


Many-Body Boson Systems



Theoretical and Mathematical Physics

The series founded in 1975 and formerly (until 2005) entitled Texts and Monographs
in Physics (TMP) publishes high-level monographs in theoretical and mathematical
physics. The change of title to Theoretical and Mathematical Physics (TMP) signals that
the series is a suitable publication platform for both the mathematical and the theoretical
physicist. The wider scope of the series is reflected by the composition of the editorial
board, comprising both physicists and mathematicians.

The books, written in a didactic style and containing a certain amount of elementary
background material, bridge the gap between advanced textbooks and research mono-
graphs. They can thus serve as basis for advanced studies, not only for lectures and
seminars at graduate level, but also for scientists entering a field of research.

Editorial Board
W. Beiglboeck, Institute of Applied Mathematics, University of Heidelberg, Heidelberg,
Germany
P. Chrusciel, Gravitational Physics, University of Vienna, Vienna, Austria
J.-P. Eckmann, Université de Genève, Département de Physique Théorique, Geneva,
Switzerland
H. Grosse, Institute of Theoretical Physics, University of Vienna, Vienna, Austria
A. Kupiainen, Department of Mathematics, University of Helsinki, Helsinki, Finland
M. Loss, School of Mathematics, Georgia Institute of Technology, Atlanta, USA
H. Löwen, Institute of Theoretical Physics, Heinrich-Heine-University of Duesseldorf,
Duesseldorf, Germany
N. Nekrasov, IHÉS, Bures-sur-Yvette, France
M. Salmhofer, Institute of Theoretical Physics, University of Heidelberg, Heidelberg,
Germany
S. Smirnov, Mathematics Section, University of Geneva, Geneva, Switzerland
L. Takhtajan, Department of Mathematics, Stony Brook University, Stony Brook, USA
J. Yngvason, Institute of Theoretical Physics, University of Vienna, Vienna, Austria

For other titles published in this series, go to
www.springer.com/series/720

http://www.springer.com/series/720


André F. Verbeure

Many-Body
Boson Systems

Half a Century Later



André F. Verbeure
K.U.Leuven
Institute for Theoretical Physics
Celestijnenlaan 200 D
3001 Leuven
Belgium
andre.verbeure@fys.kuleuven.be

ISSN 1864-5879
ISBN 978-0-85729-108-0

e-ISSN 1864-5887
e-ISBN 978-0-85729-109-7

DOI 10.1007/978-0-85729-109-7
Springer London Dordrecht Heidelberg New York

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

Mathematics Subject Classification (2010): 22E70, 37A60, 46L57, 46N55, 47D06, 47N50, 81Q80,
81S05, 81T05, 82B10, 82B26, 82D50

© Springer-Verlag London Limited 2011
Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permit-
ted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored
or transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in
the case of reprographic reproduction in accordance with the terms of licenses issued by the Copyright
Licensing Agency. Enquiries concerning reproduction outside those terms should be sent to the publishers.
The use of registered names, trademarks, etc., in this publication does not imply, even in the absence of a
specific statement, that such names are exempt from the relevant laws and regulations and therefore free
for general use.
The publisher makes no representation, express or implied, with regard to the accuracy of the information
contained in this book and cannot accept any legal responsibility or liability for any errors or omissions
that may be made.

Cover design: eStudio Calamar S.L.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

mailto:andre.verbeure@fys.kuleuven.be
http://www.springer.com
http://www.springer.com/mycopy


To Ivonne and to our family



Preface

The writing of this book has of course been stimulated by the exciting develop-
ments in the field of Bose-Einstein Condensation (BEC) for atomic gases that have
manifested since the 1995 experiments. These experiments are showing brand new
features never before observed. Their theoretical analysis and understanding is how-
ever still based on the standard theory of Bose-Einstein condensation developed for
space-homogeneous boson systems. Just as importantly are the recent exact results
and new views on the problem of many-body physics developed during the last fifty
years. Of course, many of these results have their own particular impact on the prob-
lem of BEC for boson systems. Moreover many of them seem to be only known by a
small number of mathematical physicists but are less known by the larger community
of physicists.

Faced with this situation, this book is conceived to be an introduction to these
new concepts and results written with considerable attention toward the physical
ideas behind the more technical material. Apart from the study of general and uni-
versal properties of fully interacting boson systems, numerous homogeneous boson
models are explicitly treated. The applications of the presented material to systems
of trapped bosons is only briefly discussed and treated as a posed problem in Chap. 4.
Further study is left to the care of the interested reader.

Much of the material mentioned in the text was obtained during many years of
collaborations with many colleagues and former students. Warm thanks to all of
them. We feel obliged to point out one colleague in particular, Mark Fannes. Thank
you, Mark, for our long standing collaborations and continuing exchanges about
views, ideas, and techniques along all these years during which we constructed to-
gether much of the backbone of the present text.

2009 Leuven

André F. Verbeure
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1

Introduction

The study of boson models and the problem of their solutions is as old as the free
Bose gas model for which the celebrated phenomenon of Bose-Einstein condensation
(BEC 1924) has been detected. This phenomenon puts in evidence a macroscopic,
purely quantum phenomenon. Solving boson models means that we are interested
in finding the ground and/or temperature states of the models, or that we are in-
terested in deriving at least some of their properties from first quantum-mechanical
principles. For a long time activities in this area belonged to the field of many-body
physics, a field of high activity in theoretical physics. Green’s functions, series ex-
pansions, Feynman graphs and their summations, and much of numerics are the stan-
dard technologies. The ultimate aim is, as always, to understand the physical world
from the point of view of its basic laws and constituents and, therefore, to derive as
many exact results as possible having a large or universal range of validity for these
systems.

From the point of view of exact results in this field of physics, the work of
Araki-Woods [12] greatly boosted the understanding and clear formulation of the
properties of the free Bose gas and its accompanying phenomenon of Bose-Einstein
condensation. Careful studies of the thermodynamic limit for the free Bose gas also
inspired efforts toward finding exact results [101]. In both cases these works relate
the problem of the equilibrium states of the Bose gas to a problem of representations
of the canonical commutation relations (CCR). This problem is by itself as old as
the early days of quantum mechanics. Indeed the basic problem associated with the
foundations of quantum mechanics centered on the uniqueness of the results of the
matrix theory of quantum mechanics (see Born-Jordan-Heisenberg 1925-1926). All
this led to the idea that developing quantum mechanics entails the search for new
representations of the canonical commutation relations. Later the famous Gelfand-
Naimark-Segal(GNS) construction [26], relating every representation of the CCR to
an expectation value, or a state of the CCR and vice-versa, opened the gate for the
state approach to the ground and/or equilibrium states of all physical models and, in
particular, also for boson systems.

The physics of BEC was quickly realized to be related to the phenomenon of su-
perfluidity. One understood in short order that superfluidity could only be explained
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2 1 Introduction

on the basis of an interacting Bose gas [20, 21]. In short, the spectrum of the free
Bose gas did not fit with the property of superfluidity. The first step to overcome this
difficulty was the introduction of an interaction, the mean field or imperfect Bose
gas, which conserves nevertheless the solvability of the model. However, this model,
whose spectrum is identical to that of the free Bose gas, did not produce the right
solution which produces a spectrum giving an explanation for the phenomenon of
superfluidity.

In this context the so-called Bogoliubov model, sometimes called the weakly
interacting Bose gas [169, 22, 169], was conceived. This model takes into account
more interaction terms but without losing its interesting property of exact solvability.
The basic ingredients of this model in terms of states on the CCR algebra of the
boson observables have been analyzed rigorously in [8, 9, 7]. Later the boson-pairing
model was introduced as an exercise towards a further refinement of the Bogoliubov
model. Theoretical work on this model resulted in some intriguing questions, such
as whether two types of condensation occur simultaneously or not. The question
addresses the co-existence of a boson-pair condensation and the standard one-particle
ground state condensation. The other question deals with whether a spectral gap
appears in the spectrum of the elementary excitations [58, 108, 90, 82, 142].

After a number of quiet years came the great and important year, 1995, now
considered the year BEC was experimentally discovered for the ideal Bose gas. We
refer of course to what is called Bose condensation for trapped alkali metals, research
done by E. Cornell and C. Wieman at JILA, Boulder, R. Hulet at Rice Univ. Houston
Texas and W. Kelterle at MIT, Cambridge Mass, and by many people active in the
enormous scientific activity presently taking place in this field.

Moreover, many boson models have been heavily studied in the literature, not
only in statistical mechanics but also in field theory. In all aspects, model studies of
boson systems have always represented a large part of the activity in this research
field. Therefore considerable attention is devoted in this book to the discussion of
solvable models.

A characteristic feature of all solutions of solvable boson models is that they
share a common property for the equilibrium states as well as for the ground states;
namely, they are completely determined by their one- and two-point correlation func-
tions. Higher-order correlation functions are expressed in terms of these one- and
two-point functions. Because of their similarities with the Fock state, the ground
state of the free boson gas, such states are called generalized free or quasi-free states.
This class of states was intensively studied in the 1960s and 1970s. These quasi-free
states are now in a dispersed order commonly used as the ideal theoretical laboratory
in which we can perform tests of all kinds. Although an extensive literature about
these states now exists, the intensely pure mathematical analysis of quasi-free states
was apparently much too technical and general to be practical for the study of boson
systems by theoretical physicists.

These notes are intended to remedy to this situation. An effort is made to present
a less technical and more accessible presentation of the subset of quasi-free states
within the set of all states. A proper definition of the notion of solvable model is pro-
vided. The relation with quasi-free states is also clarified. Also their basic properties
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and a number of their applications are explicitly discussed. On the other hand, only
those quasi-free states suitable to the study of space-translation invariant or space-
homogeneous boson systems are discussed. Special attention is paid to the explicit
form of the variational principle of statistical mechanics for all solvable boson mod-
els. This principle is extensively discussed. We deal explicitly with the question as
to why the general variational principle of statistical mechanics for solvable boson
models can be reduced to a tangible, manageable variation over the set of quasi-free
states. This property is expressed in a form practical enough to obtain directly and
explicitly the corresponding quantum Euler-like equations of this special variational
principle.

Apart from the special attention to solvable models, the universal problem and
the universal properties of equilibrium and non-equilibrium systems for fully inter-
acting boson systems is given ample space and a primordial place in this book. The
emphasis is more on rigorous and conceptual results about these interacting systems
and less about approximate descriptions and/or hard computational matters.

As is well known, the situation of equilibrium statistical mechanics is far more
developed than the non-equilibrium case. As for the former, there are many equilib-
rium conditions formulated which can be found in the literature and which can be
called quasi-equivalent or equivalent up to small variations. In fact there exists an
infinity of such equilibrium conditions. We limit ourselves to two equilibrium con-
ditions formulated for quantum systems, each of them directly expressing a clear
physical property characterizing completely the equilibrium states. The first one is
the commonly known variational principle of statistical mechanics. The second one
is the energy-entropy balance criterion for equilibrium, which can be considered the
quantum Euler equations version of the variational principle for quantum systems.
However the range of applicability of the two criteria is not the same. The second
one has a wider range of applicability than the variation principle, which is not so
well suited whenever we deal with non-homogeneous systems simply because of the
difficulties in taking thermodynamic limits. The choice of these two conditions is
motivated by the fact that both of them have a direct and generally acceptable phys-
ical interpretation as equilibrium criteria holding in the thermodynamic limit. The
variational principle expresses the property of an equilibrium state being character-
ized as a state minimizing the free energy density functional.

For the second criterion of equilibrium, the energy-entropy balance criterion
(which is also valid for non-homogeneous systems), we can simply say that equi-
librium states are characterized by the basic property that under any perturbation
their energy change is always majoring their entropy increase. It is an attractive con-
cept to realize that this simple physical idea yields indeed a full characterization of
an equilibrium state. As already pointed out, those of us with some experience in
the study of equilibrium conditions will also point out that, apart from our two char-
acterizations, the literature (see e.g. [26]) contains many more characterizations of
equilibrium.

Looking only at the mathematical physics literature, in particular in the field of
the algebraic approach to quantum statistical mechanics, the most popular character-
ization of equilibrium so far is formulated by means of the so-called KMS (Kubo-
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Martin-Schwinger) conditions. Because they were the first quantum criteria specify-
ing equilibrium in the thermodynamic limit, the KMS conditions have also become
the best known criteria for specifying quantum equilibrium states.

The influence of the KMS paper [73] on the mathematical physics community
has been especially significant. The KMS conditions have been considered to be
the quantum mechanical counterparts of the DLR (Dobrushin-Lanford-Ruelle) equa-
tions for classical systems. The DLR equations had a direct physical interpretation
because of their formulation in a full probabilistic language in terms of expectations
and conditional expectations.

Around that period (1970) probability theory became the theory of common
sense, popular even far beyond the narrow limits of physics and mathematics. Statis-
tics entered daily life. The truth in social and political life starts getting determined
by “cleverly chosen” distributions for a number of “objectively” measured random
variables. In this atmosphere the DLR approach got very easily the realm of a good
intuitive understanding of classical equilibrium and therefore was better digested by
a larger crowd of mathematicians and physicists. On the other hand, the quantum
mechanical KMS conditions did not preach such a self-evident physical interpreta-
tion of equilibrium. Rather, they came across as a pure mathematical property, which
by the way relies on numerous mathematical technical concepts simply to formulate
decently all conditions.

Because of these aspects, the formulation of the KMS conditions significantly
boosted many activities in pure mathematics, in particular functional analysis. The
formulation of the KMS conditions requiring a number of technical assumptions is
making them less useful for direct applications to physical systems. This is partic-
ularly the case for the applications to boson systems, because in these systems the
basic observable quantities are unbounded operators. For all these reasons, this equi-
librium criterion has not been very popular within the larger community of physicists
so far, except for the mathematical physics community.

Nevertheless we are convinced that there are good reasons to popularize and
promote a number of general basic ideas of this algebraic approach, which are inter-
esting but less known. These ideas are leading to new ways of looking at standing
problems, new technologies for solving old problems, and finally new applications
leading to new exact results. Of course we focus mainly on exact results for boson
systems. All this should be done using a language which tries to bridge mathematics
and physics. We aim for a presentation of the many-body boson problem highlight-
ing the status of some exact and relevant results obtained so far in this field half a
century later, although less known by the larger physicists community.

This book attempts to unify the presentation of basic concepts, positioning
clearly the situation of solvable quantum boson models versus the basic universal ex-
act results and the complexity of the problems. More generally, this book establishes
links between key concepts such as equilibrium conditions and non-equilibrium as-
pects, spontaneous symmetry breaking and Bose-Einstein condensation, the notion
of condensate equations and their position within the basic theory, quantum fluctua-
tions and the phenomenon of bosonization, and reversible and irreversible dynamical
systems. It presents tools needed to analyze qualitatively and quantitatively different
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types of models. The conceptual aspects of the text may very well produce a more
universal dimension to the subject matter than presently understood.

We mentioned that the notion of quasi-free states is connected with solvable bo-
son models. We make clear that this notion, however, extends far beyond the re-
stricted environment of solvable microscopic boson systems. We point out that bo-
son quasi-free states emerge in a natural way in all locally interacting systems as the
canonical states of the normal quantum fluctuations of local quantum observables.
We also included a chapter about the notion of the quantum fluctuation operator and
we discuss its properties. The quasi-free states are the quantum mechanical counter-
parts of the classical Gaussian distributions [63]. Furthermore we show that quantum
fluctuation operators always satisfy boson canonical commutation relations. The so-
called bosonization of all kinds of micro-systems fits within this chapter.

We tried to formulate the contents of this book in a language aimed at a technical
level accessible to the greater community of theoretical physicists. In some places
the extreme technical mathematical generality in the formulation is deliberately left
open to give us the occasion of giving their own inspiration and even interpretation
to the material. Whether we like it or not, mathematical technology sometimes kills
enthusiasm within sound color. Therefore practicing physicists reading this book are
warned that we explain mainly simple facts about bosons, only trying to make the
phenomena understandable from the microscopic point of view. They should expect
neither high-tech stands nor hype. Students, graduate students, and inexperienced
individuals reading this book are warned as well; we keep it easy because professors
may also read this book.



2

Bose systems

2.1 Generalities

In physics the concrete and traditional approach to Bose systems is to start with the
Fock Hilbert space of vector states which we denote here by F, with a scalar product
given by (., .).

Consider L2(Rd), the space of square integrable functions on R
d , d = 1,2, ... is

the dimension of the system under consideration. Denote by S the space of nice (in-
finitely differentiable, rapid decrease) test functions in d dimension, as a subspace of
L2(Rd). All functions of the set S stand for the wave functions of the individual bo-
son particles in the system. They are also called the one-particle wave functions. One
considers the one-particle creation and annihilation operators with wave functions
any f ,g ∈ S ⊂ L2(Rd). The creation operator is given by a∗( f ) =

∫
dx f (x)a∗(x)

acting on the space F. The annihilation operator is the adjoint operator of the cre-
ation operator and given by a( f ) =

∫
dx f (x)a(x). These two operators satisfy the

usual canonical commutation relations(CCR)

[a(x),a∗(y)] = δ (x− y) , [a(x),a(y)] = 0 (2.1)

for any x,y ∈ Rd . This leads immediately to the mathematically more complete but
somewhat less popular form of the canonical commutation relations: ∀ f ,g∈S holds

[a( f ),a∗(g)] = ( f ,g) , [a( f ),a(g)] = 0 (2.2)

It is assumed that there exists a particular normalized vector Ω in the Fock Hilbert
space F such that it is annihilated by all a(x) and hence that: ∀ f ∈ S holds

a( f )Ω = 0 (2.3)

Because of this property the vector Ω is called the vacuum vector of the Fock space.
On the other hand the Fock space F itself is taken to be the Hilbert space linearly
generated by all vectors of the following set: a∗( f1)a∗( f2)...a∗( fn)Ω for all fi ∈ S
and for all natural numbers n ∈ N.

A.F. Verbeure, Many-Body Boson Systems, Theoretical and Mathematical Physics,
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8 2 Bose systems

The elements of this Fock Hilbert space are called the Fock space wave functions
of the boson systems.

In this book, we use the word state of a boson system for each expectation valued
map see Eq. (7.1) or simply for each expectation. Later we give a more detailed, more
precise and more general description of this map. Nevertheless starting from the Fock
Hilbert space context we describe already in a bit more details the concept of state.
LetΨ be any normalized vector, i.e. any wave function or vector of the Fock Hilbert
space, then the expectation values of the type ωΨ (A) = (Ψ ,AΨ), where A stands for
any observable of the boson system, define a state ωΨ , an expectation valued map, a
map of the observables into the complex numbers.

As always the set of observables of a boson system is given by the algebra of
observables, the algebra generated by the creation and annihilation operators.

Of course, any other representation space of the boson observables a(x),a∗(x),
different from the Fock space representation, yields other sets of vector states and
hence other sets of states or expectation valued maps.

As said above each boson observable is expressed as a function of the boson
creation and annihilation operators. In particular, each physical model is defined by
giving explicitly its energy observable, called its Hamiltonian. For any two-body
inter-particle interaction potential v, the general boson model takes the following
explicit form in any finite spacial volume V , a subset of R

d :

HV =
∫

V
dx

1
2m
∇a∗(x).∇a(x)+

1
2

∫

V
dxdya∗(x)a∗(y)v(x− y)a(x)a(y) (2.4)

where m is the mass of the particle. For simplicity of notation we put Planck’s con-
stant h̄ = 1. The Hamiltonian consists of the sum of two terms. The first term repre-
sents the kinetic energy of the individual boson particles of the system. The second
term represents the interaction energy between the individual particles. The stabil-
ity of the model requires that the Hamiltonian operator Eq. (2.4) acting on the Fock
Hilbert space is bounded from below. This stability requirement puts some condi-
tions on the potential v. Also this point is discussed later in more details.

Clearly, in order to define this Hamiltonian completely in each finite volume V ,
one has to specify correctly the derivatives appearing in the expression Eq. (2.4) at
the boundaries of the volume. One speaks about specifying the boundary conditions.
The problem of boundary conditions for quantum systems is a non-trivial affair. An
interesting account about this topic is found in [56]. Because of the trickiness of the
boundary conditions, physicists like the scheme of the periodic boundary conditions.
In this case one takes for the finite volume sets V , the cubic boxes with sides of length
L. By the same symbol V we denote as well the volume V = Ld of these sets. For any
such box V , one considers also the dual set V ∗ of the finite volume set V , namely as
the set

V ∗ = {k ∈ R
d |k =

2π
L

n, n ∈ Z
d} (2.5)

For each k ∈V ∗, denote εk = k2/2m and a∗k = V−1/2 ∫
V dxeik.xa∗(x). Remark that the

operator ak depends in general on the volume, a property which is not indicated in
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the notation. In terms of this notation is the Hamiltonian Eq. (2.4) rewritten in the
following form

HV = ∑
k∈V ∗

εka∗kak +
1

2V ∑k,k′,q
v(q)a∗k+qa∗k′−qak′ak (2.6)

where v(q) stands now for the Fourier transform of the potential v.
A many-body physicist is interested to know basically everything about all the

properties of the systems defined by the Hamiltonian Eq. (2.6). He is interested in
the spectra, the dynamics, the ground states, the equilibrium states, etc . . . etc. Un-
fortunately the nasty aspect of this general model is that it is in general not a solvable
system. Not its ground states nor its equilibrium states (see next Chapter) have ever
been rigorously computed for a non-trivial potential function v.

Essentially, a system is often called solvable if one can construct an expectation
valued map or a state ω̃ which is the ground state or the equilibrium state at a certain
temperature of the system HV for some volume V or in the limit V (or L) tending
to infinity. In the rest of the book we use the notation limV in order to indicate this
limit. This limit is always referred to as the thermodynamic limit. A more precise and
complete technical definition of solvability comes later.

For a boson system, as all observables are build up by means of the creation
and annihilation operators and because of the canonical commutation relations, a
particular expectation valued map or a state, say ω̃ , is known if one knows all its
correlation functions, i.e. if one knows all the expectation values of the type

ω̃(a∗( f1)...a∗( fn)a(g1)...a(gm)) (2.7)

for all functions fi,g j ∈S and for all pairs n,m ∈N. One should realize that in order
to know the state one has to know or to specify an infinity of correlation functions,
one for each pair (n,m). The expression given by (2.7) is called the (n,m)-correlation
function or the correlation function of order n+m. Clearly there are in general in-
finitely many different correlation functions.

This infinity can make the problem of solving an interacting boson system in-
finitely difficult. This is the origin of the expression, a boson system with a non-trivial
potential is in general non-solvable. This infinity is also the main reason for the fact
that the search for solvable models is a genuine occupation for many researchers
working in many-body boson systems.

In the physics literature one finds many approximation procedures which consist
of reducing this infinity of different correlation functions of a ground state or of an
equilibrium state to a finite number of independent ones. Many of them consist of
different decoupling suggestions of arbitrary (n,m)-correlation functions Eq. (2.7).
For instance, a lot of these proposed approximation procedures are of the type of
assuming that all higher order correlation functions, say of order larger than n + m,
can be expressed in terms of those of lower orders, say less than n + m. It must be
remarked that, on the basis of the theorem of Marcinkiewicz [146], many of them are
erroneous in the sense that such decoupling procedures may contradict the positivity
(see further) of the state ω̃ . In fact this theorem tells us something very important. It
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tells us that the only valid decoupling procedure is the following. If the decoupling
holds for all correlation functions from some order n + m on, then the decoupling
holds for all correlation functions of all orders n + m > 2. This means that the only
mathematically rigorous and physically meaningful decoupling, not contradicting
the positivity of the state ω̃ , is the decoupling whereby the state is given in terms
of the one- and two-point functions, which are in finite number and given by the
following: for all f ,g: ω̃(a( f )), ω̃(a∗( f )a(g)), ω̃(a( f )a(g)). In other words this
means that in general, any state is determined by a fixed finite number, maximum
three, of correlation functions or by an infinity of them. Or stated in general, any state
is, or determined by its one and two-point correlation functions, or by an infinity of
different correlation functions. All intermediate cases are contradicting the positivity
property of the state as an expectation valued map.

Of course, the most representative example of a state determined by its one and
two-point functions is the so-called the Fock state ωF or the Fock expectation valued
map ωF(A) = (Ω ,AΩ), satisfying (2.3). It is an instructive student exercise to check
the decoupling property for the Fock state. As is well known, the Fock state yields
the ground state (see also further on) of the free boson gas (see Eq. (2.4) with v = 0).

Furthermore any state satisfying the correct decoupling procedure which is de-
scribed above will be called a quasi-free state and any boson model whose ground
state is given by such a quasi-free state shall be called a solvable model. More com-
plete and more elaborate definitions of these two important notions are explained in
more details below.

The rest of this chapter is devoted to the essentials of the boson canonical com-
mutation relations, to its set of space homogeneous states, its gauge invariant states
and its subset of quasi-free states. The latter ones will be very practical for the formu-
lation of the variational principles of statistical mechanics for solvable models. The
more mathematically minded reader can find more general and more sophisticated
treatments of some of the material in [131] and [26].

2.2 CCR and boson fields

We introduced the creation and annihilation operators a� acting on the Fock space
F where the symbol � refers either to the creation operator or to the annihilation
operator. In order to define the total set of states as well as the set of all quasi-free
states it is sometimes handy to work with the notion of boson fields.

The boson field is given by the map b : f ∈ S ⊆ L2(Rd) → b( f ), where

b( f ) = a( f )+a∗( f ) (2.8)

Clearly each b( f ) is a self-adjoint linear operator on the Fock Hilbert space. In
the physics literature, S is also called a space of test functions consisting of the
infinitely differentiable functions with rapid decrease at infinity. Remark that the
creation operators are complex linear on the space of test functions S , the annihi-
lation operators are complex anti-linear, and therefore the fields are only real lin-
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ear in their arguments, one computes e.g. b(i f ) = i(−a( f ) + a∗( f )) and therefore
a( f ) = 1

2 ((b( f )+ ib(i f )).
The canonical commutation relations (2.2) translated in terms of the fields take

now the form
[b( f ),b(g)] = 2iσ( f ,g) (2.9)

with σ( f ,g) = ℑ( f ,g). Remark that σ is a real bilinear antisymmetric form on the
real test-function space S . Such a form on a real vector space is called in general a
symplectic form and any real linear space equipped with a symplectic form is called
a symplectic space. Hence the couple (S ,σ) realizes a symplectic space. The reader
understands from Eq. (2.9) that the canonical commutation relations in terms of the
fields are completely determined solely by such a symplectic form σ . This conclu-
sion holds as well for the next formulation of the commutation relations.

Clearly, working with the field operators as the generators of all observable quan-
tities or working with creation and annihilation operators are equivalent procedures.

It is also clear that both sets of generators, as well the fields as the creation-
annihilation operators, consist of unbounded operators. For many mathematical ma-
nipulations and argumentations working with bounded operators has its technical
mathematical advantages. Therefore, but also for other technical reasons, Weyl pro-
posed to use the following unitary operators as the generators of all the observable
quantities of boson systems. For any f ∈S the corresponding Weyl operator is given
by the unitary operator

W ( f ) = exp{ib( f )} (2.10)

Using the well known Baker-Campbell-Hausdorff formula argument, telling that for
the operators X and Y , both commuting with the commutator [X ,Y ], holds

eX eY = eX+Y e
1
2 [X ,Y ]

one derives from (2.9) that the canonical commutation relations Eq. (2.2) in terms of
the Weyl operators get the following form:

W ( f )W (g) = W ( f +g)eiσ( f ,g) (2.11)

It should be clear that algebraically, i.e. up to a number of topological aspects which
we disregard here, one has now the option to work with three different presentations
of the boson algebra of observables A, namely:

(i) the algebra generated by the creation and annihilation operators and the unit
operator,

(ii) the algebra generated by the fields and the unit operator, or
(iii) the algebra generated by all the Weyl operators.
The latter one is of course the most suitable one for the research in pure mathe-

matical physics and is very much used in the field called the algebraic approach to
statistical mechanics and field theory. The two other presentations are mostly used
by theoretical physicists as is also well known. A rather complete account of all this
can be found in [26].

So far for the algebra of observables, which we denote simply by A for any of
the tree settings.
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2.3 States and Quasi-Free States

We discuss the set of states on the algebra of observables A. As indicated above,
a state on the algebra A is an expectation valued map.

Definition 2.1. The mathematical properties of any state ω are the following: it is
a normalized-to-one, linear, positive form or functional on the algebra of observ-
ables A. More explicitly, the state ω maps each observable A ∈A into its expectation
value which is in general a complex number ω(A) with the properties

(i) normalization: ω(1) = 1
(ii) linearity: for each pair A,B of observables and each pair λ ,μ of complex

numbers one has ω(λA+μB) = λ ω(A)+μ ω(B)
(iii) positivity: for each observable A holds the positivity of the expectation value

ω(A∗A) ≥ 0

It is perhaps important to realize that these are indeed the essential properties that
a state ω should have in order to give to the expression ω(A) the interpretation of
the expectation value of an observable A as we learned about in our undergraduate
lectures. For these reasons it is clear that the notion of state is indeed a mathematical
formalization of the notion of expectation valued map. The notion of state has a
direct link to the notion of observation values in quantum physics and is therefore
much more to the point than the notion of wave function. Remark that in our language
the notion of state is not the same as the one which one finds in standard books on
quantum mechanics, where a state is a vector, called the wave-function, an element
of a Hilbert space, which itself can be referred to as the set of vector-states. The link
between the notion of vector-state or wave function, and our more general notion
of state, is mathematically realized by the so-called GNS-construction (see [26] and
(7.1)), which is a very general and important theorem telling us the following. Let
ω be any state on the algebra of observables A, then there exists a representation π
of the canonical commutation relations algebra acting on a Hilbert space H and a
special vector, called cyclic vector, Ω in H such that ω(X) = (Ω ,π(X)Ω) for any
observable X . We should immediately remark that the Hilbert space H needs not
to coincide with the original Fock space. One knows more. One knows that in most
physically interesting cases they do not coincide. The reader does understand that
our notion of state does create a generality concerning expectation values which is
going far beyond the Fock space. It turns out that this generality is necessary in order
to understand the most interesting phenomena about systems with a large(=infinite)
number of degrees of freedom. This is the main reason for our choice of working
with the notion of state or expectation valued map in stead of with wave functions.

Denote by E the set of states on the boson observable algebra. First of all it is
interesting to remark that this set E is a convex set, i.e. for each pair of states ω1, ω2

and each real number λ in the interval [0,1], also the convex combinationω = λ ω1 +
(1−λ )ω2 is again a state. It is clear that the value of λ has the physical interpretation
of the concentration of the state ω1 in the state ω and 1− λ the concentration of
ω2 in the state ω . This remark leads to the following notions. A state is called a
pure state or an extremal state, if it is not possible to write the state as a non-trivial
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convex combination of two other different states. Hence the state ω is pure if ω =
λ ω1 +(1−λ )ω2 implies λ = 0 or λ = 1, and/or implies ω1 =ω2. A state is a mixed
state if it is not a pure state. Of course the notion of convex combination of finite sums
extends straightforwardly to infinite sums and even to integrals of states. In particular
the following situation will be relevant for us. Consider any convex set S of a vector
space equipped with a probability measure μ (i.e. for λ ∈ S, μ(λ )≥ 0,

∫
dμ(λ ) = 1)

defined on S. Let {ωλ} be a set of states labeled by the parameter λ , then also the
integral ω =

∫
dμ(λ )ωλ is again a state, because the set of states E is a convex

set.
Now we look for a general but practical definition of the set of states for boson

systems also with the intention to formulate clearly the particular subset of states
which will be called the set of quasi-free states. For these aims the Weyl formulation
is very suitable.

Let ω be an arbitrary state on the Weyl algebra A. This state is known or well
defined, if for all f ∈ S , all the expectation values ω(W ( f )) are known, or if the
expectation values of all Weyl operators are known. A straightforward classical com-
putation (see e.g. [146]) yields the expression of the expectation values in terms of
the field correlation functions

ω(W ( f )) = ω(eiλb( f )) =
∞

∑
n=0

inλ n

n!
ω(b( f )n) (2.12)

= exp{
∞

∑
n=1

inλ n

n!
ω(b( f )n)t}

where the so-called truncated correlation functions ω(...)t are defined recursively
through the formula

ω(b( f1)...b( fn)) =∑ω(b( fk)...)t ...ω(...b( fl))t (2.13)

where the sum is over all possible partitions (k, ...),(...), ...(...l) of the set {1, ...,n},
with the order within each of the clusters carried over from the left to the right hand
side. Because of this definition, one calls each ω(b( f1)...b( fn))t the truncated cor-
relation function of order n. In the physics literature the word “connected” is also
sometimes used in stead of the connotation “truncated”.

The formula Eq. (2.12) expresses that the state is completely defined if one knows
all its truncated correlation functions and vice versa.

In this Weyl formulation the basic properties of a state are now explicitly given
by: let A = ∑i ciW ( fi) be any arbitrary element of the algebra of observables, then

(i) normalization: ω(W (0)) = ω(1) = 1
(ii) linearity: ω(A) = ∑ciω(W ( fi))
(iii) positivity: ω(A∗A) ≥ 0
This completes the definition of a general state on the algebra of boson observ-

ables in terms of the field correlation functions or equivalently in terms of the trun-
cated field correlation functions.

Now we are able to identify a very special class of states, namely the set of quasi-
free states.
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Definition 2.2. A state ω of the boson algebra of observables is called a quasi-free
state, also written qf-state, if all its truncated correlation functions of all orders n > 2
vanish. This has the immediate consequence that all its (n > 2)-correlation functions
are expressed in terms of those of orders n ≤ 2.

From the formula Eq. (2.12) it follows that the most general quasi-free state is
completely determined by its one- and two-point correlation functions and therefore
gets the following simpler explicit form:

ω(W ( f )) = exp{iω(b( f ))− 1
2
ω(b( f )b( f ))t} (2.14)

We denote by Q the set of all quasi-free(qf) states. Some authors call the set of quasi-
free states also the set of generalized free states.

Remark that, if one takes any real linear functional χ : f → χ( f ) on the test function
space S , then any such functional defines a canonical transformation Eq. (7.3) τχ ,
i.e. a one-to-one transformation mapping the observables onto the observables leav-
ing the canonical commutation relations (CCR) invariant. It is acting on the boson
algebra A in the Weyl form as follows

τχ(W ( f )) = eiχ( f )W ( f ) (2.15)

together with the rules that τχ is linear, conserves all products as well as the *-
operation. Note that the composition of any stateω with the canonical transformation
τχ , i.e. that ω ◦ τχ , is again a state.

It is immediately checked from Eq. (2.15) that the action of this transformation is
nothing else but translating the boson fields with a scalar quantity, namely: τχb( f ) =
b( f )+χ( f ). This follows directly from the formal computation

d
dλ
τχ(W (λ f ))|λ=0 = eiλχ( f )W (λ f )|λ=0

Take any qf-state ω Eq. (2.14), then the composition ω̃ = ω ◦ τχ is not only again
a state, one readily checks that it is again a qf-state. In particular if one chooses
χ( f ) = −ω(b( f )) then the one-point function of the new state ω̃ vanishes. More-
over the two-point truncated function is left invariant for the transformation τχ , i.e.
ω̃(b( f )b(g))t =ω(b( f )b(g))t . Therefore, up to such a canonical transformation, one
can continue the analysis of the set of qf-states with the set of qf-states restricting
ourself to those with vanishing one-point function. In this case the definition of qf-
state Eq. (2.14) reads as follows

ω(W ( f )) = exp{−1
2
ω(b( f )b( f ))} (2.16)

because in this case ω(b( f )b(g))t = ω(b( f )b(g)).
Denote s( f , f ) = ω(b( f )2) then Eq. (2.16) becomes

ω(W ( f )) = exp{−1
2

s( f , f )} (2.17)
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Denote also by s( f ,g) defined on S ×S , the real bilinear symmetric extension of
s( f , f ) on S . By differentiating twice ω(W (λ f )W (μg)) with respect to λ and μ at
zero, one obtains the two-point function for the fields in the following form

ω(b( f )b(g)) = s( f ,g)+ iσ( f ,g) (2.18)

The positivity condition applied to the qf-state ω becomes: for all A = ∑ciW ( fi)
holds

0 ≤ ω(AA∗) =∑
j,k

c jckω(W ( f j − fk))exp(−iσ( f j, fk))

=∑
j,k

(c je
− 1

2 s( f j , f j))(cke−
1
2 s( fk, fk))exp(s( f j, fk)− iσ( f j, fk))

=∑
j,k

d jdk exp(s( f j, fk)− iσ( f j, fk))

where the parameters dk are immediately identified from the second line. Use the
following general matrix property which is straightforwardly checked. If the matri-
ces A = (ai, j) and B = (bi, j) are positive definite n× n-matrices, then the matrix
C = (ai, jbi, j) is also a positive definite matrix (see e.g. [131]). This property yields
immediately the proof of the fact that the positivity of the qf-state is equivalent to
the positive definiteness of the two-point function Eq. (2.18). Expressed in words,
the positivity of a qf-state ω restricted to the monomials in the fields of order two, is
necessary and sufficient for the full positivity of the qf-state.

All field correlation functions can as well be expressed in terms of the cre-
ation and annihilation operators (n,m)-correlation functions Eq. (2.7) and vice versa.
Therefore one can express as well, and equivalently, this positivity in terms of the cre-
ation and annihilation operators a� which are complex linear, respectively anti-linear
in the test functions. The positivity of the quasi-free state ω is therefore expressed
by: ∀ f ,g ∈ S , considered now as a complex linear space, the positivity of the state
becomes

ω((a( f )+a∗(g))(a( f )+a∗(g))∗) ≥ 0 (2.19)

This is indeed the necessary and sufficient condition for the positivity of the state.
The next step in the analysis of the states of boson systems is by introducing the

parameterizations of the truncated two-point functions of any state ω by means of
operators. In the following we consider states for which the truncated two-point func-
tions are determined by the (unbounded) operators R and S acting on the space S ,
and which are defined as follows

ω(a( f )a∗(g))t = ( f ,Rg) ; ω(a( f )a(g))t = ( f ,Sg) (2.20)

where the symbol g stands for the complex conjugate of g. Clearly the symbol (., .)
stands for the scalar product on L2(Rd).

It is important to note that this operator presentation holds for the truncated
two-point correlation functions of any state, being quasi-free or not. Moreover, an
identical operator representation of any truncated (n,m)-correlation function (see
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Eq. (2.7) or Eq. (2.13)) can be obtained by an operator mapping any dense subspace
of L2(Rdn) into L2(Rdm).

In particular for quasi-free states, as all higher (n + m > 2) order truncated cor-
relation functions vanish, one can rewrite the full positivity condition Eq. (2.19) of a
quasi-free state solely in terms of the operators R and S, defined in Eq. (2.20). The
reader realizes that the positivity conditions of a general state involve however all
correlation functions of all orders.

Before continuing the analysis of the positivity conditions, it may be instructive
to illustrate first the material by making a small intermezzo presenting a couple of
well known examples of states and quasi-free states in terms of their operator pre-
sentation. After that we concentrate ourself onto the subclasses of all states which
are space homogeneous or space translation invariant and gauge invariant.

Examples of boson systems states

The notion of quasi-free state is not so mysterious as it may sound. The examples
used all around in the physics literature are daily matters. As already mentioned, the
best known example of a quasi-free state is the Fock state ωF given by: for all f ∈S ,

ωF(W ( f )) = (Ω ,W ( f )Ω) = e−
1
2 ( f , f ) (2.21)

where Ω is the vacuum wave vector of the Fock Hilbert space Eq. (2.3). The GNS-
representation space (7.1) of the Fock state is the Fock Hilbert space F and the cyclic
vector is the vacuum vectorΩ . In other words the Fock state is the expectation valued
map determined by the Fock vacuum vector. From Eq. (2.21) it follows that the
defining operators (R,S) Eq. (2.20) of the Fock state ωF are given by the operators
R = 1 and S = 0. Furthermore the one-point function of the Fock state vanishes.

A subset of the set Q of qf-states, is the set of so-called coherent states associated
to the Fock state ωF . Denote this set of coherent states by C(ωF). This set of states is
given by all states C(ωF) = {ωh ; h ∈ S } where the ωh are defined by the formulae

ωh(W ( f )) = (W (h)Ω ,W ( f )W (h)Ω) = (Ω ,W ( f )Ω)ei2σ( f ,h) = ωF ◦ τχ(W ( f ))
(2.22)

with τχ again the canonical transformation Eq. (7.3) of the field translations with
χ( f ) = 2σ( f ,h) = 2ℑ( f ,h). In particular it is clear that all states of the set C(ωF)
are build on the ground state wave function or the Fock vacuum wave vector Ω . It
is also clear that all coherent states ωh, associated with the Fock state, are quasi-free
states of the boson systems.

However it is also clear that the notion of coherent state can be associated to
any other state ω of the boson algebra of observables A. The set of coherent states
C(ω) associated with the state ω is analogously given by C(ω) = {ω ◦ τχ |∀χ( f ) =
2ℑ( f ,h) ,h ∈ S }. If ω is a qf-state then the set C(ω) is a subset of the qf-states.
However, if ω is not a qf-state, then none of the states of C(ω) are qf-states. Hence
the notion of coherence for a state is not necessary linked to the notion of quasi-
freeness. If one considers the GNS-representation of the state ω : ω(X) = (Ψ ,XΨ)
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with cyclic vectorΨ , then this vector is the ground wave function of all states in the
set C(ω). A priori this vector need not to be an element of the Fock Hilbert space F.

Needless to mention that the notion of coherent state has been used in many ap-
plications in physics. For instance, most of the exact results concerning the settings
and the derivations of different forms of the Hartree-Fock equations [159] are ob-
tained using the coherent state technology. It is clear that in all these applications, a
main starting point consists of making the best choice for the generating state ω or
of the right choice for the ground state wave function. Next to the coherent state idea
and technology, there is also the wavelet state technology, which can be considered
as a generalization of the coherent state technology. We do not enter here into the
details about the wavelet states, because their applications are so far not too much
present in many body boson physics.

Homogeneous states

The space translations are again realized by a group of canonical transformations
Eq. (7.3) {τx|x ∈ R

d} acting on the algebra of observables A and are given by the
maps τx(a( f )) = a(Tx f ) where Tx is the action of translation over the distance x (7.3),
(Tx f )(y) = f (y− x), acting on the test function space S .

Definition 2.3. The set of homogeneous states or space translation invariant states
is given by all states ω which satisfy the following invariance property: for all x∈R

d

holds ω ◦ τx = ω .

Let us illustrate an immediate implication of the homogeneity of a state on the cor-
relation functions.

Using the fact that τxak = 1√
Vx

∫
Vx

dya(y)e−ik(y−x) = eikx 1√
V

∫
Vx

dya(y)e−iky, with

Vx = V + x, one gets limV ω(τx(ak)) = eikx limV ω(ak). Hence, if the state ω is
homogeneous, one gets that for all k 
= 0, limV ω(ak) = 0 in the thermodynamic
limV . Check that for homogeneous states ω holds in general limV ω(a∗k1

...a∗kn
akn+1 ...

akn+m) = 0 if k1 + ...+ kn − kn+1 − ....− kn+m 
= 0.
Furthermore supposing that ω is a space translation invariant state, and using the

operator representation of the two-point truncated functions Eq. (2.20), one gets that
the invariance property is transported to the operators R,S with the property that both
operators R and S commute with all the operators Tx, because e.g. for all x holds

( f ,Rg) = ω(a( f )a∗(g)) = ω(τx(a( f )a∗(g)))
= ω(a(T−x f )a∗(Txg)) = ( f ,T−xRTxg)

and therefore [R,Tx] = [S,Tx] = 0. Operators with these properties are sometimes
called translation invariant operators.

It is a fairly well known property [78] that if A is any such translation invariant
operator, then there exists a tempered distribution on the test function space S with
Fourier transform a function ξ such that for all functions f with Fourier transform f̂
holds Â f (p) = ξ (p) f̂ (p). This means that the operator A is a simple multiplication
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operator. This property is a consequence of the kernel theorem for operator valued
distributions and the convolution theorem for Fourier transforms. In the following,
for notational convenience, we omit the notation for Fourier transforms and write
simply

A f (p) = ξ (p) f (p) (2.23)

In any case for homogeneous states, the two-point correlation function operators R
and S are simply multiplication operators with functions which we denote by r(p),
respectively s(p). It is easily checked from Eq. (2.20) that r(p) = ω(a(p)a∗(p))
and s(p) = ω(a(p)a(−p)) = s(−p) where the a(p)� are the usual operator valued
distributions, the Fourier transforms of the creation and annihilation operators a�(x)
introduced before. For our purposes, as we consider only time reversal invariant sys-
tems, we can as well assume from now on that also the r-function is a symmetric
function of its argument p: r(−p) = r(p).

As all multiplication operators are two by two commuting with each other, also
the operators R and S commute with each other: [R,S] = 0.

Analogously as for the two-point truncated correlation functions of a translation
invariant state, all its truncated higher order (n,m)-correlation functions can be de-
scribed by analogous multiplication operators with functions in n+m−1 variables.
The positivity of the state does imply of course a number of necessary and sufficient
conditions on these functions. We do not write out in full details all these conditions
for all the (n,m)-correlation functions of orders n+m > 2.

On the other hand we apply this result to the set of homogeneous quasi-free
states. For these states, from the analysis given above, one can conclude that any
qf-state ω with vanishing one-point function is completely and equivalently labeled
by the operators R,S as well as by its associated functions r,s. Therefore the qf-state
is uniquely denoted as ω(R,S) as well as by ω(r,s).

Now we are in a position to express the necessary and sufficient positivity con-
ditions of a space homogeneous qf-state ω explicitly in terms of its determining
operators or its corresponding multiplication functions. Writing out the positivity
condition Eq. (2.19) yields: ∀ f ,g,

0 ≤ ( f ,R f )+( f ,SΛg)+( f ,SΛg)+(g,(R−1)g)

where Λ is the conjugation operator with the property: (Λ f ,Λg) = (g, f ). Remark
first that the special case f = 0 yields already the following condition on the operator
R, namely: R ≥ 1. In particular it follows that the operator R is self-adjoint. Using
this property one gets (Λg,(R− 1)Λg) = (g,(R− 1)g) and ( f ,SΛg) = (Λg,S∗ f ),
and one obtains, with Λg replaced by g, the positivity conditions in the following
form

0 ≤ ( f ,R f )+( f ,Sg)+(g,S∗ f )+(g,(R−1)g)

which are immediately translated into the equivalent operator or function conditions:

0 ≤ R(R−1)−S∗S (2.24)

0 ≤ r(p)(r(p)−1)−|s(p)|2 (2.25)
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This form of the positivity conditions suggests the introduction of the following non-
negative function t(p), defined by t(p)2 = r(p)(r(p)− 1)− |s(p)|2, expressing the
full positivity of the qf-state determined by the functions (r,s). Therefore the qf-state
can now better be labeled by the functions r ≥ 1, t ≥ 0 and the real number α = args.
Hence in the rest of this text we may label equivalently the qf-state ω with vanishing
one-point function by ωR,S or as well by ω(r,t,α). One should remember that in this
notation it is pre-supposed that the one-point function is put equal to zero. If this
is not equal to zero, one should get a full parametrization only if also the one-point
parameter is added to the notation. For translation invariant states we use the one-
point parameter c, defined by c f̂ (p = 0) =ω(a∗( f )), which makes sense again as an
immediate consequence of the homogeneity of the state. Hence a full parametrization
of a qf-state looks as follows: ωc,r,t,α .

Ergodic states

Definition 2.4. Consider any general homogeneous or space translation invariant
state ω , i.e. a state satisfying, for all x ∈ R

d, the equality ω ◦ τx = ω . The state is
called an extremal space invariant or ergodic state, if for each pair (A,B) of local
observables, i.e. build up by creation and annihilation operators a∗( f ), a( f ) with
test-functions f ∈ S of finite local support, holds

lim
|x|→∞

ω(AτxB) = ω(A)ω(B) (2.26)

Notice that an ergodic state is always a space invariant or homogeneous state. The
property of ergodicity of a state means that the expectation value of the product
of two observables equals the product of the expectation values of each of them if
one of the observables is moved far away. It means also that the state has a kind
of asymptotic product property or an asymptotic independence property. Remark
that ergodic states have an interesting property concerning the expectation values of
space averages of observables. Indeed, let A,B,C be arbitrary local observables, and

consider the expression limV ω(ABVC), where BV =
∫
V dxτxB

V with τx again the space
translation over the distance x. Hence BV is the operator B averaged over the space
volume V . For any fixed finite volume V0 holds

lim
V
ω(ABVC) = lim

V
ω(A(

∫
V0

dxτxB

V
+

∫
V−V0

dxτxB

V
)C)

Because limV (V0/V ) = 0, the first term vanishes. Looking at the second term, take
the volume V0 such that it contains the support of the local operator C. Then the
operator C commutes with the integral on the basis of the locality of the canonical
commutation relations. Finally using the ergodicity of the state one gets the for-
mula

lim
V
ω(ABVC) = ω(AC)ω(B) (2.27)

Without going into too much mathematical details, this means that the space average
operator limV BV exists and is equal to the expectation value ω(B) of the operator B
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multiplied by the unit operator i.e. limV BV =ω(B)1. Notice the explicit dependence
of this limit on the state. In mathematics the type of limit considered in Eq. (2.27)
goes under the name of weak operator limit. For more technical details about the
mathematics of ergodic states one may consult [26].

Furthermore, for later applications, it is essential to mention the following rela-
tion between homogeneous states and ergodic states. In particular there is a theorem
(for all mathematical details see [26] Volume I, Chapter 4) telling essentially that
each space translation invariant state can be written as a convex sum of ergodic in-
variant states. In more explicit formulae, let {ωλ |λ ∈ E}, with λ some parameter of
a convex set E, be the set of ergodic states and ω an arbitrary homogeneous state,
then there exists always a probability measure μ , defined on the parameter set E,
such that ω =

∫
dμ(λ )ωλ . This means that each homogeneous state can written as

a convex combination of ergodic states. In more down to earth words, it means that
if one knows all ergodic states satisfying some physical property linear on the set
of the homogeneous states, one can check what it means for all the homogeneous
states.

Clearly the notion of ergodicity which is introduced, is related to the non-
compact invariance group, namely the complete translation group R

d . It is clear
that in the definition of ergodicity, the group R

d can be replaced by any infinite
non-compact subgroup. Important subgroups are for instance the subgroups G of the
translations over sublattices of the full translation group R

d .
There exist general theorems about the question, when can a state, ergodic for

the full group, be written as a convex combination of states which are ergodic for a
subgroup G. In all this it is however important to realize the fact that the notion of
ergodicity is always linked to a specific infinite translation group.

All these mathematical theorems as such will not be used in the later applications.
On the other hand, some of these properties will directly be derived in different
physical boson systems applications.

Finally we mention that the notion of ergodic state is a rigorous mathematical
notion for what in physics is sometimes called a pure phase state. For this reason,
ergodic states are also sometimes called extremal invariant states. Let us mention
here at least one of the applications of the decomposition theorem of an invariant state
into its ergodic or extremal components, namely the decomposition into the ergodic
states with respect to a non-trivial subgroup. This type of decomposition shall lead
us to the main concept of the analysis of the phenomenon of spontaneously broken
symmetries, discussed for boson systems in full details in Chapter Eq. (4). The reader
should be aware that the notion of spontaneous symmetry breaking is an important
item not only within the domain of Bose-Einstein condensation, but in fact in many
more other modern theories in physics running from solid state physics over low
energy nuclear physics up to high energy physics. In any case it comes over as a a
phenomenon which is typical for all systems with a large or an infinite number of
degrees of freedom.
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Homogeneous quasi-free states and their ergodicity

Now we look for the ergodicity properties of space homogeneous qf-states. Take any
homogeneous qf-state ω . In terms of the Weyl operators, we check the ergodicity
condition and therefore consider the limit |x| → ∞, for all local functions (functions
of compact support) f ,g with gx(y) = g(y− x), of the two-point functions with A =
W ( f ) and B = W (g). First compute the relation for a qf-state

ω(AτxB) = ω(W ( f )τxW (g)) = ω(W ( f ))ω(W (g))exp{iσ( f ,gx)− s( f ,gx)}

On the basis of the Riemann-Lebesgue Lemma one gets lim|x|→∞σ( f ,gx) = 0, as
well as lim|x|→∞ s( f ,gx) = 0, and the following properties of the two-point functions

lim
|x|
ω(a( f )a∗(gx))t = lim

|x|

∫
d pr(p) f (p)eip.xg(p) = 0

lim
|x|
ω(a( f )a(gx))t = lim

|x|

∫
d ps(p) f (p)e−ip.xg(p) = 0

Hence the two-point functions share the ergodicity property. Looking at the one-
point function, one gets from the space translation invariance ω(τxa( f )) = ω(a( f ))
for all x, implying that the one-point function is, as pointed out above, of the form
ω(a∗( f )) = c f (0) where c is some complex constant.

In any case, all this shows that each space homogeneous or space translation
invariant qf-state has always the property of being an ergodic state.

In this context, it is also important to remark that any non-trivial convex com-
bination of two different homogenous qf-states is never a qf-state. In particular this
means that by taking convex combinations of qf-states one generates a new class of
states which are not anymore quasi-free states. It must be recognized that a deeper
characterization and understanding of the structure of this set of generated states has
so far not been cleared up. It remains a challenging open problem to get a better
knowledge concerning the most intrinsic mathematical and physical properties com-
mon for all convex compositions of qf-states.

Gauge invariance

Finally we consider one more group of canonical transformations Eq. (7.3) of the
CCR-algebra of observables, namely the gauge transformations group {τλ |λ ∈
[0,2π] ⊂ R} Eq. (7.3), defined by the operations

τλ (a∗( f )) = eiλa∗( f ), τλ (a( f )) = e−iλa( f ) (2.28)

The reader checks easily that also these transformations leave the canonical commu-
tation relations invariant. One verifies that this group is isomorphic to the additive
group modulo 2π of the real numbers [0,2π] and therefore coincides with the com-
pact unitary group commonly denoted by U(1).



22 2 Bose systems

Definition 2.5. Any boson state ω is called gauge invariant, if for all λ ∈ [0,2π]
holds that ω ◦ τλ = ω .

It is immediately clear from the definition that for any gauge invariant state ω all
(n,m)-point correlation functions with n 
= m vanish. In particular all odd-point(n+
m = odd) correlation functions vanish. In particular the one-point function vanishes.

Let us now look closer at the action of the gauge transformations on qf-states and
characterize the gauge invariant qf-states. In terms of general states we confine our
attention to the one and two-point functions of a state. If the state is gauge invariant,
we remarked already that the one-point function vanishes. In that case looking at the
two-point functions, clearly a qf-stateω(R,S) transforms under a gauge transformation
as follows:ω(R,S)◦τλ (a( f )a∗(g)) =ω(R,S)(a( f )a∗(g)) and (ω(R,S)◦τλ )(a( f )a(g)) =
e−i2λ (ω(R,S))(a( f )a(g)) or equivalently the operator pair (R,S) is changed into the

pair (R,e−i2λS).
Therefore the qf-state ω(R,S) or in general the two-point functions of an arbitrary

state are gauge invariant if and only if the operator S vanishes, i.e. if and only if
the two-point functions of the state are of the form ω(R,S=0), supplemented with the

one-point correlation function condition c f̂ (p = 0) = ω(a∗( f )) = 0 or c = 0.
Next we derive an other general and useful property holding for arbitrary ho-

mogeneous states which can be quasi-free or not quasi-free. We show that for any
translation invariant state ω with two-point functions determined by the operators
(R,S), there exists always a canonical transformation τ mapping the state into a new
state which has gauge invariant two-point functions, and is therefore determined by
two operators of the type (R̃,0). We determine explicitly the operator R̃ as a function
of the originally given state operators R and S.

This result is a generalization of a more restricted result stated in [115], where
such a map is proved to exist within the set of generalized pure qf-states. Not only the
existence but also the explicit construction and form of this canonical transformation
τ for any initially given state ω is derived.

Lemma 2.6. Letω be any space invariant or homogeneous state with two-point trun-
cated functions functions r ≥ 1 and t ≥ 0. Then there exists a canonical transforma-
tion τ mapping the given state into a new homogeneous state ω ◦ τ with two-point
truncated correlation functions given by the pair of operators (R̃, S̃ = 0). If r̃(p) is
the multiplication function of the operator R̃ then it is given as a function of the
original pair of functions (r, t) by the formula

r̃ =
1
2

+(t2 +
1
4
)

1
2 (2.29)

Applying this result to quasi-free states, all this means the following. Let ω(R,S) be
a space homogeneous qf-state, there exists a canonical transformation τ mapping
the state into a gauge invariant one, i.e. ω(R,S) ◦ τ = ω(R̃,0), where the multiplication
operator r̃ is given by the formula above.

Proof. If s(p) = 0 for p in some domain then S = 0 and nothing has to be proved in
that domain. Therefore assume that s(p) 
= 0. First we apply a canonical gauge trans-
formation such that s(p) = |s(p)|, i.e. we take the parameter λ in (2.28) equal to



2.3 States and Quasi-Free States 23

− 1
2 args(p). Then one considers a second canonical transformation γ , in the physics

literature called Bogoliubov transformation Eq. (7.3), mapping the creation and an-
nihilation operators a(p)# into new ones ã(p)#, given by

ã(p) = γ(a(p)) = u(p)a(p)− v(p)a∗(−p) (2.30)

where u and v are real functions on R
d satisfying u(−p) = u(p), v(−p) = v(p) and

u(p)2 − v(p)2 = 1. One checks that the new ones satisfy again the CCR-relations.
Consider the two equations

r̃(p) = ω(R̃,0)(a(p)a∗(p)) = ω(R,S)(γ(a(p)a∗(p)))

0 = s̃(p) = ω(R̃,0)(a(p)a(−p)) = ω(R,S)(γ(a(p)a(−p)))

in order to express r̃(p) as a function of r(p) and s(p) or preferably t(p). One com-
putes explicitly the following equations from the former ones, using the symmetry
of r(p) and s(p).

r̃(p) = u(p)2r(p)+ v(p)2(r(p)−1)−2u(p)v(p)s(p)
0 = u(p)2s(p)−u(p)v(p)(2r(p)−1)+ v(p)2s(p)

Looking at the second equation, one gets a quadratic equation for the function vari-
able x ≡ u/v, which always takes values larger than 1 and therefore leading to a
unique solution given by

x =
r− 1

2 +
√

(r− 1
2 )2 − s2

s

Using the relation between the functions s and t, namely t2 = r(r−1)− s2, one gets
the function x expressed in the variables r, t:

x =
r− 1

2 +
√

t2 + 1
4

√
r(r−1)− t2

Substitute this solution for x in the expressions for u and v:

u =
x√

x2 −1
,v =

1√
x2 −1

Finally substitute this result in the first equation in order to obtain r̃ as a function of
r and t as expressed in the Lemma.

The canonical transformation τ of the Lemma is of course given by the compo-
sition of the gauge transformation used above with the Bogoliubov transformation.
This proves the first part of the Lemma. Concerning the application to the quasi-free
state case, the canonical transformation τ has to be composed with the appropri-
ate field translation canonical transformation in order to get in due case a vanishing
one-point function for the new state.
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Some generalities related to the physics of ergodic boson states

After the above analysis about the structure of the set of general boson states as well
as about its subset of quasi-free states, we recollect here the essentials about the
correlation functions for an arbitrary ergodic state as defined above, see Eq. (2.12).
We add some general and important physical interpretations. All this is with an eye
kept on future applications.

First we consider the one and two-point correlation functions. The general two-
point truncated correlation functions are given by the formulae

ω(a( f )a∗(g))t = ω(a( f )a∗(g))−ω(a( f ))ω(a∗(g)) =
∫

dk f (k)g(k)(r(k)−1)

ω(a( f )a(g))t = ω(a( f )a(g))−ω(a( f ))ω(a(g)) =
∫

dk f (k)g(k)s(k)

and the most general one-point function by

ω(a∗( f )) = f̂ (0)c , ω(a( f )) = f̂ (0)c.

The translation invariance implies indeed

ω(a∗( f )) =
∫

Λ
dx f (x)ω(a∗(x)) =

∫

V
dx f (x)ω(a∗(x = 0)). (2.31)

Hence, c = ω(a∗(x = 0)). Moreover the constant c gets the following interpretation
in the thermodynamic limit.

c = lim
V
ω
(

1
V

∫

Λ
dxa∗(x)

)

and the ergodicity property of the state yields the equality

ρ0 := lim
V
ω
(

1
V

a∗0a0

)

= lim
V
ω
(

1
V

∫

V
dxa∗(x)

∫

V
dxa(x)

)

= |c|2 (2.32)

It is important to realize that this equality does not hold if the state is not ergodic.
Formula Eq. (2.32) can also be written in the form

ρ0 − lim
V

|ω(
a0√
V

)|2 = 0

or more explicitly as follows

lim
V

1
V 2

∫

V×V
dxdy{ω(a∗(x)a(x+ y))−ω(a∗(x))ω(a(x+ y))} = 0 (2.33)

If ρ0 = 0, then c = 0 or all terms vanish. However, if ρ0 > 0, then also c =
limV ω( a0√

V
) = ω(a(0)) 
= 0, which means that the state can not be gauge invari-

ant. The equation (2.33) expresses the property of the boson state ω of showing
off-diagonal long range order [129].
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The reader realizes that these explicit formulae, together with their interpreta-
tions, hold for the one- and two-point functions of any ergodic boson state indepen-
dent of the fact that it is quasi-free or not quasi-free. Also the physical interpretations
following below remain generally valid. These formulae hold for all homogeneous
states of all homogeneous boson systems.

In particular one has the following physical picture. Looking at the definition
formula of ρ0, it is clear that it has to interpreted as the zero-mode or (k = 0)-density
of particles of the state ω . In particular, if for some boson system one can show
that a ground or equilibrium state ω has the property ρ0 > 0, then one can say that
the state shows a macroscopic occupation of particles in the zero-mode. For such a
state, the number of particles in the zero mode in a finite volume V has to increase
proportionally with the volume (see Eq. (2.32)). Hence if

ρ0 = lim
V

ω(a∗0a0)
V

> 0

one speaks about the occurrence of Bose-Einstein condensation, in short denoted by
BEC, in that state and for the zero-mode. The value of ρ0 itself is called the zero-
mode condensate density.

Since by definition ρ = limV ω(NV /V ), this quantity is called the total density
of particles for the state ω . Since for all homogeneous states trivially holds that
ω(ak) = 0 if k 
= 0, and because of Eq. (2.33) one gets for each ergodic state for
which the thermodynamic limit(V → ∞) exists the formula

ω(
NV

V
) =

1
V ∑k

ω(a∗kak)−
1
V
ω(a∗0a0)+

1
V
ω(a∗0a0) = ω(

NV

V
)t +

1
V
ω(a∗0a0)

One obtains for all ergodic states for which the total density ρ is finite, the following
universal relation:

ρ = ρ0 +ρc (2.34)

It expresses that the total density for the state is the sum of the zero-mode condensate
density ρ0 and the density ρc of all excited (k 
= 0) particles. The latter one is called
the critical density, in the case that there is a non-trivial condensate (ρ0 > 0). The
critical density is explicitly given in terms of the two-point operator r(p) by the
formula

ρc =
∫

dk (r(k)−1) (2.35)

In general the density relation Eq. (2.34) is of vital importance in the study of Bose-
Einstein condensation for solvable as well as for non-solvable fully interacting boson
models.

Sofar we considered only the one and two-point functions of an ergodic state.
As is clear from the general definition Eq. (2.12), in order to fix a state completely
one has to know all truncated n-point functions for all n=1,2,3,.... It is always impor-
tant to keep in mind that they should satisfy the necessary and sufficient positivity
conditions implied by the positivity of the state. We do not enter into an explicit
discussion about these positivity properties. It is a straightforward but a technically
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annoying matter to write these properties out in their explicit form in terms of the
correlation functions. We just repeat the remark that the ergodicity of the state im-
plies that the higher order truncated n-point functions with n > 2, can be described,
exactly as we did with the two-point functions, by multiplication operators in n-1
variables, and that this approach is useful.

In the case of open boson systems, condensation in excited modes can also occur.
This means that one has the possibility of macroscopic occupation of a non-zero
mode, say q 
= 0, for some state ω . This is expressed by the formula:

ρq = lim
V

ω(a∗qaq)
V

> 0

describing a macroscopic occupation of the q-mode. One speaks of the occurrence
of q-condensation, which is a fair form of Bose-Einstein condensation. In Chapter
Eq. (4) we discuss a simple model showing q-condensation.

So far we considered only the situation of fully space translation invariant states,
i.e. states invariant for the full space translation group R

d . However the situation of
the space translation invariance with respect to a sublattice G of R

d is also relevant as
will become clear in the applications below. In that case, consider a state ω which is
invariant under the translation group G = |a|Z×R

d−1, i.e. the continuous translations
in d − 1 directions and the periodic lattice translations in one direction given by a
vector of the form a = |a|e. It has a period of length |a| and a direction along the
unit vector e and it defines a corresponding momentum variable q = e(2π/|a|). For
each x ∈ R

d one can write x = (ye,x⊥), where x⊥ is the x-component orthogonal to
e and ye the e-component. For any such a G-invariant state ω̃ it could be meaningful

to talk about the q-condensate density ρq = limV ω̃(
a∗qaq

V ). Remark that one gets a
full homogeneous state ω by integration over the period which is given by, for any
observable X ,

ω(X) =
1
|a|

∫ |a|

0
dy ω̃ ◦ τy(X) (2.36)

and a q-condensate density of the form

ρq = lim
V
ω(

a∗qaq

V
) =

1
|a|

∫ |a|

0
dy ω̃(a∗(y,0)a(y,0)) (2.37)

Of course this construction extends to more dimensions up to all space directions.
All these definitions and physical interpretations about the one and two-point

functions are of central importance in the language of physicists talking about fully
interacting, respectively non-interacting boson systems studied with all the common
techniques and concepts in many-body boson systems used since decades [81, 13,
79, 80]. As such they will remain of prime relevance in the rest of this monograph
and in the future.
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Equilibrium States

3.1 Variational Principle

It is well known that an equilibrium state at inverse temperature β = 1
kT can be de-

termined by the so-called variational principle of statistical mechanics. Let k be the
Boltzmann constant and T the absolute temperature of a homogeneous boson sys-
tem determined by the local Hamiltonians HV , with one Hamiltonian for each finite
volume V . The principle is defined as follows: Consider the real map f , called the
grand canonical free energy density functional, defined on the set of homogeneous
or periodic states by the following. For any state ω of the system, f is defined by

f : ω → f (ω) = lim
V

1
V

(βω(HV −μNV )−S(ωV )) (3.1)

where μ is the chemical potential, NV =
∫

V dxa∗(x)a(x) the observable standing for
the number of particles, and S(ωV ) the entropy of the restriction of the state ω to
the finite volume V of R

n. We indicate by ωV this restriction of the state ω to the
algebra AV of observables measurable within the volume V . This means that the set
AV is generated by all creation and annihilation operators a�( f ) with test functions
f having their support in V .

For simplicity we limit ourselves to those homogeneous states ω which are lo-
cally determined by a density matrix. In this case for each volume V , there exists a
density matrix σV (i.e. 1 ≥ σV ≥ 0 , trσV = 1) acting on the Fock vector space such
that ωV (A) = trσV A for all A in AV . States with this property are sometimes called
locally normal states. We should realize immediately that this set of states contains
all states of the Gibbs type. For any such locally normal state ω , we define the local
entropy by S(ωV ) = −trσV ln σV . For such homogeneous states the thermodynamic
limit V → ∞ in Eq. (3.1) can always be given a rigorous mathematical meaning, see
[26, 149] for example.

The grand canonical variational principle of statistical mechanics expresses the
following characterization of an equilibrium state:
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Definition 3.1. At an inverse temperature β = 1/kT , each homogeneous (or peri-
odic) state ωβ , which minimizes the free energy density functional Eq. (3.1), is a
grand canonical equilibrium state of the system, determined by the local Hamilto-
nians {HV} in the thermodynamic limit (V → ∞) keeping a constant value for the
particle density ρ = ω(NV /V ) for all volumes. In this limiting procedure, the chem-
ical potential plays the role of a Lagrange multiplier with respect to conservation of
particle density.

This definition can equivalently be expressed by the following: The free energy
density f (ωβ ) of the system in any equilibrium stateωβ is bounded by the free energy
density f (ω) in any other arbitrary homogeneous (or periodic) stateω of the system;
or expressed mathematically, the equilibrium state ωβ satisfies the inequality

f (ωβ ) � f (ω) (3.2)

It is proved for a large number of systems and for many different types (e.g., different
types of the volumes V shapes) of thermodynamic limits, that the minimum of the
free energy density functional is indeed reached [149] for one or more particular
states. Hence this variational principle is a meaningful method to define equilibrium
states. We stress that the infimum given by f (ωβ ), which is equal to what in physics
is called simply the free energy density of the system.

For any equilibrium state of each system, Criterion Eq. (3.1) can also be ex-
pressed as the equilibrium states that possess all the characteristics of thermody-
namic stability. All equilibrium states yield the same lowest value of the free en-
ergy functional and all have the same free energy density. Any other homogeneous
state, sometimes considered as a perturbed equilibrium state, yields a larger free en-
ergy density. Many more different notions of thermodynamic stability together with
their own physical interpretation, are introduced and discussed in the literature, see
[148, 151] for example. Here we stick to the best known one, that which was formu-
lated above.

By taking the appropriate limit β tending to infinity (or T tending to zero) in
the formulation of the variational principle Eq. (3.1), we immediately obtain the
corresponding criterion characterizing the ground (T = 0) states of the system.

Definition 3.2. A state ω0 is a ground state of the system HV if for any homogeneous
state ω ,

lim
V
ω(

HV −μNV

V
) ≥ lim

V
ω0(

HV −μNV

V
) (3.3)

It is clear that this criterion characterizes the ground states as the states of lowest
energy density. Furthermore, to guarantee solutions to this criterion we assume that
all systems under consideration, except for a couple of models, are mechanically
stable, which leads to the following definition:

Definition 3.3. All local Hamiltonians HV satisfy the mechanical stability condition
which is expressed by: For all large but finite volumes V , there exist real numbers a
and b with b ≥ 0 such that

HV ≥ b
N2

V

V
−aNV (3.4)
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In this case we call the system {HV}V stable. The system is called super-stable if in
addition b > 0.

From the practical point of view, looking for the equilibrium states of any quantum
system and in particular of a boson system, it means looking for the solutions of the
variational principle Eq. (3.1). For boson systems it is a matter of deriving from this
principle all n-point correlation functions of one, or sometimes more, equilibrium
states ωβ . In particular, when looking for ergodic solutions we must realize that the
free energy density f (ω) of any state ω is expressed by the one-point function c =√ρ0eiϕ ; the two-point truncated correlation functions r(p), s(p), or t(p) satisfying
the positivity conditions; and all the remaining higher-order (n > 2)-point truncated
correlation functions of the states. Without going into all details here, looking for a
solutionωβ means solving a variational principle with an infinity of a priori unknown
variables, which we should realize is in general an infinitely difficult problem.

Looking closer at this problem, one can consider first the variations with respect
to the one-point functions. Note that there is no a priori positivity condition on the
phase parameter ϕ , the argument of the parameter c, the one-point function. It is
a free parameter, for which we can straightforwardly derive its corresponding Euler
equation and seek its solutions. Then we can perform the variation with respect to the
square root of the condensate density

√ρ0 = |c|. This is already a more delicate affair
because this is not a free parameter. It is not immediately clear within which range
this parameter can vary because of the total ρ-density constraint Eq. (2.34). This
variational operation is extensively studied and worked out further in section (4.3.3)
of Chapter (4), where we discuss and derive the condensate equations. Later on we
learn that the latter ones can be considered as the quantum Euler equations for all
variations in the order parameters of this quantum variational problem. In particular
this holds for the square root of the condensate density. For explicit treatments of
the derivation of all other so-called quantum Euler equations to be satisfied by all
other (n ≥ 2)-point functions, we refer mainly to the multiple model applications in
Chapter (4).

As a matter of a motivation for the infinite-volume variational principle Eq. (3.1)
to be a good definition of equilibrium states in the thermodynamic limit situation, it
is instructive to analyze in somewhat more detail the variational principle for finite
volume systems. If the system is (super-)stable, then for all finite β > 0 the partition
function tr exp(−β (HV −μNV )) < ∞ is finite for each finite volume V such that the
variational principle can be formulated for each finite volume. The solution of the
principle is unique and yields the grand canonical Gibbs state as a unique equilibrium
state solution. The explicit proof of this statement may be inspiring, as we now offer:

We use the simplified notation H(μ) = HV − μNV . The corresponding Gibbs
state is given by: For any observable A, the Gibbs state or the Gibbs equilibrium
expectation-valued map ωβ is given by

ωβ (A) =
tr e−βH(μ)A

tr e−βH(μ) (3.5)

We repeat that a normal state of a boson system is a state ω determined by a density
matrix ρ (trρ = 1; 0 ≤ ρ ≤ 1) acting on the Fock Hilbert space F such that
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ω(A) = trρA (3.6)

Clearly the Gibbs state is a normal state with density matrix

ρβ =
e−βH(μ)

tr e−βH(μ)

The free energy of a system H(μ) is given by

F(β ,μ) = − log tr e−βH(μ),

The entropy of a normal state, determined by the density matrix ρ , is defined as usual
by the expression S(ρ) = −trρ lnρ and the internal energy by the expectation value
E(ρ) ≡ E(ω) ≡ ω(H(μ)). We define, as above for the densities, the free energy
functional now on the set of all density matrices ρ acting on the Fock Hilbert space.
Hence for all normal states the free energy functional F(ρ) for the density matrix ρ ,
takes the form

F(ρ) = βE(ρ)−S(ρ).

The basic variational principle of statistical mechanics for finite systems is now for-
mulated as the following theorem:

Theorem 3.4. The free energy of the system satisfies

F(β ,μ) = inf
ρ

F(ρ) = F(ρβ )

where the inf is taken over all density matrices and where ρβ , is the density matrix
of the Gibbs state. In other words, the Gibbs state is the unique solution of this finite
system variational principle.

Proof. First check that F(β ,μ) = F(ρβ ) by an explicit and simple computation.
Hence the Gibbs state yields the free energy of the system as expected.

Furthermore, compute the expression

F(ρ)−F(ρβ ) = tr (ρ lnρ−ρ lnρβ )

Let ( fi)i and (e j) j be orthonormal bases which diagonalize the density matrices ρ ,
respectively ρβ , with the eigenvalues ρi and ρβ , j, then

F(ρ)−F(ρβ ) =∑
i
∑

j
|( f j,ei)|2(ρi lnρi −ρi lnρβ , j)

Using the strict convexity of the function, f (x) = x lnx for x ≥ 0, yielding

(y− x) f ′(x) ≤ f (y)− f (x)

with the equality sign if and only if x = y. Use the fact that ρ and ρβ are density
matrices, in particular satisfying trρ = trρβ = 1, we find for all density matrices ρ:
F(ρ) ≥ F(ρβ ) with the equality sign if and only if ρ = ρβ , therefore proving the
theorem.
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This theorem is nothing more than a formalization of what is standard knowledge
within the physics community. Here it is mentioned as an argument in favor of the
definition of the formulated variational principle of statistical mechanics for homo-
geneous systems in the thermodynamic limit Eq. (3.1). We see that the main dif-
ference between the criteria Eq. (3.4) and Eq. (3.1), is that in the second one the
thermodynamic functions are replaced by their densities to make all ingredients of
the formulation mathematically and physically meaningful. It is clear from Eq. (3.4)
that the thermodynamic limit of any Gibbs state satisfies the principle Eq. (3.1). It
is also important to realize the following difference between the two principles Eq.
(3.1) and Eq. (3.4): As proved above, the finite volume principle Eq. (3.4) has only
one solution, namely the Gibbs state. Hence its set of solutions is automatically a
singleton, which evidently cannot be decomposed into a non-trivial convex combi-
nation of two or more other different solutions or equilibrium states. Clearly this
finite volume principle is only able to describe one-phase physics situations.

Therefore in order to work with multiple phase physical systems, phase transi-
tions and all that, we must apply the variational principle Eq. (3.1) formulated in the
thermodynamic limit. The challenge accompanying this principle is to derive from
it all its solutions. We denote all of them with the simple general notation ωβ . What
does all this mean in practice? There is only one way of doing and this is to derive
from Eq. (3.1) all the correlation functions Eq. (2.7) of the unique equilibrium state
or of all the possible equilibrium states. In the following chapters we find a number
of practical hints and ways of proceeding to that goal for a number of boson system
models, as well as for the general two-body interacting particles model. In particular
a general practical tool in this search for a derivation of properties of the equilibrium
states is to consider the condensate equations. They represent some of the quantum
Euler equations of the variational principle. For instance one of these equations turns
out to be an explicit closed equation for the condensate density. Finding a non-trivial
solution of this equation for the condensate density is akin to proving the existence of
equilibrium states showing Bose-Einstein condensation and in due case other types
of phase transitions. An extensive and detailed account of the condensate equations
is found in the next chapter.

3.2 Energy-Entropy Balance Criterion

A characterization of equilibrium states, even more generally applicable than the
variational principle of the previous section, is now given in terms of the energy-
entropy balance correlation inequalities. These conditions are more general than the
variational principle because they are also applicable as equilibrium criteria in the
case of non-homogeneous systems. Moreover they give an interesting physical inter-
pretation of the nature of an equilibrium state. Finally these correlation inequalities
turn out to be highly practical tools for many applications. As this characterization
of equilibrium is less known in the physics literature, we develop first a detailed dis-
cussion of this principle. It might help as an intellectual motivation in order to use it
as a characterization of equilibrium.
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As a matter of introducing this subject, we consider again the case of density
matrix states for finite systems with a Hamiltonian H(μ) as we did in the previous
subsection in order to argue the variational principle Eq. (3.1). We start with the
following property:

Theorem 3.5. The necessary and sufficient condition in order that a state ω is the
Gibbs state ωβ , is that it satisfies the following correlation inequalities, called from
now on the energy-entropy balance correlation inequalities: For any observable A,

βω(A∗[H(μ),A]) ≥ ω(A∗A) ln
ω(A∗A)
ω(AA∗)

where the function f (u,v) = u ln u
v is well defined for all real u,v > 0 and where

f (u,v) = 0 if u = v = 0.

Proof. Consider the spectral resolution of the Hamiltonian H(μ): Let (ei)i be the
orthonormal basis that diagonalizes the Hamiltonian and let Ei, j be the matrix units
or partial isometries (in Dirac notation) Ei, j = |ei >< e j|, mapping the vector e j onto
ei. Then H(μ) = ∑i εiEi,i, with (εi)i the spectral values of H(μ).

Take first ω = ωβ , that is, ω is the Gibbs state. Using the cyclic permutation
property of the trace trCD = tr DC, we get

ωβ (AA∗)
ωβ (A∗A)

=
ωβ (A∗e−βH(μ) AeβH(μ))

ωβ (A∗A)
=∑

i, j

ωβ (A∗Ei,iAE j, j)
ωβ (A∗A)

e−β (εi−ε j)

Note that ωβ (A∗Ei,iAE j, j) ≥ 0 and that ∑i, jωβ (A∗Ei,iAE j, j) = ωβ (A∗A). Using the
convexity of the exponential function we obtain the following inequalities for each
observable A:

ωβ (AA∗)
ωβ (A∗A)

≥ exp{−β∑(εi − ε j)
ωβ (A∗Ei,iAE j, j)

ωβ (A∗A)
} = exp{−

βωβ (A∗[H(μ),A])
ωβ (A∗A)

}

proving that the Gibbs state satisfies the correlation inequalities of the theorem.
Now we prove the converse. Therefore we start with an arbitrary normal state

ω(.) = trρ., satisfying the correlation inequalities of the theorem for all observables
A. We have to prove that this state coincides with the Gibbs state.

For the proof, take first A∗ = A. Then the inequalities yield ω(A[H(μ),A]) ≥ 0
and hence ω(A[H(μ),A]) = ω(A[H(μ),A]) expressing that it is a real number. But
this equality means also that ω([H(μ),A2]) = 0.

As each operator A can be written as a linear combination of at most four pos-
itive operators, it follows that ω([H(μ),A]) = 0 holds for each observable A. We
should realize that this result already means that the state ω is time invariant for the
dynamics defined by the given system Hamiltonian H(μ). Using again the cyclic per-
mutation property under the trace, we get [ρ,H(μ)] = 0, or ρ and H(μ) commute,
and therefore they can be diagonalized with respect to the same basis. In particu-
lar we have ρ = ∑ρiEi,i with all ρi ≥ 0. Substitute now A = El,k in the correlation
inequalities, we obtain
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β (εl − εk)ω(Ek,k) ≥ ω(Ek,k) ln
ω(Ek,k)
ω(El,l)

as well as the equivalent inequality with l and k interchanged. Suppose thatω(El,l) =
0. It then follows thatω(Ek,k) = 0 for all k. This is impossible because∑ω(Ek,k) = 1,
which is a consequence of the normalization of the state. Hence for all l: ω(El,l) > 0.
Therefore we get

β (εk − εl) = ln
ω(El,l)
ω(Ek,k)

ω(El,l)eβεl = ω(Ek,k)eβεk = λ

with λ a constant independent of the indices k and l. From the normalization of the
state again follows that λ = 1/tr e−βH(μ). Hence ρk = ω(Ek,k) = e−βεk/tr e−β H(μ)

or ρ = ∑k
e−β εk Ek,k

tr e−β H(μ) = e−βH(μ)

tr e−βH(μ) , is equal to the Gibbs density matrix and ω is the
Gibbs state.

This theorem, together with the previous one Eq. (3.4), show that the variational prin-
ciple, as well as the energy-entropy balance correlation inequalities, yield equivalent
characterizations of the canonical(grand canonical) Gibbs states for finite volume
systems. Moreover both equivalent formulations yield for each of them an interest-
ing physical characterization of an equilibrium state, or of equilibrium in general.
We will return to that point later.

In any case, on the basis of the theorem Eq. (3.5) it is as quite possible to define
the equilibrium state of an infinitely extended system, a system in the thermody-
namic limit (V →∞), as a solution of the correlation inequalities Eq. (3.5). For these
reasons we make the following formal definition of an equilibrium state for infinitely
extended systems:

Definition 3.6. The Energy-Entropy-Balance(EEB) criterion yields the following
criterion for equilibrium states in the thermodynamic limit: Each state ωβ of the
system satisfying, for each observable A in the domain of the commutator limV [HV −
μNV , .], for each fixed inverse temperature β and chemical potential μ , the inequal-
ities

β lim
V
ωβ (A∗[HV −μNV ,A]) ≥ ωβ (A∗A) ln

ωβ (A∗A)
ωβ (AA∗)

(3.7)

is an equilibrium state of the system at the inverse temperature β and chemical
potential μ .

Again as for the variational principle, taking the limit β → ∞ of the EEB criterion
yields the following defining criterion for the ground states:

Definition 3.7. Any state ω0 satisfying limV ω0(A∗[HV − μNV ,A]) ≥ 0 for any ob-
servable A, is a ground state of the boson system defined by the Hamiltonians HV

and particle density determined by the chemical potential μ .
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For homogeneous systems it is easy to check that this ground state criterion is equiv-
alent to the one based on the variational principle. As before, in the following we
work in the grand canonical ensemble and for notational convenience we continue
with the notation HV (μ) = HV −μNV .

It is clear that as well the EEB criterion as the variational principle get both a
formulation characterizing the (grand-)canonical equilibrium states.

From a practical point of view, to derive and know the equilibrium states on the
basis of the EEB criterion, we must obtain again, as in the case of the variational
principle, all n-point correlation functions of the equilibrium state(s), but now from
the EEB-inequalities Eq. (3.7). The hint to proceed with this task is clearly to choose
in a clever way several local observables A, to substitute them in the inequalities, and
to analyze the outcomes. To gain a view on a number of especially interesting hints
for the best choice among the observables, we refer again to the next chapter, where
for several models the equilibrium solutions are also explicitly computed on the basis
of the EEB criterion. In particular for the computation of the one-point function we
refer again to Eq. (4.3.3) for the derivation of the corresponding condensate equa-
tions.

We should note that the variational principle and EEB criteria all hold as equilib-
rium criteria for all quantum systems, not necessarily just arbitrary boson systems.
Before proceeding to the next chapter, we derive from the EEB criterion a number
of generally valid properties of equilibrium states for any quantum system as well
as, of course, any boson system. As a first result following from this criterion, the
stationarity or the time invariance of all equilibrium states is derived. Although this
property may come over as an obvious physical statement, its derivation is not suf-
ficiently visible in the physics literature. We formulate it as the following theorem:

Theorem 3.8. Let ωβ be a state, a solution of the EEB criterion Eq. (3.7). Then for
each observable X,

lim
V
ωβ ([HV (μ),X ]) = 0 (3.8)

which expresses the time invariance or the stationarity of any equilibrium state ωβ .

Proof. We first substitute an arbitrary self-adjoint observable X = X∗ into the in-
equality Eq. (3.7), obtaining

lim
V
ωβ (X [HV (μ),X ]) ≥ 0

which demonstrates that the left hand side of this inequality is a real number. There-
fore

lim
V
ωβ (X [HV (μ),X ]) = lim

V
ωβ (X [HV (μ),X ])

= lim
V
ωβ ((X [HV (μ),X ])∗)

= − lim
V
ωβ ([HV (μ),X ]X)

Hence
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0 = lim
V
ωβ (X [HV (μ),X ])+ lim

V
ωβ ([HV (μ),X ]X) = lim

V
ωβ ([HV (μ),X2])

and the theorem is proved for the positive operators of the form Y = X2. As this
relation is linear in Y , and as every operator can be written as a linear combination
of four positive operators, it follows that the relation Eq. (3.8) holds for any arbitrary
observable X .

The stationarity of the equilibrium states as stated in this theorem is sometimes re-
ferred to as its infinitesimal form. In Chapter (5) we discuss the dynamics of Bose
systems and relate this formulation to the more common property of stationarity. Of
course the stationarity can as well be derived directly from the variational principle
Eq. (3.1).

For a more mathematical introduction of the EEB criterion together with a study
of its equivalence with other correlation inequalities and other characterizations of
equilibrium we refer to [52] and for related notions to [148, 151].

The physical interpretation of this EEB criterion can also be be worked out in
greater detail. For more information about this point we refer to [53] for the follow-
ing interpretation of the criterion: The left hand side of the inequalities Eq. (3.7) rep-
resents the change of energy in the equilibrium state under a dissipative perturbation,
which is locally generated by the observable X . In fact, it is the time derivative of
the energy density under a dissipative dynamics which we discuss in Chapter (5) and
(7.2)). The right hand side, or the lower bound, represents the change in entropy of
the equilibrium state under the same dissipative perturbation of the equilibrium state.
The EEB criterion Eq. (3.7) tells us that an equilibrium state is completely charac-
terized by the fact that if an equilibrium state gets perturbed its energy increase is
always majoring its entropy increase. A state not satisfying this criterion and there-
fore showing wild changes of the entropy not bounded by the energy changes cannot
be an equilibrium state. This is the sense in which the EEB correlation inequalities
express the property of thermodynamic stability of each equilibrium state.

For a more explicit study about the equivalence of the equilibrium EEB crite-
ria Eq. (3.7) and the variational principle Eq. (3.1) for homogeneous systems in the
thermodynamic limit we refer to [53] and [26]. In fact both criteria express the same
thermodynamic stability. The EEB criterion has to be considered as a differential
form of the variational principle comparable to the position of the Euler equations
in standard variational analysis. We should not be surprised by the inequalities, in-
stead of equalities, because we can prove that the inequalities are equivalent to Euler
equations (see [53] for example). The latter are however practically less manageable
in application. It will become clear later that the inequalities are handy tools for the
study of equilibrium properties.

We need to realize that the EEB- criterion for equilibrium states is given by
inequalities expressed in terms of the correlation functions which determine com-
pletely the equilibrium state.

A number of other correlation inequalities known in the literature have shown
to be useful tools in theoretical and mathematical physics as well. In particular we
mention a well-known correlation inequality, namely the so-called Bogoliubov in-
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equality [120, 77, 25] for Gibbs states, which turned out to be an interesting tool
in disproving the existence of spontaneous symmetry breaking (see Chapter (4)) or
of phase transitions in boson and other quantum systems. This inequality provides
an interesting upper bound on the quantum fluctuations. The question can be raised
about its relation to the above EEB-correlation inequalities. It should be clear that as
the EEB criterion is a full characterization of the equilibrium states, all other corre-
lation inequalities for equilibrium states should follow from it. As an illustration of
this fact, we derive now the well known Bogoliubov inequality and another useful in-
equality, called the double commutator inequality, directly from the EEB-correlation
inequalities.

Theorem 3.9. Let ωβ be any equilibrium state satisfying the EEB criterion then for
each observable X holds the Bogoliubov inequality:

lim
V
βωβ ([X∗, [HV (μ),X ]])

1
2
ωβ (X∗X +XX∗) ≥ |ωβ ([X ,X∗])|2 (3.9)

implying immediately the double commutator inequality

lim
V
ωβ ([X∗, [HV (μ),X ]]) ≥ 0 (3.10)

Proof. The EEB-inequality Eq. (3.7) is an inequality on the real numbers, hence each
side of the inequality should be real. In particular

lim
V
ωβ (X [HV (μ),X∗]) = lim

V
ωβ (X [HV (μ),X∗]) = − lim

V
ωβ ([HV (μ),X ]X∗)

Therefore again from Eq. (3.7), considering the inequalities for X and for X∗, and
after adding both of them, we get

β lim
V
ωβ ([X∗, [HV (μ),X ]]) ≥ ωβ ([X∗,X ]) ln

ωβ (X∗X)
ωβ (XX∗)

As for all a,b > 0 we get (a− b) ln(a/b) ≥ 0; the second inequality of the theo-
rem follows immediately. Furthermore, for all a ≥ b > 0 (the other case b ≥ a > 0
is similar), ln(a/b) =

∫ a
b dx f (x), with f (x) = 1/x being a convex function on

the interval [b,a]. Therefore f (x) ≥ g(x) = f ′( a+b
2 )(x− a+b

2 ) + f ( a+b
2 ) and hence

∫ a
b dx f (x) ≥

∫ a
b dxg(x) ≡ 2 a−b

a+b , therefore proving the Bogoliubov inequality.

We should realize that the set of Bogoliubov inequalities for arbitrary observ-
ables does not constitute a full criterion for equilibrium states comparable with the
EEB criterion. In other words, the Bogoliubov inequalities do not imply the EEB-
inequalities. This follows from the simple fact that the central state, which we de-
note by ω∞, always satisfies the Bogoliubov inequality. The central state is defined
by the property that, for each pair of observables X ,Y , ω∞(XY ) = ω∞(Y X), that is
under the state two operators always commute. Also, the central state is obtained
from a Gibbs state after having taken the limit of the temperature going to infinity
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(or β = 0). Therefore physically the central state can be referred to as the infinite
temperature state. This fits with the popular wisdom of quantum physics being a low
temperature phenomenon, classical physics a high temperature one.

Finally we note that in the literature often the following inequality holds: For
each pair of observables X ,Y and for each equilibrium state ωβ holds the inequality

lim
V
β ωβ ([X∗, [HV (μ),X ]])

1
2
ωβ (Y ∗Y +YY ∗) ≥ |ωβ ([X ,Y ∗])|2 (3.11)

This inequality is referred to as the Bogoliubov inequality. This inequality, with two
possibly different observables X and Y , looks more general than the above Eq. (3.9)
formulated in the theorem. It is however easy to show that both are just two different
formulations of the same inequality. The proof of this equivalence is obtained by an
easy algebraic argument and is left as an exercise. This proof is also found in [52].

3.3 Variational Principle for Solvable Models

In this section we describe explicitly the most general form of the variational princi-
ple when one is faced with homogenous solvable models. Before we define explicitly
what we mean to have a solvable model, we introduce a new notion. Its relevance will
become clear in the derivation of the variation principle for solvable boson models,
which is the main contribution of this section.

Definition 3.10. Let ω be an arbitrary boson state. The two-point truncated func-
tions of the state define two operators R and S, exactly as explained in Eq. (2.3).
But in turn this couple of operators defines also a quasi-free state, which we denoted
ω(R,S). The latter state is always essentially different from the given state except if
the latter is already a qf-state. We call the state ω(R,S) the quasi-free state associated
to or induced by the given (general) state ω .

As an explicit and useful example of a state and its associated qf-state, we consider
a normal boson state ωρ , with a density matrix ρ acting on the Fock Hilbert space
F, explicitly ωρ( .) = trρ( .). In general this is not a quasi-free state. We construct
explicitly its associated qf-state ω(R,0).

Let us consider an orthogonal normal basis { fm} of the test function space S
diagonalizing the density matrix ρ and defining the non-negative real numbers nk,
by the relations nkδk,l = trρ a∗kal with the notation al = a( fl). Consider now the
operator, sometimes called the effective Hamiltonian of the state (see also Chapter
Eq. (5)), H = ∑k εka∗kak with the energy values εk = ln((nk + 1)/nk) and consider
also the new density matrix σ = e−H/tr e−H . Let us define the normal state ωσ ( .) =
trσ( .), with density matrix σ . We then compute

trσ a∗kal = trρ a∗kal = δk,l nk (3.12)

which expresses the property that the two-point functions of the states ωρ and ωσ do
coincide.
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Note that ωσ is a quasi-free state. In the chosen basis, in fact, it is the Gibbs
state for the (free particles) Hamiltonian H. It is identified to be equal to the qf-state
ωσ = ω(R,0) with R the diagonal matrix ((nk +1)δk,l)k,l .

It is a satisfying exercise to verify that its truncated correlation functions of order
larger than 2 all vanish. The state ωσ is the associated qf-state induced by the given
state ωρ .

We use this construction to derive an entropy inequality between the entropies of
each normal state and its associated qf-state. For any normal state ωρ with density
matrix ρ as above, the (von Neumann) entropy is defined as always by S(ωρ) =
−trρ lnρ .

Lemma 3.11. We obtain the entropy inequality

S(ωρ) ≤ S(ω(R,S)) (3.13)

where ω(R,S) is the quasi-free state associated to the state ωρ .

Proof. As above, using a Hilbert space basis diagonalizing the density matrix ρ of
ωρ such that the couple (R,S) simplifies to the form (R,0), we obtain

S(ω(R,0))−S(ω) = trρ lnρ− trσ lnσ (3.14)

Using Klein’s convexity inequality [26], Lemma 6.2.21, that is, simply using the
convexity of the function f (x) = x lnx (see the proof of Eq. (3.4)), we obtain

tr (ρ lnρ−σ lnσ) ≥ tr (ρ−σ) lnσ (3.15)

where lnσ = −∑εka∗kak − ln tr (exp−H) and hence

S(ωσ )−S(ωρ) ≥−∑ εk(trρ a∗kak − trσ a∗kak) = 0

because the states ρ and σ have the same two-point functions. This proves the in-
equality Eq. (3.13).

This inequality is a mathematical expression with the following physical interpreta-
tion: As is commonly understood, the von Neumann formula for the entropy of a state
expresses the degree of disorder in the state. With this in mind we need to remember
that ωρ is a state with more non-trivial correlations than its associated qf-state ω(R,S)
because infinitely many truncated correlation functions are potentially set equal to
zero. Therefore we have to expect that the entropy of the state ωρ is smaller than or
equal to the entropy of its associated qf-state ωσ . That is exactly what we proved and
expressed in the preceding Lemma.

In Eq. (3.1), we formulated the general variational principle of statistical me-
chanics valuable for an arbitrary boson system HV in the thermodynamic limit. We
denote by ωV the restriction of the state ω to the algebra of observables measurable
within the finite volume V . Without restriction of generality we can assume that ωV

is a normal state, or equivalently that it is determined by the density matrix ρV in
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ωV ( .) = trρV ( .). Of course the main reason for this assumption is that we are ba-
sically interested in equilibrium states that are thermodynamic limits of local Gibbs
states, which are all normal states by construction. In other words, for our purposes
we may assume that all states ω under consideration in the variational principle are
locally normal. Therefore we can rewrite the principle Eq. (3.1) as follows:

Definition 3.12. Any equilibrium state ωβ at inverse temperature β = 1
kT and chem-

ical potential μ is a solution satisfying the variational principle

f (ωβ ) = inf
ω

f (ω) = inf
ω

lim
V→∞

(β trρV (HV −μNV ) + trρV lnρV ) (3.16)

where f is the free energy density functional Eq. (3.1) and where the minimum is
taken over all homogeneous states.

In the rest of this section we concentrate our attention on the question of solvable
systems or solvable models, which are defined by the local Hamiltonian {HV}V . The
first question is: What is a solvable model?

Definition 3.13. The model HV is a solvable model if the energy (minus the chemical
potential term) density functional for any ergodic state ω , which is given by

e(ω) ≡ lim
V
ω(

HV −μNV

V
) = lim

V
ωV (

HV −μNV

V
) = lim

V
trρV (

HV −μNV

V
), (3.17)

depends only on the one- and two-point truncated correlation functions of the state
ω and does not depend on any of the (n > 2)-point functions. Equivalently this ex-
pression depends only on the one-point functions and on the operators (R,S) defining
the ω-associated qf-state ω(R,S). The one-point functions are again given by ω(a( f ))
and its complex conjugate. In other words the energy density of any solvable model
for any ergodic state ω depends only on the quasi-free character of the state, that is,
this energy density equals to the energy density for the associated qf-state of ω .

We know that for homogeneous states the one-point functions take the form
ω(a( f )) = c f (p = 0), where c is a complex constant. Therefore it is reasonable
to denote the most general qf-state with the extended notation ω(R,S,c). In particular
we denote also ω(R,S,0) ≡ ω(R,S) whenever c = 0.

The energy density functional value in the state ω for a solvable model is there-
fore characterized by the functions (r,s) and the constant c, or if α(p) = args(p) by
(r ≥ 1, t ≥ 0,α,c). Hence the energy density e(ω) of any solvable model in any state
ω has the following dependence on its state parameters: e(ω) ≡ e(r, t,α,c).

Consider now the entropy term in the variational principle Eq. (3.16). Because
the principle is restricted to locally normal states we can use the following property:

For normal states, that is, for density matrix states, as an immediate conse-
quence of von Neumann’s uniqueness theorem (see e.g. [131], Chapter 1 and 9)
each canonical transformation τ is implemented by a unitary operator Eq. (7.3). This
means that there exists a unitary operator U such that τ(A) = UAU∗ for each ob-
servable A. Therefore ωV (τ(A)) = trρVUAU∗ = trU∗ρVUA and the density matrix
of the state ωV ◦ τ is given by U∗ρVU . Because of the property trU∗XU = tr X ,
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the entropy functional is left invariant under any canonical transformation yielding
S(ωV ◦ τ) = S(ωV ). Two immediate consequences are in order:

i) The entropy does not depend on the one-point functions (see Eq. (2.15) and
thereafter). Therefore we continue with qf-states of the type ω(R,S).

ii) From Lemma Eq. (2.6) it follows that for any such qf-state, S(ω(R,S)) =
S(ω(R̃,0)). This means that the problem of computing explicitly the entropy density
is reduced to its computation for gauge invariant qf-states.

Furthermore in [47] the explicit formula of the entropy density for gauge invari-
ant homogeneous qf-states in terms of function r(p), which is well known in the
physics literature, is rigorously proven. We obtain the following expression for the
entropy density of any arbitrary qf-state ω(r,t,α,c):

s(r, t,α,c) = s(r, t,0,0) = s(ω(R,S)) = s(ω(R̃,0))

= lim
V

S(ω(R̃V ,0))

V

=
∫

d p(r̃(p) ln r̃(p)− (r̃(p)−1) ln(r̃(p)−1)) (3.18)

where r̃(p) is given as a function of r and t in the Lemma Eq. (2.6).
Using all these results regarding the energy and the entropy densities, and in

particular the inequality Eq. (3.13), we obtain, for any homogeneous state ω with
associated qf-state determined by the parameters (r,s,α,c), the explicit expression
of the free energy functional for any solvable model and the inequality

f (ω) = βe(ω)− s(ω) ≥ βe(r, t,α,c)− s(r, t,α,c) (3.19)

Hence the inequality Eq. (3.13) proves essentially that, for solvable models, the min-
imum over all states in the general variational principle Eq. (3.16) reduces to a varia-
tional principle over the smaller set of the homogeneous quasi-free states. The latter
set is a closed subset of the set of all ergodic states of the system.

Hence we proved the following theorem:

Theorem 3.14. Let HV be the local Hamiltonian of a solvable boson system. Then
the variational principle of statistical mechanics for its equilibrium states Eq. (3.16)
reduces to the variational principle over the set of all homogeneous quasi-free states,
a property explicitly expressed by

f (ωβ ) = inf
ω∈Q

f (ω)

= inf
r≥1,t≥0,α,c

(βe(r, t,α,c)− s(r, t,0,0))

= inf
r≥1,t≥0,α,c

{β e(r, t,α,c)−
∫

d p{r̃(p) ln r̃(p)− (r̃(p)−1) ln(r̃(p)−1)}}

where r̃(p) is given by Lemma Eq. (2.6) as a function of r and t. The solutions,
namely the equilibrium states ωβ , are always quasi-free states.
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This theorem teaches us that for solvable systems the search for equilibrium states
is largely reduced to a problem of classical analysis. The problem of solving the
quantum Euler equations, has been turned explicitly to a problem of variations on
the following sets of functions, namely the sets of continuous non-negative functions
r−1 and t, the real continuous functions α and the complex constants c.

About this explicit variational problem we mention that the parameter α is a
free parameter yielding no constraints and we compute directly its corresponding
Euler equation. The variational equation with respect to the parameter |c|=√ρ0, the
square root of the condensate density, is not as straightforward because the values
of this parameter are, in the grand canonical version of the principle, constrained by
the constant total density ρ = ρ0 +ρc. We do not enter here into more details but we
refer again to section Eq. (4.3.3) of Chapter Eq. (4), where we discuss the condensate
equation.

We now consider the variational operation of the free energy functional on the
set of non-negative continuous functions r−1 such that

∫
d p(r(p)−1) ≤ ρ , where

ρ is again the given constant density. Finally, we perform the variation on the set
of non-negative continuous functions t satisfying the constraint

√
r(p)(r(p)−1) ≥

t(p) ≥ 0. This step finishes the main steps in the realization of the complete varia-
tional principle for any solvable boson system. We will explicitly solve a number of
solvable models for their equilibrium states according to this variational principle in
the next chapter.

Many of us may wonder whether for solvable models the search for equilibrium
states could be simpler or not if we had used the energy-entropy criterion for equi-
librium states. It is clear that the notion of a solvable model leads indeed also to
essential simplifications when searching for solutions of the EEB criterion. In par-
ticular it will be clear from reading Chapters Eq. (4) and Eq. (5) that to obtain a
complete solution the choice of the observables X in the EEB inequalities can be
restricted to linear combinations of the creation and annihilation operators. Using
only these operators in the EEB inequalities is sufficient to specify all correlation
functions of all equilibrium states. The specific ways of proceeding and the argu-
ments for these statements become explicit (and hopefully clear) in the applications.
In any case both equilibrium criterions lead to essential simplifications in the search
for solutions of the equilibrium states. It is hard to decide whether one or the other
are simpler or more efficient. All this aspects have to be judged depending on the
particular solvable model under consideration.

Finally we note the non-solvable model situation as well. Suppose that we have
a system determined by the local Hamiltonians {HV (μ)}V . Then the theorem Eq.
(3.14) does not hold. Nevertheless we maintain the generally valid inequality

f (ωβ ) = inf
ω

f (ω) ≤ inf
ω∈Q

f (ω) ≡ f (ω̃β ) (3.20)

where Q is the set of homogeneous quasi-free states and ω̃β is a quasi-free state min-
imizing the free energy density functional for the variation over the set of qf-states.
Each minimizing state can be considered as a quasi-free approximation of the true
equilibrium state. Again, we proved above that the inequality becomes an equality
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if the system is a solvable system. If the system is not solvable then the inequality
establishes a strict upper bound f (ω̃β ) for the free energy density f (ωβ ) of the sys-
tem. Questions can be asked about the position of the state ω̃β , for example: Is it
an equilibrium state and for which Hamiltonian model? The answer can be: Yes, for
all systems with a solvable Hamiltonian obtained from the original one, after having
applied a “quasi-free” or a “mean field” (see Eq. (4.4), Eq. (5.1)) approximation to
the original model”. It is well known that these quasi-free or mean field approxima-
tions are not unique or in any way canonical approximations. The system can contain
many mean field approximate models of this kind.

Depending on the particular subsets of quasi-free states which we consider in
these approximate variational principles, we obtain what is called in different do-
mains of physics the usual mean field approximation models, the Hartree-Fock ap-
proximate model, the functional-density method model, the Bogoliubov model, and
other solvable models; some of these models are treated in all details in Chapter Eq.
(4). All these models are mean field approximations of the fully interacting two-body
interaction model.

Given that the left side of the inequality Eq. (3.20) represents the real value of
the free energy density of the original system, another problem appears: How closely
does the right hand side value approximate the value of the left hand side, the true
free energy density equilibrium value? This is again not an easy question to answer;
indeed, nobody presently knows the answer. Numerous efforts to gain insight into
these problems are spread throughout myriad fields of the physics literature.

Along the same line of thinking, we can consider the inf over any other subset
of the homogenous states instead of solely the set of qf-states. For each of them,
we again obtains upper bounds for the free energy density of the type as in Eq.
(3.20). One observes that the right hand side value can greatly depend on the chosen
variational set. Special sets of states which are frequently used in the literature are
(sub)sets of coherent states. We recall that the special set of coherent states built on
the Fock state is a subset of the quasi-free states.

We may also encounter derivations of lower bounds for the free energy density in
the physics literature. It is clear that strict lower bounds can never be interpreted as
the free energies of some equilibrium state of the same system. In general these lower
bounds might be interesting in connection with stability questions. However in many
cases it is not clear how these lower bounds present a decent physical interpretation
or provide a better conceptual understanding within the variational principle scheme
of statistical mechanics of boson systems.
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Bose Einstein Condensation (BEC)

4.1 Introductory Remarks

Bose [24] and Einstein [42] considered a finite but arbitrary large set of what they
called Planck oscillators and applied statistics to it. They pointed out the possibility
of an arbitrary large number of oscillators to be in a zero momentum state. This prop-
erty was interpreted as a physical phenomenon, a kind of condensation phenomenon.
Later when second quantization was formulated, the oscillators where called boson
particles. This was the birth of the famous Bose-Einstein Condensation, nowadays
denoted in short by BEC. This work of Bose and Einstein garnered considerable dis-
cussion for more than a decade, particularly in clarifying the meaning behind the
appearance of phase transitions in finite systems. In 1938 London [108] introduced
the concept of macroscopic occupation of the ground state and related it to the long
range coherence properties of the Bose-Einstein condensate. Since that period, the
physics of the phenomenon has become standard knowledge in statistical mechan-
ics and present in all related textbooks. Each assembly of many free boson particles
shows condensation, namely a macroscopic number of the bosons in the momentum
(p = 0)-mode, if the density is large enough or if the temperature is low enough. It
is fundamentally a pure quantum phenomenon, as it holds even for a system of free
quantum particles and because it disappears in the classical limit.

Apart from the free Bose gas, the interacting Bose gas comes into the picture
of the BEC-phenomena as a consequence of Landau’s phenomenological theory of
superfluidity [95, 96]. He explained superfluidity on the basis of a quantum Bose
liquid like He4.

The so-called criterion of Landau for superfluidity is based on the idea that a
quantum liquid remains a classical fluid even at zero temperature and that the clas-
sical hydrodynamical laws remain valid. The second principle is that the collective
behavior dominates the movement of the individual atoms, which are the boson par-
ticles. The collective particles, sometimes called quasi-particles (see Chapter Eq.
(5)), are characterized by their quasi-energies E(k) with momenta k ∈ R

d . Landau’s
criterion for superfluidity of the condensed matter particles at momentum k = 0, is
obtained on a purely mechanical basis and is expressed by the condition
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lim
|k|→0

E(k)
|k| > 0 (4.1)

Roughly speaking, satisfying Landau’s criterion requires that the spectrum of global
condensate particles has a non-trivial linear behavior in the neighborhood of zero mo-
mentum. Clearly the superfluidity properties of these liquids are described in terms
of the spectrum of the collective excitations.

It is important to remark at this point that the spectrum of the system enters as an
important issue in the discussion about the appearance of superfluidity. Moreover, at
that time, it came over as natural to take for the Bose liquid a Bose condensate. The
problem with the free Bose gas as the representative model arose precisely because
its spectrum did not fit with Landau’s criterion for superfluidity Eq. (4.1). Therefore
the search for interacting Bose gases showing Bose condensation and exhibiting the
appropriate Landau spectrum came into the picture. Along this line of thought, the
whole Bogoliubov theory [20, 21, 22, 169] can be seen as a tentative approach to
formulating a decent microscopic theory of superfluidity. Since that time the problem
concerning the occurrence of BEC for interacting boson systems has been firmly
posed as a meaningful challenge to the theoretical physicists community.

The more recent interesting experiments on trapped boson gases [37, 6, 135] do
not fit completely in this scheme nor in the scope of this monograph because of the
presence of the external fields realizing the traps (see Section Eq. (4.8)). In these trap
systems, we refer, in an intrinsic manner, to non-homogeneous systems. In this text
we are interested in microscopic homogeneous boson systems. Nevertheless these
trap experiments reveal appealing and interesting indications of new properties (at
least, so far) of boson condensates that beg for a deeper theoretical and mathematical
understanding and a modeling in terms of the standard setup of BEC for homoge-
neous systems. We do not treat in great detail the theory of Bose gases in traps; it
remains, however, a highly active area of research. In the last section of this chap-
ter the topic of trapped systems is shortly introduced with the following question
in mind: How can these trapped-systems phenomena be understood from the mi-
croscopic point of view of homogeneous standard boson systems and their boson
condensation properties?

4.2 Free Boson Gas and BEC

The free Bose gas model is described by the Hamiltonian Eq. (2.4), where the in-
teraction potential v is set equal to zero. The local Hamiltonian defined on the Fock
Hilbert space becomes

H f ree
V =

∫

V
dx

1
2m
∇a∗(x).∇a(x) (4.2)

In this formulation the space derivatives enter and face us immediately with the prob-
lem of the choice of boundary conditions at the boundaries of the finite volumes V .
We are also faced with the choice of the geometrical forms for these volumes. Al-
though making choices on these points is important in the search for the possibility
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of BEC occurring, as a first approach we do not want to be too sophisticated in these
matters. We consider periodic boundary conditions and cubic boxes. Later on we
discuss in some detail the effects due to alternative choices.

Getting now to the point, consider a system of bosons of mass m enclosed in the
cubic boxes V ⊂R

d , where d is the dimension of the system. The notation V denotes
the subsets of the space R

d as well as its volume V = Ld ; L is the side length of the
boxes. We consider the dual volume

V ∗ =
{

k ∈ R
d ; kα =

2π
L

nα ; nα = 0,±1, . . . , α = 1, . . .d

}

.

The Hamiltonian then takes the form

H f ree
V (μ) = ∑

k∈V ∗
(εk −μ) a∗kak (4.3)

where εk =
h̄2k2

2m
, h̄ = 1, μ is the chemical potential, and use the notation

a∗k = a∗( fk) =
∫

V
dx

eikx
√

V
a∗(x)

fk(x) =
1√
V

eikx (the individual particle wave function)

with the boson commutation relations

[ak,a
∗
k′ ] = δk,k′ ; [ak,ak′ ] = 0 ,

Note that the wave functions fk with k 
= 0 are periodic functions describing particu-
lar periodic localizations of the boson particles in the space variables x. On the other
hand, the wave function f0 (i.e. k = 0) is a constant function describing a completely
delocalized one-particle wave function. This function plays a very specific role in
the phenomenon of condensation; therefore many authors considered it as possibly
the unique wave function of the condensed particles (at least for closed boson sys-
tems). On the other hand, particles in the other wave functions (k 
= 0) are usually
called excited particles. Later we discuss situations going beyond these interpreta-
tions. For open boson systems this interpretation seems too narrow and indicates that
the condensation of particles with k 
= 0 is also relevant in a global study of BEC.

Continuing with the free boson gas model, we first verify the stability of the
free Bose gas Hamiltonian for each finite volume V . It is immediately clear that the
stability criterion Eq. (3.4) for this Hamiltonian Eq. (4.3) is satisfied only when the
chemical potential is strictly negative, i.e. when μ < 0.

4.2.1 Standard BEC

We now look for limit Gibbs states in the finite temperature case (β < ∞) and for
the appearance of condensation. We start from the finite-volume situation and look
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for thermodynamic-limit states of the finite-volume Gibbs states, which we denote
simply by ωV . For the Gibbs state, we then examine the particle occupation of the
different energy levels for an arbitrary value of the momentum k ∈ V ∗. In particular
this implies already that we use periodic boundary conditions with cubic boxes of
side L and finite volumes V The occupation of the number of particles is given by

ωV (Nk) =
tr e−βHV (μV )Nk

tr e−βHV (μV )

where Nk = a∗kak, and easily computed to be

ωV (Nk) =
1

eβ (εk−μV ) −1
.

The chemical potential μV of the volume V is determined by the fixed given total
density constraint (grand canonical ensemble) equation for each volume V ,

ρ = ωV (NV ) =
1
V ∑

k∈V ∗

1

eβ (εk−μV ) −1
(4.4)

Note that this relation depends on the size and form of the volume and therefore
everything is boundary conditions dependent. In order to make more universal state-
ments (more precisely, to make things less dependant on the size of the volume) we
take the thermodynamic limit. We let L or the volume tend to infinity while keeping
the density ρ = ωV (NV ) constant. Then for each volume V we fix a value of the
chemical potential μV (β ,ρ) and vice versa. Let us consider now the thermodynamic
limit of this density equation, using the notation μ ≡ μ(β ,ρ) = lim

V→∞
μV ≤ 0. We then

obtain

ρ = lim
L→∞

ωV (
〈NV 〉

V
) = lim

L→∞

(
1
V

1

e−βμV −1
+

1
V ∑k 
=0

1

eβ (εk−μV ) −1

)

ρ = ρ0(β ,ρ)+ρ(β ,μ(β ,ρ)) (4.5)

with

ρ(β ,μ) =
(

1
2π

)d ∫
dk

1

e
β
(

k2
2m−μ

)

−1

ρ0(β ,ρ) = lim
L→∞

1
V

1

e−βμV −1
= lim

L→∞
ωV (

a∗0a0

V
) .

Clearly ρ0(β ,ρ) is the density of particles in the one-particle wave function vector
of lowest energy ε0 = 0 for a fixed total density ρ .

As the function μ → ρ(β ,μ) increases monotonically we obtain
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ρ(β ,μ) ≤ ρ(β ,0) ≡ ρc(β ) =
(

1
2π

)d ∫

dk
1

eβ
k2
2m −1

. (4.6)

One checks that ρc(β ), called the critical density of the free boson gas, is a finite
function of β for all dimensions d > 2 and that it diverges for dimensions d = 1, 2.
As we will see later, dimensionality turns out to be important for the occurrence of
BEC. Clearly the story stops here in the sense that there is no condensation except
when we consider systems with dimensions d ≥ 3. For convenience, we should keep
in mind the case of dimension d = 3 or d ≥ 3 to obtain a finite critical density.

Suppose first that the fixed total density ρ is small. In particular suppose that
the density is smaller than the critical density, ρ < ρc(β ); then there exists a unique
chemical potential μ ≡ μ(β ,ρ) < 0 such that ρ = ρ(β ,μ(β ,ρ)) and that the total
density equation Eq. (4.4) is satisfied with ρ0(β ,ρ < ρc) = 0.

On the other hand, if the total density ρ is large enough, in particular if it is larger
then the critical density, ρ > ρc(β ), the density constraint equation still holds in the
form

ρ−ρc(β ) = ρ0(β ,ρ) > 0 (4.7)

The chemical potential vanishes, that is μ = 0, and we obtain a macroscopic occupa-
tion of particles in the ground (k = 0) energy level. If so, Bose-Einstein condensation
has taken place in the (k = 0) mode.

Before going on, let us make a technical remark about the limit two-point func-
tion ω(a∗( f )a(g)), for any couple f ,g of the test function space S . Let the state ω
be the equilibrium state or (thermodynamic) limit Gibbs state for the free Bose gas.
We obtain the following two-point function result as a consequence of the possible
condensation phenomenon, which we based on the fixed total density equation (4.7)
argument. Indeed this equation yields straightforwardly that the two-point function
is of the form

ω(a∗( f )a(g)) = f̂ (0)ĝ(0)ρ0 +(
1

2π
)d
∫

dk f̂ (k)ĝ(k)
1

eβ
k2
2m −1

This means that the two-point function of the free boson gas is continuous with
respect to the following norm on the test function space S :

|| f ||20 = | f̂ (0)|2 +
∫

dk | f̂ |2(k) 1

eβ
k2
2m −1

(4.8)

Therefore the two-point function extends to the closure S of S with respect to
this new norm, showing the particular status of the zero or condensate mode. The
zero mode becomes a macroscopic mode with a status different from all other k-
modes. We can formulate this property as follows: In the thermodynamic limit the
zero-mode becomes an independent macroscopic supplementary degree of freedom
separated from the other degrees of freedom of the system. This fact becomes even
more explicit in the next section when we consider the condensate equation valid for
general interacting boson systems.
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Let us analyze further the situation of condensation. Suppose that we have indeed
a non-trivial condensate ρ0 > 0, or condensation in the mode k = 0. Then from the
total density equation we get that

0 < ρ0 = lim
L→∞

1
V

1

e−βμV −1
= lim

L→∞

1
V

(
1

−βμV
) ≤ ρ

or equivalently we find that the chemical potential μV behaves at large volumes as
μV �−1/V . We derived the rate of convergence to zero of the chemical potential as
a function of the volume ultimately leading to limV μV = 0. We determined the large
volume dependence of the chemical potential.

Our next remark concerns the question of condensation outside of the ground
state mode. In fact we can easily understand why there should be no condensation or
macroscopic occupation in any of the other modes k 
= 0 for the free Bose gas with
periodic boundary conditions. Let us look at what happens with the occupation in the
first excited mode given by |k| = 2π

L . The analysis for higher modes follows along
the same lines. Looking at the one-particle energies of the excited modes we find for
d = 3,

inf
k 
=0

k2

2m
=

1
2m

(
2π
L

)2

inf
n 
=0

(
n2

1 +n2
2 +n2

3

)
� 1

V 2/3
; εk �

1

V 2/3

and therefore the particle occupation of this lowest non-zero mode in the limit L →∞
tends to zero. Indeed

lim
L→∞

1
V

1

eβεk −1

∣
∣
∣
∣
k 
=0

� lim
L→∞

1
V

1
(

1
V 2/3

) = lim
L→∞

1

V 1/3
= 0 .

In conclusion, there can be macroscopic occupation in the (k = 0)-mode, but no
macroscopic occupation for any of the other modes k 
= 0.

In conclusion we proved the existence of BEC for the free Bose gas in the lowest
energy (k = 0)-mode and the absence of condensation in the (k 
= 0)-excited modes.
These phenomena show up when the particle density is high enough, a condition
which can also be replaced by the condition of sufficiently low temperature, because
the critical density decreases monotonically as a function of inverse temperature.
This result holds for all dimensions d ≥ 3. In the proofs we used essentially the
so-called saturation argument, expressing that all particles beyond those needed to
reach the critical density should condense. In this analysis we used periodic boundary
conditions, cubic boxes, and a thermodynamic limit such that the side L of the box
tends to infinity. We also considered the thermodynamic limit of the finite volume
Gibbs states.

Our arguments do not work for dimensions d = 1, 2. In that case it follows from
our argument that there is no condensation. At this point it is good to mention the
huge literature dealing with disproving condensation, in particular dimensions d =
1,2, even for boson systems with interactions. All argumentations in this direction
are based on the Mermin-Wagner argument [120, 167], which is a generalization of
the saturation argument used above, but which is expressed in a form applicable to
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interacting systems as well. It is one of the commonly known exact results in the
many-body boson theory. In Eq. (4.3.1) we discuss this argument in a more detailed
form.

Before proceeding to the next topic, we note that Landau’s criterion for super-
fluidity Eq. (4.1) is not satisfied for the free boson gas with condensation. The free
boson condensate particles coincide with the original particles in the sense that they
have the same spectral energy function. Indeed one has E(k) = εk = k2

2m and therefore
lim|k|→0

εk
|k| = 0, contradicting Landau’s criterion.

4.2.2 Thermodynamic Limit and Boundary Conditions

In this section we want to draw attention to the fact that the arguments leading to
the results of our analysis above do not provide the only possible description of the
occurrence of Bose-Einstein condensation. The contributions from the research in
mathematical physics, in particular by the Dublin group (see e.g. [101, 18, 17]) are
important in this respect. They illustrate the dependence on the type of the boundary
conditions and on the type of thermodynamic limits at several places in the analysis
of the free boson gas.

Consider first the dependence of this description on the type of thermodynamic
limit. In this context the concept of generalized condensation is discovered and
worked out by several authors. Generalized condensation is condensation appearing
in modes k = 2πn

L 
= 0, but which of course have the property of tending to zero along
with the thermodynamic limit. This type of condensation can occur accompanied or
not with condensation in the mode k = 0. For a literature review of this phenomenon,
see [169]. We should stress that this type of condensation is not just a mathematical
artifact; it is also experimentally observed and it is called, in experimental physics,
the phenomenon of fragmentation. Without going into all details about this subtle
phenomenon [16, 14] we illustrate it on the basis of taking an example of the ther-
modynamic limit where we use special types of volumes not to much different from
simple cubic boxes. Let us consider, for example, increasing rectangular boxes of the
type V = L1 ×L2 ×L3 and we work in dimension d = 3. The volumes are selected
according to the following types:

V = V γ1V γ2V γ3 with γ1 + γ2 + γ3 = 1 and V γi = Li

Considering cubic boxes means that we take γ1 = γ2 = γ3 = 1/3. But now let γ1 = 1/2
and γ2 = γ3 = 1/4. With the last choice the one-particles energies become

k2

2m
=

1
2m

(2π)2
(

n2
1

V
+

n2
2

V 1/2
+

n2
3

V 1/2

)

; nα = 0,±1, . . . .

The density constraint relation Eq. (4.4) in the finite volumes V produces the explicit
expression

ρ =
1
V

′
∑

n1=0,±1,...
n2=n3=0

1

eβ (εk−μV ) −1
+

1
V

′′
∑

nα ,nα 
=1 
=0

1

eβ (εk−μV ) −1
.
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Let us again consider the limit L → ∞. Because μV is still of the order − B
V in the

volume V , for ρ > ρc(β ), we find

ρ−ρc(β ) = lim
L

1
V

′
∑ 1

eβεk −1
= ∑

n1=0,±1,...

1

A n2
1 +B

= ρ0 > 0

with A and B positive constants. This expression proves that there is condensation
in infinitely many modes. Clearly we proved this effect on the basis of considering
a particular type of thermodynamic limit. This simple example illustrates that con-
densation solely in the (k = 0)-mode is a much more subtle affair than what may
be expected from the analysis with periodic cubic boundary conditions. Moreover,
in [123] a model with periodic boundary conditions is considered showing BEC in
infinitely many modes, but without condensation in the mode k = 0. In this model the
addition of a simple repulsive interaction term to the mean field Bose gas Eq. (4.4)
is responsible for this phenomenon of generalized condensation. In other words, the
authors show that generalized condensation can also show up as a consequence of
the presence of special types of interactions.

Now we discuss the influence of different boundary conditions and consider
therefore again the free Bose gas, not with periodic boundary conditions as we did
above, but with what is called attractive boundary conditions ([147, 160]). Consider
the free particle moving in the one-dimensional interval [-L/2,L/2] (system dimen-
sion d = 1). We look first for the spectrum of the Laplace operator and consider its
spectrum, which is now the appropriate one-particle spectrum of the model.

−d2φ(x)
dx2 = λφ(x)

The attractive boundary conditions are defined by the equations

(
dφ
dx

+σφ)|x=− L
2

= 0; (
dφ
dx

−σφ)|x= L
2

= 0

The positive number σ is called the elasticity parameter of the boundaries. Since we
are interested in the thermodynamic limit we can limit ourselves to the intrinsic case
Lσ > 2, and in that case we obtain two strictly negative eigenvalues ε0(L)≤ ε1(L) <
0, both tending to −σ2 for L tending to infinity. The whole one-particle spectrum
can be ordered as follows

ε0(L) ≤ ε1(L) ≤ ε2(L) ≤ ε3(L) ≤ ...

We can check that the volume or the L-dependence of the eigenvalues is given by
ε0(L) = −σ2 −O(e−Lσ ) and ε1(L) = −σ2 + O(e−Lσ ) for the negative eigenvalues;
for the positive eigenvalues k ≥ 2, we have ((k−1)π/L)2 ≤ εk(L) ≤ (kπ/L)2.

We note the main difference with respect to the situation of periodic bound-
ary conditions. In the attractive boundary conditions case the one-particle spectrum
shows a finite gap between the two negative energies, which coincide in the limit
L → ∞, and the non-negative energies.
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The corresponding eigenfunctions (φk)k can also be computed explicitly and are,
for k = 0,1, given by

φL
0 (x) =

√
2
L

(1+
sinhLσ

Lσ
)−1/2 cosh(−σx)

φL
1 (x) =

√
2
L

(−1+
sinhLσ

Lσ
)−1/2 sinh(−σx)

For even k ≥ 2

φL
k (x) =

√
2
L

(1+
sin

√
εk(L)L

√
εk(L)L

)−1/2 cos(
√
εk(L)x)

and for odd k ≥ 3

φL
k (x) =

√
2
L

(1− sin
√
εk(L)L

√
εk(L)L

)−1/2 sin(
√
εk(L)Lx)

The eigenfunctions for the negative energies are hyperbolic functions yielding a max-
imal density of particle near the boundaries. For positive energies we find the usual
harmonic functions, as in the periodic boundary conditions situation. To look for the
occurrence of BEC in this model it is sufficient to repeat the saturation argument de-
veloped above in the case of periodic boundary conditions. Using the explicit form
of the spectrum and the eigenfunctions, and after performing the limit L → ∞, we
can readily compute a critical density , which is given by the following expression
containing explicitly the elasticity parameter σ of the walls:

ρc(β ) =
2
π

∫

dk
1

eβ ( k2
2m +σ2) −1

Because σ2 > 0 this integral remains finite in all dimensions. Hence for total densi-
ties ρ larger than this critical density we get condensation, consisting of macroscopic
occupation of the lowest energy level with a condensate density which again is given
by the formula: ρ0 = ρ−ρc(β ). Clearly this model illustrates explicitly that the oc-
currence of BEC indeed depends greatly on the choice of boundary conditions. All
this should warn us to take care of the boundary conditions in general and in partic-
ular when we refer to so-called basic theorems in physics, like the Mermin-Wagner
one [120] which we will discuss later. Otherwise there are also many results dealing
with proofs about the absence of condensation. It is typical that many of them include
the explicit specification of the boundary conditions, see e.g. [48]. In this context we
should mention an interesting paper [76] which uses the free boson gas model with
attractive boundary conditions as a model to search for equilibrium states containing
the possibility of a microscopic explanation of the condensate vortices. The ideas
developed in this paper could contain the germ for interesting future exploitations
about this topic, which should hold in the case of interacting boson systems as well.

Another type of boundary condition studied in some detail in the literature is so-
called scaled weak external fields [15, 136]. The trapped boson models Eq. (4.8) are
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also external field models, but in these models the field is not scaled and therefore
these systems are inhomogeneous. The scaled external field boson models have a
one-particle Hamiltonian of the following type in, for example, one spacial dimen-
sion:

hL = − 1
2m

d2

dx2 + v(
x
L

)−μ (4.9)

The external potential v is a non-negative continuous function with a global mini-
mum at x = 0, where v(0) = 0. The stability of the system requires again that the
chemical potential at each finite volume is strictly negative μV < 0. Following again
the saturation argument, we obtain a critical density now given by a different expres-
sion

ρc(β ) =
1
2

∫
dk
2π

∫ 1

−1
dq{exp β (

k2

2m
+ v(q))−1}−1

which depends on the external field. It is clear that this critical density is finite even
in one dimension for many non-trivial external potentials v and that the existence
of condensation occurs again for sufficiently high total particle densities. For more
details on these type of models, see Section Eq. (4.8).

All these models indicate the possibility for the occurrence of BEC of highly
distinct natures depending greatly on the type of boundary conditions and on the
specific thermodynamic limits which are considered.

To partly avoid some of these subtle effects it is perfectly reasonable to work
immediately in the thermodynamic limit with properly adapted definitions of equi-
librium states. That is precisely the reason why we introduced in Chapter Eq. (3) the
variational principle of statistical mechanics and the energy-entropy balance condi-
tions formulated in the thermodynamic limit to define equilibrium states.

Finally, it is clear that the free Bose gas in a thermodynamic limit of any type of
boundary condition is a solvable model. Therefore, as well the variational principle
on the set of quasi-free states Eq. (3.14), as the energy-entropy balance criterion for
equilibrium states Eq. (3.7), should allow for an explicit and complete computation
of all the equilibrium states. In particular both of these criteria should lead to the
proof of the existence of BEC for large particle densities. We leave the details of
these derivations or proofs as an exercise. (The solution of this exercise in Section
Eq. (4.4) provides a hint.)

Before we start the detailed study of a number of other solvable boson models
for which we exploit these equilibrium criteria, we proceed in the section to the
derivation and discussion of a number of universal exact results holding for arbitrary
and fully interacting two-body boson systems. In other words we derive and discuss
universal basic properties about the equilibrium states displaying or not displaying
Bose-Einstein condensation.

4.3 BEC in Interacting Boson Gases

When we refer to an interacting Bose gas we have in mind a system defined by a
super-stable Hamiltonian Eq. (2.4) with a non-trivial two-body potential v. In gen-
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eral this is a non-solvable problem in the sense that up to now nobody has been able
to derive from the variational principle Eq. (3.1), or from the energy-entropy balance
criterion Eq. (3.7) for equilibrium, explicitly one or all ground states and/or equilib-
rium states. Even in this situation, it does not mean that nothing can be said about
these sofar not explicitly known states. To the contrary, any result directly and rig-
orously derived from the equilibrium criteria is of universal importance and useful
for the understanding of real boson systems behavior. Indeed researchers have been
able to derive from the criteria a number of exact results about possible equilibrium
or ground states. In this section we give a discussion of the basic Mermin-Wagner
argument, proving in general the absence of condensation in some situations. We
focus also on the intrinsic basic relation between the occurrence of boson conden-
sation and the occurrence of spontaneous symmetry breaking and off-diagonal long
range order. Because of the importance of this property reaching far beyond boson
systems, the latter subject is extensively worked out. Finally we derive rigorously
from the equilibrium criteria the so-called condensate equations. These are indepen-
dent equations for one or more condensate densities or order parameters. All these
general properties are illustrated for a number of relevant interacting boson theories
or boson models in the next subsections.

4.3.1 Mermin-Wagner Argument

In the literature one of the most widespread cited theorems about boson condensation
sounds as follows: In one and two dimensions the gauge symmetry of any boson
system model cannot be spontaneously broken (see next subsection). Or expressed
otherwise, in these low dimensions no condensation can occur at any finite positive
temperature. It sounds as: Boson condensation is a phenomenon of dimensions three
or higher. The reason for this adagio is often expressed in words as follows: if such
a symmetry breaking would occur, the emerging (quasi-)particles would have a non-
integrable correlation function. Sometimes this is also argued by saying that in one
and two dimensions the temperature fluctuations would destroy the condensate.

The original Mermin-Wagner argument [120] was first successfully applied in
the Heisenberg quantum spin model. However, it was clear that the argument was of
a much more general validity. Hohenberg [77] applied it to Bose and Fermi systems
and showed that there is no boson condensation, respectively superconductivity pos-
sible in dimensions d = 1 or d = 2. This result is always referred to as an exact result
because it is based on an exact inequality, originally due to Bogoliubov (see Eq. (3.9)
and Eq. (3.11)).

Nevertheless it must be remarked that the generality of some aspects of this result
has been questioned in the literature at many occasions. Already within the scope of
this text on Bose systems it was pointed out, as a rigorous result, that Bose conden-
sation can occur in one and two dimensions, for instance in systems with attractive
boundary conditions [147] or in systems with weak external fields [15, 136]. It is
good to keep in mind that these results hold already for the free boson gas. There-
fore, giving without care the powerful and valuable argument of Mermin-Wagner, the
connotation of a theorem is a bit hazardous. Maybe each theorem should always be
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accompanied by a discussion about the conditions under which the statement really
holds. In particular for bosons, but even for spin systems, the boundary conditions
do play an important role in the argumentations. However for periodic boundary
conditions (for physicists the common sensical choice for boundary conditions) the
Hohenberg result holds true. For completeness we reproduce it here as the following
theorem:

Theorem 4.1. Consider an interacting Bose gas (Eq. (2.4) and Eq. (2.6)) with a
potential term satisfying the stability condition, with periodic boundary conditions
and with a thermodynamic limit with boxes. Let ω be any ergodic equilibrium state
with a finite particle density ρ . Then for all positive temperatures there is absence of
condensation in one and two dimensions.

Proof. Remember first that for ergodic states ρ0 = limV |ω(a0/
√

V )|2. Therefore the
absence of condensation (ρ0 = 0) is equivalent to the absence of the gauge breaking
in the one-point function, that is, with limV ω(a0/

√
V ) = 0.

The essential ingredient for the proof of this theorem is the inequality of Bo-
goliubov Eq. (3.11), which holds for any equilibrium state ω and is written in the
form

|ω([A,B])|2 ≤ β
2
ω([A∗, [HV (μ),A]])ω(B∗B+BB∗)

for any pair of observables A and B, where again HV (μ) = HV −μNV .
Consider any finite volume V, periodic boundary conditions, and any value of

the momentum k 
= 0. For A and B let A = ∑k′ a
∗
k′ak′−k and B = ak. We can calculate

straightforwardly the following commutators: Denote for short by UV the potential
term of the Hamiltonian and by TV the kinetic energy, and compute the commutators
[A,B] = −a0 and [A,UV ] = [A,NV ] = 0. Therefore

[A∗, [HV (μ),A]] =
k2

m
NV

After substitution in the Bogoliubov inequality we obtain

|ω(a0/
√

V )|2
k2 ≤ β

2m
ω(a∗kak +aka∗k)ρ

Consider now any ε > 0. Let S1(V ) be the unit sphere of the dual V ∗ of the volume
V and S1(V )ε the unit sphere excluding the sphere of radius ε and use the resulting
inequality to obtain

1
S1(V )ε

∑
k∈S1(V )ε

|ω(a0/
√

V )|2
k2 ≤ βρ

2mS1(V )ε
∑

k∈S1(V )ε

ω(a∗kak +aka∗k)

Consider the infinite volume limit of this inequality. With the notation limV S1(V )ε =
S1,ε , we obtain

lim
V

∫

S1,ε
dk

|ω(a0/
√

V )|2
k2 ≤ βρ

2m

∫

S1,ε
dkω(a∗kak +aka∗k)
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The right hand side of this inequality is, for all values of ε , bounded by a constant
C(ρ) that depends only on the density ρ . Using again the ergodicity of the state such
that limV |ω(a0)/

√
V |2 = ρ0, we now obtain

ρ0

∫

S1,ε
dk

1
k2 ≤ βρC(ρ)

2m

The upper bound is finite for all finite densities ρ . The lower bound integral however
is divergent in one or two dimensions for ε tending to zero. Hence, if ρ0 > 0 then
the exact inequality is violated. Therefore the only possibility to get out of this dead-
lock is for ρ0 = 0, which means the absence of condensation and/or the absence of
spontaneous gauge symmetry breaking. This finishes the proof of the theorem.

Of course the Mermin-Wagner argument holds true as a theorem and is proved for
considerably more types of boundary conditions than just the periodic ones. The
literature contains several theorems which differ only in the type of boundary condi-
tions assumed. Comparing all these results is not a straightforward business because
in general the boundary conditions problem for quantum systems is a complex tech-
nical subject and even as an independent subject not fully clarified (see [56] for
example). Moreover many of the existing results are model dependent. Nevertheless
some of us might be interested in getting a precise idea where and how the types of
boundary conditions precisely enter in the proofs of the theorem. We can find more
information when one looks at the details of the paper [48].

4.3.2 Spontaneous Symmetry Breaking (SSB) and BEC

Again we consider fully interacting boson systems, which are defined by the local
Hamiltonians HV Eq. (2.4) where the V are the finite volumes of R

d . These Hamil-
tonians share the property of space translation invariance and satisfy the property
τxHV = HV+x, where V + x is the set V translated over the distance x ∈ R

d ,d ≥ 1.
We say that the systems have space translation symmetry, the symmetry group is the
group R

d of translations.
Our systems under consideration are also gauge invariant Eq. (2.28). This is ex-

pressed by τλHV = HV for all λ ∈ [0,2π] because the Hamiltonian contains only
sums of terms which are products of an equal number of creation and annihilation
operators. Our system has the gauge transformation symmetry. The symmetry group
is in this case the simplest non-trival unitary group U(1).

It follows immediately that all Gibbs states ωV Eq. (3.5) share as well the space
translations as the gauge transformation symmetries. Also their thermodynamic limit
Gibbs states ω = limV→∞ωV share these symmetries and satisfy the equilibrium
conditions Eq. (3.1), as well as Eq. (3.7).

In fact we are interested in all possible limit equilibrium states, that is, all solu-
tions of at least one of the two equilibrium conditions. In this subsection we choose
for the energy-entropy balance conditions Eq. (3.7) as our equilibrium criterion. We
leave the derivation of these same results as explained below, but starting from solu-
tions of the variational principle Eq. (3.1), as an exercise.
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It turns out that under the special circumstances of low temperature and/or high
total density, we can find states which are solutions of the energy-entropy balance
criterion of equilibrium Eq. (3.7) which are or are not space translation symmetry
invariant, but which are in any case not gauge transformation invariant, although the
local Hamiltonians as well as their limit Gibbs states do always have these symme-
tries. If this happens, we speak of spontaneous symmetry breaking(SSB).

We should note that SSB can occur only in the thermodynamic limit formulation
of equilibrium, as a clear consequence of Theorem Eq. (3.5). It is also clear that
adding a symmetry breaking term to the Hamiltonian is a forced way of breaking
the symmetry of the system and is not the same as the phenomenon of spontaneous
breaking of the symmetry.

Because of the great impact of the SSB-subject on modern physics in general
and not only on many-body boson systems, we describe first the problem in a more
explicit and in a more sophisticated way which could be appreciated also by the
more mathematically-schooled expert interested in the phenomenon of SSB. In other
words, the underlying sufficient mathematical conditions will be rather extensively
and explicitly indicated. Afterwards it is made clear that there are no real physical
conditions to be formulated, except to start with a finite volume equilibrium Gibbs
state whose thermodynamic limits ωβ exist. We are interested in all states satisfying
the energy-entropy balance conditions Eq. (3.7) and which are related to the limit
Gibbs states ωβ . As explained before, the latter are also solutions of Eq. (3.7) and are
translation and gauge invariant. Therefore it is reasonable to start with any solution
ω of Eq. (3.7), independent of the fact that it is a limit Gibbs state or not, which sat-
isfies the following properties automatically satisfied by thermodynamic limit Gibbs
states: The initial situation is therefore that each initial state ω considered satisfies
the properties:

A. The state ω is translation and gauge invariant
B. The state ω is analytic in the sense of [26] p.38. This is a technical term used

simply to express the fact that the state can be completely described in terms of
all (n,m)-point correlation functions of the creation and annihilation operators.

In fact all of our theorems remain true even without imposing the second condition
B. In that case we should consider only the observables written in terms of the Weyl
operators and rewrite the equilibrium conditions in a technically somewhat more
sophisticated, but physically less transparent, form. However that is something which
we prefer not to do.

In this subsection we describe the solution of the main problem: Suppose we are
given such a (limit Gibbs) ω state ω . Can we always find or construct its ergodic
components equilibrium states? Do all the latter states have the same symmetries
as the given (limit Gibbs) state or does spontaneous symmetry breaking occur, and
under which circumstances does one and the other happen? We provide and explain
the full solutions needed to answer these questions. In short, the answers contain an
explicit construction of ergodic equilibrium states that break the gauge symmetry,
and in some cases also the translation symmetry, if and only if there is boson con-
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densation. An explicit expression for these symmetry breaking states is written down
in terms of the initially given (limit Gibbs) state ω .

Let us go into some more details. We consider again periodic boundary condi-
tions for the finite volume argumentations. The state ω shows condensation in the
mode q ∈V ∗ if

ρq = lim
V
ω
(

a∗qqq

V

)

> 0 (4.10)

with ρq called the q-condensate density.
For homogenous closed boson systems the condensation in q = 0, called ground

state condensation, is the best known and intensively studied. See for example the
treatment of the free Bose gas. Looking at the literature about boson condensation
of these homogenous systems, we would notice on many occasions that numerous
authors seem to take for granted, or consider it as a trivial fact, that the existence of
ground state condensation (i.e., ρ0 > 0) implies spontaneous gauge symmetry break-
ing and vice versa. Sometimes they refer to this situation by writing down blindly

ρ0 = lim
V
ω
(

a∗0a0

V

)

= lim
V

∣
∣
∣
∣ω

(
a0√
V

)∣
∣
∣
∣

2

(4.11)

mostly coming out of the blue. Probably the reason for this conclusion is that the
statement, breaking of the gauge symmetry implies condensation, is an immediate
property. Indeed this statement follows immediately from the Schwartz inequality
which holds for any state and yields: |ω(a0)|2 ≤ ω(a∗0a0). However the non-trivial
point is the inverse inequality which does not hold in general for all states.

The point with Eq. (4.11) is that for a limit Gibbs state ω being gauge invariant
and therefore yielding limV ω(a0/

√
V ) = 0, we get immediately a fatal contradiction

if there is condensation or if ρ0 > 0. On the other hand the equality Eq. (4.11) is
obviously valid for all ergodic states. In particular the equality Eq. (4.11) expresses
precisely the ergodicity of the state for the 0-mode subsystem. The point is that limit
Gibbs states need not be ergodic in all circumstances. To the contrary, if there is
condensation this is particularly not the case for all values of the total density or
for all values of the temperature. Indeed if a phase transition is showing up, like
condensation coming around the corner, we cannot expect that the limit Gibbs states
are ergodic for the condensate mode. The state might be a mixture of a condensate
and a non-condensate phase state. The aim of this subsection is precisely to explain
how this puzzle is solved.

This problem was solved rigorously already some time ago in a very general
setting in [49], where only the case of ground state condensation was considered,
resulting in the following theorem: If there is a limit Gibbs state ω showing conden-
sation, ρ0 > 0, then there exists always a family of gauge breaking equilibrium states
{ωα(·)}α∈[0,2π] such that the following two properties are satisfied:

(a) ω(·) = 1
2π

∫ 2π
0 dα ωα(·)

(b) limV

∣
∣
∣ωα

(
a0√

V

)∣
∣
∣= limV ωα

(
( a∗0a0

V )
1
2

)

= 0 for all values of α
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The first equality tells us that the limit Gibbs state is a non-trivial convex combi-
nation of the states ωα and therefore is not ergodic. The second one expresses the
ergodicity of all the states ωα . This property follows as a consequence of the ex-
plicit construction of the states ωα given in terms of the given state ω . We reproduce
the proof of this result, which consists essentially in the explicit construction of the
gauge breaking equilibrium states {ωα} out of our given limit Gibbs state ω in the
case that the latter one is non-ergodic. We show that the last property follows if the
system shows Bose-Einstein condensation. It is clear that this construction is the key
point contribution to the relation between spontaneous symmetry breaking and con-
densation. How do the ωα look like? Impatient ones among us can glance at Eq.
(4.22) below, where they can see the explicit construction of these gauge breaking
equilibrium states in terms of the given limit Gibbs state and the condensate density.
These states are explicitly given in terms of their (n,m)-point correlation functions.
The simplicity of the formula Eq. (4.22) defining these states might motivate them to
undergo the full proof dealing with its derivation and its correctness. In what follows
we will provide in full detail the whole mathematical argumentation to arrive at this
formula as well as for its generalization to the case of non-ground state condensation.

It might look surprising that we include in this text the case of this more general
q-condensation. This surprise may come up in view of the elegant result in [153]
where a proof regarding the absence of currents is obtained for the BCS-model. Our
argument for the inclusion of this generalization is motivated by the recent activity
in the domain of condensation in traps [6, 37], where this type of non-ground state
condensation (q 
= 0) is relevant. These kind of systems have indeed to be classified
among the open boson systems driven by another external system. Therefore we
reproduce also the generalized theorem, first proved in [138]. It makes clear that, in
the case of q 
= 0, not only the gauge symmetry is spontaneously broken, but also
the space translation symmetry. The main new result is that for homogenous gauge
invariant systems, the thermodynamic limit Gibbs states, showing condensation in a
mode q 
= 0, can be decomposed with respect to periodic equilibrium states showing
also gauge symmetry breaking. We get in this case SSB of the space and gauge
symmetries. The obtained decomposition of the stateω in one q- space-like direction,
fixed by the unit vector ê = q/|q|, can straightforwardly be generalized to more or all
dimensions by constructing again new equilibrium states. The latter ones are periodic
in more, respectively all dimensions and they are gauge breaking in all these q-modes
which fix the different directions. So far for the setting and the essentials of the
content of what follows below.

Technicalities

We start the construction with the one-momentum vector case, q = (2π/γ)ê, where
ê is a unit vector of R

d and where γ is the period or wavelength determined by the
vector q. In what follows ω will be an equilibrium state, satisfying the equilibrium
conditions Eq. (3.7) and the conditions A (gauge and translation invariant) and B
above. The main result yields that, if such a state ω with q-condensation exists, then
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there exist gauge-breaking periodic states with finite period γ if q 
= 0. If q = 0, the
states are gauge breaking but remain homogeneous.

For convenience we repeat the mathematical technology offered by the GNS-
construction (see Eq. (7.1)). We consider the boson system (A,ω) and its GNS-
representation, which is an algebra representation into the linear operators on the
Hilbert space H which contains a cyclic and separating vector Ω ∈ H , such that,
for all X ∈ A holds

ω(X) = (Ω ,XΩ)

In this formula we used for notational convenience the same symbol for the element
X of the algebra A and for its image under the GNS-representation which is an opera-
tor acting on the Hilbert space H . The cyclicity property of the vectorΩ means that
the set of vectors {XΩ |X ∈ A} is dense in H . Meanwhile we note once again that
the GNS-representation theorem proves that each state can indeed be interpreted as
an expectation-valued map as explained in Chapter Eq. (2) as well as in the Appendix
Eq. (7.1).

Consider the given vector q ∈V ∗ and the operator αq,V acting on H

αq,V =
1
V

∫

V
dxeiq·xa(x) =

1√
V

aq

We learned that, because of the homogeneity of the given state ω , this operator con-
verges strongly to an operator αq on the representation space H [26]. We denote its
limit by

αq = lim
V
αq,V ; α∗

q = lim
V
α∗

q,V (4.12)

Because the αq,V are local averages, αq is a limit average operator, also sometimes
called an observable at infinity [97], and therefore commutes with all operators of A,
as well as with all elements of the weak closure A′′ of the set A. Formulated more
technically, the operator αq is affiliated to the center C = A′′ ∩ A′ of the algebra A′′,
where A′ is the set of bounded operators commuting with the operators A. Note also
that we used the notation A′′ = (A′)′ used.

Let again τy with y ∈ R
d be the space translation canonical transformation over

the distance y Eq. (7.3) of the observable algebra A, formally τya#(x) = a#(x+y) for
all creation and annihilation operators. Then we can verify readily the properties

τyαq = e−iq·yαq ; τy(α∗
qαq) = α∗

qαq (4.13)

The operator αq transforms under translations like the annihilation operator aq. The
second equality states that the density of particles in the q-mode, given by nq =α∗

qαq,
is translation invariant.

From now on we assume that the state ω shows condensation in the mode q, or
that

ρq = ω(α∗
qαq) = ω(nq) > 0 (4.14)

This implies in particular that the density operator nq is not a trivial operator, nq 
= 0,
and that also
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ω(n1/2
q ) 
= 0 (4.15)

because ω(n1/2
q ) = 0 would be in contradiction with the separating character of each

equilibrium state [26], a property expressing that if ω(A∗A) > 0 for some observable
A, implies that A 
= 0. For more technical details see [52].

Consider now the polar decomposition of the operator αq given by

αq = Uqn1/2
q (4.16)

By explicit checking αq is a normal operator, which means that α∗
qαq = αqα∗

q . By
[41], p.935, the operator Uq can be taken unitary, namely the unitary extension of
the partial isometry defined by the polar decomposition. Note also that the following
equality holds:

0 
= ω(n1/2
q ) = ω(U∗

qαq) = lim
V
ω(U∗

qαq,Λ )

Therefore we can conclude that there exist a test function h ∈ H = L2(Rd) such that

ω(U∗
q a(h)) 
= 0 (4.17)

Note that all this holds for q = 0 as well as for q 
= 0. From now on we consider the
two cases separately.

Case for q = 0

As mentioned, the case q = 0, that is, the ground state condensation, is the best
known situation. It concerns homogeneous gauge invariant closed boson systems. In
this case only the spontaneous gauge symmetry breaking will accompany the con-
densation. As it is simpler than the general case, including the case q 
= 0, we con-
struct first the new gauge breaking equilibrium states in the case q = 0 under the
condensation assumption ρ0 > 0.

In this case, we define a new representation of the observable algebra acting on
the GNS-representation space H defined by the original given equilibrium state ω .
For any test function h ∈S , we define the new boson field obtained after application
of the special canonical transformation Eq. (7.3) η , which is given by

η(φ(h)) ≡ φ̃(h) = (U∗
0 a(h)+U0a∗(h))∗ (4.18)

where the unitary U0 is given by Eq. (4.16). By definition this new field is an es-
sentially self-adjoint operator acting on its Hilbert space H ([26], Lemma 5.4.12).
The new boson fields φ̃(h) define the new Weyl operators W̃ (h) = eiφ̃(h). Due to the
unitarity of the operator U0, it is trivial to check that W̃ is again a representation of
the observable algebra A on the representation space H of the given state ω .

Take also the group of canonical gauge transformations {τϕ |ϕ ∈ [0,2π]} with
τϕ(W (h)) = W (eiϕh). Define the new states ωϕ on the Weyl operators as follows:

ωϕ(W (h)) = ω(W̃ (eiϕh)) (4.19)
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For each real number ϕ we defined new fields φ̃ϕ(h) and/or new creation and an-
nihilation operators ãϕ(h) obtained from the original fields after having applied the
canonical transformations, which are given by

φ̃ϕ(h) = (U∗
0 a(eiϕh)+U0a∗(eiϕh))∗ãϕ(h) = e−iϕU∗

0 a(h) = e−iϕη(a(h)) (4.20)

with η the canonical transformation defined above.
As we assumed that there is ground state condensation (ρ0 > 0) it follows im-

mediately from Eq. (4.17) that all new states ωϕ for all ϕ are not gauge invariant
because indeed for some h, ωϕ(a(h)) = eiϕω(U∗

0 a(h)) 
= 0. Note also that this ex-
pression leads immediately to the result that ωϕ 
= ωϕ ′ if ϕ 
= ϕ ′. Moreover by con-
struction we get ωϕ ◦τϕ ′ =ωϕ+ϕ ′ . The gauge canonical transformation τϕ ′ maps any
state ωϕ into the state ωϕ+ϕ ′ .

Furthermore, for all pairs (n,m) of natural numbers and for all test functions f
we can compute the equality

1
2π

∫ 2π

0
dϕ ωϕ(a∗( f )na( f )m) = 1

2π
∫ 2π

0 dϕ eiϕ(m−n)ω(Um−n
0 a∗( f )na( f )m)

= δn,mω(a∗( f )na( f )m) = ω(a∗( f )na( f )m)

where the last equality follows directly from the gauge invariance of the given state
ω . Hence this formula proves that

ω =
1

2π

∫ 2π

0
dϕ ωϕ (4.21)

or that the given equilibrium state ω is equal to the integral over the set of gauge
breaking states {ωϕ |ϕ ∈ [0,2π]} constructed above.

Next we prove that all these new states ωϕ are equilibrium states. Indeed on the
basis of the equilibrium criterion Eq. (3.7) being satisfied for the starting state ω , the
fact that the Hamiltonian and the number operator are gauge invariant, we get that
the new states satisfy the energy-entropy criteria for equilibrium as well. Explicitly,

lim
V
βωϕ(X∗[HV −μNV ,X ]) = limV βω(τϕη(X∗)[HV −μNV ,τϕη(X)])

≥ ωϕ(X∗X) ln ωϕ (X∗X)
ωϕ (XX∗)

Finally we prove the ergodicity of all the constructed states {ωϕ}. Directly from
the definition of the gauge breaking states, we get using the polar decomposition Eq.
(4.16), α0 = U0

√
n0, that

|ωϕ(α0)|2 = ω(
√

n0)2 = ωϕ(
√

n0)2.

Using this equality and taking into account that α0 is a normal operator (implying
that U0 and

√
n0 commute) and working within the GNS-construction Eq. (7.1) of

the state ωϕ(.) = (Ωϕ , .Ωϕ) transforms the following Schwartz inequality into an
equality. Indeed we get
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ω(
√

n0)2 = |ωϕ(α0)|2 = |(Ωϕ ,U0
√

n0Ωϕ)|2

= |( 4
√

n0Ωϕ ,U0
4
√

n0Ωϕ)|2 ≤ || 4
√

n0Ωϕ ||2 = ω(
√

n0)2

Hence the two vectors, Ωϕ and U0
√

n0Ωϕ are proportional vectors, that is, there ex-
ists a complex number κ such that κΩϕ = U0

√
n0Ωϕ = α0Ωϕ . We readily obtain

|ωϕ(α0)|2 = |(Ωϕ ,α0Ωϕ)|2 = |κ|2 = (α0Ωϕ ,α0Ωϕ) =ωϕ(n0) =ω(n0) = ρ0, prov-
ing the ergodicity property of the states ωϕ expressed in Eq. (4.11), as well as their
property of showing off-diagonal long range order Eq. (2.33).

All these properties together prove the first part of the following theorem:

Theorem 4.2. With the definitions and notations of above, if there is zero-mode con-
densation (ρ0 > 0) for the limit Gibbs or any other equilibrium state ω , satisfying the
conditions A and B, then there exists a set of ergodic equilibrium statesωϕ Eq. (4.19),
all breaking the gauge symmetry, whose convex combination with integral over the
phase ϕ yields the original equilibrium state. Following trivially from Schwartz in-
equality we already sketched, the converse of this statement holds as well: If there
exists any gauge breaking equilibrium state of the type discussed above, then there
is ground state condensation.

We should realize the constructive nature of the proof of this theorem, where the
gauge breaking equilibrium states ωϕ , (see Eq. (4.19)) are explicitly constructed in
terms of any given thermodynamic limit Gibbs state ω with a non-vanishing conden-
sate density ρ0 > 0. The mathematical proof we gave may come across as somewhat
technical, difficult, and nontransparent to those less mathematically inclined.

Being especially concerned with the more physics-minded among us, it may be
instructive to give a direct formal expression of the gauge breaking states ωϕ in terms
of the correlation functions. This form of the states may come across as more sug-
gestive or understandable solely because they are written in terms of the creation and
annihilation operators and the condensate density. Following exactly the construc-
tion procedure sketched above with the same notations and definitions, in particular
for any limit Gibbs state ω ,

ω(X) = lim
V
ωV (X) ≡ lim

V

Tr eβ (HV−μNV ) X

Tr eβ (HV−μNV )

where X is any local observable with fixed density

ρ = lim
V
ωV (

NV

V
)

and with a nonzero condensate density ρ0 = ω(n0) > 0, we obtain each of the gauge
breaking states, determined by the (n,m)-correlation functions, for each value of the
phase ϕ , by the following: For any creation/annihilation operator a∗( f ),a( f ) we find

ωϕ(a∗( f )na( f )m) = ei(m−n)ϕ lim
V
ω(

an
0(a

∗
0)

m

(a∗0a0)(n+m)/2
a∗( f )na( f )m) (4.22)

Expressed explicitly in terms of the limit Gibbs state one gets
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ωϕ(a∗( f )na( f )m) = ei(m−n)ϕ lim
V

tr e−β (HV−μNV ) an
0(a∗0)m

(a∗0a0)(n+m)/2 a∗( f )na( f )m

tr e−β (HV−μNV )

This explicit form of the equation is of genuine importance in the theory of Bose-
Einstein condensation. The result shows explicitly the intimate link between con-
densation and spontaneous symmetry breaking. It shows also the link between the
original equilibrium state and the gauge breaking states. Equation (4.22) might come
across as simple. The above mathematic computation merely demonstrates one way
of showing that the previous construction is mathematically meaningful and physi-
cally realistic. In any case it serves as a better understanding of the structural aspects
of the links between the phenomena of spontaneous gauge symmetry breaking, of
off-diagonal long range order, and of ground state condensation for equilibrium
states of boson systems.

Case for q 
= 0

Now we turn to the case of non-ground state condensation. This means that we start
with an equilibrium state ω with the property of showing condensation ρq > 0 for
some q 
= 0. Again we define a new representation of the observable algebra A acting
on the representation space H of the equilibrium state. For any test function h ∈S ,
we again define the new boson field by

φ̃(h) = (U∗
q a(h))+Uqa∗(h))∗

where Uq is again the unitary operator of the polar decomposition Eq. (4.16). For no-
tational convenience the q-dependence of the new field φ̃ is not explicitly indicated.
Again the field by definition is an essentially self-adjoint operator acting on H and
the new Weyl operator map W̃ maps once again S →B(H ), the bounded operators
acting on H ,

W̃ (h) = eiφ̃(h) , h ∈ R
d (4.23)

Because the Uq are unitary operators commuting with all observables, we can check
that W̃ is a representation of the observable algebra A on the Hilbert space H (com-
parable to Eq. (4.18)). Let us denote again by η the canonical transformation map of
A into the bounded operator algebra B(H ) of operators acting on H

η(W (h)) = W̃ (h) (4.24)

From this Weyl operator relation, we immediately obtain the action of η on the
creation and annihilation operators:

ã(h) ≡ η(a(h)) = U∗
q a(h) ; ã∗(h) ≡ η(a∗(h)) = Uqa∗(h)

So far all this is comparable to the q = 0 case. The space translations now enter
the discussion. Again for any equilibrium state ω and any x ∈ R

d , we define the
functional ω̃x on the boson algebra A by
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ω̃x(W (h)) = (Ω ,W̃ (hx)Ω) = ω(η · τx(W (h))) (4.25)

where hx(y) = h(x+ y) is again the function h translated over the distance x. Clearly
for each x, ω̃x is again a state of the boson algebra.

As above, the states ω̃x, are not gauge invariant, a property following directly
from the definition in Eq. (4.25). In particular, we also have that ω̃x(a(h)) =
ω(U∗

q τxa(h)) 
= 0 for some h ∈ H, which is proved in Eq. (4.17). Also directly from
their very definition, the states ω̃x satisfy the relation: For all x,y ∈ R

d ,

ω̃x · τy = ω̃x+y (4.26)

The translation canonical transformations τy map the state ω̃x onto the state ω̃x ·τy =
ω̃x+y. The set of states of the type defined in Eq. (4.25) is generated by applying
the translation canonical transformations on any of them. The question is: Are all
these states different states? In other words, how large is this set of states which we
generated in this way?

We analyze these questions and focus ourselves on the different directions of the
translations. Let q = (2π/γ)e, with e ∈ R

d the unit vector in the direction of q and
γ the period or wavelength of the mode q, or γ = 2π/|q|. We denote by e⊥ any unit
vector orthogonal to e. We therefore obtain the first property:

Lemma 4.3. With the definitions and notations introduced above, all states ω̃x, x ∈
R

d are constructed from the equilibrium state ω (see Eq. (4.25)) and satisfy:

1. Each state ω̃x is space translation invariant in any direction e⊥ orthogonal to q.
In particular ∀t ∈ R, we obtain the equality

ω̃x+te⊥ = ω̃x

2. Each state ω̃x is periodic with period γ in the direction of q expressed by

ω̃x+γe = ω̃x

Proof. Using the GNS-representation Eq. (7.1), we can write the states in the form

ω̃x+y(W (h)) = (Ω ,eiφ̃(hx+y)Ω)

yielding for the corresponding fields

φ̃(hx+y) = (U∗
q τya(hx)+Uqτya∗(hx))∗ = τy(τ−y(U∗

q )a(hx)+ τ−y(Uq)a∗(hx))∗

Using the action of the translations on the unitary operators Eq. (4.13) we get

τy(Uq) = Uqe−iq·y

Hence for y = te⊥ and, as q ·γe = 2π , for any y = γ e we get the translation invariance
of Uq or τy(Uq) = Uq. Hence in both of these cases

φ̃(hx+y) = τyφ̃(hx)

Using the space translation invariance (condition A) of the given state ω , the proofs
of Items 1 and 2 follow immediately.
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The Lemma shows that the new states ω̃x are periodic states with period γ in the q-
direction and that they remain translation invariant in any direction orthogonal to the
vector q. Now we concentrate on the states and their translations in the q-direction
within the period or within the interval [0,γ].

Lemma 4.4. 1. For all t, t ′ ∈ [0,γ] with t 
= t ′, we get ω̃te 
= ω̃t ′e, or the two states
differ from each other.

2. The originally given state ω is equal to the convex combination with equal
weight of all, the two by two different, non-homogeneous gauge breaking states
{ω̃te| t ∈ [0,γ]}. We therefore obtain the equality of states

ω =
1
γ

∫ γ

0
dt ω̃te

3. All states in the set {ω̃te| t ∈ [0,γ]} are ergodic equilibrium states showing the
same q-mode condensation.

Proof. As the state ω is analytic (condition B) it follows from their definition that all
the states ω̃x are also analytic. Therefore it is again sufficient to prove the statements
of the theorem on the monomials in the field operators (see also [26], p.38) or, in
other words, for all (n,m)-correlation functions of our states. Consider first the one-
point function

ω̃te(a(h)) = ω(U∗
q τtea(h))

A straightforward computation using the space translation invariance of the given
state ω yields

ω̃te(a(h)) = e−iq·teω(U∗
q a(h)) = e−i 2π

γ tω(U∗
q a(h))

As there exists an element h ∈ H such that ω(U∗
q a(h)) 
= 0 Eq. (4.17), and as for

t, t ′ ∈ [0,γ], t 
= t ′ holds that

(ω̃te − ω̃t ′e)(a(h)) =
(

e−it 2π
γ − e−it ′ 2π

γ
)
ω(U∗

q a(h)) 
= 0

proving item 1 of the Lemma.
To prove the statement in item 2, consider for all natural numbers m and n, and

for any test function f , the integrals

1
γ
∫ γ

0 dt ω̃te(a∗( f )na( f )m) =
1
γ

∫ γ

0
dtω(τte(a∗( f )n)τte(ate( f )m)Un

q U−m
q )

Space translation invariance of the state ω (condition A) yields

1
γ
∫ γ

0 dt ω̃te(a∗( f )na( f )m)

= 1
γ
∫ γ

0 dt ei 2π
γ t(m−n)ω(a∗( f )na( f )mUn−m

q )

= δn,mω(a∗( f )na( f )m) = ω(a∗( f )na( f )m)

proving the statement in item 2.
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Now we show that for any t in the interval [0,γ], any state ω̃te is an equilibrium
state by showing that these states again satisfy the equilibrium conditions Eq. (3.7).
Let X be an arbitrary monomial in the creation and annihilation operators, using
condition A for the state ω together with the space translation and gauge invariance
of the Hamiltonian Eq. (2.4), we obtain the EEB-inequalities

β limV ω̃te(X∗[HV −μNV ,X ])
= β limV ω(η ◦ τte(X∗[HV −μNV ,X ])

= β limV ω ((η ◦ τte(X))∗[HV −μNV ,η ◦ τte(X)])

≥ ω ((η ◦ τte(X))∗(η ◦ τte(X))) ln ω((η◦τte(X))∗η◦τte(X))
ω((η◦τte(X))(η◦τte(X))∗)

= ω̃te(X∗X) ln ω̃te(X∗X)
ω̃(XX∗)

which shows indeed that all the newly constructed states satisfy the energy-entropy
criteria for equilibrium and therefore are equilibrium states.

Finally the ergodicity property of the constructed states follows the same argu-
ment as that used for ground state condensation (see proof of the theorem Eq. (4.2)).

This Lemma proves that if we have an equilibrium state ω showing condensation in
the q-mode Eq. (4.10) then there exists a set of periodic ergodic equilibrium states
{ωte|t ∈ [0,γ]} in the q-direction with period γ . In directions orthogonal to q, these
states remain space homogenous. Note that these states break at the same time the
gauge symmetry. As an interesting technical property we observe that all these states
live in the same representation space H , namely the representation space of the
observable algebra A determined by the original equilibrium state ω . All these prop-
erties yield a better understanding of the relations between spontaneous space trans-
lation, gauge symmetry breaking, space translation symmetry breaking, and boson
q-mode condensation. In particular we obtain a better view of the relative position of
the different equilibrium states, which can be ergodic or non-ergodic.

Above we analyzed the situation for one single direction q. It is a student exer-
cise to generalize the analysis to an arbitrary number of dimensions. Indeed suppose
that we have more than one condensation mode. Suppose for instance that we have d
such modes characterized by the d linear independent vectors q1, . . . ,qd . This means
that we start with an equilibrium state ω , which has the condensate densities ρqi > 0
for i = 1, . . .d. All vectors are taken independent and therefore we may consider the
case that (qi,q j) = δi j|qi|2. We can perform the above constructions in each direction
independently because, in any case, the corresponding αqi -operators, relevant in the
proofs, commute with each other and with their adjoint operators. We obtain equi-
librium states ω̃x, with x = t1e1 + · · ·+ tded , which are periodic in all directions with
in general d different periods γi. These different directions are creating a discrete
d-dimensional lattice symmetry group for these new equilibrium states. The sponta-
neous symmetry breaking is breaking the full symmetry group R

d down to a lattice
group. The occurrence of such lattice groups has been discussed in experiments with
trapped boson systems (see [140] and references therein).
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General Formulation

Finally we recapitulate what we proved as general results about the one-to-one re-
lation between Bose-Einstein condensation and spontaneous symmetry breaking as
the following theorem:

Theorem 4.5. On the basis of what was proven above, any homogeneous gauge in-
variant limit Gibbs state ω showing condensation (ρq > 0) in one or more modes q,
can be written as the integral of the equilibrium states, if q = 0, Eq. (4.19),

{ω̃ϕ |ϕ ∈ [0,2π]}

if q 
= 0, Eq. (4.25),

{ω̃x|x ∈ [0,γ] ; γ =
2π
|q| }

with the following properties:

1. All these states are explicitly constructed from the given state ω .
2. All states break the gauge symmetry because ω̃ϕ(α0) 
= 0 and ω̃x(αq) 
= 0. If

q 
= 0 the states ω̃x break the translation symmetry and are periodic in the q-
direction with period γ .

3. All states are ergodic equilibrium states with q-mode condensation, and are
showing off-diagonal long range order Eq. (2.33)

lim
V
{|ω̃ϕ(

a0√
V

)|2 − ω̃ϕ(
a∗0a0

V
)} = lim

V
|ω̃ϕ(

a0√
V

)|2 −ρ0 = 0

lim
V
{|ω̃x(

aq√
V

)|2 − ω̃x(
a∗qaq

V
)} = lim

V
|ω̃x(

aq√
V

)|2 −ρq = 0

A converse statement holds as well: If gauge breaking periodic states appear in some
direction q, then there is q-condensation.

Proof. The first statement of the Theorem follows directly from the two preceding
Lemmas.

The converse statement is an immediate consequence of the Schwartz inequality
0 < |ω(aq)|2 ≤ ω(a∗qaq) and the periodicity of the state.

In the case of ground state (q = 0)-condensation we wrote down a formal but, as
physicists might consider, an intuitive and understandable expression Eq. (4.22) for
the symmetry breaking states explicitly in terms of the correlation functions of the
given limit Gibbs state. For those inclined, an interesting exercise is to write the
analogous expression for the case of q-condensation.

We should note that in both cases discussed above a proof is given of the property
that, if there is Bose condensation, then the limit Gibbs states ωβ are non-trivial
convex combinations of the symmetry breaking equilibrium states {ω̃ϕ}ϕ or {ω̃te}t .
The following have previously been derived:
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ωβ =
1

2π

∫ 2π

0
dϕ ω̃ϕ and ωβ =

1
γ

∫ γ

0
dt ω̃te (4.27)

In particular these equations express that in the condensation region the limit Gibbs
state ωβ is no longer an ergodic state Eq. (2.26). At the contrary it is a non-trivial
convex composition of ergodic states.

Whenever we are interested in the equilibrium states of a concrete Bose system,
hence in the solutions of the equilibrium conditions, it should come over as natural
to always look for the ergodic or space extremal states. In the condensation region,
they coincide with the states {ω̃ϕ}ϕ or {ω̃te}, not with the limit Gibbs state ωβ .

Ergodic states have the interesting property that space averages of local observ-
ables are multiples of the identity. This is an immediate consequence of the property
Eq. (2.27). Applying this property for the special ergodic states ω̃ϕ or ω̃te, the aver-
age operators α0 or αq Eq. (4.12) extensively used in the proof of the Theorem Eq.
(4.5) are multiples of the unit operator, or are essentially what we sometimes call in
this field c-numbers.

c = ω̃ϕ(α0) =
√
ρ0eiϕ and c = ω̃te(αq) =

√ρqeiϕq,t (4.28)

These numbers refer to the so-called c-numbers of the c-number assumption in the
theory of Bogoliubov which is expressed by

c = α0 ; c = αq

In the context of this c-number philosophy, the phases ϕ and ϕq,t are sometimes
called the phases of the states ω̃ϕ and ω̃te. Therefore Theorem Eq. (4.5) might give
the impression of having stepped toward understanding the position of what is called
the Bogoliubov approximation. Let us remark however that originally, but still highly
popular, this approximation consists in substituting the condensate creation and anni-
hilation operators α#

q,V = a#
q/
√

V by c-numbers in the Hamiltonian, which is however
an operation of a totally different order. Indeed making this kind of approximation
means that we are neglecting the quantum fluctuations of the creation and annihila-
tion operators of this q-mode operators (see Eq. (6)), which remains a rather drastic
approximation. In the literature there have been many attempts to prove that this
Bogoliubov approximation is not an approximation but an exact statement. A first
serious attempt towards such a proof was on the level of a variational principle of
the energy density as a function of the condensate density. This attempt is found in
[57]. On the other hand, it is clear that the theorem Eq. (4.5) does not contribute to
unraveling the question about the exactness of this approximation. In fact we did not
use nor touch this approximation. Later, at the occasion of a more explicit discussion
of the theory of Bogoliubov, we come back to this point and we make more precise
statements about the position concerning this issue.

Spontaneous Symmetry Breaking in Classical Lattice Systems

To illustrate the universality, reaching far beyond boson systems, of the ideas and
the techniques behind the analysis described above concerning the relation between
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condensation in boson systems and spontaneous symmetry breaking and off-diagonal
long-range order, we formulate and prove the equivalent result for classical spin lat-
tice systems. In particular we give the construction of symmetry breaking states for
these classical equilibrium systems if and only if there is long-range order. The con-
tent of this note can also be found in [163].

We start with the definition of the classical spin system which consists again
in the specification of its algebra of observables and its set of states. The set of
observables of a classical spin system on a d-dimensional square lattice Z

d , consists
of the commutative algebra A generated by the one-site observables {σx/ x ∈ Z

d}.
In other words each system observable, denoted by X or X(σ), is of the type

∑
n
∑

x1,...,xn

cx1,...,xnσx1σx2 ...σxn

where x1, ...,xn ∈ Z
d and the cx1,...,xn are complex numbers. The spin variables σx are

functions taking the values ±1.
Homogeneous spin systems are defined by local Hamiltonians HΛ , one for each

finite subset Λ of the lattice, of the form:

HΛ = ΣΔ⊆Λ φ(Δ)σΔ (4.29)

where we used the notation σΔ =∏x∈Δ σx. The translation invariance is guaranteed
by the interaction energy condition φ(Δ + a) = φ(Δ) holding for all lattice transla-
tions a and subsets Δ of Z

d . Furthermore a condition on the potential φ is applied in
order to guarantee that the Hamiltonian describes a normal extensive system. We do
not enter here in more details.

The global spin flip operation Θ maps each of the spin variables σx onto its
spin-flipped opposite −σx.

For Λ any finite subset of the lattice points, we denote by ΘΛ the local spin flip
operation of all spins σx with x in Λ . Not only translation invariance of the systems
is imposed, we assume also the spin flip invariance of our systems: i.e. we assume
that all local Hamiltonians satisfy the condition Θ(HΛ ) = HΛ for all Λ ⊂ Z

d . We
notice that in this case we deal with a discrete symmetry group.

Clearly the best known prototype model systems are the d-dimensional Ising
models HΛ = −J∑<x,y>;x,y∈Λ σxσy, where < x,y > stand for the nearest neighbor
sites x and y. Of course the Hamiltonians formulated in Eq. (4.29) contain many more
classical spin models far beyond the Ising models.

We are again interested in the equilibrium states, which are expectation-valued
maps or for these classical systems probability measures on the set of functions A

the observables of these systems.
First of all we can again consider the limit Gibbs states, denoted by ωβ with β

the inverse temperature, and naturally defined by

ωβ (X(σ)) = lim
Λ→Zd

∑{σ=±1;σ∈Λ} X(σ) exp{−βHΛ (σ)}
∑{σ=±1;σ∈Λ} exp{−βHΛ (σ)} (4.30)
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There are many possible thermodynamic limits Λ → Z
d which can be considered.

Again the limits can depend on the geometrical forms of the sequences of Λ ’s. Dif-
ferent sequences can yield possibly different limit Gibbs states. By definition, each
of these limit Gibbs states, is denoted by the same symbol ωβ and is homogeneous
and spin flip invariant.

Analogous to quantum systems, any state ω of the spin system is an equilibrium
state of the system if it satisfies the classical Energy-Entropy Balance (EEB) criterion
at β , that is, if for each fixed finite lattice subset Λ̃ and any non-negative observable
X ≥ 0,

lim
Λ
ω(X(σ)(ΘΛ̃HΛ (σ)−HΛ (σ))) ≥ 1

β
ω(X(σ)) ln

ω(X(σ))
ω(ΘΛ̃ (X(σ)))

(4.31)

As in the quantum case, these conditions are handy tools as criteria for equilibrium
states (probability measures), they are nothing but the set of Euler equations for the
basic free-energy density functional variational principle of classical statistical me-
chanics of these systems. We should not be surprised by the inequalities instead of
equalities. It has been proven that the system of inequalities Eq. (4.31) is equivalent
to the system of Euler equation equalities of the classical variational principle (see
also [55]). The latter equalities are however practically less manageable in applica-
tions than the inequalities. For all these reasons the EEB criterion holds again as firm
general defining criterion for the classical spin systems equilibrium states.

Again we show [55] that each limit Gibbs state satisfies this Energy-Entropy
Balance (EEB) criterion. Each Gibbs state ωβ is clearly homogeneous and spin-flip
invariant (ωβ ◦Θ = ωβ ). But there may exist more homogeneous states ω satisfy-
ing the EEB criterion. Some of them may break the Θ -symmetry invariance of the
given system {HΛ}. If this happens we speak about the occurrence of spontaneous
symmetry breaking of the spin-flip symmetry.

For any homogeneous state ω of the system, the magnetization of the state is
given by

ω(σ0) = ω(σy) = lim
Λ→Zd

ω(∑x∈Λ σx

|Λ | ) (4.32)

where y is any arbitrary lattice point and where |Λ | stands for the volume or the
number of lattice points of Λ .

We can check that averages of local observables(functions), say A, again always
exist within the GNS-representation of a homogeneous state. The Hilbert space H
is the closure of the set A with respect to the scalar product (X ,Y )≡ (XΩω ,YΩω)≡
ω(X∗Y ), where Ωω = 1 stands for the the unit observable. With this in mind, if τa

denotes the translation action τa(σx) = σx+a over the distance a, then for all observ-
ables X ,Y we obtain

ω(X AY ) = lim
Λ
ω(X (

1
|Λ | ∑a∈Λ

τaA)Y ) (4.33)

defining the average observable A ≡ limΛ
1
|Λ | ∑a∈Λ τaA. We now set A = σx for some

point x. Then A = σx ≡ σ and Eq. (4.32) becomes
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ω(σy) = ω(σ) (4.34)

By the Schwartz inequality we get

ω(σy)2 = ω(σ)2 ≤ ω(σ2) (4.35)

expressing the following property: If ω is a homogeneous state breaking the symme-
try (i.e., if ω(σy) 
= 0), then ω(σ2) > 0.

Clearly any state ω with the property ω(σ2) > 0 may be called in a natural sense
a state with macroscopic occupation of spin density. In the rest of this note we prove
the following statement:

STATEMENT If we have a limit Gibbs state ωβ showing a macroscopic occu-

pation of spin density, hence with the property ωβ (σ2) > 0, then there exists a spin
symmetry breaking equilibrium (i.e. satisfying Eq. (4.31)) states ω+ and ω−, which
satisfy moreover the equality

ω(σy)2
± = ω±(σ)2 = ω±(σ2) (4.36)

that is, they satisfy Eq. (4.35) but with the equality sign. Moreover the limit Gibbs
state is an equal weight convex combination of the states ω±:

ωβ =
1
2
ω+ +

1
2
ω−

The implications of this equality sign case are the following: If we have sponta-
neous symmetry breaking states ω± and the equality sign in Eq. (4.36), then these
states have the property of showing the long-range order property

ω±(σ2) = |ω±(σ)|2 > 0 (4.37)

This property is similar to the notion of “off-diagonal long range order” (see [129]),
a notion which has been introduced in the context of quantized fields.

The statement expresses also that, if we have a limit Gibbs state ωβ showing
a macroscopic occupation of spin density, then the symmetry breaking states ω±
always exist and they show long-range order.

Construction of the states ω±.
We start from the given limit Gibbs state ωβ , which is homogeneous, spin-flip

invariant, and satisfies the property ωβ (σ2) > 0. In particular, spin-flip invariance
implies that ωβ (σx1 ...σx2n+1) = 0 for all integers n. Consider the average spin func-
tion σ Eq. (4.33) in the representation induced by the state ωβ . This average is a real
function with values in the interval [−1,1]. Consider the polar decomposition of this
average function

σ = U
√
σ2 (4.38)

As ωβ (σ2) > 0, we have σ 
= 0 or σ is a non-trivial function in this representation.
The function U is real function taking the values ±1 or U2 = 1 on the support of σ .

We can also write U = σ/
√
σ2. The function U can also be extend by one outside

the support, such that U2 = 1 everywhere.
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Define the new spin variables σ̃x for all x in the lattice

σ̃x = Uσx ≡ η(σx)

where η is a morphism of the algebra A generated by the σ ’s unto itself. The new
variables σ̃x generate a new representation of the original algebra of observables. We
define now the states ω± as follows: For each observable X , the expectation values
is given by

ω+(X) = ωβ (η(X)) ; ω−(X) = ωβ (η(Θ(X))) (4.39)

Properties of the states ω±.

1. It is readily checked, using the definition formulae Eq. (4.39) based on the given
Gibbs state ωβ , with β finite, that the states ω± satisfy the EEB criterion Eq.
(4.31). Therefore the newly constructed states are equilibrium states.

2. We compute that
ω±(σx1 ...σx2n) = ωβ (σx1 ...σx2n)

implying that the new states and the Gibbs state coincide on the even monomials
in the σ ’s. Also, as U2 = 1,

ω+(σx1 ...σx2n+1) = −ω−(σx1 ...σx2n+1)

implying all together that for all observables X

ωβ (X) =
1
2
ω+(X)+

1
2
ω−(X) (4.40)

The given Gibbs state ωβ is written as an equal weight convex combination of
the two constructed states ω±.

3. From the definition formulae Eq. (4.39) we compute the formulae

ω±(σ) = ±ωβ (
√
σ2) (4.41)

Using now the Hilbert space representations (GNS-representation [26]) of the
states ω±, respectively ωβ :

ω±(X) = (Ω±,XΩ±) ; ωβ (X) = (Ωβ ,XΩβ )

As

ωβ (
√
σ2)2 = |ω±(σ)|2 = |(Ω±,U

√
σ2Ω±)|2 = |( 4

√
σ2Ω±,U

4
√
σ2Ω±)|2

which by the Schwartz inequality is majorized by

≤ (Ω±,
√
σ2Ω±)2 = ωβ (

√
σ2)2

This implies that the vectors Ω± are proportional to the vectors U
√
σ2Ω± or

that there exists a complex number κ± such that
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κ±Ω± = U
√
σ2Ω± = σΩ±

We get

|ω±(σ)|2 = |(Ω±,σΩ±)|2 = |κ±|2 = (σΩ±,σΩ±) = ω±(σ2) = ωβ (σ2) > 0

The last inequality follows from the property of macroscopic occupation of spin
density for the state ωβ . This relation proves that the states ω± have the property
of showing spontaneous symmetry breaking(SSB) as well as that of showing
long-range order Eq. (4.36).

All this proves the statement which we want to make for classical spin systems. We
make a number of final notes.

We may recall the canonical model independent construction Eq. (4.39) of the
symmetry breaking states (SSB states) and remember the usual ways of showing
the existence of spontaneous symmetry breaking states for the Ising systems, which
consist of fixing plus or minus symmetry breaking boundary conditions. This means
breaking the symmetry by brut force. There are also the plus combined minus bound-
ary conditions leading to non-homogeneous states with an interface structure. Non-
homogeneous states lie outside the scope of this note. In [155] we find the main
results for Ising systems. The ±-boundary condition technique is considered to give
a physical interpretation of the origins of the symmetry breaking. However one can
also consider symmetry breaking external field perturbations, which tend to zero at
the end of the argument. Model computations [166] show boundary condition depen-
dencies on the various volume rates at which this limit is taken to zero. For quantum
systems but also for classical systems, boundary conditions can show a complicated
picture. The construction Eq. (4.39) of the SSB-states is independent from boundary-
conditions considerations. It is based solely based on the notion of macroscopic oc-
cupation of spin density for a limit Gibbs state.

Finally, we stress that our construction of SSB-states yields again an immediate
and explicit relation between a limit Gibbs state (ωβ ) and the SSB-states. For con-
venience we rewrite the SSB-states once more in the following form: For any n ∈ N,
we have

ω+(σx1 ...σxn) = ωβ ((
σ

√
σ2

)nσx1 ...σxn)

ω−(σx1 ...σxn) = (−1)nωβ ((
σ

√
σ2

)nσx1 ...σxn)

As an overall global remark concerning the material of this section we add the fol-
lowing: The ideas and techniques developed for the construction of symmetry break-
ing states can be applied to many more systems (e.g. Heisenberg models) than boson
and classical spin systems. Of course we focus on quantum and classical spin mod-
els with discrete or continuous symmetries, but we can also consider field theoretic
models with larger symmetry groups.
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4.3.3 Condensate Equations

What is the condensate equation? As is by now well known, the always challenging
problem of boson systems is to show that there exists one or more equilibrium states,
say denoted ω , which show condensation. In our case, this means that we have to
show that the state has the following property: For some q ρq = ω(α∗

qαq) > 0, that
is, the ω-expectation value of the number operator a∗qaq of the q-mode particles is
proportional to the volume. There are many possible techniques to reach this goal.
We could apply correlation inequalities, we could use numerical methods, in due
case all kinds of approximations, and so on. A particular way of proceeding is to
solve the variational principle Eq. (3.1) or the energy-entropy criteria Eq. (3.7) for
the equilibrium states. This is nothing new, so far. We can also ask the question
whether it is possible to derive from these equilibrium criteria directly, or indirectly
for that matter, a general independent equation for the crucial quantity ρq of our
interest. Suppose that we can derive from general principles such an equation. Then
we could try to solve this equation or try to show that this equation allows for a
strictly positive valued solution for the condensate parameter ρq. If a positive answer
can be given to this procedure, then we have shown the existence of Bose-Einstein
condensation. Such an equation, if it can be derived, is called a condensate equation.
In many cases solving or working with this equation is an economical way towards
success in showing condensation.

We reproduce the proofs for the rigorous derivations of the q-mode condensate
equation in its most general formulations [49, 162]. For more literature on this topic
we refer also to [57, 31, 49] and references therein. By proceeding this way we
indicate also that the notion of condensate equation and its position can be put in a
larger context applicable to any other relevant order parameter for any boson model
under consideration or for any other classical or quantum systems. We bring also into
the picture the relation between the condensate equation and the time invariance of
the state when dealing with ergodic states.

As explained, the condensate equation(s) should be derived for instance from the
variational principle Eq. (3.1). It should be stressed that the derivation of the con-
densate equations is in fact an essential part of an explicit execution of the variation
principle. It is simply the straightforward tool of performing explicitly the variation
with respect to the variation of an order parameter of the model, in particular the
condensate parameter. Here we have in mind for instance the parameter c linked to
the condensate density for ergodic states given by |c|2 = limV ω(a∗0a0)/V = ρ0 in the
case q = 0 Eq. (2.32).

Equally well, we should be able to derive these condensate equations from the
energy-entropy criteria for equilibrium Eq. (3.7). That is what we have carried out in
the derivations below. Nevertheless, for interpretational matters we make some di-
rect connections with the variational principle. In any case the condensate equation
for any homogeneous gauge invariant equilibrium state ω can be derived from the
energy-entropy criterion. We specify the result for general homogeneous as well for
the ergodic, extremal invariant, or the ergodic, symmetry-breaking, boson equilib-
rium states.
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Preparing the formulation of the main result, for formal completeness let us start
with a few technicalities, which should help us understand the underlying mathemat-
ical structure of the theory. First we remark that the following matrix elements for
any choice of observables A,B,C,

ω(Aδ (B)C) � lim
V
ω(A[HV −μNV ,B]C) (4.42)

should define operators δ (B) on a common domain D containing all the observables
being polynomials in the creation and annihilation operators. This definition is math-
ematically understandable again in the sense of the GNS-representation ([26] and Eq.
(7.1)) of the state ω . The linear map δ : B → δ (B) satisfies all the properties of a
derivation , which are given by δ (AB) = δ (A)B+Aδ (B) and by δ (A)∗ = −δ (A∗).

In the preceding subsection Eq. (4.12), we introduced the average operator αq =
limV αq,V with αq,V = aq√

V
where limV means the strong operator limit for the ω-

state GNS-representation space H . Remember that the existence of the operator is
ensured for all states that are invariant under the (lattice) translation group, because
the operator is a space average operator. We have in mind that limit Gibbs states are
homogeneous and we learned that spontaneous symmetry breaking leads to ergodic
or extremal translation (or lattice-)invariant states.

For convenience we repeat the following essential properties of the operator αq

Eq. (4.12) acting on the representation space H induced by the state ω :

1. The operator commutes with all creation and annihilation operators.
2. In particular, it is a normal operator: α∗

qαq = αqα∗
q .

3. Its relation to the condensate density operator is nq = α∗
qαq, where nq is the q-

density operator with q-condensate density in the state ω given by ρq =ω(nq) >
0.

4. It has a well-defined polar decomposition: αq = Uq
√

nq with Uq a unitary oper-
ator and

√
nq ≥ 0.

5. From its definition, it readily follows that it is not always translation invariant,
but periodic in the q-direction: τy(αq) = e−iq.yαq.

Now we are able to formulate a general property following directly from the EEB
criterion of equilibrium.

Lemma 4.6. Let ω be any homogeneous equilibrium state, satisfying the EEB-
equilibrium condition Eq. (3.7). For any polynomial P(a∗k ,ak,α∗

q ,αq) in the creation
and annihilation operators ak and the αq-operators, simply denoted by P(a,α), and
for any polynomial Q(α∗

q ,αq), simply denoted by Q(αq), in the αq-operators, we
obtain

ω(P(a,α)δ (Q(αq)) = 0. (4.43)

or explicitly written as

lim
V
ω(P(ak,αq,V )[HV −μNV ,Q(αq,V )]) = 0
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Proof. The proof is extremely simple. We consider an arbitrary complex number λ
and substitute X = P∗ +λQ in the equilibrium condition for the state ω Eq. (3.7).
We then use the convexity of the ln-function to obtain the inequality a ln a

b ≥ a− b
for any pair (a,b) of positive real numbers and use the fact that the operators P and
Q commute in order to obtain the inequality

β (|λ |2ω(Pδ (P∗))+ λ̄ω(Pδ (Q))+λω(Q∗δ (P∗))+ω(Q∗δ (Q)))

≥ |λ |2ω(PP∗ −P∗P)

If we find that the unique λ -independent termω(Q∗δ (Q)) in this inequality vanishes,
then the theorem follows from this inequality by virtue of the vanishing of the terms
linear in λ . We show as follows that this term indeed vanishes.

By taking λ = 0 in the inequality, we obtain ω(Q∗δ (Q))≥ 0. After repeating the
argument with Q replaced by Q∗, we also obtain ω(Qδ (Q∗)) ≥ 0.

On the other hand, using the time invariance of the equilibrium state ω Eq. (3.8)
and the fact that Q commutes with all other local operators, we obtain

0 = ω(δ (Q∗Q)) = ω(δ (Q∗)Q)+ω(Q∗δ (Q)) = ω(Qδ (Q∗))+ω(Q∗δ (Q))

This equation together with the positivity of both terms yields ω(Q∗δ (Q)) = 0, fin-
ishing the proof of the Lemma.

Now we are in a position to obtain the condensate equation for the q-mode. In partic-
ular two versions of this equation are presented. The first one is intended for general
limit Gibbs states, which are homogeneous states but not necessarily extremal space-
invariant equilibrium states. A second version is derived for the extremal or ergodic
equilibrium states, which are in due case non-homogeneous but q-periodic and which
show spontaneous gauge symmetry breaking. For general limit Gibbs states we state
the following:

Theorem 4.7. Letω be a general homogeneous limit Gibbs state satisfying Eq. (3.7).
The q-condensate equation is given by

ω(α∗
qδ (αq)) = 0 (4.44)

Proof. The formula of the theorem follows immediately from the preceding Lemma
Eq. (4.43) by substituting P = α∗

q and Q = αq.

We should note the compact form of Eq. (4.44). We note also the entropy term of the
variational principle, or of the energy-entropy criterion, does not contribute to the
explicit form of the equation. The temperature enters only by way of the correlation
functions. That Eq. (4.44) is a type of a condensate equation and should become clear
shortly. In particular it should become clear after having been applied explicitly for
some model Hamiltonians.

On the other hand, we could ask also for its relation to what is usually understood
in the physics literature as the condensate equation. This equation is mostly referred
to as the Euler equation resulting from the minimization of the free-energy density
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functional with respect to a variation in the condensate density variable (see [57]
for example). This statement should be analyzed with some care. Nevertheless it
remains instructive to link the result Eq. (4.44) directly to the general variational
principle Eq. (3.1) of the free-energy functional with respect to a variation on the
set of homogeneous states. In particular the identifying the type of variation of the
states is interesting. Is the variation a change of the condensate density or is the
variation related to another quantity? We now explain the relation between Eq. (4.44)
and the general variational problem Eq. (3.1). As far as the latter is concerned, we
again consider the free-energy density functional map f Eq. (3.1) defined on the state
space: For any state σ

f : σ → f (σ) = lim
V

1
V
{β σ(HV −μNV )−S(σV )}

with μ the chemical potential and S(σV ) the entropy of the restriction of the state σ
to the finite volume V observables. The variational principle of statistical mechanics
implies that each homogeneous (or periodic) equilibrium state ωβ minimizes the
free energy density functional, or equivalently, for any arbitrary homogeneous state
σ , f (ωβ ) � f (σ). Next, consider the following inequality, which has been explicitly
proven for lattice systems in [53], but immediately extendable to continuous systems
and given by: Any homogeneous equilibrium state ωβ satisfies for any observable X
the inequality

lim
V
β ωβ (X∗[HV −μNV ,X ])−ωβ (X∗X) ln

ωβ (X∗X)
ωβ (XX∗)

� lim
λ→0+

1
λ

( f (ωβ ◦ γλ )− f (ωβ )) � 0

where {γλ = eλΓ | λ ∈ R
+} is any one-parameter (namely λ ) semigroup of homo-

geneous, completely positive maps (mapping states into states, see Eq. (7.2)) which
map any ωβ -state (equilibrium state) into a perturbed one of the system, and where
the map Γ on the set of observables is given by the action-type Lindblad generator
Eq. (7.2)

Γ (.) = lim
V
ΓV (.) = lim

V

∫

V
dx([τx(X∗), . ]τx(X)+ τx(X∗)[ . ,τx(X)] (4.45)

The notation τx stands again for the translation over the distance x. The proof of
the inequality is a straightforward consequence of the biconvexity of the function
x,y ∈ R

+ → x ln(x/y).
As a byproduct, this inequality shows explicitly in which sense the EEB criterion

for the equilibrium state ωβ is related to the derivative at λ = 0 of the free-energy
density functional defined on the set of homogeneous states.

Moreover we note that for the particular choice of X = αq in Eq. (4.45), and
using the result Eq. (4.44), the left hand side of Eq. (4.45) vanishes. This shows
that Eq. (4.44) is equivalent to what could be called a quantum Euler equation of
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the variational principle for all state variations of this particular type. It is a classi-
cal analysis Euler equation in the parameter λ . The physical meaning and the effect
of these variations can made clearer by the following direct computation, yielding
γλ (α#

q ) = limV eλΓV (α#
q,V ) = e−λα#

q . The γλ -operation is nothing more than an ex-
ample of a particular quantum dynamical semigroup (see Eq. (7.2)), mapping the
homogeneous quantum states into themselves. A variation of the positive parameter
λ makes the states ωβ ◦ γλ wander around in the state space. In particular the map
corresponds to the operation of multiplying by a real number e−λ the creation and
the annihilation operators of a condensate particle, leaving all other observable op-
erators a#

k invariant (see also Eq. (7.2)). In particular, this means that the semigroup
changes the value of the condensate density by a factor e−2λ . We should stress the
fact that this type of variation is a consequence of the special variation of creation
and annihilation operators of the condensate mode only. In the case q = 0, this vari-
ation is therefore really related to a change of the parameter c = limV ω(a0/

√
V )

introduced and discussed before. Clearly all these arguments provide an alternative
derivation of the existence of this particular type of Euler equation for the part of the
variational principle leading to the condensate equation. This completes the discus-
sion about the physical meaning of the result derived in Theorem Eq. (4.44) as well
as about the question of whether Eq. (4.44) derived in the theorem coincides with the
condensate equation as it was originally conceived. It has always been considered as
being connected as an essential part of the variational principle. It is clear that we
can apply this argument for the variations determining all one-point functions of the
states. As mentioned, in the literature the original condensate equation referred only
to the condensate variable ρ0. It is clear from Eq. (4.43), Eq. (4.44) that we general-
ized the concept of the condensate equation to arbitrary q-condensation. We can deal
with all cases ρq ≥ 0, where q = 0 as well as q 
= 0.

Yet, below we give another non-trivial, nevertheless straightforward and imme-
diate generalization of this variation procedure and hence of the condensate equa-
tion idea. Instead of taking only the operators αq, we use now the space averages
of any arbitrary local (or quasi-local) observable. In principle our methods lead to
the derivation of possibly infinitely many new condensate equations. In practice, of
course many of them lead us to trivialities or fail to give anything new. However for
some boson models they represent essential and interesting contributions toward the
solution of the boson problem under consideration. The least we can say that we can
distinguish a condensate equation in a boson model each time there is another or-
der parameter in the model. In the model studies below we find several applications
of these condensate equations technique. Before proceeding to the applications, we
discuss first the announced generalizations.

Take any local observable A and consider its space averages in the finite volume
V , as well as in the limit V → ∞:

AV =
1
V

∫

V
dxτxA and A = lim

V
AV

It is important to remark that these space averages A satisfy all the mathematical
technical properties of the basic operators αq used before in the proofs of Theorems
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Eq. (4.43) and Eq. (4.44). First, they are also space averages. Furthermore, the oper-
ators A commute with all local observables because [A,a( f )] = 0 for each local test
function f in S and therefore they commute with all functions of the localized cre-
ation and annihilation operators. Finally the averages A satisfy the property of being
normal operators, expressed by [A,A∗ ] = 0. For all these reasons we can repeat word
by word the proof of Eq. (4.44) and get for arbitrary averages the following much
stronger result yielding in principle an infinity of condensate equations.

Theorem 4.8. Let ω be any homogeneous limit Gibbs state or equilibrium state,
satisfying the EEB criterion for equilibrium at inverse temperature β , including the
case β =∞, which means that ω is a ground state. Let A be any local (or quasi-local)
observable, then the A-condensate equation is given by

ω(A∗ δ (A)) = 0

which reads more explicitly as follows

lim
V
ω(A∗

V [HV (μ),AV ]) = 0 (4.46)

This theorem yields the most general form of condensate equations. We should note
that there is possibly an infinite number of such condensate equations, one for each
local observable A.

To add to our understanding of the structural position of these condensate equa-
tions in the framework of solving the problem of equilibrium states, we give a new
and full proof of the result of the Theorem Eq. (4.8), but now starting from a state
satisfying the variational principle Eq. (4.45) instead of the energy-entropy criteria
Eq. (3.7).

For each finite volume V, consider again the Lindblad generator (see Eq. (7.2))

ΓV (.) =
∫

V
dx{[τxA∗

V , .]τxAV + τxA∗
V [.,τxAV ]}

generating a dynamical semigroup of completely positive maps {γλ ,V = expλΓV |λ ≥
0} mapping in an evident manner the set of locally normal states into itself. On the
basis of the variational principle Eq. (4.45) we obtain for any locally normal state
ω(.) = limV trρV

0 ≤ lim
λ→0

1
λ

( f (lim
V
ω ◦ eλΓV )− f (ω))

≤ lim
V
{β trρV A∗

V [HV (μ),AV ]− trρV A∗
V AV ln

trρV A∗
V AV

trρV AV A∗
V

}

The second inequality is again a consequence of the bi-convexity in the two variables
of the function: x,y → x ln(x/y).

Because of the normality of the operator A, the second term of the right hand side
of the inequality vanishes. This term represents the change of entropy density per unit
of the parameter λ . The fact that this term vanishes means that the entropy term in the
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free energy does not play a role in the expression of the A-condensate equation. As
already remarked before, the A-condensate equation does not depend on the entropy
density, but only on the energy density. In turn, this means also that the entropy
density does not depend explicitly on the A-condensate. This implies moreover that
the derivation of the condensate equations and the condensate equations themselves
holds as well for the ground (T = 0)-states as for the temperature (T > 0)-states.
The condensate equations are, in this sense, equations which are independent from
most of the other basic parameters of the system. In any case we get immediately the
positivity property

0 ≤ lim
V
ω(A∗

V [HV (μ),AV ])

Analogously, we obtain the same inequality with AV replaced by A∗
V .

Using the same arguments as above but now working with the group of unitary
operators {Uλ = exp(iλHV (μ))}, for all λ ∈ R and the corresponding dynamical
group {γλ ,V = exp(iλ [HV (μ), .]) ;λ ∈ R} instead of with the semigroup, we also
obtain from the variational principle the time invariance of the state (see also Eq.
(3.8)) given by

0 = lim
V
ω([HV (μ),X ])

for each observable X of the system. In particular we find

0 = lim
V
ω([HV (μ),A∗

V AV ])

= lim
V
{ωβ ([HV (μ),A∗

V ]AV )+ω(A∗
V [HV (μ),AV ])} (4.47)

Using again the property that the averages commute with all local observables, we
obtain the most general condensate equation announced in the theorem. This finishes
the independent proof of Theorem Eq. (4.8) derived directly from the variational
principle.

Finally we proceed to the special situation of the condensate equation only valid
for extremal or ergodic equilibrium states. Let ω̃ be any such ergodic state. Then it
follows immediately from Theorem Eq. (4.8) that

0 = ω̃(A∗)ω̃(δ (A)) (4.48)

On the other hand we know already from Eq. (3.8) that

ω̃(δ (A)) = 0 (4.49)

Hence for ergodic equilibrium states the condensate equation (4.8) gives nothing
new or different from the time invariance property applied to the average operator
AV . The connection between the condensate equation and the time invariance was
already expected from the proof of the theorem Eq. (4.8). For these reasons we can
call the time invariance property applied to the special choice of observables, namely
the averages, the condensate equation for ergodic states.

Further on in this chapter we give a number of illustrations of the material about
the condensate equations when we discuss explicitly a number of models like the
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free boson gas, the mean field boson gas, the Bogoliubov model, the model on super-
radiance amplification by boson condensation, and others.

Before proceeding to these special boson models, it is interesting to mention
that the ideas behind the derivation of these results, in particular in the form of the
Theorem Eq. (4.8), about the most general form of the condensate equations theory
developed so far, extend and are applicable in the search for equilibrium state solu-
tions of all types of homogeneous quantum systems far beyond boson systems. We
have in mind all kinds of quantum spin systems. In particular we think also about
the applications for interacting fermion systems. In fact we presume that more in-
teresting applications are expected in most models in which order parameters play a
prominent role. These ideas about condensate equations are also extendable to homo-
geneous classical systems. This comes over to us as an wide open research domain
in which these concepts and techniques have not been exploited so far.

4.4 Mean Field Bose Gas

The free Bose gas was the first boson model showing Bose-Einstein condensation.
The model is important not only because it is the first model with this property. It is
also fundamentally important because it shows the occurrence of this basic quantum
phenomenon for a system of free bosons. It means that condensation is not an artifact
of a special type of inter-particle interactions. Therefore the free Bose gas remains
a statue of the physics literature, in particular for the field of quantum statistical
mechanics.

On the other hand it is clear that the free Bose gas has its limitations as a physical
theory, as well for the explanation of physical phenomena as because of its intrin-
sic theoretical properties. The theory behind the free Bose gas with its condensate
was quickly considered the theory explaining the low temperature phenomenon of
superfluidity. However the one-particle spectrum of the free Bose gas was quickly
realized unsuitable for explaining superfluidity. (See Eq. (4.1) and e.g. [169] for a
recent discussion about this topic.) From a more theoretical point of view the free
Bose gas has also some less agreeable aspects making the model less useful even
as a toy model. We mention the following reasons: Developing the microscopic the-
ory of thermodynamics from the point of view of Gibbs states, we arrange matters
directly or indirectly within the underlying philosophy that all three of the Gibbs
ensembles (micro-canonical, canonical, grand-canonical) coincide in the thermody-
namic limit. In this context the careful analysis by the Dublin group [101] (see also
[170]) of the thermodynamic limit Gibbs states, keeping the grand canonical particle
density ρgr constant, establishes a relationship between the grand canonical state ωgr

β
and the canonical states {ωρβ } with densities ρ ,

ωgr
β (.) =

∫ ∞

0
dρK(ρ,ρgr)ω

ρ
β (.) (4.50)

where the function K is given by: Let ρ be any non-negative real number. Then
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K(ρ,ρgr) = (ρgr −ρc)−1 exp{− ρ−ρc

ρgr −ρc
}, if ρ > ρc

K(ρ,ρgr) = δ (ρ−ρgr), if ρ ≤ ρc

Therefore if ρ > ρc (the condensate region) the grand canonical equilibrium stateωgr
β

is a non-trivial convex combination of the canonical equilibrium states ωρβ , where the
canonical density ρ is the summation parameter.

We note that the condensate density is given by ρ0 = ρgr −ρc with ρc the critical
density of the free Bose gas.

The function K is sometimes called the Kac-function. If the canonical density is
larger than the critical density (ρ > ρc), then the Kac-function is not a trivial delta
function, which means that in such a region the canonical and the grand canoni-
cal states are different states. This is a somewhat embarrassing situation for the free
Bose gas in order to be a decent microscopic model for statistical mechanics yielding
normal thermodynamical behavior. Moreover the Kac-function depends once more
heavily on the boundary conditions. For attractive boundary conditions this Kac-
function is computed in [160] and it turns out to be quite different from the corre-
sponding Kac-density, which is computed in [101]. Nevertheless its main property of
not being a trivial delta-function below the transition point remains in the attractive
boundary conditions case.

Another annoying aspect of the free Bose gas model is related to the fact that
the phase transition point (transition from no condensation to positive condensation)
does not show a clear type of phase transition, whether first order or second order. It
remains a point of discussion among theoreticians.

For all these reasons physicists were looking for other models which show Bose-
Einstein condensation and which have preferably a decent thermodynamical behav-
ior. Because the full two-body interaction model is unsolvable, a first solvable model
showing BEC with good thermodynamical behavior is the mean field Bose gas. This
model is also sometimes called the imperfect boson gas. For periodic boundary con-
ditions the model has the following local Hamiltonian:

Hm f
V (μ) = TV −μNV +

λ
2V

N2
V

TV =∑
k

k2

2m
a∗kak (4.51)

with λ > 0 the coupling constant. The grand canonical ensemble thermodynamic-
limit state with constant density is computed in [54]. For this model the Kac-function
is proven to be always a delta-function and therefore the canonical and grand canon-
ical states coincide. The phase transition is a second-order transition. For all these
reasons it is likely to consider the mean field model as the prototype microscopic
statistical mechanics model for Bose-Einstein condensation. It is a solvable model
for which we sketch how to find the solutions of the variational principle Eq. (3.1)
as well as the solutions of the energy-entropy criterion for equilibrium Eq. (3.7).
The solvability of the model makes that, in nearly all practical applications of Bose-
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Einstein condensation models, the mean field Bose gas is ubiquitously present in the
literature.

Let us start the analysis of the equilibrium states of this mean field model. First
we note that the model Eq. (4.51) is indeed super-stable for all values of the chemical
potential μ and hence for all total densities. Indeed for all constants μ0 ≤ 0 we obtain
the inequality

Hm f
V (μ) = TV −μ0NV +

λ
V

(NV − (μ−μ0)V
2λ

)2; λ > 0

proving the stability of the mean field boson model.
We look first for the solutions of the variational principle Eq. (3.14). For each

ergodic homogeneous state ω and for a given fixed grand canonical density ρ =
limV ω(NV /V ) we compute straightforwardly the value of the free-energy density
functional for the state ω ,

f (ω) = β{
∫

dkεk(r(k)−1)+
λ
2
ρ2}−

∫

dk{r(k) lnr(k)− (r(k)−1) ln(r(k)−1)}

where εk = k2

2m −μ , r(k) = ω(aka∗k)t and ρ = ρ0 +ρc, with ρc =
∫

dk (r(k)−1) and

finally ρ0 = limV
ω(a∗0a0)

V = limV |ω(a0/
√

V )|2 the condensate density. The energy
density functional for any ergodic state depends clearly only on the one- and two-
point functions of the state. Therefore the mean field model is a solvable model.
By Eq. (3.14) the variational principle over all ergodic states is reduced to a varia-
tional principle over the set of quasi-free states Q. The variational parameters (see
Eq. (3.14)) for this model are the continuous functions r(k) satisfying r(k)− 1 ≥ 0
and ρ ≥

∫
dk (r(k)− 1). The particle density ρ is a priori given and fixed. Remains

the variations over the set of one-point functions which consists of the condensate
parameter

√ρ0 and the phase factor of the one-point function.
Note that the free energy density of the mean field model does not depend on this

phase, which therefore can take any arbitrary real value.
Next look for the variations with respect to the condensate parameter |c| = √ρ0.

As explained before, this variation is performed by considering the corresponding
condensate equation (4.44). Since we have a closed boson system, we only expect
(k = 0)-condensation. As in the free boson gas, we prove that there is indeed no
(k 
= 0)-condensation. Indeed for each k 
= 0m, we get for all translations τx: ω(ak) =
ω(τxak) = eikxω(ak). Hence ω(ak) = 0 on the basis of the translation invariance of
the state. None of the (k 
= 0)-modes shows condensation.

A direct computation yields the zero-mode condensate equation, that is,

ρ0(μ−λρ) = 0

The density ρ being fixed this equation has two different solutions, namely (i) ρ0 = 0
and (ii) ρ0 > 0 yielding in the second case the explicit relation between the chemical
potential and the given total particle density: μ = λρ .

The first case corresponds to an absence of boson condensation, so that the free
energy density is completely described solely by the function r(k).
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The second case corresponds to the condensate region, with μ = λρ . This equal-
ity is a basic relation if there is condensation. In essence it reduces the variational
problem of this model to that of the free boson gas. We note however the essential
difference in the condensate regions between the free Bose gas, where the chemical
potential μ = 0 holds, and the mean field boson gas, where we have a strictly positive
chemical potential μ = λρ > 0. This fact is at the origin of the fact for the mean field
model, the Gibbs ensembles coincide, where they do not coincide for the free boson
gas.

Now we are prepared to perform the variations with respect to the variables r(p).
We obtain straightforwardly the corresponding Euler equation

β (
p2

2m
−μ+λρ) = ln

r(p)
r(p)−1

an equation which we can write in the more recognizable form

r(p)−1 =
1

eβ ( p2
2m−μ+λρ)−1

We use the double commutator inequality Eq. (3.10) and we derive for all p 
= 0:

Ep ≡ lim
V
ω([ap, [HV ,a∗p]]) =

p2

2m
−μ+λρ ≥ 0

The Ep are the energy spectral values of the boson quasi-particles (see also Eq. (5.1))
of the mean field model for all non-condensed modes. We note that in the condensate
region (ρ0 > 0), the spectrum coincides with that of the free boson gas, namely Ep =
εp, yielding also the same critical density ρc. Outside the condensate region (ρ0 =
0), we obtain the following explicit relation between the given density ρ and the
chemical potential μ :

ρ =
∫

d p(r(p)−1) =
∫

d p
1

eβ ( p2
2m−μ+λρ)−1

All this solves completely the variational principle of statistical mechanics for the
mean field model.

In order to write explicitly the ergodic or extremal space invariant, but gauge-
breaking, states we use Eq. (4.19) and keep in mind Theorem Eq. (4.2). We note that
the condensation occurs only in the (q = 0)-mode, as for the free boson gas. This
expresses also that the space translation invariance is not spontaneously broken.

The result of the variational principle is a solution given by the quasi-free states
{ωα |α ∈ [0,2π]} with non-trivial two-point functions, determined as the functions
r(p) which is found above, and with s(p) = 0. Using Eq. (2.31), the quasi-free state
has the one-point function given by ωα(a( f )) = f̂ (0)

√ρ0 eiα .
For didactic reasons let us also look for the solutions of the energy-entropy bal-

ance criterion for equilibrium Eq. (3.7) for our mean field model.
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Let us consider again any ergodic state ω . First we use the condensate equation
(4.44) for αq=0, yielding again ρ0(μ − λρ) = 0. This means that we once again
produce the two possibilities: ρ0 = 0 (no condensation), or ρ0 > 0 and μ = λρ . Both
cases compel us to look for the other modes p 
= 0. Therefore we substitute X = ap

in Eq. (3.7), leading straightforwardly to the inequality

−βEp ≥ ln
r(p)−1

r(p)

We next substitute X = a∗p in Eq. (3.7), and compute again. We obtain the analogous
inequality but with the opposite inequality sign. This means that we obtain an equal-
ity and that r(p) is the same function as found above in the case of the variational
principle. This is an illustration of the fact that both equilibrium criteria Eq. (3.1)
or Eq. (3.14) and Eq. (3.7) yield exactly the same result for the homogeneous mean
field model.

Let us conclude the study of the mean field boson model by writing down the
self-consistency equation relation for the total density ρ of the equilibrium state ω .
By means of the obtained results it becomes

ρ = lim
V
ω(

NV

V
) = ρ0 +

∫
d p

1

eβEp −1

where EP = p2

2m − μ + λρ . Hence we arrive at an expression equivalent to that for
the free Bose gas, but where the one-particle energies εp are replaced by the quasi-
particle energies εp +λρ . For more details about spectrum considerations see Chap-
ter Eq. (5). Our analysis has uncovered two regimes:

(i) The condensate phase region with ρ0 > 0 and μ = λρ . The total density equa-
tion becomes

ρ = ρ0 +
∫

d p
1

eβ
p2
2m −1

= ρ0 +ρc

where ρc is the critical density of the free Bose gas. The density equation is the same
as for the free boson gas.

Hence also in the condensate region of the mean field model we get limp→0
Ep
p =

0; the Landau criterion for superfluidity Eq. (4.1) is not satisfied.
(ii) The normal phase region with ρ0 = 0. Then λρ − μ ≥ 0 and the density

equation becomes

ρ =
∫

d p
1

eβ ( p2
2m−μ+λρ)−1

which is the density equation of a free gas of quasi-particles. The latter are the same
particles as the free boson gas particles but carrying a modified one-particle energy
Ep.

4.5 Super-radiance and Matter Wave Amplification

In this section we discuss a solvable model that explains the discovery of the effects
of Dicke super-radiance on (a) boson condensates and (b) the phenomenon of BEC
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matter wave amplification (see [88] and references therein). In these experiments the
condensate atoms are illuminated by a laser beam. The condensed atoms scatter the
photons coming from the beam and receive their corresponding recoil momentum
on the basis of momentum conservation. For more details about the experiments and
their physical phenomenological theories see also the references [137, 139, 140].

Apart from the physics covered by the model, which we present, we consider the
model here as a solvable model which shows condensation in a (q 
= 0)-mode. As a
consequence of Theorem Eq. (4.5) we get spontaneous space translation symmetry
breaking in the presence of condensation. Afterwards we discuss the gauge symmetry
breaking. The model is given by the following local Hamiltonian written down in one
space dimension (d = 1) and with periodic boundary conditions:

Hsr
V (μ) =∑

k

(εk −μ)a∗kak +Ω b∗qbq +
λ

2V
N2

V − g√
V

(a∗qa0bq +aqa∗0b∗q) (4.52)

The first term is the kinetic energy term of the bosons with one-particle energies
εk = k2

2m ; the second term is the kinetic energy of a single mode photon laser with
frequency Ω ; the third term is a system-stabilizing boson mean field term. The last
term describes the interaction between the laser mode and the boson q = 0-mode and
the q 
= 0-mode. The λ and g are positive coupling constants.

The total local Hamiltonian Eq. (4.52) is clearly space homogeneous and there
exists a global gauge symmetry for the bosons. Considering the gauge transforma-
tions of the 0-mode and the q-mode independently, we note that both of them are
broken already in the Hamiltonian.

We are interested in the equilibrium states of the total system. In particular, we
look for the ergodic or extremal equilibrium states for the bosons as well as for the
laser mode which we consider as a collective or macroscopic boson mode. These
ergodic states are chosen to be product states with respect to the product system
nature of the boson system and the photon system.

The operator a∗qbq/V and the operator a0/
√

V are space averages of local opera-
tors and therefore the value of the energy density for any ergodic state ω equals

e(ω) =
∫

dkεkω(a∗kak)+Ω lim
V
ω(

b∗qbq

V
)+

λ
2
ρ2 +g{ω(

a0√
V

) lim
V
ω(

a∗qbq

V
)+h.c.}

where ρ denotes again the total density of the bosons. We note that the energy density
formula is given in terms of the one- and two-point functions of the state and that
therefore the system is a solvable model.

If there is condensation in the q-mode then the space translation symmetry is
spontaneously broken down to a lattice symmetry in the q-direction Eq. (4.5), with a
period γ = 2π

|q| . The Hamiltonian Eq. (4.52) is gauge breaking for the single 0-mode
gauge transformations of the bosons. This mode on the other hand remains itself
space homogeneous. For the boson system we obtain periodic states with period γ;
the same holds for the laser mode. Using any such ergodic state ω , we compute the
limits
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lim
V
ω(

a∗q√
V

) =
1

Vγ

∫

Vγ
dxeiq.xω(a∗(x))

with the integral over the cubic box lattice cell with sides equal to γ and with volume
Vγ . Using the expression Eq. (2.31) of the one-point function, we find

√ρqeiϕq =

limV ω(
a∗q√

V
). The previous result holds analogously for the two other densities. We

introduce their corresponding densities ρ0 attached to the mode operator a0 and ρ̃q

to the density(intensity) related to the laser operators b#
q.

In what follows, we set all phases equal to zero to simplify notation. This corre-
sponds with performing the right gauge transformations for the three corresponding
modes. In fact the phases should satisfy the relation ϕq −ϕ0 − ϕ̃q = 0 to reach the
minimal energy state.

Consider first the condensate equations Eq. (4.44), or Eq. (4.8) for the three mode
operators a∗0, a∗q and b∗q, appearing in the interaction. We get, respectively,

(−μ+ ε0 +λρ)ρ0 = g
√
ρ0ρqρ̃q

(−μ+ εq +λρ)ρq = g
√
ρ0ρqρ̃q

√
ρ̃q(

√
ρ̃q −

g
Ω

√ρ0ρq) = 0

Of course, we denote by ρ̃q = limV ω̃(
b∗qbq

V ) the intensity, also called the q-mode laser
density or the density of the photons, and denote again by ρ the total density of the
boson particles. We are interested in solutions of these equations as a function of
the chemical potential μ , which itself is fixed by the density of bosons constraint
expressed by the constant density formula ρ = limV ω(NV

V ) with NV = ∑k a∗kak.
The following small-scale analysis of the equations teaches us the following:

Suppose that one of the densities ρ0, ρq, or ρ̃q vanishes. Then the situation is unin-
teresting because the interaction term disappears in the energy density formula and
the variational principle yields a system of free bosons about which we already know
everything. In that case only condensation in the 0-mode is possible if the total bo-
son density is large enough and if the dimension is larger than 2. If the dimension is
smaller than 2, there is no condensation (see Eq. (4.1)).

Next we look for the possibility of a non-trivial solution. Considering the model
Hamiltonian, the boson system is a subsystem of the total system consisting of the
boson system and the laser system. If we restrict our attention to the boson system,
we find that it is an open system in contact with the laser system. In order that the
photon system is thermodynamically in balance with the boson system, or in other
words that it is effective, it should be a one-mode macroscopic system. Therefore it
is natural to assume that this mode has a finite density ρ̃q 
= 0. This is assumed as a
starting point of our analysis and we do not dig further into the details of the mecha-
nisms of the laser system. This situation should be considered as an initial condition
expressing the physical property that the laser radiation is sufficiently intensive.

The third condensate equation yields ρ0ρq = ρ̃qΩ 2/g2, which also implies that
the other densities are non-vanishing, that is, ρ0 
= 0 and ρq 
= 0. Now using the
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second condensate equation,

ρ0 =
Ω
g2 (εq +λρ−μ)

which expresses that the condensate density ρ0 depends linearly on the boson exci-
tation energy εq. Substituting this result into the second equation again,

ρq =
Ω

εq +λρ−μ ρ̃q

which expresses a direct proportionality of the q-condensate ρq with the laser density
ρ̃q.

Let us now consider the non-condensate modes k 
= 0 or k 
= q. We should im-
mediately recognize that we obtain for this part of the system a pure mean field type
model analogous to the one treated in detail in the preceding section. Using as above
the equilibrium conditions, for example using the energy-entropy balance conditions
Eq. (3.7) and the double commutator inequality Eq. (3.10), in which we substitute
the observable X by a∗k , we derive immediately that, for all k, εk +λρ − μ ≥ 0. In
particular, λρ − μ ≥ 0 holds. This shows already that the above expressions for ρ0

and ρq are meaningful solutions. In fact we can say more. From the first condensate
equation together with the third condensate equation we obtain the exact and ex-
plicit relation between the total boson density ρ and the chemical potential μ : Using
ε0 = 0,

λρ−μ =
1
2
{
√
ε2

q +4g2ρ̃q − εq}

Note that this equation yields λρ − μ > 0. We should compare this result with the
corresponding one obtained for the pure mean field model. Only in the case that g = 0
and/or ρ̃q = 0 do we obtain the mean field result λρ−μ = 0.

Proceeding further with the non-condensate modes, as we did above for the pure
mean field model, we derive the same function r:

r(k)−1 =
1

eβ (εk+λρ−μ)−1

Exactly because λρ−μ > 0, the critical density is finite in all the dimensions d ≥ 1
and the model represents a meaningful theory in all dimensions.

In any case, the ergodic equilibrium states, denoted byω , of this boson system are
now completely known. They are quasi-free states of the boson system determined
by the truncated two-point function

ω(a( f )a∗( f ))t =
∫

dk f̂ (k)ĝ(k)r(k)

and by the one-point function with the reintroduced phases ϕ0 and ϕq, given by

ω(a∗( f )) = f̂ (0)
√
ρ0eiϕ0 + f̂ (q)

√ρqeiϕq



4.6 Theory of Bogoliubov 89

The quantities ρ0, ρq, λρ−μ and the function r are determined as a function of the
photon laser density ρ̃q and the total boson density ρ .

This model has been introduced in the paper [140], where the analysis of the
model is performed without using explicitly the condensate equations contrary to
what is done here. Comparing the two methods illustrates the power and the el-
egance of working with the method of the condensate equations for the study of
condensation in boson models in general. Nevertheless, those of us interested in a
complete analysis of the model thermodynamics in terms of the total density ρ , as
well as for more information about the physical phenomena that lie at the origin of
the conception of this model, should consult the reference [140].

4.6 Theory of Bogoliubov

The leading motivation of Bogoliubov to introduce his theory was to explain the
phenomenon of superfluity while keeping in mind that the basic ingredient was bo-
son condensation and that the free Bose gas condensation state, following Landau’s
criterion Eq. (4.1), failed to yield the appropriate spectrum explaining superfluidity.
Therefore Bogoliubov [20, 21, 22, 23] tried to conceive an interacting boson model
Eq. (2.4), which nevertheless was solvable. He started from the solvable free gas
showing condensation and switched on an interaction between the boson particles.
This interaction should not have destroyed the condensate. To the contrary, the latter
should have played the dominant role in the construction of the effective interactions
between all particles.

In other words only interactions intermediated by condensate particles are con-
sidered relevant and all direct particle interactions between excited particles can be
disregarded.

Bogoliubov’s model has had an enormous impact on the activities in quantum
many-body boson theory in general and on the understanding of superfluidity in par-
ticular. For a long time it remained the only reliable and workable theory available,
although it had too many theoretical diseases [8, 169, 9] to be considered a modern
theory of a quantum dynamical system. In particular, in [8] it is observed that the
original Bogoliubov model was not a thermodynamically stable model. Adaptation
to ensure the property of super-stability, leads to the following Bogoliubov model
Hamiltonian with periodic boundary conditions:

HBog
V =∑

k

εka∗kak +
1

2V ∑k 
=0

v(k)(a∗ka∗−ka0a0 +a∗0a∗0aka−k)

+
1
V

a∗0a0∑
k 
=0

v(k)a∗kak +
1

2V ∑k,k′
a∗ka∗k′ak′ak (4.53)

where v(k) is again the Fourier transform of the two-body potential (see Eq. (2.4)),
which is chosen integrable satisfying the properties 0 ≤ v(k) = v(−k) ≤ v(o), for k
inside, and v(k) = 0 outside a bounded region in k-space. The second and the third
term in the Hamiltonian are the genuine Bogoliubov model terms. They contain only
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interactions between the ground mode q = 0 and the excited modes k 
= 0. There
is no direct interaction between the excited modes. The last term in the interaction
is recognized to be essentially equal to NV (NV − 1)/V , which is manifestly of the
mean field interaction type treated above, and which guarantees the stability of the
refreshed Bogoliubov model Eq. (4.53). This term is added to the original Bogoli-
ubov model Hamiltonian. The idea of stabilizing the Bogoliubov theory was already
present in older works [59, 171, 110] and was explicitly discussed in [8]. In all the
older works [110], the analysis of the model with this stabilizing term has never been
complete. It is interesting to remark that the super-stability of the model Eq. (4.53)
is a direct consequence of the following simple operator equality: For k 
= 0,

a∗0a0(a∗kak +a∗−ka−k)+a∗ka∗−ka0a0 +a∗0a∗0a−kak

= (a∗0ak +a∗−ka0)∗(a∗0ak +a∗−ka0)−a∗kak −a∗0a0

yielding straightforwardly the inequality

a∗ka−ka0a0 +a∗0a∗0a−kak +a∗0a0(a∗kak +a∗−ka−k) ≥−a∗kak −a∗0a0

The model Hamiltonian Eq. (4.53) is clearly space translation and gauge invari-
ant for the full gauge group U(1). Again we must look for the equilibrium states
of the model. Therefore we look for the extremal space invariant or ergodic equi-
librium states satisfying one of the two or both equilibrium conditions Eq. (3.1),
Eq. (3.7) in the thermodynamic limit which we took keeping the density of particles
ρ = ω(NV /V ), for all volumes V , constant as well as in the limit V → ∞.

First we compute the energy density e(ω) for any ergodic state ω . It takes the
form

e(ω)−μρ =
∫

dk (εk −μ)ω(a∗kak)

+
1
2

∫
dk v(k)(ω(a∗ka∗−k)ρ0e2iϕ(0) +h.c.)

+ρ0

∫
dk v(k)ω(a∗kak)+

1
2

v(0)ρ2 (4.54)

where ϕ(0) = arg(limV ω(a∗0/
√

V )). We denote in a similar way by 2ϕ(k) the phases
of the functions ω(a∗ka∗−k).

As noted, this energy density depends only on the one- and two-point functions
of the state and therefore the model is solvable. The general variational principle
for equilibrium is reduced to the principle acting on the set of quasi-free states Eq.
(3.14). Arguing on the basis of the energy-entropy criterion Eq. (3.7) for equilibrium
yields its corresponding simplifications.

We now continue with the analysis of the variational principle criterion. It is
good to keep in mind that this variational principle is a principle of minimality of
the free energy functional, which depends on the continuous functions r(k) ≥ 1 with
constraint

∫
dk (r(k)−1) ≤ ρ , the continuous functions t(k) satisfying

0 ≤ t(k) =
√

(r(k)−1)r(k)−|s(k)|2 ≤
√

(r(k)−1)r(k)
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and finally we consider minimality variation with respect to the order parameter
√ρ0

and the phases.
Minimization of the functional with respect to the phases implies immedi-

ately that the minimal energy is reached for the following choice of the phases:
ϕ(k)+ϕ(−k)− 2ϕ(0) = π for all k. At the end of the computations we can rein-
troduce more general phases by means of suitable gauge transformations always sat-
isfying this relation. Having done that, we obtain for the pairing order parameter
limV ω(aka−k) = − limV |ω(aka−k)| = s(k) and for the condensate order parameter
limV ω(a0/

√
V ) =

√ρ0, which are both real numbers.
Before going on, we mention that the variational principle has already been used

to solve an approximated version of the above model Eq. (4.53) in the paper [7].
The approximation consists of making the famous Bogoliubov approximation in the
genuine Bogoliubov terms. It consists of replacing the annihilation operator a0 by a
complex number. If we take into account the choice of the phases, we get that the
expectation value ω(a0) = c

√
V where c =

√ρ0 is a non-negative real number. At
the end of the analysis of this model we come back to this point and discuss the
important implications that are a consequence of this approximation.

We proceed with the analysis of the model Eq. (4.53). Exactly as we did for
the previous models, we try to extract information about the system by considering
possible condensate equations Eq. (4.8). After inspection of the model Hamiltonian,
three probable relevant space averages manifest for this procedure.

There is of course the 0-mode average

a0√
V

=
1
V

∫

V
dxa(x)

There is also the pairing average: Let QV ≡ ∑k 
=0 v(k)aka−k and check that

lim
V

QV

V
= lim

V

1
V

∫

V
dyτy(a(v)a(x = 0))

Hence the operator QV /V behaves as a space average in the limit V tending to infin-
ity. Finally denote PV ≡ ∑k v(k)a∗kak. Then

lim
V

PV

V
= lim

V

1
V

∫

V
dyτy(a∗(v)a(x = 0))

also behaves as an average.
A straightforward computation yields that the condensate equation related to the

average PV /V is trivial. We can understand this result because PV is linked to the
local generator of the space translations forming a symmetry group of the model.
Therefore the number of relevant condensate equations reduces to two equations.

Computing the condensate equation for a0/
√

V , we note that the resulting equa-
tion is equivalent to the stationarity Equation (3.8) for this observable, which is given
by

{−μ+ v(0)ρ+
∫

dk v(k)s(k)+
∫

dk v(k)(r(k)−1)}ρ0 = 0 (4.55)
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Analogously, the stationarity of the state for the observable QV /V is given by
∫

dk (εk −μ+ v(0)ρ)v(k)s(k)+ρ0

∫
dk v(k)2(s(k)+ r(k)− 1

2
) = 0 (4.56)

implying its corresponding condensate equation.
The double commutator inequality Eq. (3.10) yields the following information:

For the zero mode k = 0,

lim
V
ω([a0, [H

Bog
V (μ),a∗0]]) =−μ+v(0)ρ+v(0)ρ0 +

∫

dk v(k)(r(k)−1)≥ 0 (4.57)

and for k 
= 0,

lim
V
ω([ak, [H

Bog
V (μ),a∗k ]]) = εk −μ+ v(0)ρ+ v(k)ρ0 ≥ 0 (4.58)

The first non-trivial conclusions from this information are the following: Eq. (4.55)
leads to distinguishing the two cases: (i) ρ0 = 0 and (ii) ρ0 > 0.

Let us first consider the case of absence of condensation: ρ0 = 0. From Eq. (4.56),∫
dk(εk −μ+ v(0)ρ)v(k)s(k) = 0. From Eq. (4.58), it follows readily that the func-

tion s(k) = 0 almost everywhere. We therefore conclude that ρ0 = 0 implies s(k) = 0,
or the absence of boson condensation implies the absence of the boson pairing phe-
nomenon. In this case the model reduces to the mean field model.

We should realize that ω(aka−k) 
= 0 corresponds to boson pairing, that is,
the boson counterpart of the better known fermion pairing in the Bardeen-Cooper-
Schriefer(BCS)-theory.

We next consider the case of condensation, ρ0 > 0. Suppose on the other hand
that the boson-pairing order parameter vanishes as well, or that s(k) = 0 almost ev-
erywhere. Then it follows from Eq. (4.56) that

ρ0

∫

dk v(k)2(r(k)− 1
2
) = 0

But that is in contradiction with the positivity of the state expressed by r(k)− 1
2 ≥

1
2 . Therefore s(k) 
= 0. Combing both arguments, we conclude that there is a non-
trivial condensation if and only if there is a non-trivial pairing. In other words, we
can conclude that the theory of Bogoliubov shows always a double phenomenon
of condensations, namely boson condensation and pairing condensation, or none of
them.

After this intermediate result, we continue the search for the ergodic equilib-
rium states ω satisfying the variational principle Eq. (3.14). As for any translation τx

holds ω(τxak) = eikxω(ak) = ω(ak) we have that ω(ak) = 0 for all k 
= 0. Hence the
equilibrium states do not break the gauge symmetry for the single (k 
= 0)-modes,
consistent with absence of condensation in these modes.

As ε−k = εk and v(−k) = v(k), we can let ω(a∗kak) = ω(a∗−ka−k). Considering
the formula Eq. (4.54), it follows from Eq. (3.14) that the equilibrium states are
quasi-free states determined by the one- and two-point functions, for k = 0, given by
ω(a0), ω(a∗0a0), ω(a0a0), and for k 
= 0, by the functions ω(a∗kak), ω(aka−k).
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Following the idea of the proof of Eq. (2.6), consider a canonical Bogoliubov
transformation Eq. (7.3) of the form

ak = ãk coshαk + ã∗−k sinhαk

transforming the boson variables ak into the new boson variables ãk. The real func-
tions α(k) are chosen to satisfy αk = α−k, and we look for such a transformation
function which should satisfy the property that s̃(k) ≡ ω(ãkã−k) = 0. Later we fix
the functions α(k) completely. We compute explicitly

ω(a∗kak) = (r̃(k)− 1
2
)cosh2αk −

1
2

ω(aka−k) = (r̃(k)− 1
2
)sinh2αk

where, conforming with previous notation, r̃(k) ≡ ω(ãkã∗k). The free energy density
of the model becomes

f (ω) =
∫

dk (εk +ρv(k)){(r̃(k)−
1
2
)cosh2αk −

1
2
}

−ρ0

∫
dk v(k){(r̃(k)− 1

2
)sinh2αk}−μρ+

1
2

v(0)ρ2 (4.59)

− 1
β

∫

dk{r̃(k) ln r̃(k)− (r̃(k)−1) ln(r̃(k)−1)} (4.60)

and the constraint of constant density, equal to ρ , becomes

ρ = ρ0 +
∫

dk{(r̃(k)− 1
2
)cosh2αk −

1
2
}

Now we look for the extremum equation (the quantum Euler equation) for the varia-
tions with respect to the set of functions {r̃(k) ≥ 1} satisfying the density constraint.
It is obtained from Eq. (4.59) by a standard variational computation yielding

r̃(k)
r̃(k)−1

= expβ{(εk +ρ0v(k)−μ+ v(0)ρ)cosh2αk −ρ0v(k)sinh2αk}

We denote x = v(0)ρ−μ , fk = εk +x+ρ0v(k), hk = ρ0v(k) and note that the double
commutator inequality Eq. (3.10) yields fk ≥ 0 for all k. In particular, we find that
x+ρ0v(k)≥ 0 as well as hk ≥ 0. Next we fix the function αk according to the relation
coth2αk = fk

hk
or equivalently by

cosh2αk =
fk

Ek
; sinh2αk =

hk

Ek

with the notation

Ek =
√

f 2
k −h2

k = [(εk + x)(εk + x+2ρ0v(k))]
1
2 ≥ 0 (4.61)
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The function r̃(k) becomes

r̃(k) =
eβEk

eβEk +1
(4.62)

and the constant density equation becomes

ρ = ρ0 +
1
2

∫

dk [
εk + x+ρ0v(k)

Ek
coth

βEk

2
−1] (4.63)

These formulae indicate that the values of the Ek constitute the spectrum of the har-
monic collective excitations or of the quasi-particles (see Eq. (5)) of the Bogoliubov
model. We refer to the next chapter for more elaborate discussions about the dy-
namics and spectrum of solvable models of the type like the Bogoliubov model. All
values of this spectrum should be real and non-negative for all k. This follows by
applying the general and by now known double commutator inequality Eq. (3.10):
limV ω([X∗, [HBog

V − μNV ,X ]]) ≥ 0 holding for each equilibrium state and for each
observable X . Next, we let X = ãk, where ãk = zkak −wka∗−k, and zk and wk are
arbitrary complex numbers satisfying |zk|2 −|wk|2 = 1. Then

lim
V
ω([X∗, [HBog

V −μNV ,X ]]) ≥ 0 iff f 2
k −h2

k ≥ 0

The density constraint equation (4.63), together with the condensate equations Eq.
(4.55) and Eq. (4.56), determine the condensate density parameter ρ0 as well as the
pairing function s(k). For simplicity we continue the analysis for dimension d =
3. Consider the energy spectral function Ek = [(εk + x + ρ0v(k))2 − ρ2

0 v(k)2]1/2. It
depends on the two parameters ρ0 and x. A solution of the variational principle, the
minimum condition on the free energy functional at given ρ or μ , exists if and only
if there exists a solution with x ≥ 0 and ρ0 ≥ 0 for the unknown values in these
equations. If we obtain the values of these two parameters then we uncover once
again the explicit form of the quasi-free equilibrium states of the Bogoliubov model
Eq. (4.53).

On the way to the solutions for these parameters, we verify that Eq. (4.56) is
already satisfied and therefore that only the following two equations, in the variables
x,ρ0, remain to be considered and solved:

ρ0{x+
1
2

∫
dk (

εk + x
Ek

coth
βEk

2
−1)} = 0 (4.64)

x+μ
v(0)

= ρ0 +
1
2

∫

dk{εk + x+ρ0v(k)
Ek

coth
βEk

2
−1} (4.65)

Let us first consider the density constraint equation (4.65). Denote its right-hand side
for shortness by I(x,ρ0). It is a strictly decreasing function of x. Furthermore, it can
be solved for x. There exists a unique solution x ≥ 0 if and only if ρ0 belongs to
the domain D(μ) = {ρ0 ∈ R, I(0,ρ0) ≥ μ

v(o)}. We will denote this solution by x =
fμ(ρ0). As limρ0→∞ I(0,ρ0) =∞, the function fμ(ρ0) is defined for all ρ0 sufficiently
large and also limρ0→∞ fμ(ρ0) = ∞. Moreover, if μ1 < μ2 and ρ0 ∈ D(μ1)

⋂
D(μ2),
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then fμ1(ρ0) > fμ2(ρ0). For fixed ρ0 ≥ 0, there exists μ(ρ0) such that ρ0 ∈ D(μ) if μ
is smaller than or equal to some μc; however, ρ0 does not belong to D(μ) if μ > μc.
In particular the so-called normal solution (zero condensate solution) fμ(0) exists
only for μ ≤ I(0,0)v(0) = ρc(β )v(0) where ρc(β ) is the critical density of the free
boson gas. If this occurs, x = fμ(ρ0) decreases near ρ0 equal to zero, because here
δ2

δρ2
0

I(x,ρ0) < 0.

Now we turn to the condensate equation (4.64). We remark that the expression in
the curly brackets is decreasing in ρ0 from a value strictly exceeding x (at ρ0 = 0) to
xmax = 1

2

∫
dk v(k) (at ρ0 tending to infinity). Therefore, if 0 ≤ x < xmaxwe can solve

Eq. (4.64) for ρ0 and obtain either ρ0 = 0, or ρ0 = g(x) where g maps the interval
[0,xmax) into the non-negative axis [0,∞) independently of μ , with limx→xmax g(x) =
∞ and ming(x) > 0.

Further analysis yields that the variational principle has solutions ρ0 = 0, or
has both the parameters x and ρ0 away from zero. Hence the phase transition is
of first order because it is accompanied by a jump in ρ0. For the condensate region
(ρ0 > 0) this means that also x > 0, and that there is a gap in the spectrum given by
ΔE = [x(x + 2ρ0v(0))]1/2. Moreover we note that the spectrum Ek has a parabolic
minimum at zero momentum and not a linear behavior required by the Landau crite-
rion Eq. (4.1) for superfluidity. This reopens again the question about the search for
a derivation and understanding of the phenomenon of superfluidity on the basis of
this microscopic model. This is not the most exciting encounter if we want to use a
Bogoliubov type of model explaining the phenomenon of superfluidity.

On the other hand, we know [7] that the linearity of the spectrum Ek ≈
√

ρ0v(0)
m |k|

near |k| = 0 is effectively obtained by applying the so-called Bogoliubov approx-
imation. The latter consists in replacing the annihilation and creation operator a#

0
by a c-number, a complex number, namely by setting a0 = c

√
V in the two typical

Bogoliubov terms of the model Eq. (4.53). Physically this approximation consists
in neglecting, by a brute force ad hoc procedure, all the quantum fluctuations (see
Chapter Eq. (6)) of the zero mode a0. Let us therefore effectively apply now this ap-
proximation to our model Eq. (4.53) exactly as it was prescribed in the original work
of Bogoliubov. It is important to apply the approximation only in the two Bogoliubov
terms of the model, not in the others where the zero mode operators are also present.
In any case this leads to the following new model, for which we realize that by this
approximation operation we introduced a sort of self-consistency relation which is
given by ρ0 = a∗0a0 = |c|2. The Hamiltonian of this model looks therefore as follows

HBog′
V =∑

k

εka∗kak +
1

2V ∑k 
=0

v(k)(a∗ka∗−kρ0 +ρ0aka−k)

+
1
V

a∗0a0∑
k 
=0

v(k)a∗kak +
1

2V ∑k,k′
a∗ka∗k′ak′ak (4.66)

This model is again solvable and solved rigorously by using the same argumentations
and performing the same technical steps as we used in the originally introduced
model Eq. (4.53). The main difference between the model Eq. (4.53) and the model
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Eq. (4.66) is that the condensate equation (4.55), applied to the first form of the
model, is replaced by a much simpler equation,

ρ0x = 0; with x = v(0)ρ−μ (4.67)

It is clear that in the case of condensation, hence if ρ0 > 0, this equation generates
the solution x = 0. This implies directly the linearity of the spectrum in the zero
momentum region. For this reason the model Eq. (4.66) meets the aspirations of
understanding the phenomenon of superfluidity at a microscopic level. Also, we note
on the other hand that now in the absence of condensation ( ρ0 = 0) the spectrum
exhibits a spectral gap ΔE = x > 0 as well. We should realize that here again we
encounter an other model with an interaction able to create a spectral gap (see Eq.
(4.2)).

These preceding efforts for a rigorous analysis of the Bogoliubov theory by
means of the two models Eq. (4.53)and Eq. (4.66) teach us a great deal about the
seriousness and the impact of neglecting the quantum fluctuations of the conden-
sate particles. If we apply the approximation of Bogoliubov, we neglect these fluc-
tuations and the spectrum becomes linear near zero momentum. If we take all the
quantum fluctuations into account, the spectrum is parabolic in the neighborhood
of zero momentum. Both situations are unsatisfying. As an overall conclusion we
cannot but conclude that the challenge for obtaining a genuine microscopic Hamil-
tonian model remains. Such a theory would produce a full microscopic explanation
of superfluidity on the basis of Bose-Einstein condensation. One particular way of
posing the problem along the lines of the theory of Bogoliubov could be the follow-
ing: It remains still an open question to identify which terms, present in the fully
interacting two-particle boson Hamiltonian Eq. (2.4), or which mechanisms are re-
sponsible for the damping of these quantum fluctuations, suppressed by the Bogoli-
ubov approximation. Of course another way of proceeding consists in discovering a
brand new performing model which is completely independent from the Bogoliubov
prescription—a real challenge.

4.7 Condensation in Two-body Fully Interacting Models

Rigorous proofs for the appearance of Bose-Einstein condensation in what we would
call a realistic homogeneous systems has been an ongoing challenge for many
decades. We should add that sometimes the word “realistic” does not only refer to
the interaction term. For reasons of collegial correctness, we should mention that the
word “realistic” includes also the presence of a one-particle spectrum of the type
εk = k2/2m, being continuous in the variable k ∈ R

d , which is primarily obtainable
after having used periodic boundary conditions. A renewed interest in this standing
open problem is observed since the successful experiments with trapped gases of
alkali metals, although these experiments are concerned with inhomogeneous boson
systems. For these systems there are a number of rigorous results obtained within the
framework of the Gross-Pitaevskii [71, 72, 134] equation, which we briefly touch in



4.7 Condensation in Two-body Fully Interacting Models 97

Section Eq. (4.8). As a many-body boson system, the Gross-Pitaevskii approach is a
mean-field approach.

At any rate, for fully interacting homogeneous systems, non-solvable models and
with periodic boundary conditions Eq. (2.4) so far a general rigorous proof of Bose-
Einstein condensation does not exist. In the physics literature the periodic boundary
conditions come across as the physically most relevant ones. This appears to be a
cultural phenomenon rather than something founded on deeper physical argumenta-
tion. However if one is open minded, why not, for other boundary conditions, and
if one is interested in systems with genuine two-body interactions between the par-
ticles, we can find obtain results about the existence of condensation. For instance,
many of us will be inspired by the observation that attractive boundary conditions
[147, 31, 160], but also some weakly interacting systems (the theory of Bogoliubov
for example), can create gaps in the one-particle spectrum. This gap can enhance the
creation of boson condensation and therefore could enhance the occurrence of boson
condensation for the interacting systems.

Indeed with this information in mind, we can adopt the following point of view:
We start with a single-particle spectrum, εΔk = k2/2m (for k 
= 0) and εΔ0 = −Δ < 0
(for k−0), having a fixed non-trivial gap Δ in its spectrum. It is immediately verified
that a free system with such a gap shows condensation for large total densities or
equivalently for sufficiently low temperatures. We could then ask whether this gap
makes the condensate stable enough for the addition of small but bona fide two-body
interactions. We might anticipate that the condensate particles, which are energet-
ically isolated from the excited states by the gap, can survive the switching-on of
gentle interactions. We can also imagine that these fluctuations must be of a macro-
scopic size in order to cross the gap and lift the condensed particles out of the lowest
energy state. This idea of considering a gap in the spectrum is not new. In his book
[109] London attempted to introduce the gap on heuristic grounds to clarify some
of the spectral properties of superfluid helium. This idea was already used for a mi-
croscopic model in [31] with van der Waals type of interactions. The idea is fully
exploited in [99] where Bose-Einstein condensation is proven for systems with weak
but genuine two-body interactions. The Hamiltonian of the system has the form:

HΔ
V =∑

k

εΔk a∗kak +
1

2V ∑k,k′,q
v(q)a∗k+qa∗k′−qak′ak (4.68)

where the two-body potential satisfies again the conditions v(0) ≥ v(q) ≥ 0 on the
Fourier transform of the integrable super-stable potential.

In [99] it is proven in dimension d ≥ 3 that for a fixed inverse temperature β and
a chemical potential μ > v(0)ρc(β ), where ρc(β ) is the critical density of the free
boson gas, there exists a minimal strictly positive value Δmin of the gap such that for
all gaps Δ ≥ Δmin, the thermodynamic limit of the zero-mode occupation density is
strictly positive. We can show explicitly that there exists zero mode condensation for
the model Eq. (4.68) expressed by the inequality

ρΔ0 (β ,μ) ≡ lim
V

1
V

tr e−β (HΔ
V −μNV )a∗0a0

tr e−β (HΔ
V −μNV )

> 0
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This proves the existence of Bose-Einstein condensation for this type of bona fide
interacting boson systems. This proof contradicts the possible idea that there is a
no condensation possible when one adds gentle but genuine interactions to a system
already showing condensation. Without reproducing all details of the full proof of
this result, we should mention that the idea of the proof is based on the following
items: We compare the condensate density of the full model with that of a special
reference system, which is tuned by the given fully interacting model system. The
reference system is not the free boson gas because that would immediately rule out
the use of large values of the chemical potential. It is already remarked in [54] that
even the mean field boson gas cannot be considered a perturbation of the free boson
gas perturbed with the mean field interaction term. Instead we choose as a reference
system a mean field boson gas that is indeed a perfect super-stable boson system. As
a reference system, we use the mean field boson system obtained by taking the van
der Waals limit of the given fully interacting boson system Eq. (4.68). This mean
field limit features the Hamiltonian

HΔ ,m f
V =∑

k

εΔk a∗kak + v(0)N2
V /V (4.69)

Clearly the kinetic energy term is the same as in Eq. (4.68). The result about the re-
lation between the condensate densities of the full model and the reference system is
obtained by using essentially only convexity arguments of the thermodynamic func-
tions. The first argument uses the convexity of the free energy with respect to the
parameter Δ . The second argument uses the Peierls-Bogoliubov convexity inequal-
ities which we reproduce here below (see also [169] Appendix D). It is by itself an
interesting inequality which turns out to be useful in statistical mechanics at many
other occasions.

Let H be any Hamiltonian, a self-adjoint operator on a Hilbert space such that
tr e−βH < ∞ for all β > 0.

Let g be any unit vector of the Hilbert space and {gn}n an orthonormal basis
of the space diagonalizing the Hamiltonian Hgn = ∑n Engn. Also, consider the de-
composition g = ∑cngn with ∑ |cn|2 = 1. The convexity of the exponential function
immediately yields (g,e−βHg) = ∑ |cn|2e−βEn ≥ e−β ∑ |cn|2En = e−β (g,Hg). Hence for
any orthonormal basis we obtain the convexity inequality

tr e−βH ≥∑
n

e−β (gn,Hgn)

Consider now two self-adjoint operators H1 and H2 with the property: for i = 1,2

|tr e−βHi(H2 −H1)| < ∞

Denote by ωi , i = 1,2, the Gibbs states determined by the Hamiltonians Hi , i = 1,2

and defined by ωi(A) = tr e−βHiA/tr e−βHi . Consider the basis { f (2)
n } diagonalizing

H2 with eigenvalues E(2)
n . Using the convexity inequality proved above, and once

more the convexity of the exponential function, we obtain respectively
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tr e−βH1

tr e−βH2
= ∑( f (2)

n ,e−β (H2+H1−H2) f (2)
n )

tr e−βH2

≥ ∑e−βE(2)
n e−β ( f (2)

n ,(H1−H2) f (2)
n )

tr e−βH2

≥ exp{−βω2(H1 −H2)} (4.70)

Hence we obtain the inequality

tr e−βH1

tr e−βH2
≥ exp{−βω2(H1 −H2)}

Interchanging the operators H1 and H2 we also obtain

tr e−βH2

tr e−βH1
≥ exp{−βω1(H2 −H1)}

We next use these two inequalities in combination to derive inequalities for the free
energies of the systems Fi =− 1

β ln tr exp{−βHi} with the Hamiltonians Hi, i = 1,2.
We immediately obtain the following bounds for the difference of the free energies
of the two systems in terms of the expectation values of the energy differences:

ω2(H2 −H1) ≤ F2 −F1 ≤ ω1(H2 −H1) (4.71)

This inequality is called the Peierls-Bogoliubov inequality.
The detailed proof of the existence of boson condensation mentioned above for

the model Eq. (4.68) can be worked out using these bounds and arguments and is left
as an exercise.

In [99] the proof is concentrated on the case of dimensions d ≥ 3. However the
result can also be shown to hold in dimensions d = 1,2 by a slightly different and
somewhat more elaborate argument. Nevertheless the essential ingredient for the ex-
istence of condensation remains the presence of the gap Δ in the one-particle spec-
trum, which enhances condensation. The main conclusion of this result should be
that Bose condensation does exist for fully interacting systems. It shows that Bose
condensation is not just a prerogative of a number of solvable toy models.

4.8 BEC in Traps

Since 1995 and the precise experiments with boson gases hold together in traps a
considerable amount of research (see e.g. [135, 130, 69, 34]) has focused on these
particular types of non-homogeneous boson systems. We do not give a complete
record about the status concerning these kinds of systems, which are not invariant
under the space translations. Despite the absence of space translation symmetry, the
research in this domain evolves toward the understanding of these experiments on
the basis of the standard theory of condensation for homogeneous boson systems.
We could ask the question: What may be the sense of applying such a theory, which
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is basically built on homogeneity, to nonhomogeneous systems? Indeed the basic
theme in this book is the discussion of homogeneous boson systems. Faced with this
situation, it is reasonable that we limit ourselves to give here only a formal modest
introduction to trapped bosons. In particular, we try to understand in which sense
this non-homogeneous type of condensation can be understood as being part of the
homogeneous conventional Bose-Einstein condensation theory, which is discussed in
the rest of this book. What is the main problem in fitting these trapped systems within
the conventional boson systems? Boson systems in traps, that is, in external confining
potentials, make the system inhomogeneous in space. One of the basic ingredients
of the definition of conventional BEC is directly linked to the homogeneity of the
system. Therefore it is clear that the type of condensation for trapped boson systems
can only be considered as a conventional condensation in some limiting situations
wherein the system becomes “effectively” homogeneous-like. For systems behaving
in this direction, we may be tempted to think about the homogeneous systems with
the particular boundary conditions given by scaled external potentials (see Eq. (4.9)).
We pay some attention to these systems in this chapter and try to see a possible closer
connection with the trap situation.

Another point which catches our attention, is the fact that trapped boson con-
densation is detected for extreme dilute gases within such a trap. Dealing with ho-
mogeneous systems, the physical condition is large densities and therefore basically
different. Is there a link between the limit of extreme dilution creating BEC in traps
and the high densities needed to produce conventional condensation? How do we
interpret these two completely opposite prerequisites for condensation? Both are dif-
ficult questions.

Moreover in spite of the extreme dilution in the trapped case, it seems also nec-
essary to take into account interactions between the atoms to fit and/or to explain the
experimental data for trapped gases. Also this is not simply understood. On the other
hand the use of the Gross-Pitaevskii equation [71, 72, 134] seems to be an excellent
tool to fit the experimental data.

Because of all these premises we should understand that reaching our goal will
likely not be an easy matter. For all these reasons we must confine ourselves to a
short pedestrian description of the problem we face.

4.8.1 Free Boson Gas in an Harmonic Potential

As always, everything starts with the free boson gas. The experimental realization of
BEC achieved in atomic gases seems to be, in may cases, well approximated by the
harmonic potential trap. For a review on the applications of this model see [135]. We
place a free gas of boson particles in an external 3-dimensional harmonic potential
trap given by the external field Ve(x)

Ve(x) =
1
2
(ω2

1 x2
1 +ω2

2 x2
2 +ω2

3 x2
3) .

where the ωi are the harmonic frequencies. It is a quantum mechanics textbook solv-
able exercise to write the Hamiltonian for N bosons as
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HN =
N

∑
i=1

3

∑
j=1
ω j

(

a∗j,ia j,i +
1
2

)

; for h̄ = 1 ; m = 1

where the a j,i and their adjoint are boson creation and annihilation operators. The
spectrum of the Hamiltonian is given by the energy values per particle

En =
3

∑
j=1

(

n j +
1
2

)

ω j ; n = (n1,n2,n3) ∈ N
3 .

It is clear that the lowest energy value corresponds to the case n = 0. The ground
state wave function is given by the normalized function

ϕ(x) =
N

∏
i=1
ϕ0(xi) , xi = (x1,i,x2,i,x3,i) ∈ R

3

and

ϕ0(x) =
(ω0

π

)3/2
exp

[

−1
2
(ω1x2

1 +ω2x2
2 +ω3x2

3)
]

where ω0 = (ω1ω2ω3)1/3 is the geometric average of the oscillator frequencies for
the three directions. The ground state particle density distribution is given by the
function

n(x) = |ϕ0(x)|2

It is a Gaussian with the size of the cloud fixed by the oscillator length scale a0 =
ω−1/2

0 . The velocity or momentum distribution ϕ̂0(k) is also a Gaussian centered

around zero momentum with a size of approximately a−1
0 = ω1/2

0 . All this is valid
for this free gas and it is clear that the presence of interactions may change drastically
the form of the Gaussian peak visible for the noninteracting case.

We continue the harmonic gas case and turn to the finite temperature situation.
Consider the Gibbs grand canonical ensemble. The Gibbs state density of particles
at inverse temperature β and chemical potential μ is given by

〈
NN

N

〉

=
1
N ∑

n∈N3

1

eβ (En−μ) −1

where NN is the total number operator for the N boson particles. Comparable with the
reasoning used in the uniformly homogeneous boson gas Eq. (4.2), we distinguish
the lowest energy E0-term contribution from the rest and consider the particle density
in the lowest energy level

〈
N0

N

〉

=
1
N

1

eβ (E0−μ)−1
.

For N tending to infinity, if it happens that the chemical potential μ tends to the value
E0 = (ω1 +ω2 +ω3)/2 with a first-order correction term (which is of the order of
1/N), then the density of the lowest energy particles 〈N0〉/N can become non-zero
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and finite. This lowest energy level gets a macroscopic occupation, which for this
model can be interpreted as this system showing a phenomenon of Bose-Einstein
condensation. We need to understand that there is some work to do in order to fill the
gap between the prime microscopic system and this macro-phenomenon on the basis
of the indicated specific behavior of the chemical potential as a function of the large
number of particles.

In any case, if all this can be realized, then the critical density can be defined as
follows, again in the spirit of what is done for homogeneous systems:

ρc(β ,μ)N =
〈NN〉−〈N0〉

N
=

1
N ∑n 
=0

1

eβ (ω1n1+ω2n2+ω3n3) −1
< ∞ .

Clearly, this way of proceeding creates a formal scenario for the realization of boson
condensation, which is very much comparable to that discussed in the homogeneous
case (see the saturation argument in Section Eq. (4.2)).

It is instructive to note, that for trapped systems, there is no volume dependence
and hence no singularities nor thermodynamics limits, which had a central role in
the concept of condensation for homogeneous systems. Therefore condensation in
trapped boson systems is and remains so far a finite particle problem in which, strictly
speaking, no phase transition can be traced comparable to the homogeneous gas.

Apart from the ground state there are the excited states of the system which build
up the critical density. For homogeneous systems it is obtained after having taken
the thermodynamic limit. For these trapped systems, theoretical physicists are also
looking for other limits doing the same job. Some types of semiclassical approxi-
mation limits are proposed for the treatment of the excited energy levels. This is a
limit procedure by which the energy level spacing becomes smaller and smaller. For
instance it can be realized by taking the limit N tending to infinity together with the
oscillator parameter ω0 tending to zero in such a way that the product combination
Nω3

0 remains a finite constant. If the constant ρ stands again for the total density of
particles we compute for the critical density

ρc(β ,μ) = ρ−ρ0 =
∫ ∞

0

ρ(ε)dε
eβε −1

where ρ(ε) is the density of states of the particles with energy ε , calculated from the
spectrum En. The density of states in the thermodynamic limit for the free particle
system is given by

ρ(ε) =
∫

dxd p
1

(2π)3 δ (ε− ε(x, p))

where ε(x, p) is the one-particle (quasi-particle) energy, ε(x, p) = p2

2m +Ve(x) with
Ve(x) the external potential. For the free boson gas model (Ve(x) = 0) with periodic
boundary conditions we obtain the well-known formula

ρ(ε) =
V m3/2
√

2π2

√
ε
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For the harmonic oscillator trap model introduced above we obtain the function

ρ(ε) =
ε2

2ω3
0

Hence for the density of states we find a significant difference between the harmoni-
cally trapped free particle system and the homogeneous free boson gas. This explains
the difference in temperature behavior of the critical densities for the two models. It
explains the strong dependance of the thermodynamic behavior of the system on the
shape of the external potential.

At this point it seems instructive to compare the result of the limit procedure
described above with the rigorous results obtained for the free homogeneous bo-
son gas in scaled external fields [136, 121]. The latter systems are approximately
homogeneous systems in the sense that they become homogeneous only in the ther-
modynamic limit. Indeed, consider again the one-particle Hamiltonian Eq. (4.9) for
one-dimensional intervals V of lengths L with periodic boundary conditions

hL = − Δ
2m

+Ve

( x
L

)
−μL

where we take the external potential of the type: Ve(x) = c|x|α ; c,α > 0.
The corresponding dynamics αV

t for finite volume V (see Eq. (5)) is given for
any test function f ∈ S by

αV
t a∗( f ) = a∗(eithL f )

Because of this special form of the dynamics, we are referring to a solvable model
(see Eq. (5.1)). For finite L the system is not space-translation invariant nor homo-
geneous precisely because of the presence of the external potential. But as L be-
comes larger and larger the potential becomes more and more effective only at the
boundaries. The external potential becomes trivial within the bulk of the system. For
this reason we sometimes speak about these models in terms of weak external-field
boundary conditions. The system again becomes clearly homogeneous in the limit
of L tending to infinity. The space translation symmetry is repaired. As we will see,
the external potential maintains its effects only as a collective phenomenon.

In this model the position operator x and the momentum observable p evidently
satisfy the usual canonical commutation relation [x, p] = i1.

We realize also immediately that in this problem the variable y = x/L ∈ [−1,1]
becomes a relevant parameter of the system overtaking for a deal the variable x. Note
also that we obtain at least formally the limit commutators

lim
L→∞

[y, p] = lim
L→∞

[y,x] = 0

The parameter y commutes with the position x and momentum observable p, and
becomes in this limit an additional independent external parameter of the system.
However it is always good to keep in mind the original physical meaning as a position
variable. Furthermore, there is indeed a formal similarity between the limit L tending
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to infinity in the scaled external field model and the limit N tending to infinity while
the combination Nω3

0 = ρ is kept constant for the oscillator model. Comparing these
two model limits, it is as ω0 � 1/N1/3 or alternatively as we introduce the variable
x/N1/3. In other terms it is as if the length parameter L is replaced by N1/3.

In any case the limit L tending to infinity is a meaningful thermodynamic limit for
the model Eq. (4.9), yielding the following exact results: The total density formula
in the thermodynamic limit becomes

ρ = ρ0 + ρ̃(β ,μ)

where

ρ̃(β ,μ) =
1

2π

∫
dk

∫ 1

−1
dy

1

e
β
(

k2
2m +Ve(y)−μ

)

−1
.

The critical density is defined in the usual way to be ρ̃c(β ) = ρ̃(β ,0)
We can see that the critical density ρ̃c(β ) is always finite if the power α of the

potential Ve(x) = c|x|α satisfies the condition α ≤ 1. Of course all these computations
can be generalized to higher dimensions with the necessary changes to the conditions
on the potentials.

If the potential is of the type that allows a finite critical density ρ̃c(β ), then for
all densities ρ larger than the critical one (ρ > ρ̃c(β )) there is Bose-Einstein conden-
sation expressed by ρ0 > 0, where ρ0 is again the density of the condensate. We can
check that the limit chemical potential μ = limL μL < 0 if ρ < ρ̃c(β ) and μ = 0 if
ρ ≥ ρ̃c(β ).

Looking closer at the explicit expression of the density ρ̃(β ,μ), which is quite
different from that of the free boson gas with periodic boundary conditions, we find
that the condensate should appear concentrated at the points (k,y) satisfying

k2

2m
+Ve(y) = 0 .

Hence, if we choose the potential of the form Ve(x) = c|x|α , the condensate is in
the (k = 0)-mode and at the spacial point situated in y = 0. Of course we can re-
peat these arguments for more general types of external potentials and compute that
the condensation, if any, takes place in general at the spacial zeros of the external
potential.

4.8.2 Interacting Bosons in Traps

In this section a formal description is given of what is called the Gross-Pitaevskii
equation. For a much more complete and elaborate exposition including the appli-
cations, we refer to other works (e.g. [34]). We restrain the material to ground state
(T = 0) considerations.

Consider a bona fide two-body interacting boson system with a potential v and
add an external field potential Ve. The system is formally given by a Hamiltonian of
the type:
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H =
∫

dxa∗(x)
(

− Δ
2m

+Ve(x)
)

a(x)

+
1
2

∫

dxdx′ a∗(x)a∗(x′)v(x− x′)a(x′)a(x)

expressed in terms of the usual formal creation and annihilation operators satisfying
the usual CCR-relations

[
a(x),a∗(x′)

]
= δ (x− x′) ;

[
a(x),a(x′)

]
= 0 .

The first term is the kinetic energy and the external field contribution. The second
term is the two-body interaction energy. Let ω∞ be a ground state of this system and
introduce the canonical transformation, called the field translation Eq. (7.3), which
map the a-variables to the b-variables,

a(x, t) = ϕ(x, t)+b(x, t)

where a(x, t) is the time evolved annihilation operator under the dynamics deter-
mined by the Hamiltonian H. The function ϕ(x, t) is taken to be the expectation
value of the annihilation operator in the presupposed ground state ω∞

ϕ(x, t) = ω∞ (a(x, t)) ∈ C.

This function is called the order-parameter function and also sometimes the “(clas-
sical) wave function of the condensate.” We should note that such a non-trivial order
parameter ϕ(x, t) 
= 0 presupposes in fact that the gauge symmetry is broken for the
ground state ω∞. Of course it is a priori unclear (a) when such a ground state exists
and (b) for which interactions v, and for which external potentials Ve? This problem
of existence is even more serious having taken into consideration the fact that the
system is not homogeneous. This is a problem far from being resolved.

Following the spirit and the interpretation of the one-particle correlation func-
tions introduced in Chapter Eq. (2.3) for ergodic homogeneous systems, we identify
also by generalization the function

ρ0(x, t) = |ϕ(x, t)|2

as the density of the condensate particles, which however, due to the presence of
the external potential, now depends explicitly on the space position variables x. This
property should be clear because of the non-homogeneity of the model system.

The new quantum variables b(x, t) are in any case obtained from the a-variables
by means of a canonical transformation such that they are again boson annihilation
and creation operators satisfying the equal time canonical commutation relations

[
b(x, t),b∗(x′, t)

]
= δ (x− x′) ,

[
b(x, t),b(x′, t)

]
= 0 .

The dynamical equation of the annihilation operator (Heisenberg equation of motion)
is explicitly computed as
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i
∂
∂ t

a(x, t) = [H,a(x, t)]

=
(

− Δ
2m

+Ve(x)+
∫

dx′ a∗(x′, t)v(x− x′)a(x′, t)
)

a(x, t)

Now let us consider the effective pseudo-potential

v(x− x′) = gδ (x− x′)

where the constant g is related to the scattering length a by the relation g = 4π
m a. We

then obtain

i
∂
∂ t

a(x, t) =
(

− Δ
2m

+Ve(x)+ga∗(x, t)a(x, t)
)

a(x, t)

Now we make what is sometimes called the (semi-)classical approximation, in which
we make the substitution of the operator a(x, t) by the function ϕ(x, t), the expecta-
tion value of the operator. In other words we forget about the presence of the quantum
boson field b(x, t) and its typical quantum fluctuations (see Eq. (6)). At any rate, we
obtain a nonlinear Schrödinger-type equation for the so-called wave function of the
condensate ϕ(x, t)

i
∂
∂ t
ϕ(x, t) =

(

− Δ
2m

+Ve(x)+g|ϕ(x, t)|2
)

ϕ(x, t)

This non-linear equation is called the Gross-Pitaevskii(GP) equation [71, 72, 134].
Its derivation is clearly a very formal one which does not claim any deeper under-
standing on the basis of any microscopic theory. It is based on a brute force mean
field assumption and a semi-classical approximation. Recently an elaborate and rig-
orous derivation of the GP-equation has been given in [43] in the following sense:
The authors start from a system of N weakly interacting bosons via a pair potential
of the special form N−1a−3v(x/a). They consider the corresponding BBGKW hi-
erarchy in a limit consisting of the thermodynamic limit coupled with the limit of
the scattering length parameter a tending to zero. As far as the thermodynamic limit
is concerned, it coincides essentially with what is called the van der Waals or the
mean field limit. The authors show that the hierarchy decouples, or has a factorized
solution, if the GP-equation (the non-linear Schrödinger equation) is satisfied.

In other words this GP-equation describes a semi-classical boson liquid if we can
show that this equation has a non-trivial solution. Exact results within this context
concerning this problem can be found in [105, 106, 100].

It is a general belief that this equation has a wide range of validity if the scattering
length a is small with respect to the average distance between the particles. Therefore
this condition is expressed in terms of the particle density ρ by the inequality ρa3 �
1. In any case the GP-equation has been successfully used by a great number of
authors to fit and analyze many of the experimental data about boson condensations
in traps.
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We can sometimes also entertain alternative derivations of the GP-equation, con-
sidering it as the Euler equation minimizing the energy density functional as a func-
tion of the condensate density function ϕ . In particular we consider the energy func-
tional

E(ϕ) =
∫

dx

(
1

2m
|∇ϕ |2 +Ve(x)|ϕ |2 +

g
2
|ϕ |4

)

The GP-equation is obtained as the energy minimizing Euler equation given by

i
∂
∂ t
ϕ(x) =

δE(ϕ)
δϕ(x)

.

We can compare the status of the energy functional E(ϕ) with the energy functional
of the well-known Ginzburg-Landau theory, which has shown its utility as an impor-
tant tool in the phenomenological studies of superfluidity and superconductivity.



5

Boson System Dynamics

The basic time evolutions or shortly the dynamics of Hamiltonian systems describe
reversible dynamics in both classical Newtonian mechanics and quantum mechan-
ics. Hence the basic time evolutions for boson systems reflect those of reversible
dynamics.

Let us first consider the reversible boson system, paying special attention to its
dynamics in the infinite volume limit. As in the preceding chapters, we must main-
tain a clear distinction between solvable and non-solvable models. Needless to say,
understanding the dynamics from the microscopic point of view and studying the
spectra of various model dynamics remain important endeavors in this field.

Many realistic systems manifest irreversible dynamics. Furthermore, the physical
world comes across as irreversible and no existing universally valid equations of
motion prescribe the universal basis of irreversibility. Irreversible behavior doggedly
hides its true nature. Although the field has produced tangible results, no general
basic theory has yet appeared.

The best known situation of such irreversibility is undoubtedly the case of irre-
versible dynamics driving an arbitrary state of the system to thermal equilibrium at a
temperature determined by its surroundings (i.e., the heat bath of the system). Even
here, a deeper understanding of this phenomenon and the knowledge of more precise
properties remain important to research in statistical mechanics. The challenge is to
unravel those specific dynamics possessing stationary states far from equilibrium.
Herculean efforts to solve these problems date back to the 1960s in the context of
quantum systems and, in the context of classical mechanics, even back to the works
of Boltzmann and Gibbs (although following more or less the same patterns). Al-
though the main problems remain unresolved, this research has produced a number
of interesting and significant results. See [35, 2, 100, 154, 156, 112, 113, 39, 114, 44]
for examples.

For these reasons we discuss in this chapter reversible dynamics and some as-
pects of irreversible dynamics; however, we will always maintain the distinction be-
tween them. Naturally, we will also continue to distinguish clearly between solvable
and unsolvable dynamics.
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5.1 Reversible Dynamics

In ordinary quantum mechanics a reversible dynamic is determined by a self-adjoint
Hamiltonian H, an operator that acts on a Hilbert space. In the Heisenberg picture
one considers the unitary operators {Ut = exp(itH)| t ∈ R}. The time evolution of
an arbitrary observable X at time t = 0 is obtained at time t by Xt = UtXU∗

t . In the
infinite volume picture, comparable with what we do when searching for equilibrium
states, the dynamics of a boson system is determined by local Hamiltonians HV ,
one for each finite volume V . These Hamiltonians represent the sum of the kinetic
energy of the particles and their interaction energy, with both given as in Eq. (2.4)
for boson systems. These Hamiltonians are defined as self-adjoint operators on the
Fock space. We set the one-particle kinetic energies in the Hamiltonian equal to
εk = k2/2m or equal to k2/2m−μ , depending on whether the canonical or the grand
canonical ensemble describes the system. Isolated systems are described by time-
independent Hamiltonians. We once again define the unitary operators UV

t = eitHV

for all real numbers t ∈ R and for all finite volumes V . We should note that we
set Planck’s constant h̄ = 1 to simplify the formulae. The one-parameter family of
unitary operators (UV

t )t enjoys the following group properties:

UV
t UV

s = UV
t+s , (UV

t )∗ = UV
−t , UV

0 = 1;

for a dense set of vectors ψ of the Fock space F we assume the property
limt→0 ||(UV

t − 1)ψ || = 0. This expression is known as the strong continuity of the
one-parameter group of unitary operators (U −t)t . The time evolution is given again
by the Heisenberg dynamical equation. Starting with an observable X at time t = 0,
its time evolved equivalent is given by

αV
t (X) = UV

t XUV
t
∗

(5.1)

It is important to realize that the maps αV
t for all t leave the canonical commutation

relations of the boson algebra of observables invariant and are therefore all canonical
transformations Eq. (7.3). For more general mathematical details on the dynamical
maps we refer to the Appendix Eq. (7.1).

For infinitely extended many-body boson systems, the problem of the thermody-
namic limit, V →∞, is again immediately posed. The problem is: How do we provide
a mathematically acceptable meaning to the maps limV→∞αV

t ? We must prove the
existence, in one mathematical sense or another, of a limit of operators. This is a
topological problem; a topology must be chosen on the algebra of observables. At a
first look, it comes across as convenient to take the norm topology, but that implies
that the observable algebra must be equipped with a norm (see Appendix Eq. (7.1)).
This holds true if we take for our boson systems the algebra of observables, which
is generated by the Weyl operators Eq. (2.10). Much work has been done within this
formulation [26]. But, even in this case we quickly meet technical difficulties (see
e.g. [51]) which permit few applications to realistic physical models.

Instead of concentrating ourselves on these technical difficulties related to this
limit, we describe a more restricted and more pragmatic procedure which leads also
to exact results. Let us rewrite the finite volume dynamics explicitly as
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αV
t (X) = exp(itδV )X =

∞

∑
n=0

(it)n

n!
δ n

V (X) (5.2)

where δV is again the commutator operation introduced before, namely δV (X) =
[HV ,X ]. We consider particular classes of states ω which satisfy the property that for
a set of observables large enough and any chosen pair (A,B) of these observables, all
the limit correlation functions of the following type do exist:

ω(Aαt(X)B) ≡ ω(Aeitδ (X)B) ≡ lim
V

∞

∑
n=0

(it)n

n!
ω(Aδ n

V (X)B) (5.3)

This relation defines the limit derivation δ ≡ limV δV , as well as the limit dynamics
αt = eitδ of the system. Of course this notation holds only if the volume limit can
be given a meaning to exist at all. This should become clearer from the examples in
the applications below. It is clear that these limits depend in general greatly on the
choice of the set of state. The case that the limits exist only for a limited number of
states is a real possibility. Below we describe the most practical and the most relevant
choices for those states having the property of making these limits meaningful.

As explained before, each map δV is a linear map of the algebra into itself which
satisfies all the properties of a derivation, namely δV is a linear map, and satisfies
the Leibnitz rule δV (XY ) = δV (X)Y +XδV (Y ) and the property δV (X∗) =−δV (X)∗.
These general properties should hold as well as for the limit map δ .

This presentation of the dynamics αt in terms of a derivation indicates that these
dynamics are in fact determined by the derivations δ , rather than by the Hamiltonians
(HV )V . Indeed we should realize that not all derivations have a Hamiltonian by which
they are defined or generated and that different Hamiltonians can define the same
derivation.

The attentional among us should already have noted that, looking above at the
EEB-equilibrium conditions Eq. (3.7), the equilibrium states also are essentially de-
termined only by these derivations, which in principle can or cannot be generated by
a set of local Hamiltonians (HV ). In fact the Hamiltonian plays in many instances
only a secondary role, which is limited to considerations about details concerning
physical interpretations of the energy function.

For boson systems the concrete problem of the limits Eq. (5.3) consists in arguing
first that each δV makes sense for all observables A,B,X which are products of a finite
number of creation and annihilation operators, all this considered under the state ω .
Therefore all these derivations can also be transported or considered as actions on
the set of all the correlation functions (see Eq. (2.7), Eq. (2.12)) of the state. In all
cases the main point remains to argue that the property Eq. (5.3) remains valid in the
limit V tending to infinity, and the same for the exponential αV

t of δV for each value
t of the time parameter. Now we proceed to the search for the existence of the limit
dynamics for some specific boson model systems. First we mention a general but
highly practical technical property concerning the fact that we deal with derivations
in bosons systems. As δV is a derivation, it is sufficient to know and hence to compute
the operation on the single creation and/or annihilation operators a( f )∗ or a( f ) for
any test function f ∈ S . Indeed δ as well as all the δV share the property
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δ (a#( f1)...a#( fn)) =
n

∑
j=1

a#( f1)...δ (a#( f j))...a#( fn)

Finally we also note that not only the Heisenberg picture can be used in the definition
of the dynamics; the generalized Schödinger picture (see Eq. (7.1)) also yields the
possibility of formulating the problem of the dynamics. The Schrödinger picture is
obtained by considering the dynamics as a mapping of the state space E into itself.

Free Bose Gas

The local Hamiltonian of the free boson gas is again H f ree
V = ∑k εka∗kak, using pe-

riodic boundary conditions. Of course other boundary conditions can be consid-
ered equally well. Clearly the corresponding derivation is computed by δ f ree

V (a∗p) =
[H f ree

V ,a∗p] = εpa∗p. In particular this formula has the property that δ f ree
V maps any

creation operator or annihilation operator into itself multiplied by the corresponding
one-particle energy. We immediately obtain the full dynamics

αV, f ree
t (a∗p) =

∞

∑
n=0

(itδ f ree
V )n

n!
a∗p = eitεpa∗p and αV, f ree

t (ap) = e−itεpap.

The limit V tending to infinity in the sense of Eq. (5.3), for each homogeneous state
ω described by its (n,m)-point correlation functions, is straightforward because of
the locality of the creation and annihilation operators. Hence the free boson gas dy-
namics is given by: for all g ∈ S and a∗(g) =

∫
dk g(k)a∗k ,

α f ree
t (a∗(g)) = a∗(eith f ree g) (5.4)

where h f ree is the one-particle energy multiplication operator (h f reeg)(k) = εkg(k).
This completes the definition of the limit reversible dynamics of the free boson gas.
Naturally, the set of states for which the limit dynamics exists is extendable to a much
larger set than the homogeneous states. For those included, this point is worthy of
further exploration.

Mean Field Bose Gas

The local Hamiltonian with periodic boundary conditions for the mean field boson
gas is again

Hm f
V =∑

k

εka∗kak +
λ

2V
N2

V where NV =∑
k

a∗kak

The corresponding local derivation δm f
V becomes now

δm f
V (a∗p) = [Hm f

V ,a∗p] = εpa∗p +
λ
2

(a∗p
NV

V
+

NV

V
a∗p)

Again we must compute Eq. (5.3) for some state ω or for some set of states and we
have to consider the limit V tending to infinity. In the expression for δm f

V (a∗p), we
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see the particle density operator nV = NV /V , therefore posing the question about the
limit density n = limV nV . We note that nV is an average operator which can be given a
mathematical meaning for all homogeneous states (see [26]). However in this case, to
get an explicit expression of the limit for these averages coming from the interaction,
we may restrict already the choice of states. In the context of homogeneous boson
systems it is natural to limit the choice of the states to the ergodic ones Eq. (2.26),
leading immediately to the result

ω(Aδm f (a∗p)B) = ω(A(εp +λρ)a∗pB)

where ρ = limV ω(NV /V ) is a real number representing the total density of particles
in the state ω . Hence always under the state, as in the formula above, we get in this
case

δm f (a∗p) = (εp +λρ)a∗p

This result is essentially of the same type of action obtained above for the free bo-
son gas, namely, it is a multiplication operator, now with the mean field function:
hm f (p) = εp +λρ . This expression is called the one-particle mean field energy. It is
important to note here that this function depends heavily on the choice of the state ω
via the density formula ρ = limV ω(NV

V ).
As for the free boson gas, we obtain once again the full dynamics of the mean

field boson gas valid for all ergodic states acting on the creation operators a∗( f )
explicitly given by

αm f
t (a∗( f )) = a∗(eithm f f ) (5.5)

The formal equivalence of the expressions Eq. (5.4) and Eq. (5.5) is at the origin
of the popular sayings that the mean field is the same model as the free Bose gas.
However we should recall our remark about the different thermodynamic behavior
of the two models (e.g. the problem with the equivalence of ensembles for the free
gas) being an argument in favor of the mean field model as a more appropriate model
than the free one, as explained before (see [54] and [101]). We know already that this
message has important consequences for the applications; in particular it can make
perturbations made around the mean field model more reliable than perturbations
around the free gas model. There is indeed an essential difference between the two
models, namely their one-particle energies. For this reason, in the mean field case
we do not speak of boson particles, but rather boson quasi-particles. The previously
mentioned formal equivalence of the two models is sometimes used on the level of
the local Hamiltonians. It means that one introduces for the mean field model the
so-called local effective Hamiltonian of the mean field model. One introduces the
Hamiltonian

He f m f
V =∑

k

(εk +λρ)a∗kak (5.6)

Here we stress again that this effective Hamiltonian depends already on the chosen
state ω , a property which we indicated with the letters index e f . We again compute
the corresponding dynamics Eq. (5.3) defined by this effective Hamiltonian in the
same previously chosen state. At this point the only meaningful state. As with the
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free gas, we can immediately confirm that the corresponding dynamics coincides
with the previous one, namely αm f

t , computed from the Hamiltonian Hm f
V . Here we

should point out that indeed both Hamiltonians define the same dynamics when they
act on local observables measurable in the same state. We can then ask whether such
an equivalence holds for all interesting physical questions that can be asked about
the two models Hm f

V and He f m f
V ?

As far as the search for equilibrium states is concerned, it follows indeed from
Eq. (3.7) that He f m f and Hm f yield the same equilibrium solutions. Nevertheless let
us consider the difference of the two Hamiltonians and compute

Hm f
V −He f m f

V =
λ

2V
(N2

V −2ρV NV )

=
λ

2V
{
∫

V
dx(a∗(x)a(x)−ω(a∗(x)a(x)))}2 − λ

2
ρ2V (5.7)

where again ρ = ω(NV /V ) for all finite V . The thermodynamic limit is taken keep-
ing constant the density ρ . We find that up to a constant term, which is irrelevant
for the definition of the dynamics, the difference between the original mean field
Hamiltonian and its effective one is a variance-type operator of the local density op-
erator a∗(x)a(x) in the considered state ω . This means that working with the effec-
tive Hamiltonian is making the approximation of excluding in the mean field model
all effects of the total density fluctuations. It is like making the approximation con-
sisting of replacing the density operator by a c-number (see e.g. our discussion in
Section Eq. (4.6)). This is why we should carefully note that working with the effec-
tive Hamiltonian yields a perfectly equivalent dynamics as far as it is acting on local
observables; but the two models may show serious differences when studying (say)
the dynamics of fluctuations or when looking at other observables which are non-
local quantities. This point should become completely clear when reading Chapter
Eq. (6), where the concepts of quantum fluctuation operators and their dynamics are
introduced and studied as non-local but collective quantities.

Solvable Boson Models

The free boson gas and the mean field model are solvable models. Here we want
to pay some special attention to the class of solvable models defined by the local
Hamiltonians {HV} whose energy density for any ergodic state ω is expressed solely
in terms of the one- and two-point functions of the state. In Chapter Eq. (4), a num-
ber of solvable models are considered mainly with the problem of looking for their
equilibrium states. Here we look for the dynamics of this kind of models. In order to
get a better idea about such models, we try to get an heuristic view about a general
class of solvable models.

We limit ourselves to two-body interacting boson systems which are space ho-
mogeneous and gauge invariant. Hence we consider interaction energies as in Eq.
(2.4), which are given by
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Hi
V =

1
2V ∑k,k′,q

v(q)a∗k+qa∗k′−qak′ak (5.8)

We look for models, hence Hamiltonians built up with contributions consisting of
terms which appear in the sums of this formula and which lead to solvable mod-
els. Consider the interaction energy density limV ω(Hi

V /V ) for any ergodic state ω .
Clearly taking into account that this energy density should not contain 3- and 4-point
correlation functions, and therefore supposing that the 3- and 4-point truncated func-
tions vanish, we find that the Hamiltonian of a solvable model can contain only the
following type of terms:

v(0)
2V

(∑
k

a∗kak)2 +
1

2V
a∗0a∗0∑

k 
=0

v(k)(aka−k +a∗ka∗−k)+
1
V

a∗0a0∑
k 
=0

v(k)a∗kak

+
1

2V ∑
k,k′ 
=0

v(k− k′)a∗ka∗−kak′a−k′ +
1

2V ∑
k,k′ 
=0

v(k− k′)a∗kaka∗k′ak′

We realize that this general solvable interaction does contain as special cases all the
solvable models treated in the previous chapter. For technical simplicity of the for-
mulae we will not compute the dynamics of this general interaction Hamiltonian, but
consider only a prototype model, namely the so-called pairing model [142, 143, 141]
which contains the essential ingredients of generalizing the free and mean field mod-
els up to all the solvable type interaction Hamiltonian models. This boson pairing
model is given as in [142, 143, 141] by the Hamiltonian

H pm
V =∑

k

εka∗kak +
v

2V
N2

V − u
2V

Q∗
V QV (5.9)

where QV = ∑k λ (k)aka−k and λ is a real L2-function satisfying λ (−k) = λ (k)
and λ (0) = 1 ≥ λ (k) ≥ 0 ; u and v are positive constants with v− u > 0, imply-
ing that the Hamiltonian describes a super-stable system. We leave the proof of
this property as an exercise. It is again important to note that NV /V and QV /V , in
the limit V tending to infinity, are space averages. Indeed we also have QV /V =
(1/V )

∫
V dxa(x)

∫
V dx λ̂ (x− y)a(y).

The model is mainly conceived to study the joint appearance of boson condensa-
tion (ρ0 > 0) and of non-trivial pairing order that is s(k) = ω(aka−k) 
= 0. The latter
one is called the pairing order parameter.

Again we define the dynamics for some state ω , which we take again ergodic,
and follow the prescription of the definition Eq. (5.3). The ergodicity of the state
guarantees again the existence of space average operators, which turn out to be mul-
tiples of the unit operator. We assume of course that our state has a finite total density
of particles ρ and a finite value q = limV

1
V ω(QV ) for the total pairing density. A di-

rect application of the definitions and the proof of Eq. (5.3) begins again with the
computation of the commutators

δ pm
V (a∗p) = [H pm

V ,a∗p] = (εp +ρv)a∗p −uλ (p)qa−p

δ pm
V (ap) = [H pm

V ,ap] = −(εp +ρv)ap +uλ (p)qa∗−p (5.10)
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For simplicity we consider q real or q = q; the phase of q can be restored once
finished by a suitable gauge transformation. Contrary to the free and mean field cases
we do not have a simple multiplication function for the action of the commutator of
the Hamiltonian on a creation/annihilation operator. We get a linear combination
of the latter ones. However the important feature is precisely that the commutators
are still linear in the basic boson operators. Therefore we can remedy this fault by
performing a Bogoliubov canonical transformation Eq. (7.3) τ of the type used in
Eq. (2.6), namely

a∗p = τ(ã∗p) = ã∗p coshαp + ã−p sinhαp

ã∗p = τ−1(a∗p) = a∗p coshαp −ap sinhαp (5.11)

where α is a symmetric function of the momentum variable p determined by the
formula:

tanh2αp =
uλ (p)q
εp +ρ v

We recall that the creation and annihilation operators (ãp, ã∗p) generate all observ-
ables as they are generated by the (ap,a∗p). A simple straightforward computation
yields

δ pm(ã∗p) = lim
V

[H pm
V , ã∗p] = (εp +ρv−uqλ (p) tanhαp)ã∗p ≡ Epã∗p (5.12)

which defines also the one-particle energy function Ep. In terms of the new gener-
ators (ãp , ã∗p) of the observables, the commutator with the Hamiltonian is again a
multiplication operator now with the function Ep of p. The function depends again
heavily on the state which is chosen in the volume limit procedure. With the excep-
tion of the free boson gas, this situation is generic for nearly all solvable models.
Clearly the total dynamics is again given by

α pm
t (ã( f ) = ã(eithpm

f ) where (hpm f )(k) = Ep f (p)

The original creation and annihilation operators appearing in the original Hamilto-
nian Eq. (5.9) are sometimes called the operators of the bare particles, whereas the
new operators are called the creation and annihilation operators of the quasi-particle.
Equation (5.12) demonstrates that formally the system behaves like a free boson
model but that very property is only recovered in terms of the new quasi-particles.
We can again compute the effective Hamiltonian for this model as we did for the
mean field model. For the pairing model we obtain

He f pm
V =∑

k

Ekã∗k ãk

It turns out that the important feature of the effective Hamiltonian, as of all solvable
Hamiltonian models, is that it is of the type of a free boson gas, bilinear in the cre-
ation or annihilation operators of the bare particles or of the quasi-particles. This is
the basic characterizing property of all solvable boson model Hamiltonians. Note at
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the same time that the original Hamiltonian of a solvable model need not be neces-
sarily bilinear in the bare creation and annihilation operators. The pairing model, and
the Bogoliubov model are examples of such models. For these models the difference
between the original model Hamiltonian and its effective Hamiltonian is again of the
type of a quantum fluctuation, a property which we detected already for the mean
field model.

Non-solvable Boson Models

The essential property of a non-solvable boson model is the following. Its Hamil-
tonian or its possible effective Hamiltonian on the basis of Eq. (5.3) for an ergodic
state, is not expressed as a bilinear expression in some set of creation and annihi-
lation operators. We can formulate this property in many different forms. Typical
for a non-solvable model is that the commutators of the type limV [HV ,a( f )] (i.e.
of the Hamiltonian with any creation or annihilation operator) contain terms which
are products of two or more creation and/or annihilation operators. Taking the ex-
pectation values for any ergodic state of these commutators (see Eq. (5.3)), we see
that the expression does not reduce to combinations of expectations in terms of one-
and two-point functions. Stated otherwise, such commutators generate non-trivial
higher-order product terms in these operators. If such is the case, applying a second
commutator with the Hamiltonian [HV , [HV ,a( f )]] generates again new terms with
again higher-order products in the creation/annihilation operators, and so on.

To define the full dynamics we must compute all these commutators with the
Hamiltonian up to infinity. The dynamical equations written out in terms of the cor-
relation functions yield an infinite set of coupled equations of infinitely many differ-
ent correlation functions. The fact that the general Hamiltonian boson model HV in
Eq. (2.4) for a non-trivial two-body potential v is in general non-solvable, is straight-
forwardly checked by computing these commutators and by checking the presence
of this infinite set of correlation functions in the dynamical equation.

For these general non-solvable boson systems, how do we even provide a rea-
sonable mathematical meaning to the dynamics of such systems? Do the dynamics
exists at all for such a general boson model and if it exists in which mathematical
sense? In the mathematical physics literature we can find a number of results about
this topic. We would find some arguments proving the existence of the dynamics for
some general two-body interacting systems. However, few results of this kind ap-
pear. (See [26].) The known arguments are mostly worked out within the scope of
a GNS-representation space of one or more states where the problem is transposed
into a Hilbert space problem. All these type of proofs are in any case always, math-
ematically speaking, highly technical. Another technique dealing with this problem
uses the theory of perturbations (see e.g.[26, 2]). In view of the scope of this book all
these arguments are technically too much involved to be discussed in all details here.
On the other hand we should note that there are few exact results known about the
non-existence of the dynamics of such general models. At least this situation may
be a good reason to skip further discussions about this problem and to continue with
what is better known and what is technically more transparent.
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5.2 Irreversible Dynamics

As already mentioned, the basic microscopic models for the dynamics of physical
systems are given by reversible models. Essentially, we have the Newton model for
classical systems and the Schrödinger-Heisenberg model for quantum systems. As
mathematical constructions they share an exceptional degree of coherence and as
physical theories they are exceedingly applicable. Together with their relativistic
complements they come over as universal physical theories or models explaining
all reversible phenomena.

In order to describe and explain irreversible phenomena the situation is much
less clear. So far there is no universally applicable theory, not for classical nor for
quantum irreversible phenomena. On the one hand there are many ad hoc dynamical
phenomenological theories describing fairly well directly macroscopic phenomena.
On the other hand considerable work has been performed to derive such irreversible
or dissipative dynamics from the basic reversible equations of motion in special limit
situations. In this sense many models have been constructed with a limited or at
least a variable range of applicability. This situation is a consequence of the lack of
universal understanding, and hence of formulation, of the genuine physical principles
behind irreversibility. The question can be raised whether such principles have any
chance of being realistic or to exist at all. In the last few decades a great deal of
activity has arisen with the hope of making real progress in this interesting area of
physics.

Faced with this situation, we limit ourselves here to a very special class of ir-
reversible evolutions or dynamics. We restrict the discussion to those physical pro-
cesses describing rather successfully the phenomenon of evolution towards equilib-
rium in physics. In particular this class of dynamics has been understood fairly well
on the basis of microscopic reversible models. These are the result of considering the
irreversibility phenomenon as the result of special approximations which are usually
referred as the weak coupling limit theory [35].

Referring to Appendix Eq. (7.2) (see also [2] Chapter 8), any such irreversible
dynamics will be given by a quantum dynamical semigroup (αt)t∈R+ of linear maps
of the algebra of observables into itself such that αtαt ′ = αt+t ′ for all non-negative
real values t, t ′ of the time parameter, with the additional conditions that αt(1) = 1
and that α0 is the identity map.

In general, in order to get decent dynamics (αt)t of a physical system it is nec-
essary and sufficient that, for all values of the time parameter t ≥ 0, each state ω
is mapped by the dynamics into a state ω ◦αt again. We should convince ourselves
that this is guaranteed by the conditions that each particular map αt is a linear, unity
preserving, and positive map of the algebra of observables into itself. In particular
the last property means that αt(X∗X) ≥ 0 for any observable X .

There are many semigroups of this type. But the whole set of these semigroups
is far from being completely classified. Therefore we restrict the discussion to the
special class of these semigroups, namely the Markovian dynamics. They are char-
acterized as follows: We assume that the map t → αt is regular enough such that αt

has the following structure: αt = exp(tL) for all t ≥ 0. Hence these dynamics (αt) are
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describable in terms of the map L, called the generator of the dynamics or of the time
evolution. The study of such type of evolutions is done by means of the study of their
generators L. Note that for the reversible systems the corresponding generators of the
dynamics are given by the derivation or commutator maps of the type L = δ = i[H, .]
where H = H∗ is a self-adjoint operator called the Hamiltonian of the system. Now
looking to the non-reversible ones, we can ask the following questions: Which are
the possible explicit forms of L? Which are the specific properties of such a generator
L sufficient to meet the conditions for generating such a dynamical semigroup?

We limit ourselves to the type of dynamics which are also introduced in the
Appendix Eq. (7.2). The most general generator of a dynamics, which can contain
a part responsible for a reversible as well as for a dissipative dynamics, is given by
the linear map L of the algebra into itself. In the physics literature this generator is
usually called the Liouvillian or Liouville operator. It consists of two parts and of the
form: L = LH +LD. Here, LH is the Hamiltonian or the conservative (i.e., reversible)
part of the generator L. It is a derivation mostly defined by a given Hamiltonian H in
the form LH = i[H, .]. On the other hand, LD is the dissipative part of the generator
given by the Lindblad [107] expression, which states that there exists any observable
X such that LD is the action

LD = [X∗, .]X +X∗[.,X ] (5.13)

and all the positive linear combinations of such mappings. This means, for all λi ≥ 0
and observables Xi, L−D is of the form:

LD =∑
i
λi {[X∗

i , .]Xi +X∗
i [.,Xi]} (5.14)

The mathematical properties of this type of maps are discussed in the Appendix
Eq. (7.2). We discussed already the reversible dynamics in the preceding section.
Therefdore we can restrict our discussion here to generators of the type L = LD,
i.e. retaining only the dissipative or strict dissipative part of the generator.

Before discussing the applications to boson systems, we prove a general physical
property of this special type of dynamics. In order to make everything more trans-
parent we consider again the case of finite matrix systems. In this case the algebra
of observables is given by A = Mn, the n×n complex matrices. First we consider a
Hamiltonian H = H∗ ∈ Mn, with Hϕk = εkϕk, the εk are the eigenvalues, and the ϕk

are the eigenvectors of H forming an orthonormal basis of C
n. Denote in the Dirac

notation, Ek,l = |ϕk >< ϕl |, the partial isometries mapping the vector ϕl into the
vector ϕk. Consider all the following generators of the type as described above: For
all k, l

Lk,l = eβ (ek−el)/2{Ek,l [.,El,k]+ [Ek,l, .]El,k}+ eβ (el−ek)/2{El,k[.,Ek,l]+ [El,k, .]Ek,l}

Each of these generators determines a dynamics αt = exp{tLk,l}. Let us now con-
sider the following statement: Suppose that ω(.) = trρ. is a state that is time invari-
ant for all these dynamics, which means that ω ◦Lk,l = d

dtω ◦αt |t=0= 0 holds for
all k, l. We show that the state ω is necessarily the canonical Gibbs state. In order
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to prove this property, consider first the case k 
= s. From time invariance we ob-
tain ω(Lk,k(Ek,s)) = 0. A direct computation yields Lk,k(Ek,s) = −2Ek,s and we get
ω(Ek,s) = (ϕs,ρϕk) = 0, which means that the density matrix ρ of the state ω is
diagonal in the basis diagonalizing the Hamiltonian H.

For k 
= l we also compute:

Lk,l(Ek,k) = −2e
β
2 (Ek−El)Ek,k +2e

β
2 (El−Ek)El,l

Applying again the state to this relation and using again the time invariance of the
state yields

ω(Ek,k)eβEk = ω(El,l)eβEl

which expresses in particular that both sides of the equality are independent of the
indices k or l. Hence ω(Ek,k)eβEk = λ , a real number independent of the indices.
On the other hand, normalization of the state yields ω(1) = ∑kω(Ek,k) = trρ = 1,
implying that λ = 1/tr e−βH . Hence altogether we get

(ϕk,ρϕl) = δk,lω(Ek,l) = δk,l
e−βEk

tr e−βH

yielding that the state ω is the canonical Gibbs or equilibrium state ω(.) = ωβ (.) =
tr e−βH (.)/ tr e−βH for the system H. This proves the announced statement.

Note the following: Consider any time-limit state ω , that is, a state of the type
ω = limt→∞ω ′ ◦αk,l

t , with αk,l
t = etLk,l for all k, l where ω ′ is some arbitrary state.

This time-limit state ω , if it exists, is invariant for all these dynamics. As a con-
sequence of the above statement, it is an equilibrium state. This property is at the
origin of what is meant by these dynamics being suitable to describe the evolution or
approach to equilibrium.

Before proceeding to the applications in boson systems of these type of irre-
versible dynamical maps we mention another important property of the following
generator: L : A ∈ Mn → L(A)

L(A) =∑
i, j

e−
β
2 (εi−ε j){E ji[A, Ei j]+ [Ei j , ]Ei j} (5.15)

We can check straightforwardly that for each pair A,B of observables and for the
Gibbs state ωβ using explicitly its property ωβ (Ekl) = δk,le−β εk/tr e−βH , holds

ωβ (L(A)B) = ωβ (AL(B)) (5.16)

Looking at Eq. (5.15), we can spot immediately the symmetry mapping Ei j into E ji

and the inverse; Ei j describes the transitions from ϕi, energy εi eigenvector, to ϕ j,
eigenvector corresponding to ε j. In other words the transition εi → ε j is realized by
the matrix unit operator Ei j.

The transition probability Di j in Eq. (5.15) is identified to be Di j = λ e
β
2 (εi−ε j)

where λ is a positive normalization constant and satisfies the symmetry property
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Di jωβ (E j j) = D jiωβ (Eii) (5.17)

The properties Eq. (5.16) and Eq. (5.17) are equivalent and are called the detailed
balance property of the generator L or of its corresponding dynamics {etL|t ≥ 0},
with respect to the Gibbs equilibrium state ωβ .

The form Eq. (5.16) expresses more directly the following mathematical sym-
metry property: If we consider again the scalar product (A,B) = ωβ (A∗B) on the
observables algebra, then Eq. (5.16) reads as (L(A),B) = (A,L(A)) for all A and B.
It expresses the symmetry (self-adjointness) of the generator L with respect to the
scalar product defined by the Gibbs state. The form Eq. (5.17) of detailed balance is
the more popular one in the physics literature.

Now we proceed to the applications of Lindblad generators in boson systems,
and make again a explicit distinction between the solvable and non-solvable models.

Solvable Boson Models

In the reversible case the solvable models are obtained by means of Hamiltonians,
which are effectively maximal bilinear in the creation and annihilation operators.
For the irreversible dissipative case solvability is defined analogously in terms of the
operators X , defining the generator LD Eq. (5.13). The system dynamics is solvable
for all choices of X being linear combinations of creation and annihilation operators.
This corresponds to generators LD being bilinear in these operators. Analogous as
in the reversible case, we can take first the operators X equal to X = ap or X = a∗p
and consider the corresponding generator. More general positive linear combinations
of these generators can be considered. Explicitly we consider for all λ (k) ≥ 0 the
generator L ≡ LD given by

L =∑
k

λ (k){[a∗k , .]ak +a∗k [.,ak]} (5.18)

One computes again the thermodynamic limit following the prescription of Eq. (5.3)
for all t ≥ 0. From this point on, the situation closely reflects the reversible case.
For the action of the generator on the annihilation observable ap as well as on the
creation observable a∗p,

L(ap) = −λ (p)ap and L(a∗p) = −λ (p)a∗p

The result of the action L being the same for the annihilation operators as for the
creation operators, the generator of the dynamics is again reduced to a multiplication
operator, this time by the non-positive function −λ (p). The exponentiation of the
operator L, yielding the dissipative dynamics αD

t , t ≥ 0 is again straightforwardly
obtained to be

αD
t (ap) = e−tλ (p)ap

For a more sophisticated mathematical treatment of this model we refer to [161]. For
a number of applications in physics of these types of dynamical semigroups we can
consult the reference [3].
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At this point it is important to remind ourselves that any reversible dynamics of
the type {αt(.) = exp(it[H, .])} is a one-parameter set of canonical transformations
Eq. (7.3). Indeed the canonical commutation relations are left invariant under all
reversible time evolutions. Expressed in formulae this means for all p, p′ and t holds

[αt(ap),αt(a∗p′)] = δp,p′ and [αt(ap),αt(ap′)] = 0

On the other hand this property does not hold anymore for dissipative dynamics.
Using the above computation we find for any non-trivial multiplication function
λ (p) > 0:

[αD
t (ap),αD

t (a∗p′)] = e−t(λ (p)+λ (p′))δp,p′ 
= δp,p′ = αD
t ([ap,a

∗
p′ ])

The lack of the conservation of the canonical commutation relations under dissipa-
tive evolutions leads in general to technically more involved algebraic computational
work than in the reversible case. The literature contains many applications of this
type of dynamics. For the field of photon physics we refer again to [3] and references
therein. In [145] this type of dynamics is used to compute rigorously the temperature
critical exponent of the susceptibility in the neighborhood of the critical point of the
free boson gas condensation.

Non-solvable Boson Models

As in the reversible case, the non-solvable models are produced by taking the ob-
servable X defining the generator L Eq. (5.13) in such a way that it contains terms
non-linear in the creation and annihilation operators. In that case again the com-
mutators appearing in the expression for the generator L applied to a creation or
annihilation operator generate terms which contain higher order products in the cre-
ation/annihilation operators than the linear terms, exactly as it is in the reversible
case. Consecutive application of this generator becomes again a problem of infinite
order, more or less analogous to the reversible case. On the other hand, it may hap-
pen in the non-reversible case that the strict dissipativity property of the generator
is helpful in proving matters. In particular this strict dissipativity property may be
helpful in proving the exponentiation of the generators. In other words it may help in
proving the existence of the dynamics. Compared to the hamiltonian case, the strict
dissipativity of the Liouville generator LD offers here a supplementary asset.
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Quantum Fluctuations and Bosonization

6.1 Preliminaries

Statistical physics is dealing with systems characterized by the fact that they have
many degrees of freedom. One of the main problems consists of finding procedures
for the extraction of the relevant physical quantities out of these extremely complex
systems. We are faced with the problem of finding relevant reduction procedures
which map the complex systems onto a simpler, tractable model at the price of intro-
ducing elements of uncertainty. Therefore probability theory is the natural mathemat-
ical tool in statistical physics. Since the early days of statistical physics, in classical
(Newtonian) physical systems it is natural to model the observables by a collec-
tion of random variables acting on a probability space. Kolmogorovian probability
techniques and results are the main tools in the development of classical statistical
physics. A random variable is usually considered to be a measurable function with an
expectation (state) given by an integral with respect to a suitable probability measure.
Alternatively, a random variable can also be viewed as a multiplication operator by
the associated function. Different random variables commute as multiplication oper-
ators. For this reason we speak of a commutative probabilistic model.

Looking at genuine quantum systems, in a number of cases, the mentioned pro-
cedure leads to commutative probabilistic models, but there are also the realms of
physics where quantum non-commutative probabilistic concepts are unavoidable.
Macroscopic quantum effects are really observed. Typical examples of such areas of
physics are quantum optics, low temperature physics and ground state physics such
as relativistic and non-relativistic quantum field theory. During the last half a cen-
tury physicists have been developing more or less heuristic methods to deal with the
manifestations of fluctuations with a typical quantum nature. The last thirty years
have seen efforts to formulate also the mathematical foundations of such theories.
Within this context even a notion of quantum probability was launched as a branch
of mathematical physics and of pure mathematics [33, 144, 60].

This chapter aims to review briefly a few selected rigorous results concerning
non-commutative or quantum-limit theorems with direct applications to quantum
statistical mechanics. This item is chosen because of its close relation to concrete
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problems in statistical physics where we aim to understand the macroscopic phe-
nomena on the basis of the microscopic structure. Therefore a precise definition or
formulation of the notions of microscopic and macroscopic systems should be of
prime importance. A common physicist’s belief is that the macroscopic behavior of
a system in the thermodynamic limit is described by a reduced set of macroscopic
quantities [70, 152]. Examples include, amongst others, the average densities of par-
ticles, the average energy, momentum, magnetic moment, and so on. Analogous to
the microscopic quantities, the macroscopic observables can be considered as ele-
ments of an algebra of observables; macroscopic states of the system could be states
on the latter one. The main problem is to conceive and construct the precise struc-
tures and the mathematical procedures to go from a given microscopic system to its
macroscopic systems. We will be permanently confronted with this process, which
is sometimes expressed simply by the slogan phrase “from micro to macro”.

A well known first example of a classical macroscopic system is the one based on
the algebra of observables, the so-called set of observables at infinity [97], containing
the spacial averages of all local micro-observables of a classical or quantum micro-
system. Being explicit, for any local observable A we consider the macro-observable

Aω = lim
V→∞

1
V

∫

V
dxτx A

where the limit V → ∞ is the (weak operator) limit in the homogeneous micro-state
ω , that is, for each pair of observables B,C: ω(BAωC) = limV ω(B{ 1

V

∫
V dxτx A}C).

The obtained limit operators Aω are the result of the law of large numbers in prob-
ability. The algebra generated by these limit-observables Aω = {Aω |A ∈ A } is an
abelian algebra of observables of a macroscopic system. This algebra can be identi-
fied with an algebra with point-wise product of measurable functions for some mea-
sure which is also called a macroscopic state. Hence at the macro-level of the aver-
ages, the commutative probability always works regardless of whether the original
micro-system is classical or quantum. So far for the law of large numbers which we
interpreted as a procedure for going from “micro to macro” valid also for quantum
systems the case in which we are most interested in this book.

This chapter also attempts to describe another analogous mapping from “micro
to macro” for a different type of volume scaling, namely the scaling of fluctuations.
More explicitly, for any local observable A ∈ A , we consider the following limit
operator, where compared with the averages the volume V is now replaced by the
square root of the volume,

F(A) ≡ lim
V

1√
V

∫

V
dx(τxA−ω(τxA)) (6.1)

The problem consists in characterizing again the limit quantity F(A), called the fluc-
tuation operator, as an operator acting on a Hilbert space and to specify the type
of limit as well as the mathematical character of the set of fluctuations. In classical
probability theory this limit is handled by the central limit theorem. The central result
which we want to discuss is the fact that this macro-system of quantum fluctuations
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has all the properties of a boson system for all micro-systems having the usual local-
ity property. This result can be seen as remarkable. It can be considered as a quantum
probabilistic basis for the emergence of the boson canonical commutation relations.
Already this interpretation can be considered as a firm basis for treating the theory
of quantum fluctuations in a book on boson systems.

Performing this quantum central limit theorem, we note immediately that not
all locally different microscopic observables necessarily yield different fluctuation
operators. Therefore the quantum central limit theorem realizes also a well defined
procedure for the physical notion of coarse graining. It realizes a reduction proce-
dure which is handled by the mathematical notion of an equivalence relation on the
microscopic observables yielding the same fluctuation operator.

The material of this chapter contains the basic results about the normal fluctu-
ations and the abnormal fluctuations. The difference between normal and abnormal
fluctuations depends essentially on the degree of ergodicity of the considered state.
This means explicitly the degree of spacial decay to zero at infinity of the space
translated truncated correlation functions. A number of properties and applications
are also discussed in detail.

We should take note that we discuss only spacial fluctuations. It is of course
meaningful and possible to consider as well time-like or dynamical fluctuations. The
theory of the time-like fluctuation operators is not yet worked out in full complete-
ness, as its study has been started only recently. It remains an interesting field for
future research (see e.g. [87]). It is clear that, in order to get normal time-like fluc-
tuations, the clustering, mixing, or decay properties of the time correlation functions
play a crucial role in this case. Also, it is not excluded or it may be expected that
again new structural properties may come out for the time fluctuation macroscopic
algebra which do not appear in spacial fluctuations.

Another point which must be stressed is that all systems, which are treated in
this theory, are quasi-local systems. Boson systems and many other quantum sys-
tems, e.g. spin systems, share this property. Other systems, like the full fermion sys-
tems, are not quasi-local systems. Their fluctuations need special attention and are
not treated here in full detail. Nevertheless fermion sub-systems share some of the
properties of quasi-locality. Therefore many of the results which we mention hold
true in one or other version also for fermion micro-systems. One of the applications
to fermion systems, namely the Luttinger model, is explicitly discussed as an appli-
cation of the general theory.

In the rest of this section we introduce the basic mathematical structures which
are necessary for the description of the concepts and items presented above.

Micro-systems

We introduce first the micro-quantum system. Although all results which we review
are straightforwardly extendable to continuous quasi-local systems, sometimes up to
some minor technicalities, and therefore also to boson systems, we limit ourselves
to quasi-local quantum spin lattice micro-systems. We proceed this way solely for
didactic reasons.
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We consider the (quasi-)local algebra of micro-observables built on a d-dimen-
sional cubic lattice Z

d . To each lattice point x of the lattice Z
d we associate an algebra

of observables Ax, all copies of the matrix algebra A = Mn, the n × n complex
matrices (n=2 corresponds to spin-(1/2) systems). For all volumes V ∈Z

d , the tensor
product ⊗x∈V Ax is denoted by AV . Every copy Ax is naturally embedded in AV . This
algebra can be called the algebra of spin observables measurable in the volume V .
The family {AV}V∈Zd has the usual relations of locality and isotony respectively:

[AV1 ,AV2 ] = 0 if V1 ∩ V2 = /0 (6.2)

AV1 ⊆ AV2 if V1 ⊆V2 (6.3)

Denote by AL the set of all local observables given by

AL = ∪V AV

For clear reasons it is called the local algebra and considered as the microscopic
algebra of observables of the spin micro-system. Every state ω on this algebra is
locally normal, which means that there exists a family of density matrices ρV , one
for each V ∈ Z

d , such that

ω(A) = TrρV A for each A ∈ AV

The important group of canonical transformations of the local algebra AL, namely
the group of spacial translations {τx,x ∈ Z

d} defined by

τx : Ay ∈ Ay → Ay+x ∈ Ay+x,

extends straightforwardly to all A ∈ AL. We call the local algebra AL asymptotically
abelian for the space translations. This means that for all A,B ∈ AL holds

lim
|x|→∞

[A,τxB] = 0

Each observable A commutes with each other, say B, if the latter is translated far
enough away in space. This asymptotic abelian property is an immediate conse-
quence of the locality property of the micro-algebra. A state ω on AL represents
a physical state of the system, assigning to every observable A its expectation value
ω(A). Therefore this setting can be viewed as the quantum analogue of the classi-
cal probabilistic setting. Sequences of random variables or observables can be con-
structed by considering an observable A ∈ AL, together with its translates τx(A) for
all x ∈ Z

d , and can be considered as a non-commutative random field.
If a state ω is translation invariant, hence if ω ◦ τx = ω for all x, then all τx(A)

appear as identically distributed random variables. The mixing property of the ran-
dom field quantum system (AL,ω) is expressed by the spacial correlations tending
to zero, that is,

ω (τx(A)τy(B))−ω (A)ω (B) → 0 (6.4)

if |x− y| → ∞. It coincides with what we called before the ergodicity property Eq.
(2.26) of the state for boson systems. For what follows, the couple (AL,ω) stands
for our physical micro-system. The boson systems (A,ω), considered so far, are as
well micro-systems of this type, except for the fact they are not discrete lattice but
continuous systems.
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Macro-systems

One of the first basic limit theorems of probability theory is the weak law of large
numbers. As mentioned already above, in this non-commutative setting the Law of
Large Numbers is translated into the problem of the convergence of the space aver-
ages of the observables A ∈AL. A first result was given by the mean ergodic theorem
of von Neumann (1929). We cited it already (see also [26]) as the following theorem:
If the state ω is homogeneous then for all observables A,B and C,

lim
V→Zd

ω

(

A (
1
V ∑x∈V

τxB) C

)

= ω(A lim
V

SV (B)C) (6.5)

or equivalently expressed, the sequence of operators

SV (B) =
1
V ∑x∈V

τxB

converges weakly, that is, under the state.
For all ergodic states ω the limit becomes equal to a multiple of the identity

operator S(B) = limV SV (B) = ω(B)1 or formula Eq. (6.5) becomes now:

lim
V→Zd

ω

(

A (
1
V ∑x∈V

τxB) C

)

= ω(AC)ω(B) (6.6)

The explicit dependence of the average operator S(B) on the state is clear. This the-
orem, called the mean ergodic theorem, characterizes the class of states yielding a
weak law of large numbers. Clearly these limits {S(A)|A ∈ AL}, which are all mul-
tiples of the identity, form a non-trivial but commutative algebra of macroscopic
observables. They are called macroscopic because there are infinitely many local
operators (all Ax for all x) involved.

Now we go a step further and consider space fluctuations. Let us define for any
finite volume V the local fluctuation of an observable A in a spacial invariant ergodic
state ω by the expression

FV (A) =
1

V 1/2 ∑
x∈V

(τxA−ω(A)) (6.7)

The following problem is now explicitly posed: How do we give a rigorous math-
ematical meaning to the quantity limV FV (A) for V tending to Z

d in the sense of
extending boxes? How do we formulate such a limit? When does such a limit ex-
ist? Which are the properties of these quantum fluctuations or of the set of lim-
its F(A) ≡ limV FV (A)? First, it is again clear that the F(A) are macroscopic vari-
ables constructed from the micro-system AL because they depend on infinitely many
strictly local elements Ax for all points x of the lattice.

In order to create an amount of intuitive understanding of what we do, we show
the following property: As A and B are strictly local elements (i.e., A,B ∈ AL), the
commutator expression
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∑
y∈Zd

[A,τyB] ∈ AL

is again local and an easy computation on the basis of the law of large numbers Eq.
(6.6) in the ergodic state ω , yields:

lim
V

[FV (A),FV (B)] = lim
V

1
V ∑x∈V

τx

(

∑
y∈V

[A,τy−xB]

)

= lim
V

1
V ∑x∈V

τx

(

∑
y∈Zd

[A,τyB]

)

= ∑
y∈Zd

ω ([A,τyB]) ≡ iσω(A,B)1

where σω is a bilinear, antisymmetric form on the vector space AL. Such a form is
called a symplectic form. This form σω depends strongly on the state ω . Moreover,
if the operators F(A) and F(B) limits do exist as operators acting on one or another
Hilbert space, then they satisfy the canonical commutation relations

[F(A),F(B)] = iσω(A,B)1 (6.8)

Clearly this result holds for all strictly local elements A and B of the local algebra
AL. As mentioned the right hand side of the equality is a multiple of the unity opera-
tor depending on the state ω . This simple property already indicates that fluctuations
should not always commute but do have essentially the same commutation relations
as the boson fields (see Eq. (2.9)). Earlier work [33, 60] suggested that quantum
fluctuations behave like bosons. The problem of the mathematical characterization
of these fluctuations remains: Can they be considered as operators, that is, as macro-
scopic observables? If all that is clear then we can conclude that they satisfy the
canonical commutation relations with a very special symplectic form, namely σω ,
defined on the real vector space underlying the micro-algebra AL. We should now
realize that we are faced with a generalization of the original better known setup of
the canonical commutation relations(CCR) developed in Chapter Eq. (2).

Generalized CCR-systems

We are now faced with the introduction of what is called the abstract CCR-algebra
built on any arbitrary symplectic space (H,σ ), where H is a real vector space
equipped with a possibly degenerate symplectic form σ . We repeat that σ is a bi-
linear anti-symmetric form on H.

We now give a short construction of such a CCR-algebra of bosonic observables,
which we denote by W (H,σ) defined on the symplectic space (H,σ); we also dis-
cuss the essentials which we need about the states and representations of this algebra.
For more mathematical details we refer to [131], which contains more mathemati-
cal properties of this algebra construction. We note that there is little new in [131]
compared to what is already explained in Chapter Eq. (2.3), except for the degree of
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generality and abstractness. In fact, in Chapter Eq. (2.3) the space (H,σ) is identified
with the test function space H = S ; the symplectic form is given by σ(., .) =ℑ(., .),
the imaginary part of the complex scalar product on L2(Rd).

Continuing with the generalization, we denote by W (H,σ) the complex vector
space generated by the linear span of the functions W ( f ) , f ∈ H defined on H by

W ( f ) : H → C : g →W ( f )(g) =
{

0 if f 
= g
1 if f = g

}

(6.9)

W (H,σ) becomes an algebra with the unit W (0) = 1 for the product rule

W ( f )W (g) = W ( f +g)e−
i
2σ( f ,g); f ,g ∈ H

We should recognize in this equation the generalized Weyl form of the canonical
commutation relations Eq. (2.9). Here, W (H,σ) becomes a self-adjoint algebra, also
called ∗-algebra, invariant under the involution defined by

W ( f ) →W ( f )∗ = W (− f )

For clear reasons the algebra W (H,σ) is called the CCR-Weyl algebra built on the
symplectic space (H,σ).

A linear functional ω on the algebra W (H,σ) is again called a state if it is nor-
malized ω(1) = 1, and positive, that is, if ω(A∗A) ≥ 0 for all A ∈ W (H,σ). More
explicitly, ω is a state on the Weyl algebra W (H,σ) if ω is linear, normalized, and
positive or for any choice of A = ∑ j c jW ( f j) holds the linearity and

∑
j,k

c jc̄kω (W ( f j − f j))e−iσ( f j , fk) ≥ 0

ω(1) = ω (W (0)) = 1 .

Again every state gives rise to a representation of W (H,σ) by means of the GNS-
construction (see Eq. (7.1)).

A remark about the special case that σ is possibly degenerate is in order. Denote
by H0 the kernel of σ , that is,

H0 = { f ∈ H |σ( f ,g) = 0 for all g ∈ H}

If H0 is not trivial, then σ is called degenerate. We can write in the direct sum form
H = H0 ⊕H1, where H1 is the complement of H0 in H. Let σ1 be the non-degenerate
symplectic form on the subspace H1. The form σ1 is the restriction of σ to H1. We
can verify that the algebra W (H,σ) is isomorphic to the tensor product of two other
Weyl algebras, explicitly

W (H,σ) = W (H0,0)⊗W (H1,σ1)

Clearly W (H0,0) is an abelian algebra and each positive definite normalized func-
tional ϕ on this subalgebra
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ϕ : h ∈ H0 → ϕ(W (h))

defines a state ω : ω(W (h)) = ϕ(W (h)) on W (H0,0). Let ξ be any character of the
additive group H, then the map τξ ,

τξW ( f ) = ξ ( f )W ( f )

extends to a canonical transformation Eq. (7.3) of the Weyl algebra W (H,σ). This
transformation is a generalization of the field translation defined in Chapter Eq. (2)
and in Eq. (7.3). Let s be a positive symmetric bilinear form on H which is majorizing
the symplectic form σ in the following sense: for all f ,g ∈ H holds:

1
4
|σ( f ,g)|2 ≤ s( f , f )s(g,g) (6.10)

Also, let ωs,ξ be the positive normalized linear functional on W (H,σ) given by

ωs,ξ (W (h)) = ξ (h)e−
1
2 s(h,h) (6.11)

It is straightforward [131] to check that ωs,ξ is a state on the whole algebra W (H,σ).
All states of this type are called again quasi-free states Eq. (2.14) on the CCR-algebra
W (H,σ) (the generalized Weyl algebra).

A state ω of the algebra W (H,σ) is called a regular state if, for all f ,g ∈ H,
the map λ ∈ R → ω(W (λ f + g)) is continuous. This regularity property of a state
yields (see [131]) the existence of a Bose field as follows: Let (H ,π,Ω) be the
GNS-representation Eq. (7.1) of the state ω . The regularity of ω implies that there
exists a real linear map b : H → L (H ) (linear operators on H ) such that ∀ f ∈ H :
b( f )∗ = b( f ) and

π(W ( f )) ≡W ( f ) = exp ib( f )

The map b is the Bose field satisfying the generalized boson field commutation rela-
tions:

[b( f ),b(g)] = iσ( f ,g) (6.12)

Note that the boson fields are state dependent. However, none of this is terribly new.
The boson field discussed in Section Eq. (2.2) is also state dependent. In fact they
are the boson fields of the Fock state space representation of the Weyl algebra. Fur-
thermore typical is that at the place where we expect to find Planck’s constant, we
essentially find an expectation value of a commutator (see Eq. (6.9)). Finally we also
note that for all continuous characters ξ of H all corresponding quasi-free states are
regular states guaranteeing the existence of boson fields in their representations.

6.2 Normal Quantum Fluctuations

In this section we develop the theory of normal fluctuations for d-dimensional quan-
tum lattice micro-systems. As explained already the latter systems have a quasi-local
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structure. In order to present the essentials for technical simplicity we assume again
that the local micro-algebras Ax, for each point x of the lattice Z

d are copies of the al-
gebra Mn, the n×n complex matrices—the typical quantum spin situation. The basic
results which are derived below remain valid essentially for all lattice or continuous
quasi-local algebras (see [61, 66, 63]).

Hence we consider the physical micro-system (AL,ω) where ω is an ergodic
state of AL.

For any local observable A we introduce its local fluctuation operator Eq. (6.1) in
the state ω of the micro-system by

FV (A) =
1√
V
∑
x∈V

(τxA−ω(A)) (6.13)

The problem is to give a rigorous mathematical meaning to the limits

lim
V→∞

FV (A) ≡ F(A) (6.14)

where the limit is taken for any increasing Z
d-absorbing sequence {V}V of finite

volumes V of Z
d tending to infinity. For simplicity we will consider these volumes

as increasing boxes. The limits F(A), once they are established, are called the macro-
scopic fluctuation operators of the micro-system (AL,ω).

As mentioned, early work [33, 60] has already suggested that the fluctuations
behave like bosons. These ideas become technically more explicit and complete by
proving that we indeed obtain well-defined representations of a generalized CCR-
algebras of fluctuations, which are completely determined by the original micro-
system (AL,ω).

It is important to keep in mind that we make the following choices: Choose for
H = AL,sa the real vector space of the self-adjoint elements of the micro-algebra AL

or any of its subspaces. We can formulate the following definitions:

Definition 6.1. An observable A∈H satisfies the normal quantum central limit theo-
rem (CLT) for the ergodic stateω if the following limits exist and take the appropriate
explicit forms:

1. lim
V
ω(FV (A)2) ≡ sω(A,A) exists and is finite, and

2. lim
V
ω(eitFV (A)) = e−(t2/2)sω (A,A) for all real numbers t,

where sω is a positive bilinear symmetric form on the vector space H.

This definition of central limit theorem coincides with the commutative probabilistic
notion in terms of characteristic functions for classical systems, in which case the
algebra AL is abelian. The classical version refers to the notion of convergence in
distribution. For quantum systems we do not have a standard notion of convergence
in distribution. Only the concept of convergence in expectations is relevant. On the
other hand our definition for the quantum situation does not exclude the notion of
the central limit theorem in terms of the moments, which is sometimes called the
moment version of the central limit theorem. It amounts to the formulation of the
states in terms of the correlation functions.
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Definition 6.2. The micro-system (AL,ω) is said to have normal quantum fluctua-
tions for an ergodic ω if

1. ∀A,B ∈ H

∑
x∈Zd

|ω(AτxB)−ω(A)ω(B)| < ∞

2. the CLT holds for all A ∈ H

Note that 1. implies that the state ω must be ergodic for the space translations. More-
over as a consequence of 1., we can define a sesquilinear form on the vector space
AL by

〈A,B〉ω = lim
V
ω (FV (A∗)FV (B)) (6.15)

=∑
x
{ω(A∗τxB)−ω(A∗)ω(B)}

and introduce the following notations:

sω(A,B) = Re〈A,B〉ω ; σω(A,B) = 2 Im〈A,B〉ω (6.16)

For A,B ∈ H we obtain

σω(A,B) = −i ∑
x∈Zd

ω([A,τxB]) ; sω(A,A) = 〈A,A〉ω (6.17)

The couple (H,σ) = (ALsa,σω) is a symplectic space and sω is a non-negative real
symmetric bilinear form on the real space H. Following the introductory remarks of
the previous section about the generalized algebra of observables, we obtain a natu-
ral CCR-algebra W (H,σω) defined on this symplectic space. This algebra of observ-
ables depends heavily on the given state ω . The following theorem is an essential
step in the construction of a macroscopic physical system of normal fluctuations
constructed out of the micro-system (AL,ω):

Theorem 6.3. If the micro-system (AL,ω) has normal fluctuations, then the limits
{lim

V
ω(eiFV (A)) = exp{(−1/2)sω(A,A)}, A ∈ H} define a quasi-free state ω̃ on the

CCR-algebra W (H,σω) by

ω̃(W (A)) = exp

(

−1
2

sω(A,A)
)

Proof. The proof is clear from the definitions if we can prove that the positivity
condition Eq. (6.10) holds. But the latter follows readily from

1
4
|σω(A,B)|2 = lim

V
|Imω(FΛ (A)FΛ (B))|2

≤ lim
V
ω(FV (A)2)ω(FV (B)2) = sω(A,A)sω(B,B) .

having used the Schwartz inequality.
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This theorem indicates once more that the quantum mechanical alternatives for the
(classical) Gaussian measures are the quasi-free states on CCR-algebras or boson
algebras. However the following question still remains: In the case of normal fluctu-
ations, is it possible to take the limits of products of the form

lim
V
ω
(

eiFV (A)eiFV (B) . . .
)

and if these exist, do they preserve the CCR-Weyl-structure? Clearly this is asking
for the typical non-commutative structure of the macro-algebra of fluctuations.

Using the following general bounds for the norm bounded operators C∗ = C and
D∗ = D, we derive the inequalities

∥
∥
∥ei(C+D)− eiC

∥
∥
∥ ≤ ‖D‖

∥
∥[eiC,eiD]

∥
∥ ≤ ‖[C,D]‖

∥
∥
∥ei(C+D)− eiCeiD

∥
∥
∥ ≤ 1

2
‖[C,D]‖

and by using the expansion of the exponential function we can easily prove the norm
limit

lim
V

∥
∥
∥eiFV (A)eiFV (B) − ei(FV (A)+FV (B))e−

1
2 [FV (A),FV (B)]

∥
∥
∥= 0 (6.18)

if A and B are one-point observables (e.g. take A,B ∈ A{0}). For general local ele-
ments, the proof is somewhat more technically involved but can be performed on the
basis of a Bernstein-like argument (for full details see [63]). The property Eq. (6.18)
can be considered as a Baker-Campbell-Hausdorff formula for fluctuations. From
this formula, the mean ergodic theorem, and the theorem above we indeed obtain the
following theorem:

Theorem 6.4. If the micro-system (AL,ω) has normal fluctuations then for A,B∈H,
for which we can take any subspace of AL, there exists a quasi-free state ω̃ on the
macro-CCR-algebra W (H,σω) of the quantum fluctuations such that

lim
V
ω
(

eiFV (A)eiFV (B)
)

= exp

{

−1
2

sω(A+B,A+B)− i
2
σω(A,B)

}

= ω̃(W (A)W (B))

The two theorems of this section describe completely the topological and analytical
aspects of the quantum central limit theorem under the condition of normal fluc-
tuations. We should realize that the quantum central limit yields, for every micro-
physical system (AL,ω), many macro-physical boson systems with an algebra of
observables (W (H,σω), ω̃), the CCR-algebra of fluctuation observables in the GNS-
representation defined by the quasi-free state ω̃ . Because the state ω̃ is a quasi-free
state, it is also a regular state; the map λ ∈ R → ω̃(W (λA+B)) is therefore contin-
uous for each A and B. From the remarks in the previous section we know that this
regularity property yields the existence of a Bose field. in particular there exists a
real linear map
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F : A ∈ H ⊆ AL,sa → F(A)

where F(A) is a self-adjoint operator called the field fluctuation operator. It is acting
on the GNS-representation space H̃ constructed from ω̃ (see Eq. (7.1)) such that
the following commutation relation holds for all A,B ∈ H:

[F(A),F(B)] = iσω(A,B) .

This means that we constructed the quantum fluctuation boson field F . It is shown
that the quantum central limit procedure realizes the creation of boson systems of
fluctuations for all local systems. This result or procedure is sometimes called the
operation of bosonization.

If we have such a field, we can then ask for their corresponding creation and
annihilation operators. One of the main properties of the latter ones is that they
are complex linear, respectively complex anti-linear maps defined on the real space
(H,σω). For this reason we must first make out of this real space a complex space.
We consider any complex structure on the real symplectic space (H,σω), that is, an
operator J such that J+ = −J, J2 = −1, where J+ is the adjoint of J with respect
to the symplectic form (i.e. σω(JA,B) = −σω(A,JB)), which moreover satisfies the
property that σω(A,JB) > 0 for all A,B ∈ H. It is clear that the usual multiplication
by the imaginary unit, usually denoted i (i.e., the complex structure of the algebra
of observables) is an example of such a complex structure. Why not always select
this one? Well, just because it is sometimes physically or formally more rewarding
to consider another complex structure. In any case, given a complex structure J, one
defines the creation and annihilation operators of the fluctuation boson field F by

F±(A) =
1√
2
(F(A)∓ iF(JA))

We compute easily that they satisfy the usual boson creation/annihilation commuta-
tion relations

[F−(A),F+(B)] = σω(A,JB)+ iσω(A,B)

These are the creation and annihilation operators of the quantum fluctuation parti-
cles or fields which we constructed.

Finally, it is straightforward, nevertheless important, to stress once more that
all the results of this section about the existence and the properties of a macro-
system of boson quantum fluctuations hold true if the linear space of the local micro-
observables H is replaced by any of its subspaces. Indeed we should realize that some
of these subspaces may be of a greater physical importance than others, a property
which depends on the system at hand. This means that the quantum central limit the-
orems can realize several meaningful macro-physical systems of fluctuations after
having started from the same micro-system. In any case, all of them are quasi-free
boson field systems. It is also interesting to repeat that these results can be considered
as giving a probabilistic basis for the appearance of the quantum canonical commu-
tation relations in general. The essential and basic ingredients are the locality of the
micro-system and the central limit theorem.
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Coarse Graining

The notion of coarse graining is well known in statistical physics as a theory dealing
with systems possessing numerous degrees of freedom. It is intrinsically related to
the main goals of statistical mechanics, namely to search for a possibly small number
of the relevant quantities within the huge number of degrees of freedom of these sys-
tems. Now we analyze some aspects of this notion of coarse graining which turn up
as a consequence of taking the quantum central limit. Consider again the sesquilinear
form < ., . >ω Eq. (6.15) on AL

〈A,B〉ω = ∑
x∈Zd

(ω(A∗τxB)−ω(A)ω(B)) = sω(A,B)+ iσω(A,B) (6.19)

This form presupposes the convergence of the sum in the expression which is it-
self a necessary condition for the central limit being meaningful. We note that this
form defines a topology on the vector space AL which can be checked by the more
mathematics-minded among us not to be comparable with any of the operator topolo-
gies [26] on the GNS-representation induced by the original state ω . In fact, this
form topology is not closable in these weak, strong, ultra-weak or ultra-strong oper-
ator topologies induced by the state ω . This shows that the quantum central limit is
not comparable with these operator topologies.

Now we introduce an equivalence relation on the micro-observables. Call A and
B in AL equivalent, denoted by A ∼ B, if and only if 〈A−B,A−B〉ω = 0. Clearly this
defines an equivalence relation on the vector space AL which we can consider as a
property of coarse graining, which is mathematically characterized by the following
property: For all A,B∈H = AL,sa the relation A∼B is equivalent with F(A) = F(B).

Indeed suppose first that F(A) = F(B). Then [W (A),W (B)] = 0 and hence
σω(A,B) = 0. Therefore from the first theorem Eq. (6.3) we obtain

1 = ω̃(W (A)W (B)∗) = ω̃(W (A)W (−B))

= ω̃(W (A−B)) = exp−1
2

sω(A−B,A−B)

and hence 〈A−B,A−B〉ω = 0. The converse is as straightforward.
From this property it follows immediately that in particular the action of the

translation group acts trivially on the fluctuations, that is, F(τxA) = F(A) for all
x ∈ Z

d . Therefore the map F : H = AL,sa → W (H,σω) is not injective. Although
this is a trivial example, it shows that the equivalence relation is not an empty state-
ment. This mathematical property is an expression of the physical phenomenon of
coarse graining yielding also a mathematically rigorous formulation of the quantum
fluctuations as being genuine macroscopic observables.

Clustering Condition, Scaling Law

Above we construct the new macroscopic physical system of quantum fluctuations
for any micro-system with the property of normal fluctuations under the condition
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that the micro-system satisfies the central limit theorem. The main remaining ques-
tion is: When does the micro-system exhibit normal fluctuations? In other words, do
we know the conditions needed to produce normal fluctuations? We describe a gen-
eral sufficient clustering (mixing, ergodicity) condition on the micro-state ω in order
that the micro-system (AL,ω) exhibits normal fluctuations.

Let V , V ′ be finite volumes and ω a translation invariant state. Denote

αω(V,V ′) = sup
A∈AV ;‖A‖=1
B∈AV ′ ;‖B‖=1

|ω(AB)−ω(A)ω(B)|

The cluster function αωN (d) is defined by

αωN (d) = sup
V,V ′

{
αω(V,V ′) : d(V,V ′) ≥ d and d(V,V ′) ≤ N

}

where N,d ∈ R
+ and d(V,V ′) is the euclidean distance between the volumes V and

V ′. Note that we use here the symbol d for the distance and not the dimension of the
system. It is straightforward to see that

αωN (d) ≤ αωN (d′) if d ≥ d′

αωN (d) ≤ αωN′(d) if N ≤ N′

The clustering condition, which means the degree of ergodicity of the state ω that
we are seeking, is expressed by the scaling law

∃δ > 0 : lim
N→∞

N1/2αωN
(

N
1

2d −δ
)

= 0 (6.20)

where d stands again for the dimension. Or equivalently

∃δ > 0 : lim
N→∞

Nd+δαω
N2(d+δ ) (N) = 0 (6.21)

This condition implies the somewhat more transparent condition, namely: For each
integer N,

∑
x∈Zd

αωN (|x|) < ∞

which states that the function αωN (·) is an L1(Zd)-function for all N. In fact this
condition corresponds to the so-called uniform mixing condition in the commutative
(classical) central limit theorem (see [83]). This condition was already used in [74],
where the function αω(d) is termed the modulus of decoupling.

In the special case of product states, for example the ergodic equilibrium states
of mean field boson systems [50], the states are uniformly clustering with αω(d) = 0
for all d > 0. The normality property of the fluctuations of the micro-system for all
product states has been proven and extensively studied (see e.g. [61]). The arguments
used in this proof, being relatively simple, give nevertheless a good insight in the
arguments for the proof of the general theorem. We will now reproduce this proof.
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Central Limit Theorem for Product States

Without loss of generality we can limit ourselves in this case to the one-dimensional
lattice Z. A product state ω on AL means a state with the property that, for all A∈Ax

and B ∈ Ay with x 
= y, the expectation value of the product of two observables at
different points of the lattice equals the product of the expectation values, that is,
ω(AB) = ω(A)ω(B). Because of this property and the homogeneity of the state, it
is uniquely defined by its expectation values at one point on the lattice. Take for this
lattice point the singleton point {0}. The corresponding local algebra is then A0. As
this local algebra is an algebra of matrices, the state ω restricted to A0 is described
by a density matrix, say ρ , and ω(A) = trρA for all local observables A. Such a state
is translation invariant, and as a product state is perfectly ergodic.

Following the definition of the quantum fluctuation Eq. (6.7) of the micro-
observable A in the product state ω , we can write

FN(A) =
1√
N

N

∑
x=1

(τxA−ω(A)) =
1√
N

N

∑
x=1

(τxA− trρA)

We compute limN FN(A) in the sense of the central limit theorem; namely we con-
sider limNω(exp iFN(A)). Using the commutators [τxA,A] = 0 for all x 
= 0, the ex-
treme locality property of A, and the product property of the state (corresponding to
the most extreme form of ergodicity) we readily compute

ω(eiFN(A)) = ω(ΠN
x=1 exp

i√
N

(τxA−ω(A)))

= {ω(exp
i√
N

(τxA−ω(A)))}N

= {1− 1
2N
ω((A−ω(A))2 +Σ∞k=3

ik

k!Nk/2
(A−ω(A))k)}N

Using that the matrix A is norm-bounded, we obtain

|Σ∞k=3
ik

k!Nk/2
ω(A−ω(A))k| ≤ 1

N3/2
e2||A||

and therefore in the limit N → ∞:

lim
N
ω(eiFN(A)) = e−

1
2 sω (A,A)

where
sω(A,A) = ω(A2 −ω(A)2) = trρA2 − (trρA)2 < ∞

This finishes the computation of the relevant formula for product states and the proof
of the existence of the central limit and hence the existence of the normal fluctuations
for these states.
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Quantum Central Limit Theorem

Naturally, the product states share the extreme form of ergodicity and indicate that
weaker forms of ergodicity still allow us to obtain the existence of the normal central
limit property. The condition Eq. (6.20) is a much weaker but sufficient condition for
the central limit property, as proven in [63]. In the latter case, the proofs are rather
technical and based on a generalization of the well known Bernstein argument [83] of
the classical central limit theorem applied to the non-commutative situation. For the
sake of formal self-consistency we formulate the following theorem without proof:

Theorem 6.5. (Quantum Central Limit Theorem) Take the micro-system (AL,ω)
such that the state ω is lattice translation invariant and satisfies the clustering con-
dition Eq. (6.20). Then the system has normal fluctuations for all elements of the
vector space of local observables AL,sa.

The literature contains several other forms of quantum central limit theorems. In
[67] a non-commutative central limit theorem is derived using similar techniques.
However the main difference with the theorem Eq. (6.5) is its strictly local character
in the sense that the proof is performed for one single local operator separated from
the rest of the system. Moreover, the conditions we must satisfy are formulated in
terms of the spectral properties of this very operator. The global approach idea from
micro to macro resulting in the CCR-algebraic structure of the fluctuations is not at
the order and totally absent.

Another non-commutative central limit is obtained in [1] where the method of
moments is used, which requires different mixing or clustering conditions. It is not
straightforward to check whether a state satisfying these conditions satisfy also the
degree of mixing expressed in the conditions Eq. (6.20), or vice versa. However we
would expect that all these different conditions, under which the central limit theo-
rems hold, are satisfied for high enough temperature equilibrium states. Cluster ex-
pansion techniques may be helpful to prove this. For quantum spin chains, a theorem
analogous to the result of the theorem Eq. (6.5) is proven under weaker conditions in
[118, 119]. Finally in [150], we find a proof of the quantum central limit theorem for
modulated observables and equilibrium states satisfying specific momentum support
properties of the correlation functions. We point out that modulated fluctuation op-
erators are defined as follows: For any k ∈ V ∗ , k 
= 0 and for any ergodic state ω ,
we define the k-mode quantum fluctuation operator as the central limit V →∞ of the
local operators

FV (A,k) =
1√
V
∑
x∈V

eikx(τxA−ω(A))

for any local observable A. These modulated fluctuations reflect closely the results
of taking the Fourier transform of the operator, an operation already used for the
creation and annihilation operators a∗k and ak. Fourier transforms are widely used in
the physics literature. Considering k-mode fluctuations or taking Fourier transforms
provides a mathematical boson structure to these operations. Now for k 
= 0, the k-
dependance changes the local character of the fluctuations and a new proof of the
central limit must be used. It turns out that the central limit always holds under the
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scaling-law condition Eq. (6.20), but also that this central limit theorem holds for the
modulated fluctuations under much milder conditions. For the details of this proof
we refer to [122] and [126]. This finishes the small review about the presence of a
variety of different conditions under which the quantum central limit theorem can
hold for physical spin micro-systems (Asa, ω) having normal fluctuations.

Quantum Fluctuation Dynamics

We extend our attention from the physical system (AL,ω) to the dynamical system
(AL,ω ,αt) (see Eq. (7.1), [26]), which is the physical system (AL,ω) to which we
add a reversible micro-dynamics αt . We investigate the effect of the micro-dynamics
αt on the fluctuations macro-CCR-algebra W (H,σω). In other words, we examine
the dynamics after having taken the central limit. As usual the micro-dynamics is
supposed to be of the short-range type to guarantee the existence of this dynamics as
a norm limit of the usual type

αt(·) = lim
V

eitHV · e−itHV

and we assume it to be space translation invariant that is αt · τx = τx ·αt , ∀t ∈ R,
∀x ∈ Z

d . We suppose that the state ω is as well space as time translation invariant,
that is for all x: ω · τx = ω and for all t: ω ·αt = ω . Moreover we assume that the
state ω satisfies the sufficient condition Eq. (6.20) for normal fluctuations.

For every local observable A ∈ AL,sa we defined the local fluctuation FV (A) and
obtained a clear meaning for the limit F(A) = lim

V
FV (A) from the central limit theo-

rem. Now we are interested in the macro-dynamics of the fluctuations F(A) induced
by the micro-dynamics (αt). Clearly for all A and all finite volumes V ,

αtFV (A) = FV (αtA)

Therefore we are tempted to define the macro-dynamics α̃t or the dynamics of the
fluctuations in the volume limit by

α̃tF(A) = F(αtA) (6.22)

Note however that the locality of the micro-observable is an important property in
order to prove the existence of its fluctuation operator, and that in general αtA is
no longer a local element of AL,sa. It is a priori unclear whether the central limit
for elements of the type αtA, with A ∈ ALsa exist or not, and hence whether we
can ascribe a meaning to the expression F(αtA). Moreover if F(αtA) exists, it re-
mains to show that the set of maps (α̃t)t in Eq. (6.22) again defines a continuous
one-parameter group of canonical transformations Eq. (7.3). The latter ones are now
acting on the fluctuation macro-CCR-algebra. More precisely they act on the ω̃-weak
closure W (AL,sa,σω)

′′
of the macro-algebra W (AL,sa,σω) (This is also the von Neu-

mann algebra generated by the ω̃-GNS-representation of W (ALsa,σω)). For the def-
inition of ω̃ see Theorem Eq. (6.3) Eq. (6.4). In other words, we have to show that
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the bona fide macro-dynamics (α̃t)t really exists. All of the mentioned steps need a
proof. Ref. [63] proves the following basic theorem concerning the existence of these
dynamics:

Theorem 6.6. Under the conditions on the dynamics αt and on the state ω expressed
above, the limit F(αtA) = lim

V
FV (αtA) exists in the central limit sense, and the maps

α̃t extend to a weakly continuous one-parameter group of canonical transformations
of the ω̃-weak closure of the macro-algebra W (ALsa,σω). The quasi-free macro-
state ω̃ (Eq. (6.3), Eq. (6.4), Eq. (6.5)) of the fluctuations is either α̃t -invariant also
expressed as macro-dynamics time invariant.

This theorem yields indeed the existence of a dynamics, α̃t , on the fluctuations
macro-algebra, induced by the micro-dynamics and shows that it is also of the quasi-
free or the solvable type. The fluctuation fields evolve in time following the same
properties as the solvable boson dynamics (see Chapter Eq. (5)), which is explicitly
expressed by

α̃tF(A) = F(αtA)

where F(A) is a representation of a boson field in a quasi-free state ω̃ . In physical
terms this means that any micro-dynamic αt always induces a linear or solvable
process on the level of its fluctuations.

Altogether, we conclude that indeed the quantum central limit theorem realizes a
map from the micro-dynamical system (AL,sa, ω , αt) to the macro-dynamical system
(W (AL,sa,σω)

′′
, ω̃ , α̃t) of the quantum fluctuations. The macro-system is a quasi-

free boson system in the sense that the macro-state ω̃ is a quasi-free state and that
the macro-dynamics system is solvable.

It is interesting to note that, as the central limit theorem, also the law of large
numbers maps local micro-observables into macroscopic observables, namely by
taking the averages. However the latter form a commutative algebra of macro-
observables. The law of large numbers also maps the micro-dynamical system into
a macro-dynamical systems. But the micro-dynamics is, contrary to the central limit
situation, mapped into a trivial macro-dynamics. These considerations make clear
that on the level of the law of large numbers we do not expect to observe genuine
quantum phenomena. On the other hand, on the level of the fluctuations we have
observed that macroscopic quantum phenomena are detectable in nature.

Apart from considering the effects of reversible dynamics on the fluctuations, it
is of course also possible to study the effects of the irreversible micro-dynamics. In
this case the micro-dynamics is mapped into a solvable irreversible dynamics for the
macro-system of fluctuations. For more details about this topic see [62, 64].

6.3 Abnormal Quantum Fluctuations

The results about normal fluctuations contain two essential elements. On the one
hand the central limit should hold. A sufficient condition in order that this exists is
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the validity of the cluster condition Eq. (6.20). The latter condition is on the micro-
state ω guaranteeing the normality of the fluctuations. On the other hand there is the
reconstruction theorem, identifying the CCR-algebra representation of the fluctua-
tion operators in the emerging quasi-free macro-state we denoted by ω̃ .

The cluster (mixing) condition is in general not satisfied for systems with long-
range correlations, a situation showing up for instance at phase transitions in equilib-
rium states at low temperatures. This situation is also present for instance in boson
systems when there is boson condensation. It is a challenging question to study also
in this case the problem of existence of fluctuations operators, and if they exist, to
study their mathematical structure. We might expect to detect other structures differ-
ent from the CCR-structure and other types of macro-states which are not quasi-free
states.

Progress in the elucidation of all these questions started with a detailed study of
abnormal fluctuations in the harmonic and anharmonic crystal models [164, 27, 127].
We obtain other more general Lie algebras than the Heisenberg Lie algebra of the
CCR-algebra and more general quantum states ω̃ which are not quasi-free. In the
case of abnormal fluctuations, quantum states are indeed computed which reach far
outside the set of quasi-free states that appear when dealing with normal fluctuations.

Abnormal fluctuations turn up if we have an ergodic micro-state ω showing spa-
cial long range correlations. We have in mind continuous (second order) phase tran-
sitions. In these situations it is typical that, for instance, the heat capacity or other
susceptibilities diverge at critical points, lines, or planes. This means that normally
scaled (with the factor V−1/2) fluctuations of some specific observables diverge. This
statement is detectable in the divergence of sums of the type

∑
x∈Zd

(ω(AτxA)−ω(A)2)

for one or more local observable A.
In order to deal with these situations, one way of proceeding is to rescale again

the volume of the local fluctuations. What do we do? We introduce a scaling index δA,
a real number in the interval (−1/2,1/2) that depends in general on the observable
A under consideration, and such that the abnormally scaled local fluctuations

FδA
V = V−δAFV (A) =

1

V (1/2+δA) ∑
x∈V

(τxA−ω(A)

have a nontrivial characteristic function φA(.) defined by the following limit formula:
∀t ∈ R,

lim
V
ωV (eitF

δA
V (A)) ≡ φA(t) (6.23)

We limit our discussion to locally normal micro-states ω such that their local restric-
tions ωV are normal local Gibbs states.

It is clear that the index δA is a measure for the degree of abnormality of the
fluctuation operator of the observable A in the state ω . Note that δA = −1/2 would
yield a triviality and that δA = 1/2 would lead to the law of large numbers (theory of
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averages). We should observe here that in this general case the characteristic func-
tions φA (or the corresponding macro-states ω̃ of the fluctuations) need not always
be Gaussian or quasi-free.

The physics literature, see for example [19], usually describes the long-range or-
der by means of the asymptotic form of the connected or truncated two-point function
in terms of the so-called critical exponent ηA which is defined in the formula

ωV (AτxA)−ωV (A)2 � 0

(
1

|x|d−2+ηA

)

for |x| → ∞

The scaling index δA (Eq. (6.23)) is related to the critical exponent ηA by the straight-
forward relation ηA = 2−2d δA.

As stated in Eq. (6.23), the index δA is determined by the existence of the central
limit. It is explicitly computable in model calculations. See for example the compu-
tations in [164, 10, 11, 98, 168, 32] performed for equilibrium states of a number
of different models. Apart from their very model dependence, the indices also de-
pend greatly on the chosen boundary conditions. This fact may draw a light on the
so-called universality property of the critical exponents, which is different from the
existing one.

Suppose now that the indices δA are determined by the existence of the central
limit Eq. (6.23). The next problem is to find out whether in these cases a reconstruc-
tion theorem, comparable to the normal fluctuations case, can also be established
giving once again a mathematical sense to the limits

lim
V

FδA
V (A) ≡ FδA(A) (6.24)

as operators, in general unbounded, acting on a Hilbert space. At this point we are
not addressing all the mathematical details of these questions, which are however an-
swered positively in the literature. On the other hand we discuss a proof showing the
emergence of the Lie-algebra character of abnormal fluctuations under the following
clustering conditions: Condition A: the δ -indices are determined by the existence
of the variances (second moments), and Condition B: the third moments exist. Be-
low we formulate these conditions more explicitly. For more details we refer to the
reference [127].

We remind ourselves that any algebra G , with an n-dimensional underlying vec-
tor space with a basis {vi}i=1,...nIf G is equipped with a Lie-product

v j · vk ≡ [v j,vk] =
n

∑
l=1

cl
jkvl (6.25)

with structure constants (cl
jk) satisfying the usual properties

cl
jk + cl

k j = 0

∑
r

(cr
i jc

s
rk + cr

jkcs
ri + cr

kic
s
r j) = 0

then G is called a Lie-algebra.
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Here it is the idea of taking for the local micro-algebra per lattice point an a priori
Lie-algebra. In order to fix idea’s, for spin systems, we can think of the Lie-algebra of
the Lie-group SU(n). In general we consider the concrete Lie algebra basis of opera-
tors in the strict local algebra of observables A0 namely {L0 = i1 , L1, . . . ,Lm} , m <
∞ such that L∗

j =−L j , j = 1,2, . . .m andω(L j) = limV ωV (L j) = 0 for j > 0. Clearly
ωV (L0) = i for all V and the {Li} satisfy the equations Eq. (6.25). Because of the spe-
cial choice of L0, we have cl

ok = cl
ko = 0 and co

jk = −i limV ωV ([L j,Lk]).
We consider now the fluctuations of these generators and look for a characteriza-

tion of the Lie algebra of these fluctuation operators.
For a state ω with local restrictions ωV , such that the limit ω = limV ωV is er-

godic, consider first the local fluctuations: For j = 1, . . .m

F
δ j
j,V =

1

V 1/2+δ j
∑
x∈V

(τxL j −ωV (L j)) (6.26)

and for notational convenience set the first one equal to F0,V = i1. For completeness
purposes we formulate now the above conditions A and B explicitly for this concrete
Lie-algebra case:

Condition A: We assume that the parameters δ j are determined by the existence of
the finite and non trivial variances: For all j = 1, . . .m

0 < lim
V
ωV

(
(Fδ j

j,V )2
)

< ∞ (6.27)

After reordering the indices, we establish that 1/2 > δ1 ≥ δ2 ≥ ·· · ≥ δm >−1/2.
Condition B: Assume that all third moments are finite, that is,

lim
V

∣
∣
∣ωV

(
F
δ j
j,V Fδk

k,V Fδl
l,V

)∣
∣
∣< ∞

for all j,k, l.

We have in mind that the ωV are Gibbs states for some local Hamiltonians with some
specific boundary conditions. The limit as V tends to infinity may depend exceed-
ingly on these boundary conditions in the sense that they are visible in the values of
the indices δ j (see e.g. [164]). If for some j ≥ 1, it happens that the corresponding
δ j = 0, then the operator L j has a normal fluctuation operator. In general we define
the fluctuation operators of the generators (Li) by

F
δ j
j = lim

V
F
δ j
j,V (6.28)

where the limit is understood in the sense of Condition A, namely with a finite non-
trivial variance. If for some j ≥ 1, the corresponding δ j 
= 0, then the fluctuation is
called an abnormal fluctuation operator. In order to satisfy Condition A, it happens
sometimes that we must choose δ j as negative (see e.g. [164]). As already mentioned,
in order to exclude trivial situations it is reasonable to limit the discussion to the case
that all δ j > −1/2.
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In any case, on the basis of Condition A, the limit set {F
δ j
j } j=0,...m of fluctuation

operators generates a Hilbert space H with scalar product
(

F
δ j
j ,Fδk

k

)
= lim

V
ωV

(
(Fδ j

j,V )∗Fδk
k,V

)
(6.29)

On the basis of Condition B, the fluctuation operators are defined as multiplication
operators of the Hilbert space H . Note that the Conditions A and B are in general
insufficient conditions to obtain a limit characteristic function. However they are
sufficient to obtain the notion of a fluctuation operator. Now we proceed with the
question of the Lie algebra character of these fluctuation operators acting on the
Hilbert space H .

Consider the Lie product of two local fluctuations for a finite volume V . From
Eq. (6.25),

[
F
δ j
j,V ,Fδk

k,V

]
=

m

∑
l=0

cl
jk(V )Fδl

l,V (6.30)

with volume dependent coefficients

cl
jk(V ) =

cl
jk

V 1/2+δ j+δk−δl
; l = 1, . . .m

c0
jk(V ) = V−δ j−δk

m

∑
l=0

cl
jkωV (FδV

l,V )

It is a straightforward exercise to check that the {cl
jk(V )} are the structure coeffi-

cients of a Lie algebra which we denote by G (V ). Hence by considering local fluc-
tuations, we can construct for each volume V a map from the Lie algebra G onto
the Lie algebra G (V ) by a non-trivial explicitly given transformation of the orig-
inal structure constants. When the transformed structure constants approach their
well-defined limit, a new non-isomorphic Lie algebra might appear. The limit alge-
bra G (Zd) = limV G (V ), called the contracted Lie algebra of the original algebra G ,
is always non-semi-simple. This contraction is a typical Inönü-Wigner contraction
[85, 86]. The limit algebra G (Zd) is straightforwardly obtained by taking the limit
V →∞ of the above volume-dependent structure constants yielding the final structure
constants results (see also [127]):

lim
V

cl
jk(V ) =

⎧
⎨

⎩

0 if 1
2 +δ j +δk −δl > 0

cl
jk if . . . . . . . . . . . . . . . = 0
0 if . . . . . . . . . . . . . . . < 0

(6.31)

It is interesting to analyze the possible Lie algebra limits and to distinguish the fol-
lowing special cases:

1. If all fluctuations are normal, we recover the Heisenberg Lie algebra of the
canonical commutation relations with the right symplectic form σω of the nor-
mal fluctuations algebra, that is, we have the bosonization phenomenon.
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2. If 1/2+δ j +δk −δ� > 0 for all j,k, l, we obtain an abelian Lie algebra of fluctu-
ations. The corresponding macro-system is a commutative or classical system.

3. We obtain the richest structure if 1/2+δ j +δk −δl = 0 for all j,k, l, or for some
of the indices. In this case we uncover a phenomenon of volume scale invari-
ance, in the sense that the constants cl

jk(V ) are V -independent. Algebras differ-
ent from the CCR-algebra are observed. A particularly interesting case shows
up if δ j = −δk 
= 0. In this case at least one of the indices is negative. Consider

the case that δ j < 0. The corresponding fluctuation F
δ j
j shows a property of

space squeezing. The other parameter of the pair is then strictly positive, namely
δk > 0. The corresponding fluctuation Fδk

k shows the property of space dilata-
tion. These phenomena are observed and explicitly computed in several models
(see e.g. [164]). In particular we can conclude that this analysis yields a micro-
scopic explanation of the macro-phenomenon of squeezing (squeezed states and
all that) experimentally observed mainly in the field of quantum optics. In the
applications below we shall meet this phenomenon as one of the basic proper-
ties in the explicit construction of the Goldstone normal modes of the Goldstone
boson particle which can appear in short range interacting systems. It turns out
to occur as an intrinsic property of the phenomenon of spontaneous symmetry
breakdown.

6.4 Applications

The notion of fluctuation operator as presented above, and the mathematical struc-
ture of the algebra of fluctuations have been tested in several solvable models. Many
applications of this theory of quantum fluctuations can be found in the list of refer-
ences. We do not enter into the details of everything in this list, but we limit our-
selves to mentioning a number of applications which are enough of a general nature
or which are showing typical model independent features highlighting the universal
character of the theory. We discuss first the Luttinger model because, although it is
a non-solvable system model, we can compute rigorously its fluctuation dynamical
macro-dynamical system. This model is also chosen to illustrate the bosonization
procedure. We explain its so-called “exact solution” as an application of the quasi-
freeness property of the macro-systems of the normal density fluctuations.

6.4.1 Luttinger Model

The literature about the Luttinger model [111] is enormous. Originally the model was
intended to be a prototype of a one-dimensional interacting fermion micro-system
realistic enough and still solvable. The interest in this model got a revival due to the
invention of the “Luttinger-liquid” behavior of normal metals [5].

We discuss this fermion micro-model as a prototype example of the emergence of
a meaningful boson solvable macro-system (and hence boson liquid) features, which
we show to be a consequence of the central limit theorem and of the notion of quan-
tum fluctuations operators. It is surprising that in the past so little attention has been
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paid to this aspect because already in [103] it is explicitly stated that the infinite vol-
ume limit of this fermion system reveals a new physical behavior. It showed boson
aspects quite absent in the finite volume situation. In [165] a careful analysis is given
of the infinite volume formulation of the model posing explicitly the problem of the
structural emerging of these completely new quasi-particles. We describe the infinite
volume limit of the so-called Lieb-Mattis exact solution of this non-solvable Lut-
tinger fermion micro-system model. It turns out that it earns his place in the frame
of our bosonization procedure explained above. Moreover the study clearly illus-
trates that this exact solution should be considered as the exactness of the random
phase approximation for this model or as the exact solvability of the collective ex-
citations (zero sound) equation as it is formulated in the microscopic theory of the
normal Fermi liquids [133]. As far as we are concerned with the understanding of
this solution in the frame of a general many-body theory, the so-called exactness of
the solution coincides with the quasi-freeness or the solvability of the macroscopic
dynamical system of the normal quantum fluctuations of the model.

Microscopic Luttinger Model

The micro-system comprises two types of fermions indexed by the indices i = 1 and
i = 2. The algebra of micro-observables A is the algebra generated by the fermion
creation and annihilation operators a∗i ( f ) and ai( f ), f ∈ S ⊂ L2(R) where

a∗i ( f ) =
∫

dx f (x)a∗i (x) =
∫

dk f̂ (k)a∗i (k)

with f̂ the Fourier transform of f . The operators ai( f ) and a∗i ( f ) are acting on the
fermion Fock space FaF . This space is fermion analogue of the boson Fock space.
It is built on the fermion vacuum vector ΩaF , uniquely determined by the prop-
erty that it is annihilated by all annihilation operators of the micro-system, that is,
ai( f )ΩaF = 0 for all f . The fermion Fock space FaF is generated by the set of vectors
of the type

a∗i1( f1)...a∗in( fn)ΩaF

for all n and test functions fi. The operators ai(x)∗ and ai(y) satisfy the usual canon-
ical anti-commutation relations (CAR)

{ai(x),a∗j(y)} ≡ ai(x)a∗j(y)+a∗j(y)ai(x)
= δi, j δ (x− y) and {ai(x),a j(y)} = 0 (6.32)

The microscopic dynamics of the model is again given by the local Hamiltonians HL

which are the sum of two terms HL = H0
L + H1

L for each value L (the length of the
interval [L/2,−L/2]⊂ R) and where H0

L is called the free Hamiltonian of the special
form

H0
L =

∫ L/2

−L/2
dx{a∗1(x)

1
i
∇a1(x)−a∗2(x)

1
i
∇a2(x)} (6.33)



6.4 Applications 147

It is called the free particle Hamiltonian because it is quadratic in the creation and
annihilation operators. The local Hamiltonian H1

L is the interaction part of the Hamil-
tonian

H1
L = 2λ

∫ L/2

−L/2
dx

∫ L/2

−L/2
dya∗1(x)a1(x)V (x− y)a∗2(y)a2(y) (6.34)

where V (x) = 1
L ∑q∈L∗ v(q)e−iqx is an even, real function with a bounded Fourier

transform v(k) =
∫

dxeikxV (x), satisfying for all k ∈ L∗ = {(2π/L)Z} the conditions

(i)v(k = 0) = 0 , (ii) |λv(k)| < π and (iii)∑
k

|k|v(k)2 < ∞ (6.35)

The Hamiltonian is essentially self-adjoint on a dense domain of vectors of the
fermion Fock space and is not bounded from below. For this last reason the model
is not optimal for the description of a normal, stable, thermodynamical many-body
system.

A number of supplementary but relevant remarks can be formulated. First, the
model is not solvable if we define the solvability of a fermion systems analogously
with the definition we used for boson systems (see Eq. (3.13)). Computing the ex-
pectation the Hamiltonian density in any homogeneous state, we indeed obtain a
non-trivial presence of four-point functions due to the presence of the interaction
terms.

Further, we intend to apply the theory of fluctuations, but the fermion algebra is
not a local algebra because of the appearance of anti-commutation relations instead
of the commutation relations. Nevertheless we want to continue with the description
and rigorously understanding the position of the so-called “exact solution” given by
Lieb and Mattis [103]. It is anyhow clear that there is some work to do in order to
prepare the system ready for the application of the fluctuation theory. To deal with all
these points, it is instructive to consider first the free, or the non-interacting, Luttinger
model before we start with the analysis of the full interacting model.

Micro/macro-dynamics for the Free Luttinger Model

Using the free Hamiltonian Eq. (6.33) in the thermodynamic limit L →∞, the result-
ing dynamics, as defined in Chapter Eq. (5), is easily computed and yields the free
time evolution α0

t given by

α0
t (a∗1( f )) = a∗1(e

itP f ) and α0
t (a∗2( f )) = a∗2(e

−itP f ) (6.36)

where P = 1
i∇, is the usual one-particle quantum mechanical momentum operator.

Clearly the dynamics α0
t is of the same type as the free particle dynamics (analogous

as discussed in Chapter Eq. (5)), however with a one-particle kinetic energy spectrum
being linear in the momentum operator instead of quadratic.

We look first for the ground state of the finite-volume free system with the
Hamiltonian Eq. (6.33) expressed in Fourier form: For all k ∈ L∗, with ai(k) =

1√
L

∫
dxeikxai(x), the free Hamiltonian becomes
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H0
L =∑

k

k(a∗1(k)a1(k)−a∗2(k)a2(k)) (6.37)

Let us denote by ω0,L the finite-volume ground state (see Eq. (3.7) with β → ∞)
for this free system. For notational commodity we consider only the case of zero
chemical potential; the case of arbitrary values μ of the chemical potential is treated
analogously, because this case is obtained by a simple shift of the momentum. The
ground state conditions for the finite volume(L) ground stateω0,L, are explicitly given
by the inequalities

ω0,L(X∗[H0
L ,X ]) ≥ 0

for each obserable X . In particular, after the substitutions X = ai(k) ; i = 1,2, we
obtain the inequalities

−kω0,L(a∗1(k)a1(k)) ≥ 0

kω0,L(a∗2(k)a2(k)) ≥ 0

yielding that the state ω0,L has the Fock vacuum property for the 1-particle (particle
with index 1) if k > 0, and for the 2-particle if k < 0. Substituting X = a∗i (k) in
the ground state definition yields the anti-Fock or the fermi sea property for the 1-

particle, if k < 0, and for the 2-particle, if k > 0. By setting X = a(∗)
1 (k)+a(∗)

2 (k′) we
obtain the product property

ω0,L(a
(∗)
1 (k))ω0,L(a

(∗)
2 (k′)) = ω0,L(a(∗)

1 (k)a(∗)
2 (k′)) = 0

for the ground state. All of these properties together determine the unique ground
state ω0,L, which, again on the basis of these properties, can be called shortly the
Fock-anti-Fock(FaF) state. The connotation “FaF” is reasonable because the ground
state for each of the particles is half empty and half full. Let us now consider the
GNS-representation Eq. (7.1) of this ground state with representation Hilbert space
denoted by FFaF . We omit the reference to the volume V . Similarly denote the cyclic
vector by ΩFaF . We obtain ω0,L(X) = (ΩFaF , XΩFaF).

Continuing for finite volume L, we define the following density operators for all
p > 0:

ρ1,L(p) =∑
k

a∗1(k + p)a1(k) ; ρ1,L(−p) =∑
k

a∗1(k)a1(k + p) (6.38)

ρ2,L(p) =∑
k

a∗2(k + p)a2(k) ; ρ2,L(−p) =∑
k

a∗2(k)a2(k + p) (6.39)

A straightforward and easy computation yields the following non-trivial commuta-
tion relations of these density operators acting on the Hilbert space FFaF :

[ρ1,L(−p),ρ1,L(p′)] =
Lp
2π
δp,p′ (6.40)

[ρ2,L(p),ρ2,L(−p′)] =
Lp
2π
δp,p′ (6.41)



6.4 Applications 149

If we were so inclined, we could verify that these operators do commute if they would
be considered as acting on the original fermion Fock space FaF . These different
results are a consequence of comparing two different representations of the CAR-
algebra of observables, one with cyclic vector ΩaF and the other one with cyclic
vector ΩFaF . The representation of the fermion observables as acting on the FaF-
state space is in fact also implicitly used by the authors of the work [103] to obtain
their bosonization phenomenon in the Luttinger model.

We remarked already that the CAR-algebra is not (quasi-)local. To circumvent
this obstacle we restrict our system by replacing the full CAR-algebra A as the alge-
bra of observables using the so-called even CAR-algebra Ae which is the subalgebra
of the full CAE-algebra generated by the even products of creation and annihila-
tion operators. This restricted algebra of observables has achieved wide acceptance
among physicists because it contains at least the gauge invariant fermion observ-
ables. But there is more, for this even-algebra Ae has the agreeable property of being
(quasi-)local, which is an overall a priori condition to be able to apply our analysis of
the quantum fluctuations. Naturally by definition, the constructed ground state ω0,L

remains a ground state if it is restricted to this even-algebra. Furthermore the thermo-
dynamic limitω0 = limLω0;L exists. It is readily obtained and completely determined
by the two-point function

ω0(a∗j( fx)a j′( f )) = δ j, j′ {
∫ ∞

0
dkeikx| f̂ (k)|2δ j,2 +

∫ 0

∞
dkeikx| f̂ (k)|2δ j,1} (6.42)

and the vanishing one-point function

ω0(a j( f )) = 0; j = 1,2

By the way, this ground state, determined by its one- and two-point functions belongs
to the set of fermion quasi-free states. These are the fermion analogues of the quasi-
free states described before for bosons Eq. (2.14). In the fermion case, a subset of
these quasi-free states, namely those with a fixed number of particles, are better
known in physics as the Slater-determinant states.

Again fx we denote the function f translated over the distance x. From the ex-
pression Eq. (6.42) we can conclude that the limit for x tending to infinity approaches
zero faster than any polynomial for all f of compact support. Therefore the state ω0

certainly satisfies the mixing (scaling) property Eq. (6.20). So far, the free dynami-
cal micro-system (Ae,ω0,α0

t ) is completely prepared as a micro-system satisfying
all sufficient conditions for a straightforward application of the theory of normal
fluctuations. In particular the central limit theorem for normal fluctuations can be
applied immediately. In this application to the free Luttinger model, we can compute
the variances in the FaF-state ω0 of all the relevant local micro-operators. In fact in
this application we restrict the micro-algebra to the algebra generated by the particle
densities which we defined in Eq. (6.38) and Eq. (6.39).

In view of this computation we must compute the variances for the number op-
erators. We note that the expectation values ω0(a∗i (x)ai(x)) for all positions x are
undefined because the FaF-state contains infinitely many particles of both types. For
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this reason, if we want to compute the density fluctuations, we must be a bit careful
and compute first the fluctuations of the strictly local operators Ni( f ) = a∗i ( f )ai( f ),
where f is any test-function with a finite local support. At the end of this compu-
tation, we take for f a δ -function convergent sequence of functions, say at a point
x = 0, or in Fourier form a sequence of functions f̂n tending to the constant func-
tion 1/

√
2π . Therefore in what follows, if we use the thermodynamic limit notation

L →∞, we mean always the double limit, first L →∞ and then f̂ → 1/
√

2π . For any
q 
= 0, let us consider the q-density fluctuation operators, with i = 1,2,

Fq
L (Ni) =

√
2π
|q|

1√
L

∫ L/2

−L/2
dxeiqx(τxNi( f )−ω0(Ni( f )))

where we used the notation Ni ≡ Ni( f ) which, in view of the remark before, should
not create any confusion. We find, for q,q′ 
= 0,

lim
L
ω0(F

q
L (N1)F

q′
L (N1)) = δq,−q′θ(−q) (6.43)

lim
L
ω0(F

q
L (N2)F

q′
L (N2)) = δq,−q′θ(q) (6.44)

where θ is the well known θ -function (θ(x) = 1 if x ≥ 0, and θ(x) = 0 if x < 0). We
compute as well in the ω0-weak sense (i.e., under the state ω0) the commutators

lim
L

[Fq
L (N1),F

−q′
L (N1)] = −δq,q′ sign(q) (6.45)

lim
L

[Fq
L (N2),F

−q′
L (N2)] = δq,q′ sign(q) (6.46)

Using the full central limit theorem Eq. (6.23), it puts us in a position to give an
operator meaning to the density fluctuations in the thermodynamic limit for any
value of the variable q > 0, namely as fluctuation operators. In particular we get the
fluctuation F−q(N1) = limL→∞F−q

L (N1) and analogously for the other fluctuations
Fq(N1), Fq(N2), F−q(N2).

Using the commutation relations Eq. (6.45) and Eq. (6.46) we compute for any
pair (λ ,μ) of complex numbers

ω̃0(ei{λF−q(N1)+λFq(N1)+μFq(N2)+μF−q(N2)})

= lim
L
ω0(ei{λF−q

L (N1)+λFq
L (N1)+μFq

L (N2)+μF−q
L (N2)}) (6.47)

= e−
1
2 (|λ |2+|μ|2)

where ω̃0 is the macro-state determined by the central limit theorem. This macro-
state is clearly a quasi-free state. It attaches a clear mathematical operator mean-
ing to these fluctuations which are essentially the Fourier transforms of the den-
sity fluctuations. We created in all details the transition from the micro-system
given by the triplet {Ae,ω0,α0

t } to the macro-system {Ãe(q), ω̃0, α̃0
t }, where Ãe(q)

stands for the algebra generated by the central limit q-density fluctuations Eq. (6.38),
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Eq. (6.39). Also, ω̃0 is the state of these fluctuation algebra induced by the micro-
state ω0, and the transposed macro-dynamics α̃0

t is induced by the free particle
micro-dynamics α0

t . We will now compute this dynamics α̃0
t explicitly. Clearly the

result Eq. (6.47) is obtained for each fixed but arbitrary value of the momentum q.
On the basis of the computations Eq. (6.45), Eq. (6.46), it is reasonable to introduce
the following notations: For all q > 0,

α(q) = F−q(N1) ; α(q)∗ = Fq(N1) (6.48)

β (q) = Fq(N2) ; β (q)∗ = F−q(N2) (6.49)

As a consequence of the commutators Eq. (6.45), Eq. (6.46), these macro-operators
satisfy the boson canonical commutation relations

[α(q),α(q′)∗] = [β (q),β (q′)∗] = δq,q′

[α(q),α(q′)] = [β (q),β (q′)] = 0

In these commutator relations we notice the presence of Kronecker δ functions and
not δ -functions. The α(q), β (q) and their adjoints are the creation and annihilation
operators of two boson particles, acting on the GNS-representation space Eq. (7.1)
of the macro-state ω̃0. This state is the boson Fock state as seen in Eq. (6.47). The
transition from the physically relevant micro-fermion system to the macro-boson
system of density fluctuations is completely realized.

We compute now the dynamics of the boson macro-system induced by the free
micro-system dynamics. Let us first compute the following equation within the
micro-system:

δ0(N1(x)) ≡ lim
L

[H0
L ,N1(x)] = i

∂
∂x

N1(x)

and consider the fluctuation of this quantity in the limit f̂ (k)→ 1/
√

2π for any q > 0.
Using the boson creation and annihilation operator notation Eq. (6.48), we obtain the
dynamical operator derivation δ̃0 of the macro-dynamics

δ̃0α∗(q) ≡ lim
L

Fq
L (δ0(N1(x))) = qα∗(q)

Analogously we obtain the relations

δ̃0α(q) = −qα(q) ; δ̃0β (q) = −qβ (q) ; δ̃0α(q)∗ = qα(q)∗ ; δ̃0β (q)∗ = qβ (q)∗

yielding the macroscopic free dynamics α̃0
t = eitδ̃0

α̃0
t (α(q)) = e−iqtα(q) and α̃0

t (β (q)) = e−iqtβ (q) (6.50)

As a consequence of the time invariance of the free micro-state, the macro-state is
also time-invariant and the derivation δ̃0 has a unique Hamiltonian (GNS-)representa-
tion given by δ̃0,q = [H̃0,q , . ] where the Hamiltonian H̃0,q is computed straightfor-
wardly to be
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H̃0,q = q{α∗(q)α(q)+β ∗(q)β (q)} (6.51)

Hence we obtained a full representation of the unperturbed Luttinger micro-system
lifted to the macro-level of the CCR-algebra of density fluctuations. The free micro-
Hamiltonian is lifted to the fluctuation level Hamiltonian. In the literature [75] there
seems to be a bit of a confusion about this point in the sense that these two Hamil-
tonians, namely the micro-Hamiltonian and the macro-Hamiltonian, are set equal to
each other in an operator equality termed the Kronig identity. It is clear that in the
thermodynamic limit this Kronig identity should not be understood as an identity of
operators which are acting on the same Hilbert space. The micro-Hamiltonian acts on
the fermion Hilbert space FFaF , while the macro-Hamiltonian acts on a boson Fock
Hilbert space, which is a completely different affair, a different world. Therefore the
Kronig identity can hardly be considered as an operator identity.

In any case, as a first application of the theory of fluctuations a transition is
created from the fermion ground state free Luttinger micro-subsystem (Ae,α0

t ,ω0),
to the free bosonic macro-system (Ãe,q, α̃0

t , ω̃0) of q-density fluctuations.

Micro/macro-dynamics for the Interacting Luttinger Model

Now we switch on the interaction and look for the macro-dynamics of the density
fluctuations generated by the full micro-dynamics given by the full Hamiltonian
HL = H0

L + H1
L , where the interacting part of the Hamiltonian translates in Fourier

language into

H1
L =

2λ
L ∑p>0

v(p){ρ1,L(−p)ρ2,L(p)+ρ1,L(p)ρ2,L(−p)} (6.52)

Of course it is good to realize that the interaction terms depends only on the particle
densities defined above. It is also important and interesting to notice that the interac-
tion Hamiltonian is bilinear in these densities. The last property makes us consider
the particular relation between the solvability of the system and the form of the in-
teraction as being expressed in the creation and annihilation operators (see Chapter
Eq. (5)). As we did for the free dynamics, we compute the time derivative for the
full dynamics first within the micro-state ω0, namely δ (N1(x)) = limL[HL,N1(x)];
we then transport the result to the density fluctuations algebra using again the central
limit technology. The total microscopic derivation δ = δ0 + δ1 is straightforwardly
computed and, applying the central limit theorems, induces another derivation δ̃ on
the fluctuation CCR-algebra Ae,q>0 which is, because of the bilinear character of the
Hamiltonian in the densities, explicitly obtained to be

δ̃α∗(q) = lim
L

Fq
L ([HL,N1]) = q{α∗(q)+

λ
π

v(q)β (q)}

δ̃ β (q) = lim
L

Fq
L {[HL,N2]) = −q{β (q)+

λ
π

v(q)α(q)∗}
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One notices that the derivation δ̃ leaves the number of degrees of freedom of the
macro-algebra Ãe,q invariant. Again this derivation has a unique Hamiltonian repre-

sentation in the state ω̃0 given by δ̃ = [H̃q, .], where the fluctuations Luttinger Hamil-
tonian H̃q is easily computed using the commutation relations of the α(q) and β (q).

H̃q = q{α∗(q)α(q)+β ∗(q)β (q)}+
λ
π

qv(q){α∗(q)β ∗(q)+α(q)β (q)} (6.53)

This Hamiltonian is bilinear in the fluctuation macro-boson creation and annihila-
tion operators and yields a solvable (see Chapter Eq. (5)) boson system of density-
density interacting fluctuations. The corresponding total macro-dynamics is read-
ily obtained in the boson Fock representation of the state ω̃0 Eq. (6.47) given by
α̃t(A) = eitH̃qAe−itH̃q for any observable A, any element of the macro-algebra of the
density observables Ãe,q.

Now we are interested in the derivation of the ground state of this interacting
macro-system of density fluctuations. We must look for the solutions ω̃ of the ground
state condition

ω̃(X∗[H̃q,X ]) ≥ 0

holding for all density fluctuations X , which are elements of Ãe,q. Note that the
Hamiltonian H̃q is the macro-image of the fully interacting micro-Hamiltonian acting
on the representation space FFaF .

This ground state problem is a solvable problem (see Eq. (5.1)) mainly because
the Hamiltonian Eq. (6.53) is bilinear in the creation and annihilation operators α(q)
and β (q) Eq. (6.48). Solving this problem is merely a repetition of what one finds in
the abundant literature about the Luttinger model as well as in Chapter Eq. (5) about
solvable models. It consists essentially in diagonalizing the Hamiltonian H̃q, an oper-
ation which is performed by means of a boson Bogoliubov canonical transformation
Eq. (7.3) acting on the macro-level Fock space. Acting on the latter space consider
the unitary operator

U = exp{ϕ(q)(α(q)β (q)−α(q)∗β (q)∗)}

where the real function ϕ is the solution of the equation: ∀ p,

tanh 2ϕ(p) = −λ v(p)
π

One checks that the conditions Eq. (6.35) are sufficient for the existence of such a
solution. We obtain the diagonalized Hamiltonian in the form

U∗H̃qU = E(q){α̃∗(q)α̃(q)+ β̃ ∗(q)β̃ (q)}

with α̃(q) = U∗α(q)U and, analogously, β̃ (q) = U∗β (q)U , the new quasi-particle
creation and annihilation boson operators. Expressed in these operators the total
Hamiltonian becomes equal to the sum of two free boson quasi-particles, each of
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these have the same one-particle energy function given by the function E(p). There-
fore the state ω̃ satisfying the ground state conditions is nothing more than the Fock
state for these two boson quasi-particles. This state is related to the ground state
ω̃0 for the non-interacting free Luttinger model by the relation ω̃( .) = ω̃0(U .U∗).
Furthermore we can easily compute the one-quasi-particle energy function

E(q) = |q|
√

1− (
λv(q)
π

)2

This function is called the one-particle spectral function of the collective excitations
or of the relevant quasi-particles of the model. In the physics literature it is also
sometimes called the dispersion relation of the model system.

We obtained the infinite-volume limit version of what is known in the literature as
the exact solution of the Luttinger model. The limit behind this derivation is not one
or other operator limit within the micro-model but something completely different,
namely a central limit result which realizes a macroscopic system basically different
from the original micro-system.

We presented this model also as an example of an explicit construction of the
bosonization of a microscopic non-solvable fermion system. We can understand bet-
ter what we mean by an exact ground state solution for the interacting Luttinger
model. It deals with a rigorous construction of the macro-ground state for the macro-
dynamics of the density fluctuations induced by the non-solvable micro-system. We
do not speak about an exact ground state solution of the Luttinger micro-system.

Without going into the details, the non-solvability of the micro-model is due to
the fact that we cannot find any closed finite set (the set of BBGKW-equations) of
dynamical equations due to the presence of a non-trivial two-body fermion particle
interaction, as explained in Chapter Eq. (5). An approximate procedure, well known
in the physics literature, to bypass this kind of problems is to apply the so-called
random phase approximation [133, 117]. Having applied the ideas and the results
about quantum density fluctuation operators and all that around, however, we have
been able to detect a solvable quasi-free macro-dynamics with a Hamiltonian bilinear
in the density fluctuation creation and annihilation operators. In this sense we can
consider this analysis as a proof that the random phase approximation becomes exact
for the Luttinger model in the infinite-volume limit.

6.4.2 Micro/macro-dynamics and Conservation of Equilibrium

Suppose that we start with the micro-dynamical system given by the triplet (A ,ω ,αt)
with normal fluctuations, the situation discussed in section Eq. (6.2). The quantum
central limit theorems map the dynamical micro-system onto the dynamical macro-
system (W (AL,sa,σω), ω̃ , α̃t) of its quantum fluctuations.

If the micro-state ω happens to be αt -time invariant (ω ·αt = ω for all t ∈ R),
then we have shown already that the macro-state ω̃ is also α̃t-time invariant for the
macro-dynamics, or expressed as a formula, ω̃ · α̃t = ω̃ for all t.

We can ask a less trivial question: Suppose that the micro-state ω is an equilib-
rium state for the micro-dynamics αt—is the macro-state ω̃ also an equilibrium state
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for the macro-dynamics α̃t of the fluctuations? In [63] this question is answered posi-
tively although it is proved in a somewhat more technical sense than what we want to
do here. In other words we do not reproduce all the technical details of the rigorous
mathematical proof in [63]. Nevertheless we find it greatly instructive to get more
details about this property by presenting a formal heuristic derivation of this result.
To be explicit, we choose the EEB criterion Eq. (3.7) as the equilibrium criterion
and assume that the micro-state ω satisfies this criterion for the local Hamiltonians
HV (μ). It follows from Eq. (3.8) that this state is micro-time invariant. As also men-
tioned above, the macro-state ω̃ is macro-time invariant. On the basis of the GNS-
representation theorem (see Eq. (7.1)) for this macro-system, it has a Hamiltonian
H̃(μ) such that for any fluctuation F(A)),

α̃t(F(A)) = F(αtA) = eitH̃(μ)F(A)e−itH̃(μ)

where the macro-Hamiltonian H̃(μ) was defined before by

[H̃(μ),F(A)] = lim
V

F([HV (μ),A])

Using the EEB criterion for the micro-system, we obtain consecutively

β ω̃(F(A)∗[H̃(μ),F(A)]) = lim
V
β ω(FV (A)∗[HV (μ),FV (A)])

≥ lim
V
ω(FV (A)∗FV (A)) ln

ω(FV (A)∗FV (A))
ω(FV (A)FV (A)∗)

= ω̃(F(A)∗F(A)) ln
ω̃(F(A)∗F(A))
ω̃(F(A)F(A)∗)

expressing that the macro-state satisfies also the EEB criterion for the macro-
dynamics at the same inverse temperature and chemical potential. This demonstrates
the announced property.

This result proves the universal result that the notion of equilibrium is preserved
under the operation of coarse graining induced by the central limit theorem. This
statement constitutes a proof of one of the basic assumptions of the phenomenolog-
ical theory of Onsager about small oscillations around equilibrium (see [62, 64] and
references therein).

The preceding result contributes also to the discussion as to whether quantum
systems should be described at the macroscopic level solely by classical observables.
At least this opinion seems to have numerous believers. The fluctuation technology
shows that the macroscopic fluctuation observables behave classically in all ways if
they are constants of the motion. For observables which are not constants of the mo-
tion, this statement is false. In other words, a priori we can only expect that conserved
quantities behave as classical observables. In principle, other macro-observables can
behave as genuine quantum observables, keeping a genuine quantum dynamics. We
have seen that quantum phenomena, like basic non-trivial canonical commutation re-
lations behaviors, are observable at the macroscopic fluctuation level. We have seen
in the Luttinger model analysis that the macro-dynamics is of the quantum mechan-
ical type.
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6.4.3 Micro/macro-dynamics and Linear Response Theory

Within the research area of equilibrium states, a standard well known procedure is to
perturb the system by a gentle perturbation and to study the response of the system
as a function of the perturbation. One learns that the response elucidates most (if not
all) of the properties of the equilibrium state (see for instance [128]).

Technically speaking, we consider a perturbation of a given dynamics by adding a
term to the originally stated Hamiltonian and we consider its perturbed dynamics. We
expand these perturbed dynamics in terms of the perturbation and the unperturbed
dynamics. Many will argue that when the perturbation is small we can limit the study
of the response to the first order term in the perturbation series of the corresponding
Dyson expansion [26]. This describes the essentials of the “linear response theory of
Kubo” [94].

A long-standing debate has been going on about the range of validity of this
linear response theory. The question remains about how to understand from a mi-
croscopic point of view the range of validity of the response theory being linear or
intrinsically nonlinear. We should realize that the linear response actually observed
in macroscopic systems seems to have a significantly greater range of validity, which
goes far beyond the criticism being expressed about it.

We discuss the main result, which can be found in [65] where contours and setups
are sketched, which are sufficient to guarantee the exactness of the linear response
theory.

We assume that:
(i) the micro-dynamics αt is again the limit of the local micro-dynamics αV

t = eitHV ·
e−itHV , where again HV contains only standard finite range interactions
(ii) the micro-state is a state of the form ω = limV ωV with the property that it is
time-translation invariant and ergodic, and that the local states ωV are normal density
matrix states
(iii) ω satisfies the clustering condition Eq. (6.20) for normal fluctuations and the
equilibrium conditions Eq. (3.7) at a fixed inverse temperature β .

From the time invariance of the state ω we obtain a Hamiltonian H and a GNS-
representation of the dynamics in the form αt = eitH ·e−itH . On the basis of the central
limit theorems, we obtain the macro-dynamics α̃t of the fluctuation macro-algebra
observables in the state ω̃ . Its GNS-representation yields again a macro-Hamiltonian
representation H̃ of the form α̃t = eitH̃ · e−itH̃ .

Consider now any local micro-perturbation P∈AL,sa , and consider the following
perturbed dynamics:

αP
t,V ( .) = eit(H+FV (P)) · e−it(H+FV (P))

where FV (P) is the local fluctuation of the given micro-observable P. It is important
to realize at this point that the perturbation is of the fluctuation type. In the physics
literature one usually considers extensive perturbations. At any rate, by a direct com-
putation we can show the following central limit theorem [65]: for all observables A
and P in AL,sa; the perturbed macro-dynamics is of the following simple form:
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α̃P
t (.) = eit(H̃+F(P)) · e−it(H̃+F(P))

acting on the fluctuation macro-algebra in the sense

α̃P
t F(A) = lim

V
F(αP

t,V (A))

and where F(P) is the central limit of FV (P). This proves not only the existence, but
reveals also the explicit form of the perturbed macro-dynamics at the level of the
fluctuations. In particular we prove for each local observable A,

lim
V
ωV

(
αP

t,V FV (A)
)
− ω̃(α̃P

t F(A)) = 0

where ω̃ is the central limit macro-state. A formal check of this result is a straight-
forward exercise. This result is nothing more than the computation yielding the exis-
tence of the complete relaxation function of Kubo [94] lifted to the level of the fluc-
tuations. It is of course important to always keep in mind that instead of the normal
practice (namely dealing with extensive observables as perturbations) we consider
here the fluctuations F(P) as perturbations.

Furthermore, we have assumed that the micro-state ω is an (αt ,β )-equilibrium
state. On the basis of the previous section, also the macro-state ω̃ on the fluctuations
is an equilibrium state. From this we readily derive as an exact result Kubo’s famous
formula of his linear response theory, explicitly given by

d
dt
ω̃(α̃P

t F(A)) = i ω̃ ([F(P), α̃tF(A)])

At this point, it is important to remark that the right hand side of this formula shows
full linearity in the perturbation observable P. Kubo’s formula appears as the trans-
posed formula under the central limit of the microscopic response formula of the
dynamics perturbed by a fluctuation observable. All this describes contours concern-
ing the exactness of Kubo’s linear response theory. Finally as ω̃ is an equilibrium
state, the right hand side of the formula can be expressed in terms of the Duhamel
two-point function [94], which is a common way of proceeding in linear response
theory.

6.4.4 Micro/macro and SSB

Spontaneous symmetry breakdown(SSB) is in general one of the widespread and
basic phenomena accompanying collective phenomena, such as phase transitions in
statistical mechanics or interesting ground states in relativistic field theory. Spon-
taneous symmetry breakdown traces back to the Goldstone Theorem [68]. The ex-
istence or occurrence of SSB is one thing. For boson systems this is extensively
studied in Section Eq. (4.3.2). The study of its properties (i.e., the study of specific
or typical properties of symmetry breaking states) is another thing. In the latter case,
there are several different situations to be considered that yield different characteris-
tic properties. In particular, for instance in the case of short range interactions, it is
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typical that SSB yields a dynamics that maintains the symmetry and shows a gap-
less energy spectrum. This is the situation of the Goldstone theorem [68]. On the
other hand for long-range interactions, SSB breaks the symmetry of the dynamics
and for lattice systems (see below) yields a spectral gap This gap is accompanied by
new system oscillations with a spectral frequency taking a finite value at momentum
k = 0 [132, 89, 36]. However, what seems to be a general feature of spontaneous
symmetry breaking in all cases is that the physics literature predicts the appearance
of a particular particle, called the Goldstone-Nambu boson, which appears necessar-
ily as a consequence of SSB. If SSB disappears also this boson seems to disappear.
At this point, we maintain that the theory of fluctuation operators allows for the ex-
plicit construction of the field canonical coordinates of this Goldstone particle. The
most general results about this feature can be found in [124] and its applications to
boson systems in [125]. We sketch the essentials for quantum spin systems in the
two cases. First, we treat micro-systems with long-range interactions, (in fact, for
quantum spin mean field systems) and afterwards we consider micro-systems with
short range interactions.

Long Range (Mean Field) Interactions

As an example of the long range interaction situation, we discuss the Anderson
version of the strong coupling BCS (Bardeen-Cooper-Schriefer) model in one di-
mension (d = 1). This model is considered to be the prototype Hamiltonian model
explaining the condensation of the Cooper pairs of electrons. These electron pairs
systems behave as a quasi-local subsystem of the complete fermion system. There-
fore it allows for the application of the quantum fluctuation theory. This model is at
the basis of the microscopic interpretations of the phenomenon of superconductivity.
Results similar to the ones given for this model are found in [28, 29, 30] for other
models.

This microscopic model of a BCS-system is again given by the spin algebra of
observables AL = ⊗i(M2)i where M2 is the algebra of 2×2 complex matrices. The
local Hamiltonian HN of the model for finite N is given by

HN = ε
N

∑
i=−N

σ z
i −

1
2N +1

N

∑
i, j=−N

σ+
i σ

−
j ; 0 < ε <

1
2

where σ z,σ± are the usual 2×2-Pauli matrices. The operators σ z stand for the num-
ber operators of the Cooper pairs of particles near the Fermi sea. The operators σ±

are the creation and annihilation operators of these pairs. Because of the mean field
character of the interaction in the thermodynamic limit (N → ∞) the equilibrium
conditions Eq. (3.7) have the following ergodic product state solutions (see [50]):
ωλ = ⊗itrρλ ,i, where the 2× 2-density matrices ρλ ,i = ρλ at each lattice site {i}
with ρλ a solution of the self-consistency equation for this density matrix

ρλ =
e−βhλ

tr e−βhλ
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where
hλ = εσ z −λσ+ −λσ−

This equation is equivalent with the equation for the parameter λ , namely λ =
trρλσ− = ωλ (σ−). The parameter λ is often called the order parameter of the
model. Obviously, σ− is the corresponding order parameter operator.

We should note that λ = trρλσ− is a nonlinear equation for λ whose solutions
determine the operator hλ and therefore the density matrix ρλ and finally the equi-
librium state ωλ . The equation always possesses the solution λ = 0, describing the
so-called normal phase of non-interacting Cooper pairs. For β > βc, where βc is the
solution of the equation thβcε = 2ε , we obtain a solution λ 
= 0, describing the su-
perconducting phase. It is clear that βc is the inverse critical temperature. If λ is a
non-zero solution, then also λ eiϕ is a non-zero solution for all real ϕ . Hence if there
exists one solution λ 
= 0, then we immediately obtain infinitely many solutions.

Clearly the Hamiltonian HN is invariant under the continuous gauge canonical
transformations group G = {γϕ |ϕ ∈ [0,2π]} of the micro-algebra defined by the ac-
tion

γϕ(σ+
i ) = e−iϕσ+

i

The group G is a symmetry group of the Hamiltonian system HN . On the other hand,
for any λ 
= 0 we find for ϕ 
= 0 that

ωλ (γϕ(σ+
i )) = e−iϕωλ (σ+

i ) 
= ωλ (σ+
i ).

This means that the equilibrium conditions Eq. (3.7) produce an infinite number
of solutions, all breaking the symmetry. The gauge group G is spontaneously bro-
ken. We note that the gauge transformations are locally implemented by the gener-

ators of the symmetry given by QN =
N

∑
j=−N

σ z
i for large enough N. In other words,

γϕ(σ+
i ) = e−iϕQNσ+

i eiϕQN or QN is the generator of the symmetry group and σ z is
the symmetry generator density. As all the states ωλ are product states, they satisfy
the scaling condition Eq. (6.20) and all fluctuations are normal. Omitting the locality
index, we consider the local operators

Q =
|λ |2
μ2 σ

z +
ε
μ2 (λσ+ +λσ−)

P =
i
μ

(λσ+ −λσ−)

where μ = (ε2 + |λ |2)1/2. Note that P is essentially the normalized self-adjoint part
of the order-parameter operator, the operator indicating the symmetry breaking of
the states, expressed by

d
dϕ
ωλ (γϕ(P)) 
= 0 and , ωλ (P) = 0
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On the other hand Q is given mainly by the generator of the symmetry σ z plus
a self-adjoint part coming from the normalization to zero, which also means that
ωλ (Q) = 0.

It is a straightforward computation to check (see also [124, 125] for details), that
the fluctuations F(Q) and F(P) Eq. (6.23) form a canonical pair satisfying the boson
commutation relation

[F(Q),F(P)] = i
4|λ |2
μ

(6.54)

a relation which holds as an equation acting on the GNS-representation space for
the fluctuations determined by the state ω̃λ obtained from the central limit theorem
applied to the original micro-system state ωλ .

These two fluctuation operators behave under the macro-dynamical time evo-
lution α̃t Eq. (6.22) as harmonic oscillator (q,p)-coordinates oscillating with a fre-
quency equal to 2μ . This frequency is often called the plasmon frequency of the
system. We recognize the factor 2, attributed to the well-known frequency doubling
in the BCS-model.

One computes as well the variances of the two operators F(P) and F(Q) and
obtain the equalities

ω̃λ (F(Q)2) =
|λ |2
μ2 = ω̃λ (F(P)2)

This expression tells us that these fluctuation coordinates vanish, hence disappear,
if the order parameter λ = 0 vanishes. The operator coordinates F(Q) and F(P)
are non-trivial canonical coordinates of a particle appearing if and only if there is
spontaneous symmetry breakdown. In fact they are the so-called normal coordinates
of the Goldstone-Nambu boson, which show up if and only if SSB occurs.

Short-range Interactions

Results comparable with those in the case of long range interactions can be derived
for systems with short range interactions. The main difference between the two cases
is that, in the short-range interactions case, SSB yields equilibrium states with bad
mixing properties [116, 48]. The correlation functions slowly decrease at infinity;
in general, they are not integrable. Therefore we arrive at a situation comparable to
the one described in the section that discusses abnormal fluctuations. However, in
this case one also encounters the phenomenon that SSB manifests the appearance
of a Goldstone particle. We can also explicitly construct its canonical coordinates.
The details of this construction for more or less arbitrary systems are found in [125],
whereas the results typical for bosons are found in [124].

Here we provide a formal picture of this construction for quantum spin micro-
systems; we are not discussing all mathematical details of the construction. We con-
sider again the prototype spin micro-system (AL,ω ,αt). Let {γs |s} be a strongly
continuous, one-parameter symmetry group of the micro-dynamic system αt , which
is locally generated by the generator, (sometimes also called the charge operator,
especially in high-energy physics), QV = ∑

x∈V
qx , with qx called the local density of
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QV and γs(X) = limV eisQV Xe−iQV for each observable X . Spontaneous symmetry
breaking amounts to finding an equilibrium or ground state ω that breaks the sym-
metry {γs} (see Eq. (4.3.2)). This means that there exists at least one local observable
A ∈ AL,sa such that ω(γs(A)) 
= ω(A) for s 
= 0, while nevertheless αtγs = γsαt . The
last remark expresses the fact that the symmetry of the dynamics is not broken, con-
trary to the long-range interaction case. As before, the observable A is sometimes
called the order parameter operator and its expectation value ω(A) the order param-
eter.

We can easily argue that this property is equivalent to the existence of a complex
number c 
= 0 (we can also show that this constant is time independent) such that

d
ds
ω(γs(A))

∣
∣
∣
∣
s=0

= lim
V
ω([QV ,A]) = c 
= 0

By carrying out a number of trivial steps we can turn this form of the SSB-definition
equation into a commutator relation for fluctuations. Using the space translation in-
variance of the state, we obtain the commutator expression

lim
V

1
V
ω

([

∑
x∈V

(qx −ω(q)), ∑
y∈V

(τyA−ω(A))

])

= c

Now we implement the other consequence of the spontaneous symmetry breaking
[116, 48], namely the fact that SSB for short-range interactions implies bad clus-
tering properties, as discussed before also sometimes called off-diagonal long range
order, for the order parameter operator A. We formalize this property in the follow-
ing particular form: We assume that the lack of clustering can be expressed by the
existence of a strictly positive index δ , a real number such that the limit

0 < lim
V
ω

⎛

⎝ 1

V 1+2δ

(

∑
x∈V

(τxA−ω(A))

)2
⎞

⎠< ∞

exists, is nontrivial, and is finite. This is a simple manner of expressing that the
abnormal fluctuation

Fδ (A) ≡ lim
V

1

V 1/2+δ ∑
x∈V

(τxA−ω(A))

does exist, as seen in Eq. (6.3). We write our commutator expressing, namely the
SSB-property, as follows

lim
V
ω

([
1

V 1/2−δ ∑
x∈V

(qx −ω(q)) ,
1

V 1/2+δ ∑
y∈V

(τyA−ω(A))

])

= c

yielding in the limit the fluctuation commutator expression

ω̃
([

F−δ (q) , Fδ (A)
])

= c.
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If the state ω is the equilibrium micro-state and hence its induced state ω̃ is an
equilibrium state of the fluctuations, we get the operator equation of two fluctuations

[F−δ (q) , Fδ (A)] = c1 .

This is because each equilibrium state is a faithful state (see [26]). In other words,
we obtain the canonical pair (F−δ (q) , Fδ (A)) of the quantum normal coordinates
of a particle. It is not a bare particle, its coordinates are the collective quantities
(F−δ (q),Fδ (A)) of fluctuations. We found the new particle, the Goldstone-Nambu
quasi-particle behind the phenomenon of SBB.

We should note that the property of long-range correlations for the order-parame-
ter operator is the reason for the strict positivity of the parameter δ , and that the
latter one is exactly compensated by a squeezing phenomenon of exactly the same
strength described by the strictly negative index −δ for the fluctuation operator of the
local generator qx of the broken symmetry. This result must be considered as a typi-
cal phenomenon related to spontaneous symmetry breaking versus non-spontaneous
symmetry breaking or versus externally forced breaking of the symmetry. In the case
of SSB, this squeezing phenomenon is sometimes explained by the phrase that the
symmetry is not completely broken, but only partially broken in the sense that the
fluctuations of the generators of the symmetries, which are spontaneously broken,
are softer than normal or are super-normal fluctuations. The property is mathemati-
cally expressed by the formula −1/2 < −δ < 0. This interesting phenomenon was
described long ago in a completely different context for some solvable solid state
models in [4, 157]. More detailed rigorous information about all this is found in
references [124, 125].

SSB and Fluctuations in Continuous Boson Systems

Of course the fluctuation theory is applicable as well if the micro-system is already a
boson system. In the analysis above we describe the crucial role played by the SSB
phenomenon. In Eq. (4.3.2) we proved that SSB is present in boson systems if and
only if there is Bose-Einstein condensation. In the following discussion we consider
only closed homogeneous boson systems with condensation. In that case we have
an equilibrium state with a strictly positive zero-mode condensate density ρ0 > 0
and the gauge symmetry is spontaneously broken. The total particle number operator
QV = NV =

∫
V dxa∗(x)a(x) is the generator of the continuous gauge group. The gen-

erator is the integral of the local density operator n(x) = a∗(x)a(x). From Eq. (4.3.2)
we know that the limit Gibbs states, (i.e., any homogeneous gauge invariant equi-
librium state), which we denoted by ωβ , can be written as an integral over ergodic
symmetry breaking equilibrium states {ωϕβ |ϕ ∈ [0,2π]} in the following form: For
any observable X ,

ωβ (X) =
1

2π

∫ 2π

0
dϕ ωϕβ (X)

We also derived that each of the ergodic states ωϕβ satisfies the property
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lim
V
ωϕβ (

a0√
V

) = lim
V
ωϕβ (

1
V

∫

V
dxa(x)) =

√
ρ0e−iϕ

Without loss of generality, we consider for simplicity the phase ϕ = 0 . The local
order-parameter operator for boson condensation is given by the creation or annihi-
lation operators a∗(x) or a(x). In practice it is always wise to work with a self-adjoint
linear combination of these operators; therefore we use for the local order parame-
ter operator A the linear combinations A = i

2 (a∗(x)−a(x)) or A = 1
2 (a∗(x)+ a(x)).

From our analysis above it follows that the local density operator has a squeezed
number fluctuation operator F−δ (n(x)), while the local order-parameter operator A
has an abnormal fluctuations Fδ (A). The degrees (the values of the corresponding
δ ’s) of squeezing and abnormality depend on the model and on the chosen boundary
conditions. For periodic boundary conditions we find detailed results for the mean
field boson gas and for the Bogoliubov model in [124]. In all cases we obtain the
following commutation relation for the canonical pair of the density and the order-
parameter fluctuation operators:

[F−δ (n),Fδ (A)] = i
√

2ρ0 (6.55)

We finish our discussion on boson systems by making some remarks about what
is called the problem of the quantum phase operator. The belief in the existence of
such an operator occurred in a natural way in the field of coherent radiation, one of
the most exciting inventions of the 20th century. It was at the origin of the masers
and the lasers before they became regular features in daily life. (We think about our
micro-wave ovens.)

Coherent radiation not only produces high intensity photon radiation but it also
radiates all photons in a coherent phase. Characteristic for such coherent states Eq.
(2.22) is that they are typical for quantum phenomena such as that we might find
within Bose-Einstein condensation, superfluidity, and superconductivity. It is impor-
tant to realize that all these phenomena are by now understood as being quantum
collective phenomena, in other words quantum macroscopic effects.

Since the early days of quantum mechanics, physicists tried to look for the gen-
uine quantum variables for these coherent phase phenomena. The quantum mechan-
ics literature informs us about the long history describing the attempts, in particular
those attempts of formulating the quantum phase operator as the canonical dual op-
erator of the number operator N acting on the Fock space level. Unfortunately, none
of these attempts were successful. Indeed all of them suffered from the following
simple mathematical contradiction: Let Θ be any self-adjoint operator, which is the
canonical dual of the boson number operator N both acting on the Fock space. Hence,
we suppose that the operator Θ satisfies the commutator relation [Θ ,N] = i1, with
all the operators acting on the Fock space F. We now take the Fock state expectation
value of this commutation relation, that is, we sandwich this relation left and right
between the Fock vacuum vector ΩF . Because of the vacuum property of this Fock
vector NΩF = 0 we immediately obtain 0 = (ΩF , [Θ ,N]ΩF) = i, which yields of
course a nonsensical contradiction. This shows that the operator Θ as the dual of
the number operator cannot exist as an operator satisfying the commutation relation
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when acting on the Fock space. Of course this simple argument leaves open many
technical gates in order to try to escape this deadlock. So far, however, all candidate
escape routes, or all models trying to give a decent answer to the formulation of
a quantum phase operator within a Fock space formulation, have their own serious
deficiencies. For an extensive literature and discussion about these models and top-
ics we refer to, for example, [40] and references therein. It is fair to say that Fock
space considerations did not yet offer any acceptable formulation for carrying the
presence of the quantum phase operator. Faced with this fact and the knowledge that
the boson Fock space is able to describe only phenomena of zero density of particles,
it is reasonable to conclude that the phenomena of Bose-Einstein condensation, su-
perconductivity or superfluidity also cannot be fully understood solely on the basis
of Fock space considerations, exactly because they are all collective or macroscopic
phenomena. Moreover as pointed out before, it is typical that these effects are always
accompanied by spontaneous symmetry breaking. We note however that we meet all
the prerequisites for having a quantum phase operator in the result obtained within
Eq. (6.55). There, we have obtained a canonical dual pair of macroscopic variables
consisting of F−δ (n), namely the number operator fluctuation and as its dual op-
erator, the order parameter fluctuation operator Fδ (A). Furthermore, both operators
are macro-observables. Therefore the operator Fδ (A) plays perfectly the role of the
quantum phase operator of the problem. We may conclude that this application of
the general fluctuation theory yields a solution for a long standing problem about the
existence of the quantum phase operator and its place in a quantum theory.

Ultimately it is also interesting to point out another property of the number oper-
ator fluctuation on the level of the fluctuations algebra. We check immediately that
the operator F−δ (n) implements the gauge transformations group {γ̃ϕ /ϕ ∈ [0,2π]}
on the macroscopic level in the following sense:

γ̃ϕ(F(A)) = eiϕF−δ (n)F(A)e−iϕF−δ (n)

and
ω̃ϕ1+ϕ2
β ( .) = ω̃ϕ1

β ◦ γ̃ϕ2( .)

acting on any reasonable fluctuation operator. In other words the phase operator is
the generator of the spontaneously broken gauge group mapping each ergodic gauge
breaking state into each other one. That is exactly what we ask a phase operator to
do.

These phase operator remarks are not special only for boson systems. They hold
as well for the BCS-model, a long range interacting model. All these properties fol-
low from the canonical commutation relation Eq. (6.55). Such an analogous equation
is written down for continuous fermions systems, for quantum spin systems in gen-
eral, and so on. In all these situations, if coherence comes around the corner, such
a quantum phase operator might show up on the level of the fluctuations yielding a
solution for this long standing question.
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Appendix

7.1 Dynamical Systems and GNS Construction

There exists a formulation of a dynamical physical system that is particularly suit-
able for the handling of systems with infinitely many degrees of freedom, which is
the case after having taken the thermodynamic limit. It is particularly handy for the
study of the collective phenomena. This formulation is sometimes called the alge-
braic approach to statistical mechanics and field theory. Extensive mathematical and
technical information about this approach can be found in [26]. For a book with a
view focused on the applications in many body systems we refer, as one example, to
[152].

Trying to put in the picture only the main ideas of this theory, which are valuable
in the applications, we present a proper version of the definition of a dynamical
physical system. It is generally valid, it can be a quantum or a classical system. In
this Appendix, we focus on the generalized Hilbert space representation theory of
dynamical systems. It is called the GNS (Gelfand-Naimark-Segal)-construction.

Dynamical Physical System

After a moment of cogitation we should convince ourselves that a dynamical physical
system is essentially given by a triplet of the type (A,E ,(αt)t), where A stands for
the set of relevant observables of the system under consideration, E for the set of
states of the system, and (αt)t for the dynamics of the system. The real t is the time
parameter.

First we discuss the identification of the three physical objects in the triplet and
we find their mathematical characterizations.

We start considering the set of observables A. Keeping in mind, for instance
ordinary quantum mechanics, an observable is a linear operator acting on a Hilbert
space. As examples, we can consider the position operator x and the momentum
operator p. Other observable quantities like angular momentum, energy, and so on,
are again linear operators constructed out of linear combinations of products of the
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position x and the momentum p. We conclude then that it is reasonable to assume
that the general notion of a set, denoted A, of observable quantities should be an
algebra, that is, a linear space endowed with a product rule. A physically measurable
observable should have a real spectrum and therefore there should be on the algebra
a generalized notion of self-adjointness which is linked to the notion of conjugation.
At this general level we speak in mathematics about an involution. An involution
on A is a map, indicated by .*, which maps any observable X ∈ A into another one
denoted by X∗ ∈ A, such that ∀X ,Y ∈ A, ∀λ ∈ C holds (X∗)∗ = X , and (λX)∗ =
λX∗, (XY )∗ = Y ∗X∗ and finally (X +Y )∗ = X∗+Y ∗. We assume that any acceptable
algebra of observables A has such an involution. We will find concrete examples of
involutions of the boson algebra and of the spin system algebra throughout many
chapters in this book.

For our purposes we assume also that the algebra contains a unit element, that is,
an element 1 with the property that 1A = A1 = A for all A ∈ A.

Many times to prove actually a number of items, in particular continuity prop-
erties, it is convenient that the algebra A is a normed algebra with involution,
that is, that there exists also a norm on A, that is, a map ||.|| from A into the
non-negative real numbers such that ∀X ,Y : ||X || > 0 if X 
= 0, ||λX || = |λ | ||X ||,
||X +Y || ≤ ||X ||+ ||Y ||, ||XY || ≤ ||X || ||Y || and ||X∗|| = ||X ||.

If a normed algebra with involution is complete with respect to its norm topology,
we speak of a Banach algebra with involution.

The so-called algebraic approach to statistical mechanics and field theory [26] is
based on the fact that the algebra of observables A is a Banach algebra with involu-
tion. It is usually assumed that it has moreover the C∗-property. This property means
that ||X∗X ||= ||X ||2 for each observable X . Again the latter property makes a number
of mathematical properties and proofs possible, but on the other hand it also limits
the applicability of the notion of algebra of observables to realistic physical systems.
We are not assuming a priory that the algebra of observables has the C∗-property.

We should realize that our definition of algebra of observables is also valid for
classical systems. Of course in the latter case, the algebraic product is commutative.

Next we discuss a number of general properties about the notion of state and the
notion of the set of states E .

Any positive linear normalized functional on the algebra of observables A is
called a state. In particular a state ω assigns to each observable X ∈ A a complex
number ω(X) ∈ C satisfying the following three properties:

(i) the linearity, for λ ,μ ∈ C, and X ,Y ∈ A holds, ω(λX + μY ) = λ ω(X) +
μ ω(Y )

(ii) the positivity, ω(X∗X) ≥ 0 for all X ∈ A

(iii) the normalization, ω(1) = 1.
We should realize immediately that a state has all essential properties of an

expectation-valued map. Therefore it is a natural generalization to the non-commuta-
tive systems of the notion of expectation in probability or in classical mechanical
systems.
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It is nice to remark that for each real λ ∈ [0,1] and for each pair of states ω1,ω2 ∈
E holds that the convex combination ω = λ ω1 +(1−λ )ω2 is again a state of the
system. We therefore conclude that the set of states E is a convex set in this sense.

Starting from an algebra A with an involution and a state ω on the algebra, then
the following general properties hold:

1. For all X ,Y ∈ A : ω(X∗Y ) = ω(Y ∗X)
2. |ω(X∗Y )|2 ≤ ω(X∗X)ω(Y ∗Y )
3. ω(X∗) = ω(X)
4. |ω(X)|2 ≤ ω(X∗X)

As a matter of getting acquainted to the notion of a state, it is good to prove explic-
itly these general properties. The proof of these properties is mainly based on the
simple remark that the state ω defines something which is almost an inner product,
sometimes called a pre-scalar product (., .), defined on the vector space underlying
the algebra A. It is defined by

∀X ,Y ∈ A , (X ,Y ) ≡ ω(X∗Y ) (7.1)

The definition of this pre-scalar product will also be the cornerstone for the GNS-
construction which we discuss later. Properties 1 and 3 follow immediately from the
positivity of the state ω . Properties 2 and 4 are direct consequences of the Schwartz
inequality |(X ,Y )|2 ≤ (X ,X)(Y,Y ).

If the algebra of observables is moreover a Banach algebra with involution, we
also obtain the norm continuity of every state. This means that for each state ω and
for each observable X ∈ A,

|ω(X)| ≤ ||X || (7.2)

Needless to stress here the importance of this property. It means that it is sufficient
to specify the state on a norm dense subset of the set of observables in order to know
the state everywhere on the closure of the set.

Now we proceed to the proof of this continuity property, which goes as follows:
Take any observable X such that X∗X < 1. Then use the fact that the series expan-
sion of the complex function

√
1− z, z ∈ C around the point z = 0 is absolutely

convergent for |z| < 1. Therefore we obtain the norm convergent series expansion
for η = η∗ ∈ A, where η2 = η∗η = 1−X∗X , given by

η =
√

1−X∗X = 1− X∗X
2

+(
1
2
)2 (X∗X)2

2!
− (

1
2
)3 3

2
(X∗X)3

3!
+ ...

The positivity of the state ω yields 0 ≤ ω(η∗η) = ω(η2) = 1−ω(X∗X).
Take now an arbitrary observable X and let X̃ = X

||X ||+ε for an arbitrary real

number ε > 0. Then ||X̃ || ≤ 1 or X̃∗X̃ < 1, hence ω(X̃∗X̃) < 1 or equivalently
ω(X∗X) ≤ (||X ||+ ε)2. Finally let ε tend to zero. We obtain the above continuity
property of the state. This completes the proof of all the mentioned basic properties
of an arbitrary state.

Finally we discuss the dynamics, the third item in the definition of a dynamical
physical system. The notion of a reversible dynamics is mathematically translated
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to that of a ∗-automorphism of the algebra of observables. In boson physics such an
automorphism is generally called a canonical transformation. See also Eq. (7.3). In
words it is essentially a transformation of the creation and annihilation operators into
new ones leaving the canonical commutation relations invariant. For our purpose we
continue using the nomenclature of canonical transformation instead of that of ∗-
automorphism. Mathematically, such a map denoted by τ , is a one-to-one map of A

onto A such that, for all X ,Y ∈A and λ ∈C, respectively τ(XY ) = τ(X)τ(Y ), τ(X +
Y ) = τ(X)+ τ(Y ), τ(λX) = λτ(X), τ(X)∗ = τ(X∗). If A is an algebra with the C∗-
property, we need to add the property ||τ(X)|| = ||X ||.

A reversible process or dynamics is given by a one -parameter group (αt)t∈R of
canonical transformations αt . This means that ∀t,s∈R holds αtαs =αt+s, (αt)−1 =
α−t , α0 = id, αt(1) = 1. Naturally, the parameter t stands for the time variable.

On the other hand an irreversible process or dynamics is described by a one-
parameter semigroup (αt)t∈R+ of linear, positive, unity conserving maps αt of the
algebra of observables A. That is, ∀t,s ∈R

+ holds α0 = id, αtαs = αt+s, αt is linear,
αt(X∗X) ≥ 0, and αt(1) = 1.

We need to understand that the presentation of the dynamics is a generaliza-
tion to general dynamical systems of what is known in quantum mechanics as the
Heisenberg picture of the time evolution. The so-called Schrödinger picture is easily
obtained from this Heisenberg picture after transportation of this dynamics to the
state space E . That goes as follows: Let ω be any state. Define the map α̃t on the
state space, that is, on any element ω by α̃t(ω) = ω ◦αt . This α̃t , mapping E into
itself, is the corresponding Schrödinger evolution. Clearly for this generalized setup
of dynamical system, going from the Heisenberg picture to the Schrödinger picture
is straightforward. The inverse move is a somewhat more delicate operation. We do
not enter here any further details about this problem.

A state ω is called stationary or time invariant if the equality ω ◦αt = ω holds
for all values of the time parameter t.

In this section we continue our discussion with more details about the reversible
dynamics and leave the irreversible ones for the next Section Eq. (7.2).

GNS-Construction

indexGNS-construction A representation of the algebra A on a Hilbert space H is a
morphism π of the algebra into the possibly unbounded linear operators L (H )
defined on a dense domain of H . Hence π : X → π(X) such that π is linear,
commutes with the involution π(X∗) = π(X)∗, and conserves the product rules
π(XY ) = π(X)π(Y ).

Conversely, if we have such a representation π of the algebra on a Hilbert space
H , and we take any normalized vector ξ of H , then the expectation-valued map
ωξ defined by

ωξ (X) = (ξ ,π(X)ξ )

is a state on the algebra determined by the given representation and the given spe-
cific vector ξ . Hence any representation π of the algebra defines (many) states
(expectation-valued maps) on the algebra.
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Now we are interested in the inverse operation. We show how to get a repre-
sentation of an algebra of observables given an arbitrary state on the algebra. The
theorem which illustrates this possibility by explicit construction of this representa-
tion is called the Gelfand-Naimark-Segal, or simply the GNS-construction (see [26]
for much more mathematical details).

This theorem is usually formulated for states on Banach algebras. For Bose sys-
tems this means that we must work with the Weyl-algebra of observables, which
is generated by the unitary Weyl-operators W ( f ), f ∈ S , with S the smooth and
rapidly decreasing complex-valued functions on R

d . The Weyl operators are consid-
ered as acting on the Fock space. The involution coincides of course with taking the
adjoint with respect to the scalar product of the Fock space and the norm coincides
with the usual operator norm. We are ready to formulate the main theorem.

Theorem 7.1. Let A be a Banach algebra with involution and identity and let ω be
any state on it. Then there exists a Hilbert space Hω , a representation πω of A into
the bounded operators B(Hω) on Hω . Also, there exists a (cyclic) vector Ωω such
that:

(a) Hω is generated by the set of vectors {π(X)Ωω |∀X ∈ A}. This property is
expressed by calling the vector Ωω a cyclic vector.

(b) For all X ∈ A,
ω(X) = (ξω ,πω(X)Ωω)

The triplet {πω ,Hω ,Ωω} is called the GNS-representation induced by the state ω .
Moreover if τ is a canonical transformation of A leaving the state invariant (i.e.

ω(τ(X)) =ω(X) for all X), then there exists a unitary operator Uω on Hω such that
(i) the cyclic vector is unitary invariant: UωΩω =Ωω
(ii) the transformation τ is represented in the GNS-representation by the unitary

operator as follows: For each observable X we have πω(τ(X)) = Uωπω(X)U−1
ω

The operator Uω is the unitary operator implementing the canonical transforma-
tion τ in the GNS-representation of the state ω .

Proof. Note first that the triplet presented in the theorem depends heavily on the
given state ω . However for notational convenience the ω-index will be dropped from
the notation and therefore, for the proof of this theorem, we construct the triplet
denoted simply by (H ,π,Ω). Later we come back to a more detailed discussion
about this state dependance together with its physical relevance.

For didactic reasons before treating immediately the general case, we consider
first the case of the state being faithful, that is, a state satisfying the property that, if
ω(X∗X) = 0 holds for any X ∈ A, then X = 0 as well. In this case the state defines
a scalar product on the (underlying) vector space of A as follows: (X ,Y ) = ω(X∗Y )
(see Eq. (7.1)).

We denote by H the Hilbert space obtained as the closure of this vector space
with respect to this scalar product. Because of this definition of the Hilbert space H .

We now define the representation π by π(Y )X = Y X for all X ,Y ∈ A, that is, by
left multiplication. Clearly π(Y ) is densely defined on H and the observables are
represented by bounded operators because
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||π(Y )X ||2 = ω((Y X)∗Y X) = ω(X∗Y ∗Y X) ≤ ||Y ||2ω(X∗X)

The continuity Eq. (7.2) defines the operator π(Y ) everywhere on H . Finally we
define the vector Ω by taking Ω = 1, the unit operator, which implies also that Y =
π(Y )Ω . Note moreover that for all X ,Y,Z ∈ A,

(π(X)π(Y )Ω ,π(Z)Ω) = (π(Y )Ω ,π(X)∗π(Z)Ω)
= ω(Y ∗X∗Z)
= (π(Y )Ω ,π(X∗)π(Z)Ω)

or that π(X∗) = π(X)∗, as well as (Ω ,π(X)Ω) = (1,π(X)1) = ω(X). This proves
the first part, property (a) and (b), of the theorem in the case that the state is faithful.

Now for the hardliners among us, let us relax the condition of faithfulness. Con-
sider the subset J of A given by J = {X ∈ A |ω(X∗X)} = 0.

For all X ∈ J and Y ∈ A,

ω((Y X)∗Y X) ≤ ω(X∗Y ∗Y X) ≤ ||Y ||2ω(X∗X) = 0

by the continuity of the state, and for all X ,Y ∈ J,

ω((X +Y )∗(X +Y )) ≤ 2
√
ω(X∗X)

√
ω(Y ∗Y ) = 0

We conclude that J is a left ideal of A as a vector space. Consider the quotient set
A/J and denote by ηX the rest class with representant X . Define now on A/J the
scalar product (ηX ,ηY ) =ω(X∗Y ) and again by H the closure of A/J for this scalar
product. Define the representation now again by π(Y )ηX = ηY X and the cyclic vector
by Ω = η1. If we repeat the proof above we will obtain the general proof of the first
part of the GNS-theorem. Note also that an easy well-known argument shows the
uniqueness of the triplet (H ,π,Ω) up to unitary equivalence. We leave the proof of
this property as an exercise.

It remains for us to prove the second part of the theorem dealing with the situation
that a state ω is τ-invariant, which is expressed by ω = ω ◦ τ .

We define the operator U on the dense domain {π(X)Ω |X ∈A} of H as follows:
Uπ(X)Ω = π(τ(X))Ω for all X ∈ A. The operator U is a unitary operator because
for all X ,Y ,

(Uπ(X)Ω ,Uπ(Y )Ω) = ω(τ(X∗Y )) = ω(X∗Y ) = (π(X)Ω ,π(Y )Ω)

or U∗U = 1 and as Uπ(τ−1(X))Ω = π(X)Ω , we get U−1 = U∗, the unitarity of the
operator U . Also

π(τ(X))π(Y )Ω = π(τ(Xτ−1(Y )))Ω = Uπ(X)π(τ−1(Y ))Ω = Uπ(X)U∗π(Y )Ω

for all Y and therefore π(τ(X)) = Uπ(X)U∗.
Finally we compute for all X

ω(X) = (Ω ,π(X)Ω) = ω(τ−1(X)) = (Ω ,U∗π(X)Ω) = (UΩ ,π(X)Ω)

Hence UΩ =Ω . This proves the second part of the theorem.
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We should realize that the GNS-construction yields, for any physical system with
reversible dynamics, a Hilbert space presentation of the type they learned about in
their undergraduate quantum mechanics lectures. With good reasons, we should ask
ourselves: What does the GNS-construction add to our knowledge? A partial an-
swer consists in making the observation that the representation space Hω , and there-
fore also the representation πω , can be (and also is in general) completely different
from the Hilbert space H = L2(Rd), the space of square integrable functions, which
is addressed in quantum mechanics books. In particular for boson systems, not all
spaces Hω coincide with the Fock space. We can check that only for a highly special
class of states ω does the GNS-representation space coincide with this Fock space.
This specific kind of question was one of the important topics of the mathematical
physics research in field theory and statistical mechanics, which made a considerable
progress in the 1960s and 1970s (see [26] for example).

Continuing the discussion on the fact that the GNS-representation triplet (H ,π,
Ω) of a state does in general depend greatly on the state, we can add the following:
Even if the algebra A is a Banach algebra (closed for the norm), weak limit elements
of the representant algebra π(A) acting on the Hilbert space H may depend on the
state. A weak limit of a sequence (An)n of elements of the algebra is a limit deter-
mined by limn(Φ ,π(An)Ψ) for any choiceΦ ,Ψ of H . In the applications of physics
many of these limits correspond to the set of highly relevant observable quantities.
Indeed for instance we must realize that thermodynamic limits of local operators
stand for this kind of weak limit. Therefore in the applications the weak closure of
the representees algebra π(A), usually denoted by π(A)

′′
, is an important algebra of

physically relevant observables which is not universal but very much state dependent
and as such very much system dependent.

Also the unitary operator U implementing a canonical transformation in general
depends heavily on the state. Consider for instance reversible dynamics (τt ≡ αt)t

and a stationary state ω . Then the GNS-construction yields for each t ∈ R such a
unitary operator Ut . We obtain a group of unitary operators {Ut |t ∈R} implementing
the dynamics within the representation π . In the case it happens that the map t →Ut

is strongly continuous (∀Ψ in a dense set of H holds limt→0 ||(Ut −1)Ψ ||= 0 ), then
there exists a self-adjoint operator H such that Ut = eitH . The operator H is called
the Hamiltonian of the system in the state ω and again heavily depends in general
on that state. This is, apart from many other physically interesting situations, also
the basis of the notion of generalized “effective Hamiltonian” as it is presented in
Chapter Eq. (5) when dealing with the construction of the boson dynamics.

The GNS-construction Eq. (7.1) is performed for a Banach algebra of observ-
ables with an involution. The Banach property is essential for the continuity prop-
erty yielding the result that all representant operators π(X) are bounded operators on
the representation space H . It is worth considering also the situation of a GNS-
construction allowing for representations by unbounded operators. This version
of the GNS-construction includes the so-called Wightman-Reconstruction-Theorem
[158] in field theory, which is relevant when working with the algebra of observables
given by the polynomials of the boson creation and annihilation operators, which
are unbounded operators on the boson Fock space. The corresponding version of
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the GNS-construction is given by the following setup: Suppose we are given a state
ω by its set of (truncated) correlation functions {cn,m(x,y)(t)|n,m ∈ N, n + m > 0}
with x = (x1, ...,xn)∈R

nd , y = (y1, ...,ym)∈ R
md . We suppose that they satisfy some

regularity conditions such that they are kernels of tempered distributions and satisfy
the necessary positivity conditions for correlation functions of a state on the boson
algebra (see Chapter Eq. (2)). This set defines the state ω by the formula: For all
fi,g j ∈ S

ω(a∗( f1)...a∗( fn)a(g1)...a(gm))(t) =
∫

dxdy
n

∏
i=1

fi(xi)
m

∏
j=1

g j(y j)cn,m(x,y)(t)

Using a proof along the same lines as the proof of Eq. (7.1), modulo all statements
on boundedness, we obtain once again a GNS-triplet (Hω ,πω ,Ωω) with πω a rep-
resentation on the Hilbert space Hω of the boson canonical commutation relations
such that [πω(a( f )),πω(a∗(g))] = ( f ,g) and [πω(a( f )),πω(a(g))] = 0. The opera-
tors πω(a( f )) and πω(a∗(g)) are unbounded operators on Hω .

Even more general, take any set of correlation functions defined on any sym-
plectic space (H,σ) satisfying the necessary positivity conditions for the correlation
functions of a state on the boson algebra of observables. It defines a state on a boson
algebra built on that symplectic space. This algebra is denoted by W (H,σ) as defined
in Eq. (6.9). The proof of the GNS-construction yields again a representation of this
boson algebra on the canonical Hilbert space constructed in Eq. (7.1). In particular
this scheme is the technology which is applied in the theory of quantum fluctuations
as explained in Chapter Eq. (6).

7.2 Dynamical Semigroups

As announced above we also consider, next to the dynamical groups describing re-
versible systems, the dynamical semigroups (αt)t∈R+ , describing irreversible sys-
tems. This subject is a vast, diverse, and a growing topic which is however still very
much in a state of development. Therefore we consider only a special class of these
irreversible dynamics, namely those which are called of the Markovian type and
which are of the form αt = exp(tL), where L is a linear operator densely defined
and acting on and into the algebra of observables. In this situation, the operator L is
called the generator of the dynamics. To keep the mathematics simple and to explain
the relation between the properties of such a dynamic and the structural properties
of its generator L, we start with an operator L which we assume to be bounded with
norm ||L|| = supX∈A ||L(X)|| < ∞ acting on the normed algebra of observables A.

We consider the linear map L which satisfies the following three properties:
(i) unity conserving, L(1) = 0,
(ii) self-adjoint, L(X∗) = L(X)∗ for all observables X and
(iii) dissipative, that is, satisfying for each observable X the inequality

L(X∗X) ≥ X∗L(X)+L(X∗)X (7.3)
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Each map L with these three properties is called a dissipative generator. indexdissi-
pative generator

We are already familiar with the notion of derivation. This is a linear operator L
satisfying the three properties above, in particular also the property Eq. (7.3), supple-
mented with the equality L(X∗X) = X∗L(X)+L(X∗)X instead of the inequality sign.
Of course the best known example of such a derivation is given by the map L = i[H, .],
where H∗ = H is any self-adjoint operator. In this case we get for αt = exp(it[H, . ])
a conservative or reversible dynamic treated in the previous section. Modulo some
mathematical technicalities it is easy to understand that L is a derivation if and only
if the (αt | t ∈ R) form a one-parameter group of *-automorphisms or of canonical
transformations of the algebra of observables ([46] Theorem 14.1).

Again for simplicity of the mathematical argumentation, take as algebra of ob-
servables A, a subalgebra of some B(H ), the set of bounded operators acting on a
Hilbert space H . In this case a minimal knowledge of operator theory (like some
spectral theory), leads already to an easily understandable proof of the following
theorem:

Theorem 7.2. The map L can be exponentiated for all t ≥ 0, that is, the exponential
etL is well defined for all t ≥ 0 and is norm continuous in t. Furthermore the following
properties are equivalent: For all X ∈ A,

1. etL is a positive map for all t ≥ 0; in particular, this means that for all observ-
ables X,

etL(X∗X) ≥ etL(X∗)etL(X) (7.4)

and the semigroup of maps {etL | t ∈ R
+} is called a dissipative dynamics.

2. L is dissipative generator, in particular it satisfies

L(X∗X) ≥ X∗L(X)+L(X∗)X (7.5)

Proof. Because the operator L is supposed to be norm bounded the exponentiation
property, using the series expansion of the exponential function and the norm conver-
gence of this function, the existence of exp(tL) for each t, is immediate. The norm
continuity in t is also immediate.

Furthermore, we find that item 1 implies item 2 by differentiating the first in-
equality with respect to the t-variable at t = 0.

We now consider the inverse implication, that is, item 2 implies item 1.
Let us first prove that etL is a positive map, that is, a mapping of positive operators

into positive operators, for all t ≥ 0. We use the well-known formula etL = limn(1−
tL
n )n. It follows from this expression that it is sufficient to prove that (λ − L)−1 is

positive for all sufficiently large positive λ . Next we consider λ > ||L||. To show
that (λ −L)−1 ≥ 0, it is enough to show that X ≥ 0 whenever X is self-adjoint and
satisfies (λ −L)X ≥ 0. We prove this as follows. Let X = X∗ = X+ −X−, with X±
representing the positive and negative parts of the operator X satisfying X−X+ = 0
and both X± ≥ 0. We now show that X− = 0. From (λ −L)X ≥ 0,

0 ≤ X−(λ −L)(X)X− = −X3
−λ +X−L(X−)X−−X−L(X+)X−



174 7 Appendix

Note that X+ is necessarily of the form X+ = Y 2 for some Y with the properties
Y ∗ = Y, Y X− = 0. Hence from item 2 it follows that X−L(X+)X− ≥ 0. Therefore

λX3
− ≤ X−L(X−)X−

Taking the norm of this inequality yields λ ||X−||3 ≤ ||X−||3||L||. As ||L|| < λ , we
get ||X−||= 0 or X− = 0. This proves the positivity of the exponential map etL for all
t ≥ 0.

We now define the function f (t)

f (t) = etL(X∗X)− etL(X∗)etL(X)

Taking the derivative with respect to t we get

f ′(t) = L(etL(X∗X))−L(etL(X∗))etL(X)− etL(X∗)L(etL(X))

such that

f (t)− etL f (0) =
∫ t

0

d
ds

[e(t−s)L f (s)]ds

= −
∫ t

0
e(t−s)LL f (s)ds+

∫ t

0
e(t−s)L d

ds
f (s)ds

=
∫ t

0
e(t−s)L{L(esL(X∗)esL(X))

−(LesL(X∗))esL(X)− esL(X∗)(LesL(X))}ds

The expression between the large brackets is positive by hypothesis. Moreover e(t−s)L

is positive for 0 ≤ s ≤ t, hence f (t) ≥ etL f (0) = 0. This proves item 1, completing
the proof of the theorem.

This theorem shows that the dynamics αt = exp(tL), t ≥ 0 is well defined as an
irreversible or dissipative dynamics. It is proven to exist if the generator L satisfies
the conditions of the theorem, particularly if the map L is a bounded map. In the
proof the norm topology is used throughout.

For practical applications of this result to boson systems, we should have noted
that the boundedness condition poses an immediate mathematical technical problem.
However as is clear from Chapter Eq. (5), the definition of the reversible as well as the
irreversible dynamics are formulated in terms of the weak operator topologies, that
is, under some given state or for a particular set of states—see Eq. (5.3). It is outside
the scope of this discussion to enter into all the mathematical details of the proofs
about the equivalence between points 1 and 2 of the equivalent theorem working with
unbounded operators in these weak topologies. To get an idea of such proofs in the
case of unbounded operators in the literature, we can refer to [161, 45]. Furthermore,
in Chapter Eq. (5) we find model computations with unbounded operators which are
completely worked out.

In any case if we can apply the theorem and obtain the dynamics αt = exp(tL),
then it is clear that for each observable X we have a dynamical equation of the type
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d Xt

dt
= LXt

for the quantities Xt = αtX . This is again the Heisenberg picture of what is called in
physics the master equation [36]. As in the reversible case, we can as well consider
its Schrödinger picture.

We should stress that the type of dynamics discussed above is a very special
type of dynamical semigroup in the sense that they have not only the property of
positivity but also the mathematical property of complete positivity. We will not dive
into all the details of this stronger notion of positivity. Instead we refer again to
the literature for the most physics-minded results about complete positivity, as well
as for the history of the topic about irreversible dynamics [2, 46]. Earlier work on
the generators of dynamical semigroups and the dissipative evolutions started with
the work of Kossakowski and Ingarden [91, 92, 93, 84]. Basic references are also
[36, 107].

As a last remark about the systems equipped with a dynamic sharing the prop-
erties of this special class of positive mappings, namely those of the type of being
completely positive, they share the interesting property of being dilationable quan-
tum mechanical dynamical system. This means that each such dynamical system,
equipped with such a completely positive dissipative dynamics, can always be em-
bedded into a larger system endowed with a reversible or conservative dynamic.
Moreover the original irreversible dynamics are the restriction to the original smaller
system of the larger reversible system. In other words this mathematical observation
of complete positivity provides us with a good argument of the fact that a completely
positive dynamic is always the restriction to a subsystem of a larger conservative
system. The larger system comes across as a composed system, as the union of the
small system coupled to a rest system. Therefore the latter one is endowed with the
interpretation of being a heat bath for the small system [46, 102].

More information about solvable irreversible dynamics relevant for the applica-
tions in boson systems can also be found in [38, 161].

7.3 Canonical Transformations

In the study of boson systems the notion of canonical transformation has always
played an important role. Also in this monograph it enters the discussion at several
places. Several different types of canonical transformations are used. In order to see
better their differences and their similarities they are brought together in this section.

A canonical transformation of the boson algebra of observables A, acting on
the Fock space representation or on any other of its representations, is a one-to-one
*-algebra morphism of A onto itself leaving the canonical commutation relations
invariant.

Mathematically, this means that a canonical transformation is a map, say τ , of
A → A which has an inverse τ−1, and which is a *-algebra morphism which means
that it has the properties satisfying
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1. linearity: ∀λ ,μ ∈ C and X ,Y ∈ A : τ(λ X +μY ) = λ τ(X)+μ τ(Y )
2. *-invariance : τ(X∗) = τ(X)∗

3. product conserving τ(XY ) = τ(X)τ(Y )

and which leaves the canonical commutation relations invariant, that is, for all f ,g ∈
S ,

[τ(a( f )),τ(a∗(g))] = ( f ,g)1 ; [τ(a( f )),τ(a(g))] = 0 (7.6)

The following types of canonical transformations are explicitly used in this mono-
graph:

1. Let U be any unitary operator acting on a Fock space, or on any other represen-
tation space of a CCR-algebra. Define the map τ on A by τ(X) = UXU∗ as a
*-algebra morphism as defined above. We can easily check that the map τ sat-
isfies Eq. (7.6) and therefore is a canonical transformation. We can say that this
canonical transformation τ is implemented by the unitary operator U .
Immediate examples of this type of canonical transformations are the following:
– Consider the special group of reversible time evolutions Eq. (5.1) {αt |t ∈ R}
of ordinary quantum mechanics. For each real value of the time t and for each
self-adjoint operator H, called a Hamiltonian, we consider the unitary operator
Ut = eitH . Clearly αt(X) = UtXU−t is such a canonical transformation.
– The group of gauge transformations Eq. (2.28) {τλ |λ ∈ [0,2π]}. Consider
any representation of the CCR-algebra for which N =

∫
dxa∗(x)a(x) is the self-

adjoint number operator. Consider the unitary operators for any real λ : Uλ =
eiλN . We compute τλ (a( f )) = Uλa( f )U−λ = e−iλa( f ) and hence each τλ is
again a canonical transformation.

2. Note that the gauge transformations can also be defined directly, without us-
ing the number operator, by τλ (a( f )) = e−iλa( f ) and by extension as *-algebra
morphism to the whole algebra. The number operator is not used in the defini-
tion. The gauge transformations satisfy also Eq. (7.6) and are therefore canonical
transformations for all real λ . This situation occurs when working in represen-
tations in which the number operator cannot be given a meaning. In a more
physical language, this happens for instance in representations of the boson al-
gebra with a cyclic vector carrying an infinity of particles. Such systems might
carry an infinite number of particles but a finite density of particles. This is the
situation typical for equilibrium states of boson systems with a non-zero density
of particles. A similar remark can be made for the reversible time evolutions
with a possible non-existence of a well-defined Hamiltonian. This might again
be the case of thermodynamic limit systems carrying an infinite energy but a
finite energy density.

3. Bose field translations Eq. (2.15).
Let χ be any real linear functional on the test function space S . Define the
boson field transformation τχ(b( f )) = b( f )+ χ( f ) and extend it to the whole
algebra as a *-algebra morphism. It satisfies Eq. (7.6) and is therefore a canonical
transformation.

4. The group of space translations and any of its subgroups.
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Let τx(a( f )) = a( fx), where fx(y) = f (y− x) is the translated function over the
distance x ∈ R

d . Extend the transformations to the whole algebra by means of
the *-algebra morphism properties. All maps {τx |x ∈ R

d} satisfy the criterion
Eq. (7.6) as a consequence of the property that the scalar product is invariant
under the translations, in particular ( fx,gx) = ( f ,g) for all x. All elements of the
group {τx |x ∈ R

d} are canonical transformations.
5. The group of space rotations and any of its subgroups.

Define τR(a( f )) = a( fR) for any R, element of O(d), the group of orthogonal
rotations in d dimensions, hence satisfying the property R+R = 1, and where
fR(x) = f (R−1x). Extend again these maps τR as *-algebra morphisms to the
whole CCR-algebra of observables. As a consequence of the rotation invariance
of the scalar product ( f ,g) = ( fR,gR), all τR satisfy Eq. (7.6) and are therefore
canonical transformations. We obtain a group of canonical transformations iso-
morphic with the rotations group O(d). We can proceed analogously for any of
the subgroups of the full rotation group O(d).

6. Bogoliubov transformations Eq. (2.30).
For each p ∈ R

d consider the *-algebra morphism γp of A defined by

γp(a(p)) ≡ ã(p) = u(p)a(p)− v(p)a∗(−p)

where u,v are real functions on R
d satisfying the properties u(−p) = u(p),

v(−p) = v(p) and u(p)2 − v(p)2 = 1 for each choice of p. We extend the γp

as a *-algebra morphism to the whole algebra generated by the creation and an-
nihilation operators. We check that each γp satisfies the conditions Eq. (7.6) and
hence that all the γp are canonical transformations which are called Bogoliubov
transformations.

7. Condensate canonical transformation Eq. (4.18).
Let U be any unitary operator commuting with all creation and annihilation op-
erators acting on any representation space of the canonical boson commutation
relations. We define the *-algebra morphism η of A by η(a( f )) = U∗a( f ). We
check again that it satisfies Eq. (7.6) and hence that it is a canonical transforma-
tion. This type of canonical transformation can also be seen as a generalization
of special cases considered in the first item (e.g., the gauge transformations de-
fined without the use of the number operator). These canonical transformations
were of great use in our analysis of spontaneous symmetry breaking Eq. (4.3.2).
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39. De Roeck W., Maes C., Netockný K.: H-Theorems from Macroscopic Autonomous
Equations, J. Stat. Phys. 123, 571–584 (2006)

40. Dubin D.A., Hennings M.A., Smith, T.B.: Mathematical Aspects of Weyl Quantization
and Phase, World Scientific Press (Singapore), 2000

41. Dunford N., Schwartz J.T.: Linear operators, Part II, Interscience Publishers, NY-
London, 1963

42. Einstein A.: Quantentheorie des einatomigen idealen gases, Sitzungber. Preuss. 9, 3–14
(1925)

43. Elgart A., Erdös L., Schlein B., Yau H.T.: Gross-Pitaevskii equation as the mean field
limit of weakly coupled bosons, Arch. Rational Mech. Anal. 179, 265–283 (2006)



References 181

44. Esposito R., Pulvirenti M.: From particles to fluids, Contribution to Handbook of Math-
ematical Fluid Dynamics, 3 D. Serre and F. Friedlander Editors, Elsevier (2004)

45. Evans D.E.: Irreducible quantum dynamical semigroups, Commun. Math. Phys. 54,
293–297 (1977)

46. Evans D.E., Lewis J.T.: Dilations of irreversible evolutions in algebraic quantum theory,
Communications of the Dublin Institute for Advanced Studies, Series A (Theoretical
Phyics), No 24 (1977)

47. Fannes M.: The entropy density of quasi-free states for a continuous boson system, Ann.
Inst. Henri Poincaré 28, 187–196 (1978)
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Poincaré 59, 421–444 (1993)
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