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Preface

Physical systems driven far from thermodynamic equilibrium can give rise to a va-
riety of dissipative spatial structures through spontaneous breaking of symmetries.
A fascinating feature of these pattern-forming systems is their tendency to originate
spatially confined states. Such localized states can exist as wave packets or prop-
agating entities through space and/or time. Observed in many different branches
of science, localized states appear to be ubiquitous in nature and characterized by
common macroscopic properties, independently of the specific physical laws gov-
erning the underlying field and/or matter interactions. Even though Localized States
in Physics can be found in such different domains as hydrodynamics, optics, granu-
lar matter, reaction-diffusion systems, neural networks, plasmas, Bose-Einstein con-
densates etc., books on the topic are still very rare and often devoted to a particular
type. This Book is based on a series of lectures given at a workshop on the subject:
it reflects the spirit and the breadth of the meeting, held in 2008 at the University
of los Andes, Santiago, Chile. Its main motivations stem from the need to bring to-
gether - coolate and compare - various approaches to the description of localized
states in physics, offering a comprehensive panorama of confined states, from lo-
calized patterns to solitons, convectons, oscillons, pulses, etc., aimed at establishing
a common - or at least shared - comprehension of these physical states. In fluids,
for instance, convecting regions can coexist stably with non-convecting regions in
uniformly heated cells. Localized hexagonal patterns have also been observed in a
parametrically excited layer of fluid. In chemical systems, autocatalytic reactions
on metallic surfaces can lead to solitary waves with partial and full annihilation
after collision of pulses traveling in opposite directions. In granular matter, verti-
cally driven layers of particles (sand, rice, stones, metal balls, etc.) reveal that, for
peak acceleration exceeding a critical value, standing wave patterns spontaneously
form and oscillate at half the excitation frequency. Square, stripe, hexagonal and
spiral patterns can emerge, depending on the oscillation frequency and amplitude
of the forcing, including coherent states such as localized standing waves or oscil-
lons. Localized states are also relevant in neural systems, where action potentials
propagate along axons or networks of thalamic neurons exhibit activity waves, just
to mention two examples. In optics, the interplay between dispersion/diffraction
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and the medium nonlinearity leads to light propagation in space/time self-confined
beams, the so-called optical solitons. In the presence of feedback, optical localized
structures such as cavity solitons have been identified as transverse solutions en-
compassing bistability; they have been observed in several media and controlled
by suitable addressing protocols. Finally, coherence and interference properties of
atomic clouds of Bose-Einstein condensates, as well as localized structures in pop-
ulation models, have been investigated. The book covers quite a few of the most
active and interesting contemporary aspects of Localized States in Physics, pro-
viding both review elements and current information on the latest research in the
field. It consists of thirteen chapters discussing localized objects in optics, fluids
and neural networks. The first four chapters are mostly dedicated to fundamental re-
search in light localization. Reports on the state-of-the-art in optical spatial solitons,
self-confined light and optical turbulence are presented with particular emphasis on
experimental observations. The related theoretical work is treated in a general way
and recent nonlinear optical experiments are reported to support the various predic-
tions. The next three chapters deal with localized structures as localized solutions
of pattern-forming systems. Analogies are drawn between fluids and optics, with a
chapter dedicated to confined convective states in fluids and another one to optical
transverse structures in liquid crystal light-valves. The recent theoretical develop-
ments in pattern localization are treated in a dedicated chapter, where crystal-like
hexagonal structures are shown to localize according to the symmetry of the under-
lying grid. In the second part of the book special attention is paid to the potentials
of localized states towards applications. Four chapters are devoted to optical sys-
tems and their use for controllable light pixels. Finally, excitability and localized
states are treated in the last two chapters, where pulse localization is illustrated
with examples in a nonlinear optical cavity and in neural networks. The Book as
a whole is intended for an audience of senior and junior researchers and graduate
students working in the field of pattern formation, instabilities and spatio-temporal
dynamics of macroscopic systems far from equilibrium. It provides an overview of
the state-of-the-art in localized states to a readership of physicists, mathematicians,
electrical/electronic engineers. We trust that a number of scientists from neighbour-
ing areas, such as e.g. biology, sociology, environment science and meteorology,
will find its contents stimulating and informative.

Santiago de Chile, Orazio Descalzi
August 2010 Marcel G. Clerc

Stefania Residori
Gaetano Assanto
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Franco Prati
CNISM and INFM–CNR, Dipartimento di Fisica e Matematica, Università
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Institut Non Linéaire de Nice, 1361 route des lucioles, Valbonne, France

Patrice Genevet
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Solitons, self-confined light and optical

turbulence



Chapter 1
Light Self-trapping in Nematic Liquid Crystals

Miroslaw A. Karpierz and Gaetano Assanto

Abstract We review the most important achievements and recent progress in the
area of light-beam self-localization into optical spatial solitons in reorientational
molecular media, with specific focus on nematic liquid crystals in planarly aligned,
twisted and chiral arrangements.

1.1 Introduction

Liquid crystals are widely used in displays for a large and ever growing number of
applications, including high resolution television sets. It is less known to the gen-
eral public that these molecular materials are employed and studied with a much
larger set of scientific objectives, including electro-optic modulators and nonlinear
photonics, particularly in devices for light switching and all-optical circuits towards
novel generations of optical telecom systems. These molecular dielectrics are fluid,
transparent, damage resistant, temperature and voltage tunable, etc. [1, 2, 3]. When
the organic molecules, typically large and rod-shaped, are ordered in the so-called
nematic phase, liquid crystals tend to exhibit a large (optical and radio-frequency)

nonlinear response is known as optical reorientation and has been exploited to in-
vestigate light-beam self-localization in non-diffracting filaments or spatial solitons,
i.e. beams which do not spread upon propagation, maintain an invariant transverse

Miroslaw A. Karpierz
Faculty of Physics, Warsaw University of Technology, Koszykowa 75, 00662 Warsaw-Poland
e-mail: karpierz@if.pw.edu.pl

Gaetano Assanto
NooEL, Nonlinear Optics and OptoElectronics Lab, CNISM, University of Rome ”Roma Tre”
Via della Vasca Navale 84, 00146 Rome - Italy, e-mail: assanto@uniroma3.it

3

nonlinear reorientational response, i.e. their constituent organic molecules can ro-

DOI 10.1007/978-3-642-16549-8_1, © Springer-Verlag Berlin Heidelberg 2011

birefringence and their optical properties can also be modified by light through a

O. Descalzi et al. (eds.), Localized States in Physics: Solitons and Patterns,

tate and reorientate in space based on the optical excitation [1, 2, 3]. The latter
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profile via a power-driven increase in refractive index and are able to guide weaker
signals [4, 5, 6, 7]. The molecular nonlinearity of nematic liquid crystals (NLC) is
large (i.e. it requires low powers), depends on field polarization but is substantially
independent on wavelength in the whole transparency range, typically from visible
to mid-infrared; being associated to molecular motion in a fluid, it is rather slow in
time, this latter drawback requiring a careful choice/selection of potential applica-
tions in reconfigurable circuits. The light-driven NLC reorientational response sup-
ports various phenomena [2, 3] and, as anticipated, the generation and propagation
of stable and robust self-trapped spatial solitary waves, also named Nematicons [4].
The first solitons in NLC were observed in hollow capillaries filled with dye-doped
materials [8, 9, 10]; they exploited the thermal response through absorption and, in
some cases, a phase transition from nematic to isotropic states. Recently, the most
studied geometries for optical solitons have been planar cells with non-absorbing
NLC, various boundary conditions and applied voltage biases. In the next section
we give a brief account of the basics of the reorientation response and the excitation
of nematicons. In Section 11.3 we overview the main recent results on nematicons
in undoped nematic liquid crystals in planar geometries. In Section 7.4 we discuss
spatial optical solitons in twisted and chiral NLC.

1.2 Reorientational Self-focusing in Nematic Liquid Crystals

Optical reorientation in nematic liquid crystals relies on the structure of the medium,
which consist of anisotropic elongated non-polar molecules in a fluid state [1]. In
the isotropic phase these molecules are disordered in position and orientation, the
latter usually defined by the angle of their major axis or director n, a unity vector
corresponding to the optic axis. In the nematic phase, the NLC director exhibits
an average angular orientation, typically mediated by molecular anchoring at the
boundaries of a cell. The director distribution in an NLC cell can be modified by
anchoring at the surfaces, applied electromagnetic fields, medium temperature, light
beams. NLC, in fact, maintain their fluid state despite the anchoring, with changes
in director orientation related to the free energy of density:

fF =
1
2

K11 (∇ ·n)2 +
1
2

K22 (n ·∇×n+G)2 +
1
2

K33 (n×∇×n)2 , (1.1)

with Kii the elastic (Frank) constants for the three basic spatial distortions of
the molecules: splay (K11), twist (K22) and bend (K33). In most common NLC
K33 > K11 > K22 and are of the order of a few pN units [1, 2, 3]. Expression (1)
is often simplified by taking K11 = K22 = K33 = K. The parameter G in the second
term on the RHS of (1) describes chirality with pitch p: G = 0 for standard NLC
and G = 2π/p for chiral nematic liquid crystals (ChNLC). Owing to the elongated
shape of molecules in NLC, valence electrons have a larger mobility along the ma-
jor axis; hence, the dielectric permittivity is higher for field vectors parallel to n.
In the nematic phase, therefore, typical NLC are birefringent dielectrics with uni-
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axial properties, i. e. ∆ε = ε‖ − ε⊥, ε‖ and ε⊥ being the components of the electric
permittivity (at low and/or optical frequencies) for extraordinary and ordinary polar-
izations, respectively. An electric field E, either externally applied (e.g. a voltage)
or associated to a propagating light beam, can rotate the main molecular axis by
a Coulombian torque, the latter trying to align n along the field vector despite an-
choring at the boundaries and the free energy (1). This latter interaction energy has
density

fel =−ε0∆ε
2

〈
(n ·E)2

〉
(1.2)

Since energy (2) is minimized when n is parallel to the E field vector, the reori-
entational response is a saturable one: the maximum nonlinearity corresponds to
a change from ε⊥ to ε‖ or from ordinary index n⊥ to extraordinary index n‖. An
intense enough extraordinarily polarized beam, such that E, propagation wavevec-
tor k and NLC optic axis n are coplanar, can alter the molecular orientation, in-
crease the electric permittivity and the extraordinary index of refraction, give rise to
self-focusing. Such effect can be modeled by deriving the Euler-Lagrange-Rayleigh
equations from the minimization of the total free energy, which includes the de-
formation energy, the interaction energy with external fields, the interaction energy
with the boundaries and the dissipation energy [7]. The latter has density fR

fR =
1
2

γ
(

∂n
∂ t

)2

(1.3)

with γ the orientational viscosity. The density fR is required in time-dependent
analyses.

When the director at the boundaries and the electric field E lie in the same plane,
the angle θ defining the orientation of the director n with respect to the propa-
gation coordinate z can describe the reorientation in two-dimensional problems, as
sketched in Fig. 1.1. The refractive index for an extraordinarily polarized field varies
with θ according to the usual

ne (θ) =
n⊥n‖√

n2
⊥ cos2 θ +n2

‖ sin2 θ
(1.4)

For the geometry sketched in Fig. 1.1 the director n = (sinθ ,0,cosθ). Assuming an
initial orientation θ = θ0, nonlinear beam propagation at wavelength λ (frequency
ω) is ruled by the coupled system

4K∇2
⊥θ + ε0∆ε sin(2θ) |A|2 = 0 (1.5)

2ik
∂
∂ z

A+∇2
⊥A+

ω2

c2 n2
e (θ)A− k2A = 0 (1.6)

with A the slowly-varying beam envelope,∇2
⊥ = ∂ 2/∂x2 +∂ 2/∂y2 the Laplacian in

the transverse plane, k≈ (ω/c)
√

n2
⊥+∆ε sin2 θ0, c the light speed in vacuum [11].
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Eq. (6) is a saturable (θ cannot exceed π/2) nonlinear Schrödinger-like equation
with an index increase limited by ∆n = n‖ − n⊥. In Eq. (5) and Eq. (6), the initial
value θ0 can represent the effect of a fixed pre-tilt or a tilt induced by a voltage V
applied to the NLC thickness across x. A small initial tilt, such that n and E are not
perpendicular to one another, prevents the threshold effect known as Fréedericksz
transition. Eq. (6) holds valid with θ0 = constant for narrow beams in thick cells,
i. e., in NLC regions far from the anchoring boundaries. System (5)-(6) models
a nonlocal nonlinear response, whereby the reorientational index change extends
beyond the transverse size of the beam field envelope [12]. Nonlocality, as well as
saturation, allow nematicons to be stable and robust in 2+1 dimensions [13, 14].
Fig. 1.1(b) displays the calculated distribution of θ (x) as compared to a bell-shaped
electric field excitation for various intensities I0. It is apparent that the boundary
conditions affect the nonlocal response and its strength depending on the waist of
the beam [5, 15, 16].

(c)

q
0q

E // x

z

n

q

z

x
E

k

E

k

Fig. 1.1 (a) Geometry of a bounded NLC layer in a planar cell with voltage bias across the
thickness. (b) The input E field belongs to the principal plane xz and is coplanar with n and
k ‖ z. (c) Distribution of θ (x) for various electric field excitations. The field profile is the solid
curve. In this 1D calculations we used an NLC layer thickness of 50 µm and boundary conditions
θ (−d/2) = θ (d/2) = 0.01

The reorientational response of NLC, stemming from the shape of the constituent
non polar molecules determines the properties of spatial optical solitons. The non-
linearity is polarization sensitive, self-focusing, saturable, non instantaneous and
nonlocal; hence, it supports stable two-dimensional propagating solitons. Moreover,
owing to the refractive index increase counterbalancing diffraction, co-polarized sig-
nals of different wavelengths can be guided within the soliton channels [11, 17]. By
using the correct input beam polarization, applying suitable boundary conditions at
the interfaces containing the layer of NLC, e.g. by mechanical rubbing, appropriate
pre-tilt θ0 can maximize the nonlinear response and allow mW power excitations to
generate nematicons with propagation over several Rayleigh distances, i. e. to define
reconfigurable signal interconnects. In the remaining of this chapter we will illus-
trate the main properties of low-power reorientational nematicons in threshold-less
configurations.

Nematicons have been investigated in various cell geometries, from hollow cap-
illaries to thick cells with fiber in/out connections, to thin planar waveguides. The
main planar cells for 2D nematicons are sketched in Fig. 1.2 and consist of glass
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Fig. 1.2 Most common NLC planar cells for the study of optical spatial solitons: (a) planar an-
choring with external voltage bias V applied by means of Indium Tin Oxide (ITO) thin film elec-
trodes, (b) twisted or chiral NLC arrangement. The wide arrows along z indicate the excitation field
wavevector of amplitude E, the thinner arrows refer to the input linear polarization

plates with proper rubbing at the internal interfaces [11]. The plates are held parallel
and separated by spacers. Thin film transparent electrodes (e.g. Indium Tin Oxide)
can be used to apply the desired low-frequency bias and tune the initial orientation
θ0. Input and output glass slabs can also be used to seal the cells and avoid meniscus
formation and beam depolarization. When the NLC thickness is much larger than
the waist of the input beam, the NLC layer can be treated as a bulk and the observa-
tion of (2+1) dimensional spatial solitons is possible [4, 7, 11, 13]. Conversely, if the
thickness is comparable with the beam waist, then the structure is better modelled
as a planar waveguide and can support (1+1) dimensional nematicons [5, 6].

1.3 Spatial Optical Solitons in Purely Nematic Liquid Crystals

The basic geometry adopted for demonstrating Nematicons in a planar glass cell
containing undoped NLC (specifically, the Merck mixture known as E7) is sketched
in Fig. 1.1(a) and Fig. 1.2(a) [7, 11]. The excitation was a linearly polarized
Gaussian beam with the electric field parallel to x, i.e. extraordinarily-polarized.
Surface anchoring and applied voltage across the d = 75 µm thickness guaranteed
a threshold-less all-optical response in the uniaxial dielectric, as described by Eq.
(4) and Eq. (5). In the presence of the external bias V = dErf, neglecting walk-off
in the plane xz and non-paraxial effects, the evolution of the slowly-varying beam
amplitude A propagating along z in the mid-plane of the cell is modelled by [7, 11]:

2ik
∂
∂ z

A+∇2
⊥A+

ω2

c2

(
n2
‖ −n2

⊥
)(

sin2 θ − sin2 θ0
)

A = 0 (1.7)

K
∂ 2θ
∂ z2 +K∇2

⊥θ +
1
2

∆εRFE2
rf sin(2θ)+

1
4

ε0

(
n2
‖ −n2

⊥
)
|A|2 sin(2θ) = 0 (1.8)

with θ0 the pre-tilt and θ the director orientation due to both light and voltage, ∆εRF
the dielectric anisotropy in the low frequency region.
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System (7), for narrow nematicons with respect to the cell and small waist
compared to the extent of the nonlocal response, reduces to a saturable nonlinear
Schrödinger equation with nonlocal and stable 2D+1 self-localized solutions [12].
In this limit, nematicons exhibit the features attributed to ”accessible” solitons by
Snyder and Mitchell [14], with a breathing character resulting in the (quasi) periodic
oscillation of their waist and peak intensity [12, 13, 14]. This breathing is excitation-
dependent and can be reduced by exciting the solitons with power and waist close
to their existence curve. In several experimental scenarios, nematicons often appear
as transversely invariant beams with a slowly decaying intensity due to Rayleigh
scattering in the medium. Self-localized solutions in the ”local” regime can also be
found for beams of waist comparable to the nonlocal range [18, 19]. Fig. 1.3(a) dis-
plays actual (colour-coded) images of individual 2mW Gaussian green (514.5nm)
beams in the ordinary (top panel) and extraordinary (bottom) polarizations, result-
ing in linear (diffraction) and nonlinear (self-localized) propagation, respectively, as
observed by collecting the out-of-plane scattered photons with a camera. The lin-
ear behaviour in the ordinary polarization corresponds to an E-field orthogonal to
n; hence, to lack of reorientation below the Freedericks threshold. The nematicon
(Fig. 1.3(a, lower panel) remains invariant over distances exceeding 20 diffraction
lengths. Fig. 1.3(c) shows the corresponding evolution of a red (632.8 nm ) probe
(signal) co-polarized and co-launched with the pump: as a nematicon is generated,
the weak signal is confined in the soliton waveguide despite its longer wavelength:
another demonstration of the nonlocal nature of nematicons, inasmuch as the nu-
merical aperture of the solitary channel exceeds that associated to the spatial extent
of the self-localized solution.

Another effect of nonlocality is low-pass filtering. In the case of spatial inco-
herent excitations, e.g. a speckled beam produced by a diffuser, nonlocality can
eliminate the high frequency wave-vector components and allow a spatial soliton to
be formed, even if at the price of a larger power [20, 21, 23]. Fig. 1.3(b) and Fig.
1.3(d) display diffraction and self-localization of pump (Fig. 1.3(b)) and probe (Fig.
1.3(d)) in ordinary (top panels) and extraordinary (bottom) polarizations, respec-
tively. It is apparent that an excitation of 2.7 mW (versus 2.0 mW in the coherent
case) suffices to compensate the larger diffraction associated to the speckled input.

The incoherent character of nonlocal solitons also allows the formation of vector
nematicons with two (or more) co-polarized wavelength components [24, 25], as
well as the mutual attraction between nematicons, propagating either in plane [26,
27, 28] or out of plane [29, 30, 31, 32]. Fig. 1.4 illustrates a couple of simple in
plane interactions between two solitons excited by equi-power beams propagating
at a small angle. Since the initial separation does not exceed the nonlocal range, the
nematicons tend to attract as the refractive perturbation links the two self-induced
waveguides, until the in initially diverging beams become parallel (Fig. 1.4(b)). At
higher input powers (Fig. 1.4(c)) the mutual attraction becomes strong enough to
make the two solitons cross and interleave, exchanging their position along y. This
power-dependent interaction can be exploited for all-optical switching and logic
gates.
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Fig. 1.3 Colour coded images of beam propagation from an Ar+ laser (left) and a collinear co-
polarized He-Ne laser (right) in a planar NLC cell with E7. (a) Top row: linear diffraction when
injecting an ordinary polarization. Bottom: soliton propagation in the extraordinary polarization
(‖ x); (b) corresponding linear (top) and nonlinear (bottom) evolution of the probe (100 µW). (c-d)
Spatially incoherent beam propagation as in (a) and (b), respectively, but for a (c) 2.7 mW pump
and (d) an equally incoherent probe
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Fig. 1.4 Color coded images of (a) a single nematicon in a planar cell; (b) two identical nematicons
launched by ≈2 mW beams forming a mutual angle of 1.7o; (c) same as in (b) but with launch
powers ≈4 mW
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Figure 1.5 summarizes a few other cases of interactions between nematicons.
If the initial separation and/or angle are large enough, the two spatial solitons
cross each other (Fig. 1.5(a)) while maintaining straight trajectories, as for one-
dimensional Kerr solitons [21]. Fig. 1.5(b) illustrates the formation of a few nemati-
cons using a wide beam focused well inside the cell [33]: transverse modulational
instability mediates the formation of a number of solitons depending on the size and
power of the optical excitation [22, 34, 35]. Several nematicons can also be the by-
product of a dispersive shock wave or undular bore [36]. Fig. 1.5(c) illustrates the
interaction of two equi-power solitons lauched skew in the cell: mutual attraction
gives rise to a cluster of nematicons with spiralling trajectories and angular momen-
tum. Since the latter is proportional to the photon content of each soliton, as the
excitation increases the cluster rotates faster, as displayed in Fig. 1.5(d) showing the
output images of the two light spots versus input power [30, 31]. A similar behav-
iour has been also predicted with clusters of nematicons of different wavelengths
and with more than two components.

(a)

(b)

(c)

(d)

0 1

0 2.5z [mm]

y
[

m
]

m

50

0

200

-50

0

-200

Fig. 1.5 (a) In plane crossing of two identical nematicons. (b) Multiple soliton generation by a
focused light beam. (c) Out-of-plane attraction between two skew nematicons. (d) The photographs
taken at the output of the cell show that, as the excitation increases, the cluster rotates faster in
propagation, with a power-dependent angular change (π , in this set)
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Nematicons are extraordinarily polarized wave-packets in uniaxials; hence, they
undergo walk-off, i. e. their photon flux forms an angle

δ (θ) = tan−1




(
n2
‖ −n2

⊥
)

sin(2θ)

n2
‖+n2

⊥+
(

n2
‖ −n2

⊥
)

cos(2θ)


 (1.9)

with the wave-vector. Such angle can be as large as 7− 9o in typical NLC, and
suitable launch conditions need be adopted to prevent or reduce it not to make the
soliton hit the cell boundaries [37]. Boundaries contribute to define the potential
landscape for soliton propagation and can play an important role in the actual ne-
maticon path within finite cells [38, 39, 40]. Since walk-off depends on the angle θ
which, in turn, can be controlled by the external bias, the applied voltage can also be
used to change nematicon trajectory by varying δ , either in the whole cell or in spe-
cific regions of it [41, 42, 43, 44]. In the latter case, graded interfaces can be formed
and support soliton refraction or total internal reflection [43, 44]. Examples of re-
fraction and total internal reflection in a cell with two electrodes defining regions
of higher and lower optical densities are shown in Fig. 1.6 (a-b). Analogous effects
can be obtained by illuminating NLC regions and inducing reorientation along the
path of the nematicon. This has been demonstrated with lens-like perturbations in
undoped NLC and Azo-NLC [45, 46], through dye-mediated absorption and surface
anchoring [47], in liquid crystal light valves by means of a photoconductive layer
altering the voltage drop across the NLC [48]. Finally, owing to the large walk-
off, double refraction in uniaxial NLC can originate negative refraction at the input
glass-NLC interface, with the soliton propagating in the same half-plane of the in-
cident wave vector, as visible in Fig. 1.6(c) comparing ordinary and extraordinary
(self-confined) beam propagation [49].

1.4 Spatial Optical Solitons in Chiral Nematic Liquid Crystals

In twisted and chiral nematic cells the molecular director is parallel to the glass
plates (interfaces) and twisted within the film thickness (Fig. 1.2(b)) [50, 51]. Such
an orientation is typically induced by the boundary conditions (in twisted nematics,
TNLC) and by the chiral properties (in cholesteric liquid crystals, ChNLC). For
light polarized along y the refractive index varies across the sample thickness from
the ordinary value n⊥ in planes where θ = 0 to the extraordinary n‖ in planes where
θ = π/2. A self-trapped light beam propagates in the thin layer where the refractive
index is the largest (close to n‖). In ChNLC several such layers occur throughout
the liquid crystal and their number depends on the chirality pitch and the thickness
of the film.

In the configurations investigated a light beam propagates in the z-direction par-
allel to the glass plates and is initially linearly polarized with the electric field vector
E = yEy also parallel to the interfaces. Because the birefringence axis rotates across
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z [mm] z [mm]

0 01 1

Fig. 1.6 (a-b) A planar cell with suitable director orientation in the plane yz and two sets of elec-
trodes can be used to define two dielectric regions separated by a graded interface (dashed line).
If the nematicon, injected from the left, reaches the interface from an optically rarer region, it can
undergo refraction as in (a). If the input region is denser, the soliton can undergo total internal
reflection, as in (b). The overall change in angle from refraction to reflection in this experiment
is 18 +22 = 40o. (c) Double refraction in NLC: the ordinary beam component (upper) undergoes
positive refraction while diffracting; the extraordinary beam nematicon propagates with negative
refraction (towards y < 0) at the walk-off angle with respect to k (along the ordinary beam)

the layer, during propagation all components of electric and magnetic fields appear.
However, only Ey and Ez are important for reorientation. Using the Euler-Lagrange
equation for energy minimization, the following partial differential equation can be
obtained:

K
∂ 2θ
∂x2 +

1
4

ε0∆ε
[(
|Ez|2−

∣∣Ey
∣∣2

)
sin(2θ)+

(
E∗y Ez +E∗z Ey

)
cos(2θ)

]
= 0 (1.10)

where θ (x) = θ0 + 2πx/p is the initial orientation (without electric field) and p
is the chirality pitch. The description of light propagation in a twisted or a chiral
NLC layer can be simplified by assuming that the beam profile along x is roughly
constant, a hypothesis which is correct at some distance from the input, where the
self-guided mode is formed. In this limit, taking Ez << Ey, the slowly varying am-
plitude A is ruled by [50, 51]:

2iβ
∂
∂ z

A− ∂ 2

∂y2 γ1A+2iβ
∂
∂y

γ2A−β 2
(

γ1− γ(0)
1

)
= 0 (1.11)

where β is the propagation constant of the planar waveguide mode and the coef-
ficients γ1 and γ2 depend on the orientation angle (γ(0)

1 is the value of γ1 for the
initial orientation). These coefficients have a saturable form and can be calculated
for any specific liquid crystal layer. γ2 is connected with the walk-off of the light
beam when the latter is asymmetrically launched into the film. γ1 relates to nonlin-
earity and is responsible for self-focusing and the creation of spatial solitons. The
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simplified equation predicts that a beam gets self-trapped and the walk-off varies
with intensity.

Experimentally, it was demonstrated that TNLC can support spatial solitons for
light powers of a few tens of milliwatts. In the asymmetric case the results also
show a change in direction of propagation with increased excitation. Most exper-
iments were carried out in a cell of thickness d = 50 µm filled with 6CHBT (4-
trans-4’-n-hexyl-cyclohexyl-isothiocyanatobenzene) [52, 53]. An Ar+ laser beam
(λ = 514 nm) with initial waist of a few micrometers formed nematicons at powers
approximately 100 and 20 mW in the symmetric and asymmetric configurations, re-
spectively [17, 54]. The solitary beam exhibited an invariant transverse distribution
over a propagation distance > 50 times the Rayleigh length (a few millimeters).

The relatively large power required to form nematicons in TNLC can be reduced
by decreasing the film thickness d. This can be obtained in ChNLC with a smaller
pitch, where nematicons are substantially similar to those in TNLC [55, 56]. How-
ever, the former offer some new opportunities because the width of a guiding layer
(in x) is not only determined by the sample thickness (as in TNLC) but also by the
chirality pitch. As a result, in ChNLC it is easier to change the thickness of a layer
and -as a consequence- the nonlinear strength. It is also possible to utilize multi-
layers for the propagation of independent or interacting nematicons, as schemati-
cally shown in Fig. 1.7(a).

V

Fig. 1.7 (a) ChNLC cell geometry and (b) experimental results showing the formation of nemati-
cons in different layers across the film, as obtained by launching the input beam in distinct vertical
positions ∆x.

Typical results in ChNLC are presented in Fig. 1.7(b) for a Ti:Sapphire (λ = 790
nm) laser beam with input waist of about 2 µm . Spatial solitons were excited in
a cell with pitch p = 25 µm at powers P ≈ 30 mW (66-67). Nematicons were size
invariant for about 2 mm of propagation (> 80 Rayleigh lengths). Due to the finite
thickness of each layer in ChNLC, self focusing could balance diffraction and give
rise to self-trapped solitons only in a limited waist range. Moreover, by changing the
vertical input position along x, it was possible to launch as many solitons as layers
in the ChNLC structure, as reported in Fig. 1.7(b) corresponding to the four layers
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Fig. 1.8 Experimental results on spatial solitons in ChNLC: (a) light beam propagation for various
external electric fields (marked on photos) and (b) corresponding intensity profiles at a distance
z = 0.6 mm.

of a cell about 50 µm thick and with a 25 µm pitch. The four nematicons could be
injected independently, separated by 10−12 µm.

Using the smaller pitch p = 10 µm the power required to form soliton was re-
duced to P < 10 mW. Additionally, similar to the nematicons discussed in Sect.
11.3, even in TNLC and ChNLC we verified that the solitary waveguide was able
to confine different wavelength signals, specifically a co-polarized low-power probe
from a Helium-Neon laser (λ = 633 nm). When two nematicons were launched
close to one another in the same layer, they attracted and eventually merges into a
single self-trapped beam.

Small changes in input beam polarization caused nematicons to change direction
of propagation. However, if the polarization is sufficiently rotated, then diffraction
in a non-soliton polarization prevailed over self-focusing. Similar results were ob-
served when the external electric field was applied perpendicularly to the layer. The

in Fig. 1.8. For larger values of the external electric field (in our example for V> 6
V) the induced reorientation prevented an effective self-trapping of light.

1.5 Conclusions

Nematic liquid crystals, organic self-assembling molecular fluid dielectrics with

of light into spatial solitons at milliwatt powers and over millimeter distances. Their
reorientational response, saturable nonlocal and polarization sensitive, supports sev-
eral types of self confinement and soliton all-optical effects, including signal trap-
ping and routing, switching, processing. We predict that various other light local-
ization phenomena, from dispersive shock waves to undular bores and soliton prop-
agation in random potentials, will find experimental validation in these media.

anisotropic optical properties, are ideal material systems for studying self-localization

direction of nematicon propagation could be controlled by a voltage V, as presented
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Chapter 2
Photonic Plasma Instabilities and Soliton
Turbulence in Spatially Incoherent Light

Dmitry V. Dylov and Jason W. Fleischer

Abstract We develop a plasma theory of nonlinear statistical optics. In this model,
partially spatially incoherent light is treated as an ensemble of speckles which can
interact through the nonlinearity. A photonic plasma frequency is defined, as is a
photonic Debye length. This approach unifies previous observations using partially
coherent light and predicts a new class of optical phenomena. Examples include
the two-scale energy transfer common to modulation instability and the continu-
ous excitation of modes from the gradient-driven bump-on-tail instability. The latter
example, well-known from plasma physics, represents a new regime for optical ex-
periments. We observe it here by considering the nonlinear coupling of two partially
coherent beams in a self-focusing photorefractive crystal. For weak wave coupling,
determined by small modal density within a Debye sphere, we observe momentum
exchange with no variation in intensity. For strong wave coupling, modulations in
intensity appear, as does evidence for wave (Langmuir) collapse at large scales.

To achieve a broader range of wave coupling, we consider a double bump-on-tail
geometry. This system can be modeled as a pair of coupled single-hump instabil-
ities whose interaction involves general issues of nonlinear competition, synchro-
nization, etc. For the case of strong wave coupling, the multiple humps merge into
a single-peaked profile with an algebraic k−2 inertial range. This self-similar spec-
trum, representing an ensemble of dynamically-interacting solitons atop a sea of
radiation modes, is a definitive observation of soliton (Langmuir) turbulence.
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2.1 Introduction

Dynamical instabilities occur in every nonlinear wave system. Perhaps the sim-
plest is modulation instability (MI), in which perturbations grow at the expense
of a uniform background. For example, a plane wave propagating in a self-focusing
medium will break up into stripes, with a characteristic period determined by a
balance between diffraction/dispersion and nonlinearity. If the background is statis-
tical, e.g. thermal, then attempts at growth are de-phased by the background, and
there is a nonlinear threshold for instability [1, 2, 3, 4]. Put another way, mode cou-
pling must be sufficiently strong to generate enough correlation for unstable growth.
Once instability begins, the evolution is again characterized by a direct transfer be-
tween the background and a preferred scale (this time determined by the correlation
length). The resulting array of solitons is then free to interact over longer evolution
times/propagation distances.

A contrasting process of energy transfer is one that occurs over a continuum of
scales. This type of dynamics involves a local coupling between adjacent modes in
wavenumber space, resulting in a self-similar cascade. This process gives an alge-
braic power spectrum and is typical of homogeneous turbulence, such as that de-
scribed by Kolmogorov theory [5, 6]. It is simpler, in some senses, as dimensional
analysis and scaling arguments can be used to characterize the dynamics.

The two methods of energy transfer represent complementary limits. Two-scale
coupling can cascade, with higher-order effects appearing. This includes the gen-
eration of higher-order modes [7], condensation processes [8, 9, 10], and soliton
clustering [11]. Likewise, local coupling can generate localized structures which
can evolve dynamically [5, 12, 13]. This convergence of dynamics should not be
surprising, as they are nothing but different pathways to the same asymptotic state.

Until recently [14, 15, 16, 7, 17, 18], only two-scale dynamics had been demon-
strated experimentally in optics, viz. the snake instability in self-defocusing me-
dia [19] and modulation instability in self-focusing media [3, 4]. Here, we outline
our work on instabilities which cascade modes over a range of scales. As optical tur-
bulence is our ultimate goal, we use light that is partially spatially incoherent. Such
beams can be treated as an ensemble of speckles which, in a nonlinear medium,
can be considered as quasi-particles that interact through large-scale modulation
waves [14]. This description gives rise to a photonic plasma interpretation. It unifies
all previous observation in nonlinear statistical optics and predicts a wide range of
new dynamics.

As a particular example, we consider an all-optical bump-on-tail instability. This
instability, well-known in plasma physics [8, 9], is a gradient-driven effect which
couples modes across a range of scales. We show that instability occurs whenever
higher-momentum modes are more populated than lower ones, regardless of nonlin-
ear coupling strength, and derive analytic dispersion relations for the growth rates.
Experimentally, we observe the dynamics by considering the nonlinear coupling of
two partially-coherent beams in a self-focusing photorefractive medium. For weak
nonlinear interactions, the result is momentum (k) transfer without any observable
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variation in intensity (x). For strong interactions, both x-space modulations and k-
space dynamics appear.

As the dynamics evolve, the growing perturbations start to back-react on their un-
derlying source distribution. The source intensity becomes depleted and its spectral
profile is modified. For this stage, linear theory is no longer adequate. To address
this, we develop a quasi-linear theory and apply it to the bump-on-tail example,
showing explicitly how modes grow until there is no more driving gradient. For
even stronger wave growth, wave-wave interactions become dominant. That is, the
perturbed modes interact with each other, independent of the background distribu-
tion. This is a highly nonlinear state, and it is difficult to achieve experimentally with
limited nonlinearity and propagation distance. To facilitate the process, we consider
a double bump-on-tail geometry, so that a broader range of unstable wavenumbers
can grow and interact. We show that the dynamics can be treated as a coupled pair
of individual bump-on-tail instabilities. It is thus a model system which can address
a variety of general issues in nonlinear dynamics, including synchronization, com-
petition, parametric pumping, and cascades of energy and momentum transfer [20].
In our case, we show analytically and experimentally that the momentum cascade
leads to an algebraic k−2 power spectrum. The results highlight the difficulty of
synchronized wave mixing inherent in noisy nonlinear systems and demonstrate a
pathway towards all-optical studies of turbulence.

2.2 Basic Theory and Formalism

Our starting equation is the nonlinear Shrödinger equation (NLS) for the slowly
varying, partially coherent field packet ψ(rrr,z), which reads

i
∂ψ
∂ z

+
β
2

∇2
rrrψ +κG(〈ψ∗ψ〉)ψ = 0. (2.1)

Here, rrr is a diffraction\dispersion variable, the propagation is along z and coefficient
β = λ/2πn0 is the diffraction (or second-order dispersion) coefficient for light of
wavelength λ in a medium with base index of refraction n0, κ is the nonlinear
coefficient, and G(〈ψ∗ψ〉) is the nonlinear response function of the medium. The
bracket 〈...〉 denotes statistical ensemble average; it is valid when the medium’s
response time is much longer than the characteristic time of the intensity fluctuations
of the statistical wave packet.

2.2.1 Wigner Formalism

There are many equivalent ways to treat such partially coherent light [21]; here,
we use a full wave-kinetic approach via the Wigner formalism [22, 23]. In this
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method Eq. (2.1) is transformed by the Wigner function (including the Klimontovich
statistical average), defined as

f (rrr,kkk,z) = (2π)−3
∫ +∞

−∞
d3ξξξ · eikkk·ξξξ

〈
ψ∗

(
rrr +

ξξξ
2

)
ψ

(
rrr− ξξξ

2

)〉
. (2.2)

Equation (2.2) satisfies the intensity relation 〈ψ∗(rrr,z)ψ(rrr,z)〉 =
∫ +∞
−∞ d3kkk f (rrr,kkk,z).

Eq. (2.1) transformed by (2.2) takes the following form [22, 23, 24, 25, 14]

∂ f
∂ z

+βkkk ·∇rrr f +2κG
(〈| ψ |2〉)

[
sin


1

2

←
∂
∂ rrr
·
→
∂

∂kkk




]
f = 0, (2.3)

where the arrows in the sine operator indicate that the spatial derivative acts on the
function G (to the left) and the momentum derivative acts on the distribution f (to
the right) [24, 25].

In the geometrical optics approximation (the long-wavelength limit): ∆kkk ·∆rrr À
2π), so that Eq. (2.3) reduces to

∂ f
∂ z

+βkkk ·∇rrr f −κE (rrr,z) ·∇kkk f = 0, (2.4)

where the self-consistent driving field E (rrr,z) is introduced as

E (rrr,z) =−∇rrrG
(〈| ψ |2〉) . (2.5)

Equation (2.3) is known as a Wigner-Moyal equation for the evolution of the
Wigner distribution function f (rrr,kkk,z). Its simplification (2.4) has a form of the
Vlasov transfer equation [8, 24] or, essentially, a radiation transfer equation [26, 27,
21]. It is valid for slow (long-wavelength) variations in the refractive index when
the average speckle size (correlation length lc ) of the light is smaller than the beam
envelope. Note that the usual form of this short-wave–long-wave dynamics is cou-
pled but has been reduced to a single equation by implicitly absorbing intensity
fluctuations in G

(〈| ψ |2〉). Equation (2.4) implies the conservation of the number
of optical quasi-particles in {rrr,kkk}-space. In this chapter we will treat these quasi-
particles collectively and borrow language from plasma physics. Eqs. (2.4), (2.5)
then become a starting point to account for spectral dynamics of localization, oscil-
lations and instabilities in statistical, nonlinear optics.

In plasma physics the self-consistent driving field defined in (2.5) is responsi-
ble for ponderomotive self-focusing, corresponding to the drift of electrons down
a gradient in the plasma density [8, 6, 28, 29]. The corresponding nonlinear index
change can be viewed as a divergence (variation) of E (rrr,z) resulting from the local
intensity inhomogeneity. Mathematically we can express it in terms of the generic
condition for G(〈ψ∗ψ〉):

∇rrr ·E (rrr,z) = κ
(
〈I0〉−

∫ +∞

−∞
d3kkk f (rrr,kkk,z)

)
, (2.6)
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where 〈I0〉 is a uniform background intensity without any variations. Equation (2.6)
is a Poisson equation [8] that implies that nonlinearity acts as a uniformly distrib-
uted volumetric ”charge”. It is valid if the following physically sensible conditions
are met: the right-hand side has to be finite, the functions G and E have to be spa-
tially continuous, and the medium has to have only smooth optical inhomogeneities
(if any).

2.2.2 Initial Stages of Instability. Linear Perturbation Theory

Initial stages of instabilities in nonlinear media can be studied by standard pertur-
bation analysis. To illustrate the main points, we consider perturbations around a
spatially uniform distribution f0(kkk):

f (rrr,kkk,z) = f0(kkk)+∑
ααα

ρααα(kkk,z)eiααα·rrr, (2.7)

with | ρααα |¿| f0 | for all wavenumbers ααα 6= 0. In the unperturbed state, the nonlinear
driving field (2.5) is assumed to be zero, so that E (rrr,z) can be regarded as a small
quantity (weak nonlinearity). In terms of the Fourier modes,

E (rrr,z) = ∑
ααα

E ααα(z)eiααα ·rrr. (2.8)

Substituting (10.1) and (2.8) in Eqs. (2.4) and (2.6), noting that
∫ +∞
−∞ d3kkk f0(kkk) = 〈I0〉,

and linearizing in the perturbations yields

∂ρααα
∂ z

+ iβααα · kkkρααα −κE ααα ·∇kkk f0 = 0, (2.9)

E ααα =
κ

α2 iααα
∫ +∞

−∞
d3kkkρααα . (2.10)

One can solve these equations using the Laplace transformation along the prop-
agation coordinate (∼ egz). The resulting dispersion function is

Dααα(g) = 1+
κ2

α2β

∫ +∞

−∞
d3kkk

ααα ·∇kkk f0

ig−ααα · kkk . (2.11)

The stability of the partially coherent beam in a nonlinear medium is then deter-
mined by the zeros in g of the dispersion function (2.11).
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2.2.3 Growth Rate and Conditions for Weak/Strong Turbulence

For simplicity, we reduce the problem to one transverse dimension. The dispersion
relation (2.11) becomes [3, 24, 30, 25, 14]

Dα(g) = 1+
κ2

αβ

∫ +∞

−∞
dk

∂ f0
/

∂k
ig−αk

. (2.12)

Initially, the function Dα(g) is defined for Re g > 0 and then is analytically contin-
ued into the rest of the plane. If there is a complex root g(α) = gR(α)− igI(α) of
Dα(g) = 0, and gR(α) > 0, then any intensity perturbation will grow exponentially
(instability).

A Lorentzian distribution f0 (k) = (I0∆k/π)/
(
k2 +∆k2

)
plugged into Eq. (2.12)

allows an exact solution to the growth rate:

g
βα2 =−∆k +

α
2

√
4κI0

βα2 −1, (2.13)

where ∆k = 2π/lc represents the spectral spread for a beam with correlation length
lc. This gain coefficient, similar to that originally derived in Ref. [3], separates the
effects of nonlinearity and statistics and shows a clear threshold value for the devel-
opment of perturbations. As in plasma physics [1, 2], modulations will not appear
unless the nonlinearity ∆n is greater than the angular spread (effective tempera-
ture) (∆k/k0)2. Below threshold, modulations are suppressed, a de-phasing which
Fedele and Anderson et al. interpreted as a type of Landau damping due to the
monotonically-decreasing distribution f0 [30, 24, 25]. However, they did not iden-
tify plasma-like parameters or consider the potential for inverse Landau damping
(wave growth) when the distribution is non-monotonic.

To treat the gradient-driven dynamics at initial stages of instability, we consider
first weak growth (|gR| ¿ |gI |) in the long-wavelength limit (|ig| À αk). Expanding
the denominator in Eq. (2.12) then gives

g2

βα2 ≈ κ
∫ +∞

−∞
dk f0 (k)

[
1+3

(
αβ
g

)2

k2

]
. (2.14)

To be consistent with the quasi-thermal light used in the experiment [31], we con-
sider a Gaussian beam profile (the detailed difference between this distribution and
a Lorentzian will be addressed in Section 2.4 below):

f0(k) =
I0√

2π ∆k
exp

(
− k2

2∆k2

)
. (2.15)

Note that a Lorentzian distribution will give the same results below, though more
care is needed to handle the divergence of 〈k2〉 in Eq. (2.14). The form (2.15) of
the intensity is more true to the plasma mapping [18], in which the underlying
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Fig. 2.1 Quasi-thermal unsta-
ble light. (a) Typical double-
hump distribution in k-space
for BOT instability. (b) As-
ymptotic quasi-linear plateau
and corresponding spectral
energy density in the unstable
region k1 ≤ k ≤ k2.
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distribution is Maxwell-Boltzmann. We note, however, that there is no true equi-
librium distribution in the optical system, as there are no collisions available for
relaxation [32]. Put another way, the dynamical system (2.4) conserves entropy, so
that there are many possible steady-state profiles with which to start.

Explicitly accounting for the principal value and pole in Eq. (2.14) gives

g(α) = igp

(
1+

3
2

α2λ 2
D

)
+

π
2

κα

√
κI0

β

(
∂ f0

∂k

)∣∣∣∣
k=gp/αβ

, (2.16)

where gp is an effective plasma frequency and λD is an effective Debye length, with
αλD ¿ 1. These parameters are

gp =

√
κI0

β
, λD =

β∆k
gp

. (2.17)

The first term in Eq. (2.17) is a Bohm-Gross dispersion relation [8] for non-
linear statistical light, showing that optical speckles can interact via Langmuir-type
waves [14, 18]. Growth or damping of these waves is a resonant process that depends
on the relative (spatial) phase velocity of the underlying quasi-particles (speckles).
From the second term in Eq. (2.16), it is clear that there are no growing modes
if ∂ f0/∂k < 0, e.g., for a quasi-thermal Gaussian distribution, since on average
more quasi-particles travel slower than the interaction wave than faster. However,
the weak limit used to derive (2.16) breaks down when αλD ≈ 1, or κI0 ≈ β 〈∆k2〉;
in this case case, the growth rate exceeds the rate of statistical dephasing (spectral
bandwidth) of the background, causing intensity modulations to appear [1, 9]. Inter-
estingly, this strong-coupling condition becomes the instability threshold reported
earlier in [3].

Not considered before, however, was the possibility for optical instability by in-
verse Landau damping when ∂ f0/∂k > 0 (see Fig. 2.1(a) for a typical distribution).
A prime example is the ”bump-on-tail” (BOT) instability, well-known from plasma
physics [8], in which a non-equilibrium hump is added to one side of an equilibrium
distribution. To our knowledge, the BOT instability has never before been demon-
strated outside of a plasma context. However, it should be clear from the above
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derivation that BOT dynamics should occur in any wave-kinetic system, including
hydrodynamics [33], optics, and (potentially) Bose-Einstein condensates.

The dynamics within this photonic plasma depend on the spectral density of per-
turbation modes within a Debye sphere. For the weak-coupling regime considered
above, defined by αλD ¿ 1 [1, 9, 3], the BOT instability is mostly a momentum-
space effect [14]. Above this threshold, intensity modulations appear [1, 34, 3, 4],
wave-wave coupling (vs. wave-speckle coupling) becomes dominant [14, 10, 9], and
the perturbation method ceases to apply. Adopting plasma language, we define these
two limits as regimes of weak and strong optical Langmuir turbulence [15].

2.2.4 Debye Scaling

In all previous work, the statistics of the input beam and the nonlinearity of the
medium have been considered separate parameters, as they are controlled separately
in the experiments. However, Eq. (2.16) shows that they are joined in the composite
parameter of the photonic Debye length λD. As in material plasma, λD signifies the
amount of interaction wave inhibition (screening) due to the random de-phasing of
waves [14].

The photonic Debye length provides a natural length scale for highly incoherent
beams, i.e. beam for which the correlation length is significantly less than the beam
width (lc ¿ w0). For example, narrow (Gaussian) beams that linearly expand as
(w(z)/w0)2 = 1+ z2, where z = z/LD is the propagation distance measured in terms
of the linear diffraction length LD, evolve nonlinearly as

(
w(z)
w0

)2

= 1+ z2
(

1−λ 2
D

)
, (2.18)

Fig. 2.2 Numerical and eperimental results for the nonlinear diffraction of a spatially incoherent
beam. (a) Plot of full-width half-maximum versus δn at a fixed propagation distance z = 1cm. (b)
Plot of simulation results in (a) using scaling from Eq. (2.18); (c) Experimental results measured
after propagation in a photorefractive crystal. The dashed line represents the highly-incoherent
limit of Eq. (2.18).
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Fig. 2.3 Period of MI pattern
(”stripe width”) as a function
of (a) nonlinearity and (b)
Debye length. Data for two
correlation lengths of 80µm
(triangles) and 92µm (rhom-
bus) are shown. Notice the
collapse of data after Debye
scaling.

where λ D is the Debye length normalized to the nonlinear length that characterizes
a coherent soliton [35]. Numerical and experimental verification of this formula, for
nonlinearities below the soliton limit, are shown in Fig. 2.2.

Technically, the plasma formula (2.16) is only valid for weak perturbations, for
which |gR| ¿ |gI |. On the other hand, it is reasonable to use the Langmuir modes
from this theory as a basis for further interactions when the nonlinearity is in-
creased [12, 13]. This suggests that the Debye length remains a valid scaling pa-
rameter. As shown in Fig. 2.3 for the case of incoherent modulation instability, this
is indeed the case.

Finally, these results can be generalized to more complex cases. For example,
multiple-stream geometries in k-space can be represented in terms of Gaussian
multi-hump distribution, with the ”humps” positioned at different spatial frequen-
cies (angular separations) δk01, δk12, δk23,...,δkM−1 M:

f0(k) =
1√

2π ∆k

[
I0e−

k2

2∆k2 +
M

∑
j=1

I je
− (k−δk j−1 j)

2

2∆k2

]
, (2.19)

then the system’s dynamics would still be described simply by Eq. (2.16), but with
the Debye length scaled as [15]

∼
λ D=

√√√√β 3

κ

(
∆k2

Itot
+

M

∑
j=1

δk2
j−1 j

I j

)
. (2.20)

Note that due to the redistribution and reshaping of the total intensity Itot = ∑ j I j,
the threshold for the appearance of intensity modulations will shift as well.

2.3 Quasi-Linear Approximation

It was mentioned in the Section 2.2.4 that after the initial steps of instability, linear
perturbation theory ceases to be valid [14, 36, 37]. The reason is that the shape of
distribution function changes with time, due to energy depletion and back-reaction
by the perturbations. In this section we will treat such dynamics as time-dependent
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(or, more rigorously, z-dependent), which means that it is necessary to consider
evolution of perturbations as well.

2.3.1 General Derivation

We proceed by returning to the one-dimensional case of Eq. (2.4). Using the Fourier
decompositions (10.1) and (2.8), we rewrite (2.10) as

∂ρα(k,z)
∂ z

+ iβαkρα(k,z)−κEα(z)
∂ ( f0(k)+ρ0(k,z))

∂k
= 0, (2.21)

where we neglected the wave-wave interaction term ∑α ′ 6=0 Eα−α ′∂kρα ′ and took
only first term ρ0 to account for z-dependence of Wigner distribution function. We
assume that ρ0 is a slowly varying function of z, while f0 is a distribution giving
rise to a weak instability (like in the double-hump case of Fig. 2.1(a)). The rate of
change of ρ0 is given by

∂ρ0

∂ z
= ∑

α
E−α

∂ρα
∂k

. (2.22)

Now assume that ρα and Eα have the following form:

ρα(k,z) = ρ̂α(k)exp
(∫ z

dζ [gR(ζ )− igI(ζ )]
)

,

Eα(z) = Êα exp
(∫ z

dζ [gR(ζ )− igI(ζ )]
)

. (2.23)

The solution to (2.21) is then

ρα =
iκ
β

Eα
∂/∂k( f0 +ρ0)
igR +gI −αk

, (2.24)

This result can be plugged into Poisson’s equation, and analogous calculations of
the dispersion relation and growth rate yield:

Dα(g) = 1+
κ2

αβ

∫ +∞

−∞
dk

∂/∂k( f0 +ρ0)
igR +gI −αk

, (2.25)

gR =
π
2

κα

√
κI0

β

(
∂ ( f0 +ρ0)

∂k

)∣∣∣∣
k=gp/αβ

. (2.26)

Notice that gR became a slowly varying function of z through ρ0. The long-term
processes can be studied now by examining the long-term behavior of ρ0. For this
we substitute Eq. (2.24) into Eq. (2.22), which gives
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∂ρ0

∂ z
=

κ2

β 2 ∑
α
|Eα |2 ∂

∂k

[
gR

(gI −αk)2 +g2
R

∂F
∂k

]
, (2.27)

where we used Eα = E−α , and F(k,z) ≡ f0(k)+ ρ0(k,z). Note that Eq. (2.27) has
the form of a diffusion equation. Turning from sums to continuous integrals and
using (2.23) we get

∂F
∂ z

=
∂
∂k

(
Dk

∂ F
∂k

)
, (2.28)

∂ |Eα |2
∂ z

= 2gR|Eα |2, (2.29)

where the k-space diffusion function is defined as

Dk =
κ2

β 2

∫ +∞

−∞
dα|Eα |2 gR

(gI −αk)2 +g2
R
. (2.30)

Eqs. (2.28) and (2.29) are the basic equations of quasi-linear theory for statistical
light. They govern the rate of change of the distribution F and spectral energy den-
sity |Eα |2 as the light propagates in a moderately nonlinear medium.

2.3.2 Bump-on-Tail Dynamics

We now apply the quasi-linear formalism to the bump-on-tail instability shown in
Fig. 2.1. Previously thought to exist only in plasma, the bump-on-tail (BOT) in-
stability is a gradient-driven effect in which a non-equilibrium bump on the tail of
a thermal distribution acts as a source of free energy [8]. As such, it requires an
inverted population of statistical modes and is often considered a type of classical
lasing [38]. In plasma, the effect occurs when a gas of charged particles interact
through electrostatic, or Langmuir, waves. Recently, we showed that the same phe-
nomenon could occur in the nonlinear propagation of statistical light, in which an
ensemble of speckles interact through large-scale modulation waves [14].

The initial distribution may be written as

f0(k) =
I0√

2π ∆k
exp

(
− k2

2∆k2

)
+

I1√
2π ∆k

exp
(
− (k−δk)2

2∆k2

)
, (2.31)

with I1 < I0 and δk≥∆k. Theoretically, initial stages of BOT instability can be fully
described by (2.16), with

gp =

√
κ(I0 + I1)

β
, λD =

√
β 3

κ

(
∆k2

I0 + I1
+

δk2

I1

)
. (2.32)
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This linearized theory, however, says nothing about the progression of the distrib-
ution after some distance of propagation, such as saturation (stabilization) of con-
tinued instability; it merely provides wavenumbers of unstable modes between the
beams. The deficiency of standard linearized theory is that it considers f0(k) z-
independent, which is no longer valid as the dynamics evolve.

Recalling that |gR| ¿ |gI |, the fraction in the diffusion function (2.30) can be
approximated as ∼ πδ (gI −αk), yielding

∂F
∂ z

=
κ2

β 2
∂
∂k

[
1
|k| |Ek|2 ∂F

∂k

]
. (2.33)

The asymptotic state of the instability can be found by considering the change of
the corresponding power spectrum W (z) = 1/2

∫
dkF2(k,z). Using (2.33), we have

∂W
∂ z

=
∫ +∞

−∞
dkF

∂F
∂ z

=−κ2

β 2

∫ +∞

−∞
dk

1
|k| |Ek|2

(
∂F
∂k

)2

. (2.34)

Each term in the last integrand is positive, which means that W will decrease until
either |Ek|2 = 0, or ∂F/∂k = 0 for each value of k. The initial growth of modes is
described by (2.16) and (2.32), and since |Ek|2 grows in the region between the two
beams, the distribution function should flatten out so that there is no driving gra-
dient ∂F/∂k (Fig. 2.1(b)). This ”quasi-linear plateau” has been observed in recent
experiments [14, 15] (to be discussed in Section 2.5).

Lastly, using (2.16), (2.32), and (2.33) and neglecting ∂ |Ek|2/∂k at z = 0, we can
calculate the asymptotic values of |Ek|2 and F as

|Ek|2
∣∣∣∣
z=∞

=
πβ
gp

k3
∫ k

k1

dk[F(k,∞)− f0(k)], (2.35)

F(k,∞) =
1

k2− k1

∫ k2

k1

dk f0(k), (2.36)

where k1 and k2 are the k-vectors of the unstable region, k1 ≤ k ≤ k2, in which the
plateau is established (see Fig. 2.1(b)). Expressions (2.35) and (2.36) provide the
the effective overall gain of the flattening and the hight of the resulting plateau.

2.4 Numerical Analysis

2.4.1 Numerical Results for BOT Instability

To check the validity of the Quasi-Linear Approximation and Eqs. (2.35), (2.36),
we have carried out numerical simulations of Eq. (2.4) and (2.5) for the case of a
Kerr medium (Fig. 2.4). The bump-on-tail configuration was created by launching
two partially incoherent beams of fixed spectral width ∆k/k0 = 1.7× 10−3 at a
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Fig. 2.4 Simulation of bump-on-tail propagation in a nonlinear Kerr-like medium. Shown are
double-hump spectra for (a) Lorentzian and (b) Gaussian distributions. The total intensity and
nonlinearity are kept constant (∆n/n0 = 1.74× 10−4) and only the shape of the statistics differs.
Dashed circles highlight the initial driving gradient and formation of the quasilinear plateau, which
occurs quicker in the Gaussian case.

relative angles δk/k0 = 2.0×10−3. Comparisons between Lorentzian and Gaussian
profiles for the distribution f0(k), at fixed total intensity 〈I0〉, show that the Gaussian
distribution triggers the unstable dynamics faster. More details of this momentum
transfer will be discussed in Section 2.5.

2.4.2 Numerical Results for Multiple BOT Instability

Figure 2.5 shows numerical simulation of the dynamics and the corresponding gain
curves calculated from Eqs. (2.16) and (2.20) when three beams are launched into
the medium (multiple bump-on-tail instability). As expected, modes grow in the
regions of positive spectral slope until there is no more driving gradient. We find
that the system is described effectively as a pair of coupled BOT instabilities: one

Fig. 2.5 Numerical simula-
tion of multiple bump-on-tail
instability. (a,b) Input pro-
files, with corresponding gain
curves (shaded graphs at base-
line), with the middle hump
shifted (a) to the left of the
equal gain value and (b) to
the right. (c,d) Output pic-
tures after 1cm of propagation
(∆n/n0 = 1.74×10−4).
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on the left and one on the right, with negligible coupling between the leftmost and
rightmost Gaussians due to their separation distance [15]. In this case, competition
between the gain curves implies that plateau formation happens sequentially, even
though the initial slopes and nonlinearity in the two regions are identical. If the mid-
dle hump is closer to the left (main) distribution, then the left region goes unstable
first, and vice versa with a right bias (Figs. 2.5(c,d)). The balanced situation, with
the central hump equidistant from either side, has gain curves of the same peak value
and is unstable. In simulations, this initial condition always degenerated into one of
the two asymmetric scenarios, a result supported by analytic perturbations of δk01
in Eq. (2.16).

2.5 Experimental Observation

2.5.1 Experimental Setup

Experimentally, we explore the bump-on-tail dynamics by considering the non-
linear interaction of two partially-coherent spatial beams. The setup is shown in
Fig. 2.6. A statistical light input is created by focusing light from a 532nm CW
laser onto a ground-glass diffuser and then imaging into a photorefractive SBN:60
(Sr0.6Ba0.4Nb2O6) crystal [31]. The correlation length, and correspondingly the
spectral bandwidth, can be changed by varying the magnification properties of
the imaging lens. To create a bump-on-tail or a double bump-on-tail distribution
(Fig. 2.6, inset), the spatially-incoherent beam is split (one or more times) using a
Mach-Zehnder interferometer, attenuated in the bump arm(s), and then recombined
on the input face of the crystal.

For SBN, the nonlinear index change ∆n = γEapp〈I〉/(1+ 〈I〉), where Eapp is an
electric field applied across the crystalline c-axis and γ = n0r33(1 + 〈I0〉) is a con-
stant depending on the base index of refraction n0, the electro-optic coefficient r33,

Fig. 2.6 Experimental Setup.
532nm laser light is made
partially spatially incoherent
by a ground-glass diffuser
and separated into a superpo-
sition of two or three beams
(for three, a dot-lined inter-
ferometer arm is added). A,
attenuator; M, mirror; L, lens;
BS, beam-splitter; POL, linear
polarizer; SBN:60, nonlinear
photorefractive crystal; FP,
focal Fourier plane of the lens
L3; CCD, digital detector.
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Diffuser
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and the spatially-homogeneous incident light intensity 〈I0〉 [27]. In the experiments,
the beams have a relative angle of 0.3◦ (between any adjacent two beams), the in-
tensity ratio is fixed at 3:2, and the strength of the nonlinearity (wave coupling) is
controlled by varying the applied voltage (similar results occur at other angles and
intensities). To observe the interaction, light exiting the crystal is directly imaged in
both position (x) space and momentum (k) space, the latter by performing an optical
Fourier transform.

For comparison and calibration, we performed a single-beam MI experiment with
the main 〈k〉 = 0 hump (not shown). In this case, the background distribution is
Gaussian with a correlation length lc = 176µm, and no intensity modulations ap-
peared until the voltage reached 0.9kV . Using n0 = 2.3 and r33 = 255pm/V , this
corresponds to a nonlinear index change of ∆n = 8× 10−4. Above this threshold,
two symmetric momentum peaks appear at k/k0 = ±5.6× 10−3. This is the same
behavior as in [4] but quantitatively calibrated to our initial input conditions and
particular crystal.

2.5.2 Single Bump-on-Tail Instability

2.8 and 2.9. Figs. 2.7(a-f) show the behavior for weak interaction. In this case, the
photorefractive nonlinearity is turned on by applying a 0.7kV voltage bias across
the crystal, below the 0.9kV bias necessary to trigger single-beam MI. As shown in
Figs. 2.7(c,f), nonlinear modes are excited precisely in the expected region of posi-
tive slope, growing until there is no more driving gradient (a process known as qua-
silinear flattening, see Section 2.3). Remarkably, the momentum-space distribution
is changed [Figs. 2.7(e,f)] while the position-space intensity shows no observable
variations [Fig. 2.7(d)].

The nature of the instability depends on the spectral geometry of the system. For
a single-humped distribution [3], or one with widely-separated peaks [39], strong
nonlinearity is required to see any significant dynamics. Here, the spectral peaks
overlap, giving an unstable condition with |gR| ¿ |gI |. The resulting momentum
exchange, along with the resonance from Eq. (2.11), suggests that there is an under-
lying phase matching among the modes. Indeed, recent work with incoherent light in
a medium with instantaneous (vs. inertial) nonlinearity shows an analogous veloc-
ity locking [40]. This demonstration, combined with similar momentum exchange
observed in collisions of coherent vector solitons [41, 42], implies that the BOT dy-
namics should occur for true Kerr media as well. In the incoherent case considered
here, the dynamics depends on the statistics of the interacting beams (Fig. 2.8). Lo-
cal correlation measurements can reveal details of the speckle-wave coupling, but a
simpler measure can be obtained from the visibility

ν = ( f (k1)− f (k01))/( f (k1)+ f (k01))

All-optical examples of a wave-kinetic bump-on-tail instability are shown in Figs. 2.7,
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Fig. 2.7 Experimental output pictures of bump-on-tail and double bump-on-tail instability.
(a,d,g,j,l) Intensity in position (x) space; (b,c,e,f,h,i,k,m) power spectrum in momentum (k) space.
(a,b,c): crystals exit face after linear propagation of double-hump distribution (no applied voltage);
(d,e,f): same, but nonlinear propagation (applied voltage of 0.7kV , in the weak-coupling regime);
(g,h,i) same, but in the strong-coupling regime (1.6kV ). The blue and red curves in (c,f,i) show
holographic readouts of single-beam propagation for the straight (blue) and angled (red) distribu-
tions, respectively. (j,k) Weak-coupling regime when the distribution is triple-humped. (l,m) Same,
but in strong-coupling regime.
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of the angled hump, as shown in Fig. 2.8(d). The efficiency of the flattening depends
on the relative gain |gR| of the unstable modes. Using

η = ( fNL(k01)− fLin(k01))/( fNL(k0))+ fLin(k0))

as a measure of efficiency, Fig. 2.8(e) shows interaction behavior that is relatively in-
sensitive to nonlinear coupling strength but highly sensitive to beam statistics [14].
If the beam is too incoherent, then attempts at spectral energy transfer are de-phased.
If the beam is too coherent, then the system loses its statistical nature (and thus its
wave-kinetic properties). More rigorously, the first condition states that the angu-
lar separation between the beams must be greater than the spectral width of the
distribution, while the second condition states that if the relative bandwidth is too
small, then there are too few quasi-particles (speckles) in resonance with the grow-
ing waves [8, 9]. As a result, there is an optimal correlation length, for a given
intensity ratio and angle given by ∂gR/∂k = 0, for efficient dynamical coupling.

For stronger nonlinearity, the system enters a regime of strong wave coupling,
significantly distorting the original distribution in k-space and creating modulations
in x-space (Figs. 2.7(g-i)). These modulations are different from those arising from
MI, however, as the spectrum in Figs. 2.7(h,i) shows a range of modal excitation
(between the original humps), rather than the symmetric high-k side lobes charac-

Fig. 2.8 Dynamical coupling as a function of correlation length and nonlinearity. (a-c) Power
spectra at 0kV (linear), 0.5kV and 0.7kV , respectively. (d) Visibility of the angled hump. (e) ”Ef-
ficiency” of nonlinear flattening. Curves and bars in (a-d) are numbered for correlation lengths of
243µm (1), 206µm (2), 176µm (3), 142µm (4), and 109µm (5). Note the dependence of efficiency
on the underlying distribution.
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teristic of MI (e.g. [3, 43]). Using our reference correlation length lc = 176µm, as
in Fig. 2.7(a-f), we observe that the required nonlinearity for modulations is 1.1kV ,
stronger than the one needed for single-beam MI. That is, the presence of a second
statistical beam further suppresses the growth of modulations. Moreover, the ap-
pearance of modulations coincides with a breakdown of the quasilinear plateau and
a resumption of wave growth in the unstable, non-equilibrium region [Fig. 2.7(i)].

The higher threshold can be understood by returning to the strong-coupling con-
dition κI0 ≈ β 〈∆k2〉 obtained in Section 2.2. It is clear that for a given spectral
width, additional intensity lowers the required value of κ for instability [3, 44].
However, the presence of a second beam increases the effective bandwidth due
to cross-beam interaction, potentially requiring a higher value of κ . A simple
estimate can be obtained by considering the variance of two Gaussian beams
exp

(−k2/∆k2
)

+ Aexp
(−(k−δk)2/∆k2

)
, which is ∆k2 + δk2A/(1 + A)2. For

A = 2/3 and δk∼∆k, as in the experiments, there is an increase in threshold nonlin-
earity from κ to (31/25)κ . Given the measured single-beam MI threshold of 0.9kV ,
the predicted double-beam threshold of 1.12kV matches the observed value.

2.5.3 Holographic Readout of Dynamics

The different behaviors above and below the modulation threshold are the result
of different nonlinear dynamics within the initial distribution. Experimentally, we
can observe this by taking advantage of the slow photorefractive response time of
SBN and recording a volume hologram of the interactions. Subsequently, we can
block one of the beams and use the other as a probe of the coupling, observing
the energy transfer that would have happened if the other beam were present [41].
These holographic reconstructions are shown in Figs. 2.7(c,f,i). For linear propaga-
tion [Fig. 2.7(c)], each beam maintains its Gaussian form, as there is no nonlinear
intensity interaction to induce an index change. By contrast, there are significant
changes in the nonlinear cases. For weak coupling [Fig. 2.7(f)], light originally in the
perturbative bump (shown in red) is seen to flow towards lower momentum states,
while light from the equilibrium distribution (shown in blue) scatters in the opposite
direction. For strong coupling [Fig. 2.7(i)], the momentum transfer is asymmetric.
The thermal light is unchanged, while the non-thermal distribution looks bimodal,
with half the intensity in the original angled hump and half centered at 〈k〉 = 0,
beyond the initial instability range of positive slope.

At this point, it is useful to revisit the plasma correspondence and interpret the
scattering dynamics from a quasi-particle (speckle) perspective. From this view-
point, the instability mechanism is essentially a resonant process, in which small-
scale wavepackets generate and interact with large-scale modulations [41, 14].
The coupling threshold αλD ≈ 1 then separates the dynamics between regimes of
weak and strong spatial turbulence. Indeed, weak (quasilinear) turbulence theory
in plasma is characterized by the formation of a k-space plateau and the bidirec-
tional transfer of momentum between the thermal and non-thermal distributions
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[8, 45]. In the theory of strong turbulence, the thermal, non-resonant distribution
is unchanged but the resonant distribution is greatly affected by wave-wave interac-
tions [9]. In this case, there should be a direct transfer of momentum towards large
scales (〈k〉= 0), a stimulated scattering process known as Langmuir condensation in
plasma physics [9, 10]. All of this is consistent with the observations in Figs. 2.7 (f)
and (i). To the authors’ knowledge, these internal dynamics have not been observed
in material plasma.

2.5.4 Multiple Bump-on-Tail Instability and Long-Range
Turbulence Spectra

Above the threshold αλD ∼ 1, the dynamics of the single BOT instability suggested
that there is a turbulent breakdown of the quasi-linear plateau over the resonant
range of k-vectors. However, the wavenumber region is too small to conclude that
there is a self-similar spectrum between the humps. To extend the range, we add a
third hump to the system, as described in Fig. 2.6.

Experimental results for the weak-coupling case are shown in Figs. 2.7(j) and
2.7(k). The output intensity remained uniform, up to unavoidable striations in the
crystal, while the energy spectrum underwent significant redistribution due mode
coupling. As the nonlinear interaction strength (applied voltage) was increased, the
spectral bumps were observed to flatten. In all cases, the profile flattening was se-
quential, with lower momenta reaching a plateau first. This observation agrees with
the simulations in Fig. 2.5 and supports the general conclusion that the final state
of the system depends on the temporal sequence of wave diffusion [46, 6]. To our
knowledge, this is the first demonstration of a multiple bump-on-tail instability and
its associated competition of growth rates. Similar behavior should occur in any
wave-kinetic system obeying Eq. (2.4), such as material plasma and cold atoms at
finite temperature.

More complex behavior occurs for higher nonlinearity (Figs. 2.7(l) and 2.7(m)).
In the strong coupling regime [14, 15, 1, 2, 3], modulations start to appear in in-
tensity and momentum transfer continues beyond the plateau (zero-gradient) limit
(though the inertial approximation is still valid [14, 4]). As before, wave-wave cou-
pling is the dominant process of energy/momentum exchange [10, 9, 6]. A closer
examination of this spectrum, shown in Fig. 2.9, reveals a self-similar profile with
a k−2 fall-off. This algebraic spectrum holds for the entire wavenumber range be-
tween the first and last peaks, despite the fact that the central hump provided an
initial region of stability (∂ f0/∂k < 0).

The intensity waves present in the strong-coupling regime (Fig. 2.7(l)) are sug-
gestive of solitons and, indeed, an ensemble of solitons can give the observed power
spectrum [47]. For N solitons occupying a space of length L in 1D, having random
phases and positions and maintaining total energy ES, the Wigner spectrum:
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Fig. 2.9 Detailed look at the asymptotic spectral profile of the turbulent state during multiple BOT
instability. (a) Comparison of input (solid) and output (dashed) profiles. (b) Comparison in log
space, showing algebraic spectrum in interaction region.

〈 fk〉 ∝
1
L

∫ Nmax

Nmin

dN N℘(N)
[
cosh(kN/ES)

]−2
, (2.37)

where ℘(N) is the probability for the system to be in the N-soliton state and Nmin ≤
N≤Nmax due to soliton merging and turbulent redistribution. Choosing Nmax∼ES/k
(using the condition of close packing) and replacing the cosh−2 term in (2.37) by
a step function yields 〈 fk〉 ∝ 1

L
∫ ES/k

Nmin
dN N℘(N). For the case when all states are

occupied uniformly [℘(N) =const], 〈 fk〉 ∝ k−2.
Interestingly, the equipartition spectrum k−2 observed experimentally in Sec-

tion 2.5.4, is robust and appears in several different contexts of strong wave cou-
pling. For example, dynamics with phase-dependent coupling — e.g., four-wave
mixing — can give an effective wave collision term that leads asymptotically to a
k−2 spectrum [48, 49, 50]. For the phase-independent coupling here, the intensity-
induced interactions are enough to drive the dynamics. Indeed, similar conservation
arguments on the photonic plasmons (speckles), rather than number of solitons, also
leads to a Rayleigh-Jeans distribution [48, 49, 50] fk = T/

(
k2−µ

)
, where the ef-

fective temperature T ∝ l−2
c and the effective chemical potential µ is given by the

average propagation constant (energy eigenvalue) of the waves. Note, however, that
there must be a sufficient density of modes to achieve the equipartition. For exam-
ple, the presence of (incoherent) solitons — e.g. from modulation instability — is
not enough to guarantee equipartition. There must be enough interaction and prop-
agation distance (evolution time) to go beyond soliton clustering [11] and cascade
the interactions [12, 13]. Here, we encourage the wave-mixing cascade by seeding
a quasi-thermal background distribution with additional non-equilibrium humps.
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2.6 Discussion and Conclusions

In conclusion, we have treated the nonlinear propagation of statistical light as a
photonic plasma of interacting speckles. A general Bohm-Gross dispersion relation
was derived, allowing the identification of both a plasma frequency and a Debye
length. These determined the nonlinear propagation constant and scale of wave de-
phasing, respectively. This approach unified previous observations using partially
coherent light, such as nonlinear diffraction and incoherent modulation instability,
and predicted a new class of optical phenomena. As representative examples, we
considered single and multiple bump-on-tail instabilities. Optical methods of mea-
surement, such as holography, allowed observation of dynamical behavior that had
been predicted, but not observed, in material plasma. This included equal and oppo-
site momentum exchange for weak nonlinear coupling and evidence for wave con-
densation for strong coupling. In the latter regime, wave-wave interactions caused
the humped power spectrum to merge into a single-peaked profile, with an algebraic
k−2 spectrum in the inertial range. This profile, and its associated intensity modula-
tions, is the hallmark signature of optical Langmuir turbulence. The results extend
plasma dynamics beyond their fluid context and show clearly that there is much po-
tential for controlling correlation dynamics and optical energy distributions using
plasma-type wave phenomena.
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Chapter 3
Gap-Acoustic Solitons: Slowing and Stopping of
Light

Richard S. Tasgal, Roman Shnaiderman, and Yehuda B. Band

Abstract Solitons are paradigm localized states in physics. We consider here gap-
acoustic solitons (GASs), which are stable pulses that exist in Bragg waveguides,
and which offer promising new avenues for slowing light. A Bragg grating can be
produced by doping the waveguide with ions, and imprinting a periodic variation
in the index of refraction with ultraviolet light. The Bragg grating in an optical
waveguide reflects rightward-moving light to the left, and vice versa, and creates a
gap in the allowed frequency spectrum of light. Nonlinearities, though, add com-
plications to this simple picture. While low intensity light cannot propagate at fre-
quencies inside the band gap, more intense fields can exist where low-intensity fields
cannot. An optical gap soliton is an intense optical pulse which can exist in a Bragg
waveguide because the intensity and nonlinearity let it dig a hole for itself inside the
band gap, in which it can then reside. Far from the center of the pulse, the intensity
is weak, and drops off exponentially with distance from the center. The optical gap
soliton structure can be stable, and can have velocities from zero (i.e., stopped light)
up to the group-velocity of light in the medium. When one also considers the sys-
tem’s electrostrictive effects, i.e., the dependence of the index of refraction on the
density of the material, which is a universal light-sound interaction in condensed
matter, one obtains GASs. These solitons share many of the properties of standard
gap solitons, but they show many fascinating new characteristics. GASs have espe-
cially interesting dynamics when their velocities are close to the speed of sound, in
which range they interact strongly with the acoustic field. GASs which are moving
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at supersonic velocities may experience instabilities which leave the GAS whole,
but bring the velocity abruptly to almost zero. Furthermore, GASs may be made to
change velocity by collision with acoustic pulses. Moving GASs may be retarded by
the phonon viscosity, as well as by interaction with high wave number (Brillouin)
acoustic waves. Thus, the opto-acoustic interactions provide the basis for a set of
tools with which light in the form of a GAS can be slowed down and controlled.
In contrast with other forms of slow or stopped light, GASs can exist at room tem-
perature, in relatively unexotic materials. This makes the GAS an attractive form in
which to create and work with slow and stopped light.

3.1 Introduction

One of the paradigm examples of localized states in physics is the soliton, a pulse
that gets its stability from a balance of dispersion and nonlinearity. The gap-acoustic
soliton (GAS) is an optical and acoustic structure that can exist in an optical
waveguide with a Bragg grating. Figure 3.1 is a schematic illustration of a fiber
waveguide with a periodically varying refractive index with light and sound waves
propagating within it. A Bragg grating can be produced by doping the waveguide
with ions (e.g., germanium), and imprinting a periodic variation in the index of re-
fraction with ultraviolet light [1]. As we shall see, GASs are good systems in which
to realize slow light. GASs can be viewed from three perspectives: (1) as an exten-
sion of optical gap solitons to a regime where their interaction with sound waves is
important, (2) as a new application of electrostriction and Brillouin scattering, or (3)
as a means to produce slow light.

The study of solitons has a long history. There is a narrow definition, which
applies only to completely integrable systems. In this strict sense, solitons are con-
nected to the inverse scattering method [2]. A broader definition of a soliton is a
pulse that is stable due to a balance of dispersion and nonlinearity [1, 2]. The first
solitons to be discovered were localized shallow-water waves, by John Scott Rus-
sell in 1834 [3], known as Korteweg–de Vries (KdV) solitons [4]. The KdV equation
was shown to be completely integrable by the inverse scattering method, and that
the pulses are solitons in the stricter sense was demonstrated much later [2, 5]. The
first optical soliton discovered was in the nonlinear Schrödinger (NLS) equation.
The NLS equation was found to be completely integrable and to support solitons, in
the strict sense, in Ref. [6]. Independently, Ref. [7] showed that there are solitons in
the broad sense which can be realized in optical fibers. In the NLS equation, linear
(small amplitude) continuous wave (cw) solutions exist along a parabolic curve in
the space (k,ω) of wave number and frequency that is concave upwards (there is
a maximum wave number). The soliton solutions exist in the space above the cw
dispersion curve.

The first gap soliton article did not use the phrase “gap soliton,” but rather re-
ferred to the equations as the massive Thirring model (MTM) [8], with particle
physics in mind rather than optics. The solutions discovered were solitons even in
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periodically varying refractive index fiber

light waves 

sound waves

Fig. 3.1 Schematic illustration of a fiber with a periodically-varying refractive index. Light and
sound waves propagate in the fiber. Photons are shown as wavy lines with arrows indicating the
direction of motion and phonons are shown as a solid line with double-sided arrows.

the strictest sense—the system was shown to be integrable by the inverse scatter-
ing method, and the pulse solutions (solitons) were shown to correspond to poles of
the transmission coefficient [9]. The frequencies of the solitons are inside the gap
between the continuous wave solutions of the linear system appropriate for low-
intensity waves. However, the soliton frequencies are not all between the maximum
of the lower cw band and the minimum of the upper cw band; for this reason, inter-
preting the band gap more narrowly, some authors prefer the term “Bragg soliton”
for solitons with frequencies that are either above the minimum of the upper cw
band or below the maximum of the lower cw band—see, e.g., Ref. [10]. Indepen-
dently of the mathematical discovery of the gap solitons, a qualitative description
and prediction of the still theoretical optical gap solitons was made in Ref. [11].
Exact analytic forms for optical gap solitons were found for a nonlinearity with
self-phase modulation in addition to cross-phase modulation: Ref. [12] found the
solutions in the exact middle of the band gap, and Ref. [13] found the full family of
gap soliton solutions. This is not a completely integrable system, and the pulses are
solitons in the broader sense but not the narrower sense. As a result, the pulses are
not guaranteed to have the stability of the MTM solitons.

The stability of gap solitons beyond the completely integrable MTM limit (opti-
cal gap solitons have self-phase modulation, so are not MTM), was not immediately
clear. Ref. [12] showed one direct numerical simulation of a gap soliton collision,
in which the individual gap solitons were stable, and the solitons emerged from a
collision intact but perturbed. Ref. [14] performed variational model calculations of
optical gap solitons, which showed some regions where excited modes exist, and
other regions with instabilities. References [15, 16, 17] showed rigorously that op-
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tical gap solitons are stable in the top half of the frequency band gap, and unstable
in most of the bottom half of the band gap.

Reference [18] generalized the optical gap soliton equations to include depen-
dence of the index of refraction on the density of the material, and acoustic waves.
In other words, acoustic waves and their interaction with light through electrostric-
tion were included in the model. New generalized “gap-acoustic soliton” (GAS)
solutions were also found. The GASs are similar to optical gap solitons, but they
exhibit many intriguing novel dynamical properties, especially when the soliton ve-
locities are small. Reference [19] looked in detail at the system in the case that the
physical parameters of bulk fused silica, and found that electrostriction will have
much large, not merely perturbative, influences on the GASs when velocities are as
slow as two orders of magnitude less than the group velocity of light; solitons need
not be, as is the speed of sound, five orders of magnitude slower than the speed of
light, for acoustic effects to be strongly felt.

Dependence of the index of refraction on the density of the material is a universal
property of materials [20], and interaction of light with sound waves is ubiquitous.
Interaction between light and high wavenumber acoustic waves—approximately
twice the wave numbers of the light—is called Brillouin scattering [21], and in-
teraction between light and low wavenumber acoustic waves is generally referred
to as electrostriction [22]. Distinctions in nomenclature notwithstanding, the two
effects have the same physical source. Reference [19] derived the Brillouin scatter-
ing (short acoustic wavelength) interaction together with the electrostrictive (long
acoustic wavelength) interactions in a unified manner.

There have been significant research efforts in recent decades towards the achieve-
ment of slow light (see, e.g., Ref. [23]). One way to achieve slow light is to use
electromagnetically-induced transparency to reduce group-velocities without large
absorption [23]. Another form of slow light—which we concentrate on here—is the
optical gap soliton, which moves slower than the group velocity or even at velocity
zero [8, 9, 11, 12, 13, 15, 16, 17, 24, 25, 26, 27, 28, 29]. Optical gap solitons may ex-
ist in a nonlinear waveguide with a Bragg grating. The Bragg grating creates a band
gap for light that is in-phase with the grating. The nonlinearity allows a pulse of
light in the waveguide to dig a hole for itself in the forbidden region. This structure
may be stable, balancing the nonlinearity against the Bragg-grating-induced disper-
sion, i.e., it will be a soliton. This optical soliton may have a velocity which is slow
or even zero. It is slow or stopped light. To date, the slowest experimentally realized
optical gap solitons had velocity c/6 [29]. When the soliton velocity is compara-
ble to the sound velocity, the interaction between the light and sound can be strong
because they can propagate together.

The outline of this paper is as follows. Section 3.2 gives a derivation of the equa-
tions for the dynamics of the optical gap soliton system, along with all the acoustic
interactions that the system supports. Section 3.3 details the general properties of
this system, and Sec. 3.4 gives the soliton solutions. Section 3.5 goes over the sta-
bility properties of the solitons, and retardation effects to obtain slow light. Finally,
Sec. 3.6 contains a summary and conclusion.
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3.2 Derivation of the Equations

We begin with general equations for two fields, light and sound. Light is governed
by Maxwell’s equations. Sound can be described by a wave equation for the den-
sity change in the medium. In addition, light and sound interact via electrostriction.
For optical gap solitons in a fiber, the light is of approximately one color, but the
direction can be either forward or backward. The electromagnetic field can thus
be broken down into two separate slowly-varying envelopes about fast-varying car-
rier waves, one for forward-moving light and one for backward-moving light. The
acoustic fields that interact with this light can be of high wave number or low wave
number. The high wave number acoustic fields can be either forward- or backward-
moving. The low wave number acoustic field is centered at wave number zero, with
some spread to both positive and negative values. The acoustic field for this system
can then be broken down into three slowly-varying envelopes, two for the high wave
number waves, and one for low wave number.

3.2.1 Electromagnetic Field Equations with Phonon Perturbations

The starting point of the derivation is Maxwell’s equations. We begin considering
an isotropic medium without free charges, currents, or magnetic polarization. Bragg
and Brillouin scattering will be covered as extensions of this, by dropping the as-
sumption of isotropy. The electromagnetic field, and the linear and nonlinear polar-
ization of the medium satisfy the equations,

∇ · (E+4πPlinear +4πPNL) = 0 (3.1a)
∇ ·B = 0 (3.1b)

∇×E = −1
c

∂
∂ t

B (3.1c)

∇×B = −1
c

∂
∂ t

(E+4πPlinear +4πPNL) , (3.1d)

The dependence of polarization P = Plinear + PNL on the electromagnetic field
E,B, has a part which is linear in the electromagnetic field, with an additional de-
pendence on the density of the material,

E+4πPlinear ≡ D = n2(ω,w)E , (3.2a)

where the expression on the right hand side, relating electric displacement to electric
field via a frequency-dependent index of refraction, holds in frequency space and in
real space for monochromatic fields. We have indicated a dependence of the index
of refraction on the density of the material w. There is also a contribution to the
polarization due to a third-order Kerr nonlinearity:
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PNL =
χs

3
(E ·E)E . (3.2b)

Fourier transform over the time dimension to get the equation in frequency-space. In
an isotropic medium, Coulomb’s law (3.1a) and Ampere’s law (3.1d) take the form

0 = n(ω)2 ∇∇∇ ·E(x,ω)+4π ∇∇∇ ·PNL(x,ω) , (3.3a)

0 = ∇∇∇×B(x,ω)+ i
ω
c

[n(ω)2E(x,ω)+4πPNL(x,ω)] . (3.3b)

Inserting these into the curl of Faraday’s law (3.1c) gives the wave equation,

0 =
[

∇2 +
n(ω)2ω2

c2

]
E(x,ω)

+
4π ω2

c2 PNL(x,ω)+
4π

n(ω)2 ∇∇∇ [∇∇∇ ·PNL(x,ω)] . (3.4a)

A Fourier transform in the spatial dimensions gives the wave equation in momentum
space,

0 =
[

k2− n(ω)2 ω2

c2

]
E(k,ω)

−4π ω2

c2

{
PNL(k,ω)− c2

n(ω)2 ω2 k [k ·PNL(k,ω)]
}

. (3.4b)

If the nonlinear polarization is transverse, which will be the case with the Kerr
nonlinearity (3.2b), and transverse electric field, the last terms on the right-hand
sides of Eqs. (3.4) vanish. The basic optical gap soliton has one (nontrivial) spatial
dimension, and takes the system to have light of one polarization, so we reduce the
generality of the mathematical model and obtain,

0 =
[

∂ 2

∂ z2 +
n(ω)2ω2

c2

]
E(z,ω)+

4π ω2

c2 PNL(z,ω) . (3.5a)

0 =
[

k2− n(ω)2 ω2

c2

]
E(k,ω)− 4π ω2

c2 PNL(k,ω) . (3.5b)

If we consider the wave equation (3.5) in the vicinity of frequency ω0 and wave
number k0 = n(ω0)ω0/c, complete the square for the quadratic equation, Taylor
expand in the small terms, and truncate, we obtain,
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0 =
[
(k0 +δk)2− n(ω0 +δω)2 (ω0 +δω)2

c2

−4π (ω0 +δω)2

c2
PNL(k0 +δk,ω0 +δω)
E(k0 +δk,ω0 +δω)

]
E(k0 +δk,ω0 +δω) , (3.6a)

0 =

[
∓(k0 +δk)+

n(ω0 +ω)(ω0 +ω)
c

√
1+

4π
[n(ω0 +ω)]2

PNL

E

]

E(k0 +δk,ω0 +δω) , (3.6b)

= ∓(k0 +δk)E(k0 +δk,ω0 +δω)+
n(ω0 +ω)(ω0 +ω)

c
E

+
2π(ω0 +ω)
n(ω0 +ω)c

PNL(k0 +δk,ω0 +δω)+ . . . (3.6c)

= ∓δkE(k0 +δk,ω0 +δω)+
(

n(ω0)ω0

c
∓ k0

)
E +

d
dω

(
n(ω)ω

c

)

ω0

ω E

+
2πω0/c
n(ω0)

PNL(k0 +δk,ω0 +δω)+ . . . (3.6d)

Let us now Fourier transform back to real space, and include a nonuniformity in the
index of refraction, which is also a function of the material density,

0 = ik′0
∂
∂ t

E(z, t)± i
∂
∂ z

E +
(

n(ω0,z,W )ω0

c
∓ k0

)
E +

2π
k0

(ω0

c

)2
PNL(z, t)+ . . .(3.7a)

= ik′0
∂
∂ t

E(z, t)± i
∂
∂ z

E +
(

ω0

c
∆n(z)+

ω0

c
dn
dW

W
)

E +
2π
k0

(ω0

c

)2
PNL(z, t)+ . . .(3.7b)

Here k0 = ±n(ω0)ω0/c is the phase velocity, and k′0 = (d/dω)[n(ω)ω/c]ω=ω0 is
the reciprocal of the group velocity. When arguments of the index of refraction are
implicit, they are based on an average value at a baseline material density W . ∆n(z)
is the spatially-varying part of the refractive index. The result is an equation for a
slowly-varying envelopes about a carrier wave with wave vector (k0,ω0).

Equation (3.7) applies generally to any quasi-monochromatic electromagnetic
field with any nonlinearity. For the optical gap soliton, there is one frequency of
light in the system, and the light may be traveling forward or backward. The electric
field E may then be written as two slowly-varying envelopes (SVEs) about carrier
waves with frequencies ω = ω0 and wave numbers k = ±k0 = ±n(ω0)ω0/c. The
acoustic fields that can interact with these light fields are those centered at wave
numbers k = 0 and ±2k0. If the speed of sound (which we can refer to as βsound)
is constant—which to a good approximation it is—then for the carrier waves of
the acoustic waves, the frequencies of the acoustic waves are simply the speed of
sound (βsound) times the wave numbers. We also allow the index of refraction to
have a small component at half the wavelength of the light, which will yield Bragg
scattering from the periodic grating set up in the material,
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E(z, t) = U(z, t)exp[i(k0z−ω0t)]+V (z, t)exp[−i(k0z+ω0t)]
+ U∗(z, t)exp[−i(k0z−ω0t)]+V ∗(z, t)exp[i(k0z+ω0t)] , (3.8a)

W (z, t) = Wu(z, t)exp[2ik0(z−βsoundt)]+Wv(z, t)exp[−2ik0(z+βsoundt)]
+ W ∗

u (z, t)exp[−2ik0(z−βsoundt)]+W ∗
v (z, t)exp[2ik0(z+βsoundt)]

+ W0(z, t) , (3.8b)
∆n(z) = ∆n cos(2k0z) . (3.8c)

Substituting the fields in terms of SVEs [Eqs. (3.8)] into the general dynamical
equations for light [Eq. (3.7b)], while taking the nonlinearity to be Kerr [Eq. (3.2b)],
and separating the different frequency and wave number components, gives

0 = ik′0Ut + iUz +κV +
2π(ω0/c)2

k0
(χs|U |2 + χx|V |2)u

+χes [W0U + exp(−2ik0βsoundt)WuV + exp(2ik0βsoundt)W ∗
v V ] , (3.9a)

0 = ik′0Vt − iVz +κ∗U +
2π(ω0/c)2

k0
(χx|U |2 + χs|V |2)v

+χes [W0V + exp(2ik0βsoundt)W ∗
u U + exp(−2ik0βsoundt)WvU ] , (3.9b)

where

κ =
ω0

c
∆n
2

, (3.10a)

χes =
ω0

c
dn
dW

. (3.10b)

This assumes that the speed of sound βsound is small enough so that the frequencies
2k0βsound are within the frequency spread of the SVEs, U and V . These are the
equations for the dynamics of the SVEs of light.

3.2.2 Acoustic Wave Equations with Electrostrictive Perturbations

To complete the dynamical system, we need equations for the density of the
material—that is, acoustic waves. In silica glass, the speed of sound has a very weak
dependence on frequency, and acoustic waves are also subject to viscosity [30].
Dependence of the index of refraction on the density of the material creates elec-
trostriction, a force (pressure gradient) attracting the material to regions of higher
light intensity. The equation for evolution of the density of a material of this system
is [22, 31]

0 =
∂ 2

∂ t2 W (x,y,z, t)−β 2
sound∇2W −Γs

∂
∂ t

∇2W +
Λ
2

∇2〈E(x,y,z, t)2〉 , (3.11)
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where W (x,y,z, t) is the density of the material, E(x,y,z, t) is the amplitude of the
electric field, ∇2 = ∂ 2/∂x2 +∂ 2/∂y2 +∂ 2/∂ z2 is the Laplacian, βsound is the speed
of sound, Γs is a phonon viscosity coefficient, and Λ is an electrostrictive coefficient.
We will focus on single-mode waveguides, in which any transverse dynamics are
trivial, in the sense that that the transverse confinement affects only the values of the
coefficients, but qualitative terms will be the same as one-dimensional infinite plane
waves [32].) This reduces the system to 1+1-dimensions,

0 =
∂ 2

∂ t2 W (z, t)−β 2
sound

∂ 2

∂ z2 W −Γs
∂ 3

∂ t∂ z2 W +
Λ
2

∂ 2

∂ z2 〈E(z, t)2〉 . (3.12)

Since we will be dealing with optical gap solitons, the light in the system is approx-
imately monochromatic and may be moving forward or backward, as expressed by
Eq. (3.8a). Electrostrictive response times are on the order of 10−9 s [22]. This is
several (∼ 6) orders of magnitude slower than the temporally fast-varying terms
(∝ U2,V 2,U∗2,V ∗2) for visible or near infra-red light, so these may be dropped
from the averaged square field in the phonon equation (3.12),

0 = Wtt −β 2
soundWzz−ΓsWtzz

+Λ
[|U |2 + |V |2 +UV ∗ exp(2ik0z)+U∗V exp(−2ik0z)

]
zz . (3.13)

where we have denoted partial derivatives by subscripts. Since U(z, t) and V (z, t) are
SVEs, the phonons’ source terms will be centered around wavenumbers k = 0, 2k0,
and−2k0. Thus light in the optical gap solitons will interact by electrostriction only
with phonons around those same wave numbers, which is consistent with Eq. (3.8b).
Fourier transform the phonon equation (3.13) to momentum space,

0 = −ω2W (k,ω)− iωk2ΓsW + k2β 2
soundW − k2ΛF{|U |2 + |V |2}(k,ω)

− k2ΛF{UV ∗}(k−2k0,ω)− k2ΛF{U∗V}(k +2k0,ω) . (3.14)

Since U and V are SVEs, F{|U |2 + |V |2}(k,ω) will only be significant in the
vicinity of k ≈ 0, F{UV ∗}(k− 2k0,ω) will only be significant at k ≈ 2k0, and
F{U∗V}(k + 2k0,ω) will only be significant at k ≈ −2k0. We substitute the ex-
pression for W in Eq. (3.8b) into the general phonon equation (3.14), and separate
into the different (and, in k-space, non-overlapping) regions:

0 = −ω2W0(k,ω)− iωk2ΓsW0 + k2β 2
soundW0− k2ΛF{|U |2 + |V |2}(k,ω) ,(3.15a)

0 = (ω−ω0)2Wu(k,ω)+ i(ω−ω0)(k−2k0)2ΓsWu− (k−2k0)2β 2
soundWu

+(k−2k0)2ΛF{UV ∗}(k−2k0,ω−ω0) , (3.15b)
0 = (ω−ω0)2Wv(k,ω)+ i(ω−ω0)(k +2k0)2ΓsWv− (k +2k0)2β 2

soundWv

+(k +2k0)2ΛF{U∗V}(k +2k0,ω) . (3.15c)

Here Wu(k,ω)=W (k−2k0,ω−ω0), Wv(k,ω)=W (k+2k0,ω−ω0), and W0(k,ω)=
W (k,ω) are SVEs of the density W .
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3.2.2.1 Slowly-Varying Phonon Field

We take the phonon equation (3.15a), which is for the region near the origin in
(k,ω)-space, or the slowly-varying part of the phonon field, and inverse Fourier
transform it to real space,

0 = W0,tt −β 2
soundW0,zz−ΓsW0,tzz +Λ(|U |2 + |V |2)zz . (3.16)

This is the most useful form of the governing equations for low wave number (long
wavelength) acoustic waves.

3.2.2.2 Brillouin Scattering—Phonon Fields at k ≈ 2k0

Consider Eq. (3.15b) for the part of the phonon field with wave numbers close to
k = 2k0. We complete the square, expand the root into a Taylor series, and drop
higher-order terms:

0 = [ω +2i(k0 + k/2)2Γs +ωu

±2(k0 + k/2)βsound{1− (1/2)[(k0 + k/2)Γs/βsound]2}]Wu(k,ω)
∓(k0 + k/2)Λβ−1

soundF{UV ∗}(k,ω +ω0)+ . . . (3.17)

Dropping wavenumber dependence of the damping, higher-order dispersion, a self-
steepening-like term (in the sense that it comes from going from a second- to a
first-order differential equation), and the quadratic or higher terms in the phonon
viscosity, since phonon viscosity is generally a small perturbation, we obtain

0 =
[
ω +2ik2

0Γs± kβsound
]
Wu(k,ω)∓ k0Λβ−1

soundF{UV ∗}(k,ω∓2k0βsound)+ . . .
(3.18)

where ω0 = 2k0βsound. We now inverse Fourier transform this to real space,

0 = iWu,t + i(2k2
0Γs)Wu∓ iβsoundWu,z∓ k0Λ

βsound
exp[∓2ik0βsoundt](UV ∗)+ . . . (3.19)

The positive sign is the relevant solution for the field Wu,

0 = iWu,t + iβsoundWu,z + i(2k2
0Γs)Wu +

k0Λ
βsound

exp(2ik0βsoundt)UV ∗ . (3.20a)

The corresponding equation for the Brillouin field moving in the opposite direction
(k =−2k0) is

0 = iWv,t − iβsoundWv,z + i(2k2
0Γs)Wv +

k0Λ
βsound

exp(2ik0βsoundt)UV ∗ . (3.20b)
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3.2.3 The Bragg-Brillouin-Kerr System

Let us collect the definitions of the SVEs of the electromagnetic and phonon fields,

E(z, t) = U(z, t)exp[i(k0z−ω0t)]+V (z, t)exp[i(−k0z−ω0t)]
+ U∗(z, t)exp[−i(k0z−ω0t)]+V ∗(z, t)exp[i(k0z+ω0t)] , (3.21a)

W (z, t) = W0(z, t)+Wu(z, t)exp[2ik0(z−βsoundt)]+Wv(z, t)exp[−2ik0(z+βsoundt)]
+ W ∗

u (z, t)exp[−2ik0(z−βsoundt)]+W ∗
v (z, t)exp[2ik0(z+βsoundt)] , (3.21b)

and their dynamical equations,

0 = ik′0Ut + iUz +κV +
2π(ω0/c)2

k0
(χs|U |2 + χx|V |2)U

+χes [W0U + exp(−2ik0βsoundt)WuV + exp(2ik0βsoundt)W ∗
v V ] , (3.22a)

0 = ik′0Vt − iVz +κU +
2π(ω0/c)2

k0
(χx|U |2 + χs|V |2)V

+χes [W0V + exp(2ik0βsoundt)W ∗
u U + exp(−2ik0βsoundt)WvU ] , (3.22b)

0 = W0,tt −β 2
soundW0,zz−ΓsW0,tzz +Λ(|U |2 + |V |2)zz . (3.22c)

0 = iWu,t + iβsoundWu,z + i(2k2
0Γs)Wu +

k0Λ
βsound

exp(2ik0βsoundt)UV ∗ , (3.22d)

0 = iWv,t − iβsoundWv,z + i(2k2
0Γs)Wv +

k0Λ
βsound

exp(2ik0βsoundt)U∗V . (3.22e)

3.3 Lagrangian, Hamiltonian, and Conserved Quantities

The Bragg-Brillouin-Kerr system (3.22) can be derived from a Lagrangian density
in the limit in which phonon viscosity is nil (Γs = 0),

L =
i
2

k′0(U
∗Ut −UU∗

t )+
i
2

k′0(V
∗Vt −VV ∗

t )+
i
2
(U∗Uz−UU∗

z )− i
2
(V ∗Vz−VV ∗

z )

+κU∗V +κ∗UV ∗+
2π(ω0/c)2

k0

[χs

2
(|U |4 + |V |4)+ χx|U |2|V |2

]

+
χes

2Λ
(r2

t −β 2
soundr2

z )+ χes(|U |2 + |V |2)rz

+
χesβsound

k0Λ
i
2
[(W ∗

u Wu,t −WuW ∗
u,t)+(W ∗

v Wv,t −WvW ∗
v,t)]

+
χesβ 2

sound
k0Λ

i
2
[(W ∗

u Wu,z−WuW ∗
u,z)− (W ∗

v Wv,z−WvW ∗
v,z)]

+χes exp(2ik0βsoundt)(UV ∗W ∗
u +U∗VW ∗

v )
+χes exp(−2ik0βsoundt)(U∗VWu +UV ∗Wv) , (3.23a)
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for which we have introduced a potential for the slowly-varying phonon field

r(z, t)≡
∫ z

z0

W0(z′, t)dz′ , (3.23b)

where z0 is an arbitrary constant.
The system has a Hamiltonian and three conserved quantities, corresponding to

conservation of momentum P, conservation of the number of photons N (also some-
times called energy), and conservation of mass M (slightly abstracted, such that
divergences on an infinite domain are avoided),

H =
∫ ∞

−∞
dz

{
− i

2
(U∗Uz−UU∗

z )+
i
2
(V ∗Vz−VV ∗

z )−κU∗V −κ∗UV ∗

−2π(ω0/c)2

k0A

[χs

2
(|U |4 + |V |4)+ χx|U |2|V |2

]

+
χes

2Λ
(r2

t +β 2
soundr2

z )−χes(|U |2 + |V |2)rz

−χesβ 2
sound

k0Λ

[
i
2
(W ∗

u Wu,z−WuW ∗
u,z)−

i
2
(W ∗

v Wv,z−WvW ∗
v,z)

]

−χes exp(−2ik0βsoundt)(U∗VWu +UV ∗Wv)
−χes exp(2ik0βsoundt)(UV ∗W ∗

u +U∗VW ∗
v )} , (3.24a)

P =
∫ ∞

−∞

{
i
2
(U∗Uz−UU∗

z )+
i
2
(V ∗Vz−VV ∗

z )

+
χes

Λk′0

[
rzrt +

βsound

k0

i
2
(W ∗

u Wu,z−WuW ∗
u,z +W ∗

v Wv,z−WvW ∗
v,z)

]}
dz(3.24b)

N =
∫ ∞

−∞
(|U |2 + |V |2)dz , (3.24c)

M =
∫ ∞

−∞
rtdz . (3.24d)

If phonon viscosity is included, then the number of photons N and the material mass
M are still constant, but the momentum P and the energy H decay according to the
formulas

d
dt

H =
Γ χes

Λ

∫ ∞

−∞
W0,tW0,zdz , (3.25a)

d
dt

P = −Γ χes

Λk′0

∫ ∞

−∞
(W0,t)2dz . (3.25b)
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3.3.1 Dimensionless Variables

To give a clearer and more systematic picture of the dynamics, we rewrite the equa-
tions in terms of dimensionless variables,

u ≡
√

2π(ω0/c)2

κk0
U , (3.26a)

v ≡
√

2π(ω0/c)2

κk0
V , (3.26b)

w0 ≡ 1
κ

W0 , (3.26c)

wu ≡ 1
κ

Wu , (3.26d)

wv ≡ 1
κ

Wv , (3.26e)

τ ≡ κ
k′0

t , (3.26f)

ζ ≡ κ z . (3.26g)

The governing Eqs. (3.22) take the form

0 = iuτ + iuζ +(1+κBrill)v+(χs|u|2 + χx|v|2 + χesw)u , (3.27a)

0 = ivτ − ivζ +(1+κ∗Brill)u+(χx|u|2 + χs|v|2 + χesw)v , (3.27b)

0 = w0,ττ −Γ w0,τζ ζ −β 2
s w0,ζ ζ +λ (|u|2 + |v|2)ζζ , (3.27c)

0 = iwu,t + iβswu,z + i[2(k0/κ)2Γ ]wu +
λk0/κ

βs
exp[2i(k0/κ)βsτ]uv∗ ,(3.27d)

0 = iwv,t − iβswv,z + i[2(k0/κ)2Γ ]wv +
λk0/κ

βs
exp[2i(k0/κ)βsτ]u∗v , (3.27e)

with

κBrill(ζ ,τ) = exp[2i(k0/κ)βsτ]wu + exp[−2i(k0/κ)βsτ]w∗v , (3.28)

and normalized coefficients

βs = βsound k′0 , (3.29a)
Γ = Γs κ k′0 , (3.29b)

λ = Λ χes
k0(k′0)

2

2π(ω0/c)2 . (3.29c)
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In ordinary optical materials, χx = 2χs. We have elected to eliminate one fewer vari-
able than is possible, keeping χx, to make clearer the effects of large electrostriction
compared to instantaneous Kerr effect.

3.4 Gap-Acoustic Solitons

Let us begin by looking at Eqs. (3.27) without the Brillouin fields wu,wv,

0 = iuτ + iuζ + v+(χs|u|2 + χx|v|2)u+ χeswu , (3.30a)

0 = ivτ − ivζ +u+(χx|u|2 + χs|v|2)v+ χeswv , (3.30b)

0 = w0,ττ −Γ w0,τζ ζ −β 2
s w0,ζ ζ +λ (|u|2 + |v|2)ζ ζ , (3.30c)

We found a family of solutions for gap-acoustic solitons for Eqs. (3.30) with zero
phonon viscosity (Γ = 0),

u(ζ ,τ) =
√

γ(1+β )α sinQ sech(ζ̃ sinQ− i
2

Q)exp[iθ(ζ̃ )− i τ̃ cosQ] ,(3.31a)

v(ζ ,τ) = −
√

γ(1−β )α sinQ sech(ζ̃ sinQ+
i
2

Q)exp[iθ(ζ̃ )− i τ̃ cosQ] ,(3.31b)

w(ζ ,τ) =
λ

β 2
s −β 2

4|α|2γ sin2 Q

cosh(2ζ̃ sinQ)+ cosQ
, (3.31c)

where

θ(ζ̃ ) = 4|α|2γ2β [χs +λ χes/(β 2
s −β 2)] tan−1{tanh[ζ̃ sinQ] tan(Q/2)} ,(3.32a)

α = {χx + χsγ2(1+β 2)+2λγ2/(β 2
s −β 2)}−1/2 , (3.32b)

τ̃ ≡ γ(τ−βζ ) , (3.32c)
ζ̃ ≡ γ(ζ −βτ) , (3.32d)

γ ≡ (1−β 2)−1/2 , (3.32e)

and α must be real-valued. In the quiescent limit (β → 0), these are also solutions
for non-zero phonon viscosity (Γ > 0). The solitons Eqs. (3.31)-(3.32) have two
essential intrinsic parameters, β , the velocity, and Q, which takes values 0 < Q < π .

The soliton parameter Q resembles a similar parameter in the family of the ordi-
nary gap solitons. The soliton’s full width at half maximum intensity is [cosh−1(2+
cosQ)/(γ sinQ)]. Frequency in the rest frame is γ cosQ. Frequency in the frame
moving with the soliton is not generally equal to cosQ because group velocity in
a medium is normally less than the speed of light in vacuum. The soliton velocity
(β ) may have any value up to the group velocity of light in the medium (|β | < 1),
except for a range of slightly supersonic gap solitons, |β | 6∈ [βs,βcr], where
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β 2
cr =

1
2


β 2

s +
χx + χs

χx−χs
+

√(
β 2

s −
χx + χs

χx−χs

)2

− 8λ χes

χx + χs


 . (3.33)

In fused silica, the critical velocity is 10% greater than the speed of sound, βcr =
1.10βs [19]. Bright supersonic as well as subsonic solitons exist if the critical veloc-
ity βcr is less than the speed of light in the medium. (The equations suggest existence
of a dark soliton [33] in the supersonic region βs < β < βcr, but we choose to limit
this paper to bright solitons.) The closer the soliton velocity is to the speed of sound,
the larger is the percentage of energy in the phonon field. Figure 3.2 shows a mod-
erately supersonic soliton.
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Fig. 3.2 Supersonic gap-acoustic soliton. The solitons’s frequency is in the middle of the band
gap (soliton parameter Q = π/2), and it’s velocity is βs = 0.25, which is 125% of the speed of
sound, βs = 0.2. The self- and cross-phase modulation coefficients are χs = 1, χx = 2, and the
electrostrictive coefficients are χes = 1, λ = 0.1. The first part of the figure shows the amplitude
of the envelope u of the forward-moving electromagnetic wave, the second the envelope v of the
backward-moving wave, and the third part the acoustic field (material density). Solid lines are
for the magnitudes of the amplitudes, dashed lines for the real parts, and dotted lines are for the
imaginary parts.

The gap-acoustic solitons (3.31)-(3.32) reduce to standard gap solitons [13] in
the limit of zero electrostriction (λ = 0). There are resemblances to solitons in the
Zakharov system [34, 35, 36], in that both contain dispersive equations coupled
to a nondispersive equation, interaction with the non-dispersive field changes the
amplitude of the soliton, and the dispersive field takes a profile the same shape as
the soliton intensity. Below the speed of sound, the accompanying phonon pulse is
a positive density variation, and above the speed of sound, the phonon pulse is a
depression.
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Note that Eqs. (3.30) do not admit optical solitons without an acoustic compo-
nent; purely acoustic pulses are possible. In the case of zero phonon viscosity Γ = 0,
these have the form u = v = 0, while the phonon field w is a combination of two ar-
bitrary functions, w(ζ ,τ) = w+(ζ − τ) and w−(ζ + τ), which represent forward-
and backward-moving acoustic waves.

The soliton’s (quasi-)conserved quantities, number of photons, phonons, mo-
mentum, and Hamiltonian, are obtained by substituting the soliton formulas (3.31)-
(3.32) into Eqs. (3.24) to obtain

MGAS =
λ

β 2
s −β 2 4|α |2Q , (3.34a)

NGAS = 4|α|2Q , (3.34b)
PGAS = βγ(4|α|2)sinQ

+ βγ3(4|α|2)2
(

χs +
λ χes

β 2
s −β 2

)
(sinQ−QcosQ)

+ βγ(4|α|2)2 λ χes

(β 2
s −β 2)2 (sinQ−QcosQ) , (3.34c)

HGAS = 4γ|α|2{sinQ+ γ−2(sinQ−QcosQ)
−[χs(1+β 2−4γ2β 2)+ χxγ−2](sinQ−QcosQ)

+4|α|2 λ χes

(β 2
s −β 2)2 (sinQ−QcosQ) . (3.34d)

If a GAS is the only field present in the system (i.e., dispersive radiation can be
neglected), then the decay of a GAS’s quasi-conserved quantities can be calculated
by inserting the GAS formulas (3.31)-(3.32) into Eqs. (3.25) [37],

d
dτ

PGAS = −Γ χes

λ
γβ

∫ ∞

−∞
(w0,ζ )2dζ

= −2Γ λ χesβγ3
(

4γ|α|2
β 2

s −β 2

)2 (
sinQ− 1

3
sin3 Q−QcosQ

)
,(3.35a)

d
dτ

HGAS = −Γ χes

λ
γ

∫ ∞

−∞
(w0,ζ )2dζ

= −2Γ λ χesγ3
(

4γ|α|2
β 2

s −β 2

)2 (
sinQ− 1

3
sin3 Q−QcosQ

)
, (3.35b)

It is in fact impossible for both NGAS and MGAS to remain constant while PGAS and
HGAS decay according to Eqs. (3.35). This prooves that phonon viscosity causes a
moving GAS to emit dispersive radiation. That phonon viscosity retards the soliton
and that it causes emission of phonons from the slowing soliton is confirmed by
direct numerical simulation, as illustrated by Fig. 3.3. Slowing of a GAS might also
be achieved in a fiber loop with a mechanism for damping out emitted sound waves.
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Fig. 3.3 Gap-acoustic soliton decelerating due to phonon viscosity. The top shows evolution of
the light intensity, and the bottom shows the material density. The soliton begins with dimension-
less velocity β = 0.19, compared to sound velocity βs = 0.2. The soliton parameter is Q = π/2,
frequency in the middle of the band gap. The electrostrictive coefficients are χes = 1, λ = 0.001,
the phonon viscosity is Γ = 0.04, and the self- and cross-phase modulation coefficients are χs = 1,
χx = 2.

Brillouin scattering—interaction of the light fields u, v with the high wave num-
ber acoustic fields wu, wv—can be calculated explicitly in the approximation that
the Brillouin fields are small perturbations to the GAS. This is the same as neglect-
ing the effect of the Brillouin fields on the GAS. We can show that a moving GAS
will emit acoustic waves preferentially backwards, carrying off some of the GAS’s
momentum, thus retarding it. The effect is relatively small, except when the soliton
velocities are close to the group velocity of light in the medium. This retardation
can add to the retardation effect on the GAS by phonon viscosity.

3.5 Soliton Stability and Instability

To analyze stability of gap-acoustic solitons, we carried out full numerical simula-
tions of the partial differential equations (3.30) using a split-step fast Fourier trans-
form scheme, which treats the linear part of the equations in momentum space, and
the nonlinear part in real space [1]. The simulations were carried out systematically
for three values of the soliton coefficient Q: Q = π/3 (in the middle of the top half of
the band gap), which, for gap solitons without electrostriction (λ = 0) [11, 12, 13],
is well inside the stable region; Q = π/2 (in the middle of the band gap), which is
stable but close to the instability border; and Q = 2π/3 (in the middle of the bottom
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half of the band gap), which has an oscillatory instability [15, 16, 17]. We calcu-
lated using ten different values of the electrostrictive coefficient, ranging over four
orders of magnitude, λ = 0.0001 to 1, and the limit λ →∞. The speed of sound was
held at βs = 0.2. This is much faster than physically realistic (unless one were to
consider light that is slow in the sense of the group velocity being much less than
the phase velocity [23]). Choosing here to take the speed of sound relatively fast
and studying a range of electrostrictive coefficients allows us to illustrate qualita-
tive properties of the system that would be not easily demonstrated if simulations
were limited to physically realizable cases. (A detailed analysis of the dynamics
in a waveguide made of bulk fused silica can be found in Ref. [19]. In this case,
the large disparity—five orders of magnitude—between the group velocity of light
and the speed of sound makes a thorough study of the system computationally ex-
tremely expensive, rendering some effects practically indetectable and other effects
huge.) The initial gap soliton velocity was taken at ten distinct values, from zero to
twice the speed of sound β = 2βs = 0.4, with special emphasis close to the speed of
sound. For consistency in the stability analyses, all the direct numerical simulations
had initial light amplitudes 1% greater than those of the exact soliton solutions. In
addition to this systematic coverage of part of the parameter space, we ran many
simulations at scattered values of all the free parameters.

Like gap solitons without electrostriction [15, 16, 17], gap-acoustic solitons are
subject to oscillatory instabilities, which can grow until the soliton is destroyed, as
illustrated in Fig. 3.4. In this case, when the oscillations grow too large, they de-
stroy the soliton, which then goes into dispersive radiation moving to the left and to
the right. Electrostriction, however, decreases the rate of growth of the oscillatory
instability. The larger is the electrostrictive coefficient, the slower is the instability,
as is visible in Fig. 3.5, which, over a series of runs with a range of electrostric-
tive coefficients, shows the growth rate of the instability to be smaller for larger
electroctrictive coefficients λ .

Additionally, the closer the velocity is to the speed of sound, the greater is the
damping of the oscillatory instability. Figure 3.6 shows evolution of the peak light
intensity for four different soliton velocities (all subsonic, so as not to introduce
the supersonic instability, which is detailed below). The growth rate of gap-acoustic
solitons’ instability is smaller the closer is the soliton velocity to the speed of sound.
Common to both trends is that a larger phonon field has a stronger damping effect
on the oscillatory instability. In contrast, without electrostriction, the dependence of
the instability on soliton velocity is quite weak, and with no special importance to
the speed of sound.

Next, we consider solitons which are known to be stable in the absence of
electrostriction. Among our simulations, that is the runs with soliton parameters
Q = π/3 and Q = π/2. All solitons that are stable with zero electrostriction were
found to be stable with electrostriction and velocities up to the speed of sound.
Above the speed of sound, a new and distinct (“supersonic”) instability appears.
It is associated with the downward slope of the soliton momentum with respect to
velocity, which is due to the decreasing importance in the supersonic region of the
acoustic contribution to the momentum as a function of soliton velocities. The su-
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Fig. 3.4 Destruction of a gap-acoustic soliton by the oscillatory instability. The graph shows light
intensity (|u|2 + |v|2) and phonon fields (w). The soliton is described by parameter Q = 2π/3, the
velocity is zero (β = 0), the electrostrictive coefficients are χes = 1, λ = 0.0005, the speed of sound
is βs = 0.2, and self- and cross-phase modulation are χs = 1, χx = 2.
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Fig. 3.5 Evolution of the peak powers {maxζ (|u(ζ ,τ)|2 + |v(ζ ,τ)|2)} with time, for gap-acoustic
solitons with four different electrostrictive coefficients, λ = 0.0001, 0.001, 0.01, and 0.1, and
χes = 1. The solitons are unstable, Q = 2π/3, β = 0, with self- and cross-phase modulation χs = 1,
χx = 2, and speed of sound βs = 0.2.

personic instability goes away when the soliton velocity is high enough for the mo-
mentum in the electromagnetic part of the GAS to outweigh the momentum in the
acoustic part of the GAS [19]. This supersonic instability is qualitatively different
than the oscillatory instability, and is unknown for gap solitons without electrostric-
tion. (A non-oscillatory and strongly velocity-dependent instability was found in
Ref. [15]. This instability exists in a region that is already unstable because of two
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Fig. 3.6 Evolution of the peak powers [maxζ (|u(ζ ,τ)|2 + |v(ζ ,τ)|2)] with time, for unstable gap-
acoustic solitons at by four different subsonic velocities, β = 0, 0.1, 0.15, and 0.19, where the
dimensionless speed of sound is β = 0.2. The solitons have electrostrictive coefficients, χes = 1,
λ = 0.0005, soliton parameter Q = 2π/3, and self- and cross-phase modulation χs = 1, χx = 2.

oscillatory instabilities, so may not be clearly realizable experimentally. It is not
related to acoustic waves and the speed of sound plays no role in these dynamics.)
Figures 3.7-3.8 show supersonic gap-acoustic soliton simulations, with the same pa-
rameters except for the initial soliton velocity. In almost all cases—displayed and
not—the gap-acoustic solitons retained their integrity throughout the instability. The
closer was the supersonic soliton’s velocity to the speed of sound, the sooner the
supersonic instability took effect. The changes in velocity were abrupt, and were
accompanied by emission of phonons. The solitons sometimes changed speed and
direction a few times before eventually settling to a stable subsonic GAS.

Figures 3.9-3.11 have the same parameters as Figs. 3.7-3.8, but with an order
of magnitude larger electrostrictive coefficient. When the electrostrictive coefficient
was larger (and the phonon field larger), the supersonic instabilities tended to be
stronger in the sense that they happened sooner, and in that the soliton was more
often destroyed. In some instances, as in Fig. 3.7, a soliton that was close to the
speed of sound made a smooth transition to subsonic (necessarily passing through a
non-solitonic configuration).

The GASs tend to end with velocities much slower than the speed of sound may
because the momentum of the soliton is larger at slightly subsonic velocities than
at many supersonic velocities. Figure 3.12 shows the momentum and energy in a
soliton at fixed Q-parameter over a range of velocities. After onset of the supersonic
instability, there is generally only enough momentum (and energy) for the resulting
subsonic GAS to have a velocity up to a small percentage of the speed of sound.
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Fig. 3.7 Gap-acoustic soliton subject to the supersonic instability. The graph shows light intensity
(|u|2 + |v|2) and phonon fields (W ). The soliton parameter is (Q = π/3), with initially supersonic
velocity (β = 0.3, compared to a speed of sound βs = 0.2). The electrostrictive coefficients are
χes = 1, λ = 0.001, and self- and cross-phase modulation are χs = 1, χx = 2.

Fig. 3.8 Gap-acoustic soliton subject to the supersonic instability. The graph shows light intensity
(|u|2 + |v|2) and phonon fields (W ). The soliton parameter is (Q = π/3), with initially hypersonic
velocity (β = 0.4, compared to a speed of sound βs = 0.2). The electrostrictive coefficients are
χes = 1, λ = 0.001, and self- and cross-phase modulation are χs = 1, χx = 2.

The oscillatory instability and the supersonic instability can compete. For exam-
ple, Fig. 3.13 shows a gap-acoustic soliton which first slows down sharply, going
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Fig. 3.9 Gap-acoustic soliton subject to the supersonic instability. The graph shows light intensity
(|u|2 + |v|2) and phonon fields (W ). The soliton parameter is (Q = π/3), with initially supersonic
velocity (β = 0.25, compared to a speed of sound βs = 0.2). The electrostrictive coefficients are
χes = 1, λ = 0.01, and self- and cross-phase modulation are χs = 1, χx = 2.

Fig. 3.10 Gap-acoustic soliton subject to the supersonic instability. The graph shows light intensity
(|u|2 + |v|2) and phonon fields (W ). The soliton parameter is (Q = π/3), with initially supersonic
velocity (β = 0.3, compared to a speed of sound βs = 0.2). The electrostrictive coefficients are
χes = 1, λ = 0.01, and self- and cross-phase modulation are χs = 1, χx = 2.

from supersonic to zero velocity, and after which the oscillatory instability grows
until it destroys the soliton.
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Fig. 3.11 Gap-acoustic soliton subject to the supersonic instability. The graph shows light intensity
(|u|2 + |v|2) and phonon fields (W ). The soliton parameter is (Q = π/3), with initially hypersonic
velocity (β = 0.4, compared to a speed of sound βs = 0.2). The electrostrictive coefficients are
χes = 1, λ = 0.01, and self- and cross-phase modulation are χs = 1, χx = 2.
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Fig. 3.12 Plots of the GAS momentum and energy over a range of soliton velocities, holding other
parameters constant—Q = π/2, βs = 0.2, χes = 1, λ = 0.01, χs = 1 and χx = 2.

Larger electrostrictive coefficients damp the oscillatory instability and increase
the supersonic instability, so changing the electrostriction can change the dominant
type of instability. The dimensionality of the parameter space (χs/χx,λ ,Γ ,βs,β ,Q)
is too large, the behavior too varied, the sensitivity to initial conditions to strong,
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Fig. 3.13 Gap-acoustic soliton experiencing two instabilities, supersonic and oscillatory. The top
and bottom parts of the figure show the light intensity and the material density, respectively. The
soliton begins with dimensionless velocity β = 0.25, compared to sound velocity βs = 0.2. The
soliton parameter is Q = 2π/3, the electrostrictive coefficients are χes = 1, λ = 0.0002, and self-
and cross-phase modulation coefficients are χs = 1, χx = 2.

and the computational cost of numerical simulations too high to obtain a complete
simple picture of the ultimate results following a GAS instability.

There are no breathers or localized excited states as a small perturbation about
(i.e., on top of) the gap-acoustic solitons. Any oscillation of a localized mode gen-
erates waves in the acoustic field which move at velocity plus or minus the speed
of sound. The acoustic field will carry away energy, dissipating the oscillations.
Small oscillations have energy proportional to the amplitude of the oscillation, and
the energy radiated away is also proportional to the square of the amplitude of the
oscillation. Therefore, small oscillations about a stable GAS decay exponentially.

3.6 Summary and Conclusions

In this work, we formulated a set of equations to describe propagation of light in a
nonlinear waveguide with a Bragg grating, with the light coupled to sound waves
by electrostriction. Light waves’ dispersion curve has a band gap in the vicinity
of the resonance of the Bragg grating. Forward- and backward-moving light in the
vicinity of the band gap can interact with acoustic waves of low wave numbers (in
which case the interaction is generally referred to as electrostriction) or high wave
numbers, twice the wave numbers of the light (in which case the interaction is called
Brillouin scattering).
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There is a localized structure in this system—a “gap-acoustic soliton”, for the
case when Brillouin scattering may be neglected; there is an exact analytic form
of the solitons for the case of vanishing phonon viscosity, as well as for zero ve-
locity solitons. Gap-acoustic solitons have frequencies in the band gap, as do stan-
dard gap solitons (without electrostriction). They exist at all velocities up to the
speed of light in the medium, except for exactly the speed of sound (near which
the phonon component of the soliton is large, and at which there is a singularity).
Coupling of the light to the acoustic field via electrostriction changes the stability
properties of the soliton. Solitons which would experience an oscillatory instabil-
ity without electrostriction experience a damping of the instability, the larger the
electrostrictive coefficient and/or the closer the velocity is to the speed of sound,
the larger is the damping of the oscillatory instability. Electrostriction introduces a
new “supersonic” instability for gap-acoustic solitons moving faster than the speed
of sound. The closer the soliton is to the speed of sound, the faster the supersonic
instability takes effect. The supersonic instability may cause an abrupt change in the
velocity, or sometimes destruction of the soliton. The soliton may experience sev-
eral changes in direction or some complex dynamics before going to a stable sub-
sonic soliton or being destroyed. Phonon viscosity slows the gap-acoustic soliton
and causes emission of significant phonon radiation. If the soliton is subsonic, the
soliton velocity will decrease exponentially, and if the soliton is supersonic, phonon
viscosity will slow the soliton to the speed of sound in finite time. Solitons cannot
exist with speeds between the critical velocity and the speed of sound. But if the
phonon viscosity makes the soliton pass through the velocity gap quickly, a soliton
will emerge as a similar but subsonic gap-acoustic soliton. At velocities close to the
group-velocity of light in the waveguide, Brillouin scattering can make the soliton
emit acoustic radiation, which carries away momentum, and acts as an additional
retardation mechanism for the moving soliton.

Since electrostriction, like the Kerr effect, is present to some extent in virtually
all materials, any understanding of physically realistic optical gap solitons should
entail a grasp of the effects of electrostriction. The results herein suggest that an
initially fast-moving gap-acoustic soliton can be retarded by the effects of the non-
zero phonon viscosity. A practical means of doing this would be in a recirculating
loop. Either alternatively or complementarily, once a gap-acoustic soliton is slowed
to on the order of the speed of sound, the gap-acoustic solitons supersonic instability
will do the work of slowing the soliton to soliton to significantly below the speed
of sound. In addition, the dynamics of gap-acoustic solitons open the door to new
means of controlling light by sound.
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Chapter 4
Optical Wave Turbulence and Wave
Condensation in a Nonlinear Optical
Experiment

Jason Laurie, Umberto Bortolozzo, Sergey Nazarenko and Stefania Residori

Abstract We present theory, numerical simulations and experimental observations
of a 1D optical wave system. We show that this system is of a dual cascade type,
namely, the energy cascading directly to small scales, and the photons or wave action
cascading to large scales. In the optical context the inverse cascade is particularly in-
teresting because it means the condensation of photons. We show that the cascades
are induced by a six-wave resonant interaction process described by weak turbu-
lence theory. We show that by starting with weakly nonlinear randomized waves as
an initial condition, there exists an inverse cascade of photons towards the lowest
wavenumbers. During the cascade nonlinearity becomes strong at low wavenumbers
and, due to the focusing nature of the nonlinearity, it leads to modulational instabil-
ity resulting in the formation of solitons. Further interaction of the solitons among
themselves and with incoherent waves leads to the final condensate state dominated
by a single strong soliton. In addition, we show the existence of the direct energy
cascade numerically and that it agrees with the wave turbulence prediction.
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4.1 Introduction

The idea to create a state of optical wave turbulence (OWT) has been the subject of
a large number of theoretical papers over the last thirty years [1, 2, 3, 4, 5]. Indeed
there are some far-reaching fluid analogies in the dynamics of nonlinear light, for
example vortex-like solutions [15, 7] and shock waves [8]. In the case of weakly in-
teracting random waves, the dynamics and statistics of the optical field are predicted
to share strong similarities with the system of random waves on water surface [9].
Indeed, OWT was theoretically predicted to exhibit dual cascade properties simi-
lar to 2D fluid turbulence, namely the energy cascading directly, from low to high
frequencies, and the photons cascading inversely, toward the low energy states.

The mechanism for optical interactions is provided by the Kerr effect, which
is routinely used in nonlinear optics and permits photon wave-mixing. When the
nonlinearity is small, OWT can be described by wave turbulence theory (WTT) [9]
which possesses classical attributes of general turbulence theory, particularly predic-
tions of the Kolmogorov-like cascade states, which in the WTT context are called
Kolmogorov-Zakharov (KZ) spectra. It appears that OWT has two KZ states: one
describing the direct energy cascade from large to small scales, and the second one
- an inverse cascade of wave action toward larger scales. It is the inverse cascade
that can provide the mechanism for condensation of light, i.e. formation of a co-
herent phase out of initially incoherent wave field. Furthermore, it was theoretically
predicted that in the course of the inverse cascade the nonlinearity will grow, which
will eventually lead to the breakdown of WTT at a some low wavenumber k and the
formation of coherent structures, i.e. solitons/collapses for the focusing nonlinearity
or a quasi-uniform condensate and vortices [5] for the de-focusing case.

Experimentally, the problem of realizing the OWT state is that the nonlinearity
is usually very weak and it is a challenge to make it overpower the dissipation. Here
we show that the OWT regime can be implemented in a liquid crystal system [10],
where optical solitons have been previously reported [11]. Our experiment is based
on the propagation of an enlarged light beam inside a liquid crystal layer acting as
the nonlinear medium. The principal direction of the light propagation plays the role
of time and the 2D field evolution is described by a nonlinear Schrödinger equation
(NLSE). Starting with weakly nonlinear waves with randomized phases, we observe
the formation of an inverse cascade of photons towards the lowest wavenumbers. We
show that the cascade is induced by a six-wave resonant interaction process, and it is
characterized by increasing nonlinearity along the cascade. At low wavenumbers the
nonlinearity becomes strong and, due to the focusing nature of the nonlinearity, it
leads to modulational instability developing into solitons. Further interaction of the
solitons among themselves and with incoherent waves leads to the final condensate
state dominated by a single strong soliton.

Furthermore, it was theoretically predicted, and numerically observed in some
WT systems, that in the course of the inverse cascade the nonlinearity will grow,
which will eventually lead to the breakdown of the WTT description at low wavenum-
bers and to the formation of coherent structures [1, 3, 5, 12, 13, 2]. In optics, these
can be solitons or collapses for focusing nonlinearity or a quasi-uniform condensate
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and vortices for the defocusing case. The final thermalized state was studied exten-
sively theoretically in various settings for non-integrable Hamiltonian systems start-
ing with the pioneering paper by Zakharov et al [14], see also [15, 16, 17, 18, 19, 20,
21, 22, 23, 24]. The final state with a single soliton and small-scale noise was inter-
preted as a statistical attractor, and an analogy was pointed out to the over-saturated
vapor system, where the solitons are similar to droplets and the random waves are
like molecules [24]. There, small droplets evaporate while the big ones gain size
from the free molecules, resulting in the decrease in the number of droplets. In our
work we put emphasis on turbulence, i.e. on a transient non-equilibrium process
leading to thermalization rather than the thermal equilibrium itself.

4.2 Experimental setup

The experimental apparatus is shown in Fig.4.1a. It consists of a liquid crystal cell,
inside which a laminar shaped beam propagates, and with the input beam prepared
in such a way, as to have an initial condition of weak and random waves. The liquid
crystal (LC) cell is made by sandwiching a nematic layer (E48) of thickness d =
50 µm between two 20× 30 mm2 glass windows and is schematically depicted in
Fig.4.1b. On the interior, the glass walls are coated with Indium-Tin-Oxide (ITO)
transparent electrodes. We have pre-treated the ITO surfaces with polyvinyl-alcohol,
polymerized and then rubbed, in order to align all the molecules parallel to the
confining walls. When a voltage is applied across the cell, liquid crystal molecules
tend to reorient in such a way as to become parallel to the direction of the electric
field. By applying a 1kHz electric field with rms voltage V0 = 2.5 V we preset the
molecular director to an average tilt angle Θ .

E

SLM

V

LC

Microscope

V
kz

E

θ

y

z

a)

b)

Fig. 4.1 Schematic representation of a) the experimental setup, b) the liquid crystal cell. A laminar
shaped input beam propagates inside the liquid crystal (LC) layer; random space modulations are
imposed at the entrance of the cell by means of a spatial light modulator (SLM). A voltage V is
applied to the LC in order to favor the molecular reorientation towards the optical field E.
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The LC layer behaves as a positive uniaxial medium, with n‖ = nz = 1.7 the ex-
traordinary and n⊥ = 1.5, the ordinary refractive indices [25]. LC molecules tend to
turn more along the applied field and the refractive index n(Θ) follows the distribu-
tion of the tilt angle θ . When a linearly polarized beam is injected into the cell, the
LC molecules reorient following the direction of the incoming beam polarization.
The input light comes from a diode pumped solid state laser, λ = 473 nm, polar-
ized along y and shaped as a thin laminar Gaussian beam of 30 µm thickness. The
beam evolution inside the cell is monitored with an optical microscope and a CCD
camera. The light intensity is kept very low, Iin = 30 µW/cm2 to ensure the weakly
nonlinear regime. A SLM at the entrance plane of the cell is used to produce suitable
intensity masks for injecting random phased fields with large wavenumbers.

4.3 Theoretical Background

Theoretically, the evolution is described by a propagation equation for the input
beam coupled to a relaxation equation for the LC dynamics

2iq
∂ψ
∂ z

+
∂ 2ψ
∂x2 + k2

0n2
aaψ = 0, (4.1)

∂ 2a
∂x2 −

1
l2
ξ

a+
ε0n2

a

4K
|ψ|2 = 0, (4.2)

where ψ(x,z) is the complex amplitude of the input beam propagating along “time
axis” ẑ, x the coordinate across the beam, a the liquid crystal reorientation angle,
na = ne− no the birefringence of the LC, k0 the optical wavenumber, ε0 the vac-
uum permittivity and lξ =

√
πK/2∆ε(d/V0) the electrical coherence length of the

LC [42], with K the elastic constant, q2 = k2
0
(
n2

o +n2
a/2

)
and ∆ε the dielectric

anisotropy. Note that lξ fixes the typical dissipation scale, limiting the extent of
the inertial range in which the OWT cascade develops. In other contexts, see e.g.
[11, 27, 28], such a spatial diffusion of the molecular deformation has been denoted
as a nonlocal effect. In our experiment, for V0 = 2.5 V we have lξ = 9 µm. By con-
sidering that a typical value of K is of the order of ∼ 10 pN, we can derive a typical
dissipation length scale of the order of ∼ 10 µm.

4.3.1 Evolution Equation

Our system is modeled by two coupled equations, one describing the evolution of the
complex amplitude of the input beam ψ(x,z), equation (4.1) and the second for the
liquid crystal reorientation angle a(x,z), equation (4.2). However, it is convenient
for us to construct a single evolutionary equation for the complex wave amplitude
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ψ(x,z). The system of equations (4.1) and (4.2) can be formally re-written, so that
one eliminates the variable a(x,z). In order to achieve this, one must invert the oper-
ator applied to a(x,z) in equation (4.2). Subsequently, this procedure yields a single
equation for the complex amplitude of the beam ψ(x,z),

2iq
∂ψ
∂ z

+
∂ 2ψ
∂x2 +

k2
0n4

aε0

4K
ψ

(
1
l2
ξ
− ∂ 2

∂x2

)−1

|ψ|2 = 0. (4.3)

Equation (4.3) models the full dynamics of the complex wave function ψ(x,z), to
the same extent as the system described by equations (4.1) and (4.2). On inspection
of equation (4.3) we find that the operator applied to the nonlinear term is rather
complicated and would not yield a scale invariant nonlinear interaction coefficient
convenient for the application of WTT. The experimental setup is located in the
long-wave limit, klξ ¿ 1 due to the nature of the LC. Therefore, we can overcome
the problem of the nonlinear operator by expanding in terms of the small parameter
klξ .

4.3.2 Long-Wave Model

We derive this long-wave model by Taylor expanding the nonlinear operator in equa-
tion (4.3) in the limit klξ ¿ 1. Taking the expansion up to the order of O((klξ )4),
one can derive an evolutionary equation for the wave function ψ(x,z) that is of the
form of a modified 1D NLSE. Note, that we took the expansion of the nonlinear
operator up to the second order, this is because if we take the leading order, we
would have identically the 1D NLSE, which is a completely integrable system. So
the resultant non-integrable model for the evolution of ψ(x,z) in the long-wave limit
is,

2iq
∂ψ
∂ z

=−∂ 2ψ
∂x2 −

ε0n4
al2

ξ k2
0

4K

(
ψ|ψ|2 + l2

ξ ψ
∂ 2|ψ|2

∂x2

)
. (4.4)

Equation (4.4) hold the property that it conserves the energy,

H =
∫ ∣∣∣∣

∂ψ
∂x

∣∣∣∣
2

−
ε0n4

al2
ξ k2

0

8K

[
|ψ|4− l2

ξ

(
∂ |ψ|2

∂x

)2
]

dx, (4.5)

where H is defined as the Hamiltonian of the system and satisfies 2iq∂ψ/∂ z =
δH/δψ∗. Also equation (4.4) conserves the total number of photons, or wave ac-
tion,

N =
∫
|ψ|2dx. (4.6)
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4.3.3 The Fjørtoft Argument

As already mentioned, our system possesses two conserved quantities (energy H,
and total wave action N), and as such will support a dual cascade regime [1]. This is
analogous to 2D turbulence, where entrophy cascades towards high wavenumbers
and energy towards low wavenumbers. It is worth to point out that, as opposed to
2D turbulence, WTT assumes weak nonlinearity of the system, and as such implies
smallness of wave amplitudes. This weak nonlinearity assumption also implies that
the linear energy is dominant over the nonlinear energy. In the case of weak nonlin-
earity, one can determine the direction of each cascade, by applying a Fjørtoft style
argument [29].

Suppose that the forcing and damping occur over certain intervals of wavenum-
ber space, damping near k = 0 to absorb the inverse cascade of particles, excitation
in a small interval at intermediate wavenumber around k = k0, and finally high fre-
quency dissipation for k > kD. Then, transfer of wave action an energy takes places
and fluxes can be defined as

Qk =
∫ k

0

∂nk′

∂ t
dk′ (4.7)

Pk =
∫ k

0
ωk′

∂nk′

∂ t
dk′, (4.8)

representing, respectively, the flux of particle towards low wavenumbers and the
flux of energy towards high wavenumbers. The Fjørtoft reasoning goes as follows:
Assume that the system has reached a steady state, therefore the total amount of en-
ergy flux Pk, and wave action flux Qk, contained within the system must be zero, i.e.∫

Pkdk = 0, and
∫

Qkdk = 0 respectively. Then, let the system be forced at a specific
intermediate scale k f , with both energy and wave action fluxes being generated into
the system at rates Pf and Q f . Moreover, let there exist two sinks, one at the high
wavenumber limit k+À k f , with energy and wave action being dissipated at rates P+
and Q+, and one at the low wavenumber limit k− ¿ k f , dissipated at rates P− and
Q−. Therefore, in between forcing and dissipation there exist two distinct inertial
ranges where neither forcing or dissipation has an effect. In the weakly nonlinear
regime, the energy flux is related to the wave action flux by Pk ≈ ωkQk = k2Qk.
Therefore, in a steady state system, the energy and wave action balance implies that

Pf = P−+P+, (4.9)
Q f = Q−+Q+, (4.10)

and roughly speaking, from weak nonlinearity we have
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Pf ≈ k2
f Q f , (4.11)

P− ≈ k2
−Q−, (4.12)

P+ ≈ k2
+Q., (4.13)

Subsequently, the balance equations (4.9) and (4.10) can be written as

k2
f Q f ≈ k2

−Q−+ k2
+Q+, (4.14)

Q f = Q−+Q+, (4.15)

respectively. One can then rearrange equations (4.14) and (4.15), so that we can
predict at what rates the wave action and energy fluxes are dissipated at the two
sinks at dissipative scales k− and k+. From equations (4.14) and (4.15) we find that,

Q+ =
k2

f − k2−
k2
+− k2−

Q f , (4.16)

Q− =
k2

f − k2
+

k2−− k2
+

Q f . (4.17)

If we consider the region around large scales, k− ¿ k f < k+, then we have from
equation (4.16): k2

f Q f ≈ k2
+Q+ i.e. that energy is mostly absorbed at the region

around k+. Moreover, considering the region around small scales k− < k f ¿ k+, we
have from (4.17) that Q f ≈ Q− i.e. that wave action is mostly absorbed at regions
around k−, this is illustrated in Fig. 4.2. Therefore, if we force at an intermediate
scale, we should have the majority of the energy flowing towards high wavenum-
bers and the majority of the wave action flowing towards small wavenumbers. This
determines the dual cascade picture of 1D OWT.
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Fig. 4.2 The dual cascade regime in 1D OWT.
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4.3.4 Hamiltonian Formulation

The Hamiltonian formulation provides a very convenient way of describing systems
with waves. It enables us separate the linear and nonlinear wave dynamics and to
mathematically describe their wave interactions. The most desirable way of describ-
ing the wave dynamics is to represent the Hamiltonian system in terms of the wave
action variable a(k,z). The wave action variable a(k,z) is the Fourier coefficient
in the Fourier representation of the complex beam amplitude variable ψ(x,z), de-
fined by its Fourier transform. Hamiltonian (4.5) can be written in terms of the wave
action variable and can be expressed in the form,

H = H2 +H4 =
∫

ωkaka∗kdk +
∫

W1234δ 12
34 a1a2a∗3a∗4dk1234, (4.18)

and ∗ to denote the complex conjugate. The linear wave frequency is ωk = k2, and
the four-wave interaction coefficient W1234 for the nonlinear interaction of waves is

W1234 =
ε0n4

al4
ξ k2

0

16K
(k1k4 + k2k3 + k2k4 + k1k3−2k3k4−2k1k2)−

ε0n4
al2

ξ k2
0

8K
. (4.19)

Hamiltonian (4.18) can be easily split into terms of differing orders of interaction
(or nonlinearity) with respect to the wave action variable ak. Hamiltonian (4.18), can
be split into a quadratic term, H2 - this corresponds to the linear wave dynamics of
the propagation of a wave with linear frequency ωk. But in addition, we have a
quadric term H4, which corresponds to the nonlinear wave dynamics.

In the limit ε0n4
al2

ξ k2
0/2K → 0, equation (4.4) becomes the linear Schrödinger

equation which has linear wave solutions ψ(x,z) ∼ bk exp(−iωkz + ikx) with “fre-
quencies” ω = k2 and constant complex amplitudes bk. For weak nonlinearity the
amplitude bk become weakly dependent on “time” z.

Applicability of WTT needs to be checked, this is achieved by verify that the
linear dynamics do indeed dominate in the system. The ratio of the linear term and
the leading nonlinear term in the long-wave model is

J =
4Kk2

ε0n4
ak2

0l2
ξ I

, (4.20)

where I = |ψ|2 is the input intensity. For the weak nonlinear regime to be reached,
we require that the nonlinearity parameter 1 ¿ J. For nonlinear wave mixing to
occur, waves must be in a state of resonance, this means that they must satisfy a
resonance condition on the conservation of wavenumbers and frequencies. These
conditions together are known as the resonant manifold condition, where both

k + k1− k2− k3 = 0, ωk +ω1−ω2−ω3 = 0, (4.21)

1 1
12
34 =δ(k1+k2−k3−k4), dk1234=dk1dk2dk3dk4we use the notation that a(k ,z)=a ,δ
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are satisfied (for four-wave interactions). For a one-dimensional system with dis-
persion ∼ k2 there exists no non-trivial solution to the resonance condition (4.21).
However, WTT provides a near-identity transformation that allows one to eliminate
unnecessary lower orders of nonlinearity in the system if the corresponding order of
wave interactions are absent.

4.3.5 Canonical Transformation

The near-identity transformation allows one to eliminate “unnecessary” lower or-
ders of nonlinearity in the system if corresponding order of the wave interaction
process is zero, i.e. there exist no non-trivial solutions to the resonant manifold con-
dition of that order [9].

In our case, there can be no four-wave resonances (there are no non-trivial solu-
tion for the resonance conditions in for ω ∼ kx if x > 1). There are also no five-wave
resonances because the original terms in the Hamiltonian are of the even orders.
However, there are non-trivial solutions of the six-wave resonant conditions. Thus,
one can use the near-identity transformation to convert our system into one with the
lowest order interaction Hamiltonian to be of degree six.

A trick for finding a shortcut derivation of such a transformation is found in [9]. It
relies on the fact that the time evolution operator is a canonical transformation. Tak-
ing the Taylor expansion of a(k,z) around a(k,0) = c(k,0) we get a desired trans-
formation, that is by its derivation, canonical. The coefficients of each term can be
calculated from an auxiliary Hamiltonian Haux - this is a generic Hamiltonian with
arbitrary interaction coefficients that once found, determines the canonical variable
ck.

A similar procedure was done in Appendix A3 of [9] to eliminate the cubic
Hamiltonian in cases when the three-wave interaction is nil, and here we apply a
similar approach to eliminate the quadric Hamiltonian. The transformation is repre-
sented as

ak = c(k,0)+ z
(

∂c(k,z)
∂ z

)

z=0
+

z2

2

(
∂ 2c(k,z)

∂ z2

)

z=0
+ · · · (4.22)

The transformation is canonical for all z, so for simplicity we set z = 1. Subse-
quently, Hamiltonian (4.18) can be transformed into,

H = H2 +H6 =
∫

ωkckc∗kdk +
∫

T123456δ 123
456 c∗1c∗2c∗3c4c5c6dk123456. (4.23)

The explicit formula for T123456 stemming from the transformation is
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T123456 = − 1
18

3

∑
i, j,k=1,i6= j 6=k 6=i

6

∑
p,q,r=4,p6=q 6=r 6=p

(
Wp+q−iipqWj+k−rr jk(

ω j+k−r +ωr−ω j−ωk
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+
Wi+ j−ppi jWq+r−kkqr(

ωq+r−k +ωk−ωq−ωr
)
)

. (4.24)

The six-wave interaction coefficient T123456 is formed from a coupling of two
four-wave interactions W1234, i.e. the six-wave interaction is produced from two
coupled four-wave interactions that occur simultaneously, a simple graphic showing
this is depicted in Fig. 4.3.

We find that the six-wave interaction coefficient T123456 is the sum of two terms of
different scalings. However, in the long-wave limit, klξ ¿ 1, T123456 tends towards
a k-independent constant

T123456 =
ε2

0 n8
al6

ξ k4
0

64K2 . (4.25)

This implies that the six-wave interaction coefficient goes to zero in the long-wave
limit.
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Fig. 4.3 Graphic to show how the six wave interactions arises from the coupling of two four wave
interactions

4.3.6 The Kinetic Wave Equation

The kinetic wave equation (KE) describes the evolution of the wave action density
nk = 〈ckc∗k〉 (the averaging is over the random phases) of wave packets in Fourier
space. In order to derive the kinetic equation, we must express the wave action
Hamiltonian (4.23) into an equation for the wave action density nk, by applying a
random phase approximation (RPA). The dynamical equation for the variable ck can
be determined from Hamiltonian (4.23) by the relation i∂ck/∂ z = δH/δc∗k ,
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i
∂ck

∂ z
−ωkck =

∫
Tk12345c∗1c∗2c3c4c5δ k12

345 dk12345. (4.26)

By multiplying equation (4.26) by c∗k , subtracting the complex conjugate, and
averaging we arrive at

∂nk

∂ z
=

∂ 〈ckc∗k〉
∂ z

= 6Im
(∫

Tk12345Jk12345δ k12
345 dk12345

)
, (4.27)

where Jk12345δ k12
345 = 〈c∗kc∗1c∗2c3c4c5〉.

To compute the average applied to Jk12345, one must use a RPA. Taking Jk12345 to
the zeroth order J(0)

k12345 by assuming a Gaussian wave field, implies J(0)
k12345 can be

written as a product of three pair correlators,

J(0)
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δ k
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. (4.28)

However, due to the symmetry of Tk12345, this makes the right hand side of the
KE zero. To find a nontrivial answer we need to obtain a first order addition J(1)

k12345

to Jk12345. To calculate J(1)
k12345 one takes the “time” derivative of Jk12345, using the

equation of motion (4.26) and inserts the zeroth order approximation for the tenth
correlation function (this is similar to equation (4.28), but a product of five pair
correlators involving ten wavevectors). J(1)

k12345 can then be expressed as

J(1)
k12345 = Bei∆ωz +

Ak12345

∆ω
, (4.29)

where Ak12345 = 3T ∗k12345nkn1n2n3n4n5

(
1
nk

+ 1
n1

+ 1
n2
− 1

n3
− 1

n4
− 1

n5

)
and ∆ω =

ωk +ω1 +ω2−ω3−ω4−ω5. The first term of (4.29) is a fast oscillating function,
its contribution to the integral (4.27) decreases with z and is negligible at z larger
than 1/ωk, and as a result we will ignore the contribution arising from this term.
The second term is substituted in equation (4.27),the relation Im(∆ω)∼−πδ (∆ω)
is applied because of integration around the pole, and the KE is derived,

∂nk

∂ z
= 18π

∫
|Tk12345|2 fk12345 δ (k + k1 + k2− k3− k4− k5)

×δ (ωk +ω1 +ω2−ω3−ω4−ω5)dk1dk2dk3dk4dk5, (4.30)

with T123456 being the six-wave interaction coefficient for the system and

fk12345 = nkn1n2n3n4n5
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)
. (4.31)
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The KE has important exact power law solutions. These solutions are known as
KZ solutions, namely from the discovery by Zakharov and their analogies to the
Kolmogorov spectrum seen in classical turbulence theory. Moreover, the KE also
contains thermodynamical equilibrium solutions, that correspond to the relaxation
of energy and wave action within the system to equilibria. These solutions are lim-
iting cases of the more generalized Rayleigh-Jeans distribution,

nk =
T

ωk + µ
, (4.32)

where T is the temperature and µ is a chemical potential.
One can predict the scaling of the KZ solutions by considering a dimensional

analysis argument upon an inertial interval in k-space where the fluxes of both en-
ergy and wave action are constant. We have seen that in the long-wave model, equa-
tion (4.25) implies that the six-wave interaction coefficient scales as

T123456 ∼ |k|0. (4.33)

Thus, the scaling of the KE in terms of wavenumber k and wave action density nk
is,

ṅk ∼ |k|2n5
k . (4.34)

For the direct cascade of energy, the KZ spectrum is realized when there exists a
constant, non-zero energy flux Pk that is scale independent,

Pk =
∫ k

ωkṅkdk ∼ |k|0. (4.35)

Equations (4.34) and (4.35) gives the scaling of nk for the direct cascade to be,

nk = C|k|−1, (4.36)

where C is an arbitrary constant. Similarly, the wave action cascade implies a con-
stant wave action flux flowing towards low wavenumbers, i.e. the wave action flux
Qk scales as

Qk =
∫ k

ṅkdk ∼ |k|0, (4.37)

consequently generating an inverse KZ wave action spectrum of

nk = C|k|− 3
5 . (4.38)

The inverse cascade spectrum is of a finite capacity type, in a sense that only a
finite amount of the cascading invariant (wave action in this case) is needed to fill
the infinite inertial range. (Indeed, the integral of nk ∼ k−3/5 converges at k = 0).
In these cases the turbulent systems have a long transient (on its way to the final
thermal equilibrium state) in which the scaling is of the KZ type. This is because
the initial condition serves as a huge reservoir of the cascading invariant. Note that
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the situation here is not specific for WT only and it is valid generally for turbulence.
For example, it is valid for Navier-Stokes turbulence, i.e. the Kolmogorov-Obukhov
spectrum, which is also finite capacity.

4.3.7 Modulational Instability and the Creation of Solitons

Closeness of equation (4.4) to integrability means that we should expect not only
random waves but also soliton-like coherent structures. In the inverse cascade setup,
solitons appear naturally. Indeed, the wave turbulent description (equation (4.30))
breaks down when the inverse cascade reaches some low k’s. Modulational instabil-
ity (MI) develops at these scales, which results in the filamentation of light and its
condensation into coherent structures - solitons.

The inverse cascade of photons is a very important process in the creation of soli-
tons. It provides the means, via nonlinear wave interaction to allow wave action to
reach lower wavenumbers. Once the intensity at these wavenumbers passes a certain
threshold, MI can take over. MI of a wave packet occurs when the nonlinearity of
the wave packet increases such that the linear dynamics (defined by the linear fre-
quency ωk = k2) become Bogoliubov modified, that is to say that the wave packet
no longer propagates linearly. As a consequence, the wave packet’s dynamics are no
longer determined by the linear dispersion, but now by the Bogoliubov dispersion
relation or frequency. In focusing nonlinear states, this Bogoliubov frequency can
become imaginary when the wave intensity is high enough, resulting in an instabil-
ity of exponential growth of the wave envelope. This process was first discovered
in the context of water waves, where it is originally known as the Benjamin-Feir
instability [30].

One can characterize MI by deriving the Bogoliubov frequency [31], - the non-
linear wave frequency that takes into account the first order effect of weak nonlin-
earity. To derive such a relation, one must expand the wave function ψ(x,z) around
a condensate. The description of the condensate can be calculated by assuming an
x-independent solution of the evolution equation, i.e. ψ(x,z) = ψc(z). Looking for
a small perturbation around this condensate, this expansion can be written in either
physical or Fourier space and is given by either

ψ = ψc (1+φ) or ak = ψc (δ (k)+φk) . (4.39)

where |φ |, |φk| ¿ 1.
The condensate is defined as the k = 0 mode, which corresponds to an x-

independent state. We can determine its dynamics by considering an x-independent
solution ψc(z) to equation (4.4). We find that ψc(z) = ψ0 exp(−iωcz), with ωc =
−ε0n4

al2
ξ k2

0|ψ0|2/8q. ψc(z) describes the background rotation of the condensate with
frequency ωc. Substituting ansatz (4.39) into system (4.4) and linearizing to the first
order in φk, gives a nonlinear evolution equation for the perturbation φk. Finally, one
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makes the assumption of a single monochromatic plane wave solution for φk of the
form φk = Aexp(ikx− iΩkz)+ c.c., where A is a complex constant, and c.c. means
complex conjugate. Equating the exponentials, one can derive the Bogoliubov for-
mula or the MI condition for a perturbation upon a condensate.

2qΩk =

√√√√
(

1+
|ψ0|2ε0n4

al4
ξ k2

0

2K

)
k4−

|ψ0|2ε0n4
al2

ξ k2
0

2K
k2, (4.40)

where |ψ0|2 is the average density of the condensate, and Ωk is the frequency of the
waves upon the condensate. To obtain the frequency of the original wave function
ψ(x,z), we must add back the condensate shift (or the frequency of the condensate)
to the Bogoliubov frequency Ωk. Therefore, the Bogoliubov dispersion relation for
a weakly nonlinear wave packet is ωk = ωc + Ωk, where ωc is the condensate fre-
quency shift and Ωk is the MI condition for φk for the weakly nonlinear wave packet
upon the condensate, equation (4.40).

4.4 Numerical Method

We numerically solve equation (4.4) using a standard pseudo-spectral method with
periodic boundary conditions. We de-alias on half the wavenumbers to remove any
aliasing errors when computing the cubic nonlinear term. We set a resolution of
2048 points in physical space and apply a fourth order Runge-Kutta method to solve
in “time” z. We set the “time step” to be smaller than the CFL condition and the
smallest linear time of evolution to ensure the simulation is properly resolved. We
compute the energy of each term in equation (4.5) to ensure that the linear energy is
greater than the nonlinear and moreover, that the leading nonlinear term dominates
the sub-leading one, i.e. that the long-wave limit is satisfied. Weak nonlinearity is
verified by parameter J (see equation (4.20)), but not too weakly nonlinear that we
experience “frozen turbulence” [32]. To increase stability of the numerical scheme,
we integrate the linear terms exactly and apply the time stepping algorithm to the
nonlinear terms only by using integrating factors.

4.5 Experimental and Numerical Results

Both experimental and numerical setups are configured for decaying OWT, where an
initial condition is defined and allowed to develop absent of any forcing or numer-
ical dissipation. Experimentally, we have injected photons at intermediate spatial
scales, where intermediate means around a wavenumber k = k0 in between k = 0
and dissipation scale occurring at k = kD. At this purpose, the intensity of the input
beam is modulated with a patterned intensity mask, and in order to impose an initial
condition close to the random phase approximation required by the theory, we have
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randomize the phases by a phase modulator. This is made by creating through the
SLM a random distribution of diffusing spots with the average size∼ 35 µm, which
is relatively larger than the liquid crystal electrical coherence length lξ fixing the
dissipative scale.

The numerical initial condition is more idealized and strictly localized at a
small-scale range: we excite five wavenumbers with constant amplitude around
|k f | ∼ 1.5× 102 mm−1, and the phase of ψk is random and independent at each
k. Moreover, we have applied a Gaussian filter in physical space to achieve a beam
profile comparable to that of the experiment.

a) b)
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Fig. 4.4 a) Numerical spectrum of a) the wave action nk, and b) the light intensity, Nk = |Ik|2 at
distances z = 0 mm and z = 63 mm.

The numerical wave action spectrum is shown in Fig. 4.4a at two different dis-
tances, we see at z = 0 mm the peak from the initial condition at high wavenumbers,
then at z = 63 mm we see evidence of an inverse cascade, as the majority of the wave
action is situated towards low wavenumbers. However, at low wavenumbers we do
not see the spectrum matching our theoretical KZ prediction of nk ∼ |k|−3/5, this is
because of high nonlinearities towards low wavenumbers causing a breakdown of
the WTT. The higher nonlinearity towards low wavenumbers causes soliton forma-
tion out of the weakly nonlinear waves, and as a result we observe a flattening of the
wave action spectrum. However, it remains to be found why the inverse wave action
spectrum disagrees with the WTT prediction in the same run, and whether we could
confidently say that what we see is a KZ spectrum. Note that even in weak wave
turbulence, the KZ spectrum may not be realized, e.g. if the interaction of scales is
nonlocal. In the other words, the presence of wave turbulence (claimed in this pa-
per) does not automatically imply the presence of KZ spectra (for which we see an
indication but not a solid proof).

Experimentally, we measure the light intensity I(x,z) = |ψ|2 and not the phases
of ψ and, therefore, the spectrum nk is not directly accessible. Instead, we measure
the spectrum of intensity N(k,z) = |Ik(z)|2. The scaling for Nk in the inverse cascade
state is easy to obtain from nk ∼ |k|−3/5 and the random phase condition, this gives
Nk ∼ |k|−1/5. Numerical and experimental spectra of the light intensity are shown in
Figs. 4.4b and 4.5 respectively. In both cases one can see an inverse cascade excita-
tion of the lower k states, and good agreement with the WT prediction Nk ∼ |k|−1/5.
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Fig. 4.5 Experimental spectrum of the light intensity, Nk = |Ik|2 at two different distances z.

Note that the numerical spectrum of the light intensity shows a better agreement
with the expected KZ scaling than the numerical wave action spectrum. A possible
explanation is that averaging over phases can provide a wash-out effect of the WTT
breakdown phenomena occurring at low wavenumbers, thus restoring the scaling
predicted in the approximation of weak nonlinearities.
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Fig. 4.6 Intensity distribution I(x,z) showing the beam evolution during propagation; a) linear
case, b) weakly nonlinear case. c) Two intensity profiles I(x) recorded at z = 0 and z = 1.9 mm in
the weakly nonlinear regime, V = 2.5 V .

Experimentally, the inverse cascade can be seen directly by inspecting the light
pattern in the x− z plane under the beam propagation evolution. Two magnified
images of the intensity distribution I(x,z) showing the beam evolution during prop-
agation are displayed in Fig.4.6. For comparison, in Fig.4.6a and b, respectively, we
show the beam evolution in the linear and in the weakly nonlinear (wave turbulence)
regime. In Fig.4.6a the initial condition is periodic with an uniform phase and no
voltage is applied to the liquid crystal layer (V = 0). We see that the linear propaga-
tion is characterized by the periodic recurrence of the pattern with the same period,
a phase slip occurring at every Talbot distance, this one being determined by p2/λ
with p the period of the initial condition and λ the laser wavelength [33]. In Fig.4.6b
the voltage on the liquid crystal cell is switched on, V = 2.5 V rms, and the initial
condition is periodic with the same period as in Fig.4.6a but with random phases.
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In this case, the initial period of the pattern is becoming larger as the light beam
propagates forward along z. If a random phase distribution would have been chosen
in the linear case, then, a speckle pattern would have developed along propagation
[34], therefore destroying the initial modulation and preventing a direct comparison
of the linear and weakly nonlinear case.

While the linear propagation leads to Talbot intensity carpets [35], with the initial
intensity distribution reappearing periodically along the beam propagation direction
z, the weak nonlinearity leads to wave interaction, so that, as the beam propagates,
the different spatial frequencies components mix-up and the periodic occurrence
of the Talbot carpet is broken. In Fig.4.6c we show two intensity profiles taken in
the nonlinear case at different stages of the beam propagation. The inverse cascade
is accompanied by a smoothing of the intensity profiles and amplification of low
wavenumbers as the beam propagates forward inside the nematic layer.
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Fig. 4.7 a) Experimental results for intensity distribution I(x,z) for the same parameter values for
Fig.4.6. Area marked by the dashed line is shown at a higher resolution (using a larger magnifica-
tion objectif). b) Linear intensity profiles I(x) taken at different propagation distances, z = 0.3, 4.5
and 7.5 mm

Fig. 4.8 Numerical results for intensity distribution I(x,z). The frame on the left is a magnified
section of the initial propagation of the beam.

Example zooms of the intensity distribution I(x,z) showing the beam evolu-
tion during propagation in the experiment and in the numerics are displayed in
Fig. 4.7 and Fig. 4.8 respectively. The experimental data shown in Fig. 4.7 have
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been recorded for the same parameter values as for Fig.4.6. In the high resolution
inset on Fig. 4.7 one can visually observe that the typical scale increases along the
beam which corresponds to an inverse cascade process. Further, in both Fig. 4.7 and
Fig. 4.8 one can see formation of coherent solitons out of the random initial field,
such that one strong soliton is dominant at the largest distance z (the soliton peak
intensity in Fig.4.7 is ∼ 800 times greater than the initial light intensity).

Fig. 4.9 The k−ω spectrum of the wave field at z = 2.1 m. ω∗ = 1/256ql2
ξ and k∗ = 1/

√
128lξ .

The Bogoliubov dispersion relation is shown by the solid line.

Separating the random wave and the coherent soliton components can be done
via performing an additional Fourier transform with respect to ”time” z over a fi-
nite z-window. Such numerically obtained (k,ω)-plot is shown in Fig. 4.9. There,
the incoherent wave component is distributed around the wave dispersion relation,
which is Bogoliubov-modified by the condensate (equation (4.40)) and shown by a
solid line in Fig. 4.9. This distribution is narrow for large k which corresponds to
weak nonlinearity, and it gets wider toward low k, which corresponds to a growth
of nonlinearity and breakdown of the WT applicability conditions. For these low
k values one can see pieces of slanted lines (under the dispersion curve). Each of
these lines corresponds to a coherent soliton, whose speed is equal to the inclination
slope. We observe that the formation of solitons is seen in the (k,ω)-plot as straight
line “peeling” with a gradient tangential to the dispersion curve. Experimental re-
alization of the (k,ω)-plot will be performed in next future by employing a higher
depth resolution camera.

4.5.1 Direct cascade of energy

Finally, we numerically investigated the direct energy cascade. We found that the
direct cascade prediction is an infinite capacity spectrum. This means that unlike
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the inverse cascade, one cannot realize the KZ prediction in a decaying simu-
lation. Therefore, we ran a numerical simulation of equation (4.4), but with the
additional terms that correspond to additive forcing +iF , and dissipation −iD.
We forced with constant amplitude and random phases at three wavenumbers at
the low wavenumber region and applied hyper and hypo-viscosities of the form
D = ν1∂ 8ψ/∂x8 + ν2∂−8ψ/∂x−8. We ran the simulation, and then averaged the
wave action spectrum once the simulation reached a steady state. We show the di-
rect wave action spectrum with the WTT KZ prediction in Fig. 4.10. We see a good
agreement with the KZ spectrum for about a decade in wavenumber space. There is
some slight noise at high wavenumbers, due to the simulation not completely reach-
ing a true steady state. This regime is not accessible in the experiment because the
system is not large enough to let the cascade to develop over a significant wavenum-
ber interval. Further experiments are in progress in order to increase the size of the
system and to observe the direct cascade.
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Fig. 4.10 The numerical direct wave action spectrum of energy with the predicted KZ spectrum of
nk = k−1.

4.6 Conclusions

In conclusion, we have presented an experimental implementation of the 1D OWT
regime, accompanied by numerical simulations and theory. We observe an inverse
cascade of photons toward the states with lower wavenumbers in both the experi-
ment and numerics, the predicted intensity spectrum is seen clearly in the experi-
ment plot, with a reasonable trend in the numerical plot. The wave action spectrum
in the numerical plot is vaguely seen over a short region, we argue that decaying
OWT isn’t the ideal setup for seeing the KZ spectrum, because of the high lev-
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els of nonlinearity at lower wavenumbers and the presence of solitons where WTT
breaks down. Furthermore, we have shown that after the initial inverse cascade to
low wavenumbers, we see the development of solitons by MI, then the further merg-
ing of these solitons into one dominate soliton at later times. Finally, we also ver-
ified numerically the KZ prediction for the direct cascade, with a good agreement
for about a decade in wavenumber space.
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Part II
Localized structures in pattern forming

systems



Chapter 5
Localized Structures in the Liquid Crystal Light
Valve Experiment

Umberto Bortolozzo, Marcel G. Clerc, René G. Rojas, Florence Haudin and
Stefania Residori

Abstract We will review the conditions for the appearance of coherent or localized
states in a nonlinear optical feedback system, with particular reference to the Liquid
Crystal Light Valve (LCLV) experiment. The localized structures here described are
of dissipative type, that is, they represent the localized solutions of a pattern-forming
system. We will show that different types of localized states are observed in the
system and can be selected depending on the control parameters: round localized
structures that interact forming bound-states, triangular localized structures, char-
acterized by the presence of phase singularities, localized peaks, appearing above a
structured background. Then, we will discuss the nonvariational behaviors of such
coherent states, like the bouncing of round localized structures and the chaotic front
propagation for the triangular ones. We will present the full model equations for the
LCLV system as well as a one-dimensional spatially forced Ginzburg-Landau equa-
tion, which is the simplest model accounting for the phenomenology observed in the
experiment. We will show how, by using a properly intensity/phase modulated input
beam, we can either induce a large pinning effect or control the dynamics of large
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arrays of localized structures, addressing each site independently from the others.
Finally, the propagation properties of localized structures will be presented.

5.1 Introduction

Non equilibrium processes often lead in nature to the formation of spatially periodic
and extended structures, so-called patterns [2, 2]. The appearance of a pattern from a
homogeneous state takes place through the spontaneous breaking of one or more of
the symmetries characterizing the system [4]. In some cases, it is possible to localize
a pattern in a particular region of the available space, so that we deal with localized
instead of extended structures. From a theoretical point of view, localized structures
in out of equilibrium systems can be seen as a sort of dissipative solitons [19].
Experimentally, during the last years localized patterns or isolated states have been
observed in many different fields. Examples are domains in magnetic materials [5],
chiral bubbles in liquid crystals [6], current filaments in gas discharge experiments
[7], spots in chemical reactions [8], oscillons in granular media [9, 10], localized
fluid states in surface waves [9] and in thermal convection [12], solitary waves in
nonlinear optics [13, 14, 15, 16, 17, 18, 48, 20]. All these localized states can be
considered to belong to the same general class of localized structures, that is, they
are patterns that extend only over a small portion of a spatially extended system.

In optics, solitary waves have first been predicted to appear in bistable ring
cavities [13], then, they have been largely studied not only for their fundamen-
tal properties but also in view of their potential applications as elementary bits of
information [21, 22, 23, 24]. Sometimes named as cavity solitons, optical local-
ized structures have been observed in photorefractive media [25], in lasers with
saturable absorber [26], in Liquid-Crystal-Light-Valves (LCLVs) with optical feed-
back [14, 15, 16, 17, 18], in Na vapors [27] and more recently in semiconductor
micro-cavities [20].

Here, we will review the conditions for the appearance of coherent or localized
states in a nonlinear optical feedback system, with particular reference to the Liquid
Crystal Light Valve (LCLV) experiment [28]. We will show that different types of
localized states are observed in the system and can be selected depending on the con-
trol parameters: round localized structures that interact forming bound-states [29],
triangular localized structures, characterized by the presence of phase singularities
[30], localized peaks, appearing above a structured background [31]. Then, we will
discuss the nonvariational behaviors of such coherent states, like the bouncing of
round localized structures [32] and the chaotic front propagation for the triangular
ones [33].

We will present the full model equations for the LCLV system as well as a
one-dimensional spatially forced Ginzburg-Landau equation, which is the simplest
model accounting for the phenomenology observed in the experiment [34] and for
the tilted snaking bifurcation diagram [35]. Then, we will show how, by using a
properly intensity/phase modulated input beam, we can either induce a large pin-
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ning range or control the dynamics of large arrays of localized structures, addressing
each site independently from the others [36]. Finally, we will present the propaga-
tion properties of localized structures [37].

5.2 The Liquid Crystal Light Valve Experiment

5.2.1 Description of the setup

The experimental setup, shown in Fig.8.3, consists of a LCLV with optical feedback,
as it was originally designed by the Akhmanov group [38]. The LCLV is composed
of a nematic liquid crystal film sandwiched in between a glass window and a photo-
conductive plate over which a dielectric mirror is deposed. Coating of the bounding
surfaces induces a planar anchoring of the liquid crystal film (nematic director n par-
allel to the walls). Transparent electrodes covering the two confining plates permit
the application of an electric field across the liquid crystal layer. The photoconduc-
tor behaves like a variable resistance, which decreases for increasing illumination.
The feedback is obtained in the following way: the light which has passed through
the liquid-crystal layer, and has been reflected by the dielectric mirror inside the
LCLV, is sent back onto the photoconductor of the LCLV. This way, the light beam
experiences a phase shift which depends on the liquid crystal reorientation and, on
its turn, modulates the effective voltage that locally is applied to the liquid crystals.

The feedback loop is closed by an optical fiber bundle and is designed in such a
way that diffraction and polarization interference are simultaneously present [28].
The presence of diffraction leads to the spontaneous generation of self-organized
patterns, which display a typical spatial period scaling as ∼

√
λ |L|, where λ is the

laser wavelength and L is the optical free propagation length in the feedback loop
[39]. On the other hand, the presence of polarization interference leads to bistability
between different spatial states. Setting L = 0 eliminates diffraction effects, so that
in this case the system exhibits bistability between homogeneous states and front
propagation [25].

To obtain localized structures the optical free propagation length is usually fixed
to L =−8 cm. For this value of L the transverse size of a single localized structure,
which scales as

√
λ |L|, is about 250 µm. At the linear stage for the pattern forma-

tion, a negative propagation distance selects the first unstable branch of the marginal
stability curve, as for a focusing medium [41]. Moreover, an input and feedback po-
larizer are inserted in such a way to form with the liquid crystal director an angle
of 45◦ and −45◦, respectively. For this parameter setting and close to the point of
Fréedericksz transition, there is coexistence between a periodic pattern and a homo-
geneous solution. The Fréedericksz transition point is attained for an applied r.m.s.
voltage V0 of approximately 3 V , with a frequency of 5 kHz [25]. By increasing V0,
successive branches of bistability are excited. Most of the experimental observations
here reported were obtained close to one of the points of nascent bistability onto the
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different bistable branches. There, the bistable behavior observed is similar to the
one observed close to the Fréedericksz transition point [25].

The input beam has a Gaussian profile with a transverse size of approximately 2
cm, whereas a diaphragm before the LCLV selects a central active zone with a di-
ameter of 1 cm. The input intensity Iin usually varies in between 0.3 and 1 mW/cm2.
As shown in Fig.8.3, the setup includes also a spatial light modulator (SLM) con-
nected to a personal computer (PC) and inserted in the optical path of the input
beam Iin. The SLM is a twisted nematic liquid crystal display that can be used either
without polarizers or in between crossed polarizers providing, respectively, phase or
intensity modulations that are used to control the spatial profile of the input beam.

feedback loop

 SLM

 LCLV
C
O
N
T
R
O
L

A
C
Q
U
I
S
I
T
I
O
N

V0

Iin

Iw

liquid cristals
ITO electrodes
photoconductor
dielectric mirror
glass plate

Fig. 5.1 Experimental setup: the LCLV is illuminated by a plane wave collimated beam (red line in
the central picture); the beam reflected by the LCLV (green line) is sent back to the photoconductor
through a beam-splitter, a mirror and, finally, an optical fiber bundle. In the upper left inset is shown
an enlarged picture of the LCLV. A schematic representation is displayed below: V0 is the voltage
applied, Iin and Iw are the input and feedback intensity, respectively. A small portion of the beam
(white line), is extracted from the feedback loop through a beam-splitter and sent to the acquisition
line that is composed by a lens, a mirror and a computer interfaced CCD camera. In the bottom
right inset is shown an enlarged image of the SLM that is computer interfaced and used to control
the spatial profile of the input beam.
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5.2.2 The optical feedback: model equations

The theoretical model for the LCLV feedback system was previously derived in [32]
and consists of two coupled equations, one for the average director tilt θ (r⊥, t),
0 ≤ θ ≤ π/2, and one for the feedback light intensity Iw. The average director
tilt θ (r⊥, t) accounts for the average orientation angle of the liquid crystal mole-
cules with respect to the longitudinal direction of the nematic layer, r⊥ denotes the
transversal direction of the liquid crystal layer. For θ = 0 (θ = π/2) all the mole-
cules are parallel (orthogonal) to the confining walls, which corresponds, respec-
tively, to a planar and a homeotropic alignment of the liquid crystals [42].

When one applies an electric voltage V0 along the longitudinal direction of the
nematic layer, all the molecules in the bulk reorient in such a way to align with the
direction of the applied field, because of their positive dielectric anisotropy. Hence,
liquid crystal molecules are under the influence of two opposite torques, the elastic
restoring torque and the electric torque. The equation for the average director tilt
around equilibrium reads as

τ∂tθ = l2∇2
⊥θ −θ +θc(V ), (5.1)

where l is the electrical coherence length, τ the local relaxation time and θc(V ) the
equilibrium average director tilt. There is a critical value of the voltage–VFT –for
which the electric force overcomes the elastic one, so that the molecules reorient.
This process is called Fréedericksz transition [42].

In the LCLV, we must take into account the response of the photoconductor. In
the absence of optical feedback, the response of the valve is phenomenologically
described by the following model, as originally proposed in [32],

θc =

{
0 V ≤ ΓVFT

π/2
(

1−
√

ΓVFT /V
)

V > ΓVFT
, (5.2)

where V = ΓV0 is the voltage that effectively applies to the liquid crystal layer and
Γ is the impedance of the LCLV dielectric layers. Experimentally and theoretically,
we have a very good agreement with the observation of the average equilibrium
director tilt and the formula (5.2). In Fig.5.2a the measured equilibrium director tilt
θc is plotted as a function of V0 together with a best fit by using Eq.(5.2). Note
that other models for the director tilt are reported in the literature [14, 16], which,
however, do not provide a satisfactory agreement with the experimental data for our
light-valves.

When we consider the optical feedback, the relaxation and diffusive dynamics
of the average director tilt is largely enriched because the voltage that effectively
applies to the liquid crystal layer becomes a function of the average director tilt. It,
precisely, reads as

V (θ) = ΓV0 +αIw(θ), (5.3)
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where Iw is the feedback intensity arriving onto the photoconductor and α is a phe-
nomenological parameter summarizing, in the linear approximation, the response of
the photoconductor. After a free propagation length L, the feedback light intensity
is given by

Iw =
Iin

4
| ei Lλ

4π ∇2
⊥

(
1− e−iβ cos2 θ

)
|2, (5.4)

the diffraction being accounted for by the operator ei Lλ
4π ∇2

⊥ . The overall phase shift
experienced by the light traveling forth and back through the liquid crystal layer
is βcos2θ , where β = 2kd∆n with k = 2π/λ the optical wave number (λ = 633
nm), d = 15 µm the thickness of the liquid crystal layer and ∆n = 0.2 the difference
between the extraordinary (‖ to n) and ordinary (⊥ to n) refractive index of the
liquid crystals.
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Fig. 5.2 a) Equilibrium average director tilt θc as a function of the applied voltage V0 when there
is no optical feedback; circles are experimental points, the solid line is a best fit with Eq.(5.2). b)
The multi-valued function θc(V0, Iin) representing the equilibrium average director tilt when the
optical feedback is present; shaded areas mark the locations of the nascent bistability points.

By inserting Eq.(5.4) into Eq.(5.1), the dynamics of the LCLV with optical feed-
back is described by

τ∂tθ − l2∇2
⊥θ +θ =





0 V ≤ ΓVFT

π/2
(

1−
√

ΓVFT
ΓV0+αIw(θ ,∇2

⊥)

)
V > ΓVFT

. (5.5)

Above the Fréedericksz transition and by neglecting the spatial terms–which is
equivalent to consider a free propagation length equal to zero–we can find a closed
expression for the homogeneous equilibrium solutions

θc = π/2
(

1−
√

ΓVFT /(ΓV0 +αIin[1+ cos(β cos2 θ0)])
)

.
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The multi-valued function θc(V0, Iin), representing the equilibrium average director
tilt when the optical feedback is present, is shown in Fig.5.2b. The value of VFT
is set to 3.2 Vrms, as measured for the LCLV [25, 43]. For small intensity of the
optical feedback (Iin ¿ 1), the system has one equilibrium state, however when Iin
is increased the system exhibits multiple stability. In agreement with the bistabil-
ity branches observed experimentally, several points of nascent bistability can be
distinguished.

5.3 Experimental Observations of Optical Localized Structures

5.3.1 Round localized structures: interaction and dynamics

Optical localized structures are observed in the experiment when diffraction and
polarization interference are simultaneously present. Round localized structures are
characterized by interactions, that are mediated by the oscillations present on their
tails [44]. A quantitative experimental evidence of the crucial role played by the
oscillatory tails in determining the interaction forces between localized structures
is given in [17]. The oscillatory tails of localized structures, and, therefore, their
interactions, are tailored by acting on the spatial frequency bandwidth qB of the op-
tical feedback loop, which can be experimentally controlled by means of a variable
aperture placed in the Fourier plane.

a) b) c) d) e)

f) g)
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Fig. 5.3 Upper panels: bound states of localized structures obtained for V0 = 4.5 V , Iin = 0.5
mW/cm2 and qb = 3.6; all states a)-e) are obtained by inducing a pair of localized structures with
an increasing initial distance between centers, and letting the system evolve up to the formation
of a stationary bound state. Lower panels: bouncing dynamics of localized structures observed
at V0 = 12.2 V and Iin = 0.95 mW/cm2; f) successive snapshot showing two localized structures
bouncing one over the other; g) space-time diagrams showing two stationary localized structures
(top), two localized structures with periodic oscillations of their positions (middle) and aperiodic
bouncing (bottom).

While for monotonically decreasing tails one would expect only attractive or
repulsive forces, oscillatory tails induce oscillatory signs of the interactions, and
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thus produce both attractive and repulsive forces, depending on the distance between
the centers of a pair of localized structures. In the upper part of Fig.5.3 we display a
set of different bound states of localized structures obtained for V0 = 4.5 V , Iin = 0.5
mW/cm2 and qb = 3.6, where qb ≡ qB/qdi f f is the system bandwidth normalized
to the diffractive wave number qdi f f =

√
πk/|L|. We notice that bound states form

a set that can be ordered following a precise rule, given by counting the number
of maxima and minima that occur along the segment connecting the centers of the
two localized structures. This number n has been identified as the bound state order
number [17].

Concerning the dynamics of localized structures, it can be shown that close to
the point of nascent bistability, the model for the LCLV can be reduced to a Swift-
Hohenberg type equation with the inclusion of nonvariational effects [32]. The am-
plitude equation is a Lifshitz normal form

∂tu = η + µu−u3 +ν∂xxu−∂xxxxu+βu∂xxu+ γ(∂xu)2, (5.6)

where u is the amplitude of the first deformation mode of the average director tilt
θ , η is a symmetry breaking parameter, µ is the bifurcation parameter, ν∂xxu is
the diffusion, ∂xxxxu describes a super diffusion, accounting for the short distance
repulsive interaction, and the terms proportional to β and γ are, respectively, the
nonlinear diffusion and convection.

As a consequence of the nonvariational dynamics, localized structures show com-
plex behaviors, such as the bouncing of two adjacent localized structures. In order
to study this effect, one-dimensional experiments have been carried out by insert-
ing in the feedback loop a rectangular mask with a width of 0.5 mm and a length
of 20 mm [32]. The dynamics of localized structures have been recorded and ana-
lyzed. Successive snapshots showing the bouncing of two localized structures one
over the other are shown in Fig.5.3f. The corresponding spatiotemporal plots are
displayed in Fig.5.3g. The middle panel shows the periodic oscillations for the posi-
tions of the two structures observed for Iin = 0.95 mW/cm2 and V0 = 13.2 V . In the
top panel it is shown the spatiotemporal plot corresponding to stationary localized
structures, as observed for a slightly decreased input intensity, Iin = 0.90 mW/cm2,
and for the same value of V0. The bottom panel displays the spatiotemporal diagram
corresponding to aperiodic oscillations in the structure positions, as observed for
V0 = 13.3 V and Iin = 0.90 mW/cm2.

5.3.2 Triangular localized structures: bistability and phase
singularities

When the input intensity Iin and the voltage V0 are set in such a way to excite multi-
stable states, it has been observed the bistability between two different types of lo-
calized structures, namely the usual ones, characterized by a circular symmetry, and
the triangular ones characterized by a broken symmetry and a higher amplitude peak
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[30]. The two localized structures not only differ in shape but also are separated by
a discrete gap in their peak intensity. If used as pixels for information storage, these
localized structures represent three-state variables, instead of the common two-state
variables (bits) that a common localized structure can encode, thus allowing an in-
creased information storage for the same given area of the recording medium.

As we have seen in the previous section, round localized structure have a cir-
cular symmetry, with a bright central peak connected to the dark background via
a series of small amplitude oscillations. Triangular localized structures are char-
acterized by a triangular symmetry, observed both in the central peak and in the
tails. For comparison, a round and a triangular localized structure, as observed for
the same experimental parameters in the coexistence region, are shown in Fig.5.4
a and b, respectively. Numerical simulations faithfully reproduce the observations.
In Fig.5.4c it is displayed a triangular localized structure resulting from numeri-
cal simulations of the LCLV model equations. We notice that triangular localized
structures are characterized by a rich structure of phase singularities appearing as
black holes on the intensity pattern. Phase singularities are nucleated by pairs (pos-
itive and negative) from around the peak to the oscillating tails [45]. The presence
of phase singularities is evidenced in Fig.5.4d by plotting the lines Im(E) = 0 and
Re(E) = 0, whose intersections mark their exact locations.

b)a)

d)c)

e)

Iin(mW/cm2)

Fig. 5.4 a) Round and b) triangular localized structures as observed in the LCLV experiment for
the same parameter values. c) Numerically calculated intensity distribution of a triangular local-
ized structures plotted in logarithmic gray scale; corresponding contour lines Re(E) = 0 (black)
and Im(E) = 0 (grey) showing the locations of phase singularities. e) State diagram showing the
bistability between the round and triangular localized structures. Experimental points: squares, low
uniform state; open circles, round localized structures; solid circles, triangular localized structures.
Numerical lines: continuous, round localized structures; dashed, triangular localized structures.

Each of the two localized structures coexisting in the bistable region can be
switched on by an appropriate addressing pulse. Lower intensity pulses trigger a
round localized structure, whereas higher intensity pulses create a triangular lo-
calized structure. The experimental state diagram is shown in Fig.5.4, together
with its numerical counterpart. Here it is plotted for each localized structure the
peak intensity Ipeak. Starting from a very low value of input intensity Iin and grad-
ually increasing it, the lower uniform solution is the only state observed up to
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Iin = 0.32 mW/cm2. From this value on, round localized structures are observable.
At Iin = 0.61 mW/cm2 round localized structures loose their stability, and the sys-
tem jumps to the branch of triangular localized structures. If, starting from a trian-
gular localized structure, the pump is decreased, the structure remains stable down
to Iin = 0.47 mW/cm2, and then decays to a round localized structure. If, instead,
starting from Iin = 0.61 mW/cm2, the pump is increased, the triangular localized
structure exists up to Iin = 0.69 mW/cm2, and then destabilizes via a transition to
a delocalized irregular pattern. The transition to a pattern state occurs through a
space-time chaotic dynamics and complex front propagation phenomena that are
associated with the creation/annihilation of phase singularities [33].

5.3.3 Bipatterns and localized peaks

In the LCLV experiment it exists a range of parameters for which bistability occurs
between two pattern states. In this case, we observe the appearance of localized
peaks, that is, high amplitude peaks nucleate spontaneously over a lower amplitude
pattern [31]. An experimental snapshot showing localized peaks over an hexagonal
pattern and a typical bifurcation diagram allowing for the appearance of localized
peaks are displayed in Fig.5.5a and inset, respectively. An unifying description close
to a spatial bifurcation of localized states is given in [34, 49], which accounts for the
appearance of localized peaks over a lattice spontaneously generated by the system
itself.

b)

a)

pattern 
state

|A|

µ

Fig. 5.5 a) Experimental snapshot showing localized peaks over an hexagonal pattern; V0 = 12.3
V and Iin = 0.38 mW/cm2. In the inset: a typical bifurcation diagram allowing for the appearance
of localized peaks; µ is the bifurcation parameter. c) Experimental intensity profile showing two
localized peaks with different amplitudes coexisting over an hexagonally patterned background;
V0 = 12.3 V and Iin = 0.41 mW/cm2.

Experimentally, we fix the voltage applied to the LCLV at V0 = 12.3 V and we
increase the input intensity. At Iin = 0.33 mW/cm2 we observe a first bifurcation
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that leads to the appearance of an hexagonal pattern. Then, by increasing Iin, we ob-
serve the spontaneous creation of localized peaks, which are triggered by amplitude
and phase fluctuations of the underlying pattern. When continuing to increase Iin,
localized peaks with a third higher value of the amplitude appear and coexist with
the lower amplitude peaks, in a similar way as shown in the previous section for the
round and triangular localized structures coexisting over an uniform background.
The coexistence of the two localized peaks with different amplitude is shown in
Fig.5.5b. At even higher Iin, higher amplitude peaks dominate over lower ones and
start to invade all space. By doing this, they form large aggregations that propa-
gate with a complex front dynamics until a final pattern is formed, which is largely
dominated by spatiotemporal chaos.

5.3.4 1D spatially forced model

As we have seen in the previous section, the main ingredient for the appearance
of localized peaks is the coexistence of two spatially periodic states, and this, in
some sense, regardless the way in which the two patterns have been created. In
order to provide a generic description of such a situation, we have considered in
[34] a one-dimensional spatially extended system that exhibits a sequence of spatial
bifurcations, the primary bifurcation is super-critical while the secondary one is
of subcritical type, as shown in the inset of Fig.5.5a. Let u(x; t) be a vector field
that describes the system under study and satisfies the partial differential equation
∂tu = f(u,∂x,{λi}), where {λi} is a set of parameters.

For a critical value of one of the parameters, the system exhibits a spatial insta-
bility at a given wave number qc. Close to this spatial instability, we use the Ansatz
u = A(X ,T )eiqcxû+ Ā(X ,T )e−iqcx ˆ̄u+ · · · and the standard amplitude equation reads
as [4]

∂T A = µA−ν |A|2A+α|A|4A−|A|6A+∂XX A, (5.7)

where µ is the bifurcation parameter and {ν,α} control the type of the bifurcation
(first or second order depending on the sign of these coefficients). Higher-order
terms are ruled out by scaling analysis, since ν ∼ µ2/3, α ∼ µ1/3, |A| ∼ µ1/6, ∂t ∼ µ ,
∂x ∼ µ1/2, and µ ¿ 1. Note that this approach is phase invariant (A→ Aeiϕ ), but the
initial system under study does not necessarily have this symmetry.

Eq.(5.7) allows the coexistence between two different spatially periodic states
and, thus, admits front solutions connecting the two states. A single localized struc-
ture can be constructed by considering the interaction of two fronts. However,
Eq.(5.7) does not exhibit stable localized states, because the scale separation used
to derive it has ruled out the fast oscillations, an approximation that is no valid near
the front’s core. Indeed, in these locations the slowly varying envelope A(X ,T ) has
oscillations of the same (or comparable) size as the small scale of the underlying
pattern. In order to take into account this effect, denominated as the non-adiabatic
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effect [46, 47, 10], we have computed the corrections of the amplitude equation by
including the non-resonant terms [49]. The amended amplitude equation reads as

∂T A = µA−ν |A|2A+α|A|4A−|A|6A+∂XX A

+
√

µ
N

∑
m,n≥0

gmn
∂X

[
AmĀn

]

iqc (m−n−1)
e−i qc(1+n−m)√µ X

, (5.8)

where gmn are real numbers of order one and N is the degree of the highest non-
linearity. The resulting amplitude equation is parametrically forced in space by
the non-resonant terms. It is important to remark that the non-resonant terms are
proportional to the spatial derivative of the envelope, therefore they do not change
the uniform states. Also notice that the original symmetries

{
x→−x,A→ Ā

}
and{

x→ x+ xoA→ Aeiqcxo
}

have been restored.
As a consequence of the spatial forcing the front interaction becomes oscillating,

that is, alternates between attractive and repulsive forces, thus allowing to stabilize
localized structures. The dynamical evolution and bifurcation diagrams of localized
patterns can be deduced. It can be shown that for decreasing δ or increasing η the
family of localized patterns disappears by successive saddle-node bifurcations and
only localized structures with one peak survive, which is in agreement with the
experimental observations [31, 50].

5.4 Control of Optical Localized Structures

As shown in Fig.8.3, the experiment comprises a control line, which includes a
SLM interfaced with a personal computer and placed on the optical path of the
input beam. When the SLM is inserted in between crossed polarizers it provides
intensity modulation on the input beam profile, which is used to impose a spatially
periodic forcing of the optical feedback. On the other hand, when the polarizers are
removed, the SLM provides phase modulations, that are used to control the motion
of localized structures [36], as we will see in the following sections. Other control
techniques, based on SLM, have been employed in LCLV experiments [51, 52, 53]
and semiconductor microcavities [54].

5.4.1 Pinning range and localized structures

For a diffraction length L close to zero and with interference polarization in the
feedback loop, bistable regimes can be reached between two homogeneous orienta-
tion states of the average tilt angle θ [25]. In this case, front propagation is observed
and studied between two spatially uniform orientation states [43]. Recently, we have
studied the driven front propagation occurring when the two coexisting states be-
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come spatially periodic [55]. By introducing the spatial forcing, the fronts exhibit
a large pinning effect, as well as spatially oscillating motion outside the pinning
region.

By using the SLM placed as shown on Fig.8.3, sinusoidal modulations of the in-
put light can be induced in such a way that the homogeneous states are transformed
into patterned ones. When the modulations are 2-D a large pinning effect is also
observed, allowing to create stable localized structures of different size. By using
a dedicated software, intensity masks are produced and sent to the SLM, so that
the general expression for the input beam profile becomes Iin(r) = A + Bsin(q · r),
where the amplitudes A and B can be controlled by changing the transmittance of the
SLM and q is the spatial wave vector of the grid. By changing the voltage V0 in the
bistability range, we identify a pinning range and, for a given initial condition and a
given voltage V0, it is possible to stabilize localized structures with different sizes.
In Fig.5.6 we show three different localized structures obtained with an hexagonal
modulation of the input beam profile, for slightly different values of the voltage V0
applied to the LCLV.
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Fig. 5.6 Different localized structures observed with an hexagonal modulation of the input beam
profile: a) : V0 = 5.543 V , b) : V0 = 5.582 V and V0 = 5.742 V .

For one-dimensional systems close to the pinning range, localized states are pre-
dicted to exist and to show snaking bifurcation diagrams [56]. However, in 2D cases
no a definite theory exists up to now. Our observations in the LCLV experiment
demonstrate the existence of the pinning range and its role in the stabilization of
localized structures.

5.4.2 Controlled storage of localized structures matrices

Storage of localized structures matrices has been demonstrated by introducing a
phase grid on the input beam profile [36]. Numerically, it has been demonstrated for
a Kerr-like system that localized structures behave like single particles moving in
the presence of phase/intensity gradients [57]. In the case of the LCLV experiment,
numerical simulations have shown that phase gradients are more efficient in displac-
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ing localized structures than intensity gradients are, and that localized structures go
towards the maxima of the phase, so that a phase grid is able to pin localized struc-
tures on its local maxima [58]. By using the SLM a phase grid is imposed on the
input beam, so that the light intensity on the photoconductor is

Iw =
Iin

4
| D⊥ ·

[
eiϕSLM(x,y)

(
1− e−iβ cos2 θ

)]
|2, (5.9)

where ϕSPM = ε(cosKx+cosKy)2 is the input phase modulation, K = 0.015 rad/µm.
The period of the spatial grid is chosen in order to match the size of the localized
structures, therefore we can bring them as close one to the other as the maximum
packing limit. The parameter ε ranges from 0.2 to 0.6 rad. The lower limit is dic-
tated by the minimum modulation amplitude capable to overcome the crosstalk be-
tween localized structures, whereas the maximum limit has not to exceed the value
for which the homogeneous stationary solution becomes unstable in favor of the
pattern state.

a) b)

time∆t

Fig. 5.7 Writing of localized structures over a grid: the empty grid in a) is addressed by an image
sent through the SLM for a short writing time ∆ t, as shown in the inset; the final state in b) is the
stationary distribution of localized structures recorded on the grid.

When traveling in the optical feedback loop, the beam undergoes diffraction so
that the initial phase modulation is converted into an intensity modulation [59] and
phase maxima give rise to low amplitude intensity maxima on the photoconductor.
In Fig.5.7a it is displayed an instantaneous snapshot of the empty grid, as observed
on the photoconductor side of the LCLV. To write localized structures on the grid,
either we send a sequence of local pulses or we flash an image through the SLM.
Once created localized structures move towards the closest local maximum of the in-
tensity and remain attached there. By sending through the SLM an image containing
the information to be stored, we can write any arbitrary configuration of localized
structures. Fig.5.7b shows the final stationary distribution of localized structures
obtained after the writing process.
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5.5 Propagation Properties of Optical Localized Structures

Diffraction of optical beams is a rich field of classical optics and numerous works
aim at developing new beams with smart properties such as, for example, the self-
reconstructing Bessel [60] or Airy beams [61]. With this idea of capturing the prop-
erties of free propagation of new types of optical beams, we have investigated the
diffraction behavior of optical localized structures [37]. Indeed, despite the numer-
ous works dedicated in the past two decades to optical localized structures, an ana-
lytical expression describing their transverse field profile E(x,y) is still lacking, so
that no prediction can be provided on their evolution under free propagation. Never-
theless, it is a crucial issue to characterize their propagation if one can manage to use
localized structures in future applications, for example as optical bits of information.
Due to the balance between Kerr non-linearity and diffraction, one expects special
diffraction properties to exist for localized structures. In this section, we present an
experimental characterization of the propagation properties of localized structures
in the LCLV experiment.

A convenient way to represent the diffracted beam of a localized structures is
to represent the I(x,z) intensity profile, called irradiance. Experimentally, localized
structures are followed during their free propagation by extracting through a beam
splitter a small portion of the feedback beam and by recording their evolution start-
ing from a reference plane, z = 0 cm, which coincides with the photoconductor side
of the LCLV. By displacing together the screen and the CCD camera on the acqui-
sition line, the irradiance of the localized structures can then be extracted from the
recorded movie.
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Fig. 5.8 Irradiance of a localized structure in the x,z plane. In the inset it is shown a radial profile
in the plane z≈ 40 cm.

A typical irradiance of a localized structure is shown in Fig.5.8. The diffraction
length was fixed to L = −8 cm. In the reference plane, the localized structure ap-
pears, as usual, as a round structure with oscillations in the tails. For propagation
distances smaller than 2|L|, the irradiance brings into evidence new features of the
localized structure. In particular, the localized structure focuses at a given z whereas
it has a ring or hole shape in a plane close to z = |L|. A second focalization exists
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in a successive plane. The diffraction length was changed to characterize the posi-
tion of the main focus and the hole structure with respect to |L|. The dependencies
of the positions of these two events were found to vary linearly with |L| [35]. Fur-
thermore, a Gaussian type divergence for large value of z has been found for the
distance d between the two first minima on both sides of the central peak of the
localized structure. The far-field is characterized by the appearance of an increasing
number of oscillating wavelets around the central peak, representing the diffraction
rings developing at large propagation distance, as shown in the inset of Fig.5.8.

a)         b)        c)

d)               e) f)

Fig. 5.9 Transverse profiles of a) one, b) two and c) three localized structures close to the focaliza-
tion plane; d), e) and f) corresponding transverse profiles of the same localized structures recorded
in the far-field.

Considering that the size of a single localized structure is increasing with diffrac-
tion, one expects the possibility for localized structures to overlap in the far-field,
where they can interfere even though in the near field they appear as totally non
interacting. This is shown in Fig.5.9, where the same localized structures are dis-
played for comparison in the focalization plane and in the far-field. Fig.5.9b and c
show two and three localized structures that are not interacting in the near-field. Due
to diffraction, interference patterns are clearly visible in the far-field, as shown in
Fig.5.9e and f. For the two localized structures (Fig.5.9e), the interference pattern is
made of stripes whereas for the three localized structures (Fig.5.9 f), it is an hexag-
onal pattern. These results suggest the interesting idea that depending on the plane z
chosen to observe the localized structures, they can either look as ”particle-like” and
independent objects or, when looking further on their propagation, they can behave
as ”waves” that interfere coherently. Similar analogies of particle-wave duality in a
pattern forming system have been also pointed out in parametrically excited surface
waves [62].
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5.6 Conclusions

In conclusion, we have shown that different types of localized structures can be
observed in the LCLV experiment, whenever bistability is present between different
spatial states. These can be either uniform or patterned states, so that localized struc-
tures correspondingly appear over an homogeneous or spatially modulated back-
ground. By introducing either intensity or phase modulations of the input beam, we
have shown that we can control and manage localized structures at a high degree,
addressing single pixels over large arrays or creating differently sized localized pat-
terns. The full model for the LCLV experiment shows a good agreement with the ex-
perimental observations, whereas suitable normal forms derived close to the points
of nascent bistability qualitatively accounts for the main dynamical behaviors of lo-
calized structures. Finally, investigation of the propagation properties of localized
structures have revealed new interesting features related with the dual particle-wave
character of the localized patterns.
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Chapter 6
Convectons

Arantxa Alonso, Oriol Batiste, Edgar Knobloch and Isabel Mercader

Abstract A horizontal layer containing a miscible mixture of two fluids can gen-
erate dissipative solitons called convectons when heated from below. The physics
of the system leading to this behavior is explained, and the properties of the result-
ing convectons are described. The convectons are shown to be present in a parameter
regime known as the pinning region containing a multiplicity of stable convectons of
odd and even parity. These lie on solution branches that snake back and forth across
the pinning region and illustrate a phenomenon known as homoclinic snaking. Ex-
amples of single pulse and multipulse convectons in periodic and closed containers
are exhibited and compared with similar states described by the Swift-Hohenberg
equation. Time-dependent states in the form of localized traveling waves are com-
puted and distinguished from convectons that drift.

6.1 Introduction

Many fluid systems exhibit spatially localized structures in both two [29]–[3] and
three [15, 40] dimensions. Of these the localized structures or convectons arising in
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oriol@fa.upc.edu

Isabel Mercader
Departament de Fı́sica Aplicada, Universitat Politècnica de Catalunya, Barcelona, Spain e-mail:
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binary fluid convection are perhaps the best studied. These states are similar to local-
ized structures studied in other areas of physics [2] despite the fact that fluid systems
must always be confined between boundaries. On the other hand in fluid systems the
length scale is typically set by the layer depth or the distance between any confining
boundaries instead of being an intrinsic length scale selected by a Turing or mod-
ulational instability. As a result when we speak of localized states in binary fluid
convection we mean states that are localized in the horizontal direction only. In this
sense the problem resembles laser systems in short cavities in which the standing
wave structure in the longitudinal direction remains of paramount importance [28].

In fluids dissipation, whether through viscosity or thermal diffusion, is generally
of great importance. For example, it is responsible for the presence of a nonzero
threshold value of the Rayleigh number, a dimensionless measure of thermal forc-
ing, for convection to occur. As a result the dissipative solitons of interest in the
present article are strongly dissipative and hence require strong forcing for their
maintenance. States of this type cannot be understood in terms of (an infinite-
dimensional) Hamiltonian system with small forcing and dissipation.

In this article we survey the properties of localized states in binary fluid con-
vection in a horizontal layer of depth h heated from below. Binary liquids, such as
water-ethanol [36, 49] and water-salt mixtures [22] or mixtures of He3-He4 at cryo-
genic temperatures [1], are characterized by a cross-diffusion effect called the Soret
effect that describes the diffusive separation of the lighter and heavier molecular
weight components of the mixture in an imposed temperature gradient. Specifically,
if C is the concentration of the heavier component then its flux is proportional to
−∇C−C0(1−C0)ST ∇T , where ST is the Soret coefficient, T is the temperature and
C0, 0 < C0 < 1, is the mean concentration. Thus when ST > 0 the heavier compo-
nent migrates, on a diffusive time scale, towards the colder boundary and vice versa.
On the other hand, in the anomalous case in which ST < 0 the heavier component
migrates towards the hotter boundary. As a result if a mixture with a negative Soret
coefficient is heated from below the destabilizing temperature gradient sets up, in re-
sponse, a stabilizing concentration distribution. The competition between these two
effects leads to complex behavior, including time-dependence at onset of convection
[34, 8].

In the absence of motion the temperature T satisfies Laplace’s equation. When
the top and bottom plates confining the fluid have a larger heat capacity than
the fluid the boundaries may be considered to be good thermal conductors in the
sense that any fluid motion will not significantly distort the temperature of the
plates. Under these circumstances we may suppose, to a good approximation, that
the temperature of the bounding plates is fixed, T = T0 + (∆T/2) at z = 0 and
T = T0− (∆T/2) at z = h. In the conduction state the temperature distribution is
therefore T (z) = T0 + ∆T [(1/2)− (z/h)]. Convection distorts this conduction pro-
file and we write T (x,z, t) = T0 +∆T [(1/2)−(z/h)+θ(x,z, t)], where θ(x,z, t) cap-
tures the effects of the fluid motion. Owing to the Soret effect the conduction state
is also associated with a concentration distribution of the heavier molecular weight
component, C(z) = C0 + ∆C[(1/2)− (z/h)], where ∆C = −C0(1−C0)ST ∆T , and
we write C(x,z, t) = C0 + ∆C[(1/2)− (z/h)+ Σ(x,z, t)] to describe the stirring ef-
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fect of the fluid motion. It is tempting to think of ∆C as an imposed concentration
difference across the layer, but this is incorrect since the boundary conditions on C
are not that C is fixed on the boundaries but that the flux of the heavier component
vanishes on the boundaries, i.e., that ηz = 0 on z = 0,1, where η ≡ θ −Σ .

In the following we nondimensionalize the governing equations using the depth
h as the unit of length and the thermal diffusion time h2/κ in the vertical as the unit
of time. The system is then described by the dimensionless equations [9]

ut +(u ·∇)u = −∇P+σR[(1+S)θ −Sη ]ẑ+σ∇2u, (6.1)
θt +(u ·∇)θ = w+∇2θ , (6.2)
ηt +(u ·∇)η = τ∇2η +∇2θ , (6.3)

together with the incompressibility condition ∇ ·u = 0. Here u ≡ (u,w) is the di-
mensionless velocity field in (x,z) coordinates and P is the pressure. The system is
specified by four dimensionless parameters,

R≡ αg∆T h3

κν
, S≡ β

α
C0(1−C0)ST , σ ≡ ν

κ
, τ ≡ D

κ
, (6.4)

referred to, respectively, as the Rayleigh number, separation ratio, Prandtl num-
ber and Lewis number. Here α ≡−ρ−1

0 (∂ρ/∂T )0 > 0 is the coefficient of thermal
expansion, β ≡ ρ−1

0 (∂ρ/∂C)0 > 0 is the corresponding coefficient describing the
concentration dependence of the fluid density ρ , g is the acceleration due to gravity,
ν is the kinematic viscosity and D is the molecular diffusivity of the heavier compo-
nent; the subscript 0 indicates reference values, computed at T = T0, C = C0. Thus
σ and τ specify the properties of the fluid (typically for liquids σ = O(1) while
τ = O(10−2)), while the parameter R specifies the strength of the applied tempera-
ture difference imposed across the system, and plays the role of an easily control-
lable bifurcation parameter. The parameter S is proportional to the Soret coefficient
ST and characterizes the mixture since it measures the concentration contribution to
the buoyancy force due to cross-diffusion.

When S or equivalently ST is sufficiently negative, (i) the primary steady state bi-
furcation becomes subcritical since any convection that mixes the two components
will decrease the stabilizing effect of the concentration stratification produced in
response to the destabilizing thermal stratification, and hence make convection eas-
ier, and (ii) the primary instability of the conduction state u = θ = η = 0 becomes
a Hopf bifurcation [33]. With periodic boundary conditions and identical bound-
ary conditions at the top and bottom this bifurcation is a Hopf bifurcation with
O(2)×Z2 symmetry, where Rx ∈ O(2) acts by (u(x,z), w(x,z), θ(x,z), η(x,z))→
(−u(−x,z), w(−x,z), θ(−x,z), η(−x,z)) relative to a suitable origin, and Rz ∈ Z2
acts by (u(x,z), w(x,z), θ(x,z), η(x,z))→ (u(x,1− z), −w(x,1− z), −θ(x,1− z),
−η(x,1− z)); the continuous part of the symmetry O(2) corresponds to translations
in x. The presence of this symmetry is important, and is responsible, for example,
for the bifurcation of a circle of periodic states from the conduction state at the
primary bifurcation. Its effect on the Hopf bifurcation is more profound [31]: the
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bifurcation results in two branches of time-dependent oscillations, traveling waves
(hereafter, TW) and standing waves (hereafter, SW) both of which typically bifur-
cate subcritically and are unstable [24], although the TW may acquire stability at
finite amplitude. In contrast, in a closed container this bifurcation breaks apart into
successive bifurcations to time-periodic chevron states called SW0,π . These states
are characterized by the presence of a source in the center of the container that
emits waves that travel outwards towards the boundaries; the waves may be emitted
either in phase (SW0) or out of phase (SWπ ) [26, 7]. The appearance of chevrons
already within linear theory is a consequence of a boundary-induced change in the
unstable eigenfunction [7]. Moreover, the imposition of lateral boundaries shifts the
bifurcation to TW-like states to finite amplitude: these states are no longer rotating
waves but they break the symmetry of the chevron states, i.e., these are states in
which one or other propagation direction predominates. In addition, entirely new
states may arise through a secondary Hopf bifurcation from one of the chevron
states. These states, called blinking states [8, 6], consist of waves that periodically
reverse direction, and have no analogue in the corresponding problem on a periodic
domain. Indeed, the presence of these states can be related to the loss of translation
invariance when lateral boundaries are imposed. A detailed discussion of the effect
of such boundaries on the Hopf bifurcation can be found in [26].

In periodic domains with larger spatial period the TW typically lose coherence
and break up into a spatio-temporally chaotic state known as dispersive chaos [6]–
[39].

In the following we describe some solutions of Eqs. (1)-(3) with the bound-
ary conditions u = θ = ηz = 0 on z = 0,1 appropriate to no-slip, fixed temper-
ature, no-mass-flux boundary conditions, and either (i) periodic boundary condi-
tions (hereafter, PBC) in the horizontal with dimensionless period Γ , (ii) Neu-
mann or stress-free boundary conditions (hereafter, NBC) u = wx = θx = ηx = 0
on x = ±Γ /2, or (iii) insulating closed container boundary conditions (hereafter,
ICCBC), u = θx = ηx = 0 on x =±Γ /2. Only a single horizontal dimension will be
included resulting in patterns that are two-dimensional, with one extended dimen-
sion only. The results described below are for parameter values that have been used
in experiments on water-ethanol mixtures.

6.2 Convectons with periodic boundary conditions

In Fig. 10.1(a) we show the results for a Γ = 60 periodic domain with the parame-
ters S =−0.021, σ = 6.22, τ = 0.009 used in [37]. The figure represents a bifurca-
tion diagram that shows the dimensionless convective heat flux across the layer as
a function of the imposed Rayleigh number R. Steady spatially periodic overturn-
ing convection (hereafter, SOC) is strongly subcritical, and acquires stability (solid
line) above the termination point of the TW branch. The latter bifurcates subcriti-
cally from the primary Hopf bifurcation at R = RH ≈ 1760.8 corresponding to the
onset of convective instability; the SW are not shown. Dispersive chaos is present



6 Convectons 113

for R > RH and is stable; this state is indicated in Fig. 10.1(a) using solid dots. The
time-independent convectons discussed below emerge from this state with increas-
ing R via relaxation oscillations as described in [9]. Figure 10.1(b) shows a typical
transient once stable convectons are present, showing the decay of dispersive chaos
into a stable, time-independent convecton. The growth of this structure suppresses
motion outside the convecton. Thus the formation of the convecton may be viewed
as a type of nonlinear focusing instability. The void region outside the convecton fills
with waves if the convecton region extends beyond the absolute instability thresh-
old [9].

Fig. 6.1 (a) Bifurcation diagram showing the time-averaged convective heat flux per unit length
across the layer, Nu−1≡ Γ−1 ∫ Γ /2

−Γ /2 θz(x,z = 1)dx, as a function of the Rayleigh number R when
Γ = 60. The conduction state loses instability at a Hopf bifurcation (R = RH ≈ 1760.8). Steady
spatially periodic convection (SOC) acquires stability at a parity breaking bifurcation marking
the destruction of a branch of spatially periodic traveling waves (TW) originating in the primary
bifurcation. Small amplitude dispersive chaos (solid dots) is present for R > RH and leads into
the pinning region (1774 < R < 1781) containing a multiplicity of stable localized states of both
even and odd parity. (b) Space-time plot showing the midplane temperature θ(x,z = 1/2, t) as a
function of time for R = 1774 starting from a random small amplitude initial condition. Parameters:
S =−0.021, σ = 6.22, τ = 0.009, Γ = 60. From Ref. [9].

Figure 10.1(a) reveals that the convectons are organized into a pair of branches
corresponding to steady states with well defined parity: even states are invari-
ant under Rx and satisfy (u(x,z), w(x,z), θ(x,z), η(x,z)) = (−u(−x,z), w(−x,z),
θ(−x,z), η(−x,z)), while odd states are invariant under Rx ◦Rz and satisfy (u(x,z),
w(x,z), θ(x,z), η(x,z)) =−(u(−x,1−z), w(−x,1−z), θ(−x,1−z), η(−x,1−z)).
These branches, Leven and Lodd , respectively, snake back and forth across an inter-
val of Rayleigh numbers called the snaking or pinning region. This interval is quite
small for the separation ratio used here, but widens as |S| increases. The pinning
region contains a large multiplicity of stable convectons of different lengths and ei-
ther parity. However, the pinning regions for the even and odd parity convectons
are not identical – the pinning region for the odd convectons is generally noticeably
narrower than that of even parity convectons [9, 41, 42].
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Fig. 6.2 (Color online) (a)-(c) Even parity convectons at successive saddle-nodes on the Leven
branch with PBC. States (a,c) are on the right of the pinning region, while (b) is on the left. (d)-(f)
Odd parity convectons at successive saddle-nodes on the Lodd branch with PBC. States (d,f) are
on the right of the pinning region, while (e) is on the left. The states are visualized in terms of
contours of constant temperature fluctuation θ and contours of constant concentration C. Here and
elsewhere all solution profiles use the same color table to indicate the amplitude of the temper-
ature and concentration fields. The states on the right of the pinning region are characterized by
strong vortices at either end of the structure and hence strong entrainment; those on the left of the
pinning region have weak vortices in the front regions, and very little concentration is entrained.
Parameters: S =−0.1, σ = 7, τ = 0.01, Γ = 14. From Ref. [42].

To understand the properties of these states we show in Fig. 10.2 a series of con-
vectons computed in a smaller domain, with period Γ = 14. The states are visualized
in terms of contours of constant temperature fluctuation θ and contours of constant
concentration C. Here and elsewhere all solution profiles use the same color table to
indicate the amplitude of the temperature and concentration fields. The figure shows
even and odd convectons at successive saddle-nodes on the Leven and Lodd branches
(not shown). The figure reveals that the end vortices repeatedly change direction as
one proceeds upwards, from saddle-node to saddle-node, along the right boundary
of the pinning region, as additional vortices are nucleated pairwise at the edges of
each convecton. As a result the convectons at the right boundary are characterized by
strong entrainment of concentration, leading either to a change in the mean concen-
tration within the convecton (even parity convectons) or a concentration gradient
within the convecton (odd parity convectons). In contrast, the saddle-nodes along
the left boundary correspond to transitions between successive states, and at these
the end vortices are very weak, with almost no entrainment taking place (Fig. 10.2).
Thus the convectons on the left of the pinning region are characterized by homoge-
nized concentration that is equal to the average concentration.

Figure 7.3 indicates that the convectons form by excavating a hole in the concen-
tration distribution much as described for localized traveling waves by Riecke [46].
This self-trapping resembles closely what happens in optical systems when a laser
“burns” a hole through a nonlinear medium by locally altering the index of refrac-
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tion. In general these types of mechanisms are associated with a finite threshold –
in our language they are subcritical. This is the case for the SOC branch in the bi-
nary convection problem since an increase in the convection amplitude increases the
mixing of the concentration field thereby decreasing its stabilizing effect and allow-
ing convection to proceed at lower Rayleigh numbers. Moreover, when convection
is enhanced locally the same process may result in the formation of a localized
structure, at least within a well-defined range of Rayleigh numbers . Figure 7.3 also
shows that the convecton profile, once formed, is insensitive to the spatial period
Γ . This period only serves to define the available supply of C that can be pumped
horizontally by odd convectons or entrained by even convectons.

Fig. 6.3 Profiles of η(x,z = 1/2) for odd parity convectons of the same length at R = 1919 in
domains with PBC and Γ = 20,50. The profiles are identical except for an overall offset due to
different values of the horizontal midplane concentration jump across the convectons generated by
the flow within. Parameters: S =−0.1, σ = 7, τ = 0.01.

Fig. 6.4 Comparison of the bifurcation diagrams in a Γ = 14 domain with PBC and ICCBC. (a)
Even parity localized states; the two branches coincide until the domain is almost filled. (b) Odd
parity localized states; the two branches differ throughout as a consequence of the suppression of
horizontal pumping by odd convectons in the presence of ICCBC. Parameters: S = −0.1, σ = 7,
τ = 0.01. From Ref. [42].
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Fig. 6.5 (Color online) (a)-(c) Even parity convectons with ICCBC in a Γ = 14 container at suc-
cessive saddle-nodes on the Leven branch. States (a,c) are on the right of the pinning region, while
(b) is on the left. (d)-(f) Odd parity convectons with ICCBC in a Γ = 14 container at successive
saddle-nodes on the Lodd branch. States (d,f) are on the right of the pinning region, while (e) is on
the left. The states on the right of the pinning region are characterized by strong vortices at either
end of the structure and hence strong entrainment; those on the left of the pinning region have
weak vortices in the front regions, and very little concentration is entrained. Parameters: S =−0.1,
σ = 7, τ = 0.01. From Ref. [42].

6.3 Convectons with ICCBC

When the boundary conditions are changed to ICCBC (or CCBC as in [41]) the
translation invariance is broken and the symmetry that remains is the symmetry
Z2×Z2∼D2 generated by Rx and Rz. Figures 7.4(a,b) show the bifurcation diagrams
for (a) even and (b) odd states in a Γ = 14 domain when ICCBC are imposed at
x = ±Γ /2 and compare the results with those of the corresponding PBC case. As
discussed in [41, 42] the traditional snaking diagram is greatly perturbed by this
type of boundary condition. Instead of coexistence between snaking and periodic
branches the snaking branches now turn continuously into large amplitude states
that take the place of the competing periodic states. These large amplitude states
fill the container but are not periodic – instead they contain defects that allow the
state to adjust to the imposed boundary conditions – and in this they resemble states
known as mixed mode states that are also present in the PBC case [42, 13]. This
is so for both even (Fig. 7.4a) and odd (Fig. 7.4b) parity states. Localized states
computed with ICCBC at successive saddle-nodes are shown in Fig. 7.5. In addition,
the ICCBC increase substantially the width of the pinning region for the odd parity
states and hence exert an effect on odd parity convectons even when the convectons
are localized well away from the walls. Indeed, the width of the pinning region for
the odd parity states is now identical to that of even parity states [41, 42].

Figure 7.4(a) shows that until the domain fills with convection the even parity
convecton branches with ICCBC and PBC track one another very closely, indicating
that the pinning of the fronts to the structured state between them that is responsible
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for the snaking behavior of the convecton branches is unaffected by the lateral walls
whenever the convecton has even parity. Figure 7.4(b) shows that this is not the case
for odd parity convectons, suggesting that the horizontal pumping of concentration
by odd parity convectons is responsible [41]. However, the snaking behavior with
ICCBC still resembles the PBC case qualitatively, and indeed the left boundaries of
the two pinning regions coincide (see below).

As explained in [41] odd parity convectons in the presence of closed container
boundary conditions should be thought of as being one half of a two-convecton
state filling a domain of length 2Γ obtained by reflecting the odd convecton in x =
±Γ /2. Such a reflection yields exact solutions in the case of Neumann boundary
conditions and results in a state in which the pumping effects of oppositely oriented
odd convectons cancel out, producing a more or less spatially uniform concentration
(and temperature) in the void region between them (Figs. 7.5d,f), and eliminating
the mean concentration gradient present in odd convectons computed with PBC
(Figs. 10.2d,f). The concentration level on either side of the convecton depends on
whether the convectons pump towards one another or away from one another, and
in a domain of period 2Γ the resulting concentration jump balances the pumping
action of the individual convectons. It is for this reason that the two-convecton state
with equidistant convectons matches, at least approximately, the solutions found
here with insulating no-slip boundary conditions at x =±Γ /2.

To confirm this scenario we examined in [42] the flux balance in the fore and aft
regions of the odd parity convecton shown in Fig. 7.5(d). We denote the midplane
concentration to the left of the convecton by C− and to the right by C+; the mean
midplane concentration inside the convecton is C̄. We suppose that the convecton
pumps concentration from right to left with flux F . Then flux balance at the left
front of the convecton, required for the existence of a steady state, leads to the esti-
mate F ≈ τ(C−−C̄)/δ , while that at the right front leads to F ≈ τ(C̄−C+)/δ . Here
δ is the width of the front region, assumed to be the same fore and aft. It follows
that C̄ ≈ (C+ +C−)/2, a conclusion that agrees very well with the computations
shown in Figs. 7.5(d,f). The same argument applied to odd or even convectons at
a left saddle-node leads to the prediction C− = C̄ = C+ since F = 0 (no entrain-
ment by end vortices). This is so for both PBC (Fig. 10.2) and ICCBC (Fig. 7.5)
since the boundary conditions exert little influence when F = 0, in agreement with
the computations reported in Figs. 10.2(b,e) and Figs. 7.5(b,e). This prediction ex-
plains, moreover, why the left boundary of the pinning region for odd convectons
is unaffected by the boundary conditions (Fig. 7.4b) – and hence coincides with the
left boundary of the even convecton snaking region – while the right boundary is
affected dramatically. Finally, the above argument also explains the depletion of the
concentration outside the even convecton in Fig. 7.5(a) and its enhancement outside
the even convecton in Fig. 7.5(c).

In Fig. 7.6(a) we show a different type of convecton. This convecton is also com-
puted with ICCBC but instead of being located in the center of the container it is
attached to one of the walls. Despite this difference the branch of these convectons
also snakes, and with each turn a new cell appears at the free end of the convec-
ton. As a result the direction of the entraining vortex changes at each turn, and so
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does the homogenized concentration within the structure (Fig. 7.6a). In contrast, the
center convectons such as those shown in Fig. 7.5(a) grow by adding a pair of cells,
one on each side, and so undergo only half the number of back and forth oscillations
before the domain is filled as the wall-attached convectons.

To understand the origin of the wall-attached convecton we show in Fig. 7.6(b)
the corresponding state with NBC. These (unphysical) boundary conditions allow
one to reflect the structure in the boundary x = Γ /2 and obtain a continuous solution
of Eqs. (1)-(3) on the doubled domain, i.e., an even convecton located in the center
of a domain of period 2Γ . Structures of this type are well understood, and in par-
ticular snake in the usual fashion. Since the domain is twice as large the convecton
branch with NBC undergoes twice as many back and forth oscillations before the
domain is filled as an even convecton branch in a domain of length Γ , and this fact
is reflected in the number of turns executed by the solution branch in Fig. 7.6(b).
This behavior in turn resembles closely that observed in Fig. 7.6(a) even though the
latter states cannot be reflected in the boundary x = Γ /2. It should be mentioned
that the temperature field θ(x,z) does not fully reveal the difference between IC-
CBC and NBC solutions which is more visible in the velocity field w(x,z) since
w(±Γ /2,z) = 0 in the former but not in the latter (Figs. 7.6a,b).

6.4 Multiconvectons

In Fig. 6.7 we show bound states of two convectons in a domain with NBC at
x = 0,Γ . Figure 6.7(a) shows a state consisting of two “even” parity convectons
of opposite sign, where the sign refers to the direction of the outer cells. In fact the

Fig. 6.6 Wall-attached convectons with (a) ICCBC, and (b) NBC in terms of θ(x,z) and w(x,z).
The corresponding bifurcation diagrams are shown at the bottom, with the black dots referring
to the (longer) upper states and the red dots referring to the (shorter) states in the middle panels.
Parameters: S =−0.1, σ = 7, τ = 0.01. From Ref. [43].
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individual convectons are slightly distorted by their interaction and near the end of
the branch (open dot) cease to look even. However, the overall structure has exact
odd parity with respect to x = 0 and, as expected, also snakes although the snake is
not well developed: since the effective domain per convecton is now only Γ /2 the
domain fills up rapidly and the snaking branch terminates on a branch consisting
of identical 13 cells with odd parity and a well-defined wavenumber (not shown).
Figure 6.7(b) shows a different odd parity multiconvecton. This one consists of one
central odd parity state and two wall-attached convectons related by odd parity. With
NBC the structure can be reflected in the end walls and still satisfy Eqs. (1)-(3). The
resulting structure consists of an alternating array of odd and even states of opposite
sign, and also snakes. This branch also terminates on the odd parity 13 cell branch,
at the same location (open dot) as the branch in Figure 6.7(a) – as the termination
point is approached, the voids fill in and the two solutions come to resemble one
another. Thus the termination point can be viewed as a bifurcation from a constant
amplitude state to different types of hole-like states.

Fig. 6.7 Odd parity multiconvectons with NBC. (a) A bound pair of “even” parity convectons of
opposite sign. (b) A bound pair of “odd” parity convectons. Lower panels show the bifurcation
diagrams with the red dot indicating the location of the profile shown in the upper panel. The open
dots indicate the termination point of each branch; this point is the same for both branches and
lies on a branch with 13 identical cells (not shown). Parameters: S =−0.1, σ = 7, τ = 0.01. From
Ref. [43].

6.5 Localized traveling waves

Figure 6.8(a) shows the decay of an unstable even parity convecton at R = 1947
into a spatially localized traveling wave (hereafter, LTW). Both the waves within
the packet and the packet itself travel to the left, although the speed of the latter is
quite slow. Wave packets of this type are frequently found in experiments, both in
rectangular [44, 30] and periodic [35] domains, and have also been found in simula-
tions [51, 4]. In the present case the LTW coexist with time-independent convectons
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and the latter evolve into LTW when they are unstable with respect to asymmetric
(i.e., phase) perturbations. The LTW are quite different from the drifting localized
structures that form when the symmetry of Eqs. (1)-(3) with respect to x →−x is
weakly broken [21]. The latter take the form of solitary waves, i.e., waves that are
steady in an appropriately moving reference frame – the speed of this frame must
be determined as an eigenvalue of a nonlinear eigenvalue problem. In contrast, the
LTW consist of two frequencies, one from the motion of the wave packet and the
other from the waves within the packet.

Fig. 6.8 (a) A space-time plot showing the evolution of an even parity convecton into a spatially
localized traveling wave (LTW). (b) A space-time plot showing a bound state of two LTW. Para-
meters: (a) R = 1947, S =−0.127, Γ = 14; (b) R = 1950, S =−0.121, Γ = 80.

Figure 6.8(b) shows that in larger domains the LTW can also form bound states;
these consist of two or more LTW traveling with a common speed. These states
form as a result of the overlap of the oscillatory tails of the leading and trailing
structures, and the resulting mutual entrainment. Similar structures form in flowing
liquid films [12] and indeed as secondary structures on top of an already developed
traveling wave state [48].

6.6 Interpretation

The properties and organization of the states described above resemble those famil-
iar from parallel studies of a much simpler problem, the Swift-Hohenberg equation
on the real line,

ut = ru− (∂ 2
x +1)2u+ f (u) , (6.5)

where f (u) = f23(u) ≡ b2u2− u3 (hereafter, SH23) or f (u) = f35(u) ≡ b3u3− u5

(hereafter, SH35). Like Eqs. (1)-(3) Eq. (5) is reversible with respect to x → −x,
u→ u; SH35 has, in addition, the symmetry x → x, u →−u analogous to the mid-
plane symmetry Rz of Eqs. (1)-(3). Both SH23 and SH35 have been extensively
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studied (see [19] for a review). On the real line, when b2 >
√

27/38, resp. b3 > 0,
the primary branch P of periodic states bifurcates subcritically, and is therefore ini-
tially unstable. With increasing amplitude it turns around and acquires stability in
a saddle-node bifurcation. At a point M, the Maxwell point, the energy of the state
P vanishes and is therefore equal to the energy of the trivial state u = 0. At this
point, r = rM , fronts can be constructed connecting the u = 0 state to P and back
again, and consequently steady spatially localized structures of arbitrary length all
coexist. However, because the state P is structured, the fronts cannot move freely
when r is perturbed from rM: the fronts are pinned to the heterogeneity of the state
P between them [10], and consequently will only move once |r− rM| becomes suf-
ficiently large. This physical argument relies on the existence of a free energy for
SH23 and SH35 but explains why multiple distinct spatially localized equilibria
should be present in a “pinning region” surrounding the Maxwell point.

There are in fact two (SH23) or four (SH35) distinct branches of localized states,
labeled Lφ , and selected by beyond-all-orders effects [38, 23], that bifurcate from
u = 0 simultaneously with the P branch (Fig. 6.9). For SH23 φ = 0,π , correspond-
ing to even parity states with, respectively, maxima and minima at the symmetry
point x = 0. For SH35 there are in addition to L0,π also two branches of odd parity
states characterized by φ = π/2 (positive slope at x = 0) and φ = 3π/2 (negative
slope at x = 0). In contrast to SH23 the φ = 0,π solitons are now related by the
symmetry u →−u of SH35 and likewise for the φ = π/2,3π/2 solitons. At small
amplitude these localized structures are spatially extended but become strongly lo-
calized by the time they enter the pinning region. Once in the pinning region the
Lφ branches begin to snake, adding extra oscillations on either side of each soliton
profile while preserving the overall symmetry of the profile. Analysis of the Swift-
Hohenberg equation shows that the width of the pinning region is the same for all
the snaking branches, and that the wavelength of the periodic structure enclosed
within the localized state varies across the pinning region, with the structure com-
pressed for r < rM and stretched for r > rM [19]. Stability computations indicate
that solitons on branches with a positive slope are stable while those on branches
with a negative slope are unstable [17, 18]. The asymmetric states located on the
“rungs” connecting the different snaking branches [17, 18] that are responsible for
the snakes-and-ladders structure of the pinning region are never stable.

Figures 10.1(a) and 10.2 show that much of the phenomenology associated with
the pinning region as described by SH35 also applies to convection in binary mix-
tures. This is so despite the fact that the fluid problem is not variational in time, and
no energy playing the role of a Lyapunov function can be defined. This is because
the snaking behavior shown in Fig. 10.1(a) is in fact a consequence of the forma-
tion of a heteroclinic cycle between a trivial state (conduction) and a periodic state
(convection), i.e., a solution profile that connects the trivial state at x =−∞ to the pe-
riodic state, with a second connection from the periodic state back to the trivial state
as x→∞. In generic systems the formation of this type of orbit is a higher codimen-
sion phenomenon but in systems that are reversible in space the return connection
follows from the equivariance of the equations with respect to x→−x, and the het-
eroclinic cycle may become generic or structurally stable. Numerical computations
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suggest that this is the case for binary fluid convection: the pinning or snaking in-
terval is filled with heteroclinic connections between the trivial and periodic states.
The boundaries of this region correspond to tangencies between the unstable (stable)
manifold of the conduction state and the center-stable (center-unstable) manifold of
the periodic state [50]–[10]; an energy function is not required at any stage of this
argument. Moreover, since the midplane reflection symmetry of Eqs. (1)-(3) with
identical boundary conditions at top and bottom plays the same role as the symme-
try u→−u of SH35, four branches of spatially localized convectons bifurcate from

the problem is posed on the whole real line. When these are followed numerically by
decreasing the Rayleigh number their amplitude grows while their length shrinks.

of steady spatially periodic convection on the SOC branch (Fig. 10.1a) all four con-
vecton branches enter the pinning region and begin to snake back and forth across
it (Fig. 10.1a) as the convectons grow in length by nucleating additional convection

spatial domain when the convecton branches turn over towards the saddle-node of

minating the convecton branches can be interpreted as a bifurcation of holes from a
periodic state. Once again there are four branches, with phases φ ′ = 0,π/2,π,3π/2.
These branches also snake once they enter the pinning region from above and the
hole deepens and gradually fills with the conduction state. On the real line these
eight snaking branches remain distinct but on periodic domains with finite period
they (generally) connect pairwise [13]. Thus in periodic domains of finite period
we expect four branches of convectons. For other boundary conditions, it is neces-
sary, however, to distinguish between convectons and holes since these are no longer
related by Γ /2 translation [42, 43].

article – states of this type are only stationary in SH35 because of its variational
structure.

Figure 6.9(b) shows a branch of two-pulse states computed for SH23 resembling
the bound state of two convectons shown in Fig. 6.7(a) and consisting of two iden-
tical equally spaced localized states. For parity reasons this branch cannot bifurcate
from the primary branch P19 which contains 19 wavelengths per period Γ and so
bifurcates from the next branch P18 containing 18 wavelengths. Instead the snaking
branch that bifurcates from P19 corresponds to bound states of nonidentical states as
shown in Fig. 6.9(c) resembling the state shown in Fig. 6.7(b). However, the corre-
spondence is not precise since SH23 does not have the required additional symmetry
u→−u.

The one qualitative difference, beyond the presence of time-dependence, between
binary fluid convection and a model equation such as the Swift-Hohenberg equation
is the observed difference in the widths of the snaking regions for odd and even par-

continues until the length of the convecton becomes comparable to the available

We mention that we expect rung-like secondary branches to be present in Fig. 10.1(a)

the periodic branch and leave the pinning region [11, 3, 13]. The bifurcation ter-

rolls at both ends. With periodic boundary conditions in the horizontal this process

Once their amplitude and length are comparable to the amplitude and wavelength

as well. However, in contrast to SH35, in the convection problem these states are ex-

the conduction state together with the branch P of periodic states, provided only that

pected to correspond to drifting solitary waves, and these are not computed in this
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Fig. 6.9 Bifurcation diagram for the Swift-Hohenberg equation SH23 showing the norm N ≡
Γ−1 ∫ Γ /2

−Γ /2 u2 dx as a function of the parameter r. (a) The branch P19 of 19 wavelengths within Γ
together with the branch L0 of convectons with maxima at x = 0. (b) Equally spaced two-pulse
states cannot bifurcate from P19 and instead bifurcate from a subsequent branch P18. Unequally
spaced two-pulse states lie on isolas (not shown). (c) Branch of unequal two-pulse states bifurcating
from P19. Sample profiles are included. From Ref. [20].

ity convectons. This difference increases with increasing |S| since the width of each
region increases with the subcriticality of the periodic branch. We have attributed
this fact to the pumping effect associated with odd parity convectons whereby heav-
ier fluid is pumped across the convecton from one side to the other depending on
the direction of the vortices in the front regions bounding the convectons. In peri-
odic domains this effect necessarily generates a linear concentration profile between
adjacent convectons, while in closed containers it leads to convectons with differ-
ent background concentrations fore and aft. We have seen that the former effect is
responsible for the different widths of the snaking regions for odd and even parity
convectons and provided a heuristic explanation why this difference disappears in
closed containers.

6.7 Summary

In this article we have summarized the properties of strongly dissipative solitons
called convectons that are found in binary fluid convection. We have identified, us-
ing a combination of direct numerical simulation and numerical branch following,
odd and even convectons in periodic domains, and examined the effects on these
structures of lateral boundaries. Because of the horizontal concentration pumping
by odd convectons lateral boundaries have a nontrivial effect on the properties of
these states and we have explained how and why these boundaries change the width
of the pinning region for odd convectons back to that of even convectons. We have
also shown examples of wall-attached convectons and different types of two-pulse
states. Finally we have shown how these time-independent localized structures re-
late to localized traveling waves. These results illustrate the richness of this system
but in no way represent a systematic study of its properties.
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The behavior described here is by no means unique. Stable convectons, including
wall-attached convectons, were originally discovered by Ghorayeb and Mojtabi [29]
in natural doubly diffusive convection, i.e., convection in a vertical cavity driven
by imposed horizontal temperature and concentration differences across the cavity.
These states are also associated with snaking behavior [11], this time resembling
SH23 since midplane reflection symmetry is now absent [13]. Convection in an im-
posed vertical magnetic field also exhibits convectons [14, 27] and similar behavior
is present in surface tension driven convection in a binary mixture [3]. Similar be-
havior has been conjectured [32] to be present in other subcritical fluid systems such
as plane Couette flow. The reason is simple: the basic mechanism responsible for the
creation of these structures is generic in systems that are reversible in space. This is
the case for each of the above examples, and provided a heteroclinic cycle between
a trivial (homogeneous) and a periodic (structured) state forms as a parameter is
varied the associated pinning region in all its richness will be present, and with it
the types of behavior described here. Indeed, recent work on plane Couette flow
[47] identifies states localized in the cross-stream direction that are of precisely this
type. The one significant difference between different fluid systems lies in the stabil-
ity properties of the localized structures. There is in general no reason why stability
should follow the predictions from a variational system like the Swift-Hohenberg
equation since nonvariational systems admit additional modes of instability. In gen-
eral this question must be answered on a case by case basis, by explicit stability
computations.
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Chapter 7
Morphological Characterization of Localized
Hexagonal Patterns

Daniel Escaff Dixon

Abstract The localization of a static hexagonal pattern in a uniform background is
studied. Based on a numerical analysis of a prototype model (a Swift-Hohenberg
type equation) it is shown that the range of existence of these localized states de-
pended on their shape and size. A morphological classification of these localized
structures is performed in order to characterize this phenomenon. A heuristic de-
scription of the localization process (based on a wall interaction approach) is pro-
posed, which supplies a good physical picture of what is observed numerically.

7.1 Introduction

Thermodynamic equilibrium is characterized by uniform (without dynamic) spa-
tiotemporal behavior, namely, a state where all the intensive quantities are constant
in space and time [1]. When a system is forced to be far from equilibrium these
intensive quantities could display a complex spatiotemporal behavior, called self-
organization or synergy [2, 3]. To wit, by moving some control parameter related
to the distance from equilibrium, the uniform state becomes unstable and the sys-
tem exhibits the formation of a self-organized structure. A nice example of self-
organization is the formation of periodic cellular patterns [4], i.e. a periodic array
of cells which demands long range coordination between the different parts of the
system. In two-dimensions the basic geometries are three: stripes, hexagons and
squares. There are also more irregular patterns which do not follow these geome-
tries. Nature is full of these non-equilibrium manifestations: as convective systems
or periodically driven fluid in hydrodynamics [4, 5]; the Turing instability in chem-
ical reactions [6, 7]; or the pigmentation patterns in biology [8], to mention a
few examples. Theoretically, these processes can be modeled by writing partial dif-
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ferential equations for some order parameter, which is related with the intensive
quantities that exhibit the complex spatiotemporal behavior.

Over the last decades much effort has been devoted to the study of localized static
cellular patterns [9] (to fix ideas in a uniform background). These localized states
are usually related with a hysteretic behavior in the pattern formation, although that
coexistence of extended states is not strictly necessary. An essential mechanism re-
sponsible for the localization of the pattern is the pinning effect [10, 11, 12]. Due
to the periodicity of the cellular pattern the pinning effect acts as a periodic ”force”
capable of trapping the patterns in a region of space. Through this effect these lo-
calized structures are structurally stable (in the Andronov sense), namely, they are
robust to a parametric perturbation. This structural stability makes it possible to
observe them in many experimental contexts [9, 14].

For one-dimensional systems the bifurcation scenario of these localized static
cellular patterns has been entirely characterized. By using the fact that any static
structure should be a solution of an ordinary set of differential equations, a geo-
metrical picture for the appearance and disappearance of these localized structures
can be constructed [6] (based on a horseshoe-like analysis). Essentially, this type
of analysis predicts a cascade of saddle-node bifurcations, which accounts for the
appearance and disappearance of these localized structures, known as the snaking
bifurcation [16, 17]. In simple words, a localized state can be classified by the num-
ber of cells that are spatially localized, i.e. the size of the localized structure. There
is then an infinite discrete set of possible localized states; the range of existence (at
the parameter space) depends on the size of the localized structure.

For two-dimensional systems the scenario is more complicated, even with quasi-
one-dimensional configurations, as front connecting stripe patterns with a uniform
state, that could exhibit unexpected dynamics in the new dimension [16, 18, 19].
In the case of hexagons, it has been observed that not only does the size play an
important role in the localization process, but the shape of the localized state does as
well [20]. The aim of this chapter is to perform a morphological characterization of
localized hexagonal patterns in order to elucidate their bifurcation features. Namely,
how the existence range (at the parameter space) of the different species of localized
structures is affected by their shape and size. In order to do this characterization a
prototype model for hexagon formation is introduced in section 11.2. In section 11.3
the morphological characterization is performed, and detailed numerical analysis of
the prototype model is given in order to sustain the morphological characterization.
In section 7.4 a heuristic description of the localization process is presented, based
on a wall interaction approach. The case of a localized line of cells is separately
commented in section 11.7, because it can exhibit qualitatively different features.
Finally, in section 11.7 we summarize our results and provide conclusions.
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7.2 Prototypical Model for Hexagon Formation

A prototype model, which exhibits coexistence between a stable uniform state and a
hexagonal pattern, is a variant of the famous Swift-Hohenberg equation [21], which
has the form [22]

∂tu = εu+νu2−u3− (
∇2 +q2)2

u, (7.1)

where ∇2 is the Laplace operator in two dimensions, u is the order parameter, ε is the
control parameter (related with the distance to equilibrium), q is the characteristic
wave number of the system, and ν is a parameter related to the breaking of the
up-down symmetry (u −→ −u) which is essential to observing the formation of
hexagons. Since (7.1) has the symmetry u −→ −u and ν −→ −ν simultaneously,
only the case ν > 0 (up-hexagons) will be studied.

Fig. 7.1 (a) Density plot of
the order parameter from a
direct numerical simulation
of model (7.1), for ε = 0.01,
ν = 1 and q = 0.7. (b) Pic-
torial representation of the
hexagonal pattern. (c) Typical
hysteresis loop of model (7.1)
computed from a enveloped
equation approach, where a
represents the amplitude of
the pattern and µ = ε/ν2.
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The uniform solutions u = 0 became unstable when ε > 0 and the system ex-
hibits the formation of a hexagonal pattern. Fig. 10.1(a) displays a typical hexagonal
pattern from a numerical simulation of equation (7.1), while Fig. 10.1(b) shows a
pictorial representation of the pattern. The appearance of the pattern shows hystere-
sis, namely, if the control parameter is moved back to the region ε < 0 the hexagons
persist for some values of ε sufficiently close to the critical point ε = 0. Fig. 10.1(c)
shows a typical hysteresis loop computed from an enveloped equation approach (i.e.
a perturbation near the limit ν ∼

√|ε| → 0+, for technical details see [23]). The
amplitude of the pattern as function of the control parameter (µ = ε/ν2) is pre-
sented there, where solid lines represent stable patterns while dashed lines represent
unstable patterns. Therefore, there is a coexistence region where both the uniform
and the hexagonal phases are stable. Inside this region we expect to observe local-
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ized structures. For instance, by fixing the parameter ν = 1 and q = 0.7, a numerical
measure of the coexistence range gives us ε ∈ [−0.162,0].

7.3 Localized Hexagonal States: Geometrical Considerations
and Morphological Characterizations

One of the main features of hexagonal patterns is their crystalline nature. They be-
have as a two-dimensional solid crystal, with three privileged directions where it is
possible to make a perfectly flat cutting of the hexagonal net (namely without cutting
the cells). In Fig. 10.1(a) and (b) an explicit drawing is shown of these directions of
symmetry. As it is intuitively expected, the pinning effect occurs just when the wall
(the interface between the hexagonal and the uniform phase) coincides with one of
these directions [11, 20, 23]. Therefore, to construct a localized structure, the net
must be cut along these directions of symmetry, just as when cutting a diamond.
Fig. 10.1(a)-(f) displays typical localized states obtained by a direct numerical sim-
ulation of model (7.1). Since the hexagonal net must be cut along its directions of
symmetry, only four types of corners are allowed: with internal angles of π/3 or
2π/3; or with external angles of π/3 or 2π/3.

Therefore, we can perform a morphological classification of the localized struc-
tures. When the localized domain is convex, there are two types of corners with
internal angles of π/3 or 2π/3 . Then, we define two morphological categories, in-
troducing the following nomenclature: n-convex structure, with n = 0, if there are
no internal angles of π/3 (see Fig.10.2(a)), otherwise n = 1 (see Fig.10.2(b)). When
the localized domain is not convex, we have in addition external angles of π/3 or
2π/3. Then, we define four morphological categories, introducing the following
nomenclature: mn-nonconvex structure, with m = 0 or n = 0, if there are no exter-
nal or internal angles of π/3, respectively, otherwise m = 1 or n = 1. Fig.10.2(c)
shows a 00-nonconvex structure, Fig.10.2(d) a 01-nonconvex structure, Fig.10.2(e)
a 10-nonconvex structure and Fig.10.2(f) a 11-nonconvex structure.

A fully numerical study of the different species of localized domain has been
performed by fixing the parameters ν = 1 and q = 0.7, and only moving the control
parameter ε (using a pseudo-spectral method). The pinning range for an isolated
flat wall can be estimated ε ∈ [−0.157,−0.093]. To wit, for ε >−0.093 the hexag-
onal phase propagates over the uniform one, and for ε <−0.157 the uniform phase
propagates over the hexagonal one, but for −0.157 < ε <−0.093 the flat interface
movement is locked.

Fig.10.2(g) shows a numerical experiment performed for ε = −0.151 (i.e. in-
side the pinning rage), taking as the initial condition a 1-convex structure generated
with ε =−0.15. Here this kind of localized state destabilizes, becoming a 0-convex
structure. In general, for ε < −0.15 it is not possible to observe 1-convex or n1-
nonconvex structures. In Fig.10.2(h) a destabilization process of a 0-convex struc-
ture is shown, for ε = −0.155, in this case the final state is a completely uniform
state. In the range ε ∈ [−0.157,−0.155], in spite of the fact that the pinning effect
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Fig. 7.2 Density plot of the order parameter from a direct numerical simulation of model (7.1), for
ν = 1, q = 0.7 and: (a) ε =−0.12; (b) ε =−0.12; (c) ε =−0.12; (d) ε =−0.135; (e) ε =−0.14;
(f) ε =−0.135; (g) ε =−0.151 (temporal evolution, time runs from left to right); (h) ε =−0.155
(temporal evolution, time runs from left to right and from top to bottom); (i) ε =−0.09 (temporal
evolution, time runs from left to right).
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is still acting (an isolated flat wall remains at rest in this range), it is not possible to
observe localized structures of any category (convex or nonconvex). It is important
to notice that the destabilization processes (see Fig.10.2(g) and Fig.10.2(h)) start
from the corners of the structure.

On the other hand, in the other border of the pinning range the opposite behavior
is observed. Fig.10.2(g) shows a numerical experiment performing for ε =−0.9 (i.e.
outside the pinning rage), taking as initial condition a 1-convex structure generated
with ε = −0.93 surrounded by smaller localized structures. In this case the cells,
far from the corners, are not able to confine the pattern, and it begins to propagate
from these places, while the smaller structures remain static. Namely, the corners
are stronger to contain the spread of the pattern.

Notice that the introduced classification is neither suitable to the 1-cell structure,
which is a genuine isotropic structure (see Fig.7.3(a), for more details of localized
isotropic structures see [24]), nor applicable to those structures where is not possible
to define a corner, such as in the case of a line of cells (see Fig.7.3(b)). For instance,
in the case of 3-cells structures, there are three possibilities: a line, an equilateral
triangle or a corner in an angle of 2π/3 (see Fig.7.3(c)), where the equilateral tri-
angle is the only suitable to be sorted as a 1-convex structure. Another interesting
phenomenon is the presence of holes inside the localized structure. These types of
objects can be sorted in our morphological categories (non-convex domain). When
the hole is far from the border of the structure, the behavior will be the same pre-
dicted for the longest structures by our calculations. If the hole is close to the border
this behavior will change due to the wall’s interaction explained below.

Table 7.1 summarizes our results. Notice that the range of existence of the small-
est localized structures is quite different from the longer ones. Therefore, the exis-
tence of a localized structure is strongly affected by its size. For the longest struc-
tures (typically, more than ten cells), the morphological category seems to be the
main feature.

0.96

-0.12

0.95

-0.21

a) b) c)

Fig. 7.3 Density plot of the order parameter from a direct numerical simulation of model (7.1), for
ν = 1, q = 0.7 and: (a) ε =−0.088; (b) ε =−0.095; (c) ε =−0.11.
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Table 7.1 Range of Existence of the Different Species of Localized States for ν = 1 and q = 0.7.

Morphological Features minimum ε maximum ε

Isolated wall -0.157 -0.093
0-convex -0.154 -0.093
1-convex -0.15 -0.093
00-nonconvex -0.154 -0.113
10-nonconvex -0.154 -0.129
01-nonconvex -0.15 -0.113
11-nonconvex -0.15 -0.129
3-cells (equilateral triangle) -0.149 -0.086
3-cells (2π/3 corner) -0.146 -0.106
2-cells -0.146 -0.084
1-cell -0.142 -0.056
Line of cells -0.146 -0.093

7.4 Heuristic Description of the Localization Process

To understand the mechanisms behind these numerical results, one must realize that
a localized pattern is a domain surrounded by walls (in one of the three symmetry
directions of the hexagonal net). These walls are under stress, which comes from
three different sources: (1) the preference of the system for the hexagonal phase or
the uniform phase, which leads to the propagation of one phase over the other; (2)
the interaction between the long spatial scale of the interface with the small spatial
scale of the cellular pattern, the pinning or trapping effect; and (3) the presence of
other walls that surround the localized pattern. Therefore, when these three effects
cancel each other, the localized structure exists.

The two first effects have been widely discussed along the literature [11], how-
ever stress coming from the wall interaction has been just considered recently
[20, 23]. To get an intuitive picture of the process one can first consider an isolated
wall (i.e. the two first effects) in the limit ν ∼

√|ε| ¿ 1, keeping q∼O(1). To wit,
working near this limit we assume that equation (7.1) is a weakly nonlinear regi-
men. Then, it is possible to construct a static equilibrium condition for the position
longitudinal P of the envelope of the front (for technical details see [11, 20, 23]),
that is the wall is motionless if

−β +Γ cos(qP) = 0. (7.2)

The first term −β is related with the tendency of the system to propagate one
phase over the other, it is proportional to the distance of the control parameter to
the Maxwell point, namely, the point where both phases are equivalent. The sec-
ond term accounts for the pinning or trapping effect, which is capable of locking
the front propagation in the range of the control parameter |β/Γ | < 1, the pinning
range.
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Fig. 7.4 Pictorial view of the wall interaction for (a) parallel walls; (b) 2π/3 internal corner; (c)
π/3 internal corner; (d) 2π/3 external corner; and (e) π/3 external corner; (f) the isotropic one-cell
structure.

To study how the presence of the other walls modifies (7.2), one can focuses on
the interaction of two walls. There are five types of configurations: parallel walls; or
forming one of the four possible angles, related to the morphological categories.

For parallel walls, the configuration is motionless if it satisfies the static equilib-
rium condition

−β +Γ cos(qP)+Ξ‖ exp(−λP) = 0, (7.3)

where Ξ‖ > 0 and λ > 0 are numerical constants (see [20, 23] for explicit evalu-
ation of these coefficients). In this case, P means the position of one wall with re-
spect to the other, i.e. the size of the structure (see Fig.7.4(a)). Note that this case is
quasi-one-dimensional, and the relation (7.3) predicts the same bifurcation structure
deduced for one-dimensional systems in [6, 16, 25], namely, the range of existence
of a localized cellular pattern depends on its length (number of cells).

The relation (7.3) could be interpreted qualitatively as follows: a small struc-
ture feels an extra-stress, stronger than a longer one, which comes from its smaller
size. Since Ξ‖ > 0, the wall interaction is attractive (as in one-dimension [25, 26]),
i.e. this extra-stress acts like a self-compressing effect, which explains the shift in
the range of existence of the smallest structures (see Table 7.1). Fig.7.4(a) shows
a pictorial view of the wall interaction for parallel walls, while Fig.7.4(f) draws an
extension of this concept for the isotropic one-cell structure.
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For a corner in an internal angle of α (π/3 or 2π/3), the following static equi-
librium condition is obtained (see [20, 23] for technical details)

−β +Γ cos(qP)+Ξα exp
(
−
√

3λd/2
)

= 0, (7.4)

where
d = 2 [cos(α)P+ sin(α)Q]/

√
3 (7.5)

is the distance to the corner, and Ξα > 0 a numerical constant. Hence, when we get
closer to the corner, the stress increases [see Fig.7.4(b) and (c)]. This effect comes
intuitively from the fact that, near the corner, both walls are closer, and the self-
compressing effect is stronger. From (7.4) we can also deduce that, for a fixed Q,
the extra-stress, produced by the wall interaction, is bigger in the case of a π/3
corner than in the case of a 2π/3 corner (the walls are closer in the former case).

Notice that the relation (7.4) predicts a strong curvature at the corners, which
is corrected for the high order terms of our perturbative expansion. Since we are
neglecting the surface tension, curvature is not relevant. Actually, one of the main
hypotheses behind this analysis, is that curvature effects can be neglected in the
case of hexagons. That is, if the interface curvature is not capable of eliminating
or creating a cell, it is not relevant in a first approximation. If so, there would be
a cell interaction that could be modeled in a wall interaction framework (not in a
continuous one). Moreover, this tells us that when we match two walls, the matching
is smooth at the corner.

For corners associated to the external angles of π/3 or 2π/3 the static equilibrium
condition takes the form

−β +Γ cos(qP)− Ξ̃α exp
(
−
√

3λ̃d/2
)

= 0, (7.6)

with Ξ̃α > 0. Then, in this case the extra-stress (from the interaction of walls) is
negative, e.g. such types of structures tend to disappear when the hexagonal pattern
is energetically favorable (β < 0), which agrees with numerical observations (see
Table 7.1). In this case the self-compressing effect acts over the uniform phase (see
Fig.7.4(d) and (e)).

Therefore, in spite of the size of the localized structure, it always has corners
and at these regions the self-compressing effect remains relevant. Since the types
of corners are related to the morphological category of the structure, this is a shape
effect.

7.5 The Case of a Localized Line of Cells

As mention before, the case of a line of cells deserves an independent analysis. Table
7.1 shows the existence range of this species of localized structure fixing the para-
meters ν = 1 and q = 0.7. For ε <−0.146 the localized state vanishes and prevails
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the uniform state u = 0, but for ε > −0.093 the destabilization process is qualita-
tively different from the other species. Fig.7.5 shows this destabilization process:
the cells from the center of the structure stretch and start to propagate stripes. These
stripes are asymmetric objects in the sense that the spatial oscillations are centered
in a positive value of the order parameter u, as is expected in a system that has bro-
ken symmetry u −→−u. When the elongation of the cells reaches the ends of the
structure, the system nucleates hexagons at these points which begin to spread fill-
ing the remaining space. After the transient dynamics the system converges to the
localized state shown in the last picture of Fig.7.5, which seems to be an stationary
state.

0.95

-0.21

Fig. 7.5 Density plot of the order parameter from a direct numerical simulation of model (7.1) for
ν = 1, q = 0.7 and ε =−0.092. Time runs from left to right and from top to bottom.

Probably, this localized state (the last picture of Fig.7.5) is a particular feature of
model (7.1). In fact, it is not predicted by universal argument performed through am-
plitude equations [27], i.e. we do not necessarily expect to observe these structures
in an arbitrary instability with the same symmetries of model (7.1). The numerical
experiment shown in Fig.7.5 is related to high non-linear behavior. Actually, when
decreasing a little bit ν (which rules the magnitude order of non-linear saturation)
none of these processes are observed. Fig.7.6 displays the same type of numerical
experiment performing for ν = 0.9, where the systems behaves as it is intuitively
expected from the heuristic description of the last section.
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7.6 Conclusions and Perspective

Due to the crystalline nature of a hexagonal pattern, the localized hexagonal struc-
tures are like crystals, whose shapes are related to the symmetry direction (as one-
dimensional crystalline planes) of the hexagonal net. While for localized structures
that link two uniform states in 2-dimensions, the surface tension (or curvature ef-
fects) is a fundamental feature of the localization process (that are like raindrops),
in this case it seems to be negligible. For these crystals their morphological category
and their size play a fundamental role in the localization.

Heuristic description via wall interaction supplies a good physical interpretation
of the mechanisms involved in the localizations of the pattern. Namely, in addition
to the well known pinning phenomenon, there is a self-compressing effect, induced
by the attractive wall interaction. This makes the phenomenology richer in the sense
that the process of localization depends on the size and shape of the structure. It is
also suggested that localized structures appear by saddle-node bifurcations, due to
the appearance of zeros of the static equilibrium conditions.

Furthermore, this process seems to be similar for holes in the hexagonal net.
Preliminary numerical simulations show deformations in the surrounding pattern,
probably induced by boundary conditions, which change the phenomenology. A
way to avoid this problem is to consider holes inside of a localized pattern. In this
case the wall interaction will be worked in the same manner as in simple connect
domains. Then, they are non-convex structures that can be sorted in our morpho-
logical categories and are suitable for the same kind of analysis performed in this
report.

Another interesting phenomenon is the destabilization of a line of cells. It could
exhibit qualitatively different features compared to the other species of localized

0.77

-0.17

Fig. 7.6 Density plot of the order parameter from a direct numerical simulation of model (7.1) for
ν = 0.9, q = 0.7 and ε =−0.075. Time runs from left to right and from top to bottom.
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states. However, it is related to high non-linear behavior, and near to the weakly
non-linear regime the destabilization process behaves as our perturbation method
predicts.
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Chapter 8
Cavity Solitons in Vertical Cavity Surface
Emitting Lasers and their Applications

Massimo Giudici, Francesco Pedaci, Emilie Caboche, Patrice Genevet, Stephane
Barland, Jorge Tredicce, Giovanna Tissoni and Luigi Lugiato

Abstract Cavity solitons (CS) are single peak localized structures which form over
a homogeneous background in the section of broad-area non linear resonator driven
by a coherent holding beam. They can be switched on and off by shining a writ-
ing/erasing local laser pulse into the optical cavity. Moreover, when a phase or am-
plitude gradient is introduced in the holding beam, CS are set in motion along the
gradient with a speed that depends on gradient strength. The ability to address CS
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Université de Nice Sophia Antipolis, Centre National de la Recherche Scientifique, Institut Non
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and to control their location as well as their motion makes them interesting for all-
optical processing units. In this chapter we report on several functionalities of CS
that have been experimentally implemented in a Vertical Cavity Surface Emitting
Laser (VCSEL) biased below threshold. We show that CS positions in the trans-
verse section of the resonator can be reconfigured according to a phase landscape
introduced in the holding beam. CS drifting propelled by a phase gradient in the
holding beam can be used for realizing an all-optical delay line. Information bits
are written in form of CS at a point of the device and a time delayed version of
the written information can be read elsewhere along the gradient direction. CS exis-
tence and functionalities are deeply affected by presence of device defects generated
during the fabrication process and randomly distributed through the device section.
The sensitivity of CS to parameters gradients can be used to probe these defects,
otherwise not detectable, and mapping their positions. Finally, a periodic flow of
moving CS can be obtained by the interplay between a device defect and an external
parameter gradient. This suggests the possibility of engineering a CS source directly
onto the device.

8.1 Introduction

Optical morphogenesis has been widely investigated in the last twenty years [1,
2, 3]. Its success is partly due to possible applications to all-optical information
processing. In particular, the idea of using optical patterns for encoding informa-
tion in the transverse structure of the field has opened a new approach to parallel
all-optical information processing. The transverse plane is thought as a blackboard
on which light spots can be written and erased in any desired location and in a con-
trolled way. In fact, optical patterns have been proven to be unsuitable for this op-
eration because the intensity peaks are strongly correlated with one another, so that
they cannot be manipulated as independent objects. Instead, this operation becomes
possible using localized structures (LS).

LS are ubiquitous in nature; they form in large aspect-ratio media where two
or several solutions coexist in the parameter space [4, 5, 6]. They have been pre-
dicted and experimentally observed in many different systems, several of them are
described in this book: gas discharges [7], reaction-diffusion systems [8], fluids [9],
magnetic fluids [10], traveling-wave convection [11]. In optics LS have been pre-
dicted in non linear optical cavities [12, 8] and they have been experimentally re-
ported in photorefractive oscillators [14], in liquid crystal light valves [15, 16], in
sodium vapors [17]. When LS are realized in semiconductor micro-cavities their at-
tractive properties are combined with the advantages of semiconductor media for ap-
plications, namely fast response, miniaturization and low fabrication costs [18, 19].
LS in semiconductor microcavities are the subject of this chapter.

Single-peak localized structures, also called cavity solitons (CS), have been the-
oretically predicted in broad area semiconductor micro cavity injected by a coherent
beam (holding beam, HB) [20, 21]. CS addressing is obtained by injecting a narrow
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beam coherent and in phase with the holding beam (writing beam, WB) [22]. The
same beam, out of phase with respect the holding beam, can be used to erase in-
dividually a cavity soliton. Moreover, any parameter gradient induces a drift of CS
[8], allowing for reconfiguration of CS positions and other processing operations. In
the case of a phase (intensity) modulation in the holding beam, CS tend to move to
the nearest local maximum of the phase (intensity) profile.

From the experimental point of view, CS have been observed in an electrically
biased broad-area Vertical Cavity Surface Emitting Lasers (VCSELs) used below
threshold in the amplifying regime [23] and CS existence domain in the parameter
space has been characterized in [13]. CS were observed also in optically pumped
VCSELs [25] and in electrically biased VCSELs above threshold [26]. These works
have disclosed one of the main drawbacks of CS: their stability requires a rather
fine control in terms of the detuning between the VCSEL cavity resonance and the
injected field frequency (the tolerance on this parameter is of the order of 10 GHz).
On the other hand, the CS switching time has been characterized in [14, 28], where
response times of less than one nanosecond have been shown using a coherent writ-
ing beam, thus assessing the potential of CS for applications. More recently, the
property of CSs to drift in a phase gradient have been experimentally evidenced,
thus providing some proof-of-principle demonstrations of CS applications like an
all optical delay line [29] and a reconfigurable array of light bits [30].

One of the main outcomes of all these experimental analysis concerns the homo-
geneity of the VCSEL resonator along its transverse section. While CS theory has
been developed in the frame of a perfectly homogeneous system, real devices where
CS are achieved appear to be extremely inhomogeneous. Long scale (over more than
100 µm) inhomogeneities have strongly affected the first experimental observation
of CS [23, 13, 31] and have been progressively eliminated during the manufacturing
evolution of the VCSEL devices. On the other hand, the state-of-the-art fabrica-
tion of these broad-area semiconductor lasers is unable to avoid the formation of
small-scale defects (between few microns to few tens of microns). These defects
affect CS addressing [31], CS drift [29], CS positioning [30] and they need to be
considered when envisaging CS applications. In this chapter we describe the main
achievements in terms of CS applications and how they are affected by device de-
fects. A perspective on further developments of CS based applications will be given
in the conclusions.

8.2 CS motion

The stability analysis of CS solution in a passive injected resonator [8] reveals in 1D
the existence of a neutral mode stemming from the translational symmetry of the
equations describing the system. A neutral mode has a zero eigenvalue and there-
fore it is excited by an arbitrarily small spatial variation of any system parameter
[32]. Since the spatial profile of this mode is the gradient of the CS itself, its ex-
citation implies transverse drift of CS. Singular perturbation theory can be used to
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Fig. 8.1 Stationary solutions for an homogeneous device, as a function of the cavity detuning pa-
rameter θ (left panel) and of the input field amplitude EI (right panel). The solid (dashed) line
represents the stable (unstable) homogeneous steady state. Circles (triangles) represent the maxi-
mum intensity of stable CSs (patterns). Other parameters are: I = 2.0024 and EI = 0.792 (left), I
= 2. and θ = - 2. (right). The region between the two lines p and q in the left panel is the stability
region of CSs corresponding to −2.06≤ θ ≤−1.905.

estimate the speed of the CS [33, 34]. The results indicate that the CS behaves as an
overdamped Aristotelian particle, whose velocity (instead of acceleration) is propor-
tional to the external force. In view of applications, it is advisable that the direction
and the modulus of this force are controllable. Then, the most suitable parameter for
introducing a gradient is the holding beam phase. Such a gradient can be obtained
by tilting the direction of the holding beam with respect to the VCSEL cavity axis
or by inserting a spatial phase modulator along the holding beam path. Besides, a
phase variation of the holding beam does not affect directly the existence of CS, as
it would be the case for an intensity variation of the holding beam.

8.2.1 Numerical Analysis of CS motion in a constant phase
gradient

In order to analyze the effect of a holding beam phase gradient on CS drift, we nu-
merically integrate the equations described in [21]. This model describes a broad
area VCSEL, biased below threshold, in the paraxial and mean field limit approxi-
mations and it reads :

∂E
∂ t

=−[
(1+ iθ)E−2C(1− iα)(N−1)E−EI − i∇2

⊥E
]
, (8.1)

∂N
∂ t

=−γ
[
N +(N−1)|E|2− I−d∇2

⊥N
]
, (8.2)
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where E is the normalized slowly varying envelope of the electric field and N
is the carrier density, γ is the ratio between the non radiative recombination rate
γ‖ and the cavity decay rate κ (γ = γ‖/κ), θ is the cavity detuning parameter θ =
(ωc−ω0)/κ , with ω0 being the injected frequency and ωc the cavity frequency. EI is
the normalized input field, I is the normalized injected current, 2C is the bistability
parameter, α is the linewidth enhancement factor, ∇2

⊥ is the transverse Laplacian
and d is the carrier diffusion coefficient.

Time is scaled to the photon lifetime κ−1 and the spatial variables x and y are
scaled to the square root of the diffraction parameter a; for this kind of cavities
we can assume a time unit of about 10 ps and a space unit of about 4.5 µm [21].
Where not differently stated, in the numerical simulations reported in this paper the
following parameters have been fixed: C = 0.45, α = 5, γ = 0.01, d = 0.052. Our
control parameters are then θ , EI and I.

In Fig. 8.1 we plot the S-shaped input-output curve for the homogeneous station-
ary solution of Eqs. (8.1, 8.2), showing the intracavity field amplitude as a function
of θ (left panel), and EI (right panel). The broken part of the curves shows the unsta-
ble region where, due to a modulational instability, the system generates a spatially
modulated solution. As a function of θ , CSs coexist with the stable low-intensity
homogeneous solution for −2.06 ≤ θ ≤ −1.905 (that is, between the two dashed
lines p and q in the left panel), while for θ <−2.06 only patterns exist.

In the model a linear gradient is introduced in the holding beam phase by putting
EI = EI0 exp(iK ·x). For the parameters we used, the CS speed v as a function of K is
plotted in Fig. 8.2. We obtain typical values in the range of several µm/ns. v depends
linearly on K on a large range, where the perturbative limit is still valid, and then
it saturates. For higher values of K, the moving CS solution is not stable anymore.
This is quite surprising, since holding beam phase is not a critical parameter for the
CS existence. An explanation can be found in [8], where the problem of drifting
CS in an injected cavity is treated analytically upon some approximations. It turns
out that the addition of a constant phase gradient in the holding beam generates two
extra terms in the field equation. The first one transforms the time derivative of the
field into a convective derivative, thus indicating that travelling CS are the solutions
of the field equation. The second term effectively modifies the value of the cavity
detuning parameter θ , according to the following relation

θK = θ +aK2, (8.3)

being a the diffraction parameter. For large values of K, this leads eventually to
a destabilization of CS, as shown in Fig. 8.2. CS drift speed is limited by the mi-
croresonator response times and in particular by the carrier lifetime which is usually
longer than the photon lifetime in semiconductor cavities. Finite carrier response
time prevent from an instantaneous reorganization of the carrier profile during CS
propagation, thus leading to deformation of the travelling CS shape and slowing
down [39]. In Fig. 8.2b we plot the CS drift speed for two different values of K as
a function of γ . These curves are obtained by integrating Eqts. (8.1,8.2). We have
explored the range of values from 0.001 (0.01 being the likely value in our exper-
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iment, corresponding to a carrier lifetime of 1 ns) to beyond unity (where photon
lifetime becomes the limiting factor).

Fig. 8.2 a): CS drift speed versus phase gradient in the holding beam. Other parameters as in Fig.
8.1. b): Log-log plot of CS drift speed versus γ for θ =−2 and for two values of the gradient: stars
K = 2.38×104m−1; diamonds K = 1.91×105m−1.

8.2.2 Experimental Evidence of CS motion in a constant phase
gradient

The experimental setup for generating CS in broad area VCSEL is based on a mas-
ter/slave configuration, where the master is a tunable laser providing the holding
beam, and the slave is a VCSEL microresonator. A scheme of this experimental set
up is shown in Fig. 8.3. The master laser is driven by a stable (up to 10 µA) current
supply and it is temperature controlled to 0.01oC. It provides a continuous output
beam of 70 mW at 150 mA current driving, with a FWHM bandwidth lower than
300 KHz and a tunable wavelength in the range 960−980 nm. This beam is ampli-
fied by an optical amplifier, it is spatially filtered and, through a telescope, its waist
is brought to 300 µm before being injected into the VCSEL resonator. The polar-
ization of the holding beam is controlled as well as its power by polarization optics
and by an Acousto-Optic Modulator. Before injection the maximum power of the
holding beam is of about 15 mW. It is worth to point out that the master laser as well
as the optical amplifier are optically isolated from back reflections of the following
optics (return losses > 40 dB).

The master laser has a secondary output beam (20 mW at 150 mA) whose waist
is sized to 10 µm that can be used as local perturbation for writing and erasing CS
(writing beam, WB). When a chopped writing beam is required, a fast (rise and fall
time less than 1 ns) electro-optic modulator (EOM) is inserted in the WB path. Then
the EOM provides WB pulses at a fixed rate in the KHz range, each pulse having
a width of 100 ns. The phase relationship between the WB and the holding beam
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Fig. 8.3 Scheme of the experimental setup: M: high power edge emitter laser. I: current driver
stabilized up to 0.01 mA, T O: temperature controller, G: grating, OI: optical diode, L: Lens. FP
Fabry-Perot resonators. SOA: semiconductor optical amplifier. FPS oscilloscope for visualizing
FP signal. EOM: electro-optical modulator. AOM: acousto-optical modulators. PA: anamorphic
prisms. S.F1: beam expander-configurator with spatial filtering, S.F2: beam reducer-configurator
with spatial filtering. S: broad-area vertical cavity surface emitting laser. C: collimator. CCD camera
PD: photo-detector. PDA: avalanche photo-detectors linear array. PZT : piezo-electric ceramic. M:
mirror. BS: beam-splitters. PM: power meter (optional). λ/2: λ/2 waveplates. P: polarizers. OF :
optical fiber. LC: digital scope. SA: power spectrum analyzer. OSA: optical spectrum analyzer.
FPD: 8 GHz bandwidth detector. LC2: digital scope.

can be varied through a piezo-electric element mounted on the back of one of the
mirrors directing the WB towards the VCSEL cavity.

The slave laser, where CS are generated, is provided by Ulm Photonics and it
is an oxidized bottom-emitter InAs/InGaAs VCSEL with Bragg mirrors consisting
of 20.5 pairs on the bottom side and 30 pairs on the top side, and 3 quantum wells
emitting around 970 nm at threshold [35]. Its diameter ranges from 150 to 250 µm,
according to the sample we used. It is current and temperature stabilized as the mas-
ter laser. For CS generation, at least for the regimes described in this chapter, the
VCSEL is biased above transparency and below threshold; it is operated in an am-
plifying regime. The production of perfectly planar, and thus homogeneous VCSELs
with such a broad section is a very challenging task. Bottom-emitter configuration
allows for a rather homogeneous current injection through the whole device section,
though some weak current crowding on the device border is observed. As a conse-
quence, lasing operation at the threshold of the solitary VCSEL occurs around the
circular border of the device. In terms of homogeneity of the longitudinal length of
the VCSEL resonator across the transverse section, we can distinguish between a
long range (over distances larger than 100 µm) homogeneity and a short range (over
distances ranging few microns to few tens of microns) homogeneity. While the de-
vices we are using today can be considered perfectly homogeneous on the long scale
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range (the cavity resonance is shifted of only 3 GHz over 200 µm), the state-of-the-
art fabrication process does not fully prevent from formation of small size ”defects”
in the transverse plane of the laser. They consist of local spatial variations of the
semiconductor resonator characteristics (thickness, electrical and/or optical proper-
ties, optical gain) [36]. A defect is a (small) region where the values of parameters
are different compared to the values in the rest of the device, thus affecting CS exis-
tence [31] and preventing from CS addressing through the whole transverse section
of the device [13]. Local defects may trap, annihilate, or deviate moving CS, as it
will be shown in section 8.4.

The light injected into the VCSEL, together with the output of the VCSEL it-
self, are sent to the detection system through a beam splitter. The time averaged
near field VCSEL profile is recorded by a CCD camera (1 ms time of exposure).
When fast detection and spatial resolution are both required we monitor the near
field output by a linear array of six avalanche photo-diode detectors (APDs) having
a bandwidth of 350 MHz. The detectors output are monitored by two synchronized
digital oscilloscopes (Lecroy 7200A: 500 MHz analog bandwidth, 1Gs/s and HP In-
finium 54831b: 600 MHz analog bandwidth, 2Gs/s) for simultaneous monitoring of
six channels. Ultrafast detection of a small region of the transverse plane of the VC-
SEL is enable using a single 8 GHz detector. A 6 GHz scope (Lecroy Wavemaster)
is then used.

Experimental control parameters are: detuning between the frequencies of the
cavity resonance and of the injected signal, intensity of the injected field, VCSEL
pumping current. For the experiments described in this chapter these parameters are
set in the region where CS are stable [13].

CS drift in the transverse plane of the device can be induced by introducing a
constant phase gradient in the holding beam. This is obtained by tilting the last
beam splitter in the injection path, which aligns the holding beam with respect to
the optical axis of the VCSEL. While in a perfect homogeneous device the phase
gradient direction fixes the trajectory of the cavity soliton, the presence of device
defects may determine a deviation from this trajectory in the transverse plane of the
VCSEL. On the other hand, in order to detect drifting cavity soliton, it is necessary
to know their trajectory in order to place correctly the detectors linear array. Then it
is necessary to confine cavity soliton movement along a well determined direction.
This confinement is obtained by shaping the holding beam in form of a stripe parallel
to the phase gradient. The resulting holding beam intensity gradient confines tightly
the cavity soliton within the stripe.

In order to build this intensity channel we modify slightly the set-up of Fig. 8.3
either by inserting a cylindrical lens before the VCSEL collimator either by inserting
a Mach-Zender interferometer in the holding beam path. In the first case we obtain
an holding beam in form of fringes, as shown in Fig. 8.4a, in the second case we
obtain an holding beam in form of a stripe as shown in Fig. 8.4b. The visibility of
these fringes is close to one and their size is adjusted to be sufficiently large to allow
for CS existence.

The motion of a cavity soliton is shown in Fig. 8.4c. In this experiment the hold-
ing beam is injected in form of a single stripe, thus forming a propagating channel
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Fig. 8.4 a): Time averaged near field of the VCSEL with the injection in form of fringes obtained
by inserting a Mach-Zender interferometer. CCD camera exposure time about 1 ms. The positions
and sizes of the regions seen by the detectors of the linear array are marked as white circles. The
VCSEL current is 510 mA, holding beam intensity = 15 mW. A phase gradient is introduced in
the direction of the fringes. b): Time-averaged near field of the VCSEL with the injection in form
of a single stripe obtained by inserting a cylindrical lens before injection into the VCSEL. The
positions of the detectors in the transverse plane are indicated by squares. The area monitored by
each detector has diameter less than 7.2 µm and the separation between neighboring detectors
is 8.9 µm. A phase gradient is introduced in the direction of the fringes from left to right. CCD
camera exposure time about 1 ms. In both profiles a) and b) the intensity increases from white to
black. c): Time resolved CS drift along the stripe of panel b). The cavity soliton passes in front
of the detectors named from 1 to 5. The output of each detector is plotted, displaced vertically by
0.02 units for clarity. Detector 1 monitors the point addressed by the writing beam, applied at time
t = 0.

for CS monitored by the linear array of detectors. A constant phase gradient is in-
troduced in the direction of the stripe from left to right. A cavity soliton is ignited
by a writing beam pulse at point 1 within the intensity channel. This writing beam
acts as a strong amplitude gradient that holds the generated CS, whose drift starts as
soon as the WB is removed. The cavity soliton emission peak is successively picked
up by detectors 2 - 5. The distance between points 1 and 5 is 36 µm, the delay of the
CS peak registered in 5 with respect to the departure in 1 is 7.5 ns, so the CS average
speed is about 4.7 µm/ns. The drift length of 36 µm is the largest obtainable in our
available devices, because of the presence of device defects trapping or annihilating
CS. In Fig. 8.4b trapped CS are clearly visible in the middle of the intensity channel
and on the right of the detector 5.
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8.3 Applications of CS movement

8.3.1 CS drift in a constant gradient

The result shown in Fig. 8.4 provides clear evidence of CS drift in the transverse
plane of the VCSEL induced by a constant phase gradient in the holding beam.
Though the length of the CS drift is limited by the presence of device defects, the
experimental evidence provided is a proof of principle of two importants CS appli-
cations.

The first one is an optical shift register, a device where a set of m data slot is
shifted linearly of one position when the device is activated. Shift register can be
configured for serial to parallel conversion since the input is a m-bits data packet
written at one point of the device and it is converted in a m×1 array of bits stored
in the register. This operation can be accomplished all optically by drifting CS, as
shown in Fig. 8.4. We have implemented, as a first approximation to a bit value
of “1”, a perturbation in the form of a writing beam pulse creating a cavity soliton
(point 1). Under the effect of the phase gradient this cavity soliton drifts along the
injection channel. A second bit can be written once the first cavity soliton has cleared
the point 1 and so on. A set of bit packet is therefore written in form of CS and these
data are shifted along the injection channel. One can retrieve the parallel optical bit
sequence by placing a linear array of detectors along this channel. The serial input
information is distributed in a parallel optical output line with some delay that, in
principle, depends on the speed of the structure.

The second one is the delay line, a device able to delay the arrival of a new data
packet when a router is busy. All-optical routers require all optical delay lines in
order to preserve high-speed switching of data packets [37]. In practice in a delay
line a series of bits applied at one point in space are recovered, after a delay, at a
different position. A delay line using CS is based on injecting an optical bit stream
into an optical resonator, creating a CS that drifts transversely with a controllable
velocity. Fig. 8.4 is an example of this functionality. As for the shift register, we have
implemented to a “1”, a perturbation in the form of a writing beam pulse creating
a CS (point 1). This CS drifts in a well defined direction with a well defined speed
and it is read elsewhere in the transverse plane of the VCSEL device (for example
by detector 5).

The performance of a delay line is assessed by two specifications: the bandwidth
at which they can process information and a number called M resulting of the multi-
plication between the device bandwidth and the amount of time a signal is delayed.
For digital signals M corresponds to the maximum number of bits which can be
stored in a delay line [38]. In our system, the delay ∆ t is given by ∆ t = L/v where
L is the drift length and v is the CS drifting speed. The amount of the delay can
be varied straightforwardly by shifting the position of the read out point of the bit
stream, i.e. L. While v can be controlled with the gradient strength, it is not advis-
able to decrease v for increasing ∆ t since v limits the writing rate of the CSs, i.e
the system bandwidth. This can be understood when considering that the incoming
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bit stream is addressing a single point of the device and that a CS, once written,
must clear out the addressing point before the next bit could be written. Numerical
simulations indicate that a CS should have drifted around five diameters between
one writing pulse and the next (i.e. during the “return to zero” (RZ) stage of the
bit stream), in order to avoid interactions which might introduce timing jitter and
hence bit-errors. If we call τ0 the RZ time of incoming signal, the above described
condition reads τ0 > 5φ/v where φ is the CS diameter. In our proof-of-principle
demonstration τ0 > 10.6 ns. Since a CS can be written in around one ns [14], we in-
fer that the total bit interval cannot be less than 11.5 ns, which limits the bandwidth
to about 90 Mb/s and leads to M ≈ 0.7. Though M may appear quite modest in this
first experimental demonstration, these two CS applications present a remarkable
potential for improvement. Larger values of M can be straightforwardly obtained
in our scheme using resonators of larger transverse dimension and improved homo-
geneity. Although challenging, there are in principle no barriers to manufacturing
delay lines several millimeters long, gaining more than two order of magnitude on
the value of M. On the other hand, both M and the bandwidth can be improved by
increasing the CS drifting velocity. This is limited by the semiconductor microres-
onator response times, as shown Fig. 8.2b. This curve indicates that CS speed can
be significantly increased by increasing γ . This can be achieved by known methods
to shorten carrier lifetime (see e.g., [40, 41]) and very fast gain recovery times com-
patible with 200 GHz modulation bandwidth have recently been demonstrated in
quantum dot amplifiers [42]. For carrier lifetimes in the ps range, CS delay-line and
shift register operation would be above 10 Gbit/s. The numerical result of Fig. 8.2b,
together with the good perspectives of enlarging the device transverse dimension
and improving its homogeneity, suggest that there is great potential for achieving
both large M and high bit-rate shift registers and delay lines based on CS.

Moreover, CS based all-optical data processing offers robust pulse reshaping of
the incoming optical pulse. Because of the threshold response of the CS excita-
tion, amplitude fluctuations of the incoming signal will be eliminated, improving
the quality of the output signal. The bit length will also be formatted to the same
value fixed by the ratio between the CS size φ and the drift speed v. This reshaping
of the bit stream can be useful in telecom networks to avoid deterioration of the
signal and it offers an alternative method to all-optical pulse restoring [43, 44]. On
the other hand, a CS based delay line is not convenient for delaying analogue sig-
nals or binary signals where information is stored in the bit length (NRZ coding for
example).

8.3.2 Experimental realization of reconfigurable CS arrays

CS motion in parameter gradients suggests the possibility of reconfiguring CS po-
sitions across the transverse section of the VCSEL according to a given parameter
landscape. This operation appears very interesting when the parameter landscape
can be easily controlled and reconfigured. This is the case of the holding beam phase
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Fig. 8.5 a): Experimental setup of the spatial light modulator introduced in Fig. 8.3. R: 658 nm
laser; HW : half waveplate; M: mirror (optional); P:polarizer; LCD: computer controlled liquid
crystal display; L.C.L.V : liquid crystal light valve; S: cube splitter, A: polarisation analyzer. The
holding beam (holding beam) (indicated by arrow pointing H) reads the LCLV on the reading
side before being injected in the VCSEL. Arrow pointing D indicates the output beam going to
detection part of set-up, see Fig. 8.3. b): Computer generated profile used to drive the LCD. The
LCD modulates the intensity profile of the red beam impinging on the rear side of the LCLV. c):
Self interference profile of the holding beam in the plane of the VCSEL evidencing the acquired
phase profile. Intensity increases from white to black.

that can be configured by using a PC controllable spatial light modulator (SLM). In
order to control the holding beam profile, we insert in the set up shown in Fig. 8.3
the SLM system described in Fig. 8.5 a. Since no PC controlled liquid crystal dis-
play (LCD) is available at 980 nm, we use a liquid crystal light valve (LCLV). A
LCLV is a two sides electro-optical device [16]: the reading side is composed by a
liquid crystal layer and a dielectric mirror, while the writing side is composed by a
photoconductor layer. Since the liquid crystal molecules will orient according to the
(local) voltage drop they experience, the (local) index of refraction is proportional
to the spatial profile of the intensity Iw(x,y) impinging on the writing side. Then, an
incoming beam reflected by the reading side acquires a phase profile corresponding
to Iw(x,y). We use a LCLV readable at 980 nm by the holding beam and written by a
red laser beam whose intensity profile is modulated by a PC controlled LCD. Then,
the LCLV acts as a wavelength buffer, transferring the computer generated intensity
profile to a corresponding phase profile in the holding beam. For the LCLV we used,
we have measured a maximum phase modulation depth for the reading beam of the
order of ∆φ = 2.5 rad (0.8 π ± 0.05 rad). This maximum value was obtained for
writing intensity of the order of 0.1 mW/cm2 and an applied AC voltage to the two
sides of the LCLV of 2.2V peak to peak at a frequency of 9 KHz. In order to inject
a pure phase gradient, the reflecting surface of the LCLV is imaged into the VCSEL
output mirror. Nevertheless a small amount of intensity modulation is hard to avoid,
due to imperfect imaging of the LCLV on the VCSEL and/or small intensity effects
in the LCLV. Along the VCSEL transverse section, this intensity modulation is less
than 15% of the total intensity injected average on the VCSEL size.
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It is worth to point out that this scheme allows also for creating pure holding beam
intensity profiles. This is obtained by adding a properly oriented polarizer in front
of the LCLV reading side. We prefer to work with the phase profile of the holding
beam because, as already mentioned, variations of the holding beam intensity affect
directly the existence of the CS (see Fig. 8.1, right panel). Then, a holding beam
intensity profile demands to be carefully controlled for avoiding the introduction of
spots in the VCSEL section where CS existence conditions are not fulfilled.

The phase profile obtained for the holding beam can be monitored by adding an
additional mirror M (see Fig. 8.5a to form with the LCLV a Michelson interferome-
ter. The phase profile is then converted in amplitude profile and it can be acquired by
the CCD camera monitoring the near field of the VCSEL. For this purpose the VC-
SEL needs to be unbiased and the cavity resonance mistuned with respect the hold-
ing beam frequency, in these conditions it acts as a linear reflector for the Michelson
fringes. While performing the experiment, the path to the mirror M is blocked and
holding beam has a pure phase modulation.

In figure 8.5b we show an example of the applied phase profile, the black spots
determine in the injection beam a phase jump of 0.8 π rad with respect to the white
background. The transition between these two values, which is steplike in the LCD,
results in a phase slope in the injection beam of 0.1 π rad/µm, as measured in the
interferogram in Fig. 8.5c. This spatial bandwidth limitation is due to the imaging
and downscaling processes. In order to evidence the possibility of reconfiguring the
CS positions according to a predefined phase landscape in the holding beam, we set
the system parameters to values compatible with CS existence [13]. The near field
emission of the VCSEL for a homogeneous holding beam phase profile is shown
in fig. 8.6a. In this situation the red beam writing LCLV is blocked and no phase
modulation is present on the injection beam. The VCSEL emission shows a rather
complex intensity profile, where no stationary localized structures can be clearly
observed. We observe some filamented structures where fast detection reveals the
presence of an irregular spatio-temporal dynamics and some bright spots localized
along two straight lines, one horizontal in the lower part of the device and the other
one about 45◦ from the horizontal. As we will show in the next section, this kind
of near field emission is dominated by device defects. In Fig. 8.6b the writing beam
is applied on the LCLV, imposing to the holding beam the phase profile shown in
Fig. 8.5b. CS appear in the near field output of the VCSEL with a geometry that, at
least in a large portion of the device section, reproduces the landscape of the phase
profile of the holding beam. The device inhomogeneities prevent from extending
to the whole VCSEL section the CS array imposed by the holding beam phase. In
Fig.8.6c we show CS positioning when the phase grid has a square symmetry instead
of hexagonal as the one in Fig. 8.5b. Also under this geometry CS positions follows
the phase landscape showing the possibility of reconfiguring the CS arrays.

It is worth to remark that the residual holding beam intensity profile associated
to the phase profile has a negligible effect on CS positioning of Fig. 8.6b. This has
been verified by comparing Fig. 8.6b with the intensity holding beam profile. This
comparison reveals that CS positions correspond to minima of residual intensity
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profile and, according to [34], they would be unstable positions in absence of the
phase profile.

Fig. 8.6 a): VCSEL near field output under homogeneous holding beam injection. VCSEL is elec-
trically driven at 560 mA, the total injected power is around 15 mW. b): VCSEL near field output
when the phase modulation is introduced in the holding beam. The hexagonal phase modulations
is shown in Fig. 8.5. c): VCSEL near field output when the phase modulation introduced in the
holding beam has a square geometry, VCSEL biasing is now J=567 mA. Intensity increases from
white to black.

Device inhomogeneities and defects prevent from configuring CS positions ac-
cording to the phase landscape through the whole transverse section. For example, in
Fig. 8.6a the horizontal defect line at the bottom of the device section and the defect
line at 45o crossing the transverse section from left to right remain a pinning point
for structures despite the presence of the phase landscape. In order to overcome
these limitations more homogeneous devices are a possible solution. Alternatively
phase landscapes with stronger pinning force, i.e. with larger phase gradient, could
be implemented in order to overcome the device defects pinning force. From this
point of view, it is worth to point out that, in our experiment, we were quite limited
by the poor performances of our SLM in terms of the dynamical range of the phase
variation as a function of the Iw(x,y). As previously described, the phase modula-
tion depth of the SLM saturates at very low value of Iw(x,y) at approximately 0.8 π
of phase variation with respect to the case where Iw(x,y) = 0. This low modulation
depth limits the maximum value of phase gradient that can be implemented and,
therefore, the consequent pinning force. Moreover, the low value of Iw(x,y) saturat-
ing the phase variation made impossible to create landscapes having more than two
values for the phase. The improvement of the SLM is today technologically achieved
by new commercial available liquid crystal on silicon (LCOS) microdisplays in the
near infrared range that can reach more than 2 π phase contrast. Moreover, since
they are PC controlled, they have 8 bits dynamical range. Another possible solution
is to use deformable mirrors.

To conclude the description of this CS functionality, we emphasize that a phase
landscape can be used to configure CS positions. The pinning force engendered by
phase gradient can win the pinning force of some device defects, thus allowing for
CS reconfiguration. Other device defects lead to spontaneous formation of CS which
are anchored on the defect and cannot be moved by the phase gradient engendered
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by the landscape applied. In the next section we will analyze in details the charac-
teristics of device defects and their influence on the CS drift.

8.4 CS motion and device defects

The detrimental role of device defects on CS applications has been shown in the
preceding sections. As previously mentioned, we call defect any local variation of
a structural parameter of the device on a scale ranging from a few microns to a
few tens of microns, i.e. having a size comparable to the CS size. These inhomo-
geneities are typically generated during the device growth or postprocessing stages
and, at the state of the art of the broad-area VCSEL fabrications, they cannot be
avoided [36]. Several structural parameters can be involved: the resonator length
(Bragg reflectors layers thickness variations and/or interface roughness), the optical
gain and the refraction index (transverse inhomogeneity of doping level). Moreover,
conventional quality screening of the finished device such as spontaneous emission
profile or electronic microscope imaging of the VCSEL do not allow for detection
of these defects. Their influence on CS operations is a consequence of the tight sta-
bility conditions of CS in terms of the system parameters and of the sensitivity of
CS speed in presence of parameter gradients. In particular, CS existence domain in
terms of cavity detuning parameter θ is very narrow, as shown in Fig. 8.1. CS sur-
vive in an interval of 0.155κ; which corresponds, in physical units, to a frequency
range of 15 GHz. In terms of the optical length of the resonator through the device
section, a variation of less than one angstrom extended on an area corresponding to
the CS size would affect detrimentally CS stability. Then, it is not surprising that CS
existence is affected by tiny device inhomogeneities, that do not affect the sponta-
neous emission profile. As a consequence, even if system parameters are set such
that the largest part of the device allows for CS stability, there are points and/or re-
gions where CS existence is not possible. In these regions, we are in a parameter
range such that only the homogeneous solution or the pattern solution shown in Fig.
8.1 are stable and CS cannot be ignited by local perturbations, using a writing beam,
for example, as shown in [13].

The presence of these regions explains also why, despite control parameters are
optimized for CS, the experimental profiles obtained show extended structures and
single light peaks (see, for example, Fig. 8.6a that are not individually controllable.
Single light peaks are particularly intriguing because of their similarity with CS;
the impossibility of switching them off by a local perturbation reveals that they
are monostable structures whose characteristics are imposed by the device defect
underneath. Numerical simulations are very useful to understand the nature of these
structures, as it will be shown in Section 8.4.3.2.

On the other hand, a parameter variation through the device section implies the
existence of a gradient in this parameter and it inevitably induces a drift of the
CS [32]. Then, small scale defects behave as a attractive or repulsive regions for
CS, thus modifying their motion and imposing strong constraints on their positions.
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Fig. 8.7 a): An example of near field output of the injected VCSEL in the case of holding beam in
form of vertical fringes, CS are present along them and, in this direction, there is no external pa-
rameter gradient imposing any movement. Intensity increases from white to black. The fringes are
then shifted horizontally. This image corresponds to one frame of the movie realized when shifting
the fringes. b): Device section scanned by CS passages. Points of the section are represented in
a grey scale according to how often a CS pass over it: from white (less visited) to black (more
visited). The latter correspond to the most repelling defects, the last to the most attractive ones.

Actually, the sensitivity of CS existence and drift on device defects suggests that
they can be used as a tool to probe a VCSEL section and reveal its defects. Such a
method will allow for detecting any structural defect whether it is located onto its
external surface or buried into the device and thus not detectable otherwise [33].

8.4.1 CS force microscope

In order to implement CS movement to reveal device defects we inject an holding
beam in form of fringes, as previously done for the CS-based delay line. The width
of these fringes is chosen in order to allow for CS existence (fringe separation is
fixed at about 26 µm). No other parameter gradient is introduced into the system;
in particular, we take care of eliminating any phase gradient, both longitudinally
and transversally to the fringes. This is obtained by proper setting the angles of the
interferometer arms, leading to a flat phase profile. Finally it is possible to change
the orientation of the fringes by acting on the two arms of the interferometer. The
holding beam intensity profile confines CS in the direction orthogonal to the fringes,
but CS are free to move along the fringes (see Fig. 8.7, a). By piezoelectrical control
of the position of one of the interferometer mirrors, we shift the fringes position
in the direction orthogonal to the fringes. CS are then dragged in the direction of
the fringes motion, thus exploring the entire device section. In absence of local de-
fects, CS would move along straight lines parallel to the fringes shift direction. In
the real system, on the contrary, the trajectory followed by the CS will be affected
by any defect found along the path, which will displace the CS perpendicularly to
its (forced) motion. CS dragging occurs on a time scale much slower than the time-
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scales of the medium, thus CS migrate adiabatically towards their stable positions.
Their trajectory is affected by the local defects encountered: points of the plane
visited by CS will indicate attracting local defects, while regions that are avoided
will correspond to repulsive inhomogeneities. Trajectories are recorded by making
a movie of the VCSEL near field output as the fringes are scanned along the whole
transverse plane. All frames (one is shown in Fig. 8.7a are then summed and nor-
malized. The same operation is repeated for different directions of fringes, covering
homogeneously the 2π angle. Again all frames are added and normalized resulting
in a device map indicating statistically how often CS visit each point of the device.
Attracting defects will be located in correspondence of the most visited point of the
device section. Instead repulsive defects will be located at the less visited points,
since all CS trajectories will avoid these points. The map of the device defects ob-
tained in shown in Fig. 8.7b. In a perfectly homogenous laser this image would be
homogeneously gray, indicating that all the positions of the transverse plane have
the same probability to be visited.

It is worthwhile to note that, for each device we can associate a different map
as the one shown in Fig. 8.7b and that, for each device, the associated map is al-
ways the same after any realization, thus indicating that the defects indicated are
really structural defects of the device and do not depend on initial conditions of the
experiment.

8.4.2 Modeling of an inhomogeneous device

In the model the presence of device defects can be described by introducing local
variations of the cavity detuning parameter θ . This parameter, which is critical for
CS existence (as shown in Fig. 8.1, left panel), takes into account any variation of
the resonator optical length. Through the device section, the profile of θ is repre-
sented in the form θ(x,y) = θ0 +δθ(x,y), where δθ(x,y) is a normally distributed
stochastic process with zero mean and finite spatial correlation length. While the
amplitude of δθ(x,y) determines the depth (or height) of device defects, the cor-
relation length is related to the defect size. We implement this distribution in Eqs.
(8.1,8.2) assuming defect size of the order of CS, i.e. defect diameters of 10-15 µm.
Distribution amplitude is a critical parameter in order to get numerically VCSEL
emission profiles similar to the ones obtained experimentally (see, for example, Fig.
8.6a.

While defects may pin CS, the experimental evidences show that, in certain
points of the device section, CS do not exist anymore and addressing by local pertur-
bation is not possible there. Accordingly, the distribution amplitude is chosen wide
enough for θ to span over a range larger than the one where CS exist, being θ0 cho-
sen in the region where CS are stable. The resulting profile contains defects having
only an attracting and/or repulsive role on CS but also defects large enough to affect
the stability of CS.
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Fig. 8.8 a): Numerically simulated VCSEL output in the case of an holding beam in form of
fringes, reproducing the experimental situation of 8.7 (intensity grows from white to black). b):
CS trajectories after complet horizontal scan of the vertical fringes along the device section.
c)Superposition of CS trajectories for different fringes orientation and resulting device section
scanned by CS passages. Points of the section are represented in a grey scale according to how
often a CS pass over it: from white (less visited) to black (more visited). The former corresponds
to the most repelling defects, the latter to the most attractive ones.

In order to assess the validity of the interpretation given to the results presented
in Section 8.4.1 in terms of device defects, of their effect on CS dragging and of their
modeling, we have numerically simulated the operations described in Section 8.4.1
using eqs. (8.1,8.2). The holding beam has been introduced in form of fringes as in
the experiment, and these fringes were shifted orthogonally to their orientation at a
velocity slow enough for the system equations to follow adiabatically. In Fig. 8.8b
we show the trajectory of CS obtained after a scan of fringes in a single direction.
They were obtained by adding all the frames of the movie obtained while shifting the
fringes as the one shown in Fig. 8.8a (exactly as in the experiment). We repeated the
same procedure for different directions of the fringes (angles nπ/4, with 0 < n < 7)
and adding all the frame we have obtained the map shown in Fig. 8.8c. The similarity
with Fig. 8.7 is striking, but the great advantage of the numerical simulations is
that we know the defect distribution. The map can be therefore directly compared
with the spatial distribution of θ introduced, thus confirming that this distribution
is mapped by our method based on dragging CS. In Fig. 8.9 most visited regions
(attracting defects) correspond to regions where θ value is more negative than θ0,
while repelling defect corresponds to regions where θ value is less negative than θ0.
The regions where θ is such that standard CS are unstable are delimited by the thick
lines: green regions correspond to high intensity structures (that are always on) that
strongly attract CS. Red regions correspond to repulsive regions where only the low
intensity solution is stable, and CS cannot survive.

8.4.3 Interaction between phase gradient and defects: the CS tap

We have shown how device defects distributed through the VCSEL section affect
CS operations in presence of gradients. If we consider a single device defect sur-
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Fig. 8.9 Fig. 8.8c is superposed with the spatial distribution of θ using in the simulations: thick red
delimits regions where θ > −1.90, thick green delimits regions where θ < −2.05. Thin lines de-
limit regions where θ takes intermediate values: thin violet−2.05 < θ <−1.975 and thin magenta
−1.975 < θ <−1.90 Here θ0 =−2, I = 2 and EI = 0.8.

rounded by a region homogeneous enough for allowing CS stability, the presence
of an external parameter gradient may results in an interesting CS spatio-temporal
dynamics. In particular, we have observed that the interaction between a defect and
a phase gradient in the holding beam may induce the spontaneous formation of a
regular sequence of CS originating from the defect and moving in the gradient di-
rection [46], thus forming a sort of CS ”tap”. The length of the drift depends on the
extension of the homogeneous region surrounding the defect, since other defects
may stop CS drift as shown in Section 8.3.1.

8.4.3.1 Experiment

The experimental set-up is similar to the one used in Section 8.3.1. The holding
beam has an intensity profile in form of fringes in order to confine CS drift along
straight channels. One of these propagation path is monitored by a linear detector
array in the near field of the VCSEL output, as shown for example in Fig. 8.4a. The
holding beam phase gradient is introduced in the direction of the fringes to propel
CS along them. System parameters are optimally set for allowing CS existence in
the largest part of the device. As already mentioned, despite these conditions, some
attractive defects are deep enough to lead to the formation of structures whose char-
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Fig. 8.10 a): Intensity outputs from a linear array of four detectors placed along a channel line and
separated by 9 µm. Detector 1 monitors the defect point where the structure forms, no intensity
is monitored by the last detector of the array (detector 4) and its trace is not shown. Each trace is
vertically shifted for clarity. The VCSEL current is J = 441.76mA and holding beam intensity is
15 mW. b): As in a) except for VCSEL current which is J = 442.0mA. c): For the case depicted
in a), we superimpose fifty spatio-temporal sequences monitored by three detectors. d): Average
period of the sequence in a) < T > (crosses, with left vertical scale) and its standard deviation
σ(T ) (circles, with right vertical scale) as a function of J.

acteristics are strongly dependent on the defect underneath. These structures expe-
rience also a pinning force engendered by the attractive nature of the defect. When
the monitored fringe encompasses such device defects and the applied holding beam
phase gradient is strong enough to win the pinning force, a regular sequence of drift-
ing CS springing from the defect may appear. In Fig. 8.4a, we show the near field
emission of the VCSEL when injected by an holding beam in form of intensity
fringes, the positions of the detectors along the fringe monitored are indicated. CS
drift occurs at fast time scale and it cannot be resolved by CCD camera which pro-
vides time-averaged images. Instead the position of deep device defects is clearly
indicated by the presence of bright structures which form upon them.

In Fig. 8.10a and in Fig. 8.10b we show the time traces corresponding to the
VCSEL intensity output picked up by three fast detectors 1− 3 placed along the
channel line when a constant phase gradient in the holding beam. In particular, de-
tector 1 monitors a device defect (that we call point 1 from now on) where, if the the
phase gradient is removed, a stationary structure spontaneously appears. The phase
gradient has the same direction of the monitored fringe. Each detector records a
regular pulsing signal with an average period < T >= 63ns and the time traces are
strongly correlated to each other with a time delay (∆ t) of 3.0 ns for two neighbor
detectors in the direction of the gradient. Small increase of the VCSEL pumping
current J (lower panel) decreases dramatically the period of the pulsing signal down
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to < T >= 17.5ns, while both ∆ t and the pulse width are almost unaffected. These
time series indicate the presence of a drifting CS that is originated from the structure
appearing at point 1, it immediately starts to drift along the channel due to the phase
gradient with a speed of 3.0 µm/ns, and eventually it dies out after detector 3. The
periodic flow of CS outside the defect is characterized by the period T , correspond-
ing to the time separation between the passage of two consecutive CS on a point of
the VCSEL transverse section.

In Fig. 8.10c we superimpose fifty realizations of structure generation in 1 with
the following evolutions monitored by the other two detectors. Even if we con-
sider the situation where the process is characterized by the strongest dispersion,
the traces recorded by the detectors 2 and 3 superimpose perfectly. This indicates
that the spatial evolution of the CS is always the same after structure formation in
point 1, confirming the existence of a deterministic force pushing CS. In Fig. 8.10
d) we plot the average value of period T and its standard deviation σT as a function
of J. Even in the case of largest σT , T is larger than σT of almost an order of magni-
tude, thus indicating the regularity of the process. By increasing J this regularity is
further increased and, for J > 441.8 mA the signal is periodic. The two observations
of Fig. 8.10c and d) indicate the occurrence of a regular flow of CS drifting in the
direction of the phase gradient. The formation time of the structure in point 1 deter-
mines the period of the sequence T and it is dramatically affected by a variation of
the pumping current of the device, while its drifting speed is not.

It is important to point out that, if the channel line is changed in the experiment
(by changing the gradient direction together with the orientation of the fringes and
moving the detector array accordingly), other defect points of the device originat-
ing a regular flow of CS can be revealed. Their positions are randomly distributed
throughout the transverse section of the device. In Fig. 8.10 the drift of the CS along
the channel is interrupted after detector 3 by the interaction with another defect
which, in this case, annihilates the structure. The distance covered by the drifting
CS before vanishing depends on the defect-free length of the channeling path. As
previously mentioned, we have observed drifting lengths spanning from 10 µm to
30 µm.

8.4.3.2 Numerical Simulations

Numerical simulations have been performed in order to get insights on the above
describe dynamics. A single defect is introduced in eqs. (8.1), (8.2) assuming a
supergaussian spatial profile of θ :

θ(x,y) = θ0−θdexp

[
−

(
(x− x0)2 +(y− y0)2

σ2
d

)3
]

(8.4)

where θ0 is chosen in the range where CS are stable (p < θ0 < q, see Fig. 8.1,
left panel). According to the experimental observations, the defect size is assumed
comparable with the CS size: σd = 11.25 µm which means a defect diameter at
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half depth of 21.2 µm. The sign of θd determines the attractive (θd > 0) or repulsive
(θd < 0) nature of the defect. θd determines the depth of the defect and the steepness
of the defect walls, i.e. the value of the gradient of θ . Equations (8.1,8.2) have been
integrated with all other parameters set in order to allow for CS existence outside
the defect.

In the case of an attractive defect, we have observed that, if the defect depth
is sufficiently large, a high intensity structure spontaneously form upon the defect,
thus leading to output profiles similar to the ones experimentally observed (see,
for example, Fig. 8.6a. Numerical simulations confirm that this happens when only
the high intensity solution is stable within the defect. The same bifurcation occurs
in the homogeneous device shown in Fig. 8.1 when θ < p and patterns developed
throughout the entire device section. Actually, the single peaked structure generated
on the defect can be intuitively viewed as a ”portion” of a pattern, the character-
istics of which are strongly dependent on the defect size and shape. In particular,
it is important to point out that the bifurcation value of θ leading to the structure
formation in the defect (θc) is slightly different (more negative) from the bifurcation
value p calculated in the homogeneous case and it depends on the defect character-
istics. For the defect size considered here, pattern solution becomes monostable for
θ < θc =−2.114. The structure generated on the attractive defect is also pinned by
the defect because of the force engendered by the gradient of θ at the defect walls.

In order to analyze numerically the interaction between these defects and a con-
stant phase gradient in the holding beam, we introduce in Eq. 8.1 EI = EI0 exp(iK ·x),
as shown in 8.2.2. If the force engendered by this gradient is strong enough to win
the pinning force of the defect, the structure described above leaves the defect and a
regular flow of drifting CS springing out of the defect settles down, as shown in Fig.
8.11.

t = ti t = ti +16ns t = ti +32ns t = ti +48ns t = ti +64ns t = ti +80ns

Fig. 8.11 Sequence of snapshots showing the spatio-temporal dynamics of drifting CSs in the
transverse section of the VCSEL in presence of a defect. Intensity increases from black to white.
The position of the defect corresponds to the high intensity structure visible in the first panel, and
the phase gradient is directed rightwards. Defect characteristics: θ0 = - 2.0472, θd = 0.25, σd =
11.25 µm. Other parameters: EI = 0.792, I = 2.0024, K = 0.052 µm−1, and ti = 5 ns is the time
after initiation of the phase gradient in the numerical simulation.

This spatio-temporal behavior corresponds to the one experimentally shown in
Fig. 8.10. It can be understood by considering the characteristics of the defect above
described and the fact that, outside the defect, CS solution is stable. As the struc-
ture leaves the defect pushed by the phase gradient, it becomes a CS and it keeps
on travelling in the direction of the gradient with a speed depending on K. In the
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defect, once the structure has gone away, the system must relax back to the high
intensity state, which is the unique stable solution. Therefore, the structure forms
deterministically in the defect as a result of the (local) evolution of the system to the
equilibrium. This structure is pushed outside the defect by the phase gradient and
the process starts again, originating a periodic flow of drifting CS.

As in the experimental time traces, the separation between two pulses (T ) is de-
termined by the time τ f required to regenerate the structure at the defect once the
preceding one has gone (T ≈ τ f ), though numerical simulations show that other sit-
uations are possible for deeper defects. This relaxation process depends critically on
the parameter values inside the defect. In particular, it depends on how far these val-
ues are from the critical ones at which the homogeneous solution loses its stability.
The divergence of τ f , as the control parameter approaches the bifurcation point, is
a well known behavior of systems close to bifurcation (critical slowing down) [47].
For zero dimensional bistable systems, the critical slowing down is characterized
by a typical dependence of the relaxation time on the bifurcation parameter. This
is given by the inverse of a square root law of |µ − µc|, with µ being the generic
parameter and µc its critical value at the bifurcation [47]. The fits of the numerical
curves of τ f reveal a similar scaling as a function of θ and of EI , as shown in Fig.
8.12a and 8.12b, though the scaling exponent is different from 1

2 .

Fig. 8.12 Structure formation time τ f on a defect as a function of different parameters.
a): As a function of the holding beam amplitude EI . At t = 0, the holding beam amplitude is
suddenly increased from the value EI = 0.1 to the new stationary value EI . The fitting function
is τ f = τ0 + (EI −EI,c)b, τ0 = 5.18 ns, EI,c = 0.79063, b = −0.58. Other parameters values are
θ0 =−2.0472, θd = 0.2, I = 2.0024, K = 0 µm−1.
b): As a function of the value of θ at the defect bottom. The defect profile is introduced in the nu-
merical simulations at t = 0, starting from the stationary solution corresponding to the perfectly ho-
mogeneous case. The fitting function is τ f = τ0 +(θc−θ)b, τ0 = 7.27ns, b =−0.76, θc =−2.114.
Others parameters: θ0 = - 2.0472, I = 2.0024, EI = 0.792, K = 0 µm−1.
c): As a function of VCSEL bias current I. The defect profile is introduced in the numerical simu-
lations at t = 0, starting from the stationary solution corresponding to the perfectly homogeneous
case. Here θ has been varied with I in order to take into account the redshift of the cavity resonance
due to Joule heating. Defect characteristics: θd = 0.2, θ0 = -2.0472. Other parameters: K=0. µm−1

and EI = 0.792.

Concerning the VCSEL bias, it appears that changing this parameter does not
correspond only to change the parameter I in the equations. A change in the VC-
SEL bias implies also a variation of θ because of the change of the semiconductor
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refractive index caused by Joule heating [14]. In order to take into account this dou-
ble effect in the model, we have introduced phenomenologically the dependence
of θ on I by putting θ(I) = θ − 5(I− I), being θ= - 2.0472 and I = 2.0024. The
dependence of τ f as a function of I is plotted in Fig. 8.12c, and it is similar to the
one experimentally obtained in Fig. 8.10d. It is worthwhile to note that I cannot be
increased arbitrarily since eventually the homogeneous solution becomes unstable
even outside the defect and CSs do not exist anymore. This explains why value of
< T > cannot be further reduced in Fig. 8.10d. Finally, it is well known that noise
is much more effective in the vicinity of the bifurcation, thus explaining why the
fluctuations of < T > in Fig. 8.10d are larger for low I.

Defect depth and shape affect the characteristics of the reported spatio-temporal
dynamics for CS, but the onset of the periodic flow of drifting CS is rather robust
versus defect characteristics. Three ingredients are necessary: outside the defect CS
solution must be stable, inside the defect only the high intensity solution is stable
and the phase gradient must be strong enough to push the structure outside the de-
fect.

The formation of a regular sequence of CSs springing from a device defect and
moving in the gradient direction, that we called CS ”tap”, may be useful in CS
applications. First off all, defect-like spots can be engineered in the transverse plane
of the device in order to create device built-in CS sources, thus avoiding the use
of a writing beam to generate CS. The generation rate of these spots can be set
by engineering the defects characteristics. Thus, defects with different height/depth
and size could be engineered to obtain simultaneously CS sources with different
properties in the same device.

CS generation rate can be set by controlling the system parameters and/or by en-
gineering the defect characteristics. The flow behavior upon variations of the device
pumping current suggests that, by means of a weak modulation of the pumping cur-
rent, it may be possible to modulate the distance between CS, keeping constant the
value of the phase gradient generating the motion. Moreover, it may be even pos-
sible to stop the CS generation without perturbing the CS stability nor their speed
outside the defect, by simply varying the pumping level across the critical value
where the formation time of the structure goes to infinity (see Fig. 8.12c).

This sensitivity of CS generation on the pumping current suggests the possibility
of realizing a delay line for digital signals where a bit value of ”1” is stored as a
drifting CS and the input signal to be delayed is used for modulating the VCSEL
pumping current. This represents an optoelectronic method to store information bits
in form of moving CS, thus realizing a serial to parallel converter.

Finally, the CS flow can also be modified by injecting an optical perturbation onto
the defect originating the flow. In particular, it is possible to interrupt the CS flux
for a certain interval of time by injecting a Gaussian incoherent beam in the defect
position, without varying all the other parameters. This acts as an erasing beam and,
as long as it is on, it stops the CS emission. When the injected beam is switched
off, a new CS is spontaneously created in the defect and the CS flux starts again. We
obtain therefore a perfect control on CS emission, and this would permit us to realize
a delay line where information is encoded by erasing pulses in a periodical sequence
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Fig. 8.13 Sequence of snapshots illustrating different stages of continuous creation and inhibition
of CSs The defect position corresponds to the CS in the first frame, and the phase gradient is
directed upwards. The injection starts just before frame number 5 and stops after frame 6. From
left to right the frames are taken every 12 ns, starting at the 4th ns (the entire simulation lasting 100
ns). Parameters are: θd = 0.2, θ0 = - 2.0, I = 2., EI = 0.8, and K = 0.042µm−1. Intensity increases
from black to white.

instead of writing them. At variance with the use of a writing beam, this operation
can be realized by using an optical perturbation not necessarily coherent with the
holding beam, thus simplifying remarkably the experimental scheme. In Fig. 8.13
we show a sequence of snapshots illustrating different stages of continuous creation
and inhibition of CSs.

8.5 Conclusions

In this chapter we have illustrated some examples of applications of CS in semi-
conductor microcavities. Though these operations are still at the stage of proof-of-
principle, CS appear as promising tools for all-optical signal processing. The pos-
sibility of inducing CS drift by introducing a phase gradient in the holding beam
enables the conception of CS based devices as the shift register and the optical delay
line. The same property allows for the creation of CS reconfigurable arrays within
the device section. In this case the desired geometry is introduced in the holding
beam phase by a spatial phase modulator.

The main limitations of CS based applications come from the VCSEL resonator
homogeneity. The state-of-the-art of the fabrication process cannot prevent the for-
mation of device defects in the transverse section of the device. They affect CS
existence, thus preventing from using the entire transverse section for CS address-
ing. Moreover, they can attract or repel drifting CS, thus affecting the operations
based on CS drift.
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Reversing the point of view, the sensitivity of CS on the presence of these defects
makes them the best tool for a screening of the homogeneity of VCSEL devices. A
CS based microscope has been demonstrated for detection of device defects.

If the defect is isolated, the presence of a phase gradient in the holding beam may
generate a regular flow of CS drifting in the gradient direction and springing from
the defect. This suggests the possibility of engineering device defects for creating CS
sources buried in the device, thus avoiding the use of an external writing beam. We
have also shown that, by addressing incoherently this defect, it would be possible to
encode information bits in the drifting CS.

Finally, for CS based devices exportable ”outside the laboratory” it is advisable
to simplify the experimental scheme and to remove the tight requirements on the
parameters of the injected beam. A promising solution is provided by the Cavity
Soliton Laser, a device where CS are generated without an external injected beam,
thus behaving as microlasers. Important steps in this direction have been accom-
plished recently by three successful implementations of this concept [48, 49, 33].
One of these schemes is treated in a chapter of this book.
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Chapter 9
Cavity Soliton Laser based on coupled
micro-resonators

Patrice Genevet, Stéphane Barland, Massimo Giudici, and Jorge R. Tredicce

Abstract We report on the experimental observation of localized laser structures in
a compound laser system consisting of two mutually coupled broad-area Vertical
Cavity Surface Emitting Lasers (VCSELs), one of which is operated as a saturable
absorber. As cavity solitons appearing in a VCSEL driven by a coherent driving
beam, these localized structures coexist with a dark homogeneous background and
they can be individually addressed by a local perturbation. On the other hand, they
are generated in a laser device (hence called Cavity Soliton Laser, CSL) that does
not require a driving field. We explore the parameter space of the CSL to map the re-
gion of existence of the localized laser structures and to give evidence of multi-peaks
and ring-like laser states. We describe the bifurcation diagram associated to the for-
mation of these complexes which, as the single-peak structures, can be switched
by means of a local addressing beam. Localized laser structures have multistable
emission frequency associated to coexisting compound cavity longitudinal modes.
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Université de Nice Sophia Antipolis, Centre National de la Recherche Scientifique, Institut Non
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Université de Nice Sophia Antipolis, Centre National de la Recherche Scientifique, Institut Non
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9.1 Introduction

In the last decade an intensive experimental and theoretical work has been devel-
oped on localized structures. These structures appear in a large variety of large as-
pect ratio physical systems, where pattern formation is not ruled by the boundary
conditions [1, 2, 3, 4, 5, 6, 7]. Their properties are very interesting for applica-
tions, especially when they form in optical systems. Localized structures can be
individually addressed and positioned, which makes them very attractive for the
optical treatment of information [8]. Several demonstrations of localized structures
implementation to all-optical information processing have been experimentally pro-
vided [9, 10, 11, 12]. In optical resonators driven by an external electromagnetic
field, localized structures have often been named Cavity Solitons. A large amount
of theoretical and experimental work has been developed to analyze cavity solitons
existence domain in semiconductor media [13, 14], allowing for fast response and
miniaturisation.

Despite the large amount of investigations on localized structures, some ques-
tions concerning their bifurcation diagram describing the formation of complex lo-
calized patterns [15] are still under debate. In one dimensional systems, the bifur-
cation diagram showing the domain of stability of single-peak, double peak and up
to N-peaks localized structures has been established in the case where a stationary
homogeneous state coexists with a stationary pattern solution, as it is the case for
optical systems injected by an external field [16, 17]. The different kinds of localized
structures appear as a consequence of direct and inverse saddle node bifurcations.
Such series of bifurcations leads to the so-called snaking region which describes the
coexistence of a very large number of different localized structures. As all of them
are stable in a measurable region of parameter space, it is expected to observe a high
degree of multistability between the different coexisting states [18]. However exper-
imental observations have shown that such large coexistence of localized structures
is not found, at least in bidimensional systems [6]. Instead of the expected bifur-
cation of the system towards the upper (patterned) branch, the commonly observed
behavior is the sequential nucleation of an increasing number of distant single-peak
structures as a parameter is increased [3, 10, 19, 20]. This disagreement between
experimental and theoretical results was recently attributed to an anomalous slant
of the snaking region, which means that not all states coexist and are stable simul-
taneously, but that, for each parameter value, only a subset of these states is stable.
More recently, it was demonstrated that an intrinsic slant will appear just as a con-
sequence of the continuous translational symmetry [21]. Other mechanisms may
include an additional saddle node bifurcation of the complete pattern solution [22]
or the appearance of a non local coupling yielding to long range interactions among
localized structures [20]. If experimental observations confirmed that all the states
are not stable in the same parameters zone, leading to a slant of the homoclinic
snaking bifurcation diagram [23], the role that could be played by the device inho-
mogeneities has not been fully understood yet. Besides, the ”slanted snake” picture
captures only the stability of a single localized state, while the superposition of in-
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dependent localized states, appearing at separate points of the space, will inevitably
complicate the situation [15].

In the present chapter, we propose to extend the analysis of the localized states
bifurcation diagram to the case of laser systems. At difference with passive systems
(as, for example, the coherently driven VCSEL resonator), in laser systems there is
no external field imposing its phase, thus they are phase invariant. This symmetry
increases the complexity of the theoretical description. The analysis described above
based on the coexistence of two stationary solutions, i. e. an homogenous and a
pattern solution having the same reference frequency, does not apply since there is
no external injected field fixing the frequency of the system. In fact, we are not aware
of any general theory existing for phase invariant systems that could predict the
bifurcation sequence leading from single-peak localized structure to more complex
states.

The system we analyze consists of two coupled broad-area Vertical Surface Emit-
ting Lasers (VCSELs) facing each other and forming a self-imaging compound cav-
ity. While one laser is operated as amplifier, the other is biased below transparency
and it behaves as a saturable absorber. Recent experimental results have shown this
system can generate independent and switchable localized structures [24]. For its
ability of generating localized structures similar to cavity solitons without requiring
the presence of an injection field, this compound system has been named Cavity
Solitons Laser (CSL). Localized states existence was theoretically predicted in two-
levels lasers media with saturable absorber in the limit of fast material response
[7, 25] and, more recently, in semiconductor media [26]. In Rosanov and coworkers
early theoretical studies, these localized structures appearing in laser systems were
named laser solitons [27]. Some of these theoretical studies have indicated the possi-
bility of generating multi-humps localized states. We will show experimentally that
the organization of localized laser structures leads to a diagram strikingly similar to
the homoclinic snaking obtained for injected systems where the phase invariance is
broken.

9.2 Experimental Setup

The experimental setup is presented in Fig.9.1 [24, 28]. Two nominally identical
VCSELs (L1 and L2) are mounted in face to face configuration. They are 200 µm
diameter disk-like lasers. L1 and L2 are placed in self-conjugate planes and there-
fore, after one roundtrip, L1 (resp. L2) is re-imaged on itself. This configuration
allows to compensate for the diffraction occurring between the two VCSELs, hence
preserving the high Fresnel number required for the existence of localized struc-
tures [29]. Diffraction takes place only within the two VCSEL resonators, which
delimit a self-imaging compound cavity. A 20% reflection beam splitter is inserted
in the center of the cavity to extract output beams from the compound system. We
underline that the results presented in this paper could not be obtained using a 50%
reflection beam splitter, indicating that the amount of coupling between the devices
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Fig. 9.1 Schematic drawing of the experiment. L1: Laser above the transparency, L2: Laser below
the transparency, BS: beam splitter. Detection of L1 (resp. L2) includes a CCD camera monitoring
the near-field of L1 (resp. L2) and a fast detector to monitor the local temporal behavior. For phase
profile analysis we add the Mach-Zehnder interferometer in the L2 detection path.

must be sufficiently high. The near-field profiles of both VCSELs are imaged on
a charge coupled device (CCD) camera, allowing for the simultaneous monitoring
of L1 and L2. The self-imaging condition is obtained experimentally by comparing
onto a single CCD camera the image of the near-field emission profile of L2 with
the near-field emission profile of L1 reflected by the output mirror of L2 (the two
resonators being uncoupled due to a large detuning between their resonances, as de-
scribed in Section 9.3). If, after reflection, the near-field profile of L1 is imaged also
onto the CCD camera and this image has the same size as the near-field image of
L2, then self-imaging condition is reached.

L1 and L2 lase at around 980 nm, they are obtained from the same wafer and they
are nominally identical, both have a solitary threshold of about 400 mA. Their sub-
strate temperatures (T o

1 and T o
2 ) and pumping currents (IL1 and IL2) are stabilized.

To operate as a laser with saturable absorber, the two lasers forming the compound
system work in different regimes. The amplification is obtained by biasing L1 at
high current values, while the saturable absorption is obtained by biasing L2 below
transparency (below 40mA). The index of refraction of the semiconductor medium
depends both on substrate temperature and on pumping current through Joule heat-
ing. The mismatch between the cavity resonances, implied by a difference in the
bias currents, can be therefore compensated by controlling the individual substrate
temperatures (T o

1 and T o
2 ), thus enabling coupling between the two resonators. The

coupling level between the two resonators depends also on the reflectivity of the
beam splitter inserted in the cavity for extracting output beams. In order to max-
imize the coupling, we choose the beam splitter with the minimal reflectivity still
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enabling extraction of detectable output beams. In our experiment, the reflection of
the beam splitter is 20%. In order to ignite cavity solitons we used a 15 µm size writ-
ing beam (WB) generated by an external-cavity tunable laser mounted in Littman
configuration. The WB is applied to a point of the transverse profile of the absorb-
ing resonator (L2) acting as a local optical perturbation of the compound system. A
Mach-Zehnder interferometer on the L2 detection path is used to study the localized
structures coherence properties.

9.3 Bistability regime

Laser solitons can be obtained in presence of a bistable response of the output field
[7]. As previously explained, in our laser system bistability is achieved by biasing
L2 below its transparency value and thus operating it as a saturable absorber. For
enabling L2 absorption of the electromagnetic field amplified by L1 the cavity res-
onances of the two micro-resonators should match. This matching is achieved by
properly tuning the micro-resonators substrates temperatures.

When these parameter settings are done, the bistability response versus the am-
plifier bias current is captured by monitoring the emitted intensity of a small region
of the transverse profile (Fig. 9.2). The results of this measurement are shown in Fig.
9.2 lower panel, for different bias current values of the absorber. As the amplifier
bias current is increased, we remark that the emitted intensity drops to spontaneous
emission level for 320 mA < IL1 < 400 mA. This zone has been identified as the
parameter region where the cavity resonances are close enough to allow for interac-
tion and therefore for the absorption to take place. The origin of this sudden drop in
the emitted intensity can be understood by considering that the cavity resonance of
L1 is continuously changed when the amplifier current is swept. By increasing IL1,
the L1 cavity resonance is red-shifted proportionally to IL1 due to Joule heating. For
IL1 = IL2 = 0 the temperature of L2 substrate has been set to an higher value than the
one of L1. Then, as the bias current of L1 is upward scanned, the induced red shift
of L1 resonator resonance will eventually compensate the initial detuning between
the resonances. When interaction occurs, the absorption by L2 reduces the emitted
intensity until bleaching occurs due to saturation. If we modify the difference be-
tween the temperatures of L1 and L2 at IL1 = IL2 = 0, the interaction zone will occur
at a new IL1 value which correspond to the new amount of current necessary to com-
pensate the initial detuning between the two resonances. We notice that the drop in
intensity is not observed when the relative difference of the micro-resonators sub-
strates temperatures is reversed. In this case, an increasing of IL1 moves L1 cavity
resonance away from the L2 cavity resonance and the interaction never occurs. It is
worth to point out that when the two devices interact, the presence of absorption by
L2 can also be monitored by the presence of a light induced current in the device
bias circuit.

For low current values in the absorber resonator, i.e. high absorption levels, [Fig.
9.2, lower panel a) with IL2 around 16 mA], the emitted intensity exhibits the char-
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Fig. 9.2 Upper panel: Typical near-field profile of the system before (a) and after (b) the switching
of five single-peak structures. To capture the bistability response, a region of about 15 µm diameter
is monitored. This region is indicated by the square. Intensity increases from white to black
Lower Panel: Local intensity output emitted by the system when scanning IL1 with a fixed differ-
ence of packages temperature. Different curves are shown for different values of IL2. The continu-
ous curves correspond to upward scanning IL1 while the dashed part of the curves corresponds to
downward scanning IL1. In curve a) IL2=16 mA, in curve b) IL2=30 mA, in curve c) IL2=38 mA,
and in curve d) IL2=46 mA. For sufficiently low values of IL2 an hysteresis cycle appears.

acteristic hysteresis cycle resulting from the bistable response of the system. This
regime persists on a range of around 10 mA variation of IL2. The abrupt transitions
at the edge of the bistable cycle correspond to the appearance, in the recorded area
of the near-field profile, of a bright isolate spot of laser radiation having a diameter
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of approximately 10 µm, as the one presented in Fig.9.2 upper panel. The optical
spectrum of this structure reveals a well pronounced peak characteristic of laser
emission which is absent in the case of the homogeneous solution. If the current in
the absorber is too high, the bistable response is lost [Fig. 9.2 lower panel b), c), d)]
and the intensity drop is less pronounced.

In [24], we have proven that an external writing beam (WB) of around 15 µm
diameter can be used for the independent control of the observed bright spots. The
parameters are set in the bistable zone and the system is initially prepared in the
low intensity branch. The application of the optical perturbation at two sufficiently
distant points in L2 transverse section ignites two independent bright spots, thus al-
lowing for interpreting these structures as single-peak laser solitons. The same WB
can be used to switch them off independently. For this operation we have followed
the indications of numerical simulations where erasing of laser solitons is obtained
by applying a perturbation of suitable duration [30]. We have experimentally ob-
served this behavior for parameters set sufficiently close to the lower edge of the
bistability region [28]. The limitation in optical power of our optical perturbation
did not allow us to control, for the same parameters values of the system, both the
switching on and off using different perturbations duration. On the other hand, laser
solitons have been independently switched off by dragging them in regions of the
transverse section of the system where inhomogeneities destabilize laser solitons
[24]. These device inhomogeneities affects also the existence of cavity solitons in
the coherently driven schemes, as described in the chapter on cavity solitons in VC-
SEL of this book.

We have previously shown that our compound system can be interpreted as a
laser with saturable absorber when the interaction between the cavities occurs. The
parameters zone where the interaction occurs can be obtained for different combi-
nations of values of the temperature difference and of the amplifier current. We can,
for example, set the interaction zone at different IL1 values by changing the initial
temperature difference between the resonators. In this way we have obtained a broad
parameters region where single-peak laser solitons are stable [28]. This flexibility
in the control parameters has also permitted the observation of more complex local-
ized states. The next subsection will be devoted to the description of the bifurcation
sequence that, from the single-peak laser solitons state, leads to multi-humps states.

9.3.1 Multistable Regime

The formation of clusters of localized states is currently a focus of experimental and
theoretical investigations in optics. A general theory describing the appearance of
these clusters of localized structures has been developed in the frame of a Swift-
Hohenberg equation in one spatial dimension and in the case where a stationary
homogeneous solution coexist with a stationary pattern state [16]. This is the case
of injected optical resonator, where the frequency of both solutions are fixed by the
injected field frequency. It turns out that a front connecting these two solutions is
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stationary in a finite parameter region called ”locking range”. The bifurcation dia-
gram of a single-peak localized state shows that the intensity of this state ”snakes”
up towards higher intensity levels, zig-zagging to and from across the locking range.
While the positive slope ”zig” corresponds to stable branches of localized states, the
negative-slope ”zag” are unstable branches. The number of peaks of the localized
state associated to a stable branch is increased by two at each zig-zag [32]. Hence,
localized states with an increasing number of peaks coexist in the parameter space.
This peculiar bifurcation diagram has been named ”homoclinic snaking” because all
these localized states are homoclinic to the homogeneous solution. At variance with
these theoretical predictions, the sequential formation of an increasing number of
peaks upon the variation of a parameter is often observed in experiments [23, 10],
indicating that the bifurcation diagram would exhibit a certain degree of slanting,
breaking the alignement of the stability branches of different localized states versus
the parameter value. Different hypothesis on the mechanism leading to the slant of
the homoclinic snaking bifurcation diagram has been formulated [20, 22].

On the other hand, there are no indications that a bifurcation diagram of localized
structures similar to the homoclinic snaking could exist also in laser systems, where
the homogeneous solution corresponds to a non-lasing state with an undefined fre-
quency and phase. In the early description of laser solitons of Rosanov, these struc-
tures arise as a heteroclinic connection of two fixed points of zero amplitude which
represent the non lasing state [7]. In order to shed some light on the bifurcation
diagram of the Cavity Soliton Laser, we have experimentally investigated the bi-
furcation diagram of a single-peak laser soliton. We have found that our system
supports the existence of clusters of laser solitons and complexes, which could be
considered as bound states of two or more coherent single-peak laser solitons. The
appearance of these multi-humps states arises from a secondary bifurcation of the
laser soliton solution. While this analysis has been performed monitoring a small
region of the transverse section of the cavity soliton laser, we have also analyzed the
global bifurcation diagram of the entire device.

9.3.2 Local bifurcation diagram

The bifurcation diagram of a single-peak laser soliton is obtained by monitoring a
small surrounding region, as described in the previous section to evidence the bista-
bility regime. The control parameter is the amplifier current IL1, which has been
used to draw the bistability curve of Fig. 9.2. The bifurcation diagram of the single-
peak soliton laser depends critically on the system parameters. In upper panel of
Fig. 9.3, we show the evolution of the bifurcation diagram for different values of
the absorber current IL2. For clarity the different diagrams are vertically shifted for
increasing values of IL2. We observe that for high current value in L2 (IL2 ≥ 26 mA)
and thus low absorption in the system, the sequence of bifurcations is such that there
is no distinguishable multistability. When IL1 is scanned upward, the system jumps
from the non-lasing state towards the single-peak laser soliton (indicated with A).
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Increasing more the pumping current, a secondary bifurcation takes place and a two-
peaks structure (indicated as B) appears followed by a ring-like state (indicated with
C). When IL1 is scanned downward from the upper state, a bistability is observed
between the ring-like structure with the double-peak structure for IL1 ≈ 368 mA and
between the single-peak laser soliton with the homogeneous solution for IL1 ≈ 362
mA. No clear coexistence is observed between these four states. Decreasing IL2 to
22−24 mA, we remark that the system jumps directly from the homogeneous solu-
tion to a complex structure (two-peaks or ring-like structure) when scanning upward
IL1, instead, when IL1 is scanned downward, the intensity reaches the homogeneous
intensity level by successive abrupt jumps corresponding to this sequence of tran-
sitions: from ring-like structure to two-peaks structure to single-peak structure to
homogeneous solution. The homogeneous structure coexist with two (IL2 = 24 mA)
or with all the three lasing structures (IL2 = 22 mA). For lower absorption values
(IL2 = 16 mA), the single-peak laser soliton state is not spontaneously reached any-
more, while the two-peaks structure coexists with the homogeneous solution.

The upper panel of Fig.9.3 demonstrates that the bifurcation diagram of localized
states can be modified by changing the level of absorption. Since there is no general
theory that applies to cavity soliton laser it is difficult to argue on the origin of this
behavior; we hope that these experimental findings may stimulate further theoretical
investigations of localized structures in laser scheme.

The abrupt jumps observed in the bifurcation diagram for IL2 = 22 mA and
IL2 = 24 mA suggest the presence of multistability but such behavior can not be
evidenced by scanning IL1 all the way up from the homogeneous state and then all
the way down. In order to confirm the coexistence between single and multi-humps
structures, we have performed a measurement aimed at exploring the complete sta-
bility domain of each structure. This can be determined by preparing the system
on each state and scanning up and down IL1 to find the switching values towards
the upper and lower branch. The full stability diagram obtained is shown in Fig. 9.3,
lower panel. The black arrows designate the stability of each state. The green dashed
arrows designate the parameters zone where a localized structure coexists with the
homogeneous solution while the red one corresponds to bistability between struc-
tures. The single-peak soliton laser branch is denoted by the letter a). The branch
associated to the double peak structure is marked by the letter b) and the letter c)
designate the ring-like structure. As previously described, this curve is obtained for
a peculiar setting of parameters and it changes when the absorption level is modi-
fied. In particular, a change in IL2 affects the size of the region of bistability with the
homogeneous solution (green dashed arrows). The same happens to the region of
coexistence between adjacent states (red dashed arrows). For the particular parame-
ters setting we used to obtain this diagram, the homogeneous state, the single-peak
soliton laser and the double peaks structures are simultaneously stable. For 295.5
mA < IL1 < 297.5 mA the system is multistable. We notice that the slant in the
coexistence of the states is clearly visible in the lower panel of Fig. 9.3 and it in-
dicates that the size of the region of coexistence between a localized state and the
homogeneous solution shrinks with the increasing of the structure size.
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Fig. 9.3 Upper panel: Local intensity output emitted by the system when IL1 is ramped up and
down, for different values of IL2. The monitored region of the transverse section of the system has
a diameter of 30 µm. IL1 is scanned very slowly to preserve the stability of the temperature con-
troller). Red curve: IL1 scanned upward, Blue curve: IL1 scanned downward. Curves for different
values of IL2 are vertically shifted for clarity. a) Intensity profile of one-peak laser soliton. b) In-
tensity profile of two peaks laser soliton. c)Intensity profile of a ring-like lasing structure.
Lower panel: Local intensity output emitted by the system as shown in the upper panel for IL2 ≈
24 mA. IL1 is properly scanned to explore the stability of all branches (full black arrows), i.e. of
each localized state. The green dashed arrows designate the parameters region for each localized
state where it is bistable with the homogeneous solution. In this region, a writing beam could be
used to switch on the localized structure considered. The red dashed arrows designate the region
of bistability between different structures. Multistability is present in the parameter regions where
the red and green dashed arrows overlap.

9.3.3 Towards the whole bifurcation diagram

The local bifurcation diagram presented in Fig.9.3 has been obtained by considering
only a region of 30 µm diameter in the transverse profile of the system. The bifur-



9 Cavity Soliton Laser 179

cation sequence exhibits a very complex bifurcation diagram when considering a
larger region of emission. To better understand the bifurcation diagram of the whole
system, we first increase the diameter of the observed area to around 80 µm. We
perform the same measurement as in Fig. 9.3, upper panel, for two IL2 values. The
results are shown in Fig. 9.4.

Fig. 9.4 Left panel: Local intensity output emitted by the system when IL1 is ramped up and down,
for two values of IL2: IL2 = 20 mA, 2) IL2 = 22 mA. The monitored region of the transverse section
of the system has a diameter of 80 µm. Right panel: For each branch indicated by a letter in the
left panel we show the corresponding near-field emission profile of the monitored region.

The curve denoted by 1) is obtained for IL2 = 20 mA. As shown in Fig.9.3, upper
panel, for this value of IL2 the laser soliton structure is not reached spontaneously.
A three-humps structure switches on (b) when IL1 is ramped up and becomes un-
stable, the system switches to the two-peaks state, when IL1 is decreased (h). If
the absorption level is varied by changing IL2, the bifurcation diagram concerning
the monitored region is dramatically affected as shown by curve 2) in Fig. 9.4. In-
deed, for the same IL1 scanning range, the near-field profile shows the appearance
of new structures that where not present for lower IL2. It is important to underline
the difference between the local bifurcation diagram described in Fig. 9.3, which
was restricted to the evolution of a single localized state, with a bifurcation dia-
gram taking into account the evolution of several mutually independent localized
states occupying different spatial regions of the system. In the next section we will
characterize the coherence properties of these separate localized states versus the
coherence properties within the same localized structure.

Fig. 9.4 has been obtained by monitoring the emitted intensity of a 80 µm diam-
eter area when the current in the amplifier is ramped all the way up and all the way
down. As discussed, this method cannot capture the full stability diagram because
the intermediate states are not fully visited, while others may not be explored at all.
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It is interesting to obtained the full stability diagram for the whole transverse profile
of the CSL. The result is shown in Fig. 9.5.

Fig. 9.5 Full bifurcation diagram for the whole transverse section of the system. This figure reveal
a high degrees of multistability when several isolated zones are simultaneously observed.

Since a detailed description of each state which can be seen on Fig. 9.4 would be
tedious, we will only outline the main features of the organization of these states.
The first remark is that a sort of slant in the coexistence of the states is still evident
when considering the whole transverse section. The diagram shows also that the
switching of independent structures does not occur for the same parameter values.
This behavior can be attributed to the inhomogeneities of the VCSEL device that can
anticipate or delay the bifurcation point, although other interpretations may be pos-
sible 1. We point out that for IL1 value at the beginning of the multistable response of
the system (between 250 and about 270 mA), the near-field reveals the switching of
isolated localized spots that grow in size when increasing IL1. The growth of these
isolated spots with IL1 leads eventually to their connection. For higher IL1 values,
the pattern will invade the whole transverse section of the device. In this case, the
fast temporal detection reveals a complex dynamics. This regime is very interest-
ing to be studied but the spatial extension of the experiment requires an appropriate
tool for both spatial and temporal detection. Although Fig. 9.5 already displays a
remarkable complexity, it is important to note that it shows only the field intensity
variable and that it does not give any information on the phase of the field.

1 The presence of a long range coupling term, for example
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9.4 Coherence properties of laser solitons

In order to obtain some information on the phase profile of the CSL emission we
perform a near-field interferometric measurement of its output.

Since laser solitons are monochromatic, the mutual coherence of two of them can
be studied by looking for interference fringes in the near-field when their respective
signals are superimposed and imaged on a slow (i.e. time averaging) CCD cam-
era. To realize this measurement, the output signal from the system is separated in
two beams (see Fig.9.1). Each beam is directed through a different arm of a Mach-
Zehnder interferometer. At the exit of the interferometer, a lens forms two images
of the L2 near-field output on a CCD camera, each image corresponding to a propa-
gation through each arm of the interferometer. This experimental scheme allows us
to overlap different spatial regions in the near-field output of the system in order to
evaluate their mutual coherence.

Fig. 9.6 L2 near-field (NF) intensity distribution after the interferometer. a) The absorber medium
NF is imaged from the interferometers first arm. b) The absorber medium NF is imaged from the
interferometers second arm. The image is slightly shift down. c) Mathematical sum of the two
previous picture. d) The interferogram present no fringes indicating that the two different laser
structures are not coherent.

The sequence of near-field measurements presented in Fig. 9.6 summarizes the
experiment. The Fig. 9.6a) is the near-field of the compound system observed
through one arm of the interferometer, while the other arm is blocked. The Fig.
9.6b) shows the same near-field, imaged through the second arm of the interferom-
eter only. Both images are slightly shifted with respect to each other. The shift is
such as there is a superposition, in the CCD plane, between the lower left structure
of the Fig. 9.6a) and the upper one of the Fig. 9.6b). This is clearly seen in Fig. 9.6c),
which shows the mathematical sum of Fig. 9.6a) and b) 2. Now, we let the two beams
to interfere on the CCD by opening simultaneously both arms of the interferometer.
The result of this experiment is presented in Fig. 9.6d). The absence of interference
fringes, i.e. the fact that the sum of the intensities shown in c) is identical to the in-
tensity of the sum shown in d) indicates that interference terms have been averaged
out during the integration time of the CCD. This indicates that the upper structure
is not coherent with the lower left one. The same experiment has been performed

2 We add intensities, pixel by pixel.
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with all the combinations of structures present in Fig. 9.6 and the results are iden-
tical, indicating that these independent single-peak laser soliton are not mutually
coherent. This observation is very interesting when we compare it to the results of
the experiment made with double-humps structures. Indeed, we have performed the
same measurement but we have overlapped one peak of the double-humps structure
to interfere with its neighbor. The results are presented in Fig.9.7. As previously,
the first two pictures show the near-field observed through each single arm of the
interferometer. The third picture is obtained by computing the mathematical sum of
the two previous images while the last picture is the intensity at the interferometer
output when the two arms are open. The presence of fringes, whose periodicity and
orientation of course depend on the alignment of the two arms of the interferometer,
indicate that the two peaks forming the double-humps structure are mutually coher-
ent. The possibility to create multi-humps states in laser with saturable absorption
has already been theoretically predicted and the stability of weakly coupled lasers
structures has also been investigated [7, 31]. The authors show that stable bound
state of two laser solitons can be formed if the phase mismatch between them is 0
or π .

Fig. 9.7 From left to right: Intensity near-field profile of a double hump structure imaged twice
on the CCD camera via two different interferometer paths: the first two pictures show the images
obtained when either one or the other path is open. The third shows the calculated sum of the two
intensity images: the top-right peak is superimposed on the bottom left peak. When both paths are
open, the two peaks interfere with each other.

Even if the alignment condition chosen for this particular measurement does not
allow us to determine the relative phase of the two humps with respect to each other,
it clearly shows that the humps of a composite structure are mutually coherent, while
distant laser solitons are not.

9.4.1 Modal properties

The CSL is based on the mutual coupling of two resonators in a long compound cav-
ity (typically 30 cm). Because the gain curve of semiconductor laser is very broad
(some nanometers) compared to the free spectral range (FSR) of the compound cav-
ity (about 460 MHz), the number of longitudinal modes capable of being active is
very important. The laser solitons could therefore lase on several frequencies, each
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one associated to a compound cavity mode. In the following, we will turn our at-
tention to laser solitons emission frequencies. Even if the optical spectrum analyzer
shows the appearance of a new and narrow peak when a laser soliton switches on,
the resolution of the optical spectrum analyzer (0.1 nm) is not sufficient to disclose
the eventual presence of several compound cavity modes, which are separated by
only 460MHz.

A possible method to observe the presence of multiple frequencies in a laser
soliton consists of performing an heterodyne measurement, using a stable reference
field from a tunable laser. For this purpose, we use an external cavity laser mounted
in Littrow configuration whose linewidth is below 1 MHz. The reference field is
combined with the cavity solitons signal and sent to an 8 GHz bandwidth photode-
tector. The beating signal is detected and amplified and then it is recorded by a
power spectrum analyzer HP8593.

Fig. 9.8 Left panel: Two heterodyne measurements of the laser soliton frequency emission. The
two curves indicate that the emission frequency is monochromatic and it takes discrete values
associated to the compound cavity modes. Right panel: Interferometric intensity signal of a LS
as a function of IL1 . The interferometric intensity signal is obtained integrating the phase profile
of the monitored LS. The figure shows the multi-stability of the laser soliton emission frequency.
The inset picture are the phase profile resulting from the interference of the laser soliton with a
reference beam extracted using the emission at the peak of the laser soliton. Bright zones represent
hight intensities.

Fig. 9.8, left panel shows two different realizations of the recorded beating sig-
nal. The two curves have been obtained for a small change in the pumping current
(around 0.2 mA) such that the laser soliton is kept bistable with the homogeneous
zero solution (during this experiment, the total output intensity emitted by the laser
soliton is constant). For both heterodyne curves, there is a single peak. This is a
clear indication that, in each case, the laser soliton is emitting on a single frequency,
but these two frequencies are different. When the current is continuously increased,
the beat note remains unique but it undergoes to consecutive sudden jumps of equal
frequency intervals. The frequency jumps is around 460 MHz and it corresponds to
the free spectral range of the compound cavity.

This measurement is completed by recording the intensity of the signal resulting
from the interference of a single-peak soliton lasers with a reference beam extracted
from the single-peak soliton under consideration. The reference beam is obtained
by enlarging the output beam propagating in one arm of the interferometer and
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selecting a region of few micron around the center of the single-peak laser struc-
ture. In this way the whole structure interferes with its central part, resulting in the
phase profiles shown in Fig. 9.8, left panel. The interferometric signal of the single-
peak laser soliton is obtained by integrating its phase profile on the full size of
the structure. Since the length difference between the interferometer arms is about
∆L = |L1−L2| ∼ 5cm, the phase difference between the two beams oscillating at
νn at the end of interferometer is given by: ∆φn = kn∆L where kn is the wavevector
and ∆L the length difference between the interferometer’s arms. The variation of
the phase difference associated to a frequency jump of the single-peak laser soliton
to the neighbor compound cavity mode is therefore given by:

∆φn+1−∆φn = π
∆L
Lc

As a result, if the emission frequency of the laser soliton changes, the interfero-
metric intensity detected will also change. To avoid aliasing, the previous equation
shows that ∆L

Lc
has to be sufficiently smaller than 1, which is the case here since the

compound cavity length is about Lc ∼ 32.5cm. In these conditions, the sequential
mode switching, undetectable by looking at the simple laser soliton emission inten-
sity, will be detected by the variation of the interference intensity at the output of the
interferometer. Fig. 9.8, right panel shows the evolution of the interferometric inten-
sity as a function of IL1. When the pumping current is increased upward, the interfer-
ometric intensity evolves continuously (due to a continuous frequency shift with the
current) until IL1 = 256.2 mA when the interferometric intensity changes abruptly.
This sudden jump is accompanied by a jump of a 460 MHz in the power spectrum
recording the heterodyne beat signal, confirming that the laser soliton emission fre-
quency has changed. When the current is decreased, the interferometric intensity
does not go back to its initial value for identical IL1 value. The emission frequency
of the laser soliton is therefore multistable.

We underline that the frequency multistability of a single-hump localized state
discussed above constitutes an additional degree of complexity which was not visi-
ble on the intensity measurements shown in figure 9.5.

9.5 Conclusions and Perspectives

Until recently, research on the formation of localized structures in semiconductors
devices (cavity solitons) has been confined to ”optically injected” schemes. In such
systems the injected electromagnetic field fixes the phase and the frequency of both
cavity solitons and the coexisting homogeneous solution. Cavity solitons existence
has been demonstrated and several properties of these structures have been studied.
The results of these experiments have been used to propose different devices for
all-optical data processing. In spite of these successes, the implementation of cavity
solitons in non-prototypical devices is difficult for the extreme sensitivity of cavity
solitons stability to the parameters of the injected field. A possible path to avoid this



9 Cavity Soliton Laser 185

difficulty is based on the concept of CSL, a device capable of generating localized
laser structures without need of an injected field. In this contribution, we show that
a CSL can be implemented by using two coupled VCSELs forming a compound
system which, under certain conditions, is equivalent to a broad-area laser with sat-
urable absorber. We demonstrate that complex laser structures can form in a CSL.
The analysis of their bifurcation diagram reveals multistability between single and
double peaks states and between double-peaks and ring-like states. We also show
that the organization of these states in parameter space is modified when the system
parameters are changed. Starting from local measurements, we extend the monitored
area towards the inclusion of the whole transverse section and we show that a high
degree of multistability can be observed. We analyze the laser structures coherence
properties and we show that double humps structures are equivalent to coherent lo-
calized patterns while distant independent single structures are mutually incoherent.
We finally perform a frequency analysis and we observe that the laser solitons emis-
sion frequency is multistable, a peculiar feature of the system under consideration.
Even if the cavity soliton laser in its present form seems difficult to implement in a
practical device, we prove that a compound cavity scheme is a reliable system for
laser soliton generation. A very recent progress has shown that a monolithic version
of laser with saturable absorber can be implemented in a single broad-area VCSEL
structure [33]. Another source of interest of the present implementation is related
to the frequency multistability associated to the existence of several longitudinal
modes of the compound cavity. As a consequence, localized laser structures operat-
ing simultaneously on multiple frequencies might be accessible in this experimental
scheme and could lead to fully localized states of light or Cavity Light Bullets.

Acknowledgements This work was supported by the STREP Project FunFACS (www.funfacs.org).
We would like to thank G. Tissoni, W. Firth, L. Columbo and L. Gil for useful discussions.

References

1. R. Neubecker et al., Phys. Rev. A, 52, 791 (1995)
2. S. Barland et al., Nature, 419, 699 (2002)
3. Yu. A. Astrov et al., Phys. Rev. Lett. 79, 2983 (1997)
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Chapter 10
Cavity soliton laser based on a VCSEL with
saturable absorber

Giovanna Tissoni, Keivan M. Aghdami, Franco Prati, Massimo Brambilla and
Luigi A. Lugiato

Abstract In this Chapter we intend to make a review on our work on cavity soli-
tons in semiconductor lasers with saturable absorbers, with a special attention to the
most recent results. We study theoretically a broad-area vertical cavity surface emit-
ting laser (VCSEL) with a saturable absorber, and show numerically the existence
of cavity solitons in the system: they exist as solitary structures superposed on a
background with zero intensity. Therefore, this system can work as a cavity soliton
laser, ensuring maximum contrast and compactness of the device, in comparison
with other systems supporting cavity solitons. In particular, in absence of a holding
beam, these solitons do not rely on a proper phase of the addressing pulses to be ei-
ther created or deleted. We also show that the properties of the system are deeply in-
fluenced by the radiative recombination of carriers. Taking into account this process,
the existence of solitons is shown numerically for a choice of parameters suitable to
describe real devices, where the same material is used for the active and the passive
parts. Furthermore, we compare three different switching techniques for the con-
trol of cavity solitons in a VCSEL based cavity soliton laser, one incoherent and
the other two semicoherent with different injection frequencies. We show that the
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switching dynamics and energies can be very different depending on the type of
injection. Finally, we show that in a cavity soliton laser based on a VCSEL with
a saturable absorber the solitons can spontaneously move if the ratio of the carrier
lifetimes in the amplifier and in the absorber takes appropriate values. The direction
of the motion is arbitrary, while its velocity is determined by the parameters of the
system. In devices with a finite cross section the CS describes different trajectories
depending on the shape of the boundary of the pumped region. For a circular pump
the CS moves on circular trajectories along the boundary. This dynamical regime
can be exploited to create controllable trains of pulses, together with frequency and
amplitude modulation.

10.1 Introduction

Cavity Solitons (CSs) are intensity peaks of the coherent field emitted by optical
resonators, generated through nonlinear light–matter interaction which leads to self-
localization within the cavity. CSs occur in broad area optical devices, under condi-
tions where a patterned state of radiation coexists with a stable homogeneous back-
ground of low intensity. The resulting profile thus shows a number of bright circular
spots embedded in a darker background [1].

A favorable condition for the generation of CSs is the coexistence of two
branches for the homogeneous stationary solution of the device, with the lower
branch stable and the upper one affected by a pattern forming instability. The CSs
form as portions of the pattern emerging from the upper branch, sitting on the ho-
mogeneous lower branch. Such a condition can be realized in a VCSEL with in-
jected signal with the VCSEL operating above transparency but below threshold
[2, 3, 4, 5], or above threshold [6].

Another configuration that can produce CSs is the VCSEL with saturable ab-
sorber. It is well known that the presence of the saturable absorber makes the laser
bifurcation subcritical, and the lasing solution coexists with the non-lasing one in a
certain range of pump values. Hence, in this case the contrast between the CSs and
the background is maximum, because the background consists of pure spontaneous
emission. This system works as a Cavity Soliton Laser (CSL), in the sense that it
emits only CSs, whose number and position can be controlled. With respect to the
standard configuration of semiconductor devices used up to now to generate CSs, a
further advantage of the CSL is the absence of a holding beam injected from outside,
which makes the device more compact and easy to realize.

The formation of localized structures (or autosolitons) in lasers with saturable
absorber was the object of investigations in the past. In most cases, the study was
limited to the case of inertialess medium (class-A lasers) [7, 8, 9], but more recently
it was extended to class-B lasers [10, 11]. When more localized structures are stable
and can be switch on and off independently of one another they are also called
Cavity Solitons (CS). The first theoretical prediction of the existence of CSs in a
VCSEL with saturable absorber has been given in [12, 13].
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In the framework of the FunFACS project [14] three different schemes of CSL
were experimentally investigated. In one case, a CSL with frequency–selective feed-
back has been realized [15, 16], in the other case the system consists in two cou-
pled VCSELs, one of which acting as a saturable absorber [17]. In the third case,
a miniaturized device has been realized by means of a monolithic VCSEL with an
intracavity saturable absorber [18].

In this paper we address the problem of how a CS can be switched on and off in
a VCSEL–based CSL, comparing different injection techniques, in the monolithic
scheme. The question is not trivial because, with respect to driven systems, where
the driving field provides a reference phase, in a CSL such reference phase is absent.
Hence, the usual coherent technique, consisting in injecting a localized beam in
phase with the driving field to create a CS, and in opposition of phase to delete it, is
not applicable, and optical switching in a CSL is necessarily incoherent.

Incoherent switching was reported also in a system with a holding beam such
as the driven VCSEL below threshold. In [19] the injected beam is orthogonally
polarized with respect to the holding beam. In [20] the injected beam is oscillating at
a frequency which lies inside the pump window of the system. In this case the beam
produces a change in the pump profile creating a local excess of carriers which in
turn modifies the profile of the electric field.

In the case of a CSL based on a VCSEL with a saturable absorber, it was demon-
strated numerically in [12, 13] that a CS can be switched on and off using a coherent
beam oscillating at the frequency of the empty cavity longitudinal mode closest to
the gain maximum, i.e. slightly detuned with respect to the CS. The control injection
parameters are the amplitude and/or duration of the pulse, while its phase does not
play any role.

Here we consider three different injection techniques. When we speak of inco-
herent injection, it means that we consider an optically pumped device, and inject
an incoherent pulse which incoherently sums to the pump field as in [20]. If the
injected field is coherent and almost resonant to the laser field, we say that injec-
tion is semicoherent, because in the switching process we do not make use of any
particular phase relationship. In this case we consider two possibilities: the injected
field oscillates at the cavity frequency, as in [12] and [13], or it oscillates at the CS
frequency.

In the CSL based on the VCSEL with frequency–selective feedback [15, 16], the
control of the CS is realized both with an injected beam orthogonally polarized with
respect to the laser field as in [19], and with an injected beam polarized as the laser
field, as in [12] and [13]. In the monolithic scheme [18], the injection has been made
at the pump frequency.

In driven systems it is known that a CS can be set in motion by applying an ap-
propriate intensity or phase gradient [21]. Spontaneous motion of a CS has also been
reported due to thermal effects [22, 23, 24]. Here we consider another mechanism
which can induce the motion of a CS in a CSL. The mechanism is an instability of
the stationary CS which occurs for proper values of the ratio r of the carrier life-
times in the two sections of a CSL based on a VCSEL with a saturable absorber. In
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a range of value of r the equilibrium between light and matter breaks, and the CS is
forced to move.

The phenomenon has been already predicted in class-B lasers with a saturable
absorber [11]. Our model, however, is more appropriate for semiconductor devices,
because it incorporates features typical of semiconductors such as the alpha factors
of both materials, carrier radiative recombination [25, 13] which were neglected in
[11].

This Chapter is structured as follows: in Section 10.2 we present the rate equation
model describing a VCSEL with saturable absorber, we study the bistability condi-
tion and the instabilities, both dynamical and pattern-forming. In Section 10.3 we
present the three different switching techniques and compare the switching dynam-
ics and switching energy, while in Section 10.4 we study the CS stability, describing
the dynamical instability giving rise to spontaneous CS motion. In Sections 10.5 we
consider CS motion in a finite device and its applications. Finally, Section 10.6 is
devoted to conclusions.

10.2 The model

We consider a rate-equation model for the intracavity field and the carrier popula-
tions in the two media [12, 13]:

Ḟ = [(1− iα)D+(1− iβ )d−1+ i∇2
⊥]F , (10.1)

Ḋ = b1[µ−D(1+ |F |2)−B1D2] , (10.2)
ḋ = b2[−γ−d(1+ s|F |2)−B2d2] . (10.3)

F is the slowly varying amplitude of the electric field, D and d are population
variables related to the carrier densities in the active and passive material, respec-
tively. In this model we take into account the effects of radiative recombination of
carriers in both media through the quadratic decay terms −B1D2 and −B2d2, repre-
senting spontaneous emission due to band-to band recombination processes involv-
ing one electron and one hole. The parameters α and b1 (β and b2) are the linewidth
enhancement factor and the ratio of the photon lifetime to the carrier lifetime in the
active (passive) material, µ is the pump parameter of the active material and γ mea-
sures absorption in the passive material, s is the saturation parameter. Time is scaled
to the photon lifetime, and space to the diffraction length. Typically a time unit is
∼ 4 ps and a space unit ∼ 4 µm.

For more details on the definition of these parameters see [12].
In the following we will always assume B1 = B2 = B and s = 1. This choice

allows to simplify the analysis of the homogeneous stationary solution (HSS) and
it is the most reasonable one when the active and the passive part of the device are
made with the same material.

An estimation of the magnitude of the parameter B can be made considering
that B ∼ BspN0τnr, where Bsp is the spontaneous emission coefficient, N0 is the
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transparency density and τnr is the nonradiative decay rate. Assuming Bsp ∼ 10−10

cm3/s [26], N0 ∼ 1018 cm−3, and τnr ∼ 10−9 s, we obtain B∼ 10−1.
If B1 = B2 = B and s = 1 the trivial HSS of Eqs. (10.1–10.3) reads

F0 = 0, D0 =
√

1+4Bµ−1
2B

, d0 =
√

1−4Bγ−1
2B

. (10.4)

while the nontrivial HSS is

Fs =
√

Ise−iωt , (10.5)

Ds =

√
(1+ Is)2 +4Bµ−1− Is

2B
, (10.6)

ds =

√
(1+ Is)2−4Bγ−1− Is

2B
, (10.7)

where the stationary intensity Is is given implicitly by the equation

Ds +ds = 1 , (10.8)

and the laser frequency is
ω = αDs +βds . (10.9)

10.2.1 Bistability

From Eq. (10.8) one can obtain an explicit expression for the pump parameter µ
as a function of the stationary intensity Is. With an exchange of the axes it is then
possible to draw a plot of Is as a function of µ . The shape of the curve depends on
the parameters γ and B. Under certain conditions the laser bifurcation is subcritical
and there is bistability between the non trivial and the trivial HSS over a finite range
of µ .

To study the nature of the laser bifurcation we observe that in the limit Is ¿ 1 of
laser very close to threshold Eq. (10.8) can be written as

µ ≈ µthr +aIs , (10.10)

where

µthr = (1+B)
(

1+
1−√1−4Bγ

B

)
− γ , (10.11)

a =
(1+B−√1−4Bγ)2−B(1+B)

B
√

1−4Bγ
. (10.12)
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Fig. 10.1 Left: Plots of γmin and γmax as functions of B. For a given B, the nontrivial HSS and the
trivial one coexist if γ lies between the two curves. Right: Stationary intensity as a function of the
pump parameter µ for (a) B = 0.04, γ = 5, and (b) B = 0.1, γ = 2.

µthr is the laser threshold, which reduces to µthr = 1+ γ if B = 0 [12]. The sign of a
determines whether the laser bifurcation is supercritical or subcritical. The bifurca-
tion is subcritical if a < 0, which is equivalent to the condition γ > γmin, with

γmin =
1
2

√
(1+B)3

B
− B

2
− 3

4
, (10.13)

Eqs. (10.4), (10.11) and (10.12) show that there is also an upper limit for the para-
meter γ . In fact, the presence in those equations of the term

√
1−4Bγ implies that

it must be γ < γmax, with

γmax =
1

4B
. (10.14)

These results are in sharp contrast with those obtained neglecting quadratic re-
combination. In [12] it was shown that in order to have bistability it must be s > 1
and γ > (s− 1)−1. The inclusion of the quadratic recombination terms allows to
relax the condition s > 1, but introduces an upper limit for γ .

In the left panel of Fig. 10.1 we plotted γmax and γmin as a function of B. In this
paper we considered the the two values B = 0.04 and B = 0.1. The corresponding
intervals of γ for which the stationary solution is bistable are 1.88 < γ < 6.25 for
B = 0.04, and 1.02 < γ < 2.50 for B = 0.1. In order to have a relatively large domain
of coexistence of the trivial and nontrivial HSS, for our numerical simulations we
have chosen values of γ rather close to the upper limits, i.e. γ = 5 for B = 0.04,
and γ = 2 for B = 0.1. The corresponding stationary curves are shown in the right
panel of Fig. 10.1. Notice that although B is quite small, the laser thresholds differ
considerably from the value µthr = 1+ γ associated with B = 0.
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10.2.2 Plane wave instabilities

A first check of the stability of the HSS can be performed neglecting any spatial
dependence of the perturbations. In this way one immediately shows that: i) the
trivial HSS is stable up to µ = µthr, and ii) the negative slope branch of the nontrivial
HSS (if it exists) is always unstable.

In addition, a Hopf bifurcation can affect the nontrivial HSS. unstable. This in-
stability has been studied in the past in connection with the phenomenon of Q-
switching [27] .

The extension of the instability domain depends crucially on the ratio r = b2/b1
of the two population decay rates as shown in the left panel of Fig. 10.2. In [12],
where B = 0, it was demonstrated that the Hopf instability disappears if the ratio is
lower than the critical value

rc =
√

s−1+
√γ√γs

. (10.15)

The bistability condition γ > (s− 1)−1 implied that the critical value was always
smaller than 1. As commented above, the situation is different when B 6= 0. In that
case it is possible to have bistability even with s = 1, and in that limit Eq. (10.15)
shows that the critical ratio is equal to 1. Moreover, the term B introduces some
further positive corrections, and we can write approximately

(
b2

b1

)

c
≈ 1+

3
2

(
B
γ

)1/3

+
1
8

(
B
γ

)2/3

+
53
96

(
B
γ

)
. (10.16)

The inclusion of quadratic recombination then allowed us to set in our simulations
b1 = b2 = b without introducing any unwanted plane wave Hopf instability. This
choice is consistent with that of B1 = B2 = B and s = 1 introduced before.

10.2.3 Pattern forming instabilities

The next step consists in checking the stability of the nontrivial HSS with respect to
spatially modulated perturbations of the form exp(iq ·x), where q is the transverse
wavevector and x the transverse vector.

Numerical simulations show that, at least for the range of parameters considered
here, a dynamical instability (imaginary part of the eigenvalue different from zero)
with q 6= 0 exists only if the system is unstable also with respect to the plane wave
q = 0. Hence, the condition b1 = b2 = b excludes also the existence of dynamical
pattern forming instabilities.

The situation is different when one considers the static instability associated with
a real eigenvalue. In that case it turns out that the nontrivial HSS is unstable with
respect to any transverse wavevector q such that 0 < q < qmax, with
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Fig. 10.2 Left: This plot shows how the interval of stationary intensity for which the nontrivial
HSS is Hopf unstable varies with the ratio r = b2/b1 for b1 = 0.003 and (a) B = 0.04, γ = 5, or
(b) B = 0.1, γ = 2. The instability disappears for (a) b2/b1 < 1.323 and (b) b2/b1 < 1.629. Right:
Plots of the pattern forming instability boundary qmax as a function of the stationary intensity Is for
α = 2, β = 1, and (a) B = 0.04, γ = 5 or (b) B = 0.1, γ = 2. A comparison with the right panel of
Fig. 10.1 shows that the whole upper branch of the stationary curve is unstable in both cases.

q2
max = 2Is

(αDs +βds)(1+ Is)+2BDsds(α +β )
(1+ Is +2BDs)(1+ Is +2Bds)

. (10.17)

The instability exists if the right hand side of the equation is positive, and this hap-
pens for any Is larger than a certain value Is,min. If the HSS is bistable, it is important
to compare Is,min with the intensity Is,T P of the turning point of the stationary curve.
As in [12], we found that if α ≥ β the whole upper branch is unstable. This is con-
firmed by the right panel of Fig. 10.2, where one must consider that Is,T P = 0.83 in
case (a) and Is,T P = 0.49 in case (b) (see the right panel of Fig. 10.1).

10.3 CS switching techniques

The dynamical equations are integrated using a split–step method with periodic
boundary conditions and a 128× 128 spatial grid. Typical values of the space and
time step were, respectively, 0.25 and 0.01. The effects of spontaneous emission
noise were simulated adding to Eq. (10.1) stochastic terms of the form

√
βsp ξ (x,y, t)

where, for each grid point of coordinate x and y, the functions ξ (x,y, t) are indepen-
dent Gaussian white noise sources with zero mean and unit variance.

In this Section we consider the set of parameters s = 1, γ = 2, α = 2, β = 1,
b1 = b2 = 0.003, B = 0.1. The noise level is βsp = 10−10 everywhere.

For these parameters stable CS exist in an interval of µ between approximately
4.6 and 5.1, as shown in Fig. 10.3 [13]. While the CS can be switched on relatively
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easy over the whole interval, we found that it is easier to switch them off for the
smaller values of µ . For that reason here we focus on the case µ = 4.6, indicated by
a circle in Fig. 10.3.

4.50 4.75 5.00 5.25

0

1

2

3

4

I

Fig. 10.3 Intensity of the homogenous stationary solution (solid line) and of the CS peaks (squares)
as a function of the pump parameter µ . In the interval where CS are stable, they coexist with
the trivial homogeneous solution. The non trivial homogeneous solution is unstable everywhere.
Parameters are: r = 1, b1 = 0.003, s = 1, γ = 2, B = 0.1, α = 2, β = 1.

The three injection techniques differ mainly because of the frequency of the in-

inject in the laser an incoherent beam oscillating at a frequency ωp which is much
larger than the frequency of laser field. The effect of the injection is to modify locally
the pump profile. From the numerical point of view this means that we superimpose
to the homogenous pump µ a Gaussian pulse of the form

µin j(x,y) = µ0e[−(x−x0)2−(y−y0)2]/w2
, (10.18)

during the injection time tin j.
In semi-coherent injection it is convenient to take the frequency of the injected

field ωin j as reference frequency. Hence, a detuning parameter δ defined as δ =
ωin j−ωc appears in Eq. (10.1)

Ḟ = [(1− iα)D+(1− iβ )d−1+ iδ + i∇2
⊥]F , (10.19)

jected beam [28], as illustrated in Fig. 10.4. Incoherent injection means that we
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Fig. 10.4 Scheme of the relevant frequencies: cavity frequency ωc, frequency of the homogeneous
solution ωH , CS frequency ωCS, pump frequency ωp. The frequency of the injected field is ωp
for incoherent injection, ωc for semi–coherent injection at the cavity frequency, and ωCS for the
semi-coherent injection at the CS frequency.

and injection is simulated in the usual way adding in this equation the term

Fin j(x,y) = F0eiφ0e[−(x−x0)2−(y−y0)2]/(2w2) , (10.20)

during the injection time tin j. For injection at the cavity frequency δ = 0. For injec-
tion at the CS frequency δ = δCS = ωCS−ωc. The frequency ωCS of the CS can be
determined only numerically. For our choice of the parameters and µ = 4.6 we have
δCS ∼ 3.91. Notice that the CS frequency is larger than the frequency of the homo-
geneous solution, which is ωH = 3. This fact can be understood considering that
the CS frequency is determined by the locking of the various transverse modes that
form the CS, and each of them has a frequency larger than the longitudinal mode.

10.3.1 Switching dynamics

The behavior of the dynamical variables during a switching process depends on the
type of injection, and it is very different for incoherent and semicoherent injection.
With incoherent injection we create locally an excess of carriers in the active mater-
ial, which means that we act on the variable D. Only after a certain delay this excess
of carriers will produce a pulse, or a series of pulses, in the electric field. With
semicoherent injection we act directly on the electric field F , inducing variations in
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the spatial profile of the population variables which, in turn, affect the subsequent
evolution of the electric field.

We describe the dynamics associated with the creation and the deletion of a CS
following the behavior of the field intensity I and of the two population variables D
and d at the injection point (x0,y0). Switching occurs between an off state (the trivial
homogeneous solution) and an on state (the CS). For our choice of the parameters
the values of the dynamical variables are IH = 0, DH = 3.43, and dH = −2.76 in
the off state, and ICS = 1.66, DCS = 1.65, and dCS =−0.79 in the on state. The CS
produces a large variation not only in the field intensity but also in the distribution
of carriers in the two materials. Hence, the dominant timescales in the switching
process are those of the slow dynamical variables D and d.

10.3.1.1 Incoherent injection

An example of creation and deletion of a CS with incoherent injection is shown in
Fig. 10.5 a) and b). The injection parameters are indicated in the caption. We used
the same amplitude µ0 and injection time tin j. Yet, for reasons that will become
clear in the following, for this type of injection it turned out that a CS can be created
only if the beam width w is larger than a given value wcre and deleted only if it is
smaller than wdel . The values of wcre and wdel depend on the other parameters but,
in general, we found that wcre > wdel ; hence, it is not possible to use the same beam
width for the two processes. In this particular case we used w = 2 for creation and
w = 1.2 for deletion.

During the creation process with incoherent injection we obtain the apparently
paradoxical result of creating a hole in D by injecting carriers in the active material.
Actually, what happens is very similar to a Q–switching (or gain–switching) process
as shown in Fig. 10.5(a). Before injection the system is in the off state. During
the initial stage of the injection D grows almost linearly, well above its value at
the laser threshold, which is Dthr = 3.76, I remains very small, and d is fixed at
the initial value dH . Only after a delay of about 40 time units the intensity starts
growing in a significant way, and very quickly a large pulse is emitted (notice the
logarithmic scale for the intensity I). The pulse causes a strong saturation of the two
population variables. At the end of the pulse, D and d have reached values which
are not far from the final ones, DCS and dCS. In the following free evolution the
system approaches the CS state through damped oscillations of the three dynamical
variables.

Deletion of a CS by means of incoherent injection, illustrated in Fig. 10.5(b),
is quite intuitive. In this case the main effect of the local injection of carriers is
filling the hole produced by the CS in the carrier distribution. An intensity pulse is
created anyway, as in the creation process, but it is much less intense. After the end
of injection the intensity falls down rapidly to the noise level, while the population
variables approach monotonically the off state. In the deletion process the beam
width must not exceed a critical value wdel because, if the width is too large, not
only the hole is filled, but gain is also provided to the region around the CS, thus
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Fig. 10.5 Time evolution of the electric field (solid line), and of active (dashed line) and passive
(dotted line) carrier populations during the switching processes. a) and b): Creating and deleting
a CS by incoherent injection. In both figures the injection amplitude is µ0 = 20 and the injection
time is tin j = 100, and injection starts at t = 5. The width of the injected pulse is w = 2 for creation
(a), and w = 1.2 for deletion (b). The vertical dotted lines indicate the end of injection. c) and
d): Creating and deleting a CS by semicoherent injection at the cavity frequency. In both cases
the injection amplitude is F0 = 10 and the beam width is w = 2, and injection starts at t = 5. The
injection time is tin j = 100 for creation (c), and tin j = 10 for deletion (d). The vertical dotted lines
indicate the end of injection. In (a) the time intervals ∆ t, t1 and t2 are also shown. Their meaning
is discussed in the text.
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initiating a new creation process. The threshold value wdel depends on the other
injection parameters, but it is always slightly smaller than the 1/e radius of the hole
made by the CS in the spatial profile of D which, for the chosen parameters, is about
1.55.

10.3.1.2 Injection at the cavity frequency

The switching dynamics for injection at the cavity frequency is shown in Fig. 10.5 c)
and d). In contrast with incoherent injection, we could use the same field amplitude
F0 and beam width w for both creation and deletion, only the injection time tin j is
different, because it must be shorter for deletion.

The creation process, illustrated in Fig. 10.5(c) shows many differences with
respect to incoherent injection. The intensity I starts to grow immediately, and cor-
respondingly D decreases and d increases. At the end of the injection the field inten-
sity falls down suddenly to the noise level, and the population variables reach values
close to zero, which means that both materials are almost completely bleached.

Then a long rebuilding time ∆ t follows during which the population variables
slowly evolve towards the stationary values DH and dH which correspond to the
off state. In a first stage, of duration t1, the intensity displays random oscillations
around a mean value which is on the order of the noise level βsp. After this stage
the intensity starts to grow in an exponential way and, in a time t2, a new pulse is
created in correspondence to the injection point. The growth of the pulse interrupts
the evolution of the dynamical variables towards the off state and, after that, the CS
state is reached through damped oscillations.

In the deletion process, shown in Fig. 10.5(d), the dynamics at the beginning is
not much different from that of the creation process. But in this case the beam is in-
jected for a shorter time. Consequently, the value reached by the field intensity at the
end of injection is smaller and the population variables D and d remain sufficiently
far from zero. The field intensity can fall down to the noise level or not, as in the
case illustrated in the figure. In any case, in the subsequent evolution the rebuilding
time is shorter, but when the CS tries to form again, it fails because the population
variables have already reached values sufficiently close to those of the off state when
the second pulse is generated. For this reason the second pulse remains small and
after that the intensity decays to zero forever. A similar behavior was observed in
the CSL based on a VCSEL with frequency–selective feedback [15].

The presence of a rather long rebuilding time during creation and of a frustrated
revival of the CS during deletion suggest that injection at the cavity frequency is less
efficient than incoherent injection, because it requires longer switching times. But
when one tries to create and delete several times a CS in the same position with the
two different techniques, one finds that the maximum repetition rate is of the same
order (about 100 MHz) for both types of injection. The reason is that while the
field intensity dynamics is faster for incoherent injection, the population dynamics
occur always at the same timescale, and this is what determines the upper limit for
the repetition rate. For instance, in the deletion process with incoherent injection
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shown in Fig. 10.5(d), if one looks only at the field intensity I it seems that the CS
is already off a few tens of time units after the end of injection. Yet, the CS cannot
be considered to be completely off until also the population variables D and d reach
values close to the off state, and this takes some hundreds time units. Under this
respect there are no relevant differences between incoherent injection and injection
at the cavity frequency.

10.3.1.3 Injection at the CS frequency
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Fig. 10.6 Time evolution of the field intensity during the initial part of the deletion process of
a CS for injection at the cavity frequency (solid line) and at the CS frequency (dashed line). All
the parameters are the same as in Fig. 10.5(d), except for the amplitude of the injected field for
injection at the CS frequency, which is F0 = 0.38. The two vertical dotted lines indicate the period
of injection.

The laser dynamics associated with the creation and deletion of a CS when the
injected field oscillates at the same frequency as the CS does not differ substantially
from that observed with injection at the cavity frequency, in the sense that a long re-
building time in the creation process and a frustrated revival in the deletion process
are present also in this case.
The only relevant difference can be observed in the deletion process, during the
injection time. In Fig. 10.6 we compare the intensity dynamics in the initial stage
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of the deletion process for injection at the cavity frequency (solid line) and at the
CS frequency (dashed line). As for the solid line, this figure is just an enlargement
of Fig. 10.5(d) in linear scale. The enlargement allows to appreciate the presence
of oscillations in the intensity during the injection time. These oscillations occur
at a frequency close to δCS, indicating that they are due to the beating between
the injected field which oscillates at the cavity frequency, and the laser field which
oscillates at the CS frequency. When the two fields are frequency matched the os-
cillations disappear and the deletion process is much more efficient: with the same
injection time, a field amplitude F0 = 0.38 instead of F0 = 10 is enough to delete the
CS.

10.3.2 Switching energy

In the previous Section we have shown some typical examples of creation and dele-
tion of a CS with some fixed values of the injection parameters. But our numerical
simulations showed that a CS can be created and deleted over a large range of values
of those parameters. Typically, we fixed the beam width w and then, for different val-
ues of the pulse amplitude µ0 or F0, we found the minimum and maximum injection
time tin j for which a CS can be created and deleted.

The results can be expressed in terms of injection energy, which can be defined
as Ein j = µ0 tin j for incoherent injection and as Ein j = |F0|2 tin j for semicoherent
injection. Since we are using scaled variables and parameters, those expression do
not allow to get immediately the values of the switching energy in physical units.
It is also difficult to compare the switching energy for incoherent and semicoherent
injection, because the beam intensity is scaled differently in µ0 and in |F0|2. Yet, the
comparison is possible for the two kinds of semicoherent injection, which is what
we do in this Section.

10.3.2.1 Injection at the cavity frequency

The minimum and maximum injection energy for creating and deleting a CS with
this kind of switching are plotted in Fig. 10.7 a) and b). The injection energy neces-
sary to create a CS is typically one order of magnitude larger than to delete it. The
behavior of the switching energy as a function of the injected amplitude is similar
in the two cases. The minimum and maximum energies approach constant values
for large injection amplitude F0, and the minimum injection energy for deletion in
that limit becomes very small. In the opposite limit of F0 the switching energy in-
creases. A possible explanation is that for small F0 the injection time increases up to
values comparable to the carrier lifetime, and this modifies the interaction between
the injected beam and the materials.

In the creation process, if the injection time is too short the system simply re-
turns to the off state after the end of injection; if the injection time is too long we
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observe what we call “dancing solitons”. This is a dynamical state characterized
by the presence of a few intensity peaks (usually two), which remain confined in a
small area around the injection point and oscillate or rotate in a seemingly regular
way. Sometimes, after a long transient time, whose duration depends on the noise
level, they merge and form a single CS, but usually their motion continues for all the
time we can reasonably follow it. In the deletion process, if the injection time is too

Fig. 10.7 a) and b): Dependence on the injection amplitude F0 of the minimum and maximum
switching energy for creation (a) and deletion (b) of a CS with injection at the cavity frequency.
The width of the injected beam is w = 2. c) and d): Dependence on the injection amplitude F0 of the
minimum and maximum switching energy for creation (c) and deletion (d) of a CS with injection
at the CS frequency . The width of the injected beam is w = 2.

short the CS is only partially depleted but after injection it recovers through damped
oscillations; if the injection time is too long the intensity after injection falls down
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to the noise level as in Fig. 10.5(d), but then the second pulse grows higher and the
subsequent evolution is similar to that of Fig. 10.5(c).

10.3.2.2 Injection at the CS frequency

Fig. 10.7 c) and d) show the minimum and maximum injection energy when the
injected field is resonant with the CS. A comparison of this figure with Fig. 10.7 a)
and b) shows that the injection energy can be much smaller with injection at the CS
frequency than with injection at the cavity frequency. This result is due to the fact
that smaller values of both the injection amplitude F0 and of the injection time tin j
can be used.

Another relevant difference concerns the behavior of the switching energies as
functions of F0, in particular for the creation process, where we found an asymptotic
value for large values of F0 only for the minimum energy, and both energies, unlike
in Fig. 10.7 c) and d), decrease for small F0. It must be noted that also in this case the
switching time increases as the injected amplitude decreases. The increase, however,
is slower than the decrease of the intensity F2

0 . A similar behavior was observed in
the CSL based on a VCSEL with frequency–selective feedback [15].

The deletion of a CS by injection at the CS frequency is the only process among
those studied in this paper, where the phase of the injected beam can play a role.
Since the CS and the injected beam oscillate both at the same frequency, their rela-
tive phase can influence the deletion process. However, it must be kept in mind that
the phase of the CS varies radially as well as its intensity. Since in the injected beam
the phase is spatially independent, the relative phase changes from point to point,
and what we define as relative phase is actually the relative phase at the CS peak.

imum energies on this relative phase. What we plotted in Fig. 10.7(d) are the worst
results (maximum value of the minimum energy and minimum value of the max-
imum energy). The boundaries shown in that figure are then those between which
the CS can be successfully deleted without any phase control.

The value of the relative phase for which the interval of successful switching
energy has its maximum extension is zero. At first glance, this may appear strange,
because one can imagine that it is easier to delete a CS by making it to interfere
with a beam in opposition of phase. But this is not the case. It must be taken into
account that the deletion process is mediated by the two population variables D and
d and the action of the deleting beam on them is more efficient when it interferes
constructively with the CS.

10.4 Stability of the CS

We study the stability of the CS in the framework of the model equations (10.1)−(10.3).

The numerical simulations showed a weak dependence of the minimum and max-
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Fig. 10.8 Left: Homogeneous stationary solution and cavity soliton (CS) solution as a function of
the pump parameter µ for s = 1, r = 1, b1 = 0.01, γ = 2, B = 0.1, α = 2 and β = 1. In the case of
the CS solution we plot the peak intensity of the soliton. Right: Stability diagram of the stationary
CS in the plane of the parameters µ (pump) and r (ratio of carrier lifetimes in the active and in the
passive medium). The stationary CS is stable in the region between the two curves rmin and rmax.
Other parameters are as in the left panel.

In this section, the parameters s = 1, γ = 2, α = 2, β = 1, b1 = 0.01, B = 0.1
are kept fixed. We use as free parameters the pump µ and the ratio r = b2/b1 of the
carrier lifetime in the active and in the passive medium.

In the left panel of Fig. 10.8 we show the intensity of the homogeneous (plane-
wave) and CS solutions as a function of the pump µ , the latter obtained using a
standard Newton-Raphson method. The negative slope branches of both solutions
are unstable. The non–lasing solution is stable up to the laser threshold, which is
µth = 5.18. The lasing homogeneous solution is everywhere modulationally unsta-
ble, because α > β [12]. Stable CS may exist in the interval 4.56 < µ < 5.18 where
the upper branch coexist with the stable non–lasing solution. However, their stabil-
ity depends strongly on the parameter r. It was found that a necessary condition for
the CS to be stable for a given µ is that, for the same µ , the lasing homogeneous
solution is stable against a Hopf instability [12]. With our choice of the parameters
this means that it must be r ≤ 1.6−1.7.

For smaller values of r, we found that the CS are stable in the interval rmin < r <
rmax, as shown in the right panel of Fig. 10.8.

The linear stability analysis of the stationary CS always predicts the existence of
three zero eigenvalues, one associated with the phase invariance of the electric field,
the other two with the translational invariance along the two transverse directions x
and y. In the stability domain rmin < r < rmax the real part of all the other eigenvalues
is negative.

If we cross the boundary r = rmax from below, we observe that the real part of
a pair of complex conjugates eigenvalues crosses zero. The associated eigenvectors
are cylindrically symmetric. As a result, the CS oscillates in amplitude keeping its
position in space. The frequency of the oscillations is determined by the imaginary
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part of the eigenvalues and the amplitude of the oscillations increases in time. After
a transient which can last more than 100 ns the CS dies and the laser jumps to the
non-lasing solution.

Fig. 10.9 Left: Velocity of the moving CS and difference between the peak intensity of the sta-
tionary and of the moving CS as a function of the bifurcation parameter r. µ = 5. Right: Stability
domain of the moving CS in the plane of the parameters µ and r.

If, instead, we cross the boundary r = rmin from above, a pair of degenerate real
eigenvalues changes its sign from negative to positive. To be precise, the two eigen-
values are real everywhere but in a very small interval around rmin, where they be-
come complex conjugates. The threshold rmin is the value of r at which the real part
of the complex eigenvalues crosses zero. The shapes of the associated eigenvectors
[29] are very similar to those of the Goldstone modes. These modes, also called neu-
tral modes, are associated to the two null eigenvalues of the translational invariance
of the system, and are proportional to the spatial derivatives of the CS profile. They
corresponds to the generators of translations, thus their excitation produces a motion
of the CS. The mechanism responsible for the motion of the CS is then similar to
that of thermal induced motion [24]. The velocity is fixed by the parameters of the
system. In two dimensions the direction of motion is completely arbitrary and it is
determined only by noise.

As we depart from the instability threshold rmin the velocity of the CS increases
and its amplitude decreases, as shown in the left panel of Fig. 10.9. For even smaller
values of r a further threshold is crossed and after that the moving CS is no longer
stable. Depending on the value of µ , the system can either precipitate to the non-
lasing solution or develop a turbulent behavior, typical of the region µ > µth. The
stability domain of the moving CS is shown in the right panel of Fig. 10.9. For
numerical convenience the boundaries of the stability domain have been calculated
keeping µ fixed and varying r. In a real experiment the opposite must be done.
Provided r has a value inside the interval 0.65 < r < 0.75, the range of pump values
µ for which the moving CS exists is quite extended. For such a value of r, it should
suffice to decrease µ to observe the transition from the stationary CS to the moving
CS.
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10.5 Motion of the CS in a finite device

The above analysis have been performed assuming complete translational invari-
ance. A real device, however, has a finite cross section, and it is important to estab-
lish how the motion of the CS is influenced by the presence of boundaries. In our
equations this ingredient can be introduced in an easy way by assigning a tophat
profile to the pump µ . If the tophat is sufficiently sharp the moving CS are reflected
when they hit the boundary, and at regime they move along closed orbits. The shape
of the orbits depend on the shape of the boundaries. We have considered here a
circular pump profile.
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Fig. 10.10 Trajectory of the moving CS in presence of a circular pump. The CS is initially posi-
tioned at the center of the square and then it is set in motion in the vertical direction. The thick
grey line denotes the pump profile (inside the circle µ = 5, outside µ = 0). Here r = 0.68.

10.5.1 Circular pump

In Fig. 10.10 we show the motion of a CS in a device with a circular pump profile.
A stationary CS is first switched on at the center, for r = 0.75. Then, the parameter
r is reduced to 0.68, in such a way that the CS is forced to move. The direction
of motion is usually determined by the noise, but we can control it by shining an
address beam in the proximity of the CS. Here we have forced the CS to move in the
vertical direction. Fig. 10.10 shows that initially the CS moves along the diameter
bouncing at the boundaries. Yet very soon the trajectory departs from the vertical
direction because of noise and, after a sequence of bounces, it ends up in a circular
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Fig. 10.11 Amplitude and Frequency Modulation of the signal produced by a CS moving along
the boundary of a circular pump. Both the amplitude and the frequency of the signal are modulated
by a modulation of the pump µ . Here r = 0.68.

orbit adjacent to the boundary. The motion can be clockwise or counterclockwise,
depending on the noise processes triggering the deflection at the first bounces.

We have devised several application of this new dynamical regime. The first and
more intuitive is to put a detector in one point of the trajectory which reveals the peri-
odic motion of the CS. In this way we can realize a train of pulses, whose amplitude
and frequency can be adjusted by varying some parameter of the laser, typically the
pump µ . In Fig. 10.11 we show how, with a stepwise modulation of µ from 5.0 to
5.1 we can modulate the signal both in amplitude and in frequency.

Our numerical simulations also show that it is possible to pin the moving CS in a
given position, stop it for a while, and then release it along the desired direction. In
order to do that it is enough to shine on the moving CS a modulated control beam.
In our simulations the beam was switched on and off periodically every 4 ns. The
control beam acts in this way. When it is on, it attracts the CS exerting a force on it.
This causes the CS to reverse the direction of its motion. If we then switch off the
control beam, the CS moves along the opposite direction with respect to the initial
one. If we switch on again the control beam, the CS is forced to revert again the
direction of its motion, and so on. The final direction depends on the number of
pulses in the control beam sequence. If the number of pulses is odd, the CS changes
its direction, if it is even, the CS continues along the initial direction. Varying the
number of pulses we can also stop the CS at the pinning position for the desired
time.
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10.6 Conclusions

In the first part of this paper we have shown that the inclusion of the quadratic decay
terms associated with radiative recombination of carriers in the equations of a broad
area VCSEL with saturable absorber has relevant effects on the properties of the
CSs, although the coefficient B of these terms is relatively small.

First, CSs exist and are stable even if the saturation intensity and the linear decay
rates of carriers are the same in the amplifier and in the absorber, i.e. s = 1 and
b1 = b2. This contrasts with the results of a previous work [12] where radiative
recombination was neglected, and in order to find a sufficiently wide stability range
for the CSs the values s = 10 and b1 = 2b2 were considered. The last assumption
in particular was probably difficult to obtain experimentally, because it meant that
the population dynamics is faster in the amplifier than in the absorber. Instead, the
conditions s = 1 and b1 = b2 (that is, r = 1) apply well to devices constituted by
the same material in the active and in the passive part (even if some caution must
be taken, because the saturation parameter s is defined as s = a2/a1r [12], where
a2 and a1 are the differential gain in the passive and active medium, which are in
principle different, being usually a2 > a1).

With respect to [12], the introduction of the quadratic recombination of carriers
also allowed to decrease by one order of magnitude the ratio of the photon lifetime
to the carrier lifetime, which passed from ∼ 10−2 to ∼ 10−3, and to increase the
linewidth enhancement factor β in the absorber from β = 0 to the more realistic
value β ≥ 1.

We have studied three different kinds of injection techniques for the control of a
CS in a CSL: incoherent injection, injection at the cavity frequency and injection at
the CS frequency.

We have analyzed the switching dynamics and compared the different behaviors
observed for each injection technique. In spite of the relevant differences, we have
found that the switching times are comparable for the three injection techniques,
since they are determined essentially by the decay rates of the population variables.

With respect to previous studies of incoherent injection in a CSL [15, 16] and in
systems with a holding beam [19, 20], we found switching times sensibly shorter,
on the order of 1 ns instead of tens/hundreds of ns. In the case of the CSL with
frequency–selective feedback [15, 16] the velocity of the process was limited by
the length of the external cavity. In optically pumped driven systems [19, 20, 30],
the long time scales were attributed to thermal effects. Very recent experimental
work in a monolithic CSL shows fast incoherent CS switching [18], showing a good
agreement with our numerical analysis.

A bonus of incoherent injection with respect to semicoherent injection is repre-
sented by the absence, in the former, of a secondary pulse after the end of injection
when the CS is deleted. Because of this secondary pulse, the injection parameters in
semicoherent deletion must be chosen accurately, otherwise the pulse can grow too
high and the CS forms again. This problem does not exist in incoherent deletion.
This is probably the reason why it is possible to delete incoherently a CS almost in
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their whole branch of stability, while semicoherent deletion is successful only in the
vicinity of the left extremum of the branch (a small interval around µ = 4.6).

In terms of switching energy, we have shown that injection at the CS frequency
allows to reduce by a factor of ten the injection energy with respect to injection at the
cavity frequency. Yet, its experimental realization is probably not easy, because it
requires the a priori knowledge of the CS frequency. However, when a CS is already
present, it can be realized by reinjecting part of the output beam inside the cavity to
create a new CS or to delete an existing one.

Furthermore, we have shown that in a CSL scheme based on a VCSEL with a
saturable absorber there are parametric conditions for which the CS can exist only
if it moves in the transverse plane, with a velocity which is fixed by the parame-
ters of the system. The velocity is of the order of some µm/ns. Interesting effects
arise when the pump profile is not homogeneous and the translational symmetry of
the system is broken. If the pump has a circular profile, the CS moves along the
boundary.

A similar circular motion was predicted also for a CS in a semiconductor res-
onator (passive or amplifier) with optical injection [31]. Two different mechanisms
were considered there. If the injected beam is a doughnut mode the CS moves along
the intensity maximum of the doughnut driven by its linear phase gradient (2 π
in a roundtrip around the center). Alternatively, the spontaneous thermal motion
[22, 23, 24] can be guided along a circular trajectory by using a ring shaped injected
beam, whose intensity gradient is able to confine the spontaneous CS motion to a
circle. In the case of injected doughnut the velocity was comparable with that found
here, in the thermal case the CS was about one hundred times slower.

As an application of such circular motion we have shown here that the periodic
motion in the transverse plane can be transformed in a periodic motion in time,
by simply putting a detector in one point along the trajectory. In this way the CSL
works as a source of pulses whose amplitude and frequency can be easily controlled
varying one system parameter (typically the injected current µ). A delay between
the pulses can also be introduced with a suitable sequence of control pulses.

Other applications of spontaneous CS motion can be envisaged: for example, it
can be interesting to exploit the spontaneous motion of CS in applications like those
already demonstrated in semiconductor amplifiers, such as the delay line [32], the
Soliton Force Microscope [33] or the Soliton Tap [34, 35]. In this case, there is no
need of external gradients (which would also be difficult to impose to the system
in absence of a holding beam) to make the solitons move, making the device more
compact and simpler.

In particular, we intend to study the interactions between self-propelled CS and
device defects, that could be modelled in this case as local inhomogeneities in the
pump profile of the amplifier medium.

Acknowledgements This work was done in the framework of the FET OPEN Project Nr. 4868
FunFACS (Fundamentals, Functionalities and Applications of Cavity Solitons).
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Chapter 11
Dynamic Control of Localized Structures in a
Nonlinear Feedback Experiment

Mousa Ayoub, Björn Gütlich, Cornelia Denz, Francesco Papoff, Gian-Luca Oppo,
and William J. Firth

Abstract Spatial dissipative solitons exhibit a robust form as well as complex dy-
namic behaviour that make them attractive for applications in the context of all–
optical information processing. In this chapter we give an overview of recent ex-
perimental and theoretical results on the features of spatial dissipative solitons in
a single feedback experiment using a liquid crystal light valve (LCLV) as a model
nonlinear medium. In particular, we present techniques for the control of the sym-
metry and spatial position of localized states in LCLV based experiments. We first
discuss the interaction of dissipative solitons with spatially imposed boundary con-
straints in the feedback loop. This interaction leads to symmetry-breaking phenom-
ena of feedback dissipative solitons. We also present static and dynamic techniques
to experimentally control and guide dissipative solitons on modified background by
using externally adapted intensity distributions.
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11.1 Introduction

In the last twenty five years, pattern formation in both conservative and dissipative
systems, has been one of the favorite subjects in the field of nonlinear optics. The
interaction of light with a nonlinear medium gives rise to the spontaneous emer-
gence of spatial structures as a consequence of an optical instability. Among these,
nonlinear localized structures have achieved special attention due to their potential
use in information processing.

Due to the wide variety of systems that support the formation of spatial struc-
tures, this chapter concentrates on systems that are under constant non equilibrium
external conditions. In these systems we talk of dissipative structures which may
have a macroscopic form in steady state [1, 2], and thus be simultaneously observ-
able and controllable.

Historically, starting from the work of Prigogine in 1977 who introduced the term
dissipative structures, the interest in this kind of structures has grown continuously
due to their model character for high dimensional nonlinear physical phenomena as
well as for their application potential. Classical examples of dissipative structures
are Bénard cells where a pattern of regular hexagonal cells appears on the surface
of a liquid, spirals in Belousov-Zhabotinskii reactions, Taylor vortices, cyclones,
hurricanes, and lasers [3].

In optics, a number of organization processes in time, space or both in time
and space, has been reported to lead to the formation of dissipative structures. For
example, bistable optical systems show dissipative spatial patterns in the switch-
ing behaviour between the lower and the upper branch of the hysteresis curve [4].
Symmetry-breaking instabilities may also lead to the spontaneous formation of dis-
sipative patterns [5, 8], and may arise from the co-operative interaction between
light dispersion and diffraction in a nonlinear optical cavity [6, 7, 9].

One of the most interesting structures that may form within nonlinear systems
and especially in nonlinear optics are dissipative solitons. They are typically stable
spatial solitary structures, and differ in nature from conservative solitons [10]. In
contrast to conservative systems, dissipative solitons are dynamic objects that ex-
perience energy gain and loss during formation and propagation. In this way, they
form far away from equilibrium when the overall gain and loss are balanced [10]. In
optics, this kind of structures has been found, for example, in semiconductor micro
resonators VCSEL [11, 12, 13], photorefractive media [14, 15], a sodium vapor sys-
tem [16, 17], and liquid crystal light valves [18, 19, 20, 21, 22]. In all these cases,
the nonlinearity of the system causes self-focusing of the propagating wave. This
nonlinear process balances the broadening that waves experience during propaga-
tion due to diffraction. This balance, combined with that of gain and loss, allows the
wave to maintain for long times a robust localized shape in space.

For promising applications of dissipative solitons in information processing, such
as sensors or probes, the control of these structures and their spatiotemporal complex
dynamics becomes even more important. The realization of control schemes for
the addressing and selection of a certain target state, is therefore a requirement.
The main scope of this chapter is the realization and demonstration of a multitude
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of control methods, which allow to statically and dynamically control the absolute
positions of these structures. By using an open loop invasive control method where
a predefined temporal and/or spatial control signal is imposed onto the nonlinear
system, robust position traps and complete addressing of dissipative structures are
realized. Furthermore, we study the interaction of dissipative structures with spatial
boundaries and their drift motions due to artificially imposed gradients.

11.2 Self-organized localized structures in feedback systems

As mentioned above, the formation of dissipative structures is combined with an
organized behaviour such as an optical bistability. This bistable behaviour can pro-
vide an all-optical tool to switch the system between two steady states, for example
a dark and a bright state, thus swichting the structures on and off. In combination
with their robust form as a result of the balance between gain, loss, nonlinearity
and diffraction (or dispersion), dissipative solitons can be attractive for applications
in the field of all-optical information processing if solitary structures are used as
’optical bits’ [23].

The formation mechanism of dissipative solitons out of a homogeneous back-
ground has been understood thoroughly in the last decade. Based on the so-called
modulation instability, that in simple words is known to break up a wave into small
entities or a pulse into short subpulses above a certain threshold, the spatial or tem-
poral intensity profile of a homogeneous or plane wave becomes unstable, and the
space-time distribution splits into distinct domains that can be correlated on a long
range (pattern) or on a short range (localized structures). Transverse spatial struc-
tures are observed in the plane perpendicular to the propagation of the optical wave.
From the experimental point of view, patterns emerging in systems in which the
optical properties depend on the input light intensity can be achieved using several
experimental arrangements. Typical optical setups for pattern formation are shown
in Fig. 11.1. In the following, we will focus on experiments implementing the single
feedback operation of Fig. 11.1b and capable to support the formation of dissipa-
tive solitons. The feedback mechanism causes a nonlinear interaction of the initially
perturbed light field so that a modulation instability arises and spatial structures are
observed in the output of the light field. Because of the nonlinear interaction and dif-
fraction, the initial wave-front irregularities are either amplified or damped, leading
to the formation (or suppression) of patterns in the intensity distribution.

It is possible to understand better the formation of transverse spatial structures
in a feedback configuration using a simplified scheme suggested originally by W.J.
Firth and G. D’Alessandro [8]. Such a single feedback configuration considers one
of the simplest optical nonlinearities i.e. the Kerr nonlinearity

n = n1 +n2I, (11.1)
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Fig. 11.1 Schematic illustration of different feedback systems that exhibit spontaneous formation
of optical structures; a: cavity; b: single feedback scheme. NL: nonlinear medium; M:mirror; Ip:
pump intensity; Io: intensity output.

where the refractive index of the medium n2 depends linearly on the intensity of the
light field. A plane feedback mirror is placed at a distance L after the medium to
generate a counterpropagating beam in the Kerr medium neglecting absorption. A
spatially extended planar electromagnetic wave Ein propagates through the nonlin-
ear medium. According to the refractive index of the nonlinear medium, the optical
wave is modulated in its phase. For simplicity, a sinusoidal modulation of the index
of refraction is considered in the nonlinear medium: n = n1 +∆ncos(k.r).

Ein Eout

EF

EB

NL M

L

Fig. 11.2 A single feedback scheme suggested by Firth and D’Alessandro in [8]. NL: nonlinear
medium, M: mirror, Ein: the input field, Eout : the output field, EF : phase modulated field, EB: the
backward field modulated in phase and amplitude.

During the propagation over the distance L to the mirror and back, the modulated
beam experiences diffraction. The travelling beam can be easily described by the
paraxial wave equation in the slowly varying envelope (SVE) approximation:

1
c

∂
∂ t

E +(∆ 2
⊥E−2ikλ

∂
∂ z

E) = 0, (11.2)

where ∆ 2
⊥ = ∂ 2

x +∂ 2
y is the transverse Laplacian and kλ denotes the wave number of

the optical field. Taking into account that the response time of the nonlinear optical
media is long compared to the travelling time of the light inside the optical feedback
system, the term 1

c ∂tE can be neglected. For the integration over the distance L

EB = D(EF) = exp
(−iL

2kλ
∆ 2
⊥

)
EF , (11.3)
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the transverse Laplacian of the propagation operator D acts on the modulated wave
EF and converts the phase modulation into an amplitude modulation of the back-
ward field EB, which in turn can change the refraction index of the medium (see
figure 11.2), thereby closing the feedback process [8]. This diffraction process is
closely connected to the Talbot effect in which the phase modulation is converted
into an identical amplitude profile if the light wave propagates freely over a certain
distance LT . For example, a maximum phase modulation at LT = 0 is transformed
spatially into a maximal (pure) amplitude modulation at a distance LT /4, but is
transversely shifted by π , while the phase modulation becomes zero at this position.
Further increasing the propagation distance to 3LT /4 results in the transformation
of the initial phase distribution into a pure amplitude modulation of the optical field.
The Talbot effect allows for a propagation-induced self-mapping between the initial
modulation to the intensity modulation at a characteristic distance.

The forward and backward modulated fields superimpose in the nonlinear medium,
and the refraction index is then modulated according to the intensity distribution of
the resulting field. The refractive index modulation will grow if the gain compen-
sates the losses inside the loop. This gain is proportional to the obtained intensity I
and above a certain threshold intensity, the gain dominates. For (I > Ith) a macro-
scopic spatial modulation of n will arise with a wavelength Λ and a wave number
k = 2π/Λ .

To determine the threshold and the parameter conditions of the spatio-temporal
evolution related to the modulation instability quantitatively, a linear stability analy-
sis can be employed for our system. Starting from the uniform stationary solutions
of the system ∂tΦu = ∆ 2

⊥Φu = 0, where Φu obeys ∂tΦ = F(r,Φ , t) with F is the
nonlinear function of Φ and r are a set of system parameters. A small perturbation
such as e. g. a stochastic weak modulation, is then applied in a typical approach of
perturbation theory. The resulting system variable Φ̃ is approximated with a lin-
earized Taylor expansion:

Φ̃ = Φu +ξ Φ p, (11.4)

where ξ Φ p is a small perturbation.
To determine which perturbation will grow in the strongest way we need to solve

the following differential equation:

ξ
∂
∂ t

Φ =
∂F
∂Φ

∣∣∣∣
Φu

ξ Φ p = L (r)ξ Φ p, (11.5)

where L (r) represents the eigenvalues of the differential equation. The generalized
solution is given by

Φ p ∝ exp(L (r)), (11.6)

which can be written as:

exp(L (r)) = exp(λ (t))exp(iwt). (11.7)
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Here, λ is the growth rate of the initial perturbation that determines if the perturba-
tion will be amplified or damped. The oscillation frequency determines the dynam-
ical behavior of the system. We can distinguish three different cases.

• λ (r) < 0, stationary uniform solution stable (Φ pdamped)
• λ (r) > 0, stationary uniform solution unstable (Φ pgrows)
• λ (r) = 0, neutral/marginal stability.

The transverse field can be treated in terms of spatial frequencies k in Fourier
space. Combined with the linear stability analysis, the contour of marginal stability
λ (k2) = 0 can be determined. A schematic sketch of the occurrence of modulation
instability of the uniform solution against a weak modulation, with spatial frequen-
cies k depending on the field intensity, is shown in Fig. 11.3. Every spatial frequency
has a certain threshold intensity above which the Fourier component will be ampli-
fied.

Fig. 11.3 Schematic of modulation instability in a simplified single feedback experiment. Typical
marginal stability curves in a plane spanned by the modulus of the transverse wave vector and the
pump intensity for the situation of a focusing nonlinearity are shown.

When increasing the field intensity up to the threshold, the primarily homoge-
neous planar wave solution becomes modulationally unstable against the pertur-
bations at a critical spatial frequency (wave number) kc [24, 8]. The critical wave
number kc of the first threshold of modulation instability is typically the same that
appears in the self-imaging due to the Talbot effect [25]. In Fourier space, kc repre-
sents ring structures centered on the zero order plane wave solution (c.f. Fig. 11.3).
At increased intensities, higher order thresholds of the modulation instability, which
result in excitation of higher order rings k(n), are observed at the curve of the mar-
ginal instability in the linear stability analysis. Generally, distinct spatial modes start
to grow from noise at the critical kc ring and thus not the whole kc ring becomes ex-
ited at the threshold due to symmetry breaking. As a consequence, different spatial
patterns and structures evolve spontaneously in the transverse plane of the light field.
Most commonly hexagonal patterns are observed just above threshold [8]. In addi-
tion to the regularly localized pattern in Fourier space and extended in real space,

ky

ky

kx

kx
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single or multiple spot-like structures are also observed in these systems. These dis-
sipative structures are called dissipative solitons.

Emergence of dissipative solitons as a result of balance between loss and gain is
based on two fundamental effects; namely, optical bistability [26, 27] and the for-
mation of self-organized optical patterns [10]. The soliton itself can be interpreted
as a solution which locally interconnects two homogeneous states [11] or a homo-
geneous state with a spatially periodic one [29] or even two spatially periodic states
[28].

In the following we introduce the mechanisms of the formation of these solitary
structures and discuss the features which dominate their spontaneous behaviour in
the LCLV single feedback system.

11.3 Localized structures in a single-feedback system using a
liquid crystal light valve as a nonlinearity

In our experiments shown in this chapter, the Kerr medium is a reflective liquid
crystal light valve (LCLV) acting as a hybrid nonlinear element in a feedback loop.
Liquid crystal light valves, in spite of the relative slow response time estimated in
the range of 50 ms, are attractive as a nonlinear element in this type of experiments
due to the high nonlinear sensitivity and the large aspect ratio. This enables the
observation of large areas of patterns and many independent spatial solitons [22].

This device works as an optically addressable spatial light modulator (OaSLM)
and as a function of the writing intensity and the external applied voltage. The LCLV
is constructed of a set of thin layers, namely two transparent Indium Tin Dioxide-
coated glass electrodes, a liquid crystal layer (LC), a dielectric mirror, a sensitive
absorber, and a photoconducting layer. The LCLV can be divided into two functional
sides — a read and a write side. The principle function of an LCLV is the conversion
of a spatial light intensity distribution incident on the photoconduction layer in a
modulation of the refractive index of the liquid crystal layer. A read wave passes the
(LC) layer, reflects at the dielectric mirror, and leaves the LCLV modulated in its
phase and polarization state. The phase shift Φ of the extraordinary wave induced
by the LCLV can be written as [30]

τ
∂
∂ t

Φ− l2∆ 2
⊥Φ +Φ = S(Iw,Vext). (11.8)

where τ denotes the effective response time of the liquid crystals required for their
reorientation, l is the effective diffusion length accounting for the restricted spatial
resolution of LCLV, and S(Iw,Vext) is the saturation function suggested by Lu and
Saleh [31] and depends on the writing intensity Iw and the external bias voltage Vext
via:

S(Iw,Vext) = Φmax

{
1− tanh2

(
Vlc−Vth

V0

)}
. (11.9)
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Here, Φmax = 2k∆n is the maximum phase shift induced by the LCLV, k is the wave
vector, and ∆n is the refractive index modulation. Vth and Vlc = S(Iw)Vext are the
threshold voltage and the voltage dropped to the liquid crystal layer, respectively,
and are normalized with respect to V0. S(Iw) denotes a function describing the in-
tensity dependence of the Vlc above the threshold voltage. This model includes tem-
poral and spatial resolution as well as the effects of saturation, thus mimicking the
complete response of the material [30].

After illuminating the LCLV with polarized light of a rather low intensity in the
range of Milliwatts, the reflected field is modulated in phase and its polarization
is changed. A polarizer is used to transfer the phase modulation into an amplitude
modulation. The resulting intensity distribution Iw at the write side after free propa-
gation over a distance L can be written as [30]:

Iw =
∣∣∣∣exp

(−iL
2kλ

∆ 2
⊥

)
(Be−ikΦ)+C

∣∣∣∣
2

Ip, (11.10)

where the amplitude factors B and C are given by B = cosψ1cosψ2 and C =
sinψ1sinψ2. ψ1 and ψ2 are the angle of the input polarization and the angle of the
polarizer axis, respectively, with respect to the optical axis of the liquid crystal layer.
If (ψ1 = ψ2 = 0), which gives B=1 and C=0, pure phase modulation is induced in
the system. In this way, the system can be completely described with the help of the
two latter equations.

The experiments shown here have been realized for different arrangements of po-
larizers, ψ1 6=ψ2 6=0. In this polarization mode, a rich diversity of optical patterns has
been reported [20, 21, 8, 30, 32, 33]. The reason for this diversity is the additional
amplitude modulation induced by the modulation of the polarization state. The uni-
form solution exhibits a more complex behavior than in the phase-only mode. In
Fig. 11.4, we show an example of localized structures and of one of the most stable
patterns observed in LCLV system driven in this polarization mode.

Fig. 11.4 Example of spatial structures in the polarization mode; a: solitary structures at ψ1 =
−ψ1 = 44◦,Vext = 4.3 V, and propagation length L=-20 cm; b: a hexagonal pattern at Uext = 4.7 V.
The far field is shown in the upper right corner.

A typical experimental setup is shown in Fig. 11.5. The LCLV is driven by a fre-
quency doubled Nd:YAG laser (λ = 532 nm, P = 100 mW). The input Ip is linearly
polarized and expanded to 3.5 cm. This uniform wave impinges the read-out side of
LCLV where it is internally reflected at the dielectric mirror and modulated in its
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phase and polarization state. The modulated wave is then inserted to the feedback
loop where the wave passes through the polarizer (P), which transmits the polariza-
tion direction ψ2 with respect to the optical axis of the LCLV. After a distance of
free space propagation L, the resulting intensity distribution Iw is reflected at mirrors
M, goes through the lenses L, to reach the write side of the LCLV, and thus closing
the feedback loop.

detection

BS BSDL

LL
P2

LCLV

M M
A

Fig. 11.5 Experimental setup of the LCLV single feedback experiment system. P2: polarizer de-
termining ψ2, L : lenses, M: mirrors, BS: beam splitter, D: dove prism.

It is worth noting that the LCLV itself provides a self-defocusing nonlinearity.
Due to a symmetry in the model equations 11.8 and 11.10 one can simulate self-
focusing as well as self-defocusing nonlinearities to balance the diffraction in or-
der to create solitary localized structures. In the experiment, a negative propagation
length is realized by imaging a virtual plane in front of the LCLV onto its write side.
The far and near field of the feedback wave are also recorded by imaging a fraction
of the feedback wave on a CCD camera.

11.3.1 Formation of localized structures

As mentioned above, bright localized states are found in the LCLV system if a bista-
bility of a uniform dark solution with a patterned bright solution exists in polariza-
tion mode with a focusing nonlinearity. The results of the linear stability analysis
in this case and the corresponding bistability curve for a typical parameter where
LCLV single feedback system exhibits solitary structures are shown in Fig. 11.6.

The behavior of the evolving phase Φ shows that at the turning points of the
hysteresis curve, the system would become on the one hand unstable against pertur-
bations with k = 0 (◦/dotted line). On the other hand, the uniform solution becomes
modulationally unstable and forms transversal structures from the switching point
(¦/dashed line). Increasing the input intensity from zero on the lower branch, the
homogeneous dark solution remains stable until the threshold of the modulation in-
stability (◦) is reached and the homogeneous solution breaks up and forms patterns.
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Fig. 11.6 Left: bistability curve found in the stationary uniform solution. Right: results of a lin-
ear stability analysis for a focusing nonlinearity in the polarization mode ψ1 = −ψ2 = 40◦. The
thresholds of the instability of the uniform solution (◦) and for the formation of pattern (¦) are
marked

The pattern solution in turn becomes unstable above the turning point (¦) and the
system switches to the upper bright steady state. Starting from the uniform bright
solution on the upper branch, decreasing the input intensity below the threshold (◦)
leads to break up the bright uniform solution and to forming patterns. Further de-
creasing the input intensity, the bright patterned solution becomes unstable again at
the upper turning point (¦) and switches back to the lower branch thus yielding the
bistability curve of the system. In the bistability range, bright isolated states emerge
on a dark background - in the transverse plane of the feedback beam. They repre-
sent localized solitary structures. The localized state itself can be considered as a
solution which locally interconnects both previous solutions. The optical bistability,
between a uniform unstructured solution and a patterned solution, can be interpreted
as a subcriticality. Often the presence of subcriticality is restricted only to small pa-
rameter ranges. In Fig. 11.7 the formation of bright solitons in the LCLV experiment
is shown.

1 2 3 4

Fig. 11.7 Sequence showing the formation of solitary structures in the LCLV single feedback
experiment. Illumination of the LCLV write side first switches the system to the upper bright
branch of the bistability curve (1). The addressing illumination is switched off and after transients
(2-3) a stationary state with seemingly spontaneous spatially distributed solitary structures evolves
(4). Propagation length L = -13 cm
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By adjusting the pump intensity Ip to the parameter region where the sys-
tem shows a bistable behavior and after illuminating the LCLV’s side, the system
switches initially to a bright state. Solitary structures slowly form on uncorrelated
positions. They can be space-filling like optical patterns but local variations of the
background lead to random distributions of stationary solitons .

Localized structures may also have a reduced symmetry, where the breaking of
the circular symmetry leads for certain ranges of the parameters, to triangular sym-
metry [34]. In addition to its symmetry, the triangular soliton differs from the circu-
lar soliton in central-peak intensity, in its tails, and in size. It has been pointed out
that the system features an optical bistability between these two steady localized
states. In the following we report on the possibility of controlling the symmetry
of localized structures with help of externally imposed boundaries and a suitable
nonlinearity strength.

11.4 Boundary-induced localized structures in LCLV

The strong influence of boundaries on regular patterns has already been studied the-
oretically and experimentally in active and passive nonlinear media [35, 36, 37, 38].
It has been pointed out that boundaries have a strong effect on patterns, yielding
symmetries and steady states which do not exist in the extended case. We con-
sider experimentally and numerically how boundaries affect symmetry of solitary
structures in LCLV system by applying circular apertures in a range of parameters
different from those investigated previously [34].

Solitary structures are observed in polarization modulation with different polar-
izer configurations;ψ1 = ψ2 and ψ1 =−ψ2. We work here mainly with ψ1 =−ψ2.
In our experiment, we use angles of ψ = 44◦, a free propagation length of L =-
20 cm, a LC voltage of 4.4 V, and a frequency of 250 Hz. With these parameters,
solitary structures begin to appear at Iw≈0.12 mW/cm2 above the instability thresh-
old. When increasing the input intensity, more solitary structures arise and coexist
in the transverse plane of the wave. At higher intensity values, they form a collec-
tion of uncorrelated solitary structures. These collections are constituted by moving
spots that do not display spatial order.

To apply additional spatial boundaries, an aperture is placed in front of the write
side of the LCLV after the solitary structures are formed. The total diameter of the
impinging feedback beam on the write side of the LCLV is 2.3 cm, whereas the di-
ameter of the aperture varies from 0.08 to 2 cm. Starting from the aperture diameter
0.9 mm where only a single solitary structure is allowed to pass the aperture, and in-
creasing it slightly, the strong nonlinearity modifies the original circular symmetry
in order to fit the aperture area. The sequence of observed structures with increasing
apertures but at a fixed input intensity are shown in Fig. 11.8.

The typical circular localized structure breaks up and loses its highest symmetry
when enlarging the aperture from 0.90 mm to 0.98 mm where a novel structure with
rectangular symmetry emerges. By further increasing the aperture to 1.2 mm, the
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0.9mm 0.98mm 1.17mm

1.19mm 1.2mm

Fig. 11.8 Different symmetries of spatial solitary structures observed at fixed input power and at
the aperture sizes shown at the top of each panel. The structures differ from each other in size,
symmetry and in the number of the radial oscillations.

structure modifies again and three tails arise. The three tails are arranged symmetri-
cally around the central spot forming a triangular structure similar to the triangular
solitons reported in [34]. After the triangular structure, other polygonal symmetries
arise when further enlarging the aperture, namely quadratic and pentagonal struc-
tures. The central spot has a symmetry corresponding to the number of emerging
tails. By further enlarging the aperture, the pentagonal symmetry is destroyed and no
clear symmetry is observed. Other symmetries can be observed if the strength of the
nonlinearity is large enough to force more structures to fit into the aperture. Exper-
imentally, hexagonal and heptagonal symmetries have been obtained when slightly
tuning the nonlinearity by changing the frequency of the applied voltage to 290 Hz,
see Fig. 11.9. It is worth noting that the number of tails in the boundary-induced
structure is controlled by the aperture size, the LC voltage, the input intensity and
the saturation threshold.

1.34mm 1.4mm

Fig. 11.9 Hexagonal and heptagonal structures appearing when further enlarging the aperture and
for higher nonlinearity than in Fig. 11.8.

This experiment demonstrated the transition from bulk induced symmetries,
where the aspect ratio is large and the emerging structures are independent of the
size of the feedback beam, namely the circular and triangular solitary structures, to
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boundary induced symmetries which depend on the size of the aspect ratio and the
nonlinearity. We have investigated the effect of the input intensity on the behavior
of the system in the regime of strong dependence from the boundary conditions. As
indicated above, the appearance of lower polygonal symmetries is ruled not only by
the size of the imposed aperture, but also by the input intensity. The experimental
observations indicate that, if the aperture is kept fixed at 1.2 mm, only the rectan-
gular and triangular symmetries can be observed even at high values of the input
intensity. The state diagram for this case is shown in Fig. 11.10

Fig. 11.10 Experimental bistability curve corresponding to the first three symmetries, the circular,
rectangular, and triangular one, in the presence of an aperture of size 1.2 mm in the optical feedback
path in the polarization mode ψ1 =−ψ2 = 44◦ of the LCLV system.

As shown in Fig. 11.10, the transitions between the observed symmetries when
increasing the input intensity are associated with the appearance of boundary-
induced bistability regions. If the input intensity is increased, the uniform dark
background loses its stability at a certain turning point and the solution switches
to a second stable branch of higher output intensity. By further increasing the input
intensity, the system loses its stability again and switches to a stable third branch
of even higher output intensity. On the other hand, if starting from the third steady
state and decreasing the input intensity, the system remains stable until a new turn-
ing point before it jumps back to the lower stable branch and so on. The separa-
tion of the bistable branches depends also on the polarization configuration. When
ψ1 =−ψ2 = 45◦, a maximum separation of the bistability branches representing the
steady solutions of the system is obtained.

In comparison with the bistable behavior observed between the circular solitary
structure and the triangular one in [34], we observe that the presence of the aperture
leads to the generation of an additional steady state corresponding to the intermedi-
ate rectangular structure.
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Until now we have considered an aperture with diameter of 1.2 mm. To get a
complete picture of the ability of the system to support symmetries different from
the circular one, the aperture is increased to ≈ 1.4 mm, i.e. large enough to allow
a pentagonal structure to be observed. The measurements show that at this size of
the aperture, the rectangular structure vanishes, and the state diagram depicted in
Fig. 11.11 shows four small bistability regions representing four steady states, with
a small fifth hysteresis loop corresponding to an unstable hexagonal structure. The
hexagonal structure can be stabilized by tuning the applied frequency, i.e. the non-
linearity. Similar multistable behaviors have been described in the numerical simu-
lations of the LCLV system [30].

Fig. 11.11 Experimental bistability curve corresponding to the circular, triangular, square and pen-
tagonal symmetries in the presence of an aperture of size 1.4 mm in the optical feedback path in
the polarization mode ψ1 =−ψ2 = 44◦ of the LCLV system.

Numerical simulations of Eqs. (11.8)–(11.10) have been performed with a split-
step method on 256x256 point grids. The free space propagation of the feedback
field is computed by multiplying its Fourier transform by the appropriate phase
function and then performing the inverse Fourier transform. To reproduce the ex-
periments, an infinitely absorbing screen with a circular aperture is inserted into the
feedback loop so that the diameter and position of the writing beam can be con-
trolled. The position of the aperture is always chosen to be at the grid center.

For the case ψ1 =−ψ2, dissipative solitons have been found at ψ1= 39◦, 40◦, 41◦
and L = -18 cm using the model (11.8)–(11.10). As in the experiment, we progres-
sively increase the size of the aperture measured in units of the size of the circular
soliton observed without aperture. Fig. 11.12 shows localized structures with rec-
tangular, triangular, quadratic, pentagonal, hexagonal, and heptagonal symmetries
observed for apertures of diameters of 1.15, 1.25, 1.82, 2.40, 2.77 and 2.92 times
the original circular soliton, respectively and ψ1= 41◦.
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Fig. 11.12 Numerical simulations of solitary structures for the case of ψ1 = −ψ2 = 41◦ when
enlarging the aperture to diameters: a) 1.0, b) 1.15, c) 1.25, d) 1.82, e) 2.40, f) 2.77, and g) 2.92
times the original circular soliton size [39].

We note that a similar set of boundary-induced solitary structures can be observed
also in the configuration of polarizers ψ1 = ψ2 [39]. These observations clearly
demonstrate the universal nature of the phenomenon of aperture-induced polygonal
symmetries.

11.5 Dynamic and static position control of feedback localized
states

In contrast to Fourier control, where the intention is to stabilize unstable states of
the unaffected system [40, 41, 42, 43, 44], an external amplitude control imposes a
stimulus to the nonlinear optical feedback system, which we will name in the fol-
lowing ’forcing’ [45, 46, 47, 48]. External amplitude control must be considered as
an invasive technique method since it changes the system state in any case. Due the
invasive character of the forcing, the response of the system to system solutions not
inherently present in the system can be investigated. Furthermore, the adjustment
of the control strength is of crucial importance. The strength of the external control
must be adjusted such that it does not absolutely dominate the system behavior by
itself. In our particular example, the forcing strength must be strong enough to in-
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fluence the behavior of feedback solitons, but at the same time must not destroy the
ability of the system to support feedback solitons.

detection

BS BSDL

LL
P2

LCLV

M
A

L DP

Forcing

M

Fig. 11.13 Experimental setup of LCLV system with a digital projector DP that images an inco-
herent intensity distribution as a forcing

Experimentally the forcing is realized by projecting an incoherent spatial inten-
sity I f to the LCLV’s photoconductive write side as shown in Fig. 11.13. So, it is
added to the writing intensity distribution Iw of the unperturbed feedback wave. The
spatial distribution of the static or dynamic forcing signal is designed at a computer.
The forcing intensity distribution is created by a LCD-data projector. To model the
influence of the forcing, Iw in Eq. 11.10 must be replaced simply by the total inten-
sity:

Itot(x,y, t) = Iw(x,y, t)+ I f (x,y, t). (11.11)

The effect of the forcing onto the feedback system is twofold. First, the offset in-
tensity I f acts locally similarly to the external bias voltage V0 in Eq. 11.8, i.e. the
operation point of the nonlinearity is shifted locally. Second, the additional intensity
distribution I f induces an offset in the nonlinearly induced phase distribution Φ of
the feedback wave. Thus, an additional phase modulation of the feedback wave can
be achieved.

a b c

Fig. 11.14 Compensation of inhomogeneous sensitivity; (a): System without compensation; (b):
Inverse sensitivity function; (c): System with compensation. The region of existence with the com-
pensation is extended.
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In the first experiment, the ability of the added intensity profile to balance spatial
inhomogeneities of the background is tested. The spatial distribution of the LCLV’s
nonlinear sensitivity function via spatial soliton switching is determined as follows.
If the sensitivity of the LCLV was homogeneous, localized structures would ignite
over the whole aperture with the same forcing intensity level. The intensity levels
at which localized states ignite, however, vary from spatial region to spatial region.
The local forcing intensity at which a localized state ignites is then a measure of
the non-uniformity of the LCLV sensitivity at that position [46]. The inverted sen-
sitivity can then be applied as the control signal for external amplitude to balance
the experimental non-uniformity [46]. An experimental example of the result of bal-
ancing the LCLV inhomogeneities is shown in Fig. 11.14. We note that a method
to map background defects based on linear gradients applied to localized structures
has recently been developed to characterize material imperfections in cavity config-
urations of semiconductor devices [49]. Such method differs from the one presented
here in that gradients instead of external forcing ignition is used but the aims and
the use of energy localization of the spatial soliton are quite similar. Obviously, the
physical size of vertical cavity semiconductor devices [49] is much smaller that that
of the LCLV [46] thus making the use of localized states to map non-uniformity and
defects a very useful method for the microscopic characterization of homogeneity
of nonlinear materials.

The external-forcing compensation method will be extended by introducing a
periodic structure to the forcing distribution. We used a chessboard pattern with
bright and dark quadratic fields as a forcing signal. To combine the compensation
method with the position method, the chessboard was multiplied with the compen-
sation intensity distribution and used as forcing input. The gray scale image of the
chessboard intensity distribution is shown in figure 11.15a. In these experiments we
showed that the forcing method succeeds in controlling the absolute positions of
feedback solitons. However, the quadratic shape of the chessboard fields leaves the
feedback solitons a certain range of transverse space to move. Thus, a precise lateral
positioning in some areas has not been achieved.

a b d1 mm 1 mmc

Fig. 11.15 Static position control; (a,c): The forcing input; (b,d): System response.

If the strength of the forcing input is adjusted so that the total intensity level at the
LCLV’s photoconductive side remains below the switching threshold of localized
states, the forcing spatially favors distinct addressing positions. The system keeps its
local bistability, and individual feedback solitons can be ignited. Instead of forming
at randomly distributed trapping positions, they preferably ignite at the positions



230 M. Ayoub et al.

selected by the forcing signal, which are the bright areas of the chessboard pattern
as can be seen in Fig. 11.15a,b. To create this image, the forcing and the pump
intensity have been kept at a constant level, while the photoconductive writ side was
briefly uniformly illuminated to address the solitons. These now form at positions
which coincide with the chessboard geometry. In the image the distance between
the feedback solitons is d f =1.1 mm, whereas the soliton peak diameter amounts
to ds=360 µm. However, small distortions from a perfect square grid are observed
in the positioning of the feedback solitons. One reason for these distortions in the
square grid is a certain range of space, which the localized states still possess within
one field of the chessboard. Another reason are the non-ideal imaging properties of
the projecting system. For more precise positioning, we then altered the chessboard
forcing geometry into the square shaped lattice arrangement with Gaussian shaped
control points at the lattice sites as shown in Fig. 11.15c,d. In this case the solitons
form perfectly distributed according to the square lattice.

In the experiments described above, the response of feedback solitons to external
amplitude control was investigated by observing the final equilibrium state. How-
ever, to fully understand the influence of external amplitude control on the feedback
solitons, dynamical aspects, which are induced by static amplitude control, must
be considered. In the following we then investigate and answer the question how
feedback solitons respond to external amplitude forcing, if they are ignited laterally
shifted with respect to a local extremum of the amplitude forcing. As a forcing sig-
nal we choose a cone shaped intensity distribution with a maximum forcing intensity
at the top of the cone, because a cone shape combines a cylinder symmetry with a
linear gradient, which points towards the cone maximum from every direction.

A three dimensional image of the cone intensity distribution is shown in fig-
ure 11.16. In the experiment, solitons were written at different positions and laterally
shifted in respect to the maximum of the cone. The area influenced by the induced
gradient is larger than the soliton diameter. So, the feedback soliton is placed into
an environment with a linear gradient. This is induced by the cone with its singu-
lar accumulation point at the top. Once addressed, the solitons move independently

0.2 mm0.2 mm

a b

Fig. 11.16 Dynamical position control of a feedback soliton at a conically shaped intensity gradi-
ent. The trajectory is indicated by the circle (o).

from the addressing position towards the maximum of the cone intensity, since the
amplitude forcing creates a corresponding extremum in the phase gradient of the
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feedback wave via the nonlinearity. In figure 11.16a,b examples of the traces of the
induced soliton motion are displayed. The track positions of the soliton are marked
as a (o). In (a), the soliton is ignited at the right and moves towards the left, while
it is addressed at the top and moves towards the bottom in the right hand image
(b). The backgrounds depict inverted gray scale image of the system response to the
cone forcing. The arrows show the gradient in the intensity distribution which can
be use as a rough indicator for the actually induced phase gradient. The trajectories
show that the feedback soliton moves towards the position of the cone-shaped forc-
ing’s maximal intensity. The final soliton position in figure 11.16a, where the soliton
was addressed at the right side of the cone, perfectly coincides with the peak of the
cone. In figure 11.16b, where the soliton was addressed above the cone maximum, a
small deviation between the final soliton position and the peak position of the cone
is observed. Even though the final position and the peak position do not perfectly
match in this case, one needs to consider that the soliton peak still covers the area
of the cone maximum.

11.6 Gradient induced motion control of feedback localized
structures

The previously demonstrated methods for dynamic motion control are not well
suited to create drifting solitons for the investigation of interactions with static para-
meter gradients. The drift motion induced by the motion of a gradient’s sharp edge
is not smooth enough, and the creation of an appropriate forcing input sequence,
which combines a static forcing gradient with a continuous smooth drift motion
control in a reliable manner, is a not trivial task.

Therefore, to achieve an easy control of both the static forcing gradient and the
drift motion we slightly altered our setup by imposing a permanent global phase
gradient in one spatial direction onto the system [22]. A global phase gradient which
induces a continuous and smooth drift motion of feedback solitons, can be created
if the feedback system is detuned by slightly misaligning either a mirror or one of
the lenses. An illustration is shown in figures 11.17a. In order to study the response
of feedback solitons to the global phase gradient, five solitons were written at five
different spatial positions separated by 0.75 mm perpendicular to the drift direction,
and observe the drift motion of the solitary structures. At every addressing position
a solitary structure was addressed 50 times. In correspondence to the global phase
gradient, the written structures drift from the right to the left. The recorded track
positions of the solitons are marked with (•) as in figure 11.17b. The direction of the
drift is indicated by an arrow in the lower right corner. Figure 11.17 clearly shows
that the drift motion of the feedback spatial solitons is affected by non-uniform
backgrounds. By repeating the experiment described here for a larger set of initial
positions of the solitons and drift directions, a full map of the background defects
and imperfections would became available. Such a task has been recently achieved
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1 mm drift

NL M

a b

Df

Fig. 11.17 (a)Top: Translational invariant single feedback scheme with a nonlinear optical medium
(NL); (Bottom): A small misalignment of the feedback mirror (M) results in a global phase shift
∆Φ causing a drift motion; (b): Trajectories of drifting feedback solitons. The trajectories are a su-
perposition of 50 drifting solitons ignited at each of the five addressing positions. Inhomogeneities
cause deviations from a straight vertical track and fix the route of the solitons to a trapping route.

in cavity (instead of feedback) configurations of localized states in semiconductor
based devices [49].

Now, we demonstrate the possibility of modulating the drift velocity. For this pur-
pose, a hexagonal parameter gradient was chosen as a static background parameter
on which drifted solitons will be addressed. The spatial distribution of the hexagonal
parameter gradient and the addressing positions of four feedback solitons are shown
in figure 11.18a. In the experiment a drift motion of the feedback solitons in direc-
tion of the arrow in the bottom left corner was imposed onto the system. We observe
a modulation of the velocity of feedback solitons drifting at the hexagonally mod-
ulated parameter gradient in the experiment. A sample of the temporal evolution of
the instantaneous velocity at a hexagonally shaped control signal with wave number
kh=3.5 mm−1 is shown in 11.18b. In correspondence to the control signal, a sine fit
matches with the experimental data. This modulation is observed to be on top of the
average drift velocity of the feedback solitons which amounts to υs = 0.55 mm/s.

Now, we turn from periodic hexagonal parameter gradients to gradients with a
simpler line-shaped structure. As before, the interaction of drifting solitons with
these line-shaped parameter gradients is examined. A line structure which intended
to act as a barrier for drifting solitons is created with a central gap. The spatial
distribution of the forcing input is shown in figure 11.19a. The background of the
forcing distribution is set to an intermediate gray scale level (80 gray scale) to enable
the existence of the feedback solitons. The central part of the line structure is set to
a zero gray scale level and this central area is surrounded by a border with higher
gray scale level (120 gray scale) than the background intensity. The forcing strength
in experiment was adjusted so that feedback solitons could not exist in the dark area
of the line structure and the existence was enabled everywhere else. As before, we
have indicated the direction of the drift with a small arrow.
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Fig. 11.18 (a): Hexagonal forcing distribution with four addressing positions; (b): Plot of the in-
stantaneous drift velocity of the feedback solitons versus time. The periodic modulations visible in
the distribution of the instantaneous drift velocity correspond to the wave number kh=3.5 mm−1 of
the hexagon forcing. The modulation of the drift is fitted to a sine function.
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Fig. 11.19 Interactions of feedback soliton with a slit; (a): Gray scale master of the forcing. In
the dark area of the line structure the existence of feedback solitons is inhibited. On the gray
background and the border drifting solitons can exist drift.; (b): Trajectories (+) of drifting solitons
interacting with the slit. The trajectories are a superposition of five sequentially addressed feedback
solitons which were ignited at every of the five addressing positions.

Experimentally, optical feedback solitons were addressed at five different posi-
tions to the right of the line structure’s gap spatially equally separated in y-direction.
Influenced by the direction of the global gradient the solitons drift towards the line
structure with the gap from right to left. In figure 11.19b, the experimentally tracked
positions of the feedback solitons (+) are shown on the top of an inverted gray scale
image of the background with activated forcing. The solitons were sequentially ad-
dressed at the different addressing position and the experiment was repeated five
times for every addressing position. Solitons addressed at the position facing the
gap of the line structure can obviously pass the gap, while those addressed at posi-
tions above or below are stopped by the barrier. The stopped solitons drift further
and are then annihilated in the central dark area of the line, because the system is
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not bistable there. Experimentally, we modified both the width of the gap and the
border line. In both cases we observed that solitons at a larger parameter range of
y-positions are able to pass the gap.

In the following, we check the possibility of guiding of drifting solitons at arti-
ficially created trapping trajectories. To create such a guidance structure, the line-
shaped structure which before was used as a barrier for localized structures, is in-
verted. A gray scale image of the master creating a line of guidance for optical
solitons is shown in figure 11.20a. As before, an intermediate gray scale level was
chosen as a background to create a common area where feedback solitons exist. In-
stead of a dark line surrounded by a brighter border, the distribution now consists
of a brighter line on which a soliton is addressed. The brighter line structure is sur-
rounded by a dark border. The gray scale level of the dark border is set to zero, and
the system is adjusted such that solitons are annihilated in the dark areas. Another
second soliton is addressed at the same y-position as the guided feedback soliton,
but shifted to the left on the x-axis to compare the motion of the trapped guided
soliton with an uncontrolled drift motion.

In figure 11.20b−d, three different experimental scenarios of soliton guidance
induced by the forcing distribution are shown. The arrows indicate the direction
of the induced drift. Figure 11.20b shows the trajectories of both drifting solitons.
The localized structure on the right moves parallel to the y-axis downwards and
is hence guided by the line structure, whereas the solitary structure on the right
only moves influenced by the induced drift in a diagonal direction from an upper
left to lower right position. Comparing the y-positions of both drifting solitons one
finds that the drift velocity of the guided soliton corresponds to the projection of the
freely drifting soliton’s velocity onto the y-axis. The motion of the guided soliton
is stopped at its final position by an impurity of the system. Figure 11.20c also
shows another influence which the spatial system inhomogeneities may have on
the guidance of drifting solitons. While the initially guided soliton is stopped by
an impurity, the soliton not trapped initially is captured by the guidance structure
after permeating its border. Once captured, the soliton continues its drift motion
according to the control direction of the guiding line. The third scenario shown in
figure 11.20d, adds the loss of guiding structure at a spatial inhomogeneity to the
possible influences of spatial impurities. The initially guided soliton in this scenario
leaves the guiding structure at an impurity and continues its drift motion according
the direction of the global drift. The different behavior of the guided solitons at the
impurities is caused by an interplay of two factors. The first factor is small variations
in the pump intensity which require small readjustments of the forcing strength.
Thus, the relation between forcing strength and the pump intensity slightly varies
in the depicted images. The second influence is small variations in the angle of the
drift in respect to the guiding line structure which can be read off from motion of the
freely drifting solitons. A modified inclination angle between a drift motion and the
guiding structure may alter the lateral force pushing a soliton into x-direction. So, a
feedback soliton can, depending on the angle of the drift motion, remain trapped or
freed or hop onto the guiding structure at an impurity.
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Fig. 11.20 Guidance of drifting solitons; (a, e): Forcing master; (b, f): A drifting soliton addressed
at the guiding line follows the path of the guiding, while a freely drifting soliton is moving in cor-
respondence to the general drift direction; (c): Trapping of a freely drifting soliton by the guidance
line; (d): Escape of the guided soliton at an impurity.

So far, we demonstrated the one-dimensional guiding of drifting optical soli-
tons. To complete the picture, we test the possibilities of guiding the solitons in
x-and y-direction. For this experiment the forcing intensity distribution shown in
figure 11.20e was applied int the system. Instead of a straight line, the forcing inten-
sity distribution now consists of a staircase-like structure, which induces guidance
into x-direction for a certain distance, and guiding in y-direction will be effected
after a sharp turn.

The experimental image of the drifting solitons’ trajectories addressed at the
staircase guiding structure shown in figure 11.20f, indeed confirms this assumption.
As in the preceding experiments the localized state written far from the guiding
structure drifts according to the induced drift direction. In the soliton trajectory on
the right, which corresponds to the addressing at the guiding structure, the edges
consistent with the angles of the staircase guiding structure are clearly visible. This



236 M. Ayoub et al.

observation does not apply to for all the edges, as some are smoothed out, and in the
central part of the trajectory the smoothing of the staircase is so strong that it is dif-
ficult to decide whether the trajectory could also conform to the motion of a freely
drifting feedback solitons or not. In any case, the sharp edge of the induced staircase
turn of the drifting soliton, is again very well pronounced during the final part of the
trajectory. This is a definite indication of the trapping of the drifting soliton by the
two dimensional guiding structure.

11.7 Summary

General properties of localized states in single feedback experiments in LCLV have
been reviewed. In order to use feedback localized structures in the processing of
optical information, full control of their shape and position is required.

We have first demonstrated the interaction of spatial dissipative solitons with in-
serted boundaries in combination with a suitable nonlinearity. It has been shown that
dissipative soliton bifurcates from the circular form to more complex forms when
circular apertures are present in the feedback loop. This process showed the transi-
tion from bulk-induced symmetries, i.e. the circular and triangular one, to boundary-
induced symmetries in a multi-stable behavior of the system.

We have then presented static and dynamic position control of feedback dissipa-
tive solitons by using an incoherent external forcing scheme. The forcing method
creates robust static trapping positions to which feedback solitons are attracted and
at which they form more favorably. The investigation of the drift motion revealed
the linear relation between a parameter gradient slope and the gradient induced drift
motion of the feedback solitons. For the motion control of drifting solitons the inter-
actions of drifting solitons with different parameter gradients were examined. In the
course of these experiments the possibility to create guiding and position selecting
control was demonstrated. The methods developed and studied here provide an ex-
cellent and very versatile toolbox for controlling of optical dissipative solitons. For
all these experimental observations the LCLV system can be considered as a model
system. The universal character of localized states allows the operator to export and
import control techniques developed in feedabck LCLV experiments to and from
cavity configurations. For example position control of cavity solitons [50] as well
as mapping of background inhomogeneities [49] have been recently implemented
in semiconductor micro-cavities.
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Excitability and localized states



Chapter 12
Interaction of oscillatory and excitable localized
states in a nonlinear optical cavity

Damià Gomila, Adrián Jacobo, Manuel A. Matı́as, and Pere Colet

Abstract The interaction between stationary localized states have long been stud-
ied, but localized states may undergo a number of instabilities that lead to more
complicated dynamical regimes. In this case, the effects of the interaction are much
less known. This chapter addresses the problem of the interaction between oscil-
latory and excitable localized states in a Kerr cavity. These oscillatory structures
can be considered as non punctual oscillators with a highly non-trivial spatial cou-

terms of simple coupled oscillators. We also explore the possibility of using coupled
excitable localized structures to build all-optical logical gates.

12.1 Introduction

Localized states (LS) are commonplace in extended system exhibiting bistability
between two different solutions [1]. Physically they imply an equilibrium in a finite
region in space between dissipation and driving, and nonlinearity and diffusion.
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In the nonlinear optics context the spatial coupling is mainly given by diffraction,
although diffusion can be also present in some cases.

All these ingredients are present in optical cavities filled with a nonlinear medium
[2, 3]. The driving is given by a broad homogeneous holding beam which is shined
on a semi-reflecting mirror of the cavity. Part of the light will be reflected, but the
rest enters the cavity. If the holding beam is switched off all the energy leave the
cavity through the same semi-reflecting mirror, which make the system dissipative.
The spatial coupling is provided by the diffraction of the propagating light propa-
gating, which smooth out any spatial inhomogeneity. Finally, a nonlinear medium
provides the necessary photon-photon interactions to observe a complex behavior
such as the formation of localized states.

Nonlinear optical cavities have long been shown to support localized states, and
stationary LS have been advocated for their use as bits in optical memories [4, 5].
An important feature of these LS is that they interact through their oscillatory tails
in such a way that they anchor at a discrete set of distances [6, 7, 8]. But LS can also
undergo a number of instabilities leading to more complicated dynamical regimes
[9, 10]. In this case the role of the interaction is much less known. In particular, we
will focus here on the study of the interaction of oscillatory and excitable LS in a
Kerr cavity. In this system the dynamics of LS is an intrinsic property of the coher-
ent structures that emerges from the spatially extended nature of the system. Thus,
for instance, oscillatory LS are non-punctual oscillators, i.e. oscillators with internal
structure or degrees of freedom. As a result, their interaction can not necessarily be
reduced to a simple coupling term between punctual oscillators. The interplay be-
tween the oscillatory dynamics, the interaction, and the internal structure can affect
the dynamics in a nontrivial way. This chapter is an attempt to address this general
problem by studying a prototypical case.

12.2 Model

We study the dynamics and interaction of localized states in a prototypical model,
namely the Lugiato-Lefever equation, describing the dynamics of the slowly varying
envelope E(x, t) of the electric field in a ring cavity filled with a self-focusing Kerr
medium (see Figure 12.1). In the mean field approximation, where the dependence
of the field on the longitudinal direction has been averaged, and in the paraxial limit,
the dynamics of E in two transverse spatial dimensions is described by the following
equation [11]:

∂E
∂ t

=−(1+ iθ)E + i∇2E +Ein + i|E2|E, (12.1)

where x = (x,y) is the transverse plane and ∇2 = ∂ 2/∂x2 + ∂ 2/∂y2. The first term
on the right-hand side describes the cavity losses, rescaled to 1, Ein is the input field,
and θ the cavity detuning with respect to input field. Space, time, and the field have
been suitable rescaled so that Eq. (12.1) is dimensionless. This model was one of the
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first proposed to study pattern formation in nonlinear optics [11], and it was shown
later that LS are also observed in some parameter regions [12, 13].

It is important to note that in the absence of losses and input, the intra-cavity field
can be rescaled (E → Eeiθ t ) to remove the detuning term and (12.1) becomes the
nonlinear Schrödinger equation (NLSE). As it will be explained later in more detail,
the dynamics of LS in this system is connected with the collapse of the 2D solitons
in the NLSE.

Fig. 12.1 Ring cavity of length L filled with a nonlinear medium of length Lm. Mirror M1 is only
partially reflecting, so that the cavity can be driven by Ein and read out with Eout .

Equation (12.1) has a homogeneous steady-state solution which is implicitly
given by Es = Ein/[1+(i(θ − Is)], where Is = |Es|2. For convenience, we will use in
the following the intra-cavity background intensity Is, together with θ , as our con-
trol parameters. It is well known that the homogeneous solution shows bistability
for θ >

√
3. Here we will restrict ourselves to θ <

√
3 so that Is is unique once

Ein is determined. For Is > 1 the homogeneous solution is modulationally unstable
and dynamical hexagonal patterns are formed. The bifurcation is subcritical and sta-
tionary hexagonal patterns are stable below threshold [14, 15]. In this situation, LS
typically exist and their dynamics and interactions are the subject of study in the
rest of this chapter.

12.3 Overview of the behavior of localized states

The bistability of the pattern and homogeneous solutions is at the origin of the exis-
tence of stable LS that appear when suitable (localized) transient perturbations are
applied. The LS can be seen as a solution which connects a cell of the pattern with
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the homogeneous solution. While the existence of LS in this bistable regime is quite
generic in extended systems [16, 17], their stability strongly depends on the partic-
ularities of the system. Using a Newton method it is possible to find the stationary
LS solutions with arbitrary precision and determine their stability by diagonalizing
the Jacobian. Complemented with numerical simulations, this method allows to gain
insight into the structure of the phase space of the system [18, 19, 1].

12.3.1 Hopf bifurcation

Early studies already identified that LS may undergo a Hopf bifurcation leading to
a oscillatory behavior [12]. The oscillatory instabilities [20], as well as azimuthal
instabilities, were fully characterized later [10]. Interestingly, the oscillations of the
LS show the connection of Eq. (12.1) with the NLSE. The growth of an LS during
the oscillations resembles the collapse regime observed for solitons in the 2D (or
2 + 1) NLSE. In this case, however, after some value is attained for the electric
field, E, dissipation arrests this growth. This also explains why, despite LS are also
observed in 1D [21], oscillations are not present in that case, since collapse does not
occur in the 1D NLSE.

As one moves in parameter space away from the Hopf bifurcation, the LS os-
cillation amplitude grows and its frequency decreases. Eventually, the limit cycle
touches the middle-branch LS in a saddle-loop bifurcation which leads to a regime
of excitable dissipative structures [22, 19]. In the next two subsections we briefly ex-
plain the saddle-loop bifurcation and the excitable regime. For an extensive analysis
of this scenario see, for instance, Ref. [1].

12.3.2 Saddle-loop bifurcation

A saddle-loop or homoclinic bifurcation is a global bifurcation in which a limit cycle
becomes biasymptotic to a saddle point, or, in other terms, becomes the homoclinic
orbit of the saddle, i.e., at criticality a trajectory leaving the saddle point through
the unstable manifold returns to it through the stable manifold. Thus, at one side
of this bifurcation one finds a detached limit cycle (stable or unstable), while at
the other side the cycle does not exist any more, only its ghost, as the bifurcation
creates an exit slit that makes the system dynamics to leave the region in phase
space previously occupied by the cycle. Therefore, after the bifurcation the system
dynamics jumps to another available attractor. In the present case this alternative
attractor is the homogeneous solution.

The fact that the bifurcation is global, implies that it cannot be detected locally
(a local eigenvalue passing through zero), but one can still resort to the Poincaré
map technique to analyze it, and, interestingly, the main features of the bifurcation
can be understood from the knowledge of the linear eigenvalues of the saddle [23].
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The case studied here is the simplest: a saddle point with real eigenvalues, in a 2-
dimensional phase space. Strictly speaking, in our case the saddle has an infinite
number of eigenvalues, but only two eigenmodes take part in the dynamics close to
the saddle [19].

Fig. 12.2 Left: time evolution of the maximum of the LS plotted for three different values of the
detuning: a) just below, b) at the saddle-loop bifurcation, and c) just above. Right: sketch of the
phase space for each situation.

To identify such a transition one can study the period of the cycle close to this
bifurcation, and to leading order it must be given by [24],

T ∝− 1
λu

ln |θ −θc| , (12.2)

where λu is the unstable eigenvalue of the saddle and θc the critical value of the de-
tuning. Numerically the bifurcation point is characterized by the fact that approach-
ing from the oscillatory side the period diverges to infinity, and also because past
this bifurcation point the LS disappears and the system relaxes to the homogeneous
solution as shown in Fig. 12.2.

A logarithmic-linear plot of the period versus the control parameter exhibits a
linear slope according to the theoretical prediction (12.2), whit λu obtained from the
linear stability analysis of the saddle [19].
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12.3.3 Excitability

As in our case the saddle-loop bifurcation involves a fixed point (the homogeneous
solution), on one side of the bifurcation, and an oscillation, on the other, the system
is a candidate to exhibit excitability [25]. It must be stressed that excitable behavior
is not guaranteed per se after a saddle-loop bifurcation, and, in particular one needs
a fixed point attractor that is close enough to the saddle point that destroys the oscil-
lation. The excitability threshold in this type of systems is the stable manifold of the
saddle point, what implies that the observed behavior is formally Class I Excitability
[25].

This excitability scenario was first shown in Ref. [22]. Fig. 12.3 shows the re-
sulting trajectories after applying a localized perturbation in the direction of the
unstable LS with three different amplitudes: one below the excitability threshold,
and two above, one very close to threshold and another well above. For the one be-
low threshold the perturbations decays exponentially to the homogeneous solution,
while for the two above threshold a long excursion in phase space is performed be-
fore returning to the stable fixed point. The refractory period for the perturbation just
above the excitability threshold is appreciably longer due to the effect of the saddle.
After an initial localized excitation is applied, the peak grows to a large value until
the losses stop it. Then it decays exponentially until it disappears. A remnant wave
is emitted out of the center dissipating the remaining energy.

At this point it is worth noting that neglecting the spatial dependence Eq. (12.1)
does not present any kind of excitability. The excitable behavior is an emergent
property of the spatial dependence and it is strictly related to the dynamics of the
2D LS.

Finally, it is interesting to remark that the excitable region in parameter space
is quite large and, potentially easy to observe experimentally. While this excitable
behavior belongs to Class I (the period diverges to infinity when a perturbation hits
the saddle), due to the logarithmic scaling law for the period (12.2), the parameter
range over which the period increases dramatically is extremely narrow. Therefore,
from an operational point of view, systems exhibiting this scenario might not be
classified as Class I excitable, as the large period responses may be easily missed
[26].

12.4 Interaction of two oscillating localized states

In the previous section we have reviewed the dynamics of a single LS. In this one
we study the interaction between two oscillating LS, and how it affects their dynam-
ics. Oscillating LS are an example of non-punctual oscillators, i.e. oscillators with
an internal structure. The interaction between such oscillatory structures through
the tails can not be, in general, reduced to a simple coupling term between oscilla-
tors, but it modifies the internal structure of the oscillators themselves, affecting the
dynamics in a nontrivial way. The interplay between the coupling and the internal
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Fig. 12.3 Time evolution of the maximum intensity starting from the homogeneous solution plus
a localized perturbation of the form of the unstable LS below (blue dashed line), just above (green
solid line) and well above (red dotted line) threshold.

structure of non-punctual oscillators is a general phenomenon not well understood.
This chapter aims to be an approach to the subject.

We will first describe in section 12.4.1 the dynamics of two coupled oscillating
LS in the full system, and then in section 12.4.2 we will study how much of the
observed dynamics can be explained by means of a simple model for two coupled
oscillators, and which effects can or can not be attributed to the spatial extension of
the oscillators.

12.4.1 Full system

Throughout this section we will set Is ∼ 0.84, and θ = 1.27 corresponding to a
region of oscillatory structures [22, 19]. This value of Is is close to the modulational
instability that occurs at Is = 1, and because of this LS have large tails. As the
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interaction between the structures is mediated by these tails, working in this region
has the advantage that the interaction is strong and its effects are more evident.

Localized structures in this system have an intrinsic intensity profile with spa-
tially oscillatory tails, and since the system is translationally invariant, the struc-
tures are free to move once created. When two stationary structures are placed close
to each other, the presence of an adjacent structure sets only a discrete set of rela-
tive positions at which the structures can anchor, given by the intensity profile of the
tails. Then if the structures are placed at arbitrary positions they will move until they
sit at the zeros of the gradient of this intensity profile. This locking has been stud-
ied, both theoretically and experimentally, for stationary localized structures only
[6, 7, 8].

Similarly to what happens with stationary LS, when two oscillatory localized
structures are placed close to each other they move until they get locked by the tail
interaction. For the selected parameters we observe three equilibrium distances that
are d1 ∼ 7.8,d2 ∼ 15.8 and d3 ∼ 19.9. Beyond d3 the interaction is so weak that the
structures can be considered as independent. The movement of the structures from
an arbitrary position towards the equilibrium distances is very slow compared with
the oscillation period. Therefore we will restrict ourselves to study the behavior
of the system when the structures are at the equilibrium distances, to avoid long
transient times and complex effects introduced by the movement of the LS.

Fig. 12.4 Anti-phase (top) and in-phase (bottom) modes for Is = 0.86 and d = d1 = 7.8. These
modes have been obtained from a full 2D linear stability analysis.

A single LS undergoes a Hopf bifurcation at Is = 0.8413 and starts to oscil-
late. At the bifurcation point this solution has then two complex conjugate eigen-
values whose real part becomes positive with an imaginary part different from zero.
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Fig. 12.5 Hopf bifurcation for two coupled LS at d = d1. From left to right, Is=0.81,0.8266,0.83.
Red and green dots are the eigenvalues corresponding to the anti-phase and in-phase modes respec-
tively. The blue dots are three zero eigenvalues of the three Goldstone modes of the system of two
LS, corresponding to global translations in the x and y directions, and to the rotation of the pair.
The black dot is a damped mode associated with perturbations that modify the distance between
the two LS.

If we now consider two very far apart (non interacting) structures the system has
globally two degenerate pairs of Hopf unstable eigenvalues. Since in this case the
structures are independent from each other, they become simultaneously unstable at
Is = 0.8413 and the LS can oscillate at any relative phase.

If the two LS are now placed closer together, at one of the equilibrium positions,
the structures are no longer independent. Now the interaction breaks the degeneracy
of the spectrum splitting the eigenvalues in two different pairs of complex conju-
gates: a pair corresponding to in-phase oscillations and other to anti-phase oscilla-
tions (Fig. 12.4). Since the eigenvalues of these modes are no longer degenerate,
increasing the driving, one of these two pairs will cross the Hopf bifurcation first
(see Fig. 12.5). Because of the splitting, the threshold of the mode that become first
unstable is, generically, lower that the threshold of the single LS. Physically this is
due to the fact that the coupling can transfers energy from one LS to the other, such
that the collective oscillation can have a lower threshold that a single LS. Although
the splitting takes place mainly in the direction of the real axis, the imaginary part
is also slightly modified, so the two new cycles have different frequencies. This de-
generacy breaking mechanism is crucial to understand the interaction of these LS.

For d = d3 the interaction is very weak, and the degeneracy is merely broken. The
real part of the eigenvalues corresponding to the in-phase and anti-phase oscillations
become positive almost simultaneously, although the in-phase cycle appears first at
Is = 0.8412, very close to the threshold of an isolated LS. As a result, the in-phase
solution is stable close to the bifurcation and the anti-phase solution is created just
after and it is unstable. The stability is, however, interchanged for larger values of
the input intensity in favor of the antiphase solution. This is illustrated in Fig. 12.6a,
where the bifurcation diagram of the in-phase and anti-phase cycles is shown for the
third equilibrium distance d3.

For d = d2 the difference between the two pairs of eigenvalues is still very small
but, this time, the anti-phase mode crosses the Hopf bifurcation first. The changes
in the threshold are still almost imperceptible. The anti-phase solution remains then
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Fig. 12.6 Amplitude of the in-phase (orange), anti-phase (black) and mixed (green) oscillations as
a function of Is for the first three equilibrium distances: a) d3 = 19.9, b) d2 = 15.8, and c) d1 = 7.8.

stable for all values of the input intensity (Fig. 12.6 b). In this case the inphase
solution is always unstable.

Finally for d = d1 the degeneration is completely broken, and the anti-phase
mode crosses the Hopf bifurcation much before than the in-phase one, as shown in
Fig. 12.5. For this the closest distance the interaction is quite strong and the situation
is more complicated. First the stable anti-phase limit cycle is created at Is ' 0.8266,
much before that the threshold of an isolated LS. Initially, both structures have the
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same oscillation amplitude. At Is ' 0.828 there is a symmetry breaking bifurca-
tion and the oscillation amplitude of the two structures becomes different, i.e. the
two structures oscillate around the same mean value in anti-phase but with differ-
ent amplitudes (regime II in Fig. 12.6c). The difference in the oscillation amplitude
between the two structures grows gradually with Is. An interesting effect due to the
extended nature of the solutions is that in this region the pair of LS moves due to
the asymmetry [27]. The centers of the two structures drift along the x axis in the
direction of the structure with larger oscillation amplitude. For larger Is the unsta-
ble in-phase limit cycle is created and it becomes stable at Is = 0.84. In this case
we observe also a third branch connecting the in-phase and anti-phase cycles corre-
sponding to a mixed mode. Since the two cycles have a slightly different frequency,
this mode presents a beating at the frequency difference of the in-phase and anti-
phase modes.

This situation is illustrated in detail in Fig. 12.7. Each of the panels in the figure
corresponds to one of the tags in Fig. 12.6c, showing a time trace of each dynam-
ical regime. Fig. 12.7 I shows the anti-phase oscillations. Increasing Is, we reach
the regime where the anti-phase oscillations are asymmetric (Fig. 12.7 II). Further
increasing Is the anti-phase cycle become unstable and the amplitude of the oscil-
lations is modulated by a slow frequency. Close to the anti-phase cycle the fast
oscillations of this modulated cycle are almost in anti-phase (Fig. 12.7 III). Near the
end of this branch the fast oscillations are almost in phase (Fig. 12.7 IV). Finally,
the amplitude of the modulations decreases until we reach a the regime of in-phase
oscillations (Fig. 12.7 V).

12.4.2 Simple model: two coupled Landau-Stuart oscillators

As the oscillating LS are extended oscillators it is interesting to wonder which part
of the dynamics observed in the previous subsection can be attributed to the ex-
tended nature of the LS and which one simply to two coupled oscillators. To try to
discern these to components in the dynamics we consider a simple model describing
two interacting limit cycle oscillators close to a Hopf bifurcation, namely two cou-
pled Landau-Stuart (L-S) equations. We give some hints on how to determine the
effective parameters of these pair of equations from the full system, and describe
the different dynamical regimes that arise from them.

We try to understand, then, the interaction of two oscillating LS in terms of a
phase-amplitude reduction of two subsystems close to a Hopf bifurcation. In their
classical paper Aronson et al. [28] analyze this situation. They arrive to a center
manifold reduction for two limit cycles that allows to write the interaction in terms
for the complex amplitudes A1 and A2 of two Landau-Stuart oscillators,

Ȧ1 = A1[µ + iω− (γ + iα)|A1|2]+ (β + iδ )(A2−κA1)
Ȧ2 = A2[µ + iω− (γ + iα)|A2|2]+ (β + iδ )(A1−κA2) (12.3)
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Fig. 12.7 Time traces of the maximum of the two LS for different values of Is. Each panel corre-
sponds to one of the tags of Fig. 12.6.
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Here, for clarity, we have not rescaled the parameters of the oscillators and the only
assumption we have done is that both oscillators are identical. With the presence of
the parameter δ we consider the most general case of a nonscalar coupling (other
authors also call it reactive, elastic or nondiagonal coupling). Physically, in a me-
chanical system, this couples momentum coordinates to position and/or viceversa.
In optics this corresponds to the coupling associated to diffraction (in the paraxial
approximation). Its most important consequence is that it couples amplitude with
phase, breaking thus, the usual assumption that we can describe coupled oscillators
only through their phases and neglecting amplitudes.

Another important ingredient that allows for a rich dynamical behavior is non-
isochronicity, i.e., the nonlinear dependence of the frequency with the amplitude
(also called shear or nonlinear frequency pulling in the literature) given by α . We
note also that we have included, as in [28], the κ ∈ [0,1] parameter, such that κ = 1
corresponds to the usual coupling (diffusive in the case that δ = 0), while κ = 0
corresponds to direct coupling (no self-interaction term).

From these equations, using A1,2 = R1,2 exp(iθ1,2), one can obtain the following
equations in polar coordinates

Ṙ1 = R1(µ−βκ− γR2
1)+R2(β cosψ−δ sinψ) (12.4)

Ṙ2 = R2(µ−βκ− γR2
2)+R1(β cosψ +δ sinψ) (12.5)

ψ̇ = α(R2
1−R2

2)−β sinψ
(

R1

R2
+

R2

R1

)
+δ cosψ

(
R1

R2
− R2

R1

)
(12.6)

where the phase difference ψ = θ2− θ1 is the only relevant angular variable, due
to the invariance symmetry under transformations with respect to the global phase
exhibited by the evolution equations.

Let us first analyze the two symmetric solutions, with R = R1 = R2, the in-phase
and the anti-phase solutions. As they are fixed point solutions, both of them satisfy

µ−βκ− γR2 +β cosψ = 0 (12.7)

or,
R2 = [µ +β (1−κ)]/γ (12.8)

for the in-phase solution (ψ = 0), and

R2 = [µ−β (1+κ)]/γ (12.9)

for the anti-phase one (ψ = π). As the amplitude (squared) for an uncoupled oscil-
lator is R2

u = µ/γ , we note that, for positive β (attractive coupling), except for the
so-called diffusive coupling (κ = 1), the amplitude of the in-phase solution is bigger
than the amplitude of an uncoupled oscillator. The opposite would happen for repul-
sive coupling β < 0. Similarly, for attractive coupling (β > 0) the amplitude of the
anti-phase synchronized solution is smaller compared with the uncoupled oscillator
(the opposite would happen for repulsive coupling).
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12.4.2.1 Estimation of parameters I

From the previous results one gets a procedure to determine some effective parame-
ters from the full model. Comparing the amplitudes of the in-phase and anti-phase
symmetric solutions, and keeping all parameters fixed, from Eqs. (12.8) and (12.9)
one gets

R2
inp−R2

u = β (1−κ)/γ

R2
u−R2

antip = β (1+κ)/γ (12.10)

where Ru is the amplitude of single uncoupled oscillator, and Rinp and Rantip are
the amplitudes of the in-phase and anti-phase limit cycles respectively. As shown in
Fig. 12.6, Rinp and Rantip, as well as Ru, can easily be calculated from the numerical
integration of the full model (12.1). Then, κ and β/γ can be obtained from the
system of two equations (12.10):

Q =
R2

inp−R2
u

R2
u−R2

antip
=

1−κ
1+κ

κ =
1−Q
1+Q

(12.11)

βκ
γ

= R2
u−

1
2
(R2

inp +R2
antip) (12.12)

We note that measuring Ru, Rinp and Rantip for the same values of the parameters
require working in a region of coexistence between in-phase and anti-phase oscilla-
tions. This is not necessarily possible and the stability of the two limit cycles must
be first checked. Nevertheless in some cases it is possible to measure Rinp or Rantip
even if one of these solutions is unstable. In order to do so, the growth rate of the
unstable mode must be much slower that the frequency of the cycle, so that start-
ing from an initial condition close to the unstable solution one can observe several
oscillations where the radius does not change significantly.

We have also assumed here that κ , as well as β and δ are the same for the
in-phase and anti-phase solutions. This is again not guaranteed, due to the spatial
nature of the oscillators, and the coupling could depend explicitly on the shape of
the solutions. In any case, for weak interaction (long distance between oscillators)
this should be a reasonable first order approximation.

12.4.2.2 Estimation of parameters II: quenching experiments

In [29] Hynne and Sorensen reported a method to determine the coefficients of the
cubic term of the Landau-Stuart normal form of a Hopf, namely γ and α . This is
based on a so-called quenching experiment1, in which one makes a perturbation of

1 A theory of quenching is presented in [30]
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a system sitting on a stable limit cycle to make it jump momentarily on the unstable
fixed point (focus) in its center. One then measures quantitatively the return of the
trajectory to the limit cycle attractor. The procedure goes as follows. One starts with
a single, uncoupled, Landau-Stuart oscillator,

Ȧ = A[µ + iω− (γ + iα)|A|2], (12.13)

or in polar representation

Ṙ = R(µ− γR2) (12.14)
θ̇ = ω−αR2, (12.15)

being the limit cycle defined by Ru =
√

µ/γ and the unstable focus at its center
by R = 0. Then, one can determine the slope s1/2 of the tangent to a time series of
the radius at the half amplitude point R = Ru/2 (see Fig. 12.8) from a quenching
experiment. Using Eq. (12.14),

s1/2 =
dR
dt

∣∣∣∣
R=Ru/2

=
µRu

2
− γR3

u

8
=

γR3
u

2
− γR3

u

8
=

3
8

γR3
u

and γ can be determined as,
γ = 8s1/2/3R3

u. (12.16)

To determine the nonisochronicity α one has to analyze the dynamics of the
phase θ . From Eq. (12.15) one obtain that

α = ∆ω/R2
u (12.17)

where ∆ω is the difference between the frequency of infinitesimally small oscilla-
tions and the frequency of the stable limit cycle. The frequency of the small oscilla-
tions around the unstable fixed point is given by the imaginary part of the unstable
eigenvalue of the focus, which can be determined exactly from a linear stability
analysis. The frequency of the stable limit cycle is easily determined from a numer-
ical simulation of the full system.

Finally, knowing how to determine γ , β can be obtained from (12.12), and µ
can also be easily estimated from the amplitude of the limit cycle Ru. Thus, all
the parameters of the system have been estimated, except for the reactive coupling
coefficient δ , determined in the next section.

12.4.2.3 Estimation of δ

two coupled oscillators to a stable limit cycle after an asymmetric perturbation. In
particular, it can be seen that the dynamics of the two oscillators close to the limit
cycle depends directly on the value of δ [31]. Then, to determine this coefficient we

To obtain the reactive coupling coefficient δ one needs to study the relaxation of
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Fig. 12.8 Time trace of the maximum of a LS (R) in a quenching experiment starting from the
unstable focus.

have performed systematically simulations of the simple model starting from the
same asymmetric initial condition, and different values of δ . We then compare the
results with a simulation of the full model where the two LS have been initialized
with equivalent phases and radius than the two Landau-Stuart equations, and we
choose the value of δ that better fits the dynamics of the full system.

Fig. 12.9 shows the evolution of the full and simple models for equivalent initial
conditions and the best value of δ . There is a very good agreement between the
dynamics of the two models, although this is the most difficult and less accurate
estimation of all.

12.4.2.4 Results and dynamical regimes of the simple model

As a result of the procedures described above, we obtained the following parameters
for the largest distance d3:

For these parameters the dynamics of the two Landau-Stuart equations accept-
ably reproduce the dynamics observed for d3 and, possibly for d2. Fig. 12.10 shows
the results of the stability analysis of the in-phase and anti-phase solutions of
Eq. (12.3) for the parameter values given in Table 12.1. For small positive values
of δ the in-phase solution is stable, while the anti-phase solution is unstable. The
opposite situation occurs for small negative values of δ . In the previous Section we
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Fig. 12.9 Time evolution of the radius R of each oscillator, and their relative phase ψ , for the full
system (solid lines) and the simple model of two coupled Landau-Stuart equations (dashed lines)
after applying an asymmetric perturbation to the stable anti-phase limit cycle. For the right value
of δ there is a very good agreement between the evolution of the two systems.
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Is µ κ γ α β
0.843 0.0015843930 2.26433 0.04300 -0.26699925 2.97237×10−5

0.845 0.0034164778 1.89287 0.04256 -0.28231057 3.51847×10−5

0.847 0.0052667790 1.63081 0.04249 -0.27617558 3.93145×10−5

0.849 0.0070653138 1.51109 0.04208 -0.27851949 4.09333×10−5

δ = 9×10−5

Table 12.1 Estimated parameters for d = d3.

estimated δ = 9× 10−5, which is in agreement with the fact that for d = d3 we
observe the in-phase solution to be stable close to the Hopf bifurcation while the
anti-phase solution is unstable, although the simple model do not capture the inter-
change of stability observed in the full model for larger values of the input intensity.
The estimation of δ is, however, not very accurate and since the value of δ is so
small, the error bars would include both positive and negative values. Nevertheless,
the fact that we find δ to be close to zero makes possible the fact that for d = d2
we observe the opposite situation than for d = d3, namely that the anti-phase solu-
tion is stable and the in-phase solution unstable, although we have not estimated the
parameters for that distance.

Fig. 12.10 Real part of the eigenvalues of the in-phase (solid line) and anti-phase (dashed line)
limit cycles of the two coupled Landau-Stuart equations as a function of δ for the estimated para-
meters (Table 12.1).
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In principle, this approach assumes that the only parameters that change from
one distance to another are those associated with the coupling, i.e. α , β and κ , while
those of an isolated oscillator remain the same. In the case of d = d1, the interaction
is so strong that we can not use the techniques explained above to estimated the
parameters. We have then explored numerically different values of the parameters
of the coupling, but we have not found any region where the simple model can
exactly reproduce the dynamics of the full model for d = d1. This seems to indicate
that this approach is to simple for this case and that the spatial extension of the
oscillators do play a role in the complex dynamics. Possibly, the interaction changes
somehow the effective values of the parameters of the individual oscillators, or even
more, these parameters may not even be constant at all. It is still possible, however,
that for more remote effective parameter values, the system of two coupled Landau-
Stuart Equation can reproduce, at least partially, the observed regimes, but this needs
further investigation.

12.5 Interaction of excitable localized states: logical gates

In this section we explore the possibility of using excitable localized structures to
perform logical operations. Computational properties of waves in chemical excitable
media (e.g. the Belousov-Zhabotinsky reaction) have been used to solve mazes [32],
to perform image computation [33], and also logic gates have been constructed from
these (chemical) systems [34, 35, 36]. After all, excitability is a property exhibited
by neurons and used by them to perform useful computations [37] in a different way
than the more usual attractor neural networks [38, 39].

Optical computing, via photons instead of electrons, has long appealed re-
searchers as a way of achieving ultrafast performance. Photons travel faster than
electrons and do not radiate energy, even at fast frequencies. Despite the constant
advances and miniaturization of electronic computers, optical computing remains
a strongly studied subject. Probably the strategy to follow is not to seek to imitate
electronic computers, but rather to try to fully utilize the Physics of these systems,
e.g., their intrinsic parallelism.

Most of the systems studied in optical computing applications imply light prop-
agation, for example optical correlators, already commercially used in optical
processing applications [40]. Instead, with the goal of designing more compact op-
tical schemes, localized structures have emerged as a potentially useful strategy for
information storage, where a bit of information is represented by a LS. One can take
this idea a step further and discuss the potential of LS, for carrying out computa-
tions, i.e., not just for information storage. In particular, logic gates can be designed
using LS. We will show here how an AND and OR gates can be implemented using
three excitable LS.

To make use of the excitable regime we use a set of addressing Gaussian beams
that allow us to set precisely the distance between excitable spots and control the
excitable threshold of each one [41]. Strictly speaking this Gaussian beam changes
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slightly the scenario, but the underlying physics remains basically the same as de-
scribed in section 12.3.3. So, to design a logical gate, we set three addressing beams
at proper distances and intensities such that their interaction creates a dynamics
whose response to two input perturbations is given by Table 12.2 reproducing an
AND and an OR logical gates.

Input 1 Input 2 Output
OR 0 0 0

1 0 1
0 1 1
1 1 1

AND 0 0 0
1 0 0
0 1 0
1 1 1

Table 12.2 Truth Table of AND and OR logic gates.

In particular we consider three excitable LS in a linear arrangement, with a sepa-
ration d between them. Three permanent Gaussian localized beams are applied: II1

sh
and II2

sh at each side for the input LS, and IO
sh in the middle for the output LS. The

Gaussian beams fix the spatial position of input and output LS. If there is an ex-
citable excursion in the central localized structure the output is interpreted as a “1”
and if there is no excitable response as a “0”. At the input, superthreshold perturba-
tions (i.e. causing an excitable excursion) correspond to a bit “1”, while subthresh-
old (or the absence of) perturbations will be considered as a bit “0”. Physically, the
interaction is mediated by the tails of the structures and the remnant wave that ra-
diate from the LS dissipating the energy to the surroundings during the excitable
excursion.

Then, if the distance d between the input LS and the output is small enough,
such that the excitable excursion of a single LS at the input is enough to excite an
excursion at the output we will have an OR gate. To avoid that the output can excite
the input LS II1

sh and II2
sh are smaller than IO

sh, so that the excitable threshold of the
input LS is too high to be excited by the excitable excursion of the output LS. If we
simply make d larger so that the interaction of a single LS is not enough to excite
the output, but the combined effect of the two input LS is, we have implemented an
AND gate according to Table 12.2.

Fig. 12.11 shows the dynamics or an OR gate for a (“1”, “0”) input. Applying a
similar perturbation to II2

sh [corresponding to (“0”, “1”)], the same result is obtained.
Finally, if we simultaneously apply the same perturbation to both II1

sh and II2
sh [cor-

responding to (“1”, “1”)], a similar excitable excursion is obtained for the central
(output) LS, as shown in Fig. 12.12.

Figs. 12.13 and 12.14 show the response of an AND gate to a (“1”, “0”) and a
(“1”, “1”) inputs respectively.

With these two basic gates combined with a NOT gate, not explained here, it
is possible to build the two universal logic gates, NAND and NOR, which are the
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Fig. 12.11 Resonse of an OR logic gate to a (“1”, “0”) input.

Fig. 12.12 The same as in Fig. 12.11 for a (“1”, “1”) input.

pillars of logic. In electronics, these gates are built from transistors, but they can be
built by means of other technologies. We propose here using excitable LS. We have
to note, however, that using excitability to perform computations may imply rela-
tively long times inherent to the slow dynamics close to a fixed point. This drawback
can be minimized by properly tuning the parameters of the system and optimizing
the form of the perturbations. The aim of this work is just setting the basis of a new
way to perform all-optical logical operations using localized states.
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Fig. 12.13 Response of an AND logic gate to a (“1”, “0”)input.

Fig. 12.14 The same as in Fig. 12.13 for a (“1”, “1”) input.
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12.6 Summary

It is remarkable how such a simple model as (12.1) can show such a rich and sur-
prising behavior through the dynamics of coherent structures. In particular, localized
states show different emergent behavior that can not be explained in terms of the lo-
cal dynamics of the model, but it is a self-organized phenomenon due to the spatial
coupling provided by diffraction. In the first part, we have briefly reviewed two in-
stabilities, namely a Hopf and a saddle-loop bifurcation, that signal the boundaries
between three different dynamical regimes: stationary, oscillatory and excitable. An
extensive analysis of this scenario can be found in [1].

Then, we have focused in the study of the interaction between two LS in the os-
cillatory regime. We have shown how the interaction breaks the degeneracy of the
spectrum of two LS creating two limit cycles with slightly different frequencies.
These two cycles bifurcate also for slightly different values of the control parameter
and they correspond to in-phase and anti-phase oscillations. An important issue ad-
dressed in this section is the role of the internal structure of LS in the dynamics. For
long distances between LS, i.e. weak interaction, we have shown that the dynamics
can be reasonable explained by means of two simple coupled oscillators. We have
given a simple model and described a method to estimated its parameters from the
dynamics of the full system. For the closest distance, however, we observe a much
more complex dynamics, and the simple model does not reproduce this behaviour,
at least for the adjusted parameters. This seems to indicate that the internal degrees
of freedom play a role in the dynamics and that interaction couples, for instance, the
movement in the transverse plain with the oscillations.

Finally, in the last section, we have shown how coupling several LS in the ex-
citable regime, one can perform logical operations. This opens the possibility to
build new all-optical components to process information based on the use of LS.
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Chapter 13
Lurching waves in thalamic neuronal networks

Jaime E. Cisternas, Thomas M. Wasylenko, and Ioannis G. Kevrekidis

Abstract Numerical bifurcation computations are used to characterize traveling
waves for a family of models of thalamic neurons in a network. These models con-
sist of two layers of neurons: one made up of excitatory neurons, and the other
of inhibitory ones. The interplay of these two different couplings gives rise to the
propagation of activity waves. This article contains some preliminary work on the
characterization of the observed waves in a one-dimensional lattice and explores the
effects of varying key parameters of the model. The stability of these solutions, as
well as the presence of hysteresis and the coexistence of up to three different waves,
are most naturally explained in terms of the theory of bifurcations of dynamical
systems.

13.1 Introduction

One of the functions of the thalamus is the generation of rhythms that propagate to
other regions of the brain during light sleep. This behavior has been also observed
in slice preparations of thalamic neurons [18, 1, 12, 16], and in the computational
models that have been constructed trying to explain the spatiotemporal behavior of
such networks [9, 17, 4, 2, 7, 19, 6]. These minimal models consider two types of
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cells: thalamocortical (TC) and reticularis (RE) neurons. In the following we will
use the simplification found in the work of Terman et al. [19]: The TC cells are
excitatory and project to other RE neurons in the neighborhood, while the RE cells
are inhibitory and project to the TC cells located in a short range. The TC-RE pair
exhibits the so-called post-inhibitory rebound (PIR), a burst of action potentials that
propagate through the network. The mechanism of PIR is the following: the firing
of a RE cell lowers the voltage of the neighboring TC cells, priming them to fire,
and when the RE cell action potential ends, TC cells are released from inhibition
and fire, exciting now other RE neurons in a larger neighborhood.

Rinzel et al. [17] considered a one-dimensional network based on these assump-
tions and found two basic types of propagating waves: “smooth” and “lurching”
waves. The former travel across the lattice (modulo the lattice shift symmetry) in
the same way a localized pulse propagates through homogeneous media: every neu-
ron, in sequence, performs the same oscillation as the pulse passes through it. The
latter are characterized by clusters of neurons that behave in a more or less synchro-
nized way, as a result of the finite range of the couplings. The apparent time-delay
between firing of neighboring clusters gives the propagation a ‘saltatory’ charac-
ter. It was conjectured in [17] that the existence of two distinct waves is explained
by the characteristics of the inter-neuron coupling as well as the interplay of two
time scales. Even if most computational models of thalamic neurons have these two
propagating waves, it’s not currently possible to apply this classification to waves
observed in slice preparations because of the limited spatial resolution of potential
measurements.

Terman et al. [19] considered the ‘full’ network equations of the biophysical
model used by Rinzel et al. without introducing simplifications. The authors used
geometric methods and suitable limits to study the existence of smooth and lurching
waves, arriving at explicit conditions that must be satisfied when a certain type of
wave exists, and at formulas that give the speed of the wave in terms of neuronal pa-
rameters. Recent advances have been achieved using a simplified integrate-and-fire
neuronal model made up of a continuous one-dimensional array of neurons [8, 5].
For this model and inside a certain parameter domain two types of smooth propa-
gating pulses exist, which travel at different speeds. Outside this parameter domain,
lurching pulses exist and are stable. In [6] a review of wave phenomena in purely
cortical networks is presented, including stability analysis of fast, slow and saltatory
pulses, assuming continuous space.

In this work, we explore the behavior of the two-layer model (presented in [19])
using bifurcation theory, but without giving up the discreteness of the neuronal net-
work. Among other works that share the same spirit we should mention [3] and [8],
which characterized transitions in neuronal networks using the language of bifurca-
tions. A most helpful tool that we used in this work is the return map that represents
the evolution of the state of the network during a specified time interval. For some
one dimensional waves, it is possible to choose the duration of the interval so the
state of the network looks undisturbed, modulo a spatial shift. For waves that don’t
have this invariance property, we used the Poincaré map that captures the evolution
of the state of the network when the wave advances a specified number of lattice
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sites. The properties of these maps, studied using extensive numerical computa-
tions, help to clarify the characterization of the behaviour of the neuronal network
and the existence and stability of the propagating waves. As we will show, the full
dynamics is far richer than the one extracted from simplified integrate-and-fire or
continuous models.

In the next section we present briefly the model introduced in [19], and describe
smooth and lurching waves. Section 3 introduces the return map and its fixed points.
These fixed points represent the two types of propagating waves. Using continuation
we construct branches of solutions, computing how a given solution changes when
parameters of the model are varied. The problem of computing unstable solutions is
addressed. The discussion in Section 4 contains an assessment of the relevance of
the present study in light of the literature, as well as some open problems.

13.2 The model

As was explained in the introduction, several models of thalamic networks have
been proposed, most of them based on two distinct populations of neurons. Here we
based our work on the model proposed by Terman et al. [19], which exhibits smooth
propagating pulses and other waves that propagate by “lurching” a certain number
of sites in the lattice. This latter behavior is generated when a cluster of neurons fires
at approximately the same time, and induces the delayed firing of another cluster in
the direction of propagation. We will use the name ‘lurcher’ for this kind of pulse.
In Ref. [19, Figs. 4 and 5] other propagation patterns were observed, such as trains
of smooth pulses or lurchers and lurchers that leave a wake of periodic clustering as
they propagate.

The model considers a one dimensional lattice, where each site consists of two
neurons. The first cell is an excitatory thalamocortical (TC) neuron and its state is
described by the variables vTC (voltage) and hTC (relative suppressive influence).
The second cell at the site is an inhibitory reticular (RE) thalamic neuron and is
described by the variables vRE and hRE.

For each lattice site i = 1 . . .N, there are four differential equations describing
the dynamics of the two neurons:
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This set of ordinary differential equations can be represented for future reference
by ẋi = fi({x j}) or simply ẋ = f (x) where x ∈ R4N .

Clearly the TC neuron receives signals only from the RE neuron at the same
site, but the RE neuron receives input from the TC cells in the neighborhood. For
this model we have considered a symmetric synaptic footprint that couples each RE
neuron to the TC neuron at the same site, to its ω closest neighboring TC cells to
the right (ω being a natural number), and to its ω closest neighboring TC cells to
the left, resulting in a neighborhood of size 2ω +1 (see a schematic in Fig. 13.1).

Fig. 13.1 Structure of the neuronal network. In this schematic figure ω = 2 so each RE neuron
receives input from the TC neuron at the same site and from the 4 neighboring TC neurons.

The behavior of a single neuron by itself (i.e. without coupling) and the PIR
mechanism (postinhibitory rebound) are explained in full detail in Ref. [19]. If a
cell receives inhibitory input during a certain time, and then it is released from
inhibition, the cell may jump up to the active phase. This behavior can be described
by the effect of inhibition on the nullclines in the (v,h) plane of a single cell.

Other functions that appear in equations (13.1–13.4), are bounded and have a
sigmoidal shape:
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m∞(v) =
[

1+ exp
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)]−1

,
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,
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)]−1

.

Values for the parameters in all the previous equations were extracted from [19]
and are included in the next paragraph.

Instead of performing continuation with respect to one of the natural parame-
ters of the system, we chose a homotopy using a new, nondimensional parameter s.
When s varies, four of the natural parameters vary in a correlated way so that for
s = 0 we get a smooth wave (εTC = 1,gTC = 0.03 ms−1,gRE = 0.1 ms−1,eCa =
120 mV) while for s = 1 we get a wave that propagates discontinuously, ap-
pearing to advance six sites and then remaining silent for a small time interval
(εTC = 3,gTC = 0.01 ms−1,gRE = 0.3 ms−1,eCa = 90 mV). In this way the lurch-
ing wave apparently consists of clusters of siz neurons that behave in a (more or
less) synchronized fashion (we analyze this solution in detail in the next section).
To see how the transition occurs, we chose to do a one-parameter continuation along
a straight line segment in 4-dimensional parameter space:

εTC = (1− s)+3s ,

gTC = 0.03(1− s)+0.01s
[
ms−1] ,

gRE = 0.1(1− s)+0.3s
[
ms−1] ,

eCa = 120(1− s)+90s [mV] .

eTC
L = −75 mV, eTC

syn = 0 mV, gRE
L = 0.2 ms−1 , eRE

L = −80 mV , εRE = 2 ,
eRE

syn = −80 mV , gCa = 1 ms−1 , vt = −20 mV , vs = 2 mV , vh,t = −79 mV ,
vh,s = 5 mV , vm,t = −65 mV , vm,s = 7.8 mV , vτ,t = −65 mV , vτ,s = 4 mV ,
τ1 = 1 ms , τ2 = 80 ms, ω = 6.

Varying the value of this new parameter s we were able to identify certain details
of the transition and the existence of other intermediate states. Even if most of our
findings were observed for the particular region of parameter space described by
s ∈ [0,1], we are confident that many features of the picture are ubiquitous across
the parameter space of the model.

TC
L = 0.01ms−1,For the remaining natural parameters the following values were used: g
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13.2.1 Smooth and Lurching waves

Using s = 0.6, and a localized initial perturbation in vTC (over the homogeneous rest
state), the behavior of the neurons will evolve towards a stationary state that has the
appearance of a typical pulse-like wave (see Fig. 13.2(a)), invariant in some moving
frame ξ = x− ct. But our ‘space’ is a discrete array of neurons, so the analogy may
be slightly misleading. Fig. 13.2(b) shows the state of the neurons at a given time.
Any two neurons exhibit the same trajectory in time modulo a delay. The curves
vTC(i, t) and vTC( j, t + τi j) are the same for some time delay τi j = |i− j|/c.
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Fig. 13.2 (a) Space-time plot of the potential vTC(x, t) corresponding to a smooth wave s = 0.6.
Light shades of gray mean low values of voltage vTC, and dark shades mean high values of vTC. (b)
Single-site phase plane for the network. The TC and RE cells located at every single site realize the
same dynamics of respective TC and RE cells located at any other site, modulo a temporal delay.
(c) Spatial profile of fields vRE,vTC,hRE,hTC for the same wave.
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Increasing the value of the parameter s up to 0.8, we can observe localized waves
that advance in a saltatory way. Fig. 13.3(a) shows neurons that tend to synchronize
and fire in clusters of six.
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Fig. 13.3 (a) Space-time plot of the potential vTC(x, t) for a 6-lurching wave s = 0.8. Light shades
of gray mean low values of voltage vTC, and dark shades mean high values of vTC. (b) Single-site
phase plane for cells located at, for instance x = 1,2, . . . ,6. Neurons, when the wave reaches them,
leave the rest state (lowest point) and describe a complicated trajectory. Other neighboring neurons
describe slightly different trajectories that depend on the specific location of the neuron within the
cluster.
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Fig. 13.4 (a) Space-time plot of the potential vTC(x, t) for a 3-lurching wave s = 0.76. Light shades
of gray mean low values of voltage vTC, and dark shades mean high values of vTC. (b) Single-site
phase plane that shows how neurons describe trajectories that depend on the specific location of
the neuron within the cluster.
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Within each cluster neurons behave in a similar way, but the synchronization is
not perfect, as can be appreciated in Fig. 13.3(b). Two neurons that occupy the same
relative location in any two clusters, do behave in the same way modulo a time
delay. The curves vTC(i, t) and vTC(i+6m, t +τm) are the same for some time delay
τm. Following Ref. [19] we call this type of a wave, for short, a six-lurcher.

Clusters of sizes 3 and 12 were also observed for other values of the parameters.
Fig. 13.4 shows a three-lurcher found at s = 0.76. The fact that the observed cluster
sizes were multiples of 3 seems to depend on the particular choice of ω = 6 used in
this work.

As previously mentioned, when initializing pulse simulations, we used a local-
ized perturbation on the vTC field over the rest state. This disturbance propagates in
both directions, but temporarily changing the boundary conditions makes it possible
to get rid of one of the traveling waves and keep only one pulse traveling to the right.

Using periodic boundary conditions and a large enough number of neurons
(N > 50) the pulse advances invading the homogeneous rest state, which gets
reestablished in its wake. For smaller rings (N < 50) the front of the pulse may
start interacting with its tail, thus becoming unstable.

Other types of behavior that we found exhibit modifications from the basic
smooth and lurching waves. For example at s = 0.71 (see Fig. 13.5(a,b)) there is
a modulation in the propagation of the wave, yet a clear, perfectly defined n-cluster
lurching is never established. For s = 0.716 (see Fig. 13.5(c,d)) there is another so-
lution, that has the appearance of a “modulated” 3-lurcher. These two solutions are
stable and live on invariant tori, as we will show below.

At this point a number of issues naturally arise: Can hysteresis between stable
states be observed? What is the type of transitions, and what is their ‘signature’ on
the linearization spectrum?

So far we have used two computational approaches: (a) direct time integration
of the network ordinary differential equations (ODE’s) as s-space is explored, and
(b) Newton and pseudo-arclength methods to locate branches of fixed and periodic
points of the return map.

13.3 Exploration of parameter space and continuation

13.3.1 Direct time integration

A more systematic picture of the different families of solutions the system possesses
can be achieved by gradually varying the parameter s and letting the network evolve
in time according to the differential equations (13.1–13.4). As shown in the previous
section, varying s in the [0,1] interval will produce a number of distinct behavior
types.

We have used a FORTRAN 77 implementation of ODESSA [15], an integrator of
stiff ODE’s with sensitivity analysis.
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Fig. 13.5 Besides perfectly periodic solutions, the network exhibits behaviors that appear as
spatio-temporal modulations of the lurchers: (a) Space-time plot for s = 0.71. (b) Single-site phase
plane for s = 0.71 showing that no two neurons describe the same trajectory. (c) Space-time plot
for s = 0.716. (d) Single-site phase plane for s = 0.716. These two solutions appear to be quasi-
periodic. In figures (a) and (c) light shades of gray mean low values of voltage vTC, and dark shades
mean high values of vTC.

The model ODE’s were integrated in time starting with a localized perturbation
over the uniform rest state; we then waited for a period of time long enough for
the initial transients to be “washed out”, giving us a well-defined traveling pulse.
Computing the spatial averages of the four fields: 〈vTC〉(t), 〈hTC〉(t), 〈vRE〉(t) and
〈hRE〉(t), it was possible to find their temporal peaks. Repeating the process for a
slightly different value of s (starting from the final state of the previous integration),
and exploring s-space in both directions, we generated an extended picture of the
waves and their ranges of stability. The mechanisms that explain the stability losses
i.e. bifurcations, are going to be explained in the next section.

Using this simple approach we were able to outline a basic scenario for the stable
solutions that exhibits hysteresis (see Fig. 13.6):
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• Smooth waves exist for low values of s. These waves lose stability at s ≈ 0.702
in what appears to be a Hopf bifurcation of traveling waves.

• 6-lurchers exist for high values of s. They will dissapear when s is decreased
in what appears to be a saddle-node bifurcation at s ≈ 0.714. For s ≈ 0.961 the
6-lurcher becomes a stable 12-lurcher through a supercritical period doubling
bifurcation.

• Stable 3-lurchers live in a parameter window defined between s = 0.7154 and
s = 0.7718. At the lower limit there is a saddle-node bifurcation, and at the upper
limit there is a period doubling that apparently is subcritical: the 6-lurcher created
at that point is unstable.

• Associated to a Hopf bifurcation of the smooth wave (1-lurcher), a quasiperiodic
solution (torus A in Fig. 13.6) arises and lives over an invariant torus. This non-
simply-periodic solution is destroyed at s = 0.7153 by a global bifurcation.

• Another stable torus (torus B in Fig. 13.6) is observable between s = 0.7011 and
s = 0.718. Its existence is most probably due to global (rather than local Hopf)
bifurcations.

A better insight into the quasiperiodic solutions on the two tori A and B can be
gained by looking at a Poincaré/return map. The map is defined in (4N)-dimensional
space by selecting a codimension-1 hyperplane Σ defined by a scalar equation
p(x) = 0 and recording the crossings of the trajectory x(t) from one side to the
other.

In other words the Poincaré map is defined:

Pd(x)
def= Φτ(x)(Sd(x)) : Σ 7→ Σ ,

where Sd is a spatial shift of d sites to the left using periodic boundary con-
ditions in the space dimensions, Φτ(x0) is the time evolution defined by ẋ =
f (x),x(0) = x0, and τ(x0) is the minimal time that satisfies τ > 0, p(x)|x=Φτ (Sd(x0)) =
0,(∇x p, f )x=Φτ (Sd(x0)) < 0. Thus the map selects transverse crossings of Σ in only
one direction.

In this work we used p(x) = vTC
j − p0 where j is some lattice index and p0 a

real value. Periodic solutions such as smooth waves and n-lurchers should appear
in the Pn map as a return point x? that repeats itself: x? = Pn(x?) = Pn(Pn(x?)) =
· · · Poincaré maps of quasiperiodic solutions appear as closed curves, exactly as a
transversal cut of a two-torus in 3-dimensions may look like. In Fig. 13.7 two such
toroidal sections are shown, projected from (4N − 1) to 2-dimensional space. In
each one the iterates of the Poincaré map seem to wander over the closed curve,
eventually filling it.

13.3.2 Continuation using Newton method

In order to study in more detail the branches presented in Fig. 13.6 through dynam-
ical systems concepts and tools, we use a return map that focuses on the change of
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Fig. 13.6 Schematic depicting the stable solutions of the periodic network. The apparent location
of the different events was meant to be qualitative only. The information represented in the fig-
ure was obtained by ‘gently’ varying the s parameter as the time integration is performed. Up to
three stable solutions exist for some values of the parameters. The following symbols were used: H
stands for Hopf bifurcation of limit cycles; SN for saddle-node bifurcation of limit cycles; FPD for
forward (supercritical) period-doubling bifurcation of limit cycles; and BPD for backward (subcrit-
ical) period-doubling bifurcation of limit cycles. Here “?” indicates a tentative global bifurcation
mechanism that deserves further investigation.

the entire network over one ‘revolution’. For smooth waves and exact lurchers, the
wave shape does not return to itself exactly; rather, it returns to a shifted version of
itself —by an integer number d of sites, often d = 1,3,6 or 12— after an appropriate
return time. The choice of d will depend on the particular wave that we are trying to
find.

Thus we can implement a fixed-point algorithm to find traveling waves by search-
ing for a state vector x ∈R4N , that, after being shifted to the left d sites and evolved
for a time interval τ following the differential equations (13.1–13.4), returns to the
same state x. Now, we could represent a given wave by any instantaneous state. This
multiplicity can be removed by defining a ‘pinning condition’ to test for this return,
p(x) = 0. This equation quantifies the position of the pulse, the center of the pulse,
or just some variable (for instance vRE) of a given neuron minus a reference value.
In general we can use some functional of the entire state of the network minus a
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Fig. 13.7 Projections of the Poincaré maps of quasiperiodic solutions obtained for (a) s = 0.71,
and (b) s = 0.716.

reference value. This pinning condition is an additional equation that helps locate
the right period of the periodic solution (or the right speed of a traveling wave); the
time the pulse takes to advance d sites.

Defining the set of equations that need to be set to zero:

Fd,τ(x)
def= Φτ(Sd(x))− x = 0 . (13.5)

Where Φτ symbolizes the result of forward integraton of dx/dt = f (x) for a time in-
terval τ . The operator Sd stands for a shift by d lattice points with periodic boundary
conditions at the edges of the neuron lattice (the four fields vTC, hTC, vRE and hRE

are shifted simultaneously). This operator can be represented by a 4N×4N matrix.
The integrator is also able to extract sensitivity analysis results with respect to

variations in parameters and variations in the initial conditions. This last feature can
be used to compute the Jacobian of the evolution map Φτ at each step:

Jτ,i, j
def=

∂xi(τ)
∂x j(0)

, (13.6)

a matrix that is efficiently computed internally by ODESSA.
If the state x represents a stationary profile (modulo a shift) and a fixed point of

Fd,τ(x), then Jτ Sd will have an eigenvalue µ = 1 corresponding to the eigenvector
ẋ(τ). This eigenvalue shows that any time-shift of the pulse x(t + τ) is also a fixed
point of Fd,τ . To remove this degeneracy of the map, we augment it with the pinning
condition:

G(y) def=
(

Fd,τ(x)
p(Φτ(Sd(x)))

)
, (13.7)
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that gives us 4N + 1 equations for the 4N + 1 unknowns y def= (x,τ)T ∈ R4N+1. The
derivative of this map will be:

D def=
∂G
∂y

=
(

Jτ Sd − Id f (Φτ(Sd(x)))
∇x p(Φτ(Sd(x))) 0

)
. (13.8)

In a Newton method for the (isolated) fixed point of this set of equations, the
update ∆y to an initial guess y0 of the solution is given by:

∆y = y− y0 =−D−1G(y0).

The algorithm was able to quantitatively characterize the loss of stability of the
smooth wave when the parameter s crosses 0.702 from below, as well as the other
local bifurcations of periodic orbits indicated in Fig. 13.6. To look at the smooth
waves, we set d = 1 —for 3-,6- or 12-lurchers we would set d = 3,6 and 12 respec-
tively. Fig. 13.8 shows the eigenvalues of Jτ Sd (a 4N×4N matrix) in two different
situations. The monodromy matrix Jτ Sd represents the combined action of shifting
to the left and evolving in time small perturbations of periodic orbits. Its eigenvalues
µ are the Floquet multipliers that characterize the growth or decay of these small
perturbations and the stability of the periodic orbit (a similar analysis was developed
in [13]). Fig. 13.8(a) shows the complex eigenvalues when s ≈ 0.7. In addition to
the expected µ = 1 (which should not, and does not, move) we can see two bifur-
cating complex multipliers crossing the unit circle, implying the loss of the stability
of the smooth wave under the time map Φτ . This Hopf bifurcation of the smooth
wave was also found for an integrate-and-fire model in [8]. Note that the bifurcating
eigenvalues are not integer roots of unity (µ6 6= 1). The other three multipliers cross
the unit circle for a slightly higher value of s.

The Newton method was also able to find fixed points corresponding to both
3-, 6- and 12-lurchers. It was, of course, easy to find good initial guesses when
these lurchers were stable. For unstable solutions one needs an appropriate initial
guess. Fig. 13.8(b) shows the spectrum of the stable 6-lurchers using the d = 6
map at s = 0.71465, right at the turning point as indicated in Fig. 13.6. Besides the
trivial Floquet multiplier µ = 1 there is another multiplier 1. For the period doubling
bifurcations indicated in Fig. 13.6, for instance when following the 6-lurcher close
to s = 0.961 with d = 6, there is a multiplier crossing the unit circle at µ =−1.

Now, applying the return map with d = 6 and period τ two times, is just the
same as applying the map with d = 12 and period 2τ , or more concisely (Jτ Sd)2 =
J2τ S2d , so the multipliers of these monodromy matrices must be related in the same
way. When following the bifurcated 12-lurcher branch with the d = 12 map and
decreasing s, what one sees is a multiplier approaching µ = 1 from inside the unit
circle, touching the unit circle, but then turning around and remaining inside as s
keeps decreasing along the 6-lurcher branch. This positive multiplier obtained with
the d = 12 map is the squared version of the -1 multiplier obtained with d = 6.

Clearly, there is a need to augment these observations and integrate them into a
coherent and complete picture. This is work in progress.



278 Jaime E. Cisternas, Thomas M. Wasylenko, and Ioannis G. Kevrekidis

(a) (b)

 1

 0.5

0

0.5

1
Im

(
µ

)
Im

(
µ

)

 1  0.5 0 0.5 1

Re( µ)Re( µ)

 1

 0.5

0

0.5

1

Im
(
µ

)
Im

(
µ

)

 1  0.5 0 0.5 1

Re( µ)Re( µ)

Fig. 13.8 Floquet multipliers of the linearized return map for periodic orbits. Both spectra include
trivial multiplier µ = 1. Multipliers crossing the unit circle give the signature of the bifurcation.
(a) Spectrum of the smooth wave at s = 0.6. Two complex conjugated multipliers (in the righ-hand
side of the complex plane) indicate a Hopf bifurcation of a limit cycle. Note that these bifurcating
multipliers do not cross the circle at exp(±iπ/3), and that the other three multipliers cross the
unit circle at a later stage. (b) Spectrum of the 6-lurcher at s≈ 0.71465 close to the turning point.
An isolated positive multiplier approaching µ = +1 indicates a saddle-node bifurcation of a limit
cycle.

13.3.3 Pseudo-arclength continuation

In a continuation context (see Ref. [11]), an additional ‘arclength’ parameter ξ can
be introduced and the parameter s can be regarded as an unknown:

H(z) def=




Fd,τ(x;s)
p(Φτ(Sd(x);s))

θxx̂T(x− x0)+θτ τ̂(τ− τ0)+θsŝ(s− s0)− (ξ −ξ0)


 , (13.9)

where z def= (x,τ,s) ∈ R4N+2. The positive weights θx,θτ and θs (θx + θτ + θs = 1)
define a metric in (4N +2)-dimensional space. The vector x̂, and the scalars τ̂ and ŝ
are approximations to dx/dξ , dτ/dξ and ds/dξ , which can be obtained in several
ways. Here we used the estimate of the slope given by the last two points, (x0,τ0,s0)
and (x−1,τ−1,s−1) computed on the branch.

The solution of the linear system in the inner iterations of the Newton algo-
rithm was found using a standard direct solver. We also used the Generalized Min-
imal Residual method (GMRES), that gives rise to the Newton-GMRES method
(Ref. [10]). It has been succesfully used for time-steppers in Ref. [11]. This method
focuses on the Krylov space generated by the linearization of the same operator
G. In each iteration, it solves the linear system D∆y = −G(y) using least squares
estimation on this Krylov subspace.
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It is also possible to compute a few leading eigenvalues of the monodromy matrix
Jτ Sd and characterize the stability of the fixed points, using the Implicitly Restarted
Arnoldi Method, that uses similar matrix-free ideas (see Ref. [14]).

Using judiciously small increments in the pseudo-arclength parameter ξ it is
possible to follow unstable branches over wide parameter intervals, and elucidate
the connection between different lurching solutions. We remark that all our com-
putations are based on a time-stepper that performs forward integrations; this is the
reason for the difficulty of following unstable solutions (see [20]).

13.4 Discussion

When confronted with a system of identical interconnected units like the neuronal
network we studied in this article, it seems natural to consider simple geometries,
for instance a ring, and build spatially continuous models of the system. Such an
approach would capture a significant feature of the dynamics, namely the smooth
waves, but might be unable to replicate the lurching waves that arise as an effect of
the discreteness of the lattice.

The second idea would be to use the tools of the theory of dynamical systems that
have proven to be extremely fruitful for systems of few degrees of freedom. But such
a theory is built around the concept of the zero of a differential equation or the fixed
point of a map. The zero state of the thalamocortical network is the rest state and
thus uninteresting. In this article we have found propagating waves as fixed points
of a return map compounded with a spatial shift. This idea applies both to smooth
waves and lurching waves. The analyis of the map can be performed numerically
using stiff solvers of ODE’s and matrix-free linear algebra for the efficient solution
of nonlinear systems of equations with many unknowns.

Using the map and its computational implementation, we have found that there
is a rich scenario hiding behind the transition from smooth to lurching waves. We
observe that the smooth waves become unstable in a supercritical Hopf bifurca-
tion, while the lurching waves disappear (turn around) in saddle-node bifurcations.
There exist other states whose appearance varies between smooth and lurching, all
appearing (and overlapping) in a relatively narrow region of parameter space. The
structure of these tori solutions found in numerical simulations and their connection
with periodic solutions is going to be addressed in a separate article [20].

The method just described was not directly applicable to unstable branches. With
systems of few degrees of freedom, stable and unstable solutions can be computed
with similar ease given that traditional Newton method doesn’t consider time in the
sense of evolution, it just takes an algebraic system of equations and tries to solve
it iteratively. The single shooting approach used here has problems in following
branches with very large unstable Floquet multipliers; multiple shooting implemen-
tations may help the numerical continuation of such branches, otherwise very small
increments in the pseudo-arclength parameter must be used.
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With more extensive computations, possibly including multiple shooting formu-
lations, numerical bifurcation theory may help elucidate the propagation of smooth
and lurching waves in thalamic one-dimensional lattices.
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optical quasi-particles, 20
optical reorientation, 4
optical resonators, 170, 188
optical solitons, 4, 68
optical spatial solitons, 3
optical wave turbulence, 68
oscillons, 92
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pattern formation, 128
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phase singularities, 91
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Poincaré map, 266, 274
Poisson equation, 21
polarization interference, 97
polarization mode, 220
ponderomotive self-focusing, 20

Quasi-Linear Approximation, 26
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quasi-thermal Gaussian distribution, 23

radiation transfer equation, 20
Rayleigh numbers, 115
Rayleigh-Jeans distribution, 78
reaction-diffusion systems, 142
refractive index, 216
reorientational self-focusing, 4
ring-like laser, 169
rotating waves, 112

saddle node bifurcation, 170
Saddle-loop bifurcation, 244
saddle-node bifurcation, 128, 274
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self-compressing effect, 134
self-defocusing, 221
self-focusing, 214, 221
self-focusing Kerr medium, 242
self-focusing photorefractive medium, 18
self-localization, 188
self-localized solution, 8
self-organization, 127
self-organized patterns, 93
self-organized structure, 127
self-phase modulation, 43
self-similar cascade, 18
self-trapped solitons, 13
semicoherent injection, 196
semiconductor lasers, 187
semiconductor media, 170
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shock waves, 68
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Soret effect, 110
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speckle-wave coupling, 31
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strong coupling, 34
strong turbulence, 35
super diffusion, 98
supersonic instability, 59
surface waves, 92
Swift-Hohenberg equation, 109, 127, 175
Swift-Hohenberg type equation, 98
Switching dynamics, 196
Switching energy, 201
symmetry-breaking, 213
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Talbot effect, 217
thalamic neurons, 265
thermal convection, 92
threshold, 22, 34

trapping effect, 133
traveling-wave convection, 142
travelling wave, 266
triangular localized structures, 91
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turbulence theory, 78
Turing instability, 127
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Ulm Photonics, 147
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weak nonlinearity, 21
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