymmetric system, when
c > 0.35, the value of s jumps between −1 and another unknown point. This is an
intriguing quantum phenomenon, and the underlying physical reasons require further
detailed discussion.

To explain the above peculiar phenomena, under the mean-field approximation,
following [4], we introduce the relative phase θ = θb − θa and the population differ-
ence s = |b|2 − |a|2 as two canonical conjugate variables, enabling us to obtain an
effective classical Hamiltonian

H = −
(
γ + c

2
s
)
s + v

√
1 − s2 cos θ. (5.112)
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This classical Hamiltonian can describe completely the dynamical properties of the
system described in (5.108) [4]. The adiabatic evolution of the quantum eigenstates
can be evaluated by tracing the shift of the classical fixed points in the phase space
when the parameter v varies slowly in time [3]. According to [48, 70], for the sym-
metric system, we obtain the classical fixed points on the line θ∗ = π ,

s∗ =
{
0, c/v < 1,
0,±√

1 − (v/c)2, c/v > 1.
(5.113)

We show the evolution of the fixed point s∗ = −1 (P2) in Fig. 5.29. The three fixed
points in (5.113) are characterized byP3,P4, andP2. The one saddle pointP3 (s∗ = 0)
and two elliptic points P2 and P4 correspond to one unstable state and two stable
states, respectively. For c = 0.8, consistency between the dynamical evolution and
adiabatic trajectory of P2 is shown for both T = 1500 and T = 20, 000. However,
for c = 0.03, the evolution of fixed point P2 shows a clear deviation from the adia-
batic trajectory given by (5.113) at T = 1500 [see Fig. 5.29a], while the fixed point
follows the adiabatic evolution at T = 20, 000 [see Fig. 5.29b]. These phenomena
indicate that the adiabatic condition cannot be satisfied for c = 0.03, where irregular
fluctuation occurs at T = 1500 in Fig. 5.28. Therefore, we describe the adiabatic
condition as follows:

T � Max

[
2π

|γ − c| ,
2π

v0

]
. (5.114)

Under this condition, as long as γ �= c, the system evolves adiabatically if the scan-
ning period is long enough even for small nonlinear parameters [70]. This condition
can successfully explain the fluctuation in Figs. 5.27 and 5.28. Accordingly, we trace
the fixed point P2 in the asymmetric case (see Fig. 5.30) using the same parameter
T as in Fig. 5.29. We observe the similar feature that satisfactory adiabatic evolu-
tion for c = 0.8 and nonadiabatic evolution for c = 0.18 occur in close vicinity to
the zero-energy resonance (γ = c) with T = 1500. In the asymmetric case, another
interesting phenomenon is that the destination of the evolution of the fixed point
is not definite, i.e., two different target states exist [see Figs. 5.28b and 5.30b]. We
interpret this situation through a comprehensive physical analysis below.

For the adiabatic limit case, the energy of the system for both the symmetric
and asymmetric cases is no longer conserved during the entire evolution process;
however, at the beginning and end of the evolution, the corresponding energies of
the system keep the same value,

H (s = −1, t = 0) = H (s∗, t = T ). (5.115)

In our scheme, for both t = 0 and t = T , the coupling parameter v = 0. Thus, we
can obtain the final state of the system from (5.112) and (5.115):

s∗ =
{−1, γ > c,

−1, 1 − 2γ /c, 0 < γ < c.
(5.116)
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Fig. 5.29 (Color online)
Comparison between the
dynamical evolution (solid
line) and the adiabatic
evolution (dotted line) of
fixed points for the
symmetric case with
different T : a 1500 and b
20, 000. The blue line and
black line refer to c = 0.03
and c = 0.8, respectively.
The blue dotted line and red
dotted line show the
corresponding adiabatic
evolution obtained from
(5.113)

Fig. 5.30 (Color online)
Evolution of fixed points for
the asymmetric case under
different T : a 1500 and b
20, 000

This result implies that at the end of the adiabatic evolution, the system has two
states to choose from when c > γ for this case. One choice is back to the initial state
s∗ = −1, and the other choice is located on another state with energy identical to that
of the initial state s∗ = 1 − 2γ /c. However, the latter choice restricts the population
to |b|2 = γ /c. In other words, quantum tunneling for the asymmetric case requires
the atom number on another state to not exceedNγ /c (whereN is the total number of
atoms). We use the above analysis to evaluate our numerical results in Fig. 5.28b and
find satisfactory consistency. According to this analytic prediction, in the adiabatic
limit case, the final value of s is−0.11 or−1 for c = 0.18 and 0.75 or−1 for c = 0.8
in Fig. 5.30; these results strongly support our numerical results.

Following the above analysis, we can obtain the analytic expression of the fun-
damental frequency of Ramsey fringes in the adiabatic limit,

ω = |γ − c|. (5.117)
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The results, which show a perfect linear relation for both the symmetric and asym-
metric cases, are consistent with our numerical results (see Fig. 5.27).

Our nonlinear Ramsey interferometer scheme can also be realized using the BECs
with a double-well potential. This BEC system, under the mean-field approximation,
is described by the Gross-Pitaevskii equation (GPE):

i�
∂Ψ (r, t)

∂t
=

(
− �

2

2m
∇2 + V (r) +U0|Ψ (r, t)|2

)
Ψ (r, t), (5.118)

where U0 = 4π�
2asN/m, with m being the atomic mass and as being the s-wave

scattering length of the atoms. The wave function can be described by a super-
position of two states that localize in each well separately as [28] Ψ (r, t) =
ψ1(t)φ1(r) + ψ2(t)φ2(r). The spatial wave function φi(r) (i = 1, 2)which describes
the condensate in eachwell, can be expressed in terms of symmetric and antisymmet-
ric stationary eigenstates of theGPE, and these twowave functions satisfy the orthog-
onality condition

∫
φ1(r)φ2(r)dr = 0 and normalized condition

∫ |φi|2dr = 1. Con-
sider the weakly linked BEC; the dynamic behavior of the system can be described
by the Schrödinger equation with the following Hamiltonian:

H =
(

ε01 + c1|ψ1|2 K
K ε02 + c2|ψ2|2

)
, (5.119)

where ε0i = ∫ [(�2/(2m))|∇φi|2 + |φi|2V (r)]dr (i = 1, 2) is the zero-point energy in
eachwell,Δε = ε01 − ε02 is the energy bias, ci = U0

∫ |φi|4dr denotes the atomic self-
interaction, and K = ∫ [(�2/(2m))(∇φ1∇φ2) + φ1V (r)φ2]dr stands for the ampli-
tude of the coupling between two wells.

For example, consider the one-dimensional case; we can express the potential
of our system as V (x) = mω2x2/2 + v0e−x2/(2d) + fx, where d is the double-well
separation in the x direction. This optical double-well potential can be created by
superimposing a blue-detuned laser beam upon the center of the magnetic trap [27],
and the difference of the zero-point energy between two wells or trap asymmetry
characterized by f can be found by a magnetic field, a gravity field or light shifts
[71]. The atomic interaction c can be adjusted flexibly by Feshbach resonance, and
the barrier height K can be effectively controlled by adjusting the intensity of the
blue-detuned laser beam.

5.5 Nonlinear Atom-Molecule Conversion

5.5.1 Bosonic Atoms to Bosonic Molecules

The production of ultracold diatomicmolecules in bosonic systems is an exciting area
of research with important applications ranging from the production of molecular
Bose-Einstein condensates (BECs) [72] to the study of chemical reaction dynamics
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[73]. A widely used production technique involves the association of ultracold atoms
into very weakly bound diatomic molecules by applying a time-varying magnetic
field in the vicinity of a Feshbach resonance [74, 75]. The underlying conversion
dynamics are typically describedby theLandau-Zener (LZ)model [22]. In thismodel,
the Feshbach molecule production is discussed under a two-body configuration in
which a single pair of atoms is converted to amolecule at an avoided crossing between
the atomic energy level and the molecular energy level as the molecular energy is
lifted by an applied linearly sweeping magnetic field. Thus, the molecule production
efficiency is expected to be of the exponential Landau-Zener type [76, 77].

In the above two-body model [76, 77] and its various many-body extensions [78–
80], however, the interactions between particles (such as atom-atom, atom-molecule,
and molecule-molecule interactions) are completely ignored. In this section, we con-
sider a generalized many-bodymodel for Feshbach molecule formation that includes
atom-atom, atom-molecule, and molecule-molecule interactions. We show that the
picture of two-body molecule production depicted by the Landau-Zener model is
significantly altered by the particle interactions. In the adiabatic limit, we derive a
formula for the upper bound of conversion efficiency when the interaction strength
is larger than a critical value. Our theory predicts a significant role of the particle
interactions in atom-molecule conversion when the atomic density is high and the
Feshbach resonance width is narrow [81].

The two-channel bosonic model Hamiltonian that includes the atom-atom, atom-
molecule, and molecule-molecule interactions takes the following form [82]:

Ĥ = uaa
V

â†â†ââ + ubb
V

b̂†b̂†b̂b̂ + uab
V

â†âb̂†b̂

+εaâ
†â + εbb̂

†b̂ + ω√
V

(â†â†b̂ + b̂†ââ). (5.120)

Thismodel was proposed by Santos et al. [82] to investigate the Josephson oscillation
and self-trapping phenomena of atom-molecule conversion systems. In (5.120), â†

(b̂†) and εa (εb) are the creation operator and chemical potential for the atomic (molec-
ular) mode, respectively. In experiments, the magnetic field is linearly swept, B(t) =
(dB/dt)t, and crosses the Feshbach resonance at B0; thus, 2εa − εb = μco[B(t) −
B0]. Here, μco is the difference between the magnetic moments of a molecule and
a pair of separated atoms. ω = √

4π�2abgΔBμco/m denotes the amplitude for the
interconversion of atoms and molecules due to the Feshbach resonance, in which
m is the mass of a bosonic atom, abg is the background scattering length, and ΔB
is the width of the resonance. ui = 2π�

2ai/mi (i = aa, bb, ab) are the atom-atom,
molecule-molecule, and atom-molecule particle interactions. Here, ai and mi denote
the background scattering length and the reduced mass, respectively, i.e., aaa = abg ,
aab � 1.2abg , abb � 0.6abg [83], maa = m/2, mab = 2m/3, and mbb = m. We intro-
duce N and V to denote the initial atom number and the quantized volume, respec-
tively; therefore, n = N/V is the mean density of the initial bosonic atoms.

In the mean-field limit, i.e., N → ∞, the quantum fluctuation is negligible. One
can replace all the quantum operators with c numbers; thus, the Heisenberg equations
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for operators â and b̂ are cast as the following nonlinear Schrödinger equation:

i
d

dt

(
a
b

)
= H

(
a
b

)
, (5.121)

where

H =
(
2U (2|b|2 − |a|2) + Δ 4Ωa∗

2Ωa −4U (2|b|2 − |a|2) − 2Δ

)
, (5.122)

with U = n(uab/2 − uaa − ubb/4)/4, Δ = (2εa − εb + 2nuaa − nubb/2)/4, and
Ω = √

nω/2. The total population is normalized to unity, i.e., |a|2 + 2|b|2 = 1.
We first show how the nonlinear interactions lead to the deformation of the

eigenenergy levels. The eigenstates of the system satisfy

H

(
a
b

)
= H

(
μ 0
0 2μ

)(
a
b

)
. (5.123)

Note that a diatomic molecule is composed of two atoms; thus, the factor 2 appears
before the chemical potential for the molecular mode. Solving the above nonlinear
equations together with |a|2 + 2|b|2 = 1, we readily obtain the chemical potential μ
and the eigenstate (a, b). The eigenenergies can be derived according to the relation-
ship ε = μ/2 + μ|b|2 + Δ|a|2/2 + 4U |b|4 − 2U |a|2|b|2. Their dependence on the
parameters is plotted in Fig. 5.31. In the linear case [U = 0, Fig. 5.31a], the energy
levels are symmetric such that they are invariant under a rotation about the zero
point by 180◦. Only two eigenstates exist when |Δ| is sufficiently large: one for the
atomic mode and the other for the molecular mode. When |Δ|/Ω <

√
2, there is an

additional eigenstate represented by the dotted line in Fig. 5.31. This eigenstate is
dynamically unstable. With the appearance of nonlinear interaction, the symmetry
of the energy levels breaks down. For the weak nonlinearity caseU/Ω <

√
2/4 [see

Fig. 5.31b], the energy level structure is very similar to that of the linear case except
for a slight shift. However, whenU/Ω >

√
2/4, a loop structure appears at the lower

energy level. The loop expands as U increases, and the gap between the upper and
lower energy levels becomes increasingly narrow. Such deformation of energy levels
consequently leads to very different conversion dynamics.

Consider the adiabatic evolution of the system starting from the atomic mode
at the left side of the lower energy level. When U is small, e.g., in Fig. 5.31a, the
evolution of the system follows the solid line, converting all atoms into molecules.
However, when U/Ω >

√
2/4, as in Fig. 5.31c, the system moves steadily from the

left side to the critical point C. Subsequently, no movement options remain except
to jump to the upper and lower levels. As this fraction of atoms tunnels to the upper
level, they are not converted into molecules. The situation becomes more extreme
whenU is very large: the critical point is much closer to the upper level and far from
the lower one; thus, the system jumps to the upper level more easily, see Fig. 5.31d.
As a result, almost all atoms cannot be converted into molecules.
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Fig. 5.31 Adiabatic energy levels for different nonlinear interaction strengths: aU = 0, bU = 0.2,
c U = 2, and d U = 30. In all cases, Ω = 1, the solid lines represent stable eigenstates, and
the dotted lines between Δ1 = U − √

2 and Δ2 = U + √
2 correspond to unstable states. When

U >
√
2/4, a loop structure appears at the lower energy level. The loop expands as U increases

The above simple analysis is confirmed by our numerical results, which are plotted
inFig. 5.32. In our calculations, the 4–5th-orderRunge-Kutta step-adaptive algorithm
is used to solve the nonlinear Schrödinger equation (5.121). The conversion effi-
ciency as a function of the sweep rate α = dΔ/dt is plotted and shows a monotonic
decrease as the sweep rate increases. Even in the absence of particle interactions, i.e.,
U/Ω = 0, the conversion efficiency calculated from our many-body model is quite
different from that in the two-body Landau-Zener theory. For example, in the sudden
limit of α/Ω2 � 1, the former is almost twice the latter. In the presence of parti-
cle interactions, the atom-molecule conversion efficiency is further altered. When
the dimensionless interaction parameter is positive, the atom-molecule conversion
is suppressed relative to the case of U/Ω = 0, whereas the conversion efficiency is
enhanced when this dimensionless parameter is negative. From the explicit expres-
sion of the effective interaction parameter, we observe that the repulsive atomic
interaction leads to a negative parameter U/Ω , while the attractive atomic interac-
tion corresponds to a positive parameter. For large positive interaction parameters,
even in the adiabatic limit of α/Ω2 → 0, the atoms cannot be totally converted into
molecules. The saturation of conversion efficiency has already been discussed quali-
tatively in [84], without, however, including a quantitative analysis. Below, following
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Fig. 5.32 Conversion
efficiency as a function of the
sweep rate α/Ω2 for various
interaction parameters. For
comparison, we also plot the
Landau-Zener-type formula
χ = 1 − Γlz =
1 − e−2πΩ2/α [22, 79]; here,
the sweep rate is defined as
α = dΔ/dt = μco(dB/dt)/4

the methodology of [3], we present selected analytical calculations in the adiabatic
limit corresponding to α/Ω2 � 1.

When introducing the canonical transformation S = |a|2 − 2|b|2 and θ = 2θa −
θb, where θa = arg(a) is the phase of the atomic mode and θb = arg(b) is the phase
of the molecular mode, the quantum system is equivalent to the following classical
Hamiltonian:

H = −2US2 + 2ΔS + 2Ω(1 + S)
√
1 − S cos θ. (5.124)

The canonical variables satisfy dS/dt = −∂H/∂θ and dθ/dt = ∂H/∂S. The above
Hamiltonian is the same as that obtained in [82].As previously noted [84], thisHamil-
tonian contains properties distinct from those of the “standard” nonlinear Landau-
Zener Hamiltonian of [3]. First, the nonlinearity in Hamiltonian (5.122) arises not
only from the particle interactions but also from the fact that two atoms are needed
to form a molecule. In addition, the mean-field motion is restricted on a teardrop-
shaped surface [84, 85] rather than the surface of a Bloch sphere. As we show later,
the interplay of these features leads to very different conversion dynamics.

In the adiabatic limit where the external field varies slowly relative to the intrinsic
motion of the system, the conversion dynamics is entirely determined by the phase-
space structural evolution of the classical Hamiltonian (5.124); see, for example,
[82, 84]. The fixed points (i.e., the energy extrema of the classical Hamiltonian) on
the phase space correspond to the quantum eigenstates. According to the adiabatic
theory [4, 33], when the energy bias Δ changes adiabatically, a closed orbit in the
phase space remains closed, and the action I = (2π)−1

∮
Sdθ stays invariant in time.

The action equals the phase-space area enclosed by the closed orbit and is zero when
the orbit shrinks to a fixed point.

For the case of U/Ω <
√
2/4, the initial state is prepared at an elliptical point

on the phase space. It evolves, following the elliptical point, from the boundary line
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of S = 1 to S = −1 as Δ increases. Consequently, all the atoms are converted into
molecules, i.e., the conversion efficiency is χ = 1.

However, for the case ofU/Ω >
√
2/4, the elliptical point collides with a saddle

point whenΔ = Δc. After this collision, the system enters a new orbit withH = Hc

and evolves adiabatically forΔ > Δc according to the rule of constant action, which
is now nonzero. This orbit ultimately evolves into a straight line of constant S. With
these considerations, we can obtain the conversion efficiency in the adiabatic limit,
namely, χ = 1 − Ic/2.

To derive the explicit expression of χ , we first need to determine the critical
point C. For this purpose, we note that the point C (with θ = π ) is a double root of
dθ/dt = 0; thus, ∂(dθ/dt)/∂S|Sc = −4U + Ω(5 − 3Sc)/[2(1 − Sc)3/2] = 0. Once
Sc is obtained, the critical energy bias Δc and orbit energy Hc can also be easily
determined through their explicit expressions given in the foregoing paragraphs.
The complete orbit passing through the critical point is given by cos θ = f (S) =
(Hc + 2US2 − 2ΔcS)/(2Ω(1 + S)

√
1 − S). Thus,

Ic = 1

π

∫ Sc

Smin

[
π − arccos

(
Hc + 2US2 − 2ΔcS

2Ω(1 + S)
√
1 − S

)]
dS + 1 + Smin. (5.125)

Here, Smin can be determined by f (Smin) = 1. The above formula can be further
simplified at the critical point of U/Ω → √

2/4 and in the asymptotic regime of
U/Ω → ∞ following [81]:

χ =
⎧
⎨

⎩
1 − 2.4

(
U
Ω

−
√
2
4

)2
, U

Ω
→

√
2
4 ;

1.2
(
U
Ω

)−2/3
, U

Ω
� 1.

(5.126)

The above discussion is restricted to the attractive interaction case; nevertheless, it is
straightforward to extend the discussion to the repulsive interaction case. In the latter
case, the adiabatic energy levels are the 180◦ angular rotation of the levels presented
in Fig. 5.31; accordingly, the conversion from atoms to molecules starting from the
upper level at the right side in the repulsive case is equivalent to the atom-molecule
conversion starting from the lower level at the left side in the attractive case when
the sweeping direction of the magnetic field is reversed. Our calculation in Fig. 5.32
shows that for both the repulsive and attractive cases, the atom-molecule conversion
efficiency is significantly affected by the particle interactions when |U/Ω| is similar
to or larger than the critical value of

√
2/4.

5.5.2 Fermionic Atoms to Bosonic Molecules

Next, we discuss the Feshbach conversion of fermionic atom pairs to condensed
bosonic molecules with a microscopic model that accounts for the repulsive inter-
actions among all the particles involved [86]. The Feshbach resonance has become
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a focal point of research activities in the field of cold-atom physics [74, 75, 87, 88]
after its first experimental observation in atomic gases [89]. Among these research
activities, the production of diatomic molecules from Fermi atoms with Feshbach
resonance is of special interest and has attracted a great deal of attention. First,
this phenomenon is intrinsically an interesting one [90]; second, the phenomenon
provides unique experimental access to Bardeen-Cooper-Schrieffer (BCS)–Bose-
Einstein condensate (BEC) crossover physics [91–93]. To date, by slowly sweeping
the magnetic field through the Feshbach resonance, samples of over 105 weakly
bound molecules at temperatures of a few tens of nanokelvins have been produced
from quantum degenerate Fermi gas [91, 94–96]. The Feshbach conversion is a com-
plex process involving many fermionic atoms and bosonic molecules in a sweeping
magnetic field that crosses a resonance. The theoretical description of the conversion
efficiency as a function of the sweep rate, atomic mass, atomic density and tempera-
ture is still under development. The existing theories include the Landau-Zener (LZ)
model of two-bodymolecular production [22, 33, 77] and itsmany-body extension at
zero temperature [85, 97, 98], the phase-space density model [99], the equilibration
model [100] and the quantum statistics model [101] at finite temperatures.

Here, we consider a microscopic model that describes the conversion from
fermionic atoms to bosonic Feshbach molecules. We find that the two-body interac-
tions can affect the Feshbach conversion efficiency: the repulsive interaction between
molecules tends to enhance the conversion efficiency,whereas the other two repulsive
interactions between atoms andbetween atoms andmolecules suppress the efficiency.
The role of the particle interactions is more significant for a narrow Feshbach reso-
nance, where—in the adiabatic limit—the combined effect of these interactions can
yield an upper limit of less than 100% on the conversion efficiency. This interaction-
suppressed conversion efficiency is essentially the same as the broken adiabaticity
induced by interaction in nonlinear LZ tunneling [2, 3].

To include all particle interactions, we extend the two-channelmodel in [101–104]
and write the Hamiltonian as

H =
∑

k,σ

εka
†
k,σak,σ +

(
γ + εb

2

)
b†b + Ub

Vb
b†b†bb + Ua

Va

∑
a†k,↑a

†
−k,↓ak′,↑a−k′,↓

+Uab

Va

∑

k,σ

a†k,σak,σb
†b + gVb

V 3/2
a

∑

k

(
b†ak,↑a−k,↓ + a†−k,↓a

†
k,↑b

)
, (5.127)

where εk = �
2k2/2ma is the kinetic energy of the atom, σ =↑,↓ denotes the two

hyperfine states of the atom, εb/2 is the molecular energy, and Ub = 4π�
2abb/mb is

the interaction between molecules. Other parameters are associated with atoms and
are renormalized. With the renormalization factor Λ, these parameters are related to
a set of bare parameters,U0,U1, g0 and γ0, via the standard renormalization relations
[88],
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Ua = ΛU0, Uab = ΛU1, (5.128)

g = Λg0, γ = γ0 − (Λg20/Uc). (5.129)

The renormalization factor is given by

Λ = (1 + (U0/Uc))
−1, U−1

c = −
∑

k

e−k2/k2c

2εk
, (5.130)

with the cutoff momentum kc representing the inverse range of interactions [104–
106]. The bare parameters are

γ0 = μco(B − B0), g0 =
√
4π�2abgΔBμco

ma
, (5.131)

U0 = 4π�
2abg

ma
, U1 = 4π�

2aab
mab

, (5.132)

where B is the applied magnetic field, which changes linearly with time at a rate
of αr , i.e., B = −αr t. B0 and ΔB are the position and width, respectively, of the
Feshbach resonance. ma and mb = 2ma are the masses of the atoms and molecules,
respectively, and mab = 2

3ma is the reduced mass of the atom-molecule interaction.
In addition, μco is the difference in magnetic moment between the two channels, and
we have assumed that the s-wave scattering length near resonance has the form as =
abg(1 − (ΔB/(B − B0))), with abg being the background atomic scattering length.
The scattering lengths of the atom-molecule and molecule-molecule interactions are
denoted by aab and abb, respectively.

Due to the trapping potential in experiments, themolecular bosons aremore tightly
confined in space than the fermionic atoms due to their different statistics [107]. To
show this inequality, we use Va for the volume of fermionic atoms and Vb for bosonic
molecules. We consider the zero-temperature limit, where we can consider only one
bosonic mode and ignore all possible dissipations in the system, such as the loss of
atoms by three-body collisions.

Due to the presence of an external magnetic field, the ‘spin-up’ and ‘spin-down’
states actually have a Zeeman component (h) to their energy, i.e., εk↑ = εk + h, εk↓ =
εk − h. However, the total energy of the non-interacting atoms

∑
k,σ εk,σa

†
k,σak,σ can

be rewritten as

∑

k

[
εk(a

†
k↑ak↑ + a†k↓ak↓) + h(a†k↑ak↑ − a†k↓ak↓)

]
. (5.133)
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In our discussion, the numbers of ‘spin-up’ atoms and ‘spin-down’ atoms are the
same. Therefore, the second term in the above expression vanishes, and we have not
included the Zeeman energy term in Eq. (5.127).

In the current experiments, the intrinsic energy width of a Feshbach resonance
is larger than the Fermi energy EF [108]; it is therefore reasonable to assume εk =
ε. This approximation is called the degenerate model in [85, 97, 103] and was
verified by exact numerical calculations in [85, 97]. Here, we use this degenerate
approximation.

We proceed by introducing the following operators [85, 97]:

Lx =
∑

k(a
†
k,↑a

†
−k,↓b + b†a−k,↓ak,↑)

(N/2)3/2
, (5.134)

Ly =
∑

k(a
†
k,↑a

†
−k,↓b − b†a−k,↓ak,↑)

(N/2)3/2
, (5.135)

Lz =
∑

k,σ a
†
k,σak,σ − 2b†b

N
, (5.136)

where N = 2b†b + ∑
k,σ a

†
k,σak,σ is the total number of atoms. The Hamiltonian

(5.127) becomes

H = N

4

[
2ε −

(
γ + εb

2

)
− NUa

2Va
− NUab

Va

]
Lz

−N 2

16

(
Ua

Va
+ 2Uab

Va
− Ub

Vb

)
(1 − Lz)

2 + gVb

V 3/2
a

(
N

2

)3/2

Lx, (5.137)

with the commutators

[Lz,Lx] = 4i

N
Ly, [Lz,Ly] = −4i

N
Lx, (5.138)

[Lx,Ly] = i

N
(1 − Lz)(1 + 3Lz) + O(1/N 2). (5.139)

In deducing the atom-atom scattering term, we need to introduce the collective
pseudo-spin operators: Ŝz = ∑

k(a
†
k,↑ak,↑ + a†−k,↓a−k,↓ − 1)/2, Ŝ+ = ∑

k a
†
k,↑a

†
−k,↓,

and Ŝ− = ∑
k a−k,↓ak,↑. It is straightforward to prove that Ŝ2 = Ŝ2

z − Ŝz + Ŝ+Ŝ− is
a conservation law and that S = N/4. Combined with the conserved relation of the
total particles, N/4 = b†b + Ŝz, we can rewrite the atom-atom scattering term as
Ŝ+Ŝ− = (1/2)

∑
k,σ a

†
k,σak,σb

†b + (N/2) − b†b.
We can obtain the Heisenberg equations for the system as follows:
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�
dLx
dt

= −
[
2ε −

(
γ + εb

2

)
− NUa

2Va
− NUab

Va

]
Ly

−N

4

(
Ua

Va
+ 2Uab

Va
− Ub

Vb

)
[(1 − Lz)Ly + Ly(1 − Lz)], (5.140)

�
dLy
dt

=
[
2ε −

(
γ + εb

2

)
− NUa

2Va
− NUab

Va

]
Lx

+N

4

(
Ua

Va
+ 2Uab

Va
− Ub

Vb

)
[(1 − Lz)Lx + Lx(1 − Lz)]

−
√
2NgVb

4V 3/2
a

(1 − Lz)(1 + 3Lz) + O(1/
√
N ), (5.141)

�
dLz
dt

=
√
2NgVb

V 3/2
a

Ly. (5.142)

In the mean-field approximation, we replace the operators in the above equations
with their expectations, such as using 〈Lx〉 for Lx. However, these equations show
that the expectation values of the single operators, e.g., 〈Lx〉, depend not only on
themselves but also on the second-order moments, e.g., 〈LxLy〉. Similarly, the time
evolution of the second-order moments depends on the third-order moments, and
so on. Consequently, we obtain a hierarchy of equations of motion for the expec-
tation values. To obtain a closed set of equations of motion, the hierarchy must be
truncated at some stage by approximating the N th-order moments in terms of lower-
order moments [85, 109]. The lowest-order truncation is achieved by approximating
the second-order moments with the products of the expectation values of the corre-
sponding single operators, such as 〈LxLy〉 with 〈Lx〉 · 〈Ly〉. This truncation is further
justified by the following fact. In our discussion, the total number of atoms N is
large. We note that the commutators in Eqs. (5.138) and (5.139) vanish and that Lx,
Ly and Lz commute with each other in the limit of large N . In this case, one typically
applies factorization relations such as 〈LxLy〉 = 〈Lx〉 · 〈Ly〉 [110].

With the introduction of the three real numbers u, v, and w for the expectation
values of the three operators Lx, Ly, and Lz, respectively, and ignoring the O(1/

√
N )

terms, the above Heisenberg equations become a set of mean-field equations:

du

dτ
= −δv − 2χv(1 − w),

dw

dτ
= √

2v, (5.143)

dv

dτ
= 3

√
2

4
(w − 1)(w + 1

3
) + δu + 2χu(1 − w), (5.144)

where
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τ =
√
NgVb

�V 3/2
a

t, (5.145)

δ =
[
2ε −

(
γ + εb

2

)
− NUa

2Va
− NUab

Va

]
V 3/2
a√
NgVb

, (5.146)

χ =
(
Ua + 2Uab − UbVa

Vb

) √
NVa

4gVb
. (5.147)

Because of the identity u2 + v2 = 1
2 (w − 1)2(w + 1), only two independent vari-

ables exist. By introducing the variable θ = arctan(v/u), which is canonically con-
jugate to w, we obtain the classical Hamiltonian:

H = δw − χ(1 − w)2 +
√

(w − 1)2(w + 1) cos θ. (5.148)

These equations show that all the experimental parameters affect the system via only
two dimensionless parameters: δ and χ . By a trivial shift of the time origin, we can
set δ = ατ , with

αr

α
= 4π�nabgΔB

ma
Λ2 V

2
b

V 2
a

, (5.149)

where n = N/Va is the mean atomic density, α is the scaled sweep rate, and τ is the
scaled time. The nonlinear parameter χ is given by

χ = 1

2

(
1 + 3aab

abg
− abbVa

2abgΛVb

)
Va

Vb

√
π�2abgn

maμcoΔB
. (5.150)

The Hamiltonian (5.148) has the energy unit of 4V 3/2
a

gVbN 3/2 . The variable w measures
the imbalance between atom pairs and molecules and varies in the range of [−1, 1],
with w = −1 corresponding to a pure molecular gas and w = 1 to a pure atomic
gas. We are interested in how many atomic pairs are converted to molecules after the
magnetic field crosses the resonance. We use wf to denote the value of w long after
the magnetic field has passed the resonance. The molecular conversion efficiency
is defined as T = 1 − Γ = (1 − wf )/2, while the fraction of unconverted atoms is
defined as Γ = (1 + wf )/2.

To understand the dynamics of the Hamiltonian (5.148), we first look at the
fixed points of this system. These points can be found by setting dw/dt = du/dt =
dv/dt = 0 in (5.143) and (5.144). The energies for these fixed points make up energy
levels of the system as shown in Fig. 5.33. We find that the structure of these energy
levels changes dramatically as the nonlinear parameter χ increases.

Consider the adiabatic evolution of the system starting from a high negative value
of δ with w = 1. This condition corresponds to experiments in which the mag-
netic field sweeps slowly across the Feshbach resonance with initially no bosonic



174 5 Applications of Nonlinear Adiabatic Evolution

Fig. 5.33 Adiabatic energy levels for different interaction strengths. (a) χ = 0; (b) χ = χc =√
2/4; and (c) χ = 1.5. The unstable states are indicated by dashed lines (MQ and DM)

molecules. When χ is small, as in Fig. 5.33a, the evolution of the system follows the
solid line, converting all fermionic atoms into molecules. However, when χ exceeds
χc = √

2/4, as in Fig. 5.33c, the system finds no stable energy level to follow at a
single pointM . As a result, only a fraction of the fermionic atoms are converted into
bosonic molecules.

This simple analysis is confirmed by our numerical results, which are plotted in
Fig. 5.34. Because w = 1 is a fixed point when δ < −√

2, we start from (w, u, v) ≈
(1, 0, 0) and sweep the field from δ = −√

2 to 200. Then, wf is recorded, and the
conversion efficiency T obtained by using the relation T = (1 − wf )/2. In Fig. 5.34,
the conversion efficiency T , i.e., the fraction of the converted fermionic atom pairs,
is drawn as a function of α. T approaches 1 as α → 0 when χ < χc, indicating that
all atomic pairs are converted into molecules. In contrast, when χ > χc, T does not
increase to 1 in the adiabatic limit α → 0. Consequently, there is an upper limit
Tad (<100%) to the conversion efficiency. Moreover, Fig. 5.34 demonstrates that
positive χ suppresses the conversion efficiency, whereas negative χ enhances it.
Because the repulsive interaction between bosonic molecules enters χ as a negative
value, this interaction enhances the conversion efficiency; the repulsive fermionic
atomic interaction and atom-molecule interaction contribute positively to χ and thus
suppress the conversion.

The upper limit Tad on the atom-molecule conversion efficiency depends on χ .
This dependence can be found by examining the phase-space diagrams of our system,
as shown inFig. 5.35.As δ increases slowly froma large negative value, thefixedpoint
P3 moves up until it intersects the fixed point (w = 1, u = 0, v = 0), represented by
a dark straight line in Fig. 5.35a. This collision occurs at δ = −√

2. Immediately after
the collision, the hyperbolic fixed point P3 is no longer a fixed point and becomes a
solution that evolves along the dark line in Fig. 5.35b. The dark line is given by

√
2 =

χ(1 − w) − √
1 + w cos θ , which is found by taking E = δ = −√

2 in (5.148).
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Fig. 5.34 Conversion efficiency T as a function of the sweep rate α for various interactions

Fig. 5.35 Phase spaces of the Hamiltonian (5.148). The dark line in (a) represents the fixed point
w = 1, u = 0, v = 0. It is a line because θ is not defined at u = v = 0. The two fixed points on
line w = 1 in (b) are in fact the same fixed point; they are an artifact caused by the definition
θ = arctan(v/u)

As the action of this trajectory is nonzero, whereas a fixed point has zero action,
this collision of the two fixed points represents a sudden jump in action. This sud-
den jump results in a nonzero fraction of remnant atoms. As δ continues to increase
slowly, the trajectory changes its shape, as shown in Fig. 5.35c; however, its action
stays constant, as required by the classical adiabatic theorem [4, 33]. The action is

I =
⎧
⎨

⎩
1
2π

∮ cos θ
√

8χ2−4
√
2χ+cos2 θ

2χ2 dθ,
√
2
4 < χ <

√
2
2 ;

1
2π

∫ 2π
0

4χ2−2
√
2χ+cos2 θ

2χ2 dθ, χ >
√
2
2 .

(5.151)

According to the definition of the action, we have the relation I = wf + 1. Using
the relation between the conversion efficiency and the variable wf , we obtain an
upper limit on the efficiency in the adiabatic limit [86],
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Tad =
{

4
√
2χ−1
8χ2 , χ >

√
2
4 ;

1, χ <
√
2
4 .

(5.152)

5.6 Nonlinear Composite Adiabatic Passage

Manipulating the state of a quantum system by external fields is crucial in atomic
and molecular physics for applications such as metrology, interferometry, nuclear
magnetic resonance, quantum information processing, and the driving of chemical
reactions [111–114]. The practical implementation of quantum information process-
ing, however, requires time-dependent schemes featuring three important issues: The
driving quantum state to a target state should be achieved (i) with high fidelity, typ-
ically with an admissible error less than 10−4, (ii) in the shortest possible time to
prominently minimize decoherence effects, and (iii) in a robust way with respect to
the imperfect knowledge of the system or to variations in experimental parameters
[115–117].

The adiabatic passage (AP) techniques are a widely used tool for quantum state
manipulation. A variety of AP techniques have been proposed and demonstrated,
including rapid adiabatic passage, Stark-chirped rapid adiabatic passage, piecewise
adiabatic passage, and stimulated Raman adiabatic passage and its variations [118].
The techniques are robust, but in nearly all of them, the transition probability is
incomplete. Another basic approach to robust coherent control of quantum systems
is the technique of composite pulses, which is widely used in nuclear magnetic
resonance [119], in quantum optics, and in quantum information processing [120,
121]. This technique replaces the single pulse used conventionally for driving a two-
state transition by a sequence of pulses with appropriately chosen phases, which are
used as a control tool for shaping the excitation profile in a desired manner, e.g., to
make the systemmore robust to variations in the experimental parameters-intensities
and frequencies. The imperfections may be caused by an imprecise pulse area, an
undesirable frequency offset, or an unwanted frequency chirp [122].

To combine the advantages of adiabatic passage and composite pulse techniques
and to achieve robust and high-fidelity quantum state control, multiple optimal con-
trol approaches have been proposed [123–126]. Among them, the composite adi-
abatic passage (CAP) technique is a powerful and flexible control tool [126] that
can deliver an extremely high fidelity of population transfer, far beyond the fault-
tolerant quantumcomputing benchmark. TheCAP technique has beenwidely studied
[127] and demonstrated experimentally in a rare-earth ion-doped solid [128]. The
experimental explanation and associated theoretical discussion are limited to a lin-
ear two-level system in which the interaction between particles is ignored. However,
interest in studying the nonlinear quantum system with interparticle interaction has
been increasing. The interaction between the particles can significantly influence the
quantum transition dynamics [4, 129]. Moreover, the single-pulse duration must be
very long (i.e., an infinitely slow sweep speed) to satisfy the adiabaticity criteria.
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However, a CAP sequence contains N pulses. Hence, the total pulse duration for
CAP is N times the single-pulse duration. Under adiabatic conditions, the total pulse
duration is infinite, which is impractical (and indeed, unphysical).

In this section, we discuss the CAP and achieve high-fidelity, fast, and robust
quantum state manipulation in a nonlinear two-level system in which the level ener-
gies depend on the occupation of the levels, representing the mean-field interaction
between the particles. The influence of interparticle interaction on the CAP is demon-
strated.We show that the interaction tends to increase the number of pulse sequences,
i.e., the high-fidelity transition probability can still be achieved in a nonlinear system
as long as there exist sufficiently long composite sequences. Different from the linear
quantum system, regardless of the number of pulse sequence, the total pulse duration
is fixed for nonlinear quantum systems [130].

The nonlinear two-state system we consider is described by the following dimen-
sionless Schrödinger equation [131]:

i
∂

∂t
a(t) = H(t)a(t), (5.153)

with the Hamiltonian given by

H(t) = v(t)

2
σ̂x +

[
γ (t)

2
+ c

2
(|a2|2 − |a1|2)

]
σ̂z, (5.154)

where a(t) = [a1(t), a2(t)]T is the probability amplitudes of the two states. σ̂x and σ̂z

are the Paulimatrices. γ (t) and v(t) are the energy bias and coupling strength between
the two states, respectively. c is the nonlinear parameter describing the interparticle
interaction. The total probability |a1|2 + |a2|2 is conserved and set to 1. The model
has aroused great interest in the context of theory and has important applications
in physics, for example, for describing the spin tunneling of nanomagnets [132], a
BEC in a double-well potential or in an optical lattice [133], and coupled waveguide
arrays [134].

In the linear model, i.e., c = 0, the CAP method has been proposed [126], in
which the propagator of the two-state system can be parameterized by the Cayley-
Klein parameters and the single pulse driving the quantum transition is replaced by
a sequence of pulses with appropriately chosen phases. The technique allows one to
suppress the nonadiabatic oscillations in the transition probability and to reduce the
error below the 10−4 quantum computation benchmark, even with simple three- and
five-pulse composite sequences. In addition, the composite phases do not depend on
the specific pulse shape and chirp as long as the latter satisfies the symmetry property.

The success of the CAP in linear systems has demonstrated its strong ability
to realize quantum manipulation [127, 128]. Keeping this in mind, for the system
(5.153) with Hamiltonian (5.154), we employ a sequence of N (N = 2n + 1, n is
an integer) pulses, each with a phase φk (k = 1, 2, · · · , N ), to achieve high-fidelity
quantum transition. The phase φk is imposed upon the driving field Rabi frequency
(coupling strength), v(t) → v(t)eiφk . For simplicity and as a first attempt toward a
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CAPprotocol for nonlinear systems, the composite control phase in the linear systems
[126] is used here. Assuming that the coupling strength v(t) is an even function of
time and that the detuning γ (t) is odd, the composite phase is

φk =
(
N + 1 − 2

⌊k + 1

2

⌋)⌊k
2

⌋π

N
, (5.155)

where the symbol �x� denotes the floor function. The phase sequence is symmetric,
i.e., φk = φN+1−k , and φ1 = φN = 0.

Our goal is to show theCAPwith nonlinear interparticle interaction and to consider
how the nonlinear interaction affects the CAP technique.With the emergence of non-
linearity, the transition dynamics change dramatically. In this case, the Schrödinger
equation (5.153) is no longer analytically solvable.We therefore exploit a 4–5th-order
Runge-Kutta algorithm to trace the quantum evolution numerically and to calculate
the transition probability of the system.

As an example, we consider the Allen-Eberly (AE) model assuming a sech-type
coupling strength (pulse) and a tanh-type frequency energy bias (chirp) [126],

v(t) = v0sech(t/T ), γ (t) = α tanh(t/T ), (5.156)

where v0 and α are constant parameters with the dimension of frequency and T is
the pulse width.

For the linear case, the transition probability p = |a2|2 = 1 − |a1|2 is [126]

p =
cosh (παT ) − cos (πT

√
v20 − α2)

1 + cosh (πv0T )

= 1 −
cos2 ( 12πT

√
v20 − α2)

cosh2 ( παT
2 )

. (5.157)

For v0 < α, the cosine in (5.157) is replaced by a hyperbolic cosine.A transition prob-

ability p = 1 (complete population inversion) is obtained for
√
v20 − α2T = 2n + 1,

with n = 0, 1, 2, · · · (integer). In the adiabatic limit (v0 > α � 2/T ), the transition
probability also tends to unity. If α is not large enough, nonadiabatic oscillations
mediated by v0 appear, and the probability is reduced. These oscillations can be sup-
pressed to any order by the CAP technique even with simple three- and five-pulse
composite sequences.Note also that all the variables here should be considered scaled
dimensionless variables. Throughout, we use T for scaling; thus, T = 1, and v0, α,
and c are in units of 1/T .

Figure5.36 shows the final transition probability as a function of both the number
N of composite sequence pulses and the particle interaction c for the AE model
with α = 1 and v0 = 1.2. The blue zones correspond to a low transition probability,
whereas red areas indicate a high transition probability. The transition dynamics are
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Fig. 5.36 (Color online) Contour plots of the transition probability as a function of composite
sequence pulses N and interaction c for an AE pulse with α = 1 and v0 = 1.2

strongly dependent on the nonlinear interaction. For very weak interaction, a high
transition probability can be achieved even with simple three- and five-pulse com-
posite sequences. As the nonlinear interaction grows, nonadiabatic oscillations are
significantly strengthened, and the probability is reduced dramatically. Consequently,
the high transition probability can no longer be achievedwith a small number of com-
posite sequences. Interestingly, however, these oscillations can be suppressed by the
CAP technique with sufficiently long composite sequences; i.e., as long as there exist
sufficiently long composite sequences, the CAP technique can still be applied to the
nonlinear two-level system. Note that for linear systems, the total pulse duration of
the CAP is N times the single-pulse duration. However, the total pulse duration is
fixed in our nonlinear system. In all numerical simulations, the numerical time was
performed from times −100 to 100.

We calculate the transition probability as a function of the peak Rabi frequency
v0 for different interaction and composite sequence pulses N ; the results are shown
in Fig. 5.37. Frames (a) and (b) show that a 1299-pulse CAP with interaction c = 0.2
suffices to suppress the nonadiabatic oscillations below the quantum information
benchmark 10−4. Frames (c) and (d) depict the transition probability versus the peak
Rabi frequency v0 for interaction c = 2.0. For comparison with [126], we also plot
the transition probability as a function of the peak Rabi frequency v0 for a five-pulse
sequences N = 5 with c = 0 (olive dashed curve). For the linear system, even a five-
pulse sequence is sufficient to achieve extremely high fidelity with an error below
10−4. For nonlinear systems, the 10−4 error benchmark can still be reached, albeit
with longer sequences.
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(a) (b)

(c) (d)

Fig. 5.37 (Color online) Transition probability as a function of the peak Rabi frequency v0 for dif-
ferent interactions [c = 0.2 (top) and c = 2.0 (bottom)] and composite sequence pulses N . Frames
(b) and (d) show the deviations of the left profiles. The olive dashed curve represents the five-pulse
sequences N = 5 with c = 0. In addition, α = 1

To test the robustness against variations in the field parameters, we vary bothα and
v0 around their optimal values and calculate the fidelity. The results are summarized
in Fig. 5.38, which clearly shows that CAP is extremely robust with respect to an
increase in α and v0. Furthermore, the high-fidelity region with an error below 10−4

for CAP is considerably expanded relative to a single pulse. Different from the linear
quantum system, a large number of composite pulses is needed to achieve ultrahigh
fidelity in CAP in nonlinear quantum systems, and the number of pulses gradually
increases with increasing nonlinear interaction.

To further explore this peculiar phenomena, we introduce the relative phase θ =
θ2 − θ1 and the transition probability p = |a2|2 as two canonical conjugate variables,
with a1 = √

1 − pe(iθ1) and a2 = √
pe(iθ2). We can then obtain an effective classical

Hamiltonian that satisfies the canonical equations, i.e., dp/dt = −∂H/∂θ , dθ/dt =
∂H/∂p, and

H (t) = γ

2
(1 − 2p) − c

4
(1 − 2p)2 + v

√
p(1 − p) cos (θ + φk). (5.158)

The classical Hamiltonian can describe completely the dynamic properties of the
system (5.153) [4]. In Fig. 5.39, we show the transition probability and relative phase
evolution for the AE model during CAP with and without the control phase under
different interaction and pulse sequences. In Fig. 5.39a–c, we plot the trajectories
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(a) (b)

(c) (d)

Fig. 5.38 (Color online) Contour plots of the transition probability as a function of the peak Rabi
frequency v0 and chirp rate α at different interactions [c = 0.2 (top) and c = 2.0 (bottom)] with
composite sequence pulses. a N = 1, b N = 1399, c N = 1, and d N = 4799

in the phase space, the transition probability and the relative phase evolution for
various parameter values. The black triangle and the star represent the initial state
and the final state, respectively. The control phases play an important role in the
CAP technique and can significantly influence the quantum transition dynamics.
This process allows one to suppress the nonadiabatic oscillations in the transition
probability and to ensure an ultrahigh fidelity in the CAP process. In the linear case,
the CAP works for a small number of pulses, and each constituent pulse produces a
large population change but not complete inversion; the destructive interference of
the deviations ultimately drives the system to complete inversion. In contrast, in the
nonlinear quantum system, the CAP requires a large number of pulses, each of which
produces a small change in population. However, the universal composite phases are
derived from the condition that cancels the deviations from unit transfer efficiency
due to nonadiabatic effects by enforcing destructive interference of these deviations.
By directly solving the Schrödinger equation (5.153) using the same approach, we
can reproduce the above results. In contrast to the CAP technique of [126], regardless
of the number of pulse sequence, the total pulse duration is fixed. Thus, the profiles
of the pulse and chirp are different for different pulse sequences. For example, for
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(a) (b)

(c) (d)

Fig. 5.39 (Color online) a Trajectories in the phase space. b Transition probability as a function of
time (inset: control phase as a function of time). c Relative phase as a function of time. d Sequences
of the 1299 pulse as a function of time

the 1299 pulse, the AE model reduces to the Landau-Zener model of finite duration
[see Fig. 5.39d],which causes the transition probability to exhibit oscillationswithout
the control phase.
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