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Microbiology and Molecular Biology Tools
for Biogas Process Analysis, Diagnosis
and Control

Michael Lebuhn, Stefan Weiß, Bernhard Munk
and Georg M. Guebitz

Abstract Many biotechnological processes such as biogas production or defined
biotransformations are carried out by microorganisms or tightly cooperating
microbial communities. Process breakdown is the maximum credible accident for
the operator. Any time savings that can be provided by suitable early-warning
systems and allow for specific countermeasures are of great value. Process distur-
bance, frequently due to nutritional shortcomings, malfunction or operational def-
icits, is evidenced conventionally by process chemistry parameters. However,
knowledge on systems microbiology and its function has essentially increased in
the last two decades, and molecular biology tools, most of which are directed
against nucleic acids, have been developed to analyze and diagnose the process.
Some of these systems have been shown to indicate changes of the process status
considerably earlier than the conventionally applied process chemistry parameters.
This is reasonable because the triggering catalyst is determined, activity changes of
the microbes that perform the reaction. These molecular biology tools have thus the
potential to add to and improve the established process diagnosis system. This
chapter is dealing with the actual state of the art of biogas process analysis in
practice, and introduces molecular biology tools that have been shown to be of
particular value in complementing the current systems of process monitoring and
diagnosis, with emphasis on nucleic acid targeted molecular biology systems.
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Abbreviations

BB Bead-beating
BMP Biological/biochemical methane potential
BLAST Basic local alignment search tool
Bp Base pair(s)
cDNA Complementary DNA (transcribed from RNA species)
CLSM Confocal laser scanning microscopy
COD Chemical oxygen demand
DGGE Denaturing-gradient gel electrophoresis
DNA Deoxyribonucleic acid
FISH Fluorescence in situ hybridization
LCB Lignocellulosic biomass
LM Light microscopy
MQ Metabolic quotient
mRNA Messenger RNA
NA Nucleic acid(s)
NGS Next generation sequencing
OLR Organic loading rate
PC(o)A Principal coordinate/Principal component analysis
PCR Polymerase chain reaction
PSM Process simulation model
qPCR Quantitative Real-Time PCR
rDNA Ribosomal deoxyribonucleic acid
RNA Ribonucleic acid
rRNA Ribosomal ribonucleic acid
RT Reverse transcription
SCFA Short-chain fatty acid(s) or also VFA
SEM Scanning electron microscopy
SMA Specific methanogenic activity
TEM Transmission electron microscopy
TGGE Temperature-gradient gel electrophoresis
TVA/TIC Total volatile acids/total inorganic carbon
VFA Volatile fatty acids
VOA Volatile organic acids
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1 Introduction

Biogas production by anaerobic digestion of organic matter is a bio-technology with
very long tradition for some 2,000–3,000 years. It was applied initially for sanitation
purposes and only later additionally for energy production. The issue sanitation with
its beneficial effects for the society is presented within this book in Chap. 3. All of the
process steps are performed in a food chain by different microorganisms, governed by
process engineering in a suitable technical environment. Some of these microbes have
to cooperate extremely efficiently in syntrophic dependency in order to be able to
thrive and proliferate at the minimum limit of possible energy gain [1, 2].

Methanogenic archaea, and among these particularly the acetoclastic
Methanosaetaceae, appear to be most sensitive in biogas processes to stress factors
such as short retention times, high ammonia, oxygen and short-chain fatty acid
(SCFA) concentration, lack of certain trace elements and increased temperature [3,
4]. Due to their relatively low apparent maximum turnover number (Km) for acetate
and long doubling times [5], the acetoclastic methanogens are disfavored at short
retention times and increasing acetate concentration in the fermenter [6]. They are
increasingly washed out if their proliferation cannot compensate out-dilution. This
effect is even pronounced at additional stress conditions, favoring the activity and
growth of syntrophic associations with hydrogenotrophic methanogens to the det-
riment of active Methanosaetaceae and acetoclastic activity [3, 4, 7]. It is incor-
porated as a central point in the bioindicator concept of process diagnosis [4] (see
also Sects. 3 and “Microbial Guilds, Bioindicators and Transcriptional Profiling”).

The second bottleneck is the thermodynamically difficult hydrogen, formate or
electron-releasing conversion of short chain fatty acids (SCFAs), alcohols and other
intermediates of the biogas process.Most of these reactions are endergonic at standard
conditions but can be realized by syntrophic associations involving
product-scavenging methanogens [8, 9]. Methanogenic archaea are able to remove
the reaction products by converting them finally to biogas, predominantly CH4 and
CO2, which segregates from the fermenter sludge to the gas headspace and is further
withdrawn by gas utilization. Syntrophic bacteria or anaerobic fungi partners of
methanogens are difficult to cultivate and to study without their product-consuming
associate. Modern characterization is typically initiated by genome or metagenome
analysis, possibly leading to insights about special requirements that allow cultivation
of pure isolates and studying their special physiological performances [10–12].
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A third recognized bottleneck is the initial rate-limiting hydrolysis of recalcitrant
substrates such as lignocellulose-rich biomass (LCB). When compared to aerobic
degradation of lignocellulose, considerably less is known on the corresponding
anaerobic process and the organisms involved. Besides bacteria, other organisms such
as anaerobic fungi may be involved in efficient initial LCB attack and degradation
[13]. Chapter 2 in this book is dedicated to anaerobic fungi and recent perceptions of
their role in anaerobic LCB digestion. For some of these cellulolytic organisms, the
genome has been sequenced [14, 15]. Such genome information is an invaluable data
basis for process optimization and further biotechnological exploitation.

Microbial processes in anaerobic digestion are driven by both, biotic and abiotic
factors. The physical and chemical environment (e.g. nutritional factors and redox
status) are basic to and determine the biotic activity, the substrate conversion by the
microbes. Biotic measures to regulate the process (e.g. bioaugmentation) however
are scarce as briefly discussed in Sect. 2.7.

The most important issue in process optimization is to avoid the worst case,
process disturbance or even breakdown. This requires a process control strategy that
includes reliable process diagnosis based on meaningful analytical data. Since the
activity of bioindicator microbes, organisms that are typical for certain process
conditions, does react before conventionally used process chemical parameters
indicate process failure, a promising approach for successful process control is to
assess the activity of these bioindicators as integral part of an early-warning system
[4]. The relevant actors, i.e. bioindicators performing the crucial biogas process
steps, must hence be identified, and suitable analysis tools must be used or
developed to track these key organisms and their activity quantitatively.

In the following chapters, microbiology and molecular biology tools for biogas
process diagnosis and control are compiled and discussed. Since several important
process dynamics such as SCFA and total solid (TS) turnover as well as gas
quality/quantity are the result of microbial activity, and respective wet chemistry
and physico-chemical analyses are and will be indispensable part of conventional
practice but have revealed limitations, recent experience with these conventional
applications for agricultural single-stage biogas processes is presented in the fol-
lowing Sect. (2). Molecular biology approaches have only recently emerged and
may be introduced into practice after comparison or along with established
physico-chemical routines. Some of these molecular tools, however, are promising
candidates to be implemented in a holistic suite of analytical tools for process
diagnosis and control.

2 Physico-Chemical and Biochemical Process Parameters

The spectrum of physico-chemical parameters actually employed for process
diagnosis of agricultural and category 2 biowaste (untreated non-infectious to
humans, animals or plants), biogas plants has originally been adopted from
anaerobic sewage sludge digestion. Many of these parameters and respective
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benchmarks are listed and discussed in a review by Weiland [16]. Important aspects
for diagnosis and control of single-stage processes are presented in the following.

2.1 Gas Production

In order to evaluate the efficiency of the process it is indispensable to determine the
volumetric gas production and the gas quality or at least estimate these parameters
from the generated electricity and the actual adjustment of the combined heat and
power unit. Different equipment is on the market, ranging from simple manually
operated lab instruments to fully automated industry scale online devices.
Combined with data on the fed organic dry matter (oDM or volatile solids [VS]),
the gas production and quality data inform on the specific methane production or
methane yield (m3 CH4/kg VS). Comparison with benchmarks for given substrates
and interpretation of the recent methane yield development allows to estimate the
actual process efficiency at least roughly and to reveal up- and downward trends.
Particular attention should be paid to decreasing CH4 and increasing H2 concen-
trations in the produced biogas. CH4 concentrations falling below ca. 48 % and H2

concentrations exceeding ca. 100 ppm in single stage processes are alarming and
should give rise to counteractive measures.

Isotope ratio mass spectrometry (IRMS) based methods analyzing isotope dis-
crimination by the biogas producing microbial community were recently proposed
to detect methanogenic pathway shifts [17, 18]. The switch from acetoclastic to
hydrogenotrophic methanogenesis is interpreted as signal of stress conditions which
may allow plant operators to adjust their feeding strategy. Since the IRMS equip-
ment is expensive, a laser-assisted online analysis technique was described for this
purpose as a more practice-oriented alternative [19]. However, a pathway shift does
not necessarily indicate imminent process failure, and interpretation problems with
data from variable feedstock composed of C4 and C3 plant material still need to be
resolved. Although gas analysis using stable isotope ratios has potential to reveal
biogas production pathway changes, and online monitoring is possible, its contri-
bution to process diagnosis is thus confined to basic research in its current state.

2.2 Process Intermediates, SCFA, Total and Volatile Solids,
and Specific Determinants

The determination of SCFA (also referred to as volatile fatty acids [VFA], or
volatile organic acids [VOA]) is a highly important component of process diag-
nosis. The SCFA spectrum is typically assessed using liquid or gas chromatography
(LC/GC) based routines on suitable extracts in an external specialized lab and
should include the iso-forms of butyrate and valerate. Increased levels of these
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SCFA exceeding ca. 50 mg/L as well as propionic acid concentrations above ca.
1 g/L along with a propionic/acetic acid ratio >1 typically indicate process dis-
turbance in single-stage systems [16], but exceptions have become known as well.
Reduced activity of methanogens due to substrate overload or limited availability of
essential nutrients such as trace elements is frequently the reason, giving rise to
“acid jam”, i.e. accumulation of upstream produced intermediates.

Attention must also be paid to the development of the dry matter (or total solids
[TS]) content in the digester. TS can easily be determined on-site in an oven at
105 °C, whereas for analysis of VS, a muffle furnace is required. Information on VS
contents in the substrates is important for determining the methane yield, and the
VS/TS trend in the digester can anticipate eventually problematic ash accumulation.
Increasing TS values over time in the fermenter sludge indicate a problem at the
hydrolysis/acidogenesis step leading to compromised process efficiency and
incomplete digestion. TS values exceeding 15 % can lead to stirring problems in
conventional continuously stirred tank reactors (CSTRs). Reducing the organic
loading rate (OLR), i.e. increasing the hydraulic retention time (HRT), might be
helpful, otherwise substrate conditioning by physical/mechanical or (bio)-chemical
means could be considered. More specific information of TS and VS in the fer-
menter sludge can be obtained by the fractionated analyses according to Weende
and Van Soest [20].

Recently, an online near-infrared spectroscopy (NIRS) application to evaluate
the process state with potential for the practice was reported [21]. The authors
presented acceptable estimations of VS, ammonium, total inorganic carbon
(TIC) and total VFA even in short-term process dynamics of a mesophilic
pilot-scale maize silage fed biogas digester. Further extension of the model to
include different substrates and analysis parameters, and experience in long-term
operation is needed before online NIRS systems can be recommended for process
control.

Similarly, techniques involving flow-assisted cell sorting (FACS) [22],
matrix-assisted laser desorption/ionization—time of flight mass spectrometry
(MALDI-TOF/MS) and Fourier transform ion cyclotron resonance mass spec-
trometry (FT-ICR/MS) [23, 24] as well as secondary-ion mass spectrometry (SIMS)
based systems [25, 26] can be helpful to separate or identify distinct microbes or
consortia, or track their specific metabolic activities. Such methods prove to be
useful in basic microbiology research and taxonomy and allow identifying microbes
with resolution at the subspecies or strain level [23], given a suitable reference
database is available. However, “dirty” environmental samples can pose consid-
erable problems. Although there is some potential, application for monitoring the
process status of the black-box biogas fermenter actually does not appear to be a
realistic option. Physical methodologies basing on or coupled with fluorescence-in
situ-hybridization (FISH) are itemized in Sect. 3.2.1.
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2.3 Early Warning—The TVA/TIC Ratio

The ratio of total volatile acids to total inorganic carbon (TVA/TIC, also referred to
as FOS/TAC or VOA/TIC) is determined by 2-point titration (pH 5.0, pH 4.4) and
can easily be performed on-site [27]. It beats out the pH value as early indicator of
process acidification due to its much higher sensitivity. Currently, the TVA/TIC
ratio is the most used process chemical early warning system of acidification.
TVA/TIC ratios of 0.15–0.45 are typical for a stable process without major acid
accumulation, whereas rising ratios exceeding 0.45 reflect process disturbance, and
values above 0.6–0.7 indicate acidosis. This can be associated with TIC depletion,
e.g. in case of trace element deficiency.

However, in cases of atypical process conditions such as at higher NH4
+ con-

centrations and pH-values, considering only TVA/TIC as a process indicator can be
risky. The NH4

+/NH3 buffer system can trap protons masking possible acidification
events. Obtaining low TVA/TIC values can thus be misleading at higher free
ammonia-nitrogen (FAN; see also Sect. 2.4) if distinct SCFA (possibly not mea-
sured) may already be at alarming level. Above ca. 1 g NH4

+-N/L, it is therefore
suggested to monitor the SCFA spectrum and/or molecular biology parameters (see
Sect. 3) as well in order to perceive process perturbation and acid build-up.

2.4 Nutrients, Toxic and Disturbing Agents

Since nutrient composition of the substrates governs and limits microbial process
performance, respective analysis should be performed occasionally and particularly
if a plant is operated with atypical substrates or such operation is planned. Modern
elementary analysis involves Inductively Coupled Plasma (ICP) equipment with
detection by Optical Emission Spectroscopy (OES) or even more sensitive Mass
Spectrometry (MS). Experience from practice suggests that the C:N ratio should be
about 15–45 and the C:N:P:S ratio about 300-600:15:5:3 [4, 16, 28].

Several toxic agents are known that can impede the anaerobic digestion process.
One of the most relevant is free ammonia [29] (see also Sect. 2.3) which can be
calculated from the NH4

+-N concentration, the process temperature and the pH
value [30]. Nitrogen seems to be lacking only in exceptional cases, but reduced
N-compounds typically accumulate in anaerobic digestion of protein-rich feedstock
and can become toxic [6]. It is thus important to determine these parameters
periodically. NH3 diffuses unspecifically inside the cell, can capture protons and
hamper proton-dependent ATP generation leading to activity loss and possibly cell
death. The typical ammonia toxicity threshold is about 400–500 mg NH3-N/L, but a
higher margin is possible in case of adaptation [4, 29]. Particularly microbes relying
on H+ pumps are susceptible whereas those with Na+-pumps are favored in the
presence of sufficient Na+. Predominantly microbes involved in the hydrogeno-
trophic metabolism of biogas intermediates are using Na+ pumps for ATP
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generation [5, 9]. Na+ appears to limit methanogenesis and elicit acidification at
values decreasing to about 10 mg/L in the fermenter sludge and must therefore be
provided at higher concentration in the substrate mix [31]. This can explain sta-
bilizing, stimulating effects of Na+ addition at limiting, constrained or stress con-
ditions such as in high-performance biogas production from grass silage in the
practice [4].

Requirement for trace elements (TEs) in biogas production from biomass, par-
ticularly of Co, Ni, Se, Fe, and possibly of Mo, B and W, has been described in
many publications, e.g. [16, 32–34] and in Chap. 7 of this book. Since their
presence in suitable, available concentrations is a precondition of efficient process
performance, TE contents should be determined occasionally and particularly if the
feedstock composition is changed. Trace elements, however, can become toxic in
higher concentration. Other compounds with toxic or disturbing potential are found
among e.g. antibiotics, mycotoxins, detergents and heavy metals [35, 36], and some
phenolic compounds appear to have inhibitory properties [37]. Cu and Zn loads are
of particular importance for agricultural biogas plants. They can originate in higher
concentrations from animal husbandry, and according to several practice reports,
can be the cause of process disturbance and efficiency loss [38].

Several devices allow the measurement of O2 and H2S in the biogas. O2 can
enter the process by leakages or actively during biological desulfurization. CO2

reduction becomes unfavorable in the presence of better electron scavengers such as
O2, SO4

2− and NO3
− [6]. The redox potential is increased in their presence, and the

activity of most anaerobic microbes is impeded. O2 should therefore be kept below
1 % (better 0.1 %) in the gas phase, and feeding substrates with high SO4

2− and
NO3

− contents minimized, for similar reasons. H2S typically originates from sulfur
containing organic matter. Since it is highly toxic for most living beings, maximum
working place concentrations have to be respected. Moreover, corrosive acids such
as H2SO4, H2SO3 or HNO3 can be formed in the presence of O2 and S- or
N-containing compounds. They can damage mechanical devices and constituents of
the biogas plant.

2.5 Biological Methane Potential, and Activity, Toxicity
and Supplementation Tests

BMP (biological methane potential) or SMA (specific methanogenic activity) tests
are typically applied to determine the methane potential of given substrates. By
variation of these batch-mode assays in ATS (activity, toxicity and supplementa-
tion) tests [39], they can be employed to diagnose and control the actual state of the
biogas process. It is attempted to assess e.g. the capacity of inocula to be activated,
to evaluate the potential of added or endogenous compounds to exert toxic effects,
or to test supplements for process stimulation.

8 M. Lebuhn et al.
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Depending on the type of inoculum and its degree of adaptation, the potential of
the biocenosis is tested to produce methane and/or react to changed process con-
ditions. It is emphasized that results of these assays cannot always be used to
predict the performance such as the methane yield in flow-through operation. This
is mainly due to operational differences, particularly in the effective organic loading
rate and the actual microbial retention time. Moreover, these tests are labor- and
time consuming, typical test periods vary between several days to weeks.

2.6 Enzyme Tests and Applications

Enzymatic tests are important in research and have some potential for practice
application. For example, hydrolytic enzymes are of high interest, since enzymatic
saccharification (hydrolysis) is a rate-limiting step in anaerobic digestion (AD) from
solid substrates and especially undigested lignocellulosic biomass (LCB) material,
e.g. floating layers can pose considerable operational problems [40–42]. Hydrolases
must accommodate heterogeneous plant cell wall residing polymers with various
degrees of polymerization (DPs), side chain branching patterns and several altering
substitutes [43]. Because of this chemical inhomogeneity and substrate specificity
corresponding enzymes that act upon them are generally difficult to isolate and
characterize. The quantitative determination of enzymatic activities is commonly
based on accumulated products after hydrolysis including reducing sugars, total
sugars and chromophores. Other assays measure the reduction in substrate quantity
or the change in the physical properties of substrates. However, the production of
reducing sugars is assayed using alkaline dinitrosalicylic acid (DNS),
copper-arsenomolybdate using the 4-hydroxy-benzoylhydrazine (PAHBAH)
method, 2,2′-bicinhroninate (BCA) and ferricyanide or directly using anthrone- or
phenol-H2SO4. Focusing monomeric products, i.e. glucose as major product,
commercial enzymatic glucose kits using coupled hexokinase and
glucose-6-phosphat dehydrogenase are available. The main drawback of these
methods is a poor stoichiometric relationship between reaction products (e.g. cel-
lodextrins, malto- or xylodextrin) and pure D-glucose standards [44], which may
result in an underestimation or overestimation of cellulase and hemicellulase
activities [45, 46]. However, substrates used for hydrolysis assays should therefore
always be as similar to native polymer structures as possible in matters of DP,
solubility and crystallinity.

The esterase activity was suggested as indicator for the overall fermentation
process, representing a sum parameter for bacterial heterotrophic activity in general
[47]. In this context a positive correlation between esterase activity and substrate
conversion rate towards methane was observed, revealing that process disruption is
reflected by decreased enzyme activities [48, 49]. Furthermore, a negative corre-
lation of esterase as well as aminopeptidase activities and substrate quality was
observed, providing fermentability indications regarding silage as substrates [48].
Therefore, enzyme assays can be a useful tool for monitoring the overall anaerobic
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digestion process. Modifications towards an all-in-one testing kit like available for
other chemical parameters (e.g. Merck Spectroquant® for COD, TOC, nitrate,
ammonium etc.) is desirable to provide plant operators with an activity specific
easy-to-use monitoring instrument. Compared to photometric tests, lower detection
limits (factor 20–500) and shorter reaction times can be reached by the use of
fluorimetric determination on the basis of fluorigenic compounds (e.g. fluoresceine
diacetate, azocasein) [50]. Thereby, a precise study of catabolic enzyme activities
such as esterase, phosphatase, aminopeptidase and glucosidase activities in samples
with low biomass density is possible. In sum, non-methanogenic (hydrolytic, aci-
dogenic) and methanogenic activity tests in combination with molecular tools seem
to be essential for a better characterization and monitoring of full-scale anaerobic
digesters [51].

Beyond measuring the activity or amount of enzymes available in the process,
enzymes can be also applied to stimulate the AD process. The utilization of
enzymes for environmental and industrial applications have been described to be
stable in a large range of even quickly changing conditions, i.e. pH, temperature,
presence of inhibitors or interspecies competition [52, 53], although controversially
observations have been described by other studies on the use of commercial
enzymes and enzyme mixtures considering related costs in AD processes, rather
suggesting a specific application with respect to optimum conditions and the source
of substrate [54, 55]. It has been shown that a combination of chemical and
enzymatic pretreatment of bamboo waste, using commercial cellulase and alkaline,
can lead to significantly enhanced chemical oxygen demand (COD) solubilization
and substrate saccharification in BMP tests, which not necessarily translates to high
methane yields as compared to alkaline pretreatment alone [56], suggesting to
re-think the role of enzymes in multiple-pretreatment settings. The application of
natural endogenous hydrolases such as amylase and protease from fermentation
sludge for pretreatment of wastewater sludge resulted in improved sludge solubi-
lization and acidification regarding the COD and VFA upturn [57], whereas a
positive effect on anaerobic biodegradability, hydrolysis, digestion rates as well as
maintaining a healthy microbial population were not indicated [58]. However,
enzyme treatment can improve the economic production of biogas from agricultural
residues, municipal solid and animal wastes by enhancing the fluidity of fibrous
feedstock mixtures [59], solubilization and deflocculation of wastewater and sew-
age sludge biomass towards anaerobic digestibility [60–62].

The instability and time-limited effect of free enzymes can be overcome by
immobilization using suitable carriers such as alginate or minerals [52, 63–66].
Moreover, the improvement of high-solid substrate degradation can be also
achieved by inoculation of beneficial bacteria, which produce corresponding
hydrolases in response to the given feedstock and operating conditions [49, 67, 68].
This has been demonstrated for mixed hemicellulolytic bacteria cultures [69, 70]
and isolated bacterial species obtained from natural biogas-producing consortia as
well, i.e. hydrogen-producing cultures of Caldicellulosiruptor saccharolyticus and
Enterobacter cloacae [71, 72] or Clostridium cellulolyticum, which was
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successfully adopted to enhance the hydrolysis of wheat straw leading to increased
BMP tests improving the utilization of lignocellulosic substrates [73].

An improved understanding of the catalytic potential of the AD ecosystem can
be attained by mechanistic models based on kinetic data capturing important details
of enzyme-substrate interactions, key substrate surface properties and individual
enzyme adsorption and complexation characteristics as demonstrated for
cellulose/cellulase interactions [57, 74, 75]. These catalytic information might be
implemented into existing complex dynamic models and simulations such as IWA’s
Anaerobic Digestion Model (ADM No. 1, 2) or novel Process Simulation Models
(PSMs), which are validated against a variety of lab and industrial data on anaerobic
digestion to predict the applicability of any substrate for biogas production at any
given process condition [76–79].

2.7 Classical Microbiology Approaches

Classical cultivation-based microbiological methods have not gained major
importance in the analysis of the biogas process status in practice. This is owed to
the fact that most anaerobic microbes have long duplication times. Cultivation of
anaerobes is not only tedious and difficult in many instances. It can cause biased
results if specific growth and activity requirements of investigated microbes or
associations are not known. By applying next generation sequencing (see
Sect. 3.1.4), metagenomics, genome analysis and mapping, specific genetic
capacities of investigated microbes or associations can be identified which can help
to meet unrecognized cultivation requirements and eventually grow hitherto
uncultured organisms [80]. Classical light microscopy reveals its limits given the
highly turbid sample matrix and the low portion of known and described micro-
organisms [81].

Bioaugmentation is a classical microbiology measure to counteract process
imbalances and a key component of biotechnology routines. Virtually every biogas
plant and biotechnological process has been or is started up by inoculation, a special
form of bioaugmentation. Numerous experiences show that once a stable process
and biocenosis is established, newly introduced strains will encounter enormous
difficulties to colonize and propagate in this process [82], although such success
was announced in a few reports [71]. Bioaugmentation might be helpful for the case
that a disturbed process should be stabilized or re-established by the (re)introduc-
tion of certain strains or consortia which had been recognized to be relevant for
proper function but were washed out.
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3 Molecular Biology Approaches

Biogas process failure can have several reasons. Technical reasons include stirring
problems, leakages and temperature changes. At too short microbial retention time
and unbalanced or insufficient nutrition (see Sect. 2.4) slowly growing, but possibly
important microbes are diluted out. If a process-relevant guild is washed out and no
functional substitutes can grow up, this results in process failure or even break-
down. Such bioindicators of the process state are ideally tracked by specific
molecular biomarkers. Since these react earlier than the conventional
physico-chemical parameters [83], molecular biology bioindicator tracking does not
only allow for diagnosing the process, it provides more time to plant operators for
specific counteraction.

This chapter is subdivided into several sections where molecular biology
methods with more or less potential for process diagnosis are described. Some are
used only in basic research and others have started to be applied in practice.

3.1 PCR Based Approaches and Nucleic Acid Sequencing

Since the invention of the Polymerase Chain Reaction (PCR) in 1983, PCR based
techniques have conquered the field in molecular biology diagnostics. With the
recent progress in affordable next generation sequencing techniques [84] (see
Sect. 3.1.4), sequence information in databanks has substantially boosted. On this
basis, group-specific primers and probes can be designed with much higher
dependability. Diagnostic PCR assays are quickly performed and highly sensitive if
suitable (e.g. fluorescence based) detection systems are included. In this chapter,
emphasis is therefore on PCR-based methods and among these particularly on
quantitative Real-Time PCR (qPCR) assays. PCR applications typically need a
specialized laboratory environment but developments for on-site use are emerging.
On-line systems, however, are far from being conceivable.

3.1.1 Crucial Prerequisites: Sampling and Nucleic Acid Extraction

A prerequisite for reliable results is that the samples taken are representative of the
fermenter sludge. This is not trivial since the fermenter sludge typically is not
visually examinable. Bleeders may be partially clogged and act as filters or other
phenomena such as floating or sediment layers may cause inhomogeneities. Results
should therefore be checked for plausibility and possible sampling bias. Transport
and storage of samples is another major source of errors. If samples can be pro-
cessed within a few hours, they should be kept at process temperature in (almost
filled up) closed Polyethylene (PE) or polypropylene (PP) bottles with a cannula for
degassing. For longer transport/storage it depends, if DNA as the most stable,
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rRNA as intermediate or mRNA as the least stable nucleic acid (NA) is the target
[85, 86]. In our experience, samples can be stored at ca. 4 °C for 1–2 weeks for
analyses on DNA and for a few days for analyses on rRNA level. It is not finally
shown for these NA species whether freezing at −20 or −80 °C respectively, and
gentle thawing (at ca. 4 °C) does affect the microbial community composition. For
mRNA analysis from stored samples it must be considered that this RNA species is
in a highly dynamic equilibrium. Both production and degradation must be stopped
immediately, e.g. by immersion in liquid N2, acid phenol or other effective pre-
servatives. Respective research is currently being carried out.

It must also be shown that the used NA extraction and purification system is
suitable and efficient for the specific type of sample and analysis, and for quanti-
tative analyses (see Sect. 3.1.2), the corresponding NA recovery rate has to be
known. From numerous comparative studies dealing with NA extraction and
purification systems it is turning out that combined physical cell disruption and
chemical lysis is most suitable for environmental samples with a high portion of
particulate organic matter such as fermenter sludge samples. Washing the sample
prior to extraction is suggested because this substantially reduces inhibitors such as
water soluble humic compounds [87]. NA purity in extracts is therefore of major
concern, but as pointed out below, current guide values are not always conclusive
and helpful for PCR-based assays.

Physical disruption of cells to release NAs is another crucial factor for obtaining
suitable extracts. Due to velocity, ease of handling and performance efficiency, bead
beating (BB) is used most frequently. Rigid cell walls must be broken, but too harsh
BB can shear NAs and lead to detection failure [88]. Physical disruption must
therefore be optimized for the targeted type of cells along with the particulate
organic matter (OM) content in the sample sheltering the targeted cells. The higher
the OM content, the more intense BB must be chosen. If differently recalcitrant cells
are present, a fractionated protocol with increasing BB force and pooling of sub-
sampled extracts can be applied [89]. It is essential to further adapt the protocol to
the downstream type of analysis. If relatively short fragments such as for qPCR are
suitable, relatively strong BB is of advantage. For applications requiring longer NA
stretches such as functional transcriptome or genome analysis, strong BB can be
counterproductive.

For RNA extracts, efficient DNase treatment and Reverse Transcription
(RT) reaction with -RT controls must be performed, otherwise downstream reac-
tions are contaminated and results biased. It must be considered that DNases
degrade RNA to a certain extent, as well. This can introduce uncertainty and may
only partially be overcome by method standardization leaving the possibility of a
systematic error. The produced cDNA is further used just like genomic DNA but its
single-stranded nature must be considered for quantitative aspects.

Downstream, extract purification is a trade-off between inhibitor removal and
NA loss. PCR inhibitor removal is frequently seen as equal with matching tradi-
tional absorbance ratios (A260/230, A260/280). However, these had originally been
developed for DNA-DNA hybridization and turned out to be of limited value for
PCR applications. Quantitative Real-Time PCR (qPCR) was not inhibited at
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A260/230 and A260/280 ratios as low as 0.02 and 1.4, respectively [32].
Cell-lysing Guanidinium-Isothiocyanat (GITC) present in some NA extraction kits
absorbs at 230 nm but does not seem to compromise PCR. However, (partial)
inhibition was obtained if the A320 value (humic compounds absorb at 320 nm)
surpassed a level of 0.02–0.03. The A320 value thus appears to be a major indicator
of PCR inhibition by samples containing humic compounds.

Between 40 % and over 80 % of extracted DNA was lost by conventional silica
column post-purification [90, 91], which considerably compromises the sensitivity
of quantitative assays. Optimization of the extraction/purification protocol requires
that the number of treatment steps is minimized while inhibitor removal and NA
recovery rates are maximized. With optimized kit-based DNA and RNA
extraction/purification systems and optimized (RT)qPCR biochemistry such as
inclusion of a highly processive polymerase and adjusted Mg2+ concentration [87],
about 90 % of spiked DNA and 30–70 % of spiked viral RNA was recovered from
cattle manure or biogas fermenter samples with an optimized kit-based total RNA
extraction procedure [83]. However, the RNA recovery rate may actually have been
lower because no DNase digestion was performed and DNase I can degrade RNA
unspecifically. It is thus strongly suggested to report the method detection limit [91]
of the given assay along with the DNA and/or RNA recovery rates.

3.1.2 Conventional and (Reverse-Transcription) Quantitative
Real-Time PCR: Applications for Process Diagnosis

Conventional PCR is an integral step of several applications such as amplicon
sequencing (see 3.1.4) and community fingerprinting (see Sect. 3.1.3). For diag-
nostic purposes, however, conventional PCR has lost importance in the last years in
favor of Real-Time PCR (qPCR) assays. Applications, advantages and limitations
of qPCR and RT-qPCR are compiled and discussed in many reviews and book
chapters, e.g. [92–94]. (RT)qPCR assays avoid laborious gel-electrophoresis, are
performed more quickly, are suitable for high throughput, are less prone to con-
tamination, and provide superior specificity particularly if an additional (e.g.
hydrolysis) probe or different chemistry for the same purpose is integrated [95].

The reliability of PCR assays has significantly been improved.
DNA-polymerases with a very low error rate (for Taq ca. 3 × 10−5, still much lower
e.g. for Pfu, [96, 97]) and suitable reaction environment are available, and primer
specificity can significantly be improved due to the enormously grown sequence
data in databanks. A major issue, however, is the formation of chimaeras during
PCR amplification which can seriously bias community composition analysis.
Several programs and online applications can be used to check for chimaeras even
in sets with relatively short amplicons [98]. Avoiding the formation of chimaeras,
e.g. by analyzing templates with relatively homogenous melting temperatures (Tm)
over the region of interest, would be even more straightforward than post-purifying
datasets. However, it can be difficult to find template regions that provide sufficient
phylogenetic resolution.
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Moreover, problems or uncertainty still exist particularly with quantitative
analyses of prokaryotic mRNA. This is not only due to unspecific DNase activity
(see Sect. 3.1.2), but (partial) inhibition of RT-reactions that typically remain
undetected. The RT efficiency at the given reaction conditions typically is not
documented and may be subjected to interfering compounds introducing variability.
Although these imponderabilia may not be of crucial importance for qualitative
approaches such as community analyses, further methodological development is
required for reliable quantification of prokaryotic mRNA.

Microbial Guilds, Bioindicators and Transcriptional Profiling

The bioindicator approach (Fig. 1) aims at analyzing and predicting distinct process
states, shifts and perturbances, e.g. in biogas reactors. On the molecular level, genes
encoding key enzymes of important metabolic pathways in the biogas process such
as methyl-coenzyme M reductase (isogenes mcr and mrt encoding coenzyme-B
sulfoethylthiotransferase, EC 2.8.4.1, the key enzyme of methanogenesis, which is
present in all and exclusively in methanogenic Archaea), formyl-tetrahydrofolate
synthetase (or formate-tetrahydrofolate ligase, fhs, EC 6.3.4.3, key enzyme of the
Wood-Ljungdahl-pathway) or certain hydrogenases (e.g. ech, hyd) and their tran-
scripts are ideal bioindicators and targets of molecular biomarkers [4], and even
more will be identified in the near future [11, 99]. (RT)qPCR markers can be

 

 

Fig. 1 The bioindicator/biomarker approach to assess process-relevant microbial guilds and their
characteristic (transcriptional) activity. Once bioindicators are identified and biomarkers
constructed (1), guilds and their (transcriptional) activity can be quantified in high-throughput
assays (2)
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tailored to determine bioindicator organisms of such guilds and their transcription
activity (Fig. 1). For the design of specific biomarker systems for defined bioin-
dicator organisms, it is essential that these had been identified previously by
community composition analyses at relevant fermentation process conditions.
However, the design of specific (RT)qPCR systems for heterogeneous microbial
groups or clades in environmental samples can be difficult. This is particularly true
if guilds are to be tracked by targeting signatures on functional genes exhibiting
wobble bases in the third codon position. Respective primers, so-called “protein
primers”, typically are highly degenerated to provide the desired specificity, which
complicates functional PCR based assays (e.g. [100]).

Due to the high stability of DNA, as compared to mRNA (see Sect. 3.1.1), DNA
based assays will detect live and inactive organisms as well as residual DNA e.g. of
dead organisms [101, 102]. Since for realtime process analysis, the active organisms
are of particular interest, transcriptional profiling is supposed to identify more
meaningful bioindicators than conventional analyses on DNA level, but changes in
environmental conditions can not only induce quantitative transcription changes (see
Sect. “cDNA/DNA Ratios and the Metabolic Quotient”). Typically, first metabolic
activity and subsequently propagation of the populations that are best adapted to the
new conditions are encouraged, whereas unadapted populations are losing compet-
itiveness. The activity of inadequately adapted microbes is cut down first, and sub-
sequently they are diluted out in flow-through processes. In microbial successions
initiated by organic loading rate (OLR) increase in biogas processes with renewable
resources, different bioindicators of the process status have been identified:

Methanosaeta spp. were present only at long microbial retention times, low
acetate and ammonia levels [17, 32, 103] or/and at a feeding regime with a substrate
mixture containing manure e.g. from husbandry [104, 105]. A potential bioindi-
cator, tentatively named Methanosaeta concilii 2, was identified first from meso-
philic maize silage digesters [4]. It is different from the mcrA sister clade (M.
concilii 1) encompassing the type strain and most of the Methanosaeta sequences
recovered from animal manure environments. Recent sequencing confirmed the
presence of M. concilii 2 also in mesophilic grass silage digesters. This guild,
probably originating from the cattle manure inoculum, soon lost transcription
activity in the grass silage digestion process and was washed out subsequently (B.
Munk, unpublished) at increased loading rates. M. concilii 2 and its activity is thus
an example of a specific bioindicator of relaxed digestion conditions.

Other methanogens appear to have a similar potential to be used as indicators of
the biogas process status. Results of several studies performed in different envi-
ronments on the DNA and on the transcription level [4, 83, 106–108] suggest that
with increasing strain to stress conditions such as shorter microbial retention times
with increased SCFA concentrations and critical ammonia contents,
Methanosaetaceae and their activity are replaced by Methanosarcinaceae and
Methanobacteriaceae, with the latter appearing to be the most resistant. More
specifically, certain Methanosarcina genospecies, hitherto undescribed
Methanosarcinaceae (tentatively classified as genus II) and strictly hydrogeno-
trophic methanogens, particularly Methanobacteriaceae, certain Methanobacterium
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genospecies and hitherto undescribed Methanobacteriaceae (tentatively classified
as genus IV) were increasing in maize and grass silage digestion processes on the
DNA and on the transcription level [4, 83]: at aggravated strain or stress conditions,
very short retention times, high SCFA or ammonia contents, at the onset of process
failure, the diversity of methanogens remained almost unchanged at the DNA level,
but mcrA/mrtA was transcribed exclusively by certain Methanobacterium geno-
species (particularly Methanobacterium III sp. 3a) at mesophilic and
Methanothermobacter wolfeii at thermophilic conditions. For these bioindicators,
more specific (RT)qPCR based biomarker systems are being developed in order to
track their presence and activity and provide a meaningful process diagnosis.

cDNA/DNA Ratios and the Metabolic Quotient

In principle, cDNA/DNA ratios can be calculated for any physiological perfor-
mance of interest by relating the actual net concentration resulting from RNA
transcription and transcript degradation to the concentration of the corresponding
gene in a given sample. It appears to be most meaningful to determine the
cDNA/DNA ratio of selected functional genes of key enzymes as activity parameter
to assess the specific activity of certain guilds (see Sect. “Microbial Guilds,
Bioindicators and Transcriptional Profiling”, Fig. 1). Respective necessary infor-
mation for designing specific (RT)qPCR system can be derived from alignments
containing relevant sequences deposited in databases and extracted sequences from
metagenomes and metatranscriptomes (see Sect. 3.1.4).

For mcrA/mrtA, cDNA/DNA ratios have already been reported, e.g. for peat soil
and biogas fermenters [31, 109, 110]. The cDNA/DNA ratios reacted to activating
stimuli such as temperature or substrate, whereas the gene concentrations remained
almost constant, and they were correlated with the methane production rate within
certain limits, indicating the potential of this molecular biology approach to track
the activity of the guild of methanogenic Archaea.

Similar approaches may be envisaged to track distinct microbial activities.
Concerning biogas processes, cDNA/DNA ratios, e.g. for fhs or ech subunits or
other important genes of key enzymes could be very informative on the activity
status of the corresponding metabolic pathways. Such information would be very
helpful for process diagnosis also for e.g. biorefineries, and monitoring could
provide operators with necessary information for process engineering and to decide
on possible intervening measures.

However, it has to be considered that prokaryotic mRNA analysis still is delicate
and error-prone, particularly if quantitative results are to be obtained (see
Sects. 3.1.1 and 3.1.2). At the current state of the art, respective results should
therefore be treated with precaution. RTqPCR and upstream sample preparation still
need methodological development until interlaboratory comparison will create
consistent and reliable results.

A second ecophysiological parameter is the Metabolic Quotient (MQ). The MQ
has been developed by Munk et al. [31] and was further explained in more detail
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[4]. In contrast to the entirely molecular biological parameter cDNA/DNA ratio, the
MQ needs concomitant physiological data. For the MQ, the methane productivity
(mL CH4 per mL fermenter sludge) is related to the concentration of methanogenic
Archaea, as determined by mcrA/mrtA targeted qPCR [100] on the DNA level,
regardless if they are dead or alive, in the fermenter sludge at a given time, resulting
in the actual specific methanogenic activity (SMAact). SMAact is compared to a
reference standard dataset (SMAstd) obtained for efficient process performance at
various OLRs without any symptoms of process disturbance. If SMAact/SMAstd

is >1, the methanogenic guild of interest is metabolizing at strain or stress condi-
tions, and if SMAact/SMAstd is <1, the methanogens are less active than at the
standard reference conditions.

The MQ was measured in different maize silage digestion processes along with
conventional indicators of the process state (see Sect. 2) in time series [31, 83]. It
turned out that the MQ passed a threshold of about 3 ca. 2 weeks before changes
were detected by the conventional chemical process indicators such as noticeable
increases of the TVA/TIC ratio or SCFA concentrations. At this process stage, less
methanogens than at standard conditions performed the same metabolic task,
indicating metabolic strain or even stress of the given methanogenic population.
When the TVA/TIC ratio and/or critical SCFAs such as propionic acid had
increased to an alarming level of about 0.7 or 1 g/L, respectively, the MQ began to
decline or had already decreased, indicating serious process failure and collapse.
The methanogenic population was obviously seriously affected and not able any-
more to fully accomplish the metabolic task of methane formation, as evidenced by
the sudden decrease of methane productivity and the methane yield. When no
substrate was fed to the process, the MQ was significantly below 1. According to
the observations, a threshold of ca. 0.1 was defined, indicating the lowest level of
normal physiologic activity.

The MQ thus allows, over the complete range of tested OLRs, to determine the
metabolic state of the resident methanogenic population. A single MQ determina-
tion, however, does not necessarily mean very much. Just like with the TVA/TIC
ratio, the recent development has explanatory power. An increasing MQ indicates
increasing strain or stress. A decreasing MQ can indicate relaxed conditions or
process breakdown. If an MQ of 1 was measured, it can be a sign of normal process
operation, but it can also be symptom of a collapsed process if it turned down from
values exceeding 3.

In most recent experiments with grass silage as substrate and measurements of
practice biogas plants operated predominantly with grass silage, the MQ reacted
similarly as in maize silage processes and stood within the bandwidth of 0.1–3 at
normal process conditions without symptoms of process disturbance (B. Munk,
personal communication). Since the TVA/TIC ratio is losing informative value at
the high ammonia contents typically found in grass silage digestion, this is of
particular importance and demonstrates the potential of the MQ as an early warning
tool of process failure in practice (Fig. 1). It is expected that the MQ will become an
important ecophysiological molecular microbial parameter and find application in
practice monitoring of biogas plants and process diagnosis.
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3.1.3 Community Fingerprinting Assays

An ideal method for microbial community analysis would allow the detection of
different groups and enumerate all microbial species present in a sample from an
ecosystem or habitat. Basically two approaches are used for community analyses:
(1) cultivation-dependent analysis (CDA) aiming at the detection of selected groups
and species of microorganisms and (2) cultivation-independent analysis (CIA),
which are RNA/DNA based and are used to assess the complexity and dynamics of
microbial communities. CDA relies on several selective and non-selective culture
media that supply different growth conditions for specific or non-specific microbial
population targeting. Traditional methods require a vast knowledge of phenotypic
features to characterize microorganisms, which is often inaccurate and also leads to
an underestimation of the diversity of species. However, the main drawback of
conventional cultivation methods to recover less than 1 % of the total microbial
species present in environmental samples remains problematic [111]. Thus CDA is
nowadays complemented by molecular methods such as polymerase chain reaction
(PCR) and fingerprinting techniques to assess shifts in microbial composition by
small subunit ribosomal RNA gene analyses [112–114]. CIA is principally based on
molecular techniques (Table 1), applying PCR and oligonucleotide probe

Table 1 Molecular screening techniques for microbial community detection, fingerprinting and
identification according to [112, 119], modified

Method Principle Application References

AFLP Restriction of total microbial DNA Strain-level
identification

[120, 121]

ARDRA Restriction of rRNA genes Strain-level
identification

[122]

ARISA Automated riobosomal intergenic spacer region
length differences (multiple ISRs per genome)

Species-level
identification

[123]

RAPD Random amplified polymorphic DNA Strain-level
identification

[124, 125]

rep-PCR Repetitive element sequence-based PCR (short
sequence repeats [SSR])

Strain-level
identification

[126]

LH-PCR Length heterogeneity of PCR-amplified rRNA
genes

Community
analysis

[127]

PFGE Genomic restriction fragments in pulsed-field gel
electrophoresis

Strain-level
identification

[128]

T-RFLP Terminal restriction fragment length
polymorphism of rRNA genes

Strain-level
identification

[129, 130]

DGGE Mobility of partially melted dsDNA in linear
gradient of DNA denaturants

Community
analysis

[131,132]

TGGE Mobility of partially melted dsDNA in linear
temperature gradient

Community
analysis

[133, 132]

SSCP Mobility of conformed ssDNA in
non-denaturing gels

Community
analysis

[134, 135]
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hybridization in order to identify microbes directly from sample material [115].
Therefore, total genomic DNA or RNA must be extracted from collected microbial
cells, avoiding co-extraction of sample matrix-inherent compounds that can totally
inhibit the PCR (see Sect. 3.1.1). Cell lysis is accomplished by several methods:
mechanically using bead-beating, freeze-boil cycles, chemically by the use of
detergents or enzymatically using cell wall degrading enzymes, e.g. lysozyme,
lyticase or proteinase [116–118].

Environmental microbiological studies are often based on ribosomal DNA or
RNA sequences, because these sequences are functionally and evolutionary con-
served and present in all organisms. Here, 16S rDNA and 23S rDNA sequence
regions have already been determined for a large number of reasonably described
bacterial, archaeal and fungal species. Thus 16S rDNA sequences can be used to
investigate phylogenetic relationships and for the identification of unknown
microbes via comparisons with database collection entries. The largest reference
databases exist for conserved marker gene 16S rRNA [112, 136]. In contrast to
rDNA, rRNA targeted techniques rely on high-copy numbers per cell and are
specifically used to assess changes in metabolically active microbial populations
[137], although extraction and handling procedures are much more complicated due
to the rRNAs instability (v. [138]). The intergenic spacer region (ISR) between 16S
and 23S rDNA often shows species specific sequence variations by primers binding
to conserved nucleotide stretches at the 5′ 23S and 3′ 16S rDNA gene end
respectively [139]. In ISR-directed ribosomal intergenic spacer analyses (RISA) it
is used to describe phylogenetic microbial diversity (Bacteria and Archaea) by
creating RISA profiles. Although it is foremost used in diagnostic
PCR-amplifications [140], ISR amplicons as targets for qPCR assays have also
been discussed to reflect the metabolic status of key microbes more accurate than
16S based fragment comparisons [141]. Numerous broad-range and group-specific
primers are available, targeting many bacterial and archaeal species of interest in
AD processes, including fermentative and methanogenic representatives, covering
low diversity selective cultivation sample structures up to full-scale agricultural
biogas plant complex mixed community fingerprints [24, 69, 142].

The fingerprinting techniques range from simple length heterogeneity PCRs
(LH-PCR) depending on different primers, targeting several variable regions in
combination [143] up to more sophisticated genetic fingerprinting techniques such
as amplified ribosomal DNA restriction analysis (ARDRA) or terminal restriction
fragment length polymorphism (T-RFLP), which are all well established and vastly
exploited to characterize whole microbial communities, providing pattern profiles
of the community diversity [129, 144, 145].

T-RFLP fingerprints can give quantitative insights into communities by using a
combination of fluorescence labelled primers and enzymatic digestion of resulting
PCR products to generate terminal restriction fragments (T-RFs) from DNA tem-
plates. The taxonomic resolution can be improved by combining several fluoro-
chromes and restriction enzymes simultaneously [146, 147]. Problems ascend from
incomplete restriction digestion due to e.g. missing restriction sites or fragment
length discrepancies caused by different fluorochromes used to estimate in silico
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yields, which reduces the reproducibility [130]. However, T-RFLP has not only
been applied to describe bacterial communities, but also to monitor methanogenic
populations and temporal shifts of archaeal communities in bioreactors [148, 149].

Further fingerprinting techniques are denaturing-gradient gel electrophoresis
(DGGE), temperature-gradient gel electrophoresis (TGGE) and single-strand con-
formation polymorphism analysis (SSCP), which detect sequence variations of
rRNA gene fragments or other functional genes from total community DNA or
cDNA [150]. Complex microbial communities can thus be resolved into single
members through band separation by gel electrophoresis. DNA sequence infor-
mation is obtained from excised bands, which represent operational taxonomic units
(OTUs) or even single species, but do often require further preparation and time
consuming cloning steps. Co-mitigation or poor separation of bands representing
small fragments less than 500 bp and restricted sensitivity to OTUs with a minimum
abundance of 10 % (SSCP) lead to limitations of phylogenetic identifications and
incomplete microbial profiles [151], which can be partly overcome by e.g. nested
PCR, widening the spectrum of detectable phylogenetic groups in direct compari-
son to dominant members of the bacterial community [152]. In order to reach
higher throughput numbers than Sanger Sequencing can provide at this stage, next
generation sequencing technologies are used alternatively to analyze thousands of
OTUs from different functional guilds. Yet, for complex environmental samples
such as soil samples, DGGE, SSCP as well as T-RFLP provide similar compelling
results on bacterial community composition [153] and microbial dynamics [152,
154], but a major drawback of ribosomal DNA based fingerprinting methods is that
all DNA present in a sample is amplified, regardless the metabolic activity of
bacteria, thus being less usable to reflect acute process dynamics such as crises in
anaerobic digesters alone (see 3.1.2). Furthermore, molecular fingerprinting meth-
ods are not considered quantitative, but can include quantitative matrices as basis
for dendrograms or can be related to multivariate analyses including process
parameters, hierarchical clustering and specific microbial activities should be
combined with genomic/fingerprinting data and incorporated into multivariate
ordination methods such as Principal Coordinate or Principal Component Analysis
(PCoA/PCA) in order to complete the whole picture drawn from a biogas bioce-
nosis [26, 112, 155].

To evaluate environmental and process derived ecosystems, diversity is a suit-
able parameter that is measured by the number of different species (also from
phylogenetic identification of OTUs from clone libraries assuming that one OTU
corresponds to one species) including the inequality in relative abundance (Fig. 2).
Therefore, diversity indices include abundance, richness and evenness as well as the
Shannon index (H’). Abundance is the relative representation of a species in a
community, i.e. number of a specific organism. Richness is defined as the number
of different species or OTUs obtained from fingerprinting or cloning methods.
Evenness is a measure of the equitability of abundance. The Shannon index (H’) is
calculated by the relative abundance and richness of each species (OTU or T-RFLP
peak) respectively. The higher the number of phylotypes evenly distributed, the
higher the H’ index, which is specifically appropriate for the evaluation of low
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abundant, but important species (indicator species) due to its high sensitivity by
proportional weighting [156]. Recent community studies regarding mesophilic and
thermophilic co-digestion [157] and CSTR feeding pattern comparisons [158]
indicate that high initial evenness (more dynamic populations) favors the microbial
functionality under selective stress conditions, suggesting the microbial community
to be more flexible.

Fig. 2 Diversity—a complex parameter to describe the microbial composition of a given
ecosystem defined by the indices richness (increases with the number of different species),
evenness (distribution of present species) and abundance (number of a certain species), each
colored hexagon represents one species (1); linking community data with process parameters,
different hexagon sizes reflect the number of each species (abundances) ideal-theoretically
correlated with typical process parameters and their occurrences (2)
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To include activity analysis, microarrays based on the hybridization of oligo-
nucleotides or PCR products can be used to generate gene expression profiles and
signatures and have been applied to investigate bacterial communities of composts
as well as methanogenic communities by specifically designed microarray-chips,
i.e. COMPOCHIP and ANAEROCHIP [159, 160]. This technique has also been
applied in combination with real-time PCR to investigate and quantify specific
targets of organic waste associated microbial communities [161]. However, the
traditional microarray approach cannot detect novel genes since the device con-
struction only involves known nucleotide sequences [162]. Therefore, metatrans-
criptomics described in the following section are currently preferred to enable gene
expression identification without a priori sequence knowledge [162, 163] (see
3.1.4).

3.1.4 Next Generation Sequencing and Meta-Omics

The advent of affordable high-throughput Next Generation Sequencing (NGS) [84,
164] has boosted the number of sequence entries in databanks. This information has
not only significantly enlarged our knowledge in systems biology; it represents an
invaluable basis for further developments and exploitation. Different NGS tech-
nologies using emulsion or bridge PCR are available and can generate millions of
parallel reads in small volume reactions with average read lengths between ca.
40 and about 1,100 bp. Illumina platforms are currently the most frequently used.
454 pyrosequencing will no longer be sustained. Originary Pacific Biosciences’
(PacBio) RS sequencers typically generate long reads of >1 kb but the cost per base
and the raw error rate (>10 % on average) are relatively high. Cost and error rates
are actually lowest for Illumina and in between for Ion Torrent PGM systems [164,
165], but PacBio RS sequencing can be particularly useful e.g. by resolving
problematic genomic areas such as AT-rich regions.

As compared to Sanger sequencing, error rates of these NGS systems are high,
and problematic (GC-, AT-rich) regions can cause bias. Since this can result in
erroneously high diversity, as observed in some ecosystem analyses, high coverage
of parallel reads is required to generate reliable NGS results. Including data pro-
cessing, particularly sequence assembly, all of these issues necessitate massive
biocomputing efforts [166]. Respective bioinformatics pipelines and their mainte-
nance are not affordable for any lab. Many limitations, however, will soon be
overcome. Cheap annotation via cloud computing is already feasible [167], and
developments towards increased read length and accuracy are going on. For
example, PacBio recently introduced the RS II sequencers which are based on
single molecule, real-time (SMRT) technology. PacBio claims that half of the data
are in reads >14,000 base pairs with accuracy equal to Sanger sequencing. In a
recent report (Mosher et al. 2014), PacBio RS II sequencing using P4/C2 chemistry
surpassed the accuracy of Roche/454 pyrosequencing and generated longer reads.
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For application of PCR based NGS approaches, it must additionally be con-
sidered that such amplicon sets are typically interspersed with chimaeras (see
Sect. 3.1.2). These dissemble higher diversity than actually present and must be
eliminated [98]. In addition, possible bias associated with Reverse Transcription or
DNase treatment (see Sect. 3.1.1) must be considered [168]. However, if these
challenges are adequately met, amplicon sequencing and metagenomics can pro-
duce highly comparable results, as this was shown for samples from different biogas
processes by parallel analyses of curated V6-V8 (similarly as the V3-V5) 16S
rDNA amplicon libraries and extracted 16S rDNA sequences from metagenomes
(without interspersed selective PCR step) [169]. Although the NGS sequence
numbers were much higher in this comparison, the PCR approach that was directed
against the highly variable V6-V8 region provided substantially more profound
insight into the bacterial community structures, occasionally even below the genus
level.

NGS analysis of (complete) microbial genomes is another approach of inesti-
mable value. It not only deepens our knowledge on microbial capacities, with the
rising number of sequenced genomes and improved annotation, a more and more
solid reference database is created for metagenomics and metatranscriptomics
[170], leading e.g. to more reliable reference matches and improved binning
accuracy. Metatranscriptomics currently is the most straightforward approach to
investigate (key) metabolic pathways of interest at the transcription level, and
RNAseq-based approaches allow quantitative transcriptome profiling, if suitable
reference genomes or transcriptomes are available (Mutz et al. 2013). Although
transcriptional activity is mostly regarded as equivalent with expression and
activity, subcellular compartmentalization or excretion of enzymes and regulation
are occurring at the protein level, and posttranslational modification can alter
protein location and function. Additionally cross-linked metabolomics and meta-
proteomics might thus better reflect functional protein expression and activity in
future (Vanwonterghem et al. 2014).

Although all of these approaches are providing an increasingly indispensable
information background and data mining repository, they will not be applied for
production scale monitoring and real-time process assays since equipment costs are
too high for routine analysis, and highly skilled personnel is required. However,
based on the compiled background, more meaningful and informative bioindicators
may be identified and respective specifically targeted, e.g. (RT)qPCR based bio-
markers could be developed (see Sect. “Microbial Guilds, Bioindicators and
Transcriptional Profiling”). Such assays are much better suited for labs performing
routine analyses.
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3.2 Microscopy Based Detection of Microorganisms:
Specific and Non-specific Imaging

For observations of bacterial and archaeal cells and biofilms, granules or flocs
several microscopy techniques are useful, reaching from simple light microscopy
(LM) with limited resolution to high-resolution scanning electron microscopy
(SEM), transmission electron microscopy (TEM) and confocal laser scanning
microscopy (CLSM). Amongst them, fluorescence-coupled microscopy is highly
sophisticated due to its ability to detect selected groups or specific species within
complex mixed communities. It is therefore widely used in microbial ecology
studies allowing the visualization of spatial distribution of cells in a sample. For an
in situ hybridization, a labelled probe, i.e. a fluorochromes or radioactive signal
joined denatured DNA fragment is annealed to a sequence homologous to a certain
target DNA (genomic DNA or PCR-amplicons). Using group- or species-specific
staining, the differentiation between distinct populations is permitted leading to
deep insights into the organization of biofilms and flocs [171], but strongly depends
on the type of microscope used.

3.2.1 Fluorescence in Situ Hybridization-Based Confocal Laser
Scanning Microscopy (FISH-CLSM)

Whereas epifluorescent imaging gives optical information from only one layer in
two-dimensions [172], confocal scanning laser microscopy (CLSM) is capable of
imaging a specimen via successive expositions of thin sections that can be recon-
structed by computational assistance for 3D and 4D image visualization and
analysis (IMARIS, Bitplane, Oxford Instruments). This allows the determination of
multi-dimensional relationships of cells and their surroundings [173, 174]. The
specimen is focused with a laser beam and pinhole selected fluorescent signals are
detected by a photomultiplier, which results in high sensitive, high detailed and
non-destructive image acquisition [175]. Fluorescence in situ hybridization targets
genera or species specific ribosomal RNA fragments via probes available for
Eubacteria (EUB) and Archaea (ARC). These fragments are specifically labeled
with fluorescent dyes (Cy3, Cy5, FITC or FLUOS) that have individual emission
wavelength optima to detect and identify multiple populations of target organisms
in one sample at the same time [176]. A vast assortment of organism specific probes
has already been described [177–179] and the list is constantly expanding in dat-
abases such as ‘probeBase’ [180], which provides currently over 1,300
rRNA-targeted oligonucleotide probe entries. The FISH-CLSM derived image also
allows the rapid quantification of fluorescence signals, i.e. number of specific cells
or percentage of area covered by biofilms [181]. Minimal statistical evaluation
requires three independent samples and the observation of three individual speci-
men spots, when samples are homogeneous and evenly distributed [182]. At this
juncture, flow cytometry (FCM) combines the advantages of microscopy and
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biochemical analysis for the measurement of biochemical and physical character-
istics of individual cells moving in a fluid stream passing an optical sensor [177,
183, 184] (Fig. 3). In this regard, cytometric fingerprints have been reported to
enable the decoding of microbial community dynamics in managed anaerobic
microbial systems [185]. CLSM can also be combined with Raman spectroscopy to
e.g. examine extracellular polymeric substances (EPS) producing biofilms and
thereof distributed polysaccharides such as cellulose, alginate, sodium alginate,
dextran, or nucleic acids during the development of the whole biofilm [186].

Numerous fluorescent dyes for DNA or RNA specific staining such as acridine
orange or 4′,6-diamidino-2-phenylindole (DAPI) are used in addition to probe
specific labeling, e.g. to assess the total number of bacteria against specific signals
from fluorescein-labeled species [187]. Commercially available viability kits for
fluorescence microscopy, e.g. Live/Dead BacLightTM (Molecular Probes®, Life
Technologies) can be used to discriminate between viable and non-viable cells.
Furthermore, a broad range of fluorescein-coupled molecules such as polyanionic
dextrans or lectins of various molecular masses, redox-sensitive chemical probes
(e.g. resofurin and fluorescein) and other fluorogenic substances (e.g. fluorescein
diacetate) can be used in live cell imaging experiments to analyze (i) chemical
interactions of defined molecules, (ii) cellular physiological conditions about

Fig. 3 Single-cell identification and quantification by either epifluorescence microscopy or
quantitative flow cytometry on the basis of fluorescence in situ hybridization according to Amann
and Fuchs [177]. The sample preparation involves the fixation of microbial cells to stabilize and
permeabilize their membranes to allow labelled oligonucleotide probes to access and hybridize to
certain intracellular targets. Adapted from Jul 20, 2015, Nature Publishing Group
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membrane potential or permeability and (iii) microzonal variations in biofilm
chemistry regarding pH, redox potential or ion concentrations [188–190]. FISH is
also performed in combination with fingerprinting methods (see Sect. 3.1.3) or
cloning experiments as full-cycle rRNA approach to quantitatively determine the
relevance and spatial distribution of given operational taxonomic units (OTUs)
[191].

Microautoradiography-coupled FISH (MAR-FISH) is another tool for structure
and function analyses in microbial ecology [192] that links phylotypic character-
istics with metabolic activities to reveal microbial species responsible for key
physiological processes [193, 194]. The microbial in situ uptake and incorporation
of radioactively labelled substrates can be visualized and enumerated this way
[195], but the method is limited to elements with radioactive isotopes (e.g. 13/14C,
3H, 15N, 34S, 33P, 18O), which makes secondary ion mass spectrometry (SIMS)
become a constitutive alternative for MAR-FISH. However, in anaerobic digesters
it has been used to elucidate metabolic functions of minor phylogenetic groups like
Chloroflexi, Syntrophomonas Spirochaeta and Synergistes as well as Methanosaeta
spp. in sugar and short fatty acid such as acetate, butyrate, and propionate utili-
zation [196, 197], and led to the determination of degradation rates of glucose,
acetate and propionate as well [198, 199]. Although not providing quantitative data,
the complementary combination of MAR-FISH with quantitative real-time PCR can
be useful to investigate active key functional microbial groups [112].

FISH probing and CLSM have thus been used to show, how microbial com-
munities involved in the anaerobic biodegradation process are organized regarding
biofilm formation, immobilization and attachment to solid substrate material [64,
200–202], but also to study bioreactor and full-scale biogas plant performances
[203–205]. There are some drawbacks using hybridization based fluorescence
microscopy that include fading or photo-bleaching of the fluorochromes, fluores-
cence quenching, the loss of fluorescence due to sample derived molecules inter-
acting with the fluorochromes, limited archaeal cell wall permeability and
inefficient or incorrect hybridization. Many of these problems can be overcome by
modifications of the preparation protocol towards sample and organism (i.e.
gram-positive/gram-negative Bacteria and methanogenic Archaea) optimized
hybridization conditions such as temperature or formamide concentrations [206],
enzymatic pretreatment as routinely applied for catalyzed reporter deposition FISH
(CARD-FISH) [207], up to double labeling (DOPE-FISH) for improved signal
intensity and rRNA accessibility [208, 209], or even individual probe design [177,
210]. FISH-CLSM is clearly a valuable technique for AD processes to analyze
microbial dynamics, since both, qualitative and quantitative information can be
obtained, but specialized personnel and laboratory equipment is required to perform
these analyses.
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3.2.2 High-Resolution Microscopy: Scanning Electron Microscopy
(SEM)

Apart from molecular biology depending light microscopy techniques, biofilms and
single cells can be also investigated by scanning electron microscopy with
unequalled magnifications of up to 500,000-fold (Carl Zeiss Ultra 55, Hitachi
S-3000 N). New microscope-generations like RISA even integrate correlative,
confocal Raman imaging with scanning electron microscopy (Raman-SEM), per-
mitting a direct link between ultra-structural surface properties and molecular
compound information (WITec, TESCAN). Therefore, scanning and transmission
electron microscopy (SEM/TEM) have not only been used to study overall biofilm
organization patterns (see below), but to investigate cell-to-cell interactions of
anaerobic digestion process innate syntrophic microbial partners on a nano-scale
level such as the interspecies electron transfer [211]. Direct interspecies electron
transfer (DIET) depends on hydrogen and carbon source such as ethanol or formate,
which was recently discovered for Geobacter metallireducens and Methanosaeta
harundinacea or Methanosarcina barkeri interactions to lastly reduce carbon
dioxide to methane [212]. It has also been shown, that growth of fermentative and
methanogenic microbes on conductive carriers is tangible, suggesting Bacteria
(most likely Clostriaceae) and methanogenic Archaea (most likely
Methanobacteriaceae) can transfer electrons from a stainless steel support even
without the involvement of hydrogen or formate [213].

Considering the low growth rate of methanogenic Archaea, immobilization on
support material such as polymers (e.g. polyurethane, acrylonitrile-acrylamide,
nylon) is a potential strategy to allow longer residence times in bioreactors for the
adjustment to unstable conditions and varying feeding regimes [214] as shown by
SEM for lab-scale reactors continuously operated with vinasse waste to keep COD
removal rates constant at decreased retention times and various organic loading
rates [215]. SEM was also used to study the natural biofilm formation on zeolite
particles during in sacco incubation in semi-continuously, completely stirred
lab-scale fermenters fed with grass silage [64, 202], or comparing several other
carriers for Bacteria and Archaea such as activated carbon, polyvinyl alcohol or
glass fibers in anaerobic digesters treating cattle manure [216], demonstrating that
specific materials can selectively support methanogens to avoid co-cultivation of
unwanted sulfate-reducing bacteria (SRB) during anaerobic wastewater treatment
and methane production from molasses [217]. Focusing feedstock for AD, SEM
can be part of efficiency evaluations of pretreatment methods for specific substrates
such as that steam explosion induces significant morphological changes in treated
lignocellulosic materials [218, 219].

In addition to the direct observation of sputtered organic matter, energy dis-
persive X-ray spectroscopy (SEM-EDS/EDX) allows element analyses of inorganic
sample components of carrier materials or to characterize stable and active catalysts
for hydrogen production from biogas, using SEM-TEM in combination with other
microscopy methods to evaluate the deposition or arrangement of hollow carbon
nanotubes and nanofibers [220]. Furthermore, EDS and TEM can be used for the

28 M. Lebuhn et al.



localization of substrates or electron donors and acceptors or characterization of e.g.
metal transformation in metal-reducing bacteria. However, the major drawback of
electron microscopy is that it is an invasive method, which requires sample fixation
and preparation including consecutive dehydration steps for specimen observations
in high vacuum. Biological structures can be maintained by critical point drying,
lyophilisation or high-pressure freezing. Instead of SEM, environmental SEM using
lower vacuum pressures can be used alternatively as well. Pinpoint extraction and
ultra-thin layer observations by consecutive cryosectioning are further techniques to
investigate certain regions of interest and cellular aspects respectively based on
SEM/TEM or focused ion beam (FIB)-SEM that can be also combined with CLSM
3D imaging for real 3D correlations of one and the same biological event in an
identical sample [221, 222].
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Anaerobic Fungi and Their Potential
for Biogas Production
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Abstract Plant biomass is the largest reservoir of environmentally friendly
renewable energy on earth. However, the complex and recalcitrant structure of these
lignocellulose-rich substrates is a severe limitation for biogas production. Microbial
pro-ventricular anaerobic digestion of ruminants can serve as a model for
improvement of converting lignocellulosic biomass into energy. Anaerobic fungi
are key players in the digestive system of various animals, they produce a plethora
of plant carbohydrate hydrolysing enzymes. Combined with the invasive growth of
their rhizoid system their contribution to cell wall polysaccharide decomposition
may greatly exceed that of bacteria. The cellulolytic arsenal of anaerobic fungi
consists of both secreted enzymes, as well as extracellular multi-enzyme complexes
called cellulosomes. These complexes are extremely active, can degrade both
amorphous and crystalline cellulose and are probably the main reason of cellulo-
lytic efficiency of anaerobic fungi. The synergistic use of mechanical and enzymatic
degradation makes anaerobic fungi promising candidates to improve biogas
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production from recalcitrant biomass. This chapter presents an overview about their
biology and their potential for implementation in the biogas process.

Keywords Anaerobic fungi � Neocallimastigomycota � Phylogeny �
Cellulosomes � Biogas process improvement � Recalcitrant cellulosic substrates
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1 Anaerobic Fungi: An Overview

Anaerobic fungi belonging to the phylum Neocallimastigomycota, are the most
basal lineage of the kingdom Fungi. These fungi are principally known from the
digestive tracts of larger mammalian herbivores, where they play an important role
as primary colonisers of ingested forage [1, 2]. Recent studies indicate their
appearance in herbivorous reptiles like the green iguana [2] and termites [3] also.
Anaerobic fungi are characterised by several distinctive traits which stem from their
obligately anaerobic physiology; mitochondria, cytochromes and other biochemical
features of the oxidative phosphorylation pathway are absent. Energy generation
occurs in hydrogenosomes where ATP is formed by malate decarboxylation to form
acetate, CO2, and H2 [4]. The Neocallimastigales are fungi that do not require
molecular oxygen for any of their physiological processes, and for which the
presence of oxygen is toxic. This trait raises the question how anaerobic fungi
defend themselves against the toxic effects of oxygen, for instance when colonizing
freshly ingested forage or during dispersal between host animals. Respective
insights are presented in the following section “life cycle”. Additionally, their
genomes are peculiar having the highest AT-content hitherto found (often
exceeding 90 % in non-coding regions) and with a substantial expansion of
important hydrolytic and cellulolytic gene families [5].

Anaerobic fungi are the only fungi which possess cellulosomes. These
extraordinary features are presented in more detail in Sect. 2.1. The position of
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anaerobic fungi as a basal fungal lineage is reflected in the genome characteristics,
which are also present in other early-branching fungal lineages and/or non-fungal
Opisthokonts, but are absent in the later diverging Dikarya (Ascomycetes and
Basidiomycetes) genomes [6]. Such phylogenetic determinants and unique taxon-
omy of anaerobic fungi are discussed in the following Sect. 1.1.

1.1 Classical and Pragmatic Taxonomy of Anaerobic Fungi

The atypical morphology and physiology of anaerobic fungi has caused some
taxonomic uncertainty. After misleading classification as Protozoa [7],
Phycomycetes [8] and Chytridiomycetes [9, 10] the anaerobic fungi were finally
placed into the distinct phylum Neocallimastigomycota [11]. The phylum contains
only one order (Neocallimastigales) and one family (Neocallimastigaceae) within
which eight genera are currently described: The monocentric rhizoidal genera
Neocallimastix, Piromyces, Ontomyces and Buwchfawromyces, the polycentric
rhizoidal genera Anaeromyces and Orpinomyces, and the two bulbous genera,
monocentric Caecomyces and polycentric Cyllamyces, respectively [12–14].

The genera are defined on the basis of thallus morphology, the formation of
rhizoidal filaments or bulbous holdfasts within the substrate and their zoospore
morphology. A distinction is made between monoflagellate and polyflagellate
zoospores. The latter possessing 7–20 posterior flagella inserted in two rows.
Formation of polyflagellate zoospores is a trait unique to Orpinomyces and
Neocallimastix spp., not known from any other Opisthokonta, and these two genera
form a distinct clade within the Neocallimastigomycota [15].

Differentiation by the shape of sporangia may additionally be possible, but can
be misleading as it is varying depending on culture conditions. Currently about 20
species have been described [16]. Uncertainties created by difficulties in inter-lab
comparisons and the loss of many viable type cultures, can only now be resolved by
the use of DNA barcoding and the concerted effort to exchange cultures [17].

Culture-independent analysis of environmental nucleic acid sequences, provided
evidence for much greater fungal diversity than previously suspected in the
digestive tract of wild and domestic herbivores. Based on data from these more
recent studies, it appears that twelve or more hitherto un-named genera may exist
[2, 15, 18]. Several of these novel clades are now recognized from sequences of
cultured fungi [15], while other clades still consist of environmental nucleic
sequences (ENAS) only.

1.2 Life Cycle

The life cycle of anaerobic fungi alternates between a motile zoospore stage and a
non-motile vegetative stage. The latter consists of a thallus associated to plant
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material and fruiting bodies known as sporangia (Fig. 1) [13]. Flagellate zoospores
(see Fig. 1g) released from mature sporangia actively swim towards freshly
ingested plant tissues using chemotactic response to soluble sugars and/or phenolic
acids [19]. After attachment to the feed particles, flagella are shed and a cyst is
formed. The cyst then germinates to form the thallus. In all monocentric species
(Piromyces, Neocallimastix and Buwchfawromyces), the nucleus remains in the
enlarging cyst which forms the sporangium. In the polycentric species Anaeromyces

Fig. 1 Different culture morphologies of anaerobic fungi: a Neocallimastix sp. sporangia and
rhizomycelium (CLSM: superimposed z-stacks (26.7 µm total depth) showing culture auto
fluorescence (excitation at 561 nm and emission from 570 to 620 nm); b Piromyces sp. light
microscopy of native preparation; c Rhizoid of Anaeromyces mucronatus with apical sporangia.
Light microscopy of lugol-stained preparation (×200); d Bulbous species Caecomyces communis.
Light microscopy of native preparation (×400); e Neocallimastix frontalis sporangium and rhizoid.
Light microscopy (×400); f Orpinomyces sp. with sporangia and rhizoid. Light microscopy of
native preparation; g Light microscopy of a biflagellated zoospore of Piromyces sp. (×1000)
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and Orpinomyces, the nuclei migrate through the rhizoidal system to form multiple
sporangia on a single thallus. The terms exogenous and endogenous germination
(nuclei migrate into the thallus or not), that are widely used in describing chytrid
development, are less clearly applicable to the bulbous anaerobic fungi which do
not form rhizoids but do form multiple sporangia (i.e. Cyllamyces) [20].

The rhizoidal system penetrates the plant tissue by a combination of enzymatic
activity and hydrostatic pressure using appressorium-like penetration structures [21,
22]. In the non-rhizoidal bulbous species (Caecomyces, Cyllamyces), the expanding
holdfast formed within the substrate causes a splitting of the plant fibers [23–25].
Sporangium maturation and release of asexual zoospores can occur as quickly as
eight hours after encystment [26, 27].The complete life cycle, is conducted within
24–32 h [25]. Propagules of the anaerobic fungi are known to survive up to and
probably over a year in feces [28] and have also been found to be transferred to
neonatal hosts through saliva [29]. Putative aero-tolerant survival structures have
been observed only rarely [14, 30, 31] and many questions as to the formation of
these structures and their occurrence in the various genera of anaerobic fungi
remain to be answered.

1.3 Anaerobic Fungi and Their Interactions
with Methanogens and Bacteria

Close association of anaerobic fungi with methanogens is well known [23, 32], with
inter-species hydrogen transfer leading to both methane production and also more
efficient re-generation of oxidized nucleotides (NAD+, NADP+). Syntrophic
co-cultivation markedly increases fungal growth rate, with increased rates of cel-
lulolysis and xylanolysis, consequently enhancing dry matter reduction [33].
However the anaerobic fungus—methanogen interaction is more complex than
simple cross-feeding. Hydrogen transfer also influences fungal catabolic pathways
and specific enzyme profiles, shifting fungal product formation away from more
oxidized end products (lactate, ethanol) towards production of more reduced
products (acetate, formate). Acetate, and in the rumen especially formate, are the
preferred growth substrates for methanogens [32, 33]. This interaction is so pivotal,
that some species of anaerobic fungi cannot be isolated as axenic cultures, but only
in combination with the permanent archaeal symbiont [34].

Syntrophic interactions between acetogenic bacteria and methanogens are well
known to occur in the biogas biocoenosis [35]. Since anaerobic fungi show
improved growth in the presence of methanogens, the idea of augmenting biogas
reactors with this microbial group seems a logical step.

Interactions of anaerobic fungi with bacteria can be of antagonistic and sym-
biotic nature as shown by Bernalier and coworkers [36], who tested the degradation
efficiency in different culture combinations of three anaerobic fungi and two cel-
lulolytic bacterial strains. In general both groups are competing for the same

Anaerobic Fungi and Their Potential for Biogas Production 45



ecological niche, but the breaking up of plant tissue through fungal rhizoids may
also enhance the overall efficiency of cellulolytic bacteria [36]. This improved
degradation was also confirmed when testing the contribution of different microbial
groups (fungi, bacteria, protozoa) on orchard grass decomposition [37]. Presence of
protozoa was, however attributed with lower degradation efficiency and inhibition
of both, bacteria and fungi.

Most of these studies are based on in vitro co-cultures, that may not completely
reflect conditions of whole rumen or biogas reactor consortia and still more research
is needed in this field.

2 Anaerobic Fungi and Their Potential for Biogas
Production

Under oxygen-free conditions organic matter is decomposed by a complex of
microorganisms which are so far divided into three functional groups: hydrolysing
and fermenting bacteria, obligate hydrogen-producing acetogenic bacteria, and
methanogenic archaea. Only little is known on the role and the potential of
anaerobic fungi for biogas production. Great potential lies in biogas production
from lignocellulosic wastes but, slow and inefficient degradation processes, the
formation of toxic intermediates and the necessity for long incubation times are
only a few examples of the problems encountered [38, 39]. A promising strategy is
the use of microorganisms, which are able to successfully perform such compli-
cated degradation processes in their natural environment [40, 41]. Herbivores as
biogas reactors evolved the need for fungal symbionts for this purpose and over
millions of years natural selection has created a highly specialised and niche spe-
cific community of anaerobic fungi.

The following paragraphs will give an overview about useful features of
anaerobic fungi and will present the actual knowledge about anaerobic fungi and
biogas production.

2.1 Lignocelluloytic Enzymes of Anaerobic Fungi and Their
Potential Use

Lignin-embedded cellulose and hemicellulose [42] represent a physical barrier
against microbial and enzymatic attack. Known as the primary digesters of plant
biomass in the rumen anaerobic fungi [37] have the ability to open up the plant
tissue through rhizoidal growth and produce a cocktail of enzymes to degrade and
separate the different compounds of lignocellulosic biomass, while lignin itself
remains anaerobically indigestible. Some of these enzymes are secreted freely but
most of them are bound to a multi-enzyme complex the so called cellulosome.
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Genome sequencing of Orpinomyces strain C1A revealed a broader enzyme range
compared to aerobic fungi with a repertoire of 357 glycosyl hydrolases, 92 car-
bohydrate esterases and 24 pectate lyases [5]. Horizontal gene transfer from bacteria
is suggested as one of the main reasons why anaerobic fungi have evolved such
robust and impressive cellulolytic and hemicellulolytic capability.

A group of enzymes often termed cellulases synergistically hydrolyze β-1, 4
glucosidic bonds in cellulose through three discrete enzymatic activities involving
three different types of enzymes. Endoglucanases (EC 3.2.1.4) cut within amorphous
regions of cellulose strands, releasing oligosaccharides and creating new free chain
ends for the enzymatic attack by exoglucanases (EC 3.2.1.176; EC 3.2.1.91). Since
the latter liberate cellobiose disaccharides from either reducing (EC 3.2.1.176) or
non-reducing (EC 3.2.1.91) ends, they are also termed cellobiohydrolases. In a
cellulosomal complex extracted from a Neocallimastix frontalis culture, enzymes
from glycosyl hydrolase family 5 (GH5) operated by the endo- and enzymes from
GH6 and GH48 by the exo-mechanism [43]. The residual cellobiose is then
hydrolyzed to glucose by β-glucosidases (EC 3.2.1.21) [40, 44]. Auxiliary enzymes
like the recently discovered lytic polysaccharide mono-oxygenases (LPMO) (family
AA9) have been reported to enhance or complete the utilization of cellulose in many
fungal species [45]. In contrast to the hydrolyzing enzymes they cleave glucosidic
bonds with a copper dependent oxidation mechanism and are able to attack crys-
talline regions of cellulose [46]. But it seems that basal fungal groups including the
anaerobic fungi lack those enzymes [45].

All three major cellulase types have been reported for the Neocallimastigomycota
([5, 47, 48, 49, 50] and many more) confirming the potential of anaerobic fungi as a
reservoir for highly efficient cellulases. The fact that glucose is the main product of
anaerobic fungal cellulose degradation is an advantage for biotechnological appli-
cations. Cellobiose is not accumulated and therefore cannot act as end-product
inhibitor for cellulose hydrolysis, as known for Trichoderma reesei or many bac-
terial species. Thus costly addition of β-glucosidase becomes unnecessary [51].

Due to the heterogeneous structure of hemicelluloses, several enzymes are
needed for their catabolism. Until now anaerobic fungi have been reported to
provide all enzymes needed to degrade the major hemicelluloses constituents of the
plant cell wall, namely β-glucans, mannans and xylans. And in some cases xylanase
activity was even higher than cellulase activity [52]. In contrast to aerobic higher
fungi (Dikarya), anaerobic fungi lack the enzymatic machinery to catabolise lignin.
The enzymatic reaction to cleave the aromatic ring requires oxygen and can
therefore not take place in an anaerobic environment [53]. But it was shown that a
Neocallimastix sp. could mediate the loss of up to 34 % of plant biomass associated
lignin, however this loss probably due to physical alteration or chemical modifi-
cation of the lignin rather than enzymatic catabolism [54]. Additional feruloyl (EC
3.1.1.73) esterases are produced which cleave the bond between hemicelluloses and
lignin and by separating these two compounds, making cellulose and hemicellulose
more easily accessible for further degradation [55].
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2.1.1 Anaerobic Fungal Cellulosomes

As mentioned above, most of the cellulolytic and hemicellulolytic enzymes are part
of a multi-enzyme complex known as the cellulosome. Cellulosomes were first
identified in the bacterial family Clostridiaceae [56] and the anaerobic fungi are the
only eukaryotic representatives showing this feature. The fungal cellulosome is
structurally and phylogenetically similar to that found in bacteria and is thought to
have arisen through a horizontal gene transfer event [57]. Up to now cellulosomes
have been described for species of Piromyces [58, 59], Orpinomyces [48], and
Neocallimastix [52, 60]. Anaerobic fungi invade plant tissues with their rhizoid and
it is assumed that in addition to the secretion of soluble enzymes, they form cell-
ulosomes anchored to the cell walls of rhizoid tips [55]. Unfortunately the
molecular structure of the anaerobic fungal cellulosome is still unclear and mis-
cellaneous theories exist (see [61] for a schematic overview). In anaerobic bacteria a
non-catalytic protein, the ‘scaffolding protein’, is anchored to the cell wall and
contains several repeating domains, the cohesins. This structure forms the backbone
to which the enzymatic subunits assemble by non-catalytic domains, the dockerins.
Additionally the scaffolding connects to the substrate, in this case the (hemi) cel-
lulose molecules, via a cellulose-binding domain [62].

Compared to the enzymes of anaerobic bacteria, which contain only one
species-specific dockerin domain, the fungal enzymes contain one to three copies of
dockerin domains which show an interspecies specificity. It is believed that the
amount of dockerin regulates the affinity of the enzymes towards the scaffolding
molecule [63]. Recently it was reported that the anaerobic fungal cellulosome
contains a scaffolding backbone as well, raising the suggestion that the catalytic
components also interact with it via dockerin domains [43]. Other studies have
shown that some types of docking domains attach to several individual proteins,
concluding that there might be various different scaffolding proteins in anaerobic
fungal cellulosomes [64]. Additionally it could be shown that a double-dockerin
domain and a β-glucosidase enzymatic subunit from glycosyl hydrolase family 3
(GH 3), both belonging to one fungal species, could bind to each other [58, 61].
This leads to the third theory that dockerins mediate the binding of different
secreted enzymes to each other, forming the cellulosome without scaffolding as
structural molecule. Despite the detailed structure remaining unsolved, cellulo-
somes permit the anaerobic fungi to use their cellulolytic enzymes in a synergistic
and more efficient way, unequalled by individually secreted enzymes [61]. It also
provides protection against proteases from the surrounding environment in the form
of a serine protease inhibitor named celpin [65].

2.1.2 Substrates Utilized by Anaerobic Fungi

In addition to municipal solid waste (MSW) and animal wastes, lignocellulose-rich
materials potentially useful for biogas production are by-products of various
industrial processes, including agriculture, forestry, pulp-, paper- and food
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production [51, 66]. However, the recalcitrance and variability of these materials
leads to low gas yields in biogas fermentations, thus making their exploitation
uneconomical. Since anaerobic fungi are efficient physical and enzymatic degraders
of lignocellulose-rich substrates (see Table 1), they have the potential to make the
biogas production from these lignocellulose-rich materials more efficient and
profitable.

2.1.3 Production of Recombinant Enzymes

One strategy to overcome the bottleneck of enzymatic hydrolysis of lignocellulose
in the biogas production process is the development and use of recombinant potent
polysaccharide-degrading enzymes. Such a strategy could involve the transfer of
the cellulolytic genes of efficient degraders (e.g. anaerobic fungi) into other
well-established enzyme production hosts or biofuel producers (e.g. yeast) or
alternatively the modification of the genetic capability of the anaerobic fungi
themselves. Improving the efficiency of known enzymes and the creation of opti-
mized enzyme mixtures, along with the identification of new and more active
enzymes has been the focus of some studies [70]. Efforts to produce recombinant
fibrolytic enzymes from anaerobic fungi have focused on expressing a range of
carbohydrate-active enzymes into a number of aerobic fungal expression hosts. But
catalytic activity of anaerobic fungal xylanases, cellulases, β-glucosidases, or cel-
lobiohydrolases in the tested aerobic strains (Saccharomyces cerevisiae, Hypocrea
jecorina, Pichia pastoris and P. methanolica) was low or else the recombinant
proteins were not catalytically active [71–74]. Genetic modification of S. cerevisiae
integrating a xylose isomerase from anaerobic fungi allowing the yeast to metab-
olize monosaccharide xylose was more successful. Conversion of xylose into
xylulose using the isomerases of Piromyces and/or Orpinomyces species [75–77]
represents at this time the most promising technique for improving the industrial
production of ethanol [78] and several patents have been filed so far [79]. In
addition to the incorporation of single enzymes, the creation of artificial cellulo-
somes and xylanosomes, to profit from the synergy between certain enzymes is on

Table 1 Examples for lignocellulosic residues degraded by anaerobic fungi

Lignocellulosic
residue

Lignin
content %
[66]

Organism Reference

Wheat straw 16-21 Neocallimastix frontalis [67]

Coastal
Bermuda grass

6.4 Piromyces MC-1, Orpinomyces PC-1-3,
Neocallimastix MC-2

[49]

Sugar cane
bagasse

19-24 Piromyces strain E2 [68]

Hard wood 18-25 Neocallimastix sp. [69]

Rice straw 18 Piromyces M014, Orpinomyces
GSRI-001, Neocallimastix T010

[3]
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the rise. For example Doi and colleagues built a cellulosome from Clostridium
thermocellum enzymes which show synergistic activity against cellulose [66].
Mingardon et al. designed mini-cellulosomes combining free fungal endoglucanase
of glycosyl hydrolase family 6 from Neocallimastix patriciarum with bacterial
cellulosomal endoglucanase of glycosyl hydrolase family 9 from Clostridium cel-
lulolyticum, achieving superior cellulose activity, compared to complexes assem-
bled only with bacterial enzymes [80]. But even if recombinant anaerobic fungal
enzymes could be produced and implemented in biotechnological processes, the
physical degradation abilities of anaerobic fungi would still remain unused.

2.2 Anaerobic Fungi in the Biogas Production Process

A commonly encountered issue during anaerobic digestion is limited degradability
of plant biomass, 40–60 % of organic carbon remains unused [81]. This problem is
due to the physical structure and the recalcitrant chemical nature of these polymers.
In detail, lignin remains indigestive under anaerobic conditions and shields cellu-
lose and hemicellulose from enzymatic degradation. Thus, technologies that can
improve anaerobic degradation of lignocellulosic biomass are needed. Partial dis-
ruption of plant tissues, can be achieved by mechanical [82], thermal [83, 84],
chemical [85], oxidative [86] or ultrasonic [87, 88] pre-treatment.

However, in the rumen the natural biogas system these techniques are not
available. There bacteria, archaea, protozoa and anaerobic fungi account for the key
players in plant tissue degradation. Some important parameters of anaerobic
digestion in biogas fermenters resemble conditions of the fermentation processes
found in the rumen, namely a strong negative redox potential, a nearly neutral pH
and a temperature between 37 ± 2 °C. Microbial pre-treatment or the implemen-
tations of rumen microorganisms into the biogas process seem to be possible
strategies to deal with recalcitrant substrates.

Improvement of anaerobic biomass hydrolysis through the addition of specific
microorganisms has been experimentally tested in several studies for bacteria. Miah
and co-workers [89] described a 210 % increase in biogas production during
thermophilic digestion (65 °C) of sewage sludge caused by the protease activity of a
Geobacillus sp. strain. Similarly, Bagi and colleagues [90] applied mesophilic
Enterobacter cloacae and thermophilic Caldicellulosyruptor saccharolyticus
strains during anaerobic digestion of waste water sludge, pig manure and dried
plant biomass of artichoke, and achieved a remarkable increase of biogas produc-
tion (160 %). This increase was explained by the enhanced H2 level as both tested
strains are excellent hydrogen-producing bacteria, and C. saccharolyticus has
moreover cellulolytic activity. Also introduction of an aerobic pre-treatment step for
plant residues through e.g. white and brown rot fungi or the potent cellulose
degrading Trichoderma viride has shown promising results on improving the
subsequent anaerobic digestibility in biogas reactors [91, 92].
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In contrast, the direct introduction of anaerobic fungi into these bioreactors
would eliminate the requirement of an aerobic pre-digestion. With respect to the
presented intention, of course only mesophilic conditions are eligible. In recent
years, several studies have dealt with the application of anaerobic fungi to improve
anaerobic digestion of cellulosic material [3]. In more detail, the digestive tract of
animals fed with very specific, fibre-rich diets have been chosen for the isolation of
potent anaerobic fungal strains, that could be best suited for a technical imple-
mentation [34]. The possibility of Anaeromyces and Piromyces strains to integrate
into biogas-producing anaerobic sludge bacterial communities, to improve degra-
dation of substrate polysaccharides and consequently to influence methane pro-
duction has already been tested in laboratory conditions. Promising results were
obtained during the bioaugmentation of swine manure fed biogas reactors with
different strains of anaerobic fungi. Amendment with fungal biomass led to 4–22 %
higher gas yields and up to 2.5 % higher methane concentration [81, 93]. A recent
study showed that bioaugmentation with anaerobic fungi did not increase the
overall methane yield, but that it speeds up initial gas production and thus may help
to reduce retention time [94]. In most cases, however, it was not possible to pre-
serve fungal activity and the fungal beneficial effect on hydrolysis seems to decline
after about ten days of incubation. The factors permitting fungal growth in habitats
other than the digestive tract of their hosts still require thorough research and it is
unclear if full-scale application of these microorganisms will become feasible.

3 Anaerobic Fungi: Methodological State of the Art

3.1 Detection Techniques for Anaerobic Fungi

The monitoring of anaerobic fungi sampled from the digestive tract or feces of
herbivores requires accurate and reliable detection techniques, and the same
methods are also applicable to axenic cultures and industrial fermentations [95].
Here we summarize the range of approaches that have been used so far, or which
may be of relevance to detect and quantify the activity of anaerobic fungi.

Microscopy is still the most straightforward method for a general determination
of growth status and initial phylogenetic classification of fungal biomass. However
it requires a certain level of skill and experience to assign identity and mistakes can
be made even with the help of identification keys as found in e.g. Ho and Barr [96]
and Orpin [97]. Classification into rhizoidal or bulbous genera is relatively easy, for
a more exact attribution of anaerobic fungi to the monocentric or polycentric group,
the DNA binding fluorescent dyes DAPI (4’,6-diamidino-2-phenylindole) or stains
of the Hoechst-group (bisbenzimides) must be employed. A microscopic approach
reaches its limit when differentiation between e.g. Piromyces and Neocallimastix, or
Orpinomyces and Anaeromyces is needed and often no zoospore release can be
witnessed to check for monoflagellate or polyflagellate zoospores. Another
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drawback, especially in microscopy of environmental samples that contain plant
debris, is the clear differentiation of fungal- and plant biomass. During fluorescence
microscopy, autofluorescence of plant material over a wide wavelength range
clearly impedes distinct identification of fungal structures. Staining with Calcofluor
white [98] or the more recently proposed stains Solophenyl Flavine 7GFE 500 and
Pontamine Fast Scarlet 4B [99] will help to highlight chitinous structures of the
fungal biomass, such as cell walls, septa and bud scars, but the affinity of these dyes
for cellulose and other sugar polymers can be problematic. Specific staining pro-
tocols can be performed to circumvent this issue. One possibility is the staining
with lactofuchsin as described in Leis et al. [34], an approach originally used to
bring out plant root fungi, e.g. arbuscular myccorhizas.

Measurement of fungal abundance with culture-dependent techniques i.e. thallus
forming units (TFU) is generally performed through the most probable number
(MPN) method [29, 100] and by using the roll-tube method as described by Joblin
[101]. A work that can be tedious and also requires certain expertise. The roll-tube
approach is further well suited to obtain pure fungal cultures during the isolation
procedure.

An indirect way to determine fungal biomass/growth is through their gas pro-
duction that can be monitored by the use of a pressure transducer and then corre-
lated to the amount of biomass [102].

Anaerobic fungi produce a wide range of potent enzymes, e.g. cellulase, en-
doglucanase, xylanase or amylase amongst others, that help to degrade plant
material [93, 103, 104]. Thus enzyme activity can be used as indirect parameter for
fungal activity. For instance Fliegerová and co-workers could, based on these
parameters, demonstrate the improved hydrolytic activity of biogas reactors after
fungal amendment, but also detected the relatively fast decrease of this enzyme
activity over time [93].

Another very promising approach that has yet to be tested for anaerobic fungi is
the raising of enzyme-specific antibodies. Li and coworkers [103] were able to
produce specific antibodies for the catalytic domain of xylanases found in
Orpinomyces and Neocallimastix. By fluorescence-labelling of these antibodies that
could maybe also be raised for other fungi specific structures, an elegant detection
technique could be established.

Culture independent, molecular techniques and DNA-based approaches have
revolutionized microbial ecology over the last two decades and helped to confirm
the monophyly of the Neocallimastigomycota. The most commonly used target
genes, that allow not only for anaerobic fungi detection and community analysis but
also quantification through qPCR are the small ribosomal subunit (18S rRNA gene)
and the internal spacer (ITS) region [15, 32, 95, 105–109]. However, both gene
regions also bear certain drawbacks that should be considered and are discussed in
[13]. To summarize these drawbacks, the sequence of the 18S rRNA gene is too
conserved within the Neocallimastigomycota phylum to allow for a clear differ-
entiation of closely related taxa [110], and the ITS region, despite its prevalent
utilization in fungal phylogeny [111], does not allow for direct sequencing of PCR
products and exhibits high variability for this microbial group that might impair
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sequence alignments. The 28S rRNA gene however seems to be best suited for
detection and phylogenetic assignment of anaerobic fungi and should be considered
as the best target gene thus far utilized. A recent study even suggests to combine all
three DNA regions (18S, 28S and ITS) for a more accurate representation of fungal
diversity in environmental samples [112], indicating that each chosen DNA region
leads to a different result. Quantification of anaerobic fungi through qPCR gives a
good insight into fungal abundance but is difficult to correlate with culture
dependent enumeration results (TFU) or the actual biomass due to varying ratios of
the DNA/biomass content within the Neocallimastigomycota members and
depending on specific growth phase of each culture.

3.2 Cultivation Techniques and Cryopreservation

This chapter has highlighted the potential of this unusual group of fungi to address a
range of problems associated with the degradation of lignocellulose-rich waste
materials. The fact that these fungi are obligate anaerobes is an important com-
ponent of their biotechnological potential, since scale-up issues are less problematic
with anaerobic fermentation. However, the associated difficulty in the culturing and
maintenance of obligate anaerobic fungi does impede the exchange of materials
between scientists, and could cause problems in future biotechnological deployment
of these fungi. First there is a need for an international culture collection, with
moves underway to exchange cryogenically stored cultures between interested
parties. This will avoid the loss of cultures that has beset past research—we note
with sadness that most of the type cultures that define the ca. 20 species are no
longer extant. However, the growth in the routine use of DNA barcoding will
facilitate the process of reliable identification of these fungi both in pure culture and
from environmental samples.

Storage in liquid nitrogen appears to provide the only means for long term
storage of anaerobic fungi cultures and it is strongly advised to store such cryovials
in several locations. Storage at −80 °C is possible but there is progressive loss of
viability of cultures over periods of more than a few months. Given the fragility of
pure cultures, there is a need to elucidate the mechanism whereby these fungi form
aerotolerant structures. It is clear that all the anaerobic fungi must be able to do this
in order to disperse between hosts and furthermore it is clear that they are very
efficient in dispersal. The ability to generate such aerotolerant structures from
axenic cultures would be extremely useful for long-term preservation of cultures
and important in the context of this chapter for the inoculation of industrial fer-
mentations with desired cultures or culture mixtures. Fliegerová et al. [93] has
already demonstrated that biogas fermentation can be enhanced by addition of
anaerobic fungi, as have Puniya et al. in their use of ‘direct fed’ microbials for the
enhancement of the rumen fermentation [113]. However, they used actively
growing cultures, a process difficult to scale up. The ability to add aerotolerant
structures to such fermentations would be most advantageous.
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4 Conclusions

One of the major research goals in biogas science is to find an efficient tool to
circumnavigate the bottleneck possessed by hydrolysis of lignocellulose-rich resi-
dues. Besides several physical, mechanical chemical or microbial pretreatment
techniques, the use of anaerobic lignocellulolytic fungi should be beneficial and
even more cost-efficient. The rumen of herbivores can be seen as a natural resource
for potent biomass degraders. Especially anaerobic fungi, known to act as primary
digesters, could be good candidates.

They produce a superior set of hemi/cellulolytic enzymes which they excrete
separately or combined in cellulosomes. Additionally they are able to attack the
plant material mechanically by their rhizoidal growth and open up the tissue for
further digestion by bacteria. These two features are of capital interest to the biogas
industry.

Until now several attempts have been made to produce recombinant anaerobic
fungal enzymes for biotechnological application and even artificial cellulosomes
have been built. Production in yeast has been the most profitable way, but still more
research has to be done to provide recombinant enzymes in an industrial scale.
Experiments to use anaerobic fungi directly in the biogas production process
showed positive effects on gas production, but enzymatic activity and fungal
growth decreased quickly under these conditions. Maybe anaerobic fungi cannot be
implemented into conventional biogas reactors, but an individual anaerobic fungal
pre-hydrolysis stage might be a possible solution facing this problem.

To summarize, anaerobic fungi have the potential to make biogas production
much more efficient and the utilization of lignocellulose-rich substrates more viable.
But for use in the industrial scale a greater understanding of the underlying ecology
of these fungi and there cohorts is needed.
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Hygiene and Sanitation in Biogas Plants

Bianca Fröschle, Monika Heiermann, Michael Lebuhn,
Ute Messelhäusser and Matthias Plöchl

Abstract The increasing number of agricultural biogas plants and higher amounts
of digestate spread on agricultural land arouse a considerable interest in the hygiene
situation of digested products. This chapter reviews the current knowledge on
sanitation during anaerobic digestion and the hygienic status of digestate con-
cerning a multitude of pathogens potentially compromising the health of humans,
animals and plants. Physical, chemical and biological parameters influencing the
efficiency of sanitation in anaerobic digestion are considered. The degree of germ
reduction depends particularly on the resistance of the pathogen of concern, the
processing conditions, the feedstock composition and the diligence of the operation
management. Most scientific studies facing sanitation in biogas plants have pro-
vided data ascertaining reduction of pathogens by the biogas process. Some
pathogens, however, are able to persist virtually unaffected due to the ability to
build resistant permanent forms. As compared to the feedstock, the sanitary status
of the digestate is thus improved or in the worst case, the sanitary quality remains
almost unchanged. According to this, the spreading of digestate on agricultural area
in accordance to current rules and best practice recommendations is considered to
impose no additional risk for the health of humans, animals and plants.
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1 Introduction

Anaerobic digestion has gained increasing importance over the last decades.
Formerly applied for the treatment of sewage, a trend toward the digestion of
livestock husbandry residues, crop residues and lastly agricultural renewable
resources like “energy crops” for biogas production has evolved [1]. Even bio-
logical wastes and animal by-products are commonly disposed by applying them as
feedstock for biogas plants.

Besides the production of methane and heat a further valuable product of
anaerobic digestion is its effluent. Digestate is usually spread on arable land as
fertilizer. It provides comparable or slightly improved nitrogen recovery charac-
teristics compared to undigested liquid animal slurry by increased ammonium
nitrogen share on total nitrogen. The ammonium nitrogen fraction approximately
corresponds to the plant available nitrogen fraction [2].

Increasing distribution and capacity of agricultural biogas production lead to
large amounts of digestate spread on agricultural fields. In 2012, Möller and Müller
[2] calculated a volume of 65.5 million cubic meters of digestate annually in
Germany. As digestate and animal slurry can contain pathogens potentially eliciting
human, animal and plant diseases, spreading entails the risk to transmit them to
farmlands. In contrast to traditional manure management, large biogas plants
operated by two or more owners or a company often obtain manure and crops from
different farmers. Digestates may be spread on different farmers’ fields or due to
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regional overflow transported over considerable distances. This practice can cause
broader distribution of potentially contaminated material.

In this context, the growth of the biogas sector has aroused considerable interest
in the presence and behavior of pathogens in anaerobic digestion processes and its
effluents, but has also led to denunciations of agricultural biogas plants being cause
of sanitary problems, which has not been scientifically ascertained. In Germany,
assertions were claimed by the public and in media that toxin-producing clostridia
(particularly Clostridium botulinum, a spore-forming, gram-positive bacterium
causing botulism by strong biological neurotoxins), pathogenic Salmonella spp. and
Escherichia coli pathovars proliferate in anaerobic digestion and are distributed by
spreading digestate of agricultural biogas plants.

However, according to the state of science, the sanitary status of digestate is
improved compared to the feedstock—even in manure digestion lines. Basically,
the use of biogas technology does improve the operational and environmental
sanitary situation. As the chapter of this book will show, meanwhile, a multitude of
scientifically sound studies ascertains the reduction of pathogens by the process
steps of ensiling, manure storage and particularly the biogas process. The degree of
the reduction depends primarily on the resistance of the pathogen and the pro-
cessing conditions. In general, the efficiency of sanitation, i.e. the degree of germ
reduction, in the biogas process is influenced by physical, chemical and biological
parameters. These are the topic of Chap. 2. As sanitation depends strongly on the
pathogen species of concern, Chaps. 3 and 4 intend to review the current knowledge
on qualitative and quantitative data of indicator organisms and diverse pathogens of
plant, animal and human diseases in biogas processes.

2 Parameters Influencing the Efficiency of Sanitation
in Anaerobic Digestion

2.1 Temperature

Particularly in thermophilic anaerobic digestion (≥55 °C), the hygienization
potential proved to be high. Research on this topic was mainly done in the context
of waste water treatment and digestion of sewage sludge (e.g. [3]), but also in
connection with anaerobic digestion in biogas plants. A multitude of studies ana-
lyzing the existence and behavior of pathogens in biogas processes is proving that
the sanitary effect of anaerobic digestion on pathogens increases with process
temperature [4–12]. Most pathogens can endure better at mesophilic conditions
(approx. 35–42 °C) than at thermophilic conditions (approx. 45–60 °C), but in both
cases they were reduced.

Pathogens are usually adapted to the body temperature of their host which nor-
mally is between 30 and 40 °C for mammals and slightly higher for birds (35–45 °C)
[13]. Optimal growth of human and animal pathogens therefore takes place in this
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temperature range. Plant pathogens usually can survive in a wide range of temper-
atures, spanning seasonal minimum and maximum values. Some can grow on plant
parts in epiphyte growth stages and survive e.g. on seeds or soil between the seasons
[14]. Temperatures between 16 and 24 °C, that are below the optimal growth con-
ditions (25–30 °C), often influence the expression of virulence factors and cause
pathogenicity in plants, e.g. at 18–20 °C in Pseudomonas syringae that optimally
grows at 28 °C [15, 16].

In general, higher temperatures compared to the optimum growth temperature
rapidly cause decrease in the growth rate and inactivation or death, whereas lower
temperatures can rather be endured [17, 18]. In contrast, permanent forms (e.g.
spores) are normally able to overcome extreme temperatures.

As agricultural biogas plants were predominantly operated under mesophilic
conditions in a temperature range between 37 and 42 °C [19], the effect of tem-
perature alone should not be the crucial factor for inactivation of human and vet-
erinary pathogens but may affect phytopathogenic organisms. However,
thermophilic temperatures provide unfavorable conditions to most pathogens.

Driven by increasing temperature, rising ammonia concentrations further impair
pathogenic organisms in digesters. The equilibrium between ammonium and
ammonia shifts with increasing temperature strongly in favor of ammonia that is
toxic to bacteria [20]. Thereby, thermophilic anaerobic digestion of substrates rich
in protein (e.g. grass silage) is connected with fast enrichment of ammonia (often
accompanied by process disturbances, see also Sect. 2.4) [21, 22].

2.2 pH Value

The majority of pathogens favor a pH value close to the neutral range. This is in
agreement with optimum conditions for anaerobic digestion that lie between pH
values 6.5 and 8.5 [19, 23–26]. In contrast, fungi prefer slightly acidic conditions
[27]. The influence of the pH value on the decay of pathogens in the biogas process
depends on the divergence of the pH tolerance of the considered pathogen and the
pH value prevailing in the digester of concern.

Besides, changes in pH value affect the availability of other substances that
probably support inactivation of pathogens. An increasing pH value influences
the equilibrium between ammonium and ammonia strongly in favor of ammonia
[20, 21, 28]. High ammonia concentrations are toxic to most bacteria. In contrast, a
study revealed a more toxic effect on rotaviruses at pH 6.9 (with mainly ammonium
present) than at pH 9, which was related to an increasing sulfide concentration in
raw wastewaters [20]. Similarly, Ottoson et al. [29] found an improved reduction of
bacteriophages applied as a model organism for enteric viruses at a low ammonia
concentration.
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2.3 Retention Time and Exposition

The term retention time has to be differentiated into the minimum guaranteed
retention time (MGRT) and the hydraulic retention time (HRT). The HRT is a
statistical and calculative value. It describes the quotient of the active volume of the
biogas plant (or the considered compartment) and the volume of added substrate per
day. The MGRT is referred to as the time which a particle spends in the conditions
of the digester. In stirred tank reactors, which are most common in agricultural
biogas plants, the MGRT is, strictly speaking, the time between feeding of substrate
and removal of digestate due to possible short-circuiting and can be determined by
tracer analysis. MGRTs are commonly longer in plug-flow reactors.

To our current knowledge, anaerobic digestion process conditions are considered
to be adverse to the exposed pathogens, particularly due to temperature effects and
ammonia concentrations. Therefore, the longer the pathogens are exposed to the
process conditions, the more intense is the resulting inactivating effect. Since
short-circuiting shortens the given retention time and might thereby reduce the
inactivation rate, it should be avoided for sanitation purposes in practice.

2.4 Inhibitory Process Compounds and Intermediates

Several compounds can negatively affect the viability of pathogenic organisms. It is
known that high concentrations of intermediates and products of the anaerobic
metabolism, e.g. fatty acids, alcohols and likewise sulfides and ammonia promote
the sanitizing effect of anaerobic digestion. Ammonia is generated as a side product
of the degradation of nitrogenous matter and is considered to be toxic to bacteria.
Passive diffusion into the cells probably causes for instance proton imbalance and
changes in the pH value and thereby impairs the energy metabolism. Enzyme
inhibiting effects have also been proposed [28]. The release of ammonia is in turn
influenced by temperature and pH value [20, 21, 28]. If sulfate is present, sulfide is
built within anaerobic digestion by sulfate reducing bacteria. Sulfide is toxic to
rotaviruses and several groups of bacteria [20, 28, 30].

Moreover, several light metal ions, heavy metals and organic compounds can
accumulate in anaerobic digestion that exhibit inhibitory properties dependent on
their concentration. Chen et al. [28] reviewed their inhibitory effect on the anaerobic
digestion process, in general. However, most compounds may also be toxic to
pathogens, because they affect cell wall and membrane structures or disrupt enzyme
function. High concentrations of light metal ions lead to salt toxicity due to
increased osmotic pressure. Heavy metals can bind to proteins or replace prosthetic
groups. Organic compounds such as solvents or long chain fatty acids can accu-
mulate in bacterial membranes and affect ion gradients or cause cell lysis [28]. For
instance, Henry et al. [31] and Kunte et al. [32] reported on the toxicity of volatile
fatty acids.
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However, a diverse microflora can acclimate to a certain degree to a complex of
influencing factors in the digester environment. Adaptation to inhibiting substances
in anaerobic digestion was reported for instance for high ammonia, salt and oleate
concentrations [33–35]. This allows for a well-functioning process microbiology at
inhibitor concentrations that severely affect incoming pathogens and thereby sup-
ports sanitation.

2.5 Input Concentration of Pathogens and Pre-treatment
Steps

The fraction of surviving pathogens is related to the concentration of pathogens in
the feedstock. If high input concentrations occur, residual pathogens in the output
digestate are more probable. Therefore, pre-treatment steps reducing germs in
biogas plant feedstock contribute to the hygienic quality of digestate. Best practice
ensiling already strongly reduces germs that are quite resistant to acidic environ-
ments such as EHEC and other intestinal pathogens that survive the passage
through the extremely acidic human stomach [36, 37]. Bandte et al. [38] described
significant reduction of the viability of fungal phytopathogens in ensiled compared
to fresh sorghum crop material after anaerobic digestion.

A germ reducing pre-treatment is obligatory, if animal by-products (except for
manure, digestive tract contents, milk and milk products, eggs and egg products and
colostrum, if their sanitary status is not critical) are used as feedstocks for anaerobic
digestion. According to Regulation (EC) No 1069/2009 [39] and Commission
Regulation (EU) No 142/2011 [40], animal by-products are categorized into 3 groups
based on their hygienic risk potential. Besides uncritical substrates, category 3 and 2
material is permitted to be treated in biogas plants after pasteurization and pressure
sterilization, respectively. Utilization of category 1 material (e.g. zoo/circus animals,
animals suspected of being infected by TSE, etc.) in biogas plants is not allowed.

Pathogens may survive longer in the fermenter, if they are embedded in
coarse-grained substrates. Such particles represent a protecting matrix and may not
be effectively digested within the process. Crushing substrates as a pre-treatment
improves the digestion process in two ways: (I) by bettering nutrient accessibility
and preventing technical problems such as blockage of pumps or pipes and (II) by
homogenization of the digester content and breakup of coarse-grained substrates,
which makes the pathogens accessible to the digestion process and renders possible
their decay.

2.6 Process Technology and Storage of Digestate

The effectiveness of sanitation is determined by the procedural composition of the
individual biogas plant. As described in Sect. 2.5 pre-treatment steps can contribute
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to sanitation by decreasing the input concentration of pathogen numbers. Various
technical configurations of biogas plants are in use, each with their own specific
contribution to the effectiveness of sanitation throughout the entire process.

Plug-flow reactors commonly feature prolonged MGRTs than stirred tank
reactors due to the decreased risk of short-circuiting (see Sect. 2.3). A prolonged
MGRT improves the germ reducing effect. Multi-stage digester configurations
containing first- and second-step digesters connected in series are widely used. The
reduction rate is thereby mathematically improved many times over compared to
the digestion of the same volume in one compartment [41–43]. Post-treatment such
as storage of digestate also contributes to a further reduction of pathogens. This was
shown for the storage of raw manure [44–46], but also for digestate [38].

2.7 Pathogen Species

The resistance of individual pathogens determines their inactivation rate in the
biogas process considerably. The decimal reduction time (often referred to as “T90”,
or “D-value”) is the time required to decrease to one-tenth of the initial concen-
tration (log10 reduction). D-values are a useful tool to compare the parameters
amongst each other concerning their ability to survive.

Some bacterial (e.g. C. botulinum, C. perfringens or some Bacillus spp.) and
protozoan pathogens (e.g. Cryptosporidium parvum) are able to build resistant
permanent forms like spores or cysts that can overcome adverse environmental
conditions. Endospores are particularly less sensitive to e.g. heat, desiccation and

Table 1 Parameters positively influencing the efficiency of sanitation in anaerobic digestion

Parameter Promoter of sanitation

Physical • High process temperature
• Long retention time
• Reduced short-circuit currents
• Comminution of coarse-grained substrates

Chemical • Considerable changes in pH diverging from neutral
• High concentration of intermediates and products of the anaerobic metabolism,
e.g. ammonia, sulfide, fatty acids, alcohols, solvents, light metal ions or heavy
metals
• Low redox potential

Biological • High microbial metabolic rate causing strong competition for food and
predation [14]
• Low initial concentration of pathogens (e.g. by germ reducing pre-treatment)
• Acclimation of the biogas-producing microflora
• Lack of adaptation of the pathogen to the digester environment
- Low resistance to stressors
- Disability to build permanent forms (e.g. spores)
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chemical substances [47]. Spore- or cyst-forming organisms usually are charac-
terized by prolonged D-values compared to the D-values of organisms that exist just
as vegetative forms. Pasteurization, which affects mainly vegetative cells, is known
to effectively reduce most non-spore-forming pathogens like Salmonella spp.,
E. coli pathovars or indicator organisms for sanitation. However, spore-forming and
therefore less heat-sensitive bacteria (e.g. Clostridium spp. and Bacillus spp.)
usually survive pasteurization almost uncompromised [48, 49]. They might even
have a selective advantage thereafter if conditions meet their requirements.

The degree of inactivation depends on a multitude of factors. Table 1 shortly
summarizes the impact factors discussed in this chapter.

3 Human and Veterinary Hygiene

3.1 Indicator Organisms for Biogas Processes

Depending on the different substrates used in the biogas process, different viral,
bacterial and parasitic pathogens can enter the biogas production chain. The
detection of some of these pathogenic agents is very extensive and complex.
Therefore in routine diagnostic, the detection of bacterial hygienic indicator
organisms frequently replaces the direct investigation of the presence of bacterial
and also viral pathogens. As indicator organisms for the biogas process mainly
E. coli, coliforms (e.g. [50]) and Enterococcus spp. are used.

Already in the early 1990s, Larsen et al. [51] tested the suitability of E. coli and
Enterococcus spp. as indicator organisms or monitoring programs to control the
hygienic status of digestate from large-scale biogas plants. It was shown, that E. coli
as well as Enterococcus spp. were suitable as indicator organisms for monitoring the
reduction of vegetative bacterial pathogens. However, the gram-positive enterococci
are more stable toward environmental influences and the use of these bacteria as
indicator organisms thus give the best safety margin [51]. These results have been
confirmed by many other studies, e.g. with the study conducted by Watcharasukarn
et al. [52]. Table 2 summarizes some published decimal reduction times for the two
main indicator organisms for biogas processes, E. coli and Enterococcus spp.

The comparison of the data of different studies clearly shows that the decimal
reduction time not only depends on the temperature conditions (mesophilic or
thermophilic digestion) but also on the feedstock and other conditions of the biogas
process, e.g. the ammonium concentration. Therefore, it is difficult to compare the
decimal reduction times determined in different studies under special conditions or
to apply them to other biogas processes. The determination of the content of
indicator organisms thus plays an important role in the monitoring of the hygienic
status of biogas digestate.
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3.2 Bacterial Pathogens in Biogas Processes Relevant
for Human and Veterinary Health

3.2.1 Bacterial Infectious Agents

Salmonella spp.
Salmonella spp. are the most common foodborne pathogens causing disease in
humans and animals (salmonellosis). Animals are the main reservoir of Salmonella
spp. although they rarely get infected. Farm animals such as cattle, pig and poultry
represent the main source of contaminated food, but also of infested feedstock for
anaerobic digestion (e.g. by-products, manure or dung). Feedstocks of animal origin
can thus contaminate agricultural biogas plants with Salmonella spp. [55, 56].

A number of statutory regulations draw on Salmonella spp. in general, and on
Salmonella enterica ssp. enterica sv. Senftenberg in particular, a heat-resistant
representative of the genus Salmonella, as an indicator organism for sanitation and
the evaluation of the hygienic status in diverse treatment procedures (e.g.
Regulation (EG) No 1069/2009 [39] and Commission Regulation (EU) No
142/2011 [40]; German regulation for biological waste, BioAbfV [57], German
regulation for realization of the law of animal byproduct removal, TierNebV [58],
German regulation for fertilizers, DüMV [59]).

Table 2 Decimal reduction times (D-values) of E. coli and Enterococcus spp. in biogas processes
using different feedstock (n.d. not defined)

Indicator
organism

Feedstock D-value References

At 37 °C At 50–55 °C At 70 °C

E. coli Fresh cow manure 1.92 d 9.15 min
(55 °C)

0.03 min Calculated
according
to [52]

Biosolids n.d. 10 min
(55 °C)

n.d. [53]

Dairy manure 7-8 d < 1 d
(52.5 °C)

n.d. [54]

Enterococcus
spp.

Fresh cow manure 4.79 d 1.18 d
(55 °C)

13.44 h Calculated
according
to [52]

Source-sorted organic fraction
of municipal solid waste and
egg albumin powder (high
ammonia concentration)

0.8 d n.d. n.d. [29]

Source-sorted
organic fraction of municipal
solid waste

3.7 d n.d. n.d. [29]
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Salmonella spp. are inactivated by relatively short exposition at high temperature
and were reduced completely at a pasteurization temperature of 70 °C [60, 61].
Several authors reported that decimal reduction of Salmonella spp. during anaerobic
digestion occurs within the time range of a few minutes at thermophilic temperature
and hours to a few days at mesophilic temperature. This is to some extent dependent
on the heat resistance of the Salmonella sp. of concern. A Finnish study detected
spiked S. Senftenberg in weekly analyses for 5 weeks during mesophilic (35 °C)
anaerobic co-digestion of dairy manure and biowaste without pasteurization. With
pasteurization at 35 °C or during thermophilic anaerobic digestion (55°), the
detection occured only immediately after spiking and not thereafter [62, 63]. In
laboratory-scale digesters digesting maize silage at 60 °C, S. Senftenberg were
completely reduced by 8 orders of magnitude within 30 min, corresponding to a
D-value of less than 3.2 min. Mesophilic digestion (38 °C) resulted in a reduction of
at least 99.95 % after 48 h and a D-value of 8.3 h [8]. Olsen and Larsen [5]
determined average D-values of 2.4 d and 2.1 d for anaerobic digestion of cattle or
pig slurry at 35 °C and 0.7 h and 0.6 h at 53 °C for S. Typhimurium and S. Dublin,
respectively. Smith et al. [60] found that decimal reduction of S. Senftenberg and S.
Oranienburg within anaerobic digestion of centrifuged liquid raw sludge (biosolids)
occurred in ca. 3 min and yet faster for S. Typhimurium at 55 °C. A 1.5–2 log10
reduction happened within 20 days at 35 °C [60]. Hoferer [9] determined D-values
for S. Senftenberg in anaerobically digested cattle manure of 25.2 h at 35 °C and
between 4.2–6.6 min at 55 °C.

Campylobacter spp.

Campylobacter spp. are one of the most common bacterial causes of enteritis and
belong to the group of zoonotic pathogens [6, 64, 65]. The organisms are ubiquitous
in the environment and colonize a broad spectrum of animals as enteral commensals
[64]. Pathogenic Campylobacter spp. are prevalent in biogas plant feedstock of
animal origin [48, 66, 67]. Hutchison et al. [68] detected the organisms in 13, 14, 19
and 21 % of more than 1000 fresh samples of British cattle, pig, poultry and sheep
manures, respectively. Lebuhn and Wilderer [12] determined low abundances in
cattle manure (≤10 genomes * g

−1 fresh mass) using a group-specific real-time PCR
for thermophilic Campylobacter spp. (C. jejuni, C. coli, C. lari and C. upsaliensis).
Higher abundances in the range of 103–104 cfu g−1 of Campylobacter spp. in raw
pig or dairy manure were also reported [76, 77]. Pasteurization before anaerobic
digestion effectively eliminated C. jejuni in substrates of animal origin [69].
Literature reports on the behavior of Campylobacter spp. concordantly ascertained
its reduction in psychrophilic, mesophilic and thermophilic anaerobic digestion [10,
12, 70–77], though some studies found no change or nearly no reduction in
Campylobacter concentration [78, 79]. Low abundances of thermophilic
Campylobacter spp. were completely inactivated by anaerobic mono-digestion of
cattle manure in a pilot-scale biogas plant at 55 °C [12]. Manyi-Loh et al. [77]
recorded faster reduction of Campylobacter sp. by 90–99 % than of E. coli and a
Salmonella spp.. In sentinel chamber experiments, Ade-Kappelmann [75]
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determined reduction of C. jejuni by ca. 2 orders of magnitude within 24 h at 35 °C
and complete inactivation corresponding to a 5 log10 reduction after 1 h at 55 °C.
Massé et al. [76] reported on 1.1–1.5 log10 reduction in anaerobic digestion of pig
manure undergoing 7 d or 14 d of psychrophilic batch treatment. Knie et al. [10]
determined a 4 log10 reduction of C. jejuni within 21 d in mesophilic (33 °C) and a
complete inactivation (6–7 log10 reduction) within 24 h in thermophilic anaerobic
digestion (55 °C) of manure and biowastes.

D-values describing the fate of Campylobacter spp. within the biogas process are
comparatively rare and differ considerably from the D-values described for simple
heat treatment (Table 3). In pure culture within culture bags exposed to an anaer-
obic digester at 35 °C, C. jejuni had a mean D-value of 3.6 d [80], but they were
only slightly and very slowly reduced during anaerobic digestion at 28 °C [79].
Variation in data concerning the fate of Campylobacter spp. within anaerobic
digestion is probably to be expected owing to the fact that this genus is able to
convert into a viable but non-culturable (VBNC) state that makes cultivation by
standard methods difficult [81–83].

Shiga toxin-producing/enterohemorrhagic Escherichia coli (STEC/EHEC)

Escherichia coli are non-spore-forming, gram-negative bacteria. Numerous strains
are found as commensals in human or animal intestines, though some strains are
pathotypes that can cause enteric/diarrheal illness [85]. These include: entero-
pathogenic E. coli (EPEC), enterohemorrhagic E. coli (EHEC), enterotoxigenic
E. coli (ETEC), enteroaggregative E. coli (EAEC), enteroinvasive E. coli (EIEC)
and diffusely adherent E. coli (DAEC). Among these, EHEC and EPEC (the latter
causing infant diarrhea) are the most important pathotypes. EHEC, EPEC and
ETEC can also cause disease in animals [85, 86].

Besides Salmonella spp. and Campylobacter spp., EHEC are one of the most
common bacterial enteric pathogens in the western industrial countries and are also
able to cause a life-threatening post infectious syndrome, the hemolytic uremic
syndrome (HUS) [85, 87]. EHEC are capable of toxin production (“Shiga toxin”,
“Shiga-like toxin”, “Verotoxin”) and thus were also called Shiga toxin- or
Verotoxin-producing E. coli (STEC/VTEC). Ruminants, particularly cattle, but also
sheep and goats, were identified as main reservoir and carriers without symptoms
[88–90].

Table 3 Decimal reduction times (D-values) for C. jejuni strains determined in lab and full-scale
anaerobic digestion or by heat treatment

Process D-value References

Feedstock Scalea T (°C)

Not specified F 28 438.6 d [79]

Not specified L 35 3.6 d [80]

Autoclaved biowaste sludge B 50 237 min [74]

Skim milk, beef, lamb or chicken H 55-56 0.62–2.22 min [84]
aL lab-scale, F full-scale, B batch experiment, H heat treatment
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A German study screened 163 samples originating from 26 full-scale biogas
plants in Bavaria. 26.4 % of the analyses resulted in the detection of EHEC.
Positive results were obtained for 8.2, 52.9, 35.6 and 26.9 % of 49 plant substrates
(e.g. silages), 17 animal substrates (e.g. manure), 45 contents of the main digester
and 52 contents of second-step digesters, respectively [91]. The detection rates were
high in this study and consistent with the fact that the excretions of ruminants are an
important reservoir of EHEC [92]. Other recent studies revealed far lower detection
rates for EHEC: Breves [93] found no EHEC bacteria in 105 substrate and digestate
samples originating from 15 biogas plants in northern Germany fed with renewable
resources and mixtures with manure. Bonetta et al. [94] analyzed the digestate of an
Italian biogas plant fed with manure and agricultural by-products and did not detect
EHEC O157:H7. A study in the USA measured low concentrations of EHEC O157:
H7 in manure-fed laboratory-scale digesters [53]. Studies analyzing the behavior of
EHEC in agricultural biogas processes specify differing data on decimal reduction
times (Table 4).

Interestingly, D-values for E. coli serovars determined by Spinks et al. [95] in a
water bath (55 °C) match almost perfectly to most of the D-values in thermophilic
anaerobic digestion (Table 4) indicating that the unfavorable temperature is most
relevant for the sanitizing effect in thermophilic biogas processes. However, other

Table 4 Decimal reduction times (D-values) for E. coli strains determined in lab and full-scale
anaerobic digestion or water bath experiments

Strain Process D-value References

Feedstock Scalea T (°C)

Indigenous Dairy manure B 25 9–10 d [54]

E. coli O157 Cattle manure, food waste F 35 27.6 h [9]

O8; O147 Cattle or pig manure 35 1.8 d [5]

Indigenous Dairy manure B 37 7–8 d [54]

EPEC Grass and maize silage L 38 3.2–14.9 h [91]

EPEC Grass and maize silage L 55 ≤3.5 min [91]

Wild-type Dairy manure B 55 ≤10 min [53]

O157:H7 Dairy manure B 55 ≤ 10 min [53]

O157 Pig manure, food waste L 55 1.2 min [9]

O157 Cattle manure, food waste L 55 1.8 min [9]

O4; O147; O149 Cattle or pig manure L 53 24 min [5]

indigenous Dairy manure B 55 < 1 d [54]

O3:H6 Pure culture WB 55 6.7 min [95]

O157:H7 Pure culture WB 55 3.7 min [95]

O157 Pure culture WB 50 1.57 h [9]

O157 Pure culture WB 55 0.39 h [9]
aL lab-scale, F full-scale, B batch experiment, WB water bath
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experiments on E. coli O157 in water bathes resulted in far higher D-values [9]. The
optimal growth temperature for E. coli O157:H7 was determined in tryptic soy
broth at 37 °C and was similar for non-pathogenic E. coli serovars [96]. Reduction
effects within mesophilic processes are therefore not expected to be caused by
temperature alone but also by other factors of the digester environment (e.g.
ammonia concentration, competition).

A previous study of Aitken et al. [53] at 55 °C resulted in similar D-values for a
wild-type, non-pathogenic E. coli strain as well as for a slightly more heat-sensitive,
putative O157:H7 pathovar. Aitken et al. [53] and Spinks et al. [95] showed that
E. coli O157:H7 was comparably reduced and that the reduction behavior of
wild-type E. coli strains is transferable to E. coli pathovars.

Yersinia spp. (Y. enterocolitica and Y. pseudotuberculosis)

The majority of Yersinia spp. is considered to be non-pathogenic to humans. Three
species are relevant to human health and were also found in domestic and wild
animals: (I) Yersinia pestis, the causative organism of bubonic and pneumonic
plague that has been irrelevant in Europe for the last decades, (II) Yersinia en-
terocolitica that causes gastroenteritis and systemic infections and (III) Yersinia
pseudotuberculosis that occasionally infects humans with a typhoid-like illness [97,
98]. Y. enterocolitica is one of the major pathogens present in animal manure [66,
99] and swine, the principal animal reservoir for pathogenic Y. enterocolitica [100,
101] The organism is thus considered as a risk factor if slaughterhouse waste or
other animal by-products are used as biogas feedstock [6, 52]. A number of studies
analyzed raw manure and digestates but did not detect Y. enterocolitica [12, 102–
104] or Yersinia spp. [94].

Y. enterocolitica is sensitive to heat treatment. Drča [105] observed complete
inactivation by pasteurization (70 °C, 1 h) of biogas substrate corresponding to 8
log10 reduction. At 50 °C, 1 log10 reduction was obtained within 20 min [105]. At
55 °C, D-values in milk were specified between 1.8 and 2.2 min [84]. At mesophilic
conditions, studies on Y. enterocolitica resulted in D-values of 0.9 d in pure culture
within culture bags and in 2.5–18.2 d in mixed cultures during semi-continuous
anaerobic digestion [79, 80, 106]. Avery et al. [107] reviewed some studies and
concluded that a reduction of Y. enterocolitica by 1.1–6 log10 units took place
within 7–25 d during mesophilic anaerobic digestion. Massé et al. [76] detected Y.
enterocolitica in 90 % of raw pig manure samples but proved a significant reduction
during psychrophilic anaerobic digestion in batch systems.

Bacteria of the Mycobacterium tuberculosis complex and Mycobacterium avium
ssp. paratuberculosis

Mycobacterium sp. belonging to the M. tuberculosis complex induce similar
pathologies in different mammals [108]. Among them, Mycobacterium tuberculosis
causes human tuberculosis and Mycobacterium bovis results in beef tuberculosis
but infection of humans is also possible. Besides the M. tuberculosis complex
species, Mycobacterium avium ssp. paratuberculosis (MAP) causes
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paratuberculosis (Johne’s disease), a chronic enteric disease in domestic and wild
ruminants and other animals [61, 109, 110]. MAP’s causal involvement in Crohn’s
disease in humans is the subject of current discussion [111, 112]. MAP is abun-
dantly released in the faeces of infested animals [109, 113, 114] and is therefore
relevant concerning sanitary considerations in biogas plants. MAP is sensitive to
heat treatment and was inactivated at 70 °C for 30 min [75]. Pre-treatment by
pasteurization would thus sufficiently sanitize biogas feedstock. However, ther-
mophilic as well as mesophilic anaerobic digestion also significantly reduces MAP
[11, 113, 115, 116]. Olsen et al. [115] observed a 4 log10 reduction of MAP within
28 d and 3 h anaerobic digestion of bovine slurry in batch mode at 35 and 53 °C,
respectively, and a complete reduction (>3 log10 units) in 24 h at 55 °C. Bendixen
[11, 116] determined D-values of 0.7 h and 6 d at 53 °C and 35 °C, respectively.
However, Slana et al. [114] analyzed MAP during anaerobic digestion in a
full-scale biogas plant operated at 41–42 °C and detected viable organisms for
2 months after insertion of infested cow manure, whereas DNA was found for
16 month. Data on other Mycobacterium sp. than MAP are hardly available. In
pyrosequencing approaches, 0.0025 % of the sequences retrieved from mesophi-
lically digested biosolids in wastewater treatment plants were assigned to M. avium
and none to M. tuberculosis [104]. 0.16 % of the sequences retrieved from a
digestate after digestion of renewables and chicken manure at 41 °C were assigned
to Mycobacterium sp. [117].

3.2.2 Spore-Forming Bacterial Pathogens

Among the spore-forming bacteria, particularly Clostridium spp. play an important
part in the degradation processes that accompany biogas production. Besides their
functional part, several Clostridium ssp. and Bacillus spp. can act as pathogenic
agents causing disease basically by the formation of toxins. Among these, botu-
linum neurotoxin produced by Clostridium botulinum, is the most poisonous bio-
logical toxin known thus far [118].

Botulinum neurotoxin- (BoNT-)producing Clostridium spp.

The term BoNT-producing Clostridium spp. embraces the species Clostridium
botulinum (groups I–III, toxin types A–F), Clostridium argentinense (=C. botu-
linum group IV, toxin type G) and BoNT-producing strains of Clostridium butyr-
icum (toxin type E) and Clostridium baratii (toxin type F) [119]. Intoxication with
BoNT causes botulism, a severe, life-threatening disease accompanied by paralysis
[120]. C. botulinum and its spores are ubiquitous in soils (e.g. [121]) and can be
found in faeces of livestock animals [122–129]. Other studies did not detect the
organism in animal manure or dung and vegetable feedstock for biogas plants [130–
132], but high input concentrations probably can occur if carcasses of small animals
accidentally enter silages at crop harvest and ensiling [133].
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Fröschle et al. [132] analyzed 43 sludges of main biogas digesters and 52
digestates and did not detect BoNT-producing Clostridium spp.. C. botulinum was
neither found in lab-scale biogas reactors fed with cattle, pig and poultry manure
and with renewable resources [134] nor in 105 substrates and digestates from 15
full-scale biogas plants in Germany [135]. Metagenomic analyses of digestates did
also not indicate the presence of C. botulinum [136, 137]. However, Köhler [138,
139] detected C. botulinum occasionally in feedstock and digestates of biogas
plants. The presence could be related to the use of moldy substrate. The fate of
different pathogenic Clostridium spp. in a biogas plant digesting slaughterhouse
waste was analyzed by Bagge et al. [131]. Thermophilic anaerobic digestion (52 °
C) led to 2.5 log10 reduction of pathogenic Clostridium spp.. The authors did not
detect C. botulinum after anaerobic digestion of substrate containing the organism,
indicating reduction of the pathogen. In sentinel chamber experiments, spiked C.
botulinum cells were reduced with D-values between 1.0 ± 0.2 d at 55 °C and
34.6 ± 11.2 d at 38 °C [132].

In summary, the risk of encountering C. botulinum in digestate is very low if
good agricultural practice is applied. Most importantly, there is no evidence yet for
propagation of C. botulinum in biogas processes. On the contrary, the pathogen is
reduced in biogas processes, although its reduction is obviously slow. Just like with
other pathogens, the hygiene risk in digestate is thus lower than in feedstock.

Clostridium perfringens

C. perfringens is a ubiquitous spread spore-forming pathogenic bacterium and can
be detected in soil or even in the human and animal intestine. It is a causative agent
of a variety of human and animal diseases particularly dependent on the expressed
toxin type (e.g. gas gangrene, foodborne illness, enterotoxaemia; necrotic enteritis)
[49, 140].

Feedstock for biogas plants showed high incidence of C. perfringens i.e. in 9–
95 % of the samples analyzed [48, 94, 135, 139, 141]. Findings concerning C.
perfringens in digestates are divergent. In some community analyses, no evidence
for C. perfringens was seen in digesters [136, 137], whereas other studies found the
pathogen with in part very high incidence in anaerobic digestion i.e. 11–95 % of the
samples analyzed [48, 94, 104, 135, 139, 141, 142]. Bagge et al. [48] analyzed four
practice biogas plants treating pig or dairy manure and biowaste at mesophilic and
thermophilic temperature and detected similar concentrations of C. perfringens
before and after pasteurization, after anaerobic digestion and in storage tanks of 4.4
log10 cfu * g

−1 of fresh weight on average. Sahlström et al. [69] performed a heat
treatment experiment in a water bath within biowaste and manure feedstock of
Swedish biogas plants. C. perfringens was not significantly affected by 55 °C or
70 °C for 30 or 60 min leading to the conclusion that pasteurization (that is dictated
along with anaerobic digestion of animal by-products of category 3 by Regulation
(EC) No 1069/2009 [39] is not sufficient for the elimination of C. perfringens.

Published results on the fate of C. perfringens in anaerobic digestion are
divergent. A number of studies ascertained no reduction of this pathogen at
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phsychrophilic, mesophilic or thermophilic conditions [5, 11, 72, 76, 143].
Contrary to that, some studies discovered reduction of C. perfringens in mesophilic
and thermophilic anaerobic digestion [10, 52, 74, 144]. Watcharasukarn et al. [52]
reported reduction of C. perfringens in anaerobic digestion of cow manure by 1.35
log10 units at 37 °C (15 days; D-value: 4.05 d) and <1 log10 reduction at 55 and 70 °
C (after ca. 3 h and ca. 30 min, respectively, no D-value calculable). The reduction
behavior appears to be predominantly determined by the ability of C. perfringens to
build spores and the divergence of results published might be explained by different
percentages of spores and vegetative cells applied to the analyses.

Other Clostridiumspp. relevant for human and veterinary health

C. novyi type A, B and D (the latter is also referred to as C. haemolyticum) can
cause infectious diseases (e.g. infectious necrotic hepatitis, edema, wound infec-
tions in animals and gas gangrene in humans), whereas C. novyi type C is non-toxic
and apathogenic. C. chauvoei causes blackleg, a gas gangrenous infection in cattle
and sheep and C. septicum is the reason for braxy and malignant edema and gas
gangrenous wound infections [140, 145]. C. difficile is an emerging nosocomial
pathogen of increasing relevance worldwide causing antibiotic associated diarrhea
and colitis [146].

Reports on these Clostridium spp. in agricultural feedstock and biogas plants are
scarce. A screening regarding German biogas feedstock and digester contents
resulted in detection of C. novyi in 2.3 % of 44 plant feedstock samples, none of 17
animal feedstock samples, 7.1 % of 42 contents of main digesters and 3.9 % of 51
digestates. The concentration in digester contents was less than 3 cfu * g

−1 of fresh
weight. C. haemolyticum, C. septicum and C. chauvoei were not found in 154
samples [132]. Bagge [49] did not find C. haemolyticum and C. chauvoei in
mesophilic and thermophilic Swedish biogas plants fed with manure and biowaste
after pasteurization. C. septicum was found in the substrates of 2 of 4 analyzed
biogas plants before and after pasteurization. C. haemolyticum was completely
reduced within a few days in spiking experiments [49]. C. chauvoei was detected in
3 of 11 feedstock samples for biogas plants but not after pasteurization and after the
following anaerobic digestion. The organism was not found in soil samples (n = 84)
and silage samples (n = 4) and only in 1 manure sample (n = 114) [147]. C. difficile
was detected in 25 % or 38 % of analyzed biosolids after mesophilic and
mesophilic/thermophilic temperature phased anaerobic sewage treatment [148].
Metagenomic approaches repeatedly detected contigs similar to C. difficile in
digesters, but reliable identification could not be achieved [137, 149].

Knowledge on Clostridium spp. in agricultural biogas production is scarce.
Further research is required particularly on C. difficile, showing high incidence in
anaerobic digested sewage sludge.

Bacteria of the Bacillus cereus group

The Bacillus cereus group contains several Bacillus spp. that are phylogenetically
highly related. This group includes Bacillus anthracis, Bacillus cereus, Bacillus
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thuringiensis, Bacillus mycoides, Bacillus pseudomycoides and Bacillus weihenst-
ephanensis. B. thuringiensis is an insect pathogen. B. cereus is associated with
regressive relevance with human food poisoning causing diarrhea and abdominal
distress or nausea and vomiting and occasionally with mastitis in cattle. B. an-
thracis is the causal agent of anthrax affecting particularly herbivores but also
mammals including humans. Bacillus spp. can be found e.g. in soil [150, 151] and
in biogas feedstock. Vissers et al. [152] detected a mean concentration of 2.4 ± 0.07
log10 B. cereus spores * g

−1 silage. B. thuringiensis and B. cereus were detected in
slaughterhouse waste, B. cereus additionally in cattle manure used as biogas
feedstock [131]. 1.4 % of all cultivable isolates from substrates belonged to B.
cereus group [141].

As Bacillus spp. are able to form endospores, they are comparatively resistant to
environmental impacts such as heat (D-values of up to 36 min at 95 °C) [84],
pressure and chemical agents and thus also to the sanitizing effect of biogas pro-
cesses. Several studies found no or almost no reduction of Bacillus spp. [131], B.
cereus group [12, 72, 153] or B. cereus [5, 11] in mesophilic and thermophilic
biogas processes. Thus several proofs of B. cereus or of B. cereus group exist for
digestates in abundances of 102 −5 * 103 cfu * mL−1 [12, 117, 131, 141, 154].
Bacillus spp. even pass unaffectedly through pasteurization [131].

3.3 Pathogenic Parasites in Biogas Processes

Just like bacterial pathogens, potentially pathogenic human and animal parasites
can be introduced into the biogas process especially through contaminated sub-
strates of animal origin like slurry or manure. Since, parasites usually need a host
organism for growth and proliferation there is no indication for multiplication of
these organisms in the biogas process. Therefore, the sanitary status of digestate is
assessed by the viability of cysts/oocysts (protozoa) or eggs (e.g. nematoda) in the
biogas processes or treatment steps.

3.3.1 Protozoa

The most important protozoa potentially transmitted by biogas feedstock and dig-
estate are Cryptosporidium spp. and Giardia spp.. Both genera contain pathogens
causing gastrointestinal illness in humans and are also infective to a variety of
animals. Cattle and domestic animals are considered as main reservoir [97, 155–
157]. A study from the United Kingdom showed the occurrence of both parasites in
cattle manure in maximum concentrations of 103 organisms * g

−1 [158]. Thus, an
input into the biogas process via contaminated manure or slurry can be assumed.

Côté et al. [103] observed a decrease of indigenous Cryptosporidium spp. and
Giardia spp. in swine manure to undetectable levels within 20 d in psychrophilic
anaerobic digestion. Sentinel chamber experiments in anaerobic digestion of cattle
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manure resulted in a reduction of viable counts of C. parvum oocysts of >1 log10
unit during 4 h at 38 °C and of ≥2 and ≥5 log10 units during 4 h at 55 °C whereas
almost no reduction was seen in real-time PCR assays on the DNA level [12, 159].
This goes in line with the results of Godfree and Farrell [71]. Chauret et al. [160]
obtained no statistically significant reduction of both parasitic permanent forms
during mesophilic anaerobic digestion of sewage sludge, but could not distinguish
between viable and non-viable forms.

However, studies on cryptosporidia and giardia in other matrices than manure
and slurry indicate that their permanent states (oocysts and cysts, respectively) are
only fairly tolerant to heat [161]. Inactivation in water amounting several orders of
magnitude is thus possible after 10 min at 70 °C [162, 163]. Therefore, biogas
feedstock of animal origin should be sanitized using heat treatment at temperatures
not less than 70 °C in order to achieve a reliable and complete inactivation of
protozoa cysts/oocysts. Alternatively, thermophilic treatment with a longer reten-
tion time is an option. Without heat treatment, a residual fraction of cysts might
survive the biogas process.

3.3.2 Helminths

Besides cysts/oocysts of protozoa, eggs of helminths can pose a risk for human or
animal health. Although helminth eggs are not as heat-stable as the mentioned
protozoa cysts, some species could survive extreme pH values [161]. Therefore the
eggs of Ascaris suum were used as indicator organism for testing the survival of
helminth eggs in the biogas process in some studies [69, 164]. In the study of
Plym-Forshell [164] 60 % of the A. suum eggs survived at temperatures of 22–27 °C
up to 56 days. In both studies however, A. suum eggs were inactivated at temper-
atures of 55 °C. Accordingly, thermophilic anaerobic digestion appears to be suf-
ficient to inactivate helminth eggs. However, mesophilic anaerobic digestion cannot
guarantee a complete reduction of viable helminth eggs. To ensure a hygienically
safe digestate, substrates of animal origin should be heat-treated before application
to mesophilic anaerobic digestion.

3.4 Viral Pathogens in Biogas Processes

Unlike bacteria, viruses are not able to multiply outside of a host organism. Two
factors are thus of major interest for the sanitary status of the fermentation sub-
strates: the amount of viruses in the substrates used in the biogas process and the
reduction capacity of different process technologies concerning the different
viruses.

The ability to survive depends decisively on the different virus structures. In
general, enveloped virus families such as Herpesviridae, Poxviridae and
Flaviviridae are much more sensitive to environmental conditions than uncoated
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virus families (e.g. Parvo-, Picorna-, Calici- and Circoviridae). Nevertheless,
resistance to different environmental conditions like heat stability can also strongly
differ between the different virus families in the group of uncoated viruses.
Representatives of Parvo-, Calici- and Circoviridae, for instance, are more
heat-stable than those of Poxviridae [165]. The most important factors inactivating
viruses are heat treatment, high and low pH and radiation. Furthermore decom-
position can cause inactivation especially of enveloped viruses [165]. Table 5
shows a summary of guideline values for the stability of enveloped and uncoated
viruses with regard to environmental conditions important in the biogas process.

The guideline values in Table 5 show that it is nearly impossible to predict an
inactivation rate for different virus families in different biogas processes. The
inactivation rate not only depends on temperature and pH but also on the com-
position of the biomass, which varies not only between the different types of biogas
plants but also in the same biogas plant depending on the substrate and the com-
position of the substrates. Therefore, it is not only very difficult to compare data
from different studies with regard to the inactivation of viruses in biogas plants, but
also to transfer the results from in vitro experiments to conditions experienced
in vivo. However, the guideline values in Table 5 show that only uncoated viruses
should be used as indicator organisms, because inactivation conditions from
experimental studies using uncoated viruses can also be applied for enveloped
viruses. The inactivation capacity of different biogas processes is therefore typically
assessed using two different uncoated viruses as indicator organisms, mainly a
representative of the family Parvoviridae, which is characterized by a high thermal
resistance and a more heat-sensitive virus like a representative of the family
Picornaviridae [166].

Table 5 Summary of guideline values for the stability of enveloped and uncoated viruses
(according to [165])

Environmental
conditions

Inactivation/stability of

Enveloped viruses Uncoated viruses

Heat
treatment

22° C Hours to days (according to the
virus and other environmental
conditions)

Days to weeks (according to the
virus and other environmental
conditions)

37 °C Hours to days (according to the virus and other environmental conditions)

56 °C Minutes to hours (according to virus and other environmental conditions)

80 °C Minutes (with exception of some uncoated virus families e.g.
Parvoviridae, which persist for hours)

100 °
C

Seconds

Low pH pH 2 Predominantly unstable Partially unstable

High pH pH 13 Unstable Relatively unstable

Decomposition To varying degrees unstable Relatively stable
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3.4.1 Enterovirus

The genus Enterovirus belongs to the family of Picornaviridae and includes
important veterinary viral pathogens like Enterovirus E (formerly bovine entero-
virus) and Swine vesicular disease virus (SVDV). These viruses can enter the
biogas process with contaminated substrates, e.g. manure or slurry of subclinically
infected animals [69].

In in vitro studies, representatives of the genus Enterovirus were reduced in
digestates by max. 1.6 log10 units using a temperature of 55 °C for 30 min and 6.4
log10 units using a temperature of 70 °C for 30 min [69]. Lund et al. [166] showed
that a minimum guaranteed retention time (corresponding to a 4 log10 reduction) of
23 h at 35 °C (mesophilic anaerobic digestion) and <0.5 h at 55 °C (thermophilic
anaerobic digestion) is necessary for Enterovirus in in vivo studies using
laboratory-scale biogas reactors. These results correspond with results of other
studies, e.g. [167]. In this study a human Coxsackievirus was used as a model for
the genus Enterovirus. After four hours of thermophilic digestion no infectious
virus was detectable and after 2 days also no virus RNA was found in the samples
(7 log10 reduction).

3.4.2 Parvovirus

The family Parvoviridae comprises more heat-resistant representatives of the group
of uncoated viruses, like the bovine parvovirus (BPV) and the porcine parvovirus
(PPV). Just like enteroviruses, these viruses can enter the biogas process chain via
contaminated slurry or manure [69]. Prado et al. [168] found that norovirus, a
representative of the family Caliciviridae, was present in 50 % of the investigated
activated sludge samples. Activated sludge is commonly post-treated at wastewater
treatment plants using anaerobic digestion. Furthermore, representatives of the
family Parvoviridae can be used as indicator organisms for other virus families with
a comparable heat resistance like Calici- and Circoviridae.

It has been shown in in vitro studies that representatives of the family
Parvoviridae can survive the sanitizing conditions of pre-treatments used before
anaerobic digestion. For example, Sahlström et al. [69] detected a mean reduction
of only 2.6 log10 units after 60 min heat treatment at 70 °C, compared to a 6.4 log10
reduction for the genus Enterovirus using the same treatment. In in vivo studies,
Lund et al. [166] determined a biphasic inactivation with a high initial reduction
followed by a decreasing reduction rate. Therefore a minimum guaranteed retention
time (corresponding to a 4 log10 reduction) of 11–12 h was necessary at 55 °C in the
initial phase and 54 h thereafter to inactivate different representatives of the family
of Parvoviridae. It can therefore be assumed that the more heat-resistant virus
families like Parvoviridae, Calici- and Circoviridae can survive the conventional
mesophilic and maybe also a thermophilic biogas process and can be found in
digestate.
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4 Phytosanitary Aspects

Regarding global concerns about the impacts of feeding infected biomass to biogas
plants, phytopathogenic microorganisms are of particular significance as they are
responsible for crop losses and interfere with food security. The current interest in
phytosanitation was also stimulated by the ability of seeds or diaspores such as from
various unwanted herb (weed) species to survive the passage through a biogas
plant. In addition, promotion of feedstock diversity has received attention in the
specialist community. The introduction of novel or non-native dedicated energy
crops is associated with the potential for these crops to escape and invade outside of
cultivation. Hence, there is a growing demand for scientifically sound and
process-based studies to provide clear information about the efficiency of phyto-
sanitation within the biogas production chain as well as the major factors and
mechanisms contributing to the phytosanitary status of digestate.

The biogas production chain commonly comprises the steps supply (cultivation,
harvest, ensiling), storage, pre-treatment, feeding and anaerobic (co-)digestion as
well as digestate storage until spreading as fertilizer. In general, the incoming
material represents the main source of pathogens and pollutants in digestate. The
use of contaminated digestate as fertilizer can pose a phytosanitary risk if phyto-
pathogens, seeds or vegetative propagules survive the biogas production chain.

4.1 Phytosanitary Effects of the Biogas Production Chain

According to Plöchl et al. [41], knowledge of fate and behavior of plant pathogens
in the biogas production chain is limited and hampers the estimation and evaluation
of potential phytosanitary risk. Reasons for this are manifold, including:

• the broad spectrum of phytopathogenic microorganisms (bacteria, viruses,
fungi) and the occurrence of both infectious propagules and resting structures

• limits of sampling as well as of routine microbiological analytical techniques
regarding (i) the heterogeneity of matrices and the microbial composition,
(ii) identification and quantification of pathogens and (iii) reliability of lab-scale
tests (in vitro and on rich culture media) for in vivo assessments

• higher investments for recent, more sensitive, accurate, specific and much faster
diagnostic techniques (molecular-based techniques, real-time PCR) than con-
ventional approaches.

In order to prevent the exposure of hazardous organisms to the environment,
lab-scale experiments should be a prerequisite prior to perform investigations in
commercial biogas plants. Within the framework of the comprehensive joint project
“Investigations regarding the phytosanitary risk of anaerobic digestion of crop
products in biogas plants“ [169], systematic experiments were conducted regarding
the effect of the mesophilic anaerobic digestion in continuously stirred tank reactors
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(CSTR) on various host-pathogen-combinations. Fresh and ensiled plant materials,
infected with specific fungal plant pathogens, were examined in germ carriers under
variation of the exposure time in the digester (6–138 h) and the storage time of the
digestate (4 weeks; 6 months) regarding inactivation and survival capability.
Results of selected host-pathogen-combinations obtained in this way provide
information whether and to which extent sanitation took place. These findings are
presented in the following sections.

4.1.1 Plant Pathogen Species

Rodemann et al. [170] and Bandte et al. [38] reported that mesophilic anaerobic
digestion of infected plant material led to considerable reduction or even complete
inactivation of the plant pathogens tested. Required exposure times tended to be
significantly longer in biogas plants than in small CSTRs (Table 6).

Sanitation of crop material infected with either Sclerotinia sclerotiorum or
Rhizoctonia solani occurred within an exposure time of 6 h. These findings match
those of Seigner et al. [171] who ascertained an exposure time of 8 h to inactivate
the same two pathogens in lab-scale reactors operated at 38 °C. In contrast, sclerotia
of Sclerotinia cepivorum were at least in part viable when recovered from an
experimental reactor after 6 weeks of anaerobic composting [172].

Sanitation of other pathogens such as species of Fusarium was reached within
138 h (Table 6). These differences probably result from (i) the colonization type by
the fungal pathogens and (ii) the consistence of the infected feedstock. Fusarium
proliferatum and Fusarium verticillioides colonize the plant endogenously, while S.
sclerotiorum lives on the surface of the plant. The infected sorghum plant material
that was inserted into the digester was derived from field plots and contained more
lignin due to its advanced physiological age. Fusarium spp. propagules were thus
longer protected from degradation and inactivation than S. sclerotiorum. Prolonged
exposure time resulted in strong reduction of infectious Fusarium spp. propagules
(Table 6).

Bandte et al. [38] demonstrated that different species of a genus can be affected
differently by anaerobic digestion. Unlike F. proliferatum, most of F. verticillioides
propagules did not survive anaerobic digestion for more than 24 h. Fusarium
graminearum decay was attained within the first 24 h in lab-scale reactors operated
at 38 °C [171]. In those tests, pure F. graminearum cultures grown on wheat grains
were exposed, in contrast to the investigations from Bandte et al. [38] in which
infested whole plant biomass was used. The viability of fungal propagules in pure
cultures tends to be shorter because of the absence of surrounding plant tissue that
protects them from physical, enzymatic or chemical degradation. Rodemann et al.
[170], for example, exposed species of Fusarium-infested maize plants to anaerobic
digestion. They showed that Fusarium culmorum und F. verticillioides were
inactivated within 24 h in lab-scale reactors.

It is concluded that the sanitation potential of the anaerobic digestion process is
mainly determined by the pathogen species and not by the crop species.
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4.1.2 Ensiling of Biogas Crops

Pre-treatment of crop material influences the degree of pathogen depletion in the
biogas production chain as well. Chopping at harvest and compaction during
ensiling result in a lower polymerization of cell wall constituents which can be
regarded as a kind of mechanical treatment [173]. Ensiling itself involves pro-
duction of organic acids and a decrease in pH down to 4 that consequently prevents
growth of fungi, yeasts and bacteria which may otherwise decompose the biomass.
Bandte et al. [38] used ensiling as a biological pre-treatment method. In this study,
the storage period after ensiling directly corresponded to the inactivation of
Fusarium spp. during anaerobic digestion. Ensiling of crop material led to increased
inactivation of F. proliferatum and F. verticillioides (Table 6). Significant reduction
of F. proliferatum viability was observed in silage stored for 35 days compared to
fresh sorghum during anaerobic digestion for 24 h [38]. F. proliferatum remained
thus infectious in fresh sorghum plant material in about one-fifth of aliquots. The
incorporation of ensiled sorghum decreased this portion to less than one-tenth of the
original load. This is important as almost 90 % of plant material entering biogas
plants is ensiled [2].

4.1.3 Anaerobic Digestion of Infected Plant Material

In order to understand the fate and behavior of plant pathogens in the biogas
production chain, Plöchl et al. [41] systematized the available information focusing
on the sanitizing impact of anaerobic digestion on particular phytopathogen host
combinations. Therefore, simulation was used to demonstrate the effects influencing
the steady state of pathogen infected plant material in both digesters and digestate.
Simple kinetic inactivation approaches and mass balances of infected material were
carried out considering single-step as well as two-step digestion.

D-values for inactivation gained from the experiments summarized in Table 6
ranged between almost null (i.e. spontaneous complete inactivation) and 96 h.
Simulations of mass balances of infected feedstock and concentration in contami-
nated output were performed for pathogen-sorghum combinations. These combi-
nations cover almost the entire range of D-values determined. The simulation
revealed a “very fast” to “fast” reduction of infected material after a singular
feeding, reaching a cutback to less than 1 % of input within 4 days even for
D-values of 68 h. Steady state mass balances below input rate could be calculated
with D-values of less than 2 h at a continuous hourly feeding. At higher D-values
steady state mass balances exceeded the input rate but were still clearly below the
sum of input mass. Dilution further decreased mass balances to values 10−5 to
10−6 Mg * m−3 for first-step digestion and 10−8 to 10−9 for second-step. Hence,
Plöchl et al. [41] could demonstrate the combined effect of dilution and reduction
on the concentration of pathogenic propagules both in the digesters and the
digestate.
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4.1.4 Storage Period of Digestate

According to Bandte et al. [38], storage of digestate accounts for a further signif-
icant reduction in viable Fusarium spores in case of processing fresh sorghum
feedstock. A storage period of 4 weeks already resulted in complete inactivation of
F. proliferatum in sorghum being exposed for 6 h. After storage of 6 months, none
of the digestates harbored viable Fusarium spp. propagules. Comparable results
were gained with Fusarium spp. in infected ensiled sorghum. The exposure time
required for a complete inactivation could be reduced to 6 h when digestates were
stored for 4 weeks. No additional effect of storage was visible in regard to inacti-
vation of S. sclerotiorum in sugar beet and R. solani in potato as the pathogens lost
their infectivity in all sample carriers already after the minimal exposure time of 6 h.

4.2 Weeds and Alien Plant Invaders

As with plant pathogens, literature surveys reveal that studies on these subjects are
scarce and fragmentary. According to Westerman et al. [174], using digestate as
fertilizer, the probability of dispersal will be highest for (i) common weed seeds, as
these have the highest likelihood of entering biogas plants, and (ii) seeds that are
resistant to the adverse conditions in anaerobic digesters. Following their argu-
mentation the risk will be highest for invasive, quarantine and troublesome plant
species that do not have a widespread distribution yet.

Focusing on weed seeds, Westerman et al. [175] conducted experiments in
lab-scale mesophilic batch reactors, either with or without ensiling. The experi-
ments demonstrated that species with hard seeds were more likely to survive
ensiling (up to 98 %) and mesophilic anaerobic digestion (up to 58 %) compared
with species whose seeds lack a water impermeable layer (≤1 %). Findings reveal
considerable variation in survival probability between and within species, and
between silages and reactors. For hard-seeded species, survival depended on the
proportion of hard seeds and on the ability to remain hard-seeded during treatment.
Freshly harvested seeds lost their water impermeability and survived poorly.
Regarding tomato seeds, which are used as indicator species in the sanitation of
composts, the survival was comparable with that of the best surviving species
without physical dormancy, but was not comparable with that of hard-seeded
species. Hence, tomato can only represent species that are not hard-seeded.

In a corresponding experiment, Westerman et al. [174] tested the ability of seeds
from five plant species to survive commercial biogas plants compared with results
obtained from lab-scale reactors [175]. Seeds were exposed for 1–9 days in two
large-scale commercial mesophilic biogas plants. The decimal reduction time
(D-value) was estimated at 1.5 days for Abutilon theophrasti population D2003,
2 days for A. theophrasti population ES2008, 5.8 days for Malva neglecta, 4.7 and
19.7 days for Chenopodium album, and 1.2–9.1 days for Fallopia convolvulus.
Regarding the differences in ranking of plant species, authors concluded that lab
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reactors are not necessarily a good model system for commercial reactors. Seeds
could survive passage through biogas plants, although at (extremely) low numbers.
If the objective is to eliminate all risks and dispose of all weed seeds, it will be
necessary to either add extra sanitation steps, or to identify and manipulate the
factors that are responsible for high seed mortality during anaerobic digestion. As a
result of a recent pioneering review, Westerman and Gerowitt [176] concluded that
it is currently unknown what these factors are.

In order to prevent further introduction and to reduce existing populations of
alien (invasive) species, research on control methods is going on in Europe (e.g. EU
project HALT Ambrosia [Ambrosia artemisiifolia]; [177]). In this context, the
biogas process is considered as an alternative to incinerating the plant material
escaping mechanical control measures such as cutting or uprooting. Whether this
approach is a safe and environmentally friendly method of waste disposal or not
must always be clarified case-by-case. Mesophilic and thermophilic anaerobic
digestion of seed-carrying A. artemisiifolia plants is not a safe option [178]. In the
case of common ragwort (Senecio jacobaea) which is developing into a serious pest
weed in Northern Germany scientifically sound and process-based studies are still
missing.

5 Conclusion

The sanitizing potential of anaerobic digestion in the context of agricultural biogas
production depends on a multitude of factors. Transferability of results on specific
or indicator organisms and similarly the application of lab-scale results to full-scale
processes is limited. A generalizing estimation of the sanitizing effect is almost
impossible as the extent of sanitation is particularly related to

(1) the organism of concern, especially its structure and ability to form permanent
states (e.g. formation of spores or cysts/oocysts etc., kind of propagules,
hard-seeded and not-hard-seeded weed species, enveloped or uncoated viru-
ses, gram-positive or gram-negative bacteria) and

(2) the available process technology, the feedstock composition and last but not
least the diligence of the operation management (storage and consistence of
manure, quality of silage, kind and consistency of substrates, pre-treatment
steps, homogenization, temperature conditions, stirring/short-circuit currents,
one-stage/multi-stage processes, stability of the biogas biocenosis, storage of
digestate, cleanliness, recontamination/black-white-separation, etc.).

Sanitation by anaerobic digestion is a beneficial side effect of the biogas process,
but it is not its intrinsic function. The technology has not been developed to
completely eliminate pathogens, and therefore, a hygienically safe status of dige-
state cannot be guaranteed. If the objective is to eliminate all risks and inactivate all
contaminations, additional sanitation steps such as steam/pressure sterilization are
necessary and in some cases mandatory.
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However, the consensus of studies published on this issue is that the sanitary
quality of digestate is improved compared to the untreated feedstock concerning
non-spore-forming bacteria, pathogenic parasites, viruses, phytopathogenic fungi
and weed seeds. In the worst case, the sanitary quality remains nearly unchanged
(e.g. spore-forming bacteria of the genus Bacillus and certain clostridia). The
spreading of digestate from agricultural biogas production in accordance to current
rules and best practice recommendations is thus considered to elicit no additional
danger for the health of humans, animals and plants.
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Direct Interspecies Electron Transfer
in Anaerobic Digestion: A Review

Charles-David Dubé and Serge R. Guiot

Abstract Direct interspecies electrons transfer (DIET) is a syntrophic metabolism
in which free electrons flow from one cell to another without being shuttled by
reduced molecules such as molecular hydrogen or formate. As more and more
microorganisms show a capacity for electron exchange, either to export or import
them, it becomes obvious that DIET is a syntrophic metabolism that is much more
present in nature than previously thought. This article reviews literature related to
DIET, specifically in reference to anaerobic digestion. Anaerobic granular sludge, a
biofilm, is a specialized microenvironment where syntrophic bacterial and archaeal
organisms grow together in close proximity. Exoelectrogenic bacteria degrading
organic substrates or intermediates need an electron sink and electrotrophic meth-
anogens represent perfect partners to assimilate those electrons and produce
methane. The granule extracellular polymeric substances by making the biofilm
matrix more conductive, play a role as electrons carrier in DIET.
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1 Introduction

The first scientific paper on microbial electricity generation was published in 1911
by Michael C. Potter of the University of Durham (UK) [1]. But it is only in the past
few years that this capability became more than an academic curiosity. The reasons
for this recent interest in using bacteria to generate electricity are a combination of
the need for new sources of energy, discoveries about microbial physiology related
to electron transport, and the advancement of fuel-cell technologies.

In a microbial fuel cell (MFC), bacteria are separated from a terminal electron
acceptor at the cathode so that the only means for respiration is to transfer electrons
to the anode [2, 3]. However, it is unlikely that the electricity generation has ever
been a selective advantage during evolution, unlike the electron transfer to a natural
extracellular acceptor. Exoelectrogenic microbes developed during evolution
pathways to export electrons through the plasmic membrane to reduce external
molecules, such as metal oxides (iron oxide (Fe2O3) or manganese oxide (IV),
MnO2) and humic substances, as a respiration mechanism for thereby acquiring
energy and reproducing. For instance, bacteria of the genus Geobacter reduce
Fe2O3 into soluble ferrous oxide (FeO). Fe2O3 is, as the anode of a MFC, an
extracellular insoluble acceptor, thus requiring mechanisms for extracellular elec-
tron transfer [4]. As scientists start to exploit this capability to develop MFCs to
produce renewable and alternative energies, it started to become obvious that the
microbes in a natural environment could also benefit of these extracellular electron
transfer pathways for optimizing their syntrophic associations. We review here
literature reports that support the reality of the direct interspecies electron transfer
(DIET), specifically in the anaerobic granular sludge used in industrial anaerobic
digesters for wastewater biotreatment. The anaerobic granule is a stable, efficient
and structured micro-environment where direct electron exchange between mem-
bers of such consortium is likely to exist.
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2 Likelihood of DIET in Anaerobic Granular Sludge

“What appears to be always and everywhere present [in life] is a continuous and
rapid flow of electrons and protons passing through each and every living organ-
ism” [5]. This is presumably universal for each individual organism, but it is even
of greater significance for syntrophic organisms. In methanogenic syntrophic
communities, electrons and protons or reducing equivalents flow from one organ-
ism to the other by shuttle components such as molecular hydrogen. In the case of
obligate syntrophy, the hydrogen-utilizing methanogens are essential to maintain
the low concentrations of hydrogen that make the hydrogen-producing reaction
sufficiently exergonic to support energy conservation (phosphorylation of ADP to
ATP), hence cell maintenance and growth [6]. Obligate syntrophy was first rec-
ognized by Bryant and coworkers in 1967 [7] when they discovered that the
originally believed pure culture Methanobacillus omelianskii was a co-culture of an
ethanol-oxidizing bacterium and a methanogen, the latter scavenging the hydrogen
produced by the former. Nowadays, it is well established that not only hydrogen but
formate also plays a key role for electron transfer in methanogenic environments
[8–11]. Optimization of large-scale anaerobic wastewater treatment relies on highly
efficient methanogenic micro-ecosystems such as granular sludge, which develops
in upflow anaerobic sludge blanket (UASB) reactors [12, 13]. It has been shown
that aggregation of cells such as in methanogenic granules is a key factor for
efficient methanization as a direct result of an efficient electron transfer between
obligate H2-producing acetogens (OHPA) and methanogens, especially as granules
often present a layered architecture (Fig. 1) which provides niches for syntrophic
associations and promotes the physical proximity between those syntrophs [14, 15].

Methane is not always the ultimate reduced product in anaerobic environments,
and sulphur, metal oxides and humic substances are also used as final electron
acceptors. Some of those molecules are kept outside of living cells and microor-
ganisms developed specialized pathways to export electrons through their mem-
brane to regenerate reduced coenzymes such as NADH or ferredoxin. For instance,
Geobacter sulfurreducens uses a chain of trans-membrane cytochromes to transport
electrons to acceptors outside the cell [16]. This property of dissimilatory reduction,
now known to be widespread in the phylogenetic tree of bacteria, is used in MFCs
and other bioelectrochemical systems (BES), where a positively charged electrode
acts as a permanent electron acceptor.

In 2006, Stams and co-workers [11], then followed by others [17–21], suggested
that a direct electron transfer excluding hydrogen and formate could happen between
OHPA bacteria and methanogenic archaea in some environments. Incidentally,
DIET might have been an explanation of previous observations that granular sludge
was able to degrade propionate even though the Gibbs free energy change based on
the dissolved H2 measured in the liquid surrounding the granules was positive
[22–24]. This emerging concept of DIET is surveyed here in the particular context of
anaerobic granular sludge, an engineered methanogenic micro-ecosystem where the
proximity and diversity of cell populations would allow for this exchange.
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3 Anaerobic Granular Sludge Ecology

The efficiency of granular sludge for high-rate anaerobic wastewater treatment is
established since a long time, but the process of anaerobic granulation is still not
well understood despite extensive research into granulation mechanisms, microbial
ecology, and other significant contributing factors. [25]. Theories of granulation
include amongst other, the interactions and spatial requirements of obligate syn-
trophic groups. One of the limitations in the study of granules is the relatively high
abundance of unknown and uncultivated strains, that restrains genomic or proteo-
mic studies of this particular biofilm. The cells proximity that facilitates the electron
transfer undoubtedly plays an important role [26]. Most often, when the primary
substrate hydrolysis is not the limiting step, granules are built as a layered structure
(Fig. 1) that conforms to the sequential anaerobic degradation of organic matter:
hydrolysis and acidogenesis, acetogenesis, and methanogenesis [15, 27, 28].
Fluorescent in situ hybridization (FISH) analysis shows that members of
Chloroflexi and Betaproteobacteria colonized mainly the outer layer, members of
Firmicutes occupied mainly the middle layer [29] and Methanosaeta-,
Methanobacterium-, Methanospirillum-, and Methanosarcina-like cells are pre-
valent in the innermost layer [30, 31]. Aging at as short as 4 weeks [31], or being

Fig. 1 Multilayered structure of the carbohydrate-fed anaerobic granule [15]. The syntrophic
associations between obligate H2-producing (OHP) acetogens and H2-consuming microorganisms
are prevailing in the middle layer (B) [30], where presumably direct interspecies electron transfer
(DIET) therefore may primarily occur, either by direct contact between cells (1), or through
nanowires (2), or EPS or minerals (3), or shuttled by soluble mediators (4)
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substrate limited [29], the center of the granule tends to be inactive and composed
of inert matter, either dormant or decaying microbial cells, and inorganic materials
[30]. Even though this layered architecture is coarse, confocal laser scanning
microscopy (CLSM) and FISH pictures clearly show large areas in the middle layer
that are simultaneously colonized by the bacterial and archaeal domains, that likely
correspond syntrophic populations [30, 32].

Some studies demonstrate evolution and changing characteristics of the granule
population over time [31]. There are likely species, and even sub-species and
mutants that are advantaged by the selective pressure exerted in this kind of granule
environment. One avenue to understand the evolution of species in the anaerobic
granule is the use of simplified models using only a few pure strains. Summers and
coworkers [33] show that in a syntrophic coculture of Geobacter metallireducens
and G. sulfurreducens that forms aggregates similar to granules, a single mutation
in PilR gene always appears in G. sulfurreducens (PilR is an enhancer binding
protein that plays a role in transcriptional regulation when coupled with RpoN, an
RNA polymerase). This mutation inactivates the binding function of PilR and up-
or down-regulates the expression of several genes. Globally, this mutation in PilR
seems to facilitate aggregation and syntrophic metabolism. Interestingly, OmcS, a
c-type cytochrome, was over-expressed in PilR mutants [34] and was abundantly
found extracellularly in aggregated cocultures of G. metallireducens and G. sul-
furreducens, as revealed by immunogold labelling [33]. OmcS is a central protein
involved in the reduction of extracellular, insoluble Fe(III) oxides. It should be
noted that all others cytochromes, also involved in extracellular transport of elec-
trons were down-regulated in PilR mutants [34] and in G. sulfurreducens cells
growing with an anode as electron acceptor [35]. Since there is no need to
over-express and produce cytochromes since the pathway of iron reduction is not
involved in this assay, why would cytochromes be so important? Cytochromes are
known to be involved in the electron transfer and the fact they are abundantly
present outside the cell suggests that DIET may occur. Granules have much more
complex populations than only Geobacteraceae species, however, as in all other
ecosystems, the evolutionary pressure in a granule will select for most adapted cells.
Individual cells that were disadvantaged, by dispersion in a liquid suspension could
have a competitive advantage in the granule cluster, in particular if they could better
compete for energy due to DIET.

Another interesting case that increases our understanding is the coculture ecol-
ogy of Pelotomaculum thermopropionicum and Methanothermobacter thermau-
totrophicus. Together these two species form aggregates that facilitate the
interspecies electron transfer and increase the growth rate. What is particularly
interesting is that the flagellum-like filaments of P. thermopropionicum connect to
M. thermautotrophicus cells to finally wrap them in aggregates [14]. It was then
shown that these filaments were electrically conductive [17]. Despite these results,
there is still no direct experimental evidence that the fermentative bacterium
P. thermopropionicum directly transfers electrons to M. thermautotrophicus with
those filaments. Recently, Shimoyama and coworkers found a protein-mediated
interaction between filaments and the M. thermautotrophicus surface [36]. The
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flagellar cap protein FliD, that is part of the filament structure of
P. thermopropionicum, was found to bind to the syntrophic partner cell surface, M.
thermautotrophicus and Methanosaeta thermophila. Binding of FliD to the surface
of M. thermautotrophicus induces a change in the expression of over 50 genes and
most of them have a positive impact on the syntrophic metabolism. This is another
example of the specific association between syntrophic microorganisms, and we can
expect that several other interactions of this type could occur in methanogenic
environments. The hypothesis that flagellum-like proteins binding to methanogenic
cells allow them to capture directly electrons from DIET is supported since these
filaments are known to be conductive. Granulation seems to give an advantage to
organisms, allowing for the development of efficient strategies of interspecies
electron transfer and this pressure could push towards the development of DIET.

Horizontal gene transfer also influences the evolution of granules. By comparing
the genome of syntrophic bacteria with gene banks related to methanogenesis, Kato
and Watanabe [37] found that the gene content of syntrophic bacteria is more
similar to methanogens with which they interact than with other phylogenetically
close microorganisms. This genomic similitude with the microbial neighbourhood
also includes genes from their central metabolism such as hydrogenases or
ATPases. Codon-usage patterns of genes were also more influenced by the
microorganisms at proximity than the phylogeny. This niche-associated evolution
probably has an important impact on granule development. Indeed, environment
(including neighbour microbes) could further influence the population genetics and
function than previously thought. Adaptive genes coding for DIET in granules
could then efficiently spread to several genetically distant species.

4 Exoelectrogenic Bacteria: The First Partner

Enrichment of electricity-producing microorganisms (or exoelectrogens) could be
obtained from placing a graphite anode in marine sediments [38] and most of the
time it is mainly composed by members of Geobacteraceae family [39]. However,
many other exoelectrogenic bacteria have been found widespread in the bacteria
phylogenetic tree, even though most pertain to the Proteobacteria phylum [19].
Exoelectrogens are ubiquitous in anaerobic environments, natural in sediment, or
engineered for anaerobic digesters. As a corroboration, anaerobic sludge is often
used as inoculum in BES. It seems that exoelectrogens first developed pathways to
achieve the dissimilatory reduction of extracellular compounds such as metal oxi-
des. In G. sulfurreducens, a membrane NADH-dehydrogenase initiates the expor-
tation of electron across the membrane through a chain of cytochromes to reach the
outer membrane layer [16]. Shewanella oneidensis use a similar pathway to export
electron with a membrane formate-dehydrogenase [40]. It was also found that some
strains could secrete cytochromes or other electron-shuttling compounds in the
environment to more easily reach distant solid electron acceptors [41, 42]. Some
strains such as P. thermopropionicum, S. oneidensis and the cyanobacterium
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Synechocystis have developed nanowires (flagellum-like filaments) to reach further
electron acceptors and those nanowires seem to be specialized in electron transport
over longer distances, such as 20 µm [17, 43].

Interspecies electron transfer during anaerobic digestion is already well char-
acterized [6, 44]. The microbial species that provide electrons in this exchange are
the hydrogen and formate producers. Therefore, those same species should be the
ones that supply electrons in DIET also. That includes almost all bacteria, which
perform dark fermentation. Specifically, in this large group, the candidates for
DIET should be those who are genetically equipped to perform this kind of
exchange because of their ability to carry out extra-cellular electron export.
However, in granules, syntrophic bacteria are the most likely to undergo a selective
pressure inducing the development for DIET capability, because of the thermo-
dynamic limitations related to the hydrogen partial pressure (or formate concen-
tration) and the absolute need to have an electron sink. As a result, syntrophic
bacteria represent the best candidates for performing exoelectrogenesis and DIET.

Alike with the traditional interspecies electron transfer mediated by hydrogen or
formate, DIET should be thermodynamically advantageous for both electron donor
and acceptor. The most common reduced molecules formed during metabolism of
syntrophic or exoelectrogenic bacteria are NADH and reduced ferredoxin with
standard redox potentials (E°′) of −320 and −420 mV respectively. Several
hydrogenases can oxidize these reduced compounds to produce hydrogen
(E°′ = −414 mV). However, the hydrogen partial pressure must stay very low
(<10 Pa), otherwise the reduced compounds accumulate and inhibit growth.
Finding an electron sink is thus vital for syntrophic bacteria. On the other hand, the
first step of the methanogenesis is to reduce the ferredoxin (E°′ = −500 mV), which
is typically made by the hydrogen oxidation. As this reaction is endergonic,
methanogens use energy coming from the chemiosmotic H+ gradient created across
the cell membrane with further exergonic methanogenic reactions catalyzed by
energy-converting hydrogenases [45, 46]. The final step of methanogenesis leads to
methane, which has an E°′ of −240 mV.

5 Electrotrophic Methanogens: The Second Partner

To achieve DIET, exoelectrogens need partners that are able to accept electrons to
generate their energy, such as electrotrophic microorganisms. In 1987, Daniels and
coworkers observed that methanogens cultivated with elemental iron (Feo) as the
only source of electrons were able to reduce CO2 to produce methane [47, 48]. This
means electrons were imported through the cell membrane. Afterwards, it was
found that some Methanobacterium-like and Methanococcus archaea were able to
produce methane faster with iron than other well-known hydrogen-consuming
methanogens [49, 50]. It was also shown that the supply of solid iron particles
increased the methane production in anaerobic sludge compared to endogenous
substrate controls [51]. This suggests a more direct pathway to an electron source
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than hydrogen or formate, and this pathway could represent a competitive advan-
tage for energy in the anaerobic granular sludge. In the same vein, it was shown that
a cathode can serve as a direct electron donor to methanogens [52].

Electrotrophs have two ways to produce energy with directly transferred elec-
trons: simply produce hydrogen, or integrate them directly in the electron transport
chain to produce other reduced compounds and chemiosmotic energy. In the first
case, hydrogenases would generate hydrogen that would be directly used by the
methanogen. In the second case, some membrane-associated hydrogenases (for
example EchA-F, VhoACG, HdrDE, etc.) in methanogens would directly reduce
ferredoxin, methanophenazine or CoM-S-S-CoB, using free electrons [53–56]. At
the same time, those enzymatic complexes could generate a proton or sodium
gradient across the membrane, a useful source of energy for methanogens. Reduced
compounds will be finally used to form methane, or assimilated in biosynthesis, or
even yet used to form hydrogen, that can be used by some hydrogenases in
methanogens. Only Methanosarcinales have cytochromes [54]. But if these
membrane-bound hydrogenases play a role in the transport of electrons across
membranes [53], they might then accept electrons directly and methanogens other
than Methanosarcinales might perform DIET as well.

During evolution, Methanosarcinales developed the ability to produce methane
from CO2 reduction as well as from acetate dismutation. The only exception is the
genus Methanosaeta, whose members were known to be unable to reduce CO2.
Recently, DIET was demonstrated with Methanosaeta harundinacea [32]. M. ha-
rundinacea was grown in coculture with G. metallireducens, a proteobacterium
able to oxidize ethanol with Fe3+ as the only electron acceptor, but unable to
produce hydrogen or formate. However, M. harundinacea, in association with the
ethanol-consuming G. metallireducens, was able to produce methane with an
electron recovery efficiency of 96 ± 2 %, meaning that not only acetate resulting
from the ethanol oxidation was used, but also residual electrons and exogenous CO2

[32]. Those authors found that genes related to CO2 reduction to methane were
highly expressed in such a coculture.

Methanosarcina barkeri was also recently found to have DIET capability when
associated with G. metallireducens [57, 58]. Interestingly, the direct use of electrons
by M. barkeri does not inhibit the acetoclastic pathway, which was the case when
hydrogen was present [59]. The ability of processing acetate at the same time as
reducing CO2 represents a competitive advantage for those methanogens that can be
involved in DIET.

Recently, one strain of Sporomusa sp. was shown to grow as an acetogen with
Fe(0) as the sole electron donor and to enhance iron corrosion, which was the first
demonstration that bio-corrosion can be mediated by pure acetogenic bacteria [60].
This strain is thus able to take electrons directly from an extracellular donor to
produce acetate: similar mechanism is also plausible in anaerobic granules.
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6 A New Role for the Granule Extracellular Polymeric
Substances (EPS): Electron Dispatcher

In granule, mixed populations are surrounded by dead cells, debris and inert matter,
embedded in extracellular polymeric substances (EPS), that constitute the matrix of
biofilms [61]. EPS contain proteins, polysaccharides, enzymes, humic substances,
lipids, nucleic acids, other complex organic molecules and minerals and can rep-
resent up to 20 % of the dry weight of a biofilm. The EPS take form and change
over time. As EPS are mostly synthesized by nearby cells, their characteristics and
properties are highly related to the populations they harbour. In a column of sand
(approximately 10 cm) that was colonized by S. oneidensis MR-1, Ntarlagiannis
and coworkers [62] showed that the bacteria synthesized nanowires all around each
sand grain “hardwiring” the column bottom up, so that oxygen, the terminal
electron acceptor, could be reached at the top. Even when there is a distance in cm
between the electron donors and acceptors, cells can develop mechanisms to
overcome the distance obstacle. This example shows how cells can impact their
surrounding EPS, create and modify them to their advantage.

The interspecies electron exchange depends on direct or indirect contacts
between cells, which must be stable and durable. With the direct type of contact the
exoelectrogen’s membrane touches the electrotroph’s membrane and electrons have
just to cross the two membranes. That is the optimal way to perform DIET. But in
lab-scale experiments, DIET has only been observed with cocultures, which
develop as aggregates alike anaerobic granules, and it is likely that contact between
cells can only be indirect. Indirect contact implies vectors to conduct electrons from
one to another cell and those vectors should be part of the EPS. They were first
evidenced in studies on dissimilatory metal oxides [63]. Then, they were given a
role of electron shuttles with the development of BES systems. Electron shuttles
could be humic substances, riboflavins, cystein, sulphide, phenazine, anthrahy-
droquinone disulfonate (AQDS), etc. [11]. Those molecules could be reduced and
oxidized with relative ease, compared to metal oxides, facilitating the electron
exchange from a donor cell to a receptor one (or an electrode). Cell components or
molecules such as flagella and nanowires, cytochromes, pilin, flavins and even
DNA are all candidates to play a role in direct electron transfer in biofilms [17, 34,
36, 43, 64–66].

Another vector possibility for electron transfer is to use other cells, alive or dead.
Nielsen and coworkers showed in sea sediments, that hydrogen sulphide and
organic matter that are sufficiently deep so to not have access to oxygen at the
surface, were nevertheless oxidized because electrons could travel up to 12 mm
across the sediment upper layer [67, 68]. They also demonstrated that the native
conductors were long, filamentous bacteria of the Desulfobulbaceae family, able to
grow and elongate fast in vertically expanded filaments, and to transport electrons
across centimeter-long distances [69]. Conductive minerals also seem to play a role
in the sediment conductivity [70]. On the other hand, Esteve-Nunez and coworkers
[71] showed that G. sulfurreducens had externally-bound cytochromes so that the
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cell could act as electron-accepting capacitors and could metabolically function
during 8 min without electron acceptors in the medium. In total, 107 electrons could
be accepted per cell. Within an EPS-dense biofilm, it is realistic to imagine that
electrons transit from an exoelectrogenic cell to other cell walls to finally reach the
membrane of an electrotrophic cell. Likewise, debris of dead cells could also be
used to transfer electrons to higher redox zones.

Anaerobic granules have been found electrically conductive. This conductance
does not seem to be related to minerals such as iron contained in the granules, since
the temperature dependence response of the aggregate conductance was charac-
teristic of the organic metallic-like conductance previously described for the pili of
G. sulfurreducens and was inconsistent with minerals conductance [72].
Incidentally a moderate correlation was found (r = 0.67) between the abundance of
Geobacter species in the UASB granules and granule conductivity, suggesting that
Geobacter contributed to granule conductivity [73]. In contrast, mineral particles
such as magnetite, carbon cloth, granular activated carbon, and biochar have been
shown able to facilitate electron transfer, presumably DIET [58, 74–76].
Conductive particles were even shown experimentally that they could replace EPS
as biological vectors after anaerobic granules were disintegrated and washed [77].
Although the use of minerals to increase the anaerobic reactors efficiency was
known for a long time, it is only recently that DIET is seen as one mechanism
behind these positive impacts in anaerobic digestion.

Finally, electron vectors should have a redox potential (E′) so that DIET is
thermodynamically feasible, i.e. a potential that results in a negative change in
Gibbs free energy (ΔG′). Vectors in EPS must hence have a higher E′ than that of
the reduced compounds formed during the substrate oxidation and a lower E′ than
the ultimate electron acceptor. As an example, the ΔG′ of NADH oxidation coupled
to an electron vector reduction is given by:

DG0 ¼ DG�0 þ R � T � ln NADþ½ � � vector�½ �
NADH½ � � vectorþ½ �

For ΔG′ to be negative, as in the case of the molecular hydrogen (H2) transfer, the
concentration of reduced vectors should be low. If electrotrophic methanogens
capture electrons as fast as the vectors are reduced, cells would be able to regenerate
their NADH as they would be permanently surrounded by oxidized vector
molecules.

7 Conclusion

DIET is a recently discovered form of extracellular electron transfer in which
microorganisms exchange electrons to cooperatively degrade organic compounds
under anaerobic conditions. The phenomenon might also happen in anoxic or
aerobic environments, with terminal electron acceptors other than CO2, such as
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sulfate, nitrate, protons or oxygen. This would permit, for example, aerobic cells
that live deeply in biofilms to metabolize their substrate even though they have
difficulty in accessing oxygen, since O2 diffusion is limited. DIET could be a more
generalized way of getting energy for microbes than it was previously thought,
being effected in a large variety of environments.

DIET is potentially an important mechanism for electron exchange in the
anaerobic consortia, involved in the conversion of organic wastes into methane,
particularly anaerobic granules used in the wastewater treatment (Fig. 1). Though,
there has not yet been any direct experimental observation of DIET within such
granules, and indirect clues of DIET relate only to Geobacter-enriched granules
from brewery anaerobic wastewater treatment plants. Hence, there is still much
work needed to understand this phenomenon. Genomic and proteomic studies on
the complex populations of multispecies biofilms and chemical and physical
characterizations of EPS should advance the DIET evidence and understanding in
the near future.

A better mechanistic understanding of DIET will allow for technology
improvement in the anaerobic digestion field, such as based on the artificial
enhancement of DIET.
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A Critical Assessment of Microbiological
Biogas to Biomethane Upgrading Systems

Simon K.-M.R. Rittmann

Abstract Microbiological biogas upgrading could become a promising technology
for production of methane (CH4). This is, storage of irregular generated electricity
results in a need to store electricity generated at peak times for use at non-peak
times, which could be achieved in an intermediate step by electrolysis of water
to molecular hydrogen (H2). Microbiological biogas upgrading can be performed by
contacting carbon dioxide (CO2), H2 and hydrogenotrophic methanogenic Archaea
either in situ in an anaerobic digester, or ex situ in a separate bioreactor. In situ
microbiological biogas upgrading is indicated to require thorough bioprocess
development, because only low volumetric CH4 production rates and low CH4

fermentation offgas content have been achieved. Higher volumetric production rates
are shown for the ex situ microbiological biogas upgrading compared to in situ
microbiological biogas upgrading. However, the ex situ microbiological biogas
upgrading currently suffers from H2 gas liquid mass transfer limitation, which
results in low volumetric CH4 productivity compared to pure H2/CO2 conversion to
CH4. If waste gas utilization from biological and industrial sources can be shown
without reduction in volumetric CH4 productivity, as well as if the aim of a single
stage conversion to a CH4 fermentation offgas content exceeding 95 vol% can be
demonstrated, ex situ microbiological biogas upgrading with pure or enrichment
cultures of methanogens could become a promising future technology for almost
CO2-neutral biomethane production.
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1 Introduction

Renewable energy production and technology development become increasingly
important regarding the inevitable forthcoming ending of coal, oil and gas reserves
as well as the accelerated accumulation of greenhouse gasses in the Earth’s
atmosphere. The accumulation of greenhouse gasses in the atmosphere will pre-
sumably be tremendously increased in rate through exploitation and burning of
non-renewable fossil fuels (natural gas, coal and oil) [1–3]. Exploitation and uti-
lization of fossil fuels will contribute massively to greenhouse gas production upon
combustion of fossil fuels to carbon dioxide (CO2). Another drawback of natural
gas (and oil) exploitation is that production sites are located in remote and some-
times disputed areas, which could lead to supply insecurities and dependence on
bigger players in the natural gas supplier and exploration/exploitation business.
Hithereto, the only demonstrated environmentally friendly renewable gas produc-
tion technology at industrial scale is anaerobic digestion of biomass originating
from agricultural residues and organic waste for biogas (consisting mainly of
methane (CH4) and CO2)) production [4, 5]. Anaerobic digestion is usually applied
at decentralized production sites, and should be considered in a scenario for
independent renewable energy production, being equally able to partially replace
natural gas production and utilization—if being properly conducted, operated and
performed. Moreover, anaerobic digestion is considered being a CO2-neutral
technology, because all the CO2 emitted through combustion and production of
biogas had initially been fixed in biomass.

One drawback of biogas production through anaerobic digestion of biomass is the
dilution of CH4 with CO2, which results in a low calorimetric value of biogas [6, 7].
Therefore, in order to produce an equal replacement for natural gas, biogas could be
microbiologically upgraded to biomethane, whereof the major component is CH4.
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Another challenge to the anaerobic digestion technology for biogas production is
the fact that currently mostly decentralized production and consumption of biogas is
being performed. Therefore, application of microbiological biogas upgrading, by
conversion of residual CO2 to CH4, would enable the introduction of almost pure
CH4 into the natural gas grid. This is, biomethane could be inducted into the natural
gas grid and transported from decentralized production sites to the consumer through
the existing natural gas pipeline and distribution infrastructure. Hence, microbio-
logically produced biomethane, from remote decentralized production sites, would
then be available to the consumers. Furthermore, biogas producers wouldn’t have
the need for onsite processing of biogas for e.g. electricity generation.

Concerning renewable electricity production (wind and solar electricity) the dis-
tribution of electricity during peak production times is currently limited regarding a
shortage of power transmission lines. In this regard, renewable energy production
processes capable of converting and storing electricity in the form of chemical energy
are an interesting prospect, because irregular generated electricity results in a need to
store electricity generated at peak times for use at non-peak times. Hence, microbi-
ological biogas upgrading could be one option to store renewably generated electricity
via molecular hydrogen (H2) production (bywater electrolysis) and concomitant (bio)
methanation of the CO2 part of biogas by reduction with H2 to biomethane—a
technological process chain often referred to as power-to-gas.

In general, the upgrading of biogas to biomethane can be accomplished by
physicochemical separation and disposing of all gaseous compounds other than
CH4 by different methods such as gas/gas or liquid/gas separation by membrane
separation, vacuum or pressure swing adsorption, as well as by using cryogenic
separation as comprehensively reviewed elsewhere [6, 8].

Typically, biogas is composed of CO2, hydrogen sulphide (H2S), water (H2O),
ammonia and other trace compounds, which vary in quantity depending on the
substrate used for biogas production. After separation and disposing of CO2 from
CH4, purified CH4 could be fed into the natural gas grid. The CO2, which has been
separated from biogas can be upgraded by the reduction with H2 using a classical
chemical reaction referred to as Sabatier process (please refer to literature cited in
[9]), which is already carried out at industrial scale. The principle stoichiometric
reaction equation for the Sabatier process is:

CO2 þ 4H2 ! CH4 þ 2H2O DGo ¼ �130:7 kJ mol�1:

The Sabatier process has a requirement for pure reactant gasses, high reaction
temperatures and putative expensive and rare elements for chemical catalyst pro-
duction. Due to the sensitivity of the chemical catalyst to extended exposure
towards reactant gas impurities (i.e. O2 and other trace compounds), thorough
upstream gas cleaning is required before a reduction of CO2 with H2 can be per-
formed. Nevertheless, the chemical catalysts applied in the Sabatier-process
degenerate over time, because after biogas purification gaseous trace compounds
are still present in the reactant gas, which are detrimental to the chemical catalyst
and demand regular replacement [10, 11].
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Instead of physicochemical separation of biogas into CH4 and its by-product
compounds, the CO2 part of biogas can be microbiologically upgraded by reduction
of CH4 with H2. Microbiological upgrading of CO2 to biomethane can be per-
formed by each of the three biomethanation technologies, but only in two principal
different set-ups (Fig. 1):

(1) In situ microbiological biogas upgrading by adding H2 into the anaerobic
digester

(2) Ex situ microbiological biogas upgrading in a separate bioreactor by con-
tacting H2, CO2 and an enrichment culture mainly composed of hydrogeno-
trophic methanogens

(3) Ex situ microbiological biogas upgrading in a separate bioreactor by con-
tacting H2, CO2 and a pure culture of hydrogenotrophic methanogens

From a microbiological point of view upgrading of biogas to biomethane with H2 is
performed by an intriguing group of microorganisms from the domain Archaea, which
are referred to as hydrogenotrophic methanogens [12–15]. Hydrogenotrophic metha-
nogenic Archaea are fascinating organisms due to their extraordinary physiological,
biochemical and biotechnological features [9, 14–17]. It is well known that hydro-
genotrophic methanogens fulfil an important role in the anaerobic digestion process

Fig. 1 Two principle schematic set-ups for the microbiological upgrading of biogas to biomethane
are presented. H2 from renewable energy production is converted e.g. via water electrolysis (H2

storage tank). The fermentation offgas needs to be analysed regarding the composition of CH4, CO2,
H2 (and putatively also H2S). a shows in situ biogas upgrading by addition of H2 directly into the
anaerobic digester. Due to the simplicity of the set-up a separate bioreactor does not have to be
included. In (b) the principle set-up for ex situ microbiological biogas upgrading in a separate
bioreactor is shown. In this bioreactor H2, biogas and an enrichment culture comprising mainly of
hydrogenotrophic methanogens, or a pure culture of hydrogenotrophic methanogens, can be used for
H2/CO2 conversion. In this set-up CO2 from biogas (or also from other CO2 or H2 containing
industrial flue gasses) can be converted to biomethane under defined process conditions.
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[18, 19]. Biomass breakdown and hydrolysis in anaerobic digesters is arranged by a
complex consortium of syntrophic growing organisms, including biohydrogen producing
and acetogenicmicrobes, which precede hydrogenotrophic and acetoclasticmethanogens
in the anaerobic degradation reactions [14]. Besides strict hydrogenotrophicmethanogens
also facultative hydrogenotrophic methanogens have already been thoroughly charac-
terized [14, 20]. Although methanogens can be discriminated by using biochemical,
bioprocess technological, molecular biological and physiological methods [9, 20] the
presence or absence of cytochromes can also be used for discriminating different groups
of methanogens [14]. The requirement of hydrogenotrophic methanogens containing
cytochromes for higher partial pressures of H2 is at least ten times higher compared to
non-cytochrome containing hydrogenotrophic methanogens. This is, methanogens with
cytochromes can grow at partial pressures of H2 as low as 1–10 Pa [14].

Methanation of H2 and CO2 for CH4 production by using pure reactant gasses
and microbial monocultures has already received much attention in the past dec-
ades, and, as reviewed elsewhere, the cultivation of hydrogenotrophic methanogens
has been accomplished using different laboratory-scale bioreactor systems [9].
Quantitative bioprocess development, including scale-up of biomethanation, has
only recently become a re-emerging focus [9, 21–23], despite its powerful volu-
metric CH4 production rates being known for a long time [24].

Only in a few number of studies the introduction of H2 into anaerobic digesters
at laboratory scale bioreactors was reported for the purpose of in situ microbio-
logical biogas upgrading. Also ex situ microbiological biogas upgrading in a
postprocessing step contacting H2 and biogas in a separate bioreactor containing
either a mixed culture of enriched hydrogenotrophic methanogens or a pure culture
of hydrogenotrophic methanogens has also only been rarely examined at laboratory
scale, as it will be shown in the review sections below.

In this review different lab-scale microbiological biogas upgrading technologies
using hydrogenotrophic methanogens are presented. Furthermore, in situ as well as
ex situ hydrogenotrophic biomethanation technologies for microbiological biogas
upgrading will be quantitatively compared by analysing data available from
available publications. First, a recapitulation on the state of the art of the different
hydrogenotrophic microbiological biogas upgrading technologies is presented.
Thereafter, the pros and cons as well as the industrial readiness of the different
technologies will be critically discussed.

2 Review

2.1 In situ Microbiological Biogas Upgrading By Addition
of H2 into Anaerobic Digesters

In situ microbiological biogas upgrading by introducing H2 into an anaerobic
digester has been successfully performed at lab-scale. A 4.5 L continuously stirred
tank reactor (CSTR) with 3.5 L working volume containing a thermophilic
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anaerobic mixed culture was operated at 55 °C [25]. The H2 gassing rate to the
microbiological biogas upgrading bioreactor was 0.0005 volume gas per volume
liquid per minute (vvm). H2 gas flow entered at the bottom of the CSTR through
ceramic gas diffusers. The agitation speed was set to 65 rpm. The CSTR was
operated for 1.5 months in semi-continuous culture mode. A control bioreactor of
the same type was operated under the same conditions but without the addition of
H2. The pH value was not controlled during the cultivation, which resulted in an
increase of pH [25], due to stripping of CO2. As a consequence of higher pH the
aceticlastic methanogens might have become negatively affected in volumetric CH4

productivity. As discussed by the authors, strategies for pH control need to be
developed and applied. Furthermore, it seems that H2 and CO2 could also have been
fixed for acetogenensis [26]. Due to the low H2 gassing rate, and low agitation
speed applied in the bioreactor, only little gas to liquid phase mass transfer of H2

could be accomplished. Consequently only little CH4 was produced by hydro-
genotrophic methanogens, which is indicated in a low methane evolution rate
(MER) of 0.25 mmol L−1 h−1 (calculated from H2 consumption rate divided by
four). However, combining anaerobic digestion and hydrogenotrophic methanation
a total MER of 0.84 mmol CH4 L

−1 h−1 could be achieved. H2 gas to liquid phase
mass transfer needs to be increased in order to be able to increase MER, because
unconverted H2 and CO2 still remained in the fermentation offgas, which is
reflected in the low CH4 offgas content of the microbiological biogas upgrading
bioreactor comprising 65, 20 and 15 vol% CH4, H2 and CO2, respectively, and
compared to 62 and 38 vol% of CH4 and CO2 in the control bioreactor, respec-
tively. Clearly a partial exchange of CO2 to H2 content in the fermentation offgas
has been achieved.

In situ microbiological biogas upgrading of synthetic biogas by addition of H2

was performed in a 1 L CSTR filled with digested manure to a working volume of
0.6 L. The CSTR was operated at 55 °C at a hydraulic retention time (HRT) of
15 days [27]. A reference bioreactor, operated under identical conditions, except for
the addition of H2, served as control. Different strategies for H2 gas to liquid mass
transfer were applied and the response of two different gas diffusers (column dif-
fuser 0.5–1.0 mm in diameter, or a ceramic diffuser 14–40 mm in diameter), during
application of two different agitation speeds (150 and 300 rpm) was investigated.
A H2 gassing rate of 0.0012 vvm was applied. Faster agitation speed was found to
increase H2 solubility and consequently led to better microbiological (synthetic)
biogas upgrading. Utilizing the ceramic diffuser led to increased H2 gas to liquid
mass transfer due to smaller bubble size generation, compared to the utilization of
the column diffuser for gas addition during fermentation. Highest MER of
0.69 mmol CH4 L−1 h−1 (calculated from H2 consumption rate) was attained by
using the column diffuser at an agitation speed of 150 rpm, resulting in a total MER
of 1.65 mmol CH4 L

−1 h−1 obtained by combined CH4 production from anaerobic
digestion as well as from in situ microbiological biogas upgrading. Incomplete
conversion of introduced H2 to CH4 and partial exchange of the remaining CO2

with H2 could not be avoided, which was obviously due to the limited ability of the
applied system for quantitative H2 gas to liquid mass transfer. Complete conversion
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of CO2 and H2 is, however, demanded for an envisioned industrial application of
the technology. Nevertheless, long term operation over a period of 150 days under
pH controlled conditions could be achieved in semi-continuous culture mode.

2.2 Ex situ Microbiological Biogas Upgrading in a Separate
Bioreactor By Contacting H2, Biogas
and An Enrichment Culture Including
Hydrogenotrophic Methanogens

An enriched hydrogenotrophic and methanogenic mixed culture was established for
microbiological upgrading of synthetic biogas, by pre-incubating and adapting a
microbial consortium for half a year in closed batch mode with H2/CO2 (ratio of
4:1) gassing only [7]. For upgrading experiments a 1 L bottle with 0.6 L working
volume was used as bioreactor. The bioreactor was inoculated with the
pre-conditioned hydrogenotrophic and methanogenic enrichment culture and the
suspension was stirred at either 500 or 800 rpm, respectively. The test gas
resembled H2-enriched biogas of the following composition: 60:25:15 H2:CH4:
CO2, respectively. All experiments were performed in semi-continuous culture
mode. High offgas quality of 94.2 vol% CH4 was achieved in a setup applying an
agitation speed of 800 rpm and a H2 gassing rate of 0.0083 vvm. Under the
aforementioned conditions a MER of 5.39 CH4 L

−1 h−1 (calculated from H2 con-
sumption rate) was achieved. The highest MER of 10.60 CH4 L

−1 h−1 was achieved
by applying an agitation speed of 800 rpm, however at the expense of reduced
fermentation offgas quality.

Technical grade H2/CO2 conversion was carried out with a mixed microbial
hydrogenotrophic and methanogenic enrichment culture in a 5 L stirred tank bio-
reactor with 2 L working volume at 37 and 60 °C, respectively [28]. Fermentations
were performed in continuous culture with and without cell recycle. Also barophilic
fermentations were conducted at 37 °C with up to 3109.5 kPa in a 2 L specially
constructed bioreactor containing 1 L working volume [28]. Unfortunately, no
information on the agitation speed and almost no information on the H2 gassing
rates are provided in the publication. The mixed anaerobic enrichment culture was
obtained after 7 days and by applying a HRT of 8.2 days a MER of 24.7 mmol CH4

L−1 h−1 was obtained in the 5 L bioreactor. During overpressure experiments at
1385.9 kPa the mixed hydrogenotrophic methanogenic enrichment culture pro-
duced CH4 at a MER of 40.2 mmol CH4 L

−1 h−1. However, only after an extended
lag time for enrichment culture adaption. In another series of experiments the mixed
hydrogenotrophic and methanogenic enrichment culture was successfully adapted
to a fermentation temperature of 60 °C and a significant increase of MER could be
detected. Although supported by cell recycle, a MER of 446.2 mmol CH4 L−1

h−1 could be finally obtained. The results of this publication show that enriched
microbial cultures can be applied for H2/CO2 conversion and that cell recycle with
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mixed hydrogenotrophic methanogenic cultures is feasible. The results presented in
the publication indicate elevated volumetric CH4 productivity under thermophilic
growth conditions, compared to mesophilic growth conditions with and without cell
recycle.

2.3 Ex situ Microbiological Biogas Upgrading in a Separate
Bioreactor By Contacting H2, Biogas and a Pure
Culture of Hydrogenotrophic Methanogens

Microbiological biogas upgrading was performed by contacting biogas, H2 and a
pure culture of Methanothermobacter thermoautotrophicum at 62 °C in
pH-controlled fed-batch cultivation mode. The bioreactor specification and con-
figuration was unfortunately not provided in the study [29]. The experimental
set-up was used to examine gas liquid mass transfer by application of two different
hollow fibre membrane cassettes either operated in parallel counter current flow
mode or in orthogonal flow mode for H2-enriched biogas addition to a suspension
containing M. thermoautotrophicum. An enrichment of the CH4 content of biogas
from 50–60 to 96 vol% could be achieved. During application of the hollow fibre
membrane cassette inside the stirred tank bioreactor under orthogonal flow process
mode the molar flux of H2-enriched biogas into the liquid phase was found to be
higher compared to the application of hollow fibre module cassette in counter
current flow mode outside of the bioreactor. Unfortunately, no volumetric pro-
duction rates could be calculated from data presented [29]. The authors state that a
MER as high as 10400 mmol CH4 L

−1 h−1 could be obtained (as calculated from
MER of biogas production via microbiological biogas upgrading by a difference of
14 MJ m−3). Furthermore, an almost full conversion of CO2 with H2 to a final CH4

and CO2 content in the fermentation offgas of 96 and 4 vol%, respectively, could be
achieved. Microbiological biogas upgrading by contacting H2- enriched biogas and
a pure culture of M. thermoautotrophicum could be successfully performed, and the
caloric value in the fermentation offgas had been increased from 21 MJ m−3 to
about 35 MJ m−3.

Microbiological biogas upgrading by addition of external H2 was performed in
chemostat culture by using a pure culture of Methanothermobacter marburgensis
operated at 65 °C, applying an agitation speed of 1500 rpm and a pressure of 250 kPa
in a 10 L laboratory CSTR containing a working volume of 5 L [22]. A H2 gassing
rate of 0.325 vvm was used in for biogas upgrading. Impure biogas was used in the
experiment and could be successfully upgraded by addition of external H2, but
unfortunately no information on volumetric productivity and CH4 vol% in fermen-
tation offgas is presented in the publication. However, the purpose of the study was to
develop a method to be able to quantify volumetric productivities and to detect
physiological effects on M. marburgensis when exposed to different kind of indus-
trial emission flue gasses, and to show that the pure culture of M. marburgensis was
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not negatively affected by uncharacterized compounds contained in these emission
flue gasses. The authors state that MER and CH4 offgas content remained the same in
real gas application compared to reference experiments under equal application of
gas to liquid mass transfer conditions. The presented method allows comparingMER
obtained from application of emission flue gas to MER obtained from application
pure H2/CO2 under steady state chemostat culture conditions for analysis and
quantification of the volumetric productivity of hydrogenotrophic and methanogenic
cultures. Furthermore, it was shown that all factors affecting gas to liquid mass
transfer were included in the model.

A postprocessing step for microbiological upgrading of synthetic and industrial
biogas was performed by using a pure culture of a M. thermoautotrophicus DSM
3590 in a laboratory-bench top bioreactor at a temperature of 60 °C and an agitation
speed of 700 rpm in a working volume of 3 L in chemostat culture [30]. H2 gassing
rates of 0.067, 0.133 and 0.533 vvm were applied in synthetic biogas upgrading
experiments, and a H2 gassing rate of 0.067 vvm were used in the experiment for
microbiological upgrading of industrial biogas. When introducing the synthetic
biogas together with H2 at gassing rates of H2 of 0.067 vvm and 0.533 vvm a MER
of 23.4 and 50.0 mmol CH4 L

−1 h−1 were achieved, respectively. The experiments
with industrial biogas resulted in a MER of 22.3 mmol CH4 L

−1 h−1. Hence, only
little difference in MER between application of synthetic and industrial biogas was
found and upgrading of CO2 was shown to be successful. However, bioprocess
development work still needs to be performed in order to be able to account for the
reduced MER during microbiological biogas upgrading. The reduced MER
observed during synthetic and industrial biogas upgrading experiments is due to the
CH4 part present in the biogas, which acts as an inert gas, because CH4 will be
transferred from the gas to the liquid phase alongside H2 and CO2 and replaces
valuable gaseous substrate which would usually be available to the methanogens.

3 Discussion

The above recapitulation focussing on different aspects of microbiological biogas
upgrading experiments, and the extraction of different quantitative data available on
the different systems (Table 1), show that only few experimental results have been
obtained. In situ microbiological biogas upgrading shows only low volumetric
production rates, which are a result of the low applied H2 gassing rates. Moreover,
by analysing offgas composition of in situ microbiologically upgraded biogas it
could be revealed that a gas exchange of the fermentation offgas from CO2 to H2

was performed. Consequently, the calorimetric value of the processed biogas was
only upgraded by addition of H2. Hence, complete transformation of CO2 with H2

to CH4 could not be obtained by in situ biogas upgrading. This is, a full hydro-
genotrophic biomethanation of CO2 during anaerobic digestion of biomass is yet
only feasible if all the H2 can be quantitatively forced into the liquid phase to be
alongside CO2 in order to be convertible to CH4 by hydrogenotrophic methanogens.
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However, an increase of the H2 gassing rate, combined with an increase of agitation
speed as well as an increase of cultivation pressure, would consequently result in an
elevated H2 gas to liquid mass transfer, which is expected to result in higher MER
values during in situ microbiological biogas upgrading.

Another unresolved problem for upgrading biogas by contacting H2 and
anaerobic digester sludge inside fermentors emerges from underestimated con-
centrations of H2 residing in bubbles inside anaerobic digesters [31]. Poorly soluble
gasses (i.e. H2) will remain overconcentrated inside ascent bubbles. This is, a higher
amount of dissolved H2, than measured during anaerobic digestion fermentation
offgas analysis, is already present in the liquid phase of the highly viscous anaer-
obic sludge due to limited mixing [31]. However, the behaviour of additionally
added H2 during in situ microbiological biogas upgrading is difficult to assess in
relation to anaerobic digestion, and the possible discussion remains to be resumed,
and results are to be re-interpreted, when new data has been collected upon H2

concentration probing from inside the anaerobic digester sludge (during in situ
microbiological biogas upgrading experiments).

In situ microbiological biogas upgrading was until now only performed in
laboratory type anaerobic digesters. Development of the technology regarding
volumetric productivity and complete conversion to biomethane is still on demand.
Thereafter, and if proper H2 gas to liquid mass transfer can be achieved, the
technology readiness has to be proven in pilot plant scale. However, the below
raised questions regarding in situ microbiological biogas upgrading technology
remain not the only issues to be addressed before an industrial application can be
performed:

• How do irregular periods of H2 introduction (as well as subsequent changes of
pH, oxidation-reduction potential (ORP), CO2 removal etc.) affect the microbial
population structure, productivity and fermentation offgas composition?

• How will the in situ microbiological biogas upgrading technology be integrated
to serve as power-to-gas conversion technology when irregular supply of H2

occur, and an immediate start-up (or shut-down) of the in situ upgrading system
would be urgently required?

• How can the feeding ratio of H2 to CO2 being controlled online at 4:1 in order to
be able to quantitatively convert all CO2 into CH4?

• How can the introduction of H2 into industrial scale type anaerobic digesters
being accomplished regarding engineering, infrastructure investments, upstream
and downstream processing, energy return of energy investment, etc.?

• What is needed to re-adapt existing security measurements in order to be able to
meet commercialization of the in situ microbiological biogas upgrading tech-
nology, and where is an installation of such a technology useful and
appropriate?

Applying the anaerobic digestion model No. 1 (ADM1) could answer some of the
above raised questions. In a recent study published by Bensmann et al. the authors
adapted ADM1 to the extent that in situ microbiological biogas upgrading has been
included in the simulation [32]. The authors modelled different scenarios in which
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either biological limitation or H2 gas to liquid mass transfer limitation was included
in the model. An emphasis was given to model the influence of the specific
transport coefficient of H2 (kLaH2) on in situ microbiological biogas upgrading.
Furthermore, the authors simulated whether control strategies could be included in
the modified ADM1 version. The authors suggest a scenario in which specific H2

transfer coefficients kLaH2 of 30 h−1 should be applied. However, there is only a
restricted number of publications available on kLaH2 values that are commonly
found in anaerobic digesters. This is, typical kLaH2 values are in the range of
approximately 9 h−1 [33]. Hence, as suggested before, more quantitative data is
needed for in situ microbiological biogas upgrading, not only from simulations, but
also from experiments.

Ex situ conversion of a synthetic biogas mixture or technical grade H2/CO2 by
enriched hydrogenotrophic methanogenic consortia was performed in separate
bioreactors during a postprocessing step in semi-continuous [7] and continuous
culture [28], respectively. Comparing MER values, presented from mesophilic
versus thermophilic culture conditions for mixed hydrogenotrophic methanogens
used for CH4 production (Table 1), reveals an increase of MER by >90 % due to
application of thermophilic cultivation conditions [28]. However, this was only the
result of a single analysis and more experimental data is obviously required to
support this conclusion. In this respect, one has to also keep in mind that enriching
hydrogenotrophic methanogenic microbial cultures might require a pre-adaption
period in order to make the culture fully acclimated to special fermentation tem-
peratures and/or H2/CO2 gassing rates, a modus operandi which is not required for
pure culture of microorganisms. The results of above presented studies also show
that a fully acclimated hydrogenotrophic methanogenic enrichment culture can
sustain overpressure conditions and is furthermore capable of microbiological
biogas upgrading as well as of achieving high MERs [28], a finding, in controversy
to discussions found elsewhere [30]. Eventually, during experiments applying a
monoculture of hydrogenotrophic methanogens it has been shown, that an increase
of the pressure inside the bioreactor will elevate the MER, which is a consequence
of increasing the maximum solubility of gasses inside the liquid phase [23, 24, 30].
Hence, by applying overpressure an increase of the MER could be achieved, if a
hydrogenotrophic and methanogenic enrichment culture would be utilized for ex
situ microbiological biogas upgrading.

Interestingly, also a cell-recycle system was used to increase the MER during H2/
CO2 conversion experiment using a mixed microbial culture, compared to only low
MERs which have been experimentally determined when semi-continuous culture or
continuous culture had been applied for microbiological biogas upgrading [28]. This
finding is consistent to results obtained for a pure culture of M. marburgensis [23].
During application of the cell-recycle system theMER inceased by 42% compared to
standard bioprocessing conditions [28]. In contrast to the utilization of the in situ
microbiological biogas upgrading technology the H2 gas to liquid mass transfer is
much higher for suspensions containing pure or enrichment cultures of hydrogeno-
trophic methanogens, because the viscosity of such a free floating cell suspension is
lower compared to the highly viscous anaerobic digester sludge.
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Another issue concerning the stability of the enrichment culture could arise from
application of dynamic process conditions. This is, a technology applied for
microbiological biogas upgrading would be required starting up very fast, if urgent
storage of renewable generated electricity via electrolysis of H2O to H2 and con-
version of H2 with CO2 to CH4 is on demand. How can the stability of a mixed
hydrogenotrophic culture be assured during off times? How long does it take to start
up a bioreactor containing a non-pre adapted mixed microbial culture to be enriched
for a specific gas mixture? However, mixed microbial cultures might nevertheless
have advantages compared to pure culture of microorganisms in a scenario wherein
not only the CO2 of biogas is upgraded to biomethane, but in which also CO2 or H2-
containing industrial emission flue gasses have to be converted. An isolation of
novel hydrogenotrophic methanogenic strains from enrichment cultures, exclu-
sively adapted towards gas composition fluctuations, gassing rates, temperature as
well as to other environmental challenging conditions has yet not been attempted,
but could result in the identification and characterisation of useful novel strains for
pure culture H2/CO2 to CH4 conversion. Furthermore, ex situ microbiological
biogas upgrading by contacting biogas, H2 and pure or enrichment cultures of
hydrogenotrophic methanoges in a separate bioreactor has the advantage of
applying individual bioprocess control strategies, applying sophisticated bioreactor
instrumentation as well as streamlining the upstream and downstream processing
area.

Yet, ex situ microbiological biogas upgrading by contacting biogas, H2 and pure
culture of hydrogenotrophic methanogens did also not receive much attention in the
scientific community [22, 29, 30]. In all three available publications concerning pure
culture microbiological biogas upgrading only different thermophilic hydrogeno-
trophic methanogenic strains were used for bioprocessing. This is an interesting
finding, because H2 solubility is lower at higher temperatures, but likely the
advantages of higher conversion speed and reduced contamination risk at elevated
temperatures are strong arguments in favour of using thermophilic hydrogenotrophic
methanogens for microbiological biogas upgrading. The utilization of thermophilic
hydrogenotrophic methanogens in biogas upgrading could be also just have per-
formed arbitrarily, because none of the authors does explicitly state why especially
thermophilic hydrogenotrophic methanogens would be especially suitable for
microbiological biogas upgrading. However, these results are in good agreement to
the findings made for pure H2/CO2 gas conversion using pure culture of hydro-
genotrophic methanogens, wherein almost exclusively Methanothermobacter
spp. were used for bioprocess development [9]. One reason could be that a
non-cytochrome containing microbe could be the right choice to set-up a biological
methanation process, because it shows a lower half-saturation constant for the uptake
of H2. Nevertheless, it remains to be shown, why just Methanothermobacter
spp. should be the right choice to be applied in pure culture bioprocessing for
microbiological biogas upgrading?

The bioprocess operation modes used for examination of microbiological biogas
upgrading were fed-batch [29] and chemostat culture [22, 30]. Especially cultivation
in chemostat culture mode allows structured bioprocess optimization and
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development, which is required in order to overcome the limitations arising during
conversion of gas mixtures containing inert gas compounds [22]. Nevertheless,
experiments in chemostat culture are important, because a continuous culture allows
examining one of the main industrial prerequisites, which is long-term process
stability. Moreover, productivity and other relevant process parameters can be easily
compared in chemostat culture, because conditions remain stable for a certain period
of time as defined by the operator. However, during chemostat culture operation
biomass is washed out of the bioreactor and therefore possibilities circumventing
biomass loss need to be established, especially in anaerobic cultures which are
usually limited in biomass productivity. Furthermore, methods and techniques other
than chemostat culture bioprocessing have to be developed and implemented for
holistic microbiological biogas upgrading, which could allow comparing produc-
tivity and physiology among different hydrogenotrophic methanogens in a much
faster way.

From a methodological point of view the characterisation of novel hydrogeno-
trophic methanogens from pure or enrichment cultures for efficient microbiological
biogas upgrading is highly on demand, because bioprocess development for bio-
logical methanation was, as reviewed elsewhere [9], yet mainly excessively per-
formed by using invariant experiments in fed-batch or chemostat culture
fermentations. Hence, bioprocess development could be improved by using e.g.
dynamic process conditions or by using Design of Experiments (DoE) examination
strategies for rapid screening of relevant process parameters. The implementation
and the use of DoE for bioprocess development and the utilisation of dynamic
process conditions is advantageous, because it accelerates research, if data
exploitation can be properly performed [34]. By using dynamic process conditions
(pulse, shift, ramps or oscillations), knowledge of maximum biological capacity
[21] or yields can be investigated in a short time. Also the examination of limita-
tions, changing productivities, yields, and metabolic states can be achieved through
dynamic experiments [34]. Furthermore by precisely altering process conditions
through application of dynamic experiments putative liquid and gaseous limitations
can be rapidly detected and physiological parameters, which are important for
scale-up and bioprocess development, may be rapidly determined. A very good
example for bioprocess development applying a combination of multivariate and
dynamic experiments using a pure culture of methanogens has only recently pre-
sented [35]. Useful results could be gained from multivariate and dynamic exper-
iments in short time and novel physiological responses interlinked with new
findings on the productivity of M. marburgensis could be revealed.

This comprehensive literature analysis of in situ and ex situ microbiological
biogas upgrading technologies by using hydrogenotrophic and methanogenic
enrichment cultures revealed that no targeted bioprocess development has yet been
performed. However, many publications on bioprocess development using hydro-
genotrophic methanogens grown on pure H2/CO2 are already available [9, 21–23,
35], which could speed up bioprocess development of the microbiological biogas
upgrading technology in respect to the utilization of mixed cultures of hydrogeno-
trophic methanogens. Regarding in situ microbiological biogas upgrading
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aforementioned queries concerning bioprocess development need to be overcome
before even pilot plant scale could be implemented. However, this is not the case for
ex situ microbiological biogas upgrading technologies using pure culture of hy-
drogenotrophic methanogens whereof bioprocess development was already finished
in lab scale conditions and pilot plants are currently being considered, started-up or
are already under operation.

Moreover, a pure or a mixed culture of hydrogenotrophic methanogens could be
used for upgrading CO2, emitted by other biofuel production processes (biohydro-
gen or bioethanol) [17, 36–40], or from wastewater treatment plants, by addition of
H2. Such a broad applicability and flexibility of hydrogenotrophic methanogens for
conversion of H2 and CO2 containing emission waste gasses was already shown for
pure culture of methanogens [22]. Hence, it can be assumed, that also hydrogeno-
trophic methanogenic enrichment cultures are similarly capable of converting H2/
CO2-containing impure reactant gasses—something currently not being achievable
with a chemical catalyst. On the contrary, anaerobic digesters are a source of bio-
logical CO2 emission and, hence, the question might be asked whether an anaerobic
digester could provide additional CO2 uptake and conversion capacity and to what
extent such a modification of an anaerobic digester is feasible and useful?

Major concerns for successful bioprocess development for microbiological
biogas upgrading by addition of H2 to pure or mixed consortia of microbes in a
separate bioreactor includes the following issue: CH4 in biogas will act as an inert
gas. This is, CH4 is transferred alongside with CO2 and H2 from the gas into the
liquid phase, reducing the gas to liquid mass transfer of H2/CO2 [22, 30], which was
found to reduce the volumetric CH4 productivity tremendously [30]. In this respect,
bioreactors other than stirred tank reactors could be considered [9], [41, 42].
Furthermore, high volumetric CH4 productivities are usually demanded for indus-
trial processes. High volumetric CH4 productivity can be achieved by increasing the
H2/CO2 gassing rate, but then a lower offgas product quality will be observed [23],
[30]. However, in this relation also the application of overpressure conditions needs
to be considered [23, 24, 30]. Eventually, in order to achieve a full conversion of
CO2 with H2 a ratio of 1:4 has to be applied [9, 23], otherwise excess H2 or CO2

will be remaining in the fermentation offgas.

4 Conclusions

Microbiological biogas upgrading for carbon capture and utilization using hydro-
genotrophic methanogenic Archaea seems to be a very promising technology for
storage of electricity generated during peak times via electrolysis of H2O to H2 and
subsequent reduction of CO2 to CH4.

The conversion and microbiological upgrading of CO2 to biomethane is feasible.
The quality of biomethane was found to exceed or is close to 95 vol%. At
such offgas quality the biomethane could be introduced into the natural gas
grid (depending on national regulations).
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The production of CO2 emitted after combusting biomethane would be carbon
neutral, because the released CO2 had initially been incorporated into biomass by
photosynthetic organisms.

In situ microbiological biogas upgrading in anaerobic digesters still requires
thorough bioprocess development. Otherwise this process will remain at a low
technology development stage compared to ex situ microbiological biogas
upgrading applying pure or mixed culture of hydrogenotrophic methanogens.

Ex situ microbiological biogas upgrading mainly suffers from inert CH4 gas
liquid mass transfer into the liquid phase during microbiological biogas upgrading,
which results in low volumetric CH4 productivity compared to pure H2/CO2

conversion.
Quantitative analysis of the microbiological biogas upgrading process regarding

commercialization, life cycle assessment and the energy return of energy invest-
ment needs to be performed in order to be able to adequately compare the different
technologies.

If waste gas (originating from biological or industrial sources) utilization can be
shown with only little reduction in volumetric CH4 productivity, as well as if the
aim of a single stage conversion to a CH4 fermentation offgas content exceeding 95
vol% can be demonstrated, ex situ microbiological biogas upgrading with pure or
mixed cultures could become a promising future technology for almost CO2-neutral
renewable natural gas production.
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Influent Fractionation for Modeling
Continuous Anaerobic Digestion Processes

Manfred Lübken, Pascal Kosse, Konrad Koch, Tito Gehring
and Marc Wichern

Abstract The first dynamic model developed to describe anaerobic digestion
processes dates back to 1969. Since then, considerable improvements in identifying
the underlying biochemical processes and associated microorganisms have been
achieved. These have led to an increasing complexity of both model structure and
the standard set of stoichiometric and kinetic parameters. Literature has always paid
attention to kinetic parameter estimation, as this determines model accuracy with
respect to predicting the dynamic behavior of biogas systems. As sufficient com-
puting power is easily available nowadays, sophisticated linear and nonlinear
parameter estimation techniques are applied to evaluate parameter uncertainty.
However, the uncertainty of influent fractionation in these parameter optimization
procedures is generally neglected. As anaerobic digestion systems are currently
increasingly used to convert a broad variety of organic biomass to methane, the lack
of generally accepted guidelines for input characterization adapted to the simulation
model’s characteristics is a considerable limitation of model application to these
substrates. Directly after the introduction of the standardized Anaerobic Digestion
Model No. 1 (ADM1), several publications pointed out that the model’s require-
ment of a detailed influent characterization can hardly be fulfilled. The main
shortcoming of the model application was addressed in the reliable and practical
identification of the model’s input state variables for particulate and soluble car-
bohydrates, proteins and lipids, as well as for the inerts. Several authors derived
biomass characterization procedures, most of them dedicated to a particular sub-
strate, and some of them being of general nature, but none of these approaches have
resulted in a practical standard protocol so far. This review provides an overview of
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existing approaches that improve substrate influent characterization to be used for
state of the art anaerobic digestion models.

Keywords Anaerobic digestion � Mathematical modeling � ADM1 � Influent
characterization � Fractionation
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1 Introduction

Anaerobic digestion (AD) is a multistep process and its complexity has always
stimulated the development of mathematical models to understand the manifold
interactions of substances and microorganisms assigned to each other. Andrews [1]
developed the first AD model in 1969. It was based on the rate-limiting step
approach and considered only the acetoclastic methanogenic process step. The list
of models following the pioneering work of Andrews is extensive as model
development was not directed and a standardized basis was not available. Several
review works have been produced so far to sort the publications within a specific
direction. Husain [2], for instance, reviewed both steady state and dynamic models
able to accurately describe the kinetics of anaerobic digestion, Saravanan and
Sreekrishnan [3] analyzed suitable models for anaerobic biofilm reactors and
Donoso-Bravo et al. [4] addressed methodologies and achievements in parameter
estimation and identification. Substrate specific reviews are available for sewage
sludge [5], lignocellulosic biomass [6] and domestic wastewater [7].

The generic Anaerobic Digestion Model No. 1 (ADM1) is currently the most
frequently used approach for modeling AD of complex wastes, focusing on the
principle processes known as disintegration, hydrolysis, acidogenesis (or fermen-
tation), acetogenesis, and methanogenesis [8, 9]. The term “complex” here refers to
the degradation pathways of the prime products: soluble and particulate carbohy-
drates (Xch), proteins (Xpr), lipids (Xli) and volatile fatty acids (VFAs). As organic
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wastes are very heterogeneous by nature [10, 11], the key to successful modeling
using the ADM1 is subject to detailed knowledge of the substrate influent char-
acteristics, because such fractions trigger the anaerobic degradability.

The ADM1 was mainly designed to be readily extendible and, thus, various
extensions followed, focusing, for instance, on modeling biodegradation processes
of phenol compounds [12] and on sulfate reduction [13]. However, in addition to
extension development, scientists also criticized constructively in order to encourage
improvement of the ADM1. Probably the most serious criticism lies in the substrate
characterization that is closely connected to the hydrolysis step for which the rates
differ for particulate components, such as carbohydrates, proteins and lipids [14, 15].
Generally, ADM1 describes the degradation of composite particulate material (Xc)
with lumped characteristics (see Fig. 1), while the hydrolysis steps describe
well-defined, relatively pure substrates, such as carbohydrates, lipids and proteins.

Sh2

SfaSaaSsu

Sac

Spro

Xch Xpr Xli XI SI

Sch4

Xc

Sbu

Sva

Desintegration

Hydrolysis

Acidogenesis

Acetogenesis

Methanogenesis

Xsu Xaa Xfa

Xac Xh2

Xpro

Xc4

Xc4

Fig. 1 Basic reaction scheme of ADM1 for organic components. Xc composite material, Xch

particulate carbohydrates, Xpr particulate proteins, Xli lipids, XI particulate inerts, SI soluble inerts,
Ssu monosaccharides, Saa amino acids, Sfa long chain fatty acids, Sva valerate, Sbu butyrate, Spro
propionate, Sac acetate, Sh2 hydrogen, Sch4 methane, Xsu sugar degrader, Xaa amino acids degrader,
Xfa long chain fatty acids degrader, Xc4 valerate and butyrate degrader, Xpro propionate degrader,
Xac acetate degrader and Xh2 hydrogen consumer. Basic unit of organic components is kgCOD ∙ m−3

Influent Fractionation for Modeling … 139



All those organic species, as well as molecular hydrogen, are described in terms of
the chemical oxygen demand (COD), while inorganic carbon or inorganic nitrogen
species are described on a molar basis. Due to the heterogeneous nature of organic
wastes, it is neither possible to fix the waste to one lumped characteristic nor
practical to characterize it as a pure substrate [16–18].

The COD of any digester input can generally be divided into two main fractions,
the biodegradable and unbiodegradable part. The unbiodegradable part is composed
of two sub-fractions, particulate inerts XIð Þ and soluble inerts SIð Þ. The biode-
gradable part is handled in a rather complex manner within the ADM1 framework
and is composed of four particulates: Xc; Xch; Xpr and Xli; as well as seven soluble
state variables: Ssu; Saa; Sfa; Sbu; Sva; Spro and Sac. The fraction Xc represents the
precursor when biomass with lumped characteristics, such as sewage sludge, is
treated. However, as pointed out in [19], the default Xc composition in terms of
carbohydrates, proteins, lipids and inert fractions is not in agreement with the typical
composition of sewage sludge. A particular disagreement was found for the par-
ticulate inert fraction, which was set to 44 % of XC; in contrast to the default value of
25 %. Nevertheless, a particular challenge in the correct determination of the single
XC fractions always exists in the fact that the composition of biomass generally
varies significantly, both in terms of biodegradability and degradation kinetics.

Dynamic online monitoring systems have proven to be applicable in AD systems
[20–22], but these systems are generally used to monitor process stability and they
allow only a limited range of process variables to be estimated. More recently, near
infrared spectroscopy (NIRS) was successfully applied for the rapid determination
of feedstock biodegradability [23, 24]. These methods would allow a dynamic
characterization of the digester influent, but they have not yet been coupled to
determine ADM1 input state variables.

Various studies have already been devoted to the issue of substrate character-
ization in ADM1 [16, 17, 19, 25–33]. The methods for the determination of ADM1
input state variables can be grouped into physical-chemical analysis, elemental
analysis, anaerobic respirometry, combination of different model interfaces and
physical-chemical analysis combined with online gas curve calibration procedure
[16, 30]. This review discusses the most relevant approaches which have been
elaborated in recent literature. The focus is on the ADM1, as this model represents
the leading current modeling framework for simulating AD processes, and this
model has the highest requirements for a detailed influent fractionation. Hence,
most of the approaches can be reduced to more simple modeling frameworks.

2 Determination of the Unbiodegradable Fraction

In very general terms, biomass can be split into three main components (Fig. 2):
Water
Organics (commonly qualified as volatile solids (VS) or organic dry matter

(oDM)
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Inerts (inorganics/ash)
Quantification of the inert and, hence, unbiodegradable fraction is the first step in

estimating the biodegradability of the input [34]. In ADM1, the factor D was intro-
duced to describe the ultimate biodegradability, where D = 1 indicates a totally
biodegradable organic compound,which is seldom found. Furthermore, the authors of
the ADM1 suggest using the term “substrate” to indicate biodegradable organics (D),
while unbiodegradable organics (1-D) are termed inerts. In order to avoid confusion
with the input biomass, which is also often termed substrate, the organic fraction of
both biodegradable and unbiodegradable is simply summarized as organics.

Models, such as the ADM1, typically distinguish between soluble (S) and par-
ticulate (X) material. In order to obtain the two fractions, the input is usually
prepared through a filter with a 0.45 µm pore size [35–38]. Afterwards, the two
fractions are dried at 105 °C (to obtain the amount of total solids: TS) and thereafter
at 550 °C (to obtain the amount of VS) until a constant weight is reached [39, 40].
However, the loss of volatile compounds during TS and VS determination (such as
VFAs, lactic acid and alcohols) should be taken into account, especially when
ensiled energy crops are used as input biomass, and hence, correction should be
applied [41]. Figure 2 summarizes a first step for the characterization of input
biomass and the method of determination, as mentioned above.

As a basis for more complex models, lumped parameters are chosen to account
for a wide range of substances. The most common parameters are the COD for rather
liquid biomass, such as sewage sludge, and the VS concentration for rather solid
biomass, such as biowaste, manure and energy crops. Both parameters are linked and
can be converted by theoretical oxygen demand (ThOD) or by means of empirical
approaches (see Chap. 3.1). When applying the approach presented in Fig. 2, the two
fractions of soluble (SI) and particulate (XI) inerts will be zero, since the method of
sample treatment (loss-on-ignition method at 550 °C) causes volatilization of all
oxidizable compounds. Hence, this approach is not suitable for the characterization
of the inerts at COD or VS base, but demonstrates that inerts in the model’s sense are
not equal to inerts in the typical analytical sense. Inerts in the model’s sense contain
COD; this does not mean the few inorganic substances that contribute to COD, such
as nitrite and iodide, but unanaerobically or hardly anaerobically degradable organic

Biomass

Solubles S Particulates X

Water Solids Water Solids

Inerts Volatile solids Inerts Volatile solids

Method

0.45 µm

105 °C

550 °C

Fig. 2 First-step characterization of input biomass and the method of determination
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substances, such as lignin and cellulose/hemicellulose [33]. Figure 3 depicts a
possible characterization of the input biomass according to an approach suggested in
[42], in which unbiodegradable soluble organics correspond to SI and unbiode-
gradable particulate organics to XI in the ADM1. However, analysis of the several
fractions is not as simple as in the first-step in Fig. 2 and will, therefore, be discussed
in the following subchapters.

2.1 Determination of the Soluble Inert Fraction SI

The influent COD for typical input biomass, such as sewage sludge, biowaste,
manure or energy crops, is clearly dominated by the particulate fraction. The sol-
uble fraction in general and the soluble inert fraction in particular often play only a
minor role in the influent characterization. However, their quantification is
important in order to assess the efficiency of the overall AD process, knowing that
350 mL methane is formed when 1 g of COD is degraded [43]. The most popular
method to determine the biodegradability D and, hence, the soluble inert fraction
(1-D), are biochemical methane potential (BMP) measurement tests with the filtered
sample [44]. Therefore, the cumulated methane production NmLCH4ð Þ is normal-
ized with the COD mass of the substrate introduced gCODð Þ. Biodegradability D is
obtained by dividing the value by the theoretical BMP of 350NmLCH4=gCOD [45].
The SI can then be calculated as the difference to 100 % multiplied by the initial
COD concentration of the filtered sample.

The literature dealing with BMP, anaerobic biodegradability and digestibility is
wide: a detailed review is provided in [46]. The principle of anaerobic respirometry
for identification of COD fractions was developed as an analogy to aerobic respi-
rometry used for the determination of influent COD fractions for activated sludge
system models [47, 48]. It has already been successfully applied in several studies
[16, 27, 29].

Biomass

Solubles S Particulates X

Water Soluble organics SO Water Total suspended solids TSS

Unbiodegradable 
particulate organics 

UPO

Biodegradable 
particulate organics 

BPO

Unbiodegradable 
soluble organics 

USO

Biodegradable 
soluble organics 

BSO

Fig. 3 Characterization of input biomass, modified according to [42]

142 M. Lübken et al.



Blumensaat and Keller [49] was one of the first publications to implement the
ADM1 for modeling of a two-stage AD process, and SI measured in raw municipal
sludge was estimated to be 1.5 % of total COD or 4.5 % of soluble COD. Huete et al.
[19] suggested an ADM1-based methodology for the characterization of sewage
sludge from a municipal wastewater treatment plant (WWTP) and found that SI in
the influent was about 12 % of soluble COD. In order to estimate these values,
anaerobic biodegradability tests were performed with the filtered sewage sludge.
Boubaker and Ridha [50] modeled the mesophilic anaerobic co-digestion of olive
mill wastewater (OMW) with olive mill solid waste and quantified SI to be 15 % of
the soluble COD for OMW. Ekama [42] calculated SI from a mass balance around a
primary settling tank and found a value of 27 % of soluble COD for primary sludge.

Upflow anaerobic sludge bed (UASB) reactors have been developed for the
treatment mainly of industrial wastewater with a distinct share of soluble COD [51].
Hinken et al. [52] modeled a UASB treating starch wastewater from an industrial
wheat starch company, where soluble COD was more than three-quarters of total
COD. Due to its excellent biodegradability, undegradable COD was determined to
be about 0.7 % of total COD (= 0.9 % of soluble COD), but it was decreased to
0.5 % during model calibration. However, soluble COD-dominated applications are
limited to industrial wastewater and their characteristics differ widely from industry
to industry, for which reason comparison with municipal or other industrial
wastewater is not possible.

The share of organic, but unbiodegradable compounds differs and is strongly
dependent on the biomass input. Some aromatic [53, 54] and aliphatic compounds
[55], among others, do not seem to be biodegradable under anaerobic conditions.
Nevertheless, adaptation of microorganisms to degrade such compounds [56] as
well as cometabolic degradation [57] should not be disregarded when comparing
different values.

2.2 Determination of the Particulate Inert Fraction XI

Similar to the soluble fraction, performing a BMP test with the particulate fraction
of the input biomass would also be one possibility of determining XI. In compar-
ison to physical-chemical analysis, anaerobic respirometry allows insight into the
rate-limiting step [16].

However, a physical-chemical analysis is applicable, because, in contrast to the
soluble inert, the corresponding unbiodegradable compounds can be summarized as
chemical parameters. Figure 4 depicts biomass characterization according to the
extended Weender analysis [58] with van Soest fractions [59], which have been
used in recent years as standard methods to characterize the chemical composition
of energy crops, such as biodigester feedstock [60–62], as well as a simple and
rapid method for ADM1 influent fractionation [31–33, 63–65].

Proteins, lipids, and starch are defined as totally digestible, but their degradation
is regulated by the hydrolysis constant concerned. By contrast, lignin is not and
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hemicellulose and cellulose are only hardly anaerobically degradable. While all
approaches agree that the particulate inert fraction XI consists of lignin (ADL),
handling of the moderate digestibility of cellulose (ADF − ADL) and hemicellulose
(NDF − ADF) differs [31, 33]. One possibility is to introduce a slowly and readily
degradable carbohydrate fraction with different hydrolysis rate constants, as has
been proposed by several authors [66, 67]. Alternatively, the different isotopic
composition, i.e. abundance of 13C isotopes, of cellulose, lignin and protein in plant
biomass [68] might allow to distinguish their specific degradability rates through
the utilization of d13 C measurements in the biogas [69]. Another possibility, and
more pragmatic approach, is to divide the carbohydrate fraction into a fraction of
starch (RF + NfE − NDF) and a degradable part of cellulose and hemicellulose
((NDF − ADL) ∙d), while the rest is added to the inert fraction consisting of lignin
(ADL) and the nondegradable part of cellulose and hemicellulose
((NDF − ADL) ∙ (1 − d)). The factor d regulates the proportion and is generally
calibrated with the gas curve. However, when the overall degradation level (DVS,
calculated, for instance, by the equation provided by [70] ) is known, it can also be
calculated assuming a total degradation of lipids (RL), proteins (RP), starch
(RF + NfE − NDF) and degradable part of cellulose and hemicellulose
((NDF − ADL) ∙ d) [33]:

Total Solids – TS

Volatile Solids – VS Ash (inorganic substances)

Raw Lipid – RL Raw Protein – RP
N-free extract – NfE 

(VS-RL-RP-RF)
Raw Fiber – RF

Starch 
(RF+NfE-NDF)

Cellulose 
(ADF-ADL)

Hemicellulose 
(NDF-ADF)

Lignin
(ADL)

Amides
Pure 

protein

Substrate

Moisture

Fig. 4 Characterization of particulate input biomass by extended Weender analysis
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d ¼ NDF� VS � 1� DVSð Þ
NDF� ADL

ð1Þ

In contrast to SI, which is usually in the lower percent range, typical values of XI

are presented in literature within a wide range between 3 and 60 % (see Table 7).
An alternative to the anaerobic respirometry method for SI and the

physical-chemical analysis for XI is the calibration of the model upon the gas curve
measured [71]. The method applied is rather simple and relies on the relation
between biodegradable COD and methane production. Proving that all other
influencing parameters, such as the disintegration or hydrolysis rate coefficients, are
already defined, the share of unbiodegradable COD will be easily obtained by
fitting the model to the gas flow measured. However, applying nonlinear parameter
estimation techniques to both continuously operated full-scale and batch-operated
lab-scale systems, the study in Batstone et al. [71] demonstrated that hydrolysis rate
coefficients are not fully identifiable (unbound at higher values) from full-scale
datasets. The full-scale system also indicated a higher degradability extent of the
substrate treated than was estimated for the lab-system using the BMP test. The
extent of degradability was found to be variable during the whole investigation
study. This is of general importance when the degradability and, in turn, the un-
biodegradable fraction, is assessed by BMP tests, when these are performed only
once for a certain timestamp.

3 Determination of the Biodegradable Fraction

The composite particulate material in ADM1 is disintegrated with constant stoi-
chiometric parameters into carbohydrates (30 %), proteins (30 %), lipids (30 %) and
inerts (10 %).

Carbohydrates Carbohydrates are an important class of macromolecules with
cellulose as probably the most common member of this fraction, since it is, firstly,
an important structural component of the primary cell wall of plant materials, and,
secondly, makes up about 30–50 % of suspended solids in wastewater (Fig. 5).

Lipids, i.e. phospholipids (Fig. 6), are amphipathic macromolecules (hydrophilic
and hydrophobic) and essential components in the cells of the Bacteria, Eukarya
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Fig. 5 Chemical structure of a cellulose molecule, C6H10O5
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and Archaea. They are composed of a polar compound, such as glycerol, that is
bonded to fatty acids or by other hydrophobic molecules by ester or ether linkage
[72].

Lipids in wastewater are usually represented in the form of triacylglycerides and
underlie hydrolysis through exo-enzymes, which are produced by the acidogenic
bacteria. A schematic presentation of the hydrolysis step for lipids is shown in
Fig. 7.

Proteins are the most abundant class of macromolecules in cells. They are about
50 % of the dry weight of most cells and made up of amino acids (AA) from
ribosomes. They form polymers covalently bonded by peptide bonds with a
dipeptide as the simplest form and water as a byproduct (Fig. 8). Proteins can
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Fig. 6 Chemical structure of phosphatidic acid C7H11PO8
−—the simplest phospholipid
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reaction between AA forms the basis for a fictive chemical formula for proteins that is C6H12O3N2
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contain as few as a minimum of ten AA that constitute a polypeptide chain or as
many as thousands, forming the so-called primary structure [74]. Consequently,
enormous variation in protein structure and, thus, function is possible [72].

When a polypeptide is formed, it does not remain in its primary linear structure,
but folds instead, forming a more stable complex known as the secondary structure
(Fig. 9). Thus, one distinguishes between the geometrical arrangements of helices
(α structures), strands (β sheets) and coils [75]. The chemical bonds that play an
important part here are weak noncovalent linkages known as hydrogen bonds.
Finally, the whole three-dimensional complex and irregular folding of any peptide
chain is given by its tertiary structure, while the so called quaternary structure
describes the interplay between various peptide chains that make up a whole protein
[75].

Considering the variations of the individual fractions on the chemical level, it
becomes clear why a more precise definition of composite particulate material in
ADM1 is meaningful and that the lumped definition of the single compounds,
carbohydrates, lipids and proteins, will not reflect its complexity.

Most of the published approaches performing a detailed influent fractionation
aim at characterizing the influent composition by assuming a correlation between
analytical measurements and the substrate composition and fractions. Total and
soluble proteins, for example, can be roughly determined according to the Kjeldahl
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method or, in more detail, by the Lowry method [76]. Another, and perhaps the
most detailed procedure, is to analyze the total AA composition of a substrate, from
which the sum results in the total proteins. Lipids can be analyzed by the Soxhlet
extraction method [77, 78], which is the method found in literature most used.
Other methods are still conceivable, e.g. Roese-Gottlieb, Bligh and Dyer, and
Modified Bligh and Dyer extraction methods [79]. The total and soluble carbo-
hydrates can be measured according to the Bertrand method and to the Anthrone
colorimetric method [80], respectively. An extended Weender analysis, as descri-
bed in Naumann and Bassler [58] and van Soest [59], is commonly performed for
fibrous feedstock. In addition to the latter, and as cellulose plays an important role
in the fermentation of plant biomass, specific methods are available, e.g. the
Updegraff assay [81] and, more recently, a rapid determination method for cellulose
is given in Bauer and Ibáñez [82].

The analytical methods listed will result in a concentration unit of the corre-
sponding compound, which is either weight per volume (w/v) or weight per weight
(w/w). The challenge one meets using physical-chemical analysis for influent
fractionation is to subsequently transfer the analytical results to the model units,
which is, for the organic material, the COD.

3.1 Transfer of Physical-Chemical Analyses to the Basic
Model Unit

Eckenfelder and Weston [83] postulated and proved proportionality between COD
and VSS experimentally. Servizi and Bogan [84] described proportionality between
the oxygen demand of microorganisms and the released energy, expressed as COD.
Hereby, the basis was found for the establishment of COD as a measuring unit for
mathematical models describing biological wastewater treatment processes.
The COD has two advantages, as it allows, on the one hand, an indirect assessment
of the magnitude of the organic pollution and, on the other hand, a closed mass
balance for the interconnected transformation processes. All organic ADM1 model
components are referred to a COD basis. The COD concept was criticized in
Kleerebezem and van Loosdrecht [85], and using a mole-based description for the
fermentation processes was recommended. An ADM1 implementation in molar
units has been provided in Rodríguez et al. [86], which has been enhanced in
Penumathsa et al. [87] and applied to modeling biohydrogen production. One
reason for choosing a COD-based model description in ADM1 was that this con-
cept allows the model to be connectable to other modeling frameworks, such as the
activated sludge model (ASM) series [25]. While COD is an established parameter
used for wastewater characterization, organic matter from agricultural origin or
municipal solid wastes are almost exclusively determined by the VS content.
Fibrous material in particular is poorly accessible to COD analysis. In order to
bypass this issue, some studies dealing with the mono-fermentation of energy crops
and liquid manure transferred, in accordance with Eckenfelder and Weston [83], the
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analytically measured VS to COD units by establishing an empirical correlation
between both parameters (Fig. 10).

The correlation coefficient derived for liquid manure has a similar magnitude to
grass silage. Grass silage contains only a limited part of readily degradable car-
bohydrates, such as starch. The readily degradable fraction of carbohydrates in
liquid manure is similarly low, as the rumen of the cow can be seen as a
pre-fermenter. However, the conclusion that both sorts of biomass possess the same
composition of cellulose, proteins and fats is erroneous. It is rather that a different
combination of proteins and lipids leads to a similar correlation coefficient. The
establishment of empirical correlations between basic analytical parameters is an
easy method to achieve COD units, but has to be performed for each substrate mix
separately. It has significant advantages for inhomogeneous substrate mixes, for
example, combined fermentation of liquid manure and different cosubstrates, where
the typical elemental composition is unknown and can vary strongly depending on
the use of the cosubstrate.

An alternative method is to calculate the ThOD at a known or, respectively,
chosen elemental composition CaHbOcNd according to the formula:

ThOD ¼ 16 � 2aþ 0:5 b� 3dð Þ � cð Þ
12aþ bþ 16cþ 14d

gO2

gCaHbOcNd

� �
ð2Þ

The elemental composition of carbohydrates is generally chosen to be
C6H10O5ð Þn [19, 27, 33, 44]. The typical elemental composition of lipids is referred
to C51H98O6 [17, 19], C7H11PO�

8 [27] or C57H104O6 [33, 44]. The highest variety in
selecting a typical elemental composition exists for the proteins, C1H2:52O0:87N0:26

[17], C4H6:1O1:2Nð Þn [19], C6H12O3N2 [27] or C5H7O2N [33, 44]. It is also con-
ceivable to refer to a protein which is predominant within a substrate. Zein, for
instance, is a class of prolamine protein and is the major protein of maize (Zea mays)
[88]. The chemical composition of zein can easily be calculated, based on the
elemental analysis given in Dennstedt and Haßler [89], to
C317:02H505:90O95:27N80:12S1:68. Hence, the ThOD of proteins calculated from Eq. (2)
depends on the basic formula chosen. However, any chemical formula chosen will
never truly reflect the complex composition of proteins. These are composed of 21
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different AA, and only the fully determination of this pool allows a realistic calcu-
lation of the organic acids stoichiometrically produced via protein/AA degradation.

3.2 Determination of Amino Acids Composition

Ramsay and Pullammanappallil [90] introduced a general approach of determining
the stoichiometric coefficients for protein degradation using the example of casein.
Their algorithm is based upon Stickland reactions and the AA composition of
casein. The method provided is explained in Table 1 for maize silage (shown on our
own data as an example).

Though Ramsay and Pullammanappallil [90] used literature values for the AA
content of casein, it would be more advisable to determine protein AA individually
for the substrate applied via chemical analysis. The results should be calculated in
terms of mole AA per C-mole of substrate. From here on, the molecular formula for
casein CN0:23H1:9O0:51ð Þ was compiled. For certain substrates it is also possible to
take up whole AA composition charts from literature that result in an overview of
different protein compositions for a diverse group of substrates (Table 2).

Table 3 clearly shows that the stoichiometric coefficients, calculated for acetic
acid to valeric acid, differ in parts significantly from those provided by the original
ADM1 publication as default values for the degradation of AA. A detailed char-
acterization of the AA state variable (lumped as Saa) is inevitable, especially when
ADM1 is used to estimate valeric acid production. Valeric acid is only produced
during AA fermentation in ADM1. Fermentation of protein rich substrates often
leads to instabilities in digester operation, leading to an increase in VFA concen-
tration [56, 96–98]. The estimation of organic acid production will be improved, as
it is not only a matter of parameter calibration, when a more detailed character-
ization for AA is performed. However, the literature is undertheorized within this
context. The ADM1 state variable Saa can still be regarded as a lumped parameter,
comprising the whole pool of single AA. Influent characterization can be indirectly
performed via the calculation of the stoichiometric coefficients for single organic
acids (C2–C5), as demonstrated in Table 3 using literature data.

4 Quantification of Active Biomass Within the Influent

The characterization and quantification of the active biomass in the reactor is less
important for continuously operated systems, since the initial biomass concentration
can be calibrated from the measurements in steady state. A commonly used
approach is to perform a simulation prior to the real one, with default values for the
initial biomass concentrations. This pre-simulation is run with the same influent, but
is only used to generate the biomass concentrations in steady state, which can then
be applied as the initial biomass concentrations for the real simulation run.
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Assessing the initial biomass concentration for batch tests is much more
important, because, in this case, no steady state will be reached due to the lack of
biomass added during the fermentation process. One possibility to address the
problem is to take the initial biomass concentrations for the batch experiments from
the results of the steady state simulation of the continuous system, from which the
inocula were sampled [16, 99].

Alternatively, the initial biomass concentration can be roughly estimated by
molecular biological tools, such as fluorescence in situ hybridization (FISH) or
polymerase chain reaction denaturing gradient gel electrophoresis (PCR-DGGE).
The former has been applied in Lübken et al. [31] for the simulation of a
manure-based co-digestion system. However, due to the very small volume of the

Table 1 Calculation of stoichiometric coefficients for protein degradation of maize silage
according to Ramsay and Pullammanappallil [90], using our own data for AA composition of
maize as an example

Amino acid
(AA)

Content (mole
AA/c-mole
protein)

C2 acid
(mole/mole
AA)

C3 acid
(mole/mole
AA)

C4 acid
(mole/mole
AA)

C5 acid
(mole/mole
AA)

Alanine 0.0311 1.0

Arginine 0.0036 0.5 0.5 0.5

Aspartic acid 0.0147 1.0

Cysteine 0.0034 1.0

Glutamic acid 0.0313 1.0 0.5

Glycine 0.0183 1.0

Histidine 0.0079 1.0 0.5

Isoleucine 0.0109 1.0

Leucine 0.0221 1.0

Lysine 0.0060 1.0 1.0

Methionine 0.0017 1.0

Phenylalanine 0.0081

Proline 0.0160 0.5 0.5 0.5

Serine 0.0099 1.0

Threonine 0.0086 1.0 0.5

Tryptophan 0.0000

Tyrosine 0.0056 1.0

Valine 0.0131 1.0

TOTAL (α) Mole/C-mole 0.1466 0.0155 0.0430 0.0427

Two acid hydrolyses were carried out for each sample of maize (zea mays): one with preceding
oxidation and one without oxidation. The preceding oxidation step was conducted to detect
cysteine as cysteine acid and to oxidize methionine to methsulfone. After oxidation and overall
hydrolyses, each sample was analyzed by AA analysis (ASA) via pre-column derivatization and
HPLC. The ASA was carried out with a polymer cation-exchanger column with a particle size of
4 µm (125 x 4 mm ID) by using the AA analyzer LC3000 (Eppendorf-Biotronic, Hamburg,
Germany), post-column derivatization with ninhydrin at 125 °C and a final photometric detection
at 570 nm
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sample processed and the questionable representativeness in the fixing, staining and
counting of the cells, the method is rather semi-quantitative. Recent advances in the
use of molecular biology tools have greatly improved the understanding of the AD
process and the function of the microorganisms involved [100]. Due to the recent
progress of pyrosequencing and other next-generation sequencing techniques [101],

Table 2 Chemical compositions of proteins calculated for various substrates based upon AA
charts given in literature

Substrate Chemical composition of protein References

Galantine CH2:0461O0:5719N0:3170S0:0022 [91]

Maize silagea CH1:9528O0:5408N0:2448S0:0051 Own data

Grass silagea CH1:9821O0:5470N0:2507S0:0028 Own data

Rye CH1:9376O0:5616N0:2513S0:0093 [92]

Chlorella vulgaris (green alga) CH1:9230O0:4966N0:2559S0:0072 [93]

Scenedesmus obliquus (green alga) CH1:9565O0:5147N0:2703S0:0047 [93]

Blue algae CH1:9947O0:5557N0:2558S0:0033 [94]

Casein CH1:9028O0:5138N0:2302S0:0050 [90]

Egg CH1:8903O0:4999N0:2427S0:0106 [93]

Soybean CH1:9152O0:4896N0:2571S0:0065 [93]

Sweet potato CH1:8820O0:5364N0:2423S0:0095 [95]

Calculations were carried out according to the algorithm provided in Ramsay and
Pullammanappallil [90]. The associated stoichiometric coefficients (α) are given in Table 3
aBased on our own analytical determination of AA composition

Table 3 Overview of theoretical stoichiometric coefficients (α) for selected protein mixtures

Fermentation product Acetic
acid
fac;aa
� �

Propionic acid
fpro;aa
� � Butyric

acid
fbu;aa
� �

Valeric
acid
fva;aa
� �

ADM1a 0.400 0.050 0.260 0.230

Blue algae 0.325 0.041 0.242 0.293

Casein 0.279 0.072 0.280 0.299

Chlorella vulgaris (green
alga)

0.301 0.064 0.271 0.278

Egg 0.273 0.068 0.260 0.309

Galantine 0.399 0.120 0.186 0.293

Maize silage 0.321 0.044 0.236 0.304

Grass silage 0.334 0.045 0.236 0.292

Rye 0.328 0.078 0.264 0.272

Scenedesmus obliquus (green
alga)

0.315 0.063 0.265 0.275

Soybean 0.287 0.063 0.290 0.298

Sweet potato 0.319 0.055 0.257 0.262
aSuggested as default values
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the analysis of a considerably increased number of sequences is becoming afford-
able and will probably help to better characterize the initial biomass concentration
in the future.

The transfer of bacterial biomass concentration, if known, to COD units could be
easily performed using the ThOD applied to the widely accepted elemental com-
position of biomass, which is C5H7NO2 [102] (113 gbiomass per mole). Some lit-
erature resources refer to different elemental compositions, e.g. C5H9NO3 [103] or
CH1:8O0:5N0:2 [104].

5 Calculation Frameworks for the Derivation of ADM1
Input State Variables

The literature overview reveals the fact that ADM1 shows weaknesses related to the
substrate characterization, and this has driven the development of model add-ons
and modifications forward. Four selected approaches for this purpose will be pre-
sented in the following paragraphs, as listed in Table 4. The approaches were
classified according to (i) extended Weender analysis, (ii) elemental analysis,
(iii) elemental analysis for high solids waste and (iv) anaerobic respirometry. The
coupling of the ADM1 input state variables with ASM-type models is not referred
to as these approaches focus more on enabling plant-wide modeling concepts for
WWTPs [25, 28, 105].

Extended Weender analysis The substrate characterization in Lübken et al. [31]
proposes that the COD should be replaced by VS when analyzing manure-based
co-digestion systems. In this particular study, substrate characterization was based
upon practical measurements, similarly upon methods according to van Soest and
Wine [59] and Naumann and Bassler (Weender analysis) [58], to characterize the
substrate in terms of carbohydrates, proteins and fats. This method assumes that a
portion of carbohydrates (starch, cellulose, hemicellulose and lignin) is inert to AD,
while proteins and lipids are fully biodegradable. The determination of the ADM1
inflow contents of proteins, lipids, carbohydrates and inerts is, therefore, quite
straightforward using Eq. 3–6.

Table 4 Calculation frameworks. Explanations of abbreviations are given in the following
paragraphs

Analytical measurements References

TS, VS, COD, VFA, pH, NH4-N, RP, RF, RL, NfE, NDF, ADF, ADL [31]

COD, TOC, Norg, Alkalinity [17]

CODp, CODs, VFA, TOC, TIC, Norg, TAN, TP, ortoP, Scat, FS [27]

TS, VS, TKN, TAN, COD [16]

RP, RF, RL, NfE, NDF, ADF and ADL were determined through extended Weender analysis
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Xpr
kgCOD

d

� �
¼ Qin � RP � TS � iCOD=VS ð3Þ

Xli
kgCOD

d

� �
¼ Qin � RL � TS � iCOD=VS ð4Þ

Xch
kgCOD

d

� �
¼ Qin � RFþ Nfe� ADL� ADF� ADLð Þnot degradable

h i
� TS � iCOD=VS

ð5Þ

Xi
kgCOD

d

� �
¼ Qin ADLþ ADF� ADLð Þnot degradable

h i
� TS � iCOD=VS ð6Þ

The coherences within these equations can easily be accessed by means of
Fig. 4, which partitions the substrate analysis basically into six important analyz-
able categories (see Fig. 4, grey boxes): TS, ash, RP, RL, raw fiber (RF) and
nitrogen-free extracts (NfE).

In the course of substrate analysis, water and dry matter in terms of TS are
distinguished. The TS are expressed on a mass percent (%) basis and further split up
into VS and ash. The analytical determination of TS and VS is straightforward
according to standard methods. As the dry content of the substrate is, by definition,
TS, VS are reported as a percentage of TS (% TS). The residual fraction consists of
inorganic substances that are summarized under the term “ash.” This fraction con-
tains macro and trace elements, sand, clay and pure ash. An extended Weender
analysis is performed to measure organic matter in a more detailed way in terms of
RL, RP, RF and NfE. All those parameters are expressed as percentage of TS
(% TS). Raw proteins can be further distinguished into amides, for instance, free AA,
acid amides or peptides. The residue is, consequently, pure protein. The term “NfE”
is a bit misleading, as it has nothing to do with nitrogen, nor it is an extract. The term
refers to the soluble carbohydrate of the feed and is the only component which is not
determined analytically, but is calculated by difference. Carbohydrates are further
subdivided into starch (RF + NfE − NDF), cellulose (ADF − ADL) and lignin
(ADL). Hemicellulose is approximately analyzed by van Soest andWine fractions as
the difference between neutral detergent fiber (NDF) and acid detergent fiber (ADF).

As is always the case, each analytical step has smaller errors or bottlenecks that
shall be briefly discussed. A smaller source of errors is seen in the determination of
ash and raw lipids. For ash, errors may arise when temperatures are too high,
leading to a volatilization of elements, such as chloride, zinc, selenium or iodine. In
this case, the ash determination tends to underestimate mineral contents. The
determination (or extraction) of raw lipids is mostly performed using an anhydrous
diethyl ether. In this case, it is assumed that all substances that are soluble in ether
are fats. This is not always the case, as, for instance, plant pigments are also soluble

154 M. Lübken et al.



in ether, but do not possess the same nutritional value of fats. Nonetheless, the
errors for ash and lipid determination obtained are relatively small.

The determination of RF possesses the largest source of errors. At first, the
application of acid and base (mostly sulfuric acid and potassium hydroxide) solu-
bilize some of the true fiber, in particular, hemicellulose, pectin and lignin.
Secondly, cellulose is also partially lost, hence, RF underestimates the true fiber
content.

Another bottleneck is seen in the determination of NfE that accumulates all of
the errors that exist in other proximate analysis, as it is determined by subtracting
raw lipids, RP and RF from VS. In the case of incorrect analysis of the previous
components, mistakes will proceed up to this calculation step. This refers in par-
ticular to the determination of RP. In this context, it is assumed that all nitrogen is
present in the sample in protein form, which is not always necessarily true. Nitrogen
could be present in the form of nucleic acids (DNA, RNA) or urea CH4N2Oð Þ.
Moreover, proteins require different correction factors, since they have different AA
sequences. Raw protein is mostly determined by the Kjeldahl method.

The main advantage of this calculation framework is that the extended Weender
analysis is nowadays often routinely performed in the agricultural sector for animal
husbandry and has also been established on agricultural biogas plants. The demands
of ADM1 in respect of substrate characterization is generally regarded as hardly to
be fulfilled by routine analysis. With the extended Weender analysis, a routine
analysis for agricultural feedstock exists which provides detailed information about
single substrate constituents. However, the influence of analytical errors of the
multistep analysis procedure has to be considered when model parameter estimation
is performed. Uncertainties in the influent fraction are generally neglected in liter-
ature dealing with parameter estimation and uncertainty analysis. The basic meth-
odology, as described above, has been adapted to other lignocellulosic biomass, such
as grass silage [32, 33], as this approach enables a quite flexible handling.

Elemental analysis Another calculation framework for substrate characterization
is the one introduced in Kleerebezem and Van Loosdrecht [17]. The authors
developed an algorithm to calculate the lumped elemental composition of the
organic substrates in wastewater from a limited number of widely available anal-
yses, such as COD, TOC, Norg; AlkVFA and AlkIC (Fig. 11).

The results of the practical chemical measurements flow into the calculation of
the elemental composition of the organic substrate (Eq. 7) using Eqs. (8–11).

CxHyOzN�IIIuv ð7Þ

y ¼ 2 � CODþ AlkVFA � 2 � Norg

TOC
ð8Þ

z ¼ 2� CODþ 0:5 � Norg

TOC
ð9Þ
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v ¼ Norg

TOC
ð10Þ

u ¼ �AlkVFA
TOC

ð11Þ

From here on, the carbon mole fractions for proteins, carbohydrates, lipids and
VFAs are calculated using the elemental substrate composition and Eqs. (12–15).

gVFA ¼ u
ChVFA

ð12Þ

gPR ¼ v
NPR

ð13Þ

gLIP ¼ y� 2 � z� 3 � v� u
4 � c�1

LIP

� � ð14Þ

gCHO ¼ 1� gLIP � gVFA � gPR ð15Þ

As mentioned previously, ADM1 requires COD-based substrate concentrations,
thus, the carbon mole fractions calculated have to be converted into COD equiv-
alents using Eqs. (16–19).

COD-equivalent concentrations 

Elemental composition of substrate

COD, TOC, Norg, AlkVFA, AlkIC

Calculation of C-mole fractions ηVFA, ηPR, ηLIP and ηCHO

CODPRCODCHO CODLIP CODVFA

Xch Xpr Xli

Intermediate & 
end products

Degradation

Sfa

Fig. 11 Algorithm of waste
characterization for
implementation in ADM1
according to Kleerebezem and
Van Loosdrecht [17]
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CODCHO � gCOD

L

h i
¼ TOC � gCHO

cCHO

4
�MWO2 ð16Þ

CODPR
gCOD

L

h i
¼ TOC � gPR � cPR

4
�MWO2 ð17Þ

CODLIP
gCOD

L

h i
¼ TOC � gLIP �

cLIP
4

�MWO2 ð18Þ

CODVFA
gCOD

L

h i
¼ TOC � gVFA � cVFA

4
�MWO2 ð19Þ

Nonetheless, the method’s main limitation lies in averaging the practical mea-
surements that will limit an ADM1 application to one single composite particulate
Xcð Þ with constant composition, thus, dynamic changes of the waste characteristics
will not be considered [27]. Moreover, the authors based their waste character-
ization algorithm upon a protein mixture from slaughterhouse waste. However, as
the protein composition differs from one substrate to another, it would be advisable
to determine the protein mixture with much more precision (see Chap. 3.2).

Elemental analysis for high solids waste Based upon the algorithm mentioned
previously and other studies, Zaher et al. [27] developed a procedure for substrate
characterization that considers a more extended list of practical measurements: total
COD (CODt), soluble COD (CODs), VFA, total carbon (TC), total inorganic carbon
(TIC), total Kjeldhal nitrogen (TKN), total ammonia-nitrogen (TAN), total phos-
phorous (TP), orthophosphate (orthoP), total alkalinity Scatð Þ; TS and total VS
(TVS). The procedure was originally developed to construct interfacing models
between subsystems considered in wastewater treatment and uses a continuity-
based interfacing method (CBIM) as the basis and a Petersen presentation to
describe the transformation matrix between [105]. Due to the CBIM, it is also
possible to yield the state variables of ADM1 and, thus, their specific elemental
composition.

The authors used the general CBIM, which was updated to interface the ADM1
with practical measurements adopted and slightly extended from Kleerebezem and
Van Loosdrecht [17]. The final transformation matrix was designed to estimate the
substrate composition in ten conversions maintaining the continuity of the ThOD,
all elements and charge intensity [27]. The conversion steps comprise (1) ammonia,
(2) bicarbonate, (3) orthoP, (4) cations, (5) VFAs, (6) sugars, (7) lipids, (8) proteins,
(9) carbohydrates and (10) organic inerts. All of these classes are assigned a
parameter from practical measurements where a dependency is considered.

Nonetheless, not every parameter from the set of practical measurements can be
used straightforwardly. Hence, one has to start with a rearrangement to represent
unique components for which the elemental mass fractions are assumed. The
components in the final matrix comprise particulate COD CODp

� �
; CODs − VFA,

VFA, TOC, Norg; TAN, TP-orthoP, orthoP, TIC, Scat and FS. The CODp is cal-
culated as the difference between CODt and CODs. The TOC is calculated as the
difference between TC and TIC. Organic nitrogen and TP are calculated similarly
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from the difference between TKN and TAN and from the difference between TP
and orthoP. The VFAs, TAN, orthoP, TIC and Scat derive straightforwardly from
the practical measurements.

With these assumptions, the matrix can now be composed. The upper left pane of
the composition matrix (Table 5) is calculated by taking the COD equivalent multi-
plied by the number of carbon atoms and the molecular weight of carbon. In the case
where a component is used up, it will be given a negative sign (-). As an example, one
mole of acetate equals 64 gCOD; owns two carbon atoms, while the molecular weight
of carbon equals 12.01 g ∙ mol�1. Thus, −0.375 gC · m�3 is entered into the
composition matrix for TOC/VFA. The lower left pane lists the mass of elemental
composition per stoichiometric unit of each component. Staying with the example of
acetate, one mole is equivalent to 64 gCOD; having two oxygen atoms, thus, 0.5
gO · g�1

COD acetate is achieved. In a similar manner one calculates 0.0469 gH · g�1
COD.

The lower right pane derives from the original ADM1 composition matrix.
The actual application of the transformation matrix requires only the upper pane

and is based on balancing the input from the practical measurements. Table 6 gives
an excerpt of the final transformation matrix calculated by Zaher et al. [27] (please
refer to the original paper for the full table). Taking the conversion of lipids as an
example, 1 g ∙ m�3 of organic phosphorus (TP-orthoP) is equivalent to 0.006458
kgCOD · m�3 of lipids Xlið Þ in ADM1, based upon the phosphorus balance. This
also works in reverse order: 0.006458 kgCOD · m�3 of lipids Xlið Þ is equivalent to a
TOC value of 2.71 gC ∙ m−3 and to a CODp of 6.458 gCOD ∙ m−3.

Table 5 Matrix description of the interface between the Peterson matrix of practical
measurements and ADM1 [105]

Peterson matrix of practical measurements Petersen matrix of ADM1

X1 X2 … XP XPþ1 XPþ2 … XPþQ Rate

Conv. 1 m1;1 m1;2 … m1;P m1;Pþ1 m1;Pþ2 … m1;PþQ q1
… … … … … … … … … …

Conv. n mn;1 mn;2 … mn;P mn;Pþ1 mn;Pþ2 … mn;PþQ qn
Composition matrix of practical measurements Composition matrix of ADM1

ThOD iThOD,1 iThOD,2 … iThOD,
P

iThOD,P
+1

iThOD,P
+2

… iThOD,P
+Q

C iC,1 iC,2 … iC,P iC,P+1 iC,P+2 … iC,P+Q
N iN,1 iN,2 … iN,P iN,P+1 iN,P+2 … iN,P+Q
H … … … … … … … …

O … … … … … … … …

P … … … … … … … …

Charge i.e.,1 i.e.,2 … i.e.,P i.e.,P+1 i.e.,P+2 … i.e.,P+Q
Covalent
bond

ib,1 ib,2 … ib,P

Each conversion XP in the table depicted is characterized by its “stoichiometry” νn,P
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Anaerobic respirometryMost of the methodologies found in literature, as well as
the particular ones reviewed here, are based on practical analytical measurements
that are often directly related to the ADM1 components, while theoretical
assumptions have often been made. Girault et al. [16] propose in their substrate
characterization methodology that more attention should be given to biogas pro-
duction data for ADM1 substrate characterization and to yield the percentage of
readily and slowly degradable fractions. This is achieved by a combination of batch
experimental degradation tests (“anaerobic respirometry”) and numerical interpre-
tation of the methane production rate (MPR) (“optimization of the ADM1 input
state variable set”). The proposed method comprises three steps (Fig. 12).

The first step involves the determination of biodegradable COD fractions acetate
Sacð Þ, propionate Spro

� �
; butyrate Sbuð Þ and valerate Svað Þ by high-performance

liquid chromatography and an initial COD substrate characterization. Secondly,
anaerobic respirometry is applied as an experimental tool to estimate substrate
fractionation and the associated degradation kinetics. In principle, the methane
production curve gives two distinct phases. The first one represents the percentage
of methane that is readily produced from the substrate, hence, related to AA Saað Þ;
monosaccharaides Ssuð Þ; long chain fatty acids Sfað Þ; valerate Svað Þ; butyrate Sbuð Þ;
propionate Spro

� �
and acetate Sacð Þ; while the second one is related to the degra-

dation of proteins Xpr
� �

; carbohydrates Xchð Þ and lipids Xlið Þ.

VFA analysis by HPLC

Sac Spro Sbu Sva

Step 1: Conversion into 
COD units

MPR curve obtained for the 
batch degradation of a 

standard substrate (anaerobic 
respirometry)

Saa + Ssu + Sfa Xpr + Xch + Xli

Step 3: Automated 
optimization for 

accurate 
simulation of the 

whole curve

Step 2: Automated 
optimization for 

accurate 
simulation of the 

end of the curve

Saa Ssu Sfa Xpr Xch Xli

Distribution according to 
biochemical fraction of 

the total COD

Distribution according to 
biochemical fraction of 

the total COD

Fig. 12 Scheme for the determination of XI fraction according to the CODt balance [16]
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In summary, the studies reviewed here are a proof that the concern of substrate
characterization is still of great interest. Since composite materials are complex and
variable in their composition (lipids, proteins, carbohydrates and inerts) and also in
time, methods are needed that consider these issues with respect to mathematical
modeling. Possible approaches could be based upon direct analytical measurements
that are implemented straightforwardly into an algorithm for substrate character-
ization, as shown by Kleerebezem and Van Loosdrecht [17], or indirectly by
practical measurements that correlate to components of interest that feed, for
instance, a Weender analysis, as shown with the approach by Lübken et al. [31].
Nonetheless, all methods developed for substrate characterization in ADM1 should
also aim at keeping the procedure as simple as possible with low workload and on
the basis of widely available practical measurements. In this context, the method
proposed by Kleerebezem and van Loosdrecht [17] might require the least amount
of work with only four measurements, while the ones by Zaher et al. [27], Girault
et al. [16] and Lübken et al. [31] will be more laborious when applied. Therefore,
the approach by Kleerebezem and van Loosdrecht [17] might also be quite suitable
for industrial applications.

All of the studies introduced are based upon COD, which is quite logical as it
can be directly correlated to the production of methane in ADM1 (0.35
m3 · kg�1

COD). However, this urges modelers to have pure substances or homoge-
nized ones present. This issue was the biggest criticism of Zaher et al. [27] towards
the approach by Kleerebezem and van Loosdrecht [17], which mainly suffers from
the disadvantage that it assumes the feedstock as a single composite particulate Xcð Þ
with constant composition. Hence, this assumption does not adequately allow for
dynamic simulation due to changes in the feedstock composition when dealing with
heterogenic wastes. This issue was taken up and resolved by the transformer model
of Zaher et al. [27] that applies a CBIM to interface the ADM1 to practical char-
acteristics of an individual waste stream to allow dynamic simulation.

The procedure by Lübken et al. [31] uses analytical analyses, which may not
have the accuracy as regular wastewater analyses, because some components are
not really analyzed, but are instead roughly calculated upon different fractions. It is,
furthermore, limited to lignocellulosic biomass. It proposes splitting the CODt of a
substrate into each input state variable first, while the rest is dedicated to the Xc

fraction, which is also recommended by Girault et al. [16]. Drawbacks in Girault
and colleagues’ methodology are seen when using lower substrate to biomass ratios
that allow for a decreased batch test duration (4–10 days) in order to accelerate the
procedure, but might also lead to an underestimation of the entire biodegradable
fraction and to an overestimation of the non-biodegradable fraction. Moreover,
Girault et al. [16] based their waste characterization procedure on pig slurry as
substrate, but it still has to be proven to also work for lignocellulosic biomass that
shows completely different biodegradability in batch experiments.

Nonetheless, all studies presented here have one common disadvantage, which is
related to the protein content. The determination of RP is based upon TKN mul-
tiplied by 6.25 (protein-nitrogen conversion factor), which is only valid in the case
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where the nitrogen content of the protein is 16 %. Kleerebezem and van Loosdrecht
[17] used slaughterhouse waste to gather the chemical composition for protein. This
can indeed be meaningful, as slaughterhouse waste is characterized by a high solids
content that is mainly composed of proteins and fats, with varying amounts of
carbohydrates and inorganic compounds [106]. However this class of waste differs
in nitrogen content and, hence, in protein. Zaher et al. [27] also used a fictive
molecular formula for proteins: C6H12O3N2. This underlines the need for a more
precise determination of proteins.

All the approaches published have their advantages and disadvantages, and the
literature survey does not reveal any trend towards a more or less generally accepted
methodology. In case none of the methods introduced can be applied for the
simulation study, the following table (Table 7) gives an overview of selected feed
fractionations for ADM1 found in literature. As the main challenge for influent
fractionation is the allocation of the COD measured to the main ADM1 influent
state variables, as described previously, the literature values were normalized to the
CODt and the fractionation is given as a result for the particulate and soluble
carbohydrates, proteins, lipids and inerts, as well as for the monosaccharides, AA,
long chain fatty acids and VFAs.

6 Conclusions and Future Perspectives

As the state of the art AD models are characterized by a detail-oriented structure,
influent fractionation is currently recognized as a severe limitation factor for model
application. ADM1 especially needs a substrate characterization, which can hardly
be fulfilled by routine analysis. The topic is widely discussed in literature. Several
approaches for influent fractionation have already been derived, which are generally
based on different concepts. The different nature of these frameworks, e.g. oriented
to wastewater and sewage sludge, high solids waste, lignocellulosic biomass or
manure-based systems, complicates a comparable analysis of their effectiveness.

Considerable achievements have been made in literature with respect to
parameter and model uncertainty analysis. However, and simultaneously aston-
ishing, none of these studies using sophisticated non-linear parameter estimation
and model uncertainty procedures include the uncertainty of the influent fraction-
ation methodology within the statistical analysis.

All the influent fractionation approaches presented in literature so far have in
common that they are based on offline measurements. Powerful analytical tools are
mainly developed to monitor the fermentation process, and most effort is still forced
in this direction. These tools are incontrovertibly important for model validation
procedures, but, as variations of influent composition can be highly dynamic,
high-capacity analytical methods are here similarly required. To account for this,
modern online monitoring tools allowing substrate characterization, such as NIRS,
should also be calibrated to the demands of sophisticated AD models.
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Quantification of active biomass within the influent is challenging. No reliable
methodology has been published so far. While this topic is of minor importance for
continuous fermentation systems, the inoculum of batch assays, from which kinetic
parameter studies are commonly performed, can only inadequately be characterized.

The ADM1 protein fraction in most applications is indirectly determined by
Kjeldahl analysis. The total nitrogen gathered is multiplied by the factor 6.25 to
obtain the overall protein concentration or content. The factor is equivalent to the
reciprocal of the average nitrogen content of RP that is assumed to be 16 %. If this
is not the case, errors have to be logically expected. Moreover, protein determi-
nation is a very time-consuming technique to carry out. Several new substrates have
been tested for energy recovery in AD systems in recent years. Some of them, such
as algae, are mainly composed of proteins, leading to high biogas production rates.
A more detailed characterization of the AA composition of proteins is essential for
these substrates. This topic has been rather neglected in literature.

The main challenge for future work will be the consolidation of the vast numbers
of methodologies and approaches presented in literature. It is evident that a com-
mon and scientifically accepted guideline for influent fractionation will further
assist and stimulate the application of structured models such as the ADM1.
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Fate of Trace Metals in Anaerobic
Digestion
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Abstract A challenging, and largely uncharted, area of research in the field of
anaerobic digestion science and technology is in understanding the roles of trace
metals in enabling biogas production. This is a major knowledge gap and a mul-
tifaceted problem involving metal chemistry; physical interactions of metal and
solids; microbiology; and technology optimization. Moreover, the fate of trace
metals, and the chemical speciation and transport of trace metals in environments—
often agricultural lands receiving discharge waters from anaerobic digestion pro-
cesses—simultaneously represents challenges for environmental protection and
opportunities to close process loops in anaerobic digestion.
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1 Introduction

Anaerobic digestion (AD) is an attractive technology for the production of bioen-
ergy [1] and for wastewater treatment [2, 3]. The advantages of AD for waste
treatment include: production of versatile and storable fuel (biogas/methane);
potential of high organic loading; reduced carbon footprint; and suitability for
integration into a wide variety of process configurations and scales [2, 4]. AD is
increasingly applied world-wide; in 2011, 8760 anaerobic bioreactors were reported
in Europe, most of which were used to produce renewable energy from organic
feedstock [5, 6], itself a limited resource. Internationally, the research efforts to
maximize biogas yields has increased ten-fold over the past decade [7, 8]. Still, a
critical research question remains open: How does trace metal availability limit
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biogas production yield and how can this limitation be circumvented? To answer
this question with confidence, in such a complex matrix of substrates, microor-
ganisms and chemical products, requires spanning fundamental molecular sciences
to engineering applications; only then will the underpinning science be coupled
successfully to engineering-led systems, benefitting end-users and producing
renewable energy more efficiently.

Both the beneficial, and inhibitory or toxic effects of trace metals (TM) in
anaerobic treatment processes have long been an interesting topic for researchers.
Chalcogens—which include the trace elements selenium (Se), tellurium (Te) and
radioactive polonium (Po)—although not metals, are included in the term TM in
this chapter.

The roles of TM in anaerobic processes are significant. Anaerobic fermentation
and microbial growth is dependent on the availability and/or optimal supply of
nutrients. Free metal ion availability is an important parameter that should be
considered [9]. The requirements of various methanogens for iron (Fe), nickel (Ni),
cobalt (Co), molybdenum (Mo), selenium (Se) and tungsten (W) have already been
reported [10, 11]. Furthermore, the effects of TM such as Fe, Ni, Co, Zn, Mo and
Cu on anaerobic treatment of various types of industrial effluents have also been
investigated in detail [12]. On the other hand, TM requirements of agricultural
biogas systems operated with solid organic matter, such as energy crops, animal
excreta, crop residues and the organic fraction of municipal solid wastes (OFMSW),
are seldom reported in the literature, despite the exponentially-increasing interest in
biogas production from renewable sources [13].

Since industrial wastewaters and sludges contain elevated amounts of TM, most
of the research activity has obviously been directed towards investigating the
inhibitory and toxic effects of these elements on anaerobic wastewater treatment
bioprocesses. During anaerobic conversion of energy crops, animal excreta, crop
residues, OFMSW or any other type of organic wastes (e.g. food wastes) to
biogas-methane, the availability, or lack, of TM, such as Fe, Co, Ni, Zn, Mo, W and
Se, plays a significant role in maintaining stable and efficient conversion processes.
Recently, it has been shown that food waste appears deficient in some TM, such as
Co and Se, required by the anaerobic digestion process when operating at high
ammonia concentrations [14, 15]. Such findings have major implications for suc-
cessful and expanded application of AD biotechnology.

The area of TM bioavailability in AD systems calls for studies from several
perspectives. Thus, efforts from a multitude of research fields are needed and the
area is, by necessity, interdisciplinary. TM research draws on: physics e.g. rheol-
ogy, diffusion, adsorption; organic, inorganic, physical and analytical chemistry;
microbial physiology, genetics and biotechnology (laboratory-, pilot- and full-scale
systems); agronomy and forestry biofertilization, among others. This review
focuses on five areas covering the fate and roles of TM in anaerobic biotechnol-
ogies: TM speciation and bioavailability in AD environments; TM microbiology
and microbial ecology; biotechnology; fate of TM in the environment; and math-
ematical modelling.
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2 Trace Metals Speciation, Fractioning
and Bioavailability

The total metal concentration, the physico-chemicals conditions during digestion
(pH and redox potential), and the reaction kinetics of chemical processes occurring
both in liquid (i.e. trace elements reduction, precipitation or complexation) and
solid phases (i.e. trace elements sorption) play key roles influencing the chemical
speciation of TM in AD bioreactors. For instance, an increase of the pH value
results in a decrease of the solubility of cationic metals in the matrix. The pre-
cipitation of metals by sulfide (S2−), carbonate (CO3

2−) and phosphate (PO4
3−), and

their deposition in the bioreactor sludges/biofilms, plays an important role in
nutrients, and TM, turnover [12, 16–18].

For instance, the presence of sulfide in biogas reactors affects the availability of TM
needed for growth and metabolic activities of the microorganisms involved in AD.
The solubility constants for complexes between most of the essential TM and sulfides
are low and may lead to reduced bioavailability for these compounds [19]. High
sulfide content in AD bioreactors may, therefore, result in suboptimal biogas pro-
duction [20] and lead to a shift of micronutrients away from soluble bioavailable forms
toward the bioinactive complex or precipitate species during AD [21]. However, due
to its high corrosive properties, hydrogen sulfide affects biogas plant equipment and
downstream biogas utilization devices, e.g. pipes and motors for converting the biogas
to electricity and heat. Therefore, Fe in form of FeCl2 is sometimes dosed to biogas
reactors to precipitate the sulfide formed and to avoid high concentration of hydrogen
sulfide in the biogas [18, 20, 22]. This leads to a complete change of the sulfur
turnover in AD reactors (Fig. 1) and also to a significant change of macro and
micronutrient speciation. There is a strong interaction of added Fe and the micronu-
trients in the matrix: micronutrients may react with the Fe-sulfide releasing Fe2+. The
resulting Fe2+ may form precipitates as phosphates (Fe3(PO4)2) or carbonates (FeCO3)
[18]. Consequently, bioreactors have a considerable ability to sequester Fe2+-ions in
the sludge. Simultaneously, non-alkali metals (e.g. Ca2+, Mg2+) form soluble ion pairs
with a number of anions: HCO3

−, CO3
2−, OH−, SO4

2−, S2− [17].
Furthermore, TM can interact with organic substances present in the bioreactor,

such as the microbial cell wall (e.g. [23]), Extracellular Polymeric Substances
(EPS) (e.g. [24]), Soluble Microbial Products (SMP) (e.g. [25]), organic substrates
(e.g. yeast extract, [26]), organic sulfur compounds (e.g. organic thiol compounds
(RS−), [22]), synthetic complexing agents, such as EDTA (e.g. [27, 28]) or organic
acids (e.g. [25]). The main interactions between organic substances and TM occur
due to the presence ionisable functional groups, such as carboxylic, phosphoric,
amino, and hydroxylic groups [29].

Molecular-level characterization of dissolved organic matter in biogas bioreac-
tors digesting different types of substrates by electrospray ionization Fourier
transform ion cyclotron resonance mass spectrometry (ESI-FT-ICR-MS) revealed
that S-containing dissolved organic compounds including thiols may contribute up
to 30 % of dissolved organic molecules [30]. In addition, during AD of dewatered

174 F.G. Fermoso et al.



sewage sludge, Li et al. [31] demonstrated chemical changes of dissolved organic
matter using PARAllel FACtor analysis for decomposing fluorescence excitation
emission matrices (EEM-PARAFAC) and two-dimensional FTIR correlation
spectroscopy. Li et al. [31] showed that fluorescence intensities of the components
relating to tyrosine-like, tryptophan-like and humic-like groups increased in
Dissolved Organic Matter, implying that these groups were reluctant to biodegrade
and could participate in TM complexation. It has been recently shown that trace
elements may be significantly complexed by organic compounds harbouring thiol
functional groups [22].

Complexation reactions (in the liquid phase or the solid phase) play an important
role in bioreactors making a particular TM either more or less bioavailable. The
level of soluble TM in the presence of CO3

2− and S2− may be increased by a factor
of up to 104 by organic complexation, avoiding precipitation as carbonates or
sulfides [19]. However, up to now little quantitative information has been published
regarding the contribution of organic substances in TM complexation and its effect
on TM bioavailability.

AD bioreactors where sulfide concentration is high and where iron dosing is
needed to prevent corrosion problems constitute good models for studying TM
bioavailability. In first approach, the chemical forms and potential bioavailability of
trace elements could be easily examined by sequential extraction, acid volatile
sulfide extraction (AVS) and simultaneously extracted metals analysis [32].

Fig. 1 Sulfur turnover in biogas bioreactors and its influence on TM and nutrients speciation
[modified from 17]
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Furthermore, knowing the importance of sulfur in trace elements bioavailability
and speciation, sulfur speciation in solid phase could be also examined by X-ray
absorption near edge structure spectroscopy at Sulfur K-edge [18, 20, 22, 33]. For
instance, Shakeri Yekta et al. [22] assessed major chemical reactions and chemical
forms contributing to solubility and speciation of Fe, Co, and Ni during anaerobic
digestion of sulfur (S)-rich stillage in semi-continuous stirred tank biogas reactors
(SCSTR). A particular focus was given to the study of the influence of reduced
inorganic and organic S species on kinetics and thermodynamics of the metals and
their partitioning between aqueous and solid phases were investigated. Solid phase
S speciation was determined by use of X-ray absorption near-edge spectroscopy at
S K-edge. By combining the quantitative sulfur speciation information with a
thermodynamic equilibrium model including precipitation/dissolution of
metal-sulfides and complex formation reactions involving inorganic sulfide and
organic thiols as the major reactions controlling solubility and chemical speciation
of the TM, Shakeri Yekta et al. [22] demonstrated that the solubility and speciation
of supplemented Fe were controlled by precipitation of FeS(s) and formation of the
aqueous complexes of Fe-sulfide and Fe-thiol. The relatively high solubility of Co
(*20 % of total Co content) was attributed to the formation of compounds other
than Co-sulfide and Co-thiol, presumably of microbial origin. Ni had lower solu-
bility than Co and its speciation was regulated by interactions with FeS(s) (e.g.
co-precipitation, adsorption, and ion substitution) in addition to precipitation/
dissolution of discrete NiS(s) phase and formation of aqueous Ni-sulfide complexes.
Such analytical approaches could be successfully implemented provided that a good
knowledge of the key players involved in TM speciation is achieved.

Furthermore, development of analytical tools allowing to reach the TM speciation
dynamics as defined by Pinheiro et al. [34] under conditions of bulk depletion is
needed. In such particular conditions [19], the speciation and bioavailability of TM
must be considered at two different time scales: (i) the time scale of the bio-uptake
flux, as determined by diffusion of the bioactive free metal, dissociation of the
bioinactive complex species, and the internalization rate; and (ii) the time scale of
depletion of the bulk medium. Donnan Membrane Technique (DMT) [35] as well as
Diffusive Gradient in Thin film (DGT) [36] could provide such type of information
provided that the analytical approach allows to work at very low TM concentrations
levels as well as in anaerobic conditions. Also a link between TM bioavailability and
the microbial community response should be better understood [37].

3 Trace Metal Microbiology and Microbial Ecology

Development and optimisation of AD requires better knowledge of the mechanisms
occurring on a microscale, which should in turn be linked to the macroscale system
performance and behaviour [38]. Despite this, the relationships between the
dynamic behavior of microbial communities and environmental parameters in AD
have not been studied in enough detail [1, 39]. A weak component of many AD
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bioreactor operations is the available information on the structure, dynamics and
functions of the microbial community underpinning digestion and biogas produc-
tion. This is certainly valid for the interactions between TM and the
microorganisms.

3.1 Trace Element Requirement in AD

Several studies have reported on the effects of TM deprivation, or supplementation,
on the performance of anaerobic bioreactors and on the temporal dynamics of
microbial populations. The acidification of methanol-fed bioreactors induced by Co
deprivation from the influent was investigated by Fermoso et al. [40] by coupling
analysis of bioreactor performance indicators and the microbial ecology, and
activity, of the bioreactor sludge. Under Co-limiting conditions in methanol-fed
bioreactors, methanogenic activity of bioreactor sludge granules on methanol
gradually decreased, leading to methanol accumulation and bioreactor acidification
due to acetogenic thermodynamic out-competition of methylothrophic methano-
genesis. Methylotrophic, and acetoclastic, methanogenic activity was found to be
lost within 10 days of reactor operation, coinciding with the disappearance of a
Methanosarcina population. Using fluorescence in situ hybridisations (FISH), along
with activity assays, Fermoso et al. [40] concluded that reduced methanogenic
activity on methanol, and shifts in population dynamics, could be used as accurate
parameters to predict bioreactor acidification under Co-limiting conditions.

Zn-deprivation, and subsequent Zn-supplementation, was investigated in Upflow
Anaerobic Sludge Bed (UASB) bioreactors by Fermoso et al. [41]. Significantly
reduced methanogenic activity on methanol was observed under Zn-limited con-
ditions, which could not be restored by resuming the continuous supply of the
deprived metal. Moreover, FISH analysis indicated that the growth of
Methanosarcina colonies was irreversibly inhibited by Zn-deprivation. Similarly,
Gustavsson et al. [20] found that the microbial community structure in bioreactors
treating sulfur-rich feedstocks varied with the availability of Ni and Co.
Acetate-utilizing Methanosarcinales were dominant during periods of stable process
performance, i.e. with Co and Ni supply, but the abundance of hydrogenotrophic
Methanomicrobiales increased significantly, along with volatile fatty acids
(VFA) concentrations, under Co or Ni deficiency. The increase was more pro-
nounced at Co limitation. Such studies demonstrate the potential to improve bio-
reactor performance by managing microbial communities and by supplementation
with TM.

However, the impact of TM, and of changing TM concentrations in bioreactors,
on biofilm development; microbial community structure; population dynamics; and
the metabolism of individual trophic groups and the meta-community (i.e. the
microbial community, as a ‘meta-organism’, incorporating metabolites as well as
cells) is still largely unknown. This is a reflection of the inherent, technical chal-
lenges facing microbiologists in understanding the reactions and interactions of
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complex, mixed-species biofilms, as well as the slow shift from viewing dynamic,
engineered systems as ‘black boxes’ without consideration for the active microbial
communities present. Nonetheless, it is also related to the obvious focus on reac-
tions and processes converting organic molecules at the expense of understanding
the importance and roles of, and requirements for, TM in anaerobic bioreactors.

Verstraete et al. [42] have reviewed the challenge of managing microbial
resources in open and complex, mixed-species communities in the context of
dynamic populations and chemical micro-environments. They defined the concept
of ‘Microbial Resource Management’ (MRM), which is analogous to Human
Resource Management, and the requirement to handle questions such as ‘who is
there’, ‘who is doing what with whom’ and ‘how can one adjust, control and/or
steer these mixed cultures and communities’? Just as with the grand challenges of
MRM, as outlined by Verstraete et al. [42], such as controlling greenhouse gas
emissions from natural environments, or managing the human gut microbiome,
similarly provocative questions should be considered as to how the availability of
TM impacts the management of microbial communities in anaerobic biotechnolo-
gies. The use of TM to manage microbial community structure in the AD context is
given support by the study of Feng et al. [37] demonstrating microbial shifts in
response to varying concentrations and combinations of TM. For example, they
showed that a change of the TM profiles resulted in the occurrence of different
strains on Methanoculleus. The abundance of these strains varied in relation to
concentrations of nickel/molybdenum/boron and/or selenium/tungsten applied in
the biogas reactors investigated.

3.2 Assessment of AD Microbial Community Structure
and Activity in Relation to Trace Metals

Information on the regulation of TM-responsive gene transcription in microbial
species in AD biofilms is obviously also important in understanding and managing
the impact of TM, and in optimizing TM application strategies in bioreactors.
Kazakov et al. [43], for example, recently described a new family of
tungstate-responsive transcriptional regulators in sulfate-reducing bacteria, which
are—thermodynamically—important components of the microbial community in
many AD bioreactors, where they can compete for substrates and energy with
methanogens. However, the impact of responsive regulatory systems on the wider
community should also be explored in order to assess the outlook for the perfor-
mance of whole bioreactors.

Systems biology allows an holistic understanding of the meta-community.
Systems biology encompasses information on the DNA sequences; the
collectively-transcribed RNA; the translated proteins; and the metabolites resulting
from cellular processes. Metagenomics, metatranscriptomics, metaproteomics and
metabolomics data can lead from the (i) functional potential of the ecosystem, to
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(ii) indications of microbial activity, through (iii) identification of active metabolic
pathways and to (iv) identification of the intermediate- and end-products of cellular
processes, respectively. However, none—or even pairs—of the ‘omics approaches
alone can provide comprehensive information on ecosystem function.

Siggins et al. [44] reviewed advances in metaproteomics and the need to com-
bine this with metagenomics and metabolomics. The study of collective expression
of all proteins by the individuals in a microbial community, i.e. metaproteomics,
can provide insights into microbial functionality. For example, the expression of
proteins associated with methanogenic pathways under various states of TM
deprivation and supplementation can provide valuable insights to the importance of
specific TM for reactions under in situ conditions. However, only collectively can
these techniques capture the functional interactions occurring in an ecosystem and
track down characteristics that could not be accessed by the study of isolated
components.

Successful systems biology strategies will likely be based on the application of
polyomics—genomics, transcriptomics, metabolomics and fluxomics—and will
benefit also from innovative integrations with techniques and approaches, such as
microfluidic cell counting and sorting, and ecological modeling. The objective of
systems microbiology in mixed-species communities should be to facilitate pre-
diction of ecosystem characteristics, which, in the context of TM strategies in AD,
would support process optimisation with reference to TM concentrations and
availability, and the development of new applications. To maximise the impact of
systems biology datasets with reference to TM in AD processes, the response and
regulation of microbial uptake mechanisms in relation to the speciation of the TM
complexes should be focused. Moreover, the impact that the regulatory response of
individuals has on the global function of the entire community—and the
‘meta-organism’ in bioreactors—should be investigated, since inter-dependencies
underpin the functioning of diverse AD microbial communities.

In addition, ecosystems biology models have potential for predicting, and hence
supporting optimisation and management, of microbial community function in AD
systems. Probabilistic models are required, which will incorporate the stochasticity
necessary to reflect the environmental conditions in bioreactors that can be used to
identify functionally-important groups of microbial individuals in AD systems, and
the impact of TM on microorganisms.

Since, ultimately, the goal is to control microbial communities for optimum rates
of conversion and bioreactor performance, reliable means are also required of
diagnosing problems at the level of the microbial community. This represents a
reasonably straightforward and logical requirement once the important, and rele-
vant, pathways and reactions affected by TM availability have been identified. For
example, the phylogenetic markers (such as the 16S rRNA gene) or functional
genes associated with the populations or processes affected by TM availability can
be monitored by quantitative Polymerase Chain Reaction (qPCR) assays. Indeed,
gene expression analysis by reverse-transcription quantitative PCR (RT-qPCR),
which allows quantification of RNA (transcripts) rather than genes, has been a key
enabling technology of the post-genome era. A comprehensive review of the origins
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and the future potential of qPCR is available from van Guilder et al. [45]. In the
context, however, of quantifying DNA or RNA targets from complex microbial
communities, and to develop reliable diagnostic tools to support optimized biore-
actor operation, including, for example, TM dosing strategies, several additional
considerations may apply. Nucleic acids extractions techniques may require opti-
misation [46] and PCR assays with environmental and bioengineered samples are
often particularly challenging [47]. The sensitivity and specificity of qPCR assays,
and of the Nucleic Acids diagnostic Tests (NATs) developed thereof, are critical
considerations [48]. The cost and reproducibility, as well as the ease-of-use and
robustness, of NATs for different samples is also important for optimal use of
quantitative, molecular diagnostics tools to monitor the metals-related ‘health’ of
functional groups in anaerobic biotechnologies.

An opportunity to advance this field will be in integrating innovative experi-
mental approaches to measure TM speciation and bioavailability, with
community-level microbial ecology and ecophysiology. Furthermore, it is
well-known that microbes are able to implement specific strategies to cope with
metal deficiency (i.e. micronutrient starvation) or excess (i.e. intrinsic toxicity) by
altering the chemical speciation of metals in their surrounding environment. When
metals are available in low concentrations or in less bioavailable forms (e.g. under
sulfidic condition and extensive metal-sulfide precipitation), microbes are able to
excrete strong metal-binding organic compounds to facilitate the uptake of essential
metals. These extracellular organic compounds encompass strong metal binding
properties and in many cases may result in enhanced solubility of metal-bearing
minerals [49]. A well-studied example is microbial Fe acquisition by excretion of
Fe-chelating siderophores and further uptake by cognate receptors [50]. Similar
processes are believed to be responsible for the increase in Co and Ni solubility and
bio-uptake under sulfidic conditions of the natural environments [51, 52]. Some
microorganisms have developed metal efflux mechanisms, which pumps excess
intracellular metals out of the cell as a strategy against metal toxicity when exposed
to high concentrations of metals [53]. Although this topic is well studied in dis-
ciplines such as organic chemistry, biogeochemistry and medicine, only a few
studies have targeted the effect of microbial stress response under metal
deficiency/excess on metal speciation in biogas processes. The various uptake
mechanism among the microorganisms active during AD should therefore be tar-
geted as a part of the ecophysiological investigations referred to above aiming at the
effects of the TM on the microbial community structure.

4 Biotechnology

Biotechnology links process engineering of anaerobic bioreactors with trace metal
speciation and microbial ecology; process engineering decisions will determine the
physical and chemical environment for the microbial population, including their
access to beneficial trace metals. The operational performance of an anaerobic
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bioreactor determines the commercial viability of AD installations. A healthy
anaerobic bioreactor converts organic material to biogas at the appropriate rate to
accommodate the required organic loading and to produce biogas- and hence
bioenergy—at a profitable level. It also demonstrates operational stability and
resilience and produces digestate that complies with certification limits for farmland
application. Figure 2 shows the different aspects of anaerobic digestion that must
work cooperatively to yield methane from organic feedstock. The bioavailability of
both macro- and micro-elements (including TM) will have an impact on the
microbial community and prevailing biochemical pathways in an anaerobic bio-
reactor, and hence ultimately on the methane produced by that bioreactor.

A poorly performing anaerobic bioreactor might be prone to accumulation of
volatile fatty acids leading to acidification and shutdown; or prolonged periods of
foaming that make mixing and gas collection difficult and negatively affects the
quality of the digestate end-product. For engineers it is important to understand the
relationship between TM bioavailability and bioreactor design and operation in
order to judge whether TM supplementation would be beneficial to biogas yield.
When an anaerobic bioreactor is treating a defined industrial waste or effluent it is
fairly straightforward to determine which TM are lacking in the feed; supplemen-
tation of the missing elements almost always results in improved biogas yield and
operational stability [20, 54], including an interesting example of abatement of

Fig. 2 Depiction of how the physical, operational, chemical and microbiological aspects of
anaerobic digestion are involved in the production of methane from organic waste
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foaming in a slaughterhouse waste bioreactor supplemented with cobalt (Jörgen
Ejlertsson, personal communication).

What is more challenging is to decide whether an anaerobic bioreactor with a full
complement of TM in reasonable quantities might in fact be TM deficient; perhaps
due to the metals speciated in such a way that they are not bioavailable within the
required timescale of digestion. Ishaq et al. [55] showed that sewage sludge bio-
reactors with no obvious TM deficiencies (but recorded as under-performing with
respect to electricity production) responded positively to TM supplementation, in
particular cobalt supplementation, with increases in the rate of conversion of acetate
to methane being recorded in the range of 9–50 % in Biochemical Methane
Potential (BMP) assays.

Required TM supplements are hence determined based on concentration and
bioavailability in the feed. The microbial species and hence dominant biochemical
pathways in the bioreactor will also determine which TM supplements are most
appropriate. For example, Fermoso et al. [40] showed that UASB bioreactors
treating methanol were strongly dependent on cobalt supplementation to maintain
high biogas yield and bioreactor stability, whereas UASB bioreactors treating an
acetate-based waste were less responsive to cobalt supplementation. So a TM
supplement that suits one bioreactor will not necessarily be as effective at another
bioreactor site. This leads to the question of how the potential benefits of TM
supplements can be evaluated at laboratory-scale? BMP batch assays are commonly
used to evaluate the effect of TM supplements on the rate of conversion of feedstock
to methane. The test is rapid (5–10 days depending on the feedstock) and relatively
inexpensive to perform but it evaluates primarily the immediate response of the
existing microbial community to TM supplements. The BMP test does not give an
indication of how the community might evolve as the TM composition of the
bioreactor changes.

TM may have synergistic or even antagonistic effects depending on their relative
concentrations in a supplement. It is important to understand which TM are criti-
cally limiting to be able to develop appropriate bespoke supplements for individual
bioreactors if required to optimize biogas yield or stabilize a bioreactor [15]. TM
supplementation in AD systems is a compromise between achieving the maximal
biological activity of the biomass present in the reactor, while minimizing the costs
of the supplied metal and the TM losses into the environment. The boundary
conditions to keep a stable reactor operation vary between nutrient deficiencies due
to lack of essential TM and toxicity due to their excess [56]. The TM addition
strategy, for example, whether TM are added as metal chelates that are unlikely to
precipitate or metal salts that are likely to precipitate, affects the TM losses and
hence costs to achieve the optimal TM concentration inside the AD system.

In completely mixed anaerobic reactors, precipitation of TM confers little
advantage in terms of TM retention in the bioreactor; hence dosing of TM as
soluble (chelated) complexes could be advantageous to improve their availability
for rapid microbial uptake. Conversely, anaerobic reactors that decouple the bio-
mass retention time from the hydraulic retention time, such as UASB and SBR
(Sequencing Batch Reactor), are likely to benefit from being dosed with TM salts so
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that the metals will precipitate and accumulate within the biomass sludge fraction,
from which they can be assimilated more slowly by the microorganisms as they are
required [54, 57]. This is more cost effective than dosing chelated TM that are
washed out of the reactor in a matter of hours, even if there is a trade-off in
bioavailability.

Depending on the type of substrate to be digested; bioreactor type; and the
digestion procedure (mono or co-digestion) employed; TM requirements of
anaerobic bioreactors could also theoretically be provided through mixing various
feedstocks, such as by co-digesting with sewage sludge, OFMSW or animal
excreta, or externally by using chemical additives [58, 59]. Agricultural biogas
plants operating with energy crops, such as maize and grass as mono-substrates, can
sometimes face suboptimal bioreactor performance without any obvious reason at
first glance, but the VFA concentrations range between 3 and 5 kg m−3 (recently
studied in Germany and Austria by Hinken et al., Pobeheim et al. and Lindorfer
et al. [60–62]). Then, the lack or unavailability of micro-nutrients (i.e. trace metals)
should be the first reason to be questioned [13].

Anaerobic bioreactors rarely exist in isolation and are usually part of bigger
installations with other operations upstream that will have an impact on the bio-
reactor, for example, sewage sludge anaerobic bioreactors treat the sludge generated
through primary and secondary sewage treatment; agricultural anaerobic bioreactors
treat manure generated by upstream processes such as milk production; and
industrial anaerobic bioreactors are vulnerable to upstream changes in the factory
processes that then affect the wastewater composition. Any changes upstream can
affect both the composition and bioavailability of TM in the anaerobic bioreactor
feedstock and hence have unintended consequences on the methane yield of that
bioreactor. A study by Carliell-Marquet et al. [63] showed that introducing iron
dosing for chemical phosphorus removal at a sewage treatment works changed the
way trace metals were fractionated. Iron shifted to less easily extractable fractions,
indicating a potential decrease in bioavailability, whereas copper and zinc moved
down the fractionation profiles to be recovered more readily, indicating a potential
shift towards being more bioavailable. A key point for AD engineers is that
upstream process decisions can impact on TM composition in anaerobic bioreactor
feedstock and hence on methane yield. Understanding how process engineering,
trace metal chemistry and microbial ecology work together for the benefit of the
reactor will enable engineers to plan for and avoid unintended trace metal
limitation.

5 Fate of Trace Metals in the Environment

During AD of substrates such as sediments and organic materials, TM species are
formed under reducing conditions. Microbial organic matter synthesis effectively
reduces redox potential, and produces a range of organic TM complexes and stable
inorganic precipitates. After anaerobic digestion, TM are released into the
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environment as soil or compost via different routes of entry (i.e. suspended /dis-
solved in effluents or in solid as excess biomass). Once outside the reducing con-
ditions of AD fermenters, waste materials face aerobic conditions that may lead to
chemical and physical oxidation and changes in availability of TM. Since legisla-
tion has become aware of the potential environmental risks involved (i.e., elevated
exposure of (toxic) TM to humans, cattle and ecosystems), the application on land
and other forms of re-use is restricted in many EU countries. Nevertheless, the
possibilities to include bioavailability in site-specific risk assessment have been
included in European guidelines as second-tier methods. This may offer opportu-
nities to derive low-risk conditions and enable safe re-use of materials.

5.1 Risk Assessment of Substrates on Land

Many authors have reported on oxidation mechanisms that occur when anaerobic
materials become aerobic [64–67]. The sequence in which oxidation reactions take
place have been discussed extensively in terms of thermodynamic pathways, and
there is sufficient agreement on the (bio)chemical mechanisms that occur upon
reduction and oxidation. Numerical models were developed specifically to address
the quantitative effects of redox sequence and TM speciation (e.g., [68, 69]) in
terms of resulting pore water concentrations and emission of TM to the
environment.

Despite this general agreement on chemical and biochemical mechanisms, the
final result of oxidation seldom follows generic rules and often remains uncertain.
The final endpoint is the sum of intermediate reactions that occur during oxidation
and is largely dictated by the solid phase composition of the substrate and its ability
to counteract adverse effects [70–73]. In Table 1, some of these reactions are
summarized.

Figure 3 shows an example of the oxidation of anaerobic sediment sludge that
was brought on land. This case shows that a drop in pH occurred of almost two
units. This is most probably the result of oxidation of relatively large quantities of
sulfides, given the increase of SO4

2−. Sulfide-associated TM are released as a
consequence. The effect may be superimposed by competition of H+ ions with TM
for organic and inorganic sorption sites.

Xiang et al. [67] used these chemical characteristics to actively release TM from
anaerobically digested sludge. The inoculation of indigenous Fe-oxidizing bacteria
and the addition of FeSO4 accelerated the solubility of Cr, Cu, Zn, Ni and Pb at a
pH that dropped to 2.5. Removal efficiencies were obtained that ranged from 16 %
(Pb) to 92 % (Cu). It was reported that the residual TM content in the leached
sludge was acceptable for unrestricted use for agriculture.

However, release of H+ not necessarily has to lead to actual acidification.
A substrate or the receiving environment may be capable of buffering the input of
protons either by sorption (e.g., by organic components) or reaction with alkaline
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products (e.g., CaCO3). In cases of abundant iron, the formation of reactive
iron-oxyhydroxides may drastically increase sorption capacity of the substrate for
TM and prevent their release. Using these properties, either intrinsic or by addi-
tions, may prove to be a cost-effective and environmentally safe option when
compared to active removal processes.

5.2 Risks Assessment in Aquatic Environments

For TM, environmental quality standards for sediments and surface waters have
been developed to protect the ecosystem from adverse effects. These quality

Table 1 Major oxidation reactions in digestates and their potential environmental effects

Reaction Physical or chemical effect

Organic metabolism Eh ↓; pH ↓; pCO2 ↑; Possible acidification; Release of
sorbed TM; Increase of DOC.CH2O + O2 → CO2 + H2O

CO2 + H2O → HCO3
− + H+

Sulfide/pyrite oxidation pH ↓; Release of S-associated TM; Sorption of TM to
iron(hydr)oxides; Possible acidification and
eutrophication.

FeS(s) + 9/4O2 + 1.5H2O → FeOOH
(s) + 2H+ + SO4

2−

Nitrification pH ↓; Possible acidification and eutrophication.

NH4
+ + 2O2 → NO3

− + 2H+ + H2O

Fig. 3 Examples of pore water concentrations of TM and arsenic after dumping of anaerobic
sludge on land (Vink et al., unp.). Oxidation of stable sulfide precipitates releases TM and sulfate.
When insufficiently buffered, acidification may give rise to significant release of TM to pore water
and possible emission to the surrounding environment
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standards are generic, which means that they apply to all surface waters. The
importance of explicitly considering bioavailability in the development of water and
sediment quality criteria for TM has been recognized for some time [74]. Criteria
that incorporate this concept were considered for regulatory implementation for
some time [75–77].

Biotic ligand models (BLM) were developed to incorporate local bioavailability
in risk assessment procedures. The conceptual framework for the BLM is an
adaptation of the gill surface interaction model, originally proposed by Pagenkopf
[78, 79] and more recently utilized by many others (e.g., [80–84]), and the free ion
activity model of toxicity, extensively reviewed by e.g., [85, 86]. The general
framework is illustrated in Fig. 4. The model is based on the hypothesis that toxicity
(expressed as No-effect concentration; NOEC) is not simply related to total aqueous
TM concentration but that both TM–ligand complexation and TM interaction with
competing cations at the site of action of toxicity need to be considered [78, 87, 88].
Mortality occurs when the concentration of TM bound to the biotic ligand exceeds a
threshold concentration. The BLM simply replaces the fish gill as the site of action
with a more generally characterized site, the biotic ligand. The reason for this
replacement is to emphasize that this model should be applicable to other aquatic
organisms, like crustaceans, for which the site of action is not readily accessible to
direct measurement. It is likely that these principles apply to any organism for
which the site of action is directly in contact with the external aqueous environment.

Fig. 4 The biotic ligand model for TM includes calculation of chemical speciation, binding to
biota and a normalization procedure to calculate site-specific quality standards (http://www.pnec-
pro.com)
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The role of TM complexation is critical because formation of organic and
inorganic metal complexes renders a significant fraction of the total TM
non-bioavailable. In fact, this modeling framework defines bioavailability of TM.
Dissolved TM exists in solution partially as free TM ion [89, 90]. This species is
hypothesized to be the bioavailable species in more simplified versions of the free
ion activity model of toxicity. The rest of the TM exists as non-bioavailable TM
complexes that result from reactions of the TM with organic and inorganic ligands.
Biotic ligand models were developed and validated for Cu, Ni and Zn. Efforts to
develop BLMs for other TM (such as Co (e.g., [83]) and Cd (e.g., [91]) are
undertaken and tested for uncertainty [92]. For Cd, a bioavailability correction
factor based on water hardness has been suggested (e.g., [87]).

Figure 5 visualizes the effects of environmental variability on the actual toxicity
of zinc. A large set containing over 80,000 water quality monitoring data were used
to calculate the No-effect concentration of zinc under the occurring conditions. As
an example, the simultaneous effect of calcium and dissolved organic carbon
(DOC) is shown.

Recently, Verschoor et al. [93] performed a geographical and temporal analysis
of TM in surface waters, and concluded that “sensitive” and “robust” waters occur,
based on their physic-chemical composition. By incorporating chemical speciation
of TM in the assessment of ecotoxicological risks for aquatic species, site-specific
variations are made visible that remain undetected when checked with generic
quality standards. A long history of experiments has provided sufficient evidence
for the importance of water chemistry on the adverse effects (toxicity) of heavy
metals and other compounds to aquatic organisms. This insight can be used to focus
on the protection of vulnerable sites that are identified in this way. Simultaneously,
it opens opportunities to explore the possibilities of re-use of digestates in the
environment in a responsible manner.

Fig. 5 Effect of environmental parameters (Ca, DOC) on toxicity of zinc. The predicted No-effect
concentrations are expressed in ug/L. A low PNEC represents a high toxicity; red color indicates
zones where the HC5 (hazard concentration for 95 % of species) is approached or exceeded
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6 Mathematical Modelling

During recent decades, several researchers published a series of mathematical
models to simulate the AD process [94–100]. These models are focused on different
aspects of AD and have shown good performances in terms of simulation accuracy.
The different approaches proposed by the different models, however, make it very
difficult to either compare the results of, or to integrate, two or more models.

In 2002, the International Water Association (IWA) Task Group for
Mathematical Modelling of Anaerobic Digestion Processes developed a compre-
hensive mathematical model known as ADM1-Anaerobic Digestion Model no.
1 [101], which was based on the collective knowledge of modelling and simulation
of AD systems.

The aim of the ADM1 approach is not to provide an overall model but to supply
a unified basis for AD modelling; indeed the first version of ADM1 neglects certain
processes involved in AD, such as sulfate reduction, acetate oxidation, homo-
acetogenesis, solids precipitation and inhibition due to sulfide, nitrate, long-chain
fatty acids (LCFAs), and weak acids and bases [102].

Some of the neglected aspects have since been studied and modelled; for
instance, two ADM1 extensions were published in 2003 concerning, respectively,
sulfate reduction [103] and CaCO3 precipitation [104]. A further extension to
remove the ADM1 discrepancies in both carbon and nitrogen balances was later
published [105]. Lubken et al. [106] proposed a first modified version of the
ADM1, able to take into account the co-digestion of different substrates. More
precisely, in the model of Lubken et al. [106], the energy production by
co-digesting cattle manure and energy crops was evaluated. Esposito et al. [107]
modified the ADM1 to include the possibility to model the disintegration of two
different input substrates. Their proposed model considers first-order kinetics for
sewage sludge disintegration and surface-based kinetics to model OFMSW disin-
tegration. This model has also since been upgraded [108, 109] to simulate the effect
of LCFA production in pH prediction and to include the possibility of separating
each product of the disintegration process (i.e. carbohydrates, proteins and lipids)
into two fractions, i.e. a readily biodegradable fraction and a slowly biodegradable
fraction. Another ADM1 extension published by Barrera et al. [110] in 2015
included sulfate reduction for a very high strength and sulfate rich wastewater. On
the model of Barrera et al. [110] not effect of TM was included.

Nevertheless there are several studies that demonstrated the significant effects of
TM, and their speciation, in AD. Shakeri Yetka et al. [18] have suggested to
combine available bio-uptake theories such as free ion activity and biotic ligand
models with the chemical speciation modelling and their further incorporation into
mechanistic models describing overall anaerobic digestion process such as ADM1.
However, to the best of our knowledge, there are no dynamic mathematical models
that could take into account these phenomena. In addition, the ADM1 model does
not yet consider the phylogenetic complexity of microbial communities underpin-
ning the AD process, or the dynamic nature of microbial community structure in
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response to changing environmental conditions. Therefore, a new theoretical model,
based on the ADM1 approach, is needed to simulate the effect of TM and their
speciation in anaerobic digestion systems.

This mathematical model should include the following characteristics:

1. Ordinary differential equations able to describe the speciation of the TM present
in the simulated biological system. In particular these equations should provide
the dynamic concentrations of each TM species. Proper description of the TM
chemical speciation in a system where diverse organic molecules are present in
high concentrations requires identification and inclusion of main metal-binding
ligands in particular dissolved organic matter and their stability constants.

2. Differential mass balance equations for substrates, products and bacterial groups
involved in the process. These equations include biochemical reactions of
substrate conversion and microbial growth and decay kinetics, considering the
effects of TM speciation (Table 2). In particular the kinetic equations reported in
Table 2 consider the mechanisms of microbial uptake of TM (including their
inhibitory and nutritious effects) which is the bridge for connecting TM speci-
ation to microbial growth, decay, and maintenance activities.

3. A module aimed at the determination of the redox potential that is needed to
model the TM speciation.

4. Ideally, the incorporation of data on the diversity and abundance, as well as
responses to TM concentrations and availability, of the microbial populations in
AD bioreactors.

5. Differential parabolic equations capable to model the diffusivity phenomena in
the biofilm in case of attached growth reactors. These equations will consider
the different diffusivity constant of each TM species.

6. A module to simulate the fate of trace metals in the environment and to assess
the risks in soil and aquatic systems.

Table 2 Inhibition forms as used in the ADM1 [101], readapted for TM concentrations.
KI = inhibition parameter; rj = r ate for process j; Sj = substrate for process j; MI = inhibitor
concentration; Xj = biomass for process j; Km = Monod maximum specific uptake rate; Ks = half
saturation value; Y = yield of biomass on substrate; Kq = first order decay rate; MLL and
MUL = lower and upper limits where the group of organisms is 50 % inhibited, respectively

Description Equation

Uncompetitive inhibition qj ¼ KmXS

KsþS 1þKI
MI

� �
Competitive inhibition qj ¼ KmXS

Ks 1þMI
KI

� �
þS

Reduction in yield Y ¼ f ðMIÞ
Increased biological decay rate Kdec ¼ f ðMIÞ
Empirical upper and lower inhibition I ¼ 1þa�b MLL�MULð Þ

1þb MI�MULð Þþb MLL�MIð Þ
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7 Outlook

A challenging area of AD research remains largely uncharted with respect to
understanding the role of TM in enhancing biogas production. Since performance
dictates the commercial viability of AD, more attention to managing the TM needs
of AD processes will improve the overall prospects for the technology. This major
knowledge gap and scientific challenge is a multifaceted problem involving TM
chemistry, physical interactions of TM and solids, microbiology, microbial ecology
and technology optimization. Moreover, the fate of TMs, and the chemical speci-
ation, transport and ecological impact of TMs in environments—often agricultural
lands—receiving discharge waters from AD is largely unknown or at least uncer-
tain. This means that the fate of TM in AD biotechnologies has an inherent
importance, which should be explored jointly by multi-disciplinary efforts to pro-
vide relevant, and reliable, information and tools for industry and to develop the
role and use of TM to enhance biogas production in anaerobic biotechnologies.
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