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Preface

This volume contains the accepted full papers and extended abstracts of the 5th
Brazilian Symposium on Bioinformatics held in Búzios, Rio de Janeiro, Brazil
from August 31 to September 3, 2010.

The first three meetings of this series, which took place 2002, 2003, and 2004,
were called WOB (Workshop on Bioinformatics). In 2005, the conference got its
current name BSB and has since published its proceedings as a special issue
of the series Lecture Notes in Bioinformatics (volumes 3594/2005, 4643/2007,
5167/2008, and 5676/2009).

Its topics of interest vary in many areas of bioinformatics, including se-
quence analysis, motifs, and pattern matching; biomedical text mining; biologi-
cal databases, data management, integration; biological data mining; structural,
comparative, and functional genomics; protein structure, modeling, and simu-
lation; gene identification and regulation; gene expression analysis; gene and
protein interaction and networks; molecular docking; molecular evolution and
phylogenetics; computational systems biology; computational proteomics; statis-
tical analysis of molecular sequences; algorithms for problems in computational
biology; as well as applications in molecular biology, biochemistry, genetics, and
associated subjects.

We would like to thank all referees and Program Committee members for their
careful work in preparing this proceedings volume. Also, we want to acknowlegde
the local organizers and their staff for making this meeting possible.

September 2010 Carlos E. Ferreira
Satoru Miyano

Peter F. Stadler
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José Carlos M. Mombach UFSM, Brazil
Anna Panchenko NIH, USA
Ron Pinter Technion, Israel
Teresa Przytycka NIH, USA
Marie-France Sagot University Lyon, France
Cenk Sahinalp Simon Fraser University, Canada
Francisco M. Salzano UFRGS, Brazil
Hagit Shatkay Queen’s University, Canada
Alexander Schliep Rutgers University, USA
Benjamin Shoemaker NIH, USA
Marcilio M.C.P. Souto UFRN, Brazil
Jurek Tiuryn University of Warsaw, Poland
Maria Emilia T. Walter UnB, Brazil
Ryo Yoshida Institute of Statistical Math., Japan
Alex Zelikovsky Georgia State University, Brazil
Jie Zheng NIH, USA



Table of Contents

Full Papers

Evolution of the Long Non-coding RNAs MALAT1 and MENβ/ε . . . . . . 1
Peter F. Stadler

Granger Causality in Systems Biology: Modeling Gene Networks in
Time Series Microarray Data Using Vector Autoregressive Models . . . . . . 13
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Extended Abstracts

An SVM Model Based on Physicochemical Properties to Predict
Antimicrobial Activity from Protein Sequences with Cysteine Knot
Motifs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

William F. Porto, Fabiano C. Fernandes, and Octávio L. Franco

Enabling Annotation Provenance in Bioinformatics Workflow
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Milene Pereira Guimarães and Maria Cláudia Cavalcanti

BAT: A New Biclustering Analysis Toolbox . . . . . . . . . . . . . . . . . . . . . . . . . 67
Cristian Andrés Gallo, Julieta Sol Dussaut,
Jessica Andrea Carballido, and Ignacio Ponzoni

Detection of Protein Domains in Eukaryotic Genome Sequences . . . . . . . . 71
Arli A. Parikesit, Peter F. Stadler, and Sonja J. Prohaska

Discretization of Flexible-Receptor Docking Data . . . . . . . . . . . . . . . . . . . . 75
K.S. Machado, A.T. Winck, D.D. Ruiz, and O. Norberto de Souza

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81



Evolution of the Long Non-coding RNAs
MALAT1 and MENβ/ε

Peter F. Stadler

Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center
for Bioinformatics, University of Leipzig, Härtelstraße 16-18, D-04107 Leipzig,

Germany; Max Planck Institute for Mathematics in the Sciences, Inselstraße 22,
D-04103 Leipzig, Germany; Fraunhofer Institut für Zelltherapie und Immunologie,
Perlickstraße 1, D-04103 Leipzig, Germany; Department of Theoretical Chemistry

University of Vienna, Währingerstraße 17, A-1090 Wien, Austria; Santa Fe Institute,
1399 Hyde Park Rd., Santa Fe, NM 87501, USA

Abstract. MALAT1 is one of the best-conserved long ncRNAs in mam-
mals and shares several characteristics, among them nuclear retention
and a non-standard processing of its 3’ end, with the longer, but less
well conserved, adjacent MENβ RNA. We show that MALAT1 is con-
served among gnathostomes (with the possible exception of birds), while
MENβ likely originated in the mammalian stem lineage. Evolutionary
conserved features of both transcripts are discussed, including RNA sec-
ondary structure motifs and short RNA processing products.

Keywords: MALAT1, MENβ, VINC, NEAT1, TncRNA.

1 Introduction

A plethora of diverse non-coding RNAs have been discovered during the last
decade, collectively demonstrating that a large fraction of the genomes of higher
eukaryotes is transcribed into mRNA-like non-protein-coding transcripts (ml-
ncRNAs) [1, 2]. The evolutionary history of these transcripts is still poorly
understood. With very few exceptions, only global statistical information is
available to demonstrate that a large number of ncRNAs is under stabilizing
selection [3–5]. Nevertheless, most mlncRNAs are poorly conserved at sequence
level compared to other functional transcripts [4, 6]. Detailed evolutionary in-
formation is available on many families of protein-coding genes and structured
“house-keeping” RNAs. For ncRNAs, it is compiled in the Rfam database [7]
and in specialized data repositories for microRNAs (miRBase [8]) and snoRNAs
(snoRNA-LBME-db [9]). In contrast, evolutionary and phylogenetic information
on mlncRNAs is currently neither collected nor organized in a systematic way.

Detailed case-studies are available for only a few prominent transcripts, such
as the imprinting-related mammalian H19 ncRNA [10], the Drosophila roX
RNAs [11], and the eutherian Xist transcript [12, 13]. The latter originated
by pseudogenization of the protein-coding Lnx3 gene in the eutherian ancestor
[12] under inclusion of repetitive elements [13], which also gave rise to conserved

C.E. Ferreira, S. Miyano, and P.F. Stadler (Eds.): BSB 2010, LNBI 6268, pp. 1–12, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Fig. 1. Overview of the MEN/MALAT locus in different vertebrate species. The non-
coding MALAT transcript is linked to at least one of FRM8 and SCYL1 in all species
except the stickleback. In Xenopus, MALAT1 is duplicated, with one copy arranged in
reverse direction.

secondary structure features [14]. Xist is one of only three highly expressed
poly-adenylated ncRNAs that show strong nuclear retention [15].

The other two transcripts, NEAT1 and NEAT2/MALAT1, are the topic of
this contribution. They are located in close genomic proximity at the human
11q13.1 locus. NEAT1 also exists in a longer isoform, known as MENβ [16].
Recent studies showed that MALAT1 and MENβ share a number of peculiar
features. Both transcripts are spliced only infrequently [15], a feature that is
atypical for transcripts of their size. Most surprisingly, their 3’ ends are processed
in a non-standard way: RNase P cleaves the primary transcripts before a tRNA-
like element [16, 17], which is then processed into an independent cytoplasmic
ncRNA. The evolution of these small tRNA-like ncRNAs was studied already in
some detail [18].

The ∼ 8.7kb MALAT1 transcript (also known as NEAT2 and AlphaTFEB)
is overexpressed in a variety of different carcinomas [19–21]. Knockdown of
MALAT1 by shRNA implicates the transcript in cell cycle progression [22]. As
noted in [15], MALAT1 is exceptionally well-conserved for a long ncRNA. The
same study noticed the presence of a homolog in the opossum genome and re-
ported an “apparent absence of the transcript in non-mammalian species”. The
subnuclear localization of MALAT1 is concentrated in the SC35 splicing do-
mains, indicating a function in pre-mRNA metabolism [15].

The NEAT1 transcript, which has a size of ∼ 3.2 kb, is also responsive to
diverse disease states. It is induced in mouse brain during infection by Japanese
encephalitis virus and rabies virus, and hence was termed “Virus Inducible Non-
Coding RNA” (VINC) in [23, 24]. It is located at the Men1 (“multiple endocrine
hypoplasia 1”) locus, and hence was named MENε in [16, 25]. The transcript
contains the shorter “trophoblast non-coding RNA” (TncRNA) that suppresses
the expression of major histocompatibility antigens [26–28]. The bovine NEAT1
orthologue shows increasing expression levels during development of cattle mus-
cle [29]. The same locus also produces a much longer isoform (∼ 20kb), called
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MENβ. Several groups recently reported the involvement of MENε and MENβ
in the organization of the paraspeckles [16, 25, 30, 31], reviewed in [32]. Protein
interaction regions in the VINC/NEAT1/Menε RNA are investigated in [33]. The
main biological function of NEAT1/MENε is the regulation of gene expression
by restricting nuclear export [30, 34].

2 Materials and Methods

Genomic sequence data were retrieved from ensembl (v.57). In addition, ESTs
and unassembled genomic DNA from NCBI GenBank, and high throughput
sequencing data from GEO were analyzed. Initial homology searches were per-
formed with blast and extended to global alignments using several alignment
tools, including custalw, dialign, muscle, and mafft. RNA secondary struc-
tures were investigated using the Vienna RNA Package. The UCSC genome
browser was used for visualization. Due to length restrictions on the manuscript,
details and references are given throughout the Results section where
necessary.

3 Results

Syntenic Conservation. The genomic location of MENβ/MALAT1 is flanked
by FRMD8 (“FERM domain containing 8”, a.k.a. FKSG44) on the 5’ side and
by the highly conserved kinase-like gene SCYL1 throughout Eutheria. A small
“FUBI-like” gene (AP000769) is located between MENβ and MALAT1. All
these transcripts share reading direction, Fig. 1. The MALAT1 homolog is also
linked to FRMD8 and/or SCYL1 in other vertebrates, and the arrangement [5’-
FRMD8-MALAT1-SCYL1-3’] appears to be the ancestral state. The assembly of
the elephant shark genome, however, does not provide sufficient evidence to test
this hypothesis directly; no MALAT1 homolog was detectable in the lamprey
genome. In teleosts, synteny is broken between FRMD8 and MALAT1, while

Table 1. Approximate locations of MENβ in several mammalian genomes. The coordi-
nates refer to the (mostly unspliced) ESTs located in the approximate region identified
by blastn as homologous to human MENβ. The 5’-end of the menRNA is also listed.
Dots indicate that there are no ESTs near the position of the menRNA.

Species Assembly Chr. ± 5’-MENβ 3’-MENβ 5’-menRNA
Homo sapiens hg19 11 + 65190269 65213007 65213012
Macaca mulatta rheMac2 14 − 9009052 ... 8979130
Mus musculus mm9 19 − 5845579 5824708 5824707
Rattus norvegicus rn4 1 − 208481740 208455951 208456537
Canis familiaris canFam2 18 − 54794495 54775188 54775783
Equus caballus equCab2 12 + 25591044 ... 25613257
Bos taurus bosTau4 29 + 45474754 45495959 45495960
Ornithorhynchus anatinus ornAna1 ctg2592 − 13707 ... —
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Fig. 2. RNA secondary structure in MALAT and MENβ. By far the best conserved
structured signals are mascRNA [17] (upper left) and menRNA [16] (upper middle),
respectively. The upper right panel summarizes the RNAz predictions of structured
RNAs in MALAT1. Besides the mascRNA and the hairpin structure described in [16]
at the 3’ end (encircled), there is only one additional structured region about 600nt
upstream of the mascRNA. Below, the aligned sequence logos of menRNA (above) and
mascRNA (below) clearly show that the two ncRNAs are homologous.

SCYL1 is located on a different scaffold in the lizard genome. In Xenopus we
find two divergent copies of the MALAT1 sequence in tail-to-tail orientation.

Surprisingly, the entire region is missing in all four sequenced bird genomes
(chicken, turkey, zebrafinch, and duck). No plausible homolog of SCYL1, FRMD8
(using tblastn), or MALAT1 (using blastn) are detectable. There are two
possible explanations: (1) Birds lost the entire genomic locus. (2) FRMD8-
MALAT1-SCYL1 is located on a microchromosome, which are known to be
underrepresented in the chicken genome assembly [35]. Given that MALAT1
can be identified in all other sequenced gnathostomes and the high level of se-
quence conservation of the two flanking genes (whose functions appear to be
unrelated to that of MALAT1 and MENβ/ε), we suspect that we see a data bias
rather than a true loss of the entire locus.

MENβ is clearly present in all mammals. Within eutheria, the homology is
easy to establish and the loci can be found by simple blastn searches using e.g.
the human sequence as query. In several species the presence of the MENβ and/or
MENε transcripts is supported by (predominantly unspliced) ESTs mapping to
the location of the blastn hit, see Tab. 1. Due to gaps, break-points between
scaffolds, and inaccuracies in the genome assemblies, it is a bit more complicated
to trace MENβ in marsupials and in platypus. Unambiguous blastn hits to large
portions of MENβ are easily obtained, however. No EST support is available in
marsupials. The expression of a MENβ transcript in platypus is supported by a
handful of ESTs (EY202075, EY201405, EH004653, EG34158) as well as several
454 reads listed in ensembl (v.57).
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Table 2. Approximate positions of the MALAT1 homologs in non-mammalian verte-
brates determined from EST information. Data are from the UCSC genome browser,
except for lizard, which was taken from ensembl (version 57).

Species Assembly Chr. ± 5’-MALAT1 3’-MALAT1 5’-mascRNA
Anolis carolinensis anoCar1 s.443 + 1097270 1104518 1104209
Xenopus tropicalis + xenTro2 s.398 + 900641 910280 910287
Xenopus tropicalis - xenTro2 s.398 − 936780 924118 925349
Danio rerio Zv8 14 − 47564239 47570301 47564238
Tetraodon nigroviridis tetNig2 1 − 8135090 ... 8130318
Takifugu rubripes fr2 Un + 240961971 ... 240966770
Gasterosteus aculeatus gasAcu1 IV − 5027768 ... 5022122
Oryzias latipes oryLat2 10 + 8151439 8156861 8156576

MascRNA and menRNA. Both MALAT1 and MENβ have a highly struc-
tured 3’ end, consisting of a hairpin structure, the genomically encoded polyA
motive, and the tRNA-like structure that is cleaved off and becomes a stable
cytoplasmic ncRNA. This common structure is described in some detail in [17]
for mascRNA (MALAT1 associated RNA) and in the supplemental material of
[16] for menRNA, see also Fig. 2. The menRNA is by far the best-conserved part
of the MENβ transcript. It is easily identified in the two metatheria (Monodel-
phis and Macropus) [18]. Although a menRNA homolog is missing from both
shotgun traces and the genome assembly of platypus, it is possible to identify
other homologous sequences near the 3’ end of MENβ. In contrast, no potential
ortholog of MENβ/ε or menRNA can be found in outside mammalia.

A short region in the lizard genome aligned in the UCSC genome browser to
the menRNA region (anoCar1, scaffold 944:1210-1465[-]) cannot be identified un-
ambiguously as the 3’-end of a MENβ ortholog, because a blastn search yields 42
similar homologs throughout the lizard genome. Their sequences were retrieved
together with about 200nt flanking sequence and aligned (with clustalw) to
the corresponding regions surrounding mascRNAs and menRNAs. All lizard se-
quences clearly appear as monophyletic group in this tree (Fig. 3), indicating
lineage-specific proliferation of mascRNA. The data are consistent with (but do
not provide a conclusive proof for) the origin of MENβ through a duplication of
MALAT1, probably in the mammalian stem lineage. The frog genome contains
two divergent, and hence ancient, copies of MALAT1 in an unexpected tail-to-
tail configurations. The phylogenetic analysis does not provide any evidence that
one of these copies might be the ancestor of MENβ.

MascRNA and menRNA are clearly homologous [18], Fig. 2, and the similar-
ities of MENβ and MALAT1 extend upstream of the cleavage site to include a
hairpin structure and the genomically encoded poly-A tract [16]. At least parts
of the MENβ thus may have arisen from a duplication of MALAT1 in the mam-
malian ancestor. The lack of recognizable homologies further towards the 5’ end
could be explained by the poor overall conservation of MENβ.



6 P.F. Stadler

0.
02

8

0.
01

5
0.

08
7

0.
12

8

0.
09

4

0.
06

3

0.
01

9

0.
03

5

0.
01

0

0.
11

8

0.
15

2

0.
05

2

0.
20

0

0.
22

5

0.
20

4

0.
06

50.
09

4

0.
03

90.
33

0

0.
01

5

0.
35

1

0.
33

8

0.
12

9

0.
14

7

0.
20

2

0.
23

2

0.
09

4

0.
03

2

0.
06

40.
32

0

0.
02

8

0.05

H
om

o

M
ac

ac
a

M
us

B
os

E
qu

us

C
av

iaLo
xo

do
nt

a

O
rn

ith
or

hy
nc

hu
s

M
on

od
el

ph
is

M
ac

ro
pu

s

X
en

op
us

+

A
no

lis

X
en

op
us

−

T
ak

ifu
gu

T
et

ra
od

on

O
ry

zi
as

G
as

te
ro

st
eu

s

D
an

io

X
en

op
us

_m
as

cR
N

A
+

81
9_

48
04

2_
48

69
5_

1
44

3_
11

03
90

8_
11

04
56

6_
1

95
_2

36
36

06
_2

36
42

64
_1

10
83

_1
31

91
6_

13
25

74
_1

47
_4

49
40

63
_4

49
47

21
_1

14
7_

69
85

20
_6

99
17

6_
−

1
36

6_
99

20
65

_9
92

71
9_

−
1

36
6_

99
81

42
_9

98
79

6_
−

1
36

6_
88

41
67

_8
84

82
1_

1
37

3_
14

20
45

7_
14

21
11

5_
1

22
_2

23
78

98
_2

23
85

56
_−

1
10

73
_2

01
25

6_
20

19
06

_−
1

14
_5

02
66

27
_5

02
72

85
_−

1
14

7_
20

80
94

5_
20

81
60

3_
1

17
9_

13
54

30
4_

13
54

95
5_

1
17

9_
32

71
75

_3
27

83
3_

−
1

95
_3

40
00

00
_3

40
06

57
_−

1
17

9_
17

28
87

6_
17

29
53

4_
1

32
_1

97
70

9_
19

83
67

_1
17

9_
17

15
05

7_
17

15
71

5_
1

32
_1

88
92

6_
18

95
84

_−
1

32
_1

47
38

5_
14

80
43

_−
1

22
_4

11
54

91
_4

11
61

49
_1

32
_1

62
45

3_
16

31
11

_1
32

_1
57

45
0_

15
81

08
_−

1
32

_8
15

76
0_

81
64

18
_1

15
9_

77
55

80
_7

76
23

8_
1

57
5_

60
83

7_
61

49
5_

−
1

54
6_

20
46

85
_2

05
33

9_
−

1
20

5_
23

00
10

5_
23

00
75

6_
1

20
5_

22
87

77
1_

22
88

42
6_

1
11

0_
24

38
30

2_
24

38
96

0_
1

11
73

_1
20

46
7_

12
11

24
_−

1
22

3_
12

61
53

0_
12

62
18

3_
−

1
10

3_
10

17
43

4_
10

18
08

9_
1

10
3_

79
78

34
_7

98
49

0_
−

1
76

1_
25

24
63

_2
53

11
7_

−
1

19
3_

51
87

14
_5

19
36

8_
−

1
19

3_
72

26
34

_7
23

29
2_

1
13

2_
10

25
33

4_
10

25
98

8_
−

1
58

_3
77

51
57

_3
77

58
15

_1
94

4_
10

18
_1

67
3_

−
1

M
ac

ro
pu

s_
m

as
cR

N
A

P
la

ty
pu

s_
m

as
cR

N
A

Lo
xo

do
nt

a_
m

as
cR

N
A

H
om

o_
m

as
cR

N
A

D
an

io
_m

as
cR

N
A

M
ac

ro
pu

s_
m

en
R

N
A

H
om

o_
m

en
R

N
A

Lo
xo

do
nt

a_
m

en
R

N
A

X
en

op
us

_m
as

cR
N

A
−

0.05

97
9

93
1

10
00

94
6

99
5

10
00

82
1

36
7

36
4

52
0

46
4

73
1

74
1

71
4

80
9

57
9 99

8 93
0

96
8

89
9

90
4

10
00

94
6

64
9

82
1

95
0

99
8

95
1

10
00

10
00

40
0

10
00

10
00

88
7

51
9

10
00

64
8

74
7

58
8

99
6

10
00

99
5

10
00

99
8

Fig. 3. Left: The vertebrate MALAT1 sequences are alignable and a neighbor-joining
tree reproduces the established vertebrate phylogeny quite well, except for the posi-
tioning of the two marsupials (Monodelphis and Macropus) outside of the platypus
sequence. Right: Neighbor-joining tree of the mascRNA and menRNA loci with about
200nt flanking sequence on both sides. Lizard sequences are shown in green, tetrapod
mascRNAs in red, and tetrapod menRNAs blue.

Gene Phylogeny. The MALAT1 transcript is easily recognizable in all mam-
mals [15]. Significant blastn hits can also be found in the available genome
data of all five sequences teleosts, the elephant shark, the frog, and the lizard.
In particular, the mascRNA can be identified unambiguously [18]. In addition
to sequence homology, EST data can be used to determine the approximate ex-
tent of the MALAT1 transcript in several non-mammalian gnathostomes, see
Tab. 2. Approximate full-length sequences were retrieved from the genomic data
compiled in the UCSC genome browser and aligned using clustalw [36]. Vi-
sual inspection of the alignment shows that it indeed consists of homologous
sequences. The neighbor-joining tree constructed from this alignment is shown
in Fig. 3. It conforms to the established phylogeny of vertebrates with the excep-
tion of the relative position of marsupials and platypus, which can be interpret
as a long branch attraction artifact.

Promoters. Not much is known about the transcriptional regulation of
MALAT1 and MENβ/ε. There is evidence for alternative transcription start sites
for the human MALAT1 transcript(s): In addition to the longer transcript re-
ported e.g. in [15], a shorter isoform (∼ 7kb) is produced from a CREB-sensitive
promoter that can be stimulated by oxytocin [37]. This start sites matches that
of mouse hepcarcin [20]. Fig. 4 shows that the core promoter region is well con-
served within mammals. The alignment of all vertebrate MALAT1 sequences,
however, does not provide evidence for a conservation of this feature in other
gnathostomes.

Conserved Secondary Structure Elements. Many ncRNAs exhibit evolu-
tionarily conserved secondary structures. Surveys of the human genome [38, 39],
for instance, identified tens of thousands of conserved structural motifs. The
alignment of the MALAT1 sequences was screened with RNAz [38]. As expected,
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              **  ** ***                *      * *     **         ***** *                      * **     *   *  **    *
Human AAAGGCGGCGGAAGGTGATCGAATTCCGGT--GATGCGAG-TTGTTCTCCGTCTATAAATACGCCTCGCCCGAGCTGTGCGGTAGGCATTGAGGCAGCCAGCGCAG
Rhesus AAAGGCGGCGGAAGGTGATCGAATTCCGGT--GATGCGAG-CTGTCCTCCGTCAATAAATAGGCCTCGCCTGTGCTTTGCGGCAGGCATTGAGGCAGCCAGCACAG
Mouse CAAGGTGGTGGAGGGTTACTAGGTTCCGGT--GGAGTGAC-GTGTCCCTTTGCAATAAATACCGGCGCTCCGGGCTCTGCGTCAGGCATTCAGGCAGCGAGAGCAG
Rat CGAGGCGGTGGAGGGTTACTAGGTTCCGGT--GGAGTGAC-GTGTCCCTTCGCAATAAAAA-GGGAGCTCCGAGCCTTGCGTCAGGCATTCAGGCAGCGAGCACAG
Cow AAAGGCGGCGGAGGAGTATTGAATACCGGA--GGTGTGAG-CTGTACTTGTTCTATAAATACTCCGCT-GCGGACTGTGCGACAGGCATTGAGGCAGCGAGCGCAG
Dog AAAGGCGGCGGAGGGTTATTGAAAT-C-GC--GGTGTGAG-CTGTCTTCCGTCTATAAATATGCCTCTCCCGGGTTCTGCTGCAGGCTTTCAGGCAGCGAGCGCAG
Elephant AAAGGCGGCGGAGGGCTGTTGAGTTCCGGCAGGGTGTGAG-GCGT-CTCCGTCTATAAATACGCCTCTCCTCGGCCCTGCGGCAGGCATTCGGGCAGCGAGCGCAG
Armadillo AAAGGCGGCGGAGTGTTGC-GGGTTCCGGC-GGGTGTGAG-TCGTCCTTGGCCTATAAATACACCTCTGCGGGACCCTGCAGCAGGCATTCAGACAGCGAGCTTAG
Sloth AAAGGCGGCGGAGGGTTACTGGATTCCGGT-GGGTGTGAG-CTGTCCTTGGCCTATAAATACACCTCTGCGGGGCCCAGCGGCAAGCATTCAGGCGGCGAGCGCAG
Opossum AAAGGAGGCGGAGGGTTACGTGTTTCTAGC--GGTGAG-G-CTGTCCGTGGTGTATAAATAGTCCTCCTCCCAACGCCCTCTCAGGCAGAC-GGCAGGCAGCGAGG
Platypus AAAGAGGGCGGAGGGCTATTACATTCCAGT----TGTGAGTCTGTCCCTGGTCTATAAAGACTCCACCCGCGAGCCTGCTTGTAGGCAGATTGGTAGGCAGAGCTG

TATA-box

Fig. 4. Conserved promoter of the shorter form of MALAT1 reported in [37], which
fits the 5’ end of the mouse “hepcarcin” RNA

the mascRNA locus and the adjacent conserved hairpin structure just upstream
of the RNase P processing site [16] was identified as structured region. Despite
the size of the MALAT1 transcripts, however, RNAz detected only one additional
structured location about 600nt upstream of the processing site, see Fig. 2. For
MENβ, only the menRNA and a small structured region near the 5’-end of the
transcript were detected.

Small Processing Products. A plethora of different types of small RNA
products have been detected in eukaryotic genomes, ranging from microRNAs,
piRNAs, and endogenous siRNAs [40, 41] to multiple families of small RNAs
associated with mRNAs [42, 43]. Several studies using modern high through-
put sequencing technologies reported that well-known ncRNA loci are also pro-
cessed to give rise to small RNAs. MicroRNA precursor hairpins, for instance,
are frequently processed to produce additional “off-set RNAs” (moRNAs) that
appear to function like mature miRs [44, 45], tRNAs are cleaved to yield multiple
shorter products [46–49], snoRNAs frequently give rise to specific miRNA-like
short RNAs [50], and a functional short RNA product derives from a vault RNA
[51, 52]. The production of small RNA products is a ubiquitous phenomenon
that is strongly associated with secondary structure [53].

Here, several published short-read sequencing data sets as well as an extensive
library of short RNAs from human brains kindly provided by Philipp Khaitovich
[45, 51] is re-evaluated. After mapping the entire dataset to the genome with
segemehl [54], the subset localized in the MALAT1/MENβ region was extracted.
Both MALAT1 (Fig. 5) and MENβ (Fig. 6) give rise to relatively high levels of

65023000 65023500 65024000 65024500 65025000 65025500 65026000 65026500 65027000 65027500 65028000 65028500 65029000 65029500 65030000 65030500

9
5
16

4
17

13 54 61 13
47

8
31

6
6

65

2 kb

Human short reads
Mouse short reads

conservation

Fig. 5. Conservation of short read expression between human (top) and mouse (below).
For comparison, sequence conservation is shown at the bottom of the browser image.
Only the most highly expressed blocks of reads are indicated. The genome browser
panel covers exactly the annotated human MALAT1 transcript.
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64935000 64940000 64945000 64950000 64955000 64960000 64965000 64970000 64975000 64980000 64985000 64990000 64995000 65000000 65005000 65010000 65015000 65020000 65025000 65030000 65035000 65040000 65045000 65050000 65055000 65060000

CR607557
NCRNA00084

MALAT1
AF113016
DKFZp686B0790

gklp

50 kb

short reads

conservation

FRMD8 SCYL1MENbeta MALAT1

menRNA mascRNA

Fig. 6. A diverse set of short-reads is also produced over the complete length of the
MENβ transcript. The tRNA-like menRNA is located at small highly conserved locus
the very end of the solid EST bar.

short RNA products with a length < 30nt. A comparison of the human and
mouse reads shows that several of the most highly expressed locations in the
human libraries are also detectable in the much smaller mouse data set GEO:
GPL7195 [55]. Surprisingly, this syntenic conservation neither correlates with
evolutionary conservation of either sequence or secondary structure. In contrast
to MALAT1 and MENβ, most protein-coding transcripts do not give rise to
similar patterns of short RNA product. It is unclear whether the processing
into small RNAs is a generic feature of nuclear-retained transcripts. The Xist
transcript, which behaves similarly to MALAT1 and MENβ/MENε in several
respects [15], does not produce any short reads in any of the investigated libraries.
Either Xist is simply not expressed under any of the conditions/tissues used here,
or its processing is indeed distinct from that MALAT1 and MENβ/MENε.

4 Concluding Remarks

The detailed investigation of the MALAT1/MENε locus reveals several surpris-
ing facts about MALAT1 (conservation at least throughout gnathostomes, the
presence of an internal promoter that is conserved across mammals) and MENβ
(a probable origin in the mammalian stem lineage) and highlights several com-
monalities between them: the previously described processing of the 3’-ends
by RNase P including the production of small tRNA-like cytoplasmic ncRNA
[16, 17], the absence of conserved secondary structures almost everywhere else
in the transcript, and the production of many well-defined short RNA products.

On the other hand, this case-study highlighted serious practical difficulties in
the comparative analysis of long mlncRNAs. The generally low level of sequence
conservation calls for alignment tools that are optimized for this problem. Cur-
rent alignment editors cannot effectively handle sequences several kb in length
and landmarks, such a promoter elements, structured RNA motifs, ESTs, or
splice sites cannot be annotated directly in the alignment. Only a few “finished
genomes” provide sequences that do not contain gaps or assembly errors over a
length of several 10000nt, calling for more efficient ways to explicitly treat miss-
ing data in multiple sequence alignents. Thus, detailed case studies are not only
of interest in their own right, but are also a necessary prerequisite for the design
and development of computational tools that can efficiently assist the analysis
of long ncRNAs.
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From the biological point of view, the most interesting question concerns the
evolutionary origin of mlncRNAs. So far, Xist is the only example for which a sat-
isfactory answer — loss of coding capacity of the Lnx3 transcript and inclusion of
adjacent repetitive sequence elements — is known. In the case of MALAT1 and
MENβ no candidate for a possible evolutionary precursor could be identified. It
seems that mascRNA and menRNA originally derive from tRNAs, similar to,
e.g., BC1 and BC200 [56]. MALAT1 and MENβ, like Xist, thus are probably
composites deriving from several ancestral genomic elements. Interestingly, the
large 3’ part of MENβ that is not part of the NEAT1/MENε transcript consists
to a large extent of old SINE (mostly Alu) and a few LINE elements. In contrast,
MALAT1 and NEAT1/MENε are (nearly) devoid of annotated repeat-derived
sequences.

Acknowledgements. Thanks to Phillip Khaitovich for access to short-read
sequencing data, to David Langenberger and Steve Hoffmann for access to their
short-read maps, and to Manja Marz for comments on the manuscript.
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Abstract. Understanding the molecular biological processes underlying
disease onset requires a detailed description of which genes are expressed
at which time points and how their products interact in so-called cel-
lular networks. High-throughput technologies, such as gene expression
analysis using DNA microarrays, have been extensively used with this
purpose. As a consequence, mathematical methods aiming to infer the
structure of gene networks have been proposed in the last few years.
Granger causality-based models are among them, presenting well estab-
lished mathematical interpretations to directionality at the edges of the
regulatory network. Here, we describe the concept of Granger causality
and explore recent advances and applications in gene expression regula-
tory networks by using extensions of Vector Autoregressive models.

Keywords: Granger causality, vector autoregressive model, regulatory
network, time series, gene expression data.

1 Introduction

In order to understand cell functioning as a whole under specific pathological
conditions, it is necessary to uncover, at the molecular level, which genes are
expressed at distinct time points and infer how their products interact. Inter-
actions between genes are called gene regulatory networks. Due to the high
number of genes involved in these networks, which involve activating or sup-
pressing feedback loops, it is difficult to understand their dynamics by means of
DNA microarray studies in cell cultures or patient’s tissue due to both high costs
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of data acquisition and labor intensive experiments. As a consequence, mathe-
matical and statistical approaches for modeling and simulation in silico of these
networks have become a field of intensive research.

In the particular case of time series gene expression analysis, a key challenge
is the identification of the topology (the interconnection between genes) of these
networks. The difficulty resides in the dependency in data, a problematic situa-
tion for classical methods of statistical analyses.

Vector Autoregressive (VAR) models are promising tools for the interpretation
of time series gene expression data through the identification of Granger causali-
ties between genes [11]. First, they are particularly useful for describing processes
composed of locally interacting components. Second, statistical foundations for
estimating VAR models from observed data, and computational algorithms are
well understood and have been applied successfully in several areas such as Eco-
nomics [22], Neuroscience [28] and more recently in Bioinformatics [6][7][23].

The idea is that temporal associations may contain information to suggest
causality. More intuitively, it is known that a cause cannot come after the effect.
Thus, if a time series xt affects a time series yt, the former should help improving
the predictions of the latter.

To formalize Granger causality, suppose that �t is the information set con-
taining all the relevant information available up to and including period t. Let
yt(h|�t) be the optimal (minimum MSE (mean squared error)) h-step predictor
of the process yt at origin t, based on the information in �t. The corresponding
forecast MSE will be denoted by Ωt(h|�t). The process xt is said to cause yt in
Granger’s sense if Ωt(h|�t) < Ωt(h|�t\{xs|s ≤ t}) for at least one h = 1, 2, . . .,
where �t\{xs|s ≤ t} is the set containing all the relevant information except
for the information in the past and present of the xt process. In other words, if
yt can be predicted more efficiently when the information in the xt process is
taken into account in addition to all other information, then xt is Granger-causal
for yt.

In regulatory networks, a gene expression time series xt is said to Granger
cause another gene expression time series yt, if xt (xt−1, xt−2, . . .) provides sta-
tistically more significant information about future values of yt than would be
obtained by considering only the past values of yt (yt−1, yt−2, . . .). Thus, past
values of xt contain information to predict the future values of yt. In other
words, a gene xt is said to Granger-cause a gene yt if it can be shown through
a statistical test on lagged values of xt, that xt provides statistically significant
information about present and future values of yt. Notice that since this rela-
tionship is asymmetric, Granger causality may be interpreted as the direction
of information flow [2]. Nevertheless, Granger causality is not “effective causal-
ity” in a deep sense of the word (in the Aristothelic sense) because the former
is based solely on prediction and numerical calculations. However, it may give
insights into biological molecular interactions.

In this work, VAR models will be discussed and applied to both toy models
and actual biological data.
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2 Methods

2.1 Vector Autoregressive Model (VAR)

In the linear case (when Granger causality is linearly dependent of the predictor’s
gene expression level), the most traditional way to identify Granger causality
is by estimating VAR models. In order to simplify the description, only VAR
models of order one will be presented, i.e., only one time lag will be analyzed.
Generalizations to higher orders are straightforward.

The first order VAR model is described as shown:

yt = v + A1yt−1 + εt (1)

where T is the time series length, yt is an (n × 1) vector of gene expressions
(where n is the number of genes), v is an (n × 1) vector of intercepts, the
normally distributed disturbance εt is an (n × 1) vector with zero mean and
covariance matrix Σ, and A1 is an (n× n) matrix of parameters (connectivity).
The disturbances εt are serially uncorrelated, but may be contemporaneously
correlated. Thus, E(εtε

′
t) = Σ, where Σ is an (n× n) matrix which may not be

diagonal. It is important to highlight that, in this multivariate model, each gene
may depend not only on its own past values, but also, on the past values of the
other genes. Thus if yi,t denotes the ith gene in yt, the ith row yields

yi,t = vi + ai,1y1,t−1 + ai,2y2,t−1 + . . . + ai,nyn,t−1 + εi,t i = 1, . . . , n (2)

Due to its simplicity, the VAR model allows a simple way of identifying Granger
causality in weakly stationary processes. A necessary and sufficient condition for
the gene yi being not Granger causal for the gene yj is statistically testing if
and only if aj,i = 0. Thus, Granger non-causality may be identified by looking
at the autoregressive matrices of VAR models.

This model can be estimated by Ordinary Least Squares (OLS), simply by
regressing each variable on the lags of itself and the other variables. It is possible
to re-write (1) as Z = Xβ + E, where E ∼ N(0(n×1),Σ) and

Z =

⎛
⎜⎜⎜⎝

y1,2 y2,2 . . . yn,2
y1,3 y2,3 . . . yn,3
...

...
. . .

...
y1,T y2,T . . . yn,T

⎞
⎟⎟⎟⎠ , β =

⎛
⎜⎜⎜⎝

β1,1 β2,1 . . . βn,1
β1,2 β2,2 . . . βn,2

...
...

. . .
...

β1,n β2,n . . . βn,n

⎞
⎟⎟⎟⎠ ,

X =

⎛
⎜⎜⎜⎝

y1,1 y2,1 . . . yn,1
y1,2 y2,2 . . . yn,2
...

...
. . .

...
y1,T−1 y2,T−1 . . . yn,T−1

⎞
⎟⎟⎟⎠ ,E =

⎛
⎜⎜⎜⎝

ε1,2 ε2,2 . . . εn,2
ε1,3 ε2,3 . . . εn,3
...

...
. . .

...
ε1,T ε2,T . . . εn,T

⎞
⎟⎟⎟⎠ ,

where the matrix Z and X are given.
The explicit solution of the OLS estimator is β = (X′X)−1X′Z. Therefore,

one can carry out separate regression analyses for each gene. In other words,
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Fig. 1. Illustrative scheme of a regulatory network identified by (a) NVAR and (b)
DVAR. (a) Nonlinear Granger causality from gene Yi to gene Yj . The connectivity
changes in function of gene Yi’s expression level. (b) Time-varying Granger causality
from gene Yi to gene Yj . The connectivity changes in function of time. Dashed regions
indicate when the connectivity is statistically different from zero.

it is possible to separately estimate each column βi of β: β̂i = (X′X)−1X′Zi,
i = 1, . . . , n, where Zi is the ith column of Z.

In order to test if one gene is Granger causing another gene, the following
hypothesis test is set: H0 : Cβ = 0 versus H1 : Cβ �= 0.

It may be tested using the Wald statistic conveniently expressed as

W = (T − 1)(Cβ̂)′(CβC′)−1(Cβ̂) (3)

where C is a matrix of contrasts (C = I, for instance). Under the null hypothesis,
(3) has a limiting χ2 distribution with rank(C) degrees of freedom.

2.2 Nonlinear Vector Autoregressive Model (NVAR)

Biological experiments show that when a certain gene is over expressed or
knocked-down, the regulatory network structure might change. In other words,
the gene regulatory network can also be gene expression dependent (presence
of nonlinear regulation). This nonlinearity motivated the construction of a VAR
model that is able to identify a wider range of regulations, i.e., nonlinear Granger
causalities in time series gene expression data, namely NVAR [8][19][21].

The results provided by NVAR consist in the identification of Granger causali-
ties that are gene expression dependent, i.e., the structure of the network changes
depending on the gene expression levels of the predictors (Figure 1a). One il-
lustrative example is the regulation of gene yj by gene yi only when the gene
expression value of yi belongs to a certain interval (represented by a dashed
circle in Figure 1a) and they are independent outside this interval.
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The NVAR model of order one is defined by yt = v+A1(yt−1)+εt, where εt is
a n-dimensional error vector of random variables with zero mean and covariance
matrix Σ, v is the intercept vector and A1(yt−1) is the coefficient matrix given
by

A1(yt−1) =

⎛
⎜⎜⎜⎝

a1,1(y1,t−1) a2,1(y2,t−1) . . . an,1(yn,t−1)
a1,2(y1,t−1) a2,2(y2,t−1) . . . an,2(yn,t−1)

...
...

. . .
...

a1,n(y1,t−1) a2,n(y2,t−1) . . . an,n(yn,t−1)

⎞
⎟⎟⎟⎠ . (4)

The main idea of NVAR is to set the matrix A1 as a function of gene expressions
yt. To model this regulatory network in a nonlinear fashion, one may consider
the Cubic Splines expansion of the functions in order to estimate the nonlinear
functions in A1(yt).

A function f(z) may be represented by a linear combination of splines func-
tions φj(z). Therefore, considering the truncated spline expansion, the autore-
gressive coefficient functions a(y) may be written as a(yi,t) =

∑D
j=1 cjφj(yi,t).

A point to be analyzed here is the determination of the parameter D, which
controls the number of knots used in the spline expansion. An objective criterion
to select the optimum D may be obtained by selecting the value that minimizes
the leave-one-out cross-validation residue for each linkage.

Regarding the estimation procedure, Fujita et al. [8] proposed the use of Gen-
eralized Least Square (GLS) estimation, i.e., by estimating the coefficients of
splines expansions in A1(yt) using GLS. For further details about both, estima-
tion and statistical test, see [8].

2.3 Wavelet Dynamic Vector Autoregressive Model (DVAR)

In this extension, the coefficients in matrices A1 and Σ, can be described as
functions of time, allowing the evaluation of time-varying relationships between
time series, and thus, testing Granger Causality in a dynamic fashion. Differently
from the VAR model, DVAR can infer linear time-varying Granger causalities,
thus increasing the power of the test when Granger causality is time-varying
[6]. In other words, the DVAR technique allows the identification of one network
structure for each time point, being useful to detect when a specific gene is going
to be regulated in the set of time series data (Figure 1b). The DVAR model of
order one is defined by yt = v(t) + A1(t)yt−1 + εt, t = 1, . . . , T , where εt ∼

N(0,Σ) and Σ(t) =

⎛
⎜⎜⎜⎝

σ2
1,1(t) σ2,1(t) . . . σk,1(t)

σ1,2(t) σ2
2,2(t) . . . σk,2(t)

...
...

. . .
...

σ1,n(t) σ2,n(t) . . . σ2
n,n(t)

⎞
⎟⎟⎟⎠ . For each time point t, v(t)

and A1(t) are the local trend vector and the coefficient matrices, respectively,

given by v(t) =

⎛
⎜⎜⎜⎝

v1(t)
v2(t)

...
vn(t)

⎞
⎟⎟⎟⎠ and A1(t) =

⎛
⎜⎜⎜⎝

a1,1(t) a2,1(t) . . . an,1(t)
a1,2(t) a2,2(t) . . . an,2(t)

...
...

. . .
...

a1,n(t) a2,n(t) . . . an,n(t)

⎞
⎟⎟⎟⎠
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The intercept, coefficients and the covariance of random error are functions of
time. This parameterization allows for the modeling of multivariate time series
of regulatory networks in time-varying frameworks, providing a tool to analyze
the information flow between genes along the cell cycle, for example.

Sato et al. [28] suggested decomposing the time-varying functions v(t), A1(t)
and Σ(t) as wavelet expansions. The basic idea is to describe the functions
as linear combinations of wavelet functions ψj,k. Thus, considering the DVAR
model, the truncated wavelet expansion for the functions al,m(t) may be written
as al,m(t) =

∑J
j=1

∑2j−1
k=0 cj,kψj,k(t), where j and k are indexes for scale and

time-location, respectively and cj,k (j = −1, 0, 1, . . . , T − 1; k = 0, 1, . . . , 2j − 1)
are the wavelet expansion coefficients for the function al,m(t). Basically, the
full estimation of the wavelet DVAR consists in estimating each of the wavelet
coefficients cj,k for all the functions in A1(t), v(t) and Σ(t).

Regarding the estimation procedure, Sato et al. [28] proposed an iterative
GLS estimation composed by two stages which is described in details in [6] and
[28].

2.4 Sparse Vector Autoregressive Model (SVAR)

SVAR is suitable to deal with the high dimensional characteristic of gene ex-
pression data, i.e., when the number of parameters (genes) is higher than the
number of observations (microarray time series length) [7].

Notice in the order one VAR model that, when the number of genes is greater
than the number of microarrays, i.e., (T−1) < n, where T is the time series length
and n is the number of genes, the covariance matrix X′X is not invertible and,
consequently, the VAR model cannot be estimated. However, sometimes, it is de-
sired to construct larger networks with dozens of genes, i.e., where (T − 1) < n.
In order to overcome this limitation, SVAR was presented by [7]. SVAR is based
on the LASSO (Least Absolute Shrinkage and Selection Operator) estimator in-
stead of the standard OLS. The LASSO regression is useful in the identification
of regulatory networks when there are more parameters to be estimated than
observations since it performs an iterative variable selection at the same time it
estimates the coefficients of the regression.

2.5 Microarray Dataset

In order to demonstrate the applicability of VAR, NVAR and DVAR, a public
database containing ∼45,000 probes (∼22,000 genes) and 48 time points mea-
sured in intervals of one hour [16] was used. This gene expression data was de-
rived from a NIH3T3 cell line using the Mouse Genome 430 2.0 array platform
and is available from GEO under the GSE11922 accession number.

3 Results and Discussions

VAR, NVAR and DVAR models were applied to actual microarray data in order
to address a specific biological question: the interaction between proteins of the



Granger Causality in Regulatory Networks 19

metalloproteinase family (MMPs), key players in cancer progression, and their
regulators. The extracellular matrix holds cells together and maintains the three-
dimensional structure of body tissues. MMPs are involved in the breakdown of
extracellular matrix in normal physiological processes, such as embryonic devel-
opment and tissue remodeling, as well as in disease processes, such as cancer
[18].

Tumor metastasis is a multistep process involving the dissemination of tumor
cells from the primary tumor to secondary sites at a distant organ or tissue. For
a tumor cell to metastasize from the primary tumor to other organs, it must
locally degrade extracellular matrix components that are the physical barriers
for cell migration. Thus, one of the first steps in metastasis is the degradation
of the basement membrane, a process in which MMPs have been implicated.

This MMP activity is regulated by Tissue Inhibitors of Metalloproteinases
(TIMPs). Inhibitors of MMPs result in inhibition of metastasis, while
up-regulation of MMPs led to enhanced cancer cell invasion. In this context, two
TIMP genes were chosen from the microarray data set (TIMP2 and TIMP4) and
two genes possibly interacting with them were added to the network (RECK and
MMP24).

TIMP2 is a member of the TIMP gene family. The proteins encoded by this
gene family are natural inhibitors of matrix metalloproteinases. In addition to
an inhibitory role against metalloproteinases, the encoded protein has a unique
role among TIMP family members in its ability to directly suppress the prolif-
eration of cells, being possibly critical to the maintenance of tissue homeostasis
while inhibiting protease activity in tissues undergoing remodeling of the ex-
tracellular matrix [5]. TIMP4 also belongs to the TIMP gene family. Literature
shows a similar mechanism of action of TIMP2 and TIMP4 when modulating
cell surface activation of certain enzymes, such as progelatinase A and C [3].
TIMP4 as well as TIMP2 have been shown to possibly interact with MMP24,
the metalloproteinase in our network, as depicted by STRING 8.1 (Figure 2a).

Although not a metalloproteinase, the protein encoded by RECK gene is an
extracellular protein with protease inhibitor-like domains. Its expression is sup-
pressed strongly in many tumors and recent work indicates it might have an
essential role in cancer metastasis [4][14]. RECK down-regulation by oncogenic
signals may facilitate tumor invasion and metastasis, and it has been shown to
be regulated by TIMP2 [26]. The interaction between both these genes and their
presence in the context of MMPs regulation can be visualized in Figure 2b.

The complexity of the biological system presented above indicates that re-
lationship among its components cannot be easily inferred. The application of
the models VAR, NVAR and DVAR provided novel and complementary infor-
mation to what is currently known, as shown in Figure 3. Although published
data reports a mechanism through which TIMP2 regulates RECK by altering
phosphorylation patterns in the cell, our models show that other relationships
should be addressed.

Notice in Figure 3b that the auto-loops in RECK, TIMP2 and TIMP4, and the
regulation between RECK and TIMP2 are close to linear functions (illustrated
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(a) (b)

Fig. 2. Evidence of biological interaction as depicted by STRING 8.1. (a) Interaction
between MMP24, TIMP4 and TIMP2 is based on proteins being co-mentioned in scien-
tific publications (score MMP24-TIMP4: 0.77; MMP24-TIMP2: 0.65). (b) Interaction
between RECK, TIMP2 and MMPs is based on proteins being co-mentioned in scien-
tific publications as well as their association in curated databases (score RECK-TIMP2:
0.9).

Fig. 3. Application of (a) VAR, (b) NVAR and (c) DVAR models to a network com-
posed by the RECK, TIMP2, TIMP4 and MMP24 genes. The connectivity functions
of (b) NVAR and (c) DVAR are shown in each arrow. Dashed arrows are significant
connectivities with p < 0.10 and solid arrows with p < 0.05.
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by the boxes shown at the edges of the network), thus, it was also possible to
identify them using the VAR method (Figure 3a) which identifies linear Granger
causalities. The other interconnections were not identified by VAR since they are
nonlinear relationships. In Figure 3c, one can verify the time-varying Granger
causalities that were not identified by the other two methods. These interactions
occur only during a narrow time frame as can be seen in Figure 3c, in other
words, the regulation was not constant in time to be identified by standard VAR
(the regulations occur at the peaks illustrated at the edges of the network in Fig-
ure 3c). Since each VAR extension was designed for a specific purpose, in order
to address a real biological question to which no hypothesis has been postulated,
one should apply all of them and verify which regulation could be biologically
more reasonable and test the new hypothesis using wet lab experiments.

One limitation of VAR, NVAR and DVAR is the fact that they can be ap-
plied only in a limited number of genes, since the estimation of the parameters
requires a large time series length. In order to identify linear Granger causalities
in a large gene set, one may apply the SVAR model.

By applying SVAR in a large (more parameters to be estimated than obser-
vations) and sparse scale-free network [17] containing 100 genes (nodes) and 100
regulations (edges), with time series length equal to T = 25 and random noise
εt ∼ N(0, 1), it was possible to reconstruct in average, 17, 18 and 19% of the
entire topology by controlling the false discovery rate (FDR) in 1, 5 and 10%,
respectively. It is important to point out here that this partial reconstruction
was only possible because the topology is sparse (around n edges out of a to-
tal of n2 possible edges, where n is the number of genes), i.e., scale-free [17]
and the LASSO based shrinkage strategy automatically selects the predictors.
A biological application of SVAR with dozens of genes can be observed in [7],
where they modeled a cancer-related pathway. In a practical application with a
low number of genes, the results obtained by SVAR is similar to VAR, since the
LASSO under a large number of time points converges to the OLS.

Arnold et al. [1] have shown by simulations and also by applying in actual
biological data that the LASSO algorithm coupled to VAR model exhibits con-
sistent gain over the canonical pairwise graphical Granger method.

Several other works have been reported based on the shrinkage strategy in
order to model high dimensional data. For example, Opgen-Rhein and Strimmer
[27] used a James-Stein-type shrinkage while Shimamura et al. [30] proposed
the use of recursive elastic net instead of using LASSO in the SVAR model.
Basically, independent of the shrinkage type used in the estimator, the ideas
are similar. At each iteration, the regression coefficients of each gene with all
others are weighted according to their current size and several coefficients are
successively down-weighted and set to zero.

The shrinkage strategy used in SVAR is a potential solution to model net-
works when there is a lot of parameters in limited time series length. For exam-
ple, Kojima et al. [19] used group LASSO instead of GLS in the NVAR model,
while Marinazzo et al. [21] implemented a kernel-based NVAR instead of apply-
ing splines expansion. However, the cost to be paid to combine different VAR
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models in high dimensional data is the fact that statistical tests become difficult,
resulting in a high number of false positive edges.

Thus, the differences concerning VAR, NVAR, DVAR and SVAR can be briefly
summarized as: (i) VAR, DVAR and SVAR identify linear Granger causality;
(ii) NVAR identifies nonlinear gene expression dependent Granger causality;
(iii) DVAR identifies time-varying Granger causality and (iv) SVAR is useful to
identify Granger causality in high dimensional data.

4 Final Considerations

The relevance of Granger causality applications in Bioinformatics can be demon-
strated by the increasing number of reports published in the last few years. Na-
garajan and Upreti [24] and Nagarajan [25] investigated the use of bivariate VAR
for acyclic approximations of networks composed of two genes by exploring the
parameters defined as transcriptional noise variance, autoregulatory feedback,
and transcriptional coupling strength. Krishna et al. [20] described a clustering
method using Granger causality in order to identify functional modules from
temporal gene expression data.

Besides VAR models, other methods that are not model-based (regression
models) such as the ones based on partial correlations are adequate for the iden-
tification of Granger causality in the presence of unobserved (latent) variables
[13] or in order to identify Granger causality between sets of genes [10].

Several studies have addressed other aspects of Granger causality in Bioin-
formatics. For example, since it is difficult or quite impossible to include all the
variables in the model, Guo et al. [12] have developed a method to eliminate
the influence of latent variables in both time and frequency domains. Zou et
al. [31] have recently published a report comparing VAR and dynamic Bayesian
networks. In a systematic and computationally intensive comparison on both
artificial and actual biological data, Zou et al. [31] concluded that the critical
point is the time series length, i.e., the dynamic Bayesian network inference out-
performs VAR when time series length is short, otherwise, VAR is better. Fujita
et al. [9] developed a VAR model which takes into account microarray measure-
ment error, thus, obtaining more accurate p-values and coefficients. Existing
methods to identify Granger causality are based on Wald type test which relies
on the homoscedasticity normality assumption of the data distribution. In order
to overcome this drawback, Hu et al. [15] proposed an estimating equation-based
method which is robust to both heteroscedasticity and non-normality of the gene
expression data.

Despite clear improvement in the identification of Granger causality in gene
regulatory networks in the past few years, current limitations include: (i) the ne-
cessity for a model which is able to incorporate biological information (protein-
protein interaction, for example) in order to improve the accuracy of the inferred
network; (ii) the integration of measurement error in the methods already devel-
oped; (iii) a better understanding of the meaning of the information flow from
a biological point of view, i.e., what Granger causality means in the regulatory
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network. More accurate models should provide additional insights on cellular
process and ultimately lead to a better comprehension of disease mechanisms or
to the identification of potential drug targets for better treatment.
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Abstract. The analysis of cancer gene expression is intrinsically a semi-
supervised problem, as one is interested in building a classifier for diagnosis, but
also on finding new sub-classes of cancer. We propose here a method for Mixture
Discriminant Analysis (MDA), which can simultaneously detect sub-classes of
cancer and perform classification. We evaluate the method on 10 gene expression
data sets. MDA not only improved the classification in some of these data sets, as
it detected some known and putative sub-classes of cancer.

Keywords: cancer gene expression, mixture discriminant analysis, semi-
supervised learning, constraint based mixture estimation.

1 Introduction

The measurement of the expression of all genes of cancer patients has made possible the
development of personalized diagnostics [21]. In this context, a standard approach is the
use of machine learning methods to build a classifier for a data set with several healthy
and cancer patients or with distinct types of cancer [19]. Moreover, analysis on such
data sets have shown the presence of unknown sub-types of cancer by the application
of clustering methods [1,10]. Such findings have made the study of gene expression of
cancer to be extremely popular, and lead to great advances in cancer diagnosis [21].

These facts indicate that cancer based diagnosis is intrinsically a semi-supervised
problem [5]. While the studies generating the gene expression data sets give class la-
belling of all samples in the data, the frequent discovery of new sub-classes has made the
application of both supervised and unsupervised methods routine. Therefore, a method
that performs classification of cancer types simultaneously to finding new sub-classes
is extremely desirable. By using the detected sub-classes in the classification task, the
method can better delineate class boundaries/data distribution, therefore enhancing the
overall classification accuracy [11]. Moreover, the detected sub-classes, whenever they
are present in the data, are interesting candidates for further analysis by the biomedical
experts.

We propose here a semi-supervised method for estimating Mixture Discriminant
Analysis (MDA) with Gaussians distributions. MDA, which has been initially proposed
in [11], works by fitting a mixture of Gaussian distributions to each class in the data
set. One major drawback of this approach is the fact that one needs to estimate the
optimal number of components in the mixtures (or sub-classes) for each class inde-
pendently. This makes the method computationally costly and requires the application
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of model selection procedures. We propose here the use of a constraint-based-mixture
estimation [13] for estimating the MDA. The method has as input the list all negative
pairwise constraints, i.e. all pairs of patients that should not be in the same class. The
algorithm, which is based on an extension of the Expectation-Maximization (EM) al-
gorithm, searches for solutions with a pre-determined number of groups K satisfying
all negative constraints. That is, we do not have patients of distinct classes in a single
group, but we allow patients from the same class to belong to several groups. There-
fore, if K is higher than the number C of classes (cancer types), the method will return
a classifier with K − C novel sub-classes.

A similar approach has been previously shown to work on the classification of time-
series of Multiple Sclerosis patients [6]. In this work, we evaluate the MDA method with
several data sets from a cancer gene expression compendium [7]. Furthermore, we apply
a Quadratic Discriminant Analysis (QDA), which is equivalent to MDA when K = C,
to serve as a baseline case. To select the optimal number of sub-classes K − C, we
use a cross-validation procedure. Finally, apply a consensus method proposed in [16]
to evaluate if the sub-classes found are stable over distinct solutions obtained by the
cross-validation procedure.

2 Material and Methods

2.1 Data Sets

We use in this study 10 public micro-array data sets with cancer gene expression
(http://algorithmics.molgen.mpg.de/Supplements/CompCancer).
An overview of these 10 datasets is presented in Table 1.

Table 1. Data set description

Dataset Classes n C d

Alizadeh-v2 DLBCL(42), FL(9), CLL(11) 62 3 4022
Alizadeh-v3 DLBCL1(21), DLBCL2(21), FL(9), CLL(11) 62 4 4022
Armstrong-v1 ALL(24),MLL(48) 72 2 12582
Armstrong-v2 ALL(24), MLL(20), AML(28) 72 3 12582
Chen HCC(104), liver(75) 179 2 22699
Golub-v1 ALL(47), AML(25) 72 2 7129
Golub-v2 ALL-B(38), ALL-T(9), AML(25) 72 3 7129
Nutt-v2 CG(14), NG(14) 28 2 12625
Nutt-v3 CO(7), NO(15) 22 2 12625
Yeoh-v1 T-ALL(43), B-ALL(205) 248 2 12625

In Table 1, the second column describes the names of the classes (cancer types), as
defined in the original publication, and the number of samples (patients) in each class.
For further description of classes see [7]. The third column presents the number of
samples (n), the fourth column the number of classes and the last column the number
of genes (d). It is quite noticeable from the table that all data sets are sparse with a few
samples on a high dimensional space.

http://algorithmics.molgen.mpg.de/Supplements/CompCancer
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The data were pre-processed by the application of an unsupervised filter to discard
missing values and genes displaying no differential expression, as described in [7]. The
pre-processing performed on data from experiments based on the Affymetrix platform
(Alizadeh, Golub, Nutt and Yeoh) has the following steps: (1) all values below 10 and
above 16000 were replaced by these bounds,(2) we measured the mean expression of
each gene and eliminate 10% of the highest and lowest values to avoid extreme values
(3) each expression value was replaced by the base 2 log transformation of the ratio
between the expression value and the gene mean expression. For cDNA platform data
(Armstrong and Chen), it was not necessary to apply transformations, as they were
already in logarithmic scale. The unsupervised filter process was as follows: two l and
c thresholds were chosen, where the absolute value of the feature has to be higher than
l in at least c patients. Genes that do not fit this restriction were excluded from the data
set.

2.2 Classification Algorithms

Let X be a d by n matrix representing a gene expression data set, where xij denotes
the expression value of sample (patient) j and feature (gene) i, xi is a d-dimensional
vector with the expression values of sample (patient) i. We also have associated to each
data set a vector Y with dimension n, where yi ∈ {1, ..., C} denotes the class sample i
belongs to.

2.3 Discriminant Analysis

Discriminant analysis (DA) methods perform classification by inference over the poste-
rior distribution P[y|x] [12]. Let P[xi|yi = c] be the class-conditional density modeling
the distribution of samples in class c and πc be the prior distribution of class c, such
that

∑C
c=1 πc = 1 and πc ≥ 0, we can use Bayes Theorem to derive the posterior

probability

P[yi = c|xi] =
πcP[xi|yi = c]∑C

c′=1 πc′P[xi|yi = c′]
. (1)

Therefore, classification of a sample xi can be performed with the rule

ŷi = arg max
c={1,...,C}

P[yi = c|xi]. (2)

as given in Eq. 2, where ŷi is the predicted class for sample i.
The definition of P[xi|yi = c] is application dependent. In gene expression analysis,

a usual choice is a multivariate Gaussian density function [9], which is defined as

P[xi|yi = c, θc] =
1√

(2π)d|Σc|
exp

1
2 (xi−μc)TΣ−1

c (xi−μc), (3)

where θc are the parameters (μc, Σc). μc and Σc can be estimated with the mean and
covariance matrices of samples of class c and πc = nc/n, where nc is the number of
samples in class c [12].
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Given sparsity of the data (few samples and high dimension), it is usual to assume
independence among the attributes given the class. In gene expression analysis this is
done by estimating a diagonal parameterization of the covariance matrix Σc, i.e. only
the diagonal entries are estimated and all other values are set to zero [9]. This variant of
DA is known as Diagonal Quadratic Discriminant Analysis (DQDA) and will be used
in this study as a baseline method.

2.4 Mixture Discriminant Analysis

With mixture of discriminant analysis (MDA), we assume that class condition densities
can be defined as a mixture model, that is

P[xi|yi = c] =
K∑

k=1

αkP[xi|zi = k], (4)

where αk, i = 1, ..., K are the mixing coefficients. In [11], the estimation of these
mixture were performed with the application of the EM algorithm for each class to be
classified.

2.5 Mixture Model Estimation with Constraints

A standard mixture model can be defined as

P[xi|Θ] =
K∑

k=1

αkP[xi|yi = k, θk] (5)

as given in Eq. 5,where Θ = (α1, ..., αk, θ1, ..., θK) are the model parameters and αk

are the mixing coefficients. By including a set of hidden labels represented by the n-
dimensional vector Z , where zi ∈ {1, .., K} defines the component generating the xi,
we obtain the complete data likelihood

P[X, Y |Θ] = P[X |Z, Θ]P[Z|Θ]. (6)

We can use then the EM method to estimate the parameters Θ and component assign-
ments Z maximizing the complete likelihood (see [15] for details).

In constrained-based-mixture estimation (and its similar constrained based cluster-
ing), the user can define a n × n matrix W with negative pairwise constraints, where
w−

ij = 1 if samples i and j should not belong to the same mixture component and
w−

ij = 0 otherwise. The constraints are incorporated in the estimation by extending
the prior probability of the hidden variable to P[Z|Θ, W ] = P[Z|Θ]P[W |Z]. Assum-
ing P[W |Z] follows a Gibbs distribution, there is a variation of the EM algorithm for
estimating Z and Θ [13,14]. The method requires the redefinition of the posterior as-
signment distribution as

P[zi = k|xi, W ] =
πcP[xi|zi = k]

Z exp
∑

j �=i −λ−w−
ijP[zj=k|xj ,W ], (7)

where Z =
∑K

k=1 P[zi = k|xi, W ] and λ− is the Lagrange parameter defining the
penalty weight of constraints violations.
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2.6 Constraint-Based Mixture Discriminant Analysis

We propose here the use of the constraint-based mixture estimation method described
above for obtaining a MDA classifier. By setting the penalty parameter λ− with a high
value and the constraint matrix W , such that w−

ij = 1 if yi �= yj and w−
ij = 0 otherwise,

we will obtain solutions where samples with distinct classes are not in the same mixture
component. Furthermore, by choosing a number of components K > C, some of the
classes will be related to more than one mixture component. In other words, the mixture
will divide some of the classes in sub-classes.

Therefore, we need a procedure to relate the mixture components with the classes.
This can be achieved by relating the assignment vector Z of the mixture with the class
vector Y . We can estimate the probability of obtaining class c given component k by

P[y = c|z = k] =
∑N

i=1 1(yi = c)1(zi = k)∑N
i=1 1(zi = k)

, (8)

where 1 is the identity function. From this, we can define the mapping

ClassOf(k) = argmax
c={1,...,C}

P[y = c|z = k], (9)

which defines the class c related to component k.
We can use this mapping and parameters Θ, which has been estimated with the

method described in Section 2.5, to define the class conditionals as defined in Eq. 4
and obtain a MDA classifier with the use of Eq. 1.

2.7 Experimental Design and Consensus Analysis

For each data set, we performed a leave-one-out cross-validation. All accuracies de-
scribed in the following are based on the test set alone. Then we use the Friedman test
followed by a multiple comparison correction procedure to access the significance of
the ranking of the methods [8]. For the final interpretation of the sub-classes, we need
a method for combining the results of the classifiers (training and test sets) for all leave
one out runs. For this task, we use a procedure proposed in [4,16]. First, we build a
co-occurrence matrix by counting for each pair of samples the number of times they
appear in the same component across the different solutions Z . The consensus method
works by reshuffling the matrix and clustering samples that share similar groups over
solutions [16].

3 Experiments and Results

We investigate here if the use of the Mixture Discriminant Analysis method improves
classification accuracy in relation to the baseline method DQDA, which is the equiv-
alent to MDA when K = C. Data sets, where the MDA improves or sustains the
classification accuracy, are of interest, as these indicate the presence of sub-classes of
cancer.
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Table 2. Accuracy and standard deviation from classification methods for each data set

Dataset DQDA MDA c + 1 MDA c + 2
Alizadeh-v1 95.24 (21.55) 80.95 (39.74) 80.95 (26.07)
Alizadeh-v2 96.77 (17.81) 100 (0) 100 (0)
Armstrong-v1 98.61 (11.79) 97.22 (16.55) 98.61 (11.79)
Armstrong-v2 94.44 (23.07) 94.44 (23.07) 88.89 (11.79)
Chen 91.62 (27.79) 91.06 (28.61) 94.41 (20.72)
Golub-v1 98.61 (11.79) 97.22 (16.55) 93.05 (16.55)
Golub-v2 90.28 (29.83) 90.27 (29.83) 90.27 (20.12)
Nutt-v2 78.57 (41.79) 71.42 (46.00) 82.14 (31.50)
Nutt-v3 86.36 (35.13) 90.9 (29.42) 81.81 (38.56)
Yeoh-v1 96.16 (21.50) 92.74 (26.00) 91.93 (16.60)

We depict the accuracies and standard deviation in Table 1. Values in bold face repre-
sent the method, which obtained a statistically significant improvement as indicated by
the Friedman test [8]. For three datasets (Alizadeh-v1, Golub-v1 and Yeoh-v1), DQDA
obtained best results. In Alizadeth-v2 MDA with c+1 and c+2 obtained better results
and in Armstrong-v2 both DQDA and MDA c+1 were best. In all other cases, there was
no statistically relevant difference. Note that we used a leave-one-out cross-validation,
due of the small number of samples in the data sets. Such setting, usually lead to low
accuracy bias but high deviation, lowering the statistical power of comparisons [3].

As expected, MDA did not obtained a higher accuracy than DQDA in all data sets,
not all data sets contain sub-classes. Moreover, the limited number of patients may lead
to over-fitting with solutions with many sub-classes (too complex models). In some
scenarios MDA was better or equivalent to DQDA. As the existence of sub-classes is
interesting from the application problem, we prefer the solution of MDA with more
components, whenever accuracy is equivalent to DQDA.

Some of the data sets above, Alizadeh-v1, Armstrong-v2 and Gollub-v2, represent
the original classification performed by the specialists, which were latter found to con-
tain sub-classes with the use of unsupervised methods [1,2,10]. In these scenarios, MDA
had superior or equivalent accuracies in relation the QDA.

To assess if MDA is successful in detecting the sub-classes, we perform the con-
sensus analysis [4,16] on the Armstrong-v2 data set. In Figure 1, we depict the co-
occurrence matrix, where a particular entry indicates the number of times the pair
of patients were classified in the same class/sub-class (darker values indicate higher
counts). Ideally, the consensus matrix should a block of dark values for each class indi-
cating that the same patients were consistently classified together. As seen in Figure 1
top, DQDA obtained an almost perfect classification and separated all but one patient
from the original classes: lymphoblastic leukemias with MLL translocations (MLL)
and Acute lymphoblastic leukemias (ALL) [2]. This is indicated in the figure by the
two block of dark values.

The original study applied a clustering algorithm and found that 28 patients, which
were originally classified as patients with MLL, had distinct expression signatures
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Fig. 1. Consensus Analysis on the Armstrong-v2 data for DQDA (top) and MDA C +1 (bottom)
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from other MLL patients [2]. These had their diagnostics changed to akute myelogenous
leukemias (AML). As indicated in Figure 1 bottom, MDA with c + 1 components,
detected the subclasses AML and MLL as indicated by the two blocks of dark values in
the left-bottom part of the matrix. Note that in this data set, only the two original classes
(MLL and ALL) were given as input for the constraints. This exemplifies a case when
MDA successfully finds sub-classes.

Another interesting data set is Nutt-v3, where we see a improvement on the classi-
fication accuracy of MDA in relation to DQDA. Moreover, the co-occurrence analysis
indicated two sub-classes of patients with non-classic anaplastic oligodendrogliomas,
with respectively 11 and 4 patients. These non-classic gliomas are of difficult diagnosis
and these sub-classes have not been previously reported in the original study [17]. We
detected a significant difference (t-test with p-value < 0.05) in the patient survival time:
672 days for sub-class 1 and 1079 days for sub-class 2.

Next, we explored the genes (features) that are discriminative between these sub-
classes by estimating the Fisher discriminant ratio for all genes and ranking them. We
selected the 50 most discriminant genes for each class and we performed an enrichment
analysis with the g:profiler tool [18]. The analysis revealed that genes up-regulated in
sub-class 1 are related to metabolic process and cell cycle, while genes over-expressed
in sub-class 2 are related to immune response. These indicate a quite distinct expres-
sion signature of these sub-classes, possibly as a result of distinct immune response of
the patients to cancer. However, further patient and clinical data are required for the
validation of the potential sub-classes.

4 Final Remarks

We propose a new method for estimation of mixture discriminant analysis. This meth-
ods improves the original proposal of MDA [11] by requiring only one pass of the
EM algorithm to obtain solutions. In the analysis of cancer gene expression, we have
shown that MDA can improve classification and successfully indicate the existence of
sub-classes of cancer of gene expression data sets. This was exemplified on the classi-
cal study from Armstrong et al. [2]. Moreover, interesting sub-classes of non-classical
gliomas were found in the Nutt data set.

As future work, we would like to either include new data sets in the study and per-
form a more detailed biological analysis of the sub-classes found. From a methodolog-
ical point of view, the MDA can be improved by the use of feature selection methods to
cope with the high-dimensionality problem, for example using an approach similar to
Shrunken centroids [20].
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Abstract. The problem of determining the transposition distance of
permutations is a notoriously challenging one; to this date, neither there
exists a polynomial algorithm for solving it, nor a proof that it is NP-
hard. Moreover, there are no tight bounds on the transposition distance
of permutations in general. Our proposed approach merges two successful
strategies: the classical reality and desire diagram proposed by Bafna
and Pevzner and the more recent toric equivalence relation proposed by
Eriksson et al. We focus on unitary toric equivalence classes and the
corresponding lonely permutations. In a previous paper, we considered
the case n+ 1 prime, proved that the reality and desire diagram of such
lonely permutations has just one odd cycle and succeed in identifying
in this subset of lonely permutations, new permutations for which the
transposition distance is computed. The present paper extends regularity
properties of the cycle structure for general n, yielding tight bounds for
the transposition distance of lonely permutations. The subset of lonely
permutations that are 3-permutations is characterized and consequently
an upper bound is obtained for their transposition distances.

1 Introduction

The transposition distance [1] of permutations is a metric for determining the
similarity between chromosomes. This approach compares the gene orders of the
chromosomes instead of directly comparing their DNA sequences [2]. A transpo-
sition is a rearrangement of the gene order in a chromosome, in which a block of
genes is “cut” from a chromosome and “pasted” elsewhere in the same chromo-
some. A possible biological explanation for this rearrangement is the duplication
of a block of genes, followed by the deletion of the original block [3].

The problem of determining the transposition distance of permutations is a
notoriously challenging one; to this date, neither there exists a polynomial algo-
rithm for solving it, nor a proof that it is NP-hard. Moreover, there are no tight
bounds for the transposition distance of permutations in general. Our proposed

C.E. Ferreira, S. Miyano, and P.F. Stadler (Eds.): BSB 2010, LNBI 6268, pp. 35–46, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



36 L.A.B. Kowada, R. de A. Hausen, and C.M.H. de Figueiredo

approach merges two successful strategies, which will be presented in Section 1.1:
the classical reality and desire diagram proposed by Bafna and Pevzner and the
more recent toric equivalence relation proposed by Eriksson et al. We focus
on unitary toric equivalence classes and the corresponding lonely permutations.
Following the approach of previous works that sought better bounds for the
transposition distance when restricted to subsets of permutations [4,5], we focus
on the subset of lonely permutations.

This article is organized as follows: The subsequent subsection provides the
basic background on transposition distance, the toric classes, the reality and
desire diagram, current known bounds and studied subsets of permutations.
Section 2 characterizes the cycle structure of the reality and desire diagram
of lonely permutations; this characterization is used to identify which lonely
permutations have cycles of even length – which have, thus, a known lower
bound of n+1

2 for their distance. In the same section, we also provide an upper
bound that relates lonely permutations of n elements with lonely permutations
having a fewer number of elements. Section 3 is devoted to lonely permutations
that are also 3-permutations, culminating in an upper bound for their distance.
Section 4 contains our concluding remarks.

1.1 Background
For our purposes, the gene order in a chromosome that has n genes is defined
as a permutation π = [π1π2 . . . πn], where πi ∈ {1, 2, . . . , n} for i = 1 . . . n, and
πi �= πj if, and only if, i �= j. A transposition is defined as follows:
Definition 1. [1] A transposition, denoted by t(i, j, k), where 1 ≤ i < j < k ≤
n+ 1, is defined as the permutation

t(i, j, k) := [1 2 . . . i−1 j j+1 . . . k−1 i i+1 . . . j−1 k . . . n].

The transposition t(i, j, k) “cuts” the elements between the positions j and k−1
(both inclusive) and “pastes” them immediately before the i-th position. Let
π = [π1π2 . . . πi−1πi . . . πj−1 πj . . . πk−1 πk . . . πn], so

π · t(i, j, k) = [π1π2 . . . πi−1 πj . . . πk−1 πi . . . πj−1πk . . . πn],

where the product of two permutations is denoted as an action to the right, a
composition of two functions, in which π is applied first, and then t(i, j, k).
Definition 2. [1] The transposition distance dt(π) of a permutation π is the
length q of the shortest sequence of transpositions t1, t2, . . . , tq such that πt1t2 . . .
tq = [1 2 . . . n]. If we have π = [1 2 . . . n], then we define dt(π) = 0.
In the study of the problem of determining the transposition distance, it is useful
to give special names and symbols for some permutations. These are the identity
permutation of n elements, denoted by ι[n] := [1 2 . . . n], the reverse permutation
of n elements, denoted by ρ[n] := [nn−1 . . . 2 1], and the lonely permutation of
n elements, beginning with the element �, such that gcd(n + 1, �) = 1, denoted
by un,� := [� 2� 3� . . . n�], where x is the remainder of the division of x by n+ 1.
One can readily observe that ι[n] = un,1 and ρ[n] = un,n.
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Toric Classes

Eriksson et al. [6] proposed an approach to the transposition distance problem:
grouping some permutations that have the same distance into what they called
toric classes. For further details, the reader is referred to [6,7,8].

Definition 3. The circularization of an ordinary permutation π is the circular
permutation π◦ obtained from π by inserting an extra element 0 as both prede-
cessor of π1 and successor of πn, and taking the equivalence class under cyclic
shifts. Write π◦ = (0 π1 . . . πn) where the use of parentheses indicates an equiv-
alence class under cyclic shifts. From a circular permutation π◦, we uniquely
retrieve the ordinary permutation π by removing the element 0 and letting its
successor be the first element of π.

Definition 4. [6] Let π be a permutation of n elements, and m an integer. The
m-step cyclic value shift of the circular permutation π◦ is the circular permuta-
tion m+ π◦ := (mm+ π1 . . .m+ πn), where x is the remainder of the division
of x by n+ 1.

Definition 5. [6] Two permutations π, σ are torically equivalent if π◦ ≡◦ m+σ◦
for some integer m. Use π◦◦ to denote the toric equivalence class of π.

Theorem 1. [6] If π, σ are torically equivalent, then dt(π) = dt(σ).

This result allowed Eriksson et al. to reduce the search space to determine
the transposition distance by a branch-and-bound algorithm, allowing them to
achieve some results on the study of this problem, such as determining the max-
imum value of dt(π) for permutations having 13, 14 and 15 elements. However,
this reduction in the search space is not enough for determining the transposition
distance for permutations with a greater number of elements.

A toric class is unitary if it contains only one element, such as ι[n]
◦
◦ and ρ[n]

◦
◦.

Theorem 2. [7,8] A toric equivalence class is unitary if, and only if, it is of
the form

[
� 2� 3� . . . n�

]◦
◦ , where gcd(�, n+ 1) = 1.

Therefore, the only unitary toric classes are those that contain a permutation
un,�, which justifies the name lonely permutation. The permutations un,�, where
n+ 1 is prime, have been studied in detail in [7,9].

The Reality and Desire Diagram

Another approach to the study of the transposition distance has been introduced
by Bafna and Pevzner [1] and relies on the structure of the cycles of a graph
that captures the structure of a permutation.

Definition 6. [1,10] Given a permutation π of n elements, the reality and desire
diagram RD(π) is a graph on the following set of vertices:

V (RD(π)) = {0,−1,+1,−2,+2, . . . ,−n,+n, −(n+ 1)},
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and whose set of edges is partitioned into two sets R and D, respectively reality
and desire edges, defined as

R =
{

(+πi,−πi+1) | i = 1, . . . , n− 1
} ∪ {(0,−π1) , (+πn,− (n+ 1))

}
,

D =
{

(+i,−(i+ 1) | i = 1, . . . , n− 1
} ∪ {(0,−1) , (+n,− (n+ 1))

}
.

By the definition of the reality and desire diagram, every vertex has degree 2.
Therefore, RD(π) can be partitioned into a collection of disjoint cycles, and these
cycles are alternating, i. e., the reality and desire edges in each cycle alternate.
We say that a cycle has length k if it contains exactly k reality edges (which is
the same as having k desire edges). If the length of a cycle is even, we say that
it is an even cycle; otherwise it is an odd cycle. The number of odd cycles in the
reality and desire diagram is denoted as codd(π), and it is used to derive some
known bounds for the transposition distance, as discussed further in Section 1.1.

Known Bounds and Studied Subsets of Permutations

By analyzing how a transposition applied to a permutation affected its reality
and desire diagram, Bafna and Pevzner were able to provide the first non-trivial
bounds for the transposition distance.

Theorem 3. [1] A permutation π of n elements satisfies

1
2

(
n+ 1− codd(π)

)
≤ dt(π) ≤ 3

4

(
n+ 1− codd(π)

)
.

Bafna and Pevzner were also the first to notice that the distance of the reverse
permutation ρ[n] was in the range n2 ≤ dt(ρ[n]) ≤ n+1

2 , theorizing that it was
equal to the upper bound, and that the distance of any permutation of n elements
would be n+1

2 at most, since the reverse permutation seemed to be the hardest
permutation to transform into the identity by transpositions. Meidanis, Walter
and Dias [10] proved the prediction dt(ρ[n]) = n+1

2 to be correct, but it was later
found by Eriksson et al. [6] that there were permutations of 13 and 15 elements
that had distance greater than n+1

2 .
Improving on the earlier results, Elias and Hartman [4] were able to provide

instances of permutations of n elements, for every odd n ≥ 17, that were farther
than n+1

2 transpositions from the identity. In the same paper, they also studied
permutations whose cycles in the reality and desire diagram had length 3.

Definition 7. A k-permutation is one in which every cycle in the reality and
desire diagram has length k.

Theorem 4. [4] If π is a 3-permutation, then

dt(π) ≤ 11
⌊
n+ 1

24

⌋
+

⌊
3
(
n+1

3 mod8
)

2

⌋

+ 1.

Elias and Hartman were not the first to study k-permutations. Christie [11]
determined previously the distance of any 2-permutation.
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Theorem 5. [11] If π is a 2-permutation, then dt(π) = n+1
2 .

The fruitful results on the transposition distance for restricted classes of permu-
tations, in a problem that has evaded a general solution so far, encouraged further
efforts on the study of specific classes: Labarre’s so-called γ-permutations [5] and
the lonely permutations of n elements, where n+1 is prime [7,9]. In our previous
studies of lonely permutations, we have found the following lower bounds.

Theorem 6. [7] If n+ 1 is prime and 1 < � < n+ 1, then dt(un,�) ≥ n2 .

Theorem 7. [9] If n+ 1 is prime, � = n
2 + 2 and �∗ ≡ �−1 (mod n+ 1), then

n

2
+ 1 ≤ dt(un,�) = dt(un,�∗).

2 Reality and Desire Diagram of Lonely Permutations

Following the approach of previous works that sought better bounds for the
transposition distance for some classes of permutations, we will focus on estab-
lishing bounds for lonely permutations. Lemma 1, which describes the structure
of the reality and desire diagram of lonely permutations, lays the groundwork
upon which our bounds for the transposition distance of lonely permutations
rest. This lemma establishes a regularity of RD(un,�) according to the length
of its cycles. This lemma and its proof are a generalization of the result in [7],
which states that un,� has just one cycle if n+ 1 is prime.

Lemma 1. Let un,� be a lonely permutation, with � > 1. Then RD(un,�)
satisfies:

1. each cycle has length k = (n + 1)/ gcd(n + 1, � − 1), therefore un,� is a k-
permutation;

2. the number of cycles in the reality and desire diagram is gcd(n+ 1, �− 1);
3. +i,+i+ �− 1,+i+ 2(�− 1), . . . ,+i+ (k − 1)(�− 1) is the sequence of non-

negative elements in every cycle, for i = 0, . . . , gcd(n+ 1, �− 1)− 1.

Proof. Let +πx be a vertex with a non-negative label in the reality and desire
diagram RD(π). The non-negative successor of +πx, denoted as s(+πx), is the
vertex +πy such that +πx,−πx+1,+πy appear in this order, in one of the two
orderings of the vertices in the cycle containing +πx.

Let π = un,�, that is, πi = i�. The finite sequence 0, s(0), s(s(0)), . . . is thus
equal to 0,+i1�,+i2�, . . . ,+ik−1� for integers i1, i2, . . . , ik−1, where k is to be
determined later.

For p = 1 . . . k − 2, we thus have s(+ip�) = +(ip + 1)�− 1 and s(+ip�) =
+ip+1�. These two equalities, along with the base case p = 1, give us the following
recurrence relation:

{
i1� ≡ �− 1 (mod n+ 1)
ip+1� ≡ ip�+ �− 1 (mod n+ 1), for p > 1,

which is solved by the equivalence relation ip� ≡ p(�− 1) (mod n+ 1).
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Hence the sequence (0,+i1�,+i2�, . . . ,+ik−1�) becomes (0,+�− 1,+2(�− 1),
. . . , +(k − 1)(�− 1)). As we must have that s(+(k − 1)(�− 1)) = 0, we must
find the smallest positive value of k such that k(�−1) ≡ 0 (mod n+1). It is easy
to show that k = (n+ 1)/ gcd(n+ 1, �− 1).

We will now prove that for i = 0, . . . , gcd(n + 1, � − 1) − 1, then all of the
sequences of the form

(+i,+i+ �− 1,+i+ 2(�− 1), . . . ,+i+ (k − 1)(�− 1))

have no repeated elements. If there existed two repeated elements, then we would
have that +i+ x(�− 1) = +j + y(�− 1), for some 0 ≤ i, j ≤ gcd(n+1, �−1)−1
and integers x, y. Without loss of generality, we will suppose that i < j. Then, the
equivalence i+x(�−1) ≡ j+y(�−1) (mod n+1) can be written as (x−y)(�−1) ≡
j− i (mod n+1), or as a diophantine equation (�−1)x′+(n+1)y′ = j− i, where
x′ = x − y and y′ is integer. Bézout’s Lemma states that the equation only has
a solution if, and only if, j − i ≥ gcd(� − 1, n+ 1); but j − i cannot be greater
than gcd(n+ 1, �− 1)− 1. Hence, there are no repeated elements.

Each of these sequences – we have exactly gcd(n + 1, �− 1) of them – corre-
sponds to a cycle in RD(un,�). Since every reality edge has one positive element,
the length of every cycle is the number of positive elements in the cycle, so every
cycle has the same size k. �	
Given a lonely permutation un,�, we refer to the length of the cycles of its
reality and desire diagram as the cycle length of un,�. Lemma 1 together with
Bafna and Pevzner’s lower bound in Theorem 3 give as a corollary an immediate
lower bound when the cycle length is even; in the specific case that un,� is a 2-
permutation, Theorem 5 asserts us that the lower bound equals the distance.

Corollary 1. If the cycle length k = n + 1/ gcd(n + 1, � − 1) is even, then
(n + 1)/2 ≤ dt(un,�). If k = 2, or equivalently � = n+3

2 , the lower bound equals
the transposition distance.

The assumption that k is even implies that n+ 1 is even, and so n is odd. Since
gcd(n + 1, �) = 1, the assumption that n is odd implies that gcd(n + 1, � − 1)
is even. Therefore, the assumption that k is even implies that n ≡ 3 (mod 4).
Corollaries 2 and 3 identify, respectively, an infinite set of values of n such that all
lonely permutations un,� have even cycle length, and conditions for the existence
of a value of � such that un,� has even cycle length. Those infinite families satisfy
(n + 1)/2 ≤ dt(un,�), the distance of the reverse permutation and close to the
distance of the farthest permutations known to date [4,6,10].

Corollary 2. If n = 2q − 1 for q integer, then every lonely permutation un,�,
with � > 1, has even cycle length.

Corollary 3. The lonely permutation un,3 such that n ≡ 3 (mod 4) and 3 does
not divide n+ 1 has even cycle length.

The established regularity in the cycle length is further studied in Lemma 2 and
its Corollary 4 with the goal of determining the effect of a transposition in the
reality and desire diagram.



Bounds on the Transposition Distance for Lonely Permutations 41

Lemma 2. Consider the sequence of non-negative elements in the reality and
desire diagram 0,+�− 1,+2(�− 1), . . . in the cycle in RD(un,�) that contains
the vertex 0. The position of the corresponding elements 0, �− 1, 2(�− 1), . . . in
the permutation is, respectively, 0,m, 2m..., where m = 1− �−1.

Proof. Let π = un,�. We want to find the value x such that πx = y(�− 1), for
y = 1 . . . n. Since π is a lonely permutation, we have that x� = πx = y(�− 1),
that is, x� ≡ y(�− 1) (mod n+ 1), which, multiplied by �−1 to the right on both
sides of the equivalence becomes x ≡ y(1− �−1) (mod n+ 1). �	
Corollary 4. The position of the element i+ y(�− 1) is i�−1 + ym, where m =
1− �−1. This means that the cycles containing +i,+i+ (�− 1), +i+ 2(�− 1), . . .
and 0,+�− 1,+2(�− 1), . . . have the same structure.

Proof. Notice that the element i is the i�−1-th element in un,�, and proceed with
the proof in a fashion similar to the proof of Lemma 2. �	
Bafna and Pevzner [1] proved that, after applying a transposition to a permuta-
tion, the number of odd cycles in the reality and desire diagram changes in one
of the following ways: i) it increases by two units; ii) it does not change; or iii)
it decreases by two units. Every transposition can be classified according to its
effect on the number of odd cycles into a: i) 2-move; ii) 0-move; or iii) −2-move,
respectively. We will now characterize the existence of 2-moves that create cy-
cles of length 1. This characterization will be used in Section 3 for providing an
upper bound on the transposition distance for 3-permutations.

Definition 8. [1] We say that a transposition t(i, j, k) affects a cycle c in the
reality and desire diagram RD(π) if c contains at least one of the following reality
edges: +πi−1,−πi or +πj−1,−πj or +πk−1,−πk.
Lemma 3. For a lonely permutation un,�, there exists a 2-move that creates 2
cycles of length 1 if, and only if, 1− �−1 > n/2.

Proof. Since all the cycles have the same structure, as per Corollary 4, it does
not matter which of the cycles we base our analysis of the effect of a transposi-
tion. We will, therefore, suppose that a transposition affects the cycle containing
0,+�− 1,+2(�− 1), . . . The corresponding elements of the permutation occur,
respectively, in the 0-th, m-th, 2m-th, . . . positions in the permutation, where
m = 1− l−1. For a transposition to break this cycle into three cycles, with two
of them having length 1, we must have that there are three consecutive ele-
ments in positions xm, (x+ 1)m, (x+ 2)m, with 0 ≤ x ≤ gcd(n+ 1, �− 1)− 3,
where those three elements are in a decreasing circular order – i. e. x(� − 1) >
(x + 1)(�− 1) > (x + 2)(�− 1) or (x + 1)(�− 1) > (x + 2)(� − 1) > x(� − 1) or
(x + 2)(�− 1) > x(� − 1) > (x + 1)(�− 1). A case analysis (which we will omit
for brevity) shows us it only happens in the case that 1− �−1 > n/2. �	
A sequence of 2-moves, if it exists, is the shortest way of transforming a permu-
tation into the identity. Although we cannot guarantee the existence of such a
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sequence that transforms a lonely permutation into the identity, we will show in
Theorem 8 that there is a sequence of 2-moves that generate 1-cycles for un,�,
in the case that � divides n+ 2, which relates it to another lonely permutation
un−2(�−1),�, a permutation that has less elements.

Definition 9. [11] The reduced permutation of π, denoted by gl(π), is a permu-
tation whose reality and desire diagram RD(gl(π)) is equal to RD(π), without
the 1-cycles, and keeping the order of the elements.

Definition 10. [11] Two permutations π and σ are equivalent by reduction, if
gl(π) = gl(σ).

Christie [11] proved that, if two permutations are equivalent by reduction, then
they have the same transposition distance.

Definition 11. [11] A permutation π is irreducible if gl(π) = π.

Notice that every lonely permutation that is not the identity is irreducible, for
a lonely permutation only has one cycle of length 1 in the reality and desire
diagram if every cycle has length 1.

Definition 12. A permutation σ is an r-reduction of π if there is a sequence of
r transpositions that are 2-moves that transforms π into a permutation that is
equivalent by reduction to σ.

Corollary 5. If σ is an r-reduction of π, then dt(π) ≤ dt(σ) + r.

Theorem 8. Let un,� be a lonely permutation such that � divides n + 2. Then
dt(un,�) ≤ dt(un−2(�−1),�) + �− 1.

Proof. We will show that un−2(�−1),� is an (�− 1)-reduction of un,�. The result
will then follow as a consequence of Corollary 5.

Since � divides n + 2, consider d := n+2
� . It immediately follows that �d ≡

n+ 2 ≡ 1 (mod n+ 1), which implies that d = �−1. The position of the element
i is, thus, i�−1 = in+2

� .
Calculating the positions of the elements 1, 2, . . . , �−1, we have the increasing

sequence 1d, 2d, . . . , (� − 1)d, since in+2
� ≤ n for i ≤ � − 1. For the elements

n+ 2− �, n+ 2− �+1, n+2− �+2, . . . , n+ 2− �+ �−2 = n, their corresponding
positions are 1d − 1, 2d − 1, . . . , (� − 1)d − 1. Let n′ = n + 2 − �; the lonely
permutation un,� has the following structure:

[� . . . n′ 1 . . . n′+1 2 . . . n′+2 3 . . . . . . n �−1 . . . n� ]

The sequence of �− 1 transpositions t(1, d, 2d− 1), . . . , t(i, id, (i+ 1)d− 1), . . . ,
t(�− 1, (�− 1)d, n+ 1) transforms un,� into

[1 2 3 . . . �−1︸ ︷︷ ︸
�−1 elements

�−1 + � �−1+2� . . . n′ n′+1 n′+2 . . . n︸ ︷︷ ︸
�−1 elements

],

which is easy to show that is equivalent by reduction to un−2(�−1),�.
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It remains to show that all of the � − 1 transpositions applied to un,� are
2-moves. Since the permutation [1 2 . . . �−1 + � �−1+2� . . . n′ . . . n] that
comes after applying the transpositions to un,� is equivalent by reduction to
un−2(�−1),2, it must have the number of cycles of un−2(�−1),� plus the number of
cycles of length 1.

The number of cycles in un−2(�−1),� equals the number of cycles of un,�, for
gcd(n− 2(�− 1) + 1, �− 1) = gcd(n+ 1, �− 1). One can easily observe that the
2(�− 1) elements 1, 2, . . . , �− 1, n′, n′ + 1, . . . , n create, each of them, a cycle of
length 1 in [1 2 . . . �−1 + � �−1+2� . . . n′ . . . n]. Therefore, the permutation
that is equivalent by reduction to un−2(�−1),� has 2(�− 1) more cycles than un,�.
Since we can only add, at most, 2 cycles after applying a transposition, we must
deduce that every transposition is a 2-move. �	

3 An Upper Bound for Lonely 3-Permutations

A permutation is said to be simple if every cycle in the reality and desire diagram
is of length at most 3. A really promising approach to estimate the distance of
a permutation is to transform it into a simple permutation by a series of oper-
ations, and then calculate the distance of the resulting simple permutation [4].
In Section 2 we have already dealt with lonely 2-permutations. In this section
we study the remaining simple permutations that are also lonely permutations
– the lonely 3-permutations – with the aim of providing tight bounds for their
distance. We begin with a characterization of those permutations in Lemma 4,
and conclude this section with an upper bound for their distance in Theorem 9,
which seems to be tight, as discussed in Section 4.

Lemma 4. A lonely permutation un,� is a 3-permutation if, and only if,
⎧
⎨

⎩

n ≡ 2 (mod 9) if � = n+4
3

n ≡ 5 (mod 9) if � = 2n+5
3

n ≡ 8 (mod 9) if � = n+4
3 or 2n+5

3

Proof. Since every cycle of a lonely permutation has the same length, it is also
a 3-permutation if, and only if, n+ 1 is a multiple of 3, i. e. n+ 1 ≡ 0 (mod 3).
Therefore, we have three distinct possibilities for n: n is equivalent to 2, 5 or 8
modulo 9.

Since n + 1 ≡ 0 (mod 3), we can write it as n + 1 = 3q, for some q integer.
Since un,� is a 3-permutation, we have that q equals the number of cycles, that
is, q = gcd(n + 1, l − 1). Since � < n + 1 = 3q, and q divides � − 1, we must
consider only two cases for �− 1: either �− 1 = q or �− 1 = 2q.

If � − 1 = q, it follows that � = q + 1 = n+1
3 + 1 = n+4

3 . Since � cannot be a
multiple of 3, we have that n ≡ 2 (mod 9) or n ≡ 8 (mod 9).

If � − 1 = 2q, it follows that � = 2n+5
3 . Since � cannot be a multiple of 3, we

have that n ≡ 5 (mod 9) or n ≡ 8 (mod 9). �	
Definition 13. [1] A permutation is oriented if it has a 2-move. Otherwise, it
is unoriented.
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Lemma 5. A lonely 3-permutation is oriented if: i) n ≡ 2 (mod 9) and � = n+4
3 ;

or ii) n ≡ 8 (mod 9) and � = 2n+5
3 . It is unoriented if: iii) n ≡ 5 (mod 9) and

� = 2n+5
3 ; or iv) n ≡ 8 (mod 9) and � = n+4

3 .

Proof. Calculatingm = 1− �−1 for each case, we have thatm > n/2 in the cases
i and ii, andm ≤ n/2 in the cases iii and iv. The validity of the hypothesis comes
as a consequence of Lemma 3. �	
Lemma 6. Every 2-move that is applied to an oriented lonely 3-permutation
un,�, with n > 2, results in an unoriented permutation that is equivalent by
reduction to un−3,�′ , where

�′ =
{
�− 1 if � = n+4

3
�− 2 if � = 2n+5

3

Proof. The possible 2-moves are t(i, 2m+ i,m+ i), where m = 1− �−1, i =
1 . . .m − 1; these 2-moves generate two 1-cycles according to Lemma 3. Apply
them, considering � = n+4

3 or � = 2n+5
3 , and eliminate the 1-cycles. �	

Definition 14. An irreducible permutation σ is a (t, r)-reduction of a permuta-
tion π if there is a sequence of t transpositions, of which r of them are 2-moves,
that transforms π into a permutation that is equivalent by reduction to σ.

Corollary 6. If σ is a (t, r)-reduction of π, then dt(π) ≤ dt(σ) + t.

Lemma 7. Let un,� be an unoriented lonely 3-permutation, with n > 5. Then
the oriented lonely 3-permutation un−6,�′ is a (3, 2)-reduction of un,�, where

�′ =
{
�− 2 if � = n+4

3
�− 4 if � = 2n+5

3

Proof. Apply the sequence t(1,m+ 1, 2m+ 1), t(2,m+ 2, 2m+ 2) and t(1,m+
1, 2m+ 1) to un,�, with m = 1− �−1, where the first one is a 0-move and the
others are 2-moves, considering separately � = n+4

3 and � = 2n+5
3 . �	

Theorem 9. Let un,� be a lonely 3-permutation. We have that

dt(un,�) ≤
⎧
⎨

⎩

4n+1
9 if n ≡ 2 (mod 9)

4n+7
9 if n ≡ 5 (mod 9)

4n+4
9 if n ≡ 8 (mod 9)

Proof. If n ≤ 8, the lonely 3-permutations are: u2,2, u5,5, u8,4 and u8,7. It is easy
to show that their distances are 1, 3, 4 and 4 respectively. For n > 8, consider
the same 4 cases of Lemma 5.

In the case i we have n ≡ 2 (mod 9) and un,� is oriented. We can apply
Lemma 6 to un,�, obtaining un−3,�′ , and apply Lemma 7 to un−3,�′ , obtaining
the oriented permutation un−9,�′′ (the values of �′ and �′′ are not important in
this case). Therefore, we have the recurrence relation dt(un,�) ≤ dt(un−9,�′′) + 4,
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0 4 8 3 7 2 6 1 5 9 0 7 5 3 1 8 6 4 2 9

(a) (b)

Fig. 1. Reality and desire diagrams of: (a) u8,4 and (b) u8,7

Table 1. Lonely permutations. Shaded cells correspond to lonely 3-permutations

dt(un,�)
�

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

n

2 1 — — — — — — — — — — — — — — — —
3 — 2 — — — — — — — — — — — — — — —
4 2 2 3 — — — — — — — — — — — — — —
5 — — — 3 — — — — — — — — — — — — —
6 3 4 3 4 4 — — — — — — — — — — — —
7 — 4 — 4 — 4 — — — — — — — — — — —
8 4 — 4 4 — 4 5 — — — — — — — — — —
9 — 5 — — — 5 — 5 — — — — — — — — —

10 5 6 6 6 5 6 6 6 6 — — — — — — — —
11 — — — 5 — 6 — — — 6 — — — — — — —
12 6 7 7 7 6 6 7 7 7 6 7 — — — — — —
13 — 7 — 7 — — — 7 — 7 — 7 — — — — —
14 7 — 7 — — 7 7 — — 7 — 7 8 — — — —
15 — 8 — 8 — 8 — 8 — 8 — 8 — 8 — — —
16 8 9 8 9 9 9 8 8 9 9 9 8 9 8 9 — —
17 — — — 9 — 8 — — — 9 — 8 — — — 9 —
18 9 9 10 10 10 10 9 10 9 10 9 9 9 9 10 10 10

with the base case dt(u2,2) = 1. This relation has the following closed formula:
dt(un,�) ≤ 4n+1

9 . Case iii can be solved similarly; observe that Lemma 7 must
be applied first, and then Lemma 6, and that the base case is dt(u5,5) = 3.

Cases ii and iv can be dealt with as just one case. The permutation un,� can
be transformed into un−9,�′′ with 4 transpositions – just apply Lemmas 6 and 7
in the appropriate order. The recurrence relation dt(un,�) ≤ dt(un,�′′) + 4 has
either dt(u8,4) = 4 or dt(u8,7) = 4 as a base case, which means the solution is
the same for both cases: dt(un,�) ≤ 4n+4

9 . �	

4 Conclusion

There are two lonely 3-permutations for every n ≡ 8 (mod 9), but just one for
every n ≡ 2 or 5 (mod 9), and observe an interesting property of the values of
� for each n such that un,� is a 3-permutation: for n ≡ 2 or 5 (mod 9), we have
that � ≡ �−1 (mod 9), whereas for n ≡ 8 (mod 9) each of the two possible values
is the inverse of the other modulo n + 1. This means that for n ≡ 8 (mod 9)
not only the upper bound in Theorem 9 for the two lonely 3-permutations is the
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same, but they also must have the same distance, according to a result in [9].
Even more puzzling is the fact that one of them is unoriented – Figure 1a –
while the other is oriented – Figure 1b. It could be expected that, since one of
the two permutations does not require a first 0-move, it would be easier to sort.

As in our previous work [7], we have computed the transposition distances of
every lonely permutation for n up to 18, in order to compare our bounds with
the exact transposition distance. The results are in Table 1.

Notice the tightness of the lower bound for lonely permutations with even
cycle length. The upper bound for the lonely 3-permutations in the table is also
really tight: it always equals the distance. We believe that the upper bound of
Theorem 9 is indeed the transposition distance.
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Abstract. In this paper we present insights on the problem of haplo-
type inference for large genotype datasets. Our observations are drawn
from an extensive comparison of three methods for haplotype inference
using several datasets taken from HapMap. The methods chosen, PTG,
Haplorec, and fastPHASE, are among the best known; they are based
on different approaches, and are able to deal with large amounts of data.
Our analysis controls the execution time and also the accuracy of results,
based on the Error Rate and the Switch Error, as well as sequence conser-
vation patterns. The results show that (1) fastPHASE and Haplorec are
both more accurate than PTG, (2) fastPHASE is computationally the
most expensive of the three methods, while Haplorec may fail to resolve
long sequences, and (3) all approaches do better with more conserved
sequences, and tend to fail in distinct sequence sites.

Keywords: Haplotype, Genotype, Inference, SNP, fastPHASE, Hap-
lorec, PTG.

1 Introduction

An important challenge in biology is correlating differences among phenotypes
with variations in the DNA. It is known that the human genome is highly sim-
ilar for different individuals of the same population, and that some regions of
the DNA sequence are preserved along generations. In these preserved regions,
changes can occur in some specific alleles called Single Nucleotide Polymorphism
(SNP). Besides a strong relation with phenotypes, SNPs can also be related with
genetic diseases, and for that reason it is desirable to map them. Identifying these
specific changes is not an easy task because it requires haplotype information.
Diploid organisms have two copies of each chromosome, each copy is called a hap-
lotype and a collection of these homologue chromosomes is called a genotype.
Due to technological constraints, only the latter is available in large scale. Get-
ting haplotype information directly is costly, therefore computational methods
to infer haplotype data from genotype data are highly desirable.

Several computational methods have been proposed for inferring haplotypes
from genotype data. Currently the challenge is to infer haplotypes from large
scale genotype, due to the high computational costs of these approaches and
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the need of real applications. Though there are some comparative studies of
haplotype inference methods, they are old [1],[2] and do not include more recent
approaches or sometimes methods that are considered as good techniques for
inferring haplotypes in large scale.

In this paper we developed an extensive analysis involving methods fast-
PHASE [3], Haplorec [4], and PTG [5], each of which is based on a different com-
putational technique. These approaches were selected because they are deemed
to be among the best algorithms in the literature known to resolve very large
datasets. For this benchmark, datasets collected from HapMap project were
used. We evaluated the capacity of each method to rebuild the correct haplo-
type data set, and also the time required for finding a good solution. We also
analyzed what type of characteristics of the dataset, such as conservation level,
for instance, made a method more effective.

The rest of this paper is organized as follows. The next section gives a formal
definition of the Haplotype Inference Problem, and presents related work, briefly
introducing the PTG, Haplorec, and fastPHASE methods. In Section 3, the de-
sign of the experiments and the data used are described. In section 4, the results
of our comparative analysis are shown. A discussion and concluding remarks are
presented in Section 5.

2 Haplotype Inference Methods

A genotype (haplotype) can be computationally represented by a vector based on
alphabet {0, 1, 2} ({0, 1}), where a symbol 2 represents an ambiguous site. Two
haplotype vectors h1 and h2 are said to explain a genotype vector g, denoted
h1 ⊗ h2 = g, if each one of them has n sites and, for each site i, 1 ≤ i ≤ n,
h1(i), h2(i) ∈ {0, 1} and follow the rule given by: (A) h1(i) = h2(i) = g(i), if
g(i) ∈ {0, 1}; and (B) h1(i) = 1 − h2(i), if g(i)=2.

The Haplotype Inference Problem basically consists of finding for each geno-
type g two haplotypes h1 and h2 such that h1 ⊗ h2 = g, i.e. h1 and h2 explain
g in a biologically plausible away. For instance, if g=(0,1,2,2,1,2), possible so-
lutions are h1=(0,1,0,0,1,0) and h2=(0,1,1,1,1,1), or still h1=(0,1,0,1,1,1) and
h2=(0,1,1,0,1,0), among other possibilities. It is easy to see that there are 2k−1

candidate haplotype pairs to explain g, where k is the number of ambiguous sites
in g. Obviously, there are many solutions for each input g, so a biological model
criterion is needed to define a good solution, such as the Pure Parsimony model.

Many combinatorial and statistical methods have been proposed for haplo-
type inference, such as the Clark Method [6], Integer Programming formulations
based on the parsimony principle [7],[8],[9],[10],[11], phylogeny based [12],[13],
and Bayesian methods [14],[15]. More recently, other methods were projected,
such as methods based on Markov Chain Models [16],[17] and haplotyping via
Genetic algorithms [18],[19].

There are two main biological models used to infer haplotypes: Pure parsi-
mony and Perfect phylogeny. The parsimony-based methods search the solu-
tion space for the minimum distinct set of haplotypes that explain the genotype
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data. Unfortunately, the problem of inferring haplotypes by pure parsimony is
NP-hard [7]. The perfect phylogeny-based methods build a tree structure and
the haplotypes inferred should form a perfect phylogeny. Inferring haplotypes
using this principle is a polynomial-time problem, but the assumption that the
DNA sequences were not subject to recombination events is not realistic [13].

Haplotype Inference by Pure Parsimony principle (HIPP) has been used by
many approaches because of its innate simplicity and biological soundness. Ini-
tially, Integer Programming (IP) was applied to solve HIPP. There are three
main problem formulations using IP. The first one, called RTIP [8], has an ex-
ponential number of constraints in the worst case, but it has been shown [11]
that when this formulation can resolve the input dataset, it may be faster than
more recent IP formulations. Two independent groups [9],[10] have introduced
polynomial-size IP formulations for HIPP, one of them known as PolyIP, how-
ever, this formulation is very slow for large datasets, according to Brown and
Harrower [11], who proposed a hybrid formulation with a polynomial number of
constraints but faster than PolyIP, called HybridIP.

Other methods for HIPP were published. Among them, Parsimonious Tree-
Grow (PTG) offers a good compromise of high accuracy at a relatively low
computational complexity. The PTG method explains a set of m genotypes of
length n in time O(m2n). The accuracy of PTG is demonstrated theoretically and
also experimentally [5], using comparisons involving HAPAR, HAPLOTYPER,
HAPINFERX and PHASE. However, many operations in PTG are random, so
it is necessary to run the method many times, and select the best solution using
some metric, in order to have reliable results. The metric applied for quality is
the number of distinct haplotypes inferred.

Methods based on Markov Chain Model have been proposed successfully. The
Markov Chain was applied to the HI problem originally by Eronen and colleagues
[20]. Later works improved this approach [16],[17],[21],[4]. These methods basi-
cally build a Markov chain where each state is a possible symbol (0 or 1) and
the transition probabilities are calculated from the input data. It is possible to
estimate the probability that each candidate haplotype fragment will be part
of the optimal solution. The number of haplotype candidates and probability
combinations (as the original problem) is clearly exponential. For this reason,
heuristics based on Dynamic Programming and Expectation Maximization algo-
rithms have been proposed [16],[21]. These heuristics search the solution space
for a good explanation of the input data. The goal is to maximize the probability
that a candidate haplotype will be part of resolution of several genotypes. Thus
a haplotype vector will resolve a bigger number of genotypes and would be more
plausible biologically. Based on this approach the software called Haplorec [4],
available on the web, was developed; version Haplorec 2.3 is an improved version
that solves very large datasets.

Although not as recent as Haplorec, PHASE [14],[22] and fastPHASE [3] are
considered good classical approaches for the HI Problem. These methods use max-
imum likelihood to estimate haplotype frequencies. The objective is determining
the maximum value of this likelihood function. Such methods are stochastic



50 R.S. Rosa and K.S. Guimarães

and each execution of the program may result in a different solution, since the
derivations are dependent on the initial configuration which is randomly selected.
Basically, fastPHASE is a variation of PHASE for resolving large data sets.

Due to their computational performance, PTG, Haplorec and fastPHASE are
good candidates for resolving genotypes in large scale. Some works in the liter-
ature compare haplotype inference methods [1],[2], but Haplorec and PTG are
not included in those analyses, because they were proposed later. The techniques
have different behavior and accuracy on distinct datasets. We can assume that
the quality of the solution is closely related to the configuration and properties
of the input genotypes. Our goal is to look closer into that connection.

3 Experiments Design

The HapMap project [23] is an important source of information about haplotypes
shared among individuals from the same population. This international project
was started by NIH (National Institute of Health) in 2002, with the goal of
mapping these shared sequences. For experiments in this work, haplotypes were
collected from HapMap Phase III, of chromosome 20 from a population of Trios
Utah residents with Northern and Western European ancestry; this is 1 of 11
populations in HapMap Phase III, called Caucasian European in Utah (CEU).
We selected dataset CEU because of the large number of individuals phased in
it (88 individuals).

Chromosome 20 spans about 62 million DNA building blocks and represents
approximately 2% of the total DNA in cells. This chromosome has between 700
and 800 genes. Many genetic diseases can be related with it. Changes in chro-
mosome 20 have been identified in several types of cancer such as leukemia and
lymphoma. Deletions or duplications of genetic material from chromosome 20
can have a variety of effects, including intellectual disability, delayed develop-
ment, distinctive facial features, skeletal abnormalities, and heart defects. The
raw data presents 36258 SNPs and 88 individuals (two sequences for each indi-
vidual). We mapped all haplotype fragments of length 100, 200, 400, 800, and
1600 to datasets in classes A, B, C, D, and E, respectively. For each class, the
fragments with the smallest, the average, and the biggest number of distinct
original haplotypes were selected to form three distinct datasets, called X1, X2,
and X3, respectively, in which X can be A, B, C, or D. Since all the sequences
in class E had virtually the same number of distinct haplotypes, this class has
only one dataset, called E1. All together, 15 datasets were generated.

Each measure presented many candidate sets, for instance, there were 18
sets with 200 SNPs, 88 individuals and 13 distinct haplotypes (13 is the smallest
number of distinct haplotypes found for a matrix 200x88 in CEU), for this reason,
a random choice for selecting a representative set was needed. In the case of the
set with 1600 SNPs, the mapping was discarded because the smallest number
of distinct haplotypes found was 175 while the largest was 176 (really similar).
Due to that, a subset was randomly selected in CEU with 1600 SNPs.

The purpose of mapping the occurrences of distinct haplotype fragments is to
identify the abundance of easy and difficult datasets for resolution in a specific
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population. Table 1 shows the amount of distinct haplotypes found in CEU with
the specific number of SNPs, and their respective number of representatives in
CEU. With the integral data of the map, it is possible to identify the regions of
chromosome 20 in CEU in which there is a concentration of haplotype fragments
with similar properties, such as conserved sequences. According to the map, an
increase in the SNPs number implies in an increase in the number of distinct
haplotype fragments. This is crucial for the analysis of the methods because
different methods have distinct behaviors when resolving genotypes originated
from more conserved or from more recombined sequences.

Table 1. Distinct Haplotype Fragments Found: Number of Distinct Haplotypes (DH)
in CEU, and their respective number of representatives

N SNPs Least DH Larger DH Average DH
100 13 / 7 175 / 16 101 / 370
200 38 /18 175 / 671 145 / 330
400 102 / 2 176 / 3187 168 / 919
800 151 / 57 176 / 15923 175 / 12002

The metrics used in the benchmark were Error Rate [15], Switch Error [24],
computational time, and number of distinct haplotypes inferred. The error met-
rics are based on known haplotype sets, and tell us about the capacity that a
method has to correctly infer a haplotype set from a genotype set. The com-
putational time is an empiric metric used for estimating computational cost.
Although in general it is not the best technique for that, in this case, theoretical
analysis cannot be applied to all methods. The number of distinct haplotypes is
an important metric because the parsimony principle is being considered, and
methods that find a minimal solution set are required. Time and number of
distinct haplotypes are quantitative metrics.

Error Rate considers the rate of haplotype sites inferred incorrectly in all hap-
lotype sites previously known. Switch Error is the proportion between the num-
ber of genotype ambiguous sites and the number of fragments changes needed
between two specific haplotype vectors used to explain a specific genotype.These
are considered quality metrics. Basically, Error Rate measures site to site indi-
vidually, while Switch Error considers the neighbor sites. The goal here is to
minimize the Error Rate and maximize the Switch Error (maximum value is 1).

For the comparison experiments, PTG was implemented in MATLAB 2008,
for method Haplorec (haplotype inference based on Markov chains) the software
version 2.3 was used, and for fastPHASE the version 1.2.3 for windows was
used. The experiments run individually in a computer with an Intel Quad Core
2.33GHz processor, with 3GB of RAM. Although there is a version of PTG
available on the author’s webpage, we have chosen to develop our own version of
the method, because, since PTG is based on random operations, in order to find
reliable results, PTG needs to be executed many times (in our case, we chose 30
runs), taking the best output. In our experiments, the smaller number of distinct
haplotypes was used as metric for selecting the best solution.
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Table 2. Comparison Results: Error Rate (ER), Distinct Haplotypes found (DH),
Time in seconds (s), minutes (m) or hours (h)

Set PTG Haplorec fastPHASE
ER DH Time ER DH Time ER DH Time

A1 0,35% 12 21,24 s 0,01% 12 3 s 0,00% 13 13 m
A2 61% 118 40,48 s 3,26% 98 5 s 1,96% 96 11 m
A3 12,98% 166 53,88 s 8,97% 176 9 s 8,97% 176 5 m
B1 3,17% 46 1,16 m 0,70% 64 10 s 0,10% 44 10 m
B2 9,54% 155 1,81 m 4,65% 161 19 s 4,21% 158 25 m
B3 10,01% 168 1,62 m 6,05% 176 20 s 5,78% 176 10 m
C1 3,65% 112 2,63 m 0,75% 120 21 s 1,09% 115 54 m
C2 13,87% 169 3,75 m 6,63% 174 49 s 7,65% 176 52 m
C3 12,53% 174 3,73 m 8,78% 176 49 s 9,49% 176 25 m
D1 13,27% 176 7,89 m 10,48% 176 3,5 m 10,61% 176 41 m
D2 11,47% 173 7,34 m 7,26% 176 1,5 m 7,07% 176 1h 40 m
D3 12,34% 175 7,67 m 9,23% 176 2 m 9,25% 176 54 m
E1 14,19% 174 16,98 m - - - 11,34% 176 3 h

4 Experiments Results

The measures used in the comparison were Error Rate, number of distinct haplo-
types inferred, and computational time used to solve each instance. Algorithms
Haplorec and fastPHASE were taken from their respective sites in the web.

4.1 Comparison Using Metrics

Considering the qualitative measures, Haplorec and fastPHASE had similar
performances. In datasets A and B, fastPHASE had lower Error Rate, this
demonstrates the capacity of this method to deal well with conserved sequences.
Haplorec was the best in datasets C and D (except for D2), but failed to resolve
dataset E1. While fastPHASE took 54 minutes to find a solution with Error Rate
9,25%, Haplorec needed only 2 minutes to find a solution with Error Rate 9,23%.
These two methods had similar Error Rate in all tests; the difference between
them was not superior to 2% in each instance, however fastPHASE was more
expensive computationally: while Haplorec took only seconds or a few minutes
to resolve an instance, fastPHASE would take several minutes or hours to do the
same task. Nonetheless, Haplorec could not handle the more difficult dataset,
E1.

The results are shown in Table 2. For each experiment it is given the execu-
tion time, the number of distinct haplotype inferred, the error rate and switch
error attained. Method PHASE was not included in the experiments because it
failed to resolve even the smallest dataset (A1) in reasonable time. The Haplorec
method failed to resolve dataset E1, returning several errors for this instance of
the problem.

The experiments show the superior accuracy of fastPHASE and Haplorec
considering Error Rate, but they both require a considerable computational time.
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Table 3. Switch Error Results

Set PTG Haplorec fastPHASE
A1 0,994 0,999 1
A2 0,856 0,980 0,986
A3 0,623 0,918 0,917
B1 0,938 0,991 0,996
B2 0,714 0,980 0,982
B3 0,770 0,956 0,960
C1 0,856 0,983 0,987
C2 0,575 0,973 0,979
C3 0,623 0,952 0,953
D1 0,521 0,937 0,938
D2 0,599 0,977 0,982
D3 0,558 0,958 0,961
E1 0,535 - 0,959

Although the PTG method had worst accuracy in all tests, it was never by a
large difference. On the other hand, the computational costs were much lower
than more accurate method fastPHASE. It is important to highlight that, for
the hardest dataset, E1, while fastPHASE took 3 hours and Haplorec failed to
deliver a result, PTG finished in 17 minutes with a result only 3 percentage
points worse than that of fastPHASE.

The results considering Switch Error (Table 3) show that Haplorec and fast-
PHASE have a similar performance in this measure too. The highest difference
among these methods was 0,006 (dataset A2), while the performance of PTG
was really poor considering this metric. The standard deviation was also very
close for Haplorec and fastPHASE, 0,023 and 0,024, respectively. Although, fast-
PHASE and Haplorec had close performances, these numbers do not tell if the
errors in the haplotypes inferred occur in the same sequence positions or not; we
investigated further on the aspect of superposition of the sites wrongly resolved.

4.2 Considering Error Sites

The localization of errors in each method is very important for suggesting the
type of sequences that are more subject to errors in a given method. So we
mapped by individual and by SNP the positions where each method went wrong,
as considered in Error Rate. We built an error map for the results of each dataset
with each method. We verified that all PTG error maps follow a very scattered
pattern over all datasets, which is expected, since it does not consider any type
of neighboring or statistical information. On the other hand, fastPHASE and
Haplorec both consider statistical factors (although different ones), based on
biological principals and they seem to be sensitive to surrounding signals. We
plotted the error maps superposed for each dataset for these two methods, and
we observed that the different statistics used lead to errors mostly in different
positions.
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Fig. 1. Error Map for dataset A2: in axis X is presents 100 SNPs and in axis Y the 88
individual of this sample

Due to space limitation, we present only one of the superposed maps. In
Figure 1 we present the superposed error maps of fastPHASE and Haplorec for
Dataset A2. It is possible to define two main areas of different error concen-
tration. The bigger area, which we will call Area 1, contains the first 70 SNPs,
and the smaller area, which we will call Area 2, contains the final 30 SNPs. For
both methods, Area 1 contains a very low population of error, whereas Area 2
presents errors much more frequently.

We used Linkage Disequilibrium (LD) to compute how conserved each one of
these two regions is. When the sequence is highly conserved, the value of mea-
sure LD tends to 1 (maximum value), while it tends to 0 when the individuals’
samples do not share sequence among them. Still considering dataset A2, Area 1
presents LD = 0,2649 and Area 2 has LD = 0,1352. In general, for the more con-
served datasets, in the more conserved regions fastPHASE and Haplorec both
had superior performance. That same type of behavior was observed in the error
maps of all the other datasets.

There is an inverse relationship between Error Rate and LD, which is depicted
in Figure 2. In SNPs with low LD (least conserved), fastPHASE and Haplorec
did more inference mistakes. Regions with high LD are prone to the occurrence
of homozygous sites, so a hypothetical explanation for this behavior would be the
absence of heterozygous sites, however, Areas 1 and 2 had the same abundance
of ambiguous sites: 30% of total sites in each area. A careful study of the curves
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Fig. 2. Relationship between LD and error abundance in dataset A2: In axis X the
SNPs are grouped in subsets of 5 neighbors; in axis Y the averages of LD and #errors,
where the error abundance was normalized to the interval [0, 1] and then averaged

in Figure 2 leads to the conclusion that LD is not the only factor involved in the
Error Rate, although it is certainly a relevant one.

Differently, for the PTG method we could not identify specific regions where
the method made more errors; the errors occurred in a more scattered fash-
ion along the sequences. However, we observed that genotype fragments that
have original haplotype patterns as a sequence of one repeated symbol (such as
h1 = 0k and h2 = 1k, for some value k, for instance), are responsible for most
errors observed in PTG. Basically, the errors in method PTG can be explained
by its random behavior, and in most cases, there is no relationship with data
distribution (genotypes).

The sequence positions where all methods failed to solve are somewhat difficult
to explain, because they represent exceptions to the biological principles used
to guide the methods. No method in the literature seems to be able to foresee
or deal with those cases based only on genotype data. Fortunately, we observed
that those sites are relatively few. In our experiments, most of the sites have
been correctly explained by at least one of the three methods. In Figure 3, we
show four diagrams, each one with the average number of genotype sites inferred
incorrectly in datasets A, B, C and D. As can be seen in Figure 3, the average
number of errors common to all three methods when dealing with dataset A
is given by (fastPHASE(A) ∩ Haplorec(A) ∩ PTG(A)) = 77, when the total
number of sites in A was 962, that is, only 8%. In a similar way, the ratio of
errors common to all three methods in datasets B, C, and D, were 5%, 6%, and
8%, respectively.
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Fig. 3. Error intersection: error average quantity in genotype sites of datasets A, B,
C, and D

Another interesting observation is that, from the point of view of the al-
gorithms, as the length of the sequences grows, the number of errors of each
algorithm also grows, but not at the same rate.

5 Discussion and Conclusion

We have done an extensive analysis of the performance of methods PTG, Hap-
lorec, and fastPHASE when applied to 13 large genotype datasets, with different
lengths and conservation levels. The results of our analysis offer valuable insights
on the behavior of those methods.

In general, we found that fastPHASE and Haplorec have somewhat similar
accuracy, as indicated be Error Rate, both being more accurate than PTG,
although not by a large margin. Interestingly, although fastPHASE is compu-
tationally more expensive than Haplorec, the latter may fail to resolve long
sequences. While Haplorec did not resolve our longest set of sequences (1600
SNPs), PTG finished within 17 minutes, with Error Rate 14,2%, and fastPHASE
finished in three hours, with Error Rate 11,3%. Haplorec failed to solve many
genotype datasets with sequences of length larger than 1000 (experiments not
shown).

When the Switch Error measure is considered, Haplorec and fastPHASE both
achieve almost perfect scores (all above 0,9), while PTG reaches values below
0,7 in about half of the datasets. That can be explained by the fact that the
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errors made by the first two methods tend to occur together, while the errors
made by PTG tend to be scattered along the sequences.

Naturally, all three methods did better with smaller and more conserved se-
quences, but conservation seems to particularly favor fastPHASE. We plotted a
map of superposed error positions, and we observed that there is a relationship
between LD and Error Rate. In general, for the more conserved datasets, in
the more conserved regions fastPHASE and Haplorec both had superior perfor-
mance, while PTG seems not be so sensitive to sequence conservation.

We analyzed the specific sequence positions where all the methods failed,
and we observed that they are relatively few, roughly 7,2% altogether, with
very little deviation for each specific dataset. The sequence positions where all
methods failed to solve are somewhat difficult to explain, because they represent
exceptions to the biological principles used to guide the methods. No method in
the literature seems to be able to foresee or deal with those cases based only on
genotype data.

Finally, we also observed a strong inverse relationship between Error Rate
and LD of the SNPs, although LD is not the only factor involved in the Error
Rate.

We believe that the insights provided by our analysis can be used for a more
effective choice of algorithms used, and can also be explored in the design of
better approaches for the Haplotype Inference Problem.

Acknowledgments. RSR and KSG gratefully acknowledge the financial sup-
port of Brazilian sponsoring agencies CAPES and CNPq, respectively.
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E., Crochemore, M. (eds.) CPM 2003. LNCS, vol. 2676, pp. 144–155. Springer,
Heidelberg (2003)



58 R.S. Rosa and K.S. Guimarães
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Abstract. The cysteine knot motifs are widely spread in several classes of 
peptides including those with antimicrobial functions. These motifs offer a 
major stability to the protein structure. Nevertheless, the antimicrobial activity 
is modulated by physicochemical properties. In this paper, we create a model of 
support vector machine to predict antimicrobial activity from sequences with 
similar motifs, based on physicochemical properties: net charge, ratio between 
hydrophobic and charged residues, average hydrophobicity and hydrophobic 
moment. The support vector machine model was trained with 146 antimicrobial 
peptides with six cysteines from the antimicrobial peptides database and an 
equal number of random sequences predicted as transmembrane proteins. The 
polynomial kernel shows the best accuracy (77.4%) on 10-fold cross validation. 
Testing in a blind dataset, we observe an accuracy of 83.02%. Through this 
model, proteins of varied size with a cysteine knot motif can be predicted with 
good reliability. 

Keywords: Support Vector Machine, Antimicrobial Peptides, Physicochemical 
Properties, Cysteine Knot Motif, Machine Learning. 

1   Introduction 

In the last decades the conventional antibiotics have decreased their activity against 
the pathogenic bacteria, due to resistance development [1]. The search for novel 
antimicrobial peptides (AMP) is increasing, since the antimicrobial peptides appear as 
an alternative to control those pathogens due to their short length and their fast and 
efficient action [1-3].  

AMPs are a very diverse and abundant group, being divided in several classes, but 
some of them share some physicochemical characteristics, some studies propose that 
they are non essential, but the determinant for activity is the tertiary structure [4], 
however, other studies show that the physicochemical characteristics modulate the 
antimicrobial activity [5]. Some classes of AMP have a special structural feature, a 
cysteine knot motif with three disulfide linkages in their structures, which provides a 
major stability to the structure. Among them are the defensins, which could be found 
in animals, plants and fungi, showing three, four or five disulfide linkages [1, 6-7]. 
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Another class that contains the cysteine knot motif is the class of plant cyclotides, 
which comprises macrocyclic peptides with a head-to-tail cyclised backbone [8]. 
Physicochemical characteristics combined with cysteine knot motif can be used to 
predict antimicrobial activity of protein sequences. The present study was conducted 
in order to create a model of Support Vector Machine (SVM) to predict antimicrobial 
activity. 

2   Material and Methods 

Starting from the Antimicrobial Peptides Database [3], 207 sequences with six 
cysteine residues were extracted and at least one repetition of the pattern CXC, 
where X is any of the 20 natural amino acids. The redundant sequences were 
removed with Jalview [9], remaining 199 in the positive dataset. The negative 
dataset was composed of an equal number of random protein sequences predicted as 
transmembrane by Phobius [10], totaling 398 sequences in main dataset. For each 
sequence, four physicochemical properties were calculated: net charge at the 
physiological pH, ratio between hydrophobic and charged residues, average 
hydrophobicity (H) and the hydrophobic moment (μH). H and μH were measured 
based on Eisenberg’s hydrophobicity scale [11]. Moreover, μH was given by the 
Eisenberg’s equation [11]. 

Before physicochemical characterizations, the main dataset was divided in two 
datasets, training and blind dataset. The training dataset was composed of 146 
AMPs with redundancy minor than 90% and 146 sequences predicted as 
transmembrane randomly selected. The blind dataset was composed by the 106 
remaining sequences of main dataset. The model of SVM was developed with SVM 
Perl Module, available in the Comprehensive Perl Archive Network (CPAN) [12]. 
The kernel function has been chosen according to the results of the 10-fold cross 
validation, and the performance of the SVM was measured by the following 
parameters: 

Sensitivity= {TP/(TP+FN)}*100 (1) 

Specificity= {TN/(TN+FP)}*100 (2) 

Accuracy= {(TP+TN)/(TP+TN+FN+FP)}*100 (3) 
 

Where TP is the number of true positives; FN, the false negatives; TN, the true 
negative; and FP, the false positives. 

3   Results and Discussion 

Cysteine knot motifs are widely spread in several classes of peptides, such AMPs [8]. 
These motifs offer a major stability to the protein structure. Nevertheless, the 
antimicrobial activity is modulated by physicochemical properties, such hydrophobicity, 
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cationicity and amphipathicity [1, 5]. We propose that the combination of these 
features can be used to predict antimicrobial activity through supervised machine 
learning. On the other hand, the use of supervised machine learning to predict 
antimicrobial activity has two major challenges, (i) the size variation of sequences 
and (ii) the absence of a non-antimicrobial data base [2]. In this paper, a SVM 
model to predict antimicrobial activity from peptides with a cysteine knot motif 
through physicochemical properties was developed, which turn possible  
the prediction of sequences, independently of size, solving the first challenge, on 
the other hand, this approach generates a novel problem: shuffled sequences have 
the same scalar physicochemical properties, generating false positives. However, 
we included the μH to solve this problem, once μH is not a scalar property and  
its value depends of the sequence of amino acids in protein. To solve the  
second challenge, we use the Phobius prediction to select transmembrane proteins, 
since these proteins have no antimicrobial activity; due to those are no secreted 
proteins [2]. 

The adequate kernel function was selected based on a 10-fold cross validation on 
training dataset. The kernel polynomial has the best accuracy (77.4%) than radial 
(75.68%), linear (74.65%) and sigmoid (46.91%). Figure 1 shows the accuracy in 
several K-fold cross validations. Testing the model on blind dataset, we observe a 
sensitivity of 75.36%, a specificity of 97.3% and an accuracy of 83.02%. Through this 
model, proteins of varied size with a cysteine knot motif can be predicted with good 
reliability and can be used to discover and design novel drugs. 

 
Fig. 1. K-fold cross validation of SVM Model. The kernels linear, radial and polynomial 
display a similar accuracy, but the polynomial kernel shows the best accuracy in majority of  
k-fold cross validations. 
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4   Conclusion 

This paper shows that the combination of cysteine knot motif and physicochemical 
properties can be used to predict antimicrobial activity with good reliability, based on 
a SVM model, independently of the protein size. This SVM model can be relevant to 
reveal the antimicrobial activity from proteins which posses other functions, like 
protease inhibitors, conotoxins or metallothioneins, for example, since these proteins 
have the cysteine knot motif. In future studies, more physicochemical properties will 
be added to SVM model in order to improve the accuracy of the model and sequences 
without described antimicrobial activity will be predicted and tested in vitro.   
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Abstract. Nowadays, the resulting data of each step of genomic annotation 
processes are typically used for annotation provenance. However, recent 
initiatives in the direction of capturing annotation provenance data do not 
support the Bioinformatics developer on building their own provenance enabled 
applications. This work proposes the ArCaP architecture, which aims at 
supporting the development of provenance enabled applications and at 
facilitating the access to annotation provenance data. Although the focus is on 
Bioinformatics applications, this approach is useful to other scientific domains. 

Keywords: Data provenance; Annotation Provenance; Scientific Workflows. 

1   Introduction 

Typically, genomic research centers such as the Oswaldo Cruz Institute [8], use 
computational tools for processing, analyzing, visualizing and storing genomic data. 
Some of these tools are embedded in applications also known as genomic annotation 
systems, which support the whole genomic research process, i.e., since the sequence 
cleaning, up to the annotation itself. As these systems have been intensely used, there 
has been an exponential growth of data [2]. More recently, to facilitate data analysis, 
these systems started to use Database Management Systems (DBMS). 

Besides the data generated at the end of a genomic research process, it is also 
required for genomic research projects to maintain provenance data. A genomic 
annotation is more valuable as more provenance data are available for the user. 
Especially in the context of data curation activities, provenance data is a way of 
addressing data trust issues [6]. Buneman et al. [3] say that provenance information 
concerning the creation, attribution, or version history of data is crucial for assessing 
its integrity and scientific value. Moreover, data curation is a long and expensive 
process [5]. Therefore, to add value to a genomic annotation and to fasten its curation, 
it is necessary to capture data about annotation provenance and associate them.  

This work aims at facilitating the development of provenance enabled 
Bioinformatics workflow applications, by providing a user guide for the creation of 
provenance data structures. In this direction we propose a development architecture 
through which the developer can build his application, enabling it to register 
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provenance data, which are then made available for user queries. For instance, in a 
typical genomic process it would be possible to retrieve which sequence fragment is 
associated to a sequence annotation. 

2   Related Work 

Application-specific databases do not address data provenance in a uniform and 
generic way. There are two main initiatives in the direction of providing a more 
generic provenance registry: metamodels and Scientific Workflow Management 
Systems (SWfMS). A metamodel is at a higher level of abstraction than a model. It is 
often called "a model of a model". A provenance metamodel may be useful as it may 
guide specific application developers on instantiating provenance enabled models, 
i.e., models that include data structures to store provenance data. Some provenance 
driven metamodels had been proposed [4][10][11]. However, none of these 
metamodels are proposed in the context of development support architecture. The 
developer may build his/her application based or not on such metamodels.   

On the other hand, SWfMS are also useful in providing data provenance. A 
SWfMS is a set of tools that support the definition and execution scientific workflows 
(sets of tasks), in a coordinated and integrated way, in order to automatically generate 
and/or derivate new scientific data. Through the use of a SWfMS, specific scientific 
workflow applications may be developed and used. There are SWfMS that already 
provide some support for data provenance [9] [1] [7] by using a “behind the scene” 
model which is able to capture some data provenance. However, none of these 
SWfMS provide a uniform way to capture provenance, as they use their own specific 
model for that purpose. Furthermore, the user becomes a hostage of these systems 
interface, as his/her application depends on these systems to run. Therefore, there is 
still a need for a generic and uniform development platform that could guide the 
bioinformatics developer in powering his/her application with provenance capture.  

3   ArCaP  

In order to address this issue we propose the Architecture for Provenance Capture 
(ArCaP), which allows the specification of a workflow for the registry and subsequent 
retrieval of data provenance, based on a provenance metamodel [12]. ArCaP main 
objective is to support a clear and intuitive development of tools that capture 
provenance, and also to enable researchers to query about data provenance in a more 
direct and granular way. Two major types of user are identified in ArCaP: the 
developer and the researcher. The developer role is related to the user that will specify 
and develop a workflow application and the researcher role is related to who actually 
executes a workflow application (e.g. an annotator or a curator). 

ArCaP architecture is presented in Fig. 1, and its functionality is summarized as 
follows. Initially, a developer interacts with the Workflow Specification module, in 
order to register in the Metamodel Database the tasks, programs and data (programs 
input and outputs) that take part on the workflow application. The focus of this 
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metamodel is on the intermediate data storage, i.e., data that were produced at each 
step of the process. It includes information related to sources of consumed data, 
produced data, data derivation, processes and users.  

 

Fig. 1. ArCaP Architecture 

Then, the same developer can interact with the Provenance Capture Specification 
module that guides the user on the definition of auxiliary database structures (tables) 
for registering provenance at the points of the workflow where it is required. The 
Metamodel Database includes the application data schema and the metadata about the 
tasks and programs of the specified workflow. Based on the data schema, the 
Provenance Capture Specification module is able to create the Application Database.  

Now, the developer can initiate the development or use of the specified application 
through the Application Development module. This module may be viewed as an 
external module which complements the architecture, as it can be implemented by any 
development environment. Based on the data stored in the Metamodel Database and on 
the schema of the application which was used for the creation of the Application 
Database, the developer can build the workflow application, which corresponds to the 
Workflow Execution module. The researcher is now able to interact with this module. 
As the module is enabled for data provenance capture, the user actions are monitored 
and provenance data are stored in the Application Database. For instance, for each 
program execution of the workflow, the user and his/her role are associated, and this 
information is stored in specific tables and provenance structures created by the 
previous module in the Application Database.  

Finally, a separate module for Provenance Query is also provided, as the interface 
for obtaining provenance data is not the focus of the application development. 



66 M.P. Guimarães and M.C. Cavalcanti 

 

Provenance queries are carried out according to the parameters informed by the 
researcher, including the provenance granularity required. For example, given an item 
of some produced data, it is possible to obtain all the data items that were consumed, 
throughout each step of the executed process (workflow application), to produce it. 

4   Conclusion 

This work presented the ArCaP architecture, a new approach for data provenance 
capture based in Bioinformatics scenarios. A prototype of such architecture was 
implemented based on a real genomic annotation system [13]. Future works include 
the creation of a complete case study on developing a new Bioinformatics application. 
Also, we plan to adapt an existing SWfMS to incorporate ArCaP ideas.  

Acknowledgments 

This work thanks CAPES and CNPq for their financial support and the staff of the 
BCS Lab at Fiocruz/IOC, for their contribution as Bioinformatics specialists. 

References 

1. Altintas, I., Barney, O., Jaeger-Frank, E.: Provenance collection support in the kepler 
scientific workflow system. Journal Provenance and Annotation of Data (2008) 

2. Benson, D.A., Karsch-Mizrachi, I., Lipman, D.J., Ostell, J., Wheeler, D.L.: GenBank. 
Nucleic Acids Research 36, D25–D30 (2008) doi:10.1093/nar/gkm929 

3. Buneman, P., Chapman, A., Cheney, J.: Provenance management in curated databases. In: 
Proc. of the 2006 ACM SIGMOD Int. Conf. on Management of Data, SIGMOD ’06, 
Chicago, IL, USA, June 27-29, pp. 539–550. ACM, New York (2006) 

4. Cavalcanti, M.C., Mattoso, M.L., Campos, M.L.M.: Scientific resources management: 
Towards an in Silico Laboratory. Tech. Rep., UFRJ (2003) 

5. Baumgartner Jr., W.A., Cohen, K.B., Fox, L.M., Acquaah-Mensah, G., Hunter, L.: Manual 
curation is not sufficient for annotation of genomic databases. Bioinformatics 23(13),  
41–48 (2007) 

6. Lord, P., Macdonald, A., Lyon, L., Giaretta, D.: From Data Deluge to Data Curation. The 
Digital Archiving Consultancy Limited and the Digital Curation Centre (2004) 

7. Menezes, J.G.M.: Gerência distribuida de dados em workflows de bioinformática. Master 
Thesis, Military Institute of Engineering - IME (2008) 

8. Oswaldo Cruz Institute/Fiocruz, http://www.fiocruz.br 
9. Scheidegger, C., Koop, D., Santos, E., Vo, H., Callahan, S., Freire, J., Silva, C.: Tackling 

the provenance challenge one layer at a time. Concurrency and Computation: Practice and 
Experience (2007) 

10. Simmhan, Y., Plale, B., Gannon, D.: Karma2: Provenance management for data driven 
workflows. Int. Journal of Web Services Research 5(1) (2008) 

11. Moreau, L., Freire, J., Futrelle, J., Mcgrath, R., Myers, J., Paulson, P.: The open 
provenance model. Technical report, University of Southampton (2007) 

12. Guimarães, M.P.: Uma abordagem para capturar a proveniência de dados na área de 
Bioinformática. Master Thesis, Military Institute of Engineering - IME (2009) 

13. System for Integrate Genomic Resources and Analysis, 
http://stingray.biowebdb.org 



BAT: A New Biclustering Analysis Toolbox

Cristian Andrés Gallo1, Julieta Sol Dussaut1,
Jessica Andrea Carballido1, and Ignacio Ponzoni1,2

1 Laboratorio de Investigación y Desarrollo en Computación Cient́ıfica (LIDeCC),
Departamento de Ciencias e Ingenieŕıa de la Computación,
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Abstract. In this paper, a new biclustering analysis toolbox called
BAT, which is based on the BiHEA (Biclustering via a Hybrid Evo-
lutionary Algorithm), is presented. The BiHEA is a memetic approach
that integrates a Multi-Objective Evolutionary Algorithm (MOEA) with
a local search technique in order to perform microarray biclustering. This
method simultaneously considers several goals for optimization, giving as
a result a set of biclusters that present a satisfactory trade-off between
all of them. The novel software introduced in this article provides the
possibility of running the BiHEA along with several pre-processing fa-
cilities for the input data and different visualization and statistical tools
for the analysis of the biclusters.

Keywords: microarray analysis, biclustering, multi-objective evolution-
ary computing, software toolbox.

1 Introduction

Microarray technology constitutes one of the most widely used methods that con-
tribute to generate an amazing amount of biological data. Numerous research
teams now posses the skills to generate microarray data, whereas in many cases it
is still limited their capacity to extract biologically meaningful information from
these data. In this sense, the recognition of gene groups with coherent expression
values represents a key step in the analysis of gene expression data. Traditional
clustering algorithms partition the expression matrix into sub-matrices that ex-
tend over the whole set of samples. However, in most cases, the assumption that
all genes behave similarly in all conditions may be too restrictive.

To account for this, biclustering approaches carry out the grouping in both
dimensions simultaneously: genes and samples [1, 2]. This allows to find sub-
groups of genes that show the same response under a subset of conditions, e.g.
if a cellular process is only active under these conditions. Furthermore, if a gene
participates in multiple pathways that are differentially regulated, one would ex-
pect this gene to be included in more than one cluster; this cannot be achieved
by traditional clustering.

C.E. Ferreira, S. Miyano, and P.F. Stadler (Eds.): BSB 2010, LNBI 6268, pp. 67–70, 2010.
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Several biclustering algorithms have been proposed in the literature [3–6].
These techniques vary from simple greedy approaches to complex stochastic
evolutionary algorithms. However, in general, the software that implements them
is difficult to use or it is not accessible at all. Therefore, our motivation in this
work is to provide a biclustering analysis toolbox in order to accomplish the
usability of a novel biclustering algorithm recently published [7].

2 Main Toolbox Features

In this work, a user-friendly software toolbox called BAT (Biclustering Analy-
sis Toolbox), which implements the BiHEA algorithm [7] together with several
means for visualization and biclustering analysis, is presented. The BiHEA is a
memetic evolutionary algorithm for biclustering of Gene Expression Data (GED)
that considers the mean squared residue (homogeneity) [3], the row variance and
the size of the bicluster as objectives to be optimized during the construction of
the solutions. The main facilities of the BAT can be summarized as follows:

Data handling. The information, consisting on the entire expression matrix
and the set of biclusters extracted by the BiHEA, is organized in a list structure
that is depicted in the left panel of the graphical user interface (Fig. 1a). This
structure allows accessing the dataset and the results for pre-viewing in several
forms. Additionally, it also provides information about the size, mean squared
residue and row variance of the biclusters.

Considering the stochastic nature of the evolutionary algorithms, the software
is capable of performing several runs sequentially, each one with a different seed.
In this case, the column in the left panel called trials indicates the amount of
runs in which each resulting bicluster has appeared.

Pre-processing. The input data file can be any CSV file, including annota-
tions of genes and conditions, or a previously saved project. The loaded gene
expression data can then be transformed by means of several methods, includ-
ing normalization (log2) and standardization. Additionally, BAT automatically
infers the missing values of the GED employing the BPCA method [8].

Visualization. The GED can be displayed in three different ways: as a heatmap
(Fig. 1a), as a numerical matrix or in terms of the coverage of the resulting
biclusters (Fig. 1b). The annotations of the conditions run along the top whereas
the annotations of the genes are listed on the left hand side. Additionally, the
biclusters can be visualized in the form of a heatmap, a numerical matrix, or as
a collection of expression profiles (Fig. 1c). The expression profiles display the
behavior of those genes that are grouped within a bicluster in which, for each
gene, a colored line connects the expression values for the different samples.

Post-processing. In order to analyze the results, the software offers the possi-
bility of performing a pair-wise gene analysis. More specifically, for each pair of
genes, the frequency with which those genes occur together in the same bicluster
is calculated. This number of co-occurrence detects those genes that may be func-
tionally related. Additionally, as we mentioned earlier, the degree of coverage of
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(a) A heatmap visualization of the GED

(b) The coverage of the biclusters in the GED

(c) An expression profile of a bicluster

Fig. 1. Graphical user interface of the BiHEA software
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the resulting biclusters with respect to the gene expression matrix can be visual-
ized as a grey scale matrix (see Fig. 1b). This is useful so as to provide a global
view of the areas in the GED in which the biclusters are placed.

The figures, graphs, and results can be exported from the BAT for further
usage. For the figures and graphs, it is also possible to adjust the resolution in
dpi of the images accordingly to the needs of the user. All the work performed
during a session of the BAT can be saved as a project and restored later.

3 Final Considerations and Discussion

In this paper, we have introduced the BAT: a software tool for bliclustering of
gene expression data that implements the BiHEA algorithm. As it frequently
occurs in bioinformatics, when a new algorithm emerges, the software that im-
plements it is difficult to be found and used, whenever it is available at all.
This work is mainly focused on this issue, providing a complete framework in
which the biologist can rely in order to perform analysis of gene expression data
through a novel biclustering algorithm recently published.

The software, source code, manuals and several examples are freely available
at http://lidecc.cs.uns.edu.ar with the aim of offering all the support needed by
the user. Additionally, the implementation is OS-independent, and therefore it
will work on near all operating systems.
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Abstract. Large-scale studies of the origins and evolution of regula-
tory mechanisms require quantitative estimates of the abundance and
co-occurrence of functional protein domains in the genomes of very di-
verse organism. Current databases, such as SUPERFAMILY, are not able
to provide such quantitative data because of species-specific differences
and biases in the existing transcript and protein annotations on which
they are based. Here we show that the combination of de novo gene
predictors and subsequent HMM-based annotation of SCOP domains
in the predicted peptides leads to consistent estimates with acceptable
accuracy.

Keywords: Protein domains, genome annotation, regulatory mecha-
nisms.

The expression of genomically encoded information is subject to tight regulation.
The regulatory rules are implemented in a highly complex network encompassing
several biochemically distinct mechanisms involving specific chromatin states,
the action of transcription factors, regulated mRNA export, alternative splicing,
translational control, post-transcriptional and post-translational modifications,
and controlled degradation of both RNA and polypeptides. Surprisingly, different
clades appear to emphasize certain types of mechanisms while reducing or even
abolishing others. Regulation in eubacteria, for example, appears dominated by
transcription factor networks, trypanosomes use the posttranscriptional process-
ing of large polycistronic transcripts, ciliates utilizes extensive amplification of
DNA in creating their macro-nuclei, and crown group eukaryotes have evolved
an elaborate system of histone modifications. The most direct approach towards
an understanding of the origins and evolution of the different regulatory mech-
anisms is the comprehensive reconstruction of the evolutionary histories of the
many protein families that are involved in these processes. In practice, however,
this is an exceedingly difficult and tedious task, since homologies even between
highly conserved proteins become hard to establish in comparisons across king-
doms. Proteins are composed of recognizable protein domains that implement
well-defined functions such as catalytic activities, specific binding, or anchoring
in membranes. Over large time-scales, these components have been combined
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in a combinatorial fashion to produce new functionalities, so that individual
proteins often have multiple ancestors that contributed different domains [1].
A more modest approach thus aims at tracing the distribution of protein do-
mains in a comparative fashion. Considering the co-occurrences of domains in
individual proteins, furthermore, reveals clade-specific domain combinations [2],
a growing core of combinations in multicellular organisms [3].

Such studies are based on annotations extracted from databases. For instance,
[2] used the protein annotation compiled in KEGG and ENSEMBL together with Pfam
domains, [4] utilized the SUPERFAMILY database, whose HMM models are based
on the SCOP domain definitions. The annotation of protein domains, however,
is based upon an annotation of “protein models” that are constructed from the
genomic DNA sequence, EST and cDNA data, and computational predictions.
Large differences in EST and/or cDNA coverage, and in the computational pro-
cedures leads to substantially different domain annotations even for phylogenet-
ically very closely related species. For instance, SUPERFAMILY 1.73 annotates
64225 domains in human, but only 45312 in chimpanzee and 21208 in gorilla and
only about 14748 in the alpaca. Such biases may explain why a search for pu-
tative homologs of the most prominent proteins associated with the microRNA
pathway (Drosha, Dicer, DGCR8, TRBP, and TRBP) based on co-occurrences
of their known SCOP domains, much to our surprise, did not recover the phy-
logenetic distributions reported in detailed, homology-based studies [5]. Here,
we investigate strategies to construct inventories of protein domains that largely
avoid biases arising from the underlying gene annotation. The need for quanti-
tative studies is emphasized by the realization that many protein domains are
evolutionarily very old so that functional innovation is reflected by differences
and domains abundances and domain combinations.

To this end, we re-annotate protein domains in three different collections of
(putative) polypeptides: (1) translations of annotated transcripts, (2) the re-
sults of de novo gene predictors, and (3) conceptual translations of the entire
genomic DNA. We analyze the genomes of three apes, human (GRCh37.57),
chimp (CHIMP2.1.57), and gorilla (gorGor3.57) to identify biases among very
closely related species. Genomes and transcript annotation were downloaded
from www.ensembl.org (version 57). Gene predictions were performed using
genscan [6] and GeneMark [7]. In order to save computational resources we ran-
domly selected the Hidden Markov Models of 100 domains from the SUPER-
FAMILY database (1.73) [8]. The HMMs were mapped using HMMER 3.0rc1with
E ≤ 10−4. Among overlapping hits, only the highest-scoring one was retained.

A scatter-plot of the number of domain occurrences measured on the set
of annotated transcript and on the de novo gene predictions shows a significant
correlation, Fig 1(a-c). In contrast, an attempt to estimates the domain numbers
by running the HMMs on translated genomic DNA failed miserably: only a small
fractions of the known domains can be recovered. This is not surprising since on
average a domain contains 3 or 4 introns [9] in human.

In the human data, Fig. 1(a), the majority of domains is observed more fre-
quently in annotated transcripts than in genscan predictions. This effect is less

www.ensembl.org
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Fig. 1. Correlation of the number of protein domains. Top row: Annotated transcripts
compared to de novo predicted “genes” for (a) human, (b) chimp, and (c) yeast. Be-
low: While domain prediction based on existing annotation yield systematic differences
between human and chimp (d), congruent abundances are obtained from genscan pre-
dictions (e). Linear regression is shown as red line in panels (e) and (f). Different gene
predictors (genscan and GeneMark) yield comparable results (f), shown here for yeast.

pronounced in chimpanzee, Fig. 1(b). In yeast, on the other hand, the corre-
spondence between transcript-based domain annotation and the genscan-based
results is excellent. We can understand these differences in terms of the qual-
ity and coverage of the transcript annotation. In the human genome, we have
a large number of annotated isoforms and alternative transcripts as a result
of extensive cataloguing efforts, thus multiple transcripts incorporate the same
genomic domain. A comparable density of data is not available for almost all
other species, so we under-count the annotated transcripts of the other two ape
genomes. Somewhat surprisingly, transcript annotation and genscan predictions
agree extremely well in yeast.

The sampling bias introduced by working with transcript annotations can
be demonstrated by directly comparing domain annotations between the three
closely related ape species. We observe strong systematic biases when the do-
main annotation is based on the currently best transcript annotations for these
genomes, shown for human vs. chimp in Fig. 1(d): Transcript-based domain an-
notation yields many more occurrences of domains in human than in chimp and
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gorilla. Consistently, we also obtain more domains in chimp than in gorilla. This
bias can be explained nearly completely by the differences in the numbers of
annotated transcripts: for chimp/human, e.g., the ration of annotated transcripts
is 0.446, the ratio of detected proteins domains is 0.522.

In contrast to the transcript-based data, we obtain largely consistent results
from the genscan predictions. There is some scatter, in particular for relatively
rare domains, but no strong systematic bias, Fig. 1(e). The remaining discrep-
ancies between human and the other two apes (about 10%) can probably be
explained by the quality and completeness of the current genome assemblies.
Finally, we confirmed that the two gene predictors genscan and GeneMark yield
congruent results at the level of predicted protein domains. Fig. 1(f) shows this
for yeast. Due to the comparably long run-time of GeneMark, corresponding data
were computed for a single human chromosome only (not shown).

We conclude that protein domains can be annotated with acceptable accuracy
directly from genomic DNA sequences using a de novo gene predictor such as
genscan as an intermediate.
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Abstract. A careful analysis of flexible-receptor molecular docking results, 
particularly those related to details of receptor-ligand interactions, is essential to 
improve the process of docking and the understanding of intermolecular 
recognition. Because flexible-receptor docking simulations generate large 
amounts of data, their manual analysis is impractical. We intend to apply 
classification decision trees algorithms to better understand this type of docking 
results.  However, prior to that we need to discretize the target attribute, which 
in this work is the estimated Free Energy of Binding (FEB) of the flexible 
receptor-ligand interactions. Here we compare three different discretization 
methods, by equal frequency (1), by equal width (2) and our proposed method, 
based on the mode and standard deviation (3) of the FEB values. 

Keywords: discretization, molecular docking, flexible receptor, data mining. 

1   Introduction 

Molecular docking simulations is a computational method used to predict the 
preferred conformation and orientation of one molecule, usually called a ligand, to a 
second molecule, named target receptor, to form a stable complex [1]. The output file 
for each receptor-ligand docking simulation contains much relevant information to 
help understand the intermolecular recognition details underlying the formation of a 
stable receptor-ligand complex. The Euclidian space of the intermolecular complex 
and the value of the objective function which estimates the affinity of the receptor-
ligand complex, called Free Energy of Bind (FEB) in the software AutoDock3.0.5 [2], 
are only two examples of the many types of data that results from a docking 
simulation. Additionally, when both, ligand and receptor molecules have their 
flexibility considered in the docking simulations vast amounts of data are generated 
[3], particularly if the flexible model of the receptor is constructed from a molecular 
dynamics (MD) [4] simulation trajectory [3][5]. 

We have previously performed docking simulations of a flexible-receptor to four 
different ligands [3]. The flexible receptor was modeled as a 3,100 snapshots 
derived from a 3.1 ns (1 ns = 10-9 seconds) MD simulation trajectory [6]. 
Consequently, this is a very computer-intensive approach.  Aiming at reducing this 
computational demand, we are developing ways to use a smaller number of receptor 
snapshots without affecting the explicit flexibility of the receptor. However, prior to 
developing this snapshot-reducing method, a careful analysis of the molecular 
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docking results is essential to comprehend the details of flexible receptor-ligand 
interactions and their relationship with the estimated FEB of the complex. These 
types and amount of data can be efficiently explored by data mining techniques [7]. 
Hence, we intend to apply classification decision tree algorithm considering as 
target attribute the FEB values. However, in classification tasks, numerical target 
attributes must be discretized [7].  

In this work we propose and describe a discretization method which uses the mode 
and standard deviation of the distribution of FEB values. We compare our method to 
other two classical discretization methods: by equal frequency and by equal width. 

2   Materials and Methods 

2.1   Receptor, Ligands and Molecular Dynamics and Docking Simulations 

In this work we considered the crystal structure of the InhA enzyme from 
Mycobacterium tuberculosis [8] (PDB ID: 1ENY) as the rigid receptor. Starting from 
this structure, by means of MD simulations [4], we generated the flexible-receptor 
model of InhA. It is made up of 3,100 snapshots derived from a 3.1 ns MD simulation 
trajectory [6]. As ligands we used the pentacyano(isoniazid)ferrate(II) (PIF) [9], 
nicotinamide adenine dinucleotide (NADH) [8], triclosan (TCL) [10], and 
ethionamide (ETH) [11]. The docking simulations were executed considering the 
flexible InhA receptor model and each of the four ligands [3] with AutoDock3.0.5 [2] 
(results summarized in Table 1). The data containing the MD simulation trajectory 
snapshots and the related docking results were stored in the FReDD database [12]. 

Table 1. Results of the flexible InhA docking simulation to four different ligands. Columns 1 
and 2 contain the ligand names and their total number of atoms after preparation for docking; 
column 3 displays the total number of valid docking results; column 4, the average and 
standard deviation of the estimated FEB values (in kcal/mol) and columns 5, 6, and 7 displays 
the minimum, maximum and the mode of the statistical distribution of FEB values. 

Ligands Atoms Dockings    FEB Min. FEB  Max. FEB  Mode 
PIF 24 3,042   -9.9 ± 0.6 -11.2  0.0   -9.9 
NADH 52 2,823 -12.9 ± 4.2 -20.6  0.0 -16.8 
TCL 18 2,837   -8.9 ± 0.3 -10.0 -4.9   -9.0 
ETH 13 3,043   -6.8 ± 0.3   -8.2 -5.9   -6.7 

2.2   Discretization of the Target Attribute FEB 

Since classification decision trees require a categorical target attribute, and being FEB 
a continuous one, we needed to discretize it [7]. Discretization involves two subtasks: 
(1) the continuous attribute is sorted and divided into n-1 split points; and (2) 
determination of how to map the values of the continuous attribute to the defined 
categories [7]. Here we considered three unsupervised discretization methods:  

- Method 1 - Discretization by equal frequency interval: Considering that k is the 
number of intervals defined by the user and m the total of instances, this method 
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divides the continuous variable into k intervals where each interval contains m/k 
values, approximately. 

- Method 2 - Discretization by equal width interval: In this approach, for each 
continuous attribute to be discretized, their values are sorted and then divided into 
k intervals, defined by the user [7], where each interval has the same width. 
According to Dougherty et al. [13] this is the simplest discretization method, 
although it is vulnerable to outliers.  

- Method 3 - Discretization by mode and standard deviation: The aim of our 
proposed discretization approach is to divide the sorted attribute into intervals 
where the border of the instances distribution (best and worst FEB values) fit 
together in the same class. To achieve this we considered the mode and the 
standard deviation of the frequency distribution of the attribute that is being 
discretized. Our discretization method with 5 classes is shown in equation (1) 
where x is the attribute to be discretized, Mo and σ represents the mode and 
standard deviation values of the x distribution. 

   >    
    >  ≥  

  >  ≥  
   >  ≥  
     ≥   

(1)

3   Results and Discussion 

The discretization methods by equal frequency (Method 1), by equal width (Method 
2) and by mode and standard deviation (Method 3) were applied to our target attribute 
FEB. As a result it mapped the FEB values into 5 classes: Excellent, Good, Regular, 
Bad and Very bad. The results of the mappings are presented on Table 2.  For each 
class it shows the number of instances for each ligand in each of the three 
discretization methods tested.  

Table 2. Total number of instances for each of the 5 classes considering the three discretization 
methods: by equal frequency (1), by equal width (2) and by mode and standard deviation (3). 

 PIF         NADH         TCL     ETH 
Classes 1     2     3 1 2      3  1     2      3  1     2    3 
Excellent 604 2995 7 569 757 205 563 1017 19 619 18 160 
Good 607 26 223 559 792 1020 556 1814 158 591 173 512 
Regular 620 17 2616 565 839 374 587 4 1866 598 1108 2131 
Bad 610 3 173 565 408 903 582 0 645 649 1531 226 
Very_bad 601 1 23 565 27 321 549 2 149 586 213 14 

 
From Table 2 we can observe that Method 1 discretized the instances in a balanced 

form with near the same number of instances in each class. Method 2 discretizes the 
instances in intervals of same width. It can generate unbalanced classes since 
instances are not equally distributed. It happens especially for PIF and TCL. For TCL,  
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FEB varies from -10.0 to -4.9 kcal/mol (see Table 1) and the mode is -9.0 kcal/mol, 
closer to the minimum than to the maximum FEB. In addition, its FEB standard 
deviation is 0.3 kcal/mol which means that FEB does not vary much and remains 
around the mode. Considering the PIF and TCL ligands, since most of their instances 
were grouped in Excellent or Good classes, their induced model by classification 
decision trees algorithms will be distorted. On the other hand, our proposed Method 3 
generates unbalanced classes (Table 2). Nevertheless, its main advantage is that it 
groups the best docking results in one class, as well as the worst docking results in 
another, different class. 
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