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Preface

Biodiversity is the outcome of successive periods of evolution for over three billion
years. From simple unicellular microbes to the complex human body, all are equally
important components of biodiversity, interacting to form functional ecosystems.
Biological resources have sustained human society over thousands of years and the
diversity of these resources has been exploited for three basic necessities: food,
clothes, and shelter by pre-historic people as well as modern mankind. Recognizing
the enormous value of biodiversity for present and future generations, the United
Nations Conference on Environment and Development (the Rio “Earth Summit”)
proclaimed the Convention on Biological Diversity (CBD) in 1992. Through this
global agreement, 193 nations aspire to the “conservation of biological diversity,
the sustainable use of its components and the fair and equitable sharing of benefits
arising from the use of genetic resources” [1]. Furthermore, the United Nations have
declared the present decade (2011–2020) as the “United Nations Decade on Bio-
diversity.” With the objective of stopping biodiversity loss and in the long run
regaining the lost biodiversity, governments agreed to the “Strategic Plan for
Biodiversity 2011–2020 and the Aichi Targets.” Among the five targets,
“enhancing the benefits to all from biodiversity and ecosystem services” is one
important strategic goal. Against this backdrop, I consider the publication of this
book very well-timed.

The Article 2 of the CBD defines biotechnology as “any technological appli-
cation that uses biological systems, living organisms, or derivatives thereof, to
make or modify products or processes for specific use” [2]. The major facets of our
lifestyle that have been touched by biotechnology are agriculture, medicine, bulk
products, environment, and energy. Biodiversity is intricately linked with the
provision of services by biotechnology. The diversity of food and fiber crops is
crucial to feed, clothe, and house the growing population, particularly in the
developing world. According to the World Health Organization, better knowledge
of the earth’s biodiversity is vital for future medical and pharmacological discov-
eries that will keep us away from death and disease. The bioprocess industry is
looking for new enzymes and metabolites that resist harsh industrial manufacturing
conditions like extremes of temperature, pH, and pressure. Biodiversity holds the
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key. The rate and extent of bioremediation can be significantly increased by the
application of novel organisms, hence the importance of biodiversity in environ-
mental protection. As predicted by the “International Energy Outlook 2013,” the
world’s energy consumption would increase by a massive 56 % between 2010 and
2040 and the demand would be highest in China and India. Biodiversity has the
potential to provide novel bioresources to meet this demand.

Accordingly, the chapters of this book have been selected to cover the spectrum
of biotechnological applications of biodiversity. In “Current Issues in Cereal Crop
Biodiversity” Danilo E. Moreta and colleagues write about the biodiversity of
cereal crops such as rice, wheat, maize, millets and an emerging staple food, quinoa.
In “Biodiversity in Production of Antibiotics and Other Bioactive Compounds”
Girish Mahajan and Lakshmi Balachandran have highlighted the importance of the
diversity of microbes in providing leads for the development of new drugs.
In “Medicinal Plants, Human Health and Biodiversity: A Broad Review,” Tuhinadri
Sen and Samir Samanta emphasize the role of plant biodiversity in affording
botanical drugs and herbal medicines on which the majority of the world’s popu-
lation (particularly in the developing countries) are dependant. İpek Kurtböke and
co-authors, in “Eco-Taxonomic Insights into Actinomycete Symbionts of Termites
for Discovery of Novel Bioactive Compounds” review the microbial diversity of a
very small ecosystem, the termite gut and its potential to deliver a wide range of
useful bioproducts. In “Bioresources for Control of Environmental Pollution”
Barindra Sana describes the diversity of plants, microbes, and lower eukaryotes and
their application in bioremediation of environmental pollutants. In “Organisms for
Biofuel Production: Natural Bioresources and Methodologies for Improving Their
Biosynthetic Potentials,” Guangrong Hu and colleagues write about the diverse
plants, algae, yeasts, and bacteria as producers of biodiesel, gasoline, jet fuel,
alkanes, and hydrogen. Taxonomical listing of species currently used or being
explored vis-à-vis the bases of their selection for biotechnological applications have
been presented by the authors. Modern approaches to discover new biodiversity
have also been discussed. Conservation strategies form an important part of the
chapters. Commercial biotechnological processes exploiting biodiversity have also
been focused.

Legal and policy issues in biodiversity are gaining importance alongside the
scientific and technological innovations for its exploitation. Unfortunately, a north-
south conflict exists on the utilization of biological diversity. The global south
(comprising mostly of developing nations) is rich in biodiversity but has limited
access to advanced technology, while the global north (consisting of developed
countries) is bioresource poor but possesses the economic power and scientific
technology required for commercialization of bioresources. Repeatedly, the south
has accused the industrialized north of biopiracy [3]. To prevent the commercial-
ization of biodiversity without paying rational compensation to the rightful owners,
the “Nagoya Protocol on Access to Genetic Resources and the Fair and Equitable
Sharing of Benefits Arising from their Utilization” was adopted by the governing
body of the CBD in 2010. This international agreement strives for “sharing the
benefits arising from the utilization of genetic resources in a fair and equitable way,
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including by appropriate access to genetic resources and by appropriate transfer of
relevant technologies, taking into account all rights over those resources and to
technologies, and by appropriate funding, thereby contributing to the conservation
of biological diversity and the sustainable use of its components” [4]. It is hoped
that successful implementation of the Nagoya Protocol will ease the north-south
conflict and promote congruous biotechnological applications of biodiversity not
only for us but also for the generations to come.

I thank the Managing Editor, Prof. Dr. Thomas Scheper and the Publishing
Editor, Elizabeth Hawkins for giving me the opportunity to edit this book on a very
important global issue. I thank the authors for spending their valuable time pre-
paring their excellent contributions. My sincere thanks also go to all the reviewers
for their meticulous corrections that vastly improved the manuscripts. I hope the
readers will find every chapter interesting and informative.

Kolkata, India, April 2014 Joydeep Mukherjee
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Current Issues in Cereal Crop
Biodiversity

Danilo E. Moreta, Prem Narain Mathur, Maarten van Zonneveld,
Karen Amaya, Jacobo Arango, Michael Gomez Selvaraj
and Beata Dedicova

Abstract The exploration, conservation, and use of agricultural biodiversity are
essential components of efficient transdisciplinary research for a sustainable agri-
culture and food sector. Most recent advances on plant biotechnology and crop
genomics must be complemented with a holistic management of plant genetic
resources. Plant breeding programs aimed at improving agricultural productivity and
food security can benefit from the systematic exploitation and conservation of genetic
diversity to meet the demands of a growing population facing climate change. The
genetic diversity of staple small grains, including rice, maize, wheat, millets, and more
recently quinoa, have been surveyed to encourage utilization and prioritization of
areas for germplasm conservation. Geographic information system technologies and
spatial analysis are now being used as powerful tools to elucidate genetic and eco-
logical patterns in the distribution of cultivated and wild species to establish coherent
programs for the management of plant genetic resources for food and agriculture.
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1 Introduction

Agricultural biodiversity is the key to successful biotechnological approaches for
crop improvement. Plant breeding programs aimed at increasing crop productivity
and improving food security rely on traits that must be efficiently managed and
exploited for the sustainable delivery of cultivars without compromising genetic
diversity. Exploration of new biodiversity in the face of climate change and the
threat of genetic erosion must complement current trends in crop diversity.
Enhanced conservation strategies of important agricultural biodiversity need to be
deployed to take advantage of cutting-edge technologies on spacial analysis to
monitor the patterns of plant diversity and distribution and prioritize areas for
conservation. Most recent advances in the genetic modification of crop plants (i.e.
transgenics) are also an important issue for agricultural production. Next-genera-
tion crops need to be created using transdiciplinary strategies, with the goal of
making farming more productive and more profitable. Major staple crops, such as
rice, maize, wheat, millets, and most recently quinoa, play an important role for
millions of people worldwide because these crops sustain the lives of the poorest
rural farmers. Therefore, diversity and conservation issues involving the utilization
of these staple crops will significantly contribute to a household’s food security
and nutrition of smallholders, mainly in the tropics.

2 Agricultural Biodiversity: Concept, Importance and Scope

Agricultural biodiversity, also known as agrobiodiversity, can be defined as all of the
components of biological diversity that are relevant to food and agriculture, including
agricultural ecosystems [1]. From a pragmatic perspective, agrobiodiversity is the
result of the interaction between the environment, genetic resources, and manage-
ment systems and the practices used by people from diverse cultural backgrounds.

Agrobiodiversity is an integral part of overall biodiversity; it comprises the
variety and variability of animals, plants, and microorganisms at the genetic,
species, and ecosystem levels that are used for food and agriculture, including
crops, livestock, forestry, and fisheries. Culture and local knowledge are regarded
as essential parts of agrobiodiversity because it is the human activity of agriculture
that affects and shapes this biodiversity. In other words, agrobiodiversity is the
result of natural selection and human intervention over millennia, and it plays a
key role in sustainable development, including processes for, and in support of,
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food production and food security [2, 3]. Some part of this biodiversity is directly
managed to supply the goods and services that people need; however, most of it is
not directly intended for production purposes and remains important as a source of
materials for its contributions to ecosystem services, such as pollination, control
of greenhouse gas emissions, and soil dynamics [4].

The diversity in crops consists of the crops, landraces, and cultivars grown by
farmers [5]. The world is currently facing serious environmental problems due to
loss of biological diversity at alarming rates. Scientists have estimated that by 2025,
60,000 plant species could be lost. The Food and Agriculture Organization of the
United Nations (FAO) has also stated that, since 1900, approximately three quarters
of the genetic diversity of domestic agricultural crops has already been lost [6].

It is well known that modern, intensive agriculture reduces agricultural biodi-
versity [4, 5]; this loss of genetic diversity in agriculture is known as genetic
erosion [7]. It is commonly assumed that plant breeding efforts are an important
cause of genetic erosion of crops. However, the effects of urbanization and modern
agricultural practices are important factors as well. Climate change and environ-
mental degradation can also contribute to changes in cropping patterns and the
disappearance of traditional varieties [5].

The spread and adoption of modern crop varieties has implications for genetic
erosion and a decline in crop genetic diversity. Conservation of crop genetic
resources is therefore a prerequisite for future generations. Organized and well-
focused exploitation and conservation strategies of biodiversity will allow users to
breed crop varieties for improved food security and face new challenges in the era
of climate change.

2.1 Conservation of Agrobiodiversity in Small Grains: Status
and Applications

It is generally accepted that the modernization of agriculture and land use changes
negatively affect economic plant diversity, both on farmers’ fields and in home
gardens [5]. This might eventually lead to the genetic erosion of cultivars and crop
wild relatives with potentially useful traits for current and future human use.
Therefore, many collecting missions have been organized in the past decades to
establish extensive international and national genebank collections for important
food crops, including cereals [8]. More than 3 million cereal accessions (i.e.
samples of living plant material collected from particular locations) are stored ex
situ worldwide [9]. They account for almost half of all genetic materials conserved
globally in genebank collections [9]. This confirms the importance of cereals for
global food security and agricultural production. The three crops with the most
accessions conserved ex situ at a global level are the cereals rice (Oryza spp.),
wheat (Triticum spp.), and barley (Hordeum vulgare subsp. vulgare) [9]. Of other
cereal crops, such as maize (Zea mays L.), sorghum (Sorghum spp.), oat (Avena
sativa L.), and millets (e.g. Pennisetum glaucum), less but still huge amounts of
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materials are being conserved ex situ [9]. To facilitate access to genetic material
for evaluation, breeding, and direct use, some of these collections are put in the
Multilateral System (MLS) under the conditions defined in the International Treaty
on Plant Genetic Resources for Food and Agriculture (www.planttreaty.org).
Several of the collections that are in the open domain, such as those held in trust by
the Consultative Group on International Agricultural Research (CGIAR), can be
consulted through the GENESYS Web portal (http://www.genesys-pgr.org),
developed by Bioversity International.

The genetic integrity of accessions is maintained as much as possible in ex situ
gene bank collections to conserve the specific characteristics of each material for
evaluation, breeding, and direct use. For example, most accessions of the cereal
collections held in trust by CGIAR have been characterized (88 %) [9]. This per-
centage is higher than all other types of crops conserved by CGIAR centers and The
World Vegetable Center [9]. However, considering all reported national collections
around the world, the amount of characterized cereal genetic resources is lower and
similar to levels of genetic resource characterization of other crop types [9]. As a
drawback, ex situ collections do not maintain the continued process of interactions
between plants, humans, and environmental factors that take place on farms and
between farmers [10]. In situ conservation of crops such as cereals is thought to be
important to maintain the adaptive genetic variation of crop populations through
interactions with their environment, including human management and selection.
Several newly sampled barley materials in Morocco, for example, had more disease
resistance than accessions collected several decades ago at the same location [11].
This supports the need of cereal genetic resources in situ conservation to allow
evolution of adaptive genetic variation to important diseases for overall crop
production. On the other hand, some historic ex situ accessions included rare genes
to resistance that were extinct in the current species populations due to genetic
erosion [11]. This highlights the importance of ex situ conservation as well as the
necessity to develop complementary strategies of ex situ and in situ conservation.

Therefore, there is a need to assess the diversity status and dynamics of in situ
plant genetic resources and develop complementary ex situ and in situ conservation
strategies [9, 12–14]. At the same time, these types of analyses are useful to identify
remaining gaps of diversity that are missing in existing genebank collections and that
should therefore be targeted for germplasm collecting [9, 13]. Of course, periodic
monitoring activities are required to measure the effectiveness of in situ conservation
over time and to check the viability of seed material in ex situ collections.

The main purpose of in situ conservation is to maintain genetic variation in
cultivated crop populations for phenotypic selection by farmers and/or natural
processes [15]. This allows maintenance of the processes of microevolution and
continuous adaptation of crop populations to their environments, including farmer
management. The genetic structure of populations can change when phenotypic
traits are heritable and selection is sufficiently strong. Following Darwin’s con-
cepts of selection, this allows cumulative directional genetic response over gen-
erations—that is, microevolution of these populations to natural and human
selection [15, 16]. Microevolution in plant populations is further driven by factors
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such as random mutation, recombination, and genetic drift [17, 18]. As an addi-
tional factor, many smallholders in all parts of the world periodically introduce
new materials from neighbors and other localities into their systems to sustain
productivity [19]. These factors and activities together make on-farm plant genetic
resources management a dynamic system of crop genetic diversity use. Farmers
may select for changing preferences as well choose to maintain desired phenotypic
traits [15]. The variety of traits that is maintained and evolving under farmers’ care
is often unknown to conventional breeders, entrepreneurs, and consumers. This
makes on-farm conservation areas potential sources of untapped diversity for the
development of new crop varieties for local and wider use. Even genetic diversity
itself in cultivated populations may be a trait of farmers’ selection for ecosystem
services, such as pest and disease control [20].

The status and trends of intraspecific crop diversity are traditionally being assessed
and monitored through varietal diversity, either through farmer interviews or mor-
phological or botanical classifications. For example, classification on the basis of
traits that are important for farmers suggests that sorghum and pearl millet varietal
diversity in Niger remained at similar levels during the last three decades of the
twentieth century [21]. A reason for the maintenance of varietal diversity could be that
the areas under study are marginal terrains where the cultivation of traditional crop
and varieties outperforms cash crops and/or crop genetic diversity is being maintained
as a risk management strategy [21]. Taxonomic keys have been used to monitor
traditional maize varieties (www.biodiversidad.gob.mx/genes/proyectoMaices.
html). Taxonomic studies are the basis for understanding variation in plant genetic
resources. However, assessment of varietal diversity according to morphological or
botanical characterization may still lead to a substantial degree of misidentification
[22], and taxonomic keys may not exist for botanical varieties of specific crops or
from particular geographic areas. This limits intraspecific diversity studies.

Molecular tools that identify polymorphisms have created novel opportunities
for assessing crop genetic diversity, particularly when these markers are linked to
adaptive traits and applied in combination with new geospatial methods of geo-
graphic and environmental analysis [23–25]. In addition, geographic information
systems (GIS) can contribute significantly to improving the understanding and
monitoring of spatial and temporal patterns of crop diversity [26]. Application of
spatial analyses on georeferenced diversity data allows the formulation and
implementation of better-targeted, and hence more effective, conservation strate-
gies of inter and intra-specific plant diversity. For example, geospatial analyses
combined with molecular marker characterization data have been used to support
conservation strategies for African rice (O. glaberrima Steud.) genetic resources
[27]. This study found the highest African rice genetic diversity in intermediate
humid conditions and a decrease of genetic diversity under semiarid conditions
and humid conditions [27]. This may have implications for the genetic resource
conservation of this crop under changing climate conditions [27].

As an example of how to apply geospatial analysis to support plant genetic
resources conservation, maize microsatellite diversity was mapped in the Americas.
A dataset freely available by the Genetic Architecture of Maize and Teosinte
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project at www.panzea.org was used. It consists of molecularly characterized maize
accessions from different genebanks. This dataset has been used by Vigouroux
et al. [22] to understand the genetic structure (beta diversity) in America’s maize
distribution. Four big genetic groups can be distinguished, consisting of material
from (1) temperate zones in the United States and South America; (2) Mexican
highlands; (3) tropical lowland; and (4) the Andes [22]. This data was used to map
maize alpha diversity. A total of 1,145 georeferenced accessions that had micro-
satellite data for 92 markers were selected. Following van Zonneveld et al. [28], a
20 min grid layer (corresponding to approximately 33 km in the study area) was
constructed for all genetic parameters, applying a circular neighborhood with a
diameter of two degrees (corresponding to approximately 222 km) to improve
visualization and group geographically isolated germplasm accessions. Calcula-
tions were done in the R program version 2.15.1 with the packages Raster [29] and
Adegenet [30]. To standardize comparability of these parameters between cells,
sample bias was corrected through resampling without replacement after Leberg
[31] to a sample size of six trees. Per parameter, the average value was calculated
from six subsamples following the bootstrap method developed by Thomas et al.
[32].

The highest allelic richness is found in the central highlands of Mexico (Fig. 1).
This indicates a high variation of maize genetic resources, and this area therefore
should be prioritized for conservation actions. Nevertheless, the center of maize
domestication is thought to be located in the southern lowlands, which thus is also
an important area for conservation [33]. Also, a high number of alleles is found in
these areas (Fig. 1). In a few scattered areas in northern Mexico, high levels of
diversity are also observed.

Allelic richness is lower in South America, where maize was introduced later.
However, high levels of diversity can be found in Ecuador in the Andean region,
Venezuela, northern Colombia, and Bolivia in the tropical lowlands (Fig. 1).
These materials belong to different genetic groups than the material from the
Mexican highlands [22]. These clusters may reflect different groups of evolution
and adaptation to different environments. To maximize conservation of plant
genetic resources, areas from these clusters that harbor high genetic variation
should be prioritized for conservation.

The high genetic maize diversity in the Mexican highlands can be explained by
the high levels of introgression between crop wild relatives and maize in that area
[33, 34]. Indeed, gene flow between cultivated plants and their relatives in over-
lapping areas of distribution can cause elevated levels of intraspecific cultivated
plant diversity. Such insights allow a better understanding of the role of evolu-
tionary processes in the development of current species distributions and, where
relevant, their domestication [35]. Similar phenomena have also been observed in
other areas. Higher levels of molecular diversity of domesticated emmer wheat
(Triticum turgidum L. subsp. dicoccon (Schrank) Thell.) and bread wheat
(T. aestivum L.) have been found in the eastern Mediterranean and Turkey,
respectively, and are located south and west of their putative centers of domes-
tication due to crossing between domesticates and their wild ancestors [36].
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In addition to studies across crop distribution ranges to target areas for in situ
conservation and germplasm collecting, local spatial studies in prioritized tradi-
tional rural communities are important to provide input to the development of
appropriate on-farm PGR management strategies [25]. These studies help to
(1) increase the understanding of how farmers manage and conserve crop diversity
within a community and; (2) identify the optimal geographic scale for interven-
tions and crop diversity monitoring, as well as the social context in which in situ
conservation should be implemented [37]. Estimates of distribution and levels of
crop diversity in rural communities also help to determine the need to introduce

Fig. 1 Maize microsatellite diversity in the Americas constructed from geospatial analysis as a
tool for genetic resources conservation. The average number of alleles per locus is shown
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new varieties into local seed systems and improve seed distribution systems
accordingly [38].

Several case studies illustrate how genetic analysis helps to support in situ
conservation interventions. A microsatellite marker study of diversity and structure
of local rice varieties (Oryza sativa L., O. glaberrima Steud.) in the Republic of
Guinea revealed genetic differences between two different agro-ecosystems, but no
differentiation was shown between villages or farms within each of the contrasting
agro-ecosystems [37]. This suggests that most genetic diversity can be conserved
within just a few farms of a village [37]. Simple sequence repeat (SSR) markers
also detected high seed exchange within villages of a traditional rice variety in
Thailand [39]. In addition, high genetic differentiation between villages was found
[39]. This indicates long periods of local adaptation and selection. Also, low
genetic differentiation between seed lots of different farmers of the specific
Mexican maize variety, Jala, suggests high seed exchange between farmers [40].
This implies that within communities only a few farmer fields would be necessary
to target for in situ conservation and that collection for ex situ conservation of
many individuals in a few farmer fields is preferred to collection of a limited
number of individuals in many fields [40].

Climate change will certainly impact landraces conserved in situ, such as the
native maize races in Mexico [18]. Nevertheless, it remains difficult to predict
whether a local landrace goes extinct or can adapt [18]. This depends partly on the
magnitude of the climate alterations, the novelty of new climates, and the amount
of genetic variation present in landrace populations [18]. Seed exchange between
farmers remains an important means to adapt local seed material to changing
climates. Ecogeographic analysis of traditional maize systems in Mexico shows
that mid-elevation communities can adapt fairly easy their production systems to
climate change through seed exchange with farmers within a 10 km radius, where
a wide range of different micro-climates can be found [41]. In contrast, highland
and lowland systems that have less local micro-climate diversity require seed
material from geographically more distant locations. The latter would require
active support from governmental and non-governmental organizations [41].

During the domestication process of crops, overall genetic diversity is generally
reduced, whereas phenotypic diversity at specific parts of the genome related to
traits of interest are increased. However, many unknown traits of interest may have
been lost during that domestication process. Crop wild relatives and progenitors
may still include many potentially interesting traits, such as adaptive traits to heat
stress and other climate change–related traits [42]. Therefore, recently more
emphasis has been placed on the conservation of crop wild relatives. Microsatellite
studies on rice in Vietnam confirm that wild rice populations contain much more
diversity than cultivated populations [43]. A good example is mapping the genetic
diversity of the wild subspecies of barley (Hordeum vulgare subsp. spontaneum) in
Eastern Mediterranean and Middle East (Israel, Palestine, Syria, and Turkey), and
Central Asia [44]. In these locations, barley here has higher genetic diversity in the
eastern Mediterranean than elsewhere in its distribution. This area should therefore
be a focus of conservation activities for barley genetic resources.
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2.2 Genetic Diversity of Pearl Millet and Its Wild Relatives:
Distribution, Conservation, and Use

2.2.1 Background

Pearl millet [Pennisetum glaucum (L.) R. Br.] is the fifth most important cereal
crop in the world after rice, wheat, maize, and sorghum. It is a widely grown
rainfed cereal crop in the arid and semi-arid regions of Africa and Southern Asia,
and it can be grown in areas where rainfall is not sufficient (200 to 600 mm/year)
for the cultivation of maize and sorghum. In other countries, it is grown under
intensive cultivation as a forage crop. Pearl millet accounts for almost half of
global millet production, with 60 % of the cultivation areas in Africa, followed by
35 % in Asian countries. European countries represent 4 % of millet cultivation
and North America only 1 %, mainly for forage. Today, millet is a staple for more
than 500 million people. Areas planted with pearl millet are estimated at
15 million ha annually in Africa and 14 million ha in Asia. Global production
exceeds 10 million tons a year [45]. In sub-Saharan Africa, pearl millet is the third
major crop, with the major producing countries being Nigeria, Niger, Burkina
Faso, Chad, Mali, Mauritania, and Senegal in the West and Sudan and Uganda in
the East. In Southern Africa, maize has partially or completely displaced millet
cultivation because of commercial farming. India is the largest producer of pearl
millet, both in terms of area (9.3 m ha) and production (9.3 mt), with an average
productivity of 1044 kg/ha during the last 5 years (2007–2011).

The trends in area, production, and productivity of pearl millet suggest that area
has increased marginally (2 %) during the last 2 years (2010–2011) and produc-
tivity has gone up by 19 % [46]. The major pearl millet growing states in India are
Rajasthan, Maharashtra, Gujarat, Uttar Pradesh, Haryana, Karnataka, Madhya
Pradesh, Tamil Nadu and Andhra Pradesh. However, productivity is the highest in
Haryana, followed by Gujarat, Uttar Pradesh, Madhya Pradesh, Tamil Nadu,
Andhra Pradesh, Rajasthan, Maharashtra, and Karnataka. It is mainly cultivated
during the Kharif (rainy) season across the country. However, it is also grown to a
lesser extent during the Rabi (post-rainy) season in Andhra Pradesh, producing
high yields and excellent grain quality. Outside Africa and India, millets are also
grown in Australia, China, Canada, Mexico, Russia, and the United States, pri-
marily grown as a forage crop for livestock production [45]. Pearl millet is
endowed with enormous genetic variability for various morphological traits, yield
components, adaptation, and quality traits. Pearl millet is also nutritionally supe-
rior compared to maize and rice. The protein content of pearl millet is higher than
maize and it has a relatively high vitamin A content.

2.2.2 Taxonomy, Origin, and Distribution

Pearl millet, Pennisetum glaucum, is an annual, allogamous, cross-pollinated,
diploid cereal belonging to the Poaceae family, subfamily Panicoideae, tribe
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Paniceae, subtribe Panicinae, section Penicillaria, and genus Pennisetum. The
genus Pennisetum contains about 140 species. The important wild relatives of
cultivated pearl millet include the progenitor, Pennisetum glaucum subsp. monodii
Maire, P. purpureum K. Schumach, P. pedicellatum Trin., P. orientale Rich, P.
mezianum Leeke, and P. squamulatum Fresen. Previous names are P. typhoideum
L.C. Rich andP. americanum (L.) Leeke. The four cultivated forms of pearl millet
are typhoides (found mainly in India and Africa), nigritarum (dominant in eastern
Sahel), globosum (dominant in the western Sahel, probably originating in Sahelian
Africa in a diffuse belt stretching from western Sudan to Senegal), and leonis
(dominant on the West African coast) [47–49].

Linnaeus [50] originally placed pearl millet cultigens into two separate species
(P. glaucum and P. americanum) of the genus Panicum. Later, he moved several
of these elements to the genus Holcus [51]. Rechard [52] grouped pearl mil-
let along with a number of species previously listed under both Panicum L. and
Cenchrus L. in a new genus, Pennisetum. Willdenow [53], however, established
the genus Penicillaria to include pearl millet, but Steudel [54] reduced it to its
present status as a section in Pennisetum. He merged many variants of pearl millet
into a single polymorphic species, recognized as P. typhoideum L. Rich. The limits
of the section were expanded by Leeke [55] to include all those wild species of
Pennisetum having penicillate anther tips and involucral bristles. The generic
name Pennisetum has been derived from two Latin words, Penna and Seta,
meaning feather and bristles (i.e., feathery bristles). The most extensive treatment
of the genus Pennisetum was contributed by Stapf and Hubbard [56], who divided
the genus into five sections: Gymnothrix, Brevuvalvula, Penicillaria, Heterostac-
hya, and Eu-pennisetum. Cultivated pearl millet and its wild and weedy relatives
were included in section Penicillaria, which included 14 cultivated, 6 wild, and 13
intermediate species. Brunken [47] further reduced the number of species in
section Penicillaria to two, on morphological and cytological grounds; P. pur-
pureum was maintained as a separate species because of its tetraploid chromosome
number and perennial lifecycle.

All the diploid cultivated, weedy, and wild taxa that frequently hybridize
without genetic barriers are classified under a single species, P. americanum.
Based on the morphology and adaptive strategies to domestication, P. americanum
was further divided into three subspecies: americanum, including the cultivated
forms; monodii, including the wild forms; and stenostachyum, with the weedy
forms. Clayton and Renvoize [57] demonstrated that the taxonomically correct
name for cultivated pearl millet is P. glaucum. They recognized the weedy forms
(colloquially called shibra) as P. sieberanum and their wild progenitor as
P. violaceum. P. violaceum differs from pearl millet in having involucres that are
sessile, deciduous at maturity, and always contain a single spikelet.

The geographical origin and the center of domestication of pearl millet are
situated in western Africa. The plant was subsequently introduced into India,
where the earliest archaeological records date back to 2000 BC [48, 58–60].
Records exist for cultivation of pearl millet in the United States in the 1850s, and
the crop was introduced into Brazil in the 1960s. The oldest findings of wild and
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domesticated pearl millet were recorded at about 3500 BC in Dhar Tichitt, a
Saharan site in Mauritania [61]. Birimi in northern Ghana has laid claim to one of
the earliest findings of domesticated pearl millet, dated at about 1459 BC [62, 63].

These archaeobotanical findings in the Sahara and Sahel confirm the hypothesis
of original distribution and widespread utilization of wild and cultivated pearl
millet across sub-Saharan Africa [61, 62]. However, there is dispute among
scholars as to whether pearl millet has a single center of origin or more than one
place of origin (the so-called non-centers), which would have resulted from
domestication processes occurring independently in several regions. According to
the latter hypothesis, the whole Sahel, from Mauritania to western Sudan, was
originally covered with these non-centers [60, 64–67]. Whether domestication
took place as multiple parallel processes in the non-centers in several places along
the Sahelian distribution belt of the wild progenitors or at one specific place
[60, 68], the ultimate center of origin of the wild progenitors, P. monodii and
P. mollissimum, is most likely to be situated in the Sahara desert [62, 63, 69].

Based on the distribution of pearl millet throughout the continent, the uniform
cradle of domestication is likely to be the regions of Mauritania, Senegal, and
western Mali [48, 68, 70]. Today’s cultivated forms developed out of this
domestication cradle [71]. Next, these first early-maturing forms of domesticated
pearl millet were carried eastwards, facilitated by their efficient adaptation to arid
conditions [62]. About 3,000 years BC, the first translocation carried the crop to
eastern Africa [68, 71] and then to India, where 3000-year-old carbonized pearl
millet was detected at a site on the eastern coast [63, 69].

Another diffusion took place in the region near Lake Chad, more precisely on
the Nigerian side [72], where a secondary center of diversity developed at about
2010 BC [68, 73]. There, photoperiod-sensitive cultivars were selected, which
adapted to the more humid conditions in the southern Sudanian zone [62, 71].
These late-maturing cultivars were transported further towards the Sudanian zone
of southwestern Africa, from northern Nigeria to southern Senegal, as evidenced
by the above-mentioned findings in northern Ghana [68, 73]. The third and last
major translocation took pearl millet towards the plateaus of southern Africa,
across Uganda and towards Namibia, at about 1000 BC [68, 71].

2.2.3 Overview of Pearl Millet Collections

The International Crops Research Institute for the Semi-Arid Tropics (ICRISAT)
has the single largest consolidated collection of pearl millet in the world, which
comprises a total of 22,211 accessions. Of these, 750 are of wild species (24
species), 19,377 are landraces, 132 are improved cultivars, 1,943 are breeding/
research materials, and 25 are others [74]. India contributed a significant number
of pearl millet accessions to the global collection maintained at ICRISAT (6,647
accessions). The remaining accessions were collected from about 51 countries.
The major diversity centers of pearl millet are considered to be relatively well
represented in the collection at ICRISAT. In addition to ICRISAT, the Institut de
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Recherche pour le Développement in France also maintains 3,968 accessions of
pearl millet from 16 countries. Collection of these accessions was supported by
Bioversity International and Office de la Recherche Scientifique et Technique
d’Outre-Mer. The Canadian Genetic Resources Programme in Saskatoon, Canada
maintains 3,821 accessions covering a few species, with emphasis on Pennisetum
glaucum (3390 accessions). Accessions of other species include: P. violaceum
(221), P. macrourum (1), P. purpureum (12), P. orientale (1), P. pedicellatum
(11), P. polystachion (8), P. ramosum (3), P. unisetum (1), and other species (14).
The number of seeds maintained in these collections is moderate for long-term
conservation; it is intended as safety duplication but not for distribution. In
addition to these global collections, the Agricultural Research Station of the U.S.
Department of Agriculture (USDA) at Griffin, Georgia maintains 1,314 accessions
from 32 countries, of which only 1 is a wild relative, 290 are of breeding/research
material, and 552 are for other purposes.

Among the national collections, the largest was recorded from the Indian
genebank at the National Bureau of Plant Genetic Resources (NBPGR), which
maintains 8,913 accessions under long-term conservation. Most of the accessions
are indigenous (8,827), with only 168 accessions from other countries. The Indian
collection also includes 221 advanced improved varieties and 272 accessions of
breeding/research material. No other countries in South Asia, except Pakistan (193
accessions), have reported pearl millet collections. Among African countries, the
collections were reported from gene banks based in Algeria, Benin, Botswana,
Burkina Faso, Burundi, Cameroon, Central African Republic, Chad, Eritrea,
Ethiopia, Ghana, Kenya, Malawi, Mali, Mauritania, Mozambique, Namibia, Niger,
Nigeria, Senegal, Sierra Leone, Sudan, Democratic Republic of the Congo,
Uganda, Zambia, and Zimbabwe. In total, 56,580 pearl millet accessions were
recorded from various sources. Landraces represent the largest proportion of pearl
millet germplasm conserved in gene banks worldwide (49,973 accessions). Of
these, only 3 % are wild relatives collections (1,630), 0.80 % are advanced
improved varieties (452), 6 % are breeding/research materials (3,600), and 2 % are
of unknown description (947).

Some progress has been made in the recent past in mapping the pearl millet
diversity collected worldwide. Global databases show that georeference data have
been assigned to 16,855 accessions. These collections are being maintained at
ICRISAT (13542 accessions), USDA Agricultural Research Service (ARS) (472
accessions) and the International Livestock Research Institute (13 accessions).
With support from Bioversity International, 2,828 accessions were collected and
became part of the global collections being maintained by ICRISAT and USDA-
ARS. Not much information is available for any of the national collections. Based
on the georeference information from the global database, the distribution pattern
of these accessions is shown in Fig. 2, whereas the mapping of Pennisetum species
(excluding Pennisetum glaucum) is shown in Fig. 3.
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Fig. 2 Mapping of pearl millet accessions based on information available from the global database

Fig. 3 Mapping of Pennisetum species (excluding Pennisetum glaucum) accession collecting
sites based on information obtained from the global accession level information portal
GENESYS, developed by Bioversity International (http://www.genesys-pgr.org/)
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2.2.4 Characterization and Evaluation

From a global survey undertaken by Bioversity International, it appears that
although a modest number of accessions have been assembled and maintained in
many countries, systematic characterization and evaluation activities are not suf-
ficient. One reason provided by most gene banks is lack of adequate human and
financial resources. Evaluation activities, especially in Africa, have been fewer
than hoped. In the ICRISAT gene bank, all cultivated accessions have been
characterized and evaluated for 23 morphoagronomic characters following the
descriptors for pearl millet [75]. Selected pearl millet germplasm accessions of
Indian and African origin were evaluated by NBPGR for important agronomic
characters at different locations in India in collaboration with ICRISAT and cat-
alogues were published [76, 77]. Considerable phenotypic diversity was observed
for almost all quantitative traits. Distribution of qualitative traits indicates
occurrence of nine panicle shapes (cylindrical, conical, spindle, club, candle, dumb
bell, lanceolate, oblanceolate, and globose), five seed shapes (obovate, oblan-
ceolate, elliptical,hexagonal, globular) and ten seed colors (ivory, cream, yellow,
grey, dark grey, grey-brown, brown, purple, purplish-black, and mixture of white
and grey) in the entire collection. Accessions with candle-shaped panicles, short
bristled panicles, globular seed shape, grey seed color, and seeds with partly
corneous endosperm texture are predominant in the collection maintained at
ICRISAT [74].

Based on the characterization and evaluation information contained in the
database, sources of resistance to biotic and abiotic stresses, adaptation, and
nutritional qualitative traits have been identified. It was also reported that some of
the landraces have wide adaptation and are therefore very useful in light of the
changing climate scenario and for use in crop improvement programs. Much of
this diversity is still available in areas of early cultivation in Africa and regions of
early introduction in Asia.

2.2.5 Utilization

Identification of useful germplasm for crop improvement is the first step in
encouraging utilization. From the information obtained through the Bioversity
International survey questionnaire, it was difficult to obtain a good comparison of
utilization activities being carried out in various genebanks, especially in Africa.
However, in India, modest efforts have been undertaken in the last three decades to
exploit pearl millet germplasm with useful genes for crop improvement, especially
in developing composites. The iniadi germplasm from the Togo-Ghana-Burkina
Faso-Benin region of Western Africa is most commonly used in pearl millet
breeding programs worldwide [78]. At ICRISAT, a small seed sample of each
accession is available on request to all research workers under the Standard
Material Transfer Agreement of the International Treaty on Plant Genetic
Resources for Food and Agriculture [74]. To further enhance the utilization of
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pearl millet germplasm, ICRISAT evaluated sets of selected germplasm accessions
at different locations in India and several other countries in Africa; trait-specific
genepools (early maturing, high tillering, large panicle, and large grain) were
developed to provide partially conserved genotypes to the breeders. There has
been a general lack of interest in using wild species because of the large genetic
variability in pearl millet landraces. However, some wild species are very useful in
pearl millet improvement programs, notably P. glaucum subsp. monodii for new
source of cytoplasmic-nuclear male sterility (CMS); P. purpureum for forage, stiff
stalk, and restorer genes of the A1 CMS system; P. orientale for drought tolerance
and forage; P. schweinfurthii for large seed; P. pedicellatum and P. polystachion
for downy mildew resistance, and P. squamulatum for apomictic gene [48].

In general, the Indian pearl millet landraces have contributed to earliness, high
tillering, high harvest index, and local adaptation, whereas African materials have
been a good source of high head volume, large seed size, and disease resistance. In
order to enhance the use of these genetic resources, Bioversity International, in
consultation with various partners, has developed a comprehensive list of
descriptors for pearl millet [79]. This strategic set of descriptors, together with
passport data, are an integral part of the information available through the global
accession-level information portal GENESYS. It will facilitate access to and uti-
lization of pearl millet accessions held in gene banks worldwide.

2.2.6 Distribution of Pennisetum Species and Gaps in World Collection

A study of the distribution of Pennisetum species and of gaps in world collections
was undertaken by Bioversity International with support from the Global Crop
Diversity Trust (GCDT) and the World Bank, using datasets of herbarium col-
lections, as well as the germplasm collections available from Global Biodiversity
Information Facility and the System-wide Information Network for Genetic
Resources and the climate database available at WorldClim. Based on the avail-
able records, 53 wild species and 2 infraspecific taxa have been identified,
accounting for a total of 55 taxa for the genus Pennisetum. These different taxa are
classified as follows, according to their closeness to the cropped species
P. glaucum, using the Maxted and Kell [80] model. The analysis dataset contained
4,326 observations (http://gisweb.ciat.cgiar.org/GapAnalysis/) with 3,364 (78 %)
being herbarium specimens and 962 (22 %) being gene bank accessions. The
average number of total samples per taxon was 79, indicating that available data is
not particularly limited, although it is concentrated in certain taxa (i.e. P. ciliare,
P. polystachion, P. purpureum, P. violaceum, P. clandestinum, P. villosum). Other
taxa such as P. domingense, P. lanatum, and P. sieberianum present a very limited
sampling and/or data availability and thus need further characterization and
sampling in order to obtain a reliable ecogeographic evaluation.

The gap analysis of the Pennisetum genepool showed that there are 47 out of 55
taxa under analysis that are either underrepresented or not represented in gene
banks; these were therefore flagged as high-priority species. Twenty-six of these
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taxa presented only 10 data points, which indicates that these species in particular
need to be further collected. Only species P. violaceum was found to be adequately
represented in gene banks, while P. ciliare, P. flaccidum, P. orientale, and
P. pedicellatum were found to be relatively underrepresented and thus flagged as
medium-priority species. Based on the analysis, all these species have been
identified as high priority for conservation.

2.3 Quinoa Diversity and Its Potential in the New Millennium

Quinoa (Chenopodium quinoa Willd.) is an ancient native Andean grain that was
extensively cultivated in the Andean region by pre-Columbian cultures, such as the
Tiahuanacota and Inca, from around 5,000 years ago. This grain was used in the
diet of the settlers from the inter-Andean valleys and the high plateaus along with
other native species such as potato (Solanum tuberosum L.), oca (Oxalis tuberosa
Molina), amaranth (Amaranthus caudatus L.), chili peppers (Capsicum sp.),
among others [81, 82]. Quinoa is an herbaceous annual Chenopod that has played
not only a vital role in family food security and farmer livelihoods, but also in
economic, social, ecological, nutritional, and cultural contexts [83, 84]. Quinoa
plants are part of various Andean ecosystems; the grains and leaves of this crop are
used for food while its subproducts are used for forage, fuel wood, as well as in
rituals and handicrafts [85].

This crop, however, began to be marginalized in the sixteenth century with the
introduction of cereals such as barley and wheat [81, 86], leading to a significant
decrease of quinoa-cultivated areas in the Andean countries [86]. Nevertheless,
quinoa cultivation continued in marginal areas. For many decades, quinoa has been
considered as a food for the poor and the peasants, but now it is considered to be
today’s ‘‘golden grain’’. In fact, quinoa was catalogued by FAO in 1996 as ‘‘one of
the most promissory crops for humanity not only due to its high nutritional value
and versatility, but also because it offers alternatives to solve the increasingly
serious problems of human nutrition’’ [86].

Quinoa0s key asset lies in its potential as a high-quality source food. Quinoa has
high concentrations of some essential amino acids (lysine, methionine, threonine,
and tryptophan) that usually limit the quality of human diet. Quinoa is also rich in
oligo elements, vitamins, and is gluten free, just to mention some of its nutritional
properties [87]. The high content of these amino acids plus the high-quality protein
found in its grain can cover the nutritional requirements for schoolchildren and even
adults [88], which are serious problems in some populations around the world.

The Andean region is one of eight centers of origin and diversity of cultivated
plants in the world described by Vavilov in 1953; that is, it is one of the regions
that has the highest diversity of cultivated crops and their wild relatives. In this
region and specifically around Lake Titicaca, a high plateau region in Bolivia and
Peru, the highest genetic diversity of wild and cultivated quinoa genotypes are
found in farmer fields [81, 89, 90].
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Agriculture in the Andean highlands is characterized by a high degree of risk
due to a range of harsh climatic factors such as frost, hail, wind, drought, high
radiation, and poor and saline soils [91]. It is highly probable that during
domestication, Andean farmers selected certain genotypes based on their use and
their tolerance to adverse biotic and abiotic factors, thereby obtaining current
plants and ecotypes that possess high diversity of traits. Some of these ecotypes
have been strictly selected as a source of food (finding up to hundred different
recipes), while others have been selected based upon their tolerance to salinity,
poor soils, cold climate, frost and hail, drought, and flooding. It is important to
remark that some genotypes have also been selected due to their high yield
potential and precocity [89, 92, 93].

During the domestication of quinoa by Andean farmers, a wide range of
morphological modifications have occurred to the plant, such as the condensation
of the inflorescence in the highest part of the plant, an increase in plant and seed
size, reduction of the testa, loss of seed dormancy and dispersion mechanisms, and
high variation in levels of pigmentation, among others. Today, we can find quinoa
plants with high production of larger seeds and clear colors; these traits reflect the
long time man has been using, selecting, and cultivating this species [93].
Although this species has been completely domesticated, the seeds still contain
saponin, which must be extracted before consumption [86]. Quinoa ancestors and
relatives still exhibit the wild traits of the crop [93].

The genetic variability of quinoa is huge [91]. For example, one of the most
popular varieties grown today in Bolivia (Quinua real) has at least 73 ecotypes.
This variety is extremely well adapted to saline environments and has big grains.
In addition, 47 local landraces and approximately 10 improved varieties are also
found (Table 1).

In other quinoa-producing countries within the Andean region, a considerable
diversity of local and improved varieties can also be found [86, 92]. The existence
of this vast amount of ecotypes, improved and local varieties, and/or landraces
are the result of the intense breeding processes, domestication, and use and
conservation practices adopted by ancient and contemporary Andean farmer
communities based on their traditional knowledge [86].

Currently, the demand for quinoa in the national and international markets has
increased; quinoa production areas have also shown this tendency due to high
market prices. However, this demand has preference for larger seed size, uniform
color and white color, and saponin-free seeds [93, 94]. This has progressively
caused the domination of a group of cultivated varieties with these traits, such as
various ecotypes of Quinua real [89, 94]. Although markets have preferred these
varieties, Bonifacio et al. [94] reported that, in the last couple of years, those with
red and brown seeds have also been accepted now in some markets, although not
to the same extent. Nevertheless, this market preference can be risky as it can
further lead to genetic erosion and the loss of some varieties. Unfortunately, this
process is in progress, and it has been stated that three varieties of quinoa and a
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wild relative have already been included in the International Union for Conser-
vation of Nature red list categories as endangered (EN), near threatened (NT) and
least concern (LC) [95].

Apaza et al. [96] reported that the highest diversity of quinoa is found in
aynokas, mandas, and laymes, a group of traditional organization systems or
communal fields maintained by farmer communities in field borders and sacred
places (all called Gentil wasi or Phiru) using local cultivation methods and tra-
ditional knowledge. If these places continue being eroded and the traditional
practices and knowledge become lost by the adoption of modern culture practices,
it is highly probable that the diversity present in these sites will disappear.

To conserve the enormous genetic diversity of quinoa and some of its wild
relatives, various germplasm banks were created in the 1960s throughout the South
American region. These banks are being managed by public or private entities
interested in the ex situ conservation of plant genetic resources, thereby finding
more facilities in countries with higher diversity (Table 2). Collections of quinoa
germplasm began in this period with the help and sponsorship of various private
and public organizations, donors, and projects that still subsist today.

Table 1 Common names of varieties, landraces, or ecotypes found in Bolivia

Varieties or
landraces

Common name

Quinua Real Achachinoa, achachino rojo, café chullpa, canchis/qanchis blanca, canchis
roja, carequimeña, ch0illpi amapola, ch0ullpi blanco, ch0ullpi rojo, ch0ullpi
rosado, chachahua, challamoko, challamuro, chhuku puñete, chillpi,
chipaya, hilo, huallata/wallata, imilla, intinayraa, jiskitu, kairoja, kellu/
q0illua, lipeña, mañiqueña, mañiqueña nor lípez, mañiqueña palaya,
manzano, mok’o rosado/moqu rosado, moqu, moqu chacala, mururata,
negra, negra blanquita, negra blanquita planta roja, pandela/rosadaa,
pandela amarilla, perlasa, phisanqalla 3 hermanos, phisanqalla
amarantiforme, phisanqalla hembra, phisanqalla macho, pisankalla
(ayrampu)/pasankallaa, pucauya, puñete, punta blanca, q0illu puñete,
q0uitu/koitu, q0uitu rojo, qanchis amarillo, qanchis anaranjado, qanchis
rosado, qhaslala blanca, quinua roja, real blanca/reala, romerilla, rosa
blanca, santa maría, señora, sorata, tacagua, timsa/timza 1, timza nor lípez,
toledoa, toledo anaranjado, toledo rojo, tres hermanos/siete hermanos,
tupita, ucaya, utusaya, utusaya local chacala, wila jipiña, wilalaca

Other local
landraces

Acu juira, ajara (wild), amarilla, amarilla maranganí, arroz jupha, blanca,
blanca de july, choq0e pito, chuchi jiura, churo iri, cochasqui, coytu, cuntur
naira, elva, granadilla, imbaya, ingapirca, iry, janko cayun juira, janko
jhupa, juchuy mojo, kaslala/kaslali matizada, katamari, kcancolla, kelly
juira, llulluchi, mezcla, misa jupa, mixtura, negra, negra de oruro,
noventona, palco, ploma, pureja, quilliwillu, roja, roja coporaque, sallami,
siki, tunkahuan, waca misu, waranta, wila cayun janq0o, wilacoimi,
witulla, yubi

Improved
varieties

Chuca pacaa, jacha grano, jilata, kamiri, ratuqui, robura, sajamaa, samaranti,
sayañaa, surumia

a Most commonly used by communities
Sources [89, 93, 94, 195–197]
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Although these banks keep an important number of quinoa accessions, the
variability stored in these collections do not represent all the Andean diversity
[86], especially when it comes to wild populations and wild relatives [97]. There
are at least ten wild species or wild relatives and a couple of subspecies of the
Chenopodium genus, known as wild quinoa or ajara, that are used for certain
recipes by Andean farmers. These wild species are not being properly conserved.

Since 2001, some quinoa varieties and wild relatives, such as cañahua
(Chenopodium pallidicaule Aellen), have been evaluated for yield, harvest index,
postharvest, market, industrialization potential, new products and uses, among
other fields, within the framework of the International Fund for Agricultural
Development Neglected and Underutilized Species–Bioversity International
Project 2001–2014. Additionally, other wild relatives are being evaluated for their
potential to improve the tolerance to biotic and abiotic stresses as part of a United
Nations Environment Programme/Global Environment Facility project for nutri-
tive properties [90].

To date, results show that there is a huge potential in the conservation and use
of quinoa diversity and its wild relatives. Studies also show that there is consid-
erable variation among cultivars for a wide range of traits. This fact allows users to
take advantage of quinoa’s versatility for use in more than 100 different prepa-
rations and products. Other than its cosmetic and industrial and pharmaceutical
uses, quinoa can also be used as forage, medicine, pesticide, ornament, and fuel
wood [91, 93, 98]. In addition, quinoa has a promising market potential for high-
value grain, subproducts, and byproducts that still remain unexploited [99].

Both quinoa and its wild relatives possess an enormous reservoir of genetic
variation that can be exploited through plant breeding. They are also an essential
resource to meet the challenge to improve food security, enhance agricultural
production, and sustain productivity in the context of a growing world population

Table 2 Approximate number of quinoa accessions conserved in ex situ facilities across South
America

Country Number of entities
that conserve
quinoa germplasm

Number of accessions conserved
(countries of origin)

Access to the
material

Argentina 2 63 (Argentina, Bolivia, Chile, Ecuador,
Peru, U.S.A.)

Yes

Bolivia 8 More than 7,077 (Bolivia, Peru, Ecuador,
Colombia, Argentina, Chile, Mexico,
U.S.A., Denmark, Holland and England)

Yes

Chile 3 152 (Chile) Yes
Colombia 3 More than 328 (Colombia, other) Yes
Ecuador 1 608 (Ecuador, Bolivia, Peru,

Colombia, Argentina)
Yes

Peru 12 More than 4,431 (Peru, Bolivia,
Colombia, Ecuador)

Yes

Sources [86, 198, 199]
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and the threats of climate change [90, 100]. Likewise, quinoa diversity can be
greatly exploited through biotechnological approaches to the benefit of agricultural
industries [98].

2.4 A Practical Use of Agrobiodiversity in Cereal Crops
to Mitigate Climate Change through Regulation
of Soil Nitrification

It has been shown repeatedly how the exploration of the natural diversity in cereals
-and in crops in general- has been the solution for multiple challenges that natu-
rally arise as a result of agricultural practices (tolerance to biotic and abiotic
stresses, yield increments, adaptation to different conditions other than the ones in
the center of origin, etc.). Along with the need of yield increments in the main
staples cereals -as the global population is exponentially growing-, climate change
is a prominent issue that is challenging agriculture and even mankind. Agriculture
is an important source of anthropogenic emissions of the greenhouse gases (GHG)
methane (CH4) and nitrous oxide (N2O) associated with nitrogen (N) fertilizer
production [101]. It is now known that N2O has a higher ozone-depletion potential
than any other reactive chemical, including carbon dioxide [102], and also that
agricultural practices are the major source of N2O emissions to the atmosphere
[103]. Under this scenario, a disjunctive stands, either to continue practicing
agriculture for food and feed in the way we are currently doing or to look into
alternatives to implement a ‘‘climate-smart’’ agriculture, where we as humans not
only aim to feed the world but also care for the environment. Once again,
researchers have found that natural diversity in certain crops confer characteristics
to some lines that are ‘‘eco-friendly’’ and that, for example, reduce the emission of
GHG as CH4 and N2O [104].

Much of the N2O produced by agriculture is generated from the use of N
fertilizers that, after application to soil, feed the nitrification reaction; in this
process, nitrifying microorganisms take ammonium and convert it into nitrite and
finally into nitrate, a compound susceptible to leaching, thereby contaminating
bodies of water. Nitrate is eventually reduced by denitrification, releasing N2O gas
as a byproduct [105]. Researchers from the International Center for Tropical
Agriculture and the Japan International Research Center for Agricultural Sciences
observed that the tropical pasture Brachiaria spp. has the ability to inhibit the soil
nitrification process by releasing chemical compounds from its root system to the
soil; a compound with major inhibition capacity was identified and named
brachialactone [106]. This phenomenon was termed biological nitrification inhi-
bition (BNI) [107]. The BNI trait would decrease costs for the farmer because the
N applied will stay longer in the soil and the plants would have a better chance to
intake it before it is converted into forms that are prone to leaching and losses via
gaseous forms, thereby improving the ecoefficiency of agricultural practices by
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diminishing the amount of N2O emissions that are released to the atmosphere.
Subbarao et al. [106] demonstrated under field conditions that plots of Brachiaria
pastures significantly reduced N2O emissions when compared to bare soil,
soybean, and guinea grass plots.

After the BNI concept was brought to light, researchers identified the great
potential that this phenomenon has in agricultural practices by reducing the N
contaminants (i.e., nitrate and N2O); therefore, this strategy can be applied to
mitigate global warming largely occasioned by GHG. For that reason, Subbarao
et al. [108] achieved and attempt to identify in which other plant species the BNI
potential was presented, as well as to what extent there was genetic variability of
the BNI potential in cereal crops. The outcome of this investigation showed that
BNI is widely existent in pasture grasses, but the investigation also reported that
the roots of two cereal crops Sorghum bicolor (L.) Moench var. hybrid sorgo and
Pennisetum glaucum (L.) R. Br. var. CIVT (Pearl millet) release chemicals to the
soil that reduce the population of nitrifier microorganism and therefore inhibit the
nitrification rates. Other cereals, such as rice, maize, barley, and wheat, were also
tested in this preliminary screening with negative results (no BNI activity detec-
ted), but in most cases using single lines; therefore, it is recommended to test a
diversity panel for each species to really inspect the BNI trait on each cereal crop.
Tanaka et al. [109] tested the BNI activity in the root exudates of 36 different rice
genotypes and found substantial genotypic variation for BNI, with the upland
cultivar IAC25 expressing high BNI activity, whereas lowland varieties such as
Nipponbare or IR64 exhibited low BNI activity.

Although initial evaluations in wheat showed that the roots of this cereal do not
exudate chemical compounds to the soil that successfully control the nitrification
process, further analysis of Leymus racemosus (mammoth wild rye, a wild wheat
relative), resulted in the discovery of a high BNI capacity that efficiently
suppressed soil nitrification [110]. The exploration of genetic diversity of wild
predecessors of wheat showed how the BNI trait has been lost in the course of
decades of breeding and selection of ‘‘desired’’ (at a given time and condition)
agronomic conditions that inevitable lead to accidental loss of other valuable traits.
As a result, the chromosomal location of the genes conferring the BNI trait has
been identified and wheat varieties expressing the BNI trait have been formed by
the production of wheat–Leymus racemosus chromosome addition lines [111].

The cereal crop in which significant BNI research has been conducted is
sorghum, and both hydrophilic and hydrophobic root exudates with BNI activity
have been identified [112, 113]. An ample natural diversity has also been identified
among sorghum lines for the release of sorgoleone (a major hydrophobic root
exudate with the highest BNI capacity). Nimbal et al. [114] evaluated sorgoleone
production among 25 sorghum lines, finding nearly a 30-fold variation. Current
efforts will focus on the exploration of sorghum diversity to exploit the BNI trait
and to identify sorghum genetic stocks with high potential to release chemicals to
the soil that suppress nitrification, reduce N2O emissions, and improve nitrogen
use efficiency in sorghum-based production systems [113].
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Cereal production uses the most of N-fertilizers; wheat itself accounts for a
third of the global production [115] to cope with the food demand of a growing
population. The indiscriminate use of N fertilizers results in N contaminants (e.g.
nitrate and nitrite) that are causing major problems to bodies of water and are also
contributing to global warming. BNI function represents a novel opportunity to
naturally establish agricultural systems with improved N use efficiency and
reduced N-contaminants. Therefore, the exploration of diversity of major cereal
crops is imperative to promote the ecoefficiency of agricultural systems.

2.5 Impact of Nitrogen Pollutants on Biodiversity

Biodiversity is declining at an exceptional rate and on a worldwide scale. Indeed,
loss of ecosystem functions and services associated with such declines has gen-
erated international debate [116–118]. Agricultural crops can be injured when
exposed to high concentrations of various air, water, and soil pollutants. Air
pollution affects plants in many ways, which have implications for overall bio-
diversity and ecology. There is evidence that air pollution can reduce some plants’
ability to reproduce, thus causing long-term changes to population ecology [119].
Of the different kinds of pollutants damaging the environment, nitrate pollution is
a major problem along with the pollution of the atmosphere by ammonia and
oxides of nitrogen. Nitrogen is a beneficial plant fertilizer in small amounts, but
large amounts cause negative impacts on ecosystems and serious threat to biodi-
versity of many groups of organisms, including diversity of plants [120–122].
Nitrogen deposition refers to the input of reactive nitrogen species from the
atmosphere to the biosphere. At the global scale, current N emission scenarios
project that most regions will have increased rates of atmospheric N deposition in
2030 [123], which is causing concern about significant impacts on global plant
biodiversity [116, 117, 124].

Even though low-to-medium levels of N addition (B100 kg N/ha/year) gen-
erally did not alter plant diversity through time, high levels of N application
significantly reduced species diversity [125]. The declines of diversity appeared to
arise from N-related changes in soil properties, such as significant decreases in pH
and extractable calcium (Ca) and increases in extractable aluminum (Al). Research
reports revealed that N deposition may have shifted plant communities towards
species composition typical of high-N availability. This shift has often been
associated with a loss in diversity of plant species, particularly in areas with high
deposition rates [126]. Mechanisms underlying the declines of diversity include
competitive exclusion of more N-efficient dominant species by relatively fast-
growing nitrophilic species, as a result of high-N availability induced by N
deposition. Other such mechanisms include increased susceptibility to secondary
stress and disturbance factors and species invasions [127, 128]. The research
review of N-addition experiments across the tropics and subtropics have shown
that N deposition may potentially affect plant diversity in some ecosystems more

Current Issues in Cereal Crop Biodiversity 23



than originally thought, and because atmospheric N loads are gradually increasing
in some tropical areas such as Asia, research on this topic is now urgently required
[127].

Although improved agronomic approaches are one way to enhance nitrogen use
efficiency (NUE) and reduce the N inputs, there is a growing interest in under-
standing the genetics of NUE in crop plants. Integration of these approaches may
reduce both N deposition and the rapid loss of biodiversity.

2.6 Transgenic Crops and Food Security

The development of technologies for plant transformation started in the early
1980s following the production of chimeric genes [129–132], transformation
vectors [133, 134], and DNA delivery systems [135–139], combined with plant
tissue culture regeneration systems, which were pioneered by Murashige and
Skoog [140]. This continued over the decades with the development of tissue
culture for the three most important cereals: rice [141, 142], maize [143, 144], and
wheat [145, 146]. The transformation of cereals since the 1990s was achieved with
Agrobacterium-based protocols for rice [147], maize [148], and wheat [149],
usually with a low-copy insertion of transgenes [150–152] and the gus reporter
gene [153] with antibiotic selectable marker genes [154, 155]. These techniques
were the most widely used in earlier transgenic plant research and crop devel-
opment. Currently, more than 50 selectable marker genes are available for trans-
genic research and commercialization, and they can be divided into several
categories depending on the mode of action and substrates used [156–158].

An important milestone in plant transgenic technology is the ability to generate
plants free of the selectable marker gene using co-transformation with multiple
T-DNAs [159, 160]. Among the major advances in plant transformation technol-
ogy, we can consider the understanding of the plant cell–Agrobacterium rela-
tionship [161] and the molecular mechanisms of T-DNA transfer [162, 163]
together with integration into the plant genome [164, 165].

Vain [166, 167] reviewed publication trends in and scientific knowledge on
plant transgenic science and technologies available worldwide. In addition, the
security of transgenic plants and products has been scrutinized [168–172],
including the economic, environmental, and social dimensions [173].

The newest discoveries describing gene silencing [174], gene targeting [175],
and RNA interference [176, 177], with alteration of the transcriptional activity of
genes by using zinc-fingers nucleases [178, 179], together with the possibility of
genome editing by TALENs (transcription activator-like effector nucleases) [180,
181], including the technology of using site-directed nucleases, are providing an
opportunity to develop a new generation of transgenic crops with both improved
traits and minimized potential for unintended effects that can impact safety [182].

It is very well known that agricultural production in the twenty-first century is
going to face a number of new challenges [183–186]. A staple crop such as rice,
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for which more than half of the global population already depends on its pro-
duction, will be under more and more pressure to increase its yield steadily; this
has happened during the last four decades in some countries, where rice yield
doubled or tripled [187]. New and multi-integrated strategies, including functional
genomics, phenomics, and transgenics, coupled with conventional rice breeding,
can help to develop new rice cultivars (referred to by Zhang [188] as Green Super
Rice) and can meet future demand for world rice production. Take into consid-
eration the fact that, from 1996 to 2012, millions of farmers in 30 countries
worldwide adopted biotech/genetically modified organism (GMO) crops at an
unprecedented level, going from 1.7 million ha in 1996 to 170 million ha in 2012
[189], a 100-fold increase. In addition, Golden Rice [190] is expected to be
released in the Philippines in 2014, together with drought-tolerant sugarcane in
Indonesia, biotech maize [191], and rice [192] in China. As a result, up to a billion
poor people in rice households in Asia could benefit. Beyond 2015, it is difficult to
predict what will come to the market, but expectations are also high in Africa,
where the private/public partnership Water Efficient Maize for Africa [193] will
release the first biotech drought-tolerant maize in the sub-Saharan region, where
the need for drought-tolerant crops is greatest.

Commercialized crops could help to reduce the impacts of agriculture on biodi-
versity by alleviating pressure to convert additional land into agricultural use [194].

3 Summary and Conclusions

The management of plant genetic resources for food and agriculture is becoming a
central issue in the context of sustainable agriculture, climate change, and food
security. As the world faces unprecedented challenges, the exploration, use, and
conservation of agricultural biodiversity will play a major role to address the most
critical socioeconomical and environmental issues concerning agricultural research
and food security strategies. The agricultural biodiversity of staple small grains,
such as rice, maize, wheat, millets, and quinoa, is currently being studied from
several perspectives to offer information to researchers and breeders worldwide.

Only a few accessions of pearl millets have been maintained so far in several
countries. In-depth characterization and evaluation of these accessions remain
insufficient due to lack of human and financial resources. Nevertheless, significant
phenotypic diversity has been observed for most quantitative traits in a set of
selected pearl millet germplasm accessions. This diversity is therefore very useful
for use in crop improvement programs. Although the genetic variability in pearl
millet landraces is large, some wild species have also been considered as a source
of genes controlling agronomically important traits.

In the light of land change uses, modernization of agricultural practices, and
climate change, which eventually affect plant diversity patterns, transnational
efforts have focus on the establishment of extensive genebank collections for
cereal crops. Both in situ and ex situ conservation of plant genetic resources are
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complementary strategies for the preservation of agricultural biodiversity. Geo-
spatial analysis tools can be applied to map microsatellite diversity of cereal
accessions characterized molecularly in order to identify priority geographic areas
for conservation.

Although quinoa and its wild relatives are a reservoir of rich genetic variation
that can be used by breeders for further improvement of the species, quinoa
diversity is being lost. Market demand has encouraged the cultivation of com-
mercially valuable varieties with certain characteristics, neglecting the immense
variation found within the species. Some local quinoa genebanks have been cre-
ated, containing many known quinoa varieties with a wide range of diverse
agronomic and nutritional properties. However, current quinoa genebanks still do
not represent the Andean diversity of the cultivated and wild relatives.

Agrobiodiversity can provide additional sources of new traits. Some cereal crops
have the ability to inhibit soil nitrification and reduce the emissions of greenhouse
gases (BNI activity) by releasing root exudates. The screening of some cereal
accessions revealed genotypic variation for BNI. The exploration of agrobiodiver-
sity for the BNI trait offers a novel strategy to improve the nitrogen use efficiency and
increase crop productivity while reducing the environmental impacts of agriculture.

Chemical pollutants that are released into the environment are posing a threat to
plant biodiversity. Nitrogen pollution is a major problem worldwide due to the
indiscriminate use of synthetic nitrogen fertilizers in agricultural systems. This
practice affects the natural balance of soil ecosystems, leading to significant losses
of plant biodiversity as a result of changes in soil properties and plant community
structure. Research addressing the genetics of nitrogen use efficiency in crop plants
plus the adoption of sustainable agronomic practices offer an integrated approach
to minimize the negative impact of reactive nitrogen on plant biodiversity and the
environment.

Integration of transgenics, genomics, proteomics, and conventional plant
breeding strategies can greatly accelerate the development of new cereal cultivars.
Other than increasing crop productivity, commercialized genetically modified
crops could help to reduce the impacts of agriculture on biodiversity by alleviating
pressure to convert additional land into agricultural use.
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1 General Introduction

Natural product compounds (NPCs), especially those mined from microbes (bac-
teria and lower eukaryotes) are established resources for a variety of remedial
agents. Such drugs of microbial origin have been classified as (i) original microbial
products, (ii) products derived or chemically synthesized from microbial products,
or (iii) synthetic products based on microbial product structures [1]. Early scientific
observations on the antagonism among soil microflora led scientists to speculate on
the existence of some compound that held the key to their survival [1, 2]. The soil,
despite teeming with billions of microbes, enables only some of them to endure the
struggle for existence. In recent times, many compounds used in the treatment and
management of cancer, infections due to drug-resistant microbes (bacteria, fungi,
and viruses), and immunosuppressive disorders, have been derived from microbial
sources.

Investigations and observations gave way to the concept of the term ‘‘antibi-
osis’’ (against life). The renowned Nobel Laureate, Selman Abraham Waksman,
coined the word ‘‘antibiotic’’. The discovery and launch of microbial antibiotics
such as penicillin and streptomycin, were early evidence that microbes could be
further explored for novel bioactive compounds for human use. The pharmaceu-
tical industry owes an immense amount of its early success to the development of
antibacterial drugs, and as an upshot the market is abundant with old drug scaf-
folds. Essentially the scaffold of a molecule is taken to be its framework, defined
as all its ring systems and all the linkers that connect them [3]. For the past seven
decades, the need for new antibiotics has relied largely upon semisynthetic tai-
loring of natural product scaffolds, discovered in the middle of the twentieth
century. During the past decade, however, advances in technology such as high-
throughput screening facility, the launch of high-resolution NMR facilities,
upgraded separation systems, and, moreover, recent molecular techniques for the
investigation of marine metagenomes have revealed a large number of new
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phylogenetic lines of groups of bacteria and archaea [4, 5], which has sparked a
resurgence in the discovery of natural product antibiotics from microbial sources.

Microbial metabolites are among the most important chemotherapeutic agents in
oncology. This aspect of microbes was identified as early as 1940 with the dis-
covery of actinomycin from Streptomyces [2]. Since then, many compounds with
anticancer properties have been isolated from microorganisms. More than 60 % of
the current compounds with antineoplasic activity have been originally isolated as
natural products or are their derivatives. Among the approved products deserving
special attention are actinomycin D, anthracyclines (daunorubicin, doxorubicin,
epirubicin, pirirubicin, and valrubicin), bleomycin, mitomycin C, anthracenones
(mithramycin, streptozotocin, and pentostatin), enediynes (calcheamycin), taxol,
and epothilones [2]. Several of these compounds were discovered by (i) under-
standing the genetics of secondary metabolism in Actinomycetes, myxobacteria,
other eubacteria, fungi, and slime molds (ii) exploring the marine environment, and
(iii) applying modern screening technologies. In quite a few cases, the discovery of
a novel natural derived product has been reported to be used as a tool to better
understand compound targets and new pathways in the disease process [6].

This review describes the current role of biodiversity in drug discovery and
pharmaceuticals from microbial sources, and aims to take the reader through a
journey of recent advances in the role of biodiversity in the synthesis of novel
scaffolds, having an unreported framework of chemical rings. We have focused
essentially on those bioactive compounds from microorganisms, which are
reported and being used as antibiotic and other bioactive compounds without any
further chemical modifications.

1.1 Biodiversity

For researchers involved in the discovery of novel bioactive microbial products,
microbial diversity is a key factor for the novelty of the molecules. Although wide
diversity is observed among the microbes with reference to their habitat, metab-
olism, and extremity tolerance, microbes with an established record of synthesis
of novel pharmaceutically important lead compounds are very limited. Actino-
mycetes, fungi, and myxobacteria are the leaders among these microbes.

Prior to the discovery of antibiotics in the nineteenth and twentieth centuries,
natural remedies and herbal treatments were used for the treatment of most
infectious diseases (or medical conditions). The serendipitous discovery of peni-
cillin (from Penicillium rubens), followed by streptomycin (from Streptomyces
griseus) transformed the lives of millions of people. Since then, natural habitats
have been continuously explored for new antibiotics and other bioactive com-
pounds in order to combat the onslaught of new infections and other diseases.

Different communities of microbes coexist in extreme terrestrial regions and
oceans, and they constitute an untapped source of bioactive compounds. Advances
in basic research have enabled scientists to understand the course of disease and the

Biodiversity in Production of Antibiotics and Other Bioactive Compounds 39



way a drug works at the molecular level. Continuous improvements in isolation
techniques for screening, separation, and isolation have aided the identification of
over one million natural compounds, of which 50–60 % are of plant origin and over
5 % are of microbial origin [2]. Around 25 % of these compounds are reported to be
biologically active, of which 10 % are derived from microbial sources [2]. There
have been approximately 22,500 biologically active compounds [2] obtained thus
far from microbes. Of these, 45 % are produced by Actinomycetes, 38 % by fungi,
and 17 % by unicellular bacteria [2, 7, 8]. This highlights the immense contribution
of these microbes in the production of antibiotics.

Natural habitats, especially the soil—and plant-associated environments, are
teeming with microbes that produce bioactive metabolites that shield them against
extreme environmental conditions. Such bioactive entities presumably confer an
ecological advantage to the producer, by prolonging their survival in an environment
challenged by predators and competitors. Secondary metabolites at subinhibitory
concentrations also influence developmental changes in the producer. Critical pro-
cesses such as nutrient supply, developmental changes, survival rate under stressful
conditions, and complex interactions are presumably affected by these metabolites [9].

The euphoria over the discovery of a new drug is often short-lived due to the
development of resistance in microbes or the tumor cells in addition to the drug’s
toxicity. This results in limiting the optimum use of a drug. Hence, there is a
compelling need for discovering new drugs with newer mechanisms to tackle the
menace of drug resistance. Identification of new molecules for disease manage-
ment mandates the exploration of diverse ecosystems [2].

The marine ecosystem houses most of the animals from the 28 major animal
phyla, thus comprising nearly half of the total biodiversity for the discovery of
useful therapeutic agents [10]. Soils from the Antarctic regions, extreme cold
deserts, playa regions, geothermal vents, hot spring outlets, high pH lakes, acidic
water bodies, metal mining areas, sugarcane bagasse, marine sediment soils, and
soil from the areas of radionuclear (heavy metal) waste depositions, among others
are some of the unique regions for isolation of diverse microbes.

In terms of microbial diversity, not all the microbial phyla have been cultivated,
and among the cultivated microbes, not all of them produce secondary metabolites.
In this scenario, targeting bacterial phyla, renowned for antibiotic production
seems to be a viable option. Hence, Actinomycetales and fungi are attractive
targets, inasmuch as they produce most of the antibiotics currently in use [11].

2 Actinomycete-Derived Compounds

Actinomycetes are prokaryotes whose growth (prothallus) consists of branching
threads, and rods, and occasionally give rise to a typical mycelium, which is
unicellular, during the early stages of growth. The hyphae, which are generally
nonseptate, have a tendency to turn septate under special conditions, such as while
growing in solid culture media for a long time [12]. Actinomycetes with prostate
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mycelium grow on the substrate, and those with aerial mycelium grow above the
vegetative growth [13]. Currently, Actinomycetes are classified as actinobacteria
and include Gram-positive bacteria with their DNA high in guanine-plus-cytosine
content (69–73 mol %); and extensive branching substrates and aerial mycelia
[14, 15]. The complete taxonomy of Actinomycetes (Fig. 1) and details of each
genus can be observed elsewhere [1, 16, 17].

The historical discovery of streptomycin in 1945 was preceded by decades of
research on the slender filamentous bacteria, the Actinomycetes. The pioneering
work of Selman Waksman inspired many researchers to pursue research on
Actinomycetes, which was a new microbe then, hovering for an identity between
fungi and bacteria. The most notable feature of these bacteria was the production
of secondary metabolites, most of which possessed antimicrobial properties. Many
antibacterial compounds including tetracyclines, cephalosporins, aminoglycosides,
and macrolides were derived, which addressed concerns regarding disease man-
agement in the early twentieth century [18, 19]. A representative list of the dif-
ferent classes of antibiotics produced by Actinomycetes is presented in Table 1.

2.1 Streptomyces: A Sustained Gold Mine of Bioactive Compounds

Streptomyces, a well-explored genus of Gram-positive bacteria, is included in the
phylum Actinobacteria. These prokaryotes present a strikingly similar lifestyle to
that of filamentous fungi and, as do fungi, most Streptomycetes live as saprophytes
in the soil [53]. In fact, almost half of all known natural products (NPs) are
produced by Actinomycetes (mainly Streptomyces) [19, 53]. Nearly two thirds of

Fig. 1 Systemic classification of Actinomycetes
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all known antibiotics are produced by these Actinomycetes. The secondary
metabolites expressed by Streptomyces also find application in the treatment of
cancer and autoimmune diseases [19, 53, 54] (Fig. 2). Currently it is reported that
there are more than 2,400 different secondary metabolites produced by Strepto-
myces sp. [53]. Scientists and researchers believe that there could be many more
such metabolites with therapeutic potential to be discovered and explored [54].

Some of the recently discovered antibiotics from Streptomyces are listed in
Table 2.

2.2 Rare Actinomycetes: Future Gold Mine of Bioactive
Compounds

Streptomyces and other common Actinomycetes have since been exploited so
often that the prospects of a new strain often seem remote. Very similar strains
most often produce the same or similar compounds, thus hampering the rationale
for discovery of new antibiotics. In the quest for new strains and products, marine
Actinomycetes home to novel genera and have resulted in some new leads.

Fig. 2 Representative
metabolites by Streptomyces
sp

Table 2 Recently discovered bioactive compounds from Streptomyces sp

Antibiotic Actinomycetes Potential use Reference

BE43472A Streptomyces strain (N1-78-1) Antibacterial [55]
Citreamicin delta Streptomyces vinaceus Antitumor [56]
Dynemicin Micromonospora chersina Anticancer [57]
Lenticulone Streptomyces sp JP 95 Antibacterial [58]
Lucensimycin D Streptomyces lucencis MA 7349 Antibacterial [59]
Mediomycin B Streptomyces mediocidicus Antifungal [60]
Rapamycin Streptomyces hygroscopicus Immunosuppressant [61]
Sansanmycin A Streptomyces sp SS Antibacterial [62]
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The rare Actinomycetes are usually regarded as strains of Actinomycetes whose
frequency of isolation by conventional methods is lower than that of Streptomycete
strains and usually comprises those genera other than Streptomyces. Notable
producers of secondary bioactive metabolites from this class of Actinomycetes
are from genera such as Actinomadura, Actinoplanes, Amycolatopsis, Dactylosp-
orangium, Kibdelosporangium, Kitasatospora, Microbiospora, Planomonospora,
Planobispora, Salinispora, Streptosporangium, and Verrucosispora (Table 3) [63].

Marinospora, affiliated with the Streptomycetaceae family has yielded some
secondary metabolites named marinimycins, with potential antibacterial and
cytotoxic activity [69]. Novel compounds of the napyradiomycin class have also
been identified from the ‘‘MAR4’’ lineage [70].

Among the terrestrial sources, Ktedenobacteria, Actinospica, and Catenulis-
pora also appear to possess the ability to produce secondary metabolites.

3 Myxobacteria-Derived Compounds

Myxobacteria, the gliding, Gram-negative bacteria, produce highly colored mac-
roscopic fruiting bodies on decomposed wood and other substrates. Myxobacteria
are unique, with a lifestyle differing from all other prokaryotes. They are capable of
excreting hydrolytic enzymes and decomposing various and complex biopolymers
but can also lyse and destroy other prokaryotes, and even eukaryotic cells [71]. It has
been reported that myxobacteria form a phylogenetically coherent group and con-
stitute the order Myxococcales in the class Deltaproteobacteria. They are subdivided
into the three suborders Cystobacterineae, Sorangiineae, and Nannocystineae [71,
72]. They produce a large number of unusual secondary metabolites, with potential
antibiotic activity [73]. Myxobacteria have been regarded as ‘‘microbe factories’’ for
active secondary metabolites because they have great potential as producers of new
drugs [72]. They move by an axonal cellular motion (i.e., gliding) and form fruiting
bodies when resources are scarce. Individual cells of myxobacteria organize
themselves as waves during cooperative feeding. As the cells collide, they aggregate
in mounds that grow in size, forming fruiting bodies that can harbor up to 105

individuals. Cells within these structures become myxospores, which germinate to
new swarms when nutrients are available. Diverse proteins and metabolites mediate
these signaling processes [73, 74]. Their secondary metabolites are unusual hybrids

Table 3 List of representative bioactive compounds from rare actinomycetes

Antibiotic Actinomycetes Potential use Reference

EHA–2 Actinomadura spadix Antimicrobial [64]
Teichoplanin Actinoplanes teichomyceticus Antibiotic [65]
Vancomycin Amycolatopsis orientalis Antibiotic [66]
Pyridomycin Dactylosporangium falvum Antibiotic [67]
Aridicins A, B and C Kibdelosporangium aridum Antimicrobial [68]
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of polyketides and nonribosomal-made polypeptides. Unlike metabolites from
Actinomycetes, Myxobacterial metabolites are not glycosylated, and their target
areas are not the same as other microbial products [74]. They are found mostly in the
soil as opposed to marine environments, and are prolific producers of secondary
metabolites, which aid their role as predators. Also fascinating is the fact that these
bacteria possess the ability to assault their prey in a ‘‘pack’’ or as a single bacterium
with cell-to-cell contact [75]. The majority of myxobacteria have been isolated from
the soil, a habitat rich in both organic matter and microbial life, including fungi and
Actinomycetes. Compound production rates are typically highest during the expo-
nential phase of growth. This behavior is unlike that of the Actinomycetes, in which
secondary metabolism correlates with the onset of the stationary phase [76].
Recently, secondary metabolites from myxobacteria have been well reviewed by
Weissman and coworkers [77].

Some of the recent scaffolds reported from the myxobacteria class of microbes
are as follows.

Archazolides (Fig. 3)
Three compounds, Archazolide C (MW: 901.169), Archazolide D (MW: 917.168),
and Archazolide E (901.169) have been reported from the Cystobacter violaceus
Cb vi105 strain [78]. An amorphous solid, Archazolide D, was reported to have
vacuolar-type H+–ATPase (V-ATPase) inhibitor activity, whereas the parent
compound Archazolide A (MW: 739.027) was examined and confirmed for its
V-ATPase inhibition, antifungal, and antineoplastic activity [79].
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Chondrochloren (Fig. 4)
Chondrochloren A (MW: 526.068), an antibacterial compound, was reported from
Chondromyces crocatus strain Cm c5 in 2003. The attempts of unusual chemistry
in the biosynthesis of the antibiotic Chondrochloren A and B had been well
documented in 2009 [80].

Miuraenamide (Fig. 5)
A series of potent antifungal compounds, Miuraenamide A–F were reported from
the slightly halophilic myxobacterium Paraliomyxa miuraensis strain SMH-27-4
[81, 82].

Pedein (Fig. 6)
Chondromyces pediculatus strain Cm p3 has been reported to produce the anti-
fungal compounds Pedein A (MW: 925.390) and Pedein B (MW: 890.945) [83].

Myxobacteria, with their variety of secondary metabolites, unique structures,
and new modes of action, are emerging as a highly valuable source of natural
products. Myxobacteria are also known to produce different metabolite compounds
from different structural classes. Steroid synthesis is extremely rare in bacteria, but
both cholesterols and lanosterols have been isolated from myxobacterial extracts
[84]. Iron transport metabolites, nannochelins, and myxochelins A and B are
produced by myxobacteria. With genome sequencing and metabolic profiling of
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myxobacteria, new strains may be unveiled leading to more promising metabolites
with antibiotic potential [85].

Etnangien (Fig. 7)
It is a macrolide antibiotic isolated from the myxobacterium Sorangium cellulo-
sum, strains So ce750 and So ce1045. Initial studies have indicated that bacterial
and viral nucleic acid polymerases are inhibited by etnangien [86].

Recently, a novel analogue, comparable to that of etnangien has been obtained
from the fermentation broths of Sorangium cellulosum [87].

Salimabromide (Fig. 8)
Salimabromide is the first natural product from the marine myxobacteria Plesio-
cystis/Enhygromyxa and has revealed antibiotic activity against Arthrobacter
cristallopoietes [76].
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4 Eubacteria-Derived Compounds

In this section we dwell on those prokaryotes under the subcategory of true bac-
teria or ‘‘Eubacteria’’. In the past decade, within the Eubacteria phyla, many
microorganisms have been identified as a sources of bioactive compounds. For
instance, marine bacteria have often been reported to produce antibacterial and
anticancer compounds, allowing the (i) ecological steadiness of manifold marine
ecosystems (ii) interrelations between epiphytic microorganism ambiences, and
(iii) inhibition of rival organisms and pathogenic microbes [88]. The sharing or
competition mechanisms that are known between these microorganisms are varied,
such as antibiotic production, bacteriocins, siderophores, and even pH alteration
through the production of organic acids [89]. In the past five years many more
bioactive compounds have been reported, however, very few have progressed
beyond the discovery or preclinical stage. Moreover, in recent years, research has
to a large extent focused on altering existing, naturally occurring antibiotics. These
have paved the way for a new class of antibiotics called lantibiotics.

Lantibiotics are peptides with lanthionine and/or methyllanthionine residues
produced by Gram-positive bacteria. Modified amino acids such as dehydroalanine
and dehydrobutyrine may be also components of the lantibiotics. More recently,
they have been the focus of much attention as a consequence of the increasing
understanding of their biosynthesis and mode of action, and their high specific
activity against multidrug-resistant bacteria [90].

5 Fungal-Derived Compounds

The identification of antibiotics was heralded by the discovery of penicillin from a
fungus, the Penicillin notatum. Since then, several genera of fungi have been
extensively screened for bioactive compounds. However, publications and reviews
until now attribute only 5 % of the fungi as producers [91, 92], and the rest await
their turn to be tapped for human benefit. This indicates a huge cache of potentially
useful fungi that can be tapped with modern techniques of cultivation and iden-
tification. Techniques used until now include media optimization, coculturing,
chemical induction, epigenetic modulation, and metabolite remodeling, coupled
with the fermentation technology for scale-up [93]. These techniques will thus
enable their extensive cultivation for the mass production of natural products, both
known and novel [93], along with bioprospecting of fungi from every possible
source including extreme environments such as marine sediments, geothermal
vents, cold deserts, and antarctic and arctic regions.

In recent times, endophytic fungi associated with plants have been viewed as a
new source of these pharmacologically active natural products. It is evident that in
some cases these associated fungi might be involved in the biosynthesis of com-
pounds that had been previously isolated from plants and might by themselves be
the producers of a multitude of new metabolites. However, it is only recently that
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their capacity for producing biologically active compounds has been explored.
Examples are taxol from Taxomyces andreanae, podophyllum from Phialocephala
fortinii, camptothecin from the endophytic fungus of Camptotheca acuminata, and
hypericin from Chaetomium globosum.

Some recently derived compounds from fungi, in various stages of develop-
ment, are tabulated in Table 4.

Several of these marine-fungal–derived compounds have been well reviewed by
Abdessamad et al. [106].

5.1 Slime-Molds–Derived Compounds

Slime molds is a general term used to describe organisms that reproduce by spores.
The Myxomycetes (true slime molds) are an unusual group of organisms that may
be assigned to one of the lowest classes of eukaryotes. As their fruiting bodies are
very small and it is very difficult to collect an adequate quantity of slime molds, few
studies have been conducted on the chemistry of Myxomycetes. In a certain stage of
their life cycle, they form jellylike plasmodia that feed on bacteria and are able to
move by a synchronized perpendicular flow of their protoplasm. Later, the plas-
modium transforms in a few hours into small fruiting bodies. These bodies (peridia)
often exhibit delicate structures and colors. They release spores from which pro-
tozoa like amoeba originate that mate and finally aggregate again to the plasmodia
stage. Initially classified under fungi, they are now a separate group as they are quite
unrelated to fungi. Among fungi, the number of bioactive compounds reported from
slime molds have been less compared to imperfect fungi, the Ascomycetes, and
several other filamentous and endophytic fungal species [107]. Approximate 60
bioactive metabolites have been reported from slime molds [107]. The three main
groups include Physarum, cellular slime molds, and Labyrinthulomycota. Of these,

Table 4 List of compounds sourced from fungi

Antibiotic Fungus Potential use Reference

FR (KARST) Ganoderma lucidum Antimicrobial [94]
Ganodermycin Ganoderma applanatum Anti-inflammtory [95]
Aspergiolide Aspergillus glaucus Antitumor [96]
Bioxanthracenes Cordyceps pseudomilitaris Antimalarial [97]
Chaetominine Chaetomium sp Anticancer [98]
Communesins Penicillium expansum Cytotoxic [99]
Dolastatin Marine mollusks Antineoplastic [100]
Gliocladins Gliocladium roseum Antinematode [101]
Spirolaxine Sporotrichum laxum Antiproliferative [102]
Topopyrones A, B, C Phoma sp Antibacterial [103]
Variecolorquinines Aspergillus variecolor Cytotoxic [104]
Variecolortides Aspergillus variecolor Cytotoxic [105]
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Physarum gyrosum has been shown to express metabolites with antibacterial
activity [108]. Masami reported new antimicrobial naphthoquinone pigments,
tyrosine–kinase inhibitory bisindole alkaloids, a cytotoxic triterpenoid aldehyde
lactone with a reversal effect of drug resistance, a cycloanthranilylproline with
sensitizing effect of TRAIL-induced apoptosis through activation of COX2, a
dibenzofuran glycoside, and, moreover, sterols with a 2,6-dioxabicyclo[2.2.2]
octan-3-one ring system were also isolated from field-collected fruit bodies of
Myxomycetes [109]. Secondary metabolites of slime molds were well reviewed in
2005 by Dembitskya et al. [110]. The review included several well-defined and
characterized bioactive compounds. In the past few years there have been very
sparse reports on significant bioactive compounds from this class of microbes.
Nevertheless recently aquatic Myxomycetes have been thoroughly reviewed by
Mitsunori and Harold in a 2013 review article [111].

6 Pipeline of Microbial Bioactive Compounds

Numerous companies worldwide are involved in bioprospecting, drug discovery,
and drug development programs. However, the past 10–12 years have witnessed
major progress in relying on innovation-driven natural products as the sole source
of new compounds.

Recent advances in screening, analytical methods in isolating minor com-
pounds, and genomic mining approaches have propelled natural products research
to the next stage in the pharmaceutical business. Marine microbes, hitherto not
readily accessible as compared to microbes from other sources, have been a source
of unique compounds, leading to an increase in the number of drugs entering the
drug development phase [112].

In the last decade, 13 new antibiotics have been approved by the FDA, of which
just three—Linezolid, Daptomycin, and Retapamulin—have novel action mecha-
nisms [113]. Recently, Fidaxomicin (Dificid, by Optimer Pharmaceuticals), a new
scaffold from an Actinomycetes genera (Dactylosporangium auranticum) and an
anti-Clostridium difficile antibiotic have been approved by the FDA and launched to
the market in May 2011. Dificid (fidaxomicin) is a narrow-spectrum macrocyclic
antibiotic. Dificid is specifically indicated in adults for treatment of C. difficile-
associated diarrhea [114]. To reduce the development of drug-resistant bacteria and
maintain the effectiveness of Dificid, it should be used only to treat infections that
are proven or strongly suspected to be caused by C. difficile. Dificid is supplied as a
tablet designed for oral administration. It is reported that Fidaxomicin is bactericidal
against C. difficile in vitro, inhibiting RNA synthesis by RNA polymerases [114].

The pharmaceutical industry’s main markets are under serious performance
pressure. Higher R&D costs, a relatively dry pipeline for new drugs, the increasing
demands from payers and providers for reduced healthcare costs, and a host of
other factors are putting pressure on global pharmaceutical companies [115].
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Cancer is the most important cause of global fatality, with 7.6 million deaths
(around 13.6 % of all deaths) in 2008 [116]. Half of the deaths can be attributed to
lung, stomach, liver, colorectal, and female breast cancers. About 47 % of cancer
cases and 55 % of the cancer deaths occur in less-developed regions of the world.
One of the recent reports predicts that the world market for anticancer agents will
reach $116.5 billion in 2017, and expand further to 2023 [117]. Ten anticancer
drugs have been approved by the FDA in 2013 [118], although none are from
microbial resources. However, 86 anticancer compounds from natural products are
reported to be under development, of which nine compounds are undergoing Phase
III trials [119].

Despite a slowdown of the discovery programs of many pharmaceutical com-
panies, at present there are numerous promising drug candidates in the current
development pipeline. Interestingly, many of these promising candidates are of
microbial origin. Scientific and practical shortcomings associated with microbial
product research are being minimized, and better prospects are envisaged with the
exploration of microbial compounds expressed by microbes in ecosystems that
were not accessible before. Extrapolating the current situation, it will not be long
until the second golden era of microbial compounds will be unveiled.
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Medicinal Plants, Human Health
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Abstract Biodiversity contributes significantly towards human livelihood and
development and thus plays a predominant role in the well being of the global
population. According to WHO reports, around 80 % of the global population still
relies on botanical drugs; today several medicines owe their origin to medicinal
plants. Natural substances have long served as sources of therapeutic drugs, where
drugs including digitalis (from foxglove), ergotamine (from contaminated rye),
quinine (from cinchona), and salicylates (willow bark) can be cited as some classical
examples.Drug discovery from natural sources involve a multifaceted approach
combining botanical, phytochemical, biological, and molecular techniques.
Accordingly, medicinal-plant–based drug discovery still remains an important area,
hitherto unexplored, where a systematic search may definitely provide important
leads against various pharmacological targets.Ironically, the potential benefits of
plant-based medicines have led to unscientific exploitation of the natural resources,
a phenomenon that is being observed globally. This decline in biodiversity is largely
the result of the rise in the global population, rapid and sometimes unplanned
industrialization, indiscriminate deforestation, overexploitation of natural resour-
ces, pollution, and finally global climate change.Therefore, it is of utmost impor-
tance that plant biodiversity be preserved, to provide future structural diversity and
lead compounds for the sustainable development of human civilization at large. This
becomes even more important for developing nations, where well-planned biopro-
specting coupled with nondestructive commercialization could help in the conser-
vation of biodiversity, ultimately benefiting mankind in the long run.Based on these
findings, the present review is an attempt to update our knowledge about the diverse
therapeutic application of different plant products against various pharmacological
targets including cancer, human brain, cardiovascular function, microbial infection,
inflammation, pain, and many more.
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1 Introduction

‘‘This curious world which we inhabit is more wonderful than it is convenient;
more beautiful than it is useful; it is more to be admired and enjoyed than it is to be
used’’ (Henry David Thoreau 1837).

For millennia humankind has relied heavily on plants for food and also for the
alleviation of diseases. Natural products have always contributed extensively
towards the development of modern medicine, and still continue to play a sig-
nificant role in drug discovery. While taking a look at the history of modern
medicine, we find the application of digitalis glycosides, during the eighteenth
century, for the treatment of cardiovascular disorders, and willow bark was pop-
ularly used for the management of pain and fever-like conditions. The search for
novel therapeutic leads from natural resources has been going on for ages and has
resulted in several important discoveries that include antibiotics, anticancer agents,
anti-inflammatory compounds, and analgesics. The vast genetic diversity available
in plants, animals, and microorganisms presents a wealth of possibilities for the
betterment of humankind in the production of food, materials, and medicine.
Terrestrial plants offer a unique and renewable resource for the discovery of
therapeutically active novel biomolecules owing to the structural and biological
diversity of their constituents. However, only a small fraction of the plant kingdom
has yet been analyzed for their possible medicinal uses. Newer techniques of
combinatorial chemistry and high-throughput screening of plant products as well
as de novo design is now a mainstay for new drug discovery. Thus the search for
novel chemical entities (of natural origin) continues to serve as an important
source of structural diversity. Genomic research continues to identify molecular
targets for disease that can derive specific screening assays. All major drug
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companies screen plant extracts as well as synthetics. More often, natural products
provide lead structures which are starting points for chemical modification to
derive an optimal drug. In parallel, new techniques of combinatorial biosynthesis
including the ‘‘omics’’ approach offer possibilities for identification of novel
substances. According to WHO reports, treatments with herbal medicine or veg-
etable extracts are practiced by approximately 80 % of the world́s population [1].
Currently, phytotherapies represent an approximately $14 billion/year industry,
which is about 5 % of the current $280 billion/year market. Here, it is pertinent to
mention that significant regional differences exist between developed and devel-
oping countries, where herbal products represent 25 and 80 % of medications,
respectively [2]. Among the 56 % of currently prescribed synthetic drugs, 24 %
are derivatives from plant species, 9 % are synthetic products modeled from
natural products, 6 % are extracted directly from the plant species, and 5 % are of
animal origin [3]. However, the vast repertoire of natural products still remains to
be tapped. The estimated total number of existing species is between 350,000 and
550,000, of which less than 20 % have been investigated for medicinal potential
[4]. Brazil, for example, has around 10 % of the world’s flora, where less than 1 %
of its plant species have been investigated for chemical and/or pharmacological
properties [5].

Certain groups of people have for many years immensely benefited from the
conversion of natural ecosystems to human-dominated ecosystems and from the
exploitation of biodiversity. Unfortunately, such gains have always been achieved
at the cost of losses in biodiversity, degradation of many ecosystem services, and
the exacerbation of poverty for other groups of people. Ironically, just as we have
begun to recognize some of the potential benefits that might accrue from a sys-
tematic search of this vast storehouse, the plant kingdom, we have also started
realizing that there is a simultaneous decline in the number of available species
and which in turn may have catastrophic consequences [6]. This decline in bio-
diversity is largely the result of human activities such as drastic transformation of
natural landscapes or deforestation. These phenomena pose a serious threat to
sustainable development because the species diversity of our planet is one of the
most important as well as irreplaceable resources we possess. Therefore, preser-
vation of biodiversity has become a paramount issue for human civilization and
thus a matter of utmost concern, one of which warrants urgent measures to prevent
further diminution of potential medicinal and biological agents. In this chapter
attention is focused on bioresources and their possible therapeutic targets including
a discussion of conservation strategies.

In this review we focus on the importance of biodiversity with respect to
modern therapeutic challenges. Chemical diversity and biodiversity are two sides
of the same coin where plant products offer a vast repertoire of chemical diversity
which in turn may provide an array of lead structures. Interestingly, most of the
therapeutically active molecules are plant secondary metabolites, capable of
interacting with a diverse range of macromolecules such as proteins, DNA, and the
like, and thus exhibiting important biological functions that can be utilized to yield
biomolecules of therapeutic importance.
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2 New Bioresources

2.1 Phytochemicals and the Human Brain

Humans consume a wide range of plant-derived foods, drugs, and dietary supple-
ments that modify the functioning of the central nervous systems (CNS). The
psychoactive properties of these substances are attributable to the presence of plant
secondary metabolites. The roles of secondary metabolites are relatively straight-
forward; for instance, they participate in general protective roles (e.g., as antioxi-
dant, free radical-scavenging, UV light-absorbing, and antiproliferative agents) and
protect the plant from herbivorous animals (grazing) including different pathogenic
microorganisms such as bacteria, fungi, and viruses. They also manage interplant
relationships, acting as allelopathic defenders of the plant’s growing space against
competitor plants [7, 8]. In many cases, the effects of these phytochemicals on the
human CNS might be linked either to their ecological roles in the life of the plant or
to molecular and biochemical similarities in the biology of plants and higher
animals.

2.1.1 Biological Similarities Across Taxa

It is well established that groups of enzymes occur in all living organisms and are
involved in the biosynthesis, detoxification, and metabolism of compounds [1].
Similarly, a raft of interrelated, ancestral, signaling molecules and pathways are
preserved in both plants and animals [3]. For example, nitric oxide (NO) plays a
key role in cellular signaling, both in plants as well as in animals [5]. Additionally,
multiple aspects of cellular and redox signaling are conserved between the taxa [9,
10], including similar gene expression in response to cellular stressors, which are
regulated by common transcription factors [10]. Plant signaling molecules such as
fatty acid-derived, growth-regulating jasmonate (cis-jasmone, jasmonic acid, and
methyl jasmonate) and many mammalian paracrine molecules, including prosta-
glandins and other eicosanoids, are synthesized via similar, genetically preserved
pathways [11]. For instance, most ‘‘human’’ neurochemicals, such as neuropep-
tides [12], hormones [13], and neurotransmitters, including dopamine, serotonin,
glutamate, and gamma-aminobutyric acid [14, 15], can also be found in insects.
Even the uniquely nonvertebrate neurotransmitter/modulator octopamine is func-
tionally and structurally analogous to noradrenaline [16]. These neurochemicals
can play similar or at times different roles in both animals as well as in insects.
Insects have also been used as models to study behavioral responses associated
with diet, addictive drugs [15, 17], alcohol [18], sleep deprivation [19], and age-
associated decline of cognitive functions [20] including behavioral effects of
serotonergic [21], dopaminergic [22], glutamatergic [23], GABAergic, and cho-
linergic [24] pharmacological agents. It has also been observed that certain
pharmacological agents known to upregulate the activity of the cholinergic system,
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may in turn improve memory processes in both mammals and insects, whereas
downregulation of the same is known to produce the opposite effects [25].

2.1.2 Hypotheses: Why Secondary Metabolites Affect Human Brain Function

There are two hypotheses to explain the effects of secondary metabolites on human
brain function. First, many molecular signaling pathways that are conserved
between the taxa have been known to contribute towards production/synthesis of
secondary metabolites [26]. Second, the effects are predicated on the similarities
between the nervous systems of humans and herbivores. Therefore, in such situ-
ations, phytochemicals (whose synthesis has been retained by a process of natural
selection), on the basis of their ability to interact with the CNS of herbivorous
(sometimes in symbiotic insects), may also interact with the human nervous sys-
tem, possibly via similar mechanisms, with either similar, or in some cases dis-
similar, behavioral effects.

2.1.3 Current Status of Knowledge

A vast number of natural, plant-based extracts and chemicals are purported to have
beneficial effects on human brain function. However, few plant-based products
have been methodically assessed with particular reference to human trials. Pres-
ently, many plants and plant-derived substances, such as Cannabis sativa (mari-
juana), Papaver somniferum (morphine and heroin), Coffea arabica (caffeine),
Catha edulis (cathinone), and Withania somnifera (withaferin and other withan-
olides) are widely used and abused throughout the world. In Table 1 we have tried
to illustrate some of the CNS active biomolecules, displaying diversity of plant
origin and biological functions.

According to Roth et al., a number of online resources (enethogen.com, ero-
wid.org, botanical.com, maps.org, heffter.org, http://kidb.cwru.edu/) are currently
available for obtaining diverse kinds of information (botanical and chemical
information, molecular targets) on psychoactive botanicals [30].

2.2 Phytochemicals as Potential Anti-inflammatory Agents

Inflammation is a complex response to a tissue injury or an infection, often
characterized by several characteristic features such as redness, heat, swelling,
pain, and loss of function. Acute inflammation is characterized by a vascular
response (increase of blood flow into the area) and recruitment of polymorpho-
nuclear cells, typically neutrophils, followed by monocytes, which later differen-
tiate into macrophages. The inflammatory response leads to a synchronized
activation of various signaling pathways involved in the regulation and expression
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Table 1 CNS active biomolecules of plant origin

Plant(s) CNS active molecules CNS pharmacology References

Areca catechu L. Arecoline Stimulant (nicotinic receptor
agonist causing a cortical
arousal response)

[27]

Atropa belladonna L. Atropine Depressant and euphoric
(anticholinergic–
muscarinic receptor
antagonist)

[27, 28]
Brugmansia aurea

Lagerh.
Mandragora officinalis

L.
Datura stramonium L.
Paullinia cupana Caffeine (and other

methylxanthines)
Stimulant (increases

norepinephrine secretion
via competitive
antagonism at adenosine
receptors)

[27, 29]
Camellia sinensis
Coffea arabica L. E.
Coffea canephora
Coffea liberica
Ilex paraguariensis
Catha edulis Forssk. Cathinone Stimulant (amphetamine-like

adrenergic agonist,
inhibits dopamine
reuptake)

[27, 30]

Erythroxylum coca Lam. Cocaine Stimulant (euphoria primarily
due to inhibition of
catecholamine uptake)

[27]

Anadenanthera
peregrina (L.)

Dimethyltryptamine
(DMT)

Hallucinogen (serotonin
receptor agonist)

[27]

Virola theiodora (Spruce
ex Benth.)

Ephedra nevadensis
Ephedra sinica

Ephedrine Stimulant (agonist activation
of adrenergic receptors)

[27]

Ginkgo biloba L. Ginkgolides, bilobalide Nootropic [31]
Banisteriopsis caapi Harmine, harmaline Hallucinogen (MAOA

inhibitor, sedative)
[28, 32]

Banisteriopsis inebrians.
Passiflora incarnata L.

NA
Peganum harmala L.

Asia
Amanita muscaria L. Ibotenic acid Hallucinogen (activates

glutamate receptors)
[27, 33]

Piper methysticum G. Methysticin, dihydrometh
ysticin, yangonin,
desmethoxyyangonin,
kavain, dihydrokavain

Anxiolytic (kavain inhibits
reuptake of
norepinephrine),
desmethoxyyangonin is a
reversible MAOB inhibitor

[31, 34]

Amanita muscaria L. Muscimol Sedative (c-aminobutyric acid
receptor agonist)

[332]

Psilocybe cubensis. Psilocin, psilocybin Hallucinogenic (5-HT1A and
5-HT2A/2C agonist)

[28]

(continued)
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of various inflammatory mediators including chemokines, cytokines, vasoactive
amines, eicosanoids, and different proteolytic enzymes. In situations where the
inflammatory condition persists over a period of time, it may lead to chronic
inflammation, a condition known to be associated with several chronic diseases,
including cancer, arthritis, inflammatory bowel disease, and several others.

During the last two decades, there have been remarkable advances in the field
of immunology and molecular pharmacology, and today we have been able to
identify a number of different molecular targets for effective management of acute
and chronic inflammatory conditions, including (i) COX1/COX2 mediated
production of arachidonic acid metabolites (prostaglandins, leukotrienes, PAF,
lipoxins); (ii) NO; (iii) reactive oxygen species (ROS) (ii) cytokines (TNFa and
interleukins IL-1, IL-6, IL-10), and TNFa-converting enzyme (TACE); (iv)
interferons (IFNa2, b1, g); (v) G-protein coupled receptors; (vi) cell interaction
molecules such as LFA (leukocyte function-associated antigen; (vi) cytotoxic T
lymphocyte antigen-4 immunoglobulin; (viii) transcription factors including
nuclear factor (NF)-kB, mitogen-activated protein kinases (MAPKs), c-Jun-N-
terminal kinase (JNK), and p38 kinases; and (ix) adhesion molecules. Interest-
ingly, (NF)-kB is known to regulate the transcription of a number of genes
involved in the immune/inflammatory pathways, cellular stress, apoptosis, cell
adhesion, and proliferation.

According to recent reports, pattern recognition receptors (PRRs) are also
responsible for recognizing endogenous molecules liberated from damaged cells,
and are referred to as damage-associated molecular patterns (DAMPs). Currently,
four different classes of pattern recognition receptors have been identified [38, 39].
These PRRs include different transmembrane receptors such as the Toll-like
receptors (TLRs) and C-type lectin receptors (CLRs), and cytoplasmic receptors
such as retinoic acid-inducible gene (RIG)-I-like receptors (RLRs) and NOD-like
receptors (NLRs). The PRRs are known to upregulate the transcription of genes
involved in inflammatory responses. As already established, the inflammatory
response is orchestrated by proinflammatory cytokines such as tumor necrosis factor
(TNF) and interleukin (IL)-1, IL-1b, and IL-6. IL-1b maturation requires cleavage of
pro-IL-1b by a protease, caspase-1, which is activated independently of TLR
signaling. The complex that activates caspase-1 is referred to as inflammasome

Table 1 (continued)

Plant(s) CNS active molecules CNS pharmacology References

Salvia divinorum Epling
et Játiva NA

Salvinorin-A Hallucinogen (j-opioid
receptor agonist)

[30, 35]

Cannabis sativa L. Asia Stimulant, produce euphoria
(agonist to cannabinoid
receptors)

[27, 36]

Withania somnifera Withanolide A Reconstruct neuronal
networks

[37]
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(namely NLRP1, NLRP3, IPAF, and AIM2). Activation of inflammasome complex
formation leads to secretion of proinflammatory cytokines (IL-1b and IL-18) which
may ultimately result in cell death. In some acquired diseases, NLRP3 inflamma-
some activity is dysregulated, and therefore effective management of these diseases
can be achieved with IL-1b antagonists or with antagonists against the IL-1b
receptor [40].

Similarly, there are a number of reports mentioning the role of purinergic
receptors in inflammation and pain. It has been observed that P2X3R and the
P2X2/3R are expressed selectively in the peripheral afferent fibers and are
involved in pain response [1]. It has also been observed that stimulation of P2X7
by ATP causes secretion of different cytokines (IL-1b, IL-18, TNF-a) and NO.
These purinergic receptors are known to be stimulated by ATP or glutamate,
leading to neuronal excitation, along with pain and inflammation.

Due to the potential side effects and serious adverse effects, many synthetic
drugs reported to be used for the treatment of inflammatory disorders are gradually
losing their shine. As evident from the literature, there has been a gradual shift of
scientific focus towards herbal medicines, as evident from their growing popularity
in the management of different human ailments. Various natural products have
been found to inhibit or suppress the inflammatory response by interfering with
enzyme functions or suppression of the signaling cascades. Since ancient times,
plant-based medicines (dispensed in the form of extracts, tinctures, powders, and
poultices) have been used for the alleviation of pain and other inflammatory
conditions (the bark of Salix alba is one of the earliest known remedies for pain
and inflammation). Alkaloids have been used for their medicinal properties since
the early nineteenth century. According to available reports, quinoline, isoquino-
line, and indole alkaloids have been studied in detail for their anti-inflammatory
properties. Isoquinoline, quinolone, and indole alkaloids were the most studied
classes for anti-inflammatory activity. According to Koehn and Carter [41] about
49 % of new chemical entities introduced between 1981 and 2002 were found to
be of natural origin. It is also interesting to note that different types of plant
secondary metabolites displaying wide structural diversity coupled with bio-
chemical specificity (alkaloids, steroids, terpenoids, polyphenolics, phenylpropa-
noids, fatty acids and lipids, etc.), make them effective lead compounds for the
management of inflammatory conditions.

2.2.1 Phytoconstituents with Promising Anti-inflammatory Activity

According to the available reports, a large number of anti-inflammatory com-
pounds have been isolated from herbal sources (Table 2). Alkaloids isolated from
Sophora subprostata, Alstonia scholaris, Isatis tinctoria, and Evodia rutaecarpa
have been found to display COX inhibitory properties, as evident from the reduced
level of PGE2 production whereas alkaloids from Berbaris crataegina, Hydrastis
Canadensis, Caulerpa racemosa, Zanthoxylon ailanthoides, Chrysophyllus albid-
ium, Alostonia scholaris, and a number of others have been found to inhibit edema
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Table 2 Some recent studies with natural products on various inflammation-related targets

Plant Compound Target References

Alkaloids
Sophora

subprostrata
Matrine COX-1 and COX-2 [60]

Alstonia scholaris Picrinine COX-1, COX-2, and 5-LOX [61]
Berberis

crataegina
Palmatine Inhibition of COX-1, COX-2 [62]

Isatis tinctoria Tryptanthrin COX-2, LTB4, NO; also inhibitor of
P-gp and MRP2

[63–65]

Evodiae Fructus Dehydroevodiamine COX-2, NF-kB, iNOS [66]
Evodia

Rutaecarpa
Rutaecarpine iNOS, COX-1, COX-2, TNF-a, and

IL-4
[67–69]

Evodia fruits Evodiamine PGE2, NF-kB,NO, and iNOS [68, 70]
Sinomenium

acutum
Sinomenine PGE3 and LTC4, NO, and TNF-a [71]

Stephania
tetrandrae

Fangchinoline IL-5 [72]

Stephania
tetrandra

Tetrandrine IL-5, iNOS, and COX-2, JNK, ERK,
AP-1

[72–74]

Phellodendri
cortex

Berberine IL-6, 3T3-L1 NO, TNF-a [75–77]

Coptidis
rhizomaand

Piper kadsura Piperlactam S TNF-a and IL-1b [78]
Fatty acid
Chromolaena

odorata
(s)-coriolic acid NO, NF-kB [79]
(s)-coriolic acid ester NO, NF-kB [79]
Linoleamide NO, NF-kB [79]

Plantago major,
Ziziphus jujuba

Alpha-Linolenic acid COX-2 [80, 81]

Ziziphus jujuba Linoleic acid COX-2 [81]
Ziziphus jujuba Oleic acid COX-2 [81]
Hernandia ovigera (S)-coriolic acid COX-2 [82]
Steroids
Antrodia

salmonea,
Methyl antcinate L NO [83]

Antrodia
camphorate

Antcin NO [83]

Antrodia
cinnamomea

Methyl antcinate K NO [83]

Commiphora
mukul

Guggulsterol IFN-c, IL-12, TNF-a, IL-1b, and NO [84]

Commiphora
mukul

Guggulsterone COX-2, MMP-9, NF-kB [85]

Nerium oleander Neridienone A ICAM-1 [86]
Flavonoids

(continued)
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Table 2 (continued)

Plant Compound Target References

Terminalia
chebula

Luteolin TNF-a, MMP-2, NO, IL-4 [87–90]

Different fruits,
vegetables,
spices

Apigenin MMP-2, NO, IL-4,TNF-a [87]

Citrus peel Tangeretin IL-1b,COX-2, iNOS, MAPK, Akt [91, 92]
Nobiletin IL-1b, COX-2, LPS/IFN-c, MAPK,

Akt
[86, 91]

Naringenin TNF-a, PGE2 [93, 94]
Hesperetin TNF-a PGE2 [93, 94]

Eriodictyon
californicum

Eriodictyol TNF-a PGE2 [93, 94]

Genista tinctoria Genistein TNF-a, PGE2, NO, IL-1b [93–98]
Miscellaneous
Scutellaria

baicalensis
Baicalin ROS, iNOS and TNF-a, IL-1b, IL-6 [95]

Scutellaria
Baicalensis

Wogonin iNOS, COX-2, IL-6 and -8 [88, 95]

Kaempferia
pandurata,

Panduratin A iNOS, PGE2, COX-2, [92]

Hypericum
geminiflorum

Gemichalcone A Beta-glucuronidase and histamine,
mast

[102]

Gemichalcone B b-glucuronidase and lysozyme, mast
Camellia sinensis Epigallocatechin-3-

gallate
IL-1 b [100]

Acacia species Isoliquiritigenin LPS [101]
Echinochloa

colona
Tricin COX-2 [102]

Terpenoids
Croton tonkinensis Ent-akurane

Diterpenoids
NFkB and NO [103]

Isodon excises Ent-akurane
Diterpenoids

NFkB and NO [104]

Pluchea sagittalis Taraxasteryl acetate ROS and RNS [105, 106]
Vitex peduncularis Agnuside COX-2 [107, 108]
Fomitopsis

pinicola fruits
Triterpenoids COX-2, COX-1 [109]

Calocedrus
formosana

Sugiol IL-1b,TNF-a, reduces ROS [110]

Tripterigium
wilfordii

Triptolide COX-2, iNOS, and IL-1b [111, 112]
Tripdiolide COX-2, iNOS, and IL-1b
Celastrol NF-kB

Tanacetum
parthenium

Parthenolide NO, PAF1 and fMLP2-induced human
neutrophils

[113, 114]

Magnolia
grandiflora

Costunolide
Parthenolide

NO,NF-kB, [113, 115]

(continued)
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Table 2 (continued)

Plant Compound Target References

Magnolia
grandiflora

7-hydroxycostunolide NF-kB [115]

Arnica Montana Helenalin NF-kB, 5-LOX1 and LTC4, Human
platelets, NFkB

[116, 117]

Laurus nobilis Terpenoids NO [118]
Elephantopus

mollis
Molephantin PAF1 and fMLP2-induced human

neutrophils
[116]

Milleria
quinqueflora

Terpenoids PAF1 and fMLP2-induced human
neutrophils

[119]

Chloranthus
serratus

Terpenoids NO [125]

Ligustrum lucidum Oleanolic acid COX-2, NO [120–123]
Plantago major Ursolic acid COX-2, free enzyme NO, mouse

macrophages
[120, 124,

126]
Synthetic analogs Oleanonic acid NO [122–126]
Lignans
Coptis japonica Woorenoside IV

Second analogue
TNF-a and NO TNF-a [127, 128]

Saururus chinensis Sauchinone iNOS, TNF-a, and COX-2 [129–131]
Haplophyllum

Hispanicum
Diphyllin

acetylapioside
LTB4, 5-HETE, and LT [132]

S. chinensis Manassantin A NF-kb, LTC 4,IL-6, TNF-a [133–135]
S. chinensis Manassantin B NF-kb of IL 1-B,IL 6,TNFa [134–136]
Ocotea bullata Sibyllenone 5-LOX [137]
Arctium lappa Arctigenin ERK, p38, p13 K pathway, JNK,

iNOS, TNF-a and NF-kB, COX,
LOX

[129, 138–
140]

Garcinia
subelliptica

Garcinielliptone M b-glucoronidase and histamine, mast
cells, NO

[141]

Helichrysum
italicum ssp.
Microphyllum

Arzanol IL-1b and TNF- a, IL-6, IL-8 [143]

Quinones
H. perforatum Hypericin NF-kB, IL-12, [144, 145]
Kniphofia foliosa Knipholone LT, 12(S)-HETE [146]
Maesa lanceolata Maesanin 5-LOX [143]
Nigella sativa Thymohydroquinone COX-1 and -2 [147]
Nigella sativa Thymol COX-1 and -2,MPO [147]
Nigella sativa Thymoquinone COX-2, TNFa, NFkB, 5-LOX [142, 147]
Aloe vera Emodin NF-kB and IkB, casein kinase II,

HER2/neu, HIF-1a, AKT/mTOR,
STAT3, CXCR4, topoisomerase II,
p53, p21 involved in cancer, inhibit
TLR-4

[148–151]

Phenylpropanoids
Illicium species

Phenylpropanoids TNF-a [152]

Buddleja
officinalis

Acteoside iNOS and AP-1 [153, 154]
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formation in rodents. The alkaloids from Prunus persica and Cissampelos sym-
podialis are known to alter NO production. The anti-inflammatory properties of
Evodia rutaecarpa have been known for many years, and the alkaloids rutaecar-
pine and evodiamine have been found to inhibit PGE2 in vitro. Moreover, these
alkaloids are also known to suppress COX expression by virtue of NF-kB inhi-
bition [42]. Ligunstrazine, an alkaloid isolated from Ligusticum wallichii, inhibits
ATP-induced membrane depolarization through inhibition of P2X3R [1]. Ver-
minoside (an iridoid glycoside), found abundantly in the dichloromethane extract
of Kigelia ricana (Bignoniaceae), displays significant anti-inflammatory proper-
ties, attributed to inhibition of iNOS expression and subsequent NO release in the
mouse J774.A1 macrophage cell line [43]. The lignans isolated from Phyllanthus
amarus (Euphorbiaceae) include a group of phytoconstituents such as phyltetralin,
nirtetralin, niranthin, and phyllanthin. Among these, only nirtetralin was found to
inhibit IL1-b production in the infammatory tissues, whereas the whole extract
was found to produce prominent reduction of paw edema induced with bradykinin,
platelet activating factors (PAF), and endothelin-1 [44]. Neolignans, isolated from
stem barks of several species of Piper kadsura (Piperaceae), are considered to be
important for the treatment of several inflammatory disorders [45]. Anti-inflam-
matory phenylpropanoids, isolated from Illicium species (Illicium tashiroi, Illicium
anisotum, and Illicium arborescens), were found to inhibit compound A23187-
induced histamine release, when tested on rat basophilic RBL-2H3 leukemia cells
[46]. A novel class of plant constituents (Fig. 1) such as naphthoquinone, isolated
from plants belonging to the family of Iridaceae (Eleutherine Americana) pro-
duced potent anti-inflammatory properties [47].

Luteolin, a flavone isolated from the leaves of Perilla nankinensis, also
occurring in several other plants, displays potential antioxidant, anti-inflammatory,
and antiallergic properties as compared to other flavonoids [48]. It was found to
suppress leukocyte infiltration and also reduced the level of 6-keto-PGF1a in the
inflammatory exudates, through downregulation of COX2 [49].

Luteins with basic carotenoid skeleton (Fig. 2) are derived from Tagetes erecta
(family Compositae), known widely as ‘‘marigold’’. They display potent anti-
inflammatory properties, probably attributed to their ability to scavenge super-
oxide radicals [50].

Sesquiterpenes isolated from the leaves of the Yacon tree, Smalianthus son-
chifolia (Asteraceae), are reported to produce significant anti-inflammatory
activity (as evident from their actions on murine macrophage RAW264.7 cells),
probably through inhibition of NO production [51]. Hinkitiol belongs to the class
of tropolone derivatives, and is abundantly present in the heartwood of plants
belonging to the family Cupressaceae. It produces promising anti-inflammatory
activity in the LPS-induced macrophage cell line through inhibition of TNF-a [52].
Novel anti-inflammatory agents including Evodiamine, rutaecarpine, and gos-
huyuamide II, isolated from the fruits of Evodia rutaecarpa (Rutaceae) produced
their activity through inhibitory action on PGE2 generation [53]. Polyzellin and
polysylvin (Fig. 3), possessing the stilbene skeleton, isolated from the fruiting
bodies and leaves of Polyozellus multiplex (Thelephoraceae) and Pinus densiflora

70 T. Sen and S. K. Samanta



(Pinaceae), respectively, have been found to downregulate NF-kB along with
suppression of LPS-induced NO production [54, 55].

Prenylated derivatives of resveratrol, a newer class of anti-inflammatory agents,
display anti-inflammatory activity probably through inhibition of the COX2 enzyme
[56]. A newer group of plant secondary metabolites such as dithymoquinone, thymo
hydroquinone, and thymoquinone has been isolated from the seeds of Nigella sativa
(Ranunculaceae). These compounds have been found to inhibit both COX1 and

Phyllanthin Niranthin

Pinobatol

Fig. 1 Structure of some potent naphthoquinones from Eleutherine Americana

Luteolin

Fig. 2 Carotenoid from Tagetes erecta
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COX2 enzymes significantly [57]. Gigantol (Fig. 4), a chemical constituent isolated
from the whole plant extract of Cymbidium goeringii (Orchidaceae), possesses
significant inhibitory effect on the expression of both iNOS and COX2, as evident
from the mRNA level in RAW 264.7 cell line [58].

There are a number of natural analgesics such as emodin, amentoflavone from
Rheedia longifólia [59], ligunstrazine, and puerarin that have been found to act as
antagonists of the purinergic receptors.The analgesic property of the anthraquinone
glycoside, emodin (Rheum officinale), are also known to be mediated through
antagonism of the P2X3R and P2X7R, expressed in the primary sensory neurons [1].

2.3 Phytochemicals and Cardiovascular Disease

Over the last several decades, cardiovascular diseases (CVDs) are considered to be
one of the major causes of morbidity and mortality, both in developed as well as in
the developing nations. Today, CVD is a major health burden across the globe, but
the severity of the disease has a varied nature and is closely related to food intake
(vegetables and fruits), hence evidence-based studies have shown variations in the
nature and severity, when comparisons are drawn between different geographical
regions [155].

CVDs cover a complex range of conditions that arise due to several factors.
Although some of the conditions are a result of defects in the organ itself, others
result due to problems related to the vascular system. The major risk factors for
these disorders were recognized over many years, and they include high levels of

Polyzellin Polysylvin

Lutein

Hinkitiol

Fig. 3 Stilbene containing
compounds isolated from
Polyozellus multiplex
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low-density lipoprotein (LDL) cholesterol, psychosocial factors (stress), smoking,
hypertension, renal disorders, diabetes, endocrine dysfunctions, obesity, excess
consumption of alcohol, and lack of regular physical activity. Among the various
CVDs, hypertensive disorder is considered to be the most prevalent and often
predisposes myocardial infarction, stroke, and renal failure [156]. There has also
been continued research to help define more precisely the cardiovascular risk of an
individual with respect to genetic factors, more complex lipid traits, and inflam-
matory markers, but these issues need to be validated through extensive studies.

A large group of plants have compounds that have a direct effect on the heart
and blood vessels and may cause severe adverse reactions in animals that consume
them. The most recognized of these compounds are the cardiac glycosides, of
which digoxin, found in foxglove (Digitalis spp.), is best known. The pharmaco-
logic properties of digoxin have been known for a long time. Because of its effects
on the heart at therapeutic levels, it is routinely used to treat congestive heart
failure in humans and animals. Similarly, plants such as Crataegus oxycantha
(cardiotonic, antianginal, antihypertensive, and lipid-lowering effects) and Ter-
minalia arjuna (cardiotonic, coronary artery disease, heart failure, and hypolipi-
demic) have been widely exploited for their therapeutic benefits in cardiac
diseases; a combination of Inula racemosa, and Commiphora mukul have been
used in the Ayurveda for the management of anginal pain and in certain cases for
controlling dypsnea associated with angina pectoris [157]. Several plants have
been shown to contain active principles which have been identified over the years
for the treatment of CVD. A search of the literature reveals a huge amount of
information regarding properties of different plants and plant-derived compounds.
In most cases, the plant extracts or the pure compounds were found to act on
multiple targets [158], namely (i) NO generation, cGMP pathway; (ii) PGI2, cAMP
pathway; (iii) potassium channel activators; (iv) inhibitors of voltage-gated cal-
cium channels; (v) phosphodiesterase inhibitors (PDE5); (v) activation of
endothelial transient receptor potential (TRP) channels; (vi) inhibitors of protein
kinase C (PKC); and (vii) free radical scavenging. A number of plant-derived
compounds, particularly alkaloids [99, 159], polyphenols [160], flavonoids [161,

Gignatol

Fig. 4 Chemical constituent isolated from Cymbidium goeringii
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162], saponins [163], proanthocyanindins [164], xanthones [165], and glycosides
[166] have been found to exhibit cardioprotective properties.

In this section an attempt to summarize the drugs from plant sources that affect
the cardiovascular system both in terms of efficacy and safety as available in
scientific reports has been made. Table 3 describes the cardioactive principles
from medicinal plants that have been identified in recent years. However, for many
of these plants, the active principles are yet to be identified. Moreover, there is
need for understanding the mechanism of action of many of these active com-
pounds derived from plants. Thus, it is the need of the day to study these plants
extensively that have been traditionally used for the management of CVS or have
been screened in laboratories for cardiovascular effects. Some plant extracts
(Table 4) produce promising cardiovascular activities which in turn may provide
valuable leads for further research and development. Hence, there is a lot of scope
for developing standardized herbal extracts or pure molecules that may work alone
or as combinations for the management of some of the CVS disorders. This is
particularly important in light of the fact that there are better chances of getting
more effective drugs acting on multiple targets [167].

2.4 Medicinal Plants Used as a Source of Anticancer Agents

Today, cancer is a major health problem around the world. According to WHO,
there were more than 14.1 million cases of cancer reported in the year 2012 (7.4
million males and 6.7 million females were affected). According to the World
Cancer Research Fund International (http://www.wcrf.org), there would be about
24 million cancer cases by the year 2035. Survey reports indicate a prevalence of
lung, colon, prostate, and breast cancer cases in the Western countries; cervical
and cancers of the head and neck are common in India, whereas stomach cancer is
found to be common among the Japanese population [214].

During the 1950s, the discovery of the vinca alkaloids (vinblastine and vin-
cristine) and the isolation of podophyllotoxins paved the way for natural product
scientists to explore plant biodiversity further for novel anticancer biomolecules.
Today, apart from the vinca alkaloids, a number of naturally occurring anticancer
molecules—namely taxanes (paclitaxel, docetaxel), podophyllotoxin (derivatives
including etoposide, teniposide), camptothecin (topothecan and irinothecan), and
anthracyclines (doxorubicin, daunorubicin, epirubicin, idarubicin)—have been
proven to be clinically effective. Similarly, a number of dietary phytochemicals
such as curcumin, genistein, resveratrol (red grapes), diallyl sulphide, allicin, and
lycopene have been found to possess anticancer properties. The last few years have
seen a globalized thrust in anticancer research and many researchers have started
exploring the plant kingdom for lead compounds against cancer. In a report
published on African medicinal plants, Hostettman et al. mention the anticancer
potential of a large number of plant extracts derived from plants belonging to
Guittiferae, Rubiaceae, Apocynaceae, Euphorbiaceae, and Solanaceae [215].
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Table 4 Plant extracts having promising cardiovascular activity

Plant/extract (family) Pharmacological effect References

Ethanolic extract of aerial parts of
Ocimum basilicum (Lamiaceae)

Ocimum basilicum recovered the arterial
pressure and improved the left
ventricular performance along with a
simultaneous reduction in the left
ventricular end-diastolic pressure
induced with Isoproterenol (ISO).
Endothelium-dependant vasorelaxant
and antiplatelet aggregation activities.
Inhibits lipid peroxidation both in the
serum and the myocardium

[189]

Extract of Ginkgo biloba (Ginkgoaceae)
and Ocimum sanctum (Lamiaceae.)

Cardioprotective activity due to its
antioxidant effects; marked
myocardial protective activity in ISO-
induced cardiac necrosis

[190]

Linum usitatissimum (Linaceae.) Cardioprotective effect due to its
antioxidant properties was established
by hemodynamic, biochemical, and
histopathological results

[191]

Ethanolic extract of Hybanthus
enneaspermus (Violaceae)

Normalization of cardiac marker
enzymes (CK, LDH, SGOT, SGPT)
and Troponin I; reduction of tissue
lipid peroxidation

[192]

Allium sativum oil (Amaryllidaceae) Reduce ventricular tachycardia and
fibrillation; reduced serum total
cholesterol, LDL, platelet
aggregation; antihypertensive;
decreased lipid peroxidation and
improved antioxidant status; inhibit
angiotension-converting enzyme

[193]

Water extract of Buchanania axillaries
(Anacardiaceae)

Cardioprotective effects due to an
augmentation of the endogenous
antioxidants; inhibition of lipid
peroxidation

[194]

Cucumis trigonus Roxb (Cucurbitaceae) ALT, AST, LDH, and CPK were
decreased significantly due to its
action on membrane integrity; heart
rate, R-wave amplitude, and ST-
segment elevation normalized.
Commiphora mukul, protects the
myocardial cellular membrane
against oxidative damage by
regulating the redox status of
proteins; stabilizes myocardial
membranes and prevents necrotic
damage

[195, 196]
Commiphora mukul

Water extract of Withania somnifera
(Solanaceae)

Restored serum levels cardiac markers
(CK-MB, LDH, SGOT, and SGPT);
improvement of antioxidant status
(superoxide dismutase, catalase, and
glutathione peroxidase)

[197]

(continued)
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On the basis of published reports, it may be mentioned that the phytomolecules
work on a range of targets, namely on the cell cycle, signaling pathway in
apoptosis, PI3/Akt, p38/MAPK, nuclear factor-kappa B (NF-jB), cyclooxygenase

Table 4 (continued)

Plant/extract (family) Pharmacological effect References

Ethanolic extract of Premna serratifolia
(Verbenaceae)

Reduced elevation of ST segments in rat;
decrease in heart tissue glycogen;
cardiotonic; anticoagulant;
antioxidant properties

[198]

Water extract of Daucus carota Linn.
(Umbeliferae)

Inotropic (decrease of Na+/K+ ATPase
and Mg2+ATPase and an increase in
Ca2+ATPase); antioxidant and
antilipid peroxidative

[199]

Ethanolic extract of Callistemon
lanceolatus (Myrtaceae)

Cardioprotective; improvement of
biochemical marker enzymes
(CK-MB, AST, ALT, and LDH);
improvement of antioxidant enzyme
status (superoxide dismutase and
catalase)

[200]

Aqueous and alcoholic extracts Curcuma
longa (Zingiberaceae)

Cardioprotective; antioxidant [201]

Alcoholic extracts Spathodea
campanulata (Bignoniaceae)

Cardioprotective; antioxidant; reduction
of serum (CK-MB, LDH, SGOT,
SGPT); restoration of HDL and LDL
concentration

[202]

Whole plants of Cyathula prostrata Linn
(Amaranthaceae)

Antioxidant; prevent myocardial necrosis [203]

Ethanolic root extract of Momordica
cymbalaria Fenzl (Cucurbitaceae)

Significant reduction of serum CK-MB,
LDH, AST, ALT; improves
antioxidant status (SOD, CAT);
normalization of ECG; reduces blood
pressure

[204]

Amaranthus spinosus (Amaranthaceae) Decreases atherogenic index; increases
serum HDL

[205]

Aqueous extract of Terminalia Chebula
and Ethanolic extract of unripe pods
and leaves of Bauhinia purpurea

Significant decrease in the levels of
serum cholesterol, phospholipids,
triglycerides, LDL, VLDL
atherogenic index, also decrease in
aortic plaque and fatty liver formation

[206, 207]

Methanol extract of pericarps of
Sapindus emarginatus (Sapindaceae)

Improves serum lipid profile [208]

Aqueous and ethanolic leaf extract of
Aegle marmelos (L) Corr., (Rutaceae)

Improves serum lipid profile [209]

Erythrina indica Lam, Ginkgo biloba
L. Family Ginkgoaceae, Ethanol and
water (1:1) Extract of leaves of
Carissa carandas and chloroform
extract of Mimosa pudica
(Mimosaceae) leaves

Antioxidant; improves serum lipid profile [210–213]
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enzyme. Apart from these, many plant-derived molecules (alkaloids, anthocyani-
dines, anthraquinones, chalcones, catechins, flavones, terpeinoids, and xanthenes)
are also known to modulate epigenetic mechanisms, thereby displaying a prom-
ising potential against cancer [216].

It is also well known that traditional Chinese medicine, Kampo medicine,
Ayurveda (the ancient Indian system of medicine) have been used for ages for the
management of cancer, in different Asian countries. These traditional approaches
are now becoming popular (as alternative therapies) in various other nations. Here,
we have tried to summarize the current progress of plant-derived therapies for the
management of cancer.

2.4.1 Patented Biomolecules with Anticancer Activity

In recent years there has been an increasing thrust for the identification and iso-
lation of molecules from natural resources, displaying inhibitory properties
towards tumor growth and metastasis. Accordingly, a number of compounds with
promising anticancer activity have now been identified. In Table 5, we put forward
a brief account of such isolated compounds that have been patented in the United
States in recent years [217].

2.4.2 Herbal Extract with Anticancer Activity

Drug development (from bench to bedside) needs huge financial investments
and intensive research including extended timeframes. In many cases such studies
often lead to the development of molecules that may not have any distinct
advantages over the existing ones. Hence in recent years, we observe a renewed
interest in alternative therapies, particularly involving products of botanical origin.
Table 6 describes the list of different plant extracts that have now been patented or
are under application in the United States [217].

2.5 Medicinal Plants Used as a Source of Antimicrobial Agents

Studies of the potential antimicrobial activity of plant-derived compounds have
been gaining importance due to a rapid increase in the incidences of antimicrobial
drug resistance. On the basis of available scientific information on plant extracts
and oils, and knowledge of traditional anti-infective therapies, the attention of the
scientific community has now shifted towards natural products for isolation and
identification of novel molecules with antimicrobial properties. As per the available
reports, the antimicrobial pipelines, as compared to the 1970s and 1980s are
gradually drying up due to reduced interest of the pharmaceutical industries [257,
258]. Hence, antimicrobial drug discovery from alternative sources is gradually
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Table 6 Patented plant extracts

Extracts Major claims (publication no.) Assignee, country [references]

Tannins and procyanidin
extracts from Fagopyrum
cymosum (Trev.)

Used in lung cancer, gastric
cancer, cervical cancer,
sarcoma, and other
neoplasms, relieving
inflammation, and
alleviating toxic and
adverse effects associated
with chemotherapy and
radiotherapy
US6451353B1

Han Pei, Guo Qiyu, Chen Bo,
Zhu Hongwu, China [232]

Lipid–sterol extract of Serenoa
repens

A method of treatment of
prostate cancer by
administering a lipid–
sterol extract of Serenoa
Repens (US6599540B1)

Pierre Fabre Medicament,
France [233]

Banyan tree bark fraction A process of isolation of a
combination that inhibits
insulin secretion in bTC-6
cells and HIT-T15 cells
and noncytotoxic to bTC-6
cells, but cytotoxic to HIT-
T15 cells (US6660309B2)

Biozak, Inc., California [234]

Euphorbia antiquorum extract Herbal extract
from Euphorbia
antiquorum for inhibiting
tumor and cancer growth
(US20030165579A1)

Chih-Hui Lin, Wen-Ching
Cheng, Taiwan [235]

Polysaccharide-based extract
of Ganoderma genus

The oral pharmaceutical
combination, providing
immune-potentiating and
antitumor effects
(US6613754B1)

National Yang-Ming
University, Taiwan [236]

Artemisolide compound from
the aerial parts of Artemisia
sylvatica,

A composition for treatment
of leukemia and colon
cancers (US6808724B2)

Korea Research Institute Of
Bioscience And
Biotechnology, Korea [237]

Sesquiterpenes isolated from
Resina ferulae

A pharmaceutical
composition for treating
lung cancer, ovarian
cancer, melanoma cancer,
or colic cancer
(US20040043083A1)

Shi-Yong Ryu, Chong-Ock
Lee, Sang-Un Choi, Park
Sung-Hee, Young-Sup Kim,
Sung-Ki Kim, Sang-Keun
Kim, Shin-Kwon Kang,
Korea [238]

Herbal compositions from
Radix asparagi

A pharmaceutical
composition for treating or
reducing the risk of
prostate disorders
(US6790464B2)

Healthaid Enterprise Pte. Ltd.,
Singapore [239]

(continued)
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Table 6 (continued)

Extracts Major claims (publication no.) Assignee, country [references]

Extract from 20-year-old
platycodon (Platycodon
grandiflorum)

Anti-inflammatory agent in
rheumatic arthritis;
antihyperlipemia,
antidiabetes agent, and
anticancer agent
(US6902748B1)

Jang Saeng Doraji Co., Ltd,
Korea [240]

Triterpenoid and steroidal
saponins from Quillaja
saponaria Molina (soap
tree)

The saponins can directly or
indirectly inhibit cancer
cell growth in vitro or
in vivo
(US20050175623A1)

Zheng-Pin Wang, US [241]

Leaf extract of Melissa
officinalis

Inhibits angiogenesis
(angiogenesis-associated
diseases) and matrix
metalloproteinase
(US20040009244B2)

Min-Young Kim, Byung-
Young Park, Chang-Hee
Moon, Eun-Kyu Park,
Kyoung-Mi Kim, Korea
[242]

A mixture of Tinospora
cordifolia, Aloa vera,
Curcuma longa, Withania
somnifera, Achyranthus
aspera, Ocimum
sanctum, and Picorrhiza
kurroa

A pharmaceutical preparation
for use in the treatment of
cancer (hematological
malignancies)
(US6649185B2)

Sahajanand Biotech Private
Limited, India [243]

An extract of the leaves and/or
stems of plants belonging
to Panax genus (Panax
ginseng C.
A. Mayer, Panax
quinquefolum, Panax
notoginseng, Panax
pseudoginseng, Panax
japonicum, Panax
vietnamensis)

Anticancer drug, cancer
metastasis inhibitor,
hematopoiesis enhancer,
radiation side-effect
inhibitor, decrease side
effects of anticancer drugs,
auto-immune disease
treatment
(US20060034951B2)

Kwak Tae H, Shin Myoung S,
Kim Ji Y, Jong-Kook Park,
Korea [244]

Flavonoid glycosides (butrin
and isobutrin) from flowers
of Butea monosperma

Hepatocellular carcinoma
(US20060280817A1)

Saxena Ajit K, Gupta Bishan D,
Kapahi Bal K, Shanmugavel
Muthiah, Mondhe Dilip M,
India [245]

Extract of Anoectochilus
formosanus

Chemoprevention, control of
various human malignant
diseases (US7033617B2)

Academia Sinica, Taiwan [246]

A water from the plants
of Solanum (at least
60–90 % of solamargine
and solasonine)

Inhibitory effect on tumor/
cancer cells (liver, lung,
and breast cancer cells
(US7078063B2)

G & E Herbal Biotechnology
Co., Ltd., Taiwan [247]

Purified extract of Solanaceae
Dulcamara root
(Amazonian variety)

A method of treating
mammals with prostate
cancer (US7250180B2)

Edwin Cevallos Arellano, Quito
[248]

(continued)
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gaining importance owing to a slump in corporate investments, particularly related
to antimicrobial drug discovery. Secondary metabolites are a major reservoir of
chemical diversity, therefore, they are considered a potential source of new drugs
for combating the perils of drug resistance. The diversity of plants with respect to
their potential to generate newer antibacterial agents has been reviewed by Shahid
et al. [259]. The focus of this review is to provide recent insights towards an
untapped source of antimicrobial chemotypes that are used in the traditional sys-
tems of medicine in different countries.

Table 6 (continued)

Extracts Major claims (publication no.) Assignee, country [references]

Synergistic composition of
lignans from Cedrus
deodra

Anticancer activities against
breast, cervix,
neuroblastoma, colon,
liver, lung, mouth, ovary,
and prostate cancer
(US7285571B2)

Council of Scientific And
Industrial Research, India
[249]

Extract of Sphaeranthus
indicus

Anticancer
(US20080199550A3)

Shanker Kumar Mitra, Ekta
Saxena,Mallikarjun
Narayan Dixit, Venkanna
Babu Uddagiri, Venkata
Ranganna
Marikunte,Shivamurthaiah
Arun Mathad, Sunil
Vaikunth Shanbhag, India
[250]

Formulation containing
cucurbitacins (cucurbitacin
B and cucurbitacin D)

Anticancer (antiproliferation
and inducing cellular
apoptosis) cells
(US20080207578A1)

Chu Kee Hung, Hongtao Xing,
U.K [251]

Extracts of Gleditsia Sinensis Treatment of estrogen
receptor (ER) negative
breast cancer
(US20090258096A1)

Bionovo, Inc., California [252]

Rhus verniciflua extracts Anticancer (US7618661B2) Azi Co., Ltd., Korea [253]
Extract obtained

from Anemarrhena
asphodeloides Bunge
(containing Timosaponin
A3 and Timosaponin B2)

Anticancer
(US20100009017A1)

Bionovo, Inc, California [254]

Leaf extract of Piper betle Treatment of chronic myeloid
leukemia resistant to
imatinib
(US20100028472A1)

Piramal Life Sciences Limited,
India [255]

Extract of Rubus suavissimus Angiogensesis inhibition
(US7709031B2)

[256] Board of Supervisors of
Louisiana State University
and Agricultural and
Mechanical College, USA
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2.5.1 Recent Update of Antimicrobial Phytochemicals

Plant-derived antimicrobials are mostly secondary plant metabolites and have a wide
range of activity, according to the species, topography, and climate of the country of
origin, and may contain different categories of active principles [260, 261].

Simple Phenols and Phenolic Acid Polyphenols

Some of the simplest bioactive phytochemicals such as cinnamic and caffeic acids,
consisting of a single substituted phenolic ring are common representatives of a
wide group of phenyl propane-derived compounds (Fig. 5).

Caffeic acid obtained from the common herbs tarragon and thyme are known to
be effective against viruses, bacteria, and fungi. Hydroxylated phenols including
catechol and pyrogallol have been found to be toxic to the microorganisms [262].

Quinones

Quinones (Fig. 6) are a class of highly reactive organic compounds, usually acting
as electron acceptors. These compounds are ubiquitous in nature and are known to
be readily produced from phenols and catechols.

Stable free radicals produced by quinone produce an irreversible complex with
nucleophilic amino acids present in microbial proteins, leading to the loss of their
function [263]. Anthraquinones possess a wide spectrum of antibacterial activity
(including their toxicity against the mycobacterium) due to their ability to inac-
tivate bacterial proteins such as adhesins, cell wall polypeptides, or membrane-
bound enzymes, consequently leading to the destruction of the pathogens [264].

Flavones, Flavonoids and Flavonols

Flavones are phenolic structures containing the carbonyl group and flavonoids are
hydroxylated phenolic derivatives (Fig. 7). They are known to be synthesized by
plants in response to microbial infection and are known to be present in different
parts of the plants. The compounds are found to be effective against a wide range
of microorganisms. Their activity is thought to be produced due to their ability to

Caffeic acid

Fig. 5 Structures of caffeic acid
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form complexes with both extracellular and soluble proteins, as well as with
bacterial membranes [265, 266].

Recent reports indicated that the antimicrobial activity of flavonoids (6-hydroxy-
7-methoxyluteolin and the xanthone 8-carboxymethyl-1,5,6-trihydroxy-3-meth-
oxyxanthone) isolated from the leaf extract of the Leiothrix spiralis (Eriocaulaceae)
family, produced a promising antimicrobial activity [267]. Owing to the emergence
of new cases and the increased incidence of multidrug-resistant strains of Myco-
bacterium tuberculosis, researchers around the globe are also exploring the natural
resources for antitubercular leads, and some flavonoids have been found to dem-
onstrate such antimycobacterial properties [268]. Flavonoid compounds also
showed inhibitory effects against multiple viruses. Numerous studies have docu-
mented the effectiveness of flavonoids such as swertifrancheside, glycyrrhizin
(from licorice), and chrysin [269] against HIV. Antifungal flavonoids isolated from
mango (Mangifera indica) display promising activity on different species of fungi,
including the Aspergillus sp. [270].

Tannins

Tannins are a group of polymeric phenolic substances known to demonstrate
promising antimicrobial activity through inactivation of adhesins, cell envelope,
enzymes, and different transport proteins. They can be divided into two groups,
namely hydrolyzable and condensed tannins (Fig. 8). Both groups of tannins
produce antimicrobial activity through antiperoxidative properties, inhibiting in

Fig. 6 Structure of quinone

Fig. 7 General structures of flavones
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particular the growth of uropathogenic E. coli. According to recent reports, anti-
microbial activity of gallotannin-rich plant extracts is attributed to the inactivation
of membrane-bound proteins [271].

Coumarins

Coumarins are known to contain fused benzene and pyrone rings (Fig. 9), with a
characteristic odor of hay. The antimicrobial activity of the coumarins has been
reviewed and documented by Marjorie Murphy Cowan [272]. Scopoletin, a cou-
marin and two chalcones from Fatuoa pilosa have been found to display promising
anti-tubercular properties against multidrug resistant mycobacteria [273], whereas
hydroxylated derivatives of coumarins revealed potent antifungal activity [274].

Terpenoids and Essential Oils

The aroma of plants is related to the presence of essential oil, containing high
concentrations of terpenes and terpenoids (Fig. 10). Essential oils derived from
different families such as Pinaceae, Cupressaceae, Apiaceae, Burseraceae, Ana-
cardiaceae, Palmaceae, Euphorbiaceae, Dracenaceae, and Fabaceae demonstrate
antifungal, antibacterial, and antiprotozoal properties [275, 276]. Essential oils, in

Fig. 8 Structure of tannin

Fig. 9 Structure of coumarins
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particular from carrot (Daucus carota), have been found to be effective against
both Mycoplasma pneumoniae and Helicobacter pylori, probably through their
action on the intracellular cytoskeleton [277]. Recent studies report the antifungal
properties of essential oils obtained from different medicinal plants [278–287].
Pulegone and piperitone oxide, present in the essential oils derived from Mentha
suaveolens, are particularly effective against vaginal candidiasis [288]. Interest-
ingly, eugenol and cinnamaldehyde, found in essential oils, showed promising
activity against C. albicans biofilm formation and these compounds also displayed
synergy with fluconazole in vitro [289].

Alkaloids

Alkaloids are a diverse group of organic nitrogen-containing compounds, dis-
playing potent pharmacological properties and are often toxic in nature. Since
ancient times, alkaloid-rich plants have been exploited for their antimicrobial
properties [290]. Diterpenoid alkaloids, isolated from the plants belonging to the
family Ranunculaceae, have been found to possess antimicrobial properties [291].
An isoquinoline alkaloid, berberine (Berberis species), is a hydrophobic cation
widely used in traditional medicine for the management of infections associated
with bacteria, fungi, viruses, and protozoa [292]. As per available reports, this
compound on accumulation inside the cells, intercalates with the DNA [293] and
also interferes with the activities of RNA polymerase, gyrase, and topoisomerase
IV [294] thereby leading suppression of cellular growth and proliferation; it is an
excellent DNA intercalator.

Polypeptides

Apart from the plant secondary metabolites, antimicrobial peptides, produced
constitutively or in response to microbial infections, happen to be a part of innate
immunity, known to work as a first line of defense against different classes of
pathogens. These peptides display wide molecular diversity and are now classified

Fig. 10 Structure of menthol
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according to their tertiary structures, the most common being thionins, defensin, and
lipid transfer proteins [295]. Even though the antimicrobial peptides show wide
structural diversity, however, most of these are short in length, hydrophobic, and
with a net positive charge [296]. As they are cationic, these peptides tend to interact
with negatively charged microbial cell membranes, ultimately leading to pore
formation along with altered membrane permeability. Interestingly, as these pep-
tides interact with the membranes, the chances of resistance development is com-
paratively reduced [296], thereby making them an attractive alternative to other
synthetic antimicrobials. Information related to an increasing number of such nat-
urally occurring proteins/peptides, possessing antimicrobial properties, in vitro, are
now available in the scientific literature. An attempt has been made here to sum-
marize the antimicrobial peptides/proteins derived from plant sources (Table 7).

2.6 Others

Medicinal plants have also played a significant role in the management of hepatic
disorders [321–324], gastrointestinal (GI) ulceration [325–331], and also for

Table 7 Plant-derived
proteins/peptides possessing
antimicrobial properties

Plant Molecular weight References

Euonymus europaeus 45 a.a. residue [297]
Triticum aestivum 23 kDa [298]
Andean cropoca 18 kDa [299]
Vigna angularis 8 kDa [300]
Solanumtuberosum 7025 Da [301]
Oryctes rhinoceros 4080 Da [302]
Fagopyrumesculenium 3879 Da [303]
Tulia gesneriana 5006 Da [304]
Nicotianatabacum 26 kDa [305]
TriticumKiharae 4844 Da [306]
Allium sativum 13 kDa [307]
Cocos nucifera 10 kDa [308]
Solanum tuberosum 5.6 kDa [310]
Phaseolus lunatu 7 kDa [309]
Araucaria angustifolia 8 kDa [310]
Withania somnifera 28 kDa [311]
Cucurbita moschata 30665 Da [312]
Capsicum annuum 10 kDa [313]
Glycine max [314]
Arabidopsis thaliana [315]
Baby lima beans 6.5 kDa [316]
Amaranthus tricolor 27 kDa [317]
Pouteria torta 14 kDa [318]
Ginkgo biloba 134-a.a [319]
Capsicum annuum L. 6.5 kDa [320]
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controlling blood glucose levels in diabetes mellitus [332–335]. The use of tra-
ditional systems of medicine has always been popular in the developing and
underdeveloped countries for the management of GI and hepatic disorders. A
number of medicinal plants including Phyllanthus niruri, Phyllanthus emebellica,
Phyllanthus amaraus, Tinospora cordifolia, Silybum adans, Silybum marianum,
Androgaphis paniculata, and Eclipta alba, among others, have been popularly
used for the treatment of hepatic disorders and related GI disturbances. Similarly,
plants such as Momordica charantia (containing charantin, vicine, polypeptide-p,
alkaloids), Coptis chinensis (rich source of berberine), Gymnema sylvestre, fenu-
greek leaves, and cinnamon have been found to be effective in Type II diabetes.
Similarly, a number of Chinese herbal formulations (Jiangtangkeli, Yerbe Mate-
Guarana-Damianaa, and Byakko-ka-ninjin-to) have also been used popularly for
lowering blood glucose levels [336]. These antidiabetic plants and the herbal
formulations have been found to act by (i) increasing insulin secretion, (ii)
improving glucose uptake by adipose and muscle tissues, (iii) lowering glucose
absorption, and (iv) reducing glucose production in heptocytes [336, 337].

3 Pharmaceutical Bioprospecting and Bioconservation

3.1 Impacts on Biodiversity of Major Pressures and Associated
Effects on Ecosystem Services and Human Well-Being

As the basis for all ecosystem services, and the foundation for truly sustainable
development, biodiversity plays fundamental roles in maintaining and enhancing
the well-being of the global population, which includes rich and poor, rural and
urban alike. Biodiversity comprises much of the renewable natural capital and
therefore it is intricately linked to both livelihood and development. However,
ongoing, and in many cases, accelerated, losses in biodiversity over the past
20 years have decreased the capacity of many ecosystems to provide services, and
have had a profound negative impact on sustainable development (Fig. 11). These
impacts are particularly pronounced in the developing world, largely related to the
patterns of consumption and trade in the industrialized world.

Biodiversity contributes significantly towards livelihood and human develop-
ment and thus plays a predominant role towards the well-being of the global
population. The impending danger posed due a meteoric rise in the global popu-
lation, rapid and sometimes unplanned industrialization, alongside indiscriminate
deforestation, overexploitation of natural resources, pollution, and finally global
climate change have now brought us to a crossroad where we need to act rapidly
and decisively to conserve the biodiversity of our planet and for the sustainable
development of human civilization at large. The United Nations Environment
Programme (UNEP) has identified several risk [338–341] factors that may have a
profound negative influence on biodiversity. These can be summarized as follows:
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(i) several million hectares of forest were lost annually during 1990–1997 and as a
result it has led to a decrease in natural habitat as well as homogenization of
species. (ii) Similarly, overexploitation of wild varieties, particularly in countries
such as India (for meeting the demands of industry), have led to extinction and
introduction of alien species along with changes in the functioning of the eco-
system. (iii) Climate change (especially due to overuse of fossil fuel) has resulted
in the shrinkage of temperate rain forests, changing the species range and behavior
and increasing the risks of invasive alien species. (iv) Pollution is another major
threat and it often results in nutrient alteration, acidification, and accumulation of
heavy metals and pesticides. The UNEP report on biodiversity mentions that loss
of biodiversity may be considerably minimized by curbing production subsidies
(sometimes politically motivated), undervaluation of biological resources, inter-
nalization of environmental costs into prices, and finally implementation of the
conservation policies at local, national, and global levels.

The Millennium Ecosystem Assessment (MEA), an initiative of the United
Nations, constituted of multistakeholders, was formed in the year 2001. MEA
commenced the assessment of the effect of humans on the Earth’s ecosystems and
it was observed that during the past 50 years, human activities have changed the
ecosystems more rapidly and extensively than in any other comparable period in
the history of mankind (MEA [342]). MEA recommended some actions that have
been (at least partly) successful in reducing biodiversity loss and therefore the
same can be further strengthened in the future:

• Protected areas.
• Species protection and recovery measures for threatened species.
• Ex situ and in situ conservation of genetic diversity (e.g., genebanks).
• Ecosystem restoration.

Fig. 11 Interrelation of human pressure on the global environment and ecosystem
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• Payments and markets for biodiversity and ecosystem services (e.g., for eco-
tourism or carbon sequestration).

• Incorporating considerations of biodiversity conservation into management
practices in sectors such as agriculture, forestry, and fisheries.

• Capture of benefits by local communities (i.e., ensuring local people benefit
from the conservation of the biodiversity around them).

• Increased co-ordination among multilateral environmental agreements and
between environmental agreements and other international economic and social
institutions.

• Public awareness, communication, and education.
• Enhancement of human and institutional capacity for assessing the conse-

quences of ecosystem change for human well-being and acting on such
assessments.

• Increased integration of sectoral responses.
• Elimination of subsidies that promote excessive use of ecosystem services.
• Sustainable intensification of agriculture.
• Slowing and adapting to climate change.
• Addressing unsustainable consumption patterns.
• Slowing the global growth in nutrient loading.
• Correction of market failures and internalization of environmental externalities

that lead to the degradation of ecosystem services. (Because many ecosystem
services are not formally traded, markets fail to provide appropriate signals that
might otherwise contribute to their efficient allocation and sustainable use. In
addition, many of the harmful trade-offs and costs associated with the man-
agement of one ecosystem service are borne by others and so are not weighed in
sectoral decisions regarding the management of that service).

• Integration of biodiversity conservation and development planning.
• Increased transparency and accountability of government and private-sector

performance in decisions that affect ecosystems, including through greater
involvement of concerned stakeholders in decision making.

• Scientific findings and data need to be made available to all of society.

To further substantiate the global initiatives towards conservation of biodiver-
sity, it may be relevant to mention the role of The National Botanic Garden of Wales
(NBGW), which is working for the research and conservation of biodiversity and its
sustainable utilization (http://www.gardenofwales.org.uk/). Presently, the NBGW
contributes towards conservation of biodiversity in the following ways: (i) con-
ducting a research program on the ecology, taxonomy, and conservation of the
Welsh flora; (ii) plant collection and systematic gardening; (iii) in situ conservation
(ii) and also provide scope for students to work on conservation; (iv) use of DNA
barcoding technology for the first time in the world for the flowering plants and
conifers, which could have a huge impact on biodiversity conservation; and
(v) conservation of endangered plants species of the Wales region.

It may also be relevant to mention that WHO recommends the creation of a
national or regional inventory of medicinal plants, so as to (i) facilitate the
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identification of medicinal plants used by communities (including endangered
species), and (ii) outline their distribution and assess their abundance. Moreover,
WHO recommends enhanced research activities to improve the agronomy of
cultivated medicinal plants, encourage the exchange of information related to
agricultural production, and investigate the social and environmental impact of
medicinal plant cultivation and collection [WHO guidelines on good agricultural
and collection practices (GACP) for medicinal plants World Health Organization,
Geneva, 2003]. Thus, natural loss due to species extinction could be of paramount
importance to society for a number of reasons, including the maintenance of
ecosystem function and for ethical reasons. But species extinction is specifically
important to pharmaceutical companies in their search for novel bioactive mole-
cules. Among the different species that are being lost, there may be some with
tremendous therapeutic potential that have remained undiscovered thus far. Hav-
ing said this, there is a variety of biodiversity, conservation, and sampling issues
associated with examining different types of biota for the production of novel
natural products of pharmaceutical value.

There may be a perception among conservationists and the public that ‘‘large
quantities’’ of material are being collected from the bush or the oceans for
screening for novel natural products. Although small amounts of material may be
used for the initial stages of the drug discovery process, there is a clear desire
within the pharmaceutical industry to conserve the world’s biota so that more
species can be examined for novel chemical molecules, and that compounds of
interest are produced via routes that do not involve the destructive and costly
harvesting of samples.

4 Conclusions

Considering the unplanned utilization of natural resources coupled with the rapid
decline of biodiversity, it may be predicted that by the turn of this century, some
species of plants may cease to exist. Once depleted, species regeneration, if at all
possible, might take 5–10 million years. This loss would be phenomenal and thus
may have profound negative effects on the inhabitants of the earth. In medical
sciences, the loss of species could adversely affect the process of drug discovery
and finally disease management. Therefore, it is of utmost importance that plant
biodiversity be preserved, so that it may continue to provide structural diversity in
the form of novel lead compounds, for the already existing as well as emerging
therapeutic targets, in the coming years. It may also be important to mention that
countries (both developed and developing) with rich biodiversity should take
necessary measures for harnessing such treasure troves in a scientific manner,
safeguarding the biodiversity but at the same time making the herbal medicines
more accessible to the common mass.
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Universită t�ii ,,Alexandru Ioan Cuza’’, Sect�iunea Genetică s�i Biologie Moleculară, TOM
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Eco-Taxonomic Insights
into Actinomycete Symbionts of Termites
for Discovery of Novel Bioactive
Compounds

D. _Ipek Kurtböke, John R. J. French, R. Andrew Hayes
and Ronald J. Quinn

Abstract Termites play a major role in foraging and degradation of plant biomass
as well as cultivating bioactive microorganisms for their defense. Current
advances in ‘‘omics’’ sciences are revealing insights into function-related presence
of these symbionts, and their related biosynthetic activities and genes identified in
gut symbiotic bacteria might offer a significant potential for biotechnology and
biodiscovery. Actinomycetes have been the major producers of bioactive com-
pounds with an extraordinary range of biological activities. These metabolites
have been in use as anticancer agents, immune suppressants, and most notably, as
antibiotics. Insect-associated actinomycetes have also been reported to produce a
range of antibiotics such as dentigerumycin and mycangimycin. Advances in
genomics targeting a single species of the unculturable microbial members are
currently aiding an improved understanding of the symbiotic interrelationships
among the gut microorganisms as well as revealing the taxonomical identity and
functions of the complex multilayered symbiotic actinofloral layers. If combined
with target-directed approaches, these molecular advances can provide guidance
towards the design of highly selective culturing methods to generate further
information related to the physiology and growth requirements of these bioactive
actinomycetes associated with the termite guts. This chapter provides an overview
on the termite gut symbiotic actinoflora in the light of current advances in the
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‘‘omics’’ science, with examples of their detection and selective isolation from the
guts of the Sunshine Coast regional termite Coptotermes lacteus in Queensland,
Australia.

Keywords Actinomycetes � Biodiscovery � Eco-taxonomy � Symbiosis �
Termites
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1 Introduction

Specialized mutualistic relationships between hosts and microorganisms have
taken place during co-evolution where microorganisms have been actively cul-
tured in exchange for producing bioactive small molecules [96]. Since then
symbionts have been proven to aid the physiological capabilities of their host by
synthesizing essential metabolites promoting survival and, by harnessing the
chemical potential of these microorganisms, hosts have been able to mediate
lifestyle transitions, alter gene transcription, and combat pathogens and competi-
tors [82, 90, 96, 134].

Symbionts often enhance their host’s ability to acquire nutrients from the
environment or provide the pathways for synthesis of essential organic compounds
or for catabolism of molecules available in the environment [87]. One important
example is the termite gut symbiosis with the first examples dating back to 20-
million-year-old termite fossils preserved in amber [55, 132]. The symbionts in
termite guts originate from all three Domains of life, namely the Eukarya (protists,
yeasts, and other fungi), the Archaea, and Bacteria [7, 55, 64, 65] and contribute
towards host defense and nutrition [55].

Termites feed predominantly on wood and litter tissue, which is rich in difficult-
to-digest lignocelluloses, but deficient in vitamins and essential components for
protein and fat synthesis. As a result termites are dependent on a beneficial
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symbiosis with a dense and diverse flora of microorganisms in the hindguts of the
workers to digest lignocellulose and to acquire supplemental nutrition [1, 8, 55].
Wood-feeding termites live in a nest or colony with many thousands of individ-
uals. The colony is akin to an extended family. Within this family, various groups
of individuals have different functional roles according to a ‘‘caste system’’. The
worker caste is the largest group (ca. 80–90 %), and workers are about the size of a
grain of rice (ca. 3–4 mm long). They are generally white in color, have soft
bodies, are wingless, and without composite eyes or ocelli. Workers perform
cleaning, maintenance, and repair of the nest; gather food (cellulosic materials)
and water; care for the queen; tend the eggs and subsequent young nymphal forms;
and construct new tunnels and galleries. They ensure that all members of the nest
have microbial exo- and endo symbionts that have a role in finding food sources
and nestmate recognition [63].

The cockroach like termite ancestors most likely acquired symbionts during
evolution by feeding on dead plant material colonized by microbes [38, 55, 93]
and maintained their existence via coprophagy and trophallaxis among relatives
[55, 93]. Symbionts then entered into a mutualistic beneficial relationship, sup-
plementing nutrients and energy of their host, and in return, gaining a steady food
supply and protection in the constant environment of the gut [55]. The mutualistic
beneficial relationship of termites with intestinal symbionts has been suggested as
one of the fundamental factors predisposing termites to a social lifestyle [55, 126].
Each worker termite must acquire an initial inoculum of symbionts from parents or
nestmates after hatching, and again after each molt. Dependence on the symbionts
therefore, requires extended parental care, group living, and overlapping genera-
tions setting the stage for eusocial behavior [55]. Increasing interdependency
between hosts and symbionts, which were acquired via vertical transmission
during co-evolution, resulted in continuity in the identity of the microorganisms
transferred between generations [31, 55, 93].

One of the important classes of termite symbiotic microorganisms, the
Actinobacteria, in particular the members of the order Actinomycetales in this class
has recently become a focus to generate information on the rationale of functional
chemistry during symbiosis. A collaborative effort to systematically explore such
functional chemistry including the characterization of antimicrobial and volatile
compounds from actinobacterial symbionts of termites has been established by the
authors of this chapter. Their wealth of expertise was utilized in a complementary
fashion (Actinomycetology, Termite Biology, Chemical Ecology, and Natural
Product Chemistry) with a long-term objective to generate sound scientific
understanding on the basis of termite and actinomycete symbiosis in Australian
environments resulting in the production of a range of symbiont-derived and
function-related bioactive compounds. This chapter is designed to provide an
overview and insights into the rationale of the approach taken by the collaborators,
in particular into the eco-taxonomical aspects of actinomycete symbionts not only
aiding host vital biological and environmental functions but also becoming an
important source for the discovery of novel bioactive compounds.
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2 Functional Basis of Symbiosis

Insect endosymbionts have been placed into two groups: primary or secondary.
The primary ones reside in specialized host cells called the bacteriome, and the
associations are due to obligate metabolic needs between primary endosymbionts
and their hosts [28, 31]. Secondary endosymbionts, on the other hand, are reported
to be often facultative with a shorter co-evolutionary history with a single host
species [31] and their occurrence may be sporadic [31]. These symbionts may not
necessarily reside in specialized host tissues but may occur extracellularly in the
hemocoel or in other body tissues including fat bodies [18], muscle, nervous tissue,
or gut. Moreover, their occurrence can be in lower titers in comparison with
primary endosymbionts [31].

Many traits of the holobiont mediated by symbiotic microbiota have thus far
been identified revealing the roles of primary endosymbionts. These roles include
aiding in digestion; other ecologically important traits such as increased host
fitness, are frequently conferred by facultative secondary endosymbionts [31].
Husseneder et al. [56] detected a tight co-evolutionary link between termites and
their gut flora that maintains a certain association of species and functional groups.

2.1 Functional Chemistry

Insect societies have collective defense mechanisms as a prominent characteristic,
manifested by defendable nests and defensive adaptations of inhabitants [20, 66].
Termites display a range of anatomical and behavioral adaptations for mechanical
defense. They were, however, also reported to possess efficient chemical weap-
onry, especially for the families Rhinotermitidae, Serritermitidae, and Termitidae
[66]. Current termite taxonomy includes 2 suborders, 7 families, 21 subfamilies,
and 16 tribes. The accepted families are: Termopsidae, Hodotermitidae, Mastot-
ermitidae, Kalotermitidae, Heterotermitidae, Rhinotermitidae, and Termitidae
[67]. In the past, termite taxonomy was based on morphological features. How-
ever, with the development of electron microscopy and DNA fingerprinting, the
world of termites has been tremendously opened with molecular taxonomy and
phylogenetic relationships inferred from mitochondrial COII and 16S sequences
using polymerase chain reaction (PCR). Currently only the head of a termite
worker or soldier is used as source tissue for identification purposes [67].

Soldiers are usually larger in size than the workers, also wingless, blind, and
with powerful mandibles. They guard the nest site and protect foraging workers
outside the nest from ants or other predatory insects. They are unable to feed
themselves so are fed and groomed by workers. Like the workers, their life span is
short in terms of years. They are also able to distinguish colony members and
recognize termites from other nest colonies [63]. Chemical defense in soldiers is
ensured by the exocrine glands, that is, the labial glands, the labral gland, and the
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frontal gland [122]. The labial gland evolved as a modification of glandular
structures existing in the basic anatomical plan of insects, whereas the other two
represent novel secretory organs, exclusive to termites [122]. A fascinating
diversity of defensive chemicals produced by the frontal gland include alcohols,
mono-, sesqui-, di-terpenoid hydrocarbons, ketoaldehydes, fatty acids, macrocy-
clic lactones, and heterocyclic and aromatic compounds. These defense chemicals
are used as irritants, repellents, glues, antihealants, and contact poisons by the
termites [66, 102, 103, 122]. In addition to their defensive function, volatiles from
the frontal gland have also been suggested to be involved in signaling alarm by
fighting or irritated soldiers [66, 122].

Defensive secretions of the frontal gland from termite soldiers were found to be
a mixture of monoterpenes, sesquiterpenes, and diterpenes, with the latter being
the most representative [22]. Analyses conducted on the dichloromethane extract
from soldiers of the Brazilian termite, Nasutitermes macrocephalus (Blattaria:
Nasutitermitinae), identified the presence of two monoterpenes (alpha-pinene and
limonene) and two sesquiterpenes (beta-trans-caryophyllene and gamma-selinene),
and the isolation of one rippertane and six trinervitane diterpenes with activity
against antibiotic-resistant bacteria. Monoterpenes alpha-pinene and limonene
have been reported to inhibit fungal growth by Nasutitermes soldiers [34, 122].

The functional chemistry of the frontal gland secretion was suggested to be co-
evolved with structural aspects of the insect such as the anatomy of the glandular
reservoir, the frontal pore, and the shape of the head and mandibles [66, 104, 122].
The related behavior used in association with defense chemicals exhibits a mul-
titude of defensive strategies, ranging from contact discharge combined with
mandibular biting, to non contact delivery by spraying [66, 122]. Thus, the
chemistry and anatomy of the frontal gland provide information on the evolu-
tionary history of defensive strategies in particular lineages. At the same time,
defensive blends have been suggested to be highly variable at interspecific and
intercolonial scales, both in quality and quantity, thus making the frontal gland
chemistry an interesting tool for studies on taxonomy and biogeography [66].
These blends are composed of a fascinating diversity of defensive chemicals
including alcohols, mono-, sesqui-, di-terpenoid hydrocarbons, ketoaldehydes,
fatty acids, macrocyclic lactones, and heterocyclic and aromatic compounds [66].

Current advances in microbiome studies are also bringing new insights into the
gut symbiosis revealing how gut microbiomes are shaped by priority effects such
as vertical transmission, diet, bacterial transplantation, and antibiotics [111].

2.2 Actinomycete Symbionts of Termites

Origins of host association are diversely distributed across symbiotic bacteria
emerging independently in at least 11 bacterial phyla including Proteobacteria,
Actinobacteria, and Firmicutes [108] and dating back 30–250 million years [31].
In the fungus-growing termite Odontotermes formosanus the representative
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phylotypes were affiliated with four phylogenetic groups, Firmicutes, the Bacter-
oidetes/Chlorobi group, Proteobacteria, and Actinobacteria of the domain Bacteria
[116]. The closest relatives of the actinobacteria inhabiting the gut of Nasutitermes
corniger regardless of the geographical origin of the termite colony were found to
belong to five families of the order Actinomycetales: Propionibacteriaceae,
Streptomycetaceae, Cellulomonodaceae, Corynebacteriaceae, and Rubrobactera-
ceae [76].

Termite gut microbiota investigations using the 16S rRNA gene as a molecular
marker were used to characterize the whole bacterial diversity. These studies
revealed several 16S rRNA sequences of the Actinobacteria phylum falling into
different genera [51, 76]. The analysis of the taxonomic composition showed that
the 16S rRNA sequences affiliated with Actinobacteria account for a minor part of
the gut bacterial microbiota, although the diversity may have been underestimated
in as much as individual taxa present in smaller numbers will not be detected
owing to PCR bias in universal primers on the detection of actinobacteria [49, 76].
Moreover, a discrepancy was found between the isolates obtained by cultivation
and the dominant phylogenetic groups in the clone libraries [48, 76, 81, 112].
Although culture-independent methods allow an accurate description of dominant
phylogenetic groups inhabiting the intestinal tracts of termites, little is known
about the community structure and diversity of gut actinobacteria [76].

For a better understanding of the foundational basis of evolution and long-term
stability of symbioses (i) the evolutionary dynamics of insect-actinobacteria sym-
bioses (ii) the net benefits for the symbiotic partners and (iii) the selective pressures
acting on each partner owing to symbiosis were suggested to be determined by
Kaltenpoth [60]. Nutritional symbioses between insects and bacteria are wide-
spread and common, but actinobacteria seem to be rarely involved in such asso-
ciations [60], instead streptomycetes and other actinobacteria are well adapted to
living in symbiosis with invertebrates where they mostly play a protective role. One
of the most important examples is antibiotic production [12] and might be used to
defend the host’s larvae or food source against infections by pathogens [60, 113].

Scheuring and Yu [111] suggested that selective recruitment of mutualists
might occur if a host can present a rewarding environment to its symbionts that is
simultaneously unattractive to parasites. If the conditions provided by the host are
set correctly the host does not need to choose, or never needs to know, the quality
of any individual symbiont. As a result, the potential symbionts might evolve to
accept the host or to reject it (and remain free-living); according to each symbi-
ont’s type [111]. Antibiotic-producing microbiomes (the most abundant class of
beneficial microbiome in nature), might be one of the examples of such interac-
tions. Cuticular microbiomes in particular are of interest as they release antibiotics
to defend the fungus from parasites. The Pseudonocardia link in ants might be an
example for long-term vertical transmission resulting in the evolution of new
compounds for host protection against parasites. Selective recruitment by ants of
multiple and non coevolved actinobacterial genera from the soil, enabling a ‘‘multi
drug’’ strategy against parasites has also been suggested [111]. In disease-sup-
pressive soils this partner-choice mechanism might be more effective when at
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least one actinobacterial symbiont is vertically transmitted or has a high immi-
gration rate [111].

The environment itself where host species evolve might introduce profound
differences in the community ecology of a microbiome. Gut microbiome com-
position might be governed by host species and by host genotype [4, 111].

2.3 Actinomycete-Derived Chemicals in Termites

2.3.1 Antibiotics/Antifungals

Secondary metabolites are molecules of adaptation that evolved for purposes apart
from primary metabolism and in contrast to primary metabolites; they are pro-
duced by individual species or genera for specific physiological, social, or pred-
atory reasons [96]. These compounds, therefore, are intimately linked with the
ecology of the producing organisms [96], such as the adaptive attine ant interac-
tions with Pseudonocardia, a member of the order Actinomycetales, for their own
protection or sanitation of their nests [91, 114]. An analysis of the chemical
potential of this genus identified a single bioactive compound, which proved to be
a novel cyclic depsipeptide dentigerumycin and specifically inhibited the growth
of pathogenic fungi whereas the cultivar was largely resistant [19, 97]. Moreover,
it has been suggested that through production of non specific broad antifungal
compounds by Pseudonocardia and Amycolatopsis species, ants could also dam-
age their fungal garden by subjecting them to such actinobacterial secretions [109,
114]. Both observations indicate specificity or broad-spectrum activities when
required by the insect for its own defense or selective cultivation requirements.
Fungus-growing ants (Attini, Formicidae) cultivate a basidiomycete fungus in
gardens that the ants nurture with dead or fresh plant substrate. The gardens are
actually mini-ecosystems of competing, commensal, and mutualistic microbes,
including a diverse assembly of filamentous fungi, yeasts, and bacteria [91].

Termites, due to their nesting and foraging activities in soil and on decaying
wood, face invasive pressures from pathogenic microbial species. Their social
organization requires the sharing of nutrients, symbionts, and pheromones; this
then can be conducive to the spread of diseases throughout the colony if such an
invasion occurs [41]. Fungal pathogens constitute the most serious disease threat to
subterranean termites: viral and bacterial pathogens usually enter the insect
through the alimentary tract but many fungal pathogens can directly penetrate the
insect cuticle [10]. Among fungal entomopathogens, Metarhizium anisopliae is a
significant threat to subterranean termites because it is a ubiquitous soil pathogen
that can evade the immune system once it has entered its host [3, 10]. As a result,
termites, as with other social insects [23–25], have evolved a range of defenses
[34, 107] including the antimicrobial peptides called termicins secreted as part of
the external antifungal defense strategy [11]. This strategy depends on the active
dissemination of antifungal secretions among nestmates [40, 41].

Eco-Taxonomic Insights into Actinomycete Symbionts 117



The termicins are constitutively expressed in termite salivary glands and
hemocytes, where they may be released into the hemocoel upon infection [75]
targeting the cell membrane of fungi and some Gram-positive bacteria [21]. Xu
et al. [136] studied Odontotermes formosanus (Blattaria: Termitidae) and Retic-
ulitermes chinensis (Blattaria: Rhinotermitidae), both termite species living in
significantly different habitats, to detect the differences in mRNAs encoding for
different numbers of antimicrobial peptides. O. formosanus is a fungus-growing
termite that constructs a subterranean nest, favoring wet environments and feeding
on a variety of materials such as trees, field crops, and the fungi that it cultivates.
R. chinensis, on the other hand, is an important urban insect pest as well as
occurring in the wild and it typically constructs not only subterranean nests but
also nests in decayed wood on the ground. It does not cultivate fungi and favors a
relatively dry environment; it feeds chiefly on timber-in-service, such as skirting
boards, floors, doors, window frames, and furniture. They found differences in the
number of termicin genes expressed by these two different termite species and
concluded that micro-environmental pressures affected the number of termicin
genes expressed indicating functional chemistry taking place in termite defense
mechanisms [136].

A range of antifungal compounds have been isolated from actinobacteria
associated with termites. Examples include compounds from fungus-growing
termites that revealed a high degree of bioactivity inhibiting the invasive fungus
Pseudoxylaria [130]. New acrylamide and oxazolidin derivatives with antifungal
activity from a termite-associated Streptomyces species were also isolated by Bi
et al. [5].

A qualitative survey of 18 genera from the four largest families, by Siderhurst
et al. [119], Anoplotermes, Amitermes, Cryptotermes, Coptotermes, Gnathamit-
ermes, Heterotermes, Incisitermes, Kalotermes, Margtnitermes, Microcerotermes,
Nasutitermes, Neotermes, Paraneotermes, Prorhinotermes, Pterotermes, Reticu-
litermes, Tenuirostritermes, and Zootermopsis, showed universal norharmane
presence. Norharmane is a b-carboline alkaloid with antifungal activity, particu-
larly active against the entomopathogenic fungus M. anisopliae and reported to be
produced by endosymbionts in termites [14, 118, 119]. Siderhurst et al. [118]
indicated that actinomycetes bacteria were the likely candidates as the endos-
ymbionts that biosynthesize norharmane, because they are components of the
termite gut and are the only microbes known to produce norharmane, such as the
ones reported to be produced by Nocardia species [137].

2.3.2 Pheromones and Volatile Compounds

Pheromones are a subclass of semiochemicals, used for communication within a
species (intraspecific chemical signals) [135]. Evolution of social behavior by kin
selection requires the ability of kin recognition in order to direct altruistic behavior
towards relatives and many eusocial insects are known to distinguish nestmates
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from non-nestmate conspecifics [84]. Discrimination and aggressive responses
towards non-nestmates have been frequently observed in a number of termite
species and such discrimination systems have been shown to protect colonies that
might otherwise be vulnerable to social parasitism by various types of nest
invaders. Matsuura [84] indicated that differential intestinal bacteria composition
leads to production of colony-specific chemical cues that enable nestmate recog-
nition and the composition of the intestinal bacteria was exclusively colony-spe-
cific. Termites that had adsorbed an unfamiliar odor of bacteria sampled from
another colony were fiercely attacked by nestmates, indicating the important role
intestinal bacteria play in nestmate recognition.

Semiochemically mediated interactions between bacteria and insects, have been
reported in relation to insects’ response to specific volatiles emitted by specific
bacteria hosted by the insect itself (gut, mouthparts, etc.) or present in the natural
environment where the insect evolved [6, 78]. Using a cultivation-independent
approach Minkley et al. [86] investigated the structure of the bacterial community
in the gut of termites from four different colonies of Hodotermes mossambicus
using 16S rRNA-based terminal restriction fragment length polymorphism
(T-RFLP). Their analysis of the bacterial gut microbiota revealed (1) a high
consistency of the gut microbiota among nestmates and (2) subtle but distinct
differences in community structure between individuals from different colonies.
They linked their findings to the bacterial metabolism contributing to the colony
odor that can be used as a discriminatory signal. The presence of a colony-specific
bacterial community might thus support the hypothesis that the gut microbiota of
termites is involved in nestmate recognition [33].

Costa-Leonardo et al. [17] in their review indicated that termite cuticles
function as an enormous exocrine gland, producing a mixture of chemical sub-
stances, mainly hydrocarbons which are believed to be involved in nestmate
recognition. Moreover, they noted that the hydrocarbon cuticular composition
differs among termite colonies and these differences might be correlated with
intercolonial aggressions. Habbachi et al. [39] investigated the effect of spinosad
against chemical communication in the German cockroach, Blatella germanica
(L). Spinosad is a biopesticide from the soil-dwelling actinomycete Saccharopo-
lyspora spinosa, which is used to control a variety of insects and is harmless to
mammals and many predatory insects. They reported that a nonlethal dose of
spinosad causes adult male and female B. germanica to exhibit altered responses to
their aggregation pheromone as well as to have a changed cuticular hydrocarbon
profile.

Research related to the composition of the frontal gland secretion and its
function in the nasutitermitinae subfamily of the termites confirmed the presence
of species-specific mixtures of monoterpenes (rarely sesquiterpenes) and diter-
penes. These terpenes frequently occurred with other classes of compounds
(alcohols, ketones, aromatic compounds, and amides) [122]. These complex
secretions from the nasutitermitine frontal gland had different functions including
acting as a repellent to incoming enemies, and as an alarm pheromone coordi-
nating defensive activities [122]. Diterpenes are the most characteristic chemical
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category of the nasutitermitinae including providing novel chemical structures and
they contribute to the physical properties of the secretion such as congealment in
the air by polymerization [102, 122] as well as being poisonous [122, 126, 128].
Monoterpene hydrocarbons present in the mixture are reported to serve as a sol-
vent to the diterpenes, and due to their hydrophobic properties also helping to
dissolve cuticular waxes and enhancing the stickiness and irritancy of the secretion
[2, 122]. Antibacterial trinervitadienes from the termite Nasutitermes triodiae in
Australia have also been reported [138].

Terpenoids comprise the largest, structurally most diverse family of natural
products and play important roles in all living organisms. Diterpenoids of bacterial
origin are known but rare; however, recent advances in genomics have revealed
the biosynthetic potential for terpenoids in bacteria, particularly in the actino-
mycetes [89, 123]. Researchers have recently isolated diterpenes from a Strepto-
myces species (KO-3988) and described five new diterpenes named oxaloterpins A
(1), B (2), C (3), D (4), and E (5). Two new terpenoids, naphterpins B and C from
Streptomyces sp. (CL-190) were also isolated by [124]. New diterpenes, gif-
hornenolones A and B from a non-streptomycete actinomycete Verrucosispora
gifhornensis (YM28-088) were also reported by Shirai et al. [117] as well as from
Mycobacterium tuberculosis by Prach et al. [101].

Volatile terpenoids are also characteristics of actinomycetes. Geosmin,
2-methylisoborneol, and a range of volatile compounds have been detected from
this group of bacteria since the 1960s [35, 59, 105, 110]. Wilkins and Schöller
[133] identified volatile compounds from 26 unsequenced streptomycetes. Out of
these strains, 21 produced geosmin, nine emitted 2-methylisoborneol, and three
released albaflavenone [110, 133]. Utilizing the current advances in molecular
techniques Citron et al. [15] investigated the volatiles emitted by sequenced
actinomycetes to allow correlation of the genetic information with the production
of secondary metabolites. They reported terpenoid volatiles released by 30 acti-
nomycetes known to encode terpene cyclases in their genomes, and concluded that
terpenoids are widespread in actinomycetes. They identified 55 putative geosmin
synthases, 23 homologues of 2-methylisoborneol synthases, and 98 other sesqui-
terpene cyclase homologues in actinomycetes.

Another important link derives from an increased understanding of the sym-
biont communities through analysis of their communication networks. Examples
include the reporting of the presence of odorous-gamma butyrolactones in Gram-
positive bacteria as signaling molecules [27] that might be involved in shaping the
symbiotic actinobacterial communities.

A multitude of antifungal VOCs emitted by bacteria as well as the repression of
phytopathogens in soils through VOCs emitted by these microorganisms have been
reported. Examples of fungistatic VOCs include 1-octen-3-ol, mono- and sesqui-
terpenes, nonanal acid, trimethylamine, and dimethyldisulfide which are produced
by Actinobacteria [58]. One interesting link was reported by Řezanka et al. [106] and
they noted that with the increasing production of avermectins, the synthesis of
geosmin was enhanced by more than one order of magnitude. The avermectins
produced by Streptomyces avermitilis have potent antiparasitic and broad-spectrum
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activity against nematode and arthropod parasites. Although similar in structure to
antibacterial macrolides and antifungal polyenemacrolides, avermectins were
reported to lack antibacterial and antifungal activities [57] and might only play a role
in parasite defenses employed by termites. Termites might recognize antiparasitic
actinomycete-rich environments through geosmin trails and construct their mounds
to protect themselves from termite-feeding parasites such as nematodes [95].

2.3.3 Enzymes

Termites formerly classified as the order Isoptera are now included as part of the
order Blattaria (or Blattodea; cockroaches) [83]. They are broadly divided into the
lower and higher termites [77]. The lower termites are specifically wood-feeding
insects, whereas the higher termites have evolved a more diverse diet and gut
microbiota. Some feed on wood and well-rotted plant matter, some are exclusively
soil-feeders, whereas others grow and feed on cellulolytic fungi [77].

Termites and their symbionts are not only involved in cellulolytic or lignin
decomposition activities but also in aromatic hydrocarbons degradation [9, 83, 94].
Lignin is a highly branched, aromatic polymer that is resistant to microbial deg-
radation; very few bacteria are able to degrade lignin and those that are able, are
dominated by the actinobacteria. Examples include isolation of various strains of
actinobacteria (Micromonospora spp. and Streptomyces spp.) from the hindgut of
various higher termites (Macrotermes, Odontotermes, Amitermes, and Microce-
rotermes) [100] and the widespread existence of actinobacteria in both higher and
lower termites [131]. Recent studies conducted by utilizing the power of molecular
tools on host–symbiont transcriptome confirm host–symbiont collaboration in
cellulose/hemicellulose digestion in the termite gut [125].

The biological roles of oxidative enzymes in actinobacteria might be similar to
those that are found in fungi. These roles are mainly in degrading phenolic
compounds to support a saprophytic life cycle as well as some oxidative enzymes
from actinobacteria playing a role in morphogenesis or antibiotic production [77].
Oxidative enzymes are included in the vast group of enzymes known as the
oxidoreductases and they catalyze biological oxidation/reduction reactions
and play a major role in many chemical and biochemical transformations. The
oxidative enzymes, laccase, peroxidase, and tyrosinase, have been detected in
actinobacteria and peroxidases have been shown to be one of the key enzymes
produced by this group of bacteria during the degradation of lignocellulose
compounds [77].

Measurement of b-1, 3-glucanase activity in Nasutitermes corniger by Bulmer
et al. [10] revealed significant activity in body tissues and secretions including
salivary glands and cuticular washes. Other termite species (Zootermopsis augus-
ticollis, Cryptotermes secundus, and Rubriceps flavipes) also showed robust b-1,
3-glucanase activity. Measurement of (1, 4)-glucanase activity was highest in the
guts of the wood-feeding termites Nasutitermes parvonasutus and Havilanditermes
orthonasus [53, 79]. The fungal entomopathogen Metarhizium anisopliae is a
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natural termite pathogen and is currently being developed for the biological control
of termites and other insect pests. Conidia treated with b-1, 3-glucanases collapse
immediately, hampering the successful antagonistic effect on the insect [10]. Innate
immunity in termites includes cellular and humoral defenses that are activated by
the recognition of pathogen-associated molecular patterns (PAMPs), which are
conserved structural features of microbes, including peptidoglycans in bacterial cell
walls (e.g., lipopolysaccharide (LPS) in Gram-negative bacteria outer membranes,
and b-1, 3-glucans in fungal cell walls). Termite Gram-negative bacteria binding
proteins (GNBPs) and b-1, 3-glucan recognition proteins (BGRPs) share sequence
homology with bacterial b-1, 3-glucanases. The purified termite GNBP has been
shown to exhibit direct antifungal effector activity by breaking down b-1, 3-glucans
in fungal cell walls [10].

Extracellular enzymes with glucanase activities are an important component of
actinomycete-fungus antagonism. Actinomycetes, in particular streptomycetes, are
reported to produce extracellular b-1, 3-, b-1, 4-, and b-1, 6-glucanases [30, 127]
and these enzymes can hydrolyze glucans from fungal cell walls resulting in lysis
of fungal cells [26]. A streptomycete enzyme system active in lysing Aspergillus
oryzae and Fusarium solani hyphal walls contained chitinase and several b-1, 3
glucanase components were also reported by Skujins et al. [121]. These enzymes
were shown to be instrumental in the process of dissolution of hyphal walls.
Interestingly, recently endo-b-1, 3-glucanase was reported to be acquired by
horizontal gene transfer from bacteria in nematodes indicating multiple indepen-
dent horizontal gene transfer events that might have helped in shaping the evo-
lution of several different life strategies in nematodes [61]. All these findings
might indicate the origins of shared sequence homology in enzymes of both host
and the symbiont.

Actinomycetal proteins other than hydrolases were also indicated to be
involved in biocontrol of fungi. Examples include the report of an alkaline protease
inhibitor (API) as a novel class of antifungal proteins against phytopathogenic
fungi by Vernekar et al. [129]. The activity of API was reported to inhibit fungal
serine alkaline protease, which is indispensable for the growth of fungi.

3 Diversity of Termite Microbial Symbionts and Actinoflora

3.1 Molecular Analysis of Uncultured Microflora
and Metagenomic Approaches

Termite guts are reported to harbor 106–108 microorganisms comprising 300
species of protists, bacteria, and archaea (which are mostly unique to termites) as a
highly structured symbiotic community essential for host survival on recalcitrant
materials in their natural environments [47].
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Hongoh et al. [50] demonstrated that congeneric termites harbored very similar
bacterial gut microbiota, irrespective of the individual, colony, location, and host
species. The similarity in bacterial gut microbiota among congeneric termites was
also demonstrated by Schmitt-Wagner et al. [112] with the African soil-feeding
termites Cubitermes spp. (family Termitidae; subfamily Termitinae). They
reported moderate to considerably high levels of similarity in microbiota using
T-RFLP analysis. Their findings indicated that a high similarity of bacterial gut
microbiota within a termite genus may be a general trait for termites leading to a
very stable and strong symbiotic relationship.

Hongoh et al. [50] concluded that the majority of gut bacteria from distantly
related termites, including the genera Microcerotermes, Reticulitermes, and Cu-
bitermes, constituted monophyletic clusters that were distinct from other bacterial
lineages. This indicates that the majority of gut bacteria may not be allochthonous
but rather be autochthonous symbionts that are unique to termites. They also noted
that the bacterial gut microbiota was greatly different between the host termite
genera Microcerotermes and Reticulitermes, in contrast to the high similarity
within each termite genus. Gut bacteria may have differentiated after acquisition
by the ancestors of these termites, displaying differences among dominant bacte-
rial groups such as the genus Treponema and the orders Clostridiales and Bac-
teroidales, but also in other minor phyla such as Actinobacteria, Proteobacteria,
‘‘Synergistes,’’ Planctomycetes, and others. A very diverse gut bacterial commu-
nity might have coevolved with their host termites and have formed a stable
symbiotic complex specific to a genus of termites [50].

Fisher et al. [32] examined the diversity of gut bacteria of Reticulitermes
flavipes using 16S rRNA gene sequencing and amplified rDNA restriction analysis
and identified a broad taxonomic range of ribotypes from six phyla within the
Domain Bacteria including actinobacteria. Studies conducted by Costa et al. [16]
using the phylogenetic analysis of cloned 16S rRNA gene fragments from Cor-
nitermes cumulans again identified the presence of actinobacteria. Similarly
Shinzato et al. [116] constructed a bacterial 16S gene clone library from the gut
microbial community of Odontotermes mossambicus and with subsequent RFLP
analysis again identified four phylogenetic groups including actinobacteria. Hon-
goh et al. [48] found for the first time more than 90 % of the phylotypes using 16S
rRNA genes and some constituted monophyletic clusters with sequences recovered
from the gut of other termite species.

Fall et al. [29] compared the bacterial community structures of the soil-feeding
termite (Cubitermes niokoloensis) including the mound, termite gut sections, and
surrounding soil using PCR-denaturing gradient gel electrophoresis (DGGE)
analysis and cloning and sequencing of PCR-amplified 16S rRNA gene fragments.
DGGE analysis revealed a drastic difference between the genetic structures of the
bacterial communities of the termite gut and the mound. The soil-feeding termite
mound was dominated by the Actinobacteria phylum, whereas the Firmicutes and
Proteobacteria phyla dominate the gut sections of termites and the surrounding soil,
respectively. Phylogenetic analyses revealed a distinct clustering of Actinobacteria
phylotypes between the mound and the surrounding soil. The Actinobacteria clones
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of the termite mound were diverse, distributed among 10 distinct families, and like
those in the termite gut environment were lightly dominated by the Nocardioida-
ceae family.

Phylogenetic analysis of the gut bacterial microflora of the fungus-growing
termite Macrotermes barneyi was conducted by Zhu et al. [139]. Although many
of the clones (95 %) detected were derived from three phyla within the domain
Bacteria: Bacteroidetes, Firmicutes and Proteobacteria clones from Deferribac-
teres, Actinobacteria and Planctomycetes were also found.

The traditional molecular techniques such as DGGE, RFLP, and FISH only
revealed information with respect to how they are applied to study the composition,
diversity, and dynamics of insect gut symbiotic microbiota [92]. However,
advances including ‘‘omics’’ are now bringing new insights into the termite
microbial symbiosis [45, 47, 98, 115]. Increasing numbers of genome sequences for
many symbionts are now revealing their complete set of genes as well as their
functional contribution to their host’s metabolism [36, 37]. This metagenome
analysis, together with the recent advances in next-generation sequencing, are also
providing substantial sequencing information, and in-depth microbial diversity
analysis; and modelling of pathways for biological processes are thus now possible
[115]. Metagenome sequencing, metatranscriptome and metaproteome methods are
currently facilitating studies of system dynamics and gene expression [54, 115].
The integration of different ‘omics’ level data will soon allow us to understand how
the insect gut works as a system to carry out these functions [44, 79, 115].

Another important development following these molecular advances has been
the report of numerous cases of bacterial symbionts with extraordinarily small
genomes [85, 88]. These organisms were claimed to represent independent lin-
eages from diverse bacterial groups and they carry diminutive gene sets (rivaling
some mitochondria and chloroplasts in terms of gene numbers) and lack genes that
are considered to be essential in other bacteria [85]. The common features these
bacteria share (e.g. fast protein evolution) point to highly degenerate genomes that
retain only the most essential functions, often including a considerable fraction of
genes that serve the hosts resulting in the review of the currently defined concept
of symbiosis and host-associated microbiota [85]. Komatsu et al. [62] were able to
induce efficient production of natural products including terpenoids by controlled
minimization of the genome of the S. avermitilis. These findings might indicate
host-specific functional chemistry by symbionts once they are acquired by the
insects via minimized genomes.

3.2 Culturing the Representatives of Actinoflora

Lefebvre et al. [76] studied the actinobacterial community structure and putative
representative members associated with the gut of the wood-feeding termite,
Nasutitermes corniger (Motschulsky), using nested PCR-DGGE and 16S rDNA
sequence analyses. Regardless of the geographical origin of the termite colony
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they located members of the families of Propionibacteriaceae, Streptomycetaceae,
Cellulomonodaceae, Corynebacteriaceae, and Rubrobacteraceae. They found that
16S rDNA sequences affiliated with the families Streptomycetaceae and Cellu-
lomonodaceae had more than 97 % similarity with the closest isolated strains.
Their findings indicated that members of the order Actinomycetales account for
the largest proportion of the Actinobacteria phylum inhabiting the gut of the
termite N. corniger and actinomycetes that have not yet been cultivated are present
in their gut (Fig. 1).

Culturing microorganisms, particularly those representing new taxa, is an
indispensable requirement for the full description of diversity. However, despite
the advances in molecular detection techniques, media and growth conditions
routinely used to culture microorganisms still only reveal a fraction of the envi-
ronmental microflora [70, 99]. Authors agree with Palleroni [99] in that since the
1980s popular methods of molecular analyses of natural microbial communities
lacked resolving power in terms of identification at the species level, as well as
failing to give sufficient information about the function of newly detected members
of the microflora. Recent advances in metagenomics together with next-generation
sequencing will now provide enormous sequencing information, allowing in-depth
microbial diversity analysis [115]. Moreover, recent advances in metatranscri-
ptomics, and metaproteomics will gradually unveil the true picture of the sym-
biotic system [46]. Genomics targeting a single species of the unculturable
microbial members will also provide an improved understanding of the symbiotic
interrelationships among the gut microorganisms as well as revealing the members
and functions of the multilayered symbiotic system [46].

If combined with an objective approach, these molecular advances can provide
guidance towards design of target-directed culturing methods, thus supplementing
their role in surveying the composition of microbial communities and in the
characterization of new prokaryotic taxa [42, 99] including termite symbionts.
Cultured representatives of termite symbiotic actinoflora will then generate further
information on their physiology and growth requirements of these biotechnolog-
ically important taxa. Sinma et al. [120] by using a highly selective agar designed
to detect rare actinomycetes [43] isolated a novel species of Saccharopolyspora
from the guts of a Speculitermes species. Matsui et al. [83] by using enrichment
cultures using carboxymethyl cellulose or filter paper as the sole carbon source
identified 23 groups of cellulolytic bacteria including the members of the order
Actinomycetales. Kurtböke and French [73] via the use of polyvalent bacterio-
phages investigated the layers of termite (Coptotermes lacteus (Froggatt)) gut
actinoflora and reported that members of the family Streptomycetaceae were the
dominant species of the gut actinoflora. Abundance and distribution of these taxa
were similar to soil layer distribution of actinomycetes, streptomycete species
constituting the majority of the species cultured followed by the members of the
family Micromonosporaceae (Table 1).

To be able to culture the non-streptomycete fraction of the actinoflora they
applied polyvalent streptomycete phages to remove the streptomycete fraction of
the actinoflora investigated [73]. Once the plates were clear of streptomycete
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Fig . 1 Phylogenetic tree showing the relationship between the sequences of DGGE bands; solid
line sequences from uncultured strains; dashed line sequences from characterized isolate strains;
(*) sequences retrieved in termite gut. The bootstrap percentages are indicated for NJ/MP/ML
(�Lefebvre et al. [76])
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species that impede the growth of other actinomycete taxa, representatives of non-
streptomycete actinomycetes from other family members of the order Actinomy-
cetales including rare and novel ones were detected (Fig. 2). Polyvalent actino-
phages combined with the use of other selective inhibitors in the agar (e.g.,
nalidixic acid used against Gram-negative bacteria) allowed the detection and
isolation of other non-streptomycete genera [70] in the order of dominance of
termite gut actinoflora.

Tested representatives of these isolates were found to produce hydrolytic
enzymes [74], and volatiles (e.g., aldehydes, ketones, terpenoids, geosmin,
2-methylisoborneol Stephen, Hayes, French and Kurtböke, unpublished data)
(Fig. 3), as well as antifungal/antimicrobial compounds (Romero-Bonifaz, Grko-
vic, French, Kurtböke, and Quinn, 2013, unpublished data) produced by symbionts
in termites located in the Sunshine Coast Region.

Table 1 Culturable diversity
of actinomycete families
from termite guts

Order of dominancea Actinomycete familyb

1 Streptomycetaceae
2 Micromonosporaceae
3 Nocardioidaceae
4 Nocardiaceae
5 Pseudonocardiaceae
6 Thermomonosporaceae
7 Corynebacteriaceae
8 Mycobacteriaceae
9 Streptosporangiaceae
10 other
a Actinobacterial families are presented in decreasing order
b Cultured representatives of different actinomycete families
from the guts of C. lacteus collected in the Sunshine Coast
region

Fig. 2 Electron micrograph
of a non-streptomycete
actinomycete isolated from
the gut of Coptotermes
lacteus at
magnification 9 5000
(bar = 5 lm)
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4 Future Prospects

Current worldwide efforts related to insect gut symbiosis indicate that Strepto-
myces species are widespread inhabitants of invertebrate guts and possibly con-
tribute to the degradation of polymeric carbohydrates or to antimicrobial defense
[113]. Our observations suggest that termites possibly recognize actinomycete- (in
particular streptomycete-) rich environments and construct their mounds in those
areas. Function-related recognition and harboring of VOC and anti-insecticidal
compounds producing actinomycetes by termites for subsequent use might occur.
These actinomycetes might aid termites in their different needs ranging from
nestmate recognition to mycofumigation [13] of their nests (Fig. 3).

Termites play a major role in foraging and degradation of plant biomass as well
as cultivating bioactive microorganisms for their defense. Current advances in
‘‘omics’’ sciences reveal insights into function-related presence of symbionts
[46, 52]. These findings indicate significant potential for the use of these identified
functions of termite symbionts and their relevant genes for biotechnology and
biodiscovery [82].

Metagenome and metatranscriptome analyses of the gut microbiota are now
revealing the presence of diverse functional genes required for fermentation,
reductive acetogenesis, and nitrogen fixation [46, 80]. Following the long-term
efforts in cultivation of the fastidious microorganisms and through the ecological,
physiological, and biochemical studies of the whole insects and cultured gut sym-
bionts these functions have been recognized as essential bacterial activities in the
symbiotic system [46]. Functional analysis of the complete genome sequences
acquired from intracellular symbionts of the gut indicates their functional roles in the
termite gut systems. As further advances become available allowing the use of both
meta- and single-species–targeting genomics, transcriptomics, and proteomics our
understanding of this highly evolved and complex symbiotic system will increase.
Selective isolation will thus play an important role in culturing these functional gene
carrier microorganisms for their further use in biotechnology and biodiscovery.

As recently stated by Kurtböke [68–72] the success in recovery of rare acti-
nomycetes, including novel members of the genus Streptomyces, will only derive
from a sound understanding in ecology, taxonomy, physiology, and metabolism of
actinomycetes. If such in-depth understanding is combined with novel information

OH
OH

geosmin 2-methylisoborneol

Fig. 3 Structures of sample
volatile compounds detected
from C. lacteus gut-
associated Streptomyces
species
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being continuously generated with the aid of advancing molecular information, a
powerful knowledge platform revealing the whereabouts as well as taxonomic and
chemical identities of previously undetected bioactive actinomycetes will be
established.
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Bioresources for Control of Environmental
Pollution
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Abstract Environmental pollution is one of the biggest threats to human beings.
For practical reasons it is not possible to stop most of the activities responsible for
environmental pollution; rather we need to eliminate the pollutants. In addition to
other existing means, biological processes can be utilized to get rid of toxic pol-
lutants. Degradation, removal, or deactivation of pollutants by biological means is
known as bioremediation. Nature itself has several weapons to deal with natural
wastage and some of them are equally active for eliminating nonnatural pollutants.
Several plants, microorganisms, and some lower eukaryotes utilize environmental
pollutants as nutrients and some of them are very efficient for decontaminating
specific types of pollutants. If exploited properly, these natural resources have
enough potential to deal with most elements of environmental pollution. In addi-
tion, several artificial microbial consortia and genetically modified organisms with
high bioremediation potential were developed by application of advanced scientific
tools. On the other hand, natural equilibria of ecosystems are being affected by
human intervention. Rapid population growth, urbanization, and industrialization
are destroying ecological balances and the natural remediation ability of the Earth is
being compromised. Several potential bioremediation tools are also being destroyed
by biodiversity destruction of unexplored ecosystems. Pollution management by
bioremediation is highly dependent on abundance, exploration, and exploitation of
bioresources, and biodiversity is the key to success. Better pollution management
needs the combined actions of biodiversity conservation, systematic exploration of
natural resources, and their exploitation with sophisticated modern technologies.
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1 Introduction

The ever-growing global population and industrialization are causing severe pres-
sure on the atmosphere of our planet. An increase in the number of people calls for
an increase in resources, which come directly or indirectly from nature at the cost of
a balanced ecosystem. Manufacturing industries, mining, refineries, and power
plants are well-known sources of toxic and hazardous chemicals that pollute air,
water, and land. Vehicular pollutants, domestic and municipal wastage, agricultural
and fish farm wastage, and pesticides are also a considerable source of pollutants.
The excessive release of solid waste, wastewaters, industrial sludge, and slurries are
deteriorating water and soil quality, and increased gaseous emissions cause air
pollution and increase the atmospheric level of greenhouse gases. Most of the
pollutants can be absorbed or degraded by natural activities of plants and micro-
organisms but the Earth is losing its intrinsic remediation power due to the
destruction of natural ecosystems. As a result, the atmosphere is being contami-
nated with cumulative pollutants. Increased demand of land and continuous
extraction of natural resources also make significant contributions to the destruction
of ecosystems. Natural CO2 absorption is sharply decreasing due to extreme
deforestation and destruction of marine ecosystems by destructive fishing tech-
niques and oil/chemical spilling. However, the problems can still be addressed by
using natural resources; the processes are generally known as bioremediation or
phytoremediation, where the biological agents are used to clean up polluted envi-
ronments. Bioremediation is an ecofriendly technology that does not use any acid,
alkali, or toxic chemicals. In addition, it works at lower temperature and pressure
that consume less energy than conventional chemical processes.

Bioremediation techniques use microbial reactions (metabolisms) for removing
contaminants from polluted soil, sediment, and water. Microorganisms can catalyze
several types of reactions including hydrolysis, cleavage, oxidation-reduction,
substitution, dechlorination, dehydrogenation, and dehydrohalogenation [134].
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Biological decontamination techniques typically rely on enhancement of biodeg-
radation, biotransformation, or biosorption of the contaminants by promoting the
growth of specific bacteria, fungi, microalgae, or a mixed microbial consortium that
can use the pollutants as energy or carbon sources and convert them into
nonhazardous or less hazardous compounds [6]. Bioremediation by stimulating
the growth and metabolism of an indigenous microbial community is known as
biostimulation. Microbial activities can be stimulated by addition of growth-pro-
moting substances (nutrients or some special chemicals), by enhancement of oxy-
gen availability, by controlling physical parameters, or by using a combination of
these techniques [6, 58, 121]. The indigenous microbial inhabitants of the con-
tamination sites are often well adapted to survive at the physicochemical condition
of the contaminated fields. In addition, their metabolism often depends on utili-
zation of the contaminants as nutrient or electron acceptor. In fact, indigenous
microorganisms are working unnoticed, day and night, to keep the environment free
of contaminants. However, introduction of selected nonnative microorganisms is a
useful strategy when the indigenous microorganisms cannot remove certain pol-
lutants. Biological decontamination by addition of one or more external microbial
species is known as bioaugmentation. Natural or synthetic microbial consortia and
even specially designed genetically engineered microorganisms can be used for
bioaugmentation when no known natural species shows the desired activity.

Bioremediation can be performed in situ by artificially increasing the desired
microbial activity at the contaminated sites or by ex situ methods where the con-
taminated material is removed from the site and decontaminated by some special
treatment, for example, using bioreactors. In situ bioremediation techniques include
bioventing, biostimulation, bioaugmentation, biosparging, and some composting
methods. In situ techniques are preferred over ex situ techniques due to fewer
equipment requirements and economic feasibility. However, a variety of physical,
chemical, and biological factors of contaminated sites determine the metabolic
activity of microbial populations and hence their survival and bioremediation ability
[134]. Ex situ bioremediation is a relatively expensive method that needs treatment
plants and several pieces of equipment. Application of this technique is not
restricted by physicochemical conditions of the polluted site and it is extremely
useful if the pollutants need (chemical) pretreatment prior to bioconversion.
Although this technique is not practicable for very large-scale pollution, the tech-
nique is advantageous for recovering valuable substances from the pollutants.

Plants are often used for remediation of heavy-metal–polluted soil and water.
Certain plant species can absorb heavy metals and accumulate them in their biomass,
which are then harvested and processed for safe disposal of heavy metals or even for
their extraction and reuse. They are also able to degrade a few organic and inorganic
compounds including petroleum hydrocarbons and pesticides. Plants play a most
important role in controlling air pollution by absorbing toxic gases including several
greenhouse gases. The use of green plants for decontaminating polluted soil, water,
or air is known as phytoremediation. Plants are also used for aeration of polluted soil
or water to facilitate microbial bioremediation. In many cases, successful pollutant
removal depends on the combined action of plants and microorganisms. Genetic
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engineering techniques are also applied for development of transgenic plants with
enhanced phytoremediation capability. Phytoremediation techniques are useful in
removing pesticides, solvents, explosives, and crude oil contaminants, and also for
long-term restoration of large contaminated areas such as mining grounds.

2 Methods for Exploration and Development of New
Bioresources

Natural resources have unimaginable potential for establishing and maintaining
perfect ecological equilibrium in favor of a sustainable ecosystem. The systematic
search for discovery and development of new sources of chemical compounds,
genes, microorganisms, macroorganisms, or any other valuable products from
natural resources is termed bioprospecting. It is an umbrella term that includes a
range of processes and techniques starting from very primitive prehistoric practices
to modern molecular and genomic techniques. Screening of many bioremediating
agents was made possible by bioprospecting versatile ecosystems. In addition to
bioprospecting natural resources, genetic engineering techniques are also applied
for development of suitable bioremediation agents. This section focuses on cur-
rently used most common bioprospecting techniques and their relevance in pollu-
tion control. The techniques are diagrammatically presented in Fig. 1.

Fig. 1 Diagrammatic presentation bioresource exploration for bioremediation
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2.1 Nonmolecular Bioprospecting

In traditional bioprospecting practices, natural resources were randomly screened
for desired chemical or biological activities without any scientific understanding
and the crude products were often used without further purification. However,
traditional knowledge played a significant role in isolating several useful com-
pounds from known species of plants, animals, and microorganisms [29, 40, 113].
Most common nonmolecular bioprospecting programs use assay-based screening
techniques to isolate the targeted chemical compound, microorganism, plant, or
animal from a rationally selected source, although identification of the microor-
ganism or the active compound is usually performed by molecular techniques. The
exploration sites (ecosystems) are usually selected based on a set of physical,
chemical, and biological parameters whereas active biomolecules are screened in
plant, animal, or microbial species most likely to have the desired activity; for
example, hot springs can be explored for thermophilic microorganisms and acti-
nomycetes are frequently screened for novel antimicrobial compounds [19]. The
natural inhabitants of an ecosystem need to adapt themselves to its physical and
chemical conditions, which make extreme environments a potential source of novel
compounds [103]. For the same reason, polluted environments are a rational source
of pollutant-degrading organisms; intrinsic plant or microbial species of a con-
taminated site may be most active in its bioremediation. Exploring previously
unexplored unique ecosystems also increases the chance of discovering novel
organisms and their metabolites; several novel compounds are being isolated from
newly discovered marine animal, plants, macroalgae, and microorganisms [40, 71,
74]. Despite significant advancement of molecular and genetic techniques, non-
molecular bioprospecting is still the most successful method for discovering novel
bioresources.

The success of activity-based nonmolecular microbial bioprospecting is generally
limited by the fact that the microorganism needs to grow and produce the targeted
metabolite under laboratory conditions. Nonculturable microorganisms constitute a
significant fraction of most microbial communities and they have equal potential for
producing any targeted product. In addition, many valuable microbial metabolites
are produced by unknown stress-induced metabolic pathways or by interspecies
interaction of the natural microbial community [85, 92, 114]. These products would
remain undiscovered without application of modern molecular tools, which help to
study interspecies interaction, nonculturable microbial communities, and their
metabolic pathways [46, 54, 143]. Animal and plant products isolated by nonmo-
lecular bioprospecting techniques often face challenges for large-scale production,
economic feasibility, and long-term viability. Their continuous uninterrupted iso-
lation from the wild is nearly impossible and large-scale artificial cultivation of many
species is either impossible or impracticable. However, these problems can be more
conveniently solved by application of genetic engineering techniques and biopro-
specting can still be carried out with nonmolecular approaches.
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2.2 Molecular Bioprospecting Techniques

Environmental bioprospecting got a new tempo with the recent development
of molecular biology, bioinformatics, and high-throughput screening techniques
[31, 34, 42, 142, 150]. Molecular techniques are used for understanding the com-
position of total microbial communities including nonculturable microorganisms.
Genomics and proteomics approaches are useful for understanding what genes or
metabolic pathways are involved in a particular activity such as biodegradation.

2.2.1 16S rRNA Gene Analysis Approach

The sequence-based identification of microbial species caused significant
advancement in the field of microbial bioprospecting [67, 113, 122]. The 16S rRNA
gene sequence is used for identification of microbial isolates. This approach is
useful for understanding what microorganisms are present in an ecosystem or
exactly which species exert the desired activity. 16S rRNA genes can function as an
“evolutionary clock” because their nucleotide sequences are conserved within a
microbial species. The16S rRNA gene sequence of an isolate can be compared with
a database, which establishes phylogenetic location of the newly isolated micro-
organism in the microbial kingdom. Identification and classification of microbial
isolates are performed using isolated DNA from a pure culture whereas microbial
diversities in environmental samples are estimated through metagenomic approa-
ches. As a result, the 16S rRNA gene analysis approach has the potential to identify
new microbial species (including nonculturable species) that play an active role in
environmental bioremediation, which are otherwise impossible to identify by
nonmolecular techniques. This method has added significantly to the field of
microbial bioremediation because it can be used to understand changes of microbial
composition by comparing the species present at different stages of bioremediation.
In addition, understanding phylogenetic locations of pollutant-degrading microbial
species may be helpful for designing artificial microbial consortia for bioremedi-
ation of specific pollutants. The 16S rRNA gene analysis approach is very effective
in identifying microorganisms but phylogenetic knowledge of bioremediating
microbes does not necessarily predict physiological or functional aspects of a new
isolate. Metabolic functions of certain microbial strains are sometimes predicted by
comparing those of nearly related species although they may not be true in all cases
[76]. 16S rRNA genes are directly related only to microbial evolution and
straightforward prediction of functional aspects may cause gross misinterpretation
of the phylogenetic information. Use of this technique should be limited only to
phylogenetic characterization and identification of microorganisms.
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2.2.2 Functional Genomics and Proteomics Approaches

Functional genomics and proteomics are great tools for understanding which genes
and metabolic pathways are involved in bioremediation. These tools are extremely
useful for understanding the dynamic aspects of gene expression and protein
function at the level of transcription, translation, protein–DNA, and protein–protein
interactions. Functional genomics and proteomics studies give a complete picture
of how biological function arises from the information encoded in an organism’s
genome. Similar studies are also possible with the genome, transcriptome, or
proteome of an entire community, which are usually covered under the subfields of
functional metagenomics, metatranscriptomics, or metaproteomics. All these stud-
ies use advanced sequencing and high-throughput technologies to establish the
function of genomes at the levels of DNA, RNA transcripts, and protein products,
which explain the relationship between an organism’s genomic structure and its
phenotypic response to environmental changes.

The major advantages of the functional genomics approach come from the fact
that it expands the scope of biological studies from investigating a single gene
expression to investigating expression of all the genes of a biological system.
Quantifying the total gene expression in a microbial cell is useful in understanding
upregulation and downregulation of genes in response to a toxic pollutant, which in
turn provide information regarding the mechanisms involved in the defense,
detoxification, or adaptation to the polluted surroundings. Cellular changes,
including induction and expressions of regulatory proteins/enzymes in response to
external stimuli such as aromatic hydrocarbons and heavy metals, were studied in
detail using the techniques of functional genomics and proteomics [115, 150–152].
These studies revealed that pollutant degradation is a complex phenomenon
involving several auxiliary proteins (such as heat shock proteins and membrane
proteins) in addition to the catabolic enzymes. Identification of these proteins and
their corresponding genes would be useful in improving the bioremediation capa-
bility of microorganisms by genetic engineering [83]. In addition, the specific
pollutant-degrading capability of a single microorganism or a microbial community
can be assessed by analyzing the total proteome or transcriptome of the microor-
ganism(s) grown in the presence of the pollutant; upregulation of the relevant
catabolic enzyme(s) will indicate potential bioremediation application of the
microbial species or community. However, microbial degradation of pollutants is
extremely complex at the molecular level and application of functional genomics in
the field of environmental biotechnology is still in its infancy.

2.2.3 Metagenomic Approaches

Metagenomics is a very useful technique for understanding the entire microbial
community of a polluted site or a site undergoing bioremediation treatment. It is the
technique for studying metagenomes, the collective genetic material isolated
directly from an environmental sample without culturing the microorganisms. This
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technique provides direct access to the genome of an entire microbial community
whereas traditional cultivation-based genomics can analyze only culturable
microorganisms and thus miss a significant fraction of the (nonculturable) microbial
population. Metagenomics is extremely relevant in bioremediation because vast
majorities of microbial populations of contaminated sites are adapted to extreme
environments and cannot be cultured in any defined laboratory condition. A better
understanding of how microbial communities cooperatively cope with toxic pol-
lutants helps improve bioaugmentation or biostimulation strategies.

Metagenomics commonly refers to construction and analysis (screening) of
metagenomic libraries. Although a range of techniques is used for metagenomic
library construction, a typical protocol can be divided into the following steps: (1)
extraction of environmental DNA and generation of DNA fragments of appropriate
size, (2) ligation of the fragments (insert) into appropriate cloning vectors (e.g.,
cosmid, fosmid, or bacterial artificial chromosome) depending on their size, (3)
transformation of the recombinant construct into a suitable host cell, and (4)
sequencing of the clones. The result is a metagenomic library, consisting of
thousands of cells carrying the DNA fragments from the metagenome. The next
step is screening the clones containing specific sequences that are responsible for
particular activities or exploring functional and genetic diversities. Metagenome
analysis can also reveal unknown DNA sequences that describe novel functions of
environmental microorganisms, impossible to discover by culture-based techniques.
However, metagenome isolation from a chemically complex, highly undefined
polluted environment (such as industrial sludge, wastewater, or acid mine drainage)
itself is a challenging job due to interference of inhibitory contaminants. Extraction
of total metagenomic DNA for successful representation of all microbial genomes
involves vigorous extraction methods that cause DNA shearing to low-size frag-
ments [37]. Moreover, directly extracted metagenomic DNA from some heavily
polluted environments that contains very low cell densities may not be sufficient for
subsequent library construction; it needs PCR-independent whole genome ampli-
fication techniques [25, 127]. Such a technique for whole-genome amplification
using a minute quantity of metagenomic DNA may introduce some amplification
bias but give access to information that would otherwise remain inaccessible [4].

Nonetheless, screening or analysis of a metagenomic library is also a challenging
and laborious job. Two different screening techniques are used in the biopro-
specting of metagenomic libraries: function-driven screening for an expressed trait,
and sequence-driven screening for a specific DNA sequence. Function-driven
screenings are often based on heterologous expression of the desired trait and
selection is dependent on successful expression of the functional gene at a
detectable level. The success rate of this approach decreases when the signals are
detected by low-throughput screening techniques [127]. Fortunately, recent appli-
cations of several automated techniques such as automated colony picking, pipet-
ting robotics, use of microtiter plates, and informatics-assisted data management
have improved the success rate of function-driven metagenomic library screening
[75]. The function-driven screening “hit” rate can also be increased by simultaneous
use of several expression hosts, by enrichment of the community genome with
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desired traits prior to the DNA isolation for metagenomic library construction,
substrate-induced gene expression, and by application of novel high-throughput
screening strategies [104]. In contrast, the screening hit of sequence-driven analysis
is much higher due to the availability of sophisticated high-throughput molecular
tools. A sequence of interest can be detected by designing suitable PCR primers
(based on conserved DNA sequences) or by hybridization with target-specific
probes (such as group-specific 16S rRNA-targeted oligonucleotide probes). Both
PCR-based and hybridization techniques are dependent on information from dat-
abases and, therefore, these techniques can only be applied for the identification of
new members of known gene families [38]. Also linking a metabolic function to
specific microbial species needs phylogenetic and functional genes to be inserted in
the same construct; this is possible only by constructing large DNA insert libraries.

Shotgun sequencing and screening of cloned libraries is another useful and
highly sophisticated approach to understanding the entire metagenome of any
environment. Using this method it is possible to understand which microbes are
present in the ecosystem and what metabolic processes are possible in the microbial
community [43]. However, predicting correct metabolic pathways using this mas-
sive amount of data is very challenging especially for complex environmental
samples. Accuracy of the sequence-driven approach is also very much dependent
on the reliability of the information available in various sequence databases. In
practice, a combination of function-driven and sequence-driven approaches may be
the best solution for understanding a complex and dynamic microbial ecosystem of
a site undergoing bioremediation treatment.

2.3 Genetic Engineering Techniques

Natural plants and microbial species are very effective in biological remediation of
various polluted sites but they often fail to deal with some complex pollutants,
especially when the pollutants are present in high concentration [52]. With the
advancement of science, newer chemicals and complex polymers are being syn-
thesized every day that cannot be degraded by any natural organism. Genetic
engineering can play some role here. Plants and microorganisms can be engineered
to enhance the bioremediating efficacy of already active bioremediating organisms
[137]. For example, heavy-metal phytoremediating plants can be engineered to
increase the number of metal transporters, to enhance intracellular ligand produc-
tion that keeps accumulated metalloids in a safe form, or to biochemically transform
the absorbed metals to less toxic or volatile derivatives. Novel plant and microbial
strains with the desired bioremediation properties can be developed by engineering
catabolic enzyme affinity and specificity, by modifying catabolic pathways, and by
improvement of genetic stability. Several engineered organisms were reported to
degrade the pollutants that are difficult to break down using native species [41, 65].
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Genetic engineering is the biotechnological process for modifying the genome of
a living organism, which is typically done by insertion or manipulation of one or
more gene in the genome of the organism. Insertion is a widely used genetic
engineering technique in bioremediation and usually practiced by transferring one
or more genes from one organism to another [144]. Insertion of foreign gene(s) is
essential when the most suitable organism (as per other criteria) does not have the
desired activity and the source organism (that contains the gene) could not be used
in that particular application due to some practical limitations. The most important
consideration for inserting a foreign gene is to determine which gene to add. The
answer is directly related to what novel function is desired in the target organism or
what problem is to be solved using the engineered organism. The next point is
where to find the gene or how to search for it. Screening relevant genetic libraries is
often helpful to find the correct gene. Potentially any gene from any organism or
even a synthetic gene that encodes the desired protein can be introduced in the
organism but it must be properly linked to the expression machinery of the host.
This raises the question of where to insert the gene and how. The problem is
relatively simple if the gene can be introduced, maintained, and expressed using an
extrachromosomal vector (such as plasmid). However, the stability of the extra-
chromosomal DNA and availability of expression machinery are among the other
important concerns [59]. The integration site should be carefully selected when the
foreign gene is to be inserted within the organism’s chromosome; it should not
interrupt any native functional gene. A range of techniques is available for making a
DNA construct (insert + vector), for inserting the construct into the target cell, and
for selecting the properly transformed cells, but the researcher needs to decide
which one is most suitable for the experimental system.

The function of an indigenous gene can be modulated by inserting, deleting, or
replacing one or a few nucleotides. The process is called genetic mutation. Cor-
rectly designed (site-directed) mutation may cause a significant change of physical
properties, structure, or function of the engineered gene product (protein). Site-
directed mutations are achieved by using the finely tuned molecular biology tools
that can selectively change only the targeted nucleotide(s) in the entire genome.
Mutation can also be introduced in nonselective random sites of the genome by
physical or chemical stress [26, 51, 101]. This technique is very useful for devel-
oping or improving the performance of bioremediating microorganisms. Usually a
microbial consortia or pure culture is exposed to a small dose of chemical or
radiation for a certain period of time that causes mutation in the microorganism and
some mutants may show enhanced pollutant degradation [32, 49, 82]. A set of dose
and exposure periods can be tried to achieve the desired activity of the microor-
ganisms and the mutation can be studied in detail by screening (identifying) the
mutant genes using molecular biology techniques. Gene knock-out is another
process for deletion or inactivation of indigenous genes. This process may be
accomplished through gene targeting by insertion of a specific DNA construct that
inactivates the target gene by homologous recombination or by introducing engi-
neered nucleases (such as zinc-finger nuclease) that can target a specific DNA
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sequence in the gene to be activated and disable its expression. The inserted con-
struct or nuclease should not affect the function of any other gene. Selection of the
correct genes and understanding their function is very important for genetic engi-
neering by deletion or inactivation.

Genetically engineered organisms have huge potential but there are some serious
concerns regarding their negative impacts on the environment and human health,
especially if released in nature. The ecological balance can be threatened if the
engineered organisms preferentially grow over the indigenous species because all
indigenous organisms have some role to play in maintaining the ecosystem. Gene
flow is the biggest concern in releasing genetically modified microorganisms in the
environment. Engineered genes can be horizontally transferred to wild microor-
ganisms if genetically modified microorganisms are introduced in the environment
for in situ bioremediation. Antibiotic resistance is a commonly used marker to
identify accurate insertion of a gene but the consequence would be dangerous if the
antibiotic resistance gene is spread in wild bacteria and pathogens. Predicting
ecological consequences or health hazards from genetically modified organisms is
an extremely difficult job for scientists and yet nothing can be confirmed in
advance, which causes additional concern over the potential risks of the genetically
modified organism. The univocal debate is treating all genetically engineered
organisms in the same line irrespective of their spreading potential, horizontal gene
transfer capability, or regeneration capability in nature. However, many concerns
are genuine and all potential risks must be completely eliminated before releasing
any engineered organisms into the environment. One good approach is the use of
“suicide genes,” the genes that cause bacteria death after complete degradation
of the toxic chemicals [96, 98]. This technique would be useful in addressing most
of the problems associated with the use of genetically engineered microorganisms
for bioremediation.

3 Bioresources in Controlling Environmental Pollutions:
Recent Advances

Bioremediation has been practiced for a long time but recent developments are
different in terms of a systematic approach and use of sophisticated modern tech-
nologies. Research is intensified mainly in the area of discovery and development
of suitable bioremediating organisms and their bioremediation-related character-
ization. Plants, microorganisms, and some lower eukaryotes have shown potential
bioremediation activity. The following section focuses on recent research
(2008–2013) on bioremediation using different species of microorganisms, plants,
and nonmicroscopic lower eukaryotes and their potential application in pollutant
removal from contaminated soil, water, and air.
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3.1 Microbial Resources

Microorganisms are the key players in decomposition of different kind of waste and
thus extremely useful in restoration of polluted soil and water. Several microbial
processes have alsobeenestablished for treatment of industrial solidwaste, sludge, and
slurries. Microorganisms produce diverse enzymes to degrade complex natural and
industrial waste and use them as nutrients. They can easily come in contact with the
most number of contaminant molecules due to their small size and fast reproduction in
suitable environments. Microbial degradation of organic matter also supplies the
plant’s nutrients and thus plays an important role in ecological nutrient recycling.

To date, bioremediation is practiced mostly by enhancing growth of the native or
nonnative natural microbial communities, although researchers are investigating
some synthetic microbial consortia for favoring degradation of certain pollutants.
Many efforts are directed in developing engineered microbial species or commu-
nities that are especially suitable for degrading specific contaminant(s). Research is
also focused on the understanding of reactions behind bioremediation and require-
ments of nutritional supplements [62, 78, 134]. Microbial process development for
ex situ bioremediation has also attracted significant attention in recent years. The
following sections focus on recent developments of microbial bioremediation for
controlling soil, water, and air pollution. The findings are summarized in Table 1.

3.1.1 Soil and Solid Waste Treatment

Bioremediation is successfully applied in in situ and ex situ treatment of contami-
nated soil. In situ degradation of contaminants in the subsurface depends on the type
of contaminants, the type of microorganisms, and the physicochemical conditions.
Soil contains several types of microorganisms including bacteria, actinobacteria,
cyanobacteria, fungi, microalgae, and protozoa. Usually bacteria are far more
numerous than any other soil microbes and are the most focused group for biore-
mediation, mainly due to their rapid growth and fast metabolic rate. However, other
microbial communities can also catalyze bioremediation reactions independently and
in many cases they serve as essential components of the bioremediating consortia.

Numerous microbial strains were reported to degrade petroleum hydrocarbons
from contaminated soils. Several bioremediation techniques were used individually
as well as in combination. Laboratory-scale bioremediation of petroleum-contam-
inated soil was studied by enhancing growth of the indigenous microorganisms of
the contaminated site with and without addition of a petroleum-degrading Pseu-
domonas aeruginosa strain [61]. Up to 94 % n-octane was removed from the soil
sample after 191 days of treatment. The rate and extent of the bioremediations were
not substantially changed by bioaugmentation with P. aeruginosa. This observation
suggests that the indigenous microbial community may be the best choice for
decontaminating a polluted site, but only after working out the proper biostimu-
lation protocol.
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Table 1 Summary of recent research (2008–2013) on microbial bioremediation of soil, water, and
air

Active microorganism(s) Target pollutants Bioremediation
methods

Reference

For bioremediation of contaminated soil and solid waste

Pseudomonas aeruginosa Petroleum hydrocarbons Biostimulation [61]

Gordonia alkanivorans CC-
JG39, Rhodococcus ery-
thropolis CC-BC11, Acine-
tobacter junii CC-FH2,
Exiguobacterium aurantia-
cum CC-LSH-4, and Serra-
tia marcescens KH1

Aromatic hydrocarbons Bioaugmentation
and biostimulation

[73]

Arthrobacter, Pseudomo-
nas, Rhodococcus, Bacillus,
Exiguobacterium, and
Delftia

C12–C20 hydrocarbons,
isoprenoids

Bioaugmentation [8]

UV-induced mutant of Aci-
netobacter sp. YC-X2,
Kocuria sp. YC-X4, and
Kineococcus sp. YC-X7

Viscous oil hydrocarbon Bioaugmentation [33]

Ascomycota, Actinomy-
cetes, Proteobacteria, Fir-
micutes, and Chloroflexi

Oil refinery sludge Biostimulation [108]

Flavobacterium and
Aspergillus

Petroleum hydrocarbon Biostimulation [112]

Bacillus sp., Chromobacte-
rium sp., Enterobacter sp.,
Achremonium sp., and
Aspergillus sp. and Verti-
cillium sp.

Naphthalene, phenan-
threne, anthracene, pyr-
ene, dibenzo[a]
anthracene, benzo[a]
pyrene

Bioaugmentation [118]

Rhodococcus ruber Em1 PAH Bioaugmentation [128]

Sphingomonas sp.,
Sphingomonas wittichii
RW1, Pseudomonas veronii
PH-03, Paenibacillus sp.
VSE5L, Phanerochaete
chrysosporium DSM 6909,
Phanerochaete chrysospo-
rium DSM 1556, Irpex sp.
KW3, Trametes sp. CH2,
and Fusarium sp. VSO7

Polychlorinated dibenzo-
p-dioxins and
dibenzofurans

Ex situ
bioremediation

[93]

Trichoderma longibrachia-
tum and Byssochlamys
spectabilis

PAH Ex situ
bioremediation

[109]

Achromobacter, Alcalige-
nes, Pseudomonas, and
Pusillimonas

PAH, Arsenic Ex situ
bioremediation

[136]

(continued)
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Table 1 (continued)

Active microorganism(s) Target pollutants Bioremediation
methods

Reference

Alcaligenes sp., Pseudomo-
nas sp., Pandorea sp., and
Paenibacillus sp.

PAH, Cadmium Ex situ
bioremediation

[135]

Anthracophyllum discolor 2,4-dichlorophenol,
2,4,6-trichlorophenol,
pentachlorophenol

Bioaugmentation [5, 30,
44]

β-Proteobacteria, γ-Proteo-
bacteria, Ascomycota, and
Basidiomycota

Pentachlorophenol Biostimulation [30]

Kocuria rhizophila, Micro-
bacterium resistens, Staph-
ylococcus equorum, and
Staphylococcus cohnii

Lindane Bioaugmentation [2]

Streptomyces sp. M7 Lindane Bioaugmentation [21]

Ochrobacterum, Burkholde-
ria, Pseudomonas, and
Arthrobacter

Endosulfan Bioaugmentation,
Ex situ
bioremediation

[68]

Bacillus subtilis, Pseudo-
monas aeruginosa, and
Saccharomyces cerevisiae

Chromium (Cr) Ex situ
bioremediation

[20]

Graphium putredinis,
Fusarium solani, Fusarium
sp., and Penicillium
chrysogenum

Cd, Cr, Ni, Pb, and Zn Ex situ
bioremediation

[138]

For bioremediation of contaminated water, sludge, and slurry

Firmicutes Tetrachloro-ethylene Natural
attenuation

[24]

β-proteobacteria Biostimulation

γ-Proteobacteria, Actino-
bacteria, Firmicutes, Peni-
cillium, Candida,
Geotrichum, Pichia, and
Cladosporium Aschochyta

Polyphenols Ex situ
bioremediation

[92]

Thiomicrospira sp., Achro-
mobacter sp., Cyclobacteri-
um linum, and Nitromonas
halophila

Total organic carbon
(TOC)

Ex situ
bioremediation

[110]

Pseudomonas, Bacillus,
Pannonibacter, and
Ochrobacterum

TOC Ex situ
bioremediation

[69]

Proteobacteria, Chroococ-
cus, Lyngbya, and Nitzschia

Orthophosphate, ammo-
nium, nitrite, and nitrate

Bioaugmentation [145]

Scenedesmus sp. AMDD Dissolved nitrogen and
phosphorous

Ex situ
bioremediation

[84]

(continued)
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As a member of the microbial consortia, several Pseudomonas species also
contributed in the bioremediation of petroleum hydrocarbons, polyaromatic
hydrocarbons (PAH), and organochlorine pesticides [8, 68, 136]. However, most
studies established bioaugmentation as an efficient bioremediation technique and in
many cases it is extremely useful in combination with biostimulation. Biodegra-
dation of petroleum hydrocarbon of an oil storage site was studied with more than
one bioaugmentation and biostimulation technique, individually and in combination
[73]. Bioaugmentation with a defined microbial consortium containing two diesel-
degrading strains (Gordonia alkanivorans CC-JG39 and Rhodococcus erythropolis
CC-BC11) and three oil-degrading strains (Acinetobacter junii CC-FH2, Exiguo-
bacterium aurantiacum CC-LSH-4, and Serratia marcescens KH1) removed
*65 % aromatic hydrocarbon after 140 days of treatment and the polar components
were preferably decomposed by the addition of a kitchen waste consortia supple-
mented with low-level nutrient. Treatment with the nutrient-supplemented kitchen
waste compost itself degraded more than 80 % of the hydrocarbon contaminants.

Bioremediation of heavy metal and diesel oil cocontaminated soils was also
possible by bioaugmentation using an optimized microbial formula developed with
selected indigenous microbial strains [8]. After 42 days of treatment in laboratory
conditions it removed 75 % of the total diesel oil hydrocarbons present in the
heavy-metal cocontaminated polluted soil, including 100 % removal of C12–C20

hydrocarbons and 60 % removal of isoprenoids. Interestingly, partial biodegrada-
tion of diesel oil hydrocarbons enhanced growth of a group of minor indigenous
strains that actively participated in the bioremediation process. This observation
demonstrates the significance of interspecies interactions (of indigenous microor-
ganisms) in microbial bioremediation techniques. Possibly the smaller hydrocar-
bons (metabolites) produced by partial degradation of long-chain hydrocarbons
served as a new carbon source and favored emergence of these native strains that
were previously undetected due to their low abundance. The most active micro-
organisms in this experiment were identified as different species of the genus
Arthrobacter, Pseudomonas, Rhodococcus, Bacillus, Exiguobacterium, and Delftia.
In a similar study, 85 % C18 n-alkanes, 50 % C24 n-alkanes, and 60 % of an

Table 1 (continued)

Active microorganism(s) Target pollutants Bioremediation
methods

Reference

Scenedesmus acutus
PVUW12

Dissolved nitrogen Ex situ
bioremediation

[45]

For remediation of air pollution

Nostoc commune, Lep-
tolyngbya thermalis, and
Gloeotila sp.

Hydrocarbon Ex situ
bioremediation

[7]

Engineered Chlorella
species

CO2, NO, SO2 Bioaugmentation [35]

Chlorella vulgaris CO2 Bioaugmentation [47]
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unresolved complex mixture of petroleum hydrocarbons were removed by a tai-
lormade microbial formula developed with 12 isolated allochthonous strains at
optimized physical condition [124].

Bioremediation of a viscous oil-contaminated soil was facilitated by ultraviolet-
induced mutation of a microbial consortium constructed with seven oil-degrading
microbial strains (including Acinetobacter sp. YC-X2, Kocuria sp. YC-X4, and
Kineococcus sp. YC-X7) isolated from crude-oil-contaminated soil [33]. The
mutation showed improved performance of the microbial consortia and the best-
performing mutant itself was able to remove 52.42 % hydrocarbon from the viscous
oil. The enhanced bioremediation activity could be explained by increased activity
of catabolic enzymes by the ultraviolet-induced mutation; enhancement of catabolic
enzyme activity by ultraviolet-induced mutation was reported previously [119].

Long-term in situ bioremediation of an aged recalcitrant hydrocarbon-contami-
nated soil showed that the addition of sewage sludge is a useful strategy for res-
toration of hydrocarbon-polluted soils [108]. The semi-arid area was exposed to oil
refinery sludge for more than 10 years before the experimental sites were treated
over a period of 8 months after mixing with fresh sewage or sewage compost. The
microbial counts of the treated sites were significantly higher compared to those of
an untreated site. Fungus of the phylum Ascomycota and bacteria of phyla Acti-
nomycetes, Proteobacteria, Firmicutes, and Chloroflexi were the predominant group
of microorganisms in the bioremediation sites. The highest hydrocarbon degrada-
tion was noticed in the fresh sewage-treated sites that also showed the highest
microbial population.

In situ and ex situ bioremediation of petroleum products were studied with the
aerobic microorganisms isolated from petroleum-contaminated soil [141]. A
selected microbial community showed extremely fast biodegradation of benzene
(914 µM/l/day), toluene (771 µM/l/day), ethylbenzene (644 µM/l/day), and xylene
(673 µM/l/day). Up to 84 % benzene, 86 % toluene, 80 % ethylbenzene, and 82 %
of xylene were degraded in batch cultures under laboratory conditions although the
values were slightly lower in the in situ experiments. In another study, isolated
aerobic zymogenous microorganisms of an oil-contaminated site showed crude oil
biodegradation ability in laboratory experiments using a mixture of paraffinic types
of oils as the substrate [123]. GC-MS analyses were performed at a 15-day interval
to quantify n-alkanes, isoprenoids, phenanthrene, and their derivatives in the treated
oil mixture, which revealed that the zymogenous microorganisms most efficiently
degrade the n-alkanes and isoprenoids followed by phenanthrene and methyl-
phenanthrene but perform very poorly in polycyclic alkane biodegradation.

In another study, primary hydrocarbon-degrading microorganisms were isolated
from a hydrocarbon-polluted soil by using diesel oil as the sole carbon source [112].
The major populations of the hydrocarbon-degrading community were identified as
members of the genera Flavobacterium and Aspergillus. It was possible to reduce
the total petroleum hydrocarbon (TPH) content of the contaminated soil from
61,000 to 1,800 mg/kg after 15 days of treatment with this microbial community by
mimicking a laboratory-scale heap leaching process (an industrial mining process)
using column and piles.
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Polycyclic aromatic hydrocarbons are one of the most widespread organic pol-
lutants found mainly in soil and sediment. Fossil fuels and their derivatives are the
main source of PAH contamination although it may come from various natural
products (steroids, hydrocarbons, etc.) and some pesticides. Several researchers
demonstrated successful microbial bioremediation of PAH-contaminated soil. Mao
et al. reported nearly 36 % PAH removal from a contaminated soil (containing
*10 mg PAH per kg of dry soil) after 56 days of treatment with a PAH-degrading
microbial consortia isolated from a PAH-contaminated site [79]. Molecular phy-
logeny identified the most abundant populations of the consortium as close relatives
of the Mesorhizobium, Alcaligenes, and Bacillus species. Degradation of several
PAH (including naphthalene, phenanthrene, anthracene, pyrene, dibenzo[a]anthra-
cene, and benzo[a]pyrene) was studied in forest soil microcosms with and without
bioaugmentation using bacteria and fungi isolated from a diesel-contaminated site
[118]. Five bacteria strains such as three Bacillus sp., one Chromobacterium sp.
4015, and an Enterobacter sp. and three filamentous fungi strains Achremonium sp.,
Aspergillus sp., and Verticillium sp. were used for bioaugmentation. The indigenous
microbes rapidly responded to the PAH addition in the forest soil and utilized the
low-molecular-weight components (such as naphthalene, phenanthrene, and
anthracene) as the energy source; biodegradation of these compounds was not
significantly changed by bioaugmentation.

In contrast, the high-molecular-weight PAHs (such as pyrene, benz[a]anthra-
cene, and benz[a]pyrene) were very slowly degraded by this native microbial
consortia but significant improvement of their biodegradation was achieved by
bioaugmentation with one Aspergillus species isolated from the diesel-contami-
nated site. A pilot-scale ex situ investigation established potential long-term and
large-scale bioremediation of heavily PAH-contaminated soil by biostimulation of
the native microbial consortia as well by bioaugmentation with the PAH-degrading
and bioemulsifier-producing Rhodococcus ruber Em1 strain [128]. After 175 days
26.82 % of total PAHs and 35.36 % of 4–6 ring PAHs were removed by bio-
stimulating a soil sample containing 375-mg PAH per kg of dry soil, and 33.9 %
and 11.0 % degradation of the respective chemicals was achieved by bioaugmen-
tation. However, a combination of biostimulation and bioaugmentation removed
43.9 % total PAHs and 55.0 % of 4–6 ring PAHs after 175 days of treatment of the
same test soil, which suggests that in some bioremediation processes, a combination
of more than one strategy may be more useful than either one.

Microbial bioremediation was also useful in the treatment of varieties of PAH-
contaminated solid waste. A mixture of 4 bacterial and 5 fungal dioxin-degrading
strains showed successful biodegradation of polychlorinated dibenzo-p-dioxins and
dibenzofurans from contaminated municipal solid-waste incinerator fly ash [93].
After 21 days solid-state fermentation with the above-mentioned microbial mixture
at laboratory conditions, 68.7 % elimination of these contaminants was achieved.
The bacterial strains included Sphingomonas sp., Sphingomonas wittichii RW1,
Pseudomonas veronii PH-03, and Paenibacillus sp. VSE5L whereas the fungal
strains were comprised of Phanerochaete chrysosporium DSM 6909, P. chrysos-
porium DSM 1556, Irpex sp. KW3, Trametes sp. CH2, and Fusarium sp. VSO7.
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The microbial mixture also removed 66.8 % of the 2,3,7,8-substituted congeners
from the fly ash. Analysis showed that all the bacterial and fungal strains were well
maintained in the reaction condition. In a study, PAH-degrading microorganisms
were isolated from PAH-contaminated lab waste containers [109]. Two fungal
strains that showed the best PAH-degrading activity were identified as Trichoderma
longibrachiatum and Byssochlamys spectabilis. After 6–9 days treatment in a liquid
culture, T. longibrachiatum showed 97 % benz[a]anthracene degradation in a
100-µM solution. High-level degradation of this substrate was also achieved by
using the immobilized T. longibrachiatum strain in an expanded bed bioreactor
operated in continuous mode. Bioremediation of the PAH pollutants, which is
cocontaminated with heavy metals may be difficult due to their combined inhibitory
effect on microbial growth. However, a few microbial consortia were successfully
used for bioremediation of heavy-metal—and PAH-cocontaminated soils [135,
136]. Simultaneous bioremediation of PAH and arsenite cocontamination was
possible by biodegradation of PAH and oxidation of arsenite using a heterotrophic
bacterial consortium isolated from the soil of an aged coking plant site [136]. After
48 h of aerobic incubation, about 71.4 % phenanthrene and 96.2 % arsenite were
removed from a liquid culture containing 200 and 60 mg/l of phenanthrene and
arsenite, respectively. The major populations of the bioremediating consortia in the
cocontaminated soil were identified as Achromobacter, Alcaligenes, Pseudomonas,
and Pusillimonas species. Interestingly, composition of the microbial consortia at
the end of bioremediation was highly dependent on the nature of the contaminants.
Achromobacter and Pseudomonas species dominated the consortia when contam-
inated only with phenanthrene but when only arsenite was present, Alcaligenes and
Pseudomonas were the dominant species. In the presence of both contaminants, the
bacteria from the genus γ-Proteobacteria and β-Proteobacteria were abundant in
the bioremediating sample.

In the other study, a bacterial consortium was developed for high-molecular-
weight PAH (HMW PAH) degradation in the cadmium (Cd)- and PAH-cocon-
taminated samples [135]. The consortium was composed of four bacterial species,
such as Alcaligenes sp., Pseudomonas sp., Pandorea sp., and Paenibacillus sp. It
was able to utilize HMW PAHs such as benzo[a]pyrene and pyrene as the sole
carbon source and completely degrade low-molecular-weight PAHs, phenanthrene,
and anthracene after 60 days of treatment in the presence or absence of cadmium
(Cd). The presence of cadmium even stimulated degradation of several PAH. In the
absence of Cd it was able to remove 100 and 89 % of benzo[a]pyrene and pyrene,
respectively, whereas in the presence of Cd 100 and 94 % of the respective PAH
were degraded.

Indiscriminate use of agricultural pesticides causes continuous contamination of
farming lands, which can further pollute surface water and even underground water
when washed out by rain. Several studies focused on microbial biodegradation of
the chemicals present in pesticides or insecticides. Bioaugmentation with the white-
rot fungi Anthracophyllum discolor successfully removed an organochlorine pes-
ticide, pentachlorophenol from contaminated soil [30]. Several indigenous micro-
bial species including some bacteria from β-Proteobacteria and γ-Proteobacteria
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phylum and some fungi from Ascomycota and Basidiomycota phyla actively took
part in pentachlorophenol degradation when biostimulated by utilizing wheat straw
residue as nutrient. Biodegradation of pentachlorophenol was further enhanced by
combined effect of bioaugmentation by A. discolor and biostimulation by wheat
straw residue. A. discolor was also reported to degrade various PAHs and other
chlorophenols including 2,4-dichlorophenol, 2,4,6-trichlorophenol, and pentachlo-
rophenol [5, 44].

Microbial bioremediation of another frequently used organochlorine pesticide,
lindane was also reported by a few researchers. Abhilash et al. isolated four lindane-
degrading microbial strains from the rhizosphere of selected plants of a lindane-
contaminated site and identified the isolates as Kocuria rhizophila, Microbacterium
resistens, Staphylococcus equorum, and Staphylococcus cohnii [2]. After accli-
matizing in high lindane-containing media (5–100 mg/l) the isolates were able to
remove lindane from soil samples containing up to 100 mg/kg of the contaminant.
The highest lindane removal activity was reported in S. cohnii (subspecies urea-
lyticus); this strain removed 100 and 67 % of the contaminants after 45 days of
treatment of two soil samples containing 5 and 100 mg/kg lindane, respectively.
Bioremediation of lindane-contaminated soil using the Streptomyces sp. M7 helped
germination and growth of maize plantation in the contaminated soil [21]. The
microorganism was resistant to 0.4 mg lindane/kg soil and at optimum conditions it
removed 68 % of the pollutant from the soil sample contaminated with 0.1 mg
lindane/kg soil.

In situ bioremediation of an endosulfan-contaminated site was performed by
isolating the indigenous microorganisms and inoculating them in the contaminated
site after increasing their number under laboratory conditions [68]. Several endo-
sulfan-degrading bacteria were isolated from the contaminated soil and by molecular
phylogeny some of the isolates were identified as Ochrobacterum sp., Burkholderia
sp., Pseudomonas sp., and Arthrobacter sp. After 12 weeks of treatment, a con-
sortium consisting of a 1:1 mixture of two Pseudomonas species was able to degrade
80 % of α-endosulfan and 65 % of β-endosulfan from the contaminated site con-
taining 50-mg endosulfan per kg of soil. However, all isolated strains showed better
bioremediation performance in optimum laboratory conditions.

Heavy metals are dangerous for human health and their presence in soil or water
is a serious concern as they can easily enter the human body through contaminated
vegetables or drinking water. Serious heavy-metal toxicity may be caused by
arsenic, cadmium, chromium, lead, and mercury poisoning, which may cause
permanent damage to kidney, liver, nervous system, skin, bone, or teeth. Recent
studies showed that heavy metals can be removed from contaminated sites by
bioremediation, phytoremediation, or by combination of both. Benazir et al. studied
the efficacy of a few microbial consortia in removing chromium from an industrial
effluent [20]. A consortium containing Bacillus subtilis, P. aeruginosa, and Sac-
charomyces cerevisiae successfully reduced the chromium content to <1 % of its
original concentration. In another study, 51 heavy-metal-resistant microbes were
isolated from three different composts developed using different raw materials such
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as horticulture waste, sewage sludge, and municipal solid waste [138]. Most of the
microorganisms were able to remove several heavy metals including Cd, Cr, Ni, Pb,
and Zn. Some of the isolates were able to remove more than 90 % of Pb and other
metals were removed within the range of 20–60 %. Molecular phylogeny identified
the best performing isolates as Graphium putredinis, Fusarium solani, Fusarium
sp., and Penicillium chrysogenum. Most metals were removed predominantly by
intracellular accumulation within the microorganisms, with the exception of Ni that
was equally removed by extracellular absorption and intracellular accumulation.

3.1.2 Sludge, Slurry, and Water Treatment

Several in situ and ex situ bioremediation techniques are used for treatment of
industrial wastewater, sludge, and slurry. Natural attenuation and biostimulation
approaches were studied for treatment of groundwater contaminated with tetra-
chloroethylene, a carcinogenic chlorinated hydrocarbon that is often used for dry
cleaning [24]. Analysis of the naturally attenuated consortia showed the presence of
some typical dehalogenating bacteria including Firmicutes. Phylogenetic analysis
identified the presence of multiple species from different phyla in the natural
attenuation consortium but the biostimulated consortium was dominated by species
closely related to the class β-proteobacteria. The indigenous microorganisms
showed high potential for biodegradation of polyphenolic contaminants in “two-
phase olive mill waste” [91]. The investigation in a lab-scale bioreactor suggested
that the bioremediation activity was highly dependent on aeration and the nutrient
content of the culture. The maximum biodegradation rate was observed in aerated
bioreactors with nutrient-supplemented media. The rate of biodegradation was also
time dependent: the contaminant was degraded very quickly at the beginning of the
process and slowed down after 7 days fermentation. About 36 % polyphenols were
degraded in the first 7 days whereas only 54 % degradation was achieved after
55 days fermentation. The predominant microorganisms in the culture were iden-
tified as members of 14 different bacterial genera of the phyla γ-Proteobacteria,
Actinobacteria, and Firmicutes that are associated with the plant biomass and,
several genera of fungi including Penicillium, Candida, Geotrichum, Pichia,
Cladosporium, and Aschochyta.

A continuous-flow two-stage bioreactor was used for decontaminating frac-
tionated drainage water from an oil terminal that contained emulsified oil and water-
soluble hydrocarbons [110]. Some of the predominant bioremediating microor-
ganisms were identified as Thiomicrospira sp., Achromobacter sp., Cyclobacterium
linum, and Nitromonas halophila. The first bioreactor (1 m3) was fed with frac-
tionated drainage water at a flow rate of 50 l/h after inoculating with a 5-l mixed
culture containing the strains isolated from the oil refinery and its efflux was then
fed into the second bioreactor (2 m3). The process removed 100 % ammonia, 93 %
sulfate, and 90 % of total organic carbon (TOC) from the drainage water. Total
organic carbon of the drainage water decreased faster than the expected rate and the
microbial population study showed a smaller number of bacteria and more phages
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in the second bioreactor than the first one. These two observations were explained
by formation of a phage-driven microbial loop where bacteriophages induce bac-
terial cell lysis that is followed by degradation of released bacterial compounds.

Lignin-, tannic acid-, xylan-, and cellulose-degrading strains were screened from
the intrinsic microbial community of an agro-based pulp mill effluent and six
microbial consortia were developed using 14 isolates [69]. Each consortia contained
four strains, one for each substrate-degrading activity. These consortia could reduce
35–45 % chemical oxygen demand (COD) of 40 % black liquor solution (pulp and
paper effluent diluted in backwater at 2:3 ratio). The performance of the most active
consortia was improved by addition of nitrogen and phosphorous in the effluent and
65–66 % COD-reduction was possible after optimizing physical parameters (tem-
perature, pH, and agitation) in an ex vivo testing. 16S rRNA gene sequencing
identified the strains of this consortium as members of Pseudomonas, Bacillus,
Pannonibacter, and Ochrobacterum genus.

Effluent of a municipal wastewater treatment plant was decontaminated by a
novel technology developed using constructed microbial mats on low-density
polyester [145]. Various bacterial, cyanobacterial, and microalgal communities
were grown on the polyester support and resulted in continuous, self-sufficient
microbial mats utilizing the nutrients present in the wastewater. The mats were
dominated by cyanobacteria such as Chroococcus sp. and Lyngbya sp., diatoms of
the genus Nitzschia, and, bacteria of the subclass Proteobacteria. This technique
successfully removed 94 % orthophosphate, 79 % ammonium, 78 % nitrite, and
83 % nitrate with 48-h treatment of the wastewater effluent. Some researchers
studied simultaneous wastewater bioremediation and the energy production per-
spective of microalgae [45, 84]. A microalga, Scenedesmus sp. AMDD showed
efficient decontamination of secondary effluent obtained from a municipal waste-
water treatment plant [84]. When studied in a batch photobioreactor, it removed
90 % of dissolved nitrogen and phosphorous after about 6.5 days treatment and
biomass yields ranged from 0.23 to 0.65 kg/m3 wastewater. An approximate
twofold increase of biomass productivity was achieved when the wastewater was
treated in a 2-l continuous chemostat and that also removed >99 % dissolved
nitrogen and phosphorous from the same sample.

Another photosynthetic microalga, Scenedesmus acutus PVUW12, was able to
remove total nitrogen content only by 3 days of treatment of the wastewater sample
collected from an urban purifier plant containing 18.8 mg/l nitrate [45]. The
experiment was carried out in a vertical column photobioreactor and the algae
produced a substantial amount of triglycerides (28.8 % of dry biomass) when left
for another 20 days. Algae were also reported to be active in bioremediating organic
material of highly polluted piggery wastewater ponds [55]. The predominant
microalgae were identified as Chlamydomonas sp., Ankistrodesmus sp., Protoder-
ma sp., Selenastrum sp., Chlorella sp., Oocystis sp., Achnanthes sp., Nitzschia sp.,
and Microspora sp. Diversity of the microalgae population of the ponds was
reported to be dynamic depending on seasonal change of temperatures and solar
radiation. At ideal conditions, an average 76 % COD and 88 % TKN (total Kjeldahl
nitrogen) removals were achieved by 10 days of treatment of tenfold and 20-fold
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diluted swine manure in two high rate algal ponds. However, due to high buffer
capacity of the piggery wastewater, the consortia showed very low phosphorous
removal efficiency.

The potential of the microbial fuel cell (MFC) technology was studied for nitrate
removal from polluted groundwater [100, 139, 148]. A two-chamber MFC was
designed for simultaneous carbon and nitrogen removal using an acetate-adopted
microbial consortium obtained from another MFC of a water management center
[139]. By feeding the nitrate-rich water to the cathode chamber, the MFC was able
to remove 0.41 kg nitrate per cubic meter of cathode chamber in each day while
producing about 35 W of power per cubic meter of cathode chamber. The MFC was
more energy efficient than the conventional nitrate removal process due to energy
production and minimized aerobic consumption of organic carbon that reduced the
aeration costs. The nitrate removal potential of another MFC-generated microbial
consortium was studied in a single-chamber MFC [100]. This system reduced
the nitrate concentration of a groundwater sample from 28.32 ± 6.15 to
12.14 ± 3.59 mg/l, without any nitrite accumulation. Indigenous microorganisms
were used for simultaneous carbon and nitrogen removal from groundwater using
another single-chamber MFC with a rotating biocathode [148]. The system was
able to remove 85.7 ± 7.4 % total organic carbon and 91.5 ± 7.2 % total nitrogen
from a groundwater sample, with a maximum power output of 585 mW/m3.
Although the process was started with the indigenous microorganisms, denitrifying
bacteria emerged as the dominant group after 40 days of treatment.

Mining has an extremely destructive effect on the biosphere, which is often
associated with deforestation, soil erosion, and water and soil pollution with various
contaminants. Long-term bioremediation and phytoremediation may be useful in
removing mine-associated pollutants. Sulfate and heavy-metal content of an acid
mine drainage water were successfully reduced in an ex situ bioremediation tech-
nique using sulfate-reducing bacteria [53]. The effluent was treated by immobilizing
the sulfate-reducing bacteria in an anaerobic bioreactor and enhancing their growth
by feeding with a mixture of grass cutting and rumen fluid biomass. Efficient heavy-
metal removal from another acid mine drainage sample was achieved by biofilm
formation of an indigenous algae–fungi–bacteria consortium within a photorotating
biological contactor [95]. A biofilm was developed by 60 days batch mode oper-
ation of a biocontactor with the microbial consortium; it successfully removed
20–50 % of various heavy metals from the highly contaminated acid mine drainage
after 10 weeks of continuous treatment. Removal of various metals was on the order
of Cu > Ni > Mn > Zn > Sb > Se > Co > Al. The biofilm was dominated by the
algae Ulothrix species.

3.1.3 Polluted Air Treatment

Microbial bioremediation of air pollution is the least studied field as compared with
soil or water pollution. Airborne phototrophic microorganisms and hydrocarbon-
utilizing heterotrophic bacteria were isolated from the dust samples collected at the
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15-m height of Kuwait city air [7]. Three phototrophs were identified by molecular
phylogeny as Nostoc commune, Leptolyngbya thermalis, and a chlorophyte of the
genus Gloeotila. Each of them was associated with unique consortia of oil-vapor
degrading bacteria that may be useful in in situ bioremediation of atmospheric
hydrocarbon pollutants. The phototrophs may potentially serve as a source of
nutrients and growth-enhancing metabolites for the heterotrophic consortia. Novel
approaches were taken for in situ flue gas bioremediation and simultaneous mic-
roalgal biomass production [35, 47]. On-site bioremediation of carbon dioxide,
nitrogen oxide, and sulphur dioxide of a coke oven flue gas was achieved by
directly passing the flue gas through a photobioreactor containing a culture of heat-
and CO2-tolerant engineered Chlorella species [35]. The system successfully
increased the algal biomass accompanied by efficient capture of CO2, NO, and SO2

from the flue gas. About 60 % CO2, 70 % NO, and 50 % SO2 content of the coke
oven flue gas was removed by this process.

The other study used Chlorella vulgaris to absorb CO2 present in a municipal
waste incineration flue gas and simultaneously decrease biomass production cost
[47]. Growth and CO2 fixation rate of the algal culture was higher using the flue gas
(containing 10–13 % CO2 and 8–10 % O2) than using a mixture containing
equivalent proportions of pure CO2 and air. The biomass produced using untreated
flue gas had mercury content slightly higher than the limit of the European Union
foodstuff legislation. However, the mercury content of the algal biomass falls below
the above-mentioned limit when the flue gas is treated in a simple activated carbon
column prior to passing through the cultivation unit.

3.2 Plants and Phytoremediation

The pollutant-removal technique using green plants and plant-associated microor-
ganisms is known as phytoremediation. This technique can clean up various kinds
of pollutants including heavy metals, pesticides, and petroleum hydrocarbons.
Phytoremediation is extremely useful in large-scale in situ decontamination of soil,
surface water, and groundwater. It is also effective for removal of particulate
matters and organic or inorganic toxic gases from polluted air. Most phytoreme-
diation processes depend on absorption/adsorption of pollutants and their accu-
mulation in plant biomass that reduces mobility of the chemicals. Also plants can
biotransform several contaminants directly by their metabolism or with the help of
associated microorganisms. Literally any plant can contribute in preventing envi-
ronmental pollution but phytoremediation ability varies from species to species and
it is highly dependent on the nature of the pollutants. Selection of suitable plant
species is the key to successful phytoremediation of a polluted environment.
Plant–microorganism symbiosis is also helpful for bioremediation of some pollu-
tants because microbial metabolisms enhance the mobility of certain polluting
chemicals that are otherwise not bioavailable to plants. Several plant species are
already characterized for their capabilities for growing in contaminated soil or
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wastewater and eliminating a particular type of contaminant. The following section
focuses on recent developments and the current research trend in the area of plant-
assisted environmental remediation. The findings are summarized in Tables 2 and 3.

3.2.1 Polluted Soil Treatment

Mining-related activities may cause serious heavy-metal contamination of sur-
rounding soil, surface water, and groundwater. The plant species naturally growing
in the mining areas need to be adapted to the heavy-metal-contaminated environ-
ments and potentially they are able to accumulate a high concentration of heavy
metals. Several studies were conducted to understand phytoremediation ability of
these native plants. Zn, Pb, and Cd accumulation in various tissues of predominant
native species growing in an abandoned mining site were analyzed to understand
their heavy-metal uptake capacity from soils, sediments, and mine tailings [17]. The
highest metal concentration was observed in the aerial parts of Inula viscosa,
Euphorbia dendroides, and Poa annua species with the average values of Zn: 1.68,
1.02, 1.40; Pb: 0.42, 0.24, 0.08; Cd: 0.028, 0.0077, 0.019 g/kg dry biomass,
respectively. Thlaspi caerulescens species was revealed as a Zn–Cd hyperaccu-
mulator in a similar study conducted with 31 native plant species of an abandoned
Pb–Zn mining site [18]. It was able to accumulate more than 18 g/kg dry biomass of
Zn. Shoots accumulated the highest concentrations of all metals as compared to
other tissue; Zn was present in highest concentration followed by Pb and Cd. A
similar approach was taken for determining Cu, Zn, Fe, and Mg accumulation in
spontaneously growing native plants in an iron and copper mining area [94].

Higher metal accumulations were reported in the species grown in higher metal-
containing soil. Results showed that metal accumulation varies between species and
between different tissues of the same plant. Out of all species studied, Chenopodium
botrys accumulated the highest concentration of Cu (0.183 and 0.150 mg/g) and Mn
(0.177 and 1.288 mg/g) in root and shoot tissues, whereas Verbascum speciosum
accumulated as much as 9.226.3 and 15.343 mg/g Fe in the root and shoot tissues,
respectively. Scariola orientalis accumulated the highest concentration of Zn
(1.208 mg/g) in the root tissues; but when compared in the aerial part Stipa barbata
showed the highest Zn accumulation (329.3 mg/kg). Strontium (Sr) was reported to
be preferentially accumulated in the shoots of three plant species such as Euphorbia
macroclada, Verbascum cheiranthifolium, and Astragalus gummifer [117].
E. macroclada showed the highest Sr accumulation and most efficient translocation
of the contaminant from root to shoot. A field study in an iron mine area revealed
several plant species as accumulating higher concentrations of As, Cd, Cr, Fe, Mn,
Mo, Ni, Pb, Si, and Zn when grown in the mine area than in normal soil [80]. When
measured in the aerial parts, the highest metal accumulations were found in Epil-
obium fragilis (As), Carthamus oxyacantha (Cd, Fe, Mn, and Pb), Verbascum
speciosum (Cu), Centaurea iberica (Mo), Salvia spinosa (Ni and Cr), Glaucium
grandiflorum (Se), and Malva neglecta (Zn) species. In contrast, when the metal
concentrations were measured at the roots, the highest concentrations were reported
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Table 2 Summary of recent research (2008–2013) on plant-mediated bioremediation (Phyto-
remediation) of soil, water, and air

Active microorganism(s) Target pollutants Preferred
accumulation
site

Reference

For bioremediation of contaminated soil and solid waste

Inula viscosa, Euphorbia dendroides,
and Poa annua

Zn, Pb, and Cd Aerial parts [17]

Thlaspi caerulescens Zn, Cd Shoot [18]

Chenopodium botrys Cu, Mn Root and
shoot

[94]

Verbascum speciosum Fe Root and
shoot

Scariola orientalis Zn Root

Stipa barbata Zn Aerial part

Euphorbia macroclada, Verbascum
cheiranthifolium, and Astragalus
gummifer

Sr Shoot [117]

Epilobium fragilis As Aerial part [80]

Carthamus oxyacantha Cd, Fe, Mn, Pb

Verbascum speciosum Cu

Centaurea iberica Mo

Salvia spinosa Ni, Cr

Glaucium grandiflorum Se

Malva neglecta Zn

Euphorbia cheiradenia As Root

Stipa barbata Cd, Pb, Cr

Euphorbia macroclada Cu

Centaurea iberica Fe

Reseda lutea Mo

Salvia spinosa Ni, Zn

Xanthium strumarium Se

Pistacia lentiscus, Scrophularia
bicolor

Pb, Zn Root [15]

Tagetes patula Benzo[a]pyrene Root [131]

Tagetes patula Cd Aerial part

Chromolaena odorata Zn, Cd, Ni Root [11]

Chromolaena odorata Total petroleum
hydrocarbon (TPH)

—

Plantago major Imidacloprid Roots, leaves [105]

Nicotiana tabacum cv. Xanthi Methyl parathion — [140]

Sorghum bicolor, Linum
usitatissumum

TPH — [116]

Zea mays, Festuca arundinacea TPH — [146]
(continued)
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in Euphorbia cheiradenia (As), Stipa barbata (Cd, Pb, and Cr), Euphorbia mac-
roclada (Cu), Centaurea iberica (Fe), Reseda lutea (Mo), Salvia spinosa (Ni and
Zn), and Xanthium strumarium (Se) species.

Remarkably, many plant species that accumulate very high concentrations of
metals only in roots showed relatively bad phytoremediation performance. This
observation suggests that mobilization of the absorbed metals from root to shoot
is an important phytoremediation strategy of some plant species. However,

Table 2 (continued)

Active microorganism(s) Target pollutants Preferred
accumulation
site

Reference

For bioremediation of polluted water, sludge, and slurry

Wolffia globosa As Whole plant [149]

Eichhornia crassipes, Lemna minor As Whole plant [9]

Eichhornia crassipes, Lemna minor,
and Spirodela polyrrhiza

As, Mg Root [86]

Ceratophyllum demersum, Lemna
gibba

Pb, Cr Whole plant [1]

Ceratophyllum demersum, Echino-
chloa pyramidalis, Eichhornia
crassipes, Myriophyllum spicatum,
Phragmites australis, and Typha
domingensis

Cu, Zn Root [50]

Pb Leaf

Eleocharis acicularis In Root [56]

Ag, Pb, Cu, Cd, Zn Shoot

Callitriche cophocarpa Cr Shoot [13]

Oryza sativa, Brachiaria mutica,
Eichhornia crassipes

Cr Root [87]

Portulaca tuberosa, Portulaca
oleracea

Cu, Ni, Hg, Pb Root [48]

For remediation of air pollution

Zamioculcas zamiifolia Benzene, toluene,
ethylbenzene, and
xylene (BTEX)

Leaf [126]

Scindapsus aureus, Asparagus se-
taceus, Sansevieria trifasciata, Chlo-
rophytum comosum, Aglaonema
commutatum, Scindapsus pictus,
Gasteria gracilis, and Philodendron
sodiroi

Formaldehyde — [153]

Alstonia scholaris, Anthocephalus
indicus, Cassia auriculata, Cassia
siamea, Lagerstroemia speciosa, Mi-
musops elengi, Peltophorum inerme,
and Tabebuia aurea

Dust Leaf surface [39]
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Table 3 Summary of recent research (2008–2013) on soil bioremediation by combined action of
plants and microorganisms

Plant Microorganism Target
pollutants

References

Zea mays Bacillus mycoides and
Micrococcus roseus

Cd [81]

Zea mays Streptomyces species MC1 Cr [99]

Alnus firma Bacillus thuringiensis GDB-1 Pb, Zn, As [14]

Polygonum avicular Alternari, Aspergillus terreus,
Bipolaris, Fusarium acumin-
atum, Fusarium reticulatum,
and Rhizoctonia

Total petro-
leum hydro-
carbon (TPH)

[88]

Amaranthus retroflenus Alternaria, Fusarium acumin-
atum, Fusarium equiset,
Fusarium reticulatum, and
Rhizoctonia

Poa sp. Alternaria, Aspergillus
terreus, Fusarium acumina-
tum, Fusarium reticulatum,
Mucur, and Penicillinium

Noea mucronata Alternaria, Oloclodiumb

Alhaji cameleron Alternaria, Aspergillus
terreus, Paecilomyces

Alhaji cameleron Alternaria, Aspergillus
terreus, Paecilomyces

Crozophora
heirosololymitrana

Alternaria, Aspergillus
terreus, Biopolaris, Fusarium
reticulatum

Convolvulus arvensis Alternaria, Mucur

Acacia angustissima,
Acacia auriculiformis,
Acacia holosericea,
Acacia mangium, Mimosa
artemisiana, Mimosa
caesalpiniifolia,
Samanea saman

Nitrogen-fixing bacteria and
arbuscular mycorrhizal fungi

TPH [22]

Cortaderia selloana Commercial bioaugmentation
product (MicroSolv-400;
Trademark, Environmental
Leverage)

Petroleum
hydrocarbons

[36]

Rizophora mangle Plant-associated
microorganisms

TPH [89]

Avicennia schaueriana Plant-associated
microorganisms

TPH [90]

Mirabilis Jalapa Rhizospheric microorganisms Petroleum
(saturated
hydrocarbons)

[97]

Bioresources for Control of Environmental Pollution 163



uncontrolled spreading of metal ions in plants’ aerial parts may exert heavy-metal
toxicity. Pb and Zn phytoremediation of an abandoned mining site was made
possible by using two Mediterranean plant species Pistacia lentiscus and Scro-
phularia bicolor [15]. The toxicity was partially overcome by using different
combinations of compost, chemical fertilizer, and zeolites. All amendments showed
an increase in survival of P. lentiscus. However, survival of S. bicolor was
improved only in the amendments done with zeolite or a combination of zeolite and
fertilizer. P. lentiscus accumulated the metal ions mostly in root and showed less
metal accumulation ability than S. bicolor; yet it is more suitable for phytostabi-
lization and environmental restoration due to higher resistance to toxicity and
higher biomass production. The phytoremediation potential of castor oil plants
(Ricinus communis) for decontamination of boron and heavy-metal-cocontaminated
land was studied in conjugation with organic matter amendments using peat and
filter cake [3]. A high concentration (0.626 g/kg dry biomass) of boron was
accumulated in the castor oil shoot when the plant was grown in the presence of
filter cake but no substantial heavy-metal accumulation (Cd, Cr, Cu, Ni, Pb, or Zn)
was noticed at any condition.

The combined action of specific plant and microbial species was reported to
enhance the bioremediation profile of heavy-metal-contaminated soil as compared
to the individual action of the same plant or the microorganism. Artificial symbiosis
was also developed by inoculating certain microbial species in the soil for culti-
vating the targeted plant species. This approach was practiced for improving bio-
remediation efficiency of a Cd-contaminated soil by cultivation of maize plants (Zea
mays L.) inoculated with two growth-promoting rhizobacteria such as Bacillus
mycoides and Micrococcus roseus [81]. Growth and nutrient uptake of the plant
were substantially increased by the bacterial treatments. Bioremediation of Cr-
contaminated soil was also successfully enhanced by cooperative action of maize
plant and Streptomyces species MC1 [99]. The presence of Streptomyces sp. MC1
caused 57 % increase of the plant growth and 46 % increase of chromium accu-
mulation in the plant biomass as well as a 96 % decrease of Cr content of the soil
sample. A similar approach was taken for bioremediation of a heavy-metal–con-
taminated mine tailing by inducing plant–microorganism symbiosis [14]. The
Bacillus thuringiensis GDB-1 strain isolated from roots of Pinus sylvestris showed
an efficient heavy-metal bioremediation property. Plant growth and nodule for-
mation of the hyperaccumulator Alnus firma was increased significantly when this
microbial strain was introduced in the soil for growing A. firma seedlings. Phyto-
remediation ability of mine-tailing–contaminated soil was also improved by this
symbiosis of A. firma and B. thuringiensis GDB-1.

An ornamental plant, Tagetes patula, was studied for phytoremediation of benzo
[a]pyrene and heavy-metal–cocontaminated soil [131]. Low concentration
(≤10 mg/kg) of benzo[a]pyrene facilitated the plant growth that caused
10.0–49.7 % increase in the plant biomass as compared to the control. Accumu-
lations of this chemical in plant tissues were almost directly proportional to its
concentration in the soil. When grown in the benzo[a]pyrene cocontaminated soil,
this plant accumulated a high concentration of Cd but showed very low Cu and Pb
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absorption efficacy. However, plant growth and benzo[a]pyrene uptake were
inhibited by the presence of these heavy metals. Another plant species, Chromo-
laena odorata, showed phytoremediation ability of heavy metal and crude oil co-
contaminated soil [11]. After 180 days of treatment, C. odorata removed 62 % Cd,
47 % Ni, and 63 % Zn from the experimental soil samples containing 2 mg/kg of
each metal ion. The plant grew normally in the soil containing up to 50 g/kg crude
oil or 2 g/kg Zn but little adverse effect was noticed in experiments containing 2 g/
kg Cd, although plant growth was adversely affected in the soil treated with 1 g/kg
or more Ni. The plant removed about 82 % crude oil in the absence of any heavy
metal; this value reduced slightly in the presence of heavy-metal cocontaminants.
A bioremediation process was developed for decontaminating heavy-metal–con-
taminated river sediments where plants were used for conditioning dredged sludge
[147]. Reed canary grass (Phalaris arundinacea) was the most suitable plant
species for the conditioning process optimized in laboratory and pilot-scale
experiments. Practical feasibility of the proposed conditioning was demonstrated in
large scale by conditioning 1,400 m3 of dredged sludge using the reed canary grass.

In addition to heavy-metal removal, plants are also used for their pesticide and
insecticide phytoremediation property. Both living plant and dry biomass of
Plantago major were successfully used for insecticide (imidacloprid) removal from
soil and water [105]. The viable plant removed up to 95 % imidacloprid from water
when it was treated for up to 10 days, and accumulation of the compound in roots,
leaves, and fruits reached the maximum levels of 15.74, 37.21, and 5.74 μg/g,
respectively. The biosorption capacity of dry roots, fruits, and leaves were mea-
sured as 7.94, 6.31, and 2.51 μg/g of dry biomass. Experiments showed that a gram-
negative microorganism associated with this plant played an important role in
biodegradation of imidacloprid inasmuch as the microbe uses this molecule as
a carbon and nitrogen source. In the presence of this microorganism 93.34 %
reduction of imidacloprid concentration was achieved in 48 h as compared with
31.9 % imidacloprid degradation in the control without the microorganism. A
transgenic tobacco plant was developed for biodegradation of organophosphorus
compounds by introducing a bacterial organophosphorus hydrolase gene from
Pseudomonas pseudoalcaligenes that was successfully expressed in the tobacco
plants [140]. The transgenic plant was able to degrade the organophosphorous
pesticide (methyl parathion) as it can secrete the organophosphorus hydrolase
enzyme. After 14 days of growth, the transgenic plant degraded more than 99 %
methyl parathion when grown in the presence of 0.02 % (v/v) of the compound.
Presence of the pesticide increases shoot and root biomass of the transgenic plant in
comparison to that of wild-type tobacco plants.

Plants are also used for long-term phytoremediation of petroleum- and hydro-
carbon-contaminated soil. Several field studies were conducted in petroleum-con-
taminated oil refineries. In most studies, plant-associated microbial consortia were
reported to play an important role. One such study isolated seven petroleum-
resistant plant species for potential bioremediation of petroleum-polluted soils by
combined action of plants and their root-associated fungal strains [88]. Using
morphological characterization, the plants were identified as Alhaji cameleron,
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Amaranthus retroflexus, Convolvulus arvensis, Chrozophora hierosolymitana,
Noea mucronata, Poa sp., and Polygonum aviculare. Each plant species contains
distinct microbial consortia in their roots and also shows different bioremediation
potential. Out of a total 11 root-associated fungal strains identified in these plants’
roots, only Altenaria sp. was present in the root of all 7 plant species whereas others
were distributed specifically in certain species. Other root-associated fungi were
identified as members of the genus Alternaria, Bipolaris, Fusarium, Penicillinium,
Rhizoctonia, Aspergillus,Macrophomina, andMucur. All these fungal species were
able to grow in culture media containing 1 % (v/v) petroleum and a few species
were resistant up to 10 % (v/v) petroleum- containing media. Bioremediation tests
confirmed contribution of both the plants and fungal consortia in bioremediation of
petroleum-polluted soils. Several leguminous plants of oil-contaminated areas, their
symbiotic nitrogen-fixing bacteria and arbuscular mycorrhizal fungi (AMF) showed
similar behaviors for phytoremediation of petroleum-contaminated soil [22]. The
study with four Acacia sp., twoMimosa sp., and a Samanea sp. showed that there is
no direct relation between petroleum resistance and phytoremediation capability of
these plants but association between a plant and its corresponding symbiotic
microorganisms played a critical role in the phytoremediation process.

Samanea saman and its symbiotic microorganisms showed the highest level of
petroleum removal in the soils contaminated with up to 70 g petroleum per kg soil.
Pampas grass (Cortaderia selloana) was able to remove petroleum hydrocarbons
from the contaminated soil of an oil refinery with and without soil amendments; the
process was associated with activity of intrinsic microbial consortia [36]. The
phytoremediation performance improved when the soil was amended by treatments
with a surfactant and a commercial bioaugmentation formulation. Soil amendments
especially helped in hydrocarbon removal from the deeper layers of soil. Petroleum-
contaminated mangrove sediment was biologically remediated using two mangrove
plant species Rizophora mangle and Avicennia schaueriana and the plant-associ-
ated microorganisms [89, 90]. The microorganisms growing in the R. mangle’s
rhizosphere contributed to the high phytoremediation efficiency of the plant.
Maximum petroleum hydrocarbons were removed from the contaminated sediments
after 3 months of the plantation, when the largest bacterial count was observed in
the plants’ rhizosphere. Nearly 87 % petroleum hydrocarbon was removed from the
contaminated soil individually by both plants, and growth of R. mangle was even
better in the contaminated soil as compared to those grown in reference sediments,
which suggests a good adaptation of this plant species for utilizing petroleum
contaminants.

In a greenhouse experiment, a commonly used ornamental plant Mirabilis Ja-
lapa showed extremely high tolerance to petroleum hydrocarbons [97]. The plant is
more effective in degrading saturated hydrocarbon fraction than the other compo-
nents of petroleum. It can grow normally in soil contaminated with up to 10 g
petroleum/kg soil and remove up to 63.2 % of total petroleum hydrocarbons after
127 days of treatment. The soil microbial consortia were also reported to be
adaptive to similar petroleum concentrations and their role in petroleum degradation
was evidenced by removal of up to 37.92 % contaminated hydrocarbons by natural
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attenuation in the absence of M. Jalapa plantation. Sorghum (Sorghum bicolor) and
common flax (Linum usitatissumum) were also used for decontamination of
petroleum-contaminated soil [116]. When grown in high-petroleum-containing soil
(40 g/kg) of an oil refinery, sorghum and common flax removed 9.5 and 18.5 g
TPH from each kg of contaminated soil, respectively. Growth of both plant species
was inhibited by petroleum contamination of the soil. However, plants’ growth and
bioremediation activity were improved by an organic fertilizer amendment. An
organic fertilizer amendment was also effective for growth enhancement of maize
(Zea mays) and tall fescue (Festuca arundinacea) plants grown in the presence of
35 g petroleum/kg soil [146]. Both plants were able to decrease TPH concentration
of the highly contaminated aged soil. Better performance was observed in the tall
fescue plantation, which removed 96.3 % of the initial hydrocarbons after 120 days
of treatment.

3.2.2 Polluted Water Treatment

Arsenic and other heavy-metal pollution in drinking water is causing a range of
health complications, especially in third-world countries. Their presence in surface
water or groundwater is also a matter of serious concern as they can easily enter the
food chain through vegetables grown with the contaminated water. A number of
aquatic plant species showed potential application for the remediation of toxic
heavy metals including As, Cd, Cr, Cu, Hg, Pb, and Zn. Several aquatic plants were
investigated to understand their potential application in heavy-metal phytoremedi-
ation and some species were reported to accumulate a high level of arsenic from
contaminated water [102]. A water hyacinth species (Eichhornia crassipes) and
several duckweed species (family: Araceae) were reported to be very efficient in
polluted water bioremediation. An arsenic-tolerant rootless duckweed species,
Wolffia globosa, was able to accumulate both arsenate and arsenite compounds up
to a level of 1,000 mg As/kg dry biomass [149]. Only arsenate uptake was reported
to be suppressed by the presence of phosphate compounds. Interestingly, this
species accumulated the element predominantly in the form of arsenite irrespective
of the presence of arsenate or arsenite in the contaminated water.

Comparable bioaccumulation capabilities were reported in a water hyacinth
(E. crassipes) and a lesser duckweed (Lemna minor) species [9]. However, the As
removal efficacy of the water hyacinth was higher due to a faster growth rate. Hg
and As removal from a coal mine effluent was studied using three aquatic macro-
phytes including a water hyacinth species, E. crassipes, and two duckweed species,
L. minor and Spirodela polyrrhiza [86]. E. crassipes showed the best performance
followed by L. minor and S. polyrrhiza. After 21 days of treatment, E. crassipes
was able to remove 71 % Hg and 80 % As from the coal mine effluent containing
about 0.007 mg/l Hg and 0.05 mg/l As. Studies revealed accumulation of a high
proportion of metal in the root due to low metal transportation efficiency of these
species. However, metal accumulation deteriorated the N, P, K, chlorophyll, and
protein content in these macrophytes. After 15 days of treatment in laboratory
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conditions, two aquatic macrophytes, Ceratophyllum demersum and Lemna gibba,
successfully removed 95 and 96 % lead, and 84 and 92 % chromium, respectively,
from a metal solution containing both metal ions [1]. None of the plants showed
any symptom of metal toxicity or reduction in growth in the presence of these metal
contaminants. Cd, Cu, Pb, and Zn removal from water and river sediments were
investigated using six indigenous macrophytes of the Nile River ecosystem such as
C. demersum, Echinochloa pyramidalis, E. crassipes, Myriophyllum spicatum,
Phragmites australis, and Typha domingensis [50]. Heavy-metal concentration in
water, sediment, and plant biomass showed the same trend: Zn was present in the
highest concentration followed by Cu, Pb, and Cd. In all six species, Cu and Zn
were preferentially accumulated in roots whereas the highest Pb concentration was
observed in plants’ leaves. Tissue-specific Cd accumulation varied across the plant
species.

The total metal accumulation capability of the investigated species was reported
as: C. demersum > E. crassipes > M. spicatum > E. pyramidalis > T. domingensis >
P. australis. Another aquatic macrophyte, Eleocharis acicularis, was reported to
accumulate multiple metal ions [56]. Out of all the test metals, only indium (In) was
accumulated in the plants’ root whereas Ag, Pb, Cu, Cd, and Zn were preferentially
accumulated in the shoots. Field cultivation experiments suggested potential
application of this macrophyte in heavy-metal phytoremediation of mining sites
[111]. Heavy-metal accumulation in the plant’s shoots increases logarithmically
with their concentration in the soil and the highest concentrations in the shoot were
reported as 20.2 g Cu, 14.2 g Zn, 1.74 g As, 0.894 g Pb, and 0.239 g Cd per kg of
dry biomass.

In another innovative approach, 10 heavy-metal–tolerant macrophytes were
isolated by constructing small-scale wetlands for bioremediation of wastewater of
an electroplating plant [130]. The isolates were identified as P. australis, Typha
orientalis, Lythrum salicaria, Arundo donax, Typha minima, Juncus effusus,
Pontederia cordata, Cyperus alternifolius, Acorus calamus, and Iris pseudacorus.
P. australis, A. calamus, T. minima, and L. salicaria were revealed as the most
suitable and promising plant species for heavy-metal phytoremediation because of
their high heavy-metal accumulation capabilities. The aquatic macrophyte, Calli-
triche cophocarpa, demonstrated extremely high affinity to Cr3+ and Cr6+ ions with
average accumulations of 28.3 and 7.3 g/kg dry biomass, respectively [13]. After
5 days of treatment, it removed all of the chromium of a test solution containing
0.5 mM Cr3+ ion. The major fraction of Cr3+ was strongly bound as metallo-organic
compounds and 57 % of Cr6+ was accumulated as an easily mobilizable compound.

An in situ study was conducted to assess potentials of three plant species such
as rice (Oryza sativa L.), paragrass (Brachiaria mutica), and water hyacinth
(E. crassipes) for Cr6+ removal from mine wastewater [87]. Total Cr accumulation
increases with the plants’ age and Cr6+ content of the test soil. The water hyacinth
removed the highest amount (24–54 %) of the contaminant from mine water fol-
lowed by the paragrass species (18–33 %). The water hyacinth showed good Cr6+

transportation efficiency from root to shoot, however, the total accumulation rate was
faster in paragrass (8.29 mg/kg dry biomass/day). Dwivedi et al. analyzed heavy-
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metal accumulation in two flowering plant species, Portulaca tuberosa and Portu-
laca oleracea, collected from several fields irrigated with industrial effluent and tube
wellwater [48]. Higher heavy-metal accumulation was reported in the plants grown
in effluent irrigated areas. When compared across different tissues, maximum
accumulation was reported in the roots and the least accumulation was in the flowers.
Although P. oleracea showed better performance, both species accumulated a sig-
nificantly high concentration of test metals including Cu, Ni, Hg, and Pb.

3.2.3 Polluted Air Treatment

Plants are well known for absorbing greenhouse gases. They are also useful in
bioremediation of toxic organic and inorganic gases. Although plant-assisted
decontamination of soil and water is dependent on absorption by roots, leaves are
the main receptor of gas and particulate solids from air. The benzene, toluene,
ethylbenzene, and xylene (BTEX) removal potential of Zanzibar Gem plant
(Zamioculcas zamiifolia) was studied in contaminated indoor air [125]. The plant
was able to absorb all four gases and smaller molecules were absorbed faster than
large molecules. After 72 h of exposure, the respective absorption rates of benzene,
toluene, ethylbenzene, and xylene were reported as 0.96 ± 0.01, 0.93 ± 0.02,
0.92 ± 0.02, and 0.86 ± 0.07 mmol/m2 of Z. zamiifolia leaf. Study revealed that
80 % benzene, 76 % toluene, 75 % ethylbenzene, and 73 % xylene were removed
by stomata whereas 20 % benzene, 23 % toluene, 25 % ethylbenzene, and 26 %
xylene were removed by cuticles. The BTEX did not affect the photosynthesis of
the plants and showed no apparent toxicity.

In another study, 30 species of Araceae, Agavaceae, and Liliaceae families were
screened for their formaldehyde-removal ability from air [153]. When exposed
to initial formaldehyde concentration of 15 mg/m3 for 7 days, 10 plant species
(Scindapsus aureus; Asparagus setaceus; Sansevieria trifasciata cv. Hahnii;
Chlorophytum comosum; Aglaonema commutatum cv. White Rajah, cv. Red Nar-
row, cv. Treubii; Scindapsus pictus cv. Argyraeus; Gasteria gracilis, and Philo-
dendron sodiroi cv. Wendimbe) were able to absorb more than 99 % formaldehyde
of the 1.0 m × 1.0 m × 0.8 m experimental chamber. The plants were least affected
by formaldehyde pollution and they absorbed most of the formaldehyde during the
first 3 days of the experiment. Plants also help in controlling air pollution by
accumulating dust particles on their leaf surfaces. The dust-trapping ability of 15
plant species growing around a steel factory was assessed from the dust load on leaf
surfaces and leaf surface morphology [39]. High dust-capturing capacity was
reported in eight plant species such as Alstonia scholaris, Anthocephalus indicus,
Cassia auriculata, Cassia siamea, Lagerstroemia speciosa, Mimusops elengi,
Peltophorum inerme, and Tabebuia aurea. The dust-trapping capacity of different
plant species was highly dependent on their leaf surface morphology.
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3.3 Nonmicroscopic Lower Eukaryotes

Some lower eukaryotes such as earthworms and polychaetes can contribute in
decontamination of biological solid wastage of domestic, municipal, and industrial
origin. They are also reported to be active in removing toxic heavy metals, oil,
petroleum hydrocarbon, and other chemical contaminants from polluted soil.
Earthworms are known to aerate soils and improve bioavailability of contaminants
by bioturbation, which in turn eases the bioremediation and phytoremediation of the
contaminants. This section focuses on some recent research activities regarding the
use of some nonmicroscopic lower eukaryotes in decontamination of environmental
pollutants.

3.3.1 Treatment of Soil Pollution

The potential of the earthworm species Eudrilus Eugenia was investigated for
vermi-assisted bioremediation of petroleum-hydrocarbon-contaminated soils [10].
Introduction of this earthworm showed enhanced bioremediation of petroleum-
contaminated soil of a mechanical workshop as compared to the bioremediation of
the same soil samples without worms. It also lowered carbon and nitrogen content
of the soil samples. However, earthworm survival and composition of microbial
species were dependent on the concentration and nature of the petroleum hydro-
carbon contaminants. In all cases, the earthworm count was reported to be much
lower in petroleum-contaminated soil than in the control. Several earthworm spe-
cies were reported to contribute to PAH bioremediation. Another earthworm spe-
cies, Pontoscolex corethrurus, was reported to enhance benzo[a]pyrene degradation
when it was used to treat contaminated soils already amended with legume,Mucuna
pruriens, or the grass, Brachiaria humidicola [57]. After 112 days of treatment, the
earthworm alone was able to remove 26.6 % of the contaminant from the sterile soil
sample containing 100 mg/kg benzo[a]pyrene; the amendments with B. humidicola
and M. pruriens increased this value to 35.7 and 34.2 %, respectively. This
earthworm also removed 36.1 % of the contaminant from the unsterilized soil
whereas the autochthonous microorganism itself could remove only 9.1 % of the
contaminants over same treatment period.

Enhancement of microbial pyrene degradation was also reported by the presence
of another earthworm species, Eisenia foetida [129]. A microbial degradation study
in the presence and absence of the earthworm showed that introduction of the
earthworm enhanced pyrene removal significantly from both freshly contaminated
and aged soils. After 14 days of incubation with the E. foetida, 45.5–91.0 % pyrene
was removed, which was about two to three times higher than the sample treated for
the same time without addition of any earthworm.

Earthworms also helped in bioremediation of another PAH, fluoranthene, from
contaminated soil [60]. Fluoranthene removal by individual and combined actions
of an earthworm population (consisting mostly of Eisenia fetida) and ryegrass
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(Lolium multiflorum) cultivation was investigated over a period of 10 weeks. More
than 60 % of the contaminant was removed by the first 2 weeks and above 80 %
contaminant was removed at the end of the experiment by combined action of the
earthworm and the ryegrass. However, the ryegrass and earthworm individually
removed nearly 75 % fluoranthene whereas the indigenous microorganisms were
able to remove 70 % of the contaminant over the same timeframe. Only
0.01–1.20 % of the removed fluoranthene was accumulated in the ryegrass and
earthworm biomasses, which gave evidence of the role of indigenous microor-
ganisms in fluoranthene degradation. Experimental observations suggest that the
earthworm and the ryegrass cultivation enhanced soil fluoranthene removal mainly
by enhancing polyphenol oxidase activity of the microorganisms.

Two ecological earthworm species (E. foetida and Amynthas robustus) were
reported to enhance biodegradation of DDT present as a soil contaminant [72]. The
experiment was conducted over a period of 360 days and faster DDT degradation
was observed in the soil with higher earthworm density. Analysis of the degradation
products suggests that the anaerobic reductive dechlorination was the main deg-
radation pathway for the first half of the study, and the aerobic dechlorination
process was gradually increased during the second half of incubation.

Sizmur et al. [120] studied the role of an earthworm species (Lumbricus ter-
restris) in heavy-metal mobilization from contaminated soils. Analysis of chemical
form and concentration of the metals showed higher concentrations of water-
extractable heavy-metal compounds in the earthworm-treated soil than the earth-
worm-free control. The bioremediation ability of the earthworm was dependent on
soil composition and concentration of the heavy-metal contaminants. In another
study, heavy-metal- and hydrocarbon-cocontaminated soil was bioremediated by
combined action of two plants (Paulownia tomentosa and Cytisus scoparius), an
earthworm species (E. fetida), and organic matter (horse manure) amendment [77].
The process was scaled up to carry out the bioremediation of soil polluted with
municipal waste. Bioremediation performances of the plants were improved by
application of the organic matter and the earthworm. Plants and the native soil
microorganisms were more effective in reducing the heavy-metal level in soil and
the earthworm contributed mainly in the decontamination of organic pollutants
(hydrocarbons).

Bioremediations of organically enriched fish farm sediments were enhanced by
artificial mass culture of the polychaete Capitella sp. I [63, 70]. A long-term study
suggested fast decomposition of the organic matter during the rapid population
growth of the polychaete. The technique is promising for minimizing negative
environmental impacts of fish farms. The results indicated that the organic matter
was finally decomposed by the local microbial community. Also the microbial
population increased during the fast-increasing period of the polychaete species,
and simultaneous enhancement of the bioremediation rate confirmed combined
action of the polychaete and the indigenous microbial population in the organic
matter biodegradation. In contrast to the cooperative bioremediation by Capitella
sp. and native microbial consortia, another polychaete, Sabella spallanzanii, was
reported to prevent bacterial pathogen enrichment in the aquaculture waste by
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removal of bacterioplankton from water [126]. Experimental results showed that
S. spallanzanii was able to filter, accumulate, and remove most of the bacterial
species from the waste including potential human pathogens. However, the bac-
teria-filtering capability of the polychaete was dependent on environmental
parameters and significant variation in performance was reported with seasonal
changes.

3.3.2 Treatment of Water Pollution

Earthworms were also useful for vermi-stabilization of industrial wastewaters [132,
133]. Vermi-stabilization of wastewater sludge from the milk-processing industry
was studied by using the earthworm E. fetida in combination with cow dung [133].
Significant reduction in pH and organic carbon was achieved after 90 days of
bioremediation. Concentrations of exchangeable cations such as K+ and Ca2+, and
extractable trace metals such as Fe, Mn, and Zn also increased with this treatment.
Growth and cocoon formation of the earthworm were stimulated by the addition of
cow dung. A better growth and reproduction pattern was achieved in the vermibeds
containing 40–60 % sludge, whereas a high sludge concentration increased the
mortality of the earthworm. Physical parameters and chemical composition of
another vermibed were changed in a similar way when the same earthworm species
and cow dung mixture was used for bioremediation of aerobically treated distillery
sludge from a sugar industry [132]. The fastest growth rate and maximum indi-
vidual live weight of the earthworms were observed in the vermibeds containing
20 % distillery sludge whereas better reproduction success was noticed in the beds
treated with 40 % distillery sludge; earthworm mortality increased in the vermibeds
with 60 % or more sludge content (Table 4).

Table 4 Summary of recent research (2008–2013) on soil and water bioremediation with
nonmicroscopic lower eukaryotes

Active organism(s) Target pollutants Reference

For bioremediation of polluted soil and solid waste

Eudrilus Eugenia Petroleum hydrocarbon [10]

Pontoscolex corethrurus Benzo[a]pyrene [57]

Eisenia foetida Pyrene [129]

Eisenia fetida Fluoranthene [60]

Eisenia foetida, Amynthas robustus DDT [72]

Lumbricus terrestris Cu, Pb, Zn [120]

Eisenia fetida Organic hydrocarbons [77]

Capitella sp. I Organic pollutants [63, 70]

Sabella spallanzanii Bacteria [126]

For bioremediation of contaminated water

Eisenia fetida Organic pollutants [132, 133]
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4 In-Field Situation of Bioremediation: Limitations
and Challenges

Although there are a few limiting factors, bioremediation has the ability to restore
most contaminated environments. In fact, microorganisms and plants have been
cleaning the environment by degrading environmental wastage for billions of years.
Particularly, in situ bioremediation can be regarded as skillful and extended use of
natural microbial activities. Recent scientific advances and development of several
bioinformatics tools and high-throughput techniques are extremely useful in
understanding the bioremediation processes at the molecular level. The use of
metagenomic tools and culture-independent molecular techniques is helping the
understanding of the structure and dynamics of the microbial community. As a
result, bioremediation is no longer considered as a function of a single microor-
ganism; rather, newer bioremediation technologies are being developed based on
microbial consortia. Researchers already developed genetically modified organisms
and synthetic microbial communities with the special ability of surviving in unfa-
vorable environmental conditions and degrading complex contaminants. However,
many hurdles are yet to be overcome before their in-field use in various polluted
sites.

Bioremediation is a well-studied field today but not well practiced yet. Although
the bioremediation market is increasing sharply, current application of this tech-
nology is confined to a small fraction of the very large waste management market.
This review shows that microorganism and plant species of different taxonomic
groups were characterized for their potential bioremediation ability, but most of
them are yet to be commercialized. Bioremediation is used mainly in long-term
decontamination of petroleum-/PAH-/metal-contaminated soils, cleaning up of
chemical spills from soil or water, large-scale water treatment for decreasing BOD
and COD values, heavy-metal removal from groundwater by phytoremediation, and
in activated sludge plants [16, 23, 27, 66, 106, 107]. Several bioremediation
companies are now providing a range of products and services for microbial
decontamination of polluted soil and water, which include a supply of biostimu-
lating formulations, designing of bioremediation programs, field management and
supervision, remediation performance review, and even development of customized
site-specific microbial consortia. The biostimulating formulations usually contain
macro- or micronutrients, oxygen-releasing compounds, hydrogen-releasing com-
pounds, other oxidizing or reducing agents, electron acceptors, electron donors, or
surfactants. However, these companies rarely disclose the composition of microbial
consortia or the exact formulation of bioremediating nutrients.

Oil Spill Eater International, Corp. provides bioremediation services for the
cleaning up of various environments including brackish water, ocean water, fresh
water, and intertidal zones by application of bioremediation techniques (http://osei.
us/). Another bioremediation company, Remediation and Natural Attenuation
Services, supplies various bioremediation formulations for enhancing the growth of
indigenous microbial species (http://www.rnasinc.com/). Some of the products
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work by providing fast and slow release electron donors, by enhancing buffering
capacity of soils, and by increasing dissolved oxygen concentration of water. EOS
Remediation is a bioremediation company that provides various biostimulation and
bioaugmentation products (http://www.eosremediation.com/). They revealed use of
Dehalococcoides sp. and other dechlorinating bacteria for biodegradation of chlo-
rinated hydrocarbons. This microorganism was also revealed as a component of
Bio-Dechlor Inocculum® Plus, a bioaugmentation product supplied by another
bioremediation company, Regenesis (http://www.regenesis.com/). This product
claims to stimulate dechlorination of several compounds such as tetrachloroethene,
trichloroethene, dichloroethene, and vinyl chloride.

Large-scale bioremediation technology was successfully deployed in the 1989
Exxon Valdez oil spill in Prince William Sound, Alaska, and the BP Deepwater
Horizon oil spill in 2010 in the Gulf of Mexico [12]. The Exxon Valdez oil spill was
degraded by biostimulating the indigenous microbial community by addition of
nitrogenous fertilizers, whereas bioavailability of the petroleum hydrocarbons were
enhanced by the addition of a dispersant such as Corexit 9500 to cope with the
bioremediation of the Deepwater Horizon oil spill. Significantly higher numbers of
hydrocarbon-degrading microorganisms were reported at the Exxon Valdez con-
taminated sites within the path of the oil slick than at reference sites [28]. A total of
24 oil-degrading bacterial strains were isolated from a Deepwater Horizon oil spill
that contaminated beach sands at Pensacola Beach, Florida [64]. Isolated bacterial
strains were identified primarily as hydrocarbon-degrading genera such as Alcani-
vorax, Marinobacter, Pseudomonas, and Acinetobacter of the γ-Proteobacteria
family and Rhodobacteraceae sp. of the Alphaproteobacteria family.

In-field use of bioremediation is limited by several factors including slowness of
the system, challenges of scale-up, unfavorable physical parameters of actual sites,
uneven distribution of pollutants, government policies and regulatory hurdles,
unawareness of environmental protection, and economic liabilities. Biological
processes are extremely selective and in most cases bioremediation cannot elimi-
nate all contaminants of a site, which needs additional chemical processes. This
made bioremediation only an efficient pretreatment procedure of the final decon-
taminating process and often users prefer to use single-step faster chemical pro-
cesses rather than wasting time with a comparatively slow pretreatment step, which
in turn saves a small fraction of the total expenditure. Bioremediation often takes a
much longer time than other treatment options and is really impracticable in
industries that produce tons of wastage in a single day and also for municipal
wastage. As a result, land filling and incineration methods are still the most popular
methods for municipal waste management, and they are also being practiced for
treatment of some industrial wastage, especially in underdeveloped and developing
countries. Although bioaugmentation and biostimulation techniques enhance the
bioremediation rate, it is far from the requirements of most industries.

Scale-up is yet another big challenge. Maintenance of optimum conditions in
large-scale ex situ processes is often more difficult than laboratory-scale or pilot-
plant testing. Site factors are also an important consideration for in situ bioreme-
diations. Bioremediation formulations that are highly effective in in-house testing
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may lose efficiency due to uncertain physical and chemical conditions of the
application site. The physical conditions of the treatment sites are ever-changing
due to environmental parameters, microbial metabolism, and the increasing amount
of biodegradation products, which are tough to mimic in a small-scale experimental
set-up. In this context, process optimization for ex situ bioremediation techniques is
also a relatively neglected field in comparison to basic science studies of biore-
mediation. In-house bioremediation processes need to be performed in controlled
environments, which requires sophisticated techniques and trained manpower. Also
there are several practical problems for ex situ bioremediation of large amounts of
waste materials, which includes transport burden, risks of spreading, and handling
hazard. Bioremediation technology has the potential of replacing nonecofriendly
waste management strategies in the future but it needs to go a long way before
overcoming the present obstacles. Intensified interdisciplinary research may show
the way for converting cumulative fundamental knowledge to successful biore-
mediation practices.

5 Conclusion and Future Perspectives

Environmental pollution is the biggest threat to survival of lives on the planet Earth
and with the progress of human civilization we are worsening the situation. Pol-
lution has several direct effects on human and animal health. For a long time,
science and technologies have been used in such ways that pollute the environment
but we can use scientific knowledge and technological advancements to get rid of
environmental pollution. Bioremediation is one such technology for decontami-
nating polluted environments by utilizing the ability of living organisms to degrade
toxic chemicals. A large number of living organisms show potential application in
bioremediation of soil, water, and air pollution. These organisms come from a
diverse phylogenetic origin and often interactions between more than one micro- or
macro-organism are essential for biodegradation of a pollutant. Bioremediation is
used for degrading certain toxic pollutants but cannot yet replace existing industrial
waste management techniques for various practical reasons. Scientists are making
continuous efforts to understand existing bioremediating organisms and improve
their bioremediation capability. At the same time, research is also being focused on
discovery and development of more efficient bioremediating agents. Most sophis-
ticated techniques are being used to understand the dynamic chemical and microbial
compositions of bioremediation sites, which would be helpful for understanding
bioremediation methods at the molecular level.

Instead of efficient pollutant degradation ability of several plants and microbial
species, bioremediation is not a panacea for treatment of all pollution-related
problems, at least for now. A gap exists between advances in laboratory research
and in-field industrial applications. Capabilities of natural or engineered microbial
consortia need to be integrated with appropriate process designs to provide efficient
bioremediations at the commercial scale. Heterogeneity, complexity, and the
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dynamic nature of the contaminated environment are other major hurdles to suc-
cessful application of bioremediation techniques. In fact, bioremediation strategies
should be developed based on physicochemical and biological composition of
each contaminated site. Assessment of pollutant degradation kinetics is essential
for setting up industrial bioremediation processes; it is yet another inadequately
studied parameter. Although there is significant progress in overcoming some of
the challenges, efforts need to be intensified in understanding problems behind
industrial bioremediation and in searching for their practical solutions.
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Abstract In order to relieve the pressure of energy supply and environment
contamination that humans are facing, there are now intensive worldwide efforts to
explore natural bioresources for production of energy storage compounds, such as
lipids, alcohols, hydrocarbons, and polysaccharides. Around the world, many
plants have been evaluated and developed as feedstock for bioenergy production,
among which several crops have successfully achieved industrialization. Micro-
algae are another group of photosynthetic autotroph of interest due to their superior
growth rates, relatively high photosynthetic conversion efficiencies, and vast
metabolic capabilities. Heterotrophic microorganisms, such as yeast and bacteria,
can utilize carbohydrates from lignocellulosic biomass directly or after pretreat-
ment and enzymatic hydrolysis to produce liquid biofuels such as ethanol and
butanol. Although finding a suitable organism for biofuel production is not easy,
many naturally occurring organisms with good traits have recently been obtained.
This review mainly focuses on the new organism resources discovered in the last
5 years for production of transport fuels (biodiesel, gasoline, jet fuel, and alkanes)
and hydrogen, and available methods to improve natural organisms as platforms
for the production of biofuels.
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Abbreviations

ACCase acetyl-CoA carboxylase
ACP acyl carrier
CoA coenzyme A
DGAT diacylglycerol acyltransferase
DHAP dihydroxyacetone phosphate
ENR enoyl-ACP reductase
FAT fatty acyl-ACP thioesterase
G3PDH gycerol-3-phosphate dehydrogenase
GPAT glycerol-3-phosphate acyltransferase
HD 3-hydroxyacyl-ACP dehydratase
KAR 3-ketoacyl-ACP reductase
KAS 3-ketoacyl-ACP synthase
LPAAT lyso-phosphatidic acid acyltransferase
LPAT lyso-phosphatidylcholine acyltransferase
MAT malonyl-CoA:ACP transacylase
PDH pyruvate dehydrogenase complex
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1 Introduction

At present, primary fossil energy, such as coal, petroleum, and natural gas,
accounts for more than 87 % of the energy supply [1]. According to the prediction
of the IEA (International Energy Agency), global energy consumption will rise
more than 50 % by 2035, from 5.33 9 1020 J in 2008 to 8.12 9 1020 J in 2035 [2].
Liquid fuels account for 34 % of total global energy consumption, and the need is
increasing, especially due to demands from the emerging markets of developing
countries, for example, China and India. Of the liquid fuels, 54 % are consumed by
the transportation sector [2]. Most liquid fuels come from petroleum. In recent
years, shale gas has been a star in fossil resources [3], and is expected to expand
the global energy supply, reaching 46 % of the United States’ natural gas supply.
However, the prices of fossil fuels are expected to rise steadily in the long term
because of decreasing supply and increasing demand. Pessimistic viewers pre-
dicted that crude oil production would reach a peak in the 2050s and decrease
inevitably thereafter [4, 5]. Nevertheless, there is no doubt that fossil fuel
resources are finite.

In addition, combustion of fossil fuels leads to the steady accumulation of
greenhouse gases and global warming [2]. Global warming is considered to affect
climate change, including increasing the average global temperature and sea level.
Intense weather events around the world, such as El Niňo-Southern Oscillation
(ENSO), have been enhanced by as much as 60 % in the past half century [6, 7].
These changes not only have a negative impact on the Earth’s ecosystem, but also
threaten the sustainable development of human society. Therefore, it is imperative
for humans to explore renewable energy as alternatives to fossil fuels.

At present, bioethanol and biodiesel account for almost 90 % of the biofuel
market [8]. Bioethanol is traditionally produced through yeast or bacteria fer-
mentation of sugars and starches from crops such as maize and sugar beet. In order
to keep the global food supply secure, the next-generation bioethanol from non-
food lignocellulosic biomass has been proposed. For many years photosynthetic
autotrophic plants and microalgae have been considered as a possible biofuel
feedstock, inasmuch as they can be harvested and use sunlight to convert CO2 into
a wide variety of metabolites [9].

Biomass is a biological material derived from living or recently living organ-
isms. In this review, biomass refers specifically to plant- (algae-) based material.
Plant and algae biomass are used as substrates for microbial fermentation to
produce biofuels, including bioethanol [10], biodiesel [11], jet fuel [12], and
hydrogen [13]. In the process, these organisms can be distinctly classified as
energy-harvesting organisms (such as plants, algae, and cyanobacteria) and
energy-converting organisms (such as yeast and bacteria). In the past decades,
many researchers have devoted great effort to finding biological resources for
bioenergy, including exploration of natural species and strain improvement
through metabolic engineering and synthetic biology methods [14].
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This review provides an overview of organism resources (microalgae, energy
plant, yeast, and bacteria) discovered in the last 5 years for production of liquid
biofuels (biodiesel, gasoline, jet fuel, and alkanes) and hydrogen, and summarizes
efforts to improve organisms for bioenergy production.

2 Microalgae for Bioenergy

Eukaryotic microalgae and prokaryotic cyanobacteria are oxygenic photosynthetic
microorganisms that live in a wide range of ecological habitats including fresh,
brackish, and ocean water. Although over 40,000 species have been reported, there
are more algae species yet to be identified [15]. The term ‘‘algae’’ commonly
includes many organisms from different kingdoms of life, which can be single or
multicellular and eukaryotic or prokaryotic. According to their morphology and
biochemical characteristics, algae can be divided into three groups: (i) microalgae
(unicellular eukaryotic organisms such as Chlamydomonas reinhardtii and Chlo-
rella vulgaris); (ii) macroalage (seawood such as Laminaria japonica and Por-
phyra dentate); and (iii) cyanobacteria (Arthrospira platensis and Aphanizomenon
flos-aquae).

Compared to ethanol from corn or biodiesel from soy, palm, and rape, biofuel
production per acre from microalgae feedstock is higher [16] and does not compete
with limited arable land and fresh water used for food production. In support of the
Aquatic Species Program of the US Department of Energy in the 1970s, scientists
analyzed about 3,000 different microalgae for their possibility of producing bio-
fuels [17]. Although many species of microalgae have some traits that are ideal for
biofuel production, most have serious disadvantages that blocked the emergence of
a profitable microalgae-based biofuel industry. Several technical difficulties need
to be resolved before microalgae can be used as an economical biofuel feedstock.
These barriers include difficulties in obtaining high lipid productivity in a large-
scale cultivation in outdoor conditions, harvesting microalgae cells in low-energy
ways, and extracting biofuels from the microalgal feedstock by cost-effective
methods. To speed up the utilization of microalgae in biofuel production, it is
necessary to invent new methods to increase the productivity of microalgal cul-
turing systems and push bioprospecting efforts to look for strains with as many
ideal biofuel characteristics as possible. This section discusses the application of
microalgae and cyanobacteria in biofuel production.

2.1 Microalgae for Production of Transport Biofuels

Under optimal conditions, the lipids are located in the membrane of algae cells,
and constitute about 5–20 % of the dry cell weight (DCW). Among the mem-
brane lipids, the glycosyl glycerides are enriched in the chloroplast, including

188 G. Hu et al.



monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol (MGDG), and
sulfoquinovosyldiacylglycerol (SQDG), whereas most phosphoglycerides are
located in the plasma and endoplasmic membrane, mainly including phosphati-
dylcholine (PC), phosphatidylglycerol (PG), and phosphatidylethanolamine (PE)
[18, 19]. Under stress conditions, many algae will synthesize and accumulate
neutral lipids (20–55 % DCW), mainly in the form of triacylglycerols (TAGs).
TAGs are the main storage molecules of carbon and energy, which are deposited
in lipid bodies in the algal cell cytoplasm. Interestingly, the green alga, ryococcus
braunii does not synthesize lipids but instead produces a great amount of
hydrocarbons (C23–C40, up to 80 % DCW) under stress conditions [20, 21].

Over the past decades, hundreds of oleaginous microalgae species with high
lipid content have been screened and characterized. Oleaginous algae are dis-
tributed in diverse taxonomic groups, and their lipid contents vary significantly
(Table 1). From the prospective of statistic analysis, the intrinsic potential to
produce lipid/oil is strain-specific, instead of genus-specific [15].

Microalgae synthesize fatty acids as precursors to be used for the assembly of
lipids. The carbon chain length of fatty acids in the microalgal cells ranges from
C14-C18 [22]. According to the number and position of double bonds on the
carbon chain, the fatty acids can be divided into three classes: saturated, mono-
unsaturated, and polyunsaturated. Comparatively speaking, the saturated and
monounsaturated fatty acids are predominant in most algae species [23]. It is noted
that the fatty acid compositions are also used to identify the algal taxa. Compared
with higher plants, there are greater variations in the fatty acid profiles of algae. In
some algal species, the predominant fatty acids are medium-chain length (i.e.,
C10–C14) [23], whereas others can synthesize very-long–chain fatty acids ([C20)
[23–27]. The ability to produce large quantities of very-long–chain polyunsatu-
rated fatty acids (PUFAs) is another good feature of some algal species [25, 28].

The microalgae cells synthesize the fatty acids in the chloroplast, whereas TAGs
are mainly assembled at the ER (Fig. 1) [18, 22]. In the end, the de novo synthesis
pathway of fatty acids produces a C16 and/or C18 fatty acid. Acetyl CoA car-
boxylase (ACCase) catalyzes the conversions of acetyl CoA to malonyl CoA,
which is the first step in fatty acid biosynthesis. ACCase is an enzyme complex that

Table 1 Lipid contents in different classes of microalgae and cyanobacteria1

Microalgae Average lipid contents (% dry cell weight)

Under normal conditions Under stress conditions

Green microalgae 25.5 45.7
Diatoms 22.7 37.8
Cyanobacteria2 9.8 NA4

Other eukaryotic algal taxa3 27.1 44.6

1 This table is edited according to the data of Hu et al. [15]
2 To date large quantities of total lipids have not been found in cyanobacteria strains
3 They include Chrysophytes, Haptophytes, Eustigmatophytes, Dinophytes, Xanthophytes, and

Rhodophytes
4 NA Not applicable
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exists in a eukaryotic and prokaryotic form [29]. The malonyl CoA is the carbon
donor for fatty acid chain elongation through the 4 actions of condensation,
reduction, dehydration, and reduction [22]. At the ER membrane, an enzyme named
diacylglycerolacyltransferase (DGAT) catalyzes the final step of TAG assembly, in
which a third fatty acid is transferred to the sn-3 carbon of DAG [15, 22]. Another
enzyme, phospholipid:diacylglycerolacyltransferase (PDAT), uses phospholipids
as acyl donor and DAG as the acceptor to form the TAGs [30, 31].

The triglycerides in the algal lipids can be converted into different kinds of
biofuels including biodiesel and jet fuel by chemical methods [32]. The fatty acid
composition of triglycerides will affect the properties of biofuels. For example, the
saturation and fatty acid chain length have an impact on the ignition quality, cold
flow properties, and oxidative stability of biodiesel [33].

Fig. 1 Simplified overview showing the triacylglycerol biosynthesis pathway in a microalga
cell. Fatty acids are produced in the chloroplast, whereas triacylglycerols are mostly synthesized
at the ER and stored in the lipid body. ACCase acetyl-CoA carboxylase; ACP acylcarrier protein;
CoA coenzyme A; DGAT diacylglycerolacyltransferase; DHAP dihydroxyacetone phosphate;
ENR enoyl-ACP reductase; FAT fatty acyl-ACP thioesterase; G3PDH gycerol-3-phosphate
dehydrogenase; GPAT glycerol-3-phosphate acyltransferase; HD 3-hydroxyacyl-ACP dehydra-
tase; KAR 3-ketoacyl-ACP reductase; KAS 3-ketoacyl-ACP synthase; LPAAT lyso-phosphatidic
acid acyltransferase; LPAT lyso-phosphatidylcholineacyltransferase; MAT malonyl-CoA:ACP-
transacylase; PDH pyruvate dehydrogenase complex
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Oleaginous microalgae are a diverse group of microorganisms, many of which
can produce novel feedstock for the production of renewable green biofuels. The
algae strains used as candidates for biofuel production should have the following
desirable traits: (i) high photosynthetic conversion efficiencies, (ii) rapid biomass
productivity, (iii) substantial amounts of neutral lipids ([45 % DCW), (iv) the
ability to thrive in different culture systems in the climatic zone, and (v) the ability
to grow in a variety of wastewater in marginal lands.

2.2 Microalgae for Production of Hydrogen

Hydrogen gas is regarded as a promising energy because (i) it is renewable; (ii) it
can produce a large amount of energy per unit molar and does not release CO2

upon combustion; and (iii) it is simply converted to electricity in a power plant or
by fuel cells. Although there are several ways to produce H2 such as photovoltaics-
electrolysis and gasification of biomass, biological H2 production, especially using
microalgae [13, 34, 35], has attracted considerable interest.

In the 1940s, Gaffron found the phenomenon of H2 evolution in unicellular
green microalgae [36]. After cultivation in dark and anaerobic conditions for a
period of time, microalgae cells were induced to produce H2 under light [37].
However, hydrogen evolution activity in microalgae cells was transient, and only
lasted a few minutes at most. A hydrogenase in these green algae cells was
discovered to be responsible for hydrogen evolution [38–40]. The gene was in the
nucleus genome of microalgae cells, but its mature protein was located in the
chloroplast stroma [40]. The hydrogenases of eukaryotic algae were monomeric
proteins of about 45–50 kD, and belonged to a Fe hydrogenase family [37]. It was
noted that the activity of Fe-hydrogenase was repressed by oxygen [41, 42].

Later, the expression of Fe-hydrogenase was found to be induced in the light
under anaerobic conditions [42, 43]. In addition, sulfur deficiency can lead to
reversible decrease of the oxygenic photosynthesis rate [44], but without changing
the respiration [43]. Thus, a so-called ‘‘two-stage photosynthesis and H2 production
process’’ was proposed [43, 45]. First, green algae were cultivated in the light, then
the algal cells were transferred into a sealed medium in which the sulfur supply was
carefully limited. After the sulfur in the medium was consumed completely, the
algal cells responded to S deficiency by changing photosynthesis and carbon
metabolism to survive. Under S deficiency, the activity of photosystem II and
oxygen evolution declined dramatically and the O2 was depleted by cell respiration,
which resulted in anaerobiosis in the culture. Subsequently, Fe-hydrogenase was
induced and sustained H2 produced in the light. In the period from 24 to 70 h, the
rate of photosynthetic H2 production was 2.0-2.5 mL � L-1 � h-1[13]. Afterwards,
the rate decreased slowly. At the same time, substantial amounts of cellular starch
and protein were catabolized to support the hydrogen evolution [45].

The theoretical maximum yield of hydrogen by an algae cell should be 10 mol H2

m-2 � d-1[13]. However, the real yields of H2 production are only 10 %, due to some
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biological and engineering limitations, for example, solar energy conversion effi-
ciency and the limited time of sustained hydrogen production in green algae [13].
Thus far, the microalgae species and mutants that proved to be able to generate
hydrogen are: C. reinhardtii [43, 46, 47], Scenedesmus obliquus [48–50], Chlorella
fusca [13], Chlorella sp. [51, 52], Chlorella vulgaris [53], Chlorella protothecoides
[54], and Platymonas subcordiformis [55, 56].

Except for the eukaryotic microalgae, some prokaryotic nitrogen-fixing cya-
nobacteria are reported to be able to produce H2 by nitrogenase. The filamentous
cyanobacteria (e.g., Plectonema boryanum [57] and Anabaena cylindria [58]) can
evolve H2 using the endogenous carbohydrate as the electron donor under
anaerobic conditions without N2. Nitrogenase is responsible for nitrogen fixation
in the presence of N2. In the absence of N2, nitrogenase catalyzes the reaction: [59]

2Hþ þ 6 e� þ 4ATP ! H2 þ 4ADP þ 4Pi

The rate of hydrogen evolution catalyzed by nitrogenase is one-third to one-
fourth that of nitrogen-fixation [35]. As is the hydrogenase, nitrogenase is also
sensitive to oxygen. But the O2 production by photosynthesis can be blocked by
the N-depletion of the cultures [35, 57, 60].

Some cyanobacteria evolve a special kind of cell-heterocysts in their filamen-
tous hyphae [61], which contain the nitrogenase and protect it from oxygen
damage (Fig. 2). Photosynthesis and carbon fixation are conducted in vegetative
cells of filamentous cyanobacteria; then the carbohydrates are transferred into
heterocysts and decomposed to supply the nitrogenase with reducing power.
Adenosine triphosphate (ATP) can be obtained from the PSI and anoxygenic

Fig. 2 Nitrogenase-mediated hydrogen production in the heterocyst of cyanobacteria
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photosynthesis in heterocysts. In the presence of inert gas, for example, argon,
such cyanobacteria can simultaneously produce H2 and O2 for a long time [62],
even in outdoor conditions [63]. However, the efficiency of solar energy into H2 by
microalgae was \1–2 % in lab experiments at low light intensities, and declined
dramatically to 0.3 % under outdoor conditions with sunlight illumination [35]. At
present, hydrogen production is observed within at least 14 genera of cyanobac-
teria [59]. The most common cyanobacteria species that have nitrogenase and are
able to generate hydrogen are listed in Table 2.

2.3 Natural Strain Isolation, Screening, Selection,
and Preservation

The purposes of microalgae isolation and screening works are to find and maintain
the promising microalgal strains for cultivation and improvement. Given the dif-
ferent culturing system and demands of biofuels and chemicals derived from
microalgae, it is necessary to isolate new strains from a wide variety of habitats to
provide the greatest metabolic biodiversity.

Generally, algae are isolated from different natural aqueous environments from
fresh water to brackish water. Now, the algae that lived in extreme habitats, such
as hypersaline, the polar environment, and thermal springs, are attracting more and
more attention. In order to avoid duplication of efforts, large-scale sampling work
should be organized in advance. All sampling locations should be planned

Table 2 Hydrogen production by some cyanobacteria species

Cyanobacteria species References

Unicellular Aphanocapsa montana [64]
Cyanothece sp. [65, 66]
Microcystis aeruginosa [67]
Gloeothece sp. [68]
Gloeobacter violaceus [64]
Gloeocapsa alpicola [69]
Synechocystis sp. [68, 70]
Synechococcus PCC602 [64]

Filamentous Leptolyngbya sp. [68]
Lyngbya majuscula [68]
Anabaena cylindrical [62]
Anabaena variabilis [68, 71]
Anabaena sp. [68, 72]
Nostoc punctiforme [68]
Nostoc sp. [68]
Oscillatoria chalybea [73]
Plectonema boryanum [74]
Spirulina platensis [75]
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carefully to include aquatic and terrestrial environments in different geographical
zones to keep the gene pools at a maximum. Furthermore, except for the spatial
distribution, temporal succession should be considered because the algae com-
munity in the habitats will vary with seasonal change.

Traditional methods to isolate new strains from natural environments have been
elucidated in detail [76]. Generally, it will take a week or more to isolate some
microalgae strains by traditional methods. Some automated isolation techniques
such as flow cytometry have been used as high-throughput methods to sort fluo-
rescence-activated cells of microalgae in large-scale isolation works [77–79].
After purification, strain identification is performed according to its morphological
characteristics and molecular methods, for example, 18S rRNAgene sequence, ITS
(internal transcribed spacer) sequence, and rbcL (ribulose-1,5-bisphosphate car-
boxylase/oxygenase large subunit) genes. Microalgae strains often are maintained
in an agar medium in low temperature under low light although cryopreservation
has been applied in microalgae maintenance [80].

Before screening oleaginous microalgae strains, it is necessary to give a clear
definition of what a good oleaginous algae strain for biofuel production is. An
ideal oleaginous microalgae strain would have advantages in three major areas:
growth characteristics, lipid production, and strain robustness. The growth char-
acteristics include a set of parameters such as growth rate, cell density, tolerance to
environmental factors, and nutrient demands. Much work would be necessary to
achieve these parameters by using traditional culturing techniques. Therefore
developing an automated system to monitor all growth parameters of microalgae
simultaneously would be significant. Screening for lipid production involves the
determination of lipid contents and productivity, and fatty acid profiles of the lipid.
For large-scale culture of a given oleaginous strain, its robustness must be con-
sidered carefully. The strain’s robustness encompasses several parameters,
including culture consistency, resilience, stability, and sensitivity to predators.

At present, the most difficult barrier in screening substantial oleaginous algal
strains is the lack of high-throughput methods that can analyze many phenotypes at
the same time (e.g., cell density, biomass concentration, lipid content, and compo-
sition) although many automated high-throughput analytical techniques have been
applied in analysis of individual phenotypes. For example, the solvent extraction and
weighing method is widely used to determine the lipid content in algae, but it
requires a lot of biomass and time. Fluorescence semiquantification methods using
dyes that need little biomass have been developed [81–83]. However, these methods
are available in only a small range of algae strains. Lipidomics methodologies also
accelerate the analysis of fatty acid profiles compared with the traditional GC–MS
[84–87]. Recently, a new rapid screening procedure for oleaginous microalgae
strains based on chlorophyll fluorometer and Nile-red dyes was developed [88].

Culture collections are important to preserve the diversity of strains, protect the
genetic pool, and provide research materials. Up to now, the major algal collection
agencies include UTEX (The Culture Collection of Algae at the University of
Texas at Austin, Texas, about 3,000 strains, http://www.utex.org), CCMP (The
Provasoli-Guillard National Center for Culture of Marine Phytoplankton at the
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Bigelow Laboratory for Ocean Sciences in West Boothbay Harbor, Maine,
more than 2,500 strains, http://ccmp.bigelow.org), CCAP (Culture Collection of
Algae and Protozoa, about 2,000 strains, http://www.ccap.ac.uk), ANACC (The
Australian National Algae Culture Collection, about 1,000 strains, http://www.
csiro.au/places/Australian-National-Algae-Culture-Collection), and the FACHB
collection (Freshwater Algae Culture Collection of the Institute of Hydrobiology,
about 1,600 strains). Except for the maintenance of algal strains, these agencies
can also perform research on identifying new algal species, phylogeny, deter-
mining physiological characteristics, and distributing information of algal strains.

2.4 Ways to Improve Microalgae Strains

Several microalgae species have some traits that are good for biofuel production
[11, 17], but their lipid productivity and photosynthetic efficiency are much less
than the theoretical value [15]. Even the modest improvements in photosynthetic
efficiency and lipid productivity can cut down the cost and land for producing
biofuels [11, 89]. By conventional breeding methods, microalgae strains with
desired properties would be selected over time, as people did successfully with
agricultural crops and microorganisms. Many mutants of C. reinhardtii were
reported by conventional physical or chemical mutagenesis, such as X-rays,
ultraviolet light, and EMS (ethylmethanesulphonate) and hybridization between
mutants and/or wild-types were conducted through sexual reproduction [90].
Several starchless mutants of C. reinhardtii have been proved to be able to produce
more lipids than their wild-types [91–93]. Since the 1970s, more and more genetic
engineering technologies and mutageneses have been developed and applied
successfully in the breeding of agriculture crops and industry microorganisms.
Therefore, it is reasonable that using modern genetic engineering and mutagenesis
would be feasible to obtain microalgae strains with desirable traits by bypassing
the lengthy natural selection process.

Over the past 20 years, a more thorough understanding about microalgae
physiology and central metabolism has been achieved with the significant
advances in microalgal genome sequencing. Today, the huge size of information
resources, such as the expressed sequences tag (EST), the mitochondrial, chloro-
plast, and nuclear genomes of many microalgae have been established and opened
to all scientific and industrial communities via the Internet. The green alga
C. reinhardtiiis is a model organism and platform for phycological genetics study,
and most methods for transgene expression and gene mutations were initially
developed for this species. Subsequently, the tools are being applied in other algae.
Since the genome of C. reinhardtii was published in 2007 [94], other algal nuclear
genomes have been sequenced (Table 3). In addition, there are transcriptomes
reported from some microalgae [95–99].

Gene transformation has been successfully applied in the nucleus and chloro-
plast of many microalgae strains belonging to Chlorophyta, Rhodophyta, and
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Phaeophyta, diatoms, euglenids, and dinoflagellates, respectively [9]. According
to statistical analysis, the efficiency of transformation is species-dependent. Thus,
the transformation approaches must be carefully considered and optimized for
each microalga. The ordinary transformation methods used to transfer exogenous
genes into microalgal cells include glass beads, electroporation, microparticle
bombardment, and Agrobacterium tumefaciens-mediated gene transfer [111]. In
order to isolate the transformants efficiently, many selection markers/reporters are
used, including antibiotic resistance and fluorescent/biochemical markers
(Table 4). Because many microalgae are resistant to a wide range of antibiotics,
the application of antibiotics in microalgal transformants is limited.

However, not all successful transformations can lead to stable expression of
transgenes in either plastid or nucleus. The major problems related to foreign gene
expression in microalgal cells include: no integration into the chromosome, rec-
ognition of the promoter sequence, biased codon usage, instability of mRNA,
silencing by methylation, and epigenetic silencing mechanisms [9, 111]. Nuclear
transformation of microalgae often results in random integrations of transgenes,
whereas the chloroplast transformation can be achieved through homologous
recombination [127]. RNA silencing has been used successfully to knock down
gene expression in microalgae [128–130]. Compared to the RNA interference
(RNAi), the more specific and stable artificial-micro–RNA (armiRNA) techniques
for microalgae have been developed [131, 132].

Table 3 Sequenced genomes of algaea

Species Status References

C. reinhardtii Published [94]
Chlorella variabilis Published [100]
Cyanidioschyzon merolae Published [101]
Guillardia theta Published [102]
Micromonas pusilla Published [103]
Nannochloropsis gaditana Published [104]
Ostreococcus lucimarinus Published [105]
Ostreococcus tauri Published [106]
Phaeodactylum tricornutum Published [107]
Thalassiosira pseudonana Published [108]
Volvox carteri Published [109]
Botryococcus braunii Incomplete
Dunaliella salina Incomplete
Fragilariopsis cylindrus Incomplete
Galdieria sulphuraria Incomplete
Pseudo-nitzschia multiseries Complete draft
Porphyra purpurea Incomplete
Thalassiosira rotula Incomplete

a The genome information can be found on the websites of NCBI (http://www.ncbi.nlm.nih.gov/),
JGI (http://genome.jgi.doe.gov/), and GOLD (http://www.genomesonline.org/cgi-bin/GOLD/
index.cgi) [110]
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Inasmuch as lipids in the microalgae cells are the precursors for biofuel pro-
duction, both improving the quantity and quality of lipids is the main target of
microalgae breeding. To date, understanding of the lipid biosynthesis and catab-
olism, and the pathways that control carbon length and saturation of fatty acids
comes from the investigation for terrestrial plants, for example, Arabidopsis tha-
liana, soy bean, and rapeseed. However, many homologs of genes that affected
lipid metabolism in higher plants are found in the published microalgal genomes

Table 4 Marker/reporter genes expressed in microalgae transformants

Gene Description Marker/
reporter

Application References

AadA Adenylyl transferasespectinomycin
resistance)

Marker Chlamydomonas sp. [112]

Als Acetolactate synthase (resistance to
sulphonylurea herbicides)

Marker Chlamydomonas sp. [113]

AphVIII Aminoglycoside
30phosphotransferase (resistance
to paromomycin, kanamycin, and
neomycin)

Marker Chlamydomonas sp. [112]

Ars Arylsulphatase Reporter Chlamydomonas sp. [114]
Ble Bleomycin resistance protein

(resistance to tallysomycin and
related antibiotics)

Marker Chlamydomonas sp. [115]

Cat Chloramphenicol acetyltransferase
(chloramphenicol resistance)

Marker Chlamydomonas sp. [116]

Frustulin Calcium-binding glycoprotein Reporter Cylindrotheca
fusiformis

[117]

Cry1-1 Ribosomal protein S14 Marker Chlamydomonas sp. [118]
Gfp Green fluorescent protein Reporter P.tricornutum,

Chlamydomonas
sp.

[119, 120]

Glut1 Glucose transporter Marker or
reporter

P. tricornutum [119]

Gus b-Glucuronidase Reporter Amphidinium and
Symbiodinium

[121]

Hpt Hygromycin B phosphotransferase Marker Amphidinium and
Symbiodinium

[121]

Hup1 Hexose transporter Reporter P. tricornutum,
Cylindrotheca
fusiformis

[119, 117]

LacZ b-Galactosidase Reporter Haematococcus
pluvialis

[122]

Luc Luciferase Reporter P. tricornutum [123]
Nat Nourseothricin resistance Marker P. tricornutum [124]
NptII Neomycin phosphotransferase II

(resistance to G418)
Marker Chlamydomonas sp. [125]

Oee-1 Oxygen evolving enhancer protein Marker Chlamydomonas sp. [126]
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and EST database. It is postulated that the transgenic methodologies used to
improve the lipid content in plants would be applied in microalgae.

The conversion of acetyl-CoA to malonyl-CoA is the first step in fatty acid
biosynthesis, catalyzed by ACCase which is regarded as the limited step in
organisms [22, 133]. Overexpression of ACCase in the seeds of B. napus only led
to a minor rise in seed lipid content [134]. Similarly, 2–3-fold overexpression of
ACCase activity in the diatom C. cryptic did not result in a significant increase of
lipid content [135, 136]. However, overexpression of genes involved in TAGs
formation can lead to increases in seed oil production, for example, glycerol-3-
phosphate dehydrogenase (G3PDH) in the seeds of B. napus [137], glycerol-3-
phosphate acyltransferase (GPAT) [138], lysophosphatidic acid acyltransferase
[139], and diacylglycerolacyltransferase (DGAT) [140] in plants. In addition, the
cellular lipid accumulations increased by cutting down the competitive metabolic
pathways that synthesize storage compounds such as starch. Two starch-deficient
mutants of C. reinhardtii can accumulate more TAGs than wild-type under high
light and nitrogen deficiency [91, 92, 141].

It is important to improve the quality of the lipids: carbon chain length and
degree of unsaturation of the fatty acids can affect the ignition quality (e.g., cetane
number), cold-flow properties, and oxidative stability of biofuel. Generally, the
chain length of fatty acids from microalgae is from 14 to 20, but ideal fatty acids
for biodiesel feedstock should be 12:0 and 14:0. Fatty acids with a shorter chain
length are good for the production of jet fuel. Acyl-ACP thioesterases are
responsible for the releasing of the fatty acids chain from the fatty acid synthase
and determining the chain lengths [133]. Expression of transgenic thioesterasecan
can significantly change the fatty acid profile of lipids in plants [142, 143].

Microalgae are induced to produce and accumulate lipids in the cells when they
face a stress condition, such as high light. An optimal intensity of light for most
microalgal species growth is usually around 200–500 lmol � photons m-2 � s-1.
Strong intensities of illumination will inhibit the microalgal growth rate, which is
known as photoinhibition. Microalgae growth and proliferation are inhibited
outside because the intensities of sunlight are often higher than 2,000 lmol �
photons m-2 � s-1. Some researchers suggest a strategy to improve photosynthetic
efficiency by reducing the number of chlorophyll antennae or light-harvesting
protein complexes in the thylakoid of the chloroplast [13, 144, 145]. Some mutants
with fewer chlorophyll and/or smaller light-harvesting complexes by random
mutagenesis have been reported [88]. In addition, RNAi technologies are also used
to knock down both LHCII and LHCI in C. reinhardtii [146].

As mentioned above, some genetic engineering approaches have been applied
to several algal species aiming at improving lipid production, including C. rein-
hardtii [147, 148], P. tricornutum [124], C. cryptic [135, 136], and Nannochlor-
opsis sp. [149]. However, only moderate success was achieved, mainly because the
lipid metabolism, particularly the functions of key genes and enzymes involved in
lipid synthesis and accumulation in these organisms, is not well understood.
Furthermore, some transcription factors involved in the regulation of plant lipid
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accumulation were suggested as the second-generation targets to improve the lipid
content [150–152].

Therefore, various physical mutagens, such as X-rays, b-rays, and heavy ion
beam which have been successfully applied to crop and microorganism breeding,
have been suggested to be used for microalgae trait improvement. Among them,
heavy-ion beam induces a broad range of mutations, that is, base substitutions,
small and large insertions/deletions, translocation, and inversions in the genomes
of microalgae. Physical mutagens usually generate thousands of mutants, but it is a
very laborious work to screen for desirable mutants. Establishment of a high-
throughput screening method will be helpful for microalgal trait improvements.
Based on the positive correlation between photosynthetic efficiency and lipid
content, a new strategy has been developed to accelerate the screening of mic-
roalgae mutants with high yields of biomass and lipids [88].

3 Diversity of Plants Used for Energy Generation

3.1 Definition and Classification of Energy Plants

Energy plants refer to a variety of plants that can be effectively converted into
energy, including plants rich in carbohydrates or oil. Except giving off heat when
burning, energy plants can also be converted to solid, liquid, or gas fuels by
physical and chemical methods [153].

Energy-yielding plants comprise a large number of species and are widely
distributed, including trees, shrubs, herbs, and so on. To date, most energy plants
in the world belong to Salicaceae, Euphorbiaceae, Leguminosae, Compositae,
Myrtaceae, and Gramineae, including poplar, cassava, castor, Hevea brasiliensis,
Euphorbia tirucalli, Jatropha curcas, Euphorbia lathyris, Aleurites fordii, soy-
bean, Cobaifera langadorffi, Sindora glabra, sunflower, Helianthus tuberosus,
Eucalyptus spp., rice, wheat, switchgrass, sugarcane, sorghum, maize, and
Miscanthus among others. According to the chemistry component and application,
energy plants can be categorized into several families:

(i) Saccharide-rich energy plants, including Saccharum officinarum, Sorghum
bicolor, Beta vulgaris, and H. tuberosus, can produce fuel ethanol.

(ii) Starch-rich energy plants, including Zea mays, Solanum tuberosum, Manihot
esculenta, Lemna minor Linn., and Ipomoea batatas, can also produce eth-
anol fuel.

(iii) Cellulose-rich energy plants, Miscanthus, Populus spp., Panicum virgatum,
and Eucalyptus spp., can produce ethanol fuel and biogas (methane).

(iv) Ester-rich energy plants, including Brassica napus, Elaeis guineensis, Helian-
thus annuus, Arachis hypogaea L., and Glycine max, can produce biodiesel.

(v) Hydrocarbon-rich energy plants, including E. lathyris, E. tirucalli, J. curcas,
and Coriandrum sativum L., can produce petroleum analogues.
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3.2 Exploitation and Utilization of Energy-Yielding Plants
Around the World

Since the 1970s, many countries, such as the United States, Brazil, Japan, and
India, made plans to study and develop bioenergy [154–157]. After a large area of
oil plants was successfully planted in California by Melvin Calvin [158], the
studies on energy plants immediately stepped into a new era across the globe.

In America, researchers planted a large area of ‘‘oil plant,’’ more than 1 million
ha, and the yield of these energy plants was over 5 9 109 kg. In addition, America is
the second largest ethanol producer by using maize as the raw material. In America,
more than 90 % biodiesel is produced using soybeans. In recent years, American
scientists made progress in cellulose ethanol production [159, 160]. In addition to
the above progress, America also developed many other energy plants, such as
switchgrass, Pennisetum purpureum Schumach, sorghum, poplar, E. lathyris, and
Ixeris chinensis.

Brazil is a pioneer in ethanol fuel production. Making full use of their sugar-
cane resource, they have cultivated several high-yield sugarcane species and
mastered skilled technologies in ethanol fuel production [161]. In addition to
sugarcane, Brazil also developed sorghum to produce ethanol fuel. The GraalBio
Company announced that they will build the first Brazilian cellulosic ethanol
production factory at the end of 2013 [162]. To date, Brazil is the only country that
does not supply pure petroleum for motor fuel. In addition to ethanol fuel, the
Brazilian government also supports biodiesel production by using castor, sun-
flower, soybean, palm, and cotton. Brazil also owns plentiful wood resources, such
as eucalyptus, H. brasiliensis, and C. langadorffi.

In Europe, France and Germany mainly use sugar beet and potato to produce
ethanol fuel, respectively [163]. Germany and Austria constructed many biodiesel
factories, and they mainly use rape as their raw material. Italy, Denmark, and
Czech Republic also use rape to produce biodiesel [164]. Moreover, Europe also
studied cellulosic ethanol plants, such as poplar, Salix spp., eucalyptus, Liquid-
ambar styraciflua, Miscanthus, P. virgantum, Phalaris arundinacea, and Arundo
donax.

Japan is the earliest country to develop biodiesel in Asia. Napier grass is widely
cultivated in Japan, which is an ideal oil plant [165]. Japan also uses algae to
produce biodiesel. In addition, Japan established a large farm, and planted 150,000
‘‘oil plants’’ which can produce more than 100 barrels of oil. Miscanthus gigan-
teus, originated in Japan, is now considered the energy plant with the most
potential [166].

In Southeast Asia, many countries are developing energy plants. Malaysia uses
palm to produce biodiesel [167]. The Philippines planted more than 10,000 ha of
Leucaena glauca to produce biodiesel. Thailand uses cassava to produce ethanol
and extracts petroleum analogues from J. curcas.

China is a country blessed with abundant natural resources. Although the study
of energy plants started fairly late, great progress has been made. Chinese
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scientists focus on a variety of energy plants, including maize, rice, soybean, rape,
sugarcane, Beta vulgaris, sorghum, cassava, poplar, J. curcas, Sindora glabra,
Pistacia chinensis, and Cornus wilsoniana.

3.3 Looking for Novel Green Energy Plants

Although great progress has been made in the exploitation and utilization of
energy plants, some new problems have arisen. To date, ethanol fuel is mainly
produced using sugarcane (Brazil), maize (America and China), sugar beet
(France), and potato (Germany), which are main food and economic crops. The
primary raw materials for producing biodiesel are soybean (America), rape
(Austria), and palm (Malaysia), which are also important economic crops. To
some extent, bioenergy converted from the above traditional crops eases the
pressure of the energy demands. However, with economic development, the
growing demand for energy is greatly increasing, which will lead to more and
more large-scale use of crops and eventually result in the ‘‘competing for food with
people, competing for arable land with food crops’’ problem.

The problem of crop yield and food security restricts the prospect of traditional
energy plants. Therefore screening and developing novel noncrop energy plants is
considered to be an effective approach to solve the energy crisis. The main noncrop
plants for energy production are listed in Table 5. Recently, abundant and inex-
pensive lignocellulosic biomass energy plants are attracting more and more atten-
tion around the world, among which Miscanthus is one with the most potentiality.

Miscanthus is a C4 perennial nonwood rhizomatous tall grass native to sub-
tropical regions originating from eastern Asia and classified taxonomically with
maize, sorghum, and sugarcane. The genus comprises around 17 species, such as
Miscanthus sinensis, M. sacchariflorus, M. floridulus, and Miscanthus giganteus,
and is widely adapted to a variety of environmental conditions, indicating its
tolerant capability [168].

Table 5 Primary noncrop energy plants

Name Morphology Location Yield Production

P. virgatum Herb America 5,000 L�ha-1 Ethanol
C. langadorffi Tree Brazil *7,000 kg�ha-1 Diesel
J. curcas Tree China 1.5-3 9 103 kg�ha-1 Diesel
E. lathyris Tree America and Europe *7,000 kg�ha-1 Gasoline
P. purpureum Herb Japan 1.2 9 104 kg�ha-1 Petroleum
E. robusta Tree Australia 675 g�kg-1 Gasoline
H. tuberosus Herb North America 2-4 9 103 kg�ha-1 Ethanol
I. chinensis Herb America 1-6 9 103 kg�ha-1 Petroleum
Pittoaporumto bira Shrub Philippines 50 g�kg-1 Gasoline
Trachycarpus fortunei Tree Tropical rain forest 1 9 104 kg�ha-1 Fuel oil
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Since the 1980s, Miscanthus has been studied as a potential biofuel plant in
Europe [169]. It is now planted widely in Europe and North America. As a can-
didate energy plant, Miscanthus has many advantages:

(i) High lignocellulosic biomass yield. Miscanthus giganteus yields have been
reported to reach 27–44 9 104 kg � ha-1 in Europe.

(ii) Low production cost. Its low fertilizer and pesticide inputs reduce the cul-
tivation cost.

(iii) Superior environment adaptability. It can grow on desolate, barren, marginal,
or saline–alkali land, and survive low temperatures. This characteristic raises
the utilization of wasteland.

(iv) Advantageous feedstock characteristics. Due to low ash content, Miscanthus
has a high heating value ranging from 17 to 20 MJ � kg-1. In addition, higher
cellulose, semicellulose and lower lignin content make its biomass easily
degraded.

To date, studies with respect to Miscanthus are primarily focused on genetic
diversity analysis, identification of different quantitative trait loci (QTLs) and
cultivation, but little is known about genome and genetic information of Miscanthus
[170–172]. Recently, the genomic and small RNA of M. giganteus has been sur-
veyed, providing the theoretical evidence for improvement of Miscanthus by bio-
logical engineering [173]. In summary, Miscanthus is a superior C4 perennial grass
with many advantageous characteristics which make it one of the most potentially
novel energy plants.

To face and solve the energy crisis, a large number of energy plants have been
screened and exploited to date, among which several crops have successfully
achieved industrialization. With in-depth exploration, different countries devel-
oped their characteristic energy plants, for instance, the sugarcane of Brazil,
soybean of America, sugar beet of France, potato of Germany, palm of Malaysia,
and maize of China. In recent years, crop yield and food security have compelled
researchers to develop noncrop energy plants, especially lignocellulosic biomass
energy plants that are considered potential candidates as substitutes for fossil
energy. Now energy plants are developing towards diversity.

4 Yeasts for Production of Biofuels

4.1 Ethanol Yeast

Ethanol as the first-generation biofuel is the most widely used transport fuel. The
budding yeast Saccharomyces cerevisiae is the dominant microbial cell factory for
ethanol production. However, native S. cerevisiae strains are not always adaptive to
varied substrates and production environments. Other yeasts have been explored in
bioethanol production. Thermotolerant yeasts are desirable in ethanol production
for economic considerations. Kluyveromyces marxianus is well known for
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thermotolerance, and can even grow at 52 �C and ferment glucose to produce
ethanol at 50 �C. K. marxianus can utilize various substrates, such as cellobiose,
xylose, xylitol, arabinose, glycerol, lactose, and inulin. In ethanol fermentation
from inulin, K. marxianus produces a significantly higher ethanol yield than native
S. cerevisiae strains [174]. During ethanol fermentation from cassava starch
hydrolysate by thermotolerant Pichia kudriavzevii strains at 40 �C, the highest
ethanol concentration reached 7.86 % (w/v) after 24 h, with productivity of 3.28 g �
L-1 � h-1 and yield of 85.4 % of the theoretical yield [175].

Some nontraditional yeasts have been explored in bioethanol production from
various biomasses. Seaweed biomass is a potential feedstock for biofuel produc-
tion. Hydrolysates of seaweed contain a high salt concentration. Recently, the
ability and efficiency of a marine yeast (Candida sp.) to grow and aerobically
ferment seaweed polysaccharide-based hydrolysate to ethanol in the presence of
6.25-11.25 % salt concentration was validated [176]. Glycerol, the by-product of
biodiesel production, is considered a waste by biodiesel producers. Ethanol fer-
mentation from glycerol by the yeast Pachysolen tannophilus was tested in a
recent study [177]. The highest ethanol production was 17.5 g � L-1 on 5 % (v/v)
crude glycerol, corresponding to 56 % of the theoretical yield. A staged batch
process achieved 28.1 g � L-1 ethanol, which is the maximum achieved so far for
conversion of glycerol to ethanol in a microbial process.

4.2 Oleaginous Yeasts

The oily yeast genera include Yarrowia, Candida, Rhodotorula, Rhodosporidium,
Cryptococcus, Trichosporon, and Lipomyce [178]. The oleaginous yeast Y. lipolytica
is an attractive candidate for microbial oil production. It also has been found to be
robust, able to grow on a variety of substrates, and has been used for lipid production
on agro-industrial residues, industrial glycerol, and industrial fats. It has excellent
lipid accumulation capacity, commonly accumulating up to 36 % of its dry cell
weight in lipids [179]. With a fully sequenced genome and a growing body of tools,
engineering of Y. lipolytica can be achieved with relative ease [180, 181]. Through
engineering, lipid content of Y. lipolytica can reach up to 61.7 % [182].

Hydrolysates of lignocellulosic biomass contain glucose, xylose, and cellobiose
among others. Effective utilization of these sugars remains challenging for
microbial conversion, because most microorganisms consume such sugars
sequentially with a strong preference for glucose. Efficient lipid production with
simultaneous consumption of glucose and xylose was achieved in the yeast Tri-
chosporon cutaneum [183]. The oleaginous yeast strain T. cutaneum AS 2.571
could assimilate glucose and xylose simultaneously, and accumulate intracellular
lipid up to 59 % (DCW) with a lipid coefficient up to 0.17 g � g-1 sugar. The
oleaginous yeast, Lipomyces starkeyi, was shown to consume cellobiose and xylose
simultaneously and to produce intracellular lipids from cellobiose, xylose, and
glucose [184]. Overall substrate consumption rates were close to 0.6 g � L-1 � h-1,
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and lipid coefficients were 0.19 g � g-1 sugar, respectively. Novel oleaginous yeast
species were identified, such as T. cacaoliposimilis sp. nov. and T. oleaginosus sp.
nov. [185]. The draft genome of the red yeast Rhodosporidium toruloides MTCC
457 was also reported. The genome sequence will be valuable for molecular genetic
analysis and manipulation of lipid accumulation in this yeast and for developing it
as a potential host for biofuel production [186].

4.3 Yeast Biofuel Cells

Microbial fuel cells (MFCs) are devices that can use microbial metabolism to
produce an electrical current from a wide range of organic substrates. The potential
applications of MFC technology are involved in the production of electricity and
degradation of wastes and toxic chemicals [187, 188]. Many bacteria possess the
ability to transfer the electrons derived from the metabolism of organic matter to
the anode. Marine sediment, soil, waste water, fresh water sediment, and activated
sludge are all rich sources for these microorganisms [187]. Yeast microbial fuel
cells have received little attention to date. Yeasts should be an ideal MFC catalyst
because they are robust, easily handled, mostly nonpathogenic organisms with
high catabolic rates and in some cases a broad substrate spectrum. The conven-
tional yeast S. cerevisiae [189–192], Hansenula anomala [190, 193], Candida
melibiosica [194], and Arxulaa deninivorans [195] have been evaluated as MFCs.

5 Bacteria for Bioenergy Production

Bacteria play an important role in the natural cycle of material and energy. The
production of hydrogen, alcohols, and biogas is the main pathway for them to yield
bioenergy. For bioenergy production, they often possess a broader substrate
spectrum than yeast, and are capable of degrading pentoses, hexoses, disaccha-
rides, and polysaccharides such as cellulose and alginate. Microbial bioconversion
is a rapidly evolving subject. Novel bacteria with biofuel production ability are
constantly being discovered in the environment, especially some bacteria from
thermophilic conditions. This section introduces the latest advances in bacteria
bioresource exploration and their application in alcohol and hydrogen production.

5.1 Ethanol-Producing Bacteria

The general ethanologenesis starts with the formation of pyruvate through several
pathways (Fig. 3), namely the EMP (Embden–Meyerhof–Parnas), ED (Entner–
Doudoroff), and PP (pentose phosphate) pathways [196]. The majority of micro-
organisms degrade hexoses through the EMP pathway or the ED pathway.
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The catabolization of glucose with the EMP pathway generates 2 NADH and 2
pyruvates, together with the formation of 2 ATP [197]. The ED pathway has low
distribution among anaerobic bacteria and is more restricted to Gram-negative
bacteria and Archaea [197]. In some bacterial strains from Clostridium sp.,
Caldicellulosiruptor sp., Thermoanaerobacter sp., and Caldanaerobacter sp., the
EMP pathway was utilized for conversion of glucose to phosphoenolpyruvate
(PEP) [198]. PEP was then converted into pyruvate via an ATP-dependent pyru-
vate kinase (PPK) directly, or via an AMP-dependent pyruvate phosphate dikinase
(PPDK) [198].

Pyruvate could be metabolized via several pathways to produce ethanol, lactate,
succinate, formate, acetate, and so on (Fig. 3). One of the most important path-
ways to produce ethanol was the homoethanol fermentation pathway, which was
catalyzed by PDC (EC 4.1.1.1) and ADH (EC 1.1.1.1). PDC catalyzes the
decarboxylation of pyruvate to acetaldehyde, and acetaldehyde is then reduced to
ethanol by ADH. PDC is common in yeast, but only few bacteria including
Zymomonas mobilis, Zymobacter palmae, and Acetobacter pasteurianus possess
the pdc gene [199–201].

Ethanol could be produced by a variety of bacteria. Some well-studied bacteria
used for ethanol production include Z. mobilis, Escherichia coli, and Klebsiella
oxytoca [202]. Z. mobilis is one of the well-studied bacteria due to its unique
metabolism and ability to produce ethanol rapidly and efficiently as the main
fermentation product from simple sugars. It shares a natively expressed homo-
ethanol pathway similar to S. cerevisiae, which is controlled by the PET operon
encoding PDC and ADH [203]. Unfortunately, Z. mobilis has a limited carbon
substrate range, and lacks the ability to metabolize pentose which is abundant in
hemicellulose. Therefore, E. coli and K. oxytoca are identified as choices for
metabolic engineering towards homoethanol production either for the extensive
understanding of its physiology and metabolism or for the wide range of substrates
utilizing its ability [202].

Fig. 3 Metabolic pathways for ethanol synthesis [196]. EMP Embden–Meyerhof–Parnas; ED
Entner–Doudoroff; PP pentose phosphate; ADH alcohol dehydrogenase; LDH lactate dehydro-
genase; PDC pyruvate decarboxlyase; PDH pyruvate dehydrogenase; PFL pyruvate-formate
lyase; ALD acetaldehyde dehydrogenase
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Most of the well-studied ethanol-producing bacteria are mesophiles. In recent
years, thermophilic bacteria have gained increased attention as candidates for
ethanol production. Thermophilic bacteria are capable of producing various end-
products including ethanol. There are several advantages in using thermophilic
bacteria for ethanol production as concluded by Taylor et al. [204]. First, ther-
mophiles are commonly able to ferment the pentose and hexose sugar fraction of
the biomass, and some strains could degrade complex polycarbohydrates, such as
lignocellulose. Second, they have the remarkable ability to tolerate fluctuations of
environmental changes, such as pH and temperature. Third, ethanol could be
removed or recovered more easily from the fermentation broth under high tem-
peratures. Moreover, high temperature could reduce contamination risk, and
eliminate low ethanol tolerance problems by growing bacteria at temperatures
where ‘‘self-distillation’’ is possible.

These advantages are leading to a constant discovery of thermophilic bacteria with
the capacity for ethanol production. Some bacterial strains from the genera of Ther-
moanaerobacterium, Thermoanaerobacter, and Clostridium have demonstrated
good ethanol-producing capacities, such as Thermoanerobacter ethanolicus (65 �C),
Clostridium thermocellum (60 �C), and Thermoanaerobacterium sp. AK17 (60 �C)
[74, 78, 202, 205–207], Geobacillus thermoglucosidasius (70 �C), Thermoanae-
robacter saccharolyticum (70 �C), and Thermoanaerobacter mathranii (70 �C) are
also considered catabolically versatile hosts for ethanol production [204].

Bacteria could use a variety of substrates to produce ethanol. Industrial ethanol
was mainly produced from starch derived from yellow corn and sucrose derived
from sugarcane, which was referred to as ‘‘first-generation bioethanol’’ [204]. It
was criticized for reducing food and land use for the diversion of food from the food
chain into fuel production [208]. Thus, cellulosic materials were proposed to pro-
duce ‘‘second-generation bioethanol,’’ and a series of novel ethanologenic bacteria
with a broader substrate spectrum were discovered. However, reports of biofuel
production from direct hydrolyzing lignocellulosic biomass by thermophilic bac-
teria are scarce. One example is C. thermocellum, which could rapidly decompose
cellulosic materials and ferment the resulting sugars to ethanol, but its yield was
low as a result of mixed acid fermentation [204]. In our recent work, an anaerobic
and thermophilic bacterial community was enriched by coastal marine sediment.
Most of the clones that accounted for 60 % of the clone library shared similarity
with the type strain C. thermocellum ATCC 27405 [209]. Moreover, most of the
clones represented by the clone library shared 16S rRNA similarities lower than
90 %, and all of them shared 16S rRNA similarities below 94 % (Table 6). They
were demonstrated to be an untapped bacterial resource with both cellulose-
degrading ability and ethanol-producing ability [209]. These results indicated that
there were extensive unexplored bacterial resources existing in the ocean.

Except utilizing glucose, xylose, or other monosaccharide and biomass as
substrates, there have been emerging studies on bioconversion into ethanol from
substrates of carbon monoxide and glycerol in recent years [210, 211]. A few
works utilizing such substrates are given in Table 7.
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Table 7 Some bacterial isolates with recently reported biofuel production ability

Isolates Products Growth
temperature
(oC)

Substracts Reference

Geobacillus sp.XT15 Acetoin and 2,3-
butanediol

55 Corn steep liquor
powder

[212]

Kluyvera cryocrescens S26 Ethanol and 1,2-
propanediol

30 Crude glycerol [211]

Paenibacillus macerans
N234A

Ethanol 37 Glycerol [213]

Clostridium ljungdahlii Ethanol 37 Sugars/syngas [210]
Thermoanaerobacter J1 Ethanol 65 Glucose/xylose/ [214]
Thermoanaerobacter

BG1L1
Ethanol 70 wheat straw/corn

stover
[215, 216]

Thermoanaerobacterium
AK17;
Thermoanaerobacter
Ak33; Paenibacillus
AK25

Ethanol 60/70/50 Glucose/xylose/
cellulose/grass

[74]

Geobacillus sp. R7 Ethanol 70 Agricultural
residues

[217]

Table 6 Closest type strains of selected 16S rRNA clones from EzTaxon-e database

Clone no. Length (bp) Nearest type strain Similarity (%) Accession

2 1499 Acetomicrobium faecale 88.0 FR749980
4 1496 Planifilum yunnanense 88.0 DQ119659
6 1512 Desulfotomaculum alkaliphilum 91.2 AF097024
8 1498 C. thermocellum 89.4 CP000568
9 1500 C. thermocellum 87.6 CP000568
11 1505 Clostridium straminisolvens 88.8 AB125279
21 1624 Caldicoprobacteroshimai 89.8 AB450762
22 1505 Desulfotomaculum halophilum 90.6 U88891
23 1490 D. halophilum 86.6 U88891
27 1494 Sporosalibacterium faouarense 92.4 EU567322
39 1501 Clostridium purinilyticum 90.5 FR749894
41 1497 S. faouarense 86.7 EU567322
42 1492 Planifilumfulgidum 88.0 AB088362
46 1454 Caloranaerobacter azorensis 90.7 AJ272422
60 1487 Bacillus thermolactis 93.4 AY397764
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The screening methods of ethanol-producing bacteria are mostly based on a
culture-dependent method, which is achieved through the detection of ethanol
production of the object strain. Several methods could be used for ethanol detection,
including the hydrometer method, colorimetric method, gas chromatography, liquid
chromatography, electrochemical and enzymatic assays, and so on [218]. Each
method has advantages and disadvantages. Gas or liquid chromatographic analysis
is the most commonly used method for quantifying ethanol yield, but the procedure
is time consuming. Recently, researchers developed a method based on alcohol
oxidase and peroxidase (AOP assay) for the high-throughput screening of ther-
mophilic ethanol-producing bacteria [218]. They performed the assay in a 96-well
microtiter plate and the method had high accuracy. Several isolates with high
ethanol tolerance and ethanol yield were obtained by using this method [218].

Another approach for screening bacteria with potentials in ethanol production is
to identify a few genetic biomarkers that play key roles in ethanol synthesis
pathways by comparative meta-analysis of their genomes [198] and through
analyzing these biomarkers, estimating the object strains’ ethanol production
abilities. This approach could also offer potential targets for metabolic engineering
to increase ethanol yield.

5.2 Butanol and Longer Chain Alcohol-Producing Bacteria

Butanol could be served as a better biofuel with several advantages over ethanol. It
has higher energy density, lower vapor pressure, and is less hygroscopic and
therefore less corrosive [219]. It could be blended with conventional fuels at any
ratio. Biological butanol is produced through the acetone–butanol–ethanol (ABE)
fermentation process, and its production has a long history in the fermentation
industry. In addition to acetone–butanol–ethanol, organic acids (acetic acid, lactic
acid, and butyric acid) and gases (carbon dioxide and hydrogen) are also produced
during the ABE fementation process (Fig. 4). Butanol could be produced by a
variety of bacteria mainly from the genus of Clostridia. C. acetobutylicum, and
C. beijerinckii are the most studied strains used in ABE fermentation. The metabolic
pathway synthesizing the main products from glucose is shown in Fig. 4 [220].

In the past decades, butanol-producing bacteria including their mutants were
constantly isolated and characterized. They were mostly from the genus of Clos-
tridium, such as Clostridium beijerinckii, C. saccaroperbutylacetonicum, C. sac-
charoacetobutylicum, C. aurantibutyricum, C. pasteurianum, C. sporogenes,
C. cadaveris, and C. tetanomorphum [221].

Although they had relatively high butanol yields, screening novel wild-type
microbes with better butanol-producing ability is still of great importance for
industrial strain breeding. There are several directions in the screening work,
which include screening strains with higher butanol yields, broader substrate
range, and higher butanol tolerance. Most of the screening work is based on testing
physiological properties of the isolated strains.
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Recently, several interesting wild-type strains have been isolated from envi-
ronmental samples. For example, Clostridium sp. G117 was isolated from soil
samples from grassland in Singapore. This strain could produce dominant butanol

Fig. 4 Metabolic pathways of butanol production through the acetone–butanol–ethanol (ABE)
fermentation process. Enzymes corresponding to each gene are: pflB pyruvate-ferrodoxin
oxidoreductase gene, pta phosphate acetyltransferase gene, ak acetate kinase gene, adhE
acetaldehyde/ethanol dehydrogenase gene, thl thilose gene, ctfAB acetoacetyl-CoA: acetate/
butyrate CoA transferase gene, adc acetoacetate decarboxylase gene, hbd 3-hydroxybutyryl-CoA
dehydrogenase gene, crt crotonase gene, bcd butyryl-CoA dehydrogenase gene, ptb phosphate
butyltransferase gene, buk butyrate kinase gene, bdh1, bdh2 butyraldehyde/n-butanol dehydro-
genase gene
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that was 20 % higher than the butanol production by wild-type C. acetobutylicum
ATCC 824 under similar conditions [222]. In addition, Strain G117 produced
butanol and acetone as the main end-products, and only generated a negligible
amount of ethanol through the AB (acetone–butanol) process [222].

Another example is a mesophilic Clostridium sp. strain BOH3. The strain has
proved to be capable of utilizing cellulose and xylan to produce butanol and
hydrogen. This feature distinguished BOH3 from most wild-type solventogenic
strains [223]. In an earlier report of butanol-producing strain screening, a number
of isolates classified as new strains of C. acetobutylicum, and Clostridium sp.
NCP262 were reported to possess the ability to hydrolyze starch, carboxymethyl
cellulose, xylan, inulin, chitosan, and so on. However, their performance on direct
biofuel production from these polysaccharides is not substantiated in their study
[224, 225]. Most of the studies converting polysaccharides to butanol were not
direct processes, but utilized a prior hydrolysis pretreatment [226]. Screening
strains with the ability of hydrolyzing polysaccharides would be a promising
approach to produce biofuels on cheaper substrates, and would result in a simul-
taneous fermentation process [206]. Aiming at screening solvent-producing bac-
teria of the class Clostridia with cellulolytic activity, researchers developed a quick
screening method [227]. First, bacteria isolates were screened based on their
cellulolytic activity and butanol tolerance in selective media. Then these isolates
were classified to the class Clostridia according to three selected criteria (endo-
spore formation, sulfite-reducing ability, and metabolic products) . Last, the 16S
rRNA gene of isolates was sequenced and the bacteria species were identified
based on the phylogenetic tree based on the 16S rRNA gene.

A few researchers focused on searching for microorganisms with superior
butanol tolerance. These studies would help to find suitable alternative hosts that
could further conduct metabolic engineering for biofuel production [228]. Some
salutary attempts have been made in this direction. For example, a bacterium
identified as Enterococcus faecium capable of 2.5–3 % (w/v) butanol tolerance
was isolated [229]. This isolate could produce butanol probably using different
metabolic networks from the obligate anaerobe C. acetobutylicum. This isolate
could also show tolerance to 10 % (w/v) ethanol and 3 % (w/v) isobutanol. With
these distinct features, the isolate could be explored as a potential host for butanol
production [229]. In order to isolate novel bacteria with the desired characteristics
and with the potential for genetic engineering, more work should be done on strain
screening.

With the full understanding of the metabolic pathways of butanol production,
synthetic-biology approaches became popular to maximize fuel production [230].
To avoid some limitations of Clostridium, E. coli, S. Cerevisiae, Pseudomonas
putida, Bacillus subtilis, Lactobacillus brevis, and Synechococcus elongatus were
used to produce butanol after the introduction of a butanol pathway into these
organisms [230]. In addition, isoprenoid-derived fuels, fatty-acid–derived fuels
and polyketide-derived fuels are also becoming promising directions in biofuel
production with the development of the synthetic-biology approach [230]. Apart
from butanol, other C3–C5 normal and branched alcohols also possess similar
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chemical properties to butanol, including isobutanol, 2-methyl-1-butanol,
3-methyl-1-butanol, and isopentenol [231]. However, the production of these
alcohols in native bacteria is not so efficient. To improve the titers and produc-
tivity, synthetic biology usually needs to be employed to do some synthetic
pathway engineering [231]. For example, through modifying the amino acid
biosynthetic pathways in E.coli, researchers have developed a metabolic engi-
neering approach to produce higher alcohols including isobutanol, 1-buta-
nol,2-methyl-1-butanol, 3-methyl-1-butanol, and 2-phenylethanol from glucose
[232]. This nonfermentation strategy represents a major discovery for the pro-
duction of C3–C5 alcohols [233]. In addition, C3 and C4 alcohols could also be
produced from syngas. However, so far, the yield appears to be minor compared to
ethanol produced by similar fermentations [210].

Screening of microorganisms capable of higher yield alcohols is underway. A
new isolated strain XT15 from Geobacillus sp. was reported to be capable of
producing 2,3-butanediol as one of the main products [234]. XT15 was found to be
optimally growing between 45 and 55 �C, and capable of using glucose, galactose,
mannitol, arabionose, and xylose as substrates. The yield of 2,3-butanediol could be
up to 14.5 g � L-1, accompanied with 7.7 g � L-1 of acetoin. These results indicated
its potential as a precious biological resource in a thermophilic fermentation
process.

5.3 Biohydrogen-Producing Bacteria

Hydrogen is a clean and efficient fuel. It is known that photosynthetic organisms,
for example, cyanobacteria and green algae can generate hydrogen gas [13, 43].
Hydrogen can also be generated by anaerobic fermentation of organic substrates,
such as sugars, lingocellulosic biomass, and waste materials. Although H2 pro-
duction is common in bacteria in the process of anaerobic catabolism of organic
compounds, it is only one of several electron sinks, inasmuch as other fermentation
end-products are produced in addition to hydrogen [235]. A vast number of bac-
teria are known to produce hydrogen as an end-product, including strains from
both mesophiles and thermophiles. Mesophilic bacteria such as C. butyricum,
Enterobacter aerogenes, and E. coli have been extensively studied [236–238].

In recent years, H2 production by thermophilic bacteria has began to attract
increased interest. The most common thermophiles include Pyrococcus furiosus,
Thermococcus kodakaraensis, and all Thermotoga and Caldicellulosiruptor spe-
cies [239]. Most of these species do not encode adhE or aldH, and therefore
produce negligible or no ethanol. The absence of ethanol-producing pathways
makes more reducing equivalents that are disposed through H2 production via
hydrogenase [38]. Thermophilic bacteria have many advantages compared to
mesophiles concerning H2 production: higher H2 yields and less variety of end-
products [240].
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Several thermophilic species have been reported as good producers with high
H2 yields in recent studies, including Thermotoga neapolitana, Caldicellulosi-
ruptor saccharolyticus, and C. owensensis [241–245]. Some thermophilic bacteria
from the genera Clostridium and Thermoanaerobacterium were also reported for
hydrogen production, but the H2 yield is lower than the species mentioned above
[246, 247].

The fermentation for H2 production using pure cultures is not feasible for large-
scale prodution. In practice, mixed microbial cultures in sludge are frequently used
in dark fermentation reactors to produce hydrogen [248, 249]. The dark fermen-
tation can produce hydrogen from organic compounds constantly without the need
for light [250]. Due to the adavatages of thermophilic bacteria in the process of
fermentation, there are also increasing studies focusing on biohydrogen production
by using thermophilic mixed cultures [250–253].

6 Conclusion

This review gives an outlook on organisms for biofuel production, including
microalgae, energy plants, yeast, and bacteria. Plants and microalgae are primary
producers that produce biomass via photosynthesis as biofuel feedstock utilized by
yeast and bacteria. In the last several years, some species and strains in plants,
microalgae, yeast, and bacteria have been reported to possess distinctive traits for
biofuel production in the laboratory or on a pilot scale. Although great progress
has been made, obstacles to industrial-scale production of biofuels remain. Iso-
lation and characterization of organism resources from natural habitats should be a
continuing effort around the world. The organisms used for biofuel production thus
far are only a very small part of the identified species. Studies on additional species
of plants, microalgae, yeast, and bacteria will help us to obtain novel insights into
metabolism pathways in the organisms, which may provide more useful metabo-
lites and more efficient biofuel production. With the assistance of omics tech-
nology, deep understanding of metabolic pathways and regulation networks will be
possible. Benefiting from the fast-developing subjects of metabolic engineering,
synthetic biology, and systems biology, many artificially synthesized ‘‘super-
strains’’ with excellent characteristics for biofuel production may be created in the
future.
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