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…his way was to carry his mind into his laboratory, and literally to make of his 

alembics and cucurbits instruments of thought… 

C. S. Peirce 

The Fixation of Belief, 1877 
 
 



 

Preface 

Modeling multi-level complex systems is the object of this book. 
Complex systems are assemblies of several subsystems and are characterized 

by emergent behavior resulting by nonlinear interactions among subsystems for 
multiple levels of organization.  

The complexity of numerous systems is rooted in the existence of many levels 
of self-organization corresponding to different time and space scales.  

There is a need to provide general frameworks able to combine several scales 
and reality levels of the complex systems in one coherent and transdisciplinary 
discourse. A challenge for complex systems science and technology is to develop 
mathematical formalisms and modeling methods able to capture complete systems 
dynamics by integration of contribution at several hierarchically organized levels. 
Existing models involve a large number of nonlinear equations, difficult to handle 
analytically or numerically, and to correlate with real systems behavior. Among 
the open questions, we mention the definition of relevant parameters and variables 
to be measured at each scale or level, the study of coupling between different 
levels, the insufficiency of the algorithmic schema for evolvable or autonomous 
systems modeling. 

The proposed modeling tools for multi-scale and multi-level systems are the 
polystochastic models, PSM. These characterize systems coming out when several 
stochastic processes, running at different conditioning levels, are capable to 
interact with each other, resulting in qualitatively new processes and systems.  

Polystochastic models aim to discover and describe new structures and 
behaviors, which cannot be detected by one level approaches and cannot be 
reduced to the summation of several levels contributions.   

The book is divided in 12 chapters. The chapters 1 to 4 delineate the problems 
and the methods. The role of multiple levels of reality for different concepts and 
theories of complexity is highlighted in the first chapter of the book. The relation 
between levels of reality and categories is emphasized. 

Several mathematical methods that have been used in PSM development are 
briefly presented in chapter 2. This refers to “random systems”, “non-Archimedean 
analysis”, and “category theory”. Specific concepts as categorification and 
integrative closure are introduced. Categorical formulation of integrative closure 
offers the general PSM framework which serves as a flexible guideline for the large 
variety of research and multi-level modeling problems presented in the book. 

Chapter 3 introduces the conventional real-field frame for PSM and some 
illustrative examples. Chapter 4 leads into the new PSM methodologies. The 
model categorification method is illustrated. The need of appropriate notions of 
time and probabilities and of new theoretical concepts is emphasized.  
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The chapters 5 to 8 are dedicated to case studies relevant to the sciences of 
nature.  

For this part the levels are usually associated to time scales. Chapters 5 and 6 
elaborate PSM for mixing and transport in single or multi-compartmental systems 
while chapter 7 contains a multi-scale study of dispersion and turbulence. Major 
applications for these chapters range from chemical engineering to pharmacology 
and environment.  

Chapter 8 highlights entropy and entropy production roles for integrative 
closure conceptual framework. Application concerns entropy production for  
multi-scale biosystems. Based on different types of causation, new informationl 
entropy criteria are proposed.  

The next four chapters, 9 to 12, outline the potential of the proposed multi-level 
modeling methods for the domain of system sciences. For this part the levels are 
conceptual knowledge levels or reality levels associated to categories. Chapter 9 
establishes the contact of PSM with formal concept analysis. Applications include 
enumeration of separation flow-sheets, pharmacology, security management for 
information technology, and failure analysis. Diagrammatic reasoning using 
existential graphs is presented in chapter 10. The correlations with pragmatism 
and studies of continuity are emphasized. 

Chapter 11 applied evolvable designs of experiments to pharmaceutical 
pipeline for drug discovery and development, to reliability management systems 
and failure analysis for printed circuits.  

The connection of the presented PSM methodology with some forward-looking 
research directions for autonomous systems has been outlined by Chapter 12. 
Delineated case studies refer to autonomous experimentation, case based 
reasoning, beliefs desires intentions agents, organic and autonomic computing, 
autonomous animats, viable systems modeling, and multi-level modeling for 
informational systems. 

Necessary elements of non-Archimedean functional analysis and category 
theory are presented in appendices. 

The case studies analyzed in the book, represent a source of inspiration for 
emerging technologies in their current transition from adaptive toward evolvable 
and autonomous systems. They joint also recent trends advocating the convergence 
of disciplines and the need for transdisciplinary research for complexity. The  
multi-level modeling is in place at the intersection of sciences of matter as 
chemistry, life sciences, cognitive sciences, engineering and mathematics. 

The PSM methodology presented and developed in this book is successfully 
confronted with an exciting field of major practical interest and a key area for 
future investigations, the multi-level complexity. 
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Chapter 1  
Introduction 

Abstract. A major property of complex systems is their self-structuring in 
multiple conditioning levels with different spatial and temporal scales.  

Multi-scale and multi-level aspects for modern theories and concepts as: 
dissipative structures, auto-catalytic systems, catastrophes, synergetics, fractals, 
artificial life, complex adaptive systems, cybernetics, and biomimetic computation 
are revealed here. 

The topic of multi-level structure of reality and its relation to the study of 
categories is discussed with emphasize on ontology and pragmatism. 

1.1   Multi-level Systems  

1.1.1   Levels and Complexity 

A complex system is described as a structure or a process involving non-linear 
interactions among many parts and levels, which displays emergent properties. 
This means that the aggregate system activity is not derivable from the linear 
summation of the activity of individual components and that novel structure, 
patterns or properties arise, from interactions among parts.  

A survey of the literature indicates that there is no standard definition of a 
complex or emergent system. However features such as hierarchy of levels, 
timescales, emergence, unpredictability, interconnectivity, self-organization, self-
similarity, collective behavior, evolvability are focused in complexity studies 
(Adami 2002, Bar-Yam 1999, Kauffman S. 1995, Mainzer 1996).  

Complexity is supposed to come from non-linearity and from a large number of 
elements with many degrees of freedom and many relationships.  

A key property of complex systems is their self-structuring in conditioning 
levels, each of more or less homogeneous characterization.  

Spatial and temporal scales may be associated to conditioning levels.  
Self-organization will occur when individual independent parts in a complex 

system interact in a jointly cooperative manner that is also individually 
appropriate, such as to generate a new level organization.  
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Complex systems can be studied at different levels of investigation. For 
example we can study an industrial installation at the level of molecules or at the 
level of devices interactions. The number of observation levels is finite. The 
understanding of complexity changes with the domains of application. Some 
surveys consider that the complexity level has not an absolute meaning, and it is 
only a relative notion depending on the level of observation or abstraction. These 
surveys emphasize a facet of complexity as a relative concept which depends both 
on the task at hand and on the tools available to achieve this task.  

For environmental, industrial or pharmacological systems, despite the fact that 
numerous physical or chemical processes are identified as complex, more of the 
conventional ones may be operated in regimes were multi-level complexity 
properties are neglected. For several centuries, physical and chemical sciences 
made great steps by experimenting and constructing simplified single level models 
of complex phenomena, deriving properties from the models, and verifying those 
properties by new experiments. This approach worked because the multi-level 
complexities ignored in that models were not the essential properties of the 
phenomena. It does not work when the multi-level complexity becomes the 
essential characteristic. In an increasing number of cases the multi-level 
complexity is not transient or atypical, but it is an intrinsic property of that 
systems.  

Several examples will clarify these aspects of complexity.  
Consider the moisture dispersion in soil, a first example inspired from 

environmental studies. Taking into account only particle movements in the inter-
particle space of macro pores, simple stochastic process of moisture dispersion 
will result. This model corresponds to the one level approach. More detailed 
studies should be concerned about different levels of the real moisture transport 
process, after macro pores, successive scales of micro pores, restrictions for flow, 
and so on. In more developed environmental studies a two-state conditional 
process valued on the set {“wet”, “dry”}, should be taken into account on daily 
and on seasonal scale. The basic physical phenomenon, the moisture migration in 
soil, arrive to be perceived now as a multi-level complex phenomenon in which 
many interacting processes, at different levels of organization, evolve in a 
randomly changing environment. The evolvable multi-scale fluid dispersion 
ecosystem, self-adapting, self-creating the internal and external restrictions, is the 
object of the PSM studies.  

The next example we will consider is the problem of modeling in industrial 
multi-scale systems (Fraga et al. 2006). Modeling frameworks should incorporate 
evolvability in order to selectively manipulate the models and to incorporate 
details and complexity only in those areas of the models which are critical to 
provide an adequate solution and remove such details and complexity were it is 
not. Thus we can imagine a multi-level modeling and simulation capability within 
which the following hold: 

 
• A model consists of a hierarchy of layers or scales of increasing detail, 

complexity and sophistication, spanning the entire set of length and time scales 
from molecules to business chains  
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•  Each layer or scale contains a model definition and a number of parameters 
• Each layer accepts parameters from below and calculates the parameters 

required by the layer above 
• Evolvability capabilities such as ontology, languages and agents, may be 

incorporated at any point to define and modify the models, parameters and 
solutions 

Such multi-level architecture should have a number of capabilities as for instance: 

• Should be flexible and extensible 
• Should provide a rational and consistent basis for multi-scale models 
• Should incorporate external modules, models, codes and be integrated with 

laboratory and plant systems 
• Should allow to the user to indicate fitness for purpose  
• Should ensure systems evolvability and autonomy in an environment changing 

at an ever-increasing rate 
 
As another example we will consider the drug action in pharmacological systems. 

The pharmacology seeks to develop a global understanding of the interactions 
between individual physiology and drug action. To develop such an understanding 
it is necessary to analyze interactions across and between various scales of 
organization.  

The organisms should be analyzed at the levels of organs, tissues, cells or 
molecules. Drugs are prescribed at the organism level but exert their effect by 
interacting with their target at the molecular level.  

As observed from these illustrative examples, the complexity of systems arises 
not only from the number of its components or levels but rather from the way 
these components are interconnected.  

Non-linear interactions between different levels and scales represent a 
characteristic of complexity. Complex systems differ basically from complicated 
ones. Systems may outline complexity on both structural and on functional level. 
Structural complexity increases with the number of interacting subunits, the 
mutual connectedness among them and the degree of interactions of individual 
subunits. On a functional level, complexity increases with the minimum length of 
the algorithm from which one can retrieve the full behavior of the system. 
Complexity in computing science accommodates a hierarchy of conditioning 
levels depending on the computational time for computer programs or algorithms.  
The conditioning levels are determined by the structure as well as the degree of 
coherent cooperativeness among similar modules of the complex system.  

1.1.2   Related Concepts and Theories  

Since a universally accepted theory of multi-level complexity does not exists, a 
brief comparison with related theories sharing similar objectives with PSM, and 
allowing the study of multi-level systems would be of interest.  

Prigogine (1980, 1989) and his group (“Brussels School”) have shown that 
systems far from equilibrium are able to self-organize in a hierarchical way, in 
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several levels. The equations of dynamics or of thermodynamics are nonlinear and 
drive to bifurcations. Non-linearity proves to be necessary but not sufficient for 
complexity. The emergence of hierarchical levels appears to be one of the 
possibilities. The complex system organizes itself by jumping from an equilibrium 
state with few hierarchical levels to another equilibrium state with more levels. By 
this process the system gets more complex. The resulting structures stable in space 
and time are called “dissipative structures” (Nicolis and Prigogine 1989). Bénard’s 
cells and oscillating chemical reactions have been studied as examples of self-
organizing processes.  

In relation with the above theory, Eigen and Schuster (1979) focused on the 
origin of life, the domain where chemical self-organization in levels and biological 
evolution met. The developed concepts were that of “hypercycle”, an auto-
catalytic cycle of chemical reactions containing other cycles, and of 
“quasispecies”, the fuzzy distribution of genotypes characterizing a population of 
quickly mutating organisms or molecules.  

In the theory of so-called “catastrophes”, Thom studied the mathematics of 
abrupt jumps from a stable steady state to another stable steady state when a 
control parameter is varying (Thom 1975). For a critical value of the control 
parameter, the complex system spontaneously jumps from one equilibrium state to 
another. The process of self-organization by emergence of new levels can be seen 
as a hierarchical catastrophe by which a system jumps into more and more 
hierarchical states. For critical values of control parameters, when a new 
configuration with new levels appears, the system will select it by stochastic 
mechanisms Catastrophe theory proposes classifications of the critical behavior of 
continuous mappings.  

Haken (1983) has studied the processes of self-organization by “synergy”, that 
is by cooperative actions of parts of a system. Results concerning the stability of 
systems with a large number of degrees of freedom corresponding to different 
levels associated to timescales and concerning the replacing of fast varying 
variable by time averages have been pointed in “synergetics” theory. Old 
structures become unstable and break down by changing control parameters. On 
the microscopic level the stable modes of the old states are dominated by unstable 
modes. The main principle in synergetics is the “enslavement principle”. Due to 
small differences in initial conditions caused by natural fluctuations, one mode 
will become the master and enslaves all other modes. As a consequence, just a few 
order parameters are sufficient to describe the complex system. This seems to be 
the case in the presented here approach were one basic level induce the convergent 
behavior of the first, second and third levels.  

In the last decades the term “fractal” coined by Mandelbrot (1982) was 
extensively used to describe the class of objects and phenomena, which display 
scale-invariance and self-similarity for different levels. Fractal identifies structures 
in which increasing magnification reveals increasing detail and the newly revealed 
structure looks the same as what one can observe at lower magnification. It was 
supposed that many structures and features in nature appear as fragmented and 
manifest properties of scaling and self-similarity. Notable examples are trees and 
dendrites, humidity pictures, clouds in a solution, amorphous and porous 
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materials, branched polymers, diffusion-limited aggregates, percolation clusters, 
and glasses.  

General features of the multi-level organized complex stochastic systems with 
memory have been revealed for “self-organizing systems” theory (Kauffman S. 
1995), “stochastic automata” theory ,“cellular automata” (Wolfram 1994), in 
“genetic algorithms” theory (Holland 1996), in “artificial neural network” theory 
(Carpenter and Grossberg 1987) for adaptive resonance theory, in “artificial life” 
theory (Langton 1989, 1990), in “complex adaptive systems”, “second order 
cybernetics” (von Foerster 1981) , “autopoiesis” theories (Maturana and Varela 
1992), and so on. Multi-level aspects of some of the above enumerated concepts 
and theories will be briefly presented in what follows. 

Kauffman S., (1995) has studied how networks of mutually activating or 
inhibiting genes can give rise to the differentiation of organs and tissues during 
embryological development. This led to investigate the properties of multi-level 
Boolean networks of different sizes and degrees of connectedness.  The genetic 
algorithms introduced by Holland (1996) are parallel, computational 
representations of the processes of variation, recombination and selection on the 
basis of fitness that underlay most processes of evolution and adaptation. They 
have been applied to general problem solving, control and optimization tasks, 
inductive learning and the modeling of ecological systems.  

The “artificial life” approach, tries to develop technological systems such as 
computer programs and autonomous robots that exhibit life-like properties as for 
instance, reproduction, swarming, and co-evolution.  Based on cellular automata 
studies, and investigations of self-organized criticality, Langton (1989, 1990) has 
proposed the general thesis that complex systems emerge and maintain on the 
edge of chaos, the narrow domain between frozen constancy and chaotic 
turbulence. The "edge of chaos" idea is a step towards a general definition of 
multi-level complexity.  

Though it shares its subject, the general properties of complex systems across 
traditional disciplinary boundaries, with cybernetics and systems theory, the 
theory of “complex adaptive systems” is distinguished by the extensive use of 
computer simulations as a research tool, and an emphasis on less organized 
systems, such as ecologies or markets. The "second-order cybernetics” is a theory 
developed to describe the observed and observing systems (von Foerster 1981). 
The emphasis on circular, self-referential processes has been continued in 
Maturana and Varela work on autopoietic systems. The “autopoiesis” that is the 
self-production denotes the fact that complex systems produce their own 
components. In that sense they are autonomous or "organizationally closed". For 
them the environment is merely a source of perturbations that need to be 
compensated in order to maintain the system's organization (Maturana and Varela 
1992).  

The “general systems theory” and the study of complex systems in various 
fields of human sciences testify the wide variety of hierarchical organizations 
(Klir 1985, Salthe 1985, Ahl and Allen 1996). It is generally accepted that there is 
a hierarchy of complexity in nature with more or less highly developed levels of 
organization. A self-organization realizing the most effects with a restricted 
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number of different parts was considered as the best one. One of the characteristic 
of the living environment in continuity with ordinary matter is the existence of 
multiple levels of complexity each of which is relatively homogeneous. The level 
of nucleic acids in molecular biology gives rise to the level of protein production, 
which in turn gives rise to that of membrane transport and cytoplasmic organelles 
that, in turn give rise to cells. Cells cooperatively exchange energy and matter 
giving rise to organ structure and so on. The architecture in levels is the principle 
that rules the building of any living systems whatever be its degree of 
organization. This seems to be also valid for numerous non-living complex 
systems having a tendency to spontaneously self-organize in hierarchical manner. 

Challenging for modern science and technology is to build evolvable, 
autonomous or creative structures able to perform cognitive tasks specific to the 
living systems as for instance: data acquisition, transmission, classification and 
recognition, learning and oversight, computing, autonomy in various conditions, 
plasticity and creativity. Molecular biology and neuroscience suggest that 
reversible self-organization in levels, multi-scales for time and space, memory, 
self-adaptability to stochastic conditions, and multi-phase transition may 
characterize physical constructions performing cognitive tasks. Following such 
suggestions from biology “biomimetic” structures have been studied (Cariani 
1989, 2001, Mann 1995). In the transition from small molecules to supra-
molecular substances and materials, organizing processes play a major role. Small 
molecular building blocks with known properties lead, in the case of self-assembly 
processes, to complex aggregates with completely new properties at different 
scales or conditioning levels. On intermediary scale as the nanometer one, multi-
property materials are resulting (catalytic, electronic, electrochemical, 
photochemical and magnetic). Complementing the experimental research for the 
hardware of intelligent structures, progresses in software were also reported.  

The new field of “biologically inspired computing” is situated at the 
intersection of several sciences. Successes have been reported in the fields of data 
communication, control and command, drug discovery, autonomous systems and 
other. This joints recent trends advocating the convergence of four discipline, 
nanoscience, biotechnology, information technology and cognitive science known 
as the NBIC concept (Bainbridge and Roco 2006). This is also close to other 
initiatives such as organic computing (Würtz 2008) autonomic computing 
(Kephart and Chess 2003) natural computing (de Castro 2006), and complex 
systems engineering (Minai et al. 2006). 

1.2   Levels of Reality and Categories 

The topic of multi-level structure of reality and its relation to the study of 
philosophical categories and of mathematical categories is certainly not a new one. 

Leibniz and Kant are among the philosophers of the past that developed a 
categorical system for knowledge organization in multiple levels. 

More close to our time are the endeavors of Peirce (1931-1958, 1966, 1976), 
Whitehead (1978) and Hartmann (1952). Modern versions of the theory of levels 
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of reality were developed by Poli (1998, 2001), Nicolescu (2002), Herre et al. 
(2006), and Brier (2008, 2009). 

Kant derived his categories from the analysis of the logical form of judgments. 
He considered the four universal categories: “quantity”, “quality”, “relation” 

and “modality” and then divided each category in three.  
Peirce proposed a first list of five philosophical categories: “substance”,” 

quality”, “relation”, “representation” and “being”. It should be noted that Peirce 
wrote about his categories over more than thirty years offering a variety of 
explanations and developments. 

Peirce discarded “substance” and “being” from his initial list of categories and 
focused only on “quality”, “relation” and “representation” which he called in his 
technical terms “firstness”, “secondness” and “thirdness” respectively. They are 
structurally anologous to “quality”, “relation” and “modality” of Kant. 

Peirce describes firstness as the mode of being of that which is without 
reference to any subject or object. Secondness is the mode of being of that which 
is itself in referring to a second subject, regardless of any third subject. Thirdness 
is the mode of being of that which is itself in bringing a second and a third subject 
into relation with each other.  

Thirdness brings firstness and secondness into relation with each other, and 
mediates between them. Thirdness is the mode of being of signs, in that signs 
mediate relations between their objects and their interpretants.  

Firstness may be manifested by “quality”, feeling, freedom, or multiplicity. 
Secondness may be manifested by “relation”, action, reaction, causality, reality, 
actuality, or factuality. Thirdness may be manifested by “modality“, 
representation, thought, continuity, order, unity, or generality. Significant is the 
close relationship between continuity and thirdness. 

Whitehead in his study of process and reality proposed a four categorical 
architecture which includes “existence”, “explanation”, “obligation” and 
“ultimate” category (Heather and Rossiter 2009). Whitehead proposed also an 
architecture of eight categories, six of which may constitute two Peircean triads, 
the remaining two being principles for generating more categories. On the 
physical side Whitehead placed “actual entity” for firstness, “prehension” for 
secondness and “nexus” for thirdness. On the abstract side, Whitehead had 
“eternal objects” for firstness, “propositions” for secondness, and “subjective 
forms” for thirdness (Sowa 2000). It should be noted that the potential correlation 
between Whitehead and Peirce’s categories is still object of studies and 
controversies (Guarino 2001). 

To describe different ontological levels of the world’s reality Hartmann (1952) 
considered a hierarchy of four basic ontological levels “material” or inanimate”, 
“biological or animate”, “mind-related or psychological”, and “intelligent or 
spiritual” and emphasized the finite number of sub-levels to be taken into account 
at any basic level of reality.  

Poli advocates the importance of levels or strata in the approaches of formal 
ontologies and distinguishes three ontological strata of the real world: “material”, 
“mental or psychological” and “social” stratum (Poli 2001). These levels of reality 
describe different classes of phenomena and are interdependent for example the 
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social concept of trust depends on social entities which themselves interact in a 
material world. Levels of reality are characterized by the categories they use, and 
those categories imply a certain granularity, so that granularity appears as a 
derived concept. 

The ontological theory of levels considers a hierarchy of items structured on 
different levels of existence with the higher levels emerging from the lower but 
usually not reducible to the latter, as claimed by reductionism. The mental and the 
social strata are founded in the material stratum. This means that the categories 
and entities of the mental and social strata can be reduced to the category of 
material stratum, but only with a loss of information, so the reverse is not possible. 
The relation between different strata is significant. Poli has stressed the need for 
understanding causal and spatiotemporal phenomena formulated within a 
descriptive categorical context for theoretical levels of reality (Poli 2007). 

Nicolescu’s (2002) transdisciplinarity approach is based on three pillars: levels 
of reality, the logic of included middle and complexity. According to the logic of 
the included middle, in every relation involving two separate levels of experience, 
there is a third level that belongs simultaneously to both. Complexity is the 
context in which this level of convergence takes place. 

It should be emphasized that the above considerations refer mainly to 
philosophical categories. An open problem is to highlight the relationship between 
philosophical categories and mathematical categories. Introducing category 
theory, MacLane (1971) borrowed the word category from Kant but its concept is 
different from philosophical concept.  

Resorting to a philosophical categories viewpoint means looking for “what is 
universal”, either in general or in some specific domain. We could recognize here 
the similar claim advanced by mathematical category theory, CT, developed as a 
foundational theory, based on “what is universal in mathematics”. This explains 
the search for structural analogy of categorical architectures in mathematics, 
philosophy and other domains. 

It results from this brief literature presentation that a large number of concepts, 
paradigms and theories have been developed in the study of multi-level 
complexity. These theories are different since the multi-level complexity science 
problems and methods arises from many sources as for instance, nonlinear 
thermodynamics, solid-state physics, connectionist machines, cellular automata, 
artificial intelligence and life, knowledge engineering, cybernetics and systems 
sciences, mathematics and philosophy.  

PSM is proposed as a new modeling tool for multi-level complexity, mainly for 
evolvable and autonomous systems investigation. The complexity will be 
portrayed in PSM studies using concepts such as hierarchy and conditioning 
levels, “real” and “other than real”, that is “non-standard”, time and probability 
algebraic frames, categorification methods and integrative closure. Conventional 
methods, applied in specific ways, joined new ones resulting in a distinct 
methodology devoted to a domain of highest scientific and technological interest, 
the modeling of multi-level systems.  
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Chapter 2  
Methodological Resources 

Abstract. Mathematical tools useful for PSM development as random systems, 
non-Archimedean analysis, and category theory are introduced at informal level. 

Relations between model categorification and categories, the role of closure 
concepts as semantic closure or integrative closure for evolvability studies are 
emphasized.  

The general PSM framework serving as flexible guideline for multi-level 
systems modeling is presented.  

Tetradic architectures are endorsed by arguments from informatics, higher 
category, neurodynamics and semiotics. 

2.1   Random Systems 

One of the main features of complex systems is their randomness. Basic notions 
concerning “random systems”, RS, and their utility for PSM will be presented in 
this section. 

The so-called Markovian dependence characterizes the evolution of systems 
with memory restricted to the last step. Consequently Markovian models describe 
linear systems and cannot describe complex processes characterized by self-
learning, hysteresis, instability to initial conditions and chaotic behaviors. As an 
attempt to treat such complex processes and systems, different extensions of the 
concept of Markovian dependence have been proposed.  

The theory of “random evolutions”, RE, has as objective the study of a 
significant class of RS. In this theory, random means not only stochastic inputs or 
initial conditions, but also random media and stochastic process in the equation of 
state (Hersh 1974, 2003).  

PSM makes use of RE to describe phenomena in which several component 
stochastic process are connected by the control chain describing the random 
evolution of the environment that induces the switching from a component process 
to another. RE describe situation in which a process controls the development of 



12 2   Methodological Resources
 

another processes, the other processes being described as operators (Keepler 
1998). 

This is the situation considered by the PSM in which the control process of 
conditions connects the component stochastic process associated to the operators.  

The discrete control process determines the switching from a component 
process to another. Random evolutions are non-Markovian random systems if they 
need more than one step for memory. The connection between random evolutions, 
products of random matrices and random processes in random environments was 
studied by Cohen (Cohen 1979 a, b).   

Resourceful for PSM development proved to be the “random systems with 
complete connections” RSCC (Iosifescu and Theodorescu 1969, Iosifescu and 
Grigorescu 1990). RSCC are systems formed by pairs of stochastic chain evolving 
in inter-related manner, allowing to model stochastic evolution. One of the two 
chains is Markov, typically with relatively complicated states and transition 
functions, while the other is a “chain of infinite order” with simpler states but non-
Markovian. The later chain is used to infer properties of the more complicated 
Markov chain. The Markov chain includes specification of the system “states” 
while the second refers to “events”. RSCC characterizes non-Markovian processes 
with infinite memory that is processes that have an evolution in which all previous 
states, from starting one, are significant for dynamics. Classical learning models 
introduced from the 50’s have been later presented in the general frame of RSCC 
(Iosifescu and Theodorescu 1969, Norman 1972).  

RSCC may be linked to the more recents “random iterated function systems”, 
RIFS, (Barnsley 1993). These random systems demonstrated their importance in 
the study of fractals. For RIFS, an index process controls which function of the 
indexed family of functions will be operated. The index process is the control 
process from RE the event in RSCC or the conditions process for PSM. The 
family of functions in RIFS corresponds to operators in RE or to the component 
stochastic processes in PSM.  

Another mathematical tool useful for PSM is that of “random dynamical 
systems”, (Arnold 1998, Kifer 1998). PSM makes use of results for stochastic 
differential equations, random difference equations, dynamic systems approach for 
non-linear time series. It should be noted that frames similar to RSCC or to RIFS 
were reformulated several times in the last decades. Comparable mathematical 
objects have been introduced under different names some associated to particular 
additional properties others to notions proven to be similar or nearly equivalent. 
The chains with complete connections, chains of infinite order, learning models, 
RSCC, g-measures (Keane 1972), list-processes, RIFS, uniform martingales or 
random Markov processes, contractive Markov chains, stochastic processes in 
random environments, random product of operators, represents some of the 
theoretical frames and names for more or less similar problems and methods 
(Stenflo 2003). There exist so numerous comparable approaches since these type 
of random systems correspond to the first order cybernetics scheme that of 
adaptive learning, deeply rooted in biosystems behavior. The learning process is a 
feedback based adaptive modification of actions by repeated trials. The iterative 
step-by-step nature is an important feature of all learning processes and models. 
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The deciphering of the classical 1st order cybernetic schemes of learning in the 
existing random systems theories explains their frequent reformulation but also 
may suggest the innovative direction for the pursuit of investigations namely the 
area going beyond learning, adaptivity and 1st order cybernetics, towards 
emergence of novelty, towards evolvable, autonomous or creative multi-level 
systems.  

2.2   Non-Archimedean Analysis 

The non-Archimedean, NA, analysis represents an appropriate mathematical tool 
in the study of systems involving the concepts of multi-level hierarchy, scaling 
and self-similarity (Appendix 1). According to the axiom of Archimedes, for any 
two positive numbers a, b, with a being smaller than b, the continued addition of a, 
to itself, ultimately will yield number which are grater than b. Archimedes' axiom 
affirms the existence of an integer multiple of the smaller of two numbers which 
exceeds the greater. The informal meaning of Archimedes' axiom is that anything 
can be measured by a ruler. 

The last decades has seen the beginning of a unity of methods and approaches 
starting from the hypothesis that in very complex systems, the axiom of 
Archimedes fails more exactly that there exists numbers a and b, having physical 
significance, that contradict this axiom. In such cases, a, is an infinitesimal while b 
is an infinite number. NA mathematics has a long history, going back in modern 
times to Leibniz.  

Several NA constructions have been developed at the end of the 19th century 
(Ehrlich 2006). Despite the success of Cantor in constructing the continuum from 
arithmetical materials, a number of mathematicians of the late 19th and early 20th 
centuries remained opposed, in varying degrees, to the idea of explicating the 
continuum concept entirely in discrete terms. These include Peirce, Veronese, 
Poincaré, and Brouwer. 

Studies of interest for multi-level modeling are the geometry of Veronese 
(1891) and the p-adic number theory due to Hensel (1905).  

In physics, chemistry, engineering as in other domains, the real field R and the 
complex field C play the main roles. But there are a lot of other fields as the p-adic 
field, and the finite fields, their metrics being NA that is satisfying the strong 
triangle inequality instead of the usual triangle inequality. This modified triangle 
inequality causes important deviations from the classical real structure as the fail of 
the axiom of Archimedes. Initially, the NA valued fields have been investigated 
from an algebraic point of view. After 1940 with the introduction of simple 
topological notions in the field of p-adic numbers, the study of NA functional 
analysis begins. Some results of the real functional analysis have been obtained in a 
similar form in the NA area but notable differences are also accounted for instance 
in what concerns integral and differential equations, normed spaces and so on 
(Monna 1970, Narici et al. 1971, van Rooij 1978, Mahler 1981, Schikhof 1984).  

Attempts, to apply NA methods in physics are not recent. The papers of Everett 
and Ulam (1966), van der Blij and Monna (1968), Beltrametti (1971) are 
pioneering papers. More recent works are motivated by advances in the theory of 
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spin glasses (Paladin et al. 1985, De Dominicis 1986, Rammal et al. 1986), 
quantum physics (Freund and Olson 1987, Frampton 1990), complex media 
(Blumen et al. 1986), turbulence, computer architecture, combinatorial 
optimization, parallel computers, and artificial intelligence.  

Elements of NA are encountered in the singular perturbation methods 
(Lightstone and Robinson 1975, Kevorkian and Cole 1981), the fractal theory 
initiated by Mandelbrot (1982) and the automatic differentiation (Berz et al. 1996). 
NA features have been detected and studied in economy (Skala 1975, Blume et. al. 
1991) decision theory (Fishburn and LaValle 1993), classification, optimization 
theory (Charnes et. al. 1992), and cryptography. Relatively independent research is 
the domain of “dyadic analysis” or “Boolean analysis” in information theory 
(Harmuth 1977, Bochmann and Posthoff 1981, Schipp et al. 1990). 

It is from a theorem of Ostrowski that the NA valuations derive their 
significance (van Rooij 1978). According to this theorem each nontrivial valuation 
on the field of the rational numbers Q, is equivalent to the absolute value or to 
some NA valuation. The real and the NA metrics are the only possible metrics on 
Q to obtain a complete number field. This justifies affirmations as "the analysis is 
either Archimedean or non-Archimedean" and the need for closure methods to 
bring together these two types of analysis for practical purposes.  

The NA study was long-time considered as an example of purely academic 
activity performed by specialized groups (Dieudonné 1978). However elements of 
the NA methods have seen a renewed general interest in the last decades, 
especially in mathematical physics (Rammal et al. 1986, Vladimirov et al. 1994, 
Varadarajan 2001).  

Without any doubt, NA methods are promising tools for modeling and 
engineering of multi-level complex systems.  

2.3   Categorical Frames 

2.3.1   Introducing Category Theory 

Elements of mathematical category theory are presented here in an informal way. 
MacLane (1971) monograph is the reference for the formal approach 

(Appendix 2).  
The benefits of category theory, CT, are rooted in the possibility to apply all its 

powerful constructions and methods to the specific problem if this is formulated in 
the categorical frame. There exist strong arguments in favor of utilizing category 
theory as foundation for cognitive sciences and modeling (Goguen 1991, 
MacNamara and Reyes 1994). 

A category can be seen as a diagram that is a graph, where objects are the 
vertices of the graph and morphisms or arrows are the paths in the graphs. CT put 
emphasizes on morphisms that is on processes. CT highlights the relational point 
of view considering that everything can be defined as an arrow between objects 
and actually objects can be defined using only arrows. This is one of the main 
differences between the set theory and CT.Whereas the first focuses on describing 
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objects with inner structure that is separating them into parts and elements, the 
latter characterizes an object by its connections, focusing on the role of the object 
within the net of relationships.   

It is possible to define a category in which the objects are categories and the 
morphisms are mappings between categories. The mappings between categories 
preserving the categorical structures, namely identities and composition, are called 
functors. A functor between two categories maps objects and morphisms of one 
category to objects and morphisms of the other in such a way that morphism 
between two objects is mapped to morphism between the mapped objects. Thus a 
functor appears as the transformation which maintains the framework of the 
involved categories.  

A diagram commutes, if for all paths with equal domain and codomain the 
value of the diagram functors is equal. This expresses the fact that the results of 
compositions are equal. Commutative diagrams represent the categorical 
equivalent of a system of equations in set theory, but are more general in nature. 
Diagrammatic presentations provide a convenient tool to study the passage 
between designs and their implementations. 

There exists a category in which the objects are functors. Natural 
transformations are morphisms between the two functors. They provide a way to 
switch from one mapping of a structure to another in a manner that is 
interchangeable with the two images of any morphism. The naturality allows 
holding functorial implementation together and the knowledge coherence. 

Observe that the focused relationship is that between objects for categories, 
between categories for functors and between functors for natural transformations.  

A change of structure can be modeled as a functor between the two categories 
modeling the structure. Deeper structure transformations can be performed by 
defining natural transformations between functors, which allows a reengineering 
of the model of a system. 

The effectiveness of CT lies in the possibility of universal constructions as for 
instance limits, and colimits. The colimit is a formalization of assembly of objects 
and morphisms. A colimit for a diagram can be thought of as a structure that 
completes the diagram to a minimal commutative diagram containing it. The 
colimit puts everything together. The tool for describing putting together is called 
a cocone. It describes the gluing or fusion. 

The category denoted by Set, has sets as objects and functions between sets as 
morphisms. The category Grp has as objects all the groups and maps all group 
homeomorphisms. The category Man has as objects all smooth manifolds and as 
arrows all smooth that is infinitely differentiable mapping between them.  

In the category Set the colimit corresponds to the least set.  
Limits are the dual notion to colimits, which is the one notion obtained from the 

other by reversing the arrows and interchanging initial and terminal for objects. 
Intuitively a limit extracts the abstraction part. Given a diagram, an element is 
called a limit if there are morphisms from that element to all vertices of the 
diagram, and if for any other element satisfying the same property there is a 
unique morphism from it to the limit. In the category Set the limit corresponds to 
the biggest set. 
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Limit can be seen as an emergent concept summing up in itself the properties of 
its constituents. This allows considering a hierarchy where at any level the objects 
are the limits of objects of the lower level. This may be correlated with the opinion 
that complexity is a relative notion depending on the level of observation. The tool 
to obtain limits is called a cone. 

The coproduct and the product represent the categorical notions corresponding 
to disjoint union and to Cartesian product in the category Set. The coproduct is a 
special type of colimit and the product is a special type of limit. The pushout gives 
composition of objects having the same domain under two morphisms. The 
pushout is a universal property of two morphisms. The coproduct is a universal 
property of any set of objects. 

The pullback gives decomposition of objects having the same image or 
codomain under two morphisms. A Cartesian closed category is one which is 
closed under all kinds of universal constructions for example limits, and colimits.  

To any canonical construction from one type of structures to another, an 
adjunction between the associated categories, will corresponds. Adjoint functors 
are pairs of functors which stand in a particular relationship with one another. A 
functor can be left or right adjoint to another functor that maps in the opposite 
direction. A pair of adjoint functors typically arises from a construction defined by 
a universal property, and it can be seen as a more abstract and powerful view on 
universal properties.  

2.3.2   Higher Dimensional Categories 

The n-categories are high-order generalizations of the notion of category (Leinster 
2004). 

The n-categories algebra overcomes the linear thinking in mathematical 
modeling that is, the trend to limit the operations to those that can be expressed in 
terms of 1-dimensional strings of symbols.  

The multi-level modeling is naturally rooted in the n-categories frames. It is the 
high complexity that imposes to develop higher dimensional modeling. The 
difficulty to study multi-level complexity is correlated to the lack of a higher 
dimensional theory.   

An n-category is the algebraic structure consisting of a collection of objects, a 
collection of morphisms between objects, a collection of  2-morphisms between 
morphisms and so on up to n, with various coherent and practical ways of 
composing these j-morphisms, j<n.  The 0-category is a set, while 1-category is a 
standard category. An n-category consists of 0-cells (objects, types), 1-cells 
(morphisms, processes), 2-cells (morphisms between morphisms, processes of 
processes) and so on, all the way up to n-cells together with composition 
operations. 

As an informal example, we consider the description levels in multi-level 
systems that are naturally associated to specific observation scales and categories 
(Cruz et al. 2006). The representation of information at different resolution levels 
or scales can be approached in terms of n-categories and illustrative n-graphs.  
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An n-graph generalizes the notion of graph that is diagram of arrows. Instead of 
considering only nodes and links, states and transitions, and many information 
networks, we can consider a sequence of nested families of elements, called in this 
context cells.   

Fig. 2.1 illustrates the n-graphs associated to a multiple scale information 
systems.  

The reality level n=0 corresponds to the 0-categories, or 0-graphs. In real 
systems this may be associated to the objects or to areas of interest. They are 
called also 0-cells, or set of nodes. 

The reality level n=1 corresponds to the 1-categories and 1-graphs.  These are 
illustrated by directed graphs including the morphisms that is, relations between 
different objects or areas of interest. The morphisms are 1-cells. They are 
represented here by single arrows: “ → ”. The level n=2 corresponds to the 2-
categories and 2-graphs. These are illustrated by graphs plus the so-called 2-cells 
between paths of same source and target. The 2-cells describe relations between 
relations or in other words modifications of relations.  

The 2-cells are represented here by double arrows:” ⇒“. The reality level n=3 
corresponds to the 3-categories. These are 2-graphs that include 3-cells that is, the 
cells between 2-cells.  

 
 

n=0 (set)

n=1 (1-graph) n=2 (2-graph)

n=3 (3-graph)
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Fig. 2.1 Multiple scales networks and n-graphs 

 
The 3-cells are represented here by triple arrows “ ”. They describe 2-

graphs modification or perturbation and are subjected to conditions of natural 
transformations. More than this level n=3, may be in theory imagined but as 
observed from practical case studies, just a modification of modifications for n=4 
seems to not bring new information (Cruz et al. 2006, Iordache 2010). 
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2.3.3   Models Categorification 

PSM represents an attempt to study the complex systems in which the hierarchy of 
conditioning levels and the stochastic self-adaptability represent the main 
characteristics (Iordache 1987). Concepts as multi-level hierarchy of scales and 
the stochastic evolution with memory, learning and adaptability, corresponding to 
the non-Markovian tools were naturally involved.  

The PSM frame based on real field models, as developed in the monograph 
published in 1987, clarifies the physical mechanisms and makes possible the 
numerical simulation but opens, combinatorial parameter estimation and results 
interpretation problems. Real field detailed models are over-parameterized and in 
some cases it is difficult to obtain practically relevant results without extensive 
experiments and calculations. 

New challenge has been to model the coupling of component stochastic 
processes not only in series but also in parallel, to describe the increasing of 
complexity and the learning and also the processes beyond learning as for instance 
the evolvability and autonomy. The interaction between multiple conditioning 
levels can’t be appropriately studied and proven by experimental devices in which 
causality is restricted to a single level. For such reasons the usefulness of real field 
polystochastic frames appears to be limited for complex systems modeling.  

To reduce the difficulties accumulated in the study of PSM, by conventional 
real field methods, innovative and specific methods were used in more recent 
works.  These are recent developments of stochastic modeling methods in the 
setting of non-Archimedean, NA, functional analysis. Such new methods have 
been applied in chemical engineering and chemistry, environmental science, and 
system engineering (Iordache 1992). More recently, categorification methods start 
to be applied in PSM (Iordache 2009, 2010). 

Mathematical categorification is the process of finding category-theoretic 
analogs of set-theoretic concepts by replacing elements with objects, sets with 
categories, functions with functors and equations between functions by natural 
isomorphisms between functors, which in turn should satisfy certain equations of 
their own, called coherence laws (Crane and Frenkel 1994, Baez and Dolan 1998). 

The term categorification refers roughly to a process in which ordinary 
categories are replaced by higher categories that is n-categories. The transition in 
the direction of increasing n, in systems as that shown in Fig. 2.1 corresponds to 
categorification.  

Decategorification is the reverse process of categorification. Decategorification 
is a systematic process by which isomorphic objects in a category are identified as 
equal.  

The categorification methods apply to theories that add new dimensions that is 
new levels. 

The so-called” other than real” or in other words, “non-standard” fields 
methods have been used as new model categorization steps for the real field 
models and solutions. We will consider “other than real” fields as associated to the 
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higher level categories going beyond real field. The use of such fields allows 
interpretation of the experimental data in multi-level complexity studies. 

The model categorification methods were employed with a meaning inspired 
from mathematics and physics. Model categorification implies that the new 
proposed theory, for instance that for new conditioning levels, should reduce to 
the previous one to which it corresponds when the new theory apply in conditions 
for which the less general theory is known to hold. In this way, the model 
categorification method provides a procedure for checking the reasonability of a 
new theory even before new experiments are made. 

A significant class of model categorizations in the considered here sense is 
based on infinitesimal calculus. The infinitesimals allow describing a 
“perturbation” or “deformation” of the existing models to attain new categorical 
levels (Iordache 1992).  

The model categorification methods come across fundamental concepts as that 
of time and probability. Time is necessary to describe processes whereas 
probability is associated with information and entropy. Time and probabilities are 
related concepts since probability refers to events taking place in time. 

The use of non-standard algebraic frames for time and probability represents 
one of the claims for effectiveness in PSM. For “other than real” modeling 
practice, it happens to be confronted to notions that don’t have conventional real 
field correspondent. Also there are parts of the real field and “other than real” field 
models or theorems that can’t be considered in model categorification so far 
because of the conceptual discrepancies between them. Difficulties are related to 
the absence of developed probability theory or measure theory on “other than real” 
frames, for n-category theory.  

The reformulation of an infinitesimal calculus provided by NA methods does 
not alter the results of the conventional real calculus. The NA approaches clarifies 
the conceptual bases of calculus and doing so opens the way for previously 
unforeseeable developments, but it does not modify the results of conventional 
calculations. A well known example justifying the above assertion is the synthetic 
differential geometry, SDG.  

2.3.4   Synthetic Differential Geometry 

The synthetic differential geometry, SDG, valorizes the concepts of infinitesimal 
quantities and represents a modern validation of Leibniz thinking. As described by 
Leibniz, the infinitesimal is a quantity that is not necessarily equal to zero and 
smaller than any finite quantity.  

SDG is a method of reasoning which has one of its modern roots in algebraic 
geometry (Grothendieck 1971) and the other in category/topos theory. 

A topos is a specific kind of category with some extra properties that make it 
similar to the category of sets (Baez 2006). Noteworthy is the fact that the law of 
the excluded middle don’t hold in a topos. This means, for a property P, that the 
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system can’t be in the situation “either P or not P” as in the usual Boolean, “yes or 
no” logic. 

Kock (2006) monograph contains a formal presentation of SDG. The 
monograph of Goldblatt (1979) studies categories before going on to toposes and 
their relation to logic (Appendix 2). 

According to SDG, an infinitesimal quantity can be taken to be a straight micro 
segment just long enough to have a slope but too short to bend. It is an entity 
possessing location and direction without magnitude, intermediate in nature 
between a point and a Euclidean straight line. As far as time is concerned, it can 
be regarded as a plurality of smoothly overlapping timelets each of which may be 
held to represent a now and over which time is still passing.  In a smooth world 
any interval is indecomposable in the sense that it cannot be split in any way 
whatsoever into two disjoint nonempty parts.  

The SDG provides the conceptual background for development of a 
mathematically based theory of potentiality and tendency. 

In conventional approaches, the life trajectory of actual items is characterized 
by the specific direction that it assumes at any one of its points and by the range of 
possibilities they have. On the other hand linelets and wavelets considered in SDG 
are too small to have either probabilities or directions. Instead, they have 
potentiality and tendency. 

The aim of SDG was to describe the methodological integration that is a 
synthetic reasoning for differential geometry (Kock 2006, Drossos 1987). 

The SDG reasoning deals with space forms in terms of their structures that are 
the basic geometric and conceptual constructions that can be performed on them. 
The SDG constructions are morphisms which constitute the base category in terms 
of which we work, the space forms themselves being objects of it. This category is 
Cartesian closed, since whenever we have two spaces A and B we can define BA, 
the space of all functions from A to B.  

SDG reasoning is based on a category over a natural base topos. Depending on 
the nature of the subject under consideration, the corresponding natural geometric 
form of the objects determines the natural base topos and its logic. The 
methodology of the analytic element wise versus the holistic structural remains the 
same. For example the objects of physics and chemistry have their own geometric 
form and corresponding logic. If the objects of the theory have a constant and 
crisp geometric form we may use classical logic but if the geometric form is 
variable and fuzzy then we have to use a non-classical more flexible logic, for 
example the intuitionist or in other words constructive logic. 

This approach is characteristic for categorical constructivism. According to this 
methodology we are able to store mental representations of external objects; these 
internal objects do not necessarily represent the structure of the real external 
objects but are rather the product of the categorification and conceptualization. 
Therefore the own view onto the world, that is the structuring of reality via the 
perceived objects is primarily a categorical construct of the mind.  
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2.4   Closure 

2.4.1   Semantic Closure 

Closure concepts play a prominent role in systems theory where may be used to 
identify or define the whole system in correlation with its environment and to 
allow the autonomy of the systems. 

Significant is the relation between self-adaptivity, cognitivity, intelligence and 
different notions of closure as encountered in systems theory: closure to efficient 
cause (Rosen 1991), organizational closure (Maturana and Varela 1992), catalytic 
closure (Kauffman S. 1993), semantic closure (Pattee 1995), and operational 
closure (Luhmann 1995). 

These definitions refer to different facets of complexity. 
For example, a system is considered catalitically closed just in case every 

product of the system is also a catalyst in the system (Kauffman S. 1993). 
Closure does not mean that the considered system is not in contact with its 

environment or with other systems. Rather the term closure refers to the closed 
loop which connects the whole structures and the functions of individual, 
elementary entities or levels.  

In a significant investigation of closure applicable to both real and artificial life, 
Pattee pointed out that the complex evolutions, requires a two-level 
complementary description of the material and symbolic aspects of events (Pattee 
1995, 2000). Life involves a semantically closed organization between symbolic 
records and dynamical constraints. Symbols, as discrete functional switching-
states, are seen in all evolvable systems in form of codes, and at the core of all 
neural systems in the form of informational mechanisms that switch behavior. 
Symbolic information as that contained in genotype has no intrinsic meaning 
outside the context of an entire symbol systems as well as the material 
organization that interprets the symbol for a specific function such as construction, 
classification control and communication. Self-reference that has evolvability 
potential is an autonomous closure between the dynamics-physical laws of the 
material aspects and the constraints-syntactic rules of the symbolic aspects of a 
physical organization. Pattee refers to this condition as “semantic closure” or more 
recently as “semiotic closure” (Rocha 2001). Semantic closure requires a separate 
symbolic description (genotype, design, and software) and material embodiment 
(phenotype, machine, and computer). The symbolic description must be capable of 
generating the material embodiment. Finally, the material embodiment must be 
capable of re-generating the symbolic description with the possibility of mutation. 
Cariani (1989, 2001) evaluated the semantic closure principle relation with the 
design of devices with emergent semantic functions. Self-modification and self-
construction of own categories were recognized as important to the symbol-matter 
problem and as a requirement for semantically adaptive devices or evolvable ones. 
Temporal codes and neural pulse codes that use the time patterns of spikes to 
encode information appeared as potential tool for evolvable devices and for brain 
study.  
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Fig. 2.2 illustrates the concept of semantic closure for genetic systems. Two 
levels are considered, the genotype and the phenotype. The genotype initiates the 
dynamics, while the phenotype is developed by genome iterated dynamics. The 
environment determines the stability and reproductive activity of the genome.  

Genotype

Symbolic

Phenotype

Dynamic

 

Fig. 2.2 Semantic closure 

In model categorification terms, the symbolic system is at a higher level 
category relative to the dynamic system. The model for symbols involves “other 
than real”, that is “non-standard” fields.  

2.4.2   Two Levels Modeling 

The transition from one level to multiple level modeling appears to be simple, in 
principle.  

To describe evolution in emergent hierarchical systems, one replaces the 
parameters of the accepted models or theorems for “real” field systems by the 
“non-standard” field counterparts, and one sees at least in some cases meaningful 
general models, and true statements for the emergent complex systems that results. 

Fig. 2.3 shows a two-levels architecture. Notice that the two levels are 
supposed to have different categorical organization. In some cases there appear 
discrepancies and this is the indication of significantly new phenomena.  

In a more general context this is the general problem of closure between the 
experiment and theory in scientific or engineering modeling. One considers as a 
natural approach in science or engineering, to start from phenomena to which one 
may associate formal mathematical frames. Then, the predictions are tested 
empirically. It is a succession of theoretical and testing steps. The evolution back 
and forth between models and testing results, changing things on the one side and 
checking the effect on the other side, forms the basis of science and engineering 
methods. It may be a difference in language, that is in the algebraic frames for 
modeling and testing models and this represent one of the challenges for closure.    
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Fig. 2.3 Two-level models 

The closure between experiment and theory for scientific and engineering 
modeling may appears as the closure of “real” field relative to “other than real” 
fields for models or theorems. The closure request is the need for both types of 
models to have a complete view for emergent complexity.  

One has to make additional modifications and reinterpretations to obtain 
physically and mathematically adequate complete or semantically closed theories.  

Required by closure methodology is an analysis involving both real-valued and 
“other than real” valued functions. This explains the fact that, during the PSM 
study, both the real valued probabilities and “other than real” that is “non-
standard” probabilities continue to be associated. The attention was focused on 
problems not on purity of methods, surely inappropriate to the objective of study, 
the emergence of multi-level complexity. It should be a clear cut between 
mathematical frames for different categories but the natural complexity has neither 
pure real, nor pure “other than real” fabric. Understanding complexity should 
involve, real frames interacting with “other than real” ones, at different levels not 
privileging any one in particular. 

One might ask why to support non-standard or categorification frames in the 
study of complexity. After all there are numerous studies of complexity that make 
use of real field analysis only. The involvement of non-standard and higher 
categories frame in PSM is not motivated by the tendency to construct unusual 
frames that may appears to a certain extent novel and unexpected as theories, but 
is imposed by the PSM objective to understand and built evolvable systems that is 
systems that go beyond the learning and adaptability level and may be evolvable 
and capable to take autonomous and creative control of their environment. The 
semantic advantage of making use of “other than real” frames, of higher 
categories in close relation with real ones is the decisive enhancement for multi-
level system responsiveness, evolvability and autonomy.  

 



24 2   Methodological Resources
 

2.4.3   Integrative Closure 

Integrative closure appeared as the direct consequence of mutual restrictedness or 
exclusiveness of the new levels relative to the previous ones, and of the finite 
number of levels to be considered. Integrative closure approach is not looking for 
an identity between the philosophical and mathematical categorical viewpoints but 
for a structural analogy and a general methodology shared by different domains as 
knowledge organization, ontological problem solving or technological 
developments (Iordache 2010).  

Significant examples of structural analogy, parallelism and recapitulation in the 
field of mathematics and physics have been presented by Piaget and Garcia 
(1989).  

The starting idea for integrative closure was to reconsider the interrelated four 
main ontological levels in the study of nature: “material”, “biological”, “cognitive 
or psychological” and “intelligent or logical” (Hartmann 1952).  

Biological Cognitive

Material Intelligent

 

Fig. 2.4 Integrative closure network 

It was acknowledged that the hierarchical structures cannot serve as general 
models for multi-level knowledge organization. Facing complexity the task of 
knowledge integration remains pertinent. 

Fig. 2.4 shows an actualization of the integrative closure hypothesis as a 
network version of Hartmann’s four levels ontological hierarchy. The traditional 
hierarchical structure is closed and replaced by a network. 

The integrative closure aims to make ends meets, for the four levels or realms, 
emphasizing the hypothetical interconnection between the Hartmann’s material 
and intelligent realms. An artificially or naturally evolvable system is supposed to 
cross the gap between these two levels. 

Observe that a two-level modeling relation between material and intelligent 
realms could accomplish this closure task directly. For integrative closure the 
objective is not to reduce several interconnection steps to two-level interactions, as 
an attempt to achieve closure in the speediest manner. Contrary to these, 
integrative closure looks to the four interactions steps to facilitate the study and to 
take into account the necessary basic ingredients, as followed by the evolvable 
systems existing in nature. 
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Systems analysis may require consideration of several sub-levels for different 
levels of the main structure. Fig. 2.5 shows an integrative closure network with 
sub-levels. For this illustrative example, the biological level is described by four 
sub-levels: genes, cells, organisms denoted here by “org” and populations denoted 
by “pop”. 

The splitting in four sub-levels appears as natural in this illustration. It 
recapitulates the basic splitting of reality in four levels. 

The closure aspect outlined in Fig. 2.4 or Fig. 2.5 represents a source of 
inspiration for emerging technologies in their transition toward evolvable and 
autonomous systems.  

Biological Cognitive

Material Intelligent

Gene

Cell

Pop

Org

 

Fig. 2.5 Integrative closure network with sub-levels 

Fig. 2.6 proposes an extended structural analogy that of the hypothetical 
integrative closure architecture including philosophical categories architectures as 
studied by Kant (“quantity”, “quality”, “relation and “modality”) and Peirce 
(“substance”, “firstness”, “secondness” and “thirdeness”) and to mathematical n-
categories (n=0, 1, 2 and 3). We refer to such general framework as “integrative 
closure hypothesis” (Iordache 2010). 

Fig. 2.6 emphasizes the significance of the relation of inter-dependence 
between the categories and also the hypothetical closure of the gap between the 
lowest level (n=0) and highest levels (n=3).  
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Fig. 2.6 Integrative closure for categories 

Although the diagrams associated to integrative closures show four corners, 
they may be considered in agreement with Peirce’s triadic diagrams since Peirce’s 
objective was the architecture for metaphysics. The fact that Peirce’s diagrams 
don’t include the physics category naturally associated to ‘substance” or 
background, explains the triadic character of such diagrams. 

Adoption of the higher categorical standpoint, suggests extending the 
investigation to four levels or realms.  
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Fig. 2.7 Integrative closure for categories and sub-categories 

 



2.4   Closure 27
 

Analysis may require taking into account of several sub-categories for each 
category of the main structure. For the example shown in Fig. 2.7, the 1-category 
reveals four sub-categories denoted here by 10, 11, 12 and 13. The splitting in four 
sub-categories recapitulates the basic splitting of reality in four categories. 

Support for the four level architectures is offered by different domains. 
A source is in data processing and neurodynamics (Cowan 2000). According to 

Cowan the capacity of short-term memory is limited to the number of four items 
to which attention can be simultaneously directed. There exists a central capacity 
limit of four chunks in short-term explicit memory presumably corresponding to 
the focus of attention. This theory assumes that attention is depending on 
oscillation of cortical potentials. A cortical wave of about 10 Hz is supposed to 
select items from a large short terms store. Other wavelets at a frequency at about 
40 Hz then select one item each. Such considerations don’t exclude to direct 
attention to more than four items or realms but the resulting processes may be 
transient.  

As shown in Fig. 2.6 or Fig. 2.7, the four levels of reality or the four 
philosophical categories have been associated to the corresponding mathematical 
n-categories.  

Implicit support for the four levels or four categories architectures in data 
processing is given by mathematical category theory too (Baez and Dolan 1995, 
Rossiter and Heather 2003). In CT, four levels are required to define morphism as 
unique up to isomorphism. The four levels are the objects, that is, the elements 
within a category, the category comparing the objects, the functors comparing 
categories and the natural transformation comparing the functors. These four 
constituents represent the categorification of the four corresponding elements in 
set theory namely: the elements of sets, the sets, the functions and the equations 
between morphisms (Appendix 2). Four levels seem to be necessary for data 
analysis and interoperability (Rossiter and Heather 2003). Less than four offers 
only local interoperability. More than four may be formally defined but yields no 
benefits for interoperability. The practical consequence of a framework with more 
levels is equivalent to alternatives of the fourth level.  

Apparently complexity of n-categories rises with n dramatically. Baez and 
Dolan (1998) suggested the occurrence of stabilization phenomena as n increases 
(Appendix 2).  

Limiting the study to four levels means to limit the categorical approach to 3-
categories.  

The four levels are associated in increasing order of complexity to 0-category 
that is to sets, to 1-category that is to conventional categories, to 2-categories, and 
then to 3-categories.  

The difficulty to work with mathematical higher categories is that as the 
number of dimensions increases the complexity of the necessary rules to be 
specified increases rapidly. For 1 dimension the rules may be written down on one 
line, and those for 2 dimensions may be expressed in diagrams occupying a page. 
For 4 dimensions the diagrams are so large that they will not fit in any sensibly-
sized book. The 4-category diagram techniques are as yet entirely non-existent. 
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The difficulty of presentation may be considered as a supplementary reason to 
restrict the study to 3-categories, without excluding higher categories in the long 
run if some other ways of approaching the theory became effective.  

For the time being we focus the multi-level investigations to four levels that is, 
to the successive levels of complexity indexed by 0, 1, 2 or 3, and to the 
associated 0-categories, 1-categories, 2-categories and 3-categories (Fig. 2.6).  

The “integrative closure hypothesis” may be correlated to the philosophical 
categorification studies. The relationships between logic and CT appear in several 
directions (Costa-Leite 2007):  

 
• Logical operators can be represented in categories, since objects are 

propositions and morphisms are proofs   
• Logics can be assumed as objects of categories where morphisms are 

translations  
• Methods for combining logics are universal constructions in some categories 

where objects are logics  
 
There are some examples of how category-theoretic concepts can replace logical 
concepts. However, given that logic is the tool allowing understanding concepts 
from philosophical areas, a natural hypothesis is that category theory can also play 
an important role in philosophy. CT is a tool which can be used in philosophical 
theories and itself has an ontological status. Philosophical categorification is the 
philosophical counterpart of categorification introduced in mathematics, but 
replacing logical concepts for categorical concepts, and also set-theoretic notions 
by category-theoretic notions in order to investigate philosophical concepts. 
According to integrative closure hypothesis illustrated by Fig. 2.6 the n-categories, 
n=0,1,2 and 3, may be associated in succession to the study of “quantity”, 
“quality”, “relation” and “modality” for Kant architecture or to the study of 
“substance”, “firstness”, “secondness” and “thirdness” for Peirce architecture.  

Taking into account the evolution during the years of Peirce’s concepts of 
“substance” and “being” we have considered as a first development step the 
tetradic categorical architectures with just four levels of reality: “substance”, 
firstness”, “secondness” and “thirdness”.  This means to develop the Peirce’s 
triadic frames to tetradic ones including the “substance”.  

Lately, the category “being” was no longer considered by Peirce as a category 
but as a concept about categories a kind of “meta-category” (Ika 2002). The prefix 
“meta”, is used to mean “information about”.  

This suggested to study a centered architecture with “being” as a centered 
category surrounded by “substance”, “firstnees”, “secondeness” and “thirdness”.  

Moreover, we may consider “substance” as the beginning and “being” as end of 
the categorification or we may take into consideration the reverse situation (Ika 
2002). In the latter case “substance” will be taken as a centered category 
surrounded by “being”, “firstnees”, “secondeness” and “thirdness”.  
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n=0

n=1 n=2

n=3

Thirdness

Modality
Substance (Peirce)

Quantity (Kant)

Firstness
Quality

Secondness
Relation

Thirdness
Modality

0-category

1-category 2-category

3-categoryBeing

 
Fig. 2.8 Integrative closure for centered categories 

Fig. 2.8 represents a centered variant of Fig. 2.6 in which the Peirce’s fifth 
category of “being” centers the four levels framework.  

This centered architecture suggests the possibility to repeat the initial four 
category analysis in a self-similar manner or to induce a fourfold analysis. This 
still confines the study to a four categorical or sub-categorical frame.  

For applications, the center may be considered as the starting area or as the final 
area of investigations. The switching between the two roles may be considered too. 

Traditionally philosophical categories were not studied in terms of mathematical 
n-CT. Consequently the significance of the hypothetical structural analogy between 
categorical approach in philosophy and mathematics needs more study.  

However, the connection between Kant categories or Peirce categories and 
mathematical category theory can not be interpreted as a coincidence. Inspired by 
Kant, Peirce is acknowledged today as a precursor of higher-dimensional algebra 
and in this way to n-category study. So it would be interesting to re-evaluate 
Peirce’s work categories, in terms of mathematical n-categories. This implicitly 
relates n-categories to pragmatism as formulated by Peirce. What may be called 
categorical pragmatism refers to Peirce’s fundamental concern to discover the 
basic elements or principles essential in the process of inquiry, rather than to just 
formulate a criterion of truth by means of which the results of inquiry are to be 
judged for their truth value. 

It should be emphasized that there exists others attempts to challenge and 
develop the Peirce’s triadic architectures. 

Brier formulated a transdisciplinary theory of information, semiotics, 
consciousness and cultural social communication illustrated by the four fold 
cybersemiotic star (Brier 2008, 2009). Fig. 2.9 shows an integrative closure 
presentation of the Brier’s cybersemiotic star. 

The four legs correspond to the four main areas of knowledge that is: material, 
living, cognitive and social systems. A comparison with the Hartmann’s hierarchy 
would be of interest. 
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The center was associated to “knowing” by semiotic mind. It may be 
considered as a meta-representation of the four fold star. 
 
 

Matter/Energy

Life/Living systems Consciousness/Inner life

Meaning/Language

Knowing

Fig. 2.9 Cybersemiotic star and integrative closure 

An interesting development of triadic Peirce’s approach is the so called tetradic 
sign in semiotics (Klinkenberg 1996).  

A representation of tetradic sign is shown in Fig. 2.10. 
The sign is composed of stimulus, signifier, signified and referent. 
 
 

Stimulus

Signifier
Firstness

Signified
Secondness

Referent
Thirdness

 
Fig. 2.10 Tetradic sign 

Completing the Peirce’s triadic approach, the stimulus is supposed to have a 
formal signification as the signifier, the signified and the referent. 

The main terms that enter into the definition of the tetradic sign are the 
following: the stimulus (the physical signal being used), the signifier (the model, 
of which the stimulus is a manifestation), the signified (the meaning or content of 
the sign), the referent (what we are taking into account when we use a particular 
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sign). The relation between the stimulus and the referent is considered to be not as 
direct as the relation between other terms of the sign. 
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Chapter 3  
Conventional PSM Frames 

Abstract. The polystochastic models, PSMs, are conceptual tools designed to 
analyze and manage multi-level complex systems.  

PSMs characterize systems emerging when several stochastic processes 
occurring at different conditioning levels, interact with each other, resulting in 
qualitatively new processes and systems. The capabilities of random systems with 
complete connections, RSCC are outlined. The real field frame, developed to 
enclose multi-level modeling confronts over-parameterization problems. 

Examples pertaining to the domains of chemical engineering and material 
science include mixing in turbulent flow and diffusion on hierarchical spaces.  

The challenges of different views for the same phenomenon are pointed out. 

3.1   One Conditioning Level Frame  

The first objective for PSM methodology was to describe adaptive stochastic 
systems whose mode of evolution varies according to the rules given by a 
hierarchy of conditioning processes (Iordache 1987).  

Consider that stochastic processes defined on the common space of “states”, s, 
describing the possible evolutions of a particle or of a system. The system 
switches randomly back and forth among the collection of component processes 
defined on the space s. Examples of states are the particle positions or dimensions, 
values of properties as concentration, velocity, energy, number of particles, but 
also probability vectors of different positions and so on. The transition rule among 
different s-valued processes is given by another process defined on “conditions” 
space, k. The usual interpretation is that this is the process of conditions or 
connections in which the controlled process defined on the space of states 
develops. Examples of conditions are for a diffusion process in a disordered 
medium the randomly established scale of dimensions for pores, the scale of time 
for temperature or the humidity condition in which the diffusion takes place. The 
stochastic chaining starts with given states and conditions and applies the 
machinery, for instance probabilities and operators generating new states. This 
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basic model corresponds to the evolution at the so-called first conditioning level 
and has been extensively studied as learning models or RSCC. The range of 
applicability of such models is restricted to tasks and phenomena with sequential 
characteristics.  

The process of states (sn) can be described as follows. Initially the state of the s-
valued process is s0. The process followed is determined by the condition k0 
achieved with probability p (k0| s0). The state of the process (sn) changes from s0 to 
s1 according to the mode of evolution indexed by k0. In the next step the 
conditions process jumps to k1 with probability p (k1| s1). Then, the process (sn), 
describes the evolution from s1to s2 in the condition k1. During the time interval 
(n, n+1) the condition is kn and the evolution from sn to sn+1 is directed by the s-
valued process conditioned by kn. The interaction between the sequences of 
random variables (sn) and (kn) is carried out by stochastic or deterministic rules. In 
the classical examples of RSCC it is considered that the probability of k0 
conditioned on s0 is p (k0| s0) the value of s1 is given by the rule s1= u (s0, k0) 
where u is a deterministic operator. Moreover it is postulated that:  

sn+1=u (sn, kn) (3.1)

The probability distribution of kn , given sn , kn-1,.., s1, k0, s0, depends only on last 
state sn that is:  

                                    P (kn| sn, kn-1, ...., s1, k0, s0)= p (kn| sn)                     (3.2)  

s-states

k-conditions

s0

p (k0⏐s0)

u (k0, s0)

s1 s2

u (k1, s1)

p (k1⏐s1)

k0 k1

 

Fig. 3.1 RSCC model 
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Such a learning model or RSCC is shown in Fig. 3.1 where the conditions 
corresponding to successive steps are placed on the column while the states 
corresponding to the same temporal step n are indicated by lines passing through 
conditions. 

The states are: s0, s1, s2 and so on, the conditions are: k0, k1, k2 and so on. 
The process trajectory is from the state s0 through condition k0 to the state s1, 

then from s1, through condition k1 to the state s2, and so on. 
The frame reduces to an RSCC, that is the quadruple (s, k, u, p). 

s = { sn}; k = { kn}; u (sn , kn)= sn+1, P (kn| sn, kn-1, ...., s1, k0, s0)= p (kn| sn)             

Some variants of RSCC in which the deterministic operator u was replaced by 
conditional probabilities have been also considered (Iosifescu and Grigorescu 
1990).  

Another mathematical formulation in terms of learning models is based on 
RSCC with continuous time (Pruscha 1983). It was observed that in some cases, 
the condition kn is not sufficient to characterize the system evolution. 
Consequently the conditions space k is enlarged to include an indication of the 
waiting time σn. Instead of k, the product space k x L with L = [o,∞) is used. The 

elements of k x L are pairs of the type (kn, σn).  

In this enlarged frame the operator u becomes an application from s x k x L to s 
and p a probability of transition from the states s to k x L.  

Fig. 3.2 shows a continuous time learning model. Consider that the system 
starts from the state s0 ∈ s.  With probability p ((k0, σ0)| s0) the condition is k0 and 

the waiting time is σ0. Consequently the new state is: 

                                                s1 = u (s0, (k0, σ0))                                           (3.3) 

Then with probability p ((k1, σ1)| s1) the pair (k1, σ1) occurs. The new state is: 

                                              s2 = u (s1, ((k1, σ1))                                           (3.4) 

RSCC with continuous time are similar to the continuous time random walks 
useful in the study of disordered media. 
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s-states

(k,σ)-conditions

s0

p ((k0,σ 0)⏐s0)

u ((k0,σ 0), s0)

s1 s2

u ((k1,σ1), s1)
p ((k1,σ 1)⏐s1)

(k0, σ 0) (k1, σ 1)

 

Fig. 3.2 Continuous time RSCC model 

RSCC are closely related to random dynamical systems and implicitly to 
stochastic difference equations as resulting from the following example. 

Consider the linear stochastic differential equation: 

                                              y'(t) = - a y (t)                                                   (3.5) 

Here a, is a random variable. This model describes a linear relaxation process as 
encountered in perfect mixing, with a random mean residence time 1/a. The 
discrete version of equation (3.5) is the random difference equation: 

                                               y(n+1) = k(n) y(n)                                           (3.6) 

Here k(n) = 1-a(n). Denote by p (k (n)) the probability of the condition k (n). The 
process starts from s0=y (0). Then, with probability p (k (0)) the condition k0 = k (0) 
= 1-a (0) appears. Consequently the new state will be s1=y (1) =k (0) y (0), given by 
(3.6). The next step starts from s1=y (1). With probability p (k (1)) the condition k1 = 
k (1) = 1-a (1) appears. Consequently the new state will be s2=y (2) =k (1) s (1), 
given by (3.6) and so on. The associated RSCC has the elements (s, k, u, p):  

           {s(n)}=y; {k(n)}=k; u(s(n), k(n))=k(n)s(n); p(k(n)| s(n))=p(k(n))          (3.7) 

The probability p is independent on states but depends on conditions. This ensures 
the Markovian character of s (n).  

3.2   Multiple Conditioning Levels  

For one conditioning level cases we may associate the states s, to the level m=0 
and the conditions, k, to the level m=1. 
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Suppose that instead of a single conditioning level, m=1, characterized by a 
process defined on the space k1, there are more such levels. In other words, a new 
process defined on a new space of conditions k2 at m=2, may control the transition 
from an s-valued process to another s-valued process. This relies on the fact that 
the condition that practically determines the evolution on s, pertains to a new set 
of conditions k2. The new condition, at the level m=2, may depends on the 
condition established on the first level of conditions m=1. 

Denote by ( k
m
n ) the process defined on k

m where n = 0, 1,… is the time step 

and m = 1, 2,… is the conditioning level. For some models ( k
1
n ) is a process 

having a self-governing evolution ( k
2
n ) is conditioned on ( k

1
n ), while ( k

m
n ) is 

conditioned on ( k
1
n ),…, ( k

1m
n

− ). For given conditioning level m the condition  

that ultimately but not completely governs the s-valued process (sn) is ( m
nk ). The 

order in which various random conditions ( m
nk ) are mutually conditioned 

determines the order in which different processes could appear and finally 

determines the hierarchy of the complex system. Observe that ( m
nk ) is an m-

parameter process or equivalently a process with an m-dimensional time, in the 
sense that at any level a dimension of time corresponds. Here, n denotes the usual 
time whereas m, shows how many intermediary conditioning levels occur in the 
achievement of a given evolution.  

Consider now the more general situation when the space of states s depends on 

the complexity level m. Denote this space by ms . The stochastic process of states 

is in this case denoted bys ( m
ns ). To illustrate the random evolution consider a 

particle or a system starting from the state ( 0
0s ) that is at the moment n=0 from a 

state corresponding to the level m=0 were the new condition will be ( 1
0k ) with 

probability p
1
. On account on the new condition of evolution, the state of the 

system is modified and becomes ( 1
1s ) at the moment n=1 and at the conditioning 

level m=1. To take into account the fact that the occurrence of a new condition at 
the level m=1, effects a change of the previous state, it is necessary to consider 
mappings of the type: 

                                           ) , ( 1
0k

0
0s

1
u

1
1s =                                           (3.8) 
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The new state will be 
1
1s . With probability p3, the condition 3

1k  is selected at  

n=1 at the level m=3. The new resulting state at the moment n=2 and at the level 
m=3 will be: 

                                            ) , ( 3
1k

1
1s

3
u

3
2s =                                          (3.9) 

Modeling as presented above requires extensive parameters estimation. 
This is a difficult task and one of the open problems of this multi-level 

modeling method in the presented real frame. The main difficulty in utilizing such 
real frames was the need to introduce a large number of adjustable parameters. 
Unless the parameters possess a precise physical meaning the multi-level 
modeling becomes an exercise in curve fitting while the important qualitative 
feature of the phenomenon could be lost within the numerical simulation of the 
model. The organization of the knowledge towards the window where the 
phenomena are linear is inappropriate for high complexity multi-level modeling. 

The condition process as shown in Fig. 3.1 and Fig. 3.2 outlined a single 
conditioning level. This limits the applicability of the concept to linear and 
sequential processes. It is physically reasonable to consider a model in which the 
stochastic evolution is governed not only by the k-valued process of  

conditions 1
nkk(n) = , but also by a hierarchy of conditioning processes taking 

place at successive conditioning levels. The condition process at the level m, 
m
nk could be dependent on 1-m

nk , 2-m
nk ,..., 1

nk . 

An example of systems with multiple conditioning levels will be detailed in the 
following. 

Fig. 3.3 shows a PSM frame with multiple levels of conditions. 
Consider for instance a system starting from the state s0 at the level m=0, taking 

the condition 1
0k  at m=1, arriving at s1 according to this condition in the first  

step. Then, at n = 1 the condition could be r
1k  at the level r, with r = 1, 2... 

According to r
1k  the new state of the s-valued process is s2' where 2'=1+2

-r. It was 

considered that at the level r the duration of a step is 2
-r
. In the following step the 

conditioning level m=1 is again reached and the process continues indefinitely. 

The interaction between the sequences of random variables (sn) and m
nk could 

be either stochastic or deterministic. For instance the probability of 
1
0k   
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conditioned on s0 is )sk(p 0
1
0 , the probability of s1 conditioned on s0 and  

on 1
0k is )k,ss(p 1

001  the probability of 
r
1k  conditioned on s1 is )sk(p 1

r
1 and  

so on. 

s-states

s0 s1 s2’

k
1
0

kr
1

)sk(p 0
1
0

)k,ss(p 1
001

)k,ss(p r
112′

)sk(p 1
r
1

m=1

m=r

m=0

k-conditions

 

Fig. 3.3 Example of PSM frame  

In the case shown in Fig. 3.3 during the first step the system goes to higher 
conditioning levels. Decreasing of the conditioning level can appear in some 
complex systems if the probabilities of transition to higher levels are null.  

Observe that on different conditioning levels m, different stochastic processes 
develop and this justifies the term of PSM.           

Examples as that shown in Fig. 3.3 clarify the component processes and their 
interconnections. They offer a preliminary modeling tool for experiments and 
numerical simulations despite the fact that the real field models are over-
parameterized.  

3.3   Illustrative Case Studies 

3.3.1   Mixing in Turbulent Flow 

Examples of phenomena and models that could be studied using the conventional 
real field PSM frame will be presented in the following.  
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a

b

c

 

Fig. 3.4 Mixing process 

Fig. 3.4 illustrates the mixing process. 
The analysis of a flow system consisting of a number of connected 

compartments using Markov chains theory is a classical technique. It is assumed 
that the flow breaks into a number of connected compartments and to every 
compartment a state in the Markov chain is associated. The one-step probabilities 
of transition of the Markov chain depend on the volumes of compartments and of 
the interconnecting flows. The resulting Markovian process describing the time 
evolution of the particles is the classical stochastic model of mixing. Such a two-
compartmental model of mixing is shown in Fig. 3.4 a. The probabilities of 
transitions from one compartment to another are supposed to be constants. If a 
number of different type of particles are introduced in one of the two 
compartments, after a certain time interval a mixing occurs and all type of 
particles will be found in any compartment. It is a very crude, Markovian 
approximation of the real mixing processes.  

In a next more evolved step of modeling the turbulent flow was considered as a 
network of compartments with interconnecting flows that are random variables 
(more arrows on Fig. 3.4 b, every arrow corresponds to a possible value of the 
random interconnecting flow). In this case the mixing model fits to a Markov 
chain in random environments (at every time step the matrix of transition is 
changed according to stochastic rules). The condition k, established at the moment 
n establishes which is the Markov chain followed by particles (Krambeck et al. 
1967, Cohen 1979a, b). This model is known as a controlled stochastic process in 
which a single level of control is accounted for. This model was correlated to 
products of random matrices and to random evolutions. The resulting process is 
more complex since the particle distributions depends of the randomly established 
interconnecting flows. In the above described models it is assumed that the 
number of compartments is constant and that the changes of flow proceed at fixed 
time intervals. The mixing condition is established on a single scale of time. This 
is restrictive since in turbulence a hierarchy of widely separated scales of motion 
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is exhibited. The scales corresponds to smaller and smaller compartments 
resulting by breaking existing ones in order to accommodate the turbulent energy. 
The model describing the mixing in a self-similar structured environment is still 
too simple as compared to the turbulent flow complexity. It would be necessary to 
take into account that the breaking process as well as the reverse process of 
coalescence of some compartments could continues during the mixing process 
(Fig. 3.4 c). To give an example, consider a system containing a unique 
compartment. The situation is formally associated to the level m = 0 of 
conditioning. The compartment splits into a number z of smaller compartments. 

This corresponds to the level m = 1 of conditioning. At the level m, z
m
 

compartments results. In this case the condition governing the process at the time 

n and at the conditioning level m is denoted by m
nk . It includes information 

concerning the level of compartments splitting as well as on the randomly 
established interconnecting flows. In this case, the number of breaking levels 
gives the index m. At every breaking some changes in the material and energy 
distribution among compartments are possible. At any level m in the hierarchy of 
compartments a process of diffusion or of coalescence-dispersion happens. In  
this case the condition gives the level m and the pair (e,k) of compartments  
that suffers a coalescence-dispersion process. Consequently it is considered 

that: ))k,e(;m(m
nk = . The space s

m
 could be represented for instance by  

vectors of the type )p,...,p,p()n(p m
1mz

m
1

m
0

m
−=  where ),n(pm

i  is the  

probability that a particle is in the compartment i at the level m at the moment n. 

The model outlines a set of ”state” processes ))n(p(s mm =  and a set of 

“condition” processes )(kmk m
n= . The mixing process in the complex system 

shown in Fig. 3.4 c starts with two cells from the state characterized by the 

probability vector ( 0
0p , 0

1p ) and due to a breaking of each cell the new  

state is: ))0(p),0(p),0(p),0(p( 1
3

1
2

1
1

1
0 An evolution step during n' determines a  

transition to the state: ))n(p),n(p),n(p),n(p( 1
3

1
2

1
1

1
0 ′′′′ . If a new breaking, at  

m = 2, happens, the state will be ))n(p),...,n(p),n(p),n(p( 2
7

2
2

2
1

2
0 ′′′′ . A new 

evolution step at level m during n"-n' determines the transition to: 

))n(p),...,n(p),n(p),n(p( 2
7

2
2

2
1

2
0 ′′′′′′′′ . The time step (n"-n') could be for instance  

2
-m

. The mixing process takes place at random at a level or another. This type of 
situation is encountered in the case of imperfect mixing of flows.  

The PSM able to describe evolution on more temporal scales should replace the 
time and the residence time distribution, RTD, by elements of a non-standard 
frame.  
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The shifting from breaking to coalescing processes could be formally modeled 
by “non-standard” frames for time, for the same generic mixing model. 

3.3.2   Diffusion on a Hierarchical Space 

Diffusion in homogeneous spaces is well studied in physical and in engineering 
sciences. The classical diffusion model describes the corresponding Markovian 
stochastic process. Recently much interest has centered on diffusion in non-
homogeneous disordered media outlining a hierarchy of timescales. To illustrate 
the peculiarities of such processes, consider the stochastic dynamics of a complex 
system with a countable space of states, which evolves in time by fluctuation from 
state to state. The states are the particle positions, the possible energies, and so on. 
In numerous cases a hierarchy of positions or energies may happen. The transitions 
between states are thermally activated with probabilities determined by the free 
energy barriers separating the states (Ogielski and Stein 1985, Paladin et al. 1985). 
It is expected that such complex systems will be naturally described by PSM. 

The applications of the diffusion in hierarchical spaces are numerous ranging 
from hydro-geology, oil industry, chromatography, membrane science, to 
pharmacology. 

Consider that the diffusion space is the one level Cayley tree shown in Fig. 3.5. 
The upper ends of the branches are the possible states denoted by j=0, 1, 2,... The 
diffusion occurs only on the top level, m=0, but the required energy depends on the 
road from a state to another.The characterizing parameters of the system are the 
number of levels labeled here by m =0, 1, 2, and so on (in this case from the top to 
the bottom), the branching ratios z, on level m and the transition rates between 
states. Consider for simplicity that z=2 and that the transition rate pm from a state to 
another depends only on the level m of the lowest node common to the states 
connected by the jump. The system has m-1 different transition rates p1,..., pm. 

0 1 2 3 4 5 6 7

p1

p2

p3  

Fig. 3.5 One level of states 
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Denote by p
ij
 the transition probability from i to j. The transition rates on the 

space shown in Fig. 3.5 are for instance p
01

=p1, p13
=p

2
, p35

=p
3 and so on. Suppose 

that: p1 > p2 > p3 that is transitions across more levels are hardly. Observe that: 

                                              p
ij
 = min 

k
 (p

ik
, p

kj
)                                          (3.10) 

This is valid for any states i, j, k of the system. Consequently the distances d
ij
, 

defined by:  d
ij =1-p

ij
, satisfy the NA axiom. 

                                              d
ij
 = max 

k
 (d

ik
, d

kj
)                                         (3.11) 

Fig. 3.6 shows the energy barriers between different states. 
The NA tree shown in Fig. 3.5 is equivalent to the one dimensional hierarchy of 

energy barriers as shown in Fig. 3.6.  

p1

p2
p1

p3

p1

p2 p1

0 1 2 3 4 5 6 7
 

Fig. 3.6 Energy barriers 

The studied case corresponds to jumps of arbitrary distance with transition rates 
depending only on the highest energy barrier between initial and final state. For 
instance p

12
=p

56
=p2, p25

=p
3
 and so on. The fact that the transition depends only on 

the highest barrier is a scale effect. In order to illustrate the evolution of a particle 
in such a space as shown in Fig. 3.5 or in Fig. 3.6 consider the processes diagram 
presented in Fig. 3.7.  

Fig. 3.7 shows the PSM frame associated to one level of states for Cayley tree. 
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s-states

i=1

k
1
0

k
2
1

m=1

m=2

m=0

k-conditions

i=0 i=3

)1ik(p 1
0 = )0ik(p 2

1 =

)k,1i0i(p 1
0== )k,0i3i(p 2

1==

 

Fig. 3.7 PSM frame for one level of states  

The studied particle starts from position i=1. With probability 1
1
0 p)1ik(p ==  

the level m=1 is chosen. Then taking into account the state i=1 and the level m=1 

the position i=0 appears with probability )k,1i0i(p 1
0== . Starting from state i=0, 

with probability 2
2
1 p)0ik(p ==  the new chosen level is m=2. The new position 

i=3 is established with probability )k,0i3i(p 2
1== . Starting from position i=3, with 

probability p
1
 the new chosen level is m=1 and so on. Observe that the choice of a 

new level depends on the present position while the choice of the next position 
depends on previous position and level. 

0 1 2 3 4 5 6 7

0 1
2 3

0 1

m=1

m=2

m=3

 

Fig. 3.8 Multi-levels of states  
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In this simplified case the space of states can be the position space s={i} and 
the space of conditions the levels k={m}.  

In a more complex model it is considered that all nodes of the tree shown in 
Fig. 3 .5 corresponds to physical states not only those at the top level.  

Fig. 3.8 shows a Cayley tree with multiple levels of states. 
This is the so-called multi-level of transitions Cayley tree studied in order to 

describe the structure of the turbulent fluid. 
To any level m, corresponds a new set of possible states. Let characterize the 

state of the particle by both position and levels that is by the pair (i, m) = 
(position, level). After a step the phase points (i, m) either stay there or are 
mapped upwards in the hierarchy, for instance from m to m', with probability 
pm,m'.  

Assume that a particle is in position i=1 at the level m=1 that is in the state: 
(1, 1). With probability p

11
 the next level m=1 is selected. According to this and to 

the previous state, the new position i=0 is selected with probability p (i=0 |(1, 1), 
m=1) obviously at the level m=1. The new state of the particle, in the phase space, 
is (0, 1).  

Then with probability p
12

 the level m=2 arises and according to this and to the 

next state, with probability p (i=0| (0, 1), m=2) the new position is i=0 at the level 
m=2 that is the new state is (0, 2). Then with probability p

21
 the level m=1 is 

selected again. The above described evolution is shown in Fig. 3.9. Fig. 3.9 shows 
the PSM frame for multiple levels of states and transitions for Cayley tree.  

The complex system could be studied as a PSM with a unique conditioning 
level if the same scale of time is envisaged at different levels. In this case the 
space of states is s = {(i, m)} while the space of conditions will be k = {m}. 

s-states

(1,1)

m=1

m=2

k-conditions

11p

1

2

12p
21p

(0,1) (0,2)

)1m,)1,1(0i(p == )2m,)1,0(0i(p ==

 

Fig. 3.9 PSM frame for multiple levels of states  
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The coexistence of different timescales leads to difficulties in simulating the 
dynamics and in reconstructing the model from experimental data. 

The random walk in such trees essentially depends on the previous walk 
history. This means that the non-Markovian character is mandatory. Interesting 
problems for practice arises when the supporting tree itself has a random 
evolution. 

3.3.3   Different Views for the Same Phenomenon 

The following illustrative example allows pointing out the main differences 
between various views over the same phenomenon, namely, the random walk of a 
particle, on discrete spaces in discrete time (Iosifescu and Grigorescu 1990). The 
specificity of the PSM frame will be emphasized.  

Fig. 3.10 shows states at different levels.  

Consider the finite sets of particle positions k
1
 = (1, 2,..., i,..., r), k

2
 = (1, 2,..., 

j,..., s), k
3
 = (1, 2,..., k,..., t), corresponding to the levels m = 1, 2 and 3 

respectively. The stochastic transition matrices: p
0
= (p

ij
); 1≤i,j≤ r, p

1
=(p

ij
); 1≤i,j≤ 

s, p
2
=(p

ij
); 1≤i,j≤ t. 

They describe the particle transitions from a position to another at constant 

levels m = 1, 2 and 3 respectively. Using the stochastic transition matrices p
0
, p

1
, 

and p
2
 it is possible to define, for given initial distributions, Markov chains on k

1
, 

k
2 and k

3
 respectively. If the particle transition from a level to another may be 

considered, the Markovian random walk model fails since the evolution depends 
not only on the last state but also on the last level. 

The problem is to construct a stochastic chain describing the random walk on 

the entire set of conditions k = k
1
 ∪ k

2
 ∪ k

3. If the time step is identical at any 
level, it is easy to define a Markov chain on k. Difficulties and opportunities are 
related to the existence of various scales of time at different levels. For example it 
is considered in the following that a transition between two states at the level m 

takes place during 2
m
 (or during 2

-m
) units of time while the transition from a level 

to another are instantaneous.  

• • • • • • • • • • •
1

• m=1
r

• • • • • • • • • •
1

• m=2
s

• • • • • • • • •
1

• m=3
t

 

Fig. 3.10 States at different levels 
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The existence of timescales imposes to take different look at the single and 
multi-level chains. 

Consider the sets: 

)}0
rp,...,0

ip,...,0
1p(0p{0s == , )}1

rp,...,1
ip,...,1

1p(1p{1s == , )}2
rp,...,2

ip,...,2
1p(2p{2s ==  

Here the probability vectors are denoted by 0s0
ip ∈ ,  

0
ip = (p

i1
,...,p

ir
) the i-th 

row in the matrix p
0
, 1s1

jp ∈ , 1
jp = (p

j1
,...,p

js
) the j-th row in the matrix p

1 and 

2s2
kp ∈ , 2

kp = (pk1,...,pkt) the k-th row in the matrix p
2
. The “states” are 

probability vectors represented by the rows in transition matrices p
0
, p

1
, p

2
. Let us 

limit the first case study to the level m = 1 that is to the conditions, k
1
 and the 

states s
0
. In order to introduce RSCC, as a natural extension of the Markovian 

dependence two sequences of random variables the s
0
-valued and the k

1
-valued 

chains will be associated to the Markov chain with transition matrix p
0
.  

s-states

k-conditions

0
ip 0

ip ′

i

0
ip ′′

'iip "i'ip

)p,i(u 0
i′

i′ i ′′

)0
ip,i(u ′′′

 

Fig. 3.11 RSCC associated to one level conditional stochastic chain 

Fig. 3.11 shows the RSCC associated to one level conditional stochastic chain. 
The paths of the two chains of states and of conditions are shown in Fig. 3.11. 

The particle random walk starts from the position i ∈ k
1
. If the particle evolving 

according to the k
1
-valued chain is in the position i, at a given time, its next 

position will be chosen according to the vector 0s0
ip ∈ . An account of this, the 

probabilities of transition at one of the positions at the level m = 1, in the set of  
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positions k
1
, will be given by 0

ip = (p
i1

,...,p
ir
). This is the i-th row of the matrix p

0
 

giving the one-step probabilities of transition from position i to another one at the 
same level m=1. 

Taking into account 0
ip  the position i' ∈ k

1
 was sampled with probability pii' (an 

element of the vector 0
ip ). The new s

0
-valued vector is 0

ip ′ = (p
i'1

,...,p
i'r
). This is the  

i'-th row of the matrix p0, giving the one-step probabilities of transition from position i' 

to another one at the same level m=1. According to the vector 0
ip ′  the new position i" 

∈ k
1
 was chosen, then according to 0

ip ′′  , the new position i"'  ∈ k
1
 may be chosen and 

so on. The stochastic dependence is given in this case by the transition probability 

from s
0
 to k

1
 given for instance by p ( 0

ip , i') = pii' .This is the probability to arrive in 

the position i' conditional on the previous state vector 0
ip  .Observe that this depends 

on both positions i and i'. Furthermore p ( 0
ip ′ , i'') = pi'i" and the process continues 

indefinitely. The operatorial dependence is in this case given by functions as: u ( 0
ip ,  

i') = 
0
ip ′ .This outlines that the new probability vector

0
ip ′  depends on the new 

condition i'. The transition from i to i' as well as that from 0
ip  to 0

ip ′ , take place with a 

uniform time step. The time is indexed here by n.  

Let us consider the complex situations when different levels of conditions k
1
, k

2
 

and k
3
 exists. An example of such an evolution is shown in Fig.3.12.  

Fig. 3.12 shows the PSM associated to multi-level conditional stochastic chain. 

s-states

k-conditions

i

'iip

i′

j
j j′

m=1

m=2

2
jp

1
ip

12π

'jjp

 
Fig. 3.12 PSM frame associated to multiple levels conditional stochastic chain 
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The particle starts from position i at the level m = 1. The state vector 1
ip = 

(p
i1

,..., p
ir
) will characterize the next transition from position i at the level  

m = 1. The new position is i' ∈ k
1
 with probability p

ii' (an element of 1
ip ).  

Simultaneously, a transition from m = 1 to m = 2 takes place with probability π
l2

 = 

1/2. The chosen state, at the level m = 2, is j. Consequently the new vector of 

particle state, will be 2
jp = (p

j1
,..., p

js
) . 

According to this, the position j' ∈ k
2
 is selected with probability p

jj'
 an element 

of 
2
jp . The system outlines the existence of more scales of time. The process 

illustrated in Fig. 3.11 describes the following random walk: i→ i'→i''→ and so on 
while the Fig. 3.12 corresponds to the random evolution: (i) →(i', j) →(j') → and 
so on. At different levels we are faced with chains that differ from that associated 
to Fig.3.11 from the point of view of time steps.  

Observe that the used method is not a simple accommodation of the classical 
Markov chains or RSCC to a more general situation. It corresponds to interesting 
practical situations having no analogue and solutions in the theory of Markov 
chains or the RSCC, due in this case to the time scales associated to different 
conditioning levels and the possibility to characterize not only sequential but also 
parallel evolutions.   

Confronting the large number of parameters, schemes as shown in Fig.3.12, 
make clear the difficulties accumulated by the numerical investigation of the 
complex processes and support the advent of calculus based on “other than real” 
that is “non-standard” frames. 

The conventional PSM were not developeded as formal mathematical tools but 
rather as constructive point of views according to which in practical situations it 
may be useful to look at a complex process as an emergent structure resulting by 
the hierarchical superposition and interaction of component processes operating at 
different levels and different time frames. The attention was focused firstly on the 
hierarchy of conditional processes allowing self-adaptive evolution. To establish 
the states, the scales and levels, the conditions, the probabilities and the operators 
relating different component processes the real field PSM methodology was useful 
rather constructively than conceptually. In order to improve the potentialities for 
applications of the real polystochastic frame this should be developed using “non-
standard” field concepts and methods.  
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Chapter 4 
New PSM Frames 

Abstract. The hierarchy or the network, which allows modeling at several levels 
is deep-rooted in the higher categories frames. Models of models, that is, meta-
models allowing the study of processes of processes, and so on, are presented. 

Four realms general PSM frames results by integrative closure. 
Innovative is the model categorification for multiple levels modeling. This 

imposes making use of unconventional notions of time and probabilities. 
Non-Archimedean frames based on infinitesimals and on non-well-founded sets 

are presented. 

4.1   General Frameworks for PSM 

4.1.1   Basic Categorical Frameworks 

The elements of PSM are quadruple of vectors {S, K, U, P} denoted also SKUP.  
The notations are: S-states, K-conditions, U-operators, and P-possibilities 

(Iordache 2009).   
Each component of the vectors corresponds to a different conditioning level 

and a different time scale. 
The basic elements of the SKUP, will be denoted as follows: 

S = (s
0
, s

1
,..., s

m
,...,s

M
) ; K = (k

0
, k

1
,..., k

m
,...,k

M
);  

U = (u
0
, u

1
,..., u

m
,...,u

M
);  P = (p

0
, p

1
,..., p

m
,...,p

M
). 

Here s
m
 represents the particular state at the level m, and k

m
 represents the 

particular condition at the level m≤M. Upper indices are reserved to levels, while 
lower indices are reserved to time steps. The components of U are operators such 

as: u
m
: k

m
 x s

m’
→ s

m’’
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PSM should describe parallel evolutions. Moreover S and K are associated to 
different types of algebraic fields. Despite algebraic framework differences, S and 
K are interconnected. This interconnection is described by operators U and 
possibilities P. U characterizes the K to S transition and P characterizes the S to K 
transitions, that is:  

U: K→ S and P: S→K. 

Operators U should be able to describe change of conditioning level and splitting 
of levels.  

Possibilities P, replacing and generalizing probabilities have been defined in 
game theory (Blume et al. 1991, Hammond 1994) in fuzzy logic (Dubois and 
Prade 2001, Schumann 2008) and in other domains. 

The possibilities P are defined by vectors such as:  

P (K) = (p (k
0
), p (k

1
),…, p (k

m
),.., p (k

M
)). The component p (k

m
) is an 

evaluation of the condition k
m

. Such components may be, eventually, conventional 
probabilities but in some cases this choice may complicate the calculus without 
benefice for understanding.  

An innovative aspect for PSM concerns the differential model for K process. 
The elements of K are resulting as solutions of differential equations.  

These may be functional as meta-models that is, generic models producing 
other models. The differential models proposed here are formally similar to the 
real valued differential models characterizing the single level systems.  

The RSCC model outlined a set of states s, a set of conditions k, and transition 
relations between them, expressed by operators as u, and probabilities p (Fig. 4.1).  

The categorical approach for PSM appears as a categorification of such 
transition systems for increasingly higher dimensional problems.  

K

S

U P

 

Fig. 4.1 Two levels framework 

Mathematical categorification associates category-theoretic concepts to set-
theoretic notions (Appendix 2).Categories are linked to the different levels of 
reality. The notion of level or reality which was firstly studied from an intuitive 
point of view was approached from a more formal point of view based on CT. The 
levels and sub-levels of reality are characterized and distinguished by their 
categories and sub-categories (Poli 2001). 
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A two levels framework is shown in Fig. 4.1. It shows the basic SKUP 
framework that contains in the categorical interpretation two categories S and K, 
and two functors, U and P, between these categories. 

The SKUP associated to PSM represents a general architecture, shared by 
numerous adaptive and evolvable systems (Iordache 2009). 

For PSM frameworks the conditions K represent the category describing the 
types of component processes. In this case, the processes types are the objects of 
category. Interactions among types can be modeled as morphisms.  

The arrows that is, the morphisms describe the transition relations between the 
states of the component processes. Different algebraic frameworks for states-S 
(dynamical, analogical, and natural) and conditions-K (symbolic, digital, and 
formal) have to be considered. 

Functors as U are accounting for interactions in K, and between K and S.  
Functors as the possibilities P, supplements the probabilities to express 

potentiality, fuzziness, uncertainty, and emergence.  

4.1.2   Multiple Levels 

Observe that the SKUP framework from Fig. 4.1 still involves only two levels or 
realms, S and K. Advancements in modeling higher complexity, the evolvability 
request, impose to take into account multiple levels and multiple SKUPs 
interaction.  

Any two levels SKUP may have more complicated relations to other two level 
SKUPs than can be functional in the multiple levels situation. 

In such cases it is necessary to consider 2-categories and more general n-
categories (Appendix 2). This means in fact to continue the categorification 
process (Appendix 2). 

Horizontal and vertical composition of elementary two level SKUPs should be 
taken into account. 

S

K1

K2

U10 P01

U21 P12

 

Fig. 4.2 Three levels hierarchical framework 
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Fig. 4.2 and Fig. 4.3 show the three categories S, K1 and K2 and their 
interconnections by operators Uij: Ki→Kj, and possibilities, Pij: Ki→Kj. S is 
considered to be the K0 level. 

Fig. 4.2 shows the three levels hierarchical framework. 
Fig. 4.2 shows the elements of the SKUPs, the lower cell {S, K1, U10, P01} 

and the upper cell denoted by {K1, K2, U21, P12}.  
It is a vertical composition of SKUPs. 
The upper cell appears as a second structuring for the category K mirroring and 

extending in a specific sense the basic SKUP structure. 

K1 K2

S

U10 P01 P02 U20

U21

P12

 

Fig. 4.3 Three realms network 

Fig. 4.3 shows the three realms network. 
Fig. 4.3 shows the elements of three SKUPs, the left cell {S, K1, U10, P01}, 

the right cell {S, K2, U20, P02} and also the SKUP cell denoted by {K1, K2, U21, 
P12}. It is a kind of horizontal composition of SKUPs.  

Since in Fig. 4.2 and Fig. 4.3 we replaced K by two categories K1 and K2, 
there are two possible operations for the conditions K.   

We will refer to operation in K as the tensor product,”∗ ”. 
There are various tensor products we can consider for categories. The Cartesian 

product is a special case.  The categorical product “ × ” and the coproduct, “ ∪” 
are other examples.  

Fig. 4.2 and Fig. 4.3 outlines two possible ways in the conditions category K, for 

instance, the coproduct, “∪”, way in K1 the categorical product “ × ” way in K2. 

The switch from product “ × ” to the coproduct, “ ∪” and reverse is possible 
but the two types of categorical product cannot be observed simultaneously. 

The interaction between S and K2 as shown in Fig. 4.3 allows a three-fold 
integrative closure hypothesis including in the loop S, K1, K2 and again S and this 
allows evolutionary properties of  the whole system . 

The Gray tensor product denoted here by” Г”, and its generalizations are of 
interest for 3-categorical constructions (Appendix 2). In such cases, instead of the 
category K we consider three categories K1, K2 and K3.The tensor product proves 
to play a significant role for the emergence and evolvability mechanisms.  
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U10 P01

 

Fig. 4.4 Four levels hierarchical framework 

The two levels and three levels architecture may be generalized to four levels or 
realms as shown in Fig. 4.4 and Fig. 4.5. 

Fig. 4.4 shows the four levels hierarchical framework.  
Fig. 4.4 outlines the elements of three SKUP cells.  The initial cell is {S, K1, 

U10, P01}, the next cell {K1, K2, U21, P12} and the next cell is {K2, K3, U32, 
P23}. The SKUPs are composed vertically. 

Fig. 4.5 shows the four realms network.  
Fig. 4.5 outlines the elements of four SKUP cells. We may denote S by K0 for 

uniform notations.  The initial cell is {S, K1, U10, P01}, the next cell {K1, K2, 
U21, P12} the next cell {K2, K3, U32, P23} and the closing cell is {S, K3, U30, 
P03). It is a cyclic composition of SKUPs. 

K1 K2

S K3

U10

U21

U32P01

U30

P23

P12

P03

 

Fig. 4.5 Four realms network 
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The tetradic network form is shown in Fig. 4.5. 
Usually the notations are: S-data, K1-models, K2-meta-models, K3-meta-meta-

models. 
In the illustrative case of statistical methodologies the notations are: K0 for 

data, denoted also by S, K1 for statistical information definitions and K2 for 
descriptive statistic methodologies. K3 denotes methodologies that define 
methodologies (Iordache 2010).  

The 1st evolution step determines the K1 emergence, 2nd evolution step the K2 
emergence, and so on. 

The network can be used to distinguish different roles in the information 
system. Basically, the idea is that a role consists in using the model on a certain 
level in order to produce models at the lower level. 

According to the order of reality levels in the diagram shown in Fig. 4.5 it 
results that the generic modeller or statistical methodologist U32: K3→ K2 uses a 
general purpose model to produce statistical methodologies. This corresponds to 
the 3rd order evolution step. 

The statistics definer U21: K2→ K1 uses a statistical methodology to produce 
subject matter definitions. The statistics producer and user U10: K1→ K0 uses a 
subject matter definition to produce statistics to understand the reality and 
possibly produce actions on it. The interaction between K0-Data and K3-Methods 
that define methods allows and confirm the integrative closure hypothesis and 
make the statistical models system evolvable. This corresponds to the 4th order 
evolvability step. 

The roles defined above are independent of the nature of the agent, the role of 
executor, that can be human or software artefacts. The same role can be played in 
principle by people or by machine. In this role-playing, the upper level model 
supplies specifications to the agent that interprets and applies them in order to 
produce the lower level model. When this behavior is enforced in practice, the 
system is active because the upper level model drives the agent behavior. 

Fig. 4.5 suggests how software artefacts can be made active: they have to be 
driven by the respective upper level model. The major data processing software 
packages in the statistical system should be founded on the idea of active models 
in hierarchy or network. To process a level, the software is driven by upper level. 
For example, to produce a level K1-model, a set of statistical informations, 
software is driven by its level K2- model, expressed in a formalized subject matter 
language and therefore highly independent from the technical aspect of the 
implementation. To produce a level K2-model, the activity of subject matter 
experts is supported by software tools, driven by the level K3-model in use. The 
specificity of the statistical field is located at the level of K2. The K2-model is 
considered as the formal representation of a descriptive statistic methodology. 
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K1 K2

S K3
 

Fig. 4.6 Fully integrated four realms network 

Fig. 4.6 shows a version of the four realms network with more interactions. 
This may be compared to NBIC diagrams of convergent technologies 

(Bainbridge and Roco 2006). 
Notice that we make use of K1, K2, and K3 to characterize firstness, 

secondness and thirdness as in Peirce’s notations for categories. 
The centered architectures as shown in Fig. 4.7 are also of interest for the study 

of evolvable and autonomous systems. In the centered architecture a model can 
describe elements from every meta-model below it.  

Theoretically the centered structure architecture is not restrained to four realms. 
Fig. 4.7 highlights centered and self-similar spiral architectures. 
A similar structure is repeated to four sub-realms denoted here by k0, k1, k2 

and k3. 
Fig. 4.7 suggests that an integrative closure hypothesis does not have to be seen 

as a final stage or a balance due to equilibrium, but rather as a process that can 
develop self-similar patterns.  

Centered structures may unify large systems. The initial frame offers a generic, 
four-fold, relational model whose elements are configured as a self-similar 
structure. This means that it can be re-scaled from the smallest to the largest or 
reversely without compromising its form. This has the advantage that it is a 
configuration that is shareable across different domains. The self-similarity allows 
analogous processing with similar software. 
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Fig. 4.7 Centered four realms network 

The centered framework has a supplementary element in specific position and 
significance. This may be associated to Peirce’s fifth category of “being”. 

It appears as a meta-category or a meta-representation of the four realms frame. 
It offers information about the four realms frame.  
The four realms frameworks are very general. In particular cases, only some of 

the operators, possibilities and interactions may be activated.  
An interesting case study is the so called reasoning cycle of Peirce (Sowa 2002, 

2004). In this case the notations are: K0-World, K1-Knowledge soup, K2-Theory 
and K3-Prediction. The names of interactions between categories as interpreted by 
Sowa (2004) are induction, abduction, deduction and action. Fig. 4.8 shows the 
Peirce’s cycle of cognition. 

K1-Knowledge soup K2-Theory

K0-World K3-Prediction

Induction

Abduction

Deduction

Action
 

Fig. 4.8 Cycle of cognition 
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Induction or learning starts from observations and looks for commonalities to 
summarize observed data. 

Abduction or guessing starts with disconnected observations and guesses 
(hypothesizes) a theory that relates them.  

Deduction or inference starts with a theory, observe new data and is used to 
generate implications.  

Fig. 4.8 expresses the Peirce’s pragmatic method as a cycle coupling action on 
real systems K0, and the formal systems K1, K2 and K3. The regularity that 
mediates between firstness K1 and secondness K2 is the thirdness K3. These 
universal categories are also modes of inference from abduction to deduction, and 
from this to induction where induction mediates between abduction and deduction 
(Brier 2009). 

4.2   Time Frames 

4.2.1   The Problem of Time Frame 

The adopted point of view for PSM developments is that the functional frame for 
time and for probability must agree first of all with the nature of analysis of the 
studied system. Unconventional concepts of time and probability are permitted 
and naturally implemented if the system analysis can proceed on this basis. The 
use of multi-dimensional, multi-scaled, dyadic, and cyclic time proves to be 
beneficial depending on the studied context (Iordache 2009).  

Time, space, probability and information are intuitive concepts and one cannot 
define their properties by entirely arbitrary mathematical rules. It is necessary to 
put in the frame, the physical and engineering knowledge allowing a pragmatic 
and reasonable choice out of mathematical possibilities.  

Supplementing the time based on the field of real numbers, NA frames for time 
offer a variety of options in modeling since NA frames are capable to describe 
artificial structures. The convention to use only the one-dimensional time ”n” to 
describe all types of evolution has the starting point in the belief according to 
which all phenomena are linear or a superposition of linear phenomena in essence. 
But, in the domain of complex systems, there exists phenomena that appear very 
unregulated when they are studied using the real time “n” and, contrary to this, 
follow simple rules when they are studied using “other than real” time frames. 
Making use of NA time one can find regularity for process, which appear chaotic 
with respect to the real time. Beneficial may be the frame involving both the time 
step “n” and the conditioning level “m”. The coexistence of processes at multiple 
conditioning levels leads to difficulties in simulating the resulting dynamics and in 
reconstructing the governing equations given experimental data. The introduction 

of the multidimensional time in the study of the conditioning process ( m
nk ) 

facilitates the study of systems with variable complexity in the course of 
development. This development represents in fact the unceasing transformation of 
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the potential in the empirical and of the empirical in the potential, which 
characterize emergent complex systems. 

The concept of multidimensional time, according to which time is to be thought 
of not as a real number, but as a vector, with a finite number of components play 
significant role in PSM. Different relations may define an order for such vectors of 
time. The introduction of the multidimensional time will permit to study in a 
natural way, the complex hierarchical systems. PSM may describe systems having 
an ensemble of interacting levels that is, systems composed of conditioned sets of 
interacting subunits. Usually the level m receives selective information from 
above (levels m-1, m-2,…,1) and in its turn it exercises commands on the 
dynamics of the lower levels. The reverse order of conditioning is of interest too. 

For emergent systems the physical interactions give rise in a concomitant way 
to progressive differentiation, to entropy production, increasing complexity and 
increasing organization. The decrease of complexity and of the conditional level 
“m” should be considered too to ensure evolvability. One of the main 
characteristic features of the level “m” contrasted with the usual time “n” is that 
“m” may have reversible order. The index “m” gives an idea about the hierarchy 
of qualitative steps in the closed system evolution as distinguished from a mere 
increase of the index “n” by ambient evolution.  

4.2.2   Frame of Infinitesimals  

NA structure of time allowing the description of complex systems presenting 
many parallel ways of evolution with strongly different time characteristics will be 
the main example of “other than real” time. Consider systems in which a scale of 
time corresponds to every conditioning level. The present illustration is limited to 
the case of two time scales, a long time scale for n and a slow time scale for t.  

The time is T=n+εt with ε>0, a positive constant. It has two components 
corresponding to the two scales. The set of time vectors denoted also as T = [n, t] 
is ordered by the relation: 

                            [n
1
, t

1
] < [n2, t2] if n1<n2 or if n1=n2 and t1<t2                          (4.1) 

For example, if n or t is in hours and ε = 1/24, then εn or εt is in days.  
According to this lexicographic order when two complex systems being in the 

step n1 and n2 of evolution respectively are compared, the system whose step is the 
greatest of the numbers n1 and n2 appears as the more evolved one. If they are in 
the same n step that is if n1 = n2 it needs to compare the next index of time, t, in 
order to establish the ordering. This signifies that the evolution according to t can 
be considered as less significant than the evolution according to n. The time 
elapsed on n appears to be more important for the studied phenomenon. Very 
important is that reverse steps on the infinitesimal scales of time become 
intuitively acceptable. For instance a transition from [n, 1] towards [n+1, -1] is in 
the usual order for the time T since [n, 1] is anterior to [n+1, -1]. The last includes 
an infinitesimal negative time step.  
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The reverse order of importance anti-lexicographic for coordinates n and t is of 
practical interest too. This is: 

                             [n1, t1] < [n2, t2] if t1<t2 or if t1=t2 and n1<n2                           (4.2) 

The above-defined time T is an NA frame (Neder 1941, 1943). Indeed let A and 
B, be two different times, A = [0, 1], B = [1, 0]. For any integer k, kA = [0, k] <B. 
So A is an infinitesimal time relative to B while B is an infinite time relative to A. 
In the real field of times, the interval of time is perceived as a distance on the real 
time axis. Accordingly in the NA frame proposed here, a measure of the time 
interval between [n1, t1] and [n2, t2] will be: 

                                      d ([n1,t1], [n2,t2]) = (n2-n1)+ε(t2-t1)                                (4.3) 

The axiom of Archimedes is not verified in this case. Indeed d([0,0], [0,kt])= 
kd([0,0],[0,t])=ktε<d([0,0], [n,0])=n for any integers k and n. Failure of the axiom 
of Archimedes naturally follows from the fact that the time is not represented as a 
real number at all but instead as a lexicographically ordered vector.  

An intuitive example is provided by the study of mixing. The existence of the 
so-called “dead spaces” characterized by very slow mixing processes impose to 
describe the basic mixing process on the usual scale of time n or t and the dead 
space process on the scale εt. The hierarchy of dead spaces can continue giving 

time scales as ε
2
t and so on. The considered scales of time are widely different. 

Any scale appears as a perturbation of the preceding one. The translated structure 
of time T induces a similar structure of the functions of time. A real function f(n) 
of time n have to be replaced by the NA function F(T) = [f0(n), f1(n, t)]  of  T = [n, 
t] where f0(n), f1(n, t) are real valued functions. Both functions depend on the time 
n (Neder 1941, 1943). Obviously F (T) is an element of the same NA structure as 
T. More generally a non-Archimedean function on K, F: K → K is defined by 
F(K) = [f0(k0), f

1(k0,k1),..., f
m(k0,k1,…,km),...] where K = [k0, k1,..., km,...] and f0, 

f1,..., fm,... are real functions Expansions as that used for time T and functions F(T) 
introduce extensions of the domain of the studied variable.  

The vector T represents the construction of different clocks with which the 
variation of the function can be described in a natural fashion. T includes 
information concerning the existing structuring in scales. One limit of the above 
frame is the complete separation of the scales. By taking ε=0 the real frame would 
be validated.  

4.3   Probabilities and Possibilities 

4.3.1   Frame of Infinitesimals for Probabilities and Possibilities 

Probability is the useful tool for representing uncertainty, conditioning, and 
information.  
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It was observed that the set theory and corresponding probability theory are 
inadequate frameworks to capture the full scope of the concept of uncertainty for 
multi-scale systems. Uncertainty in set theory means non-specificity and exactly 
the specificity is important for some complex systems. Conventional probabilities 
may be of interest when it is not detrimental to flat individual features while they 
are not adequate to account for strong individual deviations.  

Conventional probabilities are also inappropriate to illustrate qualitative 
concepts as fuzziness, vagueness, partial truth and opportunities, all having 
significant role in complexity studies.  

Answering to the need of probability-like concepts in the study of complex 
multi-scale systems, the probability construction for infinitesimal frame is 
considered here. The starting point is the fact that the probabilities are functions. 
This means that the definitions should be based on the definition of function in the 
NA frame.  

The NA probabilities are considered as an example of possibilities. Difficulties 
of construction and interpretation are related to the definitions of events for an NA 
frame. 

Denote by X the space of all elementary events. Denote by X the Borel ring of 
all compact subsets of X. An event is a subset of X. The elements of X are 
expansions of the type 

V= [k
0
, k

1
, k

2
,…] where k

j
  ∈ R. The number V=Σ

n
k

n
ε

n
 is naturally associated 

to the event V.  Let K denotes the NA structure of infinitesimals.  
Define the possibility P: X →K as follows: 

If V=[k
0
, k

1
, k

2
,…] then P(V) =[p0(k

0
), p1(k

0
, k

1
), p2(k

0
, k

1
, k

2
),…] 

With other notations, the possibility assigned to V=k
0
+εk

1
 +ε

2
k

2
,… is  

                        P (V) =p0 (k
0
) + εp1 (k

0
, k

1
) +ε

2
 p2 (k

0
, k

1
, k

2
) +.…                     (4.4) 

Here p0, p1, p2 and so on, are measures functions, the more significant being p0, 
followed by p1, this followed by p2, and so on. The infinitesimal contributions as 
events may have infinitesimal contributions as probabilities. 

Such ideas have been used in the study of the so-called lexicographic 
probabilities (Blume et al. 1991, Hammond 1994). 

Obviously the possibility P(V) is positive, P(V) ≥0, but this inequality should 
be considered in the NA frame. The NA definition of positive possibility 
accommodates situations as: p0 ≥ 0, p1 ≤ 0, p2 ≤ 0, and so on.  

The probabilities pm, m≥ 1 may be negative but their impact is infinitesimal. 

Interesting situations corresponds to systems having: p0 = 0, p1 =pm-1 =0, pm≥ 0, 

pm+1≤ 0,..., for increasing m. This situation ensures that P (V) is a positive number 
in NA frame. Observe that even if the function p0 is 0, the condition k

0
 still may 

have an impact since pm >0 and pm may be function of k
0
.  
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The contact with the real field is possible by real valuations or norms as 
exemplified by applications and case studies. Obviously, when ε=0 the real frame 
is again recovered, as expected for model categorification method.  

4.3.2   Non Well Founded Sets and Probabilities 

The sets that contain themselves as members are called abnormal sets. The 
elimination of abnormal sets leaves us with the standard well-founded set theory. 

A non-well-founded (NWF) set theory belongs to axiomatic set theories that 
violate the rule of well-found sets and, as an example, allow sets to contain 
themselves (Aczel 1988, Barwise and Moss 1996). Denying the foundation axiom 
in number systems implies setting an NA ordering structure.  

Aczel proved that a graph will contain no cycles or loops if and only if it is 
well-founded. This means that a graph that contains loops or cycles is a picture of 
a non-well-founded set. The presence of cycles and loops would indicate that 
some set has itself as a member or that the concept system or definition it models 
is impredicative. 

The antifoundation axiom which embraces non-well-founded sets is as follows: 
every graph cyclic or not, pictures a genuine set. Hypersets are defined as 
graphable sets. The well-founded and non-well founded sets are both types of 
hypersets.  

The antifoundation axiom was explained as follows. Suppose that all initial 
objects are ways and the operations over those initial objects are motions on them. 
The foundation axiom says that there exist finite ways. In this case, we use the 
induction principle. According to this it is possible to achieve an aim at the 
shortest distance between points. The negation of the axiom of foundation causes 
that all ways are infinite. Then we cannot apply the induction principle since there 
are no shortest distances. Therefore one uses there the so-called coinduction 
principle. According to this it is possible to achieve an aim at the largest distance 
between points.  

Taking into account the existence of infinitely large numbers in NA 
mathematics (for instance in analysis of infinitesimals or of infinite), we can state 
that initial objects of NA mathematics are objects obtained implicitly by denying 
the axiom of foundation. NA numbers may be represented only as infinite ways. 
These objects are NWF.  

NWF or hypersets represents useful tool to make sense of the kind of 
complexity characteristic to evolvable systems. Chemero and Turvey (2006) 
showed that the hypersets provides significant models of living complex systems. 
Hypersets have been applied for models of complex systems like autocatalytic 
cyclic reactions, hypercycles, metabolic cycles and autopoietic systems. 

The interest in non-well-founded phenomena is also motivated by 
developments in computer sciences. In this area, many objects and phenomena 
have non-well-founded features: self-applicative programs, self-reference, graph 
circularity, looping processes, transition systems, paradoxes in natural languages, 
and so on. 



66 4   New PSM Frames
 

A significant class of PSM involves cyclic evolution and cyclic time concept 
(Iordache 2009, 2010).  The probabilities associated to cyclic evolutions have 
been based on similarities. They represent a kind of fuzzy probabilities, or in other 
terms, an example of possibilities. 

Another class of fuzzy probabilities has been associated to NWF sets by 
Schumann (2008). The conventional probability theory is built in the language of 
well-founded mathematics. It sets a framework of physics, taking into account that 
physical reality is regarded in physics as reality of stable repetitive phenomena. 

Real probabilities are obtained as a result of a limiting process for rational 
frequencies in real topology by means of the law of large numbers. Using these 
probabilities we use to accept only well-founded phenomena. In NA physics and 
in NA probability theory it is assumed that reality is NWF. Since statistical 
stabilization, that is the limiting process, can be considered not only in the real 
topology on the field of rational numbers but also in NA topologies, it results that 
reality can be considered as NWF too.  

According to the hypothesis that reality is NWF, experimental results should be 
analyzed not only in the field of real numbers but also in NA fields. 

In the standard way, probabilities are defined on algebra of subsets.  
Paralelling standard definitions, it is possible also to set probabilities on the 

algebra FV(X) of fuzzy subsets XA ⊂ that consists of the following: (1) union, 

intersection, and difference of two fuzzy subsets of X; (2) Φ  and X. Here V 
denotes an NA set. 

In this case a finitely additive probability measure is a nonnegative set function 
P(·) defined for sets A ∈  FV (X) that runs the NA set V and satisfies the 
following properties: 

 
1. P(A) ≥ 0 for all A ∈  FV (X) 

2. P(X) = 1 and P( Φ ) = 0, 
3. if A ∈  FV (X) and B ∈  FV (X)  are disjoint, then P(A ∪  B) = P(A)+P(B). 
4. P(¬A) = 1 − P(A) for all A ∈  FV (X) 
 

Here 1 is the largest member of V and 0 is the least member of V. 
This probability measure is a fuzzy probability or in other terms a possibility. 
The originality of fuzzy probability is that conditions 3, 4 are independent. As a 

result, for a probability space {X, FV (X), P}, some Bayes’ formulas do not hold in 
the general case (Schumann 2008). 

4.4   Models Categorification Methodology 

4.4.1   Frame of Infinitesimals for PSM 

The SKUP frames associated to PSM represents the model categorification of the 
(s,k,u,p) frames associated to RSCC. 
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Let us consider here that a scale of time is associated to every conditioning 
level. To take into account the existence of different scales of time the discrete 
time n will be translated into the vector: 

                  nw...nw...nwnN M
M

m
m

1 ε++ε++ε+=                        (4.5) 

Denotes also N = [n, w
1
n,..., w

m
n,..., w

M
n]. Here w

m
 are real random variables 

proportional to the lifetime on the level m while ε are positive arbitrary small 
constants. Taking into account the definition of order on the field K containing 
elements as N, one observe that the evolution at the level m, performed during 

w
m

n ε
m
  units of time appears as infinitesimal relative to the evolution at the level 

m - 1 performed during w
m-1

n ε
m-1

, units of time. The structure of time N induces a 

similar structure of the states s(n) = sn. The states s(n) have been translated into 

S(N) = [s
0
(n), s

1
(n),..., s

m
(n),...,s

M
(n)] where s

m
(n) are real valued functions. 

Obviously S (N) ∈ K but number such as S= s
0
(n)+εs

1
(n) may be evaluated by 

their real value too.  
If the expansions contain a finite number of elements the NA structures are 

rings (Appendix 1). Let B = [b
0
, b

1
], D = [d

0
, d

1
]. A function U of two variables is 

defined in the NA structure of Neder by:  

         U(B,D)=U([b
0
,b

1
],[d

0
,d

1
])=[u

0
(b

0
,d

0
), v

1
(b

0
,d

0
,b

1
)+w

1
(b

0
,d

0
,d

1
)]              (4.6) 

Here u
0
, v

1
, w

1
 are real functions. To obtain (4.6) usual series expansions are used. 

Now the elements of an RSCC are translated in the NA frame. Denote the vector 
of time by T = [n, t] that is T = n + ε t where n and t are integers. Denote also by 
S(T) the state of the system at the moment T = [n, t] and by K(T) the 

corresponding condition. In the above described NA frame S(T) = [s
0
(n), s

1
(n)], 

K(T) = [k
0
(n), k

1
(n)] where s

0
(n), s

1
(n), k

0
(n), k

1
(n) are real valued functions. 

Notice that k
1 (n) includes information concerning t. 

With possibility P (K(T')| S(T)) the system arrives at the condition K(T') where 

T’ = [n, t+ σ]. Observe that K (T') = [k
0
(n), k'

1
(n)] where k'

1
(n) includes 

information concerning t+σ. To simplify notations consider that P(K(T')| 

S(T))=[p
0
(k

0
(n)), p

1
(k

0
(n), k'

1
(n))] that is S(T) does not play. In the next step a 

change of state takes place, the new state being S(T") = U(S(T), K(T')) where T'' = 

[n+1, t+ σ]. Next, a new condition K(T'")=[k
0
(n+1), k'"

1
(n+1)]  with T'" = [n+1, t 

+ σ + ρ] is established with possibility P(K(T"')| S(T"))=[p
0
(k

0
(n+1)), p

1
(k

0
(n+1), 

k'"
1
(n+1))]. According to K(T'") the system arrives in S(Tiv) with Tiv = [n+2, t + 

σ + ρ]. Using the properties of K the model gives: 
 

       [s
0
(n+1), s

1
(n+1)] = U([s

0
(n), s

1
(n)], [k

0
(n), k

1
(n)]) = 

       =[u
0
(s

0
(n), k

0
(n)),v

1
(s

0
(n), k

0
(n), s

1
(n))+w

1
(s

0
(n), k

0
(n), k

1
(n))]              (4.7) 
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Consequently, using the definition of equality in the NA frame it results: 

                                            s
0
(n+1) = u

0
(s

0
(n), k

0
(n))                                         (4.8) 

                    s
1
(n+1) = v

1
(s

0
(n), k

0
(n), s

1
(n))+w

1
(s

0
(n), k

0
(n), k1(n))                  (4.9) 

The equation (4.8) corresponds to the usual operator of an RSCC while the 
equation (4.9) outlines the contribution of the next conditioning level. When ε=0 
the real frame is validated, according to the model categorification method.  

Instead of the elements of the RSCC denoted by (s, k, u, p) that is s(n), k(n), 
and s(n+1) = u(s(n), k(n)), p(k(n)| s(n)), a SKUP frame that is S(T); K(T'); U(S(T), 
K(T'))=S(T"),  P(K(T')| S(T))  results. This represents the model categorification 
model translating the real field elements of an RSCC denoted by (s, k, u, p) in the 

more affluent set of elements SKUP with S=(s
0
, s

1
,...,), K=(k

0
, k

1
,…,), U=(u

0
, v

1
, 

w
1
,...,), P=(p

0
, p

1
,…).  

In the NA case T = [n, t] where t is a R-valued random variable, S (T) is an 

RxR=S, valued random variable, K(T) is defined on K
0
 x K

1
. In applications K

1
 

may include a specification of the waiting time or scale. U is a measurable 

mapping from S x K
0
 x K

1
 to S. Obviously u

0
, v

1
, and w

1
 are measurable 

mappings.  
The resulting system (4.8), (4.9) shows the class of real models being 

compatible with an NA model described by the model: S (T") = U(S(T), K(T')). 
The proposed general theory includes and extends the case of real field theory.  

4.4.2   NA Difference Equation 

Consider again the example described by the equation (3.5).  
The real model (3.5) may be translated into the NA stochastic difference 

equation: 

                                        
)N(AY

NN
)N(Y)N(Y

1
1

1 −=
−
−                              (4.10) 

For the sake of simplicity we restrict here to m = 1, N = [n, n], Y(N) = [y
0
(n), 

y
1
(n)].  
Here N

1
 = [n-1, n-1], A = [a, 0]. According to N

1 a single step is performed at 

any level. From (4.10) it results using the definition of the product in the NA 
frame: 

                                           y
0
(n)-y

0
(n-1) = -a y

0
(n-1)                                       (4.11) 

                                     y
1
(n)-y

1
(n-1)=-ay

1
(n-1)-a y

0
(n-1)                                 (4.12) 

This gives: 

                                                   y
0
(n) = k y

0
(n-1)                                            (4.13) 
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                                       y
1
(n) = k y

1
(n-1)-(1-k) y

0
(n-1)                                   (4.14) 

Here k = 1-a. Taking N1 = [n-1, n-1+w] with w, a random variable the model 

reduces to: 

                                                       y
0
(n) = k y

0
(n-1)                                        (4.15) 

                                   y
1
(n) = k y

1
(n-1)-(1-k)(1-w)y

0
(n-1)                               (4.16) 

The resulting SKUP contains the elements:  
 

S(N) = Y(N)= [s
0
(n), s

1
(n)], k

0
(n) = k, k

1
(n) = w, K(N) = [k,w] ,  

                                             u
0
(s

0
(n),k

0
(n))=k

0
(n)s

0
(n)                                    (4.17) 

                                           v
1
(s

0
(n), k

0
(n), s

1
(n))=k

0
(n)s

1
(n)                            (4.18) 

                         w
1
(s

0
(n), k

0
(n), k

1
(n) = - (1-k

0
(n))(1-k

1
(n))s

0
(n)                      (4.19) 

                     P(K(N')| S(N)) = P(K(N)) = [p
0
(k

0
(n)), p

1
(k

0
(n), k

1
(n))]             (4.20) 

Observe that S may be considered as: S= s
0
(n)+εs

1
(n). 

The difference equation (4.10) is replaced by a system of m difference 
equations. The resulting structure seems complicated but using an NA calculus the 
result can be obtained directly from (4.10). Solving (4.10) one obtains by simple 
NA calculus solutions for systems as: (4.15), (4.16). 

The proposed approach appears as a method of finding new classes of solutions 
supplementing known classes of solutions, at the basic level m = 0. New solutions 
may be of similar type, as in ordinary bifurcation theory, or they may be different, 
as in the Hopf bifurcation of periodic solutions from stationary solutions of 
ordinary partial differential equations.  

The significance of the NA model can be seen first of all, in its ability to 
express the main qualitative behavioral features that are masked by the 
complicated structure of real valued detailed models, in a simpler, even if skeletal 
or generic form. According to the model categorification method, the predictions 
for the one level frame should be validated by the general multi-level theory. 
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Chapter 5  

Mixing in Chemical Reactors 

Abstract. The mixing plays a fundamental role in domains as fluid dynamics, 
chemical engineering, environmental studies and pharmacology.  

Discrete and continuous time models, based on model categorification method 
have been developed. The residence time distributions, RTD, for multi-scale 
imperfect mixing are expansions in terms of Meixner and Laguerre polynomials. 

The resulting RTD are compared to different models of imperfect mixing. 
Local anesthetic effects on membranes are presented in the general PSM 

framework. 
The SDG solution for imperfect mixing is exposed. 

5.1   Discrete Model of Imperfect Mixing 

5.1.1   Residence Time Distribution, RTD 

The problem of mixing in chemically reactive flows is of technological 
importance in chemical reactors, combustion and propulsion systems, 
environmental studies, pharmacology, biophysics and so on. The aim of the 
research in the domain of mixing is to obtain an understanding of the physics of 
mixing, of the effect of these motions on the transport properties, of the effect of 
chemical kinetics and to combine all these aspects in the form of a model of the 
process. Physical effects in chemical reactors are difficult to separate from the 
chemical rate processes. In trying to do so one usually distinguishes between 
chemical kinetics and fluid dynamics putting down the performance equation of a 
chemical reactor as follows: 

Output = f (input, kinetics, flow pattern) 
While turbulent mixing continues to be largely a very difficult subject, there 

exists a considerable need for the development of methods for the calculation of 
mean flow properties. A number of predictive methods have therefore been 
developed based largely on heuristic reasoning. Improvements in such methods 
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have arisen principally through the use of computational facilities. At present the 
mathematical description of the intricate process in a chemical device is usually 
worked out with the aid of approximate pictures of the internal structure of the 
flows (Fogler 2006).  

Two types of ideal flow are commonly used as limits of flow patterns in 
process vessels; these are the "plug flow" and the "perfectly mixed" flow. The 
conditions for the physical realization of the plug flow are fulfilled in a piston-
type flow, when it is assumed that no mixing takes place in the direction of flow. 
The model is employed to describe tubular apparatus with a large length-to-
diameter ratio. At the other extreme, perfect mixing assumes that the vessel 
contents are completely homogeneous and the outlet-stream properties are 
identical to the vessel-fluid properties. In chemical engineering the usual tendency 
is to come closer to conditions of perfect mixing by fitting apparatus with special 
mixers, baffle plates etc. Non-idealities of flow in industrial apparatus can be 
traced to the following most important reasons: presence of dead spaces, 
channeling or by passing, recycling or cross-flow streams, developed turbulence 
etc. Stagnant fluid or dead spaces represent regions with extremely poor 
contacting. A dead space will contain fluid elements for interval of time with an 
order of magnitude over the mean residence time. In bypassing or channeling 
some of the fluids slip or pass through the vessel considerably faster than others 
do. Bypassing may be found in flow through poorly packed vessels, through heat 
exchanger in two-phase operations etc. In recycling a certain amount of fluid is 
recirculated or returned to the vessel inlet. This type of flow may be desirable for 
example in auto-thermal reactions. When constructing a flow model for a given 
chemical reactor one starts by knowledge of the pattern of fluid passage through 
the reactor. This flow behavior could be determined by finding the complete 
history of each fluid element. It was pointed out that, instead of this complexity of 
the flow pattern, it is enough to know how long the fluid elements stay in the 
reactor, in other words, to determine the RTD of the fluid particles in the exit 
stream.  

The concept of RTD, has deeply contributed to chemical engineering science 
(Pethö and Noble 1982, Nauman 2004). It is obvious that RTD theory is not 
restricted to chemical engineering; it finds application in areas such as biology, 
pharmacology, hydrology and environmental sciences, reliability and so on 
(Jacquez 1985).  

The residence time of a fluid element is the time that elapses from the time the 
element enters the vessel to the time it leaves it. The age of a fluid element at a 
given instant of time is the time that elapses between the element's entrance into 
the vessel and the given instant. It is considered that a fluid element once entered 
the system cannot leave and reenter it again and steady state RTD holds. The 
RTD, E (t), is the age distribution frequency of the fluid elements leaving the 
vessel. This function is normalized so that: 

                                                    
∫
∞

=
0

1E(t)dt                                                 (5.1) 
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The moments of the RTD are given by:  

                                             ∫
∞

=
0

nn
dt)t(Ett                                              (5.2) 

The cumulative RTD function is:  

                                                
∫=
t

0

dt)t(E)t(F                                          (5.3) 

It gives the fraction of material introduced after a given instant that emerges at a 
time t later. This is the response of the system to a step change of tracer 
concentration in the input. The response to an impulse of tracer to the inlet gives E 
(t), by normalization. In fact, some experimental techniques for getting the RTD 
from experiments have been proposed. In many problems, however, it is difficult 
to obtain an analytical expression for E (t). Naor and Shinnar (1963) introduced 
the intensity function Λ (t) dt or the fraction of material of age t that will leave the 
system in the interval (t, t+dt) to give a clear insight into stagnancy. The relations 
between E(t), F(t) and Λ(t) are given by: 

                           

]

t

o

dt)t([exp)t()t(F)t(E ∫Λ−Λ=′=                                  (5.4)  

                                        

]

t

o

dt)t([exp1)t(F ∫Λ−−=                                    (5.5) 

                                              
)]t(F1ln[

dt

d
)t( −−=Λ                                  (5.6) 

The system with stagnancy has an escape probability that decreases over some 
interval because in such an interval the longer a particle stays the less likely it is to 
leave. The intensity function shows a maximum when there is stagnancy.  

Transfer functions proved to be useful in RTD studies. Denote by Y(s)=L(y(t)) 
and by X(s)=L(x(t)) the Laplace transforms of the exit y(t) and the entrance x(t) of 
a linear system. By definition G(s) = Y(s)/X(s) is the transfer function of the 
system. If the entrance is a Dirac pulse, x(t)= δ(t)  then  G(s)=Y(s).  

A significant development of the chemical engineering RTD concept for 
pharmaceutical purposes is ADMET.  

ADMET is an acronym in pharmacokinetics and pharmacology for absorption, 
distribution, metabolism, excretion, and toxicity and describes the distribution and 
the interactions of a pharmaceutical compound within an organism. The five  
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criteria all influence the drug levels and kinetics of drug exposure to the tissues 
and the performance and pharmacological activity of the drug. 

The chemical reactor for RTD studies corresponds to the organism for ADMET 
studies.  

For a compound to reach a tissue, it usually must be taken into the bloodstream 
- often via intestinal absorption - after being taken up by the target cells. This can 
be a difficult problem at some natural barriers like the blood-brain barrier, for 
example.  

Factors such as compound solubility, transit time, chemical instability, and 
inability to permeate the walls or membranes, can all reduce the extent to which a 
drug is absorbed after administration.  

Absorption significantly determines the compound's bioavailability. Drugs that 
absorb poorly when taken orally must be administered in some other ways, like 
intravenously or by inhalation. 

The compound needs to be carried to its effectors site, via the bloodstream, for 
instance. From there, the compound may distribute into tissues and organs, usually 
to differing extents. After entry into the circulation, either by intravascular 
injection or by absorption from any of the various extracellular sites the drug is 
subjected to a number of process, as distribution process that tend to lower its 
plasma concentration. 

Distribution is defined as the reversible transfer of a drug between 
compartments. 

Factors affecting distribution include blood flow rates and the drug binding to 
serum proteins forming a complex. 

Compounds begin to break down as soon as they enter the body. The majority 
of small-molecule drug metabolism is carried out in the liver by enzymes. As 
metabolism occurs, the initial compound is converted to new compounds, the 
metabolites. When metabolites are pharmacologically inert, metabolism 
deactivates the administered dose of parent drug and this usually reduces the 
effects on the body. Metabolites may also be active.  

Compounds and their metabolites need to be removed from the body. 
Unless the removal is complete, accumulation of foreign substances can 

adversely affect normal metabolism. 
There are several sites where drug removal occurs. Removal of drugs by the 

kidney involves different mechanisms as: glomerular filtration of unbound drug, 
active removal of free and protein-bound drug by transport filtrate concentrated in 
tubules for a favourable concentration gradient so that it may be reabsorbed by 
passive diffusion. 

Computational methods allow predicting the ADMET qualities of compounds 
through methods like Quantitative structure-activity relationship (QSAR).This is 
the process by which chemical structure is quantitatively correlated with a well 
defined process, such as biological activity or chemical reactivity. The route of 
drug administration critically influences ADMET. 
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5.1.2   Discrete Model for Residence Time Distributions 

The RTD for discrete-time measurements in flow systems exhibiting many scales of 
time particularly for systems presenting a number of parallel pathways with widely 
different residence time is described here. Denote by x (n) the input at the moment n, 
by y (n) the output at the same moment and by h the RTD function, then: 

                        ∑ ∞−
∞ ∗== )n(x)n(hh(n-k)x(k))n(y                       (5.7) 

Here “ *”  is the convolution mark and h(n-k) stands for the output at the moment 
n due to an input which is equal to unit at the moment k and is null for all the 
others. Several discrete-time studies have attempted to develop methods for 
interpreting inlet-outlet tracer tests in vessels and mixers with flow 
heterogeneities. The model developed in the following is based on the observation 
that perturbations of an RTD take place at different scales of time. Possible 
behavior of mixing systems could be classified using the number m of 
conditioning levels. Such levels correspond to a hierarchy of dead spaces in the 
sense that the space related to the level m appears as a dead space with respect to 
the space corresponding to the level m-1 but as short-circuit with respect to the 
space related to the level m+1. Intuitively a complex system presenting m parallel 
pathways with strongly different residence times should give rise to a hierarchy of 
m conditioning levels corresponding to m more slower motions. Obviously in this 
picture a scale of time is associated to each conditioning level.  

Fig. 5.1 shows an imperfect mixing system.  In the physical picture shown in 
Fig. 5.1 there exist three scales of time. The space corresponding to m=0 is active 
while those corresponding to m=1 and m=2 are more and more slow.  

A classical quantitative approach to the non-ideality of mixing is due Cholette 
and Cloutier (1959) who proposed several models for a real stirred tank consisting 
of a "perfectly mixed" region a "dead" or "stagnant" region and a certain fraction 
of the feed by passing both regions. In this model three scales of time have been 
considered. 

m=0

m=1

m=2
 

Fig. 5.1 Imperfect mixing 
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An NA frame for interpreting inlet-outlet tracer tests in discrete time will be 
proposed in the sequel.  

First, one translates by model categorification the discrete time n into the 
expansion N: 

                                 nw...nwnN M
M

1 ε++ε+=                                (5.8) 

The RTD density function h (n) is replaced by model categorification by the 
expansion H (N): 

                    )n(h...)n(h)n(h)N(H M
M

10 ε++ε+=                         (5.9) 

Here M is the (finite) number of scales of mixing, ε is an arbitrary small positive 
constant, w

m
, 0 ≤ m ≤ M are constants. Denote also N = [n, w

1
n,...,w

M
n], H(N) = 

[h
0
(n), h

1
(n),..., h

M
(n)] the expansions (5.8) or (5.9). The time N introduced here 

enables us to study changes at slower and slower scales of time. The evolution at 

the level m+1, performed during ε
m+1

 w
m+1

n units of time, appears as infinitesimal 

relative to the evolution at the level m, performed during ε
m
 w

m
n units of time. 

Replacing n by N, allows accounting for the fact that the interval elapsed between 
events occurs on many time scales. Consequently, the time is thought as a vector 
with two or more components, and no more as a scalar. The sequence w

m
 was 

introduced in order to improve the information on the inter-occurrence time. The 
structure of the RTD function is NA too. H (N) contains the term h

0
(n) 

corresponding to the basic mechanism of mixing indexed by m=0 and different 
corrections accounting for infinitesimals of this mechanism at different scales. 

Consider that the generic mechanism is the perfect mixing. The differential 
equation for the RTD function of a perfectly mixed vessel is: 

                                                  
ah

dt
dh −=

                                                (5.10) 

Here h(t) dt is the probability for a fluid element to have the residence time 
between t and t + dt, a=v/V where v is the volumetric flow rate and V is the 
volume of the entire complex system. In the NA frame it is necessary to translate 
(5.10) by model categorification method into the NA equation with finite 
differences: 

                                 
)N(AH

NN
)N(H)N(H

1
1

1 −=
−
−                                (5.11) 

Here N = [n, n..., n], N
1
 = [n-1, n-1,..., n-1], A = [a, 0,...,0]. The vectors N, N

1
, and 

A contains M+1 elements. The derivative is taken along the direction [1, 1,..., 1],  
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which corresponds to a physical complex system where a single step is performed 

at the m-th scale during ε
m

n  units of time. Applying the operations defined in the 
Appendix 1 (the structure of Neder) that is equating the coefficients of different 
powers of ε with zero, equation (5.11) is translated by model categorification 
method to the following system of M+1 difference equations: 

                             )1n(ah)1n(h)n(h 000 −−=−−                              (5.12) 

)1n(ah))1n(h)n(h())1n(h)n(h( m1m1mmm −−=−−−−− −−     (5.13) 

)1n(ah))1n(h)n(h())1n(h)n(h( M1M1MMM −−=−−−−− −−         (5.14) 

It should be emphasized that to obtain the elements of (5.12-5.14) one considered 
in all steps of the proof that there exists a finite and fixed number of scales, m,  0 
≤ m ≤ M.  

Consider that a fluid particle has the same probability to enter any scale of 
mixing. Consequently the initial condition is: 

                            1)0(h...)0(h)0(h M10 ====                              (5.15) 

From (5.13) and (5.15) it results the solution: 

                       Mm 0 ,!m),1,n(M)n(h m
n

m ≤≤αα=                  (5.16) 

Here α = 1-a, ),,n(M m αβ   are the Meixner orthogonal polynomials. The 

orthogonality relation is: 

    
me

m
mem

0n
n

n )1()(!m),,n(M),,n(M!n)( δα−αβ=αβαβ∑ βα β−−∞

=

    (5.17) 

Here:  (β)n= Γ (β+n)/Γ(β) with Γ the Gamma function. An explicit representation 
is: 

         ),nm1,n,m(F)n(),,n(M 1
mm

−α−−β−−−+β=αβ             (5.18) 

F is the hypergeometric function given by: 

...!2)1c(cz)1b(b)1a(a!1.cz.b.a1)z,c,b,a(F 2 ++++++=     (5.19) 

By experiments, measurements at the basic scale m=0 are obtained and the 
experimental RTD function is: 

                                                h
exp

 = [h
exp

,0,...,0]                                          (5.20) 

Here h
exp

 denotes the measured RTD. It is a real value. The general NA solution of 

the equation (5.11) is: 
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                                              H = [h
0
, h

1
,...,h

M
]                                            (5.21) 

Here h
m
 is given in equation (5.16). In order to compare the NA function H with 

the real data, hexp we need to use the series expansions given by equation (5.11) 

that is, to translate the contribution of all scales m=1, 2,..., M to the basic scale 
m=0. It results: 

                
[ ]∑=⎥⎦

⎤
⎢⎣
⎡ ∑=

==

M

0m
mm

M

0m
mm 0,...,0,hq0,...,0,hqh

                      (5.22) 

The coefficients q
m
 are constants. This is in fact a representation of the RTD using 

the NA orthogonal basic {[h
m
,0,...,0]}, m=0,...,M. (Appendix 1). According to 

(5.16) one obtains the computed RTD: 

                           
∑ αα=
=

M

0m
mm

n !m),1,n(Mq)n(h
                               (5.23) 

In this way the solution (5.21) obtained for particular N, N1, and initial conditions 

represents the basis for any other solution of (5.11). The constants qm, are related 
to the contribution of the m-th scale of the process. The new problem is to identify 
qm in order to minimize the distance between h

exp
(n) and h(n). Following Robert 

(1967), an NA distances d (h,g) = ||h-g|| is defined by: 

                                                     ||h|| = pw(h)                                              (5.24) 

with 0<p<1 and 

                                            w(h)=min {m; μ
m
(h) ≠0}                                  (5.25) 

Here: 

                                     
),1,n(M)n(h)h(

0n
jj α∑=μ

∞

=

                              (5.26) 

The NA distance d (h
exp

, h) is minimum, namely it is zero if: 

                                                   μ 
j 
(h

exp
-h)=0                                              (5.27) 

Equation (5.27) is verified when: 

                          
0),1,n(M)hqh( mm

M

0m
m

0n
exp =α∑−∑

=

∞

=

                         (5.28) 
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This is valid for any m≤M. Using the orthogonality property of the Meixner 
polynomials it results that: 

                 
∑ α=α−α
∞

=

−−

0n
mexpm

1m !m),1,n(M)n(hq)1(
                  (5.29) 

A main characteristic of the PSM model is its finitude as number of scales to be 
considered that is: q0≠0, …qM ≠0 but qM =0 if m≥M+1.This means that there exists 
a finite number of scales and that after the last scale the process is in no way 
scaled. A consequence of this fact is that the NA frame doesn’t discriminates 
between models with different number of scales of mixing.  

The practice is confronted with real field experimental data. In this case the 
best model will be obtained using a real objective function as for instance the sum 
of squares of deviations S (M):  

                                  
∑ −=
∞

=0n

2
exp ))n(h)n(h()M(S

                              (5.30) 

Here, hexp(n) represents the experimentally measured RTD whereas h(n) is 

calculated, for various M, using (5.23) and (5.29). This is the place where the real 
and “other than real” frames should be in touch. The “other than real” frame is 
useful to outlines the possible classes of solutions, the basic solutions 
corresponding to different scales. Confronting this with real data allows limiting 
the number of scales. After each model step, the confrontation with reality consists 
in establishing qm. 

Fig. 5.2 shows the discrete time scales and integrative closure for one cell. 
Fig. 5.2 illustrates the situation in which we may limit the system at only four 

scales of time. Any new level includes the previous ones.  The Meixner 
polynomials included at any new level are indicated as well as a hypothetical 
connection of the lower and top levels. It suggests that the ε4 terms will be 
neglected. 

Thirdness

Modality

n 
M0

n, εn
M0, M1

n, εn, ε2n 
M0, M1, M2

n, εn, ε2n, ε3n
M0, M1, M2, M3

 

Fig. 5.2 Discrete time scales and integrative closure for one cell 
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5.1.3   Local Anesthetic Effects  

The primary effect of chemical inactivation of the membrane functions by drugs 
or other chemicals consists of modifying the conformations of the active 
membranes components. 

Anesthetics are supposed to act on the excitable membrane in a charged form 
inside the nerve axon (Strichartz and Ritchie 1987).  

Some correlations of the exponential type have been proposed for the relaxation 
of the amplitude of compound action potential. An application of multi-scale 
models concerns some experiments describing the decrease of the action potential 
by procaine (Iordache and Frangopol 1988a, Iordache et al. 1988a). 

Table 5.1 shows experimental data, the action potential relative amplitude of 
procaine 10mM as a function of time step n. 

The value of α in eq. (5.23) may be correlated to the mean residence time, 
)1(1n α−= . Taking 25.6n = it results α= 0.84 (the time step size is 5 min). 

Table 5.1 Action potential amplitude for the anesthetic effect 

experiment 1 .85 .71 .58 .50 .41 .35 .28 .22 .18 .14 .10 .08 .05 .04 
Eq.(5.23) 
M=0 

.88 .74 .62 .52 .44 .37 .31 .26 .22 .18 .15 .13 .11 .09 .07 

Eq.(5.23) 
M=1 

.96 .80 .66 .54 .45 .38 .31 .25 .21 .17 .14 .12 .09 .07 .06 

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

 

Table 5.2 shows the objective function S (M) for different number of scales, M. 
This allows selecting a model that is a truncation number M. 

Table 5.2 Objective function for single compartment model 

Nr of scales, M 0 1 2 
S(M) 6.10-4 1.7.10-4 0.2 

 
 
We conclude that M=1 provides a satisfactory picture of the studied 

phenomenon.  
For M=1 the coefficients are q0=0.878 and q1=0.081. 
Table 5.1 compare also the perturbed model (M=1) and the ideal model (M=0). 
M=2 shows uncorrelated results. 
If the statistics of flow and kinetics as well as the coefficients qm, are known the 

multi-scale modeling method could represent a progress towards an a priori design 
of anesthetic treatments.  The existence of more scales of the processes suggests 
that the excitation or inhibition of a given scale may be an efficient mean for drug 
kinetics control. 
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To take into account stochastic character at different scales confidence intervals 
of variables must be added to ensure significant conclusions. 

5.1.4   Stochastic Features. Real Field Probabilities 

There are systems that exhibit random responses for deterministic signals. 
Systems in which the fluctuations are strong enough to cause different tracer 
experiments to yield different results are encountered in fluidized beds in turbulent 
combustion, multi-jet reactors, mixing vessels etc. Firstly consider that only wm 
are real random variables. This implies that the coefficient qm is random too. 
Obviously, in this case the equation (5.23) is replaced by the following stochastic 
RTD: 

                 !m),1,n(M)(qh(n, m
M

0m m
n ω∑ ωα=)ω =

                (5.31) 

Here Ω∈ω  a probability space. The mean of h (n,ω) is given by: 

                       !m),1,n(Mq)n(h m
M

0m m
n α∑α= =                     (5.32) 

An approximation of its variance is: 

               

2
m

M

0m
m

n2 )!m),1,n(M)).((q(V),n(h(V αω∑α=ω
=

               (5.33) 

If for instance, qm is supposed to be discrete independent identically distributed 

random variable, taking the values q
m,j (j ∈ J) with the probability p

j
, then it 

results: 

                                              
j,mq

j
jpmq ∑=                                         (5.34) 

                                   

2
m

2
j,m

j
jm )q(qp)q(V −∑=                              (5.35) 

In turbulent mixing the random behavior of the flow rate must be accounted for. In 
this case α is a random variable and stochastic RTD results too. The main problem 
is to obtain the statistics of RTD at different scales of mixing. Denote by π

j the 

probability that the value of α is α
j
, j ∈ J. Starting from the first equation (5.12) 

the mean of h0(n) is obtained (Iordache and Corbu 1986): 

                   
)1n(0h)1n(0h)n(0h jj j −α=−απ= ∑                    (5.36) 
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Here: 

                                               
∑ απ=α

j jj                                            (5.37) 

Using also the condition (5.15) it results at the basic scale 

                                             
n)()n(0h α=                                            (5.38) 

The second order moment is: 

                     
)1n(2

0h
2

)1n(2
0hj

j
j)n(2

0h 2 −α=−απ=∑               (5.39) 

                                             

2

j
jj

2 ∑ απ=α                                           (5.40) 

Considering, that 1)(h 0
2

0 =  , it results  n2
0 )()n(2h α=   

Denote by V
m
(n) the variance of h

m
(n). Then: 

                     
n2)((2))n(0h()n(2

0h)n(0V n)2
α−α=−=                (5.41) 

Taking α  instead of α in all equations of the system (4.13) it results: 

                                 !m/),1,n(M)()n(h m
n

m αα=                              (5.42) 

The variance at the m-th scale is approximated by: 

         

k2
1m

1n

0k
1mm )))(1kn(V)kn(V)n(V α−−+−∑= −

−

=
−

            (5.43) 

Starting from  )n(hm   and )n(Vm  for constant values of q
m
, the mean of RTD 

results. Assuming that the scales of mixing are statistically independent the mean 
of RTD is obtained: 

                                     )n(hq)n(h m
M

0m m∑= =
                                   (5.44) 

The variance of RTD is: 

                                   )n(Vq)n(h(V m
2M

0m m∑= =
                             (5.45) 
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Due to inherent experimental errors it is difficult to establish the number of scales 
of mixing. In some cases the intensity function could be useful. This is defined as: 

                                         
)n(hlog

n
1

)n(log =Λ
     

                                (5.46) 

In the case of a model without scales, that is when M = 0, it results that α=Λ . 
This is an immediate consequence of the model categorification method. If M ≥ 1 
then log Λ(n) is varying with n and gives information about the number of time 
scales. From equation (5.44) it results that: 

)),1,n(Mq...),1,n(Mq),1,n(Mq(log(
n
1

log)n(log MM1100 α++α+α+α=Λ     (5.47) 

Therefore α=Λ  for each solution of the equation: 

       1),1,n(Mq...),1,n(Mq),1,n(Mq MM1100 =α++α+α           (5.48) 

It is known that the zeros of ),1,n(Mm α , lye on the positive real axis and that 

there are exactly m zeros of ),1,n(Mm α . Consequently, the equation (5.48) has 

ms ≤M solutions, where α=Λ . The number ms correspond to the lowest ranking 

level where the expansions are truncated. Each decreasing branch of the intensity 
function outlines the existence of a stagnant zone. It is a hierarchy of such zones. 

5.1.5   PSM Frame for Discrete Model 

The mixing model will be presented in the general frame of PSMs, the 
conditioning levels corresponding to different scales of time. Randomness of the 
mean residence time is also accounted for. Denote by A

j
= [a

0j
, a

1j
, a

2j
,…] the set of 

values of the residence time.  Suppose that the stochastic process at each 
conditioning level has a proper scale of time that the unit of time on the m-th scale 

is ε
m

 and that the states and the conditions are elements of the NA frame. The 
complex system evolution starts from H (N

0
) where N

0
=O=[0,0,...]. In other 

words, H (N
0
) = [h

0
(0), h

1
(0), h

2
(0),...] describes the initial particle distribution on 

different scales of mixing. With possibility P(A
0
| H(N

0
))=P

0
 the condition is A

0
 

that is the residence time A
0
=[a

00
, a

10
 , a

20
,…]  is selected for the next step 

evolution. This could be an NA probability for instance if A
0
= [a

00
, a

10
, a

20
,…]  
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then the possibility is P(A
0
 ) = [p

0
, p

1
, p

2
, 0,… ] with pi probabilities associated to 

scales. This means that only the scales m=0, m=1 and m=2 are activated.  
An evolution for a time interval from N

0
=[0,0,0,...] to N

1
=[1,1,1,...]  takes place 

at this level. The resulting state is H (N
1
) = H (N

0
)-A

0
(N

1
-N

0
)H(N

0
). Note that H 

(N
1
) = [h

0
(1),h

1
(1), h

2
(1),...]. Then with possibility P (A

1
| H(N

1
))=P

1
 the condition 

A
1
 of evolution is  selected. On account on this, the new state of the system is 

described by H (N
2
)=H(N

1
)-A

1
(N

2
-N

1
)H(N

1
). We may have N

2
=[2,2,...] and 

H(N
2
)=[h

0
(2), h

1
(2), h

2
(2),...].  

The process is continued indefinitely.  
It is a SKUP for which the states are S=(H(N)={[h

0
(n), h

1
(n), h

2
(n),...]}, the 

conditions  are K=(A(N)={[a
0j

, a
1j

 , a
2j

,…]}, the operators  are  defined by 

U(H(N), K(N))=H(N'), N'≠N where H(N')=H(N)-A(N).(N-N'). H(N) and the 
possibilities are given for instance by P(K|H(N))=Pij with Pij = [0, 0, …,0, p

i
, 

0,…,0, p
j
, 0,…], if only the levels i and j are activated and the corresponding 

residence times are given by a
i and  a

j
. 

5.1.6   Comparison with Theory 

The described method could use, in equation (5.29), theoretical models for the 
RTD, h(n), to obtain qm. It is known that the classical "perfect mixing" model 

n)()n(0h α=  fails to describe accurately flow complex systems encountered in 

engineering applications. Cholette and Cloutier (1959) proved that a model of the 
type: 

                                              h(n) = γ β
n

 + (1-γ) δ(n)                                   (5.49) 

with β≠α is better suited. Here γ denotes the flow split between the perfectly 

mixed part β
n

 and the short-circuit δ(n). δ(n) denotes the discrete Dirac delta 
function characterized by: 

                                        

1)n(
0n

=∑δ
∞

=

        
)0(f)n()n(f

0n
=∑ δ

∞

=

                      (5.50) 

The coefficients qm have been derived, as pointed above, with equation (5.29) 

resulting: 

                         
)1(m)

1
(

1

1
mq γ−+

β−
β−α

β−
α−

γ=                             (5.51) 
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The RTD function is in this case: 

  

)n()1(!m/).1,n(M)
1

(
1
1

)n(h m

M

0m

mn δγ−+α∑
β−
β−α

β−
α−

αγ=
=

     (5.52) 

Observe that 
β−
β−α≈ε

1
 . It can be shown that the number M of scales is a function 

of ε for a model (5.52) as accurate as the Cholette and Cloutier model (5.49).  
Comparison of perfect mixing with Cholette-Cloutier model shows that the 

number of scales is a function of ε. If we take M=1 for 0 <ε≤ 0.02, M=2 for 0.02 
<ε≤ 0.05 and M=3 for 0.02 <ε≤ 0.15 the NA model seems to be as accurate as the 
Cholette-Cloutier model.  

The physical meaning of this fact is that when ε is larger, that is when β is more 
and more different from α, the number of scales, which correct the basic model of 
“perfect mixing”, is increasing. 

5.2   Continuous Model of Imperfect Mixing 

5.2.1   The Continuous Model 

Cholette and Cloutier (1959) proposed several models for a real stirred having 
three scales of time: a perfectly mixed region a completely dead region and a 
fraction of the feed by passing both regions. They considered several possible 
cases including those where movement of fluid was allowed between the perfectly 
mixed region and the stagnant zone and vice-versa. The residence time for the 
particles of fluid from the completely dead space is infinite, while for those 
bypassing the system it is zero. This model represents a first approximation of the 
real flow. To avoid these conceptual difficulties of the Cholette and Cloutier 
model an NA model is investigated in the following (Iordache et al. 1988b). 

An NA framework is useful in order to take into account the existence of 
different scales of time. The usual continuous time t is translated by model 
categorification method to T: 

                                tw...twtT M
M

1 ε++ε+=                                    (5.53) 

Here M is the number of scales and wm, 0 ≤m ≤ M, are real constants. Denote also 
by T = [t, w

1
t,..., w

M
t], the vector of time introduced by (5.53). The replacing of 

the usual variable of time t by the vector T in order to study changes at different 
scales of time is a classical technique. It is the support of the model 
categorification method. Vectors as T will be considered as elements of the 
classical NA structure of Neder. The NA structure of T induces a similar structure 
of the RTD function that describes the mixing in the hydrodynamic complex 
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system. The usual RTD function is translated by model categorification to the NA 
function: 

                       )t(h...)t(h)t(h)T(H M
M

10 ε++ε+=                       (5.54) 

For the sake of simplicity, it is considered that the basic mechanism is perfect 
mixing that is as soon as a particle of fluid enters the system its probability to 
leave out is independent of the past history. A system with many scales of time 
should be described by a NA differential equation similar with equation (5.10): 

                                                   
AH

dT
dH −=

                                            (5.55) 

Here the real constant was translated to the constant element of the NA structure, 
A = [a, 0,..., 0]. The derivative of H(T) is defined as : 

                                TT
)T(H)T(H

lim)T(H
1

1
T1T −

−= →
                            (5.56) 

Here T = [t, t,..., t] and T
1
 = [t

1
, t

1
,..., t

1
]. The derivative is taken along the direction 

[1, 1,..., 1] that is a single step is performed at the m-th scale during ε
m
t units of 

time. Obviously, H(T) = [h
0
(t), h

1
(t),..., hM(t)], H(T

1
) = [h

0
(t

1
), h

1
(t1),..., h

M
(t

1
)]. 

Because  
T

1
-T = [t

1
-t, t

1
-t,..., t

1
-t], it results: 
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      (5.57) 

Using (5.56) and (5.57) equation (5.55) becomes: 

        [h'
0
(t), h'

1
(t)-h'

0
(t),..., h'

M
(t)-h'

M-1
(t)]=- [ah

0
(t), ah

1
(t),..., ah

M
(t)]          (5.58) 

This may be rewritten as: 

 )t(ah)t(h)t(h),...,t(ahh)t(h),t(ah)t(h M
'

1M
'
M1

'
0

'
10

'
0 −=−−=−−= −    (5.59) 

Instead of a single equation as usually encountered in the RTD analysis, in the NA 
frame a system of equations results. In the above computations all the expansions 
are truncated at the same finite level. The initial condition for (5.59) is: 

                                      h
0
(0) = h

1
(0) = ... = h

M
(0) = a                                 (5.60) 
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This condition imposes the same probability for a fluid particle to enter any scale 
of mixing. The value a, is necessary to obtain the classical results when  
M = 0. It is condition imposed by the model categorification method. The solution 
of the problem (5.59), (5.60) is as follows: 

                     0m),atexp().at(aL)t(h mm ≥−=                         (5.61) 

Here Lm denotes the Laguerre polynomial defined as: 

                        
))xexp(x(

dx

d
!m

)xexp(
)at(L

m
m

m

m −−=
                          (5.62) 

The general NA solution of the equation (5.57) is: 

                                              H = [h0, h1,..., hM]                                         (5.63) 

H is an NA function. 
In order to compare this NA function with experimental results the series 

expansion given by equation (5.54) are used. It results: 
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m
comph                                    (5.64) 

In hcomp we put the contributions of different levels in Hcomp at the basic level since 
we have to compare with real values.  

In a more general form one obtains: 

         

[ ]0,...,0,mh
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0m
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⎡

=

=                (5.65) 

Here qm= εm. The new problem is to identify qm in order to minimize the distance 

between hexp = [hexp, 0,..., 0] and hcomp. An NA distance should be defined 

using a NA semi-norm. Restricting the analysis to our case the NA norm (Robert 
1967) is: 

                                                  ||h|| = pω(h)                                                 (5.66) 

with 0 < p < 1 and 

                     ω(h)=m if μj=0 , j<m≤M : ω(h)=∞ if μj=0, j≤M                         (5.67) 
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Here:  

                                       
dt)at(L)t(h)h(

0
jj ∫=μ

∞                                      (5.68) 

The solution of the equation (5.55) can be written as: 

                                  
 ]0...,0,[hV)T(H m

M

0m

m∑=
=

                                   (5.69) 

Here hm are given by the equation (5.57) and V = [0,1,0,...,0]. The distance 

between two RTD functions h and g is defined by : 

                                                   d(h,g) = ||h-g||                                            (5.70) 

The distance between hexp and hcomp, d(hexp,hcomp) is minimum namely it is 

zero, if  μm(hexp-hcomp)=0 for any m ≤ M, that is when : 

                        
0dt)at(L)hqh( mm

0

M

0m
mexp =∫ ∑−

∞

=

                           (5.71) 

for any m ≤ M. In this case, ω (hexp-hcomp) → ∝ and ||hexp-hcomp||=0. Using 

the orthogonality property of the Laguerre polynomials it results that: 

                               
0dt)at(Lhq m

0
expm =∫=

∞                                      (5.72) 

The mathematical problem is to use the set {[hm,0,...,0]}, m=0,..., M as an NA 

orthogonal basis able to represent (uniquely) different RTD functions H(T) as 
given by (5.69).  

Observe that [hm, 0,..., 0] forms a NA orthogonal basis of X if: 
||Σiqi[hi,0,..., 0]||=maxi ||qi [hi ,0,..., 0]|| with qi ∈K and [hi,0,..., 0] ∈X. Here 

X is the set of all finite linear combinations of elements of the type [hm (t),0,..., 0] 

and K is the valuated structure. General results concerning the use of a NA 
orthogonal basis to obtain solutions for NA differential equations as (5.55) are due 
to Gruson and van der Put (1974) and Monna (1970). Their results allow 
considering more general initial conditions and definitions of the derivative.  

It should point out that qm 
, m=0, 1..., M, computed by (5.72) minimize the 

above defined NA distance. Using different values of M, the number of scales, 
different models have been obtained.  

 



5.2   Continuous Model of Imperfect Mixing 89
 

This is the place where the real and “other than real” frames are in relation. The 
“other than real” frame is useful to outline the possible classes of solutions, the 
solutions corresponding to different scales. Confronting this, with real data allows 
limiting the number of scales.  

After each model step, the confrontation with reality consists in establishing qm. 
The NA frame cannot discriminate between them, because in all cases the norm 

of the deviation between the model and the experiment is zero. The sum of 
squares of deviations or other real norms, are useful to choose one of some models 
being equivalent in the NA frame.  

Each of the frame, “other than real” and real one has its utility. 
Observe that the one level model is the conventional one-cell perfect mixing 

model. 
This is a general condition for model categorification method. 

5.2.2   PSM Frame for Continuous Model 

The continuous time mixing model will be presented in the general frame of 
PSMs, the conditioning levels corresponding to different scales of time. 
Randomness of the mean residence time a, is accounted for. Denote by {aj} the set 

of values of the residence time. Suppose that the stochastic process at each 
conditioning level has a proper scale of time that the unit of time on the m scale is 

εm and that the states and the conditions are elements of the NA frame K. The 
complex system evolution starts from H (O) where O= [0, 0,...]. H(O)=[h0(0), 

h1(0), h2(0),...] describes the initial tracer particle distribution on different scales  

of mixing. With possibility P(K(O) | H(O))=P0 ,the condition is K(O) that is the 

level m=0 and the residence time a0 is selected for the next step evolution. It 

results that K(O)=[ a0, 0, 0,...]. One can consider that P0 = [1,0,…]. 

An evolution for a time interval from O=[0,0,...] to T1=[Δt, 0,...]  takes place at 

this level. It is a unitary step at the basic level m=0. The resulting state is 
H(T1)=H(O)-K(O).H(O)(T1-O). Observe that H(T1)=[h0(Δt), h1(0), h2(0),...]. 

Here h0(Δt)-h0(0)= -a0h0(0). Then with possibility P(K(T1)| H(T1))=P1  

the condition K(T1) of evolution that is the level m=1 and the  residence  

time a1 is  selected at this level. For  instance P1 = [0,1,…], K(T1)=[0, a1,0,...]. 

On account on this, the new  state of the complex system is  
described by H(T2)=H(T1)-K(T1).H(T1).(T2-T1). Here T2=[Δt, Δt,0,...] and  

H(T2)=[ho(Δt), h1(Δt), h1(0),...]. Moreover:(h1(Δt)-h1(0))-(ho(Δt)-ho(0)) 

= -a1h1(0). The process is continued indefinitely.  We are in this case faced with a 

SKUP in which the states are S=(H(T))={[ho(t), h1(t), h2(t),...]}, the conditions  

are K=(K(T)) )={[ao(t), a1(t), a2(t),...]}, the operators  are U(H(T), K(T))=H(T'), 
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where H(T')=H(T)-K(T).H(T).(T’-T) and the possibility are P(K(T)|H(T))=Pi if 

the activated levels are i and j and the residence times are ai. Specific to such 

frames is the significant effect of changing the number of levels. 

5.2.3 Comparison with Theory  

The RTD of the Cholette and Cloutier model is: 

                                 h(θ) = γ2α exp (-γαθ)+ (1-γ) δ(θ)                                 (5.73) 

Here 
t
t=θ  The two parameters are the flow split 

v
VR=γ  and the volume ratio 

RV
V=α  Here v is the volumetric flow rate V is the volume of the system and the 

index R refers to the perfectly mixed part. With h(θ) given by (5.73) it results : 

                                )1(m)
1

1(mq γ−+
αγ

−γ=                                 (5.74) 

For the sake of simplicity the analysis is restricted to systems without by pass. 
However it should be emphasized that by-pass can be important especially at low 
levels of agitation. In this case the RTD function is: 

                
)(L)

V
V

1()exp()(h m

M

0m

mR θ∑ −θ−=θ
=

                        (5.75) 

The truncation number M cannot be identified in the NA semi-norm and could be 
determined through the least squares method resulting the values 1 > VR/V ≥ 0.98 

if M = 1, 0.98 > VR/V ≥ 0.67 if M = 5. Consider for instance the case VR/V = 

0.90. The sum of squares of deviations of the NA model with respect to the 
Cholette and Cloutier model is a function of M; when M increases from 0 to 3 the 
above sum decreases sharply, while for values of M larger than 3 it remains 
constant being practically zero.  

This result should be correlated with the suggestion to limit the number of 
levels of investigation to just four. 

Fig. 5.3 shows the continuous time scales and integrative closure for one cell. 
Fig. 5.3 illustrates the situation in which we may limit the system at only four 

scales of time. This corresponds to integrative closure hypothesis. Any new level 
includes the previous ones.  The Laguerre polynomials included at any new level 
are indicated as well as a hypothetical connection of the lower and top levels. 

It suggests that the ε4 terms may be neglected. 
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Fig. 5.3 Continuous time scales and integrative closure for one cell 

The number of scales of time increases when completely dead region increases, 
that is when VR/V decreases. As a measure of concordance between the Cholette 
and Cloutier model and the NA one the following index is defined: 

              

5.0)dt2))t(

0

CCh(/5.0)dt2))t(

0

NAh)t(CCh((I ∫∫
∞∞

−=                 (5.76) 

This is practically zero (less than 10-6). Here hCC is given by the Cholette and 

Cloutier model whereas hNA (t) is the NA model. A similar index computed for 

the Cholette-Cloutier model and the "perfectly mixed" one has values, for 0.67 ≤ 
VR/V ≤ 1, up to 0.26. The NA model predicts the same mean residence time as 

the Cholette-Cloutier model that is VR/v, which is different from the mean 

residence time predicted by the perfectly mixed one, that is, V/v. B, the exit 
reactant concentration. For an irreversible first order reaction A→ B, the exit 
reactant concentration has been computed, as predicted by different models, and 
the results are listed in Table 5.3. 

Table 5.3 contains the RTD functions predicted by different models.  
Here cf denotes the feeding concentration, k the kinetic constant, cNA the 

concentration given by the NA model. For values of k V/v between 10-3 and 10+3 

the ratio between the predictions of the NA model and those of the Cholette and 
Cloutier model varies between 0.99 and 1.  

The ratio between the predictions of the "perfectly mixed" model and those of 
Cholette-Cloutier model varies between 0.66 and 1. These investigations show a 
fair agreement between the NA model and the Cholette-Cloutier model. The 
analysis has been restricted to the case VR/V ≥ 0.67 because values of VR/V < 0.67 
are considered irrelevant for a system with nearly perfect mixing.  
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Table 5.3 RTD functions predicted by different models 

Model Dimensional form Dimensionless form Exit 
concentration 
for  reaction  
A B 

Perfectly 
mixed )

V
tv

exp(
V
v

)t(h −=  )exp()(h θ−=θ  

v
kV
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c
c f

+

=
 

Cholette-
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V
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RR
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V
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Moments of the RTD could be obtained starting from h (t) given by (5.65). 

Denote by 
c
mt   the computed moment of order m of the residence time. It results: 

                     a
qq

t 10
c

−= ,         
2

2102
c

a

q2q4q2
t

+−=                        (5.77) 

                                 
iq)m

i(

m

0i

i)1(
ma

!mm
ct ∑

=

−=                                     (5.78) 

Taking into account the properties of the orthogonal polynomials it results that 
m
ct  contains qm. Consequently it is possible to interpret qm as usual in statistics 

in terms of means, coefficients of variation skewness, flatness and so on. But such 
interpretations are useful only for careful experiments. Otherwise it is hard to 
obtain physical insight into them. 

Suppose that applying the method presented here one obtains the RTD: 

                           ))1(qq)(exp()(h 10 θ−+θ−=θ                                (5.79) 
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Let us observe that for θ> (q0+q1)/q1 the RTD becomes negative. On account on the 
fact that in normalized cases, q0=1 and q1 is low, for instance q1=0.1, it results that 
this unphysical result characterizes only the very long time behavior. Negative 
probabilities are due to infinitesimal contributions. Notice that h (θ) dθ is  Events 
withthe probability of a residence time in the interval (θ, θ+dθ). negative probability 
and decreasing cumulative RTD is to be considered despite the fact that they appear 
as practically negligible. Experimentally measured decreasing cumulative RTD may 
correspond to de-mixing processes. In this way the developed theory allows to 
accommodate phenomena unexplained by more conventional approaches. 

5.2.4   SDG Solution for Imperfect Mixing 

The SDG frame allows s rigorous study of differential equations (5.55) 
characterizing the imperfect mixing (Kock and Reyes 2006, 2008). 

Consider a linear vector field on a microlinear and Euclidean R-module V 
(Moerdijk and Reyes 1991). 

Denote by { }0d|dD 2 =∈= R  the first order infinitesimals and by 

{ }0d)Nk(|dD 1k =∈∃∈= +
∞ R  the nilpotent infinitesimals. 

D∞ is the set of all infinitesimal elements of the number line. 
For any R-module V, we define the map V xV→VD given by (a, b)→[ d→a+d.b]. 

To say that V is Euclidean is to say that this map is a bijection; in other words, every 
tangent vector τ: D→V is uniquely of the form d→ a+d.b. The element b, is called 
the principal part of the tangent vector τ and a, the base point of τ. 

To say that the vector field is linear is to say that its principal part formation 
V→V is a linear map, denoted here by Γ. 

Kock and Reyes (2006) established the following proposition: 
Let a linear vector field on a microlinear Euclidean R-module V be given by the 

linear map Γ: V→V. Then the unique formal solution H(T) of the corresponding 
differential equation:  

                                             
)T(H(

dT

dH Γ=                                          (5.80) 

with the initial position v is the map D∞xV→V given by: 

                                          )v(e)v,T( TΓ→                                      (5.81) 

Here the right hand side means the sum of the following series which has only a 
finitely many non-vanishing terms, since T is assumed nilpotent. 

                 
...)v(3!33T)v(2!22T)v(TvH +Γ⎟

⎠
⎞⎜

⎝
⎛+Γ⎟

⎠
⎞⎜

⎝
⎛+Γ+=               (5.82) 

Here Γ2 (v) = Γ (Γ(v)) and so on. 
The solution (5.82) confirms that obtained by model categorification method. 
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Chapter 6  
Compartmental Systems 

Abstract. Several hydrodynamic systems can be viewed as consisting of 
interconnected flow regions with various types of flow in and between regions 
called compartments. 

The mixing in multi-scale compartmental systems is analyzed. Discrete and 
continuous time models are developed using model categorification method. 

RTD for tracer experiments in hydrological systems is described in terms of 
Laguerre polynomials. 

Local anesthetic effects on multi-compartmental membranes are studied. 

6.1   Compartmental Models 

With the motion of real flows, it may happen that none of the ideal hydrodynamic 
models permits a sufficiently accurate reproduction of the properties of the flow 
involved. Many flow system lies probably between perfect mixing and plug flow. 
For instance ideal flows are not adequate to provide a representative model for 
stirred tanks, fluidized beds and so on. In practice such processes can be viewed as 
consisting of interconnected flow regions with various types of flow in and 
between the regions (the so called combined or compartmental models) (Jacquez 
1985, Nauman 2004).  

Combined models may consist, for instance, of individual perfect mixing cells 
or plug flow and a stagnation zone, the cells being interconnected by cross, 
recirculating and by passing flows. The sizes of the various regions and the flow 
rates between and around the regions represent the parameters of the model. The 
parameters are determined on the basis of the experimental residence-time 
distributions functions. The large number of parameters used in compartmental 
models allows great flexibility in matching the response curve of these models to 
that for the real flow systems. So many possible compartmental models have been 
considered in practice that it is difficult to organize them. Table 6.1 presents 
compartmental models significant for chemical engineering studies.  
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Table 6.1 represents an outline of the problem (Aris 1982, Nauman 2004)). Of 
the combined models most commonly used in analyzing mass-transfer processes 
performed in columns (towers) a cellular model with back-mixing between cells 
finds application. 

Table 6.1 Compartmental models 

Type References 
Sequence of stirred tanks (Seinfeld and Lapidus 1974) 
With bypass (Naor and Shinnar 1963) 
In parallel (Wen and Fan 1975) 
With cross flow (Seinfeld and Lapidus 1974) 
With back-mixing (Seinfeld and Lapidus 1974) 
With stagnant region (Cholette and Cloutier 1959) 
With transport delay (Nauman and Buffham 1983) 
Arrays of stirred tanks (Wen and Fan 1975) 
General networks (van de Vusse 1962) 
Stochastic flows (Krambeck et al. 1967) 
Recycle systems (Nauman and Buffham 1983) 
Plug flow with diffusion (Levenspiel and Bischoff 1963) 
Combined stirred tanks and plug flow (Wolf and Resnick 1963) 

One complete mixing vessel and a plug flow reactor are the extremes cases. 
Intermediary flows between these two cases are approximated by n vessels in 
series. Vessels in series with a smaller number correspond to a flow reactor with a 
high mixing intensity. Therefore the performance of the reactor may be estimated 
by replacing it with that of n complete mixing vessels in series of equal volume. 
Consider for instance the cellular model of mass transfer on plates.  

The plate is divided in the direction of the liquid flow into a number of cells, 
assuming that complete mixing takes place in each of the cells and there is no 
mixing between them. It is also assumed that: 

 
i) The liquid and vapor rates are constant for each cell 
ii) At the inlet of each cell the vapor has one and the same composition 
iii) The number of perfect mixing cells depends on the liquid path, on the liquid 

viscosity, on the vapor velocity, on plate construction. 
 
Compartmental models find wide application in analyzing the flow liquid in 
agitated vessels. Recirculation flows appear in agitated vessels, therefore a 
separate class of models has been created, the so-called class of recirculation 
models. One of the advantages of recirculation models is that they consist of 
single type elements, that is, perfect mixing cells. A main parameter is the degree 
of recirculation q/Q, which is equal to the ratio of flow created by the impeller (the 
pumping capacity of the impeller is q) to the main flow entering apparatus Q. The 
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experimental and theoretical investigations conducted to correlation between 
pumping capacity and the geometry of the mixers. 

An illustrative example is the formula suggested by van de Vusse (1962) for 
flat-blade paddles and impellers: 

                                                 q = K w d
2
 b                                                   (6.1) 

Here b is the blade with, w the impeller speed, d the impeller diameter, K a 
proportionality factor depending on the kind of impeller, number and arrangement 
of blades. A simple recirculation model is a cellular model with recycles. The 
entire volume of the apparatus is divided into two zones: a perfect mixing zone 
around the impeller and the zone around one mixing cell (the remaining volume of 
the apparatus). The two zones are linked with a recirculation loop. However, 
single-loop models do not fully reflect the actual hydrodynamic processes 
occurring in agitated vessels. Some well-know compartmental models will be 
presented in the following. 

6.2   Discrete Models for a Series of Imperfectly Mixed Vessels 

The approach proposed here is to use a cascade of storage elements as shown in 
Fig. 6.1 as a general conceptual model describing the mixing process where each 
of the storage elements in the cascade is assumed to be uniformly mixed.  

Fig. 6.1 shows a cellular model 

0 1 i k

 

Fig. 6.1 Cellular model 

A system consisting of k+1 mixing cells connected in series each cells having 
equal volumes is considered now. The sum of the compartmental volumes is equal 
to the volume of the apparatus and the volumetric flow rate is constant. The 
system is described by the system of equations: 

                               
k i ;1)1i(ah)i(ah

dt

)i(dh
≤≤−+−=                             (6.2) 

Here h(i)(t) denotes the RTD function of the i-th cell. Here a = v/V where v is the 
steady flow rate and V the volume of each cell. Imperfect mixing signifies that 
more scales of time should be accounted for (Fig. 6.2).  
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Fig. 6.2 shows cellular models with imperfect mixing. 

0 1 i k

m=0

m=1

m=2  

Fig. 6.2 Cellular models with imperfect mixing 

For the model shown in Fig. 6.2 there are three scales of time. The space 
corresponding to m=0 is active while those corresponding to m=1 and m=2 are 
more and more slow. Moreover it is considered that the cells are identical.  

Denote by ⎥⎦
⎤

⎢⎣
⎡= )n()i(

Mh),...,n()i(
0h)N()i(H  the discrete NA RTD function of the 

i-th cell. The model categorification model is: 

ki1:)1N()1i(AH)1N()i(AH
1NN

)1N(iH)N()i(H
≤≤−+−=

−

−
           (6.3) 

The function )N()0(H refers to all mixing scales of the first cell. The following 

system of difference equations results: 

      
)1n()1i(

mah)1n()i(
mah)1n()i(

1mh)n()i(
1mh())1n()i(

mh)n()i(
mh( −−+−−=−−−−−−−     (6.4) 

This is valid for Mm0,ki0 ≤≤≤≤ .  
Consider the initial conditions: 

             
1)0()0(

Mh...)0()0(
1h)0()0(

0h ====                                      (6.5) 

                 
0)0()i(

Mh...)0()i(
1h)0()i(

0h ====   ki1 ≤≤                     (6.6) 

Thus in the i-th cell, 1≤ i≤k, no initial stratification of the fluid in scales of mixing 
is needed. The obtained solutions are: 

           
!m),1i,in(mMini)1)(n

i()n()i(
mh α+−−αα−=                  (6.7) 

α= 1-a. The general solution ofHere α the NA model is: 
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mqini)1)(n
i()n()i(h                (6.8) 

The NA model used to select the best model is: 

                                                      ||h|| = pw(h)                                              (6.9) 

with 0 < p < 1 and 

                                              w(h)=min {m; μm(h) ≠ 0}                             (6.10) 

where: 

                          

),1i,1n(jM)n(
0

)i(h)h(j α+−
∞

=μ ∑                             (6.11) 

Calculus should be performed for i-th cell.  
Using the orthogonality relations for Meixner polynomials and the NA norm it 

results:  

         
Mm0,!m),1i,in(M)n(hq)1)((

M

0m
m

)i()i(
m

miim
i ≤≤∑ α+−=αα−

=

−+         (6.12) 

Here h(i)(n) is the experimental or theoretical RTD for the i-th cell. 

6.3   Continuous Time Model 

6.3.1   Residence Time Distributions 

In real hydrological systems the mixing processes occurring during the flow make 
the whole process rather too complex for a mathematical formulation on the base 
of ideal models. Some aquifer systems can be considered as consisting of various 
component volume elements interconnected with each other. The physical model 
of the so-called multi-cell model consists in that the flow breaks up into a number 
of compartments connected in series. Such models seems to be advantageous in 
studies concerned with the use of environmental isotopes as tracer in regional 
hydrological investigations as they enable the study of average properties of the 
system on a time scale and do not require a detailed description of the parameters 
and the processes. The design of a given multi-cell model is determined by "a 
priori" knowledge of the flow system or by calibration procedure. If the multi-cell 
approach is applied to interpret the input-output time relations-ship of a given 
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system and if the prior knowledge is limited or lacking an arbitrary number of 
fitting parameters results. The multi-cell approach was used to model the transport 
of radiotracer in a large shallow aquifer (Zuber 1974, 1986, Berne and Thereska 
2004).  

The approach was used to model large and deep aquifers. On the basis of prior 
physical knowledge and determinations in samples taken from different sites and 
depths a three-dimensional network of cells was arranged. The calibration yielded 
the flow through boundaries the flows between the cells and the mean residence 
times. The multi-cell model was modified by introduction of "dead cells" which 
took into account a possible effect of diffusion into zones with no net flow. A 
corrective term should be introduced to transit time through each cell to account 
for a possible delay of tracer when the multi-cell approach is used to a complex 
system of fissured rocks with a porous matrix. In general it seems that the multi-
cell models are gaining a wide acceptance due to their easy use. When they are 
used to correlate tracer data distributed in space, their use justified through the 
assumption of good mixing in cells is questionable. The NA model developed in 
the following is valuable when the flow could be separated into zones with 
appreciable but finite scales of time. In many hydrological systems there exists 
"stagnant water" and short-circuiting. The zone corresponding to a given mixing 
scale appears as stagnant relative to the portion of flow that travels much more 
rapidly from entrance to exit and as a short-circuit with respect to the portion of 
flow that moves more slowly. 

It is assumed that the "imperfect mixing" takes place in each of cells and that 
there is no mixing between the cells (Iordache et al. 1988a, Iordache and 
Frangopol 1990, Iordache et al. 1991). The number of ideal cells k is a parameter 
characterizing the real flow. If the cells are of the same volume, the sum of the 
volumes is equal to the volume of the apparatus and the volumetric flow rate is 
constant, the multi-cell model is described by the system of equations: 

                               
k i ;1)1i(ah)i(ah

dt

)i(dh ≤≤−+−=                           (6.13)  

Here h(i)(t) denotes the RTD function in the i-th cell and a=v/V where v is the 
steady flow rate through the system and V is the volume of each cell. By model 
categorification method, one replaces the time t by the expansion: 

                                  tw...twtT M
M

1 ε++ε+=                                 (6.14) 

that is T = [t, w
1
t,..., w

M
t], and the RTD function h(i)(t) by the expansion: 
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A system with many scales of time will be described by model categorification by 
the system of NA differential equations: 

                     
k i 1 ,)1i(AH)i(AH

dT

)i(dH ≤≤−+−=                           (6.17) 

The mode results by the model categorification method. 
Here a is translated to the constant vector A = [a, 0,..., 0]. Taking T = [t, t,..., t] 

and T1 = [t-Δt, t-Δt,..., t-Δt] in the i-th equation of the system written: 

      )1TT)(1T()1i(AH)1TT)(1T()i(AH)1T()i(H)T()i(H −−+−−=−    (6.18) 

Using the rule of product of the NA structure K of Neder (Appendix 1), letting  
Δt →0, the system (5.3.6) is translated into: 
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…….. 
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mh( −+−=′−−′   , ki2 ≤≤                (6.20) 

It is considered that in the i-th cell, i ≥ 2, no initial stratification of the fluid in 
scales of mixing appears. Thus the initial conditions are: 
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The solution is: 
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Here )at(L )i(
m  denotes the Laguerre polynomials )at(L)at(L m

)0(
m = . Taking  

i = 0 but M→∞ the solution obtained for imperfect mixing in a single cell results.  
Contrary, taking M = 0, i →∞ the solution for a series of cells with perfect 

mixing is obtained.  
The vectors: 
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represents a NA orthogonal basis of RTD functions. Denote by X the NA normed 
valued space of RTD functions. Any RTD is represented uniquely using the 
elements of  

                                       { } [ ]{ }0,...0,hh )i(
m

)i(
m =                                    (6.25) 

The coefficients are from the valuated structure K. Observe that H ∈  X the 
solution of (6.3.5) could be represented uniquely as: 
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Here V = [0,1,0...,0]. 
In experiments we are faced with measurements at the basic level that is with 

RDT of the type: 

                                            hexp = [hexp,0,...,0]                                            (6.27) 

Here hexp denotes the measured RTD.                                                                  
The most general form of an RTD function is in this case: 
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An equivalent form is: 
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Here θ= at. The new problem is to determine the coefficient qm to ensures the 
minimum of the distance between hexp and hcomp. It is necessary to define a norm 
on the space X of RTD functions. Let:  

                                                     ||h|| = pw(h)                                             (6.30) 

with 0 < p < 1 and: 

                                               w(h)=min {m; μm(h) ≠0}                              (6.31) 

Here: 
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Calculus should be performed for i-th cell.  
The associated distance is defined by: 

                                                   d(h,g) = ||h-g||                                            (6.33) 

Here h, g∈X. Therefore: 
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Using the orthogonality property of the Laguerre polynomials it results that: 
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Due to the fact that the distance (6.33) is null the best model that is, a truncation 
number M is selected using the sum of squares of deviations between theory and 
experiment. 

Fig. 6.3 highlights the time scales and integrative closure concept for multiple 
cells. 

Fig. 6.3 illustrates the situation in which we may limit the system at only four 
scales of time. This corresponds to integrative closure hypothesis. Any new level 
includes the previous ones. The Laguerre polynomials included at any new level 
are indicated as well as a hypothetical connection of the lower and top levels. It 
suggests that the ε4 terms will be neglected. 
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Fig. 6.3 Time scales and integrative closure for multiple cells 

6.3.2   Interaction of Chemical Compound with Membranes 

Stochastic compartmental models are widely used in modeling processes such as 
drug kinetics (Jacquez 1985, Yu and Wehrly 2004).  
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In many biochemical experiments one observes the decay of some ligands 
populations due to capture by appropriate systems of compartments.  

Important examples appear in the study of drug membrane interactions. Some 
classes of drugs as the protein-linking aldehydes and the local anesthetics have 
well known relaxation effects on the functions of membrane ionic channels and 
pumps. 

The multi-compartment case is studied herein. It should be emphasized that a 
compartment may be defined as indicating not only the location but also the 
change of state of a material object. The transport of such an object includes 
changes of position and change of its nature. 

Table 6.2 Relative height of the compound action potential 

Time 
min 

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 

experiment 1 0.99 .97 .95 .81 .72 .62 .53 .45 .37 .25 .19 .10 .04 .02 

Eq.(6.29) 
M=0 

- .97 .83 .79 .69 .59 .50 .42 .35 .29 .24 .20 .16 .13 .11 

Eq.(6.29) 
M=3 

- 1 .98 .93 .84 .74 .62 .51 .41 .32 .25 .18 .13 .10 .07 

 

The prediction of the model are discussed with respect to the effect of a cross-
linking aldehydes, glutaraldehyde, GA, 0.25% on the amplitude of the compound 
action potential of frog sciatic nerve (Iordache et al. 1988a). 

Table 6.2 shows the experimental results, that is the relative height of the 
compound action potential as a function of time. 

Table 6.3 shows the objective function S(M) for multi-compartmental models. 

Table 6.3 Objective function for multi-compartments model 

M 0 1 2 3 4 5 6 
S(M) .27 .21 .05 .03 .03 .025 .02 

In this case the relaxation rate a, is obtained taking  τ+= )1k(a      with τ  
the mean relaxation time of the studied system and k+1 compartments. In this case 
τ =70.275 min. 

It has been found that two compartments and four scales (M=3) provide a 
satisfactory picture of the relaxation process as the objective function S(M) stays 
practically unchanged for M≥3. It resulted q0=0.98, q1=-0.055, q2=-0.226, 
q3=-0.133. 

The purely exponential decay corresponding to M=0 compare badly with the 
experimental data especially for long times. 
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The above results could be interpreted in the form of a “label” of a specific 
interaction where the coefficients qm, depends on the contribution of the m-th 
scale of the relaxation process. It is possible to interpret the two compartments 
obtained in this correlation in terms of the so-called “two-membrane theory that 
considers the skin as consisting of two functional membranes in series, the apical 
membrane and the latero-basal membrane.  

An interesting feature is that the spectrum qm, is similar for various cross-
linking aldehydes and this similarity supports the assumption of a unique physical 
mechanism of their interactions with the membrane. 

The theory may be applied to a broad class of biophenomena. Possible 
applications include different types of inactivation of membrane functions, the 
bacteria killing by disinfectants, the ion-channel kinetics and so on. 
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Chapter 7  
Turbulent Mixing 

Abstract. Knowledge of turbulent dispersion plays a significant part in various 
problems of chemical engineering, pharmacology and hydrology investigations 
related to protection of the environment. 

Turbulent mixing, in multi-scale systems is studied here. 
Wavelets based on Hermite polynomials are the solutions obtained by model 

categorification. 
The SDG solution for dispersion and the dispersion effects associated to 

convective flows is presented. 
The energy intermittency by vortex line stretching characteristic to turbulent 

flow shows in multi-scale situations new regimes of instability. 

7.1   Dispersion  

7.1.1   The Dispersion Equation 

Hydrodynamic dispersion is a classical topic of statistical physics and serves as a 
useful tool to improve the understanding of various phenomena such as mixing, 
oil recovery, pollutant transport and generally speaking, the spreading of a tracer 
in a medium of complex and disordered structure. The axial dispersion model is a 
popular feature of chemical engineering analysis. It has been used in a variety of 
dispersion problems, in analysis of tubular chemical reactors in numerous 
applications of continuous separation processes, in describing the flow though 
porous media (Dullien 1992). Knowledge of dispersion has been increasing in 
practical importance since it plays a decisive part in various problems of 
groundwater investigations related to protection of the environment (McGuire and 
McDonnell 2006). This applies particularly to investigations of pollutants entering 
groundwater from refuse tips, safety problems of nuclear power stations, intrusion 
of salt water into drinking water galleries and so on. The main attractiveness of the 
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axial dispersion model is its power to amend the predictions of the plug flow 
model without loss of the later simplicity. The conditions for the physical 
realization of the dispersion model are met in a piston-like flow if there is a 
mixing in the direction of flow, described by equations similar to the equation of 
molecular diffusion, but with modified coefficients.  

A general mathematical expression of the dispersion is: 
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Here c is the concentration, D is termed the axial dispersion coefficient and Dr the 

radial dispersion coefficient, v is the mean velocity, and P is the source term. The 
coefficients are assumed to be independent of concentration and position. The 
dispersion equation is used very frequently for turbulent flow of fluids in pipes, 
flow through packed beds, flow of liquids through fluidized beds etc. The equation 
has been applied to many other homogeneous and heterogeneous systems in which 
axial symmetry can be assumed and in which the flow behavior is not too far from 
that of plug flow. When the flow behavior deviates considerably from plug-flow 
such as in a stirred tank, in a bubbling fluidized bed, and in the two-phase flow of 
gas-liquid systems the behavior can not always be represented by this model. 
However the dispersion model can be used in each phase when two phases are 
involved. When radial dispersion can be neglected in comparison with axial 
dispersion equation (7.1) is reduced to: 
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Such a model can be used, for instance, when the ratio of column diameter to 
length is very small and the flow is in turbulent regime. There are a number of 
solutions of equation (7.2) for different initial and boundary conditions. 
Sometimes it may be difficult to decide which conditions are best for a given 
experimental situation.  

The dispersion model has been successfully applied to single-phase flow of 
fluids through an empty tube or pipe. Taylor (1953) showed for laminar flow in 
round empty tubes that a process of mass transfer described by molecular 
diffusion accompanied by radial-velocity variations may be equally well described 

by flow with a flat velocity profile equal to the actual mean velocity -v  and with an 

effective axial-dispersion coefficient, 
m

22

D
48

vR
D =  where R is the tube radius; 

Dm is the molecular diffusion coefficient. Later it was shown that we have: 

                                  
mD
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Experimental data confirm the accuracy of this equation. Unlike liquids, 
dispersion of gases in fixed or packed beds is affected by the molecular diffusion. 
If molecular diffusion is the only operating mechanism, the axial dispersion 
coefficient D under extremely low flow rate is related to the molecular diffusivity 
Dm by the equation D = γ Dm where γ  known as the tortuosity factor, ranges 

from 0.4 to 0.9 depending on shapes of particles. To obtain this expression for D, 
it is considered that the interstitial channels created by the packing hinder the 
diffusion. At the other extreme where the Reynolds number is very high: D=0.5 
φvdP whereφ is the void fraction of the bed and dP a diameter. If the mechanism of 
axial dispersion can be considered to be composed of molecular diffusion and 
turbulent mixing, and if it is assumed that the effects of these mechanisms are 
additive, then the dispersion coefficient may be approximated by: 

                                           D =γ Dm +0.5 φvdP                                             (7.4) 

Compared with the plug flow model the dispersion model meets to greater extent 
the conditions existing in real, apparatus used in chemical engineering in which 
mixing is based on the principle of displacement. The defect of this model consists 
in the intricacy involved in stating boundary conditions and in the necessity of 
estimating preliminarily the coefficients of axial and radial dispersion. 

7.1.2   The Frame of Infinitesimals 

For present needs the one-dimensional form of the dispersion equation is of 
interest that is: 
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Here c is the tracer concentration t the time, x the space, v the interstitial flow 
velocity and D the dispersion coefficient. This coefficient is in general a tensor but 
in the one-dimensional approximation is treated as a scalar. The coordinate system 
is selected in such a way that the x-axis is parallel to the velocity vectors. In 
groundwater experiments for instance, the concentration is usually measured in 
wells, caves or sources, at a given distance x as a function of time. Let us define 
the dimensionless variable: 

            
5.0)Dt2(

vtx −=η
                                                    (7.6) 

The model (7.5) reduces to the differential equation: 

                                                   w' + ηw = 0                                                  (7.7) 
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Here:  
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                                 (7.8) 

In the NA frame the parameter η is translated by model categorification into:  

                                       M
M

1 ...H ωε++εω+η=                                 (7.9) 

Here ωm are random variables. 

The concentration c is translated by model categorification method into: 

                       )(c...)(c)(c)H(C M
M

10 ηε++ηε+η=                     (7.10) 

Instead of w (η) one takes by model categorification W (H) = [w
0
 (h), 

w1(h),...,w
M

(h)] 

that is: 

                   )(w...)(w)(w)H(W M
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Here c
m
(η) and w

m
(η) are real functions on η. In the NA frame the equation (7.7) 

is translated into: 

                                                 
0HW
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                                            (7.12) 

It is the result of the model categorification method. 
The formal solution of the equation (7.12) is: 
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C is an NA constant. For identical initial conditions wm (0) =1 the constant is C= 

[1, 1,..., 1]. Taking: H=[η, η,...,η]  that  is: ω
1
=ω

2
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M
= 1 and applying the 

operations in the NA structure it  results from (7.13) the expression of W(H)= 
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Here cm denotes coefficients depending on η via Hermite polynomials. Moreover: 
 



7.1   Dispersion 111
 

c
0
(η)=1; c

1
(η)= -H

2
(η); c

2
(η)=(1/2)(H

4
(η)+H

2
(η));c

3
(h)=-(1/6)(H

6
(η)+3H

4
(η)); 

                               c
4
(η)=(1/24)(H

8
(η)+6H

6
(η)+3H

4
(η)))                            (7.15) 

Taking H=[η, η,..., η] , in the formal solution (7.13) is equivalent to perform a 
multi-scale derivative in which a unit step is accounted for at any level (scale) of 
the process. The computed solution is:  
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The coefficients q
2m

 include different values of c
m
 and ε. If M=0 the equation 

(7.16) reduces to the well known solution describing the infinite bed when both 
injection and detection of tracer are measured in resident fluid (Kreft and Zuber, 
1978).  

Taking into account the orthogonality relations and (7.16) it results that: 
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The coefficients q2m given by equation (7.17) ensure the minimum distance 

between the experimental values u(η) and the model (in the NA norm ||  ||*.Define 

                                                    
)w(jpw =∗                                        (7.18) 

Here p is a constant, p < 1 and:  

                                         j(w) = min {m, μ2m(w) ≠ 0 }                              (7.19) 

with: 
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One takes w(η) dη = d C
c
(η). One observes that  

                                               μ2m(w) = (2m)!q2m                                      (7.21) 

where q2m is given by equation (7.17). The NA orthogonal basis is in this case.  
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The coefficient q2m ensure the minimum of the distance: 
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At the minimum:  
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This means that (7.17) is verified. The coefficients q
0
, q

2
,..., q

2M
 resulting by 

numerical integration are then used to obtain the computed solution. The 
computed response Cc(η) is compared with the experimentally founded response 

of the system c(η). The truncation number M ensures the minimum of the 
objective function. The computed response Cc(η) should be compared here with 

the experimentally founded response of the system c(η). One retains the truncation 
number M that ensures the minimum of the objective function S (M):  
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The NA model differs from expansions of the probability distribution for instance 
that of Gram-Charlier or Wiener-Hermite (Kraichnan 1980, Saffman 1969). In 
principle such expansions contains Hermite polynomials of practically all order. In 
Gram-Charlier method the dimensionless variable η is defined using the mean and 
the variance resulting directly from experiments; the accuracy increases as the 
number of terms in expansion increases. In fact the used coefficient of dispersion 
does not have a physical interpretation being a fitting parameter for an invalid 
model situation. In the NA method starting from a given number of scales the 
expansion diverges and this could be interpreted as a limit in scaling. The aim is 
not the best fitting but the labeling of the mixing process according to its 
organization in scales.  

Fractal concepts may be applied to the dispersion process (Mandelbrot 1982). 
Basically this signifies that the dispersion is related by a fractal dimension to the 
time. Using a fractal dispersion coefficient an infinity of time-dependent 
coefficients q

2m
 results with (7.22). It is difficult to justify the idealized physical 

picture associated to the self-similar fractal-type dispersion process of the tracer 
traveling at the same velocity in many non-interacting streams tubes of different 
lengths in parallel connection. It is more reasonable to assume that the tracer 
moves through pores of different permeability at different velocities that is using a 
reduced number of scales of the process. 
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The NA approach has some common features with dispersion theories 
developed by Gill (Gill and Sankarasubramanian 1970, Iordache et al. 1987, 
Iordache et al. 1988c, Iordache et al. 1992). Gill considered an infinite order 
dispersion equation for the average value of the transported property. 

As in NA approach the first term in the concentration expansion satisfies the 
standard form of the dispersion equation. The Gill method is a perturbation one 
but the scaling is spatial. Consequently their correction coefficients depend on 
time. 

7.1.3   Hydrological Experiments 

The studied natural systems posses complex internal flow fields resulting from 
large-scale flow heterogeneities. In field experiments there appear heterogeneous 
medium with more or less continuous stratifications of permeability, with the 
presence of pores having stagnant water or coat films, with trapping effects etc. 
Water flow through a karstic system is far from ideal (Gaspar and Simon 1986, 
McGuire and McDonnell 2006). RTD theory and the concept of residence time 
may be applied only in association with a flow pattern. The generally valid flow 
patterns cannot be defined as each karst boasts its own salient features and it is 
impossible to estimate all the parameters responsible for the behavior of the 
respective karsts. These patterns are intended for understanding or simulation of 
the operation of the system. The lack of concordance between the results of 
observations and the pattern employed may be a consequence of an erroneous 
definition of the system, or of an estimation of the input and output functions. If 
the flow pattern is appropriate selected then the experimental curves will more or 
less superpose the theoretical curves. In this situation, a series of important 
characteristics, such as static and dynamic reserve, the dispersivity of the aquifer, 
and, consequently, the vulnerability of the karst could be determined and, what is 
highly important, the behavior of the karst in various hydrological conditions and 
its evolution are predicted. 

Several mathematical models have been applied in the interpretation of 
environmental isotope data obtained in systems with flow heterogeneities. All 
these models differ by assumed shape of the transit-time distribution of flow. The 
dispersion equation is one of the best mathematical formulations available for the 
description of macroscopic effects in the tracer transport in porous and densely 
fissured media, hydro-karstic structure, rivers, channels and other natural or 
artificial systems. But in complex practical hydrological systems there exists 
notable discrepancy between the experimental and theoretical curves. 

The purely dispersion model is improved by the use of an NA perturbed model 
which more adequately describes natural flow systems. The applicability of the 
perturbed model is illustrated by the reinterpretation of known case studies and by 
comparison of the results obtained with those obtained by the use of purely 
dispersion models. The new models will also be used for interpretation of tracer 
experiments (tracers and environmental isotope data) performed in karstic zones. 
The axial dispersion is assumed to be the basic mechanism which ensures the 
tracer transfer in groundwater system. The flow across large fissures, the transfer 
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in porous matrix etc. takes place at other characteristic scales of the turbulent 
mixing process and could be interpreted as small perturbations of the basic 
dispersion mechanism. For instance it is well known that in systems with bound 
water in solid matrix the movement of the tracer is delayed with respect to the 
movement of the water flux. In other cases, in fractured media or in hydro-karstic 
systems certain fractions of the feed tracer travel rapidly and bypass the main 
flow. 

The use of the (step) response of a groundwater system to determine a solution 
like equation (7.13) is presented in the following. The input data for the 
calculations are the experimental concentration of the tracer and some parameters 
as t = x/v, D/v, and the number of Péclet. Here D is the coefficient of dispersion 
and v the velocity. Empirical data can be represented by a diagram of 
concentration c(t) for fixed x: (Zuber 1986, McGuire and McDonnell 2006). In 
this case c(t) is the output relative concentration corresponding to a step input. The 
dispersion coefficient depends mainly on heterogeneities of the porous formation, 
presence of fissures, on the existence of double porosity and so on. This makes an 
exact prediction of the dispersion coefficient very difficult. Usually dispersion 
coefficients are estimated using correlations or diagrams from literature. It is 
known, for instance that for granular media of fluvial or glacial origin the 
dispersion constant D/v may range from a few centimeters to a few meters 
whereas for fissured rocks the quoted values range from 2 to 200 meters or even 
more. Obviously under field conditions the stochastic features of hydraulic 
conductivity of particular zones should be considered. The experimental results 
obtained by Gaspar and Simion (1986) in the Cerna-Valley have been analyzed in 
the NA frame (Iordache et al.1987). In this case D = 7.105 m2/day ; x=13550 m, 
v=953 m/day. It contains the dimensionless response C/C0 as a function of the 
dimensionless variable η.  A model with two scales is selected. It results q

0
 = 1, 

q
2
= 0.14. In this case the distances S as defined by (7.25) are: 0.05; 0.04, and 1.4 

at M=0, 1and 2 respectively. The q2 positive is correlated with the presence of 
dead-spaces. In both cases it is assumed that the curves of the best fitting give the 
best NA model but a caution is necessary as a field measurement is always of a 
limited accuracy. 

Taking into account the properties of the orthogonal polynomials it results that 
the moment of order 2m contains q

2m
. Consequently it is possible to interpret q

2m
 

in terms of means, coefficients of variation and other statistics. Denote by VM the 
variance resulting when M+1scales are taken into account. One obtains using 
(7.21) that: 

                                           0

20

0

M

q

q2q

V

V +
=

                                            (7.26) 

Observe that the resulting coefficient outlines a unique correction no matter the 
number of scales and that the ratio depends on q

2
. V

M
 corresponds to hypothetical  
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dispersion coefficient as calculated if the model is restricted to a purely dispersion 
model (the centered second moments of the recorded curves). 

The flatness factor F is given by: 

                                     
2

20

420

)q2q(3

q24q12q3
F

+
++=

                                       (7.27) 

It depends on q
2

 and q
4
.  

Finally observe that the approach proposed here always remain closely linked 
with experiment for final parameter evaluation. The open problem is to relate the 
spectrum q

2m
 with dispersion in non-ideal porous media characterized by high 

heterogeneity, stratification, poor connectivity and anisotropy, with the dynamics 
of the invasion of a non-wetting fluid, and so on.  

The multi-scale analysis of dispersion may be considered from the point of 
view of the integrative closure concept (Fig. 7.1). 

n=0

n=1 n=2

n=3

Thirdness

Modality

η
H0

η, ε
H0, H2

η, ε, ε2

H0, H2, H4

η, ε, ε2, ε3

H0, H2, H4, H6

 
Fig. 7.1 Scales and integrative closure 

Fig. 7.1 illustrates the situation in which we may limit the system at only four 
scales of perturbation.   

The Hermite polynomials included at any new level are indicated as well as the 
hypothetical connection between low and top levels of perturbations. 

7.1.4   SDG Solution for Dispersion 

A rigorous study of differential equations as (7.5) makes use of SDG concepts 
(Kock and Reyes 2006, 2008). 
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We will consider solutions for the vector field on the Euclidean vector space 
D'(R), whose principal part is given by Γ: D'(R) → D'(R). Denote by R≥0 the non-
negative numbers. 

Summarizing SDG results, we have a smooth function W: R≥0→D'(R), 
satisfying the dispersion equation (7.5). This may be written as (7.28). 

                                             
)T(W(

T

W Γ=
∂
∂

                                          (7.28) 

We may ask for the values of W for nilpotent T. 
The answer can be deduced from the Taylor series at 0 for the function W. 
We get for T assumed nilpotent. 

            
...))0((3!33T))0((2!22T))0((T)0()T(W +δΓ⎟

⎠
⎞⎜

⎝
⎛+δΓ⎟

⎠
⎞⎜

⎝
⎛+δΓ+δ=       (7.29) 

Here Γ2 (δ (0)) = Γ (Γ (δ (0))) and so on. 
The series is a finite sum, since T is nilpotent. 
In particular for d with d2=0, we have: 

                                             W (d) = δ (0) + d δ (0)”                                   (7.30) 

In some cases the motivation for the study of the dispersion equation was to see 
to see how δ (0) evolves in nilpotent lapse T of time and specially when for T=d 
with d2=0. 

The answer is offered by (7.30) or more generally by (7.21). 
Being an extensive quantity, a distribution like (7.30) should be drawable. It 

can be exhibited as a finite linear combination of Dirac distributions δ (a). 
Let us consider for instance that h4=0. 
Then: 

                                   h2= δ (0)”= δ (-h)-2δ (0)+ δ (h)                                 (7.31) 

To make a drawing of W (d) where d2=0, assume that d= h3 for some h with 
h4 =0. 

Then: 

                  W(d)= δ (0)+ d δ (0)”= δ (0)+ h((δ (-h)-2δ (0)+ δ (h))               (7.32) 

The drawing of δ (x) is a column of height 1 at x. 
The distribution above then comes by removing 2h units from the unit column 

at 0, and placing the small columns of height h at –h and h. This is the beginning 
of the dispersion of a Dirac distribution. 

Applications of the new solutions of dispersion equations have been found in 
the study of anomalous diffusion (Schreckenberg 1985, Metzler and Klafter 2000).  

Another domain of applications of multi-scale dispersion may be the 
neurophysiology of sensing for visual systems (Petitot 2003). 
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The receptive field of a visual neuron is defined as the domain of retina to 
which it is connected through neural connections of the retino-geniculo-cortical 
pathways and whose stimulation outlines a spike response. It is a classical result of 
neurophysiology that the receptive fields of the retinal ganglion cells are second 
order spatial derivatives of Gaussians.  

7.1.5   Convection Model 

Turbulent dispersion effects may result by superposition of several convective 
processes. 

The Taylor dispersion is a phenomenon of this type (Taylor 1953). The 
velocities are different due to the laminar flow. 

 The dispersion is due to transitions between different component processes, 
between slow and active spaces. Such transitions represent change of velocities 
and this corresponds to the physical mechanism of dispersion phenomena relative 
to a mean velocity. 

For numerous transport processes the basic material balance may be restricted 
to a first order wave equation. 

The model (7.33) shows that the variation of concentration in time is due to a 
convective process with velocity V, and to a kinetic process of interaction, Q(C). 

                                        
0Q(C)

x

C
V

T

C =+
∂
∂+

∂
∂

                                      (7.33) 

Here C (T, x) denote a concentration, variable in T-time and x-space, V denotes 
the velocity, and Q(C) denotes a separation rate.  

The model (7.33) known also under the name of Euler’s equation describes the 
incompressible fluid flow and many other phenomena of physical and 
technological interest (Rhee et. al. 1989). Significant examples are the plug-flow 
model of chemical reactors, separation in columns and so on. 

Suppose that there are two scales of time for different variables and parameters 
as concentration C, time T, velocity V and separation rate Q. 

This may be written: 

          1c0cC ε+=    ttT ε+=  1v0vV ε+=    1q0qQ ε+=          (7.34) 

Replacing (7.34) in (7.33) and making use of the calculus rules in NA frame we 
obtain two equations: 

                                   
00c0q

x
0c

0v
t
0c

=+
∂

∂
+

∂
∂

                               (7.35) 
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+
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+
∂

∂
                 (7.36) 

Eliminating one of the two variables we obtain a model containing the second 

derivative of the concentration and multiplied by coefficients as: 0q2
0v .  

This confirms the occurrence of dispersive effects resulting by superposition of 
purely convective processes.  

An SDG solution of the transport equation (7.33) is due to Kock and Reyes 
(2006). 

Suppose that the initial condition is: 

                                                      C(0, x)=f(x)                                            (7.37) 

The general solution of (7.33) is: 

                                              C(T,x)=G(T, f(F(-T, x))                                  (7.38) 

Here F and G are solutions of: 

                                               
Q

T

G
;V

T

F
−=

∂
∂

=
∂
∂

 
                                      (7.39) 

7.2   Intermittency by Vortex Line Stretching  

7.2.1   Conventional Frame 

In turbulent flow the energy associated with small-scale structures is distributed 
very unevenly in space being confined in a smaller and smaller fraction of the 
available space as the eddy size decrease. This spottiness of the small scales is 
called intermittency. The two basic features to be considered here in the study of 
intermittency are the stochastic character of flow and the multiplicity of the time 
scales. The vorticity is relevant in understanding intermittency gives a 
configurationally space interpretation of the energy transfer to small-scale motions 
in three dimensional turbulences. In effect in the absence of viscosity the vorticity 
w = rot v (v denotes velocity) satisfies the equation (7.40) resulting from Navier-
Stokes equations: 

                                     
v).w(w).v(

t
w ∇=∇+

∂
∂                                    (7.40) 

The equation (7.40) reveals an intimate connection between the energy transfer 
and the distortion by velocity gradients of a small line element carried by the fluid 
flow. The question of the stretching of a line element by a random velocity field 
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has been studied in literature (Rose and Sulem 1978). The main result is that a line 
element which, is initially statistically independent of the velocity field, is in the 
mean, stretched, but the lax of stretching is not known. Vortex line stretching is 
considered to be the dynamical mechanism behind the intermittency, as suggested 
from the following argument. Consider a point within a large scale structure which 
at the initial time has the largest vorticity amplitude |w|. This point is also likely to 
shave a large velocity gradient |∇ | ~ w. Consequently, the straining action of the 
velocity gradient on the vorticity may be described by a simplified form of the 
vorticity equation (7.40) that is by: 

                                           
)1w(bw

dt
dw −=                                             (7.41) 

Here b is a parameter closely related to the time scale of the process. Here it is 
expected that vorticity downstream of the point will rise to large values in a time 
of the order of the large eddy turnover time. Associated with this local vorticity is 
a local increasing of the vortex line stretching in the volume originally occupied 
by the vorticity overload.  

Its volume remains constant because of the incompressibility constraint and the 
self-amplifying feature of vorticity will cause the shearing of the volume to be 
non-uniform with the strongest concentration of vorticity found in a small sub-
volume. So, small-scale structure may be generated in a localized fashion. 

A discrete version of (7.41) obtained by replacing w'(t) by w
n+1

-w
n
 and w

2 by 

w
n
w

n+1
 gives: 

                         ))w1(cw(
w

w
nn

n
1n −+

=+
                                (7.42) 

Here w
n
 is the vorticity at the moment n, c=1/(1-b). To take into account the fact 

that the vortex stretching is stochastic the parameter c is assumed to be a random 
variable. Denote also by cn the value of c at the moment n. Random difference 
equation as (7.42) can be studied as a RSCC In this case:  

                S={w
n
}=[0,1], K={c

n
}, P(c

n
|w

n
)=p(cn

), w
n+1

=u(w
n
,c

n
)                (7.43) 

Here the operator u is given by (7.42).  
Fig. 7.2 illustrates the intermittency by vortex line stretching. 
The RSCC starts with vorticity w

0
. Then with probability P (c|w

0
) =pc the 

condition c is selected. Consequently the new vorticity w1 = w
0
/(w

0
+c (1-w

0
)) 

results. In the next temporal step the condition d is established with probability P 
(d|w

1
) = pd and the next vorticity will be: w

2
 = w

1
/ (w

1
+c (1-w

1
)) (Fig. 7.2). 
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s-states

k-conditions

w0

p (c⏐w0)

u (c, w0)

w1 w2

u (d, w1)

p (d⏐w1)

c d

 

Fig. 7.2 Intermittency by vortex line stretching 

7.2.2   Multi-level Frame 

The above model corresponds to a single conditioning level of evolution. However 
in turbulent flow there are more scales of time that is more conditioning levels. 
We limit in the sequel the study to only two such scales. 

Fig. 7.3 illustrates the two time scales intermittency. 
The model categorification method is applied. The time n is replaced by the 

vector N = [n, γ] (that is by n + εγ), the vorticity wn by the vector 

[ ]1
n

0
n w,w)N(W =  and the parameter cn by the vector [ ]1

n
0
n c,c)N(C =  Consider 

that the condition C (N) at [ ]γ= ,nN  is  

)1(c)N(C n
0
n εγ+=  where n

0c and nγ  are random variables. Observe that in 

this case we have 
 n

0
nc1

nc γ=  and that the effect of the evolution at the second 

conditioning level is a small perturbation of the condition 0
nc . The general 

evolution model is in this case: 

                     ))N(W1)(N(C)N(W(
)N(W

)'N(W
−+

=
                         (7.44) 

Restrict the study to the occurrence of only two conditions at any level that is 

{ }d,cc0
n ∈   and { }δγ∈γ ,n . Denote also by pc, pd , γπ  

and δπ  the 

probabilities of c, d, γ , or δ respectively. The diagram shown in Fig. 7.3 describes 

a system starting from W[0,0]. With possibility [ ] )cp)0,0W |P(c =  the condition 
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c is selected and with probability γπ=)|γ cP(  the small perturbation γ of c 

appears. The new vorticity is at [1,γ]: 

             
[ ] [ ]

[ ] [ ])0,0(W1)(1(c)0,0(W(
)0,0(W

),1(W
−εγ++

=γ
                    (7.45) 
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c d

δ

[ ]),1Wd(P γ

)c(P γ )d(P δ

 

Fig. 7.3 Two time scales intermittency 

Then with possibility [ ] dp),1W |P(d =γ  the new selected condition is d  
and the new perturbation denoted by d, appears with probability 

δπ =)|δ dP(  . 

The resulting vorticity is: 

           
[ ] [ ]

[ ] [ ]),1(W1)(1(d),1(W(
),1(W

),2(W
γ−εδ++γ

γ=δ+γ
               (7.46) 

By successive iterations we obtain: 

         
[ ] [ ]

[ ] [ ]))0,0(W1()1()1(dc)0,0(W(

)0,0(W
),n(W

mnm −εδ+εγ++
=γ μ−τμ−

      (7.47) 

if in the first n trials there are m occurrences of the condition c and n-m 
occurrences of the condition d. Moreover at the second level there are μ 
occurrences of the perturbation (1+εγ) and τ-μ . occurrences of the perturbation 
(1+εδ) 
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Denote: 

  
τμ−τμ− γε+=εδ+εγ+ )1()c()1()1(dc nmnm                   (7.48) 

Let us approximate expressions as μεγ+ )1(   by εγμ+1  and then separate the 

infinitesimal part. It results: 

nmnm )c(dc =−                                                  (7.49) 

  γτ=δμ−τ+μγ )(                                                (7.50) 

Observe that: 

dlog
n

mn
clog

n
m

clog
−+=                                         (7.51) 

              
δ

τ
μ−τ+γ

τ
μ=γ                                                    (7.52) 

When n →∞, then cpnm → , dpn)mn( →− , γπ→τμ  and 

δπ→τμ−τ )(  

It results that: 

                               dlogpclogpclog dc +=                               (7.53) 

                                                 
δπ+γπ=γ δγ

                                   (7.54) 

In order to characterize the stability of the iteration process it is necessary to 
compare with unity the coefficient r: 

                                              
n1)1(cr γετ+=                                        (7.55) 

If r > 1, then W [n, γ] tends to zero. On the contrary if r < 1 then W[n,γ] tends to 
unity when n and τ tends to ∞. If r = 1 then W[n,γ] oscillates between 0 and 1. 

Interesting situations appear when 
- 
c  < 1 but r ≥1. In such cases a stabilizing effect 

at the basic level of evolution with a short relaxation time is coupled with a non-
stabilizing effect with a long relaxation time. This competition may explain the 
random intermittences or bursts. 
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Chapter 8  
Entropy 

Abstract. Entropy and entropy production for multi-scale and multi-level systems 
are studied here with reference to physical and informational aspects. 

Entropy balance, entropy increase and entropy production principles are 
formulated in new frames based on model categorification. 
Case studies pertain to biosystems and ecosystems. 

For the general PSM framework, new entropic criteria are proposed based on 
the study of different types of causation. 

Evolvability maximization role for integrative closure is emphasized. 

8.1   Background 

Entropy is a significant concept in the study of irreversible transformations. The 
entropy concept is related to time, probabilities and information. Boltzmann 
emphasized the probabilistic meaning of the classical entropy in thermodynamics, 
realizing that the entropy of a physical system can be considered as a measure of 
the disorder in the system.  

A fundamental law of nature concerning entropy in macroscopic systems is the 
law of entropy increase. For all real transformations of isolated systems, no 
change of heat with the external world being assumed, entropy must increase, or 
ideally, in reversible cases, remains constant with time. Thus: 

                                                        Δs≥0                                                        (8.1) 

Here s denotes the entropy.  
Some basic aspects correlating entropy and evolution of complex systems will 

be reviewed in the following (Prigogine 1980, 1989). 
Typical for complex systems is their irreversibility. According to this, if there is 

evolution, past and future have to be different.  
Isolated systems might be considered as an artificial situation in real systems. 

Consequently, entropy production that is entropy variation, for any given system 
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splits into two additive terms, the one accounting for entropy exchanges with the 
environment, and the other for internal entropy production, this latter being always 
positive for systems presenting irreversible processes. If a system has the entropy 
s, then any elementary transformation induces a change in his entropy, which 
always will be broken down into two terms: 

                                                  ds = dsi + dse                                                 (8.2) 

The term dsi represents the internal production of entropy and is always positive  
or null.  

This term is the entropy production due to irreversible processes inside the 
system such as diffusion, chemical reaction, heat conduction and so on. 

The second term dse represents the entropy exchanged with the external 
surroundings.  

As a result, when there is no entropy flow, as in the case of isolated systems, 
dse=0 and the entropy may only grow and will reach a maximum.  

The entropy production is closely related to irreversible processes being a 
mechanism for producing order. At equilibrium the internal rate of entropy 
production is zero. In systems for which the equilibrium state cannot be reached 
because external constraints do not lead the system to reach it, the rate of 
production of entropy takes the minimum value compatible with the constraints. 
This is the so-called principle of minimum entropy production due to Prigogine 
(Prigogine 1980, 1989). It refers to linear thermodynamics that is to linear relation 
between thermodynamic forces and fluxes. 

A typical feature of complexity is the randomness meaning that concerning the 
future states it is possible to formulate only stochastic statements. In a physical 
system having many degrees of freedom, the number measuring the disorder of 
the system measures also the uncertainty concerning the states of the individual 
particles. This fact is expressed by the Boltzmann equation: 

                                                      s=k log W                                                 (8.3) 

Here k is the Boltzmann’s constant and W is the number of different ways the 
macroscopic properties of the system could be reproduced, by giving distinct 
values to its internal that is microscopic degrees of freedom. The stochastic and 
chaotic aspect was clarified and developed when one comes to study of non-linear 
complex systems and bifurcations. Far from equilibrium, systems enter into the 
nonlinear range and display a multiplicity of solutions to the equations describing 
their evolution. At bifurcation points, the role of fluctuations is decisive in that it 
is impossible to predict on the basis only of the deterministic equations which 
branch the behavior of the system will follow. 

Another entropy related aspect of complexity refers to the necessity of some 
coherence mechanism in order to account for an evolvable system in which new, 
organized phenomena arise. Coherence implies for instance that millions of 
molecules follow each other. This appears as unexpected, because for classical 
physics the order is associated with equilibrium, as in the case of crystals, while 
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disorder is associated with non-equilibrium, as in the case of turbulence, 
embryogenesis and so on. 

8.2   Informational Entropy 

There is a significant connection between the notion of entropy in 
thermodynamics and the notion of information and uncertainty. In 1948, based on 
the classical Boltzmann’s work, Shannon proposed a quantitative measure of the 
amount of information or uncertainty supplied by a probabilistic experiment. 
Consider an experiment in which the event i, results with probability pi. It is 
described by the finite probability distribution: 

                                       pi ≥0, i=1,..., n; ∑ =i i 1p                                          (8.4) 

The informational Shannon entropy associated to this experiment is: 

                                    ∑−= i iin21n plnp)p,...,p,p(h                                 (8.5) 

This function has properties, which give a reasonable measure of uncertainty in a 
probabilistic experiment. For instance: 

 
i. 0)p,...,p,p(h n21n ≥  

ii. 0)p,...,p,p(h n21n =  if pi =1 for some i and pj= 0 for i # j. This means 

that if only a result is possible the uncertainty is null. 
iii. )p,...,p,p(h)0,p,...,p,p(h n21nn211n =+ .This means that adding the 

impossible event to the possible results of a given experiment does not change its 
uncertainty. 

iv. maxnn21n h)n1,....,n1,n1(h)p,...,p,p(h =≤
. 

 
This shows that the greatest uncertainty corresponds to equally likely outcomes. 

There exist random events whose probabilities cannot be directly evaluated. For 
instance the results of the measurements made on a microscopic scale on 
microscopic systems are such mean values of some random variables. There exist 
many random distributions compatible with a given mean value. The problem is 
how to select the best one. The principle of maximum entropy can be considered 
as such a criterion. According to this principle systems choose the random 
distribution that maximizes the entropy or the conditional entropy subject to some 
set of restraints.  

Information entropy may be considered as the primary concept and use the 
probability distribution that maximizes the entropy subject to certain constraints 
for the statistical inference of the evolution (Jaynes 1957). This principle appears 
to have a subjective character. As long as entropy is accepted as being the most 
suitable measure of uncertainty the system select that particular random 
distribution which contains the largest amount of uncertainty compatible to the 
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given restraints. The success of the principle of maximum information in classical 
and quantum mechanics suggests extending its range of application. In making 
inferences on the basis of partial information, it is necessary to use that probability 
distribution which has maximum entropy, as a measure of uncertainty, subject to 
whatever is known (Dewar 2003). 

A significant result in the study of entropy is the Boltzmann’s H-theorem that 
states the increase of the entropy as a measure of uncertainty. For a large class of 
stochastic evolutions of the Markovian type the H-theorem holds.  

We dente by )w,'w(p 1t,t + the probability of transition from the state w, at the 

moment t to the state w', at the moment t+1.  
Observes that 0)w,'w(p 1t,t ≥+  and that: 

                                       1)w,'w(p'w 1t,t =+
                                       (8.6) 

The Markovian evolution is described by the following equation: 

                       )w,'w(p)w(p)'w(p 1t,tw t1t ++ =                           (8.7) 

At every moment the entropy is given by: 

                                   )w(pln)w(ph tw tt −=                               (8.8) 

The H-theorem establishes that: if the transition stochastic matrix )w,'w(p 1t,t +  is 

bistochastic, that is if for any w and w’:  

                
1)w,'w(p)w,'w(p 'w 1t,tw 1t,t == ++

                    (8.9) 

then:  

                                                   1tt hh +≤                                                  (8.10) 

The NA counterpart of the principle of maximum information say that the systems 
choose the random distribution, which maximizes, in the NA frame, the 
informational entropy or the conditional informational entropy subject to some set 
of restraints. But maximums are not unique in NA frames. Consequently a variety 
of acceptable distributions will result and other choice criteria should be selected 
to ensure uniqueness. Specific real norms would be used to choose one of them 
(Appendix 1).  

The NA categorification of the Boltzmann H-theorem is discussed in what 
follows.  

Consider for instance two NA times T = [n, t], T' = [n', t'] and the 
corresponding NA entropies: H(T) = [h0(n), h1(n)], H(T') = [h0(n'), h1(n')]. The NA 
counterpart of the H-theorem would establishes that the NA entropy, H(T) always 
increases in time but the relation of order is a new one in NA frame. For instance 
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if T < T' in the NA order, by model categorification, the NA valid H-theorem 
implies that:  

                                                 H(T) < H(T')                                                (8.11) 

The above inequality should be considered with the same NA order as for the time 
T. This NA inequality shows that it suffices that the entropy increases at the level 
m=0, that is h0(n) < h0(n') for n<n', to assure the increasing of NA entropy despite 
the entropy decreasing of other levels contribution. Therefore it is possible that 
h1(n)>h1(n') that is on higher levels the level associated entropy could decrease. 
Restricting the analysis to a single level m=1, may show results apparently in 
contradicting the principle of increasing entropy but they are clarified in the multi-
level frame. The multi-level entropy increases, while allowing self organization at 
the focused level m=1. 

8.3   Entropy Production for Biosystems 

Whether biosystems or ecosystems augment or diminish the rate of entropy 
production is a highly intriguing question of practical and theoretical interest. 
According to the principle of minimum entropy production, systems constrained 
to remain slightly away from thermodynamic equilibrium will take on the 
configuration of forces and flows that minimizes the rate of entropy production 
(Prigogine 1980, 1989). This theorem has received the status of a principle of 
organization for living systems that in some conditions grow toward a state of 
minimum metabolism per unit mass. The validity of the principles seems to be 
broken in embryogenesis where an initial increase of the heat production is 
observed. Then the entropy production decreases during adult life, but there still 
are notable exceptions as for instance tissue regeneration of malignant growth. 
Similar behavior has been observed in the case studies of prebiotic polymer 
formation. There have already been several attempts to solve this apparent 
contradiction. Hiernaux and Babloyantz (1976) proposed nonlinear biochemical 
models for embryogenesis in order to obtain models that outline a time of 
maximum production of entropy. Lurie and Wagensberg (1979) considered that 
linear thermodynamics provides an appropriate framework for the description of 
the development of biosystems but abandoned the usual approximation that the 
specific heat-dissipation is the negative of the specific entropy production during 
the evolution. Assuming the correctness of a linear relation between metabolic 
fluxes and metabolic forces within biochemical machinery the phenomenological 
coefficient of coupling can be determined.  

The starting point of the approach presented here resides in assuming that due 
to nonlinear interactions characteristic to the embryogenesis, such far from 
equilibrium systems are structured in a finite number of different timescales of 
evolution (Iordache and Frangopol 1988b, 1988c, 1989). The existence of more 
than one scales of evolution is a well known feature of complex biophenomena as 
for instance membrane transport, mitosis, prebiotic evolution etc. A variety of 
timescales is displayed by the ionic pumps considered as channels whose energy 
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barrier profile is transiently modified by the cycle of phosphorylation-
dephosphorylation. 

The entropy balance could be formulated in the NA formalism resulting in a 
significant enlargement of the validity domain of this balance. The entropy 
production p(s) is: 

                                         
0)s(f

t
s

)s(p ≥+
∂
∂=                                         (8.12) 

Here s is the entropy and f(s) denotes the entropy flow through the surface of the 
system.  

The formalism of infinitesimals and an application of the model 
categorification method are presented in the following. The existence of more than 
one scales of time is considered by translating the time t and the entropy s(t) by 
expansions as: 

                                   tw...twtT M
M

1 ε++ε+=                                  (8.13) 

                            )t(MsM...)t(1s)t(0s)T(S ε++ε+=                          (8.14) 

Here M+1 is the number of timescales, ε is the expansion parameter wm,  
m=1,..., M are constants, sm(t) are functions. Denote also the time T = [t,w

1
t,..., 

w
M

t],  and entropy S(T) = [s0(t), s1(t),..., sM
(t)]. The generalized time T and the 

generalized entropy S(T) are viewed here as elements of an NA frame. The model 
categorification method consists in replacing the real equation by an NA equation 
of the same form but with a different signification. In the NA frame of 
infinitesimals the balance of entropy (8.12) is translated by model categorification 
into the NA differential equation: 

                                         
O)S(F

T

S
)S(P ≥+

∂
∂

=                                      (8.15) 

Here O = [0,...,0] is the null element of the NA structure, f(s) is replaced by F(S) 
and the entropy production p(s) by P(S): 

                 [ ] [ ]M10M10 p,...,p,p)S(P,f,...,f,f)S(F ==                   (8.16) 

The functions fm and pm represents the contribution of entropy flow and entropy 
production at different scales.  

The NA form of the entropy balance expresses an NA form of the second law 
of thermodynamics: 

                                                       P(S)≥O                                                   (8.17) 
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This accommodates situations as: p0 ≥ 0  but  p1 < 0 .. , pm-1 < 0, pM< 0.  
The additional equations in the hierarchy of scales cannot reverse the existing 

results concerning the real entropy but are compatible with them and represents an 
extension of the classical point of view. The restriction of observations to 
infinitesimal scales, allows detecting evolutions that apparently contradict the 
second law.   

Interesting situations corresponds to systems having: p0 = 0, p1 =pm-1 =0, pm≥ 0, 
pm+1< 0,..., and so on for increasing m. 

Suppose that the zero-th order contribution in S(T) that is s
0
 corresponds to the 

thermodynamic equilibrium while the following terms, s
1
,..., s

M
, are corrections 

due to non-equilibrium conditions. The number of timescales, M+1, depends on 
the studied system, the greater M is, the more departing the system is from 
equilibrium. Consequently, one needs more and more timescales to correct the 
basic equilibrium model corresponding to M=0. This follows the model 
categorification method. 

To avoid insignificant calculations consider wm=1, that is the derivative is taken 
along the direction [1, 1,...,1].  Thus the derivative in (8.12) is translated into: 
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Taking into account the significance of equality in the NA structure it results: 
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                                            M
'

1M
'
MM fssp +−= −                            (8.23) 

A system of balance equations is obtained in the NA formalism instead of a single 
real balance equation. They refer to different scales of the process and to 
neighboring ones. Taking into account the fact that both the flows of the 
irreversible process and the corresponding forces vanish at equilibrium, 
Glansdorff and Prigogine (1971) assumed that the entropy production is a quantity 
of second order with respect to the deviations from equilibrium. More exactly, 

p
0
=0, p

1
=0, ε2p

2
=p(s) that is P(S) = [0, 0, p

2
, p

3
,..., pM ]. The second law of 

thermodynamics asserts that p(s) ≥ 0. The equality applies only to reversible 
processes. The postulated positive value of P(S) signifies, in the NA formalism, 
that the first non-null element of this expansion is positive.  
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Glansdorff and Prigogine (1971) considered that the first non-null element in 
the expansion of F(S) is of the first order in the deviation from equilibrium that is 
f0=0, f1≠0 and F(S) = [0, f1, f2,..., fM]. Here f1 corresponds to the equilibrium 

flux. When inertial effects or velocity fluctuations are taken into account such 
specifications are no longer valid.  

At equilibrium, due to the fact that p0=0, f0=0 the classical condition is 

obtained: 

                                                        
0s'

0 =                                                  (8.24) 

Obviously the equilibrium entropy is time independent quantity. Equation (8.20) 
becomes in this case: 

                                                      0fs 1
'
1 =+                                            (8.25) 

This is an equilibrium condition according to which an infinitesimal change of the 
entropy s'

1
 has to be compensated by an infinitesimal entropy flow f

1
 through the 

surface of the system. Further, equation (8.21) now becomes: 

                                        0ffsp 21
'
22 ≥++=                                     (8.26) 

Consider (8.26) under the boundary condition f1+f2 = 0, for instance if the heat 

flow and diffusion flow vanish through the boundary surface. In this case the 
condition (8.26) reduces to: 

                                                  
0ps 2

'
2 ≥=                                         (8.27) 

Inequality (8.27) gives an evolution criterion for near-equilibrium states. In the 
stability analysis of Glansdorff and Prigogine the expansion of entropy around its 
equilibrium value is given by: 

                                            s=s
0
+(δs)

0
+ (1/2) (δ2s)0 

                                     (8.28) 

In the used here notation it is possibly to identify: 

                                      s
0
=s

0
; (δs)

0
=εs1; (1/2)(δ2s)0  =ε

2s
2                          (8.29) 

Obviously using a generalized form of the expansion (8.29) it results: 

                                        M
M

0
M s)s)(!M1( ε=δ                                   (8.30) 

At different degrees of thermodynamic non-equilibrium the entropy production 
can no longer be considered as a second order quantity. Condition (8.27) could be 
of no help in studying biosystems with high rates of dissipation, where the 
nonlinear effects are considerable. Numerical evaluations show an initial increase 



8.3   Entropy Production for Biosystems 133
 

of the entropy production p(s) in the case of biopolymer synthesis on a template 
with an auto-catalytic effect (Nicolis and Prigogine 1989). Such a behavior is 
easily explained if two timescales are assumed for the reacting system. A fast 
reaction pathway and a high rate of dissipation are followed by a decrease of rates 
and affinities for the template and catalytic processes owing to the fact that the 
inverse steps begin to build up along the reaction sequence. In some reacting 
systems of biochemical interest one step of the reaction becomes very rapid as 
compared to the others and the resulting chemical instability induces an increase 
of the entropy production. If after a certain period of time this fast step becomes 
extinguished or attains a rate comparable to the others, one might expect the 
entropy production to decrease. During the synthesis of some key substances 
necessary for process continuation that is after an increase in dissipation the 
above-described systems tend to adjust their entropy production. 

Consider that the first period of the process is characterized by p
1
 ≥ 0. The 

condition (8.25) is replaced by: 

                                            0fsp 1
'
11 ≥+=                                              (8.31) 

If M = 3 it is possible that the entropy production is a third order quantity with 
respect to the deviations from equilibrium that is p

1
 = p

2
 = 0 but necessarily p

3 ≥0. 

In this case the condition (8.26) reduces to: 

                                            0ffs 21
'
2 =++                                            (8.32) 

New stability condition in the hierarchy should be considered. 
From (8.26) it results that: 

                                       
0fffsp 321

'
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As m increases, conditions of the type p
0
 = ... = p 

m-1
 = 0, p

m
≥0 with  p

m'
< 0 for 

m'≥ M+1 become possible. The transition from m scale to m+1 scale signifies that 
the system gains a quite different more complex structure. Observe that for this 
type of conditions, the first non-null component of P(S) has properties similar to 
the thermodynamic potential which take the minimum at the steady state. This 
point of view represents an extension of that based on principle of minimum 
entropy production. In the case of fixed external entropy flux F(S) the time 
variation of the production of entropy is given by S'(T).  

Fig. 8.1 illustrates the entropy production for multi-scale systems as a function 
of time. 

According to (8.18): 
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At M=1 due to the fact that s'0 = 0 it results that S'(T) = ε s'1. If p1 ≥0 it results 

that s'1 ≥ 0 and a domain of increasing s1 is outlined in this case (domain a). Then, 

during evolution, the system outlines a new scale of time that is M = 2. In this 
domain  

                                     )ss(s)T(S '
1
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2
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1

' −ε+ε=                                  (8.35) 
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Fig. 8.1 Entropy production for multi-scale systems 

Following Neder (1941, 1943) consider as a first approximation s
2
 ~ s'

1
,  

s
3
 ~ s'

2
,..., s

M
 ~ s' 

M-1
. At M=2 if p1 = 0, p2 ≥ 0 then s'1 = 0, s"1> 0. This 

corresponds to the domain of validity of the theorem of minimum production of 
entropy (domain b). At M=3 it happens that p1=p2=0 but p3 ≥ 0. Consequently,  

s1 = 0, s'2=0, s'3= 0 or s'1 = 0, s"1= 0, s'"1> 0. This corresponds to the third 

domain in the diagram S'(T) versus time (domain c). 
At M > 3 the system will be characterized by s'1=0, s'2=0,..., s'M-1=0, s'M≥0 

and the time dependence is similar to that encountered in the domain with M ≥ 2.  
Fig. 8.1 shows the time variation of S'(T) according to the above proposed 

mechanism. The domains are:  

a: p1≥0; b: p1=0, p2≥0; c: p1=0, p2=0, p3≥0; d: p1=0, p2=0, p3=0, p4≥0. 
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A discussion of oscillations in the entropy production can be found in Desvilletes 
and Villani (2005). 

Similar dependences have been observed for the rate of heat production at 
different stages of development in embryogenesis. According to the above theory, 
there exist different levels of quasi-stationarity of the rate of entropy production. 
For every state different but near enough to equilibrium, the ecosystem remains at 
the nearest possible value to the zero entropy production. As the level increases 
the production of entropy has a variation near the extreme that is more closely, as 
m increases, to the horizontal. A hierarchy of domains of quasi-stationary entropy 
production appears. Each decrease in the entropy production diagram defines a 
zone of local stability with a local minimum (non-vanishing) of the flux of 
entropy. The decreases may trap the system in a steady state of some sort, at 
different complexity levels. This is one of the ways in which nonlinear steady state 
systems like biological organisms can get their relative stability by increasing 
complexity.  

Entropy production in biosystems system consists of multi-stages with time, 
early increasing, later decreasing and possible with intermediate stages (Aoki 
1995). According to Aoki the entropy production in plants leaves oscillates during 
the period of one day paralleling the daily solar absorbed by leaves. For this case 
of environment studies the cyclic character of time is obvious. Multi-scale 
structure of cyclic time may be due to day-night cycle coupled to tidal cycles or 
other environmental cycles.    

Salthe evaluated the possibility that the periods of increasing entropy 
production (immature stage), are followed by periods of constant entropy 
production (mature stage), and by that of decreasing entropy production 
(senescence stage) (Salthe 2003).  

Dissipative structures continually incorporate new informational constraints 
also the rate of incorporation eventually slow down in levels or scales (Fig. 8.1). 

This kind of entropy production behavior may be easily explained in the 
presented here framework starting from the fact that the living systems are not 
isolated and not nearly equilibrium. 

8.4   Entropy and Integrative Closure  

The evolution at different time scales may be examined in the conceptual 
framework of integrative closure. Fig. 8.2 highlights the integrative closure 
hypothesis for entropy production.  
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Fig. 8.2 Integrative closure for multi-scale entropy production 

Any new level implies positive values for entropy production, at longer time 
scales. 

A study correlating the Peirce’s triadic framework of semiosis and the 
maximum entropy principle is due to Herrmann-Pillath (2010 a, b). It paves the 
way for a semiotic view of thermodynamics which is built on the idea that 
Peircean interpretants are systems of physical inference devices evolving under 
natural selection. In this view the principles of maximum entropy, maximum 
power and maximum entropy production work together to drive the emergence of 
information carrying structures, which at the same time maximize information 
capacity as well as the gradients of energy flows such that ultimately, the 
evolutionary process is seen to be a physical expression of the second law of 
thermodynamics. 

The tetradic conceptual framework may also be correlated with the entropy 
variability considerations. 

The starting point is that the tetradic structure involves the conjunction of four 
different kinds of causality: material, formal, efficient and final. 

These causalities relate the different levels or realms of the tetradic framework 
(Fig. 8.3). 

Fig. 8.3 correlates the integrative closure hypothesis to different entropy 
principles. 

The observation that at successive levels successive derivatives of entropy 
became null suggests to associate, the principles of maximum entropy to 
mechanical causation, ME, and the principle of maximum production of entropy 
MEP, to the formal causation.  

Material causation, extensively used in chemistry and biology is related in part, 
to what Peirce describes as firstness. 

Formal causation is well described in 2nd order cybernetics. 
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Efficient causation manifests when the regularities and thirdness becomes 
significant for interactions through stable patterns. 

Efficient causation is related in part, to what Peirce describes as secondness. 
As the efficient causation we are looking for a principle of maximum 

production of entropy production, MPEP. This would be correlated to a third 
derivative of the entropy. 

MPEP may be compared to Kauffman’s tentative fourth law of 
thermodynamics (Kauffman S. 2000). 

Kauffman proposed a tentative fourth law of thermodynamics, in which the 
workspace of the biosphere expands, on average, as fast as it can in this co 
constructing biosphere. 

By as fast as it can, Kauffman means something like the edge of chaos. Faster 
than that, it cannot sustain itself. Slower, is not advantageous since if there is the 
possibility of going faster, the faster ones become selected. 

The MPEP may be also be related to the maximization of the mutual 
information as studied by Sporns and Lungarella (2006). 

n=0

n=1 n=2

n=3

Thirdness

Modality

Firstness Secondness

Thirdness

Material Efficient
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Final

MEP

MPEPME

EM

•
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Fig. 8.3 Integrative closure and entropy principles 

Sporns and Lungarella (2006) demonstrated how the maximization of the 
information structure of the sensory states experienced by embodied and situated 
agents might lead to the development of useful behavioral skills. 

This suggests using informational distance, a kind of mutual information, to run 
MPEP calculus. 

The final causation is the critical step for integrative closure. 
A generic approach to derive fundamental candidates for systemic drives from 

properties of the integrative closure emphasizes the system as an entity that is able 
to select its actions (Klyubin et al. 2005, Polani 2009). It considers the 
informational channel capacity between the system’s action at a given time and 
the sensory inputs at later time. Intuitively this is a measure to which extent the 
system’s actions could potentially influence its system, in such a way that the 
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intensity of this influence can later be detected again by the system. This quantity, 
empowerment, measures the system’s power to change the environment and to be 
aware that it did so. This can be formalized by measuring the maximal mutual 
information that can possibly be introduced into the environment by a suitable 
distribution of actions (Klyubin et al. 2005). 

Capdepuy et al. (2007) demonstrated how a wide range of coordinated 
collective behaviors can be developed by having a population of agents situated in 
the same environment which adapt by maximizing their empowerment-an utility 
function that measures the information transfer between the action produced by an 
agent and the sensory states later experienced by the agent itself. The term 
empowerment refers to the fact that this measure encodes the perceived amount of 
influence or control that the agent has over its environment. 

Such studies suggested to formulate an evolvability maximization, EM, 
criterion for n=3 step and integrative closure.  

From Fig. 8.3 it can be observed that the level n=0 refers to states and for these, 
ME principle ensures entropy increasing. 

The level n=1 refers to processes and for these MEP principle is a statement 
about possible trajectories and looks to the most typical trajectory. The 1-arrows 
associated to 1-categories are trajectories or paths. 

The level n=2 refers to processes of processes. MPEP would govern the 
interaction between trajectories. The 2-arrows associated to 2-categories are ways 
of sweeping from one trajectory to the other.  

The 3-arrows associated to 3-categories are defined between pairs of 2-arrows 
and consist of ways of interpolating between these sweepings from one trajectory 
to the other. 

EM principle is related to final causation. 
The final causation refers to the goal to be achieved by the system. This is the 

level where the goals are influencing the results. Embodiment and empowerment 
are necessary marks. Evolvability essentially measures the informational 
efficiency of the integrative closure. 

Evolvability maximization, EM, principle can be interpreted in the following 
way: any evolvable system should poise itself in such a way as to be able to react 
in a most effective way to possible perturbations of its preferential state. The 
higher evolvability, the better is the possibility of the system to control 
perturbations. This corresponds to a kind of intelligent behavior, to self-
organisatiom in integrative closure and creates systems with an interest to 
preserves their own organization. EM criteria goes beyond informational entropy. 

The open problem is that one needs to identify beforehand the variables whose 
stabilization is necessary for the particular system.   

8.5   Cooperative Model for Nerve Excitation 

The entropy production for a non-equilibrium system originally initiated by 
biophysical and biochemical problems will be considered as a detailed example of 
model categorification.  
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To account for the selectivity of membrane transport one has developed the 
model concept of a membrane pore as a transport channel for different types of 
ions or molecules. The pore is a one-dimensional array of k stable sites for these 
kinds of ions or molecules. The state of a particle is determined, at time n, by 
means of a row vector p(n)=(p

1
(n),..., p

k
(n)) where p

i
(n) is the probability that the 

particle will be in the i-th stable site after n transitions. Denote by p
ij the one-step 

probability of transition from i to j, and by P= (p
ij
), 1 ≤ i, j ≤ k the corresponding 

matrix of transition. The stochastic model of the process is: 

                                               p(n+1) = p(n)P                                               (8.36) 

This model has applications in a variety of areas such as drug kinetics, 
pharmacology, intra-cellular transport, studies of metabolic systems, analysis of 
ecosystems, etc. A two-state model is the so-called Adam's cooperative model for 
nerve excitation (Schnakenberg 1977). In this model it is assumed that the axon 
membrane contains an irregular lattice of active centers. Each of the active centers 

is supposed to bind either the mono-valent K+ ions (excited state 1) or a bivalent 

Ca2+ ion (ground state 2). Denote by p
1
(n) the probability for an active center to 

be in the excited state and by p
2
(n)=1-p

1
(n) the probability of the ground state. In 

this case from (8.36) a difference equation results: 
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To take into account the existence of different scales of time it is necessary to 
translate by model categorification the discrete time n to the expansion N: 
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with w
m

, m=1,..., M,  constants. The probabilities p
i
(n), i=1, 2 are translated to: 
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The transition probabilities p
ij 

are translated by model categorification to: 
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The difference equation (8.37) becomes by model categorification method the NA 
difference equation: 
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Here N ≠ N1. It is considered that: 

    nM...nnN ε++ε+=  , )1n(M...)1n()1n(1N −ε++−ε+−=        (8.42) 

In the study of ion transport, nerve excitation, adhenosine triphosphate, ATP 
synthesis or other far from equilibrium phenomena the linearity may appear 
unrealistic and the transition probabilities, p

ij
 depends on p

i
(n), 1≤i≤k. Obviously 

the corresponding stochastic chain is in this case non-Markovian. In the 
cooperative model for nerve excitation, it was considered that the transition 

probabilities, or the rate constants, are functions of the concentrations of Ca2+ and 

of K+ on both sides of the membrane. The cooperative mechanism is brought into 
play by the assumption that the transition probabilities for a certain active center 
to change from the ground to the excited state or inversely, depend on the states of 

the neighboring active centers at the time of the transition. The Ca2+(K+) ion 
bound to a certain center in the ground (excited) state receives an additional 
binding energy for each neighboring center that is in the ground (excited) state. 
According to this it is supposed that: 
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2
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Here 0 < k
i
 < 1,  i = 1, 2, 3, 4 are constants. In the NA frame, the transition 

probabilities p
ij
 result by translating pi(n) to Pi(N) that is: 
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The informational entropy associated to a stochastic model as (8.36) is: 
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By model categorification the NA discrete entropy is defined by: 
S(N) is the expansion: 
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In the case of a two-state model as the Adam's cooperative model of nerve 
excitation and of two timescales it results from (8.46) by equating the coefficients 
of different ε:powers of  
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It results: 
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The variation of the NA entropy S(N) in NA time is: 
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 (8.52)

N and N1 are given by (8.42). In the particular example considered, the zero-th 

order level M=0, is not of necessity the equilibrium one. Different numerical 
simulations outlined that after a certain period of time the variation of s0(n) 

becomes extinguished.  
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Chapter 9  
Formal Concept Analysis 

Abstract. Formal concept analysis identifies conceptual structures among data 
sets. Multi-level modeling potentialities in formal concept analysis are 
highlighted.  

Triadic formal concept analysis is related to Peirce’s categories.  
Rough sets approximations and hierarchical class analysis are applied for 

separation schemes. A tetradic formal concept analysis is presented as general 
PSM framework. 

Case studies refer to separation lattices flow-sheets, drugs mixtures 
formulation, security for information technology, reliability management systems 
and failure analysis for printed circuits.  

9.1   Galois Lattices 

The formal concept analysis, FCA, is a theory of data analysis which identifies 
conceptual structures among data sets (Ganter and Wille 1999).  

The main goal of FCA has been the support of rational communication and the 
representation and processing of knowledge based on the so called restructuring 
program (Wille 1996a). The program of restructuring has a philosophical 
background which goes back to the pragmatism of Peirce. Lattice theory is 
reworked in order to integrate and rationalize origins, connections to and 
interpretations in the real world. The potential connection between restructuring 
goals and integrative closure is significant. 

A strong feature of FCA is its capability of producing graphical visualizations 
of the inherent structures among data.  

The FCA plays a prominent role in conceptual modeling by combining the ease 
of handling data base object that are defined via a list of properties to a 
mathematical model rooted in a formalization of logic by which reasoning is based 
on communicative rationality in the sense of pragmatism.  

In FCA the concept understanding is considered as the basic unit of thought. A 
particular concept has both an extension and an intension.  
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FCA supposes that some relation between objects and properties is already 
established in the form of a context F= (G, M, I) where G is the set of objects, M 
is the set of properties or attributes and I ⊆ G x M is the incidence relation 
between objects and properties (Ganter and Wille 1999). 

A formal context F can best be represented by a table specifying which objects 
fall under which properties. This suggests that a context may be associated to 
classification purposes. 

For a set of objects A⊆ G, we can define all the properties shared by all objects, 
provided a context F is given: 

 
A′= {m∈M⏐∀ g∈ A: (g, m) ∈ I} 
These are the common properties of A 
Similarly the dual operation can be defined provided a property set B ⊆ M is 

given: 
B′= {g∈G⏐∀ m∈ B: (g, m) ∈ I} 
These are the common objects of B. 
Assume a context F= (G, M, I) is given. A formal concept of F is defined as a 

pair (A, B) where A⊆ G (called extent) and B⊆ M (called intent), A′=B and B′=A. 
Given a context F = (G, M, I) the collection of all formal concepts B (G, M, I) 

forms a complete Galois lattice, GL, where the partial order ≤ is defined by (A1, 
B1) ≤ (A2, B2) iff A1⊆A2 (which is equivalent to B1 ⊇ B2). The supremum and 
the infimum are defined as follows: 
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From an abstract point of view the complete lattice B (G, M, I) may be 
interpreted as a category. The operation denoted by: '' can be interpreted as a 
closure operator on both sides the object level, G and the attribute level, M.  

The closure operation induces a complete lattice and the concept lattice 
corresponds to a Galois-connection between two closure operators.  

A concept lattice B (G, M, I) determines a hierarchy of formal concepts.  
This hierarchy can be used to perform inferences with respect to properties of 
concepts or with respect to extensions of concepts. 

9.2   Separation Lattice 

Classification methods have been applied in chemical engineering for separation 
flow-sheet generation. Similarity based clustering method and informational 
criteria allow generating flow-sheets on the bases of properties allowing 
separation (Iordache et al. 1993a, Iordache et al. 1993b). Obviously, GL 
methodology can be applied for the same problems.  
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The GL allows outlining the chemical compound separation schemes and also 
the properties related to the separation devices.  

Studies correlating FCA and classifications are numerous.  
A comparison between similarity-based clustering and GL methods is done by 

Valtchev and Missaoui (2000). 
Two interesting adaptations of FCA that allow the systematic analysis of drugs 

structure-activity and structure-selectivity relationship have been studied by Lounkine 
and Bajorath (2010). Fragment FCA assesses the distribution of molecular fragment 
combinations among ligands with closely related biological targets. Molecular FCA 
was introduced for the systematic comparison of the selectivity of a compound against 
multiple targets and the extraction of compounds with complex selectivity profiles 
from biologically annotated databases.  

Our starting point for GL applications are tables as Table 9.1 that contain 
objects-in our case chemical compound and properties (Iordache et al. 1993 a, 
Iordache et al. 1993 b). 

Table 9.1 shows the isomers properties volatility, magnetic dipole, freezing 
point, and diameter for different compounds. 

Table 9.2 contains the same information as Table 9.1 in normalized form. We 
use “1” for high values and “0” for low values relative to the mean value in any 
column. 

Typically network data take the form of a rectangular table, in this case 
component by property, a kind of binary adjacency matrix. 

A cell entry is 1 if and only if the there exists a relation between that 
component and the property. 

The set of objects G consists of the components 1, 2, 3 and 4 whereas the set of 
properties M consists of volatility, magnetic dipole, freezing point, and diameter. 

Table 9.1 Input information-isomers properties 

Data Name Volatility Dipole, 
D 

Freezing 
Point, K 

Maximum 
Diam., Å 

1 m-xylene 1.6 0.4 225.4 8.33 
2 o-xylene 1 0.6 248.1 7.8 
3 p-xylene 1.63 0.0 286.6 8.67 
4 ethyl benzene 1.73 0.58 178.4 9.00 

D-Debye, K-Kelvin degrees, Å-Angstrom 

Table 9.2 Formal context: components and properties 

Component Volatility Dipole Freezing 
Point 

Diameter 

1 1 1 0 0 
2 0 1 1 0 
3 1 0 1 1 
4 1 1 0 1 
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For Table 9.2, “1” denotes the high values, while “0” denotes the low values of 
the property. 

To such tables a G L may be associated Ganter and Wille (1999). 
Table 9.3 shows an example of formal context with the set of objects 

G= {1, 2,…,6} and the set of properties M={a, b, …,d}. In this case the objects 
are chemical compounds. The properties shows high,”1” or low “0” values of the 
corresponding properties. 

To any property a separation apparatus is associated. If the property a, is the 
volatility the a-separation device is a distillation column, if the property b, is a 
solubility difference due to magnetic dipole, then b-separation device may be an 
absorber. If the property c, is a freezing point, then the c-separation may be done 
by a crystallizer. 

Table 9.3 Formal context for separations-four properties 

Components a b c d 
1 1 0 1 1 
2 1 0 0 1 
3 1 0 0 0 
4 0 1 1 1 
5 0 1 0 0 
6 0 1 0 1 

 
Fig. 9.1 shows the GL for separation based on four properties. 
Fig. 9.1 shows the GL associated to data presented in Table 9.3. 
At the bottom is the union of all components. The null symbol Φ indicates that 

no property was activated to induce separations. 
Each marked points in GL is labeled with both the components and the 

properties that define it. 
Above and to the right of the diagram we can see that the compound 4 resulted 

in the light phase from the separating devices corresponding to b, d, and c.  
To the left of the diagram we see that the compound 1 was separated by the 

separating devices corresponding to a, d and c.  
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(123456, Φ)

(123, a) (1246, d) (456, b)

(12, ad)

(1, acd)

(46, bd)

(4, bcd)

(14, cd)

(Φ, abcd)

 

Fig. 9.1 Galois lattice for separation-four properties 

As we move up, on a trajectory, we encounter smaller collections of 
compounds and larger collection of properties that is of separating devices. 

At the top of the diagram we see that there are no compounds having all the 
properties. 

Fig. 9.1 shows that there exists a path from the entire mixture to the component 
“4” making use of the sequence of properties first b, then d and then c and there 
exists a path from the entire mixture to the component “1” making use of the 
sequence of properties first a, then d and then c. 

In practice it may be easier to make use of a lattice in which the labeling is 
reduced. 

Each point is labeled only with the names of components for which it is the 
least element containing those components. Similarly each point gets the name of 
any properties for which it is the greatest element containing those properties. 
Points not being in these situations remain unlabelled. 

3,a d 5,b

2

1

6

4

c

 

Fig. 9.2 Galois lattice for separation-reduced labeling 

Fig. 9.2 shows reduced labeling for GL. This figure helps to visualize the points 
were every component may be collected. 



148 9   Formal Concept Analysis
 

9.3   Drugs Mixture  

For a mixture of drugs it is possible to visualize by FCA the relation between 
properties and components of the mixture. 

Mixtures of anesthetics will be the considered example. 
The properties for anesthetics refer to their composition. The lipophilic portion, 

denoted by Li, the hydrophilic portion, denoted by Hy, the intermediate chain, 
denoted by Ch, and the number of nitrogen, N atoms, denoted by Nn are the 
properties considered here.  

The associated vector is abbreviated as: <Li, Hy, Ch, Nn> 
The procaine was selected as the reference drug.  
Fig. 9.3 shows the structural formula of procaine. 

 

Fig. 9.3 Procaine 

For procaine, the lipophilic portion is a phenyl radical, the hydrophilic portion 
is an amine, the intermediate chain is an ester, and there are two N atoms. The 
vector associated to procaine will be: <1111>. 

Table 9.4 contains the vector associated to four anesthetics. 

Table 9.4 Properties of drugs 

 Drug Li Hy Ch Nn Vector 
1 Benzocaine 1 0 1 0 <1010> 
2 Lidocaine 1 1 0 1 <1101> 
3 Butamben 1 0 1 0 <1010> 
4 Dimethisoquin 0 1 0 1 <0101> 

 
 
 
Fig. 9.4 shows the GL for composed drugs associated to Table 9.4. 
It offers a visualization of the step by step involvement of different properties. 
This corresponds to the trajectories followed by the mixture of drugs in the GL. 

The trajectories or the paths correspond to the 1-categories level. 
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(Φ, Li Hy Ch Nn)

(2, Li Hy Nn) (13, Li Ch)

(24, Hy Nn) (123, Li)

(1234, Φ)
 

Fig. 9.4 Galois lattice for composed drugs 

Suppose that the compound drug (1234) encounter a barrier were the lipophilic 
character of the phenyl is necessary. This step will select the mixture (123) of 
components 1, 2 and 3 that are benzocaine lidocaine and butamben. If in the next 
step a condition concerning the chain, Ch is imposed only the mixture (13) will be 
able to pass and so on. 

If a condition of hydrophilic portion and number of nitrogen agents is imposed 
only the component 2 that is lidocaine would be able to meet the requirements. 

For another trajectory we suppose that the compound drug encounter a barrier 
were the hydrophilic character of the amine and the number of nitrogen atoms is 
imposed. This step will select the components 2 and 4, that is, lidocaine and 
dimethisoquin. Then if the lipophilic character is imposed, only the component 2 
is capable to fill the request. 

Observe that the GL may be interpreted as a traveler for different drugs of the 
mixture.   

In different stages some properties are necessary to allow drug transition to the 
next step. 

This traveler should be correlated to pharmakinetic studies and this represents a 
significant advantage of the FCA method. Fig. 9.4 shows the possibility of 
transition from a trajectory to another. The associated 2-categories describe ways 
of sweeping from one trajectory to the other.  

9.4   Failure Analysis 

Failure analysis, diagnosis represents another domain of application for GL. 
The electroplating voids for printed circuits fabrication is the considered 

example (Iordache 2009). 
Plating voids is the term used to define discontinuities in electroplated through 

hole for copper or other metals. Table 9.5 shows the voiding failure mode and the 
processing steps that may be responsible for that type of voiding. 
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The printed circuit board processing steps that may be the source of 
electroplating voiding are: 

 
p1-Mechanical  
p2-Deburring-Desmear  
p3-Ellectroless 
p4-Dry Film 
p5-Electroplating and Etching  

 
The probable void types are established by cross-sections since to different source 
of voiding correspond specific patterns. Notice that several steps as failure roots 
may corresponds to any type of voids. 

We use “1” for high probability and “0” for low probability of step process 
involvement. These probabilities may be based on case based knowledge. 

Fig. 9.5 shows the GL associated to failure analysis from Table 9.5. 
Table 9.5 associating plating voids type to different processing steps is base on 

failure analysis expertise. 
In this case the objects are the void types denoted here by: PH, DR, WE, EL, 

RE, GL, TA, RM, FP, FL, EP, EO, and RG. 
The attributes are the step processes: p1, p2, p3, p4 and p5. 

Table 9.5 Plating voids type for different processing steps 

Void type Notation p1 p2 p3 p4 p5 
Plug Hole PH 1 0 0 0 0 
Drill DR 0 0 0 0 0 
Wedge WE 1 1 1 0 0 
Electroless EL 1 1 0 0 0 
Resin RE 1 1 1 0 0 
Glass GL 0 1 1 0 0 
Taper TA 0 0 1 0 0 
Rim RM 0 0 0 1 0 
DF plug FP 0 0 0 1 1 
DF lock-in FL 0 0 0 1 1 
Electroplating EP 0 0 0 1 1 
Etch out EO 0 1 1 0 0 
Ring RG 0 0 0 0 1 

 
 
 



9.5   Triadic Context Analysis 151
 

p1p2p3p4p5, Φ

p1p2p3 WE,EL,RE p4p5 FP,FL,EP

p1p2 
EL,WE,RE,GL

p1
PH
EL
WE
RE
GL

Φ. WE, EL,RE,GL,TA,RM,FP,FL,EP,RG, PH

p2p3 
EO,WE,RE,GL

p4
RM
FP
FL
EP

p5
RG
FP
FL
EP

p2
EO
EL
WE
RE
GL

p3
TA
EO
WE
RE
GL

 

Fig. 9.5 Galois lattice for failure analysis 

At the bottom of the lattice is the union of all type of voids.  
At the top is the union of all processing steps.  
Each marked points in GL is labeled with both the void types and the process 

step that define it. 
The GL outlines the two main classes of processes contributing to voids (p1, 

p2, p3) and (p4, p5). 
As we move up in the GL, we encounter smaller collections of voids types and 

larger collection of process steps as potential contributors. 

9.5   Triadic Context Analysis 

The FCA methods have been extended to complex types of knowledge 
representations. 

One of these extensions is that for multiple contexts (Wille 1995, Wille 1996b). 
Inspired by the pragmatism of Peirce with its three universal categories, 

firstness, secondeness and thirdness, Lehmann and Willie (1995) initiated research 
on concept trillatice and their visualization in triadic diagrams.  

A triadic concept is defined as a quadruple (G, M, B, Y) were G, M and B are 
sets and Y is a ternary relation between G, M and B that is Y⊆GxMxB. The 
elements of G, M and B are called formal objects, attributes and conditions. An 
element (g, m, b) ∈Y is read as follows: the object g ∈  G, has the attribute 
m∈M under the condition b∈B. 

Formal objects, attributes and conditions, in the triadic context are in the role of 
the corresponding Peircean categories. 
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For theoretical developments and comparison with categorical approach it is 
convenient to use notations K1, K2, and K3 instead of G, M, and B. These 
alternative symbols indicate that the elements of Ki, i=1, 2 or 3, are seen in the 
role of the Peirce’s i-th category, that is firsteness, secondeness, and thirdeness. 

Obviously the elements of the single GL may be associated to that of general 
PSM framework. 

We may identify the objects or components as K1, that is G=K1, and the 
properties or attributes as K2, that is M=K2. 

To every pair (k1, k2), k1∈  K1 and k2∈  K2 one associates a number {0, 1}. 
The operator U21: K2→ K1, maps attributes into objects.  
The possibilities P12: K1→ K2, maps objects into attributes. 
U21 and P12 are adjoint functors.  
Lehmann and Wille (1995) elaborated a visualization of the concept trillatice in 

triadic diagrams. Stumme (2005) discuss how traditional line diagrams of dyadic 
concept lattices can be used for exploring triadic data. A data cube may be of use 
to present triadic contexts a (K1, K2, K3, Y). 

There exist several applications of the triadic contexts but only little 
visualization of rather small concept trillatice. This is probably due to the complex 
structure of existing diagrams. 

Table 9.6 shows an elementary type of triadic context, the so-called triadic 
power set contexts (Lehmann and Wille 1995). 

In this case K1 = K2 = K3 = {1, 2, 3}. 

Table 9.6 Triadic power set context 

K3 1 2 3 
K1\K2 1 2 3 1 2 3 1 2 3 

1  x x x x x x x x 
2 x x x x  x x x x 
3 x x x x x x x x  

 
 
 

In this table rows represents objects, K1, the columns represent attributes K2 
and the sub tables represents the conditions K3. 

The triadic diagram is shown in Fig.9.5. To outline the notation principle the 
positions are indicated here. The value 3 for K3, the value 1 for K2 and the value 
2 for K1 correspond to the point 312. 
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Fig. 9.6 shows the power set trillatice for triadic power set context. 

K1 K2

K3

111 112 212 221 222

332

232

311

312 321

123

131

333

322

132 231

121 122 211

113 223

313 323

331

213

133 233

 

Fig. 9.6 Trillatice for triadic power set context 

Fig. 9.6 shows as points the elements of the so-called Sierpinski gasket.  
This result may be correlated to Galois field logical diagrams (Popel and Dani 

2002). 
Triadic lattices as shown in Fig. 9.6 are considered as basic elements of formal 

context analysis. 
The modal understanding of necessity and possibility occurs naturally in triadic 

contexts (Dau and Wille 2001). 
Modal points of views are involved in the study of rough set approximations 

and hierarchy class analysis (Pawlak 1982, Chen and Yao 2005). 

9.6   Rough Set Approximations 

The modal understanding of propositions has been correlated to the notion of 
possible worlds. The basic idea of modal semantics is that a proposition is 
necessarily true if it is true in all accessible possible worlds and possibly true if it 
is true in some accessible possible world. 

Dau and Wille (2001) considered particular triadic concepts in which K1 
represents the objects, K2 the attributes or properties while K3 represents a 
modus. They considered two types of contexts: the □-context corresponding to 
necessity and ◊-context corresponding to possibility.  

FCA and rough set theory provide two related methods for data analysis 
(Yao 2004). 

They study and model the notion of concepts from different perspectives. 
Their correlation and contribution for data understanding will be illustrated by 

another example of GL for separation.  
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Let us consider the data from Table 9.7. This shows the formal context for 
separations-five properties. The properties indexed by {a, b, c, d, e} may be 
significant or not for the components 1 to 6. 

Table 9.7 Formal context for separations-five properties 

Component a b c d e 
1 1 0 1 1 1 
2 1 0 1 0 0 
3 0 1 0 0 1 
4 0 1 0 0 1 
5 1 0 0 0 0 
6 1 1 0 0 1 

(123456, Φ)

(1256, a) (1346, e)

(12, ac) (16, ae) (346, be)

(1, acde) (6, abe)

(Φ, abcde)

 

Fig. 9.7 Galois lattice for separation-five properties 

The associated GL is shown in Fig. 9.7. It corresponds to separation based on 
five properties. 

Supplementary information about the separation methods associated FCA may 
be obtained on the basis of approximation operators. 

For a formal context (U, V, R), for a pair of elements Ux ∈  and Vy ∈ if 

R)y,x( ∈ also written as xRy, we say that x has the property y or equivalently 

the property y is possessed by the object x. The binary relation can be equivalently 
expressed in two forms An object Ux ∈ has the set of properties:  

V}Ryx|Vy{xR ⊆∈=  
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A property y is possessed by the set of objects: 

U}Ryx|Ux{Ry ⊆∈=  

Yao (2004) defined the approximation operators: 
 

X□ ={ }XRy|Vy ⊆∈ , X◊= xRXx∈∪  , Y□ ={ }YxR|Ux ⊆∈ , Y◊= RyYy∈∪  
 
Yao considered object oriented GL, OOGL, property oriented GL, POGL, and 
complement oriented GL, COGL. 

A pair (X, Y), VY,UX ⊆⊆ is called an object oriented formal concept if 
X= Y◊ and Y= X□. If an object has a property in Y then the object belongs to X. 
Furthermore, only objects in X have properties in Y. This characterizes OOGL. 

A pair (X, Y), VY,UX ⊆⊆ is called a property oriented formal concept if 
X= Y□ and Y= X◊ . If a property is possessed by an object in X then the property 
must be in Y. Furthermore, only properties Y are possessed by objects in X. This 
characterizes POGL. Fig. 9.8 shows the oriented context lattice OOGL and 
property oriented lattice POGL associated to the data from Table 9.7. The COGL 
is the GL to the complement of Table 9.7. The complement is obtained replacing 
“0” by “1” and inversely “1” by “0”   in the Table 9.7. 

(123456,abcde) (123456,abcde) (123456,Φ)

(1256, acd)

(12, cd)

(1,d)

(Φ,Φ) (Φ,Φ) (Φ, abcde)

(12346, bcde)

(1346, bde)

(346, b)

(125, acde) (23456, abce) (23456, d)

(25, ac)

(5, a) (34, bc)

(3456, abc) (3456, cd)

(34, acd)(5, bcde)

(25, bde)

(125, b)

OOGL POGL COGL

 

Fig. 9.8 Oriented formal contexts 

An important difference between the oriented concepts and formal concepts of 
FCA is that the first use disjunction that is parallel ways, in forming a condition 
while the last one uses conjunction that is series ways. 
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Each of them captures a particular aspect of knowledge embedded in a formal 
concept. 

The oriented formal contexts offer separation scheme in which supplementary 
conditions should be verified. POGL corresponds to a modern request in 
formulations were the query refers to properties rather than the traditional query 
for composition. 

The COGL scheme describes separations as that described by the standard 
schemes but instead of light phase the heavy phase is of interest.  

9.7   Hierarchical Class Analysis 

Practical methods to analyze triadic contexts may be based on hierarchical class 
analysis, HCA coupled to FCA (Chen and Yao, 2005, Hwang and Kang, 2007). 

HCA is a set of theoretical cluster analysis technique. 
To illustrate HCA we consider the dyadic formal context shown in Table 9.8. 

Table 9.8 Dyadic formal context 

K1\K2 a b c d e 
1 0 1 1 1 0 
2 1 1 1 1 0 
3 1 1 1 1 0 
4 1 0 0 1 0 
5 0 1 1 1 1 
6 0 0 0 1 1 
7 1 1 1 1 1 

 
 
Table 9.8 corresponds to the objects K1 = {1, 2,...,7} the properties K2 = {a, b, 

c, d, e} and some relations I between them. For the set G ⊆ K1 of objects and a set 
M ⊆ K2 of properties, two derivation operators, intent and extent are given by: Int 
(G) and Ext (M). 

Intuitively, Int (G) is the set of properties common to all objects in G ⊆ K1. 
Dually, Ext (M) is the set of objects that have all the attributes from M ⊆ K2 
For example Int ({1, 2, 3})={b,c,d} and Ext ({b,c,d})={1, 2,3,5,7}.Given two 

objects 1, 2∈ K1, 1 and 2 are equivalent if Int ({1}) = Int ({2}). Correspondingly 
an equivalence relation may be established in K2 considering the definition: a and 
b are equivalent if Ext ({a}) = Ext ({b}). The hierarchical structures of the classes 
from Table 9.8 are shown in Fig. 9.9. Fig. 9.9 highlights the hierarchical structure 
of classes for dyadic context. 
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Fig. 9.9 Hierarchical structure of classes for dyadic context 

The open problem is to visualize the triadic context situations. 
We may consider the data from Table 9.9, as an example of triadic context. 
In this case K1 = {1, 2,..,7}, K2 = {a, b, c,d,e}, and K3 = {A, B, C}. 
The new considered level corresponds to conditions. 

Table 9.9 Triadic context 

K3 A B C 
K1\K2 a b c d e a b c d e a b c d e 
1 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 
2 0 1 1 1 0 1 1 1 1 0 1 1 1 1 0 
3 0 1 1 1 0 1 1 1 1 0 1 1 1 1 0 
4 0 0 0 0 0 1 0 0 1 0 1 0 0 1 0 
5 0 1 1 1 1 0 1 1 1 1 0 1 1 1 0 
6 0 0 0 1 1 0 0 0 1 1 0 0 0 0 0 
7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

 
 
In a separation study A, B, C may correspond to ambient conditions as changed 

during the day. Variations in K3 may change the properties values and the ranking 
of component for different properties. 

Fig. 9.10 shows how the K1 object hierarchical classification is related to K2 
properties hierarchy.  

The connection is mediated by K3. 
Fig. 9.10 outlines the triadic class hierarchy. 
Fig. 9.10 shows that there exists a path from component class [2] to properties 

class [a] via the conditions [B], [C]. K3 intermediates between K1 and K2 
allowing the closure between K1, K2 and K3. 
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Fig. 9.10 Triadic classes hierarchy study 

9.8   Tetradic Context Analysis 

Observe that previously discussed FCA studies refer to formal contexts only. This 
means that K1, K2 and K3 are formal domains. 

As shown in Chapter 4, the integrative closure hypothesis requires that the 
formal contexts are completed with the natural or real context denoted by S or K0.  

Completing the Peirce’s triadic approach, S is supposed to have a formal 
signification as that associated to K1, K2 and K3. 

For integrative closure hypothesis, to any general PSM framework containing 
S, K1, K2 and K3 we may associate a tetradic context (S, K1, K2, K3, Y) denoted 
also by (K0, K1, K2, K3, Y). 

A tetradic concept is the quintuple (S, K1, K2, K3, Y) where S, K1, K2 and K3 
are sets and Y is a quaternary relation between S, K1, K2 and K3 that is Y⊆S x 
K1 xK2 x K3. The elements of S, K1, K2 and K3 are called real states, formal 
objects, attributes and conditions. An element (s, k1, k2, k3) ∈Y is read: for the 
real state s=k0∈K0, the object k1∈K1, has the attribute k2∈K2 under the 
condition k3∈K3. 

Recall that a concept is a pair of sets: a set of elements (extent) and a set of 
properties (intent) as (k1, k2) for example. We may define the hierarchy of context 
considering k1 as an extent relative to k2 and k2 as an intent relative to k1. In the 
same way k3 appear as intent relative to k2.  

The time variations may be useful to visualize tetradic contexts (S, K1, K2, K3, 
Y) and integrative closure hypothesis. 

Table 9.10 shows a segment of an elementary type of tetradic context, the so-
called tetradic power set contexts. In this case K0 = K1 = K2 = K3 = {0, 1, 2, 3}. 
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In this table rows represents real objects, K0, the columns represent formal objects 
K1 the sub tables represents the formal attributes K2 and the tables represents the 
formal conditions K3. Only the value “0” of K3 was figured.  

Fig. 9.11 illustrates the power set tetralattice for tetradic power set context. 

Table 9.10 Tetradic power set context (partial data) 

K3 0 
K2 0 1 2 3 
K0\K1 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 
0  x x x x x x x x x x x x x x x 
1 x x x x x  x x x x x x x x x x 
2 x x x x x x x x x x  x x x x x 
3 x x x x x x x x x x x x x x x  
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Fig. 9.11 Tetralattice for tetradic power set context 

Fig. 9.11 shows as points the elements of one type of Sierpinski carpet. The 
complete Sierpinski carpet would correspond to a completed Table 9.10. 

Visualizations for tetradic GL are complex. 
A possibility is to decompose the tetradic lattices in triadic lattices. 
Fig. 9.12 clarifies the integrative closure features for tetradic lattice. 
Fig. 9.12 outlines the different concept contexts and the integrative closure 

hypothesis.  
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The associated Peirce’s categories are indicated. 

n=0

n=1 n=2

n=3

Thirdness

Modality
Substance

Firstness Secondness

Thirdness
S

S, K1 S, K1, K2

S, K1, K2, K3

 

Fig. 9.12 Integrative closure for tetradic lattice 

It is considered that each new module depends and embeds the previous ones as 
happens in the general categorification process. 

9.9   Security Management Architectures 

A four-level categorical approach for security of distribution information systems 
was presented by Sisiaridis et al. (2008).  

Fig. 9.13 shows a four realms network for security of information systems. 
The four levels correspond to Data, Schema, Construct and Concept (Fig. 9.13). 
The improvement is representing by the integrative closure hypothesis allowing 

the emergence and autonomous testing of new concepts. 
Restricting the levels interactions to the operators U10, U21, U32 leave the 

choice of control to the users and are appropriate for low-level security risks. The 
bottom-up approach, emphasizing the possibilities P01, P12 and P23 allows risk 
analysis and are more suited to high level security risks.  

The signification of the functors U and possibilities P is explicit from Fig. 9.13.  
U10, U21, U32 and U30 corresponds to implementation operations.   
Observe that: U10: K1-Schema→S-Data, U21:K2-Constructs→K1-Schema,  
U32: K3-Concepts→K2-Constructs, and U30: K3-Concepts→S- Data.  
P01, P12, P23 and P03 are synthesis steps. 
P01: S-Data→K1- Schema, P12: K1-Schema→K2-Constructs, P23: K2-

Constructs→ K3-Concepts, and P03: S-Data→K3-Concepts 
Fig. 9.13 emphasizes the role of integrative closure hypothesis via U30 and 

P03. This interconnection may make the system quite evolvable and autonomous. 
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K1-Schema K2-Constructs
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U30

P23

P12

P03

 

Fig. 9.13 Four realms network for security of information systems 

The link via U30 and P03 may be established by implementing organic 
computing. In a case of failure analysis and self-healing, as sensors are installed 
on a device, the information can be automatically captured during preventive 
maintenance. It may be possible to broaden the range of environmental and device 
information captured and transmitted automatically. Organic computing methods 
may facilitate information capture and failure analysis tasks. 

Another example of evolved failure analysis making use of the four-level 
architectures is shown in Fig. 9.14. Fig. 9.14 illustrates a four realms network for 
failure diagnosis (Rayudu et al. 2000). 

K1-Switching groups K2-Clusters

S-Individual 
components K3-Power systems

U10 P01
P12

P23
P03

U21

U32

U30
 

Fig. 9.14 Four realms network for failure diagnosis 

The first reality level represents behavior of individual components and their 
present status. The second level, characterizes the switching groups and this refers 
for instance to isolators, protective relays, circuits breakers, and so forth. 
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The representation of entities bounded by a set of switching groups called 
clusters make the third level. The cluster level incorporates behavior knowledge 
concerning connected switching groups and the operational equipment between 
them.  

The fourth level represents the whole network in terms of clusters. This level 
encompasses the strategic problem solving knowledge related to the complete 
power network. It is an integrative closure hypothesis for failure diagnosis, 
allowing system evolvability, self-repairing and autonomy. The operators U and P 
describe the testing procedures and the action in case of failure. The possibilities P 
describe the testing procedures and the information transfer between levels. 

A triadic context model for security management of information technology 
was discussed by Dau and Wille (2001). In the triadic context formalizing the data 
the formal objects associated to K1 are the treats, the formal attributes associated 
to K2 are the safeguards and the formal conditions associated to K3 are the 
information technology units. A tetradic context model should include the real 
data associated to K0 (Fig. 9.15). 

Fig. 9.15 shows a four realms network for security management. 

K1-Treats K2-Safeguards

K0-Real system K3-IT units

 

Fig. 9.15 Four realms network for security management 
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Chapter 10  
Existential Graphs 

Abstract. Diagrammatic methods as existential graphs and category theory dia-
grams are useful for multi-level problem solving. 

Taking inspiration from systems sciences, this chapter highlights multi-level 
modeling potentialities for Peirce’s existential graphs.  

The relation with pragmatic philosophy and studies of continuity is emphasized. 
High categories frames for Alpha, Beta and Gamma systems are discussed. 
Case studies refer to separation flow-sheets. 

10.1   Systems of Existential Graphs 

Diagrammatic reasoning concerns the understanding of concepts and ideas, visual-
ized with the use of diagrams and imagery instead by purely algebraic or linguistic 
means. 

Peirce developed the diagrammatic calculus of existential graphs, EG, to ex-
press logical formulae and inferences (Peirce 1976, Roberts 1973, Dau 2003).  

The Peirce’s graphical approach to logic could be regarded as a forerunner of 
today's familiar "gedankenexperiment".  An extension of the Venn diagram of 
probability theory, graphical reasoning was regarded by Peirce as the only really 
fertile reasoning, from which not only logic but every science could benefit.  As in 
a “gedankenexperiment”, Peirce regarded the use of such diagrams in logic as 
analogous to the use of experiments in chemistry.  

Related to EG, the conceptual graphs can be considered as a synthesis of formal 
and graphical languages. Due to the graphical representation of knowledge, the 
conceptual graphs allow the construction of computer user interfaces. Recent de-
velopments of conceptual graphs are flexible modular frameworks that can be 
tailored to an open-ended variety of architectures for intelligent informational sys-
tems (Sowa 2000).  

For multi-level systems modeling, it is of interest to examinee the EG applica-
bility, the fit of EG and Peirce’s concept of continuum and its place in Peirce’s 
categories architecture. 
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The EG, have been developed in three stages of logical complexity: Alpha, 
Beta and Gamma systems. These systems are supposed to build upon each other. 

Alpha graphs are geometrical representations of propositional assertions, that 
is, Boolean combinations of propositional variables.  

To assert some statement in EG, the symbolization A of that statement is put on 
a sheet of paper, the so-called sheet of assertions, SA or blank. Drawing the sym-
bolizations of two statements A and B is a juxtaposition that corresponds to con-
junction of A and B. The negation of some statement is indicated by drawing a 
cut, called also “sep” from separation. This is a rectangle or any other enclosing 
figure, around the symbolization of that statement. Fig. 10.1 illustrates the concept 
of “sep”. It is interpreted as A is false or in other words, A is separated. 

A

 
Fig. 10.1 Sep: A is false or separated 

The sep without any contents is called an empty sep. Any empty sep expresses 
a contradiction. 

Using letters or numbers for simple statements, juxtaposition for conjunction, 
and seps for negation any compound truth-functional statement may be symbol-
ized in EG. 

Alpha system has four inference rules: two rules of inference, insertion and era-
sure, and two rules of equivalence, double seps and iteration/deiteration. 

To understand these inference rules, it is necessary to clarify concepts as sub-
graph and nested level. 

A

B

 

Fig. 10.2 Subgraphs 
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A subgraph is any part of the graph, as long as seps keep all of their contents. 
Fig 10.2 illustrates the definition of subgraphs. The graph from fig. 10.2 shows 

five subgraphs: A, B, rectangle B (denoted also by [B]), the subgraph A and [B], 
and the subgraph [A, [B]].  

The graph from Fig 10.2 expresses the implication relation: if A then B, or in 
other words A scrolls B. We may denote this implication by: A→ B. The reverse 
implication may be considered too.  

B B

A

 

Fig. 10.3 Double seps 

A double sep is any pair of seps where one is inside the other and where is only 
the empty graph in between. Fig. 10.3 illustrates double seps. 

The left side of Fig. 10.3 shows double seps that may be denoted [[ ]] and [[B]]. 
The right side figure [A [B]] is not a double sep. 

The level of any subgraph is the number of seps around it. The Fig 10.2 shows 
A, [B], the system A and [B] as the nested level 1 of subgraphs. B is a subgraph at 
the nested level 2.  The graph itself [A, [B]] is a subgraph at the nested level 0. 

C B

A

 

Fig. 10.4 Nested levels of subgraphs 
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A subgraph is said to exist at a nested level in relation to some other subgraph 
if and only if one can go from one graph to another by going inside zero or more 
seps, and without going outside of any seps. Fig. 10.4 shows nested levels of sub-
graphs. 

In Fig. 10.4, B exists at a nested level in relation to A but not in relation to C. 
Also A and [B] exist at a nested level in relation to each other. 

The double seps rule of equivalence allows drawing or erasing a double seps 
around any subgraph (Fig. 10.5). 

Fig. 10.5 illustrates the double seps rule of equivalence. 

A A

 

Fig. 10.5 Double seps rule of equivalence 

The physical interpretation of double seps rule may be that two successive opera-
tions of separations are equivalent to the absence of separation. This is the case of 
an absorption followed by desorption due to a supplementary separation for  
instance. 

B insertion

A erasure

 

Fig. 10.6 Insertion and erasure 

Fig. 10.6 illustrates the rule of insertion and erasure. 
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AA A

 

Fig. 10.7 Iteration/Deiteration 

Fig. 10.7 illustrates the rule of iteration/deiteration. 
A formal proof in EG consists in the successive application of inference rules to 

transform one graph into another. 
A higher step in developing the Alpha EG systems are the Beta graphs, which 

represent geometrically first-order relational expressions.  
A new symbol, the line of identity, LI, denoted by “─” was introduced for Beta 

systems. Lines of identity may designate both the existence of objects and the 
identity between objects.  

The Beta part of EG corresponds to predicate logic, and it is an extension of 
Alpha system. 

To define Beta graphs we need to define, how to symbolize objects, individuals 
constants, identity, predicates, and quantifiers. 

To express that an object has a certain property P, we may write the predicate 
symbol next to the object: ─ P. To express a relationship R between two or more 
objects, we write the predicate symbol between the objects: ─ R ─. 

Instead of only considering predicates names of arity 0, in Beta system the 
predicate names of arbitrary arity may be used. 

Essentially, the rules for Beta system are extensions of the five rules for Alpha 
system such that the Beta system rules cover the properties of the lines of identity. 

The Beta system rules are: erasure, insertion, iteration, deiteration and double 
seps. 

A higher step in developing the Beta graphs are the Gamma graphs.  
Gamma graphs are related to higher order and modal logic, temporal logic and 

the possibility to express self-reference.  
Peirce formulated some tentative rules for Gamma graphs: deletion and inser-

tion, iteration and deiteration, and double seps. 
A new graphical tool of Gamma system is the broken-sep shown in Fig 10.8. 
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C C

 

Fig. 10.8 Broken seps 

Fig. 10.8 illustrates the broken seps. 
For the graphs from Fig 10.8 we may use readings like: “it is possible that not 

C” and “it must be that C” 
An important aspect of Gamma systems is the possibility to express meta-level 

propositions that is propositions about propositions. Graphs which have been used 
to describe objects so far can now in Gamma system to be treated like objects 
themselves such that other graphs speak about them. The graph of graphs repre-
sents a new level of abstraction for graphs. It may be considered as a graph rewrit-
ing method. 

Developing Gamma system Peirce proposed to use colors or tinctures to distin-
guish different kind of contexts. Tinctures have not been considered logical opera-
tors but meta-level operators which can be used to describe how logic applies to 
the universe of discourse. 

The fact that a graphic methodology of continuous gluing can be formalized in 
order to capture both a calculus of quantification, along joins and extensions of 
lines of identity, and several calculations of modalities, along completions of bro-
ken seps, is a significant result.  

As a development of Gamma systems, Zalamea (2001) proposed to use a 
thicker identity line “▬” an existential quantifier in a second order logic.  

10.2   Continuum and Existential Graphs 

Peirce’s understanding of EG was strongly related to his study of the continuum, 
and this understanding is different from the real set of Cantor. 

Peirce rejected Cantor’s model of continuity, and developed over a generic syn-
thetic ground–smooth or plastic, different concepts of continuum based on NA 
frames (Ehrlich 2006). He outlined that the cohesiveness of a continuum rules out 
the possibility of it being a mere collection of discrete individuals, or points, in the 
usual sense.  

Peirce maintained that if enough points were to be crowded together by carry-
ing insertion of new points between old to its ultimate limit they would—through 
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a logical transformation of quantity into quality, lose their individual identity and 
become fused into a so-called “true continuum”. 

Peirce's continuum is notable for the presence in it of an abundance of potential 
infinitesimals. He supported the retention of the infinitesimal concept in the foun-
dations of the calculus, both because of what he saw as the efficiency of infini-
tesimal methods, and because he regarded infinitesimals as constituting the glue 
causing points on a continuous line to lose their individual identity. Infinitesimals 
form the glue that holds the points of the line together. These kinds of intuitions 
were at the core of Peirce’s conception of infinitesimals identified with the con-
sciousness of the immediate moment. By taking the stance that there can be no 
movement in an instant, Peirce argues that the present, infinitesimal moment can-
not be an instant. He has been aware that a faithful account of the continuum will 
involve questioning the law of excluded middle. The relation with toposes and 
SDG frame is obvious (Havenel 2008). 

The logic of continuity represents a unifying program to coherently combine 
the EG and elements of Peirce continuum concept in order to advance a better 
understanding of geometric logic.  

The correlation between the concept of EG, the continuum and categories is of 
practical interest since this may offer a basis for multi-level cognitive systems 
construction (Rosa 1993, Kauffman H.L. 2001, Zalamea 2003, 2007). 

A promising way to relate EG systems to Peirces’ concept of continuum was 
proposed by Zalamea (Zalamea 2001, 2007). Zalamea suggested a complex vari-
able interpretation of EG. Following this approach we will consider a positive 
number as ε that is not zero and nevertheless smaller than any positive number. Its 
reciprocal 1/ε would be a number larger that any number, an infinite number. Add-
ing ε or 1/ε to the finite numbers is an operation analogous to extending the num-
ber system to include the imaginary i, or 1/i that is to create the complex numbers.  

In both cases unconventional numbers as infinitesimal “ε” or imaginary “i” are 
introduced for their potential usefulness. 

We observe an analogy between well known results in complex analysis and 
results in infinitesimal analysis. Operations we are doing with numbers as B +εA 
are in some sense, analogous to the operations we are doing with complex num-
bers as B+iA. 

For the example of mixing the infinitesimal part is associated to the slow space 
while the standard part corresponds to the active space. For a separation process 
the slow space and the active space are the separated species. 

The graph from Fig. 10.2 shows that the event A scrolls B. This implication 
may be denoted by the number B+ εA. Reversing the implication, to B scrolls A, 
means reversing the number B+ εA to 1/ (B+ εA). Physically this means to inter-
change the roles of the active and the slow spaces.  

Paralleling the suggestions of Zalamea (2007) we may associates the numbers 
containing 1/ε to residues calculus and to Alpha systems in EG. Analogously the 
analytic continuation for complex systems is associated to Beta system and the 
analogous to Riemann surfaces to Gamma systems. 
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Similar conclusions should be valid when complex variables are replaced by in-
finitesimals. In this way Peirce’s EG theory may be of help in understanding the 
logic of infinitesimal variables. 

According to integrative closure hypothesis the 1, 2 and 3-categories may be 
associated to Peirce’s firstness, secondness and thirdness categories. 

According to this hypothesis, the EG growing in complexity steps from Alpha 
to Beta and Gamma systems is analogous to the steps of mathematical n-
categorification. 

The thirdness was frequently associated by Peirce to his concept of “true con-
tinuum”. It corresponds to a kind of complete gluing of entities. The gluing is en-
sured by infinitesimals at different scales. The “true continuum” may be that asso-
ciated to 3-categories. 

Brady and Trimble (2000a, 2000b) proposed categorical models for classical 
Alpha systems (1-categories) and Beta systems (2-categories). Their results sug-
gest to hypothesize that Gamma graphs would be associated to 3-category. 

Fig. 10.9 clarifies the integrative closure features for EG. 
Fig. 10.9 shows the categories associated to EG and to continuum in the inte-

grative closure hypothesis frame. 
The level 0 for categories corresponds in this illustration to the real data or info. 

This level corresponds to the “substance” in the Peirce’s initial list of categories.   

E

0-Cat (set)

E

1-Cat (Alpha)

E

E

2-Cat (Beta)

3-Cat(Gamma)Substance

Firstness Secondness

Thirdness

A A’

B B’
C C’

D D’

A B C 

A”

A’ B’

B” C”

C’

A

A’

A”

A

A’

A”

B C 

B” C”

B’C’

 

Fig. 10.9 Integrative closure for existential graphs 

The level 1 corresponds also to Alpha systems and 1-categories, the level 2 to 
Beta systems and 2-categories, the level 3 to Gamma systems and 3-categories. 
For Alpha systems the implications are indicated by inclusion or by arrows, “→”. 
The line of identity, LI, denoted “─” may be considered as 2-arrows, “⇒”. The 
thick lines of identity “▬”may be considered as 3-arrow “ ”.  
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The presentation from Fig. 10.9 outlines the hypothetical way correlating the 
substance (level 0) with the thirdness (level 3). The Alpha systems define trajecto-
ries or  sequences. The Beta system allows an identification of C with C’ and C 
with C’’ based on lines of identity,“─”. These relate the trajectories. 

The Gamma system allows a supplementary identification of the previous iden-
tified trajectories, by a second-order thick line of identity “▬”.  

It should be noted the contact of the above approach with Whitehead’s process 
philosophy (Whitehead, 1978). In this case the four levels correspond to existence, 
explanation, obligation and ultimate category. As for Peirce, Whitehead theories 
were developed too early to see the fulfillment of their frameworks as formal n-
categories but they may be a source of ideas for categorists.  

10.3   Separation Flow Sheets  

There exists a significant relationship between the categorification and coherence 
studies in CT, the possible sequences of separation for mixtures and the existential 
graphs, EG. 

The connection between separation schemes and n-category properties aims to 
shows what kind of separation systems correspond to categorical properties. 

As shown in the periodic table (Appendix 2) the categorification implies the 
succession of monoidal, braided, sylleptic, involutory and symmetry properties. 

The signification of these properties for separation flow-sheets and EG will be 
presented in the following. 

Recall that a monoid is an algebraic structure with a single associative binary 
operation and an identity element. 

Consider that the axiom to be imposed to the separation sequence is the asso-
ciativity. This means that, within a sequence of elements containing two or more 
of the same sequencing operations in a row, the order that the operations are per-
formed does not matter as long as the sequence to be operated is not changed. Re-
arranging the parentheses in a sequence will not change sequencing general task. 

The resulting associahedron are studied in CT as coherence conditions.   
Suppose that there are four components and that the order of sequencing is im-

posed from start, by a heuristic as for instance - sequence the splits in the order of 
adsorbability. Denote the four components according to that order as A, B, C and 
D. The MacLane pentagon condition is shown in Fig. 10.10. It outlines monoidal 
flow-sheets.  

Fig. 10.10 may be interpreted in terms of Alpha system for EG, also. 
The transition from a configuration to another is pictured as a shift of rectangles 

or boxes. 
Brady and Trimble (2000a) inserted the EG in the context of monoidal catego-

ries and have showed that every Alpha graph give rise to an algebraic operation.  
Alpha graphs have been studied in the frame of the star-autonomous categories 

(Barr 1979). 
Fig. 10.10 shows that for tensor product of four objects there are five ways to 

parenthesize it. The association allows us to build two isomorphisms from the 
sequence [[AB] C] D to A [B [CD]]. 
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The isomorphism is interpreted in the sense that the so-called direct sequence A 
[B [CD]] is made equivalent to the reverse sequence [[AB] C] D, if one retains the 
heavy phase instead of the light phase during the separation process. 

DA B C

D A

A DB C

A B C DCA B B C D

 

Fig. 10.10 Monoidal flow-sheets 

Fig. 10.11 expresses the relations from Fig. 10.10 in a tree-like form. It shows 
monoidal flow-sheets in a tree like form. 

A B C D

A B C D A B C D A B C D

A B C D

 

Fig. 10.11 Monoidal flow-sheets: tree like form 

The next level of schemes and EGs will include braiding. 
A braided monoidal category consists of a monoidal category with an extra 

structure of a natural isomorphism called braiding with some properties called 
hexagon equations (Appendix 2). 

For separation processes there are processes that let us switch two systems by 
moving them around each other.  

This switching corresponds to braiding, that is to relations as AB=BA. 
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Consider the case of 3 components denoted by A, B and C. The hexagon condi-
tions shown in Fig. 10.12 ensure the coherence for braiding conditions. 

Fig. 10.12 shows braided flow-sheets. 

A BC CAB CBA

ABC B CA B AC

CAB A BC A CB

C AB BCA BAC

 

Fig. 10.12 Braided flow-sheets 

The first hexagon equation says the switching the component A past BC, all at 
once, is the same as switching it past B and then past C.  

The second hexagon is similar. It says that switching AB past C all at once, is 
the same as doing it in two steps. It may be a shift of the in 

This kind of braiding may be interpreted as a situation in which there is a 
switch in the separation order. For instance, in a scheme working with adsorbabil-
ity it may be a thermal swing adsorption by varying the temperature (Yang 1987). 
It is known that adsorbability depends significantly on temperature. 

The hexagons outline all the possible separation schemes allowing associativity 
and braiding and their interconnection. 

Fig. 10.12 may be interpreted in terms of Beta system for EG. 
The transition from a configuration to another is pictured as a switching be-

tween rectangles that is boxes and individual components. There exist also shifts 
of boxes corresponding to the previous categorical level that is to monoids. 

There are several types of operations governing the transitions between two 
successive states. It may be a shift of the internal box and a braiding or switch of 
component inside the internal box and a switch between components of the large 
box and that of the internal box. 

Brady and Trimble (2000b) have indicated how to represent Beta graphs by 
means of a category theoretic relational calculus. Beta graphs represent a 2-
category structure (Joyal and Street 1991). 

The next level in categorification corresponds to sylleptic structures. 
A sylleptic monoidal category is a braided monoidal category with extra struc-

ture (Crans 2000, McCrudden 2000). 
Fig. 10.13 shows flow-sheets that results by parity cube relations (Appendix 2).  
 



176 10   Existential Graphs
 

DABC

A BCD

AB CD

ABCD

CDAB

CDAB

ABCD

DBCA

 

Fig. 10.13 Parity cube flow-sheets 

For coherence the edges of the MacLane pentagon from Fig. 10.10 become five 
sides of a cube shown in Fig. 10.13. This is the so-called parity 3-cube. This cube 
shows what happens when an axiom as associativity is complemented by signifi-
cantly more restrictive ones as required by Gray tensor product ”Г”, definition and 
tricategorical frame (Appendix 2).  

Representation for a tricategory is fundamentally different from the one and 
two dimensional case of categories and bicategories. The integrative closure hy-
pothesis suggests to associates this categorization step to Gamma systems.  
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Chapter 11  
Evolvable Designs of Experiments 

Abstract. The multi-level modeling potentialities for evolvable designs of 
experiments are highlighted.  

The general PSM framework based on integrative closure serves as a flexible 
guideline for a large variety of design of experiments. 

Case studies refer to pharmaceutical pipeline, drugs discovery and 
development, reliability management systems, test coupons design and failure 
analysis for printed circuits.  

New informational entropy criteria find applications.  

11.1   Pharmaceutical Pipeline  

Designing, building and controlling complex systems became a central challenge 
for scientists and engineers in the coming years.  A new approach to problem 
solving for complexity is represented by the evolvable designs of experiments, 
EDOE (Iordache 2009). It is based on the constructivist thesis that knowledge can 
not be a passive reflection of reality, or a passive application of a formal problem 
solving model, but has to be more of an active and interactive construction. EDOE 
is a modern way to cross industrial and technological complexity frontiers by 
replacing pre-programmed and fixed designs and problem solving methods by 
evolvable ones. 

The EDOE methodology may find applications for complex problems as the so-
called pharmaceutical pipeline. 

This refers to the new product, to research and development in pharmaceutical 
industry. 

The typical sequence for new product implementation contains the following 
main steps:  

Resources →Discovery→ Development→ Launching 
A more detailed version of the pharmaceutical pipeline is shown in Fig. 11.1 
Biological, chemical and other resources allow the discovery of drug lead. 
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The development step includes tests, preclinical, P0, followed by three phases 
of tests, PI, PII, and PIII.  

The product launching starts with NDA, New Drug Application, and FDA, 
Food and Drug Administration, submissions and reviews, and continues with 
production and marketing steps.   

Lead
Lead 

Optimum
Preclinic

Biology
Chemistry

Product
Market

FDA
NDA

Phase IIIPhase IIPhase I
Knowledge

Models

 
Fig. 11.1 Pharmaceutical pipeline 

Some areas of pharmaceutical industry are facing a productivity crisis 
(Woodcock and Woosly 2008). Despite rising investment in pharmaceutical 
research and development, successful development of new drugs is slowing. The 
high costs of new drugs development may discourage investment in more 
innovative, risky approaches in therapeutics. 

The FDA, with its dual role of promoting and protecting health is charged  with 
implementing policies that ensures that the benefits of the new products will 
surpass their risks, while simultaneous promoting innovations that can improve 
health. 

It was observed that chemical and biological systems may have huge behavior 
spaces and laboratory experiments and models cover only tiny aspects of a 
system's behavior. 

The models often ignore the essential temporal and conceptual space 
organization of the research and implementation components. Moreover, models 
and methodologies lack flexibility to adapt and to faster represent more areas of 
the behavior space. 

They neglect synergies – beneficial, nonlinear interactions between systems 
that cannot be inferred from existing resources and may be missed. 

The architecture of the models should be in correspondence with that of the 
studied system within physically, biologically or cognitive recognizable spaces. 

This will require combining multiple level modeling methods in innovative 
ways, multiple levels of organization activated both in parallel as in series. 

It is a need for new modeling and simulation methods, sufficiently flexible, 
adaptable and evolvable that is able to explore larger portions of the behavior 
space, a strong request for cognitive architecture reflecting the essential temporal 
and spatial organization of the real substrates and allowing autonomy of the new 
product development system. 

PSM and more specifically EDOE, are promising cognitive architectures 
proposed as new methodologies for multi-level problem solving in pharmacology. 

The PSM general framework is based on four modules and their integrative 
closure. 

Fig. 11.2 suggests a transition from the pharmaceutical pipelines to pipecycles. 
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The module K0 corresponds to substrate and resources, the module K1 to 
discovery step, K2 to developments and tests and K3 to product implementation 
and launching. 

The first module involves resource mining. Resources are material, biological 
and of knowledge type.  

The second module K1, is that of discovery and involves in this case drug-like 
molecules discovery, lead discovery and optimization. It may be a DOE. 

The third module K2 is that of drug testing and development. It is a meta-
design and for this reason may be denoted by 2-DOE since refers to processing 
DOE.  

The fourth module K3 includes application and approval processes, 
manufacturing, marketing and monitoring of the product.  

Thirdness

Modality

K0-Substrate, Resources

K1-Discovery

K3-Implementation

K2-Development,Tests

Chemical

Biological Knowledge

Models

Idea

Exploration

Lead opt.

Lead
P2P1

Market

Production

Preclinic P0 P3

FDA

NDA

 

Fig. 11.2 Pharmaceutical pipecycles 

Each module may involve several sub-modules organized as epicycles. 
For instance in the module K2 there exists a natural cycle P0, P1, P2, P3. 
For the module K3 the NDA step is followed by FDA step this by production 

and this by product marketing. 
The transition from pipeline to pipecycles proposes a methodology that closes 

the loop in iterated experimentation in a high dimensional space. The cycling 
refers to large cycles for the whole process of four modules or just to one module 
or sub-module and the corresponding epicycles. 

Some cycles may be fully automated if autonomous experimentation methods 
are used to conduct high-throughput experiments.  

Modeling of matrix designs and use of informational criteria accelerate the 
development of new drugs.    
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11.2   Designs of Experiments for Drug Discovery 

Drug-likeness is a qualitative concept used in drug design to outline how a 
substance is with respect to factors like bioavailability. It is estimated from the 
molecular structure before the substance is even synthesized and tested. A drug-
like molecule has properties like, high solubility to both water and fat, sufficient 
water-solubility, low molecular weight, pharmacological properties. 

A traditional method to evaluate drug-likeness is to check compliance to 
different rules which covers the numbers of hydrophilic groups, molecular weight, 
hydrophobicity and so on. The drug-likeness study should be completed with lead-
likeness study (Hann and Oprea 2004). 

Drug-likeness indexes are inherently limited tools since they do not evaluate 
the actual specific effect that the drug achieves that is, the biological activity.  

In pharmacology, bioavailability is a measurement of the extent to which a drug 
reaches the systemic circulation. First-pass metabolism, which is bio-chemically 
selective, can obliterate the pharmacological activity of a compound despite good 
drug-likeness. Toxicity should also be taken into account. 

We may address the problem of designing experiments for the exploration of 
high-dimensional experimental spaces using EDOE method. 

We will consider that the activity of new drug discovery can be divided in four 
basic modules or steps. 

The first module K0 corresponds to resources and research step. 
The second module K1 should be based on designs of experiments, DOE. 
The third module K2 is a meta-design and for this reason was denoted by  

2-DOE. 
The fourth module K3 is a meta-meta-design and for this reason may be 

denoted by 3-DOE.The general method is illustrated in Fig. 11.3. 
Fig. 11.3 highlights the EDOE basic framework. 
The four modules of variation, K0, K1, K2 and K3 are denoted also by S,  

1-DOE, 2-DOE, and 3-DOE. 
To start the EDOE, we examine experimental space of properties. 
After a number of iterations at this level we may make predictions of drug-

likeness too. 
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Fig. 11.3 EDOE basic framework 

As a starting point we will select drug candidates according to existing rules 
(Lipinski et al. 1997, Ghose et al. 1999).  

Lipinski's rule says that, in general, an orally active drug has no more than one 
violation of the following criteria: 

• Not more than 5 hydrogen bond donors (nitrogen or oxygen atoms with one or 
more hydrogen atoms) 

• Not more than 10 hydrogen bond acceptors (nitrogen or oxygen atoms) 
• A molecular weight under 500 Daltons 
• An octanol-water partition coefficient log P of less than 5 

Note that all numbers are multiples of five, which is the origin of the rule's name. 
Based on such rules we may select a DOE. For DOE matrix we use “1” if the 

rule is verified and “0” otherwise. 
The DOE may be associated to a set of molecules or an embedded design if a 

genomic analysis is possible. The four-fold framework may be applied to just one 
of the levels as seen in Fig. 11.3.  

In such cases the focused level is divided in four sub-levels. 
Let us restrict here to the discovery stage associated to K1 as a first example. 
A method of designing chemical substances is presented (Wood and Rose 

1999).  
The method allows sampling combinatorial chemistry space for synthesis based 

on DOE with Latin squares or more general with orthogonal arrays. 
Libraries with four sites of variation for molecules may be designed using 

Greco-Latin squares.  
Consider four sites of variation, k10, k11, k12 and k13 for substitute groups. 

They correspond to sub-levels of the level K1. 
Then only four different substitutes are selected for each substitute or pendant 

group, k10, k11, k12 and k13. 
The substitute group k10 consist of four candidates, denoted 0, 1, 2 and 3, the 

substitute k11 from four candidates denoted a, b ,c ,d the substitute k12 of four 
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candidates denoted A, B, C, D and substitute k13 of four candidates denoted α, β, 
γ, and δ. 

Recall that a wave equation is able to generates Latin squares as solutions 
(Iordache 2009, 2010).  

 Superposition of such solutions of the wave equation gives Greco-Latin 
squares as shown in Table 11.1. This superposition represents a specific 
categorical product. 

Table 11.1 shows the matrix of a Greco-Latin design. 
For this table the sub-levels of the level K1 are: k10 = {1, 2, 3, 4}, k11 = {a, b, 

c, d}, k12 = {A, B, C, D}, and k13 = {α, β, γ, δ}. 

Table 11.1 Greco-Latin square design 

k10\k11  b  d 
1 A  B  C  D  
2 B  A  D  C  
3 C  D  A  B  
4 D  C  B  A  

a c

 

With 16 experiments only we may obtain significant info. 
Running the experiment we may select the critical substituents. 
EDOE framework should be seen as a general pattern rather then a 

predetermined fixed plan. This means that we may have partial Greco-Latins as 
micro-arrays. 

The complete EDOE frame implies to continue the cycle from DOE matrix that 
is from K1 level, to tests that is K2 level, evaluation and implementation that is 
K3 level as shown in Fig. 11.3. 

11.3   Drugs Development 

11.3.1   General PSM Framework for Discovery and Development 

A significant source of complexity in pharmacology is the multi-level 
characteristic of the involved systems. Evolvability is the proposed method to face 
different aspects of complexity (Iordache 2009). Applying the general PSM 
framework highlight the ways of implementing evolvability for drug design 
development and delivery systems.  
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Following PSM methodology the pharmaceutical discovery and development 
activity can be divided in four main modules or levels (Fig. 11.4).  

Fig. 11.4 shows a framework for drug discovery and development. 
The first module, K0 is represented by resources, data bases and involves 

resource mining.  The next module, K1 is that of discovery and involves drug-like 
or lead discovery and improvement. This module may include designs of 
experiments, DOE. In our case study this module will refer to establishing a 
“reference” set or a “core” set of significant compounds (Wang et al. 2009). 

The next module, K2 is that of new drugs testing and development. It may 
include the proof of concept by multiple trials. In this case study this consists in 
evaluating similarity of new drugs relative to the reference set. The next module, 
K3 includes decision about the new drug application and also monitoring of the 
product.  

3
K1-Reference set K2-Testing

K0-Research K3-Evaluation
 

Fig. 11.4 Framework for drug discovery and development 

11.3.2   Informational Tools 

The initial step in quantifying the concept of similarity for chemical species in a 
mixture is to list the most important structural elements or properties of such 
species. To every species can be associated a vector the components of which take 
only two values "1" or "0" where  "1" means the presence of a given structural 
element or property whereas "0" means its absence. For instance, "1" may 
correspond to a high value of the property, as the hydrophilic character, whereas 
"0" corresponds to a low value (Iordache et al. 1993b). Binary bit string 
representations of molecular structure and properties often called fingerprints are 
standard tools to analyze chemical similarity (Willett 1998). 

Vectors associated to the chemicals are denoted by: i= <i1, i2,..., ik,...>  where 

ik are either "1" or "0". Binary characterization according to the presence ("1") or 

to the absence ("0") of a given property was used initially. The use of multi-valued  
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digits or of the real properties instead of Boolean ones has been tested also. A 
hierarchy of the structural elements or properties is required. For instance, it is 
considered that the property indexed by i1 is more significant that the property 

indexed by i2, this more significant that i3, and so on in the order of the 

coordinates in the associated vectors.  
To any set of chemicals a similarity matrices is associated and to this an 

informational entropy. On this basis the components of the mixture may be selected. 
A similarity index rij, between two different species i= <i1, i2,..., ik,...>  and  

j= <j1, j2,..., jk,...>  is defined as: 

rij =Σktk  (ak)k ; k=1,2,....                                                    (11.1)   

Here: 0≤ak≤ 1 and tk=1 if ik = jk , tk=0  if ik ≠ jk  for all k. The entire system is 

characterized by the matrix R=[rij]. The similarity index should possess the 

natural properties of reflexivity (rii = 1) and of symmetry (rij=rji). This definition 

assigns a coefficient of weight ak to any property involved in the description of 

the species i and j provided that the Boolean values ikand jk are the same for these 

two chemicals. 
The fact that the relation described by rij is reflexive and symmetric allows a 

partition of the set of components in classes that are not necessarily disjoint. A 
class consists of a number of similar chemical species gathered together. To limit 
here the study to partition into disjoint classes the defined similarity must be 
transitive that is: mink (rik, rkj) ≤ rij. The procedure to ensure transitivity is that 

the classification algorithm starts from the "stable" matrix of similarity. To obtain 
such a stable matrix, the sequence R, R(2),..., R(k),...with R(2)=RoR and 
R(k)=R(k-1)oR  is calculated. The composition rule "o" is given by:  

(RoW)ij= maxk[ min (rik,wkj) ]                                  (11.2)  

Here R=[rij], W=[wij] are two arbitrary matrices of the same type. The 

composition equation calculates the (i,j)-th element of the matrix RoW. It consists 
in taking the smallest of the two elements rik and wkj, for a given row i of R and a 
column j of W, then repeat the procedure for all k, and select the largest of all such 
resulting elements. There exists an integer  n such that from  n on, the matrix is 
stable to the composition rule "o" so that R(n)=R(n+1) and so on. The elements of 
the stable similarity matrix R(n) verify symmetry, reflexivity and transitivity.  

Denote by rij (n) the elements of the stable matrix R(n). The partition is 

established on the base of the "degree of classification" T with 0 ≤ T≤ 1. The 
classification rule is the following: two species i and j, are assigned to the same 
class if rij (n)≥ T. Applying the rule, the set of classes at the degree of 
classification T is obtained. For T=0, a unique class results including all species, 
whereas for T=1 each class includes only one species. When T varies from 0 to 1, 
different sets of classes arise. Actually a new set of classes arises every time T 
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crosses the value of one similarity index rij of the matrix R. In this way a general 
tree of classes is built, which is nothing but the expected flow-sheet. The class of i, 
noted î, is the set of species j which satisfies the rule: rij ≥ T. The similarity matrix 

of classes R̂  is constructed as follows:  

ĵî
R̂ =max (rwt); w ∈î, t ∈ ĵ                               (11.3)

  

Here w designates any index of species belonging to the class of i and similarly t 
any index referring to the class of j.  

To any similarity matrix R the informational entropy H(R) is associated: 

H(R) = - Σ rij ln rij- Σ (1- rij ) ln(1- rij)                   (11.4) 

This expresses the quantity of information associated to the matrix of design.  
The defined entropy is a measure of the imprecision in classifying the 

experiments.  
To compare two similarity matrices R= [rij] and W=[wij] a distance DD was 

introduced: 

DD(R, W)= -Σ rij ln (rij /wij)- Σ(1- rij )ln ((1- rij )/(1-wij)) 

The distance measure the discrepancy between two similarity matrices and 
associated classifications. 

11.3.3   Anesthetics Mixtures 

Informational algorithms based on relation between chemical structures of 
anesthetics and their pharmacological properties may be of help in anesthetics 
discovery, development and delivery (Iordache et al. 1989, Torrens and Castellano 
2006). 

The starting point of the informational analysis consists in associating to 
different anesthetics digital vectors describing their composition and properties.  

The relation vs. structure activity suggests using of this informational 
description of anesthetics for new anesthetics discovery. 

Test calculations on different compound data sets, associated vectors, and screening 
data bases revealed the capability of the method to detect new formulations. 

Significant clinical properties of local anesthetics as potency, onset and 
duration of action depend on the physicochemical properties of the various 
fragments of anesthetic compounds. Most local anesthetics are classified into the 
ester and amide type, by the difference in the chain that binds the hydrophobic 
group and the hydrophilic group in a molecule (Verderame 1986). 

For anesthetics we considered associated vectors as: 

x= <lipofilic, hydrophilic, intermediate chain, nr of N atoms, nr of O atoms> 

The choice of this set of characteristics and of their hierarchy should be based on 
tests. It introduces an important subjective character into the analysis where 
precisely the expertise of the analyst should play an essential part.  
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Procaine was selected as a reference anesthetic.  
For procaine the lipophilic portion is a phenyl radical, the hydrophilic portion is 

an amine, the intermediate chain is an ester, and there are two nitrogen atoms and 
two oxygen atoms. The vector associated to procaine is <11111>. The vector 
<10101> is associated to benzocaine since the hydrophilic portion is not an amine 
and there is only one nitrogen atom in this molecule. 

A natural trend is to formulate mixtures of anesthetics as an attempt to answer 
to complex pharmacological requirements (Kaweski 2008, Kravitz 2007, Lee 
2003).  

Table 11.2 shows some topical anesthetics mixtures that may be considered as 
developments of the mixture lidocaine/tetracaine, LT. The mixtures of three 
anesthetics are denoted here by PFG, LET, TLP, and BLT. 

LT is considered as a reference set. 
This choice corresponds to the K1-module in the general PSM framework.  
If possible, the reference set should be selected to offer maximum entropy, ME. 
ME is the criterion to build K1 module. 
Applying the informational algorithm we may calculate the informational 

entropy H associated to LT mixture (Table 11.3). 
By adding a third compound to this LT reference mixture the entropy H varies. 
There is only a small change of entropy, if the vector of the test compound is 

similar to the reference set and this supplementary compound is thought to have 
similar properties (Wang et al. 2009). 

Table 11.2 Topical anesthetics 

Topical 
Anesthetics 
Mixtures 

Anesthetics Vector 

LT Lidocaine <11010> 
 Tetracaine <11111> 
PFG Prilocaine <11010> 
 Lidocaine <11010> 
 Tetracaine <11111> 
LET Epinephrine <11000> 
 Lidocaine <11010> 
 Tetracaine <11111> 
TLP Phenylephrine <11001> 
 Lidocaine <11010> 
 Tetracaine <11111> 
BLT Benzocaine <10101> 
 Lidocaine <11010> 
 Tetracaine <11111>  
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If a data base anesthetic shares similar bit patterns with reference set molecules, 
adding a similar compound will induce a change targeting the minimum entropy 
production. 

By contrast, inclusion of a compound having dissimilar vector leads to a higher 
entropy production, targeting the maximum entropy production. 

In this way data base compounds may be screened to identify compound that 
cause lower or higher changes relative to the reference set informational entropy. 

Table 11.3 refers to informational entropies and distances for different 
mixtures. ΔH denotes the entropy production that is the difference between the 
entropy corresponding to the ternary mixture and that corresponding to the binary 
reference set, LT. It appears that supplementing the LT mixture by prilocaine as 
for PFG, epinephrine as for LET, or phenylephrine as for TLP, has comparable 
small effect. 

Only benzocaine as for BLT, by its dissimilarity induces higher entropy 
production ΔH.  

The maximum entropy production, MEP, may be the criterion to build the K2 
module. 

The testing of different mixture corresponds to the K2 step in the general PSM 
framework. 

The informational distance DD is a supplementary tool in evaluating new 
mixture of anesthetics. The distance between the similarity matrix associated to 
LT and to other mixtures is shown in Table 11.3.   

Table 11.3 Informational entropies for mixtures 

Mixture LT PFG TLP LET BLT 
H 0.9651 2.2084 2.6838 2.5525 3.5391 

H 0 1.2523 1.7187 1.5874 2.5740 
DD 0 0.1778 0.3810 0.4495 -1.8775 

 

Table 11.3 shows a dramatic variation of the distance DD for BLT. 
This corresponds to a significantly different partition in classes of the elements 

of the BLT mixture, compared to the other ternary mixtures. 
Taking into account ΔH and DD it seems that PFG mixture corresponds to the 

conservative choice while BLT mixture to the innovative one.   
Observe that both entropy production ΔH and distance DD are useful criteria. 
DD criterion may be considered as an informational counterpart of a criterion 

for maximum production of entropy production, MPEP. According to this 
interpretatyion of MPEP proportional to DD criterion, the BLT mixture should be 
selected.  

Obviously it is not in the scope of the informational method to replace clinical 
tests of drugs but it can be useful as a general guideline allowing asserting 
priorities and accelerating drug discovery and development.  

The calculation should be followed by practical evaluation following the K3 
step in the general PSM framework. This means to confront and overpass another 
level of complexity. At this level the target is to be considered. 
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To ensure integrative closure, the K3 module should be connectable to the 
reality and resources S. 

If the global target is to select similar drugs the minimal entropy production 
may be a useful criterion. It corresponds to a conservative screening. Low ΔH and 
DD correspond to compounds that pertain to similar classes of drugs. 

Contrary, in a new drug discovery mode the maximum entropy production 
criterion may be of interest. It corresponds to an innovative, higher risk, screening. 
Higher ΔH and DD corresponds to differences allowing multiple, different classes 
and potential versatility. 

To illustrate the selection criterion at this level we take into account that the 
organisms varies and show circadian and other rhythms (Bruguerolle and Prat 
1988). Rhytms are associated to metabolic closure. For different regimes for 
organism the delivery of different anesthetic mixtures may be beneficial, and 
ensure the evolvability maximization, EM. EM will be evaluated by comparing 
the DD values. Periodic functioning implies the swing of the organisms or organs 
from minimal entropy production to maximal entropy production regime. The 
functioning of most organisms or organs is periodic or transient according to the 
ambient conditions. 

The high entropy production of the drug may be of interest for the period 
maximum entropy production of the organism. Then since the functioning is 
cyclic, in the relaxation functioning regime the minimum entropy production may 
be of interest for both drugs and organs interacting with the drugs. The 
evolvability maximization, EM criteria suggests using PFG mixture for minimum 
activity periods and BLT mixture for maximum activity. This follows the fact that 
EM ≈ ΔDD=DD (BLT)-DD (PFG) shows a maximum difference supposing that a 
ternary mixture is to be applied. 

A supplementary measuring tool may be programmed to run the clinical 
evaluation experiment and adapt to different goals. This supplementary control 
device allows connecting the K3 level to resources S in the PSM scheme 
associated. High-throughput methods and laboratory automation technology have 
the potential to deliver the necessary data for drug design and development. To 
harvest this potential, experimental design has to become fully evolvable. 

According to the presented framework, the system may ensure evolvability 
maximization, EM, if the level K3 is connected to the resources S. This 
challenging integrative closure supposes an iterated screening of drugs and drug 
evolution by interaction with the organism, resources and environment.  

The perspective is the autonomous experimentation by systems being 
computationally capable of autonomous investigation of large experimental 
parameter space. 

This may represents a first step towards, personalized drug delivery. 

11.3.4   Acylthiocarbamates Library Design  

Some acylthiocarbamates ATC can act as elastase inhibitors and exhibit anti-
inflammatory and anti-arthritic effects. Ramise et al. (2008) investigated the anti 
HIV activity of ATC. 



11.3   Drugs Development 191
 

HIV, human immunodeficiency virus, is the causative agent of acquired 
immune deficiency syndrome AIDS. 

Applicability of EDOE methodology for ATC library design is described here. 
Fig. 11.5 shows the ATC structure. Different radicals are denoted by Ar1, Ar2, 

G-CO group and R (see Table 4.1 Ramise et al. 2008). 

O

R
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Ar2

O
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Fig. 11.5 Acylthiocarbamates structure 

For ATC we considered associated vectors as: x= <Ar1, Ar2, G-CO, R> 
The choice of this set of characteristics and of their hierarchy should be based 

on drug physiological mechanism.  
Table 11.4 shows the radicals pertaining to different ATC. 
Table 11.5 contains the same information as Table 11.4 in normalized form.  
We use “1” for the same radical and “0” for a different one. 
The cytoprotection data is EC50 (μM). This is the compound concentration 

required to reduce the viability of some cells by 50%. 
The ATC denoted 19c was selected as a reference.  
For 19c the Ar 1 is phenoxymethil, Ar2 is C6H5, the G-CO group is a benzoyl 

and the radical R is CH3. 
The vector associated to 19c is <1111>.  

Table 11.4 Reference set for acylthiocarbamates-radicals 

 Ar1  Ar2 G-CO R EC50 
19c Phenoxymethyl C6H5 Benzoyl CH3 1.3 
17q Phenoxymethyl C6H5 2-furoyl H 8.4 
16c Phenoxymethyl C6H11 Benzoyl H 200 
20r Phenoxymethyl 3-Cl- C6H4 2-thenoyl CH3 11  

Table 11.5 Reference set for acylthiocarbamates-matrix 

 Ar1  Ar2 G-CO R 
19c 1 1 1 1 
17q 1 1 0 0 
16c 1 0 1 0 
20r 1 0 0 1  
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The compounds of the reference set have been selected to ensure a Walsh-
Hadamard matrix for DOE. This offers the necessary variability for all types of 
drug substrate interaction. 

By adding new compound to this reference mixture the entropy H varies. 
There is only a small change of entropy, HΔ if the vector of the test compound 

is similar to the reference set and this supplementary compound is thought to have 
similar properties.  

If a data base acylthiocarbamates shares similar bit patterns with reference set 
molecules, adding a similar compound will induce a change targeting the 
minimum entropy production. 

By contrast, inclusion of an ATC compound having dissimilar vector leads to a 
higher entropy production, targeting the maximum entropy production. 

In this way data base compounds may be screened to identify compound that 
cause low or high changes of the reference set informational entropy and detect 
other promising drug according to the established goal. 

The component 17c= <1110> was tested since 17c was considered as lead 
compound. Other tested vectors are 24w =<0101>, 14c== <0110>, 37r== <0000>. 

The results are shown in Table 11.6 

Table 11.6 Informational entropies for Acylthiocarbamates 

Mixture Reference Reference  
17c 

Reference 
24w 

Reference 
37r 

Reference 
14c 

H 7.5418 11.2615 12.8343 12.8343 13.0243 
H 0 3.7197 5.2925 5.2925 5.4825 

DD 0 0.6348 0 0 0  

It appears that supplementing the reference mixture by 17c, 24w, 37r or 14c has 
comparable small effect. 

The compound 17c may be preferred for a conservative search based on 
similarity and 14c for an innovative one based on dissimilarity. 

High ΔH and DD corresponds to differences allowing multiple, different 
classes and potential versatility. 

To illustrate the selection criterion at this level we take into account that the 
organisms varies and show biorhythms (Beilharz et al., 2004). For different 
regimes for organism the delivery of different ATC mixtures may be beneficial, 
and ensure the evolvability maximization, EM that may be evaluated by 
comparing DD values.  

The DD criteria suggest using reference, +17c for maximum activity periods 
and any other compound for minimum activity periods.  

EM criteria may be correlated with the methods to monitor the biomarkers of 
the periodic functioning of organism. (Coventry et al. 2009) Researchers have  
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discovered that the body’s immune system can destroy some cells within a 
window occurring every 12 to 14 days. By giving low-dose treatment at exactly 
the right time, they succeeded in halting the spread of advanced disease.  Also 
they found the body has an immune cycle during which it switches “on” and “off”. 
When the immune system turns off, it releases inhibitory cells which prevent it 
fighting disease. Treating organisms at the right time may maximize their 
evolvability. The timed drug delivery supposes an iterated screening of drugs and 
drug delivery by interaction with the organism, resources and environment. 

11.4   Reliability Management System 

The architecture of the reliability management system, RMS, for printed circuits is 
based on EDOE methodology (Iordache 2009).  

The RMS includes the software allowing the reliability predictions, the 
reliability test mini-coupon design, the software for failure mode identification by 
classification, and the tests correlation software. For new product, it is necessary 
to addresses the problem of reliability evaluation and failure mode database 
grounding from the point of view of anomaly detection and the autonomous 
failure mode generation. Important questions are as follows. How DOE detects the 
newness of an unforeseen situation, which was not explicitly taken into account 
within design? How the control system detects a behavior anomaly? The EDOE 
frame emphasizes a continuous distinction between model-driven expectations and 
the reality based on accelerated tests. EDOE should have a scanning function that 
includes recognition of the familiar events and a strategy for un-programmed 
events. Large differences between expectation and reality indicate that a new 
reliability assessment possibly including new failure mode and supplementary 
analysis is required. It is expected that the modified EDOE will correspond more 
accurately to the recorded data.  

The RMS architecture may be based on accelerated tests, IST (Iordache 2009). 
Based on general PSM framework, it can be divided in four main modules  

or steps (Fig. 11.6). Fig. 11.6 shows a framework for reliability management 
system. 

The first module K0 is represented by resources and involves resource  
mining. Resources are of material and of knowledge type. This module includes 
products to be tested, preliminary information about design tools, materials, 
processes, testing and application. This may include reliability prediction 
software. 

The second module K1 is that of creation of a test coupon design. It is a  
step in which the basic parameter of the product are included. It should  
be based on designs of experiments, DOE. This DOE is embedded in a test 
coupon. 
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Fig. 11.6 Framework for reliability management system 

An example of test coupon frame is shown in Table 11.7. Here A, B, C, D 
refers to hole diameters. Table 11.7 shows the matrix of a Latin square design. 

Other parameters as pads diameters are selected according to recommended 
design ratios (Iordache 2009). The mini-coupons are embedded on the frame of 
production panels.  

Table 11.7 Latin square design 

A B C D 
B A D C 
C D A B 
D C B A 

 

The third module, K2, is that of reliability testing and development. It includes 
the proof of concept in accelerated and usual tests. A typical reject criterion is at 
10 % of the initial electrical resistance. The number of thermal cycles to failure 
and the electrical resistance are recorded. The correlation model offers a domain 
for acceptable number of test cycles for different types of applications.  

The anomalies, such as the inner layer, I/L, separation, called also post-
separation, barrel or corner cracks should be recognized on the basis of resistance 
recording. The resistance versus nr of cycles is coded as 8-digit vectors (Iordache 
2009). Each vector corresponds to a specific electrical resistance versus number of 
cycles diagram and this in turn to a tested sample. Here “1” denotes the presence 
and “0” the absence of resistance record in the focused rectangle of the diagram 
resistance as a function of number of cycles. Matrices of similarity, algorithms and 
grids of classification have been established.  
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To distinguish between conventional and non-conventional failures the 
algorithm must ensure that the comparison between sets of patterns is carried out 
in the intended way. There are several distances between database and new tested 
patterns to be tested. It is necessary to learn the appropriate distance, the 
acceptable degrees of similarity, and so forth. The classification table 11.8 shows 
an example. This table shows the resistance patterns in digital form for a reference 
set of tests and for tests to be classified. 

The classification algorithm is: two patterns are assigned to the same class at the 
grouping degree T, 0<T<1, if their similarity in the stable matrix is larger than T. 

The italicized vectors from {1} to {4}, corresponds to the examples retained for 
classification. This is a reference or training set.  

It is a matrix with four rows and eight columns.  The vectors {5}, {7}, {X} 
represent the samples to be classified. The Ni/Au plated samples as well as the 
soldered samples are classified in the same class as the barrel cracks. Both 
samples should show after micro sectioning, barrel cracks. The unknown sample 
denoted by X pertains to the same class as the vectors {3} and {4}. The cross-
section outlined I/L separation.  

Table 11.8 Resistance patterns. Classification table 

# Table Failure T =0.8 T =0.9 T =0.95 
{1}  1 0 0 0 1 0 0 0 BC {1,5,7} {1,5,7} {1} 
{2}  0 0 0 0 1 1 0 0 CC {2} {2} {2} 
{3}  1 1 0 0 0 1 0 0 BC, CC, PS {3,4,X} {3,4,X} {3,4,X} 
{4}  1 1 0 0 1 1 0 0 CC, PS {3,4,X} {3,4,X} {3,4,X} 
{5}  1 0 0 0 0 1 1 1 Ni/Au {1,5,7} {1,5,7} {5,7} 
{7}  1 0 0 0 0 1 1 0 Soldered {1,5,7} {1,5,7} {5,7} 
{X}  1 1 0 0 0 1 1 0 BC, CC, PS {3,4,X} {3,4,X} {3,4,X} 

BC-barrel crack, CC-corner crack, PS-post-separation (I/L separation)  

Table 11.8 shows evidence for two types of memory in classification tables.  
Here T denotes the similarity degree. The first four digitalized patterns {1}, 

{2}, {3} and {4} pertain to long-term memory while the following patterns, {5}, 
{7} and {X} correspond to short-term memory. After coding the pattern vector 
enter in the short-term memory. Some information is lost by forgetting, but that 
which is retained is transferred to the long-term memory, where is organized in 
memory structures as classification tables. The knowledge database manages both 
static and dynamic information. Systems with permanent memory have been 
developed also. Recognition processes may be considered as a kind of memory; 
all that the task implies is the ability to advertise that what is perceived has been 
met before. Simply including the pattern produced by the classification algorithm  
within the database doesn't solve the problem. The resolution of sensors can be 
arbitrarily increased, so that they do not just determine whether some resistance 
dependence is a yes/no pattern but also detect fine differences between a “no” or 
“yes” class for the product. Perceptive frame should also include the evaluation of 
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reliability that is the system action. This is important because a change in pattern 
does not necessarily indicate problems unless it is coupled with an important 
change in external behavior. The classification soft may be supplemented with a 
set of corrective actions. For instance, if the I/L, inner layer-separation is detected 
the set of corrective actions is described according to the failure severity. It is 
possible to extend the frame to include other software components, as decision 
making once a failure mode is detected. In particular those components, which the 
observed anomaly-detection relies on, should have priority. The RMS needs to be 
periodically checked and up-dated. The method of software monitoring may 
involve the checking of expected signatures for failures with actual patterns and 
concentrates on monitoring of anomaly-detection. Modification in the control 
software may result in an anomalous behavior, but it may still continue to 
maintain the functioning level as required. It is necessary to establish what is 
important for survival. For some electronic devices, maintaining minimal 
reliability is the critical requirement.  

It can be observed that different case studies may be processed by the same 
general EDOE framework. 

Fig. 11.7 summarizes the different frameworks used in EDOE and outlines the 
integrative closure hypothesis.  

The associated Peirce’s categories are indicated also. 
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Fig. 11.7 Integrative closure for EDOE 
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Chapter 12  
Autonomous Systems Perspective 

Abstract. Complexity advent determined the drive change from learning and 
adaptability to evolvability and autonomy for technologies, devices and problem 
solving methods. 

The connection of the presented multi-level modeling methods with some 
promising research directions for autonomous systems is outlined. This helps in 
understanding where future multi-level complexity studies will be heading. 

Centered, four realms general PSM frameworks, resulting by integrative clo-
sure are presented here as the general architecture shared by numerous autono-
mous systems. 

Autonomous experimentation, multi-agents systems, multi-level informational 
systems, organic or autonomic computing systems, and viable systems are pre-
sented as promising domains for applications. 

12.1   Autonomous Experimentation 

Quantitative, predictive understanding of complex systems requires comprehen-
sive information. High-throughput methods and laboratory automation technology 
have the potential to deliver the necessary data. To harvest this potential, experi-
mental design has to become evolvable and autonomous. 

Autonomous experimentation systems are computational systems capable of 
autonomously investigating large experimental parameter space (Matsumaru et. al. 
2004, Lovel and Zauner 2009).  

Such systems should develop hypotheses, plan experiments and perform ex-
periments in a closed loop manner without human interaction. 

Fig. 12.1 illustrates the autonomous experimentation architecture principle. 
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Fig. 12.1 Architecture for autonomous experimentation 

It is an integrative closure technique. 
The levels may be identified as follows: K0-Experiment, K1-empirical model, 

K2-Prediction, K3-Evaluation. To these the central level of selfevolution linked to 
the previous levels is joined. The center is considered either as the starting area or 
as the final area of one cycle of investigations. The periodic switching between the 
two roles may be considered too. 

In this new approach, artificial intelligence techniques are employed to carry out 
the entire cycle of cognition including the elaboration of hypothesis to explain ob-
servations, the design of experiments to test these hypotheses and the physical im-
plementation of the experiments using laboratory automats to falsify hypotheses. 

In the coming decades a confluence of wireless networks and lab-on-chip sen-
sor technology with application in health monitoring is expected. In such lab-on 
chip network each sensor node is endowed with a limited supply of chemicals. 
The network will collectively or via the selfevolution level decide how the drug 
resources will be spent.   

Environmental monitoring and improving, new drugs and new material discov-
eries may be performed by similar autonomous experimentation architectures. 

12.2   Case Based Reasoning Systems 

Conventional cases based reasoning, CBR, is a problem solving paradigm that 
solves the new problem by remembering a previous similar situation and by reus-
ing information and knowledge of that situation (Aamodt and Plaza 1994, Aha et 
al. 2001).  More specifically, CBR builds and uses a database of problems to re-
solve new problems.  The database can be built through the knowledge engineer-
ing process or it can be collected from previous cases.  

In a problem-solving system, each case would describe a problem and a solu-
tion to that problem. The reasoning engine solves new problems by adapting rele-
vant cases from the library. Moreover, CBR should learn from previous  
experiences. When a problem is solved, the CBR engine can add the problem  
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description and the solution to the case library. The new case that in general repre-
sented as a pair <problem, solution> is made available and can be considered as a 
new piece of knowledge.  

The CBR process can be represented by a schematic cycle, as shown in Fig. 12.2. 
Fig. 12.2 shows the CBR basic framework. Aamodt and Plaza (1994) have de-

scribed CBR typically as cyclical process comprising the four steps: recall, reuse, 
revise and retain. 

During the recall step, the CBR engine searches the database to find the most 
approximate case to the current situation. 

The reuse step process includes utilizing the retrieved case and adapting it to the 
new situation. At the end of this process, the user might propose a new solution. 

Since the proposed solution could be inadequate, the revise process can correct 
the first proposed solution. 

The retain process enables CBR to learn and create a new solution and a new 
case that should be added to the case base.  

The recall process in CBR is different from the process in a database. If we 
want to query data, the database only retrieves some data using an exact matching 
while a CBR can retrieve data using an approximate matching. A similarity meas-
ure should be defined. 

As shown in Fig. 12.2, the CBR cycle starts with the description of a new prob-
lem, which can be solved by recalling previous cases and reusing solved cases, if 
possible, revising the solution and giving a suggested solution, retaining the re-
stored case and incorporating it into the case base.   
 

Revise

Proposed
Solution

Tested
Solution

Recall Reuse

Retain

Case base

Environment

New case

 
Fig. 12.2 CBR basic framework 
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This cycle rarely occurs without human intervention that is usually involved in 
the retain step. Many application systems and tools act as a case retrieval system, 
such as help desk systems and customer support systems. 

The CBR provides support for applications if the input data tend to repeat simi-
lar patterns from time to time.  When the factors recur, the studied system is likely 
to display regularly repetitive patterns. This repetitiveness explains why it is rea-
sonably to apply CBR in complex problem solving situations. 

Conventional CBR have limited potential. For example in standard versions, 
CBR involves just one user and don’t answer in real-time to explosive amount of 
user data, to the unexpected cases, or to non-linear interacting cases and questions.  

It is a need to implement CBR frameworks in which answers to multiple ques-
tions are gathered from multiple information sources, in real time.  

For continuously addressing multiple-goals, multiple arrays of CBR cells sys-
tems are needed. For such arrays it is difficult to arrange the architecture or 
scheme of problem-solving, to schedule, to elaborate and to run rules, to adjust 
them to continuous changing environment.  

Problem solving methodologies as case-based reasoning CBR are confronted 
with high complexity situation due to chaotic or random character of data, and to 
severe time restrictions. The method to confront the high complexity is that of 
evolvability and autonomy. This implies developing the conventional passive 
CBR, to an evolvable one, ECBR. ECBR should be active and autonomous, able 
to take control of its environment, able of responding to random unexpected prob-
lems and to large amounts of knowledge in real-time. 

Applications of CBR methodology for autonomous service failure diagnosis 
have been proposed (Montani and Anglano, 2006). This kind of CBR approach 
allows self-healing in software systems. Pharmacological and medical applications 
have been considered too. 

Fig. 12.3 shows a four realms categorical framework for CBR. The four realms 
are K0-Retain-T, K1-Recall-C, K2-Reuse-U and K3-Revise-V. 

K0 reflects the environment response. 
The architecture shown in Fig. 12.3 outlines the integrative closure hypothesis 

including the critical link between K0 and K3 and assisting evolvability and 
autonomy. 

This link may be established by implementing autonomic computing paradigm.  
This paradigm studies methods for increasing environment-awareness and 

automatic responsiveness. Autonomic or organic computing methods promise to 
facilitate CBR tasks and facilitate information capture (Montani and Anglano 
2006). 

Formal concept analysis, FCA, may support evolvable CBR designers in the 
task of discovering patterns, regularities and exceptions among the cases (Diaz-
Agudo and Gonzales-Calero 2001). 

Fig. 12.3 shows centered and self-similar CBR architectures. 
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A similar structure is repeated starting from the whole central system that may 
be built by four sub-realms denoted here by k0, k1, k2 and k3. This appears as a 
meta-representation of the four-fold architecture and is associated to knowledge. 

The center may be considered as the starting as the final area of one problem 
solving cycle. The periodic switching between the two roles may be taken into 
account too. 

For pharmacological and  medical applications this switching may be correlated 
to biorhytms. 

K3
K1-Recall-C K2-Reuse-U

K0-Retain-T K3-Revise-V

k1-C k2-U

k0-T k3-V

 
Fig. 12.3 Centered frameworks for evolvable CBR 

Comparison of Fig. 12.2 with Fig. 12.3 suggests that the centering is a method 
similar to development of a case base. This implies long memory capability. 

The interest in multi-modal approaches involving CBR is recently increasing 
through different application areas ranging from diagnosis to medical  
support (Schmidt et al. 2001). The goal was to demonstrate the advantage of rely-
ing different technologies, by coupling them, or by switching between  
one to other, when the aim is to provide a system with autonomic diagnosis and 
remediation capabilities. 

12.3   Belief Desire Intention Agents 

The belief desire intentions, BDI, agent introduced a formal meta-language to  
express agent rationality in an explicit way. BDI architecture is one of numerous 
architectures that enact deliberative agents. The BDI agent architecture is an  
attempt to encapsulate the hidden complexity of the inner functioning of an  
individual agent.  
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Fig. 12.4 Structure of BDI agents 

Fig. 12.4 shows the structure of BDI agents. 
The agent shown in Fig. 12.4 is structured in four elements: beliefs, goals, plans 

and intentions (Rao and Georgeff 1991). 
To relate events, E to the agents who form plans and execute them, three de-

termining factors should be distinguished:  beliefs, B desires, D and intentions, I. 
All these elements are essential and that none of them can be reduced to the others 
(Bratman 1987).  

Accordinf to Sowa (2003) the desire is close to Peirce’s firstness, K1. Belief is 
a kind of secondness, K2, that relates a proposition to a situation and intention is a 
kind of thirdness, K3 that relates an agent, a situation, and the agent's plan for ac-
tion in the situation. 

Fig. 12.5 shows a categorical presentation for evolvable architecture.  
In this presentation the four modules are: K0-Events, E, K1-Desire, D, K2-

Beliefs, B, K3-Intentions, I.It is an EDBI frame. 
The architecture shown in Fig. 12.5 outlines the possibility of integrative clo-

sure allowed by the link between K0 and K3 smoothing the road for evolvability 
and autonomy. 

Fig. 12.5 outlines the centered and self-similar architectures 
A similar structure is repeated starting from the whole central system built by 

four sub-realms denoted here by k0, k1, k2 and k3. This is a meta-representation 
of the four-fold architecture. 

The center, or in other words, the “Self”, may be considered as the starting and 
the final area of one cycle of investigations. The switching between the two roles 
may be considered too. 
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Fig. 12.5 Centered frameworks for evolvable BDI architecture 

Innovative multiple-scale BDI agent architectures have been proposed by 
Goschnick (Goschnick 2003). 

Based on analytical psychology Goschnick developed a Digital-Self cognitive 
architecture. This implies: 

• Decomposition of a user’s multiplicity of roles into a hierarchy of sub-agency 
• Relaxing of the autonomy of the sub-agents under control of an autonomous 

central agent-the so called “Self” agent.  
• Wrapping of the external services and agencies including the web services 

and utilizing them as if they were internal sub-agents 
• Ability to apply ontology at the localized level 

The proposed cognitive architecture proves that the user interface of a workstation 
connected continuously to a network would be most effective with an advanced 
agent architecture embedded deep in the workstation system software. 

12.4   Autonomic and Organic Computing 

Over the past years technical systems as vehicles, airplanes, telecommunication 
networks, manufacturing installations became more and more complex. This is the 
result of the embedding of hardware and software into these systems. With respect 
to the future evolution new advanced management principles have to be devel-
oped. A feasible principle is an autonomic behavior of the system which is ad-
dressed by two research directions, namely autonomic and organic computing. 
Autonomy with its reference to a self (autos) refers to an independence from ex-
ternal influences of different sort. 

Biologically inspired autonomic and organic computing systems are essentially 
concerned with creating self-directed and self-managing systems based on sugges-
tions from nature and the human body, such as autonomic nervous system. 
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Autonomic computing (Kephart and Chess 2003) is a computing initiative that 
draw analogies from the autonomic nervous system where all reactions occur 
without explicit override by the human brain-so to say autonomous. By embed-
ding this behavior into technical systems, the complexity can be left to the systems 
themselves. One refers to this autonomy as self-x properties. This means  
self-configuration (configuration and reconfiguration according to policies), self-
optimization (permanent improvement of performance and efficiency), self-
healing (reactive and proactive detection, diagnostics and reparation of localized 
problems) and self-protection (defense of the system as a whole). Furthermore 
autonomic computing systems would be self-aware, context sensitive, anticipative 
and adaptive.  

Organic computing system instead draw analogies from living systems and try 
to use perceptions about the functionality of living systems for the development 
and management of artificial and technical systems. In addition to the properties 
of autonomic computing systems they are defined as being self-organizing. This is 
a critical step to ensure autonomy. 

It should be noted that similar architectures are of interest for both autonomic 
and organic computing (Trumler et al. 2004, IBM 2005, Bauer and Kasinger 
2006). 

The logical structure of an autonomic element is similar to that of evolvable 
BDI agents. 

For autonomic computing, the agent structure is replaced by the so-called 
MAPE loop whose elements are M-Monitor, A-Analyze, P-Plans, and E-Execute. 

Autonomic computing systems are composed of four levels that may be identi-
fied as K0 or S-Managed Resources, K1-Touchpoints, K2- Touchpoints Auto-
nomic Managers, K3-Orchestred Autonomic Managers. To this a central Manual 
Manager is to be considered. The closed loop in which K3 is replaced by an auto-
matic device was presented by IBM (2005). 

K3
K1-Touchpoint

K2-Touchpoint
Managers

K0-Managed 
Resources

K3-Orchestrating
Managers

Manager

 
Fig. 12.6 Automatic computing architecture 
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Fig. 12.6 shows the automatic computing architecture. 
For the organic computing middleware architecture, the levels may be identi-

fied as: K0 or S as the Network, K1-Transport Interface, K2-Event Dispatcher, 
K3-Service Interface and Proxy (Trumler et al. 2004). To these an Organic Man-
ager is joined.  

In the middleware architecture the organic manager is linked to the previous 
levels and ensures a meta-representation of them.This is critical for self-
organization. 

K3
K1-Transport

Interface
K2-Event
Dispatcher

K0-Network
K3-Service

Interface & Proxy

Organic 
Manager

 
Fig. 12.7 Organic computing architecture 

Fig. 12.7 shows the automatic computing architecture. 
Successes of autonomic and organic computing have been reported in the fields 

of drug discovery, data communications, computer animation, control and com-
mand, exploration systems for space, undersea and harsh environments and there 
exists much promise for future progress. 

12.5   Autonomous Animats 

Autonomous animats should evolve in non-cooperative even hostile outdoor envi-
ronments. Reaction to disturbance is a first step towards autonomy. 

A more demanding definition of autonomy includes the ability to change the in-
teraction modes with the environment. An autonomous organization has to inter-
nalize external constraints, which means the ability to integrate knowledge of its 
own dynamics and representation of the exterior. Such ability is closely connected 
to the awareness of a frontier between the inside and outside of the system, which 
means operational closure (Maturana and Varela 1992). Arkin (1998) presented a 
general overview of control architectures for animats. 

Fig. 12.8 shows the autonomous animats architecture (Luzeaux 2000). 
For this autonomous animats architecture, the levels may be identified as: K0  

or S as the Perception, K1-Attention Manager, K2-Behavior Selection, and  
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K3-Action. To these the central meta-representation linked to the previous levels 
is joined.  

The center may be considered as the final target of one cycle of environment 
investigations. 

Sensors yield data to perception algorithms which create representations of the 
environment. These perception processes are activated or inhibited by the atten-
tion manager and receive also information on the current executed behavior. This 
information is used to check the consistency of the representation. The attention 
manager periodically updates representations. The action selection module 
chooses the animats behavior depending on the predefined goals, the current ac-
tion, the representations and their reliability. 

Finally the behaviors control the animats actuators in closed loop with the asso-
ciated perception processes. 

This modular architecture allows developing independently the various proc-
esses belonging to each of the four basic entities, integrating them together. 

K3
K1-Attention 

Manager
K2-Behavior

Selection

K0-Perception
K3-Action
Selection

Meta-
Representations

 

Fig. 12.8 Architecture for autonomous animats 

Current developments focus on the extension of architecture to multiple ani-
mats. A major issue is to determine how the representation of every animate can 
be shared and how individual behavior selection can take the other animats’ se-
lected behavior into account, allowing group missions such as scouting. 

12.6   Viable Systems Models 

Viable system theory was a particular interest of Beer (1985) that recognized the 
practical utility of concepts as multi-levels and meta-system and used these as 
ways of exploring the viability of complex social systems through processes of 
self-regulation, self-organization and control. Knowledge cybernetics is an  
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approach principally concerned with the development of agents like autonomous 
social collectives that survive through knowledge and knowledge processes 
(Yolles 2006). 

Fig. 12.9 shows an example of viable system architecture. 
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Fig. 12.9 Architecture for viable systems 

For this architecture, the levels may be identified as: K0 or S as the Environ-
ment, K1-Management, K2-Control and Coordination and K3-Policy. The Devel-
opments module, linking the previous levels, is critical for viability. 

The center is considered as the starting area of one life cycle of the system. 
The frame of viable systems modeling architecture has demonstrated a great 

deal of potential in creating ways of analysing complex situations and demon-
strated a possibility to be used to diagnose complex situations and to be used as a 
mean by which improvement can be engineered. 

12.7   Meta-modeling Architectures  

Since the complex systems are structured in levels of realms, associated to multi-
ple scales it is expected that the modeling methods will adopt a similar hierarchi-
cal or network architecture.  

The four level structures were proposed by the object management group OMG 
to describe informational systems. OMG is an organisation for the standardization 
in the object oriented field of the software development in which many of the 
leading software production companies participate 

For OMG the first layer refers to data, the second layer to subject matter mod-
els that is models of data, the third layer to statistical methodologies that is to 
meta-models and the fourth layer to methodologies that define methodologies that 
is to meta-meta-models. Additionally a lower level layer representing physical 
reality joins the OMG architecture. 
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The four levels will be denoted here by K3, K2, K1, and K0, respectively. K3 is 
the fourth level, the so-called meta-meta-models level. One model at level K3 is 
necessary to define all the K2 level models. The OMG standard for the K3 model, 
also called Meta Object Facility, MOF, is able to define itself (Crawley et al. 1997). 
MOF is a common framework that is used to define other modeling frameworks 
within the OMG.  K3-model is the language used by MOF to build meta-models, 
called also K2-models. Examples of the third level, K2-models are the Universal-
Modeling Language, UML, model and the relational models. UML has been  
accepted as a standard notation for modeling object-oriented software systems. 
Correspondently, at the second level, K1, there are UML models and relational 
models relevant to a specific subject. K1 is based on user concepts. First level, K0, 
contains user runtime data or objects. It may be used to describe the real world.  

Different meta-meta-model architectures have been considered as for instance 
that shown in Fig. 12.10. In this case the linear or hierarchical architecture was 
developed in cyclic or self-similar architectures (Alvarez et al. 2001).The top and 
bottom levels in architectures are different. In the hierarchical meta-meta-model 
architecture every element should be an instance of exactly one element of a 
model in the immediate next level. 

For example, the level K3 could describe elements from the UML meta-model 
K2 but not elements from the user models K1.More flexibility is allowed by the 
centered architectures shown in Fig. 12.10. Fig. 12.10 shows centered meta-meta-
model frameworks. In the centered architecture a model can describe elements 
from every meta-model below it. This is a significant feature since it means that if 
a tool implements the K3 meta-meta-model than it can be used to define languages 
such as UML but user models and objects as well. The centered Meta-Modeling 
Language, MML, architecture shown in Fig. 12.10 outlines the possibility of inte-
grative closure hypothesis including the critical link between K0 and K3 and al-
lowing evolvability and autonomy. 

The centered structure architecture should be not restrained to four realms. 
Fig. 12.10 shows centered and self-similar spiral architectures 
A similar structure is repeated to four sub-realms denoted here by k0, k1, k2 

and k3. 

K0

K2

K3

K1

k0
k2

k1

k3

 
Fig. 12.10 Centered meta-meta-modeling frameworks 
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Fig. 12.10 suggests that an integrative closure hypothesis does not have to be 
seen as a final stage or a balance due to equilibrium, but rather as a process that 
can develop self-similar patterns.  Centered structures may unify large systems. 
The initial frame offers a generic, four-fold, relational model whose elements are 
configured as a self-similar structure. This means that it can be re-scaled from the 
smallest to the largest or reversely without compromising its form.  

This has the advantage that it is a configuration that is shareable across differ-
ent domains. The self-similarity allows analogous processing with similar soft-
ware. In this centered architecture, the transformation between the representation 
of any model at one meta-level and its representation in the meta-level below can 
be described by information preserving one-to-one mapping.  

The mapping provides the basis for a powerful area of functionality that any 
potential meta-modeling tool should look to exploit.  
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Appendices 

Appendix 1  
Non-Archimedean Analysis 

Abstract. Non-Archimedean analysis is an appropriate modeling tool for 
hierarchical multi-level systems.  

Notions as, valued fields, normed linear spaces, and orthogonality are 
introduced and compared to corresponding real analysis notions. 

A1.1   Valued Fields 

An NA field K is a field such that there exists a, b ∈ K such that for any integer n, 
na  < b. Define a mapping |  | : K → R such that for all a, b ∈ K: 

i) |a| ≥ 0 and |a| = 0 iff a = 0 
ii) |ab| = |a| |b| 
iii) |a+b| ≤ max (|a|, |b|) 

This mapping is an NA valuation on K.  
The modified triangle inequality causes important deviations from the standard 

(real or complex field) analysis.  
The trivial valuation on K is resulting if |a| = 1 if a ≠ 0 and |0| = 0.  
Let G = {|a|, a ∈ K, a ≠ 0}. The valuation is discrete if G is a cyclic group. 

Otherwise the valuation is dense. 
Some examples of valuations and valued fields follow.  

i) The p-adic valuation on Q (Q denotes the rational numbers).  

Let p be a prime number. Any a ∈ Q is of the form a =   
m
n   pk, with k, m, n 

∈Z, and  m, n not divisible by p. The p-adic valuation is defined by: |a|p =p-k. 

ii) The field K, of Neder (Neder 1941, 1943, Lightstone and Robinson 1975). 
The elements of this field are of the form: 

K = {a0+a1ε+ a 2 ε2 +...+ am εm +...} where ak ∈  R, m ∈  N. Let A, B ∈  K 
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A = [a0,a1,...,am,...], B = [b0,b1,...,bm,...]. A=B if ak=bk for all k. The order on 

K is given by the relation A < B if ak=bk if k < j and aj < bj for some j ≤ m. 

Define A+B=[a0+b0, a1+b1,..., am+bm,...]. The null element is 

O=[0,0,...,0,...].Define A.B=[a0b0, a0b1+a1b0, a0b2+a1b1+a2b0,...]. The unit 

element is I = [1,0,...,0,...]. K is closed under this definition of addition and 
multiplication. Define also kA = [ka0,ka1,...,kam,...] with k real. K is NA Indeed 

let A =[0,1,0,...,0] and B = [1,0,...,0]. For any integer k, kA = [0,k,0,...,0] < B. So 
A is infinitesimal.  

Moreover any A = [0,..., 0, aj,...,am] is infinitesimal for j < m. 

Let the two-component vectors A = [a0, a1], B = [b0, b1]. 

Then A/B = [a0/b0, (a1b0-a0b1)/b0
2] if b0≠0 and A/B = [a1/b1,0] if 

a0=b0=0,b1≠0. 

The ratio A/B=C is obtained solving the equation A=B.C with C = [c0, c1,..., cm].  

Let A = [a0, a1,..., am,...]. A non trivial NA valuation on K is defined by: 

|A| = r-k with r > 1 if a0,..., ak-1 = 0 but ak ≠0. An NA function F : K → K is 

defined by F(A) = [f0(a0), f1(a0),..., fm(a0),...] where A = [a0, a1,..., am,...] and 

f0, f1,..., fm are real functions.  

If the expansions will be limited to a fixed m the resulting structure is a ring, 
the Neder ring, K. For fixed or variable m, we will refer to K as the Neder NA 
structure.  

iii) For any integer n ∈ {2, 3,...} let Zn be the set of all sequences....am ....a1a0 

where am   is one of the elements 0, 1,..., n-1. The elements of Zn are the n-adic 

integers. Let p be a prime and let ...a2a1a0 be an element of Zp.  

The order of... a2a1a0 is the smallest m for which am=0 that is: 

ord
p
(...a2a1a0)= ∞  if ai=0 for all i or, ord

p
(...a2a1a0)=min{s, as≠0} otherwise. 

Define also |...a2a1a0 |p= 0 if ai=0 for all i and |...a2a1a0 |p= p-ordp (...a2
a
1

a
0
) 

otherwise. The function | . |p is the p-adic valuation on Zp.  

A1.2   Normed Linear Spaces and Orthogonality 

Let E be a linear space over K, an NA valued field. Define the mapping ||  || : 
E → R such that for any x, y ∈ E and any scalar a ∈ K: 

i) ||x|| ≥o and ||x|| = 0 iff x=0 
ii) ||ax|| = |a| ||x|| 
iii) ||x+y|| ≤max {||x||, ||y ||} 
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This will be called NA norm over K. E will be called an NA normed space.  
Observe that ||x+y|| = ||x|| if ||y|| < ||x||. In terms of geometry this means that all 

triangles are isosceles. 
Define an NA metric d : E x E → R by  d(x,y) = ||x-y||. Obviously:  

i) d(x,y) ≥0 and d(x,y) =0 
ii) d(x,y) = d(y,x) 
iii) d(x,z) ≤ max{d(x,y), d(y,z)} 

A sphere {x | d(y,x)  ≤  r} is the set of all points such that the distance to the center 
y is less or equal to r. All points of the sphere can be taken as the center of the 
sphere.  

A sphere may have infinitely many radii. The topology of an NA space has a 
base consisting of closed and open sets, a zero-dimensional topology. The distance 
between two non-empty subsets A and B is: d (A, B) = inf {d(x,y); x ∈ A, y ∈ B}.  

Let X, Y, a ∈ Y. Then b, is a best approximation of a in Y if: 

d(a,b)=d(a,Y)=inf{d(x,y); x ∈ A, y ∈ B} 

Contrary to the Archimedean case in NA case a best approximation is, with trivial 
exceptions, never unique. 

The orthogonality in normed linear spaces is presented in what follows. 
The definition of an inner (scalar) product in a vector space over R or C makes 

uses of the ordering in R. The strong triangle inequality implies among other 
things that the NA frames is totally disconnected and cannot be made into a totally 
ordered field.  

However it is possible to introduce orthogonality, using the concept of “best 
approximation” (Monna 1970).  

Let E be a normed NA space on K. The family {(xi), i ∈ I}, xi ∈ E, xi ≠ 0 is 

called orthogonal if: for any ai ∈ K and S ∈I  

|| Σi∈S aixi ||=maxi∈S ||aixi || (A1.1)

An equivalent definition is the following: x and y are orthogonal that is, x ⊥ y, if: 

inf a ||x-ay|| = ||x|| (A1.2)

From x ⊥  y and x ⊥  z it doesn’t follow that x ⊥  (y+z) as in real analysis. A 
basic property in NA analysis is that x ⊥ y implies always y ⊥  x. 

The family (xi), i ∈ I is an orthogonal base if any element x ∈ E can be 

represented uniquely as a convergent series: 

x= || Σi aixi || (A1.3)

This represents the expansion of x. In the NA case such a series is convergent if 
and only if limi aixi  = 0. Note also that ||x|| = supi ||aixi||. An NA normed space E 

is said to be discretely normed if zero is the only limit point of {||x||, x ∈E}. Every 
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discretely normed Banach space is orthogonalisable. All orthogonal basis of E 
have the same cardinality but the base is not uniquely determined. 

An interesting example is the so called van der Put base (van der Put 1968). 
Denote by Qp the completion of Q relative to the metric induced by the p-adic 

valuation. Qp is the field of p-adic numbers. The set {a ∈ Qp : |a|p ≤1} is denoted 

by Zp. 

Its elements are the p-adic integers. Let C (Zp) be the space of continuous 

functions F : Zp Q →p. Let χn be the characteristic function of the set Un where: 

U0: {x : |x| < 1},..., Un = {x : |x-n| < 1/n}. The χn form an orthogonal base for 

C (Zp). For every F ∈ C(Zp) there exists a unique sequence ai ∈ K = Qp such 

that: F= Σi aiχi 
The family (xi) i ∈ I is α-orthogonal if: 

|| Σ aixisup ||a || ≥ αixi||,   0 < α≤1 (A1.4)

The family (xi) i ∈I is an α-base if any element x ∈ E can be represented uniquely 

as a convergent series: 

x=Σi aixi (A1.5)

An NA Banach space is of countable type if it contains a dense sub-space of finite 
or numerable dimension. If E is a Banach space of countable type then for any α < 
α≤ 1, E has an α - orthogonal basis. If the valuation of K is discrete then for every 
0 < α≤ 1, E has an α - orthogonal base (van der Put 1968). 

Examples of interest are the so-called moment spaces (Robert 1967). 
Let {fm(t)}, m = 0,1,... be a set of real functions defined on [a,b] such that: 

μm (1)= ∫
b

a
(t)dtfm  (A1.6)

exist and are finite.  
Let E = {x(t)} be the linear space of all real functions defined on [a,b] such 

that: 

μm(x)= ∫
b

a
(t)dtx(t)fm  (A1.7)

exists and are finite. Note that μm (x) is the m-th moment of x relative to {fm(t)}.  

Let w(x) = inf {m, μm (x) ≠0} that is w(x) is the first non-null moment of x.  

Define ||x|| = rw(x) for some fixed r, 0 < r < 1. Observe that || || defines an NA 
norm on E. The valuation of K is trivial. E admits an orthogonal base.  
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Let xm be such that μi (xm) = δmi for i ≤ m. The set {xm} form an orthogonal 
base on E. The completion of E, that is, the set of formal expansions in terms of 
{xm} is called a "moment space" (Robert 1967).  

If a = 0, b = ∞, fm(t) = Lm(t) (Laguerre polynomials) then: {xm} = {exp (-t) Lm(t)}.  

If a = - ∞, b = ∞, fm(t) = Hm(t) (Hermite polynomials) then: {xm} ={exp (-t2/2 ) Hm(t)}. 
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Appendix 2  
Category Theory 

Abstract. Higher categories, that is, n-categories represent promising tools for 
multi-level complexity studies. Specific notions as, n-categories, periodic table, 
monoidal, braided, sylleptic, and symmetric categories, categorification and 
coherence are introduced. 

Elements of synthetic differential geometry, SDG, and toposes are outlined. 

A2.1   Category Theory 

A category C contains a class of objects ob(C) and a class of arrows hom (C) 
between objects (MacLane 1971). To a morphism f, in a category, we assign an 
object A=dom (f) in that category, which is called the domain of f, and an object 
B=cod (f), which is called the codomain of f.  

Usually the morphism with domain A and codomain B is denoted: f: A→B. 
For any two arrows f: f: A→B and g: B→C such that dom (g) =cod (f), the 

composite morphism gof: A→C is defined. 
An identity morphism for an object X is a morphism 1X: X→X such that for 

every morphism f: f: A→B we have 1Bof=f=fo1A. 
A category C consists of a class of objects ob(C), a class of morphisms hom (C) 

between objects and a binary operation of composition “o” such that to every 
arrow in C we can assign a domain and a codomain, the composition is 
associative, that is, (hog)of=ho(gof) and for every object X of C there exists an 
identity morphism 1X:X→X. 

The class of sets together with the usual functions between them forms a 
category, Set.  

A subcategory D of C is a category such that ob (D) ⊂  ob (C) and hom (D) 
⊂ hom (C). 

Examples of objects are sets, processes, structures, partial orders, concepts, and 
so forth.  

MacLane monograph define formally the basic notions of category, functors, 
natural transformation, universal properties, limits and colimits, products and 
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coproducts, equalizers and coequalizers, pullbacks and pushouts, exponentiation, 
Cartesian closed categories, and subobject classifiers (MacLane 1971).  

A2.2   The n-Categories 

One category frame is not enough to describe the complexity of multi-level 
systems. For this reason, n-categories, multi-categories, operads and other higher 
dimensional categorical concepts should be involved (Leinster 2004). 

The n-categories are high-order generalizations of the notion of category. 
Roughly, an n-category is the algebraic structure consisting of a collection of 

objects, a collection of morphisms between objects, a collection of  2-morphisms 
between morphisms and so on up to n, with various rational and practical ways of 
composing theses j-morphisms, j<n (Baez 1997). 

An n-category consists of 0-cells (objects, types), 1-cells (morphisms), 2-cells 
(morphisms between morphisms) and so on, all the way up to n-cells together with 
composition operations. 

There are numerous studies dedicated to n-categories and even to ∞-categories, 
called also ω-categories.  

As n increases, the construction of n-categories step by step may be difficult to 
conceive and need analysis on how higher categories are effectively working. 

Consider for example the case of 2-categories of which the category of 
categories denoted by Cat is the standard example (MacLane 1971). In Cat, the 0-
cells are categories, the 1-cells are functors, and the 2-cells should be natural 
transformations.     

Any 2-category C makes use of three items C0, C1, and C2. Elements of Ci are 
called i-cells i =0, 1 or 2. The 2-category is the three categories structure that 
consists of the so-called base category having C0 as objects and C1 as arrows, the 
horizontal category having C0 as objects and C2 as arrows, and the vertical 
category having C1 as objects and C2 as arrows. 

The 2-cells are arrows in both the horizontal and the vertical category, thus they 
composes with two different composition operators, horizontal or vertical.  

Cat is a strict 2-category, that is, all laws hold exactly, not just up to 
isomorphism. 

Vertical composition corresponds to a sequential operation, while horizontal 
composition corresponds to a parallel operation. The 2-category is a category with 
morphisms between morphisms, that is, 2-morphisms.  

There are also many weak categories. For example, a bicategory is a structure 
used to extend the notion of 2-category to handle the cases where the composition 
of morphisms is not strictly associative, but only associative up to an 
isomorphism. 

Bicategories may be considered as result of the weakening of the definition of 
2-categories. A similar process for 3-categories leads to tricategories, and more 
generally to weak n-categories for n-categories.  
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In an informal way a tricategory C is done by: 

• A class C0 of objects 
• For any pair A, B ∈ C0 a bicategory C (A, B) 
• For any triplet A, B, D∈ C0 a bifunctor of composition cABD: C(A, B) x 

C(B,D)→ C(A,D) 
• For any object a bifunctor uA:1 → C(A,A) 

These elements verify several axioms (Gordon et al. 1995). 
Higher-dimensional categories may be defined inductively in terms of the hom 

enriched categories (Street 1987, Street 2004). For instance a 2-category C is 
defined as a Cat-enriched category which means that if x and y are objects of C 
then the hom C(x, y) is a category its objects being the arrows from x to y and its 
arrows the 2-cells.  

For any symmetric monoidal category V there is a symmetric monoidal 
category V-Cat whose objects are categories with homeomorphisms enriched in 
V. Starting with the category Set of sets and using Cartesian product for the 
monoidal structure we can iterate the process V→V-Cat yielding the following 
sequence of definitions:  

Set, Cat: =Set-Cat, 2-Cat: = Cat-Cat, 3-Cat: = (2-Cat)-Cat,… 

All terms have Cartesian product as monoidal structure. Sets are called 0-
categories, categories are called 1-categories, (Set-Cat)-Cat are called 2-categories 
and so on. There are inclusions: Set ⊂ Cat ⊂ 2-Cat ⊂ 3-Cat ⊂ … 

The union of this chain is the category ω-Cat of strict ω-categories. Therefore, 
the ω-categories are understood as the directed limit of a sequence of iterated 
enrichments.  

When V is closed, it is enriched in itself. Each n-Cat is Cartesian closed and 
hence n-Cat is itself naturally an (n+1)-category. 

The n-cells in an ω-category can be defined recursively. The 0-cells of a set are 
its elements, the (n+1)-cells of C are the n-cells of some hom n-category C(x, y) 
for x, y objects of C.  The theory of ω-categories, or ∞- categories, seeks to 
formalize the ideas of thing (object, device), process, meta-processes (process of 
processes), meta-meta-processes and so on. 

A2.3   Periodic Table 

PSM developments require understanding and running of computations for 
processes of processes, and so on. 

The stabilisation hypothesis may be of help for this difficult task (Baez and 
Dolan 1995, Leinster 2004). This hypothesis refers to k-tuply monoidal 
n-categories. 

A k-tuply monoidal n-category is an n-category in which objects can be 
multiplied in k ways, all of which interchange with each other up to isomorphism. 
This implies that these k ways all end up being equivalent, but that the single 
resulting operation is more and more commutative as k increases. The stabilization 
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hypothesis states that by the time we reach k=n+2, the multiplication has become 
maximally commutative. 

The stabilization hypothesis says that each column in the periodic table of n-
categories stabilizes at a certain precise point. The periodic table of Baez and 
Dolan for classifying n-categories is presented in Table A2.1. Table A2.1 is a 
periodic table for categories. 

Table A2.1 Periodic table of categories 

 n=0 n=1 n=2 n=3 
k=0 sets categories 2-categories 3-categories 
k=1 monoidal monoidal categories monoidal  

2-categories 
monoidal  
3-categories 

k=2 commutative 
monoids 

braided 
monoidal categories 

braided 
monoidal 2-categories 

braided 
monoidal 3-categories 

k=3 “” symmetric 
monoidal categories 

sylleptic  sylleptic 

k=4 “” “” symmetric 
monoidal  2-categories 

involutory 

k=5 “” “” “” symmetric 
monoidal 3-categories 

k=6 “” “” “” “” 

 

It contains the conjectured description of (n+k)-categories with only one j-
morphism for j<k.  The idea of the periodic table linked to stabilisation hypothesis 
is to study degenerate forms of n-category that is, n-categories that are trivial 
below a certain dimension k. Such an n-category only has non-trivial cells in the 
top (n-k) dimensions, so we can perform a dimension shift and regard this as an 
(n-k) category. The previous k-cells become the new 0-cells, the previous (k+1)-
cells become the new 1-cells, and the previous n-cells become the new (n-k) cells. 
This is called a k-fold degenerate n-category. 

Basically the Table A2.1 shows that (n+k) category with only one j-morphism 
for j<k can be reinterpreted as an n-category. But, it will be an n-category with k 
ways to multiply that is a k-tuply monoidal n-category. For example if n=1, k=1, a 
2-category with one object is a monoidal category.  

The Table A2.1 outlines properties as: monoidal, braided, sylleptic, involutory 
and symmetric. In the first row (k = 0), a 0-monoidal n-category is simply an 
n-category. 

In the next row (k = 1), a 1-monoidal n-category is a monoidal n-category. 
For instance, a 1-monoidal 0-category is a one-object category (a monoid), and 

a 1-monoidal 1-category is a one-object 2-category (a monoidal category). A 
monoidal 2-category can be defined as a one-object 3-category, or can be defined 
directly as a 2-category with tensor. 

The third row (k = 2) allows observing that a degenerate monoidal category is a 
commutative monoid and a doubly-degenerate 3-category is a braided monoidal 
category.  
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Concerning the first column (n = 0) it  was observed that one-object braided 
monoidal category is a commutative monoid together with extra data, for the 
braiding, satisfying some axioms. 

This gives the entry for k = 3, n = 0, and the same applies all the way down the 
rest of the column. Similar results may be established for the second column 
(n = 1). Observe that for k ≥3, the k-monoidal 1-category is just a symmetric 
monoidal category. Then the column stabilizes, and the point of stabilization is the 
most symmetric object possible. 

The same is valid for subsequent columns. The sylleptic characterization could 
be completed by more terms, as involutory for instance. It was observed that a 
braided category is a monoidal category with additional structure a sylleptic 
category is a braided category with additional structure and so on (Crans 2000). 

A2.4   Categorification and Coherence 

Categorification is the process of finding category-theoretic analogs of set-
theoretic concepts by replacing elements with objects, sets with categories, 
functions with functors and equations between functions by natural isomorphisms 
between functors, which in turn should satisfy certain equations of their own, 
called coherence laws (MacLane 1971, Baez and Dolan 1998). 

The correspondence between set theory and CT is presented in Table A2.2 
Decategorification is the reverse process of categorification. Decategorification 

is a systematic process by which isomorphic objects in a category are identified as 
equal. Categorification is more complicated than decategorification, and requires 
insight into individual situations.  

Table A2.2 Correspondence between sets and categories 

Set theory Category theory 
Set elements Objects 
Sets Categories 
Functions Functors 
Equalities between morphisms Natural isomorphisms of functors 

The term vertical categorification refers roughly to a process in which ordinary 
categories are replaced by higher categories. Categorification implies moving 
from left to right in the periodic table while decategorification implies moving in 
the reverse direction.  

In CT, the objects or identity arrows are elements within category, whereas the 
category compares objects, the functors compares categories and the natural 
transformation compares functors. For example, a monoid is a set with a product 
satisfying the associative law and a unit element satisfying the left and right unit 
laws. The categorified version of a monoid is a monoidal category. This is a 
category C with a product:⊗: C x C→ C and a unit object 1∈C. For categorization 



A2.4   Categorification and Coherence 223
 

we need to impose associativity and the left and right unit laws as equational laws 
only up to isomorphism. As part of the structure of a weak monoidal category we 
specify a natural isomorphism: a x,y,z: (x ⊗ y) ⊗ z→x⊗(y ⊗ z) called the 
associator together with the natural isomorphisms: lx: 1⊗x→ x  and rx: 1⊗x→ x.   

Associativity means that, within a sequence containing two or more of the same 
sequencing operations in a row, the order that the operations are performed does 
not matter as long as the sequence to be operated is not changed. 

((x⊗ y)⊗z)⊗w (x⊗ y)⊗(z⊗w)

(x⊗( y⊗z))⊗w

x⊗ ( y⊗(z⊗w))

x⊗ ((y⊗z)⊗w)

 
Fig. A2.1 Pentagon relations 

Using the associator one can construct isomorphisms between any two 
parenthesized versions of the tensor product of several objects. For example there 
are five ways to parenthesize the tensor product of four objects, which are related 
by the associator as shown in Fig. A2.1. The coherence law called the pentagon 
identity, say that the diagram shown in Fig. A2.1 commutes. Pentagon relation 
concerns monoidal categories and associativity. 

Suppose that we are looking to commutativity, that is, we want to categorify the 
notion of commutative monoid. 

Consider a weak monoidal category equipped with a natural isomorphism: 
B y,x : x⊗y→y⊗x called the braiding and then impose coherence laws called 

hexagon identities (Fig. A2.2). The hexagon relations are illustrated by Fig. A2.2. 
In physics there are processes allowing switching two systems by moving them 

around each other. The monoidal category in which we can do this sort of switch 
is called braided. 

The first hexagon equation says the switching the object x past y⊗z all at once 
is the same as switching it past y and then past z.  

The second hexagon is similar. It says switching x⊗y past z all at once is the 
same as doing it in two steps. 

Hexagon relation concerns braided monoidal categories and braiding. 
Consider as an example from the periodic table the case n=1, k=2 of a doubly 

monoidal 1-category, a braided monoidal category. The braiding is: B y,x : 

x⊗y→y⊗x.   
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x⊗(y⊗z)

(y⊗z)⊗x

(x⊗y)⊗z (y⊗x)⊗z

y⊗(x⊗z)y⊗(z⊗x)

(x⊗y)⊗z x⊗(y⊗z) x⊗(z⊗y)

z⊗(x⊗y) (z⊗x)⊗y (x⊗z)⊗y
 

Fig. A2.2 Hexagon relations 

The process of proving an equation becomes an isomorphism. This happens 
when we move one step right in the periodic table.  

For codimension k=3 we should consider braiding versus inverse braiding. This 
introduces the notion of syllepsis.  

Observe that we a faced with a hierarchy of higher braiding one for each 
codimension k≥2, each satisfying a hierarchy of laws. 

A different proof of commutativity becomes a different isomorphism. B 1x,y− : 

x⊗y→y⊗x  This explains the existence of knots. A triply monoidal 1-category is a 
symmetric monoidal category. In this case we need three dimensions of space 
instead of just two. This makes the two ways of moving x past y equal. So the 
situation is more commutative. This happens when we move one step down in the 
periodic table. 

x ⊗ y ⊗ z ⊗ w

x ⊗(y ⊗ z) ⊗ w

(x ⊗ y) ⊗(z ⊗ w)

x ⊗ y ⊗(z ⊗ w)
(x ⊗ y) ⊗ z ⊗ w

x ⊗(y ⊗ z ⊗ w)

(x ⊗ y ⊗ z ⊗ w)

(x ⊗ y ⊗ z) ⊗ w

 
Fig. A2.3 Parity cube relations 
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It is interesting to lift the monoidal structure up a dimension into tricategories.  
A tricategory may be defined on the basis of bicategories and these on the basis 

of categories. To characterize coherence the edges of the MacLane pentagon, 
shown in Fig. A2.1, becomes five sides of a cube as shown in Fig. A2.3. Fig. A2.3 
illustrates the parity cube relations (Street 2004, Sheppeard 2007).  

In this setting, the state composition “⊗” is the Gray tensor product denoted 
here by “Г”: (Crans 1999, 2000). 

Gray defined for 2-categories a product analogous to the conventional product 
for 1-categories (Kelly and Street 1974, Gurski 2006). 

Given two 2-categories C, D the Gray tensor C⊗D is informally defined to be 
the 2-category: 

• With 0-cells given by products A⊗A' for all pairs (A, A') ∈ C0 x D0 
• With 1-cells given by products A⊗f' and f⊗A' for all pairs (A, f') ∈ C0 x D1 

and (f, A') ∈ C1 x D0 
• With 2-cells generated by products A⊗φ', f⊗f' and φ ⊗A' for all pairs (A, φ') 

∈ C0 x D2, (f, f') ∈ C1 x D1 and (φ, A') ∈ C2 x D0 were f⊗f' denotes a 2-cell 
with specific properties (Kelly and Street 1974). 

The horizontal composition of two 2-arrows results in a three dimensional arrow. 
The dimension raising aspect related to the Gray tensor product “Г” should be 

emphasized. 

A2.5   Toposes Modeling SDG  

The formal notions necessary to understand categories and toposes may be found 
in Goldblatt (1979) monograph. 

An informal presentation is due to Baez (Baez 2006). 
An elementary topos E is a category such that: 

i) E has all finite limits and colimits 
ii) E has exponentiation  
iii) E has a subobject classifier 

The property i), says that there are: an initial object, a terminal object, binary 
coproducts, binary products, equalizers and coequalizers.   

The property ii) says that for any objects x and y, there is an object yx, called an 
"exponential", which acts like "the set of functions from x to y".  

The property iii) says that there is an object called the "subobject classifier" that 
appears as the replacement for the usual Boolean "truth values" {true, false} from 
classical Boolean logics.  

In order to treat the general relations of physics, it is necessary that the 
mathematical frame involves a Cartesian closed category E of smooth morphisms 
between smooth spaces. This is one of the reasons to use toposes in engineering. 

Another reason is the need for constructivist mathematical study of complex 
systems. The logic in constructive mathematics is not the classical Boolean one.  
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Toposes may make use of a minimal more primitive logic, namely the 
constructive logic. Constructive logic, pioneered by Heyting, represents a logical 
framework for constructive mathematical models (Bell 1998). This logic rejects 
the law of excluded middle and allows characterizing fuzziness and vagueness in 
reasoning.  

The prime example of toposes is the category Set. The conditions i) to iii) 
allows to the category E to be used as a model of constructive logic universe in 
much the same way as the category Set is used as a model of a conventional logic 
universe. 

In any universe containing SDG, there exists an object of smooth reals R 
defined to expresses the idea that some aspects of the physical universe should be 
fundamentally smooth. It should be observed that all the function from R to itself 
must be smooth.  

Some of the most relevant axioms for R are: (Moerdijk and Reyes 1991): 

• (A1) R is a local commutative ring with unit 
   Denote by { }0d|dD 2 =∈= R  the first order infinitesimals. 

• (A2) Derivation (Kock-Lawere): For each f: D→ R, there exists a unique  
b∈R, such that for every d ∈D, f (d) =f (0) +d.b 

• (A3) Integration: For each f: R → R, there exists a unique F: R → R, such that  
F'(x) =f(x) with F (0) =0 

Topos theory provides a framework in which it is possible to define a category 
which behaves like conventional sets and functions and which consists of smooth 
objects and morphisms. It should be emphasized that CT does much more than 
organize the mathematical materials furnished by classical set theory. Various 
topos models allow the study of the smoothly continuous incorporating actual 
infinitesimals which are inconsistent with set theory, a form of the continuous that 
cannot be reduced to discreteness. 
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