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2.3 Itô’s Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Stochastic ODEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.5 Stochastic analysis in infinite dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.6 Tools for compactness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Incompressible fluids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1 The approximated system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Compactness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3 The system on the new probability space . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4 Compressible fluids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.1 A priori estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2 Compactness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.3 Strong convergence of the density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Acknowledgment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Yann Brenier

Some Concepts of Generalized and Approximate Solutions in Ideal
Incompressible Fluid Mechanics Related to the Least Action Principle

1 The Least Action Principle for an ideal incompressible fluid . . . . . . . . . . . . . . 53



vi Contents

1.1 The configuration space of an incompressible fluid . . . . . . . . . . . . . . . . . . . 53

1.2 The Euler equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

1.3 Geometric interpretation of the Euler equations . . . . . . . . . . . . . . . . . . . . . . 54

1.4 The Least Action Problem (LAP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

2 From the Least Action Problem to the polar
decomposition of maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

2.1 The semi-discrete Least Action Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

2.2 The mid-point problem and the polar decomposition of maps . . . . . . . . 58

3 Generalized solutions to the Least Action Problem . . . . . . . . . . . . . . . . . . . . . . . 61

3.1 The concept of generalized flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.2 The weak formulation of the LAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.3 The semi-discrete version of the weak LAP . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4 Results on the generalized Least Action Problem . . . . . . . . . . . . . . . . . . . . . . . . 63

4.1 Continuity of generalized solutions with respect to data . . . . . . . . . . . . . . 64

4.2 Example of generalized solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.3 Two phase flows in one space dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5 A dissipative least action principle for approximations
of the Euler equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.1 Finite-dimensional examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.2 The main example and the Vlasov–Monge–Ampère system . . . . . . . . . . . 68
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Preface

This special volume consists of four surveys that are focussed on several aspects
in fluid dynamics. The basis for these surveys were series of lectures delivered by
Dominic Breit (Heriot-Watt University Edinburgh, United Kingdom), Yann Bre-
nier (Ecole Polytechnique, Palaiseau, France), Pierre-Emmanuel Jabin (University
of Maryland, USA) and Christian Rohde (Universität Stuttgart, Germany) at the
EMS School in Applied Mathematics Mathematical Aspects of Fluid Flows held
at Kácov, Czech Republic, May 28–June 2, 2017.

The four surveys cover the following subjects: stochastic partial differential
equations in fluid mechanics, different concepts of solutions in ideal fluid mechanics
connected with the least action principle, new views on the theory of the trans-
port and continuity equations in connection with the compressible Navier–Stokes
equations and related models, and modelling, mathematical and numerical analy-
sis of models as well as the numerical solution of equations describing multi-phase
fluid flows.

The main objective of the series of the Kácov Schools is to present new, mod-
ern methods, tools and results in the mathematical theory of compressible and
incompressible fluids, and more complex systems of partial differential equations.
Such a goal must be, however, motivated by studying physically relevant problems.
In particular, the rigorous analytical results should lead to good understanding of
the behaviour of the model, should predict its limitations and should indicate the
kind of numerical method that could be used in order to solve the problem in a
stable, accurate and efficient manner. Hand-in-hand with these mathematical prop-
erties, the analysis of the models should also lead to the relevant qualitative predic-
tions of the model that are compatible with the physical expectations/experiments.
Furthermore the model must obey basic physical principles, such as energy con-
servation or an entropy inequality. We believe that each of the four surveys fulfills
these requirements and presents the most recent results and points of view, and
addresses important problems in the mathematical theory of fluids.

One of the popular recent directions is to include suitable small perturba-
tions into the models, which may be of numerical or empirical nature, or may
originate in physical uncertainties (such as thermodynamic fluctuations occurring
in fluid flows). This issue is discussed in the first part of the volume authored by
Dominic Breit. He explains how the classical (deterministic) equations describing
fluid flow can be modified to include stochastic effects, leading to stochastic partial

Springer Nature Switzerland AG 2018
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x Preface

differential equations, where all of the quantities involved (such as the density, the
velocity and the temperature) are defined on a probability space, and he shows

the author presents a nice overview of the methods used in the theory of stochas-
tic PDEs. In the rest of the survey, the author discusses two notions of solution:
a deterministic equation with random coefficients (semi-deterministic approach)
and a fully stochastic problem (finite energy weak martingale solutions), and he
highlights the strong and the weak points of both approaches. The available theory
for both incompressible and compressible fluids is described in detail. Finally, the
main steps of the existence proofs are presented.

Yann Brenier discusses various concepts of generalized and approximate so-
lutions in the mathematical theory of ideal (inviscid) incompressible fluids. The
central concept is the relation between solutions of the fluid system in the Euler-
ian description given by the standard Euler system of partial differential equations
and a variational approach based on the least action principle. The least action
principle characterizes the admissible trajectories as those minimizing the action
functional. It is shown that smooth solutions of the Euler system when restricted
to a sufficiently short time interval comply with the least action principle, while
they represent critical points of the latter when the time lap is large. Furthermore,
various concepts of generalized solutions to the least action principle are intro-
duced and solvability of the latter in this new framework is discussed. Finally, the
approximation of the Euler equations, based on a modified least action principle
taking into account the energy dissipation, is considered. The intimate relationship
of this concept to stochastic and quantum phenomena is discussed in the final part
of the chapter.

The next part of the volume is the survey written by Didier Bresch and
Pierre-Emmanuel Jabin and is focussed on the regularity and qualitative theory
and estimates for the advection equation driven by a nonsmooth velocity field. The
authors present a nice overview of the available results, but also show the essential
tools and methods used in the most recent results. These are then used to obtain
new results for complex systems where the transport equation is coupled to other
PDE’s, e.g., to the compressible Navier–Stokes system. The aim is also to impose
relevant and available estimates for the velocity field or for the unknown, i.e., one
cannot impose a bound on the divergence of the velocity or upper or lower bounds
on the unknown itself. The whole theory is therefore built for situations when the
velocity belongs to a certain Bochner–Sobolev space, which is the natural candi-
date appearing in the theory of compressible fluids. The survey is split into three
main parts: the first one deals with the Lagrangian approach and the logarithmic
scale for advective equations; the second part concerns the Eulerian description
of the problem and takes into account the power of the technique of renormal-
ized solutions to deduce compactness results for the compressible Navier–Stokes
system; the last part provides a beautiful example of how the method introduced
by the authors can be applied to the Stokes system coupled with a nonmonotone
pressure law.

how to include an appropriate Wiener process into the equations. In the introduction
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The last survey, authored by Christian Rohde, ranges from mathematical
modelling to sophisticated numerical methods for multi-phase compressible flows.
He considers the compressible free flow of homogeneous fluids that occur in liquid
and vapour phases and he aims to describe also phase-change phenomena. Two
methods in particular are discussed in the survey. First, models which display the
phase boundary as a sharp interface are discussed, and second, diffuse interphase
models are considered. For both classes of models the associated thermodynamic
framework is set up, the applicability of the model is discussed, and finally a
suitable numerical scheme is introduced. The most developed among these is the
isothermal sharp interphase model, which is understood as a free boundary value
problem with appropriate coupling conditions across the interface. These condi-
tions are of the form of an algebraic constitutive relation and the choices of kinetic
relations, leading to consistency, well-posedness and a thermodynamic theory, are
discussed. Ultimately, these results appear then to be only a weak basis for (multi-
dimensional) numerics but it turns out that an appropriate Riemann solver is a key
for the construction of moving-mesh finite volume methods for the thermodynam-
ically consistent tracking of interfaces with mass transfer. The sharp interphase
model is not able to describe topological changes of the interface. This issue is
then solved by using the Navier–Stokes–Korteweg model, where the free energy
functional is extended by higher-order terms. The stress tensor is then changed
accordingly in order to retain thermodynamical consistency. Finally, a numerical
discretization that is able to deal with higher-order and nonlocal terms in the
stress tensor is proposed, with a focus on the validity of the entropy inequality
also on the level of the numerical approximation.

In conclusion, we are grateful to all the lecturers, the authors and also the
participants for their effort and enthusiasm that led to top quality surveys in the

friendly and inspiring atmosphere during the school at Kácov. We would also like
to use this opportunity to invite all interested researchers to the next, already
sixteenth, school that will be held again at Kácov in 2019. Further details will
be available from the webpage http://essam-maff.cuni.cz, where all links to
lecture notes as well as to the history of the School can be found.

Miroslav Buĺıček
Eduard Feireisl
Milan Pokorný

field of mathematical theory for fluid flows on the one hand, and also to the beautiful,

http://essam-maff.cuni.cz
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An Introduction to
Stochastic Navier–Stokes Equations

Dominic Breit

Abstract. The dynamics of liquids and gases can be modeled by the Navier–
Stokes system of partial differential equations describing the balance of mass
and momentum in the fluid flow. In recent years their has been an increas-
ing interest in random influences on the fluid motion modeled via stochastic
partial differential equations.

In this lecture notes we study the existence of weak martingale solutions
to the stochastic Navier-Stokes equations (both incompressible and compress-
ible). These solutions are weak in the analytical sense (derivatives exists only
in the sense of distributions) and weak in the stochastic sense (the underlying
probability space is not a priori given but part of the problem). In particular,
we give a detailed introduction to the stochastic compactness method based
on Skorokhod’s representation theorem.

Mathematics Subject Classification (2010). 60H15, 35R60, 76D05, 76N10,
35Q30.

Keywords. Stochastic Navier–Stokes equations, stochastic PDEs, martingale
solutions, weak solutions, compressible fluids.

1. Introduction

In continuum mechanics the motion of an isentropic fluid in a physical domain
O ⊂ Rd, d = 2, 3, is described by the conservation of mass and momentum re-
spectively. Stochastic components in the equations of motions are commonly used
to model small perturbations (numerical, empirical, and physical uncertainties) or
thermodynamic fluctuations present in fluid flows. Moreover, it is used for a better
understanding of turbulence. As a consequence stochastic partial differential equa-
tions (SPDEs) such as the stochastic Navier–Stokes equations are gaining more
and more interest in fluid mechanical research. All involved quantities are defined
on a filtered probability space (Ω,F , (Ft)t≥0,P). The basic model for homogeneous

c© Springer Nature Switzerland AG 2018

New Trends and Results in Mathematical Description of Fluid Flows

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94343-5_1&domain=pdf
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incompressible fluids reads as:{
d(�v) = divS dt− div(�v ⊗ v) dt −∇p dt+G(v)dWt in Q,

div v = 0 in Q,
(1.1)

P-a.s. subject to initial and boundary conditions. Here the unknown quantities are
the velocity field v : Ω×Q → Rd, Q := (0, T )×O, and the pressure p : Ω×Q → R.
The function S : Ω × Q → R

d×d
sym is the stress deviator and � > 0 is the constant

density of the fluid. The quantity W in (1.1)1 is a (possibly infinite-dimensional)
(Ft)-Wiener process and the coefficient G(v) grows linearly in v. The precise
assumptions are given in Section 3. For the stress deviator we assume Newton’s
rheological law

S = S(∇v) = ν

(
∇v +∇tv − 2

3
div v Id

)
+ λ div v Id, (1.2)

where ν > 0, λ ≥ 0 are constant viscosity coefficients. Under the incompressibility
assumption div v = 0 relation (4.3) reduces to

S = S(∇v) = ν
(
∇v +∇tv

)
(1.3)

and we have divS = νΔv. Let us finally remark that (1.1)1 has to be understood
as an abbreviation for a stochastic integral equation, where we can give a rigorous

meaning to the stochastic integral
´ t
0
G(v)dW , details are given in Sections 2.2

and 2.5.
Equation (1.1) has a long history starting with the pioneering work of Ben-

soussan and Temam [3]. In [3] equation (1.1)1 is transformed by introducing the
new variable e−Wu. This leads to a deterministic equation with random coef-
ficients. It can be solved pathwise for fixed ω ∈ Ω. A theorem on measurable
selection allows to construct a random variable, i.e., a measurable mapping from
(Ω,F) to an appropriate function space. This semi-deterministic approach has two
drawbacks. First of all, the solution is not progressively measurable and hence the

stochastic integral
´ t
0
G(v)dW cannot be defined. Moreover, it is not possible to

control the energy and study the asymptotic behavior of (1.1).
A fully stochastic theory for equation (1.1) has been developed by Flandoli

and Ga̧tarek in [17]. After finding a suitable approximation one has to perform
the limit procedure in the convective term and in the stochastic integral. There is
a significant difference in comparison to the deterministic situation leading to the
concept of martingale solutions: In general it is not possible to get any compactness
in ω ∈ Ω as no topological structure on the sample space Ω is assumed. To overcome
this difficulty, it is classical to rather concentrate on compactness of the set of
laws of the approximations and apply the Skorokhod representation theorem (see
Lemma 2.6.2). It yields existence of a new probability space with a sequence of
random variables that have the same laws as the original ones and that in addition
converges almost surely. The result of [17] is the existence of a weak martingale
solution to (1.1). These solutions are weak in the analytical sense (derivatives
have to be understood in the sense of distributions) and weak in the stochastic
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sense (the underlying probability space is an integral part of the solution and not a
priori known). Strong solutions in the stochastic results can only be expected when
uniqueness holds (even in the case of stochastic ODEs, see Section 2.4 for further
details). Unfortunately, this seems to be out of reach for the three-dimensional
Navier–Stokes equations.

Today there exists an abundant amount of literature concerning the dynamics
of incompressible fluids driven by stochastic forcing. We refer to the lecture notes
by Flandoli [16], the monograph of Kuksin and Shyrikian [25], the recent survey by
Romito [32] as well as the references cited therein for a recent overview. Definitely
much less is known if compressibility of the fluid is taken into account. In the
compressible case, when the assumption of a constant density is not appropriate
anymore (this assumption is always an idealization), the balance of momentum
and mass read as{

d(�v) = divS dt− div(�v ⊗ v) dt −∇p(�) dt+G(�, �v)dWt in Q,
d�+ div(�v) dt = 0 in Q,

(1.4)

where S(∇v) is given by (1.2). The unknowns are the velocity field v : Ω×Q → Rd

and the density � : Ω × Q → R. The noise coefficient G(�, �v) grows linearly in
� and �v. Equation (1.4)1 must be supplemented with a constitutive law which
relates the pressure to the density. The common assumption is the γ-law p(�) = a�γ

with a > 0 and γ > 1.

First existence results for (1.4) were based on a suitable transformation for-
mula that allows to reduce the problem to a random system of PDEs. Similar to the
results for incompressible fluids from [3] Feireisl, Maslowski & Novotný [14] pro-
pose a solution to (1.4) by means of a semi-deterministic approach. The first“truly”
stochastic existence result for the compressible Navier–Stokes system perturbed by
a general nonlinear multiplicative noise was obtained by Breit and Hofmanová [8].
The existence of the so-called finite energy weak martingale solutions in three space
dimensions with periodic boundary conditions was established. These solutions are
weak in both senses and the time evolution of the system can be controlled in terms
of the initial energy. The proof is based on a four layer approximation scheme to-
gether with a refined stochastic compactness method and a careful identification
of the limit procedure. In order to deal with weak topologies of Banach spaces –
typical for the compressible Navier–Stokes system – Jakubowski’s extension of the
classical Skorokhod representation theorem (see Lemma 2.6.3) comes into play.
Extension of the results from [8] to the zero Dirichlet boundary conditions then
appeared in [34].

The lecture notes are organized as follows. In the next section we present
basic material on stochastic analysis. In particular, we explain the construction of
the stochastic integral and present the stochastic compactness method for SDEs. In
Section 3 we consider stochastic Navier–Stokes equations and show the existence of
martingale solutions. Section 4 is concerned with stochastically forced compressible
fluid flows.
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2. Preliminaries

2.1. Stochastic processes

We consider random variables on a probability space (Ω,F ,P) with associated
filtration (Ft)t≥0. A real-valued stochastic process is a set of random variables
X = (Xt)t≥0 on (Ω,F) with values in (R,B(R)), where B denotes the Borelian
σ-algebra. A stochastic process can be interpreted as a function of t and ω, where
t can be interpreted as time. For fixed ω ∈ Ω the mapping t �→ Xt(ω) is called
path or trajectory of X . We follow the presentation from [24] where the interested
reader may also find details of the proofs.

Definition 2.1.1. A stochastic process X is called measurable, if the mapping

(t, ω) �→ Xt(ω) : ([0,∞)× Ω,B([0,∞))⊗F) → (R,B(R))

is measurable.

Definition 2.1.2. A stochastic process X is called adapted to the filtration (Ft)t≥0,
if the mapping

ω �→ Xt(ω) : (Ω,Ft) → (R,B(R))

is measurable for all t ≥ 0.

Definition 2.1.3. A stochastic process X is called progressively measurable, if the
mapping

(s, ω) �→ Xs(ω) : ([0, t]× Ω,B([0, t])⊗Ft) → (R,B(R))

is measurable for all t ≥ 0.

Remark 2.1.1. Progressive measurability implies adaptedness.

Theorem 2.1.2. If a stochastic process X is adapted to the filtration (Ft)t≥0 and
a.e. path is left-continuous or right-continuous, then X is progressively measurable.

The most important process is the Wiener process.

Definition 2.1.4 (Wiener process). A Wiener process is a real-valued stochastic
process W = (Wt)t≥0 with the following properties.

i) The increments of W are independent, i.e., for arbitrary 0 ≤ t0 < t1 <
· · · < tn the random variables Wt1 − Wt0 ,Wt2 − Wt1 , . . . ,Wtn − Wtn−1 are
independent.

ii) For all t > s ≥ 0 we have Wt −Ws ∼ N (0, t− s).
iii) There holds W0 = 0 almost surely.
iv) The mapping t �→ Wt(ω) is continuous for a.e. ω ∈ Ω.

Definition 2.1.5. A filtration (Ft)t≥0 is called right-continuous, if

Ft =
⋂
ε>0

Ft+ε ∀t ≥ 0

and left-continuous, if

Ft =
⋃
s<t

Fs ∀t > 0.
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Definition 2.1.6. A filtration (Ft)t≥0 satisfies the usual conditions, if it is right-
continuous and F0 contains all the P-nullsets of F .

Definition 2.1.7. Let X be a stochastic process and let T be an F -measurable
random variable with values in [0,∞]. We define XT in {T < ∞} by

XT (ω) = XT (ω)(ω).

If X∞(ω) = lim
t→∞

Xt(ω) exists for a.e. ω ∈ Ω we set XT (ω) = X∞(ω) in {T = ∞}.

Definition 2.1.8. Let X be a stochastic process on a probability space (Ω,F ,P)
with filtration (Ft)t≥0. A random variable T is called a stopping time if the set
{T ≤ t} belongs to Ft for all t ≥ 0.
The by T induced σ-algebra FT is given by

FT := {A ∈ F : A ∩ {T ≤ t} ∈ Ft ∀t ≥ 0}.

Definition 2.1.9. Let M = (Mt)t≥0 be an (Ft)t≥0-adapted stochastic process with
E[|Mt|] < ∞ for all t ≥ 0. M is called a sub-martingale (super-martingale, re-
spectively) if we have for all 0 ≤ s ≤ t < ∞ that P-a.s. E [Mt|Fs] ≥ Ms

(E [Mt|Fs] ≤ Ms, respectively). M is called a martingale if it is a sub-martingale
and a super-martingale.1

Definition 2.1.10. Let A be an adapted stochastic process. A is called increasing,
if we have for P-a.e. ω ∈ Ω

i) A0 = 0;
ii) t �→ At(ω) is increasing and right-continuous;
iii) E [At] < ∞ for all t ∈ [0,∞).

An increasing process is called integrable if

E [A∞] < ∞, where A∞(ω) = lim
t→∞

At(ω) for ω ∈ Ω.

Theorem 2.1.3 (Doob–Meyer decomposition, [24] (Thm. 4.10, p. 24)). Let Y be a
nonnegative sub-martingale with a.s. continuous trajectories. There is a continuous
martingale M and a P-a.s. increasing continuous and adapted process A, such that

Yt = Mt +At.

The decomposition is unique.

Definition 2.1.11. Let X be a right-continuous martingale. We call X quadratically
integrable, if E

[
X2

t

]
< ∞, for all t ≥ 0. If we have in addition that X0 = 0 P-a.s.,

we write X ∈ M2 or X ∈ M c
2 , if X is continuous.

Definition 2.1.12. For X ∈ M2 and 0 ≤ t < ∞ we define

‖X‖M2,t :=
√
E [X2

t ].

1E denotes the expectation with respect to the probability measure P.



6 D. Breit

We set

‖X‖M2 :=

∞∑
n=1

‖X‖M2,n ∧ 1

2n

which induces a metric dM2 on M2 given by

dM2(X,Y ) = ‖X − Y ‖M2 .

Definition 2.1.13 (Total variation). A function f : [0, t] → R is called of bounded
variation if there is M > 0 such that

∑n
i=1 |f(ti) − f(ti−1)| ≤ M for all finite

partitions Π = {t0, t1, . . . , tn} ⊂ [0, t] (n ∈ N) with 0 = t0 < t1 < · · · < tn = t.
The quantity

V (f) := sup

{ n∑
i=1

|f(ti)− f(ti−1)| : 0 = t0 < t1 < · · · < tn = t, n ∈ N

}

is called total variation of f over [0, t].

It is easy to show that, for X ∈ M2, the process X2 = (X2
t )t≥0 is a non-

negative submartingale. Hence we can apply Theorem 2.1.3 to Y = X2 and the
following definition makes sense.

Definition 2.1.14 (Quadratic variation). For X ∈ M2 we define the quadratic vari-
ation of X , as the process 〈〈X〉〉 := A, where A is the increasing process from the
Doob–Meyer decomposition of X2.

Definition 2.1.15 (Covariation). For X,Y ∈M2 we define the covariation 〈〈X,Y 〉〉
by

〈〈X,Y 〉〉t :=
1

4
[〈〈X + Y 〉〉t − 〈〈X − Y 〉〉t] ,

for t ≥ 0. The process XY − 〈〈X,Y 〉〉 is a martingale. In particular, we have
〈〈X,X〉〉 = 〈〈X〉〉.

Definition 2.1.16 (pth Variation). Let X be a stochastic process, p ≥ 1, t > 0 fixed
and Π = {t0, t1, . . . , tn}, with 0 = t0 < t1 < · · · < tn = t, n ∈ N, a partition of
[0, t]. The pth variation of X in Π is defined by

V
(p)
t (Π) =

n∑
k=0

|Xtk −Xtk−1
|p.

Theorem 2.1.4 ([24] (Thm. 5.8, p. 32)).
Let X ∈ M c

2 , Π be a partition of [0, t] and ‖Π‖ := max1≤k≤n |tk − tk−1| the size

of Π. Then we have lim‖Π‖→0 V
(2)
t (Π) = 〈〈X〉〉t in probability, i.e., for all ε > 0,

η > 0 there is δ > 0, such that we have that

P

(
|V (2)

t (Π)− 〈〈X〉〉t| > ε
)
< η,

for ‖Π‖ < δ.

Very useful is also the Burkholder–Davis–Gundy inequality.
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Lemma 2.1.5 ([24] (Thm. 3.28, p. 166)). Let X ∈ M c
2 and T > 0. Then we have

for all p > 0

cp E

[
sup

t∈(0,T )

|Xt|
]p

≤ E

[
〈〈X,X〉〉T

]p/2
≤ Cp E

[
sup

t∈(0,T )

|Xt|
]p
,

where cp, Cp are positive constants.

2.2. Stochastic integration

The aim of this section is to define stochastic integrals of the form

IT (X) =

ˆ T

0

Xt(ω) dMt(ω). (2.1)

Here M is a square integrable martingale, X a stochastic process and T > 0.
Throughout the section we assume that M0 = 0 P-a.s. Moreover, we suppose that
M is (Ft)t≥0-adapted, where (Ft)t≥0 is a filtration which satisfies the usual condi-
tions (see Definition 2.1.6). A process M ∈ M c

2 could be of unbounded variation
in any finite subinterval of [0, T ]. Hence integrals of the form (2.1) cannot be de-
fined pointwise in ω ∈ Ω. However, M has finite quadratic variation given by the
continuous and increasing process 〈〈M〉〉 (see Theorem 2.1.4). Due to this fact,
the stochastic integral can be defined with respect to continuous integrable mar-
tingales M for an appropriate class of integrands X .
The definition of the stochastic integral goes back to Itô. He studied the case where
M is a Wiener process. His students Kunita and Watanabe considered the general
case M ∈ M c

2 . In the following we have a look at the class of integrands which are
allowed in (2.1). We define a measure μM on ([0,∞)× Ω,B([0,∞))⊗F) by

μM (A) = E

[ˆ ∞

0

IA(t, ω) d〈〈M〉〉t(ω)
]

for A ∈ B([0,∞))⊗ F . (2.2)

We call two (Ft)t≥0-adapted stochastic processes X = (Xt)t≥0 and Y = (Yt)t≥0

equivalent with respect to M , if Xt(ω) = Yt(ω) μM -a.e. This leads to the following
equivalence relation: for an (Ft)t≥0-adapted process X we define

[X ]2T := E

[ˆ T

0

X2
t (ω) d〈〈M〉〉t(ω)

]
, (2.3)

provided the right-hand side exists. So [X ]T is the L2-norm of X as a function of
(t, ω) with respect to the measure μM . We define the equivalence relation

X ∼ Y ⇔ [X − Y ]T = 0 ∀T > 0. (2.4)

Our definition of the stochastic integral will imply that I(X) and I(Y ) coincide
provided X and Y are equivalent.

Definition 2.2.1. We define L∗ as the space of equivalence classes of progressively
(Ft)t≥0-measurable processes X with [X ]T < ∞ for all T > 0.

Remark 2.2.1. By setting [X − Y ] :=
∑∞

n=0 2−n(1 ∧ [X − Y ]n) we can define a
metric on L∗.
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Remark 2.2.2. In the following we do not distinguish between X and the equiva-
lence class X∗ of X .

For 0 < T < ∞ we define L∗
T as the space of processesX ∈ L∗ withXt(ω) = 0

for all t ≥ T and a.e. ω ∈ Ω and set

L∞ :=

{
X ∈ L∗ : E

[ ˆ ∞

0

X2
t d〈〈M〉〉t

]
< ∞

}
.

A process X ∈ L∗
T can be identified with a process only defined on Ω × [0, T ]. In

particular we have that L∗
T is a closed subspace of the Hilbert space

HT := L2(Ω× (0, T ),FT ⊗B([0, T ]), μM ). (2.5)

Definition 2.2.2. A process X is called step process if there is a strictly increasing
sequence (tn)n∈N ⊂ R with t0 = 0 and lim

n→∞
tn = ∞, a sequence of random

variables (ξn)n∈N0 and C < ∞ with supn∈N0
|ξn(ω)| ≤ C such that the following

holds: we have that ξn is Ftn-measurable for every n ∈ N0 and we have the
representation

Xt(ω) = ξ0(ω)I{0}(t) +
∞∑
i=0

ξi(ω)I(ti,ti+1](t), (2.6)

for all 0 ≤ t < ∞. The space of step processes is denoted by L0.

Remark 2.2.3. (i) Step processes are progressively measurable and bounded.
(ii) There holds L0 ⊆ L∗.

Definition 2.2.3. Let X ∈ L0 and M ∈ M c
2 . The stochastic integral of X with

respect to M is the martingale transformation

It(X) :=

n−1∑
i=0

ξi(Mti+1 −Mti) + ξn(Mt −Mtn) =

∞∑
i=0

ξi(Mt∧ti+1 −Mt∧ti), (2.7)

for 0 ≤ t < ∞. Here n = n(t) ∈ N is the unique natural number such that
tn ≤ t < tn+1.

In order to define the stochastic integral for X ∈ L∗ we have to approximate
the elements of L∗ in an appropriate way by step processes, i.e., by processes from
L0. This can be done thanks to the following theorem.

Theorem 2.2.4 ([24] (Prop. 2.8, p. 137)). The space of step processes L0 is dense
in L∗ with respect to the metric defined in Remark 2.2.1.

Definition 2.2.4. Let X ∈ L∗ and M ∈ M c
2 . The stochastic integral of X with

respect to M is the unique quadratically integrable martingale

I(X) = {It(X), (Ft)t≥0, 0 ≤ t < ∞},
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which satisfies lim
n→∞

‖I(X(n))− I(X)‖M2 = 0, for every sequence (X(n))n∈N ⊆ L0

with lim
n→∞

[X(n) −X ] = 0. We write

It(X) =

ˆ t

0

Xs dMs; 0 ≤ t < ∞.

The stochastic integral, as defined in Definition 2.2.4, has the following ele-
mentary properties.

Theorem 2.2.5 ([24] (pp. 137–141)). Let X,Y ∈ L∗ and 0 ≤ s < t < ∞. For the
stochastic integrals I(X), I(Y ) we have

a) I0(X) = 0 P-a.s.

b) E [It(X)|Fs] = Is(X) P-a.s. (martingale property)

c) E
[
(It(X))2

]
= E

[´ t
0
X2

u d〈〈M〉〉u
]
(Itô-isometry)

d) ‖I(X)‖M2 = [X ]

e) E
[
(It(X)− Is(X))2|Fs

]
= E

[´ t
s
X2

u d〈〈M〉〉u|Fs

]
P-a.s.

f) I(αX + βY ) = αI(X) + βI(Y ), for α, β ∈ R.

2.3. Itô’s Lemma

One of the most important tools in stochastic analysis is Itô’s Lemma. It is a
chain-rule for paths of stochastic processes. In contrast to the deterministic case it
can only be interpreted as an integral equation because the stochastic processes we
are interested in (for instance the Wiener process) are in general not differentiable.

Definition 2.3.1 (Continuous local martingale). Let X be a continuous process
adapted to (Ft)t≥0. Assume that there is a sequence of stopping times (Tn)n∈N of

the filtration (Ft)t≥0, such that (X
(n)
t := Xt∧Tn)t≥0 is an (Ft)t≥0-martingale for

all n ∈ N and P(limn→∞ Tn = ∞) = 1. In this case we call X a continuous local

martingale. If, in addition, X0 = 0 P-a.s., we write X ∈ M c,loc
2 .

Definition 2.3.2 (Continuous semi-martingale). A continuous semi-martingale X
is a (Ft)t≥0-adapted process such that the following (unique) decomposition holds:

Xt = X0 +Mt +Bt, 0 ≤ t < ∞. (2.8)

In the above X0 is an F0-measurable random variable, we have M = (Mt)t≥0 ∈
M c,loc

2 and B = (Bt)t≥0 is a continuous (Ft)t≥0-adapted process such that a.s.
B(0) = 0 and its paths are of bounded variation, i.e., we have P-a.s.

lim
|Π(t)|→0

m∑
k=1

|Btk −Btk−1
| < ∞,

for all t < ∞, where Π(t) = {0 = t0 < t1 < · · · < tm = t} is a partition of [0, t].
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Theorem 2.3.1 (Itô’s Lemma, [24] (Thm. 3.3, p. 149)). Let f : R → R be a C2-
function and (Xt)t≥0 be a continuous (Ft)t≥0 semi-martingale with the decompo-
sition (2.8). The following holds P-a.s. for 0 ≤ t < ∞

f(Xt) = f(X0) +

ˆ t

0

f ′(Xs) dXs +
1

2

ˆ t

0

f ′′(Xs) d〈〈X〉〉s

= f(X0) +

ˆ t

0

f ′(Xs) dMs +

ˆ t

0

f ′(Xs) dBs +
1

2

ˆ t

0

f ′′(Xs) d〈〈M〉〉s. (2.9)

Remark 2.3.2. The stochastic integral
´ t
0
f ′(Xs) dMs in (2.9) is a continuous local

martingale. The other two integrals in (2.9) are Lebesgue–Stieltjes integrals. They
are of bounded variation as a function of t. Due to this (f(Xt))t≥0 is a continuous
(Ft)t≥0 semi-martingale.

Remark 2.3.3. Equation (2.9) is often written in differential form

df(Xt) = f ′(Xt) dXt +
1

2
f ′′(Xt) d〈〈X〉〉t

= f ′(Xt) dMt + f ′(Xt) dBt +
1

2
f ′′(Xt) d〈〈M〉〉t.

Note that this does not have a rigorous meaning. It only serves as an abbreviation
for (2.9).

2.4. Stochastic ODEs

In this section we are concerned with stochastic differential equations. We seek
a real-valued process (Xt)t∈[0,T ] on a probability space (Ω,F ,P) with filtration
(Ft)t≥0 such that {

dXt = μ(t,X) dt+Σ(t,X) dWt,

X(0) = X0,
(2.10)

which holds true P-a.s. and for all t ∈ [0, T ]. Here W is a Wiener process with
respect to (Ft)t≥0. The functions μ,Σ : [0, T ]×R → R are assumed to be continu-
ous. As in Remark 2.3.3, equation (2.10)1 is only an abbreviation for the integral
equation

X(t) = X(0) +

ˆ t

0

μ(s,X(s)) ds+

ˆ t

0

Σ(s,X(s)) dWs. (2.11)

There are two different concepts of solutions to (2.11).

i) We talk about a strong solution (in the probabilistic sense) if the solution
exists on a given filtered probability space (Ω,F , (Ft)t≥0,P) with a given
Wiener process W . A strong solution exists for a given initial datum X0 (an
F0-measurable random variable) and we have X(0) = X0 a.s.

ii) We talk about a weak solution (in the probabilistic sense) or martingale
solution if there is a filtered probability space (Ω,F , (Ft)t≥0,P) and a Wiener
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process such that (2.11) holds true. The solution is usually written as

((Ω,F , (Ft)t≥0,P),W,X).

This means that when seeking a weak solution, constructing the probability
space (and the Wiener process on it) is part of the problem. A solution
typically exists for a given initial law Λ0 (a Radon measure on R) and we
have P ◦X−1(0) = Λ0. Even if an initial datum X0 is given it might live on
a different probability space. Hence X(0) and X0 can only coincide in law.

In the following we will have a look at existence results for (2.10).

Theorem 2.4.1. Let (Ω,F ,P) be a probability space with filtration (Ft)t≥0 and
X0 ∈ L2(Ω,F0,P). Assume that μ and Σ are continuous on [0, T ]×R and globally
Lipschitz continuous with respect to the second variable. Then there is a unique
(Ft)t≥0-adapted process X such that (2.11) holds P-a.s. for every 0 ≤ t ≤ T and
we have X(0) = X0 a.s. The trajectories of X are a.s. continuous and we have

E

[
sup

t∈(0,T )

|Xt|2
]
< ∞.

The proof of Theorem 2.4.1 is classical and consists in finding a fixed point
of the mapping

T : L2(Ω, C0([0, T ])) → L2(Ω, C0([0, T ])),

X �→ X0 +

ˆ ·

0

μ(s,Xs) ds+

ˆ ·

0

Σ(s,Xs) dWs,

similar to the proof by Picard–Lindelöff for deterministic ODEs, see, e.g., [1] and
[18, 19] for details. In the following we will derive a priori estimates for solutions
to (2.11).

Corollary 2.4.2. Let the assumptions of Theorem 2.4.1 be satisfied. Assume further
that there is K ≥ 0 such that

|μ(t,X)|+ |Σ(t,X)| ≤ K(1 + |X |) ∀(t,X) ∈ [0, T ]× R. (2.12)

Then we have

E

[
sup

t∈(0,T )

|Xt|2
]
≤ C E

[
|X0|2 + 1

]
,

where C only depends on T and K.

Remark 2.4.3. The linear growth assumed in Corollary 2.4.2 certainly follows from
the Lipschitz continuity supposed in Theorem 2.4.1. However, the estimate in
Corollary 2.4.2 only depends on the constant K in (2.12) but is independent of
the Lipschitz constant.
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Proof. We apply Itô’s formula (Theorem 2.3.1) to the function f(X) = |X |2 and
obtain

|Xt|2 = |X0|2 + 2

ˆ t

0

Xs dXs +

ˆ t

0

d〈〈X〉〉s

= |X0|2 + 2

ˆ t

0

Xsμ(s,Xs) ds+ 2

ˆ t

0

Xs Σ(s,Xs) dW +

ˆ t

0

Σ2(s,Xs) ds

≤ |X0|2 + C

( ˆ t

0

|Xs|2 ds+ 1

)
+ 2

ˆ t

0

Xs Σ(s,Xs) dW.

By the Burgholder–Davis–Gundy inequality (Lemma 2.1.5 with p = 1) we have

E

[
sup

t∈(0,T )

∣∣∣ ˆ t

0

XsΣ(s,Xs) dW
∣∣∣] ≤ C E

[ ˆ T

0

|Xt|2|Σ(t,Xt)|2 dt
] 1/2

≤ C E

[ ˆ T

0

|Xt|4 dt+ 1

] 1/2

≤ C E

[
sup

t∈(0,T )

|Xt|2
ˆ T

0

|Xt|2 dt+ 1

] 1/2

.

Finally, by Young’s inequality we gain for every δ > 0

E

[
sup

t∈(0,T )

∣∣∣ˆ t

0

XsΣ(s,Xs) dW
∣∣∣] ≤ δ E

[
sup

t∈(0,T )

|Xt|2
]
+ C(δ)E

( ˆ T

0

|Xt|2 dt+ 1

)
.

Choosing δ small enough and applying Gronwall’s lemma yields the claim. �

If the assumptions on the coefficients in Theorem 2.4.1 are weakened from
Lipschitz continuity to just continuity, strong solutions might not exist, see [2]. In
this case we can only hope for a weak solution. We refer to [21] for a nice proof
and further references.

Theorem 2.4.4. Let Λ0 be a Borel probability measure on R. Assume that μ and Σ
are continuous in [0, T ]×R and have linear growth, i.e., there is K ≥ 0 such that

|μ(t,X)|+ |Σ(t,X)| ≤ K(1 + |X |) ∀(t,X) ∈ [0, T ]× R.

There is a quantity ((Ω,F , (Ft)t≥0,P),W,X) (called martingale solution to (2.10))
with the following properties.

i) (Ω,F , (Ft)t≥0,P) is a stochastic basis with a complete right-continuous filtra-
tion.

ii) W is an (Ft)t≥0-Wiener process on (Ω,F ,P).

iii) X is an (Ft)t≥0-adapted stochastic process with a.s. continuous trajectories
such that

E

[
sup

t∈(0,T )

|Xt|2
]
< ∞.

iv) Equation (2.11) holds P-a.s. for every 0 ≤ t ≤ T .

v) We have P ◦X(0)−1 = Λ0 (that is P(X(0) ∈ B) = Λ0(B) for all B ∈ B(R)).
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Instead of giving a full proof of Theorem 2.4.4 let us show how to gain com-
pactness of approximate solutions. Let (Xm

t ) be a sequence of solutions to

dXm
t = μ(t,Xm

t ) dt+Σ(t,Xm
t ) dWt, Xm(0) = X0,

here X0 is an F0-measurable random variable with law Λ0. Assume further there
is C > 0 such that we have

E

[
sup

t∈(0,T )

|Xm
t |p

]
≤ C (2.13)

uniformly in m for some p > 2. For a rigorous proof we have to approximate μ
and Σ by Lipschitz continuous functions μm and Σm such that uniformly

|μm(t,X)|+ |Σm(t,X)| ≤ K(1 + |X |) ∀(t,X) ∈ [0, T ]× R.

In order to get compactness estimate (2.13) is not sufficient. We have to show
time regularity. We decompose Xm into a deterministic and a stochastic part
Xm

t = Y m
t + Zm

t . Concerning the stochastic integral, we apply the Burgholder–
Davis–Gundy inequality (Lemma 2.1.5) for θ > 2 and get due to (2.13)

E |Zm(t)− Zm(s)|θ = E

∣∣∣∣
ˆ t

s

Σ(r,Xm
r ) dW

∣∣∣∣
θ

≤ C E

( ˆ t

s

|Σ(r,Xm
r )|2 dr

) θ
2

≤ C E

( ˆ t

s

(1 + |Xm
r |2) dr

) θ
2

≤ C|t− s|θ/2
(
1 + E sup

0≤t≤T
|Xm

t |2
)
≤ C|t− s|θ/2

and the Kolmogorov continuity criterion applies (see Theorem 2.5.5). We obtain

E
∥∥Zm‖Cα([0,T ]) ≤ C

for any α ∈ (0, 12 ). Y
m can be estimated similarly and we obtain

E
∥∥Xm‖Cα([0,T ]) ≤ C. (2.14)

Now, we consider the joint law νm of (Xm,W ) on X , where

X = C0([0, T ];R)× C0([0, T ];R).

We have to show tightness of the probability law νm. The law of (Xm) is tight by
Cα ↪→c C0 and

P
(
‖Xm‖Cα ≤ R

)
≥ 1− C

R ,

which is a consequence of (2.14). The law of W is tight as being a Radon measure
on the Polish space C0([0, T ];R). Hence, νm is tight. By Prokhorov’s theorem
(Lemma 2.6.1) there is a subsequence such that the probability laws convergence
weakly in sense of measures. Now we apply Skorokhod’s theorem (Lemma 2.6.2).
It yields the existence of a subsequence νm (not relabeled), a probability space

(Ω̃, F̃ , P̃) with X -valued Borel measurable random variables (X̃m, W̃m), m ∈ N,

and (X̃, W̃ ) such that
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• the law of (X̃m, W̃m) is given by νm, m ∈ N,

• the law of (X̃, W̃ ), denoted by ν, is a Radon measure,

• (X̃m, W̃m) converges P̃-a.s. to (X̃, W̃ ) in the topology of X , i.e., we have

P̃-a.s.

X̃m → X̃ in C0([0, T ];R), (2.15)

W̃m → W̃ in C0([0, T ];R). (2.16)

Now we introduce the filtration on the new probability space which ensures the
correct measurabilities of the new variables. We denote by rt the operator of re-
striction to the interval [0, t] acting on C0([0, T ];R), that is

rt : X → X |[0,t], f �→ f |[0,t]. (2.17)

Clearly, rt is a continuous mapping. Let (F̃t)t≥0 and (F̃m
t )t≥0 be the P̃-augmented

canonical filtration of the processes
(
X̃, W̃

)
and

(
X̃m, W̃m

)
, respectively, that is

F̃t = σ
(
σ
(
rtX̃, rtW̃

)
∪
{
N ∈ F̃ ; P̃(N ) = 0

})
, t ∈ [0, T ].

F̃m
t = σ

(
σ
(
rtX̃

m, rtW̃
m
)
∪
{
N ∈ F̃ ; P̃(N ) = 0

})
, t ∈ [0, T ].

This definition guarantees that the processes are adapted and we can define sto-
chastic integrals. We have to show that P̃-a.s.

X̃m
t = X̃m(0) +

ˆ t

0

μ(s, X̃m
s ) ds+

ˆ t

0

Σ(s, X̃m
s ) dW̃m, (2.18)

i.e., the equation continues to hold on the new probability space.

The mappingX �→
´ ·
0
μ(t,Xt) dt is continuous on the pathspace. However, the

mapping (X,W ) �→
´ t
s
Σ(r,Xr) dW is not. So, we cannot identify it immediately.

We will make use of the fact that a martingale is uniquely determined by its
quadratic variations. This can be done with the help of an elementary method by
Brzezniak and Ondreját [9]. It replaces the use of the martingale representation
theorem. We consider the functionals

M(Y )t = Yt − Y (0)−
ˆ t

0

μ(r, Yr)dr,

N(Y )t =

ˆ t

0

|Σ(r, Yr)|2dr, L(Y )t =

ˆ t

0

Σ(r, Yr)dr.

ObviouslyM, N and L are continuous on the pathspace. Consequently, by equality
of laws, we have

M(Xm) ∼d M(X̃m), N(Xm) ∼d N(X̃m), L(Xm) ∼d L(X̃m).

Let M(Xm)s,t denote the increment M(Xm)t − M(Xm)s and similarly for
N(Xm)s,t and L(Xm)s,t. Note that the proof will be complete once we show that
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the process M(X̃m) is an (F̃m
t )t≥0-martingale and its quadratic and cross varia-

tions satisfy, respectively,

〈〈M(X̃m)〉〉 = N(X̃m), 〈〈M(X̃m), W̃ 〉〉 = L(X̃m). (2.19)

Indeed, in that case we have〈〈
M(X̃m)−

ˆ ·

0

Σ(s, X̃m
s ) dW̃

〉〉
= 0 (2.20)

which implies the desired equation (2.18) on the new probability space. Let us
verify (2.19). To this end, we fix times s, t ∈ [0, T ] such that s < t and let

h : X
∣∣
[0,s]

→ [0, 1]

be a continuous function. Since M(Xm) is a square integrable (Ft)t≥0-martingale,
we infer that [

M(Xm)
]2 −N(Xm), M(Xm)W − L(Xm),

are (Ft)t≥0-martingales (recall Definition 2.1.14). Then it follows from the equality
of laws that

Ẽ
[
h
(
rsX̃

m, rsW̃
m
)
M(X̃m)s,t

]
= E

[
h
(
rsX

m, rsW
)
M(Xm)s,t

]
= 0, (2.21)

Ẽ

[
h
(
rsX̃

m, rsW̃
m
)(

[M(X̃m)2]s,t −N(X̃m)s,t

)]

= E

[
h
(
rsX

m, rsW
m
)(

[M(Xm)2]s,t −N(Xm)s,t

)]
= 0,

(2.22)

Ẽ

[
h
(
rsX̃

m, rsW̃
m
)(

[M(X̃m)W̃m]s,t − L(X̃m)s,t

)]

= E

[
h
(
rsX

m, rsW
)(

[M(Xm)W ]s,t − L(Xm)s,t

)]
= 0.

(2.23)

So we have shown (2.19) and hence (2.20). This means on the new probability

space (Ω̃, F̃ , P̃) we have (2.18). Finally, on account of (2.15) and (2.16), we can
pass to the limit in (2.21)–(2.23). This yields

X̃t = X̃(0) +

ˆ t

0

μ(s, X̃s) ds+

ˆ t

0

Σ(s, X̃s) dW̃ , (2.24)

i.e., X̃ is the solution we are looking for.

The stochastic ODEs considered in Theorem 2.4.1 have two drawbacks. First,
we need vector-valued processes and, secondly, we have to weaken the assumptions
on the drift μ (linear growth in X is too strong). Everything in this section can
be obviously extended to the multi-dimensional setting. Here, a standard Wiener
process in R

M is a vector-valued stochastic process and each of its components is
a real-valued Wiener process (recall Definition 2.1.4). Moreover, the components
are stochastically independent. Getting rid of the linear growth assumption for μ
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is more difficult. Now we seek an RN -valued process (Xt)t∈[0,T ] on a probability
space (Ω,F ,P) with filtration (Ft)t≥0 such that{

dXt = μ(t,X) dt+Σ(t,X) dWt,

X(0) = X0.
(2.25)

Here W is a standard RM -valued Wiener process with respect to (Ft)t≥0 and
X0 ∈ L2(Ω,F0,P) is some initial datum. The functions

μ : [0, T ]× R
N → R

N ,

Σ : [0, T ]× R
N → R

N×M ,

are continuous in X ∈ R
N for each fixed t ∈ [0, T ], ω ∈ Ω. The application

in Section 3 requires weaker assumptions as in the classical existence theorems
mentioned above. Fortunately, some more recent results apply. In the following we
state the assumptions which are in fact a special case of the assumptions in [31,
Thm. 3.1.1].

(A1) We assume that the following integrability condition on μ holds for allR < ∞
ˆ T

0

sup
|X|≤R

|μ(t,X)|2 dt < ∞.

(A2) μ is weakly coercive, i.e., for all (t,X) ∈ [0, T ]× RN we have that

μ(t,X) ·X ≤ c

for some c ≥ 0.
(A3) μ is locally weakly monotone, i.e., for all t ∈ [0, T ] and all X,Y ∈ RN with

|X|, |Y| ≤ R the following holds(
μ(t,X)− μ(t,Y)

)
: (X−Y) ≤ c(R)|X−Y|2.

(A4) Σ is Lipschitz continuous, i.e., for all t ∈ [0, T ] and all X,Y ∈ RN the
following holds

|Σ(t,X)−Σ(t,Y)| ≤ c |X−Y|.

Theorem 2.4.5. Let μ and Σ satisfy (A1)–(A4). Assume we have a given probability
space (Ω,F ,P) with filtration (Ft)t≥0, an initial datum X0 ∈ L2(Ω,F0,P) and an
(Ft)t≥0-Wiener process W. Then there is a unique (Ft)t≥0-adapted process X
satisfying

X(t) = X0 +

ˆ t

0

μ(σ,X(σ)) dσ +

ˆ t

0

Σ(σ,X(σ)) dWσ , P-a.s.,

for every t ∈ [0, T ]. The trajectories of X are P-a.s. continuous and we have

E

[
sup

t∈(0,T )

|Xt|2
]
< ∞.
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Theorem 2.4.6. Let the assumptions of Theorem 2.4.5 hold. Assume that X0 ∈
Lβ(Ω,F0,P) for some β > 2. Then we have

E

[
sup

t∈(0,T )

|Xt|β
]
< ∞.

2.5. Stochastic analysis in infinite dimensions

In the following we extend the setup from the previous sections to the case of
Banach or Hilbert space-valued stochastic processes (see [10]).
Let (V , ‖ · ‖V ) be a Banach space and 1 ≤ p < ∞. We denote by Lp(Ω,F ,P;V )
the Banach space of all measurable mappings v : (Ω,F) → (V ,B(V )) such that

E
[
‖v‖pV

]
< ∞,

where the expectation is taken with respect to (Ω,F ,P). The measurability has
to be understood via the approximation by step functions as usual for Bochner
spaces. The definitions of adaptedness and progressive measurability extend in a
straightforward manner to Banach space-valued processes. The same is true for
the definitions of martingale and semi-martingale. The definition of the stochastic
integral can be extended to Hilbert spaces, where the process X as well as the
stochastic integral take values in some separable Hilbert spaces (H , ‖ ·‖H ). Let U
be a separable Hilbert space with orthonormal basis (ek)k∈N and let L2(U, L

2(O))
be the set of Hilbert–Schmidt operators from U to L2(O) with O ⊂ Rd and d ∈ N.
Recall that a bounded linear operator G : U → L2(O) is called Hilbert–Schmidt
operator iff ∑

k∈N

‖Gek‖2L2(O) < ∞.

We consider a cylindrical Wiener process W = (Wt)t∈[0,T ] which has the form

W (σ) =
∑
k∈N

ekβk(σ) (2.26)

with a sequence (βk)k∈N of independent real-valued Brownian motions on (Ω,F ,P).
Define further the auxiliary space U0 ⊃ U as

U0 :=

{
e =

∑
k

αkek :
∑
k

α2
k

k2
< ∞

}
,

‖e‖2U0
:=

∞∑
k=1

α2
k

k2
, e =

∑
k

αkek,

(2.27)

thus the embedding U ↪→ U0 is Hilbert–Schmidt and trajectories of W belong
P-a.s. to the class C([0, T ];U0) (see [10]).

ForG ∈ L2(Ω,F ,P;L2(0, T ;L2(U, L
2(O)))) progressively (Ft)t≥0-measurable

we see that the equalityˆ t

0

G(σ) dWσ =
∞∑
k=1

ˆ t

0

G(σ)(ek) dβk(σ) (2.28)
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defines a P-a.s. continuous L2(O)-valued (Ft)t≥0-martingale. Moreover, we can
multiply the above with test functions since
ˆ
O

ˆ t

0

G(σ) dWσ · ϕ dx =

∞∑
k=1

ˆ t

0

ˆ
O
G(σ)(ek) · ϕ dxdβk(σ), ϕ ∈ L2(O),

is well defined and P-a.s. continuous.

In the following we define the quadratic variation of a stochastic process with
values in a Hilbert space (see [10]).

Definition 2.5.1. Let (Xt)t≥0 be a continuous semi-martingale on a probability
space (Ω,F ,P) with values in a separable Hilbert space (H , 〈·, ·〉H ) with basis
(hi)i∈N. Then its quadratic variation process is defined as

〈〈X,X〉〉Ht :=
∑
i,j∈N

〈〈
〈X,hi〉H , 〈X,hj〉H

〉〉
t
〈hj , ·〉H hi

and has values in N (H ) (the set of nuclear operators on H ). Moreover, we define
the trace of 〈〈X,X〉〉Ht by

tr〈〈X,X〉〉Ht :=
∑
i∈N

〈〈
〈X,hi〉H , 〈X,hi〉H

〉〉
t
〈hi, ·〉H hi.

The Burkholder–Davis–Gundy inequality from Lemma 2.5.1 extends to the
infinite-dimensional situations as follows.

Lemma 2.5.1. Let (H , 〈·, ·〉H ) be a separable Hilbert space, (Ω,F ,P) be a prob-
ability space and (Xt)t≥0 be a continuous martingale on (Ω,F ,P) with values in
H . Then we have for all p > 0 and all T > 0

cp E

[
sup

t∈(0,T )

‖Xt‖H

]p
≤ E

[
‖ tr〈〈X,X〉〉HT ‖N (H )

] p/2
≤ Cp E

[
sup

t∈(0,T )

‖Xt‖H

]p
,

where cp, Cp are positive constants. Here, we have

‖ tr〈〈X,X〉〉HT ‖N (H ) =
∑
i∈N

〈〈
〈X, ei〉H

〉〉
t
.

Now we present an infinite-dimensional version of Itô’s formula which is ap-
propriate at least to obtain energy estimates for linear SPDEs, see [26, Theorem
3.1] or [33, Chapter 4.2, Theorem 2].

Theorem 2.5.2. Let (V , ‖ · ‖V ) be a Banach space which is continuously embedded
into a separable Hilbert space (H , 〈·, ·〉H ). Let (Ω,F ,P) be a probability space
with filtration (Ft)t≥0. Assume that the processes (Xt)t∈[0,T ] and (Yt)t∈[0,T ], taking
values in V and V ′, respectively, are progressively (Ft)t≥0-measurable and

P

{ˆ T

0

(
‖X‖2V + ‖Y ‖2V ′

)
dt < ∞

}
= 1.
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Assume further that there is a continuous martingale (Mt)t∈[0,T ], taking values in

H , such that, for P× L1-a.e. (ω, t), the following equality holds:

〈X(t), ϕ〉H = 〈X(0), ϕ〉H +

ˆ t

0
V ′〈Y (σ), ϕ〉V dσ + 〈Mt, ϕ〉H ∀ϕ ∈ V .

Then we have

‖X(t)‖2H = ‖X(0)‖2H +

ˆ t

0
V ′〈Y (σ), X(σ)〉V dσ

+ 2

ˆ t

0

〈X(σ), dMσ〉H + ‖ tr〈〈M,M〉〉Ht ‖N (H ), P× L1-a.e.

In some applications we need fractional time derivatives of stochastic inte-
grals. The following lemma is concerned with fractional derivatives of stochastic
integrals in Hilbert spaces (see [17] [Lemma 2.1] for a proof).

Lemma 2.5.3. Let G ∈ Lp(Ω,F ,P;Lp(0, T ;L2(U, L
2(O)))) (p ≥ 2) be progressively

(Ft)t≥0-measurable and W a cylindrical (Ft)t≥0-Wiener process as in (2.26). Then
the following holds for any α ∈ (0, 1/2)

E

[∥∥∥ ˆ ·

0

G dWσ

∥∥∥p
Wα,p(0,T ;L2(O))

]
≤ c(α, p)E

[ ˆ T

0

‖O‖pL2(U,L2(O)) dt

]
.

The following lemma is very useful in order to pass to the limit in stochastic
integrals (see [11, Lemma 2.1])

Lemma 2.5.4. Consider a sequence of cylindrical Wiener processes (Wn) over U
(see (2.26)) with respect to the filtration (Fn

t )t≥0. Assume that (Ψn) is a sequence
of progressively (Fn

t )t≥0-measurable processes such that

Ψn ∈ L2(0, T ;L2(U, L
2(O))) P-a.s.

Suppose there is a cylindrical (Ft)t≥0-Wiener process W and

Ψ ∈ L2(0, T ;L2(U, L
2(O))),

progressively (Ft)t≥0-measurable, such that

Wn → W in C0([0, T ];U0),

Ψn → Ψ in L2(0, T ;L2(U, L
2(O))),

in probability. Then we haveˆ ·

0

Ψn dWn →
ˆ ·

0

ΨdW in L2(0, T ;L2(O)),

in probability.

The approach to establish Hölder continuity of a stochastic integral relies on
the Kolmogorov continuity theorem. This is a classical result that allows to show
existence of a Hölder continuous modification for stochastic processes.2

2A modification of a stochastic process U is a stochastic process V such that P
(
U(t) = V(t)

)
= 1

for all t ∈ (0,∞).



20 D. Breit

Theorem 2.5.5 (Kolmogorov continuity theorem, [10] (Theorem 3.3)). Let U be a
stochastic process taking values in a separable Banach space X. Assume that there
exist constants K > 0, a ≥ 1, b > 0 such that for all s, t ∈ [0, T ]

E‖U(t) −U(s)‖aX ≤ K|t− s|1+b.

Then there exists V, a modification of U, which has P-a.s. Hölder continuous
trajectories with exponent γ for every γ ∈ (0, b

a ). In addition, it holds true that

E‖V‖aCγ
t X � K,

where the proportional constant does not depend on V.

2.6. Tools for compactness

In this section we present some (mainly basic) tools from probability theory which
are quite crucial to obtain compactness for SPDEs. Let (V , τ) be a topological
space. The smallest σ-field B(V ) on (V , τ) which contains all open sets is called
topological σ-field. A random variable with values in the topological space (V , τ)
is a measurable map X : (Ω,F) → (V ,B(V )). The probability law μ of X on
(V , τ) will be given by μ = P ◦ X−1. An important concept for applications is
the pre-compactness of families of random variables. We will need the following
definition.

Definition 2.6.1 (Tightness). A family (μα)α∈I of probability laws on a topological
space (V ,B(V )) is called tight if for every ε > 0 there is a compact subset K ⊂ V
such that μα(K) ≥ 1− ε for every α ∈ I.

Lemma 2.6.1 (Prokhorov; [22], Thm. 2.6). Let (μα)α∈I be a family of probability
laws on a metric space (V , ρ). The family (μα)α∈I is tight if and only if it is
relatively weakly compact.

Lemma 2.6.2 (Skorokhod; [22], Thm. 2.7). Let (μn)n∈N be a sequence of probability
laws on a complete separable metric space (V , ρ) such that μn → μ weakly in the

sense of measures as n → ∞. Then there is a probability space (Ω̃, F̃ , P̃) and

random variables (X̃n)n∈N, X̃ : (Ω̃, F̃ , P̃) → (V ,B(V )) such that

• The laws of X̃n and X̃ under P̃ coincide with μn and μ respectively, n ∈ N.
• we have P̃ a.s. that X̃n →ρ X̃ for n → ∞.

The proof of Lemma 2.6.2 in the general case is not very long but quite
technical and it is hard to grasp the main ideas. We will therefore briefly outline
the case of real-valued random variables, i.e., V = R and ρ(x, y) = |x− y|. Let μn

be a probability law on R such that μn → μ weakly in the sense of measures as
n → ∞. We denote by Fn and F the distribution functions of μn and μ respectively,
that is

Fn(x) = μn((−∞, x]), F (x) = μ((−∞, x]), x ∈ R.

Let us assume for simplicity that they are injective (otherwise one can argue via
their generalized inverse functions). In this case we have Fn → F pointwise. Now
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we set (Ω̃, F̃ , P̃) = ([0, 1],B([0, 1]),L1|[0,1]). Let us assume for simplicity that the
distribution functions Fn (n ∈ N) and F are continuous. We define random vari-
ables (for ω ∈ (0, 1))

X̃n(ω) = F−1
n (ω), X̃(ω) = F−1(ω).

Now one can easily see that for n ∈ N

μX̃n
= P̃ ◦ X̃−1

n = L1 ◦ Fn = μn

and similarly μX̃ = μ. Moreover, we have

X̃n(ω) = F−1
n (ω) → F−1(ω) = X̃(ω)

for every ω ∈ (0, 1). In the general case this convergence only holds true in points

where F is continuous (which holds for L1-a.e. ω). This means we have X̃n → X̃ a.s.
Lemma 2.6.2 only applies to metric spaces. Unfortunately, this does not cover

Banach spaces with the weak topology which will be crucial for compressible fluids
in Section 4. Therefore we need the following generalization.

Definition 2.6.2 (Quasi-Polish space). Let (V , τ) be a topological space such that
there exists a countable family

{fn : V → [−1, 1]; n ∈ N}
of continuous functions that separates points of V . Then (V , τ, (fn)n∈N) is called
a quasi-Polish space.

Lemma 2.6.3 (Jakubowski–Skorokhod, [23]). Let (μn)n∈N be a family of probabil-
ity laws on a quasi-Polish space (V , τ, (fn)n∈N) and let S be the σ-algebra gener-
ated by the maps (fn)n∈N. Let (μn)n∈N be a tight sequence of probability laws on
(V ,S ). Then there is a subsequence (μnk

)k∈N such that the following holds. There

is a probability space (Ω̃, F̃ , P̃) and V -valued Borel measurable random variables

(X̃k)k∈N, X̃ : (Ω̃, F̃ , P̃) → (V ,S ) such that

• The laws of X̃k under P̃ coincide with μnk
, k ∈ N.

• we have P̃-a.s. that X̃k →τ X̃ for k → ∞.
• The law of X̃ under P̃ is a Radon measure.

3. Incompressible fluids

In this section we discuss the existence of martingale solutions to the stochastic
incompressible Navier–Stokes equations{

d(�v) = νΔv dt− div(�v ⊗ v) dt−∇p dt+G(v)dWt in Q,
div v = 0 in Q,

(3.1)

subject to zero boundary conditions for the velocity and some given initial law. The
physical body is prescribed by a bounded domain O ∈ R

d (d = 2, 3) with smooth
boundary and Q = (0, T )×O. All quantities are defined on a filtered probability
space (Ω,F , (Ft)t≥0,P). The filtration (Ft)t≥0 satisfies the usual conditions, see
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Definition 2.1.6. The unknowns are the velocity field v and the pressure p. The
latter one does not appear in the weak formulation due to the use of divergence-free
test functions. In order to rigorously define the noise let U be a separable Hilbert
space with orthonormal basis (ek)k∈N and let L2(U, L

2(O)) be the set of Hilbert–
Schmidt operators from U to L2(O). The most natural choice is U = L2(O). We
consider a cylindrical Wiener process W = (Wt)t≥0 which has the form

Wσ =
∑
k∈N

ekβk(σ) (3.2)

with a sequence (βk) of independent real-valued Wiener processes. We suppose the
following linear growth assumptions on G: For each z ∈ L2(O) there is a mapping
G(z) : U → L2(O) defined by G(z)ek = gk(z(·)). In particular, we suppose that
gk ∈ C1(Rd) and the following conditions for some L ≥ 0∑

k∈N

|gk(ξ)|2 ≤ L(1 + |ξ|2),
∑
k∈N

|∇gk(ξ)|2 ≤ L, ξ ∈ R
d. (3.3)

As already indicated in Section 2.4 the lack of uniqueness of solutions requires
the consideration of martingale solutions. The underlying probability space is not
a priori known but becomes an integral part of the solution. In the following we
define martingale solutions for (3.1) starting with an initial law defined on

L2
div(O) := C∞

c,div(O)
L2(O)

.

Definition 3.0.1 (Solution). Let Λ0 be a Borel probability measure on L2
div(O).

Then (
(Ω,F , (Ft)t≥0,P),v,W )

is called a weak martingale solution to (3.1) with the initial datum Λ0 provided
the following holds.

(a) (Ω,F , (Ft)t≥0,P) is a stochastic basis with a complete right-continuous fil-
tration,

(b) W is a (Ft)t≥0-cylindrical Wiener process,

(c) v ∈ L2(Ω,F ,P;L2(0, T ;W 1,2
0,div(O))) is progressively (Ft)t≥0-measurable with

v ∈ Cw([0, T ];L
2(O)) a.s. and

E

[
sup

t∈(0,T )

ˆ
O
|v|2 dx

]
< ∞,

(d) Λ0 = P ◦ v(0)−1 (that is P(v(0) ∈ B) = Λ0(B) for all B ∈ B(L2
div(O))),

(e) for all ϕ ∈ C∞
c,div(O) and all t ∈ [0, T ] we have

ˆ
O
v(t) · ϕ dx+

ˆ t

0

ˆ
O
ν∇v : ∇ϕ dxdσ −

ˆ t

0

ˆ
O
v ⊗ v : ∇ϕ dxdσ

=

ˆ
O
v(0) ·ϕ dx+

ˆ
O

ˆ t

0

G(v) dWσ · ϕdx

P-a.s.
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The main result of this section is the following theorem.3

Theorem 3.0.1 (Existence). Assume that (3.3) holds and we have

ˆ
L2

div(O)

∥∥u∥∥β
L2(O)

dΛ0(u) < ∞ (3.4)

for some β > 2. Then there is a weak martingale solution to (3.1) in the sense of
Definition 3.0.1.

The key ideas for the proof of Theorem 3.0.1 go back to [17]. A main difference
is that we do not use a martingale representation theorem to identify the stochastic
integral after the limit procedure. Instead we use the elementary approach from [9]
(see also [30]). We follow the presentation from [5] which originally aims to study
non-Newtonian fluid flows.

3.1. The approximated system

We will try to find a solution by separating space and time via a Galerkin ansatz.
Then we seek for an approximated solution by solving an ordinary stochastic dif-
ferential equation.

There is a sequence (λk) ⊂ R and a sequence of functions (wk) ⊂ W l,2
0,div(O),

l ∈ N, such that4

i) wk is an eigenvector to the eigenvalue λk of the Stokes operator in the sense
that:

〈wk,ϕ〉W l,2
0

= λk

ˆ
O
wk · ϕ dx for all ϕ ∈ W l,2

0,div(O),

ii)
´
O wkwm dx = δkm for all k,m ∈ N,

iii) 1 ≤ λ1 ≤ λ2 ≤ · · · and λk → ∞,
iv) 〈 wk√

λk
, wm√

λm
〉W l,2

0
= δkm for all k,m ∈ N,

v) (wk) is a basis of W l,2
0,div(O).

We choose l > 1+ d
2 such that W l,2

0 (O) ↪→ W 1,∞(O). Let v0 be an F0-measurable

random variable with values in L2
div(O) with law Λ0. We are looking for an ap-

proximated solution vN of the form

vN =

N∑
k=1

cNi wk = CN · ωN , ωN = (w1, . . . ,wN ),

3The theorem holds in any dimension d ≥ 2 even so the physical applications are restricted to

the cases d = 2, 3.
4see [29], Appendix
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where CN = (ciN ) : Ω× (0, T ) → RN . Therefore, we would like to solve the system
(k = 1, . . . , N)ˆ

O
dvN ·wk dx+

ˆ
O
ν∇vN : ∇wk dxdt

=

ˆ
O
vN ⊗ vN : ∇wk dxdt+

ˆ
O
G(vN ) dWN

σ ·wk dx,

vN (0) = PNv0. (3.5)

Here PN : L2
div(O) → XN := span {w1, . . . ,wN} is the orthogonal projection, i.e.,

PNu =

N∑
k=1

〈u,wk〉L2wk.

The equation above is to be understood P-a.s. and for all t ∈ [0, T ]. Moreover, we
have set

WN (σ) =

N∑
k=1

ekβk(σ) = EN · βN (σ), EN = (e1, . . . , eN ).

The system (3.5) is equivalent to solving{
dCN =

[
μ(CN )

]
dt+Σ(CN ) dβN

t ,

CN (0) = C0,
(3.6)

with the abbreviations

μ(CN ) =

(
−
ˆ
O
CN · ν∇ωN : ∇wk dx+

ˆ
O
(CN · ωN )⊗ (CN · ωN ) : ∇wk dx

)N
k=1

,

Σ(CN ) =

( ˆ
O
G(CN · ωN )el ·wk dx

)N

k,l=1

,

C0 =
(
〈v0,wk〉L2(G)

)N
k=1

.

In the following we will check the assumptions of Theorem 2.4.5. We have(
μ(CN )− μ(C̃N )

)
·
(
CN − C̃N

)
= −ν

ˆ
O

∣∣∇vN −∇ṽN

∣∣2 dx+

ˆ
O

(
vN ⊗ vN − ṽN ⊗ ṽN

)
:
(
∇vN −∇ṽN

)
dx

≤
ˆ
O

(
vN ⊗ vN − ṽN ⊗ ṽN

)
:
(
∇vN −∇ṽN

)
dx.

If |CN | ≤ R and |C̃N | ≤ R the following holds(
μ(t,CN )− μ(t, C̃N )

)
·
(
CN − C̃N

)
≤ c(R,N)|CN − C̃N |2.

Here, we took into account boundedness of wk and ∇wk. The above implies weak
monotonicity in the sense of (A3) by the Lipschitz continuity Σ in CN , cf. (3.3).
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On account of
´
G
vN ⊗ vN : ∇vN dx = 0 the following holds

μ(t,CN ) ·CN = −ν

ˆ
O
|∇vN |2 dxdx ≤ 0.

This implies weak coercivity in the sense of (A2). Finally, (A4) follows from (3.3).
We obtain a unique strong solution CN to the SDE (3.6) with P-a.s. continuous
trajectories.

In the following we will derive some uniform estimates.

Theorem 3.1.1. Assume (3.3) andˆ
L2

div
(O)

∥∥u∥∥2
L2(O)

dΛ0(u) < ∞. (3.7)

Then the following holds uniformly in N

E

[
sup

t∈(0,T )

ˆ
O
|vN (t)|2 dx+

ˆ
Q

|∇vN |2 dxdt
]

≤ c

(
1 +

ˆ
L2

div(O)

‖u‖2L2(O) dΛ0(u)

)
.

Proof. We apply Itô’s formula to the function f(C) = 1
2 |C|2 which shows

1

2
‖vN (t)‖2L2(G) =

1

2
‖CN (0)‖2L2(G) +

N∑
k=1

ˆ t

0

ckN d(ckN )σ +
1

2

N∑
k=1

ˆ t

0

d〈〈ckN 〉〉σ

=
1

2
‖PNv0‖2L2(O) − ν

ˆ t

0

ˆ
O
|∇vN |2 dxdσ

(3.8)

+

ˆ
O

ˆ t

0

vN ·G(vN ) dWN
σ dx

+
1

2

ˆ
O

ˆ t

0

d
〈〈 ˆ ·

0

PNG(vN ) dWN
〉〉

σ
dx.

Here, we used dvN =
∑N

k=1 dc
k
Nwk,

´
O vN ⊗ vN : ∇vN dx = 0, property (ii) of

the base (wk) as well as

dckN = −ν

ˆ
O
|∇wk|2 dxdt+

ˆ
O
vN ⊗ vN : ∇wk dxdt+

ˆ
O
G(vN ) dWN

t ·wk dx.

Now we can follow, by taking the supremum in time and building expectations,
that

E

[
sup

t∈(0,T )

ˆ
O
|vN (t)|2 dx+

ˆ T

0

ˆ
O
|∇vN |2 dxdσ

]

≤ c

(
E

[
‖v0‖2L2(O)

]
+ E

[
sup

t∈(0,T )

J2(t)

]
+ E

[
J3(T )

])
.
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Here, we abbreviated

J2(t) =

ˆ
O

ˆ t

0

vN ·G(vN ) dWN
σ dx,

J3(t) =

ˆ
O

ˆ t

0

d
〈〈 ˆ ·

0

PNG(vN ) dWN
〉〉

σ
dx.

Straightforward calculations show on account of (3.2) and (3.3)

E[J3(t)] = E

[ N∑
i=1

ˆ t

0

ˆ
O
|PNG(vN )ei|2 dxdσ

]

≤ E

[ ∞∑
i=1

ˆ t

0

ˆ
O
|PNgi(vN )|2 dxdσ

]

≤ cE

[ ∞∑
i=1

ˆ t

0

ˆ
O
|gi(vN )|2 dxdσ

]

≤ cE

[
1 +

ˆ t

0

ˆ
O
|vN |2 dxdσ

]
.

So, we have

E

[
sup

t∈(0,T )

ˆ
O
|vN (t)|2 dx

]
+ E

[ ˆ
Q

|∇vN |2 dxdt
]

≤ cE

[ˆ
O
|v0|2 dx+

ˆ T

0

ˆ
O
|vN |2 dxdt

]
+ E

[
sup

t∈(0,T )

|J2(t)|
]
.

(3.9)

On account of the Burkholder–Davis–Gundy inequality (Lemma 2.1.5), Young’s
inequality and (3.3) we obtain

E

[
sup

t∈(0,T )

|J2(t)|
]
= E

[
sup

t∈(0,T )

∣∣∣∣
ˆ t

0

ˆ
O
vN ·G(vN ) dxdWN

σ

∣∣∣∣
]

= E

[
sup

t∈(0,T )

∣∣∣∣
N∑
i=1

ˆ t

0

ˆ
O
vN ·G(vN )ei dxdβi(σ)

∣∣∣∣
]

= E

[
sup

t∈(0,T )

∣∣∣∣
N∑
i=1

ˆ t

0

ˆ
O
vN · gi(vN ) dxdβi(σ)

∣∣∣∣
]

≤ cE

[ ˆ T

0

N∑
i=1

( ˆ
O
vN · gi(vN ) dx

)2

dt

]1/2

≤ cE

[( ˆ T

0

( N∑
i=1

ˆ
O
|vN |2 dx

ˆ
O
|gi(vN )|2 dx

)
dt

] 1/2

≤ cE

[
1 +

ˆ T

0

( ˆ
O
|vN |2 dx

)2

dt

] 1/2
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≤ δ E

[
sup

t∈(0,T )

ˆ
O
|vN |2 dx

]
+ c(δ)E

[
1 +

ˆ T

0

ˆ
O
|vN |2 dxdt

]
.

This finally proves the claim for δ sufficiently small using Gronwall’s lemma as
well as Λ0 = P ◦ v−1

0 . �

A similar proof yields to following estimate (one has to apply the β
2 th power

to (3.8) before taking expectations).

Corollary 3.1.2. Let the assumptions of Theorem 3.1.1 be satisfied and in addition
ˆ
L2

div(O)

‖u‖βL2(O) dΛ0(u) < ∞,

for some β ≥ 2. Then we have

E

[
sup

t∈(0,T )

ˆ
O
|vN (t)|2 dx+

ˆ
Q

|∇vN |2 dxdt
]β/2

≤ cβ

(
1 + E

[ ˆ
L2

div(O)

‖u‖2L2(O) dΛ0(u)

]β/2)
.

3.2. Compactness

We have to pass to the limit in the convective term as well as the nonlinear
noise coefficient. This will be a consequence of some compactness arguments. We
consider ϕ ∈ C∞

c,div(O) and obtain by (3.5)

ˆ
O
vN (t) ·ϕ dx =

ˆ
O
vN (t) · P l

Nϕdx

=

ˆ
G

v0 · P l
Nϕdx+

ˆ t

0

ˆ
O
HN : ∇P l

Nϕ dxdσ

+

ˆ
O

ˆ t

0

G(vN )dWN
σ · P l

Nϕ dx,

HN := − ν∇vN + vN ⊗ vN .

Here P l
N denotes the projection into XN with respect to the W l,2

0,div(O) inner
product. From the a priori estimates in Theorem 3.1.1 and Corollary 3.1.2 we
obtain

HN ∈ Lp0(Ω×Q;P⊗ Ld+1) (3.10)

for some p0 > 1 uniformly in N (provided β > 2). Let us consider the functional

HN (t,ϕ) :=

ˆ t

0

ˆ
O
HN : ∇P l

Nϕ dxdσ, ϕ ∈ C∞
c,div(O).
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Then we deduce from (3.10) and the embedding W l̃,p0

0 (O) ↪→ W l,2
0 (O) for l̃ ≥

l + d
(

1
p0

− 1
2

)
the estimate

E

[∥∥HN

∥∥
W 1,p0 ([0,T ];W

−l̃,p0
div (O))

]
≤ c.

For the stochastic term we use Lemma 2.5.3 and (3.3) to estimate for all α < 1/2

E

[∥∥∥ ˆ ·

0

G(vN ) dWN
σ

∥∥∥
Wα,2(0,T ;L2(O))

]
≤ cE

[ ˆ T

0

‖G(vN )‖2L2(U,L2(O)) dt

]

≤ cE

[∑
k

ˆ T

0

ˆ
O
|gk(·,vN )|2 dxdt

]
≤ cE

[
1 +

ˆ
Q

|vN |2 dxdt
]
.

So we have due to Theorem 3.1.1 and p0 ≤ 2 that

E

[∥∥∥ ˆ ·

0

G(vN ) dWN
σ

∥∥∥
Wα,p0((0,T );L2(O))

]
≤ c.

Combining the both informations above shows

E

[
‖vN‖

Wα,p0(0,T ;W
−l̃,p0
div (O))

]
≤ c. (3.11)

An interpolation with Lp0(0, T ;W 1,p0

0,div(O)) implies on account of Theorem 3.1.1

E

[
‖vN‖Wκ,p0 (0,T ;L

p0
div(O))

]
≤ c (3.12)

for some κ > 0. Note that we have

Wκ,p0(0, T ;Lp0

div(O)) ∩ L2(0, T ;W 1,2
0,div(O)) ∩ L∞(0, T ;L2

div(O))

↪→↪→ Lr(0, T ;Lr
div(O))

(3.13)

compactly for all r < 10
3 . We will use this embedding in order to show compactness

of vN . We consider the path space

V := Lr(0, T ;Lr(O)) ⊗ C([0, T ],U0)⊗ L2
div(O).

In the following we introduce some notations.

• νvN is the law of vN on Lr(0, T ;Lr(O));
• νW is the law of W on C([0, T ],U0), where U0 is defined in (2.27);
• νN is the joint law of vN , W , v0 on V .

We consider the ball BR in the space

Wκ,p0(0, T ;Lp0

div(O)) ∩ L2(0, T ;W 1,2
0,div(O)) ∩ L∞(0, T ;L2

div(O))

and obtain for its complement BC
R by Theorem 3.1.1 and (3.12)

νvN (BC
R) = P

(
‖vN‖Wκ,p0 (Lp0) + ‖vN‖L2(W 1,2) + ‖vN‖L∞(L2) ≥ R

)
≤ 1

R
E

[
‖vN‖Wκ,p0 (Lp0) + ‖vN‖L2(W 1,2) + ‖vN‖L∞(L2)

]
≤ c

R
.
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So, for a fixed η > 0, we find R(η) with

νvN (BR(η)) ≥ 1− η

3
,

i.e., νvN is tight by (3.13). Since also the law νW is tight, as being a Radon measure
on the Polish space C([0, T ],U0), there exists a compact set Cη ⊂ C([0, T ],U0) such
that νW (Cη) ≥ 1 − η

3 . For the same reason we find compact subsets of L2
div(O)

such that its measure Λ0 is smaller than 1 − η
3 . Hence, we can find a compact

subset Vη ⊂ V such that νN (Vη) ≥ 1 − η. Thus, {νN , N ∈ N} is tight in the
same space. Prokhorov’s Theorem (see Lemma 2.6.1) therefore implies that νN

is also relatively weakly compact. This means that we have a weakly convergent
subsequence with limit ν. Now we use Skorohod’s representation theorem (see

Lemma 2.6.2) to infer the existence of a probability space (Ω̃, F̃ , P̃), a sequence

(ṽN , W̃N , ṽ0,N ) and (ṽ, W̃ , ṽ0) on (Ω̃, F̃ , P̃), both with values in V , such that the
following holds.

• The laws of (ṽN , W̃N , ṽ0,N ) and (ṽ, W̃ , ṽ0) under P̃ coincide with νN and ν.
• We have the convergences

ṽN −→ ṽ in Lr(0, T ;Lr(O)),

W̃N −→ W̃ in C([0, T ],U0),

ṽ0,N −→ ṽ0 in L2(O),

P̃-a.s.

After choosing a subsequence we obtain by Vitali’s convergence theorem

W̃N −→ W̃ in L2(Ω̃, F̃ , P̃;C([0, T ],U0)), (3.14)

ṽN −→ ṽ in Lq(Ω̃×Q; P̃⊗ Ld+1), (3.15)

ṽ0,N −→ ṽ0 in L2(Ω̃×O, P̃⊗ Ld+1), (3.16)

for all q < min{β, r}. Now we introduce the filtration on the new probability space
which ensure the correct measurabilities of the new variables. We denote by rt
the operator of restriction to the interval [0, t] acting on various path spaces. In
particular, if X stands for one of the path spaces Lr(0, T ;Lr(O)) or C([0, T ],U0)
and t ∈ [0, T ], we define

rt : X → X |[0,t], f �→ f |[0,t]. (3.17)

Clearly, rt is a continuous mapping. Let (F̃t)t≥0 and (F̃N
t )t≥0 be the P̃-augmented

canonical filtration of the processes
(
ṽ, W̃

)
and

(
ṽN , W̃N

)
, respectively, that is

F̃t = σ
(
σ
(
rtṽ, rtW̃

)
∪
{
N ∈ F̃ ; P̃(N ) = 0

})
, t ∈ [0, T ].

F̃N
t = σ

(
σ
(
rtṽN , rtW̃

N
)
∪
{
N ∈ F̃ ; P̃(N ) = 0

})
, t ∈ [0, T ].

This definition guarantees that the processes are adapted and we can define sto-
chastic integrals.
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3.3. The system on the new probability space

Now we are going to show that the approximated equations also hold on the new
probability space. Similar to the proof of Theorem 2.4.4 we use the elementary
method from [9] which has already been generalized to different settings (see, for
instance, [8, 20]). The keystone is to identify not only the quadratic variation of the
corresponding martingale but also its cross variation with the limit Wiener process
obtained through compactness. First we notice that W̃N has the same law as W .
As a consequence, there exists a collection of mutually independent real-valued
(F̃N

t )t≥0-Wiener processes (β̃N
k )k such that W̃N =

∑
k β̃

N
k ek. In particular, there

exists a collection of mutually independent real-valued (F̃t)t≥0-Wiener processes

(β̃k)k≥1 such that W̃ =
∑

k β̃kek. We abbreviate W̃N,N :=
∑N

k=1 β̃
N
k ek. Let us

now define for all t ∈ [0, T ] and ϕ ∈ C∞
c,div(O) the functionals

M(u,u0)t =

ˆ
O
u(t) ·ϕ dx−

ˆ
O
u0 ·ϕ dx+

ˆ t

0

ˆ
O
u⊗ u : ∇P l

Nϕ dxdσ

+

ˆ t

0

ˆ
O
ν∇u : ∇P l

Nϕ dxdσ,

N(u)t =

N∑
k=1

ˆ t

0

( ˆ
O
gk(u) · P l

Nϕ dx

)2

dσ,

Nk(u)t =

ˆ t

0

ˆ
O
gk(u) · P l

Nϕ dxdσ,

let M(vN ,v0)s,t denote the increment M(vN ,v0)t −M(vN ,v0)s and similarly for
N(vN )s,t and Nk(vN )s,t. Note that the proof will be complete once we show that

the processM(ṽN ) is an (F̃N
t )t≥0-martingale and its quadratic and cross variations

satisfy, respectively,

〈〈M(ṽN , ṽ0)〉〉 = N(ṽN ), 〈〈M(ṽN , ṽ0), β̃k〉〉 = Nk(ṽN ). (3.18)

Indeed, in that case we have

〈〈
M(ṽN , ṽ0)−

ˆ ·

0

ˆ
G

G(ṽN ) dW̃N,N · P l
Nϕ dx

〉〉
= 0 (3.19)

which implies the desired equation on the new probability space. Let us verify
(3.18). To this end, we claim that with the above uniform estimates in hand, the
mappings

(vN ,v0) �→ M(vN ,v0)t, vN �→ N(vN )t, vN �→ Nk(vN )t

are well defined and measurable on a subspace of the path space where the joint
law of (ṽN , ṽ0) is supported, i.e., the uniform estimates from Theorem 3.1.1 hold
true. Indeed, in the case of N(u)t we have by (3.3) and the continuity of P l

N
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in L2(O)

N∑
k=1

ˆ t

0

( ˆ
O
gk(u) · P l

Nϕdx

)2

dσ ≤ c(ϕ)

∞∑
k=1

ˆ t

0

ˆ
O
|gk(u)|2 dxdσ

≤ c(ϕ)

(
1 +

ˆ
Q

|u|2 dxdt
)

which is finite for u ∈ L2(Q). M(vN ,v0) and Nk(vN )t can be handled similarly
and therefore, the following random variables have the same laws

M(vN ,v0) ∼d M(ṽN , ṽ0), N(vN ) ∼d N(ṽN ), Nk(vN ) ∼d Nk(ṽN ).

Let us now fix times s, t ∈ [0, T ] such that s < t and let

h : V
∣∣
[0,s]

→ [0, 1]

be a continuous function. Since

M(vN ,v0)t =

ˆ t

0

ˆ
O
G(vN ) dWN

σ · PNϕdx =

N∑
k=1

ˆ t

0

ˆ
O
gk(vN ) · PNϕ dxdβk

is a square integrable (Ft)t≥0-martingale, we infer that[
M(vN ,v0)

]2 −N(vN ), M(vN )βk −Nk(vN ),

are (Ft)t≥0-martingales. Let rs be the restriction of a function to the interval [0, s].
Then it follows from the equality of laws that

Ẽ
[
h
(
rsṽN , rsW̃

N
)
M(ṽN , ṽ0)s,t

]
= E

[
h
(
rsvN , rsW

)
M(vN ,v0)s,t

]
= 0,

Ẽ

[
h
(
rsṽN , rsW̃

N
)(

[M(ṽN , ṽ0)
2]s,t −N(ṽN )s,t

)]

= E

[
h
(
rsvN , rsW

)(
[M(vN ,v0)

2]s,t −N(vN )s,t

)]
= 0,

Ẽ

[
h
(
rsṽN , rsW̃

N
)(

[M(ṽN , ṽ0)β̃
N
k ]s,t −Nk(ṽN )s,t

)]

= E

[
h
(
rsvN , rsW

)(
[M(vN ,v0)βk]s,t −Nk(vN )s,t

)]
= 0.

So we have shown (3.18) and hence (3.19). This means on the new probability

space (Ω̃, F̃ , P̃) we have the equations (k = 1, . . . , N)ˆ
O
dṽN ·wk dx+

ˆ
O
ν∇ṽN : ∇wk dxdt

=

ˆ
O
ṽN ⊗ ṽN : ∇wk dxdt+

ˆ
G

G(ṽN ) dW̃N,N
σ ·wk dx,

ṽN (0) = PN ṽ0, (3.20)
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and the convergences

ṽN ⇀ ṽ in L2(Ω̃, F̃ , P̃;L2(0, T ;W 1,2
0,div(O))),

ṽN ⊗ ṽN ⇀ ṽ ⊗ ṽ in L q/2(Ω̃, F̃ , P̃;L q/2(Q)),

G(ṽN ) ⇀ G(ṽ) in L2(Ω̃, F̃ , P̃;L2(0, T ;L2(U, L
2(G)))).

(3.21)

We obtain from (3.14), (3.20) and (3.21) the limit equation
ˆ
O
ṽ(t) · ϕ dx+

ˆ t

0

ˆ
O
ν∇ṽ : ∇ϕ dx+

ˆ t

0

ˆ
O
ṽ ⊗ ṽ : ∇ϕ dxdσ

=

ˆ
O

ˆ t

0

G(ṽ) dW̃σ ·ϕ dx (3.22)

for all ϕ ∈ C∞
c,div(O). The limit in the stochastic term needs some explanations.

We have the convergences

W̃N −→ W̃ in C([0, T ],U0),

G(ṽN ) −→ G(ṽ) in L2(0, T ;L2(U,L
2(O))),

in probability. For the second one we use (3.3) and (3.15). These convergences
imply ˆ t

0

G(ṽN ) dW̃N
σ −→

ˆ t

0

G(ṽ) dW̃σ in L2(0, T ;L2(O))

in probability by Lemma 2.5.4. So we can pass to the limit in the stochastic integral.

Remark 3.3.1. According to the remarks in [22] (beginning of the proof of Thm. 2.7.
on p. 9) it is possible to choose the new probability space obtained by Skorokhod’s
representation theorem as

(Ω̃, F̃ , P̃) = ([0, 1];B([0, 1]);L1|[0,1]).

4. Compressible fluids

In this section we discuss the questions of how the Navier–Stokes equations for
compressible fluids are affected by random perturbations. If compressibility is taken
into account, the basic field equations in Q = (0, T )×O read as

d(�u) + div(�u⊗ u) dt = divS dt−∇p dt+ �F dW, (4.1)

d�+ div(�u) dt = 0. (4.2)

The unknowns are velocity u (for which we suppose the no-slip boundary condi-
tion u|∂O = 0) and density �. All quantities are defined over a probability space
(Ω,F , (Ft)t≥0,P) with a complete, right-continuous filtration. Equation (4.1) –
the equation of continuity – represents a mathematical formulation of the phys-
ical principle of mass conservation. Equation (4.2) – the momentum equation –
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reflects Newton’s second law of momentum conservation. Here S is the viscous
stress tensor for which we assume Newton’s rheological law, i.e.,

S = S(∇u) = ν

(
∇u+∇tu− 2

3
divuId

)
+ λ divuId, (4.3)

where ν > 0, λ ≥ − 1
3ν are constant viscosity coefficients. The symbol p = p(�)

denotes the pressure, typically given by the isentropic state equation

p(�) = a�γ , a > 0. (4.4)

The parameter a is the squared reciprocal of the Mach number, that is, the ratio
of flow velocity and speed of sound. For the adiabatic exponent γ, also called the
isentropic expansion factor, we suppose γ > 3

2 (γ > 1 if d = 2). Random effects are
incorporated in the forcing term �F dW . The process W is a cylindrical Wiener
process, that is, W (t) =

∑
k≥1 βk(t)ek with (βk)k≥1 being mutually independent

real-valued standard Wiener processes relative to (Ft)t≥0. Here (ek)k≥1 denotes
a complete orthonormal system in a separable Hilbert space U (e.g., U = L2(O)
would be a natural choice). The diffusion coefficient F belongs to the class of
Hilbert–Schmidt operators L2(U;L

2(O)) and satisfies uniformly in x ∈ O∑
k≥1

|Fk(x)|2 ≤ C, (4.5)

where Fk = Fek. This assumption can be generalized in several ways. In particular,
F can depend in a nonlinear way on � and u as in [8] and [34].

The approach to (4.1)–(4.4) we present here is based on the concept of the
finite energy weak martingale solution introduced by Breit and Hofmanová [8].
From the probabilistic point of view, finite energy weak martingale solutions to
(4.1)–(4.4) are weak solutions in the sense that neither the underlying probability
space nor the driving Wiener process can be specified in advance and these sto-
chastic elements become part of the solution. As discussed in Section 2.4, this is
intimately related to the lack of uniqueness (as in the incompressible case, unique-
ness is a big open problem for the compressible Navier–Stokes equations). From
the PDE point of view, finite energy weak martingale solutions are also weak,
that is, (4.1) and (4.2) are satisfied in the sense of distributions. In addition, the
continuity equation (4.2) is satisfied in the renormalized sense and an energy in-
equality holds true. The concept of renormalized solution was introduced in [12] in
the context of linear transport equations. In compressible fluid mechanics, it is an
essential tool to pass to the limit in the nonlinear pressure. The energy inequality
has to be understood as an integral part of the definition of a solution. It encodes
certain pieces of information concerning stability which would be otherwise lost in
the construction process of conventional weak martingale solutions. Its important
role is demonstrated by the fact that it allows to prove a weak-strong uniqueness
principle, cf. [7].
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The previous discussion is summarized in the following definition. We remark
that the initial law describes the initial state of (�, �u) rather than (�,u) (the

natural integrability of �u is 2γ
γ+1).

Definition 4.0.1 (Finite energy weak martingale solution). Let Λ be a Borel prob-

ability measure on Lγ(O)× L
2γ

γ+1 (O). Then

(
(Ω,F , (Ft)t≥0,P), �,u,W )

is called a finite energy weak martingale solution to (4.1)–(4.4) with the initial law
Λ provided

(a) (Ω,F , (Ft)t≥0,P) is a stochastic basis with a complete right-continuous fil-
tration,

(b) W is a cylindrical (Ft)t≥0-Wiener process,
(c) the density � satisfies � ≥ 0, t �→ 〈�(t), ψ〉 ∈ C([0, T ]) for any ψ ∈ C∞(O)

P-a.s., the stochastic process t �→ 〈�(t), ψ〉 is (Ft)t≥0-adapted, and

E

[
sup

t∈(0,T )

‖�(t)‖p
Lγ

x

]
< ∞ for all p ∈ (1,∞), (4.6)

(d) the velocity field u ∈ L2(Ω× (0, T );W 1,2
0 (O)) satisfies

E

( ˆ T

0

‖u‖2
W 1,2

x
dt

)p

< ∞ for all p ∈ (1,∞), (4.7)

(e) the momentum �u satisfies t �→ 〈�u(t),ϕ〉 ∈ C([0, T ]) for any ϕ ∈ C∞
c (O)

P-a.s., the stochastic process t �→ 〈�u(t),ϕ〉 is (Ft)-adapted,

E

[
sup

t∈(0,T )

‖�u(t)‖p
L

2γ
γ+1
x

]
< ∞ for all p ∈ (1,∞), (4.8)

(f) Λ = P ◦
(
�(0), �u(0)

)−1
,

(g) for all ψ ∈ C∞(O) and ϕ ∈ C∞
c (O) and all t ∈ [0, T ] there holds P-a.s.

〈
�(t), ψ

〉
=
〈
�(0), ψ

〉
+

ˆ t

0

〈
�u,∇ψ

〉
ds,

〈
�u(t),ϕ

〉
=
〈
�u(0),ϕ

〉
+

ˆ t

0

〈
�u⊗ u,∇ϕ

〉
ds−

ˆ t

0

〈
S(∇u),∇ϕ

〉
ds

+

ˆ t

0

〈
p(�), divϕ

〉
ds+

ˆ t

0

〈
�F dW,ϕ

〉
,
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(h) for all ϕ ∈ C∞
c ([0, T )), ϕ ≥ 0, the following energy inequality holds true

P-a.s.

−
ˆ T

0

∂tϕ

ˆ
O

[1
2
�|u|2 + P (�)

]
dx dt+

ˆ T

0

ϕ

ˆ
O
S(∇u) : ∇u dxdt

≤ ϕ(0)

ˆ
O

[1
2

|(�u)(0)|2
�(0)

+ P (�(0))
]
dx +

1

2

ˆ T

0

ϕ

ˆ
O

∞∑
k=1

�|Fk|2 dxdt

+

∞∑
k=1

ˆ T

0

ϕ

ˆ
O
�Fk · u dxdβk,

(4.9)

where

P (ρ) = ρ

ˆ ρ

0

p(z)

z2
dz =

a

γ − 1
ργ

is the pressure potential,
(i) if b ∈ C1(R) such that b′(z) = 0 for all z ≥ Mb, then for all ψ ∈ C∞(O) and

all t ∈ [0, T ] there holds P-a.s.

〈
b(�(t)), ψ

〉
=
〈
b(�(0)), ψ

〉
+

ˆ t

0

〈
b(�)u,∇ψ

〉
ds

−
ˆ t

0

〈(
b′(�)�− b(�)u)

)
divu, ψ

〉
ds.

The existence of a solution to (4.1)–(4.4) in the sense of Definition 4.0.1
has been shown in [8] under periodic boundary conditions. The Dirichlet case
appeared later in [34]. The proof relies on a multi-layer approximation scheme
whose core follows the technique developed by Feireisl, Novotný and Petzeltová [15]
in order to deal with the deterministic counterpart. It makes an essential use of the
stochastic compactness method and, in particular, of the Jakubowski–Skorokhod
representation Theorem 2.6.3. In comparison to the existence result from [8], the
energy inequality (4.9) originally introduced in [6] is included in the definition of a
solution. As a simplification we assume that γ > 3. This is very restrictive from a
physical point of view. However, it allows us to focus more on the bulk ideas and to
avoid several technical difficulties. First of all the theory by DiPerna–Lions [12] on
renormalized solutions becomes applicable (provided γ ≥ 9

5 ). The case 3
2 < γ < 9

5
can be included by using the theory by Feireisl et al. [15] which has been extended
to the stochastic setting in [8, Section 6]. A second point is the continuity of the
effective viscous flux, cf. (4.39). If γ < 3, the integrability of the density from
Proposition 4.1.1 cannot be shown in the present form and one cannot guarantee
well-definedness of �γ+1. In order to overcome this an L∞-type truncation has to
be applied (see [8, Section 6] for the stochastic case).

Instead of giving a full proof of the existence of a solution to (4.1)–(4.4) we
will focus on sequential compactness. In Section 4.1 we show how to derive formally
the a priori estimates. Based on this, we prove in Section 4.2 how to pass to the
limit in a sequence of solutions which enjoy appropriate regularity properties.
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4.1. A priori estimates

We are going to show that smooth solutions to (4.1)–(4.4) satisfy the following
energy estimate

E

[
sup

t∈[0,T ]

ˆ
O

[ |�u|2
2�

+ P (�)
]
dx

]p

+ E

[ ˆ T

0

ˆ
O
ν|∇u|2 + η| divu|2 dxdt

]p

≤ c(p, T )E

[( ˆ
O

[ |(�u)(0)|2
2�(0)

+ P (�(0))
]
dx

)p

+ 1

]
(4.10)

for all 1 ≤ p < ∞, where η = λ + ν
3 ≥ 0. In order to prove (4.10) we apply Itô’s

formula to the functional f(q, �) = 1
2

´
O

|q|2
� dx. This corresponds exactly to the

test with u in the momentum equation and 1
2 |u|2 in the continuity equation from

the deterministic case. We gain

1

2

ˆ
O
�|u|2 dx =

1

2

ˆ
O

|(�u)(0)|2
�(0)

dx− ν

ˆ t

0

ˆ
O
|∇u|2 dxdσ − η

ˆ t

0

ˆ
O
| divu|2 dxdσ

+

ˆ t

0

ˆ
O
�u⊗ u : ∇u dxdσ +

ˆ t

0

ˆ
O
�γ divu dxdσ − 1

2

ˆ t

0

ˆ
O
|u|2 d�

+

ˆ t

0

ˆ
O
u · �F dxdW +

1

2

ˆ t

0

�−1 d

〈〈ˆ ·

0

�F dW

〉〉
.

In the following we use the renormalized equation of continuity to get
ˆ t

0

ˆ
O
�γ divu dxdσ = −

ˆ
O
P (�) dx+

ˆ
O
P (�(0)) dx (4.11)

Using (4.11) we gain

1

2

ˆ
O
�|u|2 dx+ ν

ˆ t

0

ˆ
O
|∇u|2 dxdσ + η

ˆ t

0

ˆ
O
| divu|2 dxdσ +

ˆ
O
P (�) dx

≤ 1

2

ˆ
O

|(�u)(0)|2
�(0)

dx+

ˆ
O
P (�(0)) dx

+

ˆ t

0

ˆ
O
u · �F dxdW +

1

2

ˆ t

0

�−1 d

〈〈ˆ ·

0

�F dW

〉〉

=:
1

2

ˆ
O

|(�u)(0)|2
�(0)

dx+

ˆ
O
P (�(0)) dx + T1(t) + T2(t).

We apply the pth power on both sides and then take the expectation. Due to (4.5)
we have

T2(t) ≤
1

2

∑
k

ˆ t

0

ˆ
O
�|Fk|2 dxdt ≤ c

ˆ T

0

ˆ
O
� dxdt ≤ cT. (4.12)
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In fact, (4.12) is a consequence of the conservation of mass

ˆ
O
�(t) dx =

ˆ
O
�(0) dx ∀t ∈ [0, T ] (4.13)

which holds due to (4.2). As a consequence of the Burgholder–Davis–Gundy in-
equality (Lemma 2.1.5), (4.5) and (4.13) we gain for p ≥ 1

E

[
sup

t∈(0,T )

|T1(t)|
]p

= E

[
sup

t∈(0,T )

∣∣∣ ˆ t

0

ˆ
O
u · �F dxdWσ

∣∣∣]p

= E

[
sup

t∈(0,T )

∣∣∣ ˆ t

0

∑
k

ˆ
O
u · �Fk dxdβk(σ)

∣∣∣]p

≤ cE

[ˆ T

0

∑
k

( ˆ
O
u · �Fk dx

)2

dt

] p/2

≤ cE

[ˆ T

0

∑
k

( ˆ
O
�|u|2 dx

)( ˆ
O
�|Fk|2 dx

)
dt

]p/2

≤ cE

[ˆ T

0

ˆ
O
�|u|2 dxdt

]p/2

.

This implies by Young’s inequality for every δ > 0 that

E

[
sup

t∈(0,T )

|T1(t)|
]p

≤ δ E

[
sup

t∈(0,T )

ˆ
O
�|u|2 dx

]p
+ c(δ, T ).

Finally, taking δ small enough, inequality (4.10) follows.

The aim in the following is to show sequential compactness of solutions to
(4.1)–(4.4). To this end, we assume that for every ε ∈ (0, 1) there exists(

(Ωε,Fε, (Fε
t )t≥0,P

ε), �ε,uε,Wε

)
which is a weak martingale solution to (4.1)–(4.4) that satisfies (4.10). We further
assume that the initial data (�ε(0), �εuε(0)) belong P-a.s. to the set{

(ρ,q) ∈ Lγ(O) × L
2γ

γ+1 (O); ρ ≥ 0, (ρ)O ≤ M, q(x) = 0 whenever ρ(x) = 0
}
,

(4.14)
with some M > 0 and satisfy

E

[ ˆ
O

[ |(�εuε(0)|2
2�ε(0)

+ P (�ε(0))
]
dx

]p
≤ C(p), (4.15)

for all 1 ≤ p < ∞ uniformly in ε. Hence the right-hand side of (4.10) is bounded
uniformly in ε. We assume that �ε and uε are smooth enough such that all the
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following computations are well defined. It was shown in [23] that it is enough to
consider only one probability space, namely,

(Ωε,Fε,Pε) =
(
[0, 1],B([0, 1]),L|[0,1]

)
∀ε ∈ (0, 1)

where L denotes the Lebesgue measure on [0, 1]. Moreover, we can assume without
loss of generality that there exists one common Wiener process W for all ε. Indeed,
this can be achieved by performing the compactness argument from any chosen
subsequence (εn)n∈N at once.

As the functions uε and �ε satisfy the energy inequality

E

[
sup

0≤t≤T

ˆ
O

(1
2
�ε|uε|2 +

a

γ − 1
�γε

)
dx

+

ˆ T

0

ˆ
O
ν|uε|2 + η| divuε|2 dxds

]p
≤ C(p)

(4.16)

for all 1 ≤ p < ∞ we have the following uniform bounds

uε ∈ Lp(Ω;L2(0, T ;W 1,2
0 (O))), (4.17)

√
�εuε ∈ Lp(Ω;L∞(0, T ;L2(O))), (4.18)

�ε ∈ Lp(Ω;L∞(0, T ;Lγ(O))), (4.19)

�εuε ∈ Lp(Ω;L∞(0, T ;L
2γ

γ+1 (O))), (4.20)

�εuε ⊗ uε ∈ Lp(Ω;L2(0, T ;L
6γ

4γ+3 (O))). (4.21)

As the next step, we improve the space integrability of the density.

Proposition 4.1.1. Let γ > 3. Then the following holds

E

ˆ T

0

ˆ
O
�γ+1
ε dxdt ≤ C, (4.22)

uniformly in ε.

Proof. In the deterministic case, this is achieved by testing (4.1) with

B�ε = BogO(�ε − (�ε)O)

(that is a right-inverse to the divergence operator). Here BogO is the Bogovskĭı

operator onO. Note that B is continuous from Lp(O) toW 1,p
0 (O) for all 1 < p < ∞,

cf. [4]. In the stochastic setting we apply Itô’s formula (Theorem 2.5.2) to the
functional f(q, ρ) =

´
O q ·Bρ dx. Note that f is linear in q = �u and the quadratic
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variation of � is zero. Hence we do not need a correction term. We gain

EJ0 = E

ˆ
O
�εuε · B�ε dx

= E

ˆ
O
�εuε(0) · B�ε(0) dxdσ − νE

ˆ t

0

ˆ
O
∇uε : ∇B�ε dxdσ

− ηE

ˆ t

0

ˆ
O
divuε �ε dx+ E

ˆ t

0

ˆ
O
�uε ⊗ uε : ∇B�ε dxdσ

+ E

ˆ t

0

ˆ
O
a�γ+1

ε dxdσ − E

ˆ t

0

(�ε)O

ˆ
O
a�γε dxdσ

− E

ˆ t

0

ˆ
O
�εu · B div(�εuε) dxdσ

= EJ1 + · · ·+ EJ7

using d�ε = − div(�εuε) dt. Note that the expectation of the stochastic integral
vanishes. We want to bound the term J5, so we have to estimate all the others. By
(4.14) we have for all t ∈ [0, T ]

(�ε(t))O = �ε(0))O ≤ C

So (4.19) yields EJ6 ≤ C. The most critical term is J4 which we estimate by

EJ4 ≤ E

ˆ t

0

‖�ε‖Lγ
x
‖uε‖2L6

x
‖�ε‖Lr

x
dt,

where r := 3γ
2γ−3 . We proceed, using continuity of∇B and Sobolev’s embedding, by

EJ4 ≤ C E

(
sup

0≤s≤t
‖�ε‖Lγ

x

)(
sup

0≤s≤t
‖�ε‖Lr

x

)ˆ t

0

‖∇uε‖2L2
x
dσ

≤ C

(
E sup

0≤s≤t
‖�ε‖q1Lγ

x

)1/q1(
E sup

0≤s≤t
‖�ε‖q2Lr

x

)1/q2(
E

[ ˆ t

0

‖∇uε‖2L2
x
dσ

]q3)1/q3

as a consequence of Hölder’s inequality ( 1
q1

+ 1
q2

+ 1
q2

= 1, for instance q1 =

q2 = q3 = 3). If r ≤ γ (⇔ γ ≥ 3) we can conclude from (4.17) and (4.19) that
EJ4 ≤ C. In order to estimate J0 we use the following estimate which follows from
the continuity of ∇B and Sobolev’s theorem for q = 6γ

5γ−3 ∈ (1, 3)

‖B�ε‖
L

3q
3−q
x

≤ C ‖∇B�ε‖Lq
x
≤ C ‖�ε‖Lq

x
.

We gain |EJ0| ≤ C as a consequence of (4.19). We have due to the continuity
of ∇B

EJ2 + EJ4 ≤ E

[ ˆ t

0

ˆ
O
|∇uε|2 dxdσ

]
+ E

[ ˆ t

0

ˆ
O
|�ε|2 dxdσ

]
≤ C.
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Moreover, we obtain

E[|J7|] ≤ C E

[ ˆ t

0

‖�ε‖Lγ
x
‖uε‖L6

x
‖B(div(�εuε))‖Lp

x
dt

]

≤ C E

[ ˆ t

0

‖�ε‖Lγ
x
‖uε‖L6

x
‖�εuε‖Lp

x
dt

]

≤ C E

[ ˆ t

0

‖�ε‖Lγ
x
‖uε‖26‖�ε‖Lr

x
dt

]
,

using continuity properties of B on negative Sobolev spaces, where 1
p = 1

r +
1
6 . We

proceed by

E[|J7|] ≤ C E

[(
sup

0≤s≤t
‖�ε‖Lγ

x

)(
sup

0≤s≤t
‖�ε‖Lr

x

)ˆ t

0

‖∇uε‖2L2
x
dσ

]

≤ C

(
E sup

0≤s≤t
‖�ε‖q1Lγ

x

)1/q1(
E sup

0≤s≤t
‖�ε‖q2Lr

x

)1/q2(
E

[ ˆ t

0

‖∇uε‖2L2
x
dσ

]q3)1/q3
≤ C,

using again (4.17) and (4.19). Plugging all together we conclude the claimed esti-
mate. �

4.2. Compactness

Let us define the path space X = X� ×Xu ×X�u ×XW where5

X� = Cw([0, T ];L
γ(O)) ∩

(
Lγ+1(Q), w

)
, Xu =

(
L2(0, T ;W 1,2(O)), w

)
,

X�u = Cw([0, T ];L
2γ

γ+1 (O)), XW = C([0, T ];U0).

Let us denote by μ�ε , μuε and μ�εuε , respectively, the law of �ε, uε and �εuε on
the corresponding path space. By μW we denote the law of W on XW and their
joint law on X is denoted by με.

Proposition 4.2.1. The set {μuε ; ε ∈ (0, 1)} is tight on Xu.

Proof. The proof follows directly from (4.17). Indeed, for any R > 0 the set

BR =
{
u ∈ L2(0, T ;W 1,2

0 (O)); ‖u‖L2(0,T ;W 1,2(O)) ≤ R
}

is relatively compact in Xu and

μuε(B
c
R) = P

(
‖uε‖L2(0,T ;W 1,2(O)) ≥ R

)
≤ 1

R
E‖uε‖L2(0,T ;W 1,2(O)) ≤

C

R

which yields the claim. �

Proposition 4.2.2. The set {μ�ε ; ε ∈ (0, 1)} is tight on X�.

5Cw denotes the space of functions being continuous with respect to the weak topology.
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Proof. Due to (4.20) we obtain that

{div(�εuε)} is bounded in Lp(Ω;L∞(0, T ;W−1, 2γ
γ+1 (O))). (4.23)

As a consequence,

E‖�ε‖p
C0,1([0,T ];W

−1,
2γ

γ+1 (O))
≤ C

due the continuity equation (4.2). Now, the required tightness on Cw([0, T ];L
γ(O))

follows by a similar reasoning as in Proposition 4.2.1 together with the compact
embedding

L∞(0, T ;Lγ(O)) ∩ C0,1([0, T ];W−1, 2γ
γ+1 (O))

c
↪→ Cw([0, T ];L

γ(O)). �

Proposition 4.2.3. The set {μ�εuε ; ε ∈ (0, 1)} is tight on X�u.

Proof. We decompose �εuε into two parts, namely, �εuε(t) = Y ε(t)+Zε(t), where

Y ε(t) = q(0)−
ˆ t

0

[
div(�εuε ⊗ uε)− νΔuε + η∇ div uε + a∇�γε

]
ds,

Zε(t) =

ˆ t

0

�εF dW.

Due to the uniform bounds (4.17)–(4.21) we obtain the Hölder continuity of Y ε,
namely, there exist ϑ > 0 and b > 3/2 such that

E
∥∥Y ε‖Cϑ([0,T ];W−b,2(O)) ≤ C.

Concerning the stochastic integral, we apply the Burkholder–Davis–Gundy in-
equality (Lemma 2.1.5). We obtain due to (4.5) and (4.19) that for any b > 3

2 and
θ ≥ 2

E

∥∥∥∥Zε(t)− Zε(s)

∥∥∥∥
θ

W−b,2
x

≤ C E

( ˆ t

s

∑
k≥1

∥∥�εFk

∥∥2
W−b,2

x
dr

) θ/2

≤ C E

( ˆ t

s

∑
k≥1

∥∥�εFk

∥∥2
L1

x
dr

) θ/2

≤ C E

( ˆ t

s

‖�ε‖2L1
x
dr

) θ/2

≤ C|t− s|θ/2
(
1 + E sup

0≤t≤T
‖�ε‖θγ/2Lγ

x

)
≤ C|t− s|θ/2

and the Kolmogorov continuity criterion (Theorem 2.5.5) applies. We obtain

E
∥∥Zε‖Cϑ([0,T ];W−b,2(O)) ≤ C

for any ϑ ∈ (0, 1
2 ). Combining the estimates for Y ε and Zε we have that

E
∥∥�εuε‖Cϑ([0,T ];W−b,2(O)) ≤ C. (4.24)

Let us define the sets

BR =
{
h ∈ L∞(0, T ;L

2β
β+1 (O)); ‖h‖

L∞(0,T ;L
2γ

γ+1 (O))
≤ R

}
CR =

{
h ∈ Cϑ([0, T ];W−b,2(O)); ‖h‖Cϑ([0,T ];W−b,2(O)) ≤ R

}
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and

KR = BR ∩ CR.

Then it can be shown that KR is relatively compact in X�u. The proof is based
on the Arzelà–Ascoli theorem and follows closely the lines of the proof of [30,
Corollary B.2]. Moreover, we obtain by (4.20) and (4.24)

μ�εuε

(
Kc

R) = P
(
[�εuε /∈ BR] ∪ [�εuε /∈ CR]

)
≤ P

(
‖�εuε‖

L∞(0,T ;L
2γ

γ+1 (O))
> R

)
+ P

(
‖�εuε‖Cϑ([0,T ];W−b,2(O)) > R

)
≤ C

R
.

A suitable choice of R completes the proof. �

Since also the law of μW is tight as being Radon measures on the Polish
spaces XW we can deduce tightness of the joint laws με.

Corollary 4.2.4. The set {με; ε ∈ (0, 1)} is tight on X .

Now we have all in hand to apply the Jakubowski–Skorokhod representation
theorem (Lemma 2.6.3). It yields the following.

Proposition 4.2.5. There exists a subsequence με (not relabeled), a probability space

(Ω̃, F̃ , P̃) with X -valued Borel measurable random variables (�̃ε, ũε, q̃ε, W̃ε), ε > 0,

and (�̃, ũ, q̃, W̃ ) such that

(a) the law of (�̃ε, ũε, q̃ε, W̃ε) is given by με, ε ∈ (0, 1),

(b) the law of (�̃, ũ, q̃, W̃ ), denoted by μ, is a Radon measure,

(c) (�̃ε, ũε, q̃ε, W̃ε) converges P̃-a.s. to (�̃, ũ, q̃, W̃ ) in the topology of X , i.e., we

have P̃-a.s.

�̃ε → �̃ in Cw([0, T ];L
γ(O)),

ũε ⇀ ũ in L2(0, T ;W 1,2
0 (O)),

q̃ε → q̃ in Cw([0, T ];L
2γ

γ+1 (O)),

W̃ε → W̃ in C([0, T ],U0),

The main difficulty is to pass to the limit in the nonlinear pressure. In the
next subsection, we introduce a stochastic generalization of the technique based
on the regularity of the effective viscous flux, which is originally due to Lions [28].
By this we establish strong convergence of the approximate densities and identify
the pressure terms as well as the stochastic integral.

Lemma 4.2.6. The following convergences hold true P̃-a.s.

�̃εũε → �̃ũ in L2(0, T ;W−1,2(O)), (4.25)

�̃εũε ⊗ ũε ⇀ �̃ũ⊗ ũ in L1(0, T ;L1(O)). (4.26)



An Introduction to Stochastic Navier–Stokes Equations 43

Proof. In order to identify the limit q̃, note that we have

�̃εũε ⇀ �̃ũ in L1(0, T ;L1(O)) P̃-a.s.

as a consequence of the convergence of �̃ε and ũε in X� and Xu, respectively.
This yields together with Proposition 4.2.5 and the compactness of the embedding

L
2γ

γ+1 (O) ↪→ W−1,2(O) that

�̃εũε ⇀ �̃ũ in L2(0, T ;W−1,2(O)) P̃-a.s.

Combining this with the convergence of ũε implies the second claim. �

Let (F̃ε
t ) and (F̃t), respectively, be the P̃-augmented canonical filtration of

the process (�̃ε, ũε, W̃ε) and (�̃, ũ, W̃ ), respectively, that is

F̃ε
t = σ

(
σ
(
rt�̃ε, rt(�̃εũε), rtW̃ε

)
∪
{
N ∈ F̃ ; P̃(N) = 0

})
, t ∈ [0, T ],

F̃t = σ
(
σ
(
rt�̃, rt(�̃ũ), rtW̃

)
∪
{
N ∈ F̃ ; P̃(N) = 0

})
, t ∈ [0, T ].

We obtain the following result.

Proposition 4.2.7. For every ε ∈ (0, 1),
(
(Ω̃, F̃ , (F̃ε

t )t≥0, P̃), �̃ε, ũε, W̃ε

)
is a weak

martingale solution to (4.1)–(4.4). Furthermore, there exists b > 3
2 together with a

W−b,2(O)-valued continuous square integrable (F̃t)t≥0-martingale M̃ and

p̃ ∈ Lγ+1(Ω̃×Q)

such that
(
(Ω̃, F̃ , (F̃t)t≥0, P̃), �̃, ũ, p̃, M̃

)
is a weak martingale solution to

d�̃+ div(�̃ũ)dt = 0, (4.27a)

d(�̃ũ) +
[
div(�̃ũ⊗ ũ)− νΔũ− η∇ div ũ+∇p̃

]
dt = dM̃. (4.27b)

Besides, (4.27a) holds true in the renormalized sense.

Proof. The passage to the limit in (4.2) follows from (4.25) and Proposition 4.2.5.
Concerning the passage to the limit in (4.1), we follow the approach of Section 3.3
and define for all t ∈ [0, T ] and ϕ ∈ C∞

c (O) the functionals

Mε(ρ,v,q)t =
〈
q(t),ϕ

〉
−
〈
q(0),ϕ

〉
−
ˆ t

0

〈
q⊗ v,∇ϕ

〉
dr − ν

ˆ t

0

〈
∇v,∇ϕ

〉
dr

− η

ˆ t

0

〈
div v, divϕ

〉
dr + a

ˆ t

0

〈
ργ , divϕ

〉
dr

N(ρ)t =
∑
k≥1

ˆ t

0

〈
ρFk,ϕ

〉2
dr,

Nk(ρ,q)t =

ˆ t

0

〈
ρFk,ϕ

〉
dr,
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and deduce that for any continuous function h : X|[0,s] → [0, 1] we have

Ẽh
(
rs�̃ε, rsũε, rsW̃ε

)[
Mε(�̃ε, ũε, �̃εũε)s,t

]
= 0, (4.28)

Ẽh
(
rs�̃ε, rsũε, rsW̃ε

)[
[Mε(�̃ε, ũε, �̃εũε)

2]s,t −N(�̃ε, �̃εũε)s,t

]
= 0, (4.29)

Ẽh
(
rs�̃ε, rsũε, rsW̃ε

)[
[Mε(�̃ε, ũε, �̃εũε)β̃

ε
k]s,t −Nk(�̃ε, �̃εũε)s,t

]
= 0, (4.30)

which implies the first part of the statement.

As the next step, we will pass to the limit in (4.28). We apply (4.21) and
(4.26) for the convective term. As far as the pressure is concerned, we see that

according to (4.22) there exists p̃ ∈ Lγ+1(Ω̃×Q) such that

a�̃γε ⇀ p̃ in Lγ+1(Ω̃×Q).

Hence, in view of Proposition 4.2.5, we deduce

Ẽh
(
rs�̃ε, rsũε, rsW̃ε

)[
a

ˆ t

0

〈
�̃γε , divϕ

〉
dr

]

→ Ẽh
(
rs�̃, rsũ, rsW̃

)[ ˆ t

0

〈
p̃, divϕ

〉
dr

]
.

Convergence of the remaining terms is obvious and therefore we have proved that

Ẽh
(
rs�̃, rsũ, rsW̃

)[〈
M̃,ϕ

〉
s,t

]
= 0, (4.31)

where

M̃t = �̃ũ(t)− �̃ũ(0) +

ˆ t

0

div(�̃ũ⊗ ũ) dr − ν

ˆ t

0

Δũ dr

− η

ˆ t

0

∇ div ũ dr +

ˆ t

0

∇p̃dr.

Hence M̃ is a continuous (F̃t)t≥0-martingale and possesses moments of any order
due to our uniform estimates.

To conclude the proof, we will show that (�̃, ũ) solves the continuity equation
in the renormalized sense. Both density and velocity are extended by zero to the
whole space. We apply to (4.27) a standard smoothing operator Sm (which is the

convolution with an approximation to the identity in space) such that P̃⊗L4-a.e.

in Ω̃×Q

∂tS
m[�̃] + div

(
Sm[�̃]ũ

)
= div

(
Sm[�̃]ũ− Sm[�̃ũ]

)
. (4.32)

Setting r̃m := div
(
Sm[�̃]ũ− Sm[�̃ũ]

)
we infer from the commutation lemma (see,

e.g., [27, Lemma 2.3]) that P̃⊗ L1-a.e.

‖r̃m‖Lq
x
≤ ‖ũ‖W 1,2

x
‖�̃‖Lγ+1

x
, 1

q = 1
2 + 1

γ+1 ,
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as well as r̃m → 0 in L1(R3). Both together imply r̃m → 0 in L1(Ω̃ × Q). Let
b : R → R be a C1-function with compact support. We multiply (4.32) by b′(Sm[�̃])
to obtain

∂tb(S
m[�̃]) + div

(
b(Sm[�̃])ũ

)
+
(
b′(Sm[�̃])Sm[�̃]− b(Sm[�̃])

)
div ũ = r̃mb′(Sm[�̃]).

As b′ is bounded the right-hand side vanishes for m → ∞ (in the L1(Ω̃×Q)-sense)
and we gain

∂tb(�̃) + div
(
b(�̃)ũ

)
+
(
b′(�̃)�̃− b(�̃)

)
div ũ = 0 (4.33)

in the sense of distributions, i.e.,ˆ
Q

b(�̃) ∂tϕdxdt = −
ˆ
Q

(
b(�̃)ũ

)
· ∇ϕdxdt +

ˆ
Q

(
b′(�̃)�̃− b(�̃)

)
div ũϕdxdt

−
ˆ
O
b(�̃(0))ϕ(0) dx

for all ϕ ∈ C∞
c ([0, T )×O) which is equivalent toˆ

O
b(�̃)ψ dx =

ˆ
O
b(�̃(0))ψ(0) dx+

ˆ t

0

ˆ
O

(
b(�̃)ũ

)
· ∇ψ dxdσ

−
ˆ t

0

ˆ
O

(
b′(�̃)�̃− b(�̃)

)
div ũψ dxdσ

for all ψ ∈ C∞
c (O). �

4.3. Strong convergence of the density

In the first step, we proceed similar to Proposition 4.1.1 and test (4.2) by ψΔ−1∇�̃ε
(ψ ∈ C∞

c (Q)), that is, we apply Itô’s formula (Theorem 2.5.2) to the function
f(ρ,q) =

´
O ψq · Δ−1∇ρ dx (�ε is extended by zero to the whole space). This

yields

Ẽ

ˆ
O
ψ�̃εũε ·Δ−1∇�̃ε dx = −ν Ẽ

ˆ t

0

ˆ
O
ψ∇ũε : ∇Δ−1∇�̃ε dxdσ

− ν Ẽ

ˆ t

0

ˆ
O
∇ũε : ∇ψ ⊗Δ−1∇�̃ε dxdσ − η Ẽ

ˆ t

0

ˆ
O
ψ div ũε �̃ε dxdσ

− η Ẽ

ˆ t

0

ˆ
O
div ũε ∇ψ ·Δ−1∇�̃ε dxdσ + Ẽ

ˆ t

0

ˆ
O
ψ�̃ũ⊗ ũε : ∇Δ−1∇�̃ε dxdσ

+ Ẽ

ˆ t

0

ˆ
O
�̃εũε ⊗ ũε : ∇ψ ⊗Δ−1∇�̃ε dxdσ + Ẽ

ˆ t

0

ˆ
O
aψ�̃γ+1

ε dxdσ

+ Ẽ

ˆ t

0

ˆ
O
a�̃γε ∇ψ ·Δ−1∇�̃ε dxdσ + Ẽ

ˆ t

0

ˆ
O
∂tψ�̃εũε∇Δ−1�̃ε dxdσ

− Ẽ

ˆ t

0

ˆ
O
ψ�̃εũε∇Δ−1 div(�̃εũε) dxdσ

= ẼJ1 + · · ·+ ẼJ10. (4.34)
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Note that the expectation of the stochastic integral vanishes. This can be written as

Ẽ

ˆ t

0

ˆ
O
ψ
(
a�̃γε − (ν + η) div ũε

)
�̃ε dxdt

= Ẽ
[
J0 − J2 − J4 − J6 − J8 − J9

]
+ Ẽ

ˆ t

0

ˆ
O
ψũi

ε

(
�̃εRij [�̃εũ

j
ε]− �̃εũ

j
εRij [�̃ε]

)
dxdσ,

(4.35)

where the operator R is defined by Rij = ∂iΔ
−1∂j . We proceed similarly for the

limit equation (4.27) and obtain

Ẽ

ˆ
O
ψ�̃ũ ·Δ−1∇�̃ dx = −ν Ẽ

ˆ t

0

ˆ
O
ψ∇ũ : ∇Δ−1∇�̃ dxdσ

− ν Ẽ

ˆ t

0

ˆ
O
∇ũ : ∇ψ ⊗Δ−1∇�̃ dxdσ − η Ẽ

ˆ t

0

ˆ
O
ψ div ũ �̃ dxdσ

− η Ẽ

ˆ t

0

ˆ
O
div ũ∇ψ ·Δ−1∇�̃ dxdσ + Ẽ

ˆ t

0

ˆ
O
ψ�̃ũ⊗ ũ : ∇Δ−1∇�̃ dxdσ

+ Ẽ

ˆ t

0

ˆ
O
�̃ũ⊗ ũ : ∇ψ ⊗Δ−1∇�̃ dxdσ + Ẽ

ˆ t

0

ˆ
O
ψ�̃ p̃ dxdσ

+ Ẽ

ˆ t

0

ˆ
O
p̃∇ψ ·Δ−1∇�̃ dxdσ + Ẽ

ˆ t

0

ˆ
O
∂tψ�̃ũ∇Δ−1�̃ dxdσ

− Ẽ

ˆ t

0

ˆ
O
ψ�̃ũ∇Δ−1 div(�̃ũ) dxdσ

= ẼK1 + · · ·+ ẼK10 (4.36)

and

Ẽ

ˆ t

0

ˆ
O
ψ
(
p̃− (λ+ η) div ũ

)
�̃ dxdt = Ẽ

[
K0 −K2 −K4 −K6 −K8 −K9 −K10

]
+ Ẽ

ˆ t

0

ˆ
O
ψũi

(
�̃Rij [�̃ũ

j]− �̃ũjRij [�̃]
)
dxdσ, (4.37)

where we used the Einstein summation convention. Now we prove that ẼJ0 → ẼK0.
Due to Proposition 4.2.5, (4.25) and the compactness of the operator Δ−1∇ on
Lγ(O) we have for any fixed t ∈ [0, T ],

Δ−1∇�̃ε(t) → Δ−1∇�̃(t) in Lγ(O) P̃-a.s.,

�̃εũε(t) ⇀ �̃ũ(t) in L
2γ

γ+1 (O) P̃-a.s.

Hence due to the assumption γ > 3ˆ
O
ψ�̃εũε(t) ·Δ−1∇�̃ε(t) dx →

ˆ
O
ψ�̃ũ(t) ·Δ−1∇�̃(t) dx P̃-a.s.
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This, together with the following bound, for all p ≥ 1,

Ẽ

∣∣∣∣
ˆ
O
ψ�̃εũε(t) ·Δ−1∇�̃ε(t) dx

∣∣∣∣
p

≤ C Ẽ‖Δ−1∇�̃ε‖2pL∞(O) + C Ẽ

[ ˆ
O
|�̃εũε|dx

]p
≤ C

yields the claim (note that Δ−1∇ : Lγ(O) → L∞(O) provided γ > 3). The
remaining terms (those containing derivatives of ψ) are of lower order and hence
even easier to handle.

Now we come to the crucial point. In order to establish convergence of the
left-hand side of (4.35) to the left-hand side of (4.37), we need to verify convergence
of the remaining term on the right-hand side of (4.35) to the corresponding one in

(4.37). Since ũε is weakly convergent in L2(Ω;L2(0, T ;W 1,2
0 (O))), we have to show

that �̃εR[�̃εũε]− �̃εũεR[�̃ε] converges strongly in L2(Ω;L2(0, T ;W−1,2(O))). For
the identification of the limit we make use of the div-curl lemma.

From Proposition 4.2.5 we obtain that

�̃ε ⇀ �̃ in Lγ(O) P̃⊗ L-a.e.,

�̃εũε ⇀ �̃ũ in L
2γ

γ+1 (O) P̃⊗ L-a.e.

Hence we can apply [15, Lemma 3.4] to conclude that

�̃εRij [�̃εũε]− �̃εũεRij [�̃ε] ⇀ �̃Rij [�̃ũ]− �̃ũRij [�̃] in Lr(O) P̃⊗ L-a.e.,

where
1

r
=

1

γ
+

γ + 1

2γ
< 1

due to γ > 3. Therefore Lr(O) is compactly embedded into W−1, 32 (O) and as a
consequence,

�̃εRij [�̃εũε]− �̃εũεRij [�̃ε] → �̃Rij [�̃ũ]− �̃ũRij [�̃] in W−1, 32 (O) P̃⊗ L-a.e.

Moreover, it is possible to show that for any p ∈
(
2, γ2

)
(using continuity of Rij ,

Hölder’s inequality as well as Proposition 4.2.5)

Ẽ

ˆ T

0

∥∥�̃εRij [�̃εũε]− �̃εũεRij [�̃ε]
∥∥p
W

−1, 3
2

x

≤ C Ẽ

ˆ T

0

‖�̃ε‖2pLγ
x
dt+ C Ẽ sup

t∈(0,T )

‖�̃εũε‖2p
L

2γ
γ+1
x

≤ C

which gives the desired convergence

�̃εRij [�̃εũε]−�̃εũεRij [�̃ε] → �̃Rij [�̃ũ]−�̃ũRij [�̃] in L2(Ω;L2(0, T ;W−1,32 (O))).

Unfortunately, the space integrability of ∇u is not sufficient to use this immedi-
ately. Hence we apply a spatial regularization (·)κ with parameter κ > 0 and gain
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for any fixed κ

Ẽ

ˆ
Q

ψ(ũi
ε)κ
(
�̃εRij [�̃εũ

j
ε]− �̃εũ

j
εRij [�̃ε]

)
dxdt

→ Ẽ

ˆ
Q

ψ(ũi)κ
(
�̃Rij [�̃ũ

j]− �̃ũjRij [�̃]
)
dxdt.

Passing with κ to zero on both sides yields

Ẽ

ˆ
Q

ψũi
ε

(
�̃εRij [�̃εũ

j
ε]− �̃εũ

j
εRij [�̃ε]

)
dxdt

→ Ẽ

ˆ
Q

ψũi
(
�̃Rij [�̃ũ

j]− �̃ũjRij [�̃]
)
dxdt.

(4.38)

and accordingly

Ẽ

ˆ
Q

ψ
(
a�̃γε − (ν + η) div ũε

)
�̃ε dxdt → Ẽ

ˆ
Q

ψ
(
p̃− (ν + η) div ũ

)
�̃ dxdt. (4.39)

As a consequence of the integrabilities from Proposition 4.2.5 we can exclude con-
centrations at the boundary. In order to deal with the local nature of (4.39) we
use ideas from [13]. First of all, by the monotonicity of the mapping z �→ azγ , we
find for arbitrary nonnegative ψ ∈ C∞

0 (Q)

(ν + η) lim inf
ε→0

Ẽ

ˆ
Q

ψ
(
div ũε �̃ε − div ũ �̃

)
dxdt

= lim inf
ε→0

Ẽ

ˆ
Q

(
ψ
(
p̃− (ν + η) div ũ

)
�̃− ψ

(
a�̃γε − (ν + η) div ũε

)
�̃ε

)
dxdt

+ lim inf
ε→0

Ẽ

ˆ
Q

ψ
(
a�̃γ+1

ε − p̃�̃
)
dxdt

= lim inf
ε→0

Ẽ

ˆ
Q

ψ
(
a�̃γε − p̃

)(
�̃ε − �̃

)
dxdt ≥ 0

using (4.39). As ψ is arbitrary we conclude

div ũ �̃ ≥ div ũ �̃ a.e. in Ω×Q, (4.40)

where

div ũε �̃ε ⇀ div ũ �̃ in L1(Ω×Q),

recall Proposition 4.2.5. Now, we compute both sides of (4.40) by means of the
corresponding continuity equations. As �̃ε solves (4.2) a.e. we gain

∂tb(�̃ε) + div(b(�̃ε)ũε) + (b′(�̃ε)�̃ε − b(�̃ε)) div ũε = 0

P⊗ L4-a.e. and henceˆ t

0

ˆ
O

(
b′(�̃ε)�̃ε − b(�̃ε)

)
div ũε dxdt =

ˆ
O
b
(
�̃ε(0)

)
dx−

ˆ
O
b
(
�̃ε(t)

)
dx.
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For b(z) = z ln z we have
ˆ t

0

ˆ
O
�̃ε div ũε dxdt =

ˆ
O
�̃ε(0) ln �̃ε(0) dx−

ˆ
O
�̃ε(t) ln �̃ε(t) dx. (4.41)

Since the limit functions (�̃, ũ) solve (4.27a) in the renormalized sense as shown in
Proposition 4.2.7, it follows that

ˆ t

0

ˆ
O
�̃ div ũ dxdt =

ˆ
O
�̃(0) ln �̃(0) dx−

ˆ
O
�̃(t) ln �̃(t) dx. (4.42)

Combining (4.40)–(4.42) shows

lim sup
ε→0

Ẽ

ˆ
O
�̃ε(t) ln(�ε(t)) dx ≤ Ẽ

ˆ
O
�̃(t) ln(�(t)) dx

for any t ∈ I. This gives the claimed convergence �̃ε → �̃ in L1(Ω×Q) by convexity
of z �→ z ln z. Consequently, we have p̃ = a�̃γ and the following strong convergence
holds true

�̃ε → �̃ P̃⊗ L4-a.e. (4.43)

With this in hand, we can finally identify the limit in the stochastic term.

Proposition 4.3.1.
(
(Ω̃, F̃ , (F̃t)t≥0, P̃), �̃, ũ, W̃

)
is a finite energy weak martingale

solution to (4.1)–(4.4).

Proof. According to Proposition 4.2.7, it remains to show that

M̃ =

ˆ ·

0

�̃F dW̃ .

Towards this end, it is enough to pass to the limit in (4.29), (4.30) and establish

Ẽh
(
rs�̃, rsũ, rsW̃

)[[
〈M̃,ϕ〉2

]
s,t

−
∑
k≥1

ˆ t

s

〈
�Fk,ϕ

〉2
dr

]
= 0, (4.44)

Ẽh
(
rs�̃, rsũ, rsW̃

)[[
〈M̃,ϕ〉β̃k

]
s,t

−
ˆ t

s

〈
�̃Fk,ϕ

〉
dr

]
= 0. (4.45)

The convergence in the terms that involve Mε(�̃ε, ũε, �̃εũε) follows from the con-
vergences from Proposition 4.2.5 together with the fact that, due to our estimates,
Mε(�̃ε, ũε, �̃εũε) possesses moments of any order (uniformly in ε). The convergence
in terms coming from the stochastic integral can be justified similarly to (3.22)
using Lemma 2.5.3 (recall strong convergence of �̃ε which follows from (4.43)). �

Acknowledgment
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1. The Least Action Principle for an ideal incompressible fluid

1.1. The configuration space of an incompressible fluid

In Classical Continuum Mechanics [8, 41, 42], the motion of an incompressible
fluid moving in a compact domain D of the Euclidean space Rd can be seen as
a trajectory t → g(t) on the configuration space S Diff(D) of all diffeomorphisms
of D with Jacobian determinant equal to one. This configuration space can be
embedded in a larger one, namely the set S(D) of all maps h from D into itself,
not necessarily one-to-one, such that, for all Borel subset B of D, h−1(B) is a Borel
subset of D having the same Lebesgue measure as B. Such mappings h ∈ S(D)
satisfy the change of variable formula∫

D

φ(h(x))dx =

∫
D

φ(x)dx

for all φ ∈ C(D), where dx denotes the Lebesgue measure, normalized so that the
measure of D is 1. For the composition rule, S Diff(D) is a group (the identity
map I being the unity of the group), meanwhile S(D) is a semi-group. Both

c© Springer Nature Switzerland AG 2018
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S Diff(D) and S(D) are naturally embedded in the Hilbert space L2(D,Rd) of all
square integrable mapping from D into Rd. In this space, S(D) is a closed subset,
meanwhile S Diff(D) is never closed, except in the degenerate case d = 1. (If D is
an interval on the real line, then S Diff(D) = {I}.) S(D) is not a convex set and
is contained in a sphere of L2. Indeed, each h ∈ S(D) satisfies

‖h‖2L2 =

∫
D

|h(x)|2dx =

∫
D

|x|2dx = cst,

where |.| is the Euclidean norm and ‖.‖L2 the corresponding L2 norm.

1.2. The Euler equations

An ideal incompressible fluid moving inside D is usually described by a velocity
field v(t, x) and a pressure field p(t, x), subject to the classical Euler equations [36]

∂tv + (v.∇)v = −∇p,

div v = 0,

with the boundary condition that v is parallel to ∂D. The flowmap (t, x) → g(t, x)
describing the motion of fluid particles is defined by

∂tg(t, x) = v(t, g(t, x)), g(0, x) = x,

and an equivalent set of equations is given by

∂2
ttg(t, x) = −(∇p)(t, g(t, x)),

det(∂xg(t, x)) = 1,

which insures that t → g(t) is valued in the configuration space S Diff(D), provided
that v is smooth enough. For a review on the Euler equations and their importance
in the field of nonlinear PDEs, see [8, 40, 41].

1.3. Geometric interpretation of the Euler equations

A formal Riemannian metric can be induced on the configuration space S Diff(D)
from the L2 norm by defining, for any g0, g1 in SDiff(D), the geodesic distance

δD(g0, g1) = inf

∫ 1

0

‖∂tg(t, .)‖L2dt

where the infimum is performed over all smooth trajectories t → g(t) ∈ GDiff(D)
satisfying

g(0) = g0, g(1) = g1.

A geodesic curve can be defined as a curve t → g(t) ∈ S Diff(D) such that for all
t0 ∈ R, there is δ > 0 such that if t0 < t1 < t0 + δ, then

δD(g(t0), g(t1)) =

∫ t1

t0

‖∂tg(t, .)‖L2dt. (1.1)
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If, in addition, the t parametrization of g is chosen so that ‖∂tg(t, .)‖L2 is t-
independent, then (1.1) means that g minimizes the Action

A(g) = AD,t0,t1(g) =
1

2

∫ t1

t0

∫
D

|∂tg(t, x)|2dxdt

among all smooth trajectories t ∈ [t0, t1] → γ on SDiff(D) satisfying

γ(t0) = g(t0), γ(t1) = g(t1). (1.2)

This defines a Least Action Principle for the configuration space SDiff(D), which
exactly corresponds to the motion of an ideal incompressible in D, as is well known
since Arnold (see [7, 8]). Let us prove, for example, that any smooth solution of
the Euler equations satisfies the Least Action Principle.

Proof. Let us compare g and γ subject to (1.2), fix x ∈ D and denote z(t) = g(t, x),
ζ(t) = γ(t, x). Since p is smooth, there is a constant K = K(p) ≥ 0 such that

p(t, ζ(t)) ≤ p(t, z(t)) +∇p(t, z(t)).(ζ(t) − z(t)) +
1

2
K(p)|ζ(t)− z(t)|2.

By using the one-dimensional Poincaré inequality, we get∫ t1

t0

|ζ(t)− z(t)|2dt ≤ (t1 − t0)
2

π2

∫ t1

t0

|ζ′(t)− z′(t)|2dt,

since ζ(tj) = z(tj) for j = 0, 1. Thus∫ t1

t0

[p(t, ζ(t)) − p(t, z(t))−∇p(t, z(t)).(ζ(t) − z(t))]dt ≤
∫ t1

t0

1

2
|ζ′(t)− z′(t)|2dt,

provided that t1 − t0 is small enough so that

(t1 − t0)
2

π2
K(p) ≤ 1. (1.3)

Since g is a solution to the Euler equations, we have

z′′(t) = ∂2
ttg(t, x) = −∇p(t, z(t)).

It follows, after integrating by parts, that∫ t1

t0

[p(t, ζ(t))− p(t, z(t))− z′(t).(ζ ′(t)− z′(t))]dt ≤
∫ t1

t0

1

2
|ζ′(t)− z′(t)|2dt,

which leads to∫ t1

t0

[
−p(t, z(t)) +

1

2
|z′(t)|2

]
dt ≤

∫ t1

t0

[
−p(t, ζ(t)) +

1

2
|ζ′(t)|2

]
dt.

After integrating over x ∈ D, we get∫ t1

t0

∫
D

[−p(t, g(t, x)) +
1

2
|∂tg(t, x)|2]dxdt

≤
∫ t1

t0

∫
D

[
−p(t, γ(t, x)) +

1

2
|∂tγ(t, x)|2

]
dxdt.
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Since both g and γ are volume preserving∫ t1

t0

∫
D

p(t, g(t, x))dxdt =

∫ t1

t0

∫
D

p(t, γ(t, x))dxdt =

∫ t1

t0

∫
D

p(t, x)dxdt,

which shows that∫ t1

t0

∫
D

1

2
|∂tg(t, x)|2dxdt ≤

∫ t1

t0

∫
D

1

2
|∂tγ(t, x)|2dxdt

and achieves the proof. �

Remark 1.1. The Least Action Principle is satisfied only on sufficiently short time
intervals. On larger time intervals, g is no longer a minimizer but rather a crit-
ical point of the Action. When D is convex, the constant K(p) can be taken as
the largest eigenvalue of the Hessian matrix of p. Condition (1.3) is sharp in the
following case: D is the unique disk in R2, t0 = 0, t1 = π, v(x) = (−x2, x1),
p(x) = 1

2 (x
2
1 + x2

2) and g(t, x) = xeit (where the complex notation x = x1 + ix2

is used). This fairly trivial solution to the Euler equations fails in minimizing the
Action as soon as t1 > π (that is, after half a rotation of the disk).

1.4. The Least Action Problem (LAP)

Let us now define the Least Action Problem:
Minimize the Action among all smooth trajectories on S Diff(D) connecting

two given elements g0, g1 of SDiff(D). This is the same as finding a shortest path
between g0 and g1 along S Diff(D). Because of the group property, we can assume
g0 to be the identity map I and denote g1 by h. Thus, we are looking for a curve
t ∈ [0, 1] → g(t) ∈ S Diff(D), such that g(0) = I, g(1) = h, minimizing the Action

A(g) = AD(g) =
1

2

∫ 1

0

∫
D

|∂tg(t, x)|2dxdt.

As mentioned before, the corresponding system of PDEs are the Euler equations,
written in Lagrangian form

∂2
ttg(t, x) = −∇p(t, g(t, x)),

with two point boundary conditions in time, which is different from solving the
Cauchy problem, where only initial conditions are prescribed, namely g(t = 0, x)
and ∂tg(t = 0, x) for all x ∈ D. A local existence and uniqueness theorem for the
LAP can be found in Ebin and Marsden paper [33]: if h and I are sufficiently close
in a sufficiently high-order Sobolev norm, then there is a unique shortest path. In
the large, uniqueness can fail for the LAP. For example, in the case when D is the
unit disk, g0(x) = x = −g1(x), the LAP has two solutions g(t, x) = xe+iπt and
g(t, x) = xe−iπt, where complex notations are used. In 1985, A. Shnirelman [47, 48]
obtained a remarkable estimate on the geodesic distance, in the special case D =
[0, 1]3, showing that there are two positive constants C and α ∈]0, 1[ such that

δ[0,1]3(g0, g1) ≤ C‖g0 − g1‖αL2 , (1.4)
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for all g0, g1 in SDiff(D). (Strictly speaking, the result proved in [47] involves a
mild restriction on g0, g1, that Shnirelman removed in 1992 [48].) The proof uses
a combinatorial construction based on the concept of discrete flows (somewhat
related to the numerical scheme described in [16] to solve the Euler equations). In
particular, the geodesic diameter of SDiff([0, 1]3) is finite. This result is not trivial
at all, since in the case D = [0, 1]2 the geodesic diameter is known to be infinite
(due to the symplectic nature of SDiff(D) when d = 2, see [8, 35]). Thanks to
estimate (1.4), Shnirelman was able to find data for which the global LAP has no
(classical) solution. More precisely, in the case D = [0, 1]3, there are data h of the
form

h(x1, x2, x3) = (H(x1, x2), x3),

where H is an area preserving mapping of the unit square, i.e., an element of
S Diff([0, 1]2), for which there is no shortest path. Indeed, if H satisfies

δ[0,1]3(I, h) < δ[0,1]2(I,H) < +∞
(which is possible and means that the Action can be reduced if the third dimension
motion is used, even when the data are two-dimensional), then, for each trajectory
γ connecting I and h on SDiff([0, 1]3), Shnirelman shows that there is such a
trajectory γ′ satisfying

A[0,1]3(γ
′) < A[0,1]3(γ).

What happens can be seen as a homogenization phenomenon. Minimizing se-
quences are genuinely three-dimensional flows that try to be as two-dimensional
as possible, with a vanishing third component of the velocity field, but cannot
converge in any strong sense to a two-dimensional flow. (Otherwise the strict in-
equality between two- and three-dimensional geodesic distance would be contra-
dicted.) They rather weakly converge toward some “generalized flow”, where fluid
trajectories can cross each other. This picture is fully consistent with the descrip-
tion given in [13] where the concept of generalized flow was used, independently of
Shnirelman’s work, to provide generalized solutions to the LAP. Before reviewing
this concept, it is worth considering several model problems for the LAP, including
the L2 projection problem onto SDiff(D), which is linked with another important
nonlinear PDE, the Monge–Ampère equation.

2. From the Least Action Problem to the polar
decomposition of maps

2.1. The semi-discrete Least Action Problem

A semi-discrete version of the LAP can be defined as follows. Let N > 2 be a given
integer. We call a semi-discrete shortest path a sequence g1, . . . , gN in S Diff(D)
that minimizes

AN (g1, . . . , gN ) =
1

2

N∑
i=2

‖gi − gi−1‖2L2 ,
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subject to the constraint

g1 = I, gN = h,

where I denotes the identity map and h is the final configuration to be reached.
Since SDiff(D) is included in a sphere of L2(D,Rd), this amounts to maximize

A′
N (g1, . . . , gN) =

N∑
i=2

((gi, gi−1)),

where ((., .)) denotes the L2 inner product.

2.2. The mid-point problem and the polar decomposition of maps

In the particular case N = 3, there is a single unknown g2 (since g1 and g3 are
prescribed) supposed to maximize ((g2, I + h)), or, equivalently, minimize∥∥∥∥g2 − 1

2
(I + h)

∥∥∥∥
2

L2

.

In other words, g2 is the L2 projection of the mid-point 1
2 (I + h) onto S Diff(D).

Since S Diff(X) is neither convex nor closed in L2, this problem is not trivial. If
we substitute the set of all measure preserving maps S(D) for S Diff(D), we get
a closed bounded subset of the Hilbert space L2. Then, it follows from Edelstein’s
theorem [9] that almost every element u ∈ L2(D,Rd), in the sense of Baire, has a
unique L2 projection onto S(D). As a matter of fact, the L2 projection onto S(D)
(rather than SDiff(D)) induces a “polar decomposition” of the space L2(D,Rd)
by S(D) and the dual convex cone

K(D) = {u ∈ L2(D,Rd) ; ((u, I − h)) ≥ 0, ∀h ∈ S(D)}.
K(D) can be characterized as the set of all square integrable mappings fromD into
Rd that coincide almost everywhere on D with the gradient of some lower semi-
continuous convex function defined on Rd. More precisely, the following “polar
decomposition” theorem is stated in [15] (preceded by [13]).

Theorem 2.1. Assume that u ∈ L2(D,Rd) satisfies the following non-degeneracy
condition: if N is a Lebesgue negligible subset of D, then u−1(N) is also Lebesgue
negligible. Then there is a unique decomposition

u(x) = ∇Φ(h(x)), a.e. x ∈ D,

where h belongs to S(D) and Φ (defined up to an additive constant) is the restric-
tion to D of a lower semi-continuous convex function on Rd. Moreover, h is the
unique L2 projection of u onto D, ∇Φ is the unique rearrangement of u in the
class K(D).

By rearrangement of u, we mean any map v from D into Rd such that∫
D

φ(v(x))dx =

∫
D

φ(u(x))dx
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holds for all φ ∈ Cc(R
d). Theorem 2.1 shows that a vector-valued mapping u has

a unique rearrangement as a gradient of some convex potential, which generalizes
the classical theory on non-decreasing rearrangements of real-valued functions.
Theorem 2.1 can also be seen as a nonlinear Hodge decomposition theorem. In-
deed, when linearized about the identity map, the polar decomposition yields the
classical unique decomposition of vector fields

z = w +∇p,

where z is a given vector field, w a divergence free vector field, parallel to the
boundary of D, and p is a real-valued function.

A corresponding regularity result follows from Caffarelli’s work [29]:

Theorem 2.2. Let u be a smooth function from D to Rd where both D and u(D)
are supposed to be smooth and uniformly strictly convex. Assume the Jacobian
determinant of u to be positive and bounded away from zero. Then u admits a
unique polar factorization u = DΦ ◦ h, where Φ is smooth and strictly uniformly
convex on D and h belongs to S Diff(D). In addition Φ can be recovered by solving
a Monge–Ampère equation.

This regularity result shows that, under strong assumptions on D and u, u
has a unique L2 projection on S Diff(D). The proof is based on the fact that the
Legendre–Fenchel transform of Φ, namely

Ψ(y) = sup
x∈Rd

(x.y − Φ(x)),

is a weak solution to the Monge–Ampère equation

detD2Ψ = ρ,

where ρ(x)dx is the image measure of dx by u. Caffarelli shows that Ψ is a solution
in the sense of Alexandrov and is strictly convex. Then, he obtains regularity results
[29]. In the meantime this theorem has been considerably extended, in particular
to the case of Riemannian manifolds (see [51] for a detailed description of these
results and their many contributors).

The proof of Theorem 2.1 relies on a the relaxation technique introduced
by Kantorovich to solve Monge’s optimal transport problem (cf. [50, 51]). Let us
quote a typical result (which does not differ essentially from Theorem 2.1).

Theorem 2.3. Assume ρ0 and ρ1 to be two nonnegative Lebesgue integrable com-
pactly supported functions on Rd, such that∫

Rd

ρ0(x)dx =

∫
Rd

ρ1(x)dx = 1.

Then there is a Lipschitz continuous convex function Φ on Rd such that∫
Rd

f(∇Φ(x))ρ0(x)dx =

∫
Rd

f(x)ρ1(x)dx

holds for any continuous function f on R
d.
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A proof can be sketched as follows (see [15, 50]).

Sketch of the proof. Let us consider a ball B in Rd containing the supports of both
ρ0 and ρ1 and introduce the set M of all Borel regular probability measures ν on
B ×B having ρ0(x)dx and ρ1(x)dx as margins, which means∫

B×B

f(x)ν(dx, dy) =

∫
B

f(x)ρ0(x)dx,∫
B×B

f(y)ν(dx, dy) =

∫
B

f(y)ρ1(y)dy,

for all continuous functions f on Rd. By using the Riesz representation theorem on
Borel measures and elementary convex analysis (as the Rockafellar theorem stated
in [28]), we obtain the duality equality

max
ν∈M

∫
B×B

x.y ν(dx, dy) = inf

∫
B

[Φ(x)ρ0(x) + Ψ(x)ρ1(x)]dx,

where the infimum is taken over all pairs (Φ,Ψ) of continuous functions on B
satisfying

Φ(x) + Ψ(y) ≥ x.y, ∀x ∈ B, ∀y ∈ B.

Then, it can be established that the infimum is attained by a pair (Φ,Ψ) such
that Φ is the restriction of a Lipschitz continuous convex function defined on Rd,
and for ρ0(x)dx almost every point of Rd, Ψ coincide with the Legendre–Fenchel
transform of Φ,

LF (Φ)(y) = sup
x∈Rd

(x.y − Φ(x)).

Moreover, if ν = νopt ∈ M maximizes
∫
B×B

x.y ν(dx, dy), then

Φ(x) + Ψ(y) = x.y

holds for νopt-almost every (x, y) ∈ Rd × Rd. Using well-known properties of the
Legendre–Fenchel transform, one deduces that νopt is necessarily of the form

νopt(dx, dy) = δ(y −∇Φ(x))ρ0(x)dx

which implies ∫
Rd×Rd

f(y)νopt(dx, dy) =

∫
Rd

f(∇Φ(x))ρ0(x)dx,

for all continuous functions f on Rd and achieves the proof since the second margin
of νopt is ρ1(x)dx. �

Remark 2.1. We can define the Monge–Kantorovich (often called Wasserstein)
distance (see [50] for example) between ρ0 and ρ1 by setting

Δ(ρ0, ρ1) = inf
ν∈M

(∫
D×D

|x− y|2ν(dx, dy)
)1/2

. (2.1)
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Then we get ∫
D

|∇Φ(x) − x|2ρ0(x)dx = Δ(ρ0, ρ1)
2.

Indeed,∫
D

|∇Φ(x)− x|2ρ0(x)dx =

∫
D×D

|y − x|2νopt(dx, dy)

=

∫
D

|x|2(ρ0(x) + ρ1(x))dx −
∫
D×D

2y.x νopt(dx, dy)

(since ρ0 and ρ1 are the margins of νopt)

≤
∫
D

|x|2(ρ0(x) + ρ1(x))dx −
∫
D×D

2y.x ν(dx, dy)

for every ν ∈ M (since νopt maximizes
∫
y.x ν(dx, dy)),

=

∫
D×D

|y − x|2ν(dx, dy)

(since ρ0 and ρ1 are also the margins of ν).

Remark 2.2. The proof of Theorem 2.1 uses similar arguments and corresponds
to the special case where ρ0(x) = 1 and ρ1(x)dx is the image measure of dx by
the mapping u. However the proof is more complicated, partly due to the assump-
tion that u belongs to L2, which rules out the assumption that ρ1 is compactly
supported.

3. Generalized solutions to the Least Action Problem

3.1. The concept of generalized flows

Following the idea of the proof of Theorem 2.3, the Least Action Problem has
been considered in [13, 15] in a generalized, convexified, framework. Let us briefly
review the concept of “generalized flows”, closely related to the theory of Young’s
measures [53, 49]. Let us introduce the space Ω = D[0,1] of all path t ∈ [0, 1] →
ω(t) ∈ D. By Tychonov’s theorem, Ω is a compact Hausdorff space for the product
topology and the space C(Ω) of all continuous functions on Ω which can be seen,
by the Stone–Weierstrass theorem, as the completion of the space Cfin(Ω) of all
path functionals of finite type defined as follows. F is of finite type if there is a
sequence 0 ≤ t1 < · · · < tn ≤ 1 and a continuous function f on Dn such that

F (ω) = f(ω(t1), . . . , ω(tn)), ∀ω ∈ Ω.

The dual space C′(Ω) is also, by Riesz’ theorem, the set of all Borel signed measures
on Ω. Then, we define a generalized flow to be a probability Borel measure on Ω.
If g is a classical flow, that is a smooth one parameter family of diffeomorphisms
of D, then one can associate a unique probability measure μ = μg on Ω defined by∫

Ω

F (ω)μg(dω) =

∫
D

f(g(t0, x), . . . , g(tn, x))dx,
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for all F ∈ Cfin(Ω). Thus there is a natural embedding of classical flows in the set
of generalized flows. If t → g(t) is valued in SDiff(D) and satisfies the initial and
final conditions g(0) = I, g(1) = h, then the corresponding probability measure
μg satisfies the following properties. For all φ ∈ C(D) and τ ∈ [0, 1],∫

Ω

φ(ω(τ))μg(dω) =

∫
D

φ(g(τ, x))dx =

∫
D

φ(x)dx.

For all f ∈ C(D2),∫
Ω

f(ω(0), ω(1))μg(dω) =

∫
D

f(g(0, x), g(1, x))dx =

∫
D

f(x, h(x))dx.

Moreover, the Action of g, A(g) can be expressed as follows:

A(g) =

∫
Ω

a(ω)μg(dω),

where a is the lsc function on Ω, valued in [0,+∞], defined by

a(ω) =
1

2

∫ 1

0

∣∣∣∣ ddtω(t)
∣∣∣∣
2

dt,

whenever ω is in the Sobolev space W 1,2([0, 1],Rd) and a(ω) = +∞ otherwise.
See [13] for more details.

3.2. The weak formulation of the LAP

Let μ be a generalized flow. For any finite sequence 0 ≤ t1 < · · · < tn ≤ 1, we
denote by μ|t1,...,tn the corresponding projection (often called “margin”) of μ onto

D(t1,...,tn) defined by∫
D(t1 ,...,tn)

f(x1, . . . , xn)μ|t1,...,tn(dx1, . . . , dxn) =

∫
Ω

f(ω(t1), . . . , ω(tn))μ(dω),

for all f ∈ C(Dn). We say that μ is incompressible if μ|t = dx for all t ∈ [0, 1].
By definition, a generalized solution to the LAP is any generalized incompressible
flow that minimizes the Action, now defined by

A(μ) =

∫
Ω

a(ω)μ(dω),

and is compatible with h in the sense that

μ|0,1 = η

where η = η(h) is defined by

η(dx0, dx1) = δ(x1 − h(x0))dx0,

which means ∫
D2

f(x0, x1)η(dx0, dx1) =

∫
D

f(x, h(x))dx,

for all f ∈ C(D2).
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3.3. The semi-discrete version of the weak LAP

A semi-discrete version of the weak LAP can be defined as follows. Let N > 0 be
a given integer. We define a semi-discrete generalized flow as a Borel probability
measure ν on DN . We say that ν is incompressible if its margins are equal to dx

ν|1 = · · · = ν|N = dx (3.1)

with the same notations as in the previous subsection. We denote by MN the set
of all semi-discrete generalized incompressible flows. If

ν|1,N = η, where η(dx0, dx1) = δ(x1 − h(x0))dx0,

we say that ν is compatible with h. The semi-discrete weak LAP consists in finding
ν ∈ MN , compatible with h, that minimizes

AN (ν) =

∫
DN

aN(x1, . . . , xN )ν(dx1, . . . , dxN )

where

aN (x1, . . . , xN ) =
1

2

N∑
i=2

|xi − xi−1|2.

This problem is similar to the “multi-dimensional Monge–Kantorovich” prob-
lems considered in Rachev’s paper [44]. Since AN is continuous and MN is compact
for the vague topology, it is obvious that the semi-discrete weak LAP always has
a solution (not necessarily unique). More information can be obtained by using
duality arguments, as for the mid-point problem mentioned earlier, that may be
summarized as follows (see [15]).

Theorem 3.1. There is a unique sequence p2, . . . , pN−1 of Lipschitz continuous
functions on D, with zero mean, and a unique function π ∈ C(D2), such that
inequality

π(x1, xN ) + p2(x2) + · · ·+ pN−1(xN−1) ≤ aN (x1, . . . , xN )

holds for all (x1, . . . , xN ) ∈ DN , the corresponding equality being satisfied ν almost
everywhere, for any solution ν to the semi-discrete weak LAP. In addition,

AN (ν) =

∫
D2

π(x, y)η(dx, dy).

4. Results on the generalized Least Action Problem

In [13], it is shown (in the case D = Rd/Zd), that the weak LAP always has a solu-
tion. It is also shown in [13] that a smooth classical solution to the Euler equations
satisfies the Least Action Principle in the generalized framework in the same con-
ditions as in the classical framework, namely under condition (1.3), which can be
seen as a consistency result for the generalized framework. In the case D = [0, 1]3,
the minimizing sequences of the classical LAP converge to the generalized solutions
of the weak LAP, as can be deduced from the density result by Shnirelman [48].
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To get more information on the generalized solutions, duality arguments must
be used. In particular, the duality result obtained for the semi-discrete weak LAP
(Theorem 3.1) has been, in a suitable sense, extended to the continuous weak LAP
in a series of papers by the author [14, 16, 17], followed by Ambrosio and Figalli
[3, 2], from which we select the following statement [2]:

Theorem 4.1. There is a unique function p(t, x) defined on [0, 1]×D, with∫
D

p(t, x)dx = 0, ∀t ∈ [0, 1],

which is locally square integrable in time and valued in the space of locally bounded
variation in space such that inequality

π(ω(0), ω(1)) +

∫ 1

0

p(t, ω(t))dt ≤ 1

2

∫ 1

0

∣∣∣∣ ddtω(t)
∣∣∣∣
2

dt (4.1)

holds for each path ω in W 1,2([0, 1],Rd) valued in D, the corresponding equal-
ity being satisfied μ almost everywhere, for any solution μ to the weak LAP. In
addition,

A(μ) =

∫
D2

π(x, y)η(dx, dy).

Let us point out that, in this result, p must be considered as the pressure field
governing the motion of fluid particles. Indeed, the result implies that, μ almost
surely, every path ω minimizes

1

2

∫ 1

0

∣∣∣∣ ddtω(t)
∣∣∣∣
2

dt−
∫ 1

0

p(t, ω(t))dt

among all paths ζ such that ζ(0) = ω(0), ζ(1) = ω(1). In particular, if p is smooth
enough, μ almost surely, ω is solution to the dynamical equation

d2

dt2
ω(t) = −(∇p)(t, ω(t)),

which means that the probability measure μ concentrates on trajectories that are
driven by the acceleration field −∇p and, therefore, p can be considered as the
pressure field of the fluid.

4.1. Continuity of generalized solutions with respect to data

A fairly straightforward consequence of the duality arguments used to solve the
semi-discrete weak LAP is the continuous dependence of solutions with respect
to data. More precisely, if hε ∈ S(D) converges to h ∈ S(D) for the strong L2

topology, then the corresponding (not necessarily unique) generalized solutions νε
have a subsequence that vaguely converges to a solution ν of the limit problem
(the number of step N being kept fixed). As a matter of fact, the same result is
true for the continuous weak LAP, but the proof involves more delicate arguments,
involving Shnirelman’s estimate (1.4).
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4.2. Example of generalized solutions

Explicit examples of nontrivial generalized solutions to the weak LAP are described
in [13]. Let us quote a first example, when D is the unique disk and h(x) = −x.
Then, the classical LAP has two distinct solutions g+(t, x) = eiπtx and g−(t, x) =
e−iπtx, with the same pressure field p = π2|x|2/2, where complex notations are
used. Simple minded generalized solutions can be obtained by mixing g+ and g−
in the following way. Let θ be any measurable function from [0, 1] into itself. Then
we define a generalized solution μθ by setting for each f ∈ C(Ω),∫

Ω

f(t → ω(t))μθ(dω)

=

∫
[0,1]2

[θ(r)f(t → g+(t, re
2iπσ)) + (1 − θ(r))f(t → g−(t, re

2iπσ))]drdσ.

Such a generalized solution can be seen as a two phase flow, with two phases
moving through each other and driven by the same pressure field. A much more
interesting solution μ is given by∫

Ω

f(t → ω(t))μ(dω) =

∫
D

∫ 1

0

f(t → x cos(πt) + (1− |x|2)1/2e2iπσ sin(πt))dσdx.
(4.2)

The corresponding generalized fluid motion is very peculiar and looks like a clas-
sical wave propagation on the two-dimensional sphere. For 0 < t < 1, the fluid
particle initially located at x splits up along a circle of radius (1− |x|2)1/2 sin(πt),
with center x cos(πt), that moves across the unit disk and shrinks down to the point
−x when t = 1. Note that all these generalized solutions are concentrated along
path that are driven by the same pressure field p = π2|x|2/2, which is consistent
with Theorem 4.1.

In the one-dimensional case D = [0,1] the classical LAP is void, since
S Diff(D) = {I}. However, the weak LAP, when h is given in S(D) is not trivial.
It is shown in [13], for example, that, for h(x) = 1 − x, the unique generalized
solution μ is given by∫
Ω

f(t → ω(t))μ(dω) =

∫
D

∫ 1

0

f(t → x cos(πt)+(1−x2)1/2 cos(2πσ) sin(πt))dσdx.

This solution can be seen as the one-dimensional projection of the two-dimensional
solution defined by (4.2).

Another very interesting case is when D = [0, 1] and h is the map that
exchanges subintervals [0, 1/2] and [1/2, 0], h(x) = x + 1/2 if 0 ≤ x < 1/2,
h(x) = x− 1/2, otherwise. This example is related to Shnirelman’s negative result
for the classical LAP (see [47]). The one-dimensional case has been thoroughly
studied in [11].

Finally, let us mention that reliable numerical solutions of the generalized
LAP can be obtained in different ways: combinatorial scheme as in [19] (but only
as D = [0, 1]), computational geometric methods as in [43], entropic regularization
as in [31].
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4.3. Two phase flows in one space dimension

Let us go back to the weak LAP when D = [0, 1] and h exchanges [0, 1/2] and
[1/2, 1]. Then, the solution looks like a two phase flow, each subinterval corre-
sponding to a distinct phase. More generally, a one-dimensional two phase flow
solution μ to the weak LAP can be defined by a pressure field p, two density fields,
ρ, ρ′, and two velocity fields v, v′, that satisfy the following set of equations:

ρ+ ρ′ = 1,

∂tρ+ ∂x(ρv) = 0, ∂tv + ∂x

(
v2

2
+ p

)
= 0,

∂tρ
′ + ∂x(ρ

′v′) = 0, ∂tv
′ + ∂x

(
v′2

2
+ p

)
= 0.

By elimination, we get

ρv + ρ′v′ = 0,

which implies vv′ ≤ 0, and

−p = ρv2 + ρ′v′2 = −vv′.

Then (v, v′) solve the nonlinear first-order system

∂tv + ∂x(
v2

2
+ vv′) = 0, ∂tv

′ + ∂x(
v′2

2
+ vv′) = 0.

Such a solution μ can also be obtained directly from a variational approach.
Let us consider the first phase and introduce the flowmap g associated with v.
Then g must satisfy

∂xg ≥ 1.

Indeed, the first phase must expand when moving through the second phase so
that the two phase mixture keeps a constant density. A(μ) is the sum of the Action
of each phase and can be computed in terms of g only, or, even simpler, in terms of

w(t, x) = g(t, x)− x,

subject to

∂xw(t, x) ≥ 0.

We get, after simple calculations,

A(μ) =

∫
α(∂tw, ∂xw)dxdt,

where

α(a, b) = a2
(
1 +

1

b

)
is a convex function for b > 0, and strictly convex for a �= 0. Thus, w must be
solution to the degenerate quasilinear second-order elliptic equation

∂t

((
1 +

1

∂xw

)
∂tw

)
− 1

2
∂x

(
∂tw

∂xw

)2

= 0.
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5. A dissipative least action principle for approximations
of the Euler equations

Our purpose is to exhibit relevant approximations of the Euler equations for which
a modified least action principle can be designed that can include energy dissipa-
tion. There are examples, typically in infinite dimension (but not necessarily), of
formally Hamiltonian systems which do not necessarily preserve the energy because
of some hidden dissipative mechanism:

i) the (inviscid) Burger equation

∂u

∂t
+

∂

∂x

(
u2

2

)
= 0, (t, x) ∈ R+ × R → u(t, x) ∈ R;

ii) the Euler equations of incompressible fluids: at least at the physical level, it
is often believed that the energy could dissipate according to Kolmogorov’s
“K41” theory of turbulence [37].

Let us start the discussion with special examples of finite-dimensional dy-
namical systems for which a dissipative version of the least action principle can be
designed.

5.1. Finite-dimensional examples

Given a Euclidean space H (or more generally a Hilbert space) with norm ‖ · ‖
and a potential Q : H → R,

1

2
‖Vt‖2 +Q[Xt]

is the conserved energy (or Hamiltonian) for the dynamical system

dVt

dt
= −∇Q[Xt],

dXt

dt
= Vt, (Xt, Vt) ∈ H ×H.

As is well known, its solutions can be obtained from the “least action principle”
by looking for critical points of the “action”∫ t1

t0

1

2

∥∥∥∥dXt

dt

∥∥∥∥
2

−Q[Xt] dt,

among all curves t ∈ [t0, t1] → Xt with fixed values at t0 and t1.

We are going to define a special class of Hamiltonian systems (in finite di-
mension), for which a modified least action principle can be designed that can
include energy dissipation. This issue has been already discussed by various au-
thors, Shnirelman and Wolansky, for instance [46, 52]. The systems we are going
to discuss are very special but, among them, we will get discrete or approximate
versions of the Euler model of incompressible fluids.
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Let H be a Euclidean space and S a bounded closed subset. Set

Q[X ] = −1

2
dist2(X,S) = − inf

s∈S

‖X − s‖2
2

and consider the corresponding dynamical system

d2Xt

dt2
= −∇Q[Xt]

N.B.: Q is semi-convex, but not smooth (unless S is convex).

Indeed: Q[X ] = − 1
2‖X‖2 +R[X ], whereR[X ] = sups∈S((X, s))− 1

2‖s‖2 is convex.

5.2. The main example and the Vlasov–Monge–Ampère system

Let us now describe our main example. Let {A(1), . . . , A(N)} be a cubic lattice of
N points approximating D = [−1/2, 1/2]d ⊂ R

d as N tends to infinity. Define

H = (Rd)N , S = {(A(σ1), . . . , A(σN )) ∈ H, σ ∈ Sn}

(where SN denotes the group of all permutations of the first N integers).

Then, the dynamical system introduced in the previous subsection reads,
after elementary calculations,

β
d2Xt(α)

dt2
= Xt(α) −A(σopt(α)) , Xt(α) ∈ R

d, α = 1, . . . , N (5.1)

σopt = Arginf σ∈SN

N∑
α=1

|Xt(α)−A(σ(α))|2 (5.2)

with β = 1, involving, at each time t, a discrete optimal transport problem.

This system was introduced, in the case β = −1, in [18], where its hydrody-
namic limit to the Euler equations has been established.

Notice that, as d = 1, this system reduces to

β
d2Xt(α)

dt2
= Xt(α) −

1

2N

∑
α′ �=α

sgn(Xt(α)−Xt(α
′)).

This describes the Newtonian gravitational interaction of N parallel planes as
β = 1 (with a global neutralization of the total mass, expressed by the linear
term Xt).

The continuous version, involving the Monge–Ampère equation, closely re-
lated to optimal transport theory, was introduced by Brenier and Loeper [27], and
studied by Cullen, Gangbo, Pisante [30], Ambrosio–Gangbo [4]. We find

∂tf(t, x, ξ) +∇x · (ξ f(t, x, ξ))−∇ξ · (∇xϕ(t, x)f(t, x, ξ)) = 0 (5.3)

det(I − βD2
xϕ(t, x)) =

∫
Rd

f(t, x, ξ)dξ, (t, x, ξ) ∈ R×D × R
d. (5.4)
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This fully nonlinear version of the Vlasov–Poisson system is related to Electrody-
namics (β = −1) and Gravitation (β = 1). The formal limit β = 0 reads

∂tf +∇x · (ξ f)−∇ξ · (∇xp f) = 0,

∫
Rd

f(t, x, ξ)dξ = 1,

where p = p(t, x) substitutes for ϕ as a Lagrangemultiplier of constraint
∫
fdξ = 1.

It can be understood as a “kinetic formulation” of the Euler equations of homo-
geneous incompressible fluids (see [14, 17], for this concept). Classical solutions
(v, p) to the Euler equations correspond to very special and singular solutions of
the kinetic version of form

f(t, x, ξ) = δ(ξ − v(t, x)).

5.3. Conservative solutions à la Bouchut–Ambrosio

Let us go back to the general case, whereH and S can be chosen freely, respectively
as a Euclidean space and a bounded closed subset. The dynamical system

d2Xt

dt2
= −∇Q[Xt]

with Q[X ] = − 1
2‖X‖2 +R[X ], where R[X ] = sups∈S((X, s))− 1

2‖s‖2 is convex,
Lipschitz continuous, but not smooth (unless S is convex), cannot be treated
by the usual Cauchy–Lipschitz theory. However the second derivatives of R are
nonnegative bounded measures and we may apply the DiPerna–Lions theory [32],
as generalized by Bouchut and Ambrosio to second-order ODEs with “coefficients
of bounded variation” [1, 12]: for “almost every initial condition”(

X0,
dX0

dt

)
∈ H ×H,

d2Xt

dt2
= −∇Q[Xt] = Xt −∇R[Xt]

admits a global C1,1 solution, unique in a sense precised by Ambrosio.
Such a solution is “conservative” and time-reversible. For the system of par-

ticles discussed in the previous subsection, in particular in the framework of 1D-
Newtonian gravitation, this corresponds to elastic, non-dissipative collisions.

5.4. Rewriting of the action for “good” curves

There is a subset N ⊂ H , which is small in both the Baire category sense and
the Lebesgue measure sense (but not empty unless S is convex), outside of which
every point X ∈ H \N admits a unique closest point π[X ] on S and

Q = −1

2
dist2(·, S)

is differentiable at X with:

−∇Q[X ] = X − π[X ], Q[X ] = −1

2
‖X − π[X ]‖2 = −1

2
‖∇Q[X ]‖2.

So, the potential can be rewritten as a negative squared gradient.
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Thus, for any “good” curve which almost never hits the bad set N , the action
can be written

1

2

∫ t1

t0

∥∥∥∥dXt

dt

∥∥∥∥
2

+ ‖∇Q[Xt]‖2 dt

which can be rearranged as a perfect square up to a boundary term that does not
play any role in the least action principle

1

2

∫ t1

t0

∥∥∥∥dXt

dt
+∇Q[Xt]

∥∥∥∥
2

dt −Q[Xt1 ] +Q[Xt0 ].

5.5. Gradient-flow solutions as special least-action solutions

Due to the very special structure of the action, we find as particular least action
solutions any solution to the first-order “gradient-flow equation”

dXt

dt
= −∇Q[Xt]

(somewhat like “instantons” in Yang–Mills theory). However, this is correct only
when t → Xt ∈ H is a “good” curve (i.e., almost never hits the “bad set” where
Q is not differentiable).

5.6. Global dissipative solutions of the gradient-flow

Since Q is semi-convex, we may use the classical theory of maximal monotone
operators (going back to the 70s, as in the book by H. Brezis [28]) to solve the
initial value problem for the gradient-flow equation.

For each initial condition, there is a unique global solution s.t

d+Xt

dt
= −∇Q[Xt] , ∀t ≥ 0., X ∈ C0([0,+∞[, H). (5.5)

Here, d+

dt denotes the right-derivative at t, and, for each X ,

∇Q[X ] = −X +∇R[X ]

where ∇R[X ] is the “relaxed” gradient of the convex function R at point X , i.e.,
the unique w ∈ H with lowest norm, ‖w‖, such that

R[Z] ≥ R[X ] + ((w,Z −X)), ∀Z ∈ H.

The relaxed gradient is well defined for every X and extends the usual gradient to
the “bad set”N . These solutions in the sense of maximal monotone operator theory
are in general not conservative solutions (in the sense of Bouchut–Ambrosio) to
the original dynamical system. Indeed, they allow velocity jumps and are generally
only Lipshitz continuous and not C1.

However, they have interesting dissipative features. Indeed, the velocity may
jump with an instantaneous loss of kinetic energy.

In the case of one-dimensional gravitating particles, these jumps precisely
correspond to sticky collisions [25, 24]. The bad set N is just the collision set and
the relaxed gradient precisely encodes sticky collisions instead of elastic collisions.
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5.7. A proposal for a modified action

The conservative solutions, that are only defined for almost every initial condition,
manage to hit the bad set only for a negligible amount of time, while the gradient
flow solutions enjoy very much staying in it as soon as they enter it.

Our proposal is to pick up the nice dissipative property of the gradient flow
solutions and to lift them to the full dynamical system. For that purpose, we
introduce the “modified action”∫ t1

t0

∥∥∥∥dXt

dt

∥∥∥∥
2

+
∥∥∇Q[Xt]

∥∥2 dt (5.6)

which favors “bad” curves that stay on the “bad set” for a while. Let us recall
that ∇Q denotes the “relaxed” gradient of the semi-convex function

Q[X ] = −1

2
dist2(X,S) = −1

2
‖X‖2 + sup

s∈S

{
((X, s))− 1

2
‖s‖2

}
. (5.7)

6. Stochastic and quantum origin of the dissipative least action
principle

Using large deviation principles (or alternatively the concept of guiding wave com-
ing from quantum mechanics), we will derive, following [22] and from essentially
nothing (namely N independent Brownian particles without any interaction nor
external potential), the dissipative least action principle (5.6, 5.7), for the special
system (5.1, 5.2), in the “gravitational” case β = 1. Let us recall that this system
is a discretization of the Vlasov–Monge–Ampère system (5.3, 5.4) as well as an
approximation of the Euler equations.

The first step of our analysis is very much related to the Schrödinger problem,
as analyzed by Christian Léonard [39] and also to recent results by Robert Berman
on permanental processes related to Kählerian Geometry [10].

6.1. Localization of a Brownian point cloud

Given a point cloud

{A(α) ∈ R
d, α = 1, . . . , N},

we consider N independent Brownian curves issued from this cloud

Yt(α) = A(α) +
√
εBt(α), α = 1, . . . , N.

At a fixed time T > 0, the probability for the moving cloud to reach position
X = (X(α), α = 1, . . . , N) ∈ RdN has density

1

Z

∑
σ∈SN

N∏
α=1

exp

(
−|X(α)−A(σ(α))|2

2εT

)
=

1

Z

∑
σ∈SN

exp

(
−‖X −Aσ‖2

2εT

)

(here SN denotes the group of all permutations of the first N integers, while | · |
and ‖ · ‖ = are the euclidean norms respectively on R

d and R
Nd.)
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Since

−ε log
1

Z

∑
σ∈SN

exp

(
−‖X −Aσ‖2

2εT

)
∼ 1

2T
inf σ∈SN‖X −Aσ‖2

as ε → 0, an observer at time T feels that the particles arrived at XT ∈ RdN , have
travelled along straight lines by “optimal transport”

Xt =

(
1− t

T

)
Aσopt +

t

T
XT , σopt = Arginf σ∈SN ‖XT −Aσ‖2.

This formula implies (through a simple argument)

dXt

dt
=

Xt −Aσopt

t
, σopt = Arginf σ∈SN ‖Xt −Aσ‖2.

The resulting “deterministic” process is, as a matter fact, just the output of the
pure observation of a random process as the level of noise vanishes. From a physical
viewpoint, it is equivalent to the Zeldovich model in Cosmology [54, 45, 38, 26].

6.2. An alternative viewpoint: the pilot wave

Introducing the heat equation in the space of “clouds” X ∈ RNd

∂ρ

∂t
(t,X) =

ε

2
� ρ(t,X), ρ(t = 0, X) =

1

N !

∑
σ∈SN

δ(X −Aσ),

we follow the “pilot wave” à la de Broglie, solving the ODE dXt

dt = v(t,Xt) with
“velocity” v(t,X) = − ε

2∇X log ρ(t,X) and find

dXt

dt
=

Xt − 〈A〉
2t

, 〈A〉 =
∑

σ∈SN
Aσ exp

(
−‖Xt−Aσ‖2

2εt

)
∑

σ∈SN
exp

(
−‖Xt−Aσ‖2

2εt

) .

[As a matter of fact, a similar calculation also works for the free bosonic Schrödinger
equation: (i∂t + 1/2�)ψ = 0, ψ(0, X) =

∑
σ exp(−‖X − Aσ‖2/a2), v =

Im∇ logψ.]

Using exponential time t = exp(2θ), we may also write:

dXθ

dθ
= Xθ − 〈A〉 , 〈A〉 =

∑
σ∈SN

Aσ exp
(

−‖Xθ−Aσ‖2

2ε exp(2θ)

)
∑

σ∈SN
exp

(
−‖Xt−Aσ‖2

2ε exp(2θ)

) .

As ε → 0, we obtain (5.5) in the sense of maximal monotone operator theory:

d+Xθ

dθ
= −∇Q[Xθ] , Q[X ] = inf σ∈SN ‖X −Aσ‖2/2.
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6.3. Large deviations of the pilot system

Let us add some noise η to the “guided” trajectories (with fixed ε)

dXε
θ

dθ
= Xε

θ − 〈A〉+ η
dBθ

dθ
, 〈A〉 =

∑
σ∈SN

Aσ exp
(

−‖Xε
θ−Aσ‖2

2ε exp(2θ)

)
∑

σ∈SN
exp

(
−‖Xε

θ−Aσ‖2

2ε exp(2θ)

) .

For ε fixed and η → 0, we first get the corresponding large deviation rate function.
Then, as ε → 0 we can pass to the Γ-limit1 and obtain the dissipative action (5.6,
5.7), namely∫ (∥∥∥∥dXθ

dθ

∥∥∥∥
2

+
∥∥∇Q[Xθ]

∥∥2) dθ , Q[X ] = inf σ∈SN ‖X −Aσ‖2/2,

from which we may recover, through the least action principle, a dissipative version
of the discrete VMA system (5.1, 5.2)

d2Xθ

dθ2
= Xθ −Aσopt , σopt = Arginf σ∈SN ‖Xθ −Aσ‖2

which, in particular, includes sticky collisions in the case d = 1.
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[6] M. Arnaudon, A.B. Cruzeiro, Ch. Léonard, J.-C. Zambrini An entropic interpolation
problem for incompressible viscid fluids preprint arXiv:1704.02126.

[7] V. Arnold, Ann. Institut Fourier 16 (1966) 319–361.

[8] V. Arnold, B. Khesin, Topological methods in hydrodynamics, Applied Mathematical
Sciences, 125, Springer-Verlag 1998.

[9] J.-P. Aubin, Mathematical methods of game and economic theory, Studies in Math-
ematics and its Applications, 7. North-Holland 1979.

[10] R. Berman, arXiv:0812.4224, arXiv:1302.4045, arXiv:1501.07820.

[11] M. Bernot, A. Figalli, F. Santambrogio, Generalized solutions for the Euler equations
in one and two dimensions, J. Math. Pures Appl. 91 (2009) 137–155.

1According to L. Ambrosio (private communication).



74 Y. Brenier

[12] F. Bouchut, Renormalized solutions to the Vlasov equation with coefficients of
bounded variation, Arch. Ration. Mech. AnaBull. Inst. Math. Acad. Sin. (N.S.) 11
(2016), no. 1, 23?41.l. 157 (2001) 75–90.
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[26] Y. Brenier, U. Frisch, M. Hénon, G. Loeper, S. Matarrese, Mohayaee, Sobolevskii,
Reconstruction of the early universe as a convex optimization problem, Mon. Not.
R. Astron. Soc. 2002.

[27] Y. Brenier, G., Loeper, A geometric approximation to the Euler equations: The
Vlasov–Monge–Ampère equation, Geom. Funct. Anal. 14(2004) 1182–1218.
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Quantitative Regularity Estimates for
Compressible Transport Equations

Didier Bresch and Pierre-Emmanuel Jabin

Abstract. These notes aim at presenting some recent estimates for transport
equations with rough, i.e., non-smooth, velocity fields. Our final goal is to use
those estimates to obtain new results on complex systems where the transport
equation is coupled to other PDE’s: A driving example being the compressible
Navier–Stokes system. But for simplicity, we work in the linear setting where
the velocity field is given and only briefly sketch at the end of the notes how
to use the new theory for nonlinear estimates.

After reviewing some of the classical results, we focus on /quantita-
tive/estimates, in the absence of any bounds on the divergence of the velocity
fields (or any corresponding bound on the Jacobian of the Lagrangian flow)
for which a new approach is needed.
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Preface

We will investigate in these notes the regularity of weak solutions ρ to the advection
equation in the conservative form

∂tρ+ div(ρ u) = 0 in (0, T )× Ω,

for a velocity field u that is not smooth with u ∈ L2(0, T ; H1(Ω)) as the typical
example from Fluid Mechanics and where Ω is some smooth domain. There already
exists a large body of literature around the well-posedness of such an equation with
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fields u ∈ Lp(0, T ; W 1,p(Ω)) where p > 1; see, for example, the surveys [5, 23].
What makes our investigation in these notes specific is that

• We require quantitative estimates of regularity. While linear advection equa-
tions are interesting in themselves, we ultimately want to consider general
coupled systems for which quantitative bounds are easier to use.

• We want estimates that are compatible with strong compression effects, lead-
ing to large values of ρ, or rarefactions, leading to small values of ρ (or
even vacuum in extreme cases). This means that we cannot impose a bound
on div u, upper or lower bounds on ρ. Instead, we will only assume that
ρ ∈ L∞(0, T ; Lp(Ω)) for some p > 1.

As we will see, there now exist several types of quantitative estimates that sat-
isfy our first constraint. But many of those are not obviously compatible with
our second constraint, so that we will only introduce our main such estimate in
Section 2.

Because compression or rarefaction plays a strong role here, the conservative
advection equation may have a different behavior from the advective form

∂tφ+ u · ∇φ = 0.

The duality between those two equations and their appropriate combination will
play an important role in our calculations. Finally we should mention here that
most of the material and ideas presented here are valid for many types of spatial
domains Ω: Either Ω = R

d with appropriate decay at infinity or Ω a smooth
bounded domain with appropriate boundary conditions. Because we want to focus
on the main ideas behind the method, we will however work in the torus Πd for
simplicity.

The notes are divided in three parts: the first part focuses on Lagrangian
approaches and the log scale for advective equations (Corollary 1.7 deduced from
Theorem 1.6 due to Crippa–De Lellis [22]); the second part concerns the Eulerian
approaches (with renormalized technics due to Diperna–Lions in Theorem15 and
Theorem 2.3 and deduced compactness for compressible Navier–Stokes through
appropriate defect measure quantities due respectively to Lions in Theorem 2.5)
and the log-log scale for compressible transport equations (Theorem 2.14 in the
spirit of [17]); the last part provides an example of applications with a coupled
Stokes system with a non-monotone pressure law of the method introduced by the
two authors (see [18]).
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1. Lagrangian approaches

This section is devoted to the study of the trajectories of ODEs flows. We, of
course, hope to derive the regularity of the solution to advection equations from
the regularity of the trajectories, through the method of characteristics. For this
reason, we consider all possible trajectories and consider the flow

d

dt
X(t, x, s) = u(t,X(t, x, s)), X(t = s, x, s) = x ∈ Πd. (1)

Our perspective here favors Eulerian approaches as they are easier to use when
transport equations are coupled to other PDE’s. But in other settings there can
be many advantages to direct Lagrangian methods, not least of all the simplicity
of the formulation. For reader’s convenience, we recall some researchers (and cor-
responding dates) who have obtained important results on the subject: Lipschitz
(1868), Peano (1886), Lindenhöf (1894), Osgood (1900), Nagumo (1926), Filip-
pov (1960), Di Perna–Lions (1989), Ambrosio (2004), Crippa–De Lellis (2008) and
others.

First we recall the Cauchy–Lipschitlz theory for Lipschitz velocity field, then
we focus on explicit regularity estimates for the velocity field belonging to Sobolev
spaces in the spirit of Crippa–Delellis. Finally we explain how to find an Eulerian
formulation of those Lagrangian estimates introducing appropriate weights that
identify “good” trajectories as introduced recently in [17].

1.1. The Cauchy–Lipschitz theory

We start with the best-known approach to well-posedness of ODE’s and advection
equations whose main result can be summarized by

Theorem 1.1. Assume that u ∈ L∞(0, T ; W 1,∞(Πd)), then there exists a unique
solution X ∈ W 1,∞([0, T ]×Πd × [0, T ]) to (1) which satisfies

|X(t, x, s)−X(t, y, s)| ≤ |x− y| exp
∫
[s, t]

‖∇xu(r, .)‖L∞(Πd) dr. (2)

Moreover the map x −→ X(t, x, s) is a homeomorphism of Πd for any fixed t and
s, with

X(t,X(s, x, r), s) = X(t, x, r), in particular X(t,X(s, x, t), s) = x. (3)

We do not give the proof of this theorem which is already well known (even
for u ∈ L1(0, T ; W 1,∞(Πd)), but we emphasize that the main point is to derive
estimate (2) through the use of the Gronwall lemma and the well-known inequality

|u(t, x)− u(t, y)| ≤ ‖∇u‖L∞([0, T ]×Πd) |x− y|. (4)

We also observe that since we work on the torus, we are able to bypass all the
discussion about trajectories going to infinity and the need for maximal solutions.

The method of characteristics allows to translate such regularity on the so-
lution to advection equations as per
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Theorem 1.2. Assume that u ∈ L∞(0, T ; W 1,∞(Πd)) and that φ0 ∈ L1(Πd), then
there exists a unique solution in the sense of distribution to

∂tφ+ u · ∇φ = 0, φ|t=0 = φ0, (5)

which is given by
φ(t, x) = φ0(X(0, x, t)).

In addition if φ0 ∈ W s,p(Πd) (with 0 ≤ s ≤ 1) then

‖φ(t, .)‖W s,p(Πd) ≤ ‖φ(t, .)‖W s,p(Πd) exp

∫
[0, t]

‖∇xu(r, .)‖L∞(Πd) dr.

We again skip the proof which is straightforward using Theorem 1.1, and in
particular Equation (3). If one instead wishes to solve the conservative form of the
transport equation, it is necessary to look at the Jacobian of the map X . Define
hence

J(t, x, s) = det∇xX(t, x, s).

Then this Jacobian solves the ODE

d

dt
J(t, x, s) = J(t, x, s) div u(t,X(t, x, s)), (6)

which is well posed in this theory as div u is bounded. One then has

Corollary 1.3. Assume that u ∈ L∞(0, T ; W 1,∞(Πd)) and that φ0 ∈ L1(Πd), then
there exists a unique solution in the sense of distribution to

∂tρ+ div(ρ u) = 0, ρ|t=0 = ρ0, (7)

which is given by

ρ(t, x) =
ρ0(X(0, x, t))

J(t,X(0, x, t))
.

While we have well-posedness under the same condition, one immediately
sees that the regularity of the solution ρ also requires the corresponding regularity
of div u. This will be a recurring theme as the regularity for the convective or
conservative form (7) will be consistently more difficult to obtain.

1.2. Lagrangian estimates for u ∈ L1(0, T ; W 1,p(Πd))

It is possible to slightly extend the Gronwall like estimates in the previous section,
for example to log-Lipschitz velocity field which is critical for the uniqueness theory
of 2d-Euler (see for instance Youdovitch, J.-Y. Chemin and N. Lerner, E. Zuazua).
But the first results on global well-posedness for velocity fields in Sobolev spaces
were obtained in [25] in an Eulerian framework that we will present in the next
section.

Instead, a corresponding Lagrangian approach was only introduced much
later in [22]. In addition, [22] also provided the first explicit regularity estimates
when u ∈ W 1,p, which makes it especially relevant for our purpose. The approach
introduced in [22] has proved to be very fruitful with now many extensions. We
only quote a few examples: [9] and [11] are concerned with velocity fields u that



Quantitative Regularity Estimates 81

are obtained from a singular integral or the Riesz transform of a measure; [19] and
[34] apply to special Hamiltonian dynamics similar to Newton’s second law and
use this specific structure to require less than one derivative on u.

Let us from now on assume that u ∈ L1(0, T, W 1,p(Πd)) with p > 1. The
first question is in what sense we can solve Equation (1) as u(t, x) may not be
defined at every point x. We hence rely on some a priori estimates on the flow,

Definition 1.4. For some exponent q with 1/p + 1/q ≤ 1, the Jacobian of the
transform x −→ X(t, x, s) is bounded in Lq in the sense iff for any ψ ∈ C(Πd)∫

Πd

ψ(X(t, x, s)) dx =

∫
Πd

ψ(x)w(t, x, s) dx,

with sup
s∈[0, T ]

sup
t∈[0, s]

‖w(t, ., s)‖Lq(Πd) = L < ∞.
(8)

The function w can be interpreted as the law of the random variable X(t, x, s)
and would correspond to the previous 1/J(t,X(s, x, t), s). But it may not always
be calculated directly like that as our flow may not be differentiable. In particular
and contrary to the Lipschitz case, w may in fact vanish over large sets.

The reason for (8) will become apparent in the next section as it corresponds
to natural Lq estimates on a solution ρ to (7). The original result in [22] instead
assumed that w is bounded from below and from above. This allows to obtain ad-
ditional properties from the regularity we present here, such as the full reversibility
of the flow.

With (8), we can now define our notion of solution:

Definition 1.5. For u ∈ L1([0, s]× Πd), we say that a measurable map X(t, x, s)
solves (1) iff for all test function ψ ∈ C∞([0, s]×Π2d),∫

Πd

ψ(t, x,X(t, x, s)) dx =

∫
Πd

ψ(s, x, x) dx

−
∫ s

t

∫
Πd

(∂tψ(r, x,X(t, x, s)) + u(r,X(r, x, s)) · ∇Xψ(r,X(r, x, s))) dx dr.

(9)

The regularity estimate obtained in [22] reads

Theorem 1.6 ([22]). Assume that u ∈ L1(0, T, W 1,p(Πd)) for some 1 < p < ∞.
Consider any solution X(t, x, s) to (1) in the sense of (9) which also satisfies
(8) with 1/p + 1/q ≤ 1. Then there exists a constant C depending only on the
dimension s.t. for any ω ∈ S

d−1 and any h∫
Πd

log

(
1 +

|X(t, x, s)−X(t, x+hω, s)|
h

)
dx ≤ C+C L

∫
[t,s]

‖∇u(r, .)‖Lp(Πd) dr.

Sketch of proof. Denote for simplicity

Qh(t) =

∫
Πd

log

(
1 +

|X(t, x, s)−X(t, x+hω, s)|
h

)
dx.
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We use a doubling of variables argument by defining

QK
h (t) =

∫
Πd

∫
[t, s]

log

(
1 +

|X(t, x, s)−X(t′, x+hω, s)|
h

)
dxK(t, t′) dt′,

Q̃K
h (t) =

∫
Πd

∫
[t, s]

log

(
1 +

|X(t′, x, s)−X(t, x+hω, s)|
h

)
dxK(t, t′) dt′,

for some kernel K.
From the definition of a solution X to (1) in the sense of (9) which also

satisfies (8) with 1/p+ 1/q ≤ 1, one directly obtains that

QK
h (t) = QK

h (s)−
∫
[t, s]2

∫
Πd

u(r,X(r, x, s))

h+ |X(r, x, s)−X(t′, x+hω, s)| dxK(r, t′) dr dt′

−
∫
[t, s]2

∫
Πd

log

(
1 +

|X(t, x, s)−X(t′, x+hω, s)|
h

)
dx ∂tK(r, t′) dr dt′,

and similarly

Q̃K
h (t) = Q̃K

h (s)−
∫
[t, s]2

∫
Πd

u(r,X(r, x+ hω, s))

h+ |X(t′, x, s)−X(r, x+hω, s)| dxK(r, t′) dr dt′

−
∫
[t, s]2

∫
Πd

log

(
1 +

|X(t, x, s)−X(t′, x+hω, s)|
h

)
dx ∂tK(r, t′) dr dt′.

Now let K converge to δ(t− t′) so that

Qh(t) ≤ Qh(s) +

∫
[t, s]

∫
Πd

|u(r,X(r, x, s))− u(r,X(r, x+ hω, s))|
h+ |X(t, x, s)−X(t, x+hω, s)| dx dr.

Remark that Hypothesis (8) with (9) satisfied provides regular Lagrangian flow
associated to u in the sense of Crippa–De Lellis. The key is now instead of using
Lipschitz estimate to use the more precise inequality: There exists a constant C
depending only on the dimension s.t. for any u ∈ BV (Πd)

|u(x)− u(y)| ≤ C |x− y| (M |∇u|(x) +M |∇u|(y)), (10)

where M f is the maximal function of f

M f(x) = sup
r

1

|B(x, r)|

∫
B(x,r)

f(y) dy.

We will later give a proof of (10) in Lemma 2.9 as we will require more precise
estimates. Assuming it for the time being (one can also see [46]), this leads to

Qh(t) ≤ Qh(s) + C

∫ s

t

∫
Πd

(M |∇u(r,X(r, x, s))|+M |∇u(r,X(r, x+hω, s))|) dx dr

= Qh(s) + 2C

∫ s

t

∫
Πd

M |∇u(r,X(r, x, s))| dx dr.

Using now (8), we obtain the precise intermediary estimate

Qh(t) ≤ Qh(s) + 2C

∫ s

t

∫
Πd

M |∇u(r, x)|w(r, x, s) dx dr. (11)
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By Hölder’s inequality, this implies

Qh(t) ≤ Qh(s) + 2C sup
s∈[0, T ]

sup
t≤s

‖w(t, ., s)‖Lq

∫ s

t

∫
Πd

‖M |∇u(r, .)‖Lp dr,

which allows us to conclude the proof by recalling that the maximal function is
bounded on Lp for p > 1, that is for some constant C depending only on d

‖M f‖Lp(Πd) ≤ C ‖f‖Lp(Πd).

Interested readers are referred to [22] for details.

Compactness. While its proof is relatively straightforward, the regularity that is
provided by Theorem 1.6 may not be very clear at first. For example does it even
imply compactness in L1? We recall the Riesz–Fréchet–Kolmogorov criterion which
is an easy way to check for compactness in a space and to measure regularity by
bounding for a given smooth convolution kernel K,∫

Πd

|X(t, x, s)−Kh � X(t, ., s)| dx,

where as usualKh(x) = h−dK(x/h). With a simple bound and the use of spherical
coordinates, one may bound∫

Πd

|X(t, x, s)−Kh � X(t, ., s)| dx

≤
∫ ∫

Sd−1

∫
Πd

|X(t, x, s)−X(t, x+ h r ω, s)| dxK(r ω) dω rd−1 dr.

(12)

For any t, s, h, r, ω,R, denote I = {x ∈ Πd , |X(t, x, s)−X(t, x+h r ω, s) ≥ Rhr},
then ∫

Πd

log

(
1 +

|X(t, x, s)−X(t, x+h r ω, s)|
h r

)
dx

≥
∫
I

log

(
1 +

|X(t, x, s)−X(t, x+h r ω, s)|
h r

)
dx

≥ |I| log(1 +R)

and therefore using Theorem 1.6

|I| = |{x , |X(t, x, s)−X(t, x+h r ω, s)| ≥ Rh r}| ≤
C L ‖∇u‖L1(0,T ; Lp(Πd)) + C

log(1 +R)
.

Therefore writing Πd = I ∪ (Πd\ I) and using (12):∫
Πd

|X(t, x, s)−Kh � X(t, ., s)| dx ≤
[
CL‖∇u‖L1(0,T ; Lp(Πd)) + C

log(1 +R)

]1/p
+ CK Rh,

where CK =
∫
|z|K(z) dz and where we recall that by definition X(t, x, s) ∈ Πd.

By using the Young inequality and choosing R = 1
h log(1/h) to get convergence to
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0 with respect to h, we finally obtain∫
Πd

|X(t, x, s)−Kh � X(t, ., s)| dx

≤
(CK + C)L ‖∇u‖L1(0, T ; Lp(Πd)) + (CK + C)

log 1/h
,

(13)

which proves that we control compactness through what is essentially a log of a
derivative on X . This regularity may now be translated as a regularity on the
transport equation in advective form

Corollary 1.7. Assume that u ∈ L1(0, T, W 1,p(Πd)) for some 1 < p < ∞. Assume
that there exists a solution X(t, x, s) to (1) in the sense of (9) which also satisfies
(8) with 1/p+1/q ≤ 1. Then for any φ0 ∈ L∞(Πd), there exists a weak solution φ
to Equation (5) given by

φ(t, x) = φ0(X(0, x, t)).

Moreover if φ0 ∈ W s,q for some s > 0 and q ≥ 1 then

‖φ(t, .)−Kh � φ(t, .)‖L1 ≤
C L ‖∇u‖L1(0,T ; Lp(Πd)) + C

log 1/h
,

for some C depending only on moments of K, s and q.

As before, we only obtain directly the advective equation. Obtaining the con-
servative form would require to also solve the differential equation on the Jacobian
and derive regularity from it which is not obvious in this framework.

In the spirit of what we have proved on X previously, the following compact-
ness lemma will be important especially in the third part of these notes.

Proposition 1.8. Let ak be a sequence uniformly bounded in some Lp((0, T )×Πd)
with 1 ≤ p < ∞. Assume that Kh is a sequence of positive, bounded functions s.t.

i) ∀η > 0, sup
h

∫
Πd

Kh(x) 1{x : |x|≥η}dx < ∞,

ii) ‖Kh‖L1(Πd) −→ +∞ as h → +∞

If ∂tak ∈ Lq([0, T ]×W−1,q(Πd)) (with q ≥ 1) uniformly in k and

lim sup
k

[ 1

‖Kh‖L1

∫ T

0

∫
Π2d

Kh(x−y) |ak(t, x)−ak(t, y)|p dx dy dt
]
−→ 0, as h → 0

then ak is compact in Lp([0, T ]×Πd). Conversely if ak is compact in Lp([0, T ]×
Πd) then the above quantity converges to 0 with h.

Remark. If we denote K̄h the normalized kernel

K̄h =
Kh

‖Kh‖L1

.
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Write

‖ak − K̄h �x ak‖pLp ≤ 1

‖Kh‖pL1

∫
Πd

(∫
Πd

Kh(x− y)|ak(t, x)− ak(t, y)|dx
)p

dy

≤ 1

‖Kh‖L1

∫
Π2d

Kh(x− y)|ak(t, x) − ak(t, y)|pdx dy

which converges to zero as h → 0 uniformly in k by assumption. On the other
hand for a fixed h, the sequence Kh �x uk in k is compact in x. This completes
the compactness in space. Concerning the compactness in time, we just have to
couple everything and use the uniform bound on ∂tak as per the usual Aubin–
Lions–Simon Lemma.

1.3. An Eulerian formulation

A very natural question following from the previous analysis is whether one can
find an Eulerian formulation of those Lagrangian estimates. One could think for
example of trying Wasserstein distances; we will not pursue this idea here but
refer, for example, to [45]. Instead, here we will interpret the proof of Theorem
1.6 as identifying the “good” trajectories where the flow has some regularity and
then proving through a sort of equivalent of (8) that those good trajectories have
large probability, that means w does not vanish too much.

The tracking of good trajectories may be done through an auxiliary equation
on an appropriate weight w(t, x) through

∂tw + u · ∇w = −λM |∇u| w, w|t=0 = 1. (14)

Then one may prove as a first step

Proposition 1.9. Assume that φ is a renormalized solution to the transport equation
in advective form, Equation (5). Then if w solves Equation (14) with λ large
enough, one has that for any k > 0, any h∫

Π2 d

|φ(t, x) − φ(t, y)|
(h+ |x− y|)k w(t, x)w(t, y) dx dy ≤

∫
Π2 d

|φ0(x)− φ0(y)|
(h+ |x− y|)k dx dy.

Remark 1.10. We will define precisely what is meant by renormalized solutions
in the next section. At this time, it should be interpreted as allowing to perform
similar calculations as if u was smooth. Even in such a case, the proposition could
for example be used to consider a sequence of solutions φn for a sequence of
regularized velocity fields un. Quantitative regularity estimates would then be
used to derive compactness.

Remark 1.11. Without weights, a quantity like

sup
h≤1

∫
Π2 d

|φ(t, x)− φ(t, y)|
(h+ |x− y|)k dx dy,

would actually control a Besov regularity of φ at order k − d (and hence Sobolev
regularity at any lower order). Unfortunately, such regularity cannot hold for so-
lutions to (5) with rough velocity fields, as the examples in [2] and [33].
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Sketch of proof. Formal calculations show that

∂t|φ(t, x)− φ(t, y)|+ u(t, x) · ∇x|φ(t, x)− φ(t, y)|+ u(t, y) · ∇y|φ(t, x)− φ(t, y)| = 0.

Such an equality will again be justified in the next section. Hence still formally

∂t(|φ(t, x)− φ(t, y)|w(t, x)w(t, y)) + u(t, x) · ∇x(|φ(t, x)− φ(t, y)|w(t, x)w(t, y))
+ u(t, y) · ∇y(|φ(t, x)− φ(t, y)|w(t, x)w(t, y))

= −λ (M |∇u|(t, x) +M |∇u|(t, y)) |φ(t, x)− φ(t, y)|w(t, x)w(t, y).

Multiplying by (h+ |x− y|)−k and integrating by parts yields

d

dt

∫
Π2 d

|φ(t, x) − φ(t, y)|
(h+ |x− y|)k w(t, x)w(t, y) dx dy

= k

∫
Π2 d

|φ(t, x) − φ(t, y)|
(h+ |x− y|)k+1

w(t, x)w(t, y) (u(t, x) − u(t, y)) · x− y

|x− y| dx dy

+

∫
Π2 d

|φ(t, x) − φ(t, y)|
(h+ |x− y|)k w(t, x)w(t, y) (div u(t, x) + div u(t, y)) dx dy

− λ

∫
Π2 d

|φ(t, x) − φ(t, y)|
(h+ |x− y|)k w(t, x)w(t, y) (M |∇u|(t, x) +M |∇u|(t, y)) dx dy.

Using inequality (10) and the symmetry in x and y, one finally deduces

d

dt

∫
Π2 d

|φ(t, x) − φ(t, y)|
(h+ |x− y|)k w(t, x)w(t, y) dx dy

≤ 2

∫
Π2 d

|φ(t, x) − φ(t, y)|
(h+ |x− y|)k w(t, x)w(t, y) (div u(t, x)− (λ− k)M |∇u|(t, x)) dx dy.

Since M |∇u|(t, x) ≥ |∇u(t, x)| ≥ div u(t, x), taking λ ≥ k + 1 gives the result.

Proposition 1.9 is in itself insufficient as obviously if w vanishes everywhere
for instance then it contains no information. It is hence necessary to control the
set where w is small, as by

Lemma 1.12. Assume that u ∈ L1(0, T ; W 1,p(Π2d)) with p > 1 and that there
exists a renormalized solution ρ ∈ L∞(0, T ; Lq(Π2d)) to Equation (7) with 1/p+
1/q ≤ 1, then∫

Πd

| logw(t, x)| ρ(t, x) dx ≤ Cd λ ‖u‖L1(0,T ; W 1,p(Π2d)) ‖ρ‖L∞(0,T ; Lq(Π2d)).

Sketch of proof. Note that since w solves (14) then using maximum principle w ≤ 1
a.e. Hence | logw| = − logw and using renormalization

∂t| logw(t, x)| + u · ∇x| logw(t, x)| = λM |∇u|(t, x).
Multiplying by ρ and integrating yields∫

Πd

| logw(t, x)| ρ(t, x) dx ≤ λ

∫ t

0

∫
Πd

M |∇u|(s, x) ρ(s, x) dx ds,
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or by the Hölder estimate∫
Πd

| logw(t, x)| ρ(t, x) dx ≤ λ ‖M |∇u|‖L1(0, T ; Lp(Π2d)) ‖ρ‖L∞(0, T ; Lq(Π2d)).

Using the fact that the maximal operator is continuous on Lp for p > 1 concludes
the proof.

It is now relatively simple to combine Lemma 1.12 to Proposition 1.9 to
obtain

Theorem 1.13. Assume that u ∈ L1(0, T ; W 1,p(Π2d)) with p > 1 and that there
exists a renormalized solution ρ ∈ L∞(0, T ; Lq(Π2d)) to Equation (7) with 1/p+
1/q ≤ 1. Consider any renormalized solution φ ∈ L∞(0, T ; Lr(Πd)) to Equation
(5) then for any α > 0∫

Π2 d

|φ(t, x) − φ(t, y)|
(h+ |x− y|)k 1 ∧ ρ(t, x) 1 ∧ ρ(t, y) dx dy

≤ h−α

∫
Π2 d

|φ0(x)− φ0(y)|
(h+ |x− y|)k dx dy

+ C
λhd−k

| log h|1−1/r
‖φ‖L∞(0,T ; Lr(Πd)) ‖u‖

1−1/r

L1(0, T ; W 1,p(Π2d))
‖ρ‖1−1/r

L∞(0,T ; Lq(Π2d))
,

for some constant C depending only on the dimension d and α.

Remark 1.14. The theorem provides compactness on φ where ρ does not vanish.
For instance if ρ(t, x) ≥ ρ̄ > 0 and φ0 ∈ Wα,1, then we may deduce that∫

Πd

|φ(t, x) −Kh � φ(t, x)| dx ≤ L | log h|−1,

where L depends on the various norm andKh = C−1 (h+|x|)d−k can be interpreted
as a convolution kernel. We hence have in that case an equivalent of Corollary 1.7.

Remark 1.15. In general however, and contrary to Corollary 1.7, we only control
the regularity of φ where ρ > 0. This is because the assumption that there exists a
ρ in Lq is much weaker than the assumption on the Jacobian (8). In fact, translated
in Eulerian framework, (8) is equivalent to asking that for any t0 ∈ [0, T ], there
exists ρt0 ∈ L∞

t Lq
x solving (see [23] for example)

∂tρt0 + div(ρt0 u) = 0, ρt0 |t=t0 = 1.

Unfortunately, in our applications, we will not have such a family of solutions but
only one. . .

Proof. The first part of the proof would be to prove that there exists an appropriate
weight w(t, x) solving (14) and such that we may apply Proposition 1.9 and Lemma
1.12. We will however skip this argument at the time being before we go back to
the existence question for transport equations in the next section.
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The rest of the proof is a simple interpolation, by decomposing Π2d into the
set {x, y | w(t, x) > η, w(t, y) > η} and the complementary set∫

Π2 d

|φ(t, x)− φ(t, y)|
(h+ |x− y|)k 1 ∧ ρ(t, x) 1 ∧ ρ(t, y) dx dy

≤ 1

η2

∫
Π2 d

|φ(t, x)− φ(t, y)|
(h+ |x− y|)k w(t, x)w(t, y) dx dy

+

∫
x, y | w(t,x)≤η,

or
w(t,y)≤η

|φ(t, x)| + |φ(t, y)|
(h+ |x− y|)k 1 ∧ ρ(t, x) 1 ∧ ρ(t, y) dx dy.

By symmetry the last term is bounded by∫
x, y | w(t,x)≤η,

or
w(t,y)≤η

|φ(t, x)| + |φ(t, y)|
(h+ |x− y|)k 1 ∧ ρ(t, x) 1 ∧ ρ(t, y) dx dy

≤ C hd−k

∫
x, w(t,x)≤η

(|φ(t, x)| +Kh � |φ|) 1 ∧ ρ(t, x) dx,

whereKh(x) = C−1 hk−d (h+|x|)k with C s.t. ‖Kh‖L1 = 1. By the Hölder estimate∫
x, w(t,x)≤η

(|φ(t, x)| +Kh � |φ|) 1 ∧ ρ(t, x) dx

≤ 2 ‖φ‖L∞(0,T ; Lr(Πd))

(∫
x, w(t,x)≤η

1 ∧ ρ(t, x) dx

)1−1/r

.

Now ∫
x, w(t,x)≤η

1 ∧ ρ(t, x) dx

≤ 1

| log η|

∫
x, w(t,x)≤η

| logw(t, x)| ρ(t, x) dx

≤ Cd
λ

| log η| ‖u‖L1(0,T ; W 1,p(Π2d)) ‖ρ‖L∞(0,T ; Lq(Π2d)),

by using Lemma 1.12. Using now Proposition 1.9 and combining our estimates,
we find∫

Π2 d

|φ(t, x) − φ(t, y)|
(h+ |x− y|)k 1 ∧ ρ(t, x) 1 ∧ ρ(t, y) dx dy

≤ 1

η2

∫
Π2 d

|φ(t, x) − φ(t, y)|
(h+ |x− y|)k w(t, x)w(t, y) dx dy

+ C
λ1−1/r hd−k

| log η|1−1/r
‖φ‖L∞(0,T ; Lr(Πd)) ‖u‖

1−1/r

L1(0,T ; W 1,p(Π2d))
‖ρ‖1−1/r

L∞(0,T ; Lq(Π2d))
,

which gives the desired result after taking η = hα/2. �
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We can develop almost the same estimates and theory for the conservative
form, starting with

Proposition 1.16. Assume that ρ is a renormalized solution to the transport equa-
tion in conservative form, Equation (7). Then if w solves Equation (14) with λ
large enough, one has that for any k > 0, any h∫

Π2 d

|ρ(t, x)− ρ(t, y)|
(h+ |x− y|)k w(t, x)w(t, y) dx dy

≤
∫
Π2 d

|ρ0(x) − ρ0(y)|
(h+ |x− y|)k dx dy

+
1

2

∫ t

0

∫
Π2 d

| div u(s, x)− div u(s, y)|
(h+ |x− y|)k (ρ(s, x) + ρ(s, y)) dx dy ds.

Sketch of proof. The argument follows exactly the same steps as before, starting
with the modified equation

∂t|ρ(t, x)− ρ(t, y)|+ u(x) · ∇x|ρ(t, x)− ρ(t, y)|+ u(y) · ∇y|ρ(t, x)− ρ(t, y)|

≤ | div u(t, x)− div u(t, y)|
2

(ρ(t, x) + ρ(t, y))

+
|ρ(t, x)− ρ(t, y)|

2
(| div u(t, x)|+ | div u(t, y)|.

Hence, we obtain

d

dt

∫
Π2 d

|ρ(t, x)− ρ(t, y)|
(h+ |x− y|)k w(t, x)w(t, y) dx dy

≤ k

∫
Π2 d

|ρ(t, x)− ρ(t, y)|
(h+ |x− y|)k+1

w(t, x)w(t, y) (u(t, x) − u(t, y)) · x− y

|x− y| dx dy

+ 2

∫
Π2 d

|ρ(t, x) − ρ(t, y)|
(h+ |x− y|)k w(t, x)w(t, y) (| div u(t, x)|+ | div u(t, y)|) dx dy

− λ

∫
Π2 d

|ρ(t, x) − ρ(t, y)|
(h+ |x− y|)k w(t, x)w(t, y) (M |∇u|(t, x) +M |∇u|(t, y)) dx dy

+
1

2

∫
Π2 d

| div u(t, x)− div u(t, y)|
(h+ |x− y|)k (ρ(t, x) + ρ(t, y))w(t, x)w(t, y)dx dy.

The rest follows as before with only the last term remaining which yields the
proposition since w ≤ 1 by the maximum principle.

Lemma 1.12 does not need to be modified and thus from Proposition 1.16,
we may deduce

Theorem 1.17. Assume that u ∈ L1(0, T ; W 1,p(Π2d)) with p > 1 and that there
exists a renormalized solution ρ ∈ L∞(0, T ; Lq(Π2d)) to Equation (7) with 1/p+
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1/q ≤ 1. Then for any α > 0∫
Π2 d

|ρ(t, x)− ρ(t, y)|
(h+ |x− y|)k 1 ∧ ρ(t, x) 1 ∧ ρ(t, y) dx dy

≤ h−α

∫
Π2 d

|ρ0(x)− ρ0(y)|
(h+ |x− y|)k dx dy

+
1

2 hα

∫ t

0

∫
Π2 d

| div u(s, x)− div u(s, y)|
(h+ |x− y|)k (ρ(t, x) + ρ(t, y)) dx dy ds

+ C
λhd−k

| log h|1−1/r
‖u‖1−1/q

L1(0,T ; W 1,p(Π2d))
‖ρ‖2−1/q

L∞(0,T ; Lq(Π2d))
,

for some constant C depending only on the dimension d and α.

Compared to the result for the advective equation (5), this new estimate
includes a term with div u(t, x)−div u(t, y). As we have seen early on, it is natural
that the regularity of ρ involves the corresponding regularity of div u.

As before the regularity is obtained only where ρ does not vanish. However,
there is an added twist that shows grounds for some optimism here, as now ρ is
the same function for weight and for the regularity.

So, for instance, if ρ(t, x) = ρ(t, y) = 0, then obviously one has as well that
ρ(t, x)− ρ(t, y) = 0 and there is nothing to control.

Unfortunately, this does not quite work: The problem occurs when only one
of ρ(t, x) or ρ(t, y) vanishes (or is small). If ρ(t, y) = 0, then Theorem 1.17 does
not provide any bound and therefore ρ(t, x)− ρ(t, y) could well be large.

The problem is that we are using the products, 1∧ρ(t, x) 1∧ρ(t, y) and earlier
w(t, x)w(t, y), as weights. Instead, one would like to work with weights which only
vanish if both ρ(t, x) and ρ(t, y) vanish; a good example is the sum

1 ∧ ρ(t, x) + 1 ∧ ρ(t, y), w(t, x) + w(t, y).

Contrary to what it may first seem, this will impose major changes in our approach.
Theorem 1.17 compares “good” trajectories and we would now have to compare
a “good” to a “bad” trajectory. This will require proving that there are not too
many bad trajectories around a good one and forces to move away from Lagrangian
approaches.

2. Examples of Eulerian approaches: Renormalized solutions

We now start by reviewing the classical notion of renormalized solutions. Those
provide the basic tools to obtain well-posedness for the various equations (or auxil-
iary equations) and are hence useful to justify our formal calculations. By empha-
sizing the notion of commutator estimates central to Eulerian approaches, they also
lead to the method presented at the end of this section which is finally able to an-
swer our main question. Then we present a log-log scale for compressible transport
equations propagating regularity with weights and describing their properties.
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2.1. Basic notions of renormalized solutions

Renormalized solutions were introduced in the seminal contribution [25]. This was
the first result to obtain well-posedness for transport equations with velocity fields
in W 1,p. And whereas almost all previous contributions were based on the study
of the characteristics, [25] introduced a purely Eulerian method from which one
could deduce the properties of the ODE and the flow if so desired.

We recall here our conservative or continuity equation

∂tρ+ div(ρ u) = 0, ρ|t=0 = ρ0. (15)

A weak solution for (15) is any ρ ∈ L1
loc(R+ × Πd) s.t. ρ u ∈ L1

loc(R+ × Πd) and
for any test function ψ ∈ C∞

c (R+ ×Πd)∫
R+

∫
Πd

(∂tψ(t, x) + u · ∇xψ(t, x)) ρ(t, x) dx dt = −
∫
Πd

ρ0(x)ψ(0, x) dx.

The dual advective form is

∂tφ+ u · ∇φ = 0, φ|t=0 = φ0, (16)

and a weak solution for (16) is any φ ∈ L1
loc(R+ × Πd) s.t. φu ∈ L1

loc(R+ × Πd),
φ div u ∈ L1

loc(R+ ×Πd) and for any test function ψ ∈ C∞
c (R+ ×Πd)∫

R+

∫
Πd

(∂tψ(t, x) + u · ∇xψ(t, x) + div uψ(t, x)) ρ(t, x) dx dt

= −
∫
Πd

ρ0(x)ψ(0, x) dx.

Following the presentation of the theory given in [25], one defines the key notion
of renormalized solutions

Definition 2.1. A function ρ ∈ L∞(0, T ; Lq(Πd)) is a renormalized solution to
Equation (15), where u ∈ L1(0, T ; Lp(Πd)) and div u ∈ L1(0, T ; Lp(Πd)) with
1/p+ 1/q ≤ 1, if ρ is a weak solution and for any χ ∈ C1 ∩W 1,∞(R), one has in
the sense of distributions

∂tχ(ρ) + div(χ(ρ)u) = div u (χ(ρ)− ρχ′(ρ)). (17)

Remark that the various products ρu, χ(ρ)u from the assumed bounds on
ρ, u and div u since |χ(ρ)| ≤ C + C |ρ|. Of course, a similar definition could be
introduced for the advective form (16).

Ideally for a given velocity field u, all weak solutions would automatically be
renormalized, leading to the definition

Definition 2.2. Assume that u ∈ L1(0, T ; Lp(Πd)), div u ∈ L1(0, T ; Lp(Πd)).
Equation 15 is said to have the renormalization property for this particular u if
any weak solution ρ ∈ L∞(0, T ; Lq(Πd)) with 1/p+ 1/q ≤ 1 is renormalized.

Readers will immediately perceive the convenience of having a renormalized
solution as it easily allows to manipulate various nonlinear quantities. However,
the key point is that renormalized solutions to (16) are well behaved.
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We start with uniqueness:

Theorem 2.3 ([25]). Assume u ∈ L1(0, T ; Lp(Πd)), div u ∈ L1(0, T ; Lp(Πd)).
Assume moreover that Equation (15) has the renormalization property for u. Then
there exists at most one weak solution ρ ∈ L∞(0, T ; Lq(Πd)) with 1/p+ 1/q ≤ 1
for a given ρ0.

Proof. Given two solutions ρ1 and ρ2 in L∞(0, T ; Lq(Πd)), we define ρ = ρ1 − ρ2.
ρ is also a weak solution and hence a renormalized one.

Choose a sequence χn ∈ C1 ∩W 1,∞ s.t. χn(ξ) → |ξ| in L∞. By applying the
definition of a renormalized solution to χn(ρ) and passing to the limit in n, one
finds that in the sense of distributions

∂t|ρ|+ div(|ρ|u) = 0.

Let us now use the function constant and equal to 1 as test function; one has that

d

dt

∫
Πd

|ρ(t, x)| dx = 0.

Since ρ0 = 0, we conclude that ρ(t, x) = 0 for a.e. t, x. �
Existence can be obtained trivially but is a priori more demanding as it

requires an L∞ bound on the divergence

Theorem 2.4. Assume u ∈ L1(0, T ; Lp(Πd)) for p < ∞, and assume now that
div u ∈ L1(0, T ; L∞(Πd)). Then for a given ρ0 ∈ Lq(Πd) with q > 1 and 1/q +
1/p ≤ 1, there exists at least one weak solution ρ ∈ L∞(0, T ; Lq(Πd)) to Equa-
tion (15).

Proof. We consider a sequence of smooth (for example Lipschitz) un which con-
verges to u in L1(0, T ; Lp(Πd)). Since un is smooth, the Cauchy–Lipschitz theory
provides a sequence ρn of solutions to

∂tρn + div(ρn un) = 0, ρn|t=0 = ρ0.

Since div u ∈ L1(0, T ; L∞(Πd)), it is possible to choose the sequence un s.t.

sup
n

‖ div un‖L1(0,T ; L∞(Πd)) < ∞.

On the other hand, a direct calculation shows that

‖ρn(t, .)‖qLq(Πd)
≤ (q − 1) ‖ρn(t, .)‖qLq(Πd)

exp ‖ div u‖L1(0,T ; L∞(Πd)).

Therefore ρn is uniformly bounded in L∞(0, T ; Lq(Πd)). We may hence extract a
weak-* subsequence converging to ρ ∈ L∞(0, T ; Lq(Πd)).

Passing to the limit in every term, one obtains a weak solution to (15). �
This existence result does not use the renormalization property and it is

natural to ask if it can be improved so that we may obtain strong convergence of
the sequence of approximation. We give such an argument below based on using
χ(ξ) = ξ log ξ which forms the basis of the compactness method introduced in [38]
for the compressible Navier–Stokes equation.
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Theorem 2.5 ([25, 38]). Consider a sequence un converging strongly, in the space
L1(0, T ;Lp(Πd)), to u for p < ∞, and assume moreover that div un converges
to div u ∈ L1(0, T ; L∞(Πd)). Consider further any sequence ρn of renormalized
solutions to

∂tρn + div(ρn un) = 0.

Assume that ρn is uniformly bounded in ρ ∈ L∞(0, T ; Lq(Πd)) with q > 1 and
1/q + 1/p ≤ 1, that ρn converges weak-* to ρ, that ρ0n converges strongly to ρ0 ∈
Lq(Πd) and that ρ is a renormalized solution to (15). Then ρn converges strongly
to ρ in L1([0, T ]×Πd).

Proof. First of all, we remark that we may use χ(ξ) = ξ log ξ in the definition
of a renormalized solution even though χ �∈ W 1,∞. Consider any velocity field
u ∈ L1([0, T ], Lp(Πd)) with div u ∈ L1([0, T ], Lp(Πd)), and a renormalized
solution to (15), ρ ∈ L∞([0, T ], Lq(Πd)) with 1/p+ 1/q < 1.

Choose any sequence χk ∈ C1 ∩W 1,∞ that converges pointwise to χ and is
bounded by χ(ξ) for ξ large. Since 1/p + 1/q < 1, it is straightforward to check
that χk(ρ)u converges to χ(ρ)u and that Equation (17) holds for χ(ξ) = ξ log ξ.

We first apply this to ρn and un to find that

∂tρn log ρn + div (ρn log ρn un) = − divun ρn.

We may pass to the limit in this equation. But of course, since we have not proved
compactness of ρn yet, we cannot identify the weak-* limit of ρn. Let us hence
denote

ρ log ρ = weak-* lim ρn log ρn.

We obtain

∂tρ log ρ+ div (ρ log ρu) = − div u ρ.

From the proof of Theorem 2.4, we know that ρ and u solve (15) which by as-
sumption has the renormalization property. Therefore we also have

∂tρ log ρ+ div(ρ log ρu) = − div u ρ.

By taking the difference and integrating over Πd, this leads to

d

dt

∫
Πd

(ρ log ρ− ρ log ρ) dx = 0.

By the compactness of ρ0n, we finally deduce that∫
Πd

(ρ log ρ− ρ log ρ) dx = 0.

But by the convexity of χ = ξ log ξ, one has that

ρ log ρ− ρ log ρ ≥ 0,

concluding that

ρ log ρ = ρ log ρ,

and proving the compactness of ρn. �
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Theorem 2.5 is our first result proving compactness of a sequence ρn without
any assumption on the essential boundedness on the divergence or any comparable
assumption on the vacuum. Of course, it does not provide a quantitative regularity
estimate and it relies explicitly on the structure of the limit equation, which can be
a clear drawback to study nonlinear coupled models. It also remains an if-theorem
at this stage as we have not yet found any sufficient condition on u to guarantee
that Equation (15) has the renormalization property. This will be the object of
the next section around the so-called commutator estimates.

One may make a last remark on our approach so far, which is the requirement
that 1/p+ 1/q ≤ 1. We, of course, need to make sense of the product ρ u but also
of the product ρ div u. However, this last requirement does not seem optimal as
a more clever use of the renormalization χ should make it unnecessary. This is in
fact the basis for the improvement on the Lions theory developed in particular in
[29, 30].

2.2. Proving the renormalization property: Commutator estimates

The main breakthrough of [25] was to present a very straightforward proof of

Theorem 2.6 ([25]). Assume that u ∈ L1(0, T ;W 1,p(Πd)), then Equation (15) has
the renormalization property.

Obviously, if u ∈ L1(0, T ;W 1,p(Πd)) then div u ∈ L1(0, T ;Lp(Πd)) and all
the results of the previous section automatically apply. There are even more con-
sequences to having the renormalization property and we refer again to [5, 23] for
a more thorough treatment.

The ideas introduced in [25] started a now very active field of research about
the minimal conditions on u guaranteeing that (15) has the renormalization prop-
erty. A crucial initial effort culminated in [3, 4] (after corresponding results in the
kinetic case in [10]) to lower the requirement to u ∈ L1

tBVx with div u ∈ L1
t,x,

which is critical to many applications to hyperbolic systems. In view of the coun-
terexample developed in [24], the BV regularity seems to be optimal in such a
general setting.

The commutator estimates can also be partially translated on the charac-
teristics as in [32] and renormalized solutions applied to various settings such as
degenerate diffusion in [35].

It is possible to study further the regularity of renormalized solutions to (15);
almost everywhere differentiability in [6] for instance. But as we mentioned before
the first quantitative regularity estimate had been obtained in [22].

Proof. Consider any ρ ∈ L∞(0, T ;Lq(Πd)), weak solution to (15). For any χ ∈
C1 ∩W 1,∞, we have to prove that (17) holds. If ρ was smooth then showing (17)
would be a straightforward consequence of the chain rule. The main idea in the
proof of Theorem 2.6 is hence simply to regularize ρ by convolution.

Hence choose any smooth K ∈ C1(Πd) with suppK concentrated near 0 so
that Kε(x) = ε−dK(x/ε) is an approximation of the identity as ε → 0.
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Denote ρε = Kε � ρ. ρε cannot solve (15) exactly (unless u is constant) but
one may write

∂tρε + div(ρε u) = Rε, (18)

where the commutator reads

Rε(x) =

∫
Πd

∇Kε(x − y) · (u(t, x)− u(t, y)) ρ(t, y) dy + ρε(t, x) div u(t, x). (19)

The heart of the method is hence to prove through a commutator estimate that
Rε converges strongly to 0. For a fixed ρ and u, this is straightforward through

Proposition 2.7 (Commutator estimate from [25]). Let u ∈ L1(0, T ;W 1,p(Πd)) and
that ρ ∈ L∞([0, T ], Lq(Πd)) then Rε −→ 0 in L1([0, T ]×Πd) as ε → 0 where Rε

is defined by (19).

Assuming for the time being that Proposition 2.7 holds, we can easily con-
clude. Now ρε is smooth and we may apply the chain rule on Equation (18) to
find

∂tχ(ρε) + div(χ(ρε)u) = div u (χ(ρε)− ρε χ
′(ρε)) + χ′(ρε)Rε. (20)

Since χ′ is bounded we know from the proposition that χ′(ρε)Rε → 0.

Since Kε is an approximation of the identity as ε → 0, then ρε converges
strongly to ρ in Lr(0, T ;Lq(Πd)) for any r < ∞. Therefore χ(ρε) converges
strongly to χ(ρε) in the same space. Therefore χ(ρε) converges weak-* to χ(ρ)
in L∞(0, T ;Lq(Πd)). Passing to the limit in each term in Equation (20), we de-
duce Equation (17).

Proof of Proposition 2.7. There only remains to prove Proposition 2.7. Note that
for a.e. x, y

u(t, x)− u(t, y) =

∫ 1

0

(x− y) · ∇u(t, θ x+ (1− θ) y) dθ,

which lets us write∫
Πd

∇Kε(x− y) · (u(t, x)− u(t, y)) ρ(t, y) dy

=

∫ 1

0

∫
Πd

(x− y)⊗∇Kε(x− y) : ∇u(t, θ x+ (1− θ) y) ρ(t, y) dy dθ.

Remark that

(x−y)⊗∇Kε(x−y) = ε−d x− y

ε
⊗∇K((x−y)/ε) = ε−d L((x−y)/ε) = Lε(x−y),

with L(x) = x⊗∇K(x). Observe that by integration by parts∫
Πd

Lij(x) dx =

∫
Πd

xi ∂jK(x) dx = −δij

∫
Πd

K(x) dx = −δij .
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Hence as a convolution operator, Lε is an approximation of −δ(x) I with δ(x) the
Dirac mass and I the identity matrix. Therefore strongly in L1∫ 1

0

∫
Πd

(x−y)⊗∇Kε(x−y) : ∇u(t, θ x+(1−θ) y) ρ(t, y) dy dθ → − div u(t, x) ρ(t, x),

proving that Rε → 0 in L1. �

As simple as the previous proof is, since we are looking for quantitative esti-
mates, a natural question is whether it would be possible to quantify the previous
argument and in particular Proposition 2.7. This does not seem to be easy as it
would imply giving an explicit rate of convergence on the commutator Rε without
using any additional regularity on ρ or ∇u.

Such an approach was nevertheless initiated in [7] and simplified in [8] from
which we quote

Proposition 2.8. Let 1 < p < ∞, ∃C < ∞ depending only on p and the dimension
s.t. for all u ∈ W 1,p(Πd) with 1 ≤ p ≤ 2 and for all g ∈ L2p∗

with 1/p∗ = 1− 1/p,∫
Π2d

∇Kh (x− y) (u (x)− u (y)) |g (x)− g (y)|2 dx dy

≤ C ‖∇u‖B0
p,q

|log h|1−1/q ‖g‖2L2 p∗

+ C ‖div u‖L∞

∫
R2d

Kh (x− y) |g (x)− g (y)|2 dx dy,

where Kh(x) = (h+ |x|)d for x small enough. In particular using q = 2,∫
Π2d

∇Kh (x− y) (u (x)− u (y)) |g (x)− g (y)|2 dx dy

≤ C ‖∇u‖Lp |log h|1/2 ‖g‖L2 p∗

+ C ‖div u‖L∞

∫
R2d

Kh (x− y) |g (x)− g (y)|2 dx dy.

The proof of this proposition will not be given here, as it is rather complex
and requires a careful analysis of the cancellations in the expression. We emphasize
that this commutator estimate only works for kernels with the critical singularity
in |x|−d at x = 0; we will understand better the reason for that in the next section.

The straightforward estimate would give∫
Π2d

∇Kh (x− y) (a (x)− a (y)) |g (x)− g (y)|2 dx dy ∼ | log h|,

and therefore Proposition 2.8 gains a factor | log h|1/2 as a rate of convergence and
would later yield a corresponding gain of derivative. We are hence again, as in the
first section, at a log scale for the gain of regularity.

The underlying result behind Proposition 2.8 has recently been improved in
[44] to a gain of a full | log h| (at the cost of a much more complicated analysis),
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see also [36]. This kind of critical semi-norm has also been used in other contexts,
see, for example, [12].

However, from our point of view in these notes, the major drawback of Propo-
sition 2.8 is that it requires div u to be bounded. There are major benefits to having
a self-contained and quantitative commutator estimate, which would be more ap-
parent if we were to consider vanishing viscosity or other approximations of (15).
But our goal of obtaining estimates that do not require a bounded divergence will
instead lead us to combine some of the ideas in the proof of Proposition 2.8 with
the Lagrangian approach (or the Eulerian formulation of the Lagrangian approach)
explained in the previous section.

2.3. The log log scale for compressible transport equations

We here present the main estimate of these notes for the linear convective equation
(15). This estimate will also form the basis for the analysis of some simple nonlinear
models in the next section. We follow closely here [17, 18] where the method has
been introduced.

2.3.1. Technical preliminaries. As we had seen in the previous section, there is
a technical difficulty if we try to use weights like w(t, x) + w(t, y). To be more
precise here, we would have to try (and fail) to control M |∇uk|(y) by M |∇uk|(x).
Instead, we have to be more precise than (10) in order to avoid this and use more
sophisticated tools. First one replaces (10) by

Lemma 2.9. There exists C > 0 s.t. for any u ∈ W 1,1(Πd), one has

|u(x)− u(y)| ≤ C |x− y| (D|x−y|u(x) +D|x−y|u(y)),

where we denote

Dhu(x) =
1

h

∫
|z|≤h

|∇u(x+ z)|
|z|d−1

dz.

Proof. A full proof of such a well-known result can, for instance, be found in [19]
in a more general setting namely u ∈ BV . One possibility is simply to consider
trajectories γ(t) from x to y which stays within the ball of diameter |x − y| to
control

|u(x)− u(y)| ≤
∫ 1

0

γ′(t) · ∇u(γ(t)) dt.

And then to average over all such trajectories with length of order |x− y|. �

Note that this result actually implies the estimate (10) as one can check,
through a simple dyadic decomposition, that there exists C > 0, for any u ∈
W 1,p(Πd) with p ≥ 1

Dh u(x) ≤ CM |∇u|(x). (21)

We leave such a proof to the reader and instead emphasize that the key improve-
ment in using Dh is that small translations of the operator Dh are actually easy
to control.
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Let us first specify precisely the kernel Kh that we will use from now on.
Choosing [−1, 1]d as a representative of the torus Πd, we choose Kh ∈ W 1,∞ with

Kh(x) =
1

(h+ |x|)d , for |x| ≤ 1

2
, 0 ≤ Kh(x) ≤ 1, suppKh ⊂ [−3/4, 3/4]d.

(22)
We insist here on the precise exponent d in Kh which is critical for integrability
and that we have seen in Proposition 2.8. In particular

| log h|
C

≤
∫
Πd

Kh(x) dx ≤ C | log h|.

We hence also define the normalized kernel

Kh(x) =
Kh(x)∫

Πd Kh(y) dy
, (23)

which is now a standard convolution kernel or approximation of identity.

The main point here is the estimate

Lemma 2.10. For any 1 < p < ∞, there exists C > 0 s.t. for any u ∈ H1(Πd)∫
Πd

Kh(z) ‖D|z| u(.)−D|z| u(.+ z)‖Lp dz ≤ C ‖u‖B1
p,1

, (24)

where B1
p,1 is the classical Besov space. As a consequence for any 1 < p < 2∫

Πd

Kh(z) ‖D|z| u(.)−D|z| u(.+ z)‖Lp dz ≤ C | log h|1/2 ‖u‖W 1,p . (25)

This lemma is in fact a corollary of a classical result

Lemma 2.11. Let any family Lr of kernels satisfy for some s > 0∫
Lr = 0, sup

r
(‖Lr‖L1 + rs ‖Lr‖W s,1) ≤ CL, sup

r
r−s

∫
|z|s |Lr(z)| dz ≤ CL.

(26)
For any 1 < p < ∞, there exists C > 0 depending only on CL above s.t. for any
u ∈ Lp(Πd) ∫ 1

0

‖Lr � u‖Lp

dr

h+ r
≤ C ‖u‖B0

p,1
. (27)

As a consequence, for p ≤ 2∫ 1

0

‖Lr � u‖Lp

dr

h+ r
≤ C | log h|1/2 ‖u‖Lp. (28)

Remark. We skip the proof of Lemma 2.11 which is rather classical. The bounds
(25) and (28) can, for example, be obtained by a straightforward application of
the so-called square function, see the book by E.M. Stein [46, p. 159] or Lemma
2.3.3 in [17].
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Proof of Lemma 2.10 assuming Lemma 2.11. Using spherical coordinates∫
Πd

Kh(z) ‖D|z| u(.)−D|z| u(.+ z)‖Lp dz

≤ C

∫
Sd−1

∫ 1/2

0

‖Dr u(.)−Dr u(.+ r ω)‖Lp

dr

r + h
dω.

Denote

Lω(x) =
I|x|≤1/2

|x|d−1
−

I|x−ω|≤1/2

|x− ω|d−1
, Lω,r(x) = r−d Lω(x/r),

and remark that Lω ∈ W s,1 with a norm uniform in ω and with support in the
unit ball. Moreover,

Dru(x)−Dru(x+ rω) =

∫
|∇u|(x− r z)Lω(z) dz = Lω,r � |∇u|.

We hence apply Lemma 2.11 since the family Lω,r satisfies the required hypothesis
and we get ∫ 1

h0

‖Lω,r �∇u‖Lp

dr

r
≤ C ‖u‖B1

1,p
,

with a constant C independent of ω and so∫ 1

h0

∫
Πd

Kh(z) ‖D|z| u(.)−D|z| u(.+ z)‖Lp dz dh

≤ C

∫
Sd−1

∫ 1

h0

‖Lω,r �∇u‖Lp

dr

r
dω ≤ C

∫
Sd−1

‖u‖B1
1,p

dω,

yielding (24). The bound (25) is deduced in the same manner. �

2.3.2. Propagating regularity with weights. We now come back to the basic strat-
egy outlined at the end of the previous section and consider again the auxiliary
equation on the weights

∂tw + u · ∇w = −λM |∇u|w −Dw in (0, T )×Πd, w|t=0 = 1 in Πd (29)

where we allow for an abstract additional penalization D(t, x) which we will need
in the next section. By using the tools for renormalized solutions that we briefly
explained at the beginning of the section and the maximum principle, one can
ensure

Lemma 2.12. Assume that u ∈ L1(0, T ;W 1,p(Πd)) and that D ≥ 0 with D ∈
L1((0, T ) × Πd). Then there exists a renormalized solution w to Equation (29)
with w ∈ L∞((0, T )×Πd).

We skip the proof of Lemma 2.12 which essentially follows the existence
strategy of Theorem 2.4 while using Theorem 2.6 for the renormalization property
and the maximum principle using the sign of the right-hand side.



100 D. Bresch and P.-E. Jabin

We are now ready to prove an equivalent of Proposition 1.9 or Proposition
1.16 but for the weight w(t, x) + w(t, y).

Proposition 2.13. Assume that u ∈ L1(0, T ;W 1,p(Πd)), ρ ∈ L∞(0, T ; Lq(Πd))
is a renormalized solution to Equation (15) with 1/p + 1/q ≤ 1. Then for w a
renormalized solution to Equation (14) with λ large enough, one has that for any h∫

Π2 d

|ρ(t, x) − ρ(t, y)|Kh(x− y) (w(t, x) + w(t, y)) dx dy

≤
∫
Π2 d

|ρ0(x) − ρ0(y)|Kh(x− y) dx dy

+ C | log h|1/2 ‖u‖L1(0,T ;W 1,p(Πd)) ‖ρ‖L∞(0,T ;Lq(Πd))

− 2

∫ t

0

∫
Π2 d

(div u(t, x)− div u(t, y))

×Kh(x− y)w(t, x) (ρ(t, x) + ρ(t, y)) s(x, y) dx dy dt,

where s(x, y) = sign(ρ(t, x) − ρ(t, y)).

Proof. The argument initially follows the same steps as Proposition 1.9 or Propo-
sition 1.16. We first specify more (for further use in the next section) the equation

∂t|ρ(t, x)− ρ(t, y)|+ u(x) · ∇x|ρ(t, x)− ρ(t, y)|+ u(y) · ∇y|ρ(t, x)− ρ(t, y)|

=
div u(t, y)− div u(t, x)

2
(ρ(t, x) + ρ(t, y)) s(x, y)

− |ρ(t, x)− ρ(t, y)|
2

(div u(t, x) + div u(t, y)),

where again s(x, y) = sign(ρ(t, x)− ρ(t, y)) and where we can now fully justify the
calculations as ρ is a renormalized solution. Multiplying by w(t, x) + w(t, y) and
using Equation (29) and the symmetry between x and y, we find the modified

d

dt

∫
Π2 d

|ρ(t, x) − ρ(t, y)|Kh(x − y) (w(t, x) + w(t, y)) dx dy

≤ 2

∫
Π2 d

|ρ(t, x) − ρ(t, y)|w(t, x)∇Kh(x− y) · (u(t, x)− u(t, y)) dx dy

+

∫
Π2 d

|ρ(t, x)− ρ(t, y)|Kh(x− y)w(t, x) (div u(t, x) + div u(t, y)) dx dy

− 2

∫
Π2 d

|ρ(t, x) − ρ(t, y)|Kh(x− y)w(t, x) (D + λM |∇u|(t, x)) dx dy

−
∫
Π2 d

(div u(t, x)− div u(t, y))

×Kh(x− y)w(t, x) (ρ(t, x) + ρ(t, y)) s(x, y) dx dy.
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Remark that∫
Π2 d

|ρ(t, x)− ρ(t, y)|Kh(x− y)w(t, x) div u(t, y)) dx dy

=

∫
Π2 d

|ρ(t, x)− ρ(t, y)|Kh(x− y)w(t, x) div u(t, x)) dx dy

−
∫
Π2 d

(div u(t, x)− div u(t, y))

×Kh(x− y)w(t, x) (ρ(t, x) + ρ(t, y)) s(x, y) dx dy.

Recalling that div u(t, x) ≤ M |∇u|(t, x), we may thus simplify for λ large enough

d

dt

∫
Π2 d

|ρ(t, x)− ρ(t, y)|Kh(x− y) (w(t, x) + w(t, y)) dx dy

≤ 2

∫
Π2 d

|ρ(t, x)− ρ(t, y)|w(t, x)∇Kh(x− y) · (u(t, x)− u(t, y)) dx dy

− λ

∫
Π2 d

|ρ(t, x)− ρ(t, y)|Kh(x− y)w(t, x)M |∇u|(t, x) dx dy

− 2

∫
Π2 d

(div u(t, x)− div u(t, y))

×Kh(x− y)w(t, x) (ρ(t, x) + ρ(t, y)) s(x, y) dx dy,

and we are back to our commutator estimate.

However, now we cannot use estimate (10) as we would then have to bound
w(t, x)M |∇u|(t, y) by w(t, x)M |∇u|(t, x) which is simply not possible absent some
more regularity on ∇u.

Instead, we use Lemma 2.9 to bound

∫
Π2 d

|ρ(t, x)− ρ(t, y)|w(t, x)∇Kh(x− y) · (u(t, x)− u(t, y)) dx dy

≤ C

∫
Π2 d

|ρ(t, x) − ρ(t, y)|w(t, x) (1 +Kh(x− y))

× (D|x−y|u(t, x) +D|x−y|u(t, y)) dx dy,

since we recall that for small x, |∇Kh(x)| ≤ C |x|−1 Kh(x) and that Kh is smooth
for x of order 1.

By (21), we may bound directly the term without Kh

∫
Π2 d

|ρ(t, x)− ρ(t, y)|w(t, x) (D|x−y|u(t, x) +D|x−y|u(t, y)) dx dy

≤ ‖ρ(t, .)‖Lq(Πd) ‖M |∇u(t, .)|‖Lp(Πd).
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As for the other term, we may now use Lemma 2.10 to move D|x−y|u(t, y) to
D|x−y|u(t, x). By a change of variable∫

Π2 d

|ρ(t, x) − ρ(t, y)|w(t, x)Kh(x− y)D|x−y|u(t, y) dx dy

=

∫
Π2 d

|ρ(t, x)− ρ(t, y)|w(t, x)Kh(x− y)D|x−y|u(t, x) dx dy

+

∫
Π2 d

|ρ(t, x)− ρ(t, x+ z)|w(t, x)Kh(z) (D|z|u(t, x+ z)−D|z|u(t, x)) dx dz.

Therefore∫
Π2 d

|ρ(t, x)− ρ(t, x+ z)|w(t, x)Kh(z) (D|z|u(t, x+ z)−D|z|u(t, x)) dx dz

≤
∫
Πd

‖ρ(t, .)− ρ(t, .+ z)‖Lq Kh(z) ‖D|z|u(t, .+ z)−D|z|u(t, .)‖Lp dz

≤ C | log h|1/2 ‖ρ(t, .)‖Lq(Πd) ‖u‖W 1,p ,

by bounding ‖ρ(t, .)− ρ(t, .+ z)‖Lq ≤ 2‖ρ(t, .)‖Lq(Πd) and a direct application of
Lemma 2.10. We want to emphasize here that this is the key part of the proof.
Even though it remains relatively straightforward technically (also thanks to the
preliminaries), this is what forces us to use this specific Kh.

Combining those estimates, we get that

d

dt

∫
Π2 d

|ρ(t, x)− ρ(t, y)|Kh(x− y) (w(t, x) + w(t, y)) dx dy

≤ 2

∫
Π2 d

|ρ(t, x) − ρ(t, y)|w(t, x)Kh(x− y)D|x−y|u(t, x) dx dy

− λ

∫
Π2 d

|ρ(t, x)− ρ(t, y)|Kh(x − y)w(t, x)M |∇u|(t, x) dx dy

+ C | log h|1/2 ‖ρ(t, .)‖Lq(Πd) ‖u‖W 1,p

− 2

∫
Π2 d

(div, u(t, x)− div u(t, y))

×Kh(x− y)w(t, x) (ρ(t, x) + ρ(t, y)) s(x, y) dx dy,

which lets us conclude the proof by applying (21) and integrating in time. �

2.3.3. The final estimate. We are now ready to state the concluding result of our
linear analysis,

Theorem 2.14. Assume that u ∈ L1(0, T ;W 1,p(Πd)). ρ ∈ L∞(0, T ; Lq(Πd)) is a
renormalized solution to Equation (15) with 1/p+ 1/q ≤ 1. Assume further that∫

Πd

∫ T

0

‖ div u(s, .)− div u(s, .+ z)‖Lp(Πd)) Kh(z) ds dz ≤ L,
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and that ∫
Π2 d

|ρ0(x)− ρ0(y)|Kh(x− y) dx dy ≤ L.

Then there exists a constant C depending only on the dimension and L such that
one has for any h∫

Π2 d

|ρ(t, x) − ρ(t, y)|Kh(x− y) dx dy ≤ C N
| log h|

log | log h| +N L | logh|3/4,

with

N = (1 + ‖ρ‖L∞(0,T ;Lq(Πd))) (1 + ‖u‖L1(0,T ;W 1,p(Πd))).

This is the result that we had been looking for:

• It does not require any bound on div u or on the Jacobian of the flow in
general. It only requires one solution ρ bounded in some Lq.

• It provides an explicit regularity estimate on the solution ρ. And it only
requires minimal regularity on div u (in fact any compactness on div u would
give compactness on ρ by an easy modification of the proof).

Observe that in general the regularity provided by Theorem 2.14 is getting worse
when T increases: In particular ‖u‖L1(0,T ;W 1,p(Πd)) and thus N increases if T in-
creases.

Theorem 2.14 essentially provides a log log derivative on ρ. This appears to
be a new scale in the problem (recall that we had a log scale previously), one that
is due to possible concentration or vacuum.

Proof. Remark that by a change of variable∫ t

0

∫
Π2 d

(div u(t, x)− div u(t, y))Khw(t, x) (ρ(t, x) + ρ(t, y)) s(x, y) dx dy dt

≤ 2

∫
Πd

‖ div u(t, .)− div u(t, .+ z)‖L1(0,T ;Lp(Πd)) Kh(z) ‖ρ‖L∞(0,T ;Lq(Πd)) dz

≤ L ‖ρ‖L∞(0,T ;Lq(Πd)).

Then we choose D = 0 and since there exists a weight by Lemma 2.12, we may
directly apply Proposition 2.13 to find∫

Π2 d

|ρ(t, x) − ρ(t, y)|Kh(x− y) (w(t, x) + w(t, y)) dx dy

≤ L (1 + ‖ρ‖L∞(0,T ;Lq(Πd)))

+ C | log h|1/2 ‖u‖L1(0,T ;W 1,p(Πd)) ‖ρ‖L∞(0,T ;Lq(Πd))

≤ N (L + C | log h|1/2).

where we recall the definition of N

N = (1 + ‖ρ‖L∞(0,T ;Lq(Πd))) (1 + ‖u‖L1(0,T ;W 1,p(Πd))).
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Now it only remains to remove the weight w(t, x) +w(t, y). But those only vanish
if both w(t, x) and w(t, y) vanish. Defining

Ω = {x, w(t, x) ≤ η},

we may simply write∫
Π2 d

|ρ(t, x) − ρ(t, y)|Kh(x − y) dx dy ≤
∫
Ω2

· · ·+
∫
x �∈Ω or y �∈Ω

· · ·

If x �∈ Ω or y �∈ Ω then w(t, x) + w(t, y) ≥ η, thus∫
x �∈Ω or y �∈Ω

|ρ(t, x)− ρ(t, y)|Kh(x− y) dx dy

≤ 1

η

∫
Π2 d

|ρ(t, x)− ρ(t, y)|Kh(x− y) (w(t, x) + w(t, y)) dx dy

≤ N

η
(L + C | log h|1/2).

On the other hand, by symmetry∫
Ω2

|ρ(t, x)− ρ(t, y)|Kh(x − y) dx dy ≤ C | log h|
∫
Ω

ρ(t, x) dx

≤ C
| log h|
| log η|

∫
Πd

| logw| ρ(t, x) dx

≤ C
| log h|
| log η| N,

by Lemma 1.12 which we may directly use as we chose D = 0.

Finally∫
Π2 d

|ρ(t, x) − ρ(t, y)|Kh(x− y) dx dy ≤ C
| log h|
| log η| N +

N

η
(L+ C | log h|1/2),

which finishes the proof by choosing for example η = | log h|−1/4. �

3. Example of application: A coupled Stokes system

In this section, we want to describe an application in fluid mechanics where we
can get compactness on the density using the quantitative regularity propagation
technic previously described. In this case, the velocity field and the density are
linked together through a PDE system composed by a transport equation and a
momentum equation. In a first section we explain the recent result obtained by
the two authors concerning the compressible Navier–Stokes equations with a non-
monotone pressure law (see Theorem 3.1). Then we present a more simple PDE
system namely the compressible Stokes system and propose a sketch of proof of
Theorem 3.2.
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3.1. The compressible Navier–Stokes system

The theory introduced in the last section of the previous section had in fact been
developed in [17] for the study of the compressible Navier–Stokes system in various
unstable regimes such as non-monotone pressure laws or anisotropic stress tensors.

In its simplest form the Navier–Stokes system reads{
∂tρ+ div(ρu) = 0,
∂t(ρu) + div(ρu⊗ u)− μΔu− (λ+ μ)∇ div u+∇p(ρ) = ρf,

(30)

with 2μ/d + λ, and p is the barotropic pressure law (s �→ p(s) given) which
is typically continuous on [0,+∞), and locally Lipschitz on (0,+∞). The initial
condition reads

ρ|t=0 = ρ0, (ρu)|t=0 = m0. (31)

The main difficulty in obtaining global existence for system (30) is to prove com-
pactness of the density ρ which exactly solves the continuity equation that was
the object of our previous investigations.

The first global existence result has been obtained in [38], using the (non-
quantitative) theory for renormalized solution introduced at the beginning of the
second section. This was the start of many works, for instance [20, 48, 21], pushing
the theory and in particular the required growth at infinity of the pressure. Those
culminated in the estimates in [28, 31] and exposed at length in [29] (see also [40]).
This also enabled us to treat the more physically realistic Navier–Stokes–Fourier
system for which we refer to [30]. We also mention the recent [43] which is able to
handle the isothermal system.

While system (30) is written with a constant viscosity, realistic physical set-
tings often involve density-dependent viscosities. This requires a different type of
approach with new regularity estimates exploited in [15], new integrability bounds
in [39], and leading to the existence of weak solutions in this setting in [16, 49].
Those regularity estimates are based on a two-velocity interpretation of the Navier–
Stokes system, which has several other applications as in [41].

The Navier–Stokes system is also a classical model for geophysical flows as il-
lustrated in [27] and [47]. We finally refer to [13] for an example of recent important
topics.

Because the classical theory of existence relies on non-quantitative regularity
estimates for ρ, it requires pressure laws that are thermodynamically stable. We
hence conclude this introduction by quoting, as an illustration, one of the results
from [17].

H) Hypothesis on the pressure: The assumptions on the pressure are only to be
continuous on [0,+∞), locally Lipschitz on (0,+∞) with p(0) = 0 and that
there exists C > 0 with

C−1ργ − C ≤ p(ρ) ≤ Cργ + C (32)

and for all s ≥ 0

|p′(s)| ≤ p̄sγ̃−1. (33)
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This allows oscillating pressure laws, alternating stable and unstable regions.
Nevertheless this still leads to global existence as by

Theorem 3.1. Assume that the initial data m0 and ρ0 satisfies the bound

E0 =

∫
Πd

(1
2

∣∣ m0√
ρ0

∣∣2 + ρ0e(ρ0)
)
dx < +∞.

Let the pressure law p satisfies Hypothesis H) with (32) and (33) with

γ >
(
max(2, γ̃) + 1

) d

d+ 2
. (34)

Then there exists a global weak solution of (30)–(31).

3.2. The result on the Stokes system

In the rest of this section, we mostly follow the presentation in [18] and focus on
an example of application, namely the coupled Stokes system{

∂tρ+ div(ρu) = 0,
−μΔu+ αu+∇p(ρ) = S,

(35)

with μ, α > 0 endowed with the following initial condition

ρ|t=0 = ρ0. (36)

In addition to be a limit of the compressible Navier–Stokes system (30) in some
regime, system (35) (with many variants) is commonly used to model various
biological systems, tumor for example in [14, 26, 42].

One can then use the linear theory that we previously developed to prove

Theorem 3.2. Assume that S ∈ L2(0, T ; H−1(Πd)) and the initial data ρ0 satisfies
the bound

ρ0 ≥ 0, 0 < M0 =

∫
Πd

ρ0 < +∞, E0 =

∫
Πd

ρ0 e(ρ0) dx < +∞,

where e(ρ) =
∫ ρ

ρ� p(s)/s
2ds with ρ� a constant reference density. Let the pressure

law p satisfies hypothesis H) with (32) and (33) with γ > 1. Then there exists a
global weak solution (ρ, u) of the compressible system (35)–(36) with

ρ ∈ L∞(0, T ;Lγ(Πd)) ∩ L2γ((0, T )×Πd), u ∈ L2(0, T ;H1(Πd)).

Remark. As noted in [18], the regularity of S is not optimized and could be de-
creased.

3.3. Sketch of the proof of Theorem 3.2

Proofs of existence of global weak solutions of PDEs are usually divided into three
steps:

• A priori energy estimates,
• Stability of weak sequences: Compactness,
• Construction of approximate solutions.
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We mostly focus on the first two points here as they best illustrate the main ideas.
We refer to [17, 18] for more technical precisions.

3.3.1. Construction of approximate solutions. To keep our analysis simple, we in
fact consider a sequence ρk, uk of solutions to the exact system (35) and will
prove that the limit of the sequence is also a solution to (35). Even though it is
not a complete proof, such a result of weak stability gives the main ideas behind
Theorem 3.2.

We only briefly indicate in this subsection what would be the approximate
system from which (35) is obtained, namely{

∂tρk + div(ρkuk) = αkΔρk,
−μΔuk + αuk +∇pε(ρk) + αk∇ρk · ∇uk = Sk,

(37)

with the source term Sk and the fixed initial data

ρk|t=0 = ρ0. (38)

The pressure pε is defined as follows:

pε(ρ) = p(ρ) if ρ ≤ c0,ε, pε(ρ) = p(C0,ε) + C(ρ− c0,ε)
β if ρ ≥ c0,ε,

with β large enough. We refer to [17, 18] and the references therein for the existence
of such an approximate system.

3.3.2. Energy estimates. Let us start with the basic kinetic energy estimate. Mul-
tiply the Stokes equation by uk and integrate by parts,

μ

∫
Πd

|∇uk|2 + α

∫
Πd

|uk|2 +
∫
Πd

∇p(ρk) · u =

∫
Πd

Sk · uk.

Now we write the equation satisfied by ρke(ρk) where e(ρk) =
∫ ρk

ρref
p(s)/s2ds, with

ρref a constant reference density,

∂t(ρke(ρk)) + div(ρe(ρk)uk) + p(ρk) div uk = 0.

Integrating in space and adding to the first equation we get

d

dt

∫
Πd

ρke(ρk) + α

∫
Πd

|uk|2 + μ

∫
Πd

|∇uk|2 =

∫
Πd

Sk · uk.

One only needs Sk ∈ L2([0, T ], H−1(Πd)), and using the behavior of p, then we
get the uniform bound

ργk ∈ L∞(0, T ;L1(Πd)), uk ∈ L2(0, T ;H1(Πd)).

When now considering the compressible system (35), the divergence div uk

is given by

div uk =
1

μ
p(ρk) +

1

μ
Δ−1 divRk
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with Rk = S−αuk. Therefore, since ρk ∈ L∞(0, T ;Lγ(Πd)), if we multiply by ρθk,
we obtain

I =

∫ T

0

∫
Πd

p(ρk)ρ
θ
k = μ

∫ T

0

∫
Πd

div ukρ
θ
k −

∫ T

0

∫
Πd

Δ−1 divRk ρ
θ
k,

which is easily bounded as follows

I ≤
[
μ‖ div uk‖L2((0,T )×Πd) + ‖Δ−1 divRk‖L2((0,T )×Πd)

]
‖ρθk‖L2((0,T )×Πd)

Thus using the behavior of p and information on uk and Rk, we get for large
density ∫ T

0

∫
Πd

(ργ+θ) ≤ C + ε

∫ T

0

∫
Πd

(ρ2θ).

Thus we get a control on ργ+θ
k if θ ≤ γ. Therefore, we get ρk ∈ Lp((0, T )×Πd) for

any p ≤ 2 γ and in particular some p > 2 if γ > 1.

3.3.3. Stability of weak sequences: Compactness. From the energy estimates we
can extract converging subsequences

ρk −→ ρ weak-* in L∞(0, T ;Lγ(Πd)) and weak in L2γ((0, T )×Πd)

uk −→ ρ weak-* in L2(0, T ;H1(Πd)).

This is enough to pass to the limit in every term of system (35) except for p(ρk).
This requires the strong compactness of ρk for which we prove the following result
which is the main part of the proof

Proposition 3.3. Assume that (ρk, uk) are weak solutions to system (35) with a
pressure law satisfying (32)–(33) and with the following uniform bounds

sup
k

‖ργk‖L∞(0,T ;L1(Πd)) < ∞, sup
k

‖ρk‖Lp((0,T )×Πd) < ∞ with p ≤ 2γ,

and

sup
k

‖uk‖L2(0,T ;H1(Πd)) < ∞.

Assume moreover that the source term Sk is compact in L2(0, T ;H−1(Πd)) and
that the initial density sequence (ρk)0 is compact in L1(Πd) and hence satisfies

lim sup
k

[
1

| log h|

∫
Π2d

Kh(x− y)|(ρxk)0 − (ρyk)0|
]
= ε(h) → 0 as h → 0,

then ρk is compact in Lp((0, T )×Πd) for all p < 2γ.

Remark 3.4. Here and in the following, we use the convenient notation ρxk =
ρk(t, x), ρ

y
k = ρk(t, y) and (ρxk)0 = ρk(t = 0, x), (ρyk)0 = ρk(t = 0, y). Similarly

wx
k = wk(t, x), u

x
k = uk(t, x), w

y
k = wk(t, y), u

y
k = uk(t, y).
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Proof. Let us introduce as before the auxiliary equation on the weight wk

∂twk + uk · ∇wk = −λM |∇u|w − (1 + ργk)w. (39)

We start by using Proposition 2.13 from the last section to find that∫
Π2d

Kh(x− y) |ρxk − ρyk| (w
x
k + wy

k) dx dy

≤ | log h| ε(h) + C | log h|1/2 N +A

− 2

∫ t

0

∫
Π2d

Kh(x− y) (1 + (ρxk)γ)|ρxk − ρyk|wx
k dx dy dt

(40)

where

N = sup
k

‖ρk‖L2γ((0,T )×Πd) ‖uk‖L2(0,T ;H1(Πd)),

A = −2

∫ t

0

∫
Π2d

(div uk(t, x)− div uk(t, y))Kh(x − y)wx
k (ρ

x
k + ρyk) sk(x, y) dx dy,

with sk(x, y) = sign(ρxk − ρyk). Let us use the relation between div ux
k (respectively

div uy
k) and ρxk (respectively ρyk), to obtain

A = −2

∫ t

0

∫
Π2d

Kh(x− y) (p(ρxk)− p(ρyk)) (ρ
x
k + ρyk) sk w

x dx dy dt− 2

μ
Qh,

where

Qh =

∫ t

0

∫
Π2d

Kh(x−y) (Δ−1 divRk(t, x)−Δ−1 divRk(t, y)) (ρ
x
k+ρyk) sk w

x dx dy dt,

encodes the compactness in space of Δ−1 divRk and therefore has the right be-
havior. Indeed, in particular

1

| log h|

∫ t

0

∫
Π2d

Kh(x− y) (Δ−1 divRk(t, x) −Δ−1 div Rk(t, y)) dx dy dt → 0,

as h → 0 since Rk is compact in L2(0, T ;H−1(Πd)) and hence Δ−1 divRk is
compact in L2((0, T )×Πd) by the gain of one derivative.

However, the “bad” term p(ρyk)w
x
k cannot a priori be bounded directly with

weights, again because it mixes points x and y. We review the various configura-
tions

First note that we have ρxk + ρyk ≥ |ρxk − ρyk|.

– Case 1: (p(ρxk)−p(ρyk))(ρ
x
k−ρyk) ≥ 0. We then directly have that (p(ρxk)−p(ρyk)) sk

and this yields the right sign and a dissipation term in A.

– Case 2: p(ρxk)− p(ρyk))(ρ
x
k − ρyk) < 0 and ρyk ≤ ρxk/2 or ρyk ≥ 2ρxk.

Assume that we are in the case ρyk ≥ 2ρxk, then

(p(ρxk)− p(ρyk))(ρ
x
k + ρyk)sk ≥ −C (ρxk)

γ |ρxk − ρyk|,
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since p(ξ) ≤ p(0) +Cξγ−1ξ ≤ Cξγ . If we now look at the cases p(ρxk) ≤ p(ρyk) and
ρyk ≤ ρxk/2, then we again bound

(p(ρxk)− p(ρyk))(ρ
x
k + ρyk)sk ≥ −C (ρxk)

γ |ρxk − ρyk|.
– Case 3: The case where p(ρxk) − p(ρyk) and ρxk − ρyk have different signs but
ρxk/2 ≤ ρyk ≤ 2ρxk. Then it is easy to get again

(p(ρxk)− p(ρyk))(ρ
x
k + ρyk)sk ≥ −C (1 + (ρxk)

γ) |ρxk − ρyk|.

Therefore combining all three cases, we obtain

A ≤ C

∫ t

0

∫
Π2d

Kh(x− y) (1 + (ρxk)
γ)) |ρxk − ρyk|w

x
k dx dy dt−

2

μ
Qh,

with Qh/| logh| → 0. Inserting this in (40), we deduce that∫
Π2d

Kh(x − y) |ρxk − ρyk| (w
x
k + wy

k) dx dy ≤ | log h| ε̃(h), (41)

with

ε̃(h) = ε(h) + C | log h|−1/2 N − 2

μ

Qh

| log h| −→ 0, as h → 0.

We now need to remove the weight just as in the proof of Theorem 2.14. First of
all since Equation (39) has an additional term with respect to (14), we remark
that we have an easy extension of Lemma 1.12, namely

Lemma 3.5. Assume that uk ∈ L2(0, T ;H1(Π2d)) and that ρk ∈ L2γ((0, T )×Π2d))
with γ > 1. Then, if wk solves (39),∫

Πd

| logwk(t, x)| ρk(t, x) dx

≤ C (‖uk‖L2(0,T ;H1(Πd)) + ‖ρk‖L2γ((0,T )×Πd)) ‖ρk‖L2γ((0,T )×Πd).

The proof of Lemma 3.5 is essentially identical to the one of Lemma 1.12 and
we skip it here. Using the same decomposition as in the proof of Theorem 2.14,
we obtain from (41) that∫

Π2d

Kh(x− y) |ρxk − ρyk| (w
x
k + wy

k) dx dy ≤ C
| log h|
| log η| N

2 + C | log h| ε̃(h),

which finishes the proof by optimizing in η. We use Proposition 1.8 to conclude on
the strong compactness of ρk in L1((0, T )×Πd) and therefore in Lp((0, T )×Πd)
using the uniform bound on ρk. �
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[36] F. Léger, A new approach to bounds on mixing. ArXiv preprint: arXiv:1604.00907
(2016).



Quantitative Regularity Estimates 113

[37] P.-L. Lions. Mathematical topics in fluid mechanics, Vol. I: incompressible models.
Oxford Lect. Ser. Math. Appl. 3 (1996).

[38] P.-L. Lions. Mathematical topics in fluid mechanics, Vol. II: compressible models.
Oxford Lect. Ser. Math. Appl. (1998).

[39] A. Mellet, A. Vasseur, Lp estimates for quantities advected by a compressible flow.
J. Math. Anal. Appl. 355 (2009), no. 2, 548–563.

[40] A. Novotny, I. Straskraba. Introduction to the Mathematical Theory of Compressible
Flow. Oxford Lecture Series in Mathematics and Its Applications, (2004).

[41] C. Perrin, E. Zatorska. Free/Congested Two-Phase Model from Weak Solutions to
Multi-Dimensional Compressible Navier–Stokes Equations. Comm. Partial Diff. Eqs,
40, 1558–1589, (2015).

[42] B. Perthame, L. Vauchelet. Incompressible limit of mechanical model of tumor
growth. Phil. Trans. R. Soc. A 373 (2015).

[43] P. Plotnikov, W. Weigant. Isothermal Navier–Stokes Equations and Radon Trans-
form. SIAM J. Math. Anal., 47(1), 626–653, (2015).

[44] A. Seeger, C.K. Smart, and B. Street. Multilinear singular integral forms of christ-
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Fully Resolved Compressible Two-Phase Flow:
Modelling, Analytical and Numerical Issues

Christian Rohde

Abstract. Mathematical models for compressible two-phase flow of homoge-
neous fluids that occur in a liquid and a vapour phase can be classified as
either belonging to the class of sharp interface models or to the class of dif-
fuse interface models. Sharp interface models display the phase boundary as a
sharp front separating two bulk model domains while diffuse interface models
consist of a single model on the complete domain of interest such that phase
boundaries are represented as transition zones. This contribution is devoted
to a self-consistent introduction to both model classes.

Sharp interface models are analyzed within the theory of hyperbolic
conservation laws with special focus on the Riemann problem. Based on
the thermodynamically consistent solution of the Riemann problem a multi-
dimensional finite volume method is introduced. For the associated diffuse
interface ansatz the focus is on Navier–Stokes–Korteweg-type models. Sev-
eral new variants are introduced which enable in particular thermodynami-
cally consistent and asymptotically-preserving numerical discretizations. For
all models it is assumed that the relevant spatial scale corresponds to fully
resolved phase boundaries.

Mathematics Subject Classification (2010). 76T10, 76N10, 35L65.

Keywords. Compressible two-phase flow, liquid-vapour phase transition, the
two-phase Riemann problem, moving mesh finite volume method, Navier–
Stokes–Korteweg equations, entropy-dissipative methods, asymptotic preserv-
ing schemes.

Preface

The analysis and numerics for compressible one-phase flow have by now reached
a rather mature status. Despite the fact that there are still unsolved fundamental
questions in the analysis, the numerical simulation has become a routine tool for
many flow regimes. This situation is quite different for compressible multi-phase
flow. The continuum-mechanical description depends crucially on micro-scale ef-
fects such that even the mathematical modelling is still a controversial field of
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research. Of course this affects directly the analysis and numerics for compressible
multi-phase flow.

In this treatise we consider the compressible free flow of homogeneous fluids
that occur in two phases: a liquid and a vapour phase. Phase change phenomena
are our main issue and we are interested in the fully resolved situation where single
phase boundaries exist as flow pattern. Homogenized scenarios are not considered.
For the mathematical description of a homogeneous compressible fluid with liquid-
vapour phase transitions one uses either models which display the phase boundary
as a sharp front (sharp interface, SI, see Figure 0.1) or as a steep transition,
smeared out over a small-scale distance (diffuse interface, DI, see Figure 0.1).
Both model concepts are closely related via the SI limit when the sequence of
solutions of the DI model are supposed to tend to a solution of an associated SI
model. Therefore we try to describe both classes carving out their advantages and
disadvantages.

The SI concept is discussed in Section 1. We set up a thermodynamical frame-
work which is chosen to be isothermal. This restricts the physical relevance but in
this case the mathematical theory is most evolved. The mathematical model can
be understood as a free boundary value problem with appropriate coupling condi-
tions across the interface, and evolution equations in the bulk domains. In the in-
viscid setting the Euler equations of hydromechanics govern the flow and Rankine–
Hugoniot conditions drive the interface. However, these balance conditions do not

Fig. 0.1. Sketch of an SI solution (left) and a DI solution (right).

suffice to control the interfacial dynamics completely if mass is transferred across
the interface. As for other phase transformation processes an additional condition
is needed. This condition – called kinetic relation in the mathematical context –
involves micro-scale information in the form of an algebraic constitutive relation.
It is exactly this continuum-mechanical closure which is heavily debated in the
literature. We will analyze choices of kinetic relations which allow at least a ther-
modynamically consistent well-posedness theory. Thermodynamical consistency is
the major guiding principle for these notes, precisely we mean that an entropy
inequality should be satisfied in an appropriate sense for the complete (bulk and
interfacial) process. In particular we will focus on the planar Riemann problem
which can be completely solved using recent progress in the theory of hyperbolic
conservation laws. These results appear then to be only a weak base for (multi-
dimensional) numerics but it turns out that an appropriate Riemann solver is a
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key to construct moving-mesh finite volume methods for the thermodynamically
consistent tracking of interfaces with mass transfer. The complete setting allows
to apply the numerical method successfully to tackle, e.g., the dynamics of single
droplets and bubbles.

What is not covered by the SI concept, that are all interface motions that un-
dergo a topological change of the interface. Examples are the merging of droplets/
bubbles or nucleation phenomena. The description of a three-phase contact line
that shows up for the interaction of a liquid-vapour interface with a solid wall
is quite complex in the SI world. In passing we note also that any rigorous up-
scaling for flow in a porous medium on the base of an SI model appears to be very
complicated.

All these arguments motivate the advancement of DI ideas, which we discuss
in Section 2. In compressible two-phase flow two different DI model classes are
dominating. The first one is the Navier–Stokes–Korteweg (NSK) theory which can
be considered as a classical second gradient theory. The free energy functional is
extended to account for (generalized) Van-der-Waals contributions, and by classi-
cal concepts like least-action principles thermodynamically consistent dynamical
models can be derived. The additional free energy term – physically motivated
or not – leads to a regularized model such that one set of equations governs the
two-phase process on the entire domain. For various instances of the NSK fam-
ily basic well-posedness results are available. For the numerical discretization two
major challenges occur. The extension of the free energy leads to non-standard
(higher-order, nonlocal,. . . ) contributions to the stress tensor.

Whereas thermodynamical consistency on the analytical level is straightfor-
ward the design of numerical approximations that obey an entropy inequality is
a widely open issue. In this treatise we will mainly focus on the NSK class but
in the last decade phase field systems became a quite popular alternative. With
this ansatz additional phase field equations for an artificial order parameter are
introduced. The phase field parameters also enter the stress tensor of the hydro-
mechanical system leading to a strongly coupled nonlinear system. However, the
approach makes it possible to prescribe independently the interfacial width and
physical properties like, e.g., surface tension.

These notes base on the pertinent mathematical literature on compressible
phase transition dynamics, without claiming to be complete but rather repre-
senting the point of view of the author. The treatise makes strong reference to
publications of the author and/or co-authors. This is indicated in all places where
it applies.
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1. The sharp interface approach

In the first part of the notes we focus on sharp interface (SI) models. The SI
ansatz is the most classical one in fluid mechanics (see, e.g., [31] for the equilib-
rium theory). Using the inviscid compressible Euler equations as the bulk state
model we address modelling, analytical and numerical issues in Sections 1.1, 1.2,
1.3, respectively. The guiding line of this section is to understand SI models within
the theory of first-order hyperbolic conservation laws. Therefore we will deal with
the one-phase case and the two-phase case. In the first case hydrodynamical shock
waves act as relevant interfaces and in the latter case we understand phase bound-
aries as non-standard shock-like discontinuous waves. The theory of conservation
laws is strongly linked to thermodynamical modelling. In the last decades lots
of techniques have been developped to integrate and exploit the second law of
thermodynamics for modelling, analysis and numerics (see [21]). This path will
be followed here, towards a deeper understanding of a two-phase flow. The first
section is devoted to the set-up of the SI model for hydro-mechanical shock waves
and phase boundaries in the form of a free boundary value problem. In Section 1.2
we will then present a complete thermodynamically consistent solution, in partic-
ular for the two-phase Riemann problem. In the last Section 1.3 we will use the
analytical results to design a numerical method that can solve the SI model in mul-
tiple space dimensions. The method relies on a classical moving mesh ansatz and
guarantees not only conservation on the discrete level but also permits thermody-
namically consistent computations. The section displays apart from the pertinent
literature direct material from the papers [14, 74] with several extensions.

1.1. The Euler equations for one- and two-phase flow

1.1.1. Thermodynamical framework. We fix the temperature Θ > 0 for an isother-
mal set-up and denote the density by � ∈ Ã := (0, �̄) with �̄ being the excluded
volume. The thermodynamical framework is presented in terms of specific volume
τ = 1/� > τ̄ := 1/�̄ but it is convenient to consider dependencies also in terms of
�. Then we will use the same symbol headed by a tilde.

The functions p = p(τ), ψ = ψ(τ), μ = μ(τ) are assumed to be smooth with

p(τ) = −ψ′(τ) and μ(τ) = ψ(τ) + p(τ) τ. (1.1.1)

They are called pressure, specific Helmholtz free energy and specific Gibbs free
energy, respectively. The derivative c(τ) :=

√
−p′(τ) is the speed of sound. As

said before we will understand all these quantities and others also as functions of
density �, i.e., p̃ = p̃(�), ψ̃ = ψ̃(�), μ̃ = μ̃(�).

The pressure for homogeneous fluids in one phase. Our thermodynamical frame-
work is completely given by the pressure function, in particular we have for a
simple one-phase pressure
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Definition 1.1.1 (One-phase thermodynamics). The function p = p(τ) : (τ̄ ,∞) →
(0,∞) is called one-phase pressure, if the following conditions hold

p′,−p′′ < 0 in (τ̄ ,∞), (1.1.2)

p(τ) → ∞ for τ → τ̄ , (1.1.3)

lim
R→∞

∫ R

τ̄

c(τ) dτ = ∞. (1.1.4)

For a one-phase pressure we define A := (τ̄ ,∞).

The convexity condition in (1.1.2) is only imposed to facilitate the analy-
sis later on, in this way more complicated (attached) wave configurations in the
construction of solutions for the Riemann problem are avoided in Section 1.2.
The other conditions allow a global solution of the Riemann problem. In particu-
lar, (1.1.4) excludes the case of vacuum which is out of our interests. Hypothesis
(1.1.3) is naturally defining a minimal molecular distance, where the fluid cannot
be compressed further. The most simple choice for a one-phase pressure function
is the ideal gas law

p(τ) =
RΘ

τ − τ̄
, (1.1.5)

with R > 0 being the universal gas constant formed of the product of the Boltz-
mann and the Avogadro constant. Note that the non-homogeneous denominator
(1.1.5) takes into account already volume occupation by the gas molecules.

To account for attractive forces between the fluid’s molecules a correction
term proportional to the negative of the square of density is added. This leads to
the general van-der-Waals equations of state, given by

p(τ) =
RΘ

τ − τ̄
− a

τ2
, a > 0. (1.1.6)

It constitutes a one-phase pressure as long as the fixed temperature is larger than
the critical temperature Θc, i.e,

Θ > Θc :=
8a

27Rτ̄
.

We refer to Figure 1.1 for an illustration of the one-phase set-up.

The pressure for homogeneous fluids in a liquid and a vapour phase. Proceeding
to a two-phase situation requires a split specific volume state space A = Aliq∪Aliq

according to

Aliq := (τ̄ , τmax
liq ), Aspinodal := [τmax

liq , τmin
vap ] and Avap := (τmin

vap ,∞).

Here the numbers τmax
liq , τmin

vap satisfy τ̄ < τmax
liq < τmin

vap . The two intervals Aliq and
Avap define the liquid and the vapour phase. To be precise we introduce
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Fig. 1.1. Prototypical example of a one-phase pressure.

Definition 1.1.2. The function p = p(τ) : Aliq ∩Avap → (0,∞) is called two-phase
pressure for an SI model, if the following conditions hold:

p′,−p′′ < 0 in Aliq ∪Avap, (1.1.7)

∃ τ satliq ∈ Aliq, τ
sat
vap ∈ Avap :

{
p(τ satvap)− p(τ satliq ) = 0,

μ(τ satvap)− μ(τ satliq ) = 0,
(1.1.8)

p(τ) → ∞ for τ → τ̄ , (1.1.9)

p′(τliq) < p′(τvap) ∀ τliq ∈ Aliq, τvap ∈ Avap, (1.1.10)

lim
R→∞

∫ R

τmin
vap

c(τ) dτ = ∞. (1.1.11)

Note that p is monotone decreasing and convex in both phases, see Figure 1.2
(right) for some illustration. The spinodal or elliptic set Aspinodal is excluded from
our studies as a set of unphysical states (see the discussion on phase boundaries

in Section 1.2.2). The states
(
τ satliq , τ satvap

)
∈ Aliq × Avap in hypothesis (1.1.8) are

called saturation or Maxwell states. These states are associated with the thermo-
dynamic equilibrium. The sets (τ satliq , τmax

liq ) and (τmin
vap , τ satvap) are called metastable

liquid and metastable vapour phases, while the sets (τ̄ , τ satliq ], [τ satvap,∞) are called

stable (liquid/vapour) phases. Hypotheses (1.1.7), (1.1.9) and (1.1.10) limit again
the amount of possible wave configurations for the solution of the Riemann prob-
lem. But as we will see in Section 1.2 the convexity condition in (1.1.7) does not
prevent to have attached wave patterns in the two-phase case. Finally, the condi-
tion (1.1.10) corresponds to the fact that the sound speed c = c(τ) in the liquid
phase of a fluid is usually much higher than in the vapour phase. Equations of
state have to be determined, e.g., by experimental measurements. However, for a
simple model fluid, that occur in a liquid and a vapour phase, we may consider the
following explicit form, such that all conditions of Definition 1.1.2 are satisfied.
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Example 1.1.3 (A two-phase pressure). The van-der-Waals equations of state
(1.1.6) lead to a two-phase pressure for Θ ∈ (0,Θc). The function is monoton-
ically increasing for τ ∈ Aspinodal and decreasing in Aliq/vap, see Figure 1.2. The

Fig. 1.2. Prototypical example of a two-phase pressure for an SI model.
The dashed blue line connects the two saturation states with the iden-
tical pressure (and Gibbs free energy) value.

parameters for the graphs in Figure 1.2 and most of the figures and the numerical
experiments in the sequel of the paper refer to Θ = 0.85 and

a = 3, τ̄ =
1

3
, R =

8

3
. (1.1.12)

For these numbers, the critical temperature is actually Θc = 1 and we get τ ∈
Aliq ∪ Avap with Aliq = (1/3, 0.6) and Avap = (2.5,∞). Other parameter choices
will be indicated explicitly.

1.1.2. Isothermal flow. We assume that the thermodynamic framework as de-
scribed in Section 1.1.1 holds for the rest of the paper. In particular, we let some
pressure function p be given.

Let D ⊂ Rd with d ∈ N be an open set. For any time t ∈ [0, T ], T > 0,
we assume that D is portioned into the union of two open sets D+(t), D−(t),
which contain two bulk phases, and a hyper-surface Γ(t) – the sharp interface
(SI) –, that separates the two spatial bulk sets. For the moment we consider both
situations, the one-phase and the two-phase setting, and we do not specify the
physical meaning of the sharp interface and the bulk sets (see Figure 1.3 for the
geometrical setting).

To describe the fluid’s dynamics we neglect higher-order effects like viscosity
in the bulk and get in the spatial-temporal bulk sets {(x, t)|x ∈ D−(t), t ∈ (0, T )}
and {(x, t)|x ∈ D+(t), t ∈ (0, T )} the Euler equations as a first-order system of
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Fig. 1.3. Sketch of the initial configuration and a temporal snapshot
for d = 2.

conservation laws, i.e.,

�t + div(�v) = 0,

(�v)t +div (�v ⊗ v + p̃(�) I) = 0.
(1.1.13)

Here, � = �(x, t) > 0 denotes the unknown density field and v = v(x, t) =
(v1(x, t), . . . , vd(x, t))

T ∈ Rd the unknown velocity field. By I ∈ Rd×d we denote
the d-dimensional unit matrix.

Remark 1.1.4. If viscous effects are not neglected, the Euler system (1.1.13) can
be substituted by the compressible Navier–Stokes equations. An SI theory can of
course also be formulated in terms of the Navier–Stokes equations but it must
be noted that the numerical methods in Section 1.3 cannot be used anymore. The
discretization approach relies on the explicit determination of self-similar solutions
of Riemann problems which do not exist for the Navier–Stokes equations.

As the next step coupling conditions at the free boundary Γ(t) have to be
provided. Let some ξ ∈ Γ(t) be given. We denote the speed of Γ(t) in the normal
direction n = n(ξ, t) ∈ S

d−1 by σ = σ(ξ, t) ∈ R. Throughout the paper the
direction of the normal vector is always chosen, such that n(·, t) points into the
domain D+(t).

For some thermodynamical quantity a we define its trace jump �a� and its
mean {a} across some interface by

�a� := ā+ − ā−, {a} :=
1

2

(
ā+ + ā−

)
,

with the trace

ā± := lim
ε→0,ε>0

a(ξ ± εn). (1.1.14)

The vectors t1, . . . , td−1 ∈ Sd−1 are supposed to be a complete set of vectors
tangential to n.
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Across the interface the following d + 1 trace conditions are posed, the first
two representing the conservation of mass and momentum:

�� (v · n− σ)� = 0,�� (v · n− σ)v · n+ p̃(�)� = 0,�
v · tl

�
= 0 (l = 1, . . . , d− 1).

(1.1.15)

The conditions (1.1.15)3 on the tangential velocities are not a consequence of the
momentum balance but imposed as most simple choice in the inviscid case.

The density field, the velocity field and the interface Γ are initially deter-
mined by

�(·, 0) = �0, v(·, 0) = v0, Γ(0) = Γ0. (1.1.16)

For D �= Rd it remains to fix appropriate boundary conditions on ∂D which will be
done when considering specific examples. Altogether the equations (1.1.13) with
coupling conditions (1.1.15) provide for t ∈ [0, T ] a free boundary value problem
for the interface Γ(t) and

�(t, ·) : D−(t) ∪D+(t) → (0, �̄), v(t, ·) : D−(t) ∪D+(t) → R
d.

With u = (�, �vT ) and

f1(u) = (�v1, �v
2
1 + p̃(�), �v1v2, . . . , �v1vd)

T ,
...

fd(u) = (�vd, �v1vd, . . . , �vd−1vd, �v
2
d + p̃(�))T

we can rewrite the Euler system (1.1.13) in the conservative form

ut + f1(u)x1 + · · ·+ fd(u)xd
= 0. (1.1.17)

If we fix n ∈ Sd−1 and let F (u;n) = n1f1(u) + · · ·+ ndfd(u), the eigenvalues of
the Jacobian DF (u;n) are given by

λ1(u;n) = v · n−
√

p̃′(�),

λ2(u;n) = · · · = λd(u;n) = v · n,
λd+1(u;n) = v · n+

√
p̃′(�).

(1.1.18)

The associated eigenvectors are

r1(u;n) =
(
1,
(
v −

√
−p′(τ)n

)T)T
,

r2(u;n) =
(
0, t2,T

)T
, . . . , rd(u;n) =

(
0, td,T

)T
,

rd+1(u;n) =
(
1,
(
v +

√
−p′(τ)n

)T)T
.

(1.1.19)

Then we observe easily with Definition 1.1.1, that for a one-phase pressure the
system (1.1.13) is hyperbolic in the state space

Ũ := (Ã := (0, �̄))× R
d.
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Definition 1.1.2 ensures for a two-phase pressure for an SI model that (1.1.13) is
hyperbolic if and only if

u ∈ Ũ := (Ã := Ãliq ∪ Ãvap)× R
d

holds. In both cases the extreme characteristic fields are genuinely nonlinear (that
is ∇λi(u;n) · ri(u;n) �= 0 for i = 1, d + 1) whereas the fields λ2, . . . , λd are all
linearly degenerate (that is ∇λi(u;n) · ri(u;n) = 0 for i = 2, . . . , d).

The hyperbolic structure does not suffice at all to ensure well-posedness of
the free boundary value problem for (1.1.13). Thermodynamically consistency puts
further constraints on the solutions. We follow in this contribution the classical
entropy concept for conservation laws [21]. Let the total energy be defined by

W (u) := � ψ̃(�) +
1

2
� |v|2 ,

using the Helmholtz free energy ψ̃. It must be noted that Definition 1.1.1 and
Definition 1.1.2 ensure that W = W (u) is strictly convex in the respective state

spaces Ũ . Therefore it can act as a (mathematical) entropy for (1.1.13). Together
with an entropy flux Q = (Q1, . . . , Qd)

T we can define the entropy-entropy flux
pair

(W,Q), Q(u) = (W (u) + p̃(�))v, (1.1.20)

satisfying the compatibility condition ∇W (u)TDf i(u) = ∇qi(u)
T for u ∈ Ũ . It is

well known that the existence of such an entropy-entropy flux pair implies already
the hyperbolicity of (1.1.17) [21].

Altogether we seek for functions u = (�, �vT ) that satisfy the entropy con-
dition

W (u)t + divQ(u) ≤ 0 (1.1.21)

in the distributional sense in the bulk regions and

−σ �W (u)� + �Q(u) · n� ≤ 0 (1.1.22)

at the interface. In this way solutions are thermodynamically consistent in the
entire domain D.

1.1.3. Sharp interface solutions. In this section we propose solution concepts for
the free boundary value problem with different choices for the coupling conditions
and interpretations of the interface Γ. According to the splittingD = D−(t)∪D+(t)
we introduce the notations

u±(x, t) = u(x, t), �±(x, t) = �(x, t), v±(x, t) = v(x, t) for (x ∈ D±(t))

and start with

Definition 1.1.5 (General entropic SI solutions). LetD = Rd. A family of manifolds
{Γ(t)}t∈[0,T ], � ∈ L∞(D) and v ∈ (L∞(D))d is called an entropic sharp-interface
(SI) solution (Γ,u±) of (1.1.13), (1.1.15), (1.1.16) if

(i) u±(·, t) ∈ Ũ a.e. in D±(t) for t ∈ [0, T ],
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(ii) the Euler system (1.1.13) with initial datum (1.1.16) is satisfied in the dis-
tributional sense in D,

(iii) the entropy condition (1.1.21) is satisfied in the distributional sense in D,
(iv) the trace conditions (1.1.15), (1.1.22) with traces ū±(·, t) (as defined in

(1.1.14)) hold across Γ(t) for t ∈ (0, T ].

Remark 1.1.6.

(a) Regardless of the physical situation and the considered interface there is
for d > 1 no global well-posedness result for the Euler problem (1.1.13),
(1.1.16). In fact, it is by now clear that the chosen entropy selection criterion
in Definition 1.1.5 does not imply uniqueness [22].

(b) The condition (iii) requires indirectly more regularity for an entropic SI so-
lution. Evaluation of the traces could be ensured, e.g., in the sense of L1-
functions on the manifold if the bulk states belong to the space of functions
of bounded variation.

(c) Definition 1.1.5 of an entropic SI solution excludes solutions which allow
topological changes of the sharp interface Γ. Note that the hyper-surface Γ
is supposed to be a manifold. Without further coupling conditions any sharp
interface concept must fail in this situation. This is one of the motivations to
consider DI models.

(d) The Rankine–Hugoniot conditions (1.1.15) are not supposed to hold for t = 0
such that the setting for a Riemann-type problem is included.

In the remainder of this section we want to consider wave-type SI solutions
that correspond to the one-phase or the two-phase pressure case. The system
(1.1.13) is a first-order system of conservation laws such that analyzing the exis-
tence and uniqueness of entropic SI solutions requires to determine the possible
characteristic structure at the interface Γ(t).

SI solutions and shock waves in one-phase flow. Let us consider an entropic SI
solution (Γ, ū±) for a one-phase pressure. The sharp interface Γ(t) is then naturally
interpreted as either a hydrodynamical shock wave or a contact discontinuity. Let
us restrict ourselves here to shock waves. For s ∈ [0, T ] and ξ ∈ Γ(s) let the traces
ū±(ξ, s) be given. Then we call the associated planar discontinuous wave

U(x, t; ξ, s) =

{
ū−(ξ, s) : x · n(ξ, s)− σ(ξ, s)t < 0,

ū+(ξ, s) : x · n(ξ, s)− σ(ξ, s)t > 0

a Laxian or hydro-mechanical shock wave if either

λ1(ū+;n) < σ < λ2(ū+;n), λ1(ū−;n) > σ (1-shock wave) or

λd(ū−;n) < σ < λd+1(ū−;n), λd+1(ū+;n) < σ ((d+ 1)-shock wave)
(1.1.23)

are satisfied (see Figure 1.4 for some illustration for a (d+1)-shock wave). For i ∈
{1, d+1} the characteristics of the ith field λi impinge into the i-shock wave line.
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Fig. 1.4. Characteristic structure of a supersonic wave (left) versus
subsonic wave (right). For some ξ0 > 0 and i = 1, . . . , d + 1, the lines
{(ξ, t) | ξ+ξ0 = λi(ū−;n)t, t ≥ 0} indicate the characteristics for the left
state ū− and {(ξ, t) | ξ + ξ0 = λi(ū−;n)t, t ≥ 0} for the right state ū+

in the left graph (analogously with states ūliq/vap for the right graph).
The dashed lines represent the contact line of multiplicity d− 1.

Note that a hydro-mechanical shock wave is supersonic and itself an SI solution
for the simple family of manifolds {x ∈ Rd |x · n(ξ, s) = σ(ξ, s)t}t∈[0,T ].

Definition 1.1.7 (Entropic SI solution for one-phase pressure). Let D = Rd and let
a one-phase pressure p be given. A family of manifolds {Γ(t)}t∈[0,T ], � ∈ L∞(D)

and v ∈ (L∞(D))d are called an entropic SI solution (Γ,u±) of (1.1.13), (1.1.15),
(1.1.16) for a one-phase pressure if (Γ,u±) is an entropic SI solution and if for
any s ∈ (0, T ], ξ ∈ Γ(s) the associated planar discontinuous wave U(·, ·; ξ, s) is a
hydro-mechanical shock wave (either a 1- or (d+ 1)-shock wave).

The local well-posedness of classical entropic SI solutions (Γ,u±) of (1.1.13),
(1.1.15), (1.1.16) for a one-phase pressure has been shown in [65]. By “classical”
we mean the setting that u±(·, t) are smooth functions in D±(t).

SI solutions and phase boundaries in two-phase flow. Let us now turn to the
more complex situation for an entropic SI solution (Γ,u±) for a two-phase pres-
sure. We associate D−(t) with a liquid phase domain Dliq(t) and Dvap(t) with

a vapour phase domain Dvap(t). This means in particular �(x, t) ∈ Ãliq/vap for
x ∈ Dliq/vap(t).

As the sharp interface Γ(t) we consider now phase boundaries. For traces

ūvap/liq ∈ Ãvap/liq × R
d the planar discontinuous wave

U(x, t; ξ, s) =

{
ūliq(ξ, s) : x · n(ξ, s)− σ(ξ, s)t < 0,
ūvap(ξ, s) : x · n(ξ, s)− σ(ξ, s)t > 0

(1.1.24)

is a called a subsonic phase boundary if either

λ1(ūvap;n) < σ < λ2(ūvap;n), λ2(ūliq;n) > σ > λ1(ūliq;n) or

λd(ūliq;n) < σ < λd+1(ūliq;n), λd+1(ūvap;n) < σ < λd+1(ūvap;n)

are satisfied (we skipped the argument (ξ, s) for brevity, see Figure 1.4 for some
illustration of subsonic phase boundaries). In contrast to a hydro-mechanical shock
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wave for subsonic waves only one characteristic line of the ith field λi (i ∈ {1, d+1})
impinges into the phase boundary line. In the mathematical literature such phase
boundaries are entitled as undercompressive waves [56].

Remark 1.1.8. In our setting we can also consider discontinuous waves connect-
ing two states in different phases that satisfy (1.1.23). These supersonic phase
boundaries lead to very high speeds σ. They will be discussed in more detail in
Section 1.2.

A particular interesting situation is given by planar equilibrium solutions,
i.e., phase boundaries with vanishing mass flux j = �̄liq/vap(v̄liq/vap · n − σ)
(cf. (1.1.15)1!). A quick check of the Rankine–Hugoniot conditions in (1.1.15) shows
that there are multiple equilibrium solutions, precisely all waves U with

U(x, t; ξ, s) =

{
ūliq(ξ, s) = (�̄liq, �̄liqv̄

T
liq)

T (ξ, s) : x · n(ξ, s)− σ(ξ, s)t < 0,

ūvap(ξ, s) = (�̄vap, �̄vapv̄
T
vap)

T (ξ, s) : x · n(ξ, s)− σ(ξ, s)t > 0,

(1.1.25)
connecting states ūliq, ūvap with p(τ̄liq) = p(τ̄vap), v̄liq = v̄vap = v ∈ Rd and
σ = v · n.

It is well known that the only physically acceptable states are the Maxwell
states τ satliq/vap that are characterized additionally by equal specific Gibbs energy,

cf. Definition 1.1.2, [31]. Non-uniqueness appears for dynamical interfaces, which
is also suggested by the under-determined characteristic structure as displayed
in Figure 1.4, right. These mathematical arguments suggest to add an additional
coupling condition to (1.1.15). In the mathematical literature this condition is
known as kinetic relation (see, e.g., [1, 82]) and can be physically understood as a
Gibbs–Thomson-like condition.

For relative flux j = �̄liq/vap(v̄liq/vap · n − σ) and the so-called driving force
K : R → R it is given by �

μ̃(�) +
j

2�

�
= −K(j). (1.1.26)

Multiplying (1.1.26) with j and using the coupling conditions (1.1.15) leads to the
identity

−K(j)j =

�
μ̃(�) +

j

2�

�
j = −σ �W (u)� + �Q(u) · n� .

As a consequence of this computation subsonic phase boundaries that satisfy
(1.1.26) are thermodynamically consistent if and only if the driving force satis-
fies the condition

K(j)j ≥ 0. (1.1.27)

Another simple constraint is put on kinetic relations by the request that it must
admit the equilibrium solutions from (1.1.25). In view of (1.1.26) and the definition
of the saturation states in Definition 1.1.2 the driving force K must obey

K(0) = 0. (1.1.28)



128 C. Rohde

We introduce some specific choices for the driving force as constitutive relation.

Remark 1.1.9 (Some kinetic relations).

(a) Let a mobility constant α ∈ [0,∞) be given. A linear ansatz for K = Kα
1 that

trivially satisfies (1.1.27) is

Kα
1 (j) = αj.

This choice has been considered in, e.g., [1]. The material-dependent mobility
constant has to be determined from experiments or from first-principle ideas.
Density functional theory is used, e.g., in [52]. Particularly interesting is the
choice α = 0. Then, the phase boundaries do not dissipate entropy and are
represented as reversible processes.

(b) From the mathematical point of view the choice

Kα
2 (j) = αj|j|p

satisfies (1.1.27) for any p > 0.
(c) In view of (1.1.26) the limit α → ∞ in the conditions (i) and (ii) would

(formally!) result in the condition j = 0, i.e., there is no mass flux (and
entropy release) across the interface. This approach can be interpreted as a
model for two compressible but immiscible fluids.

Having fixed a kinetic relation we can now present a notion of solution for
homogeneous two-phase flow.

Definition 1.1.10 (Entropic SI solution for two-phase pressure). Let D = R
d.

Consider a two-phase pressure p for an SI model and some driving force K that
satisfies (1.1.27).

A family of manifolds {Γ(t)}t∈[0,T ], � ∈ L∞(D) and v ∈ (L∞(D))d is called
an entropic SI solution of (1.1.13), (1.1.26), (1.1.16) for a two-phase pressure if
(Γ, ū±) is an entropic SI solution and if for any s ∈ (0, T ], ξ ∈ Γ(s) the associated
planar discontinuous wave U(·, ·; ξ, s) is a subsonic phase boundary that obeys
(1.1.26).

It satisfies
τvap/liq(·, t) ∈ Avap/liq a.e. in Dvap/liq(t).

Remark 1.1.11. In our SI theory any kind of surface effects related to Γ are ignored.
In presence of capillary forces induced by surface tension the relation

�� (v · n− σ)v · n+ p̃(�)� = (d− 1)ζ κ, (1.1.29)

extends the condition (1.1.15) on momentum. We denote by κ = κ(ξ, t) ∈ R the
mean curvature of Γ(t) associated with orientation given through the choice of the
normal n. The surface tension coefficient ζ ≥ 0 is assumed to be constant. The
condition (1.1.29) reduces to the classical Young–Laplace law for the static case.

For a capillary fluid the condition (1.1.22) changes accordingly and we have
then the generalized entropy inequality

−σ (�W (u)� + (d− 1)ζ κ) + �(W (u) + p̃(�))v · n� ≤ 0 (1.1.30)
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across Γ(t). For jump conditions in much more general continuum theories we refer
to [2].

There is not much known about the global well-posedness of entropic SI
solutions for two-phase pressure. Even local well-posedness is only known if the
regularizing effect of surface tension is added andD = Rd holds. In view of Remark
1.1.11 we report on local well-posedness of entropic SI solution for a two-phase
pressure in the case where (1.1.29) substitutes the second condition in (1.1.15),
i.e., curvature effects are taken into account. To introduce an appropriate notion of
classical solution let us assume that we have such an entropic SI solution (Γ,u±) of
(1.1.13), (1.1.26), (1.1.16). The theorem applies for a mildly curved interface that
can in particular be represented as a graph of a function X ∈ C2(Rd−1 × [0, T ]).
Without loss of generality let us assume for fixed t ∈ [0, T ], that

Γ(t) = {x = (x1, . . . , xd)
T ∈ D |xd = X(y, t), y := (x1, . . . , xd−1)}

holds. This assumption is used to perform a transformation, such that the solutions
u±(·, t) on the time-dependent domains D±(t) are defined as shifted SI solutions
u(·, t) on a fixed half-space, i.e.,

u(·, t) :
{

Rd−1 × R+ → (Ãliq × Rd)× (Ãvap × Rd)

(y, z) �→ (u(y, z −X(t,y), t),u(y, z +X(t,y), t)).

It is interesting to note that the jump condition (1.1.29) after transformation into
the half-space takes the form

��(u −Xt −w · ∇yX)u− p(�)� = ζΔyX.

Here u (w) represents the velocity component (components) normal (tangential)
to {xd = 0} in the shifted solution. In this setting one observes after proper lin-
earization around a reference state (see below) that the evolution of X is governed
by a parabolic equation. It is exactly its regularizing effect which permits the
stability estimates in order to prove Theorem 1.1.12 below.

Next, let us fix a reference wave U = U(x, t) as in (1.1.24), such that it
is a subsonic phase boundary. As we noted above, U can also be understood
as an entropic SI solution for a two-phase pressure and thus one can define in
the same way as for u the shifted wave U. By a classical entropic SI solution
we mean now an entropic SI solution such that the functions u± are smooth in
{(x, t) |x ∈ D±(t), t ∈ [0, T ]}.

Theorem 1.1.12 (Local well-posedness). Let k > d+3
2 and (Γ0,u0) be given such

that Γ0 can be represented by a graph X0 ∈ Hs+3/2(Rd−1) and such that u0 −
U(0, ·) ∈ Hs+1/2(Rd−1 ×R+) holds. Furthermore consider a two-phase pressure p
for an SI model and the driving force K = Kα

1 from Remark 1.1.9.
Then, there are constants ᾱ, ζ̄, δ̄ > 0, T ∈ (0, T ), such that for α ∈ (0, ᾱ),

ζ ∈ (0, ζ̄) and

‖u0 −U(0, ·)‖Hs+1/2 + ‖X0‖Hs+3/2 < δ
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there is a classical entropic SI solution (Γ,u±) of (1.1.13), (1.1.26), (1.1.16) for
a two-phase pressure on [0, T ), with (1.1.29) being valid across Γ. Moreover, Γ(t)
is represented as a graph for t ∈ (0, T̄ ).

In other words, for data close to a planar subsonic phase boundary we can
guarantee the existence of a classical entropic SI solution. The proof extends the
work of [20, 65] and the stability analysis in [4, 49]. The details can be found
in the forthcoming paper [50]. It must be outlined that we have skipped in the
formulation of Theorem 1.1.12 some assumptions on trace compatibility across
Γ0. To avoid the instantaneous spreading of discontinuous waves into the bulk
domains (as in a Riemann problem, see Section 1.2) the initial data have to be
close to a single wave (here the reference wave U). Since also the derivatives of
the initial datum are transported by (derived) nonlinear transport equations a
classical solution concept must suppress this effect. This can be done exactly by
additional conditions on the initial trace states, see [50] for the detailed statement.

1.2. The Riemann problem

As mentioned above there is almost no well-posedness result for entropic SI so-
lutions in multiple space dimensions regardless whether we choose a one-phase
or a two-phase pressure for an SI model. However, a complete theory is by now
available for the one-dimensional case with constant initial datum in the two bulk
phases: the Riemann problem. Irrespective of the analytical value, the thermody-
namically consistent solution of the Riemann problem gives considerable insight
into the possible choices for the driving force K in the kinetic relation (1.1.26). It
is also of fundamental importance for the construction of numerical schemes for
rotationally invariant systems like (1.1.13), see Section 1.3 below. For two-phase
pressures we will introduce a numerical scheme that relies on an interface solver
R, see (1.2.2). By an interface solver we mean a mapping which determines from
some (Riemann) states the adjacent states and the speed of a phase boundary as
it appears, e.g., in the solution of the Riemann problem.

We will in this section first recall the standard approach to solve a one-phase
Riemann problem to motivate then the generalization to the considerably more
complex two-phase case. The content of this section follows the lines of [17] and
in particular the recent work [74].

Riemann problems for general hyperbolic-elliptic systems and systems that
admit undercompressive waves have been intensively studied in the last two dec-
ades, see [57] for a general theory. In the context of compressible multi-phase flow
we refer to, e.g., [19, 28, 36, 40, 41, 43, 46, 60, 67, 69].

1.2.1. The rotated Riemann problem and Lagrangian setting. In view of the track-
ing algorithm in Section 1.3 we want to solve a planar problem at each point ξ ∈ Γ
where Γ is a given manifold with normal n = n(ξ) ∈ Sd−1. Let x = (x− ξ) ·n for

x ∈ R
d and states uL/R ∈ Ã × R

d be given.
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We consider the Riemann problem for the rotated system

Ut + F (U;n)x = 0 in R× (0,∞), (1.2.1)

U(x, 0) =

{
UL =

(
�L,vL · n,vL · t1, . . . ,vL · td−1

)T
:x < 0,

UR =
(
�R,vR · n,vR · t1, . . . ,vR · td−1

)T
:x > 0.

Here U = U(x, t) ∈ Ã × Rd denotes the (rotated) unknown (using the same
notation as for discontinuous waves (1.1.24), which shouldn’t be mixed up).

Let us consider for a moment the two-phase case with UL ∈ Ãliq × Rd and

UR ∈ Ãvap×Rd. In Theorem 1.2.9 we will prove that the Riemann problem (1.2.1)
is solvable and contains exactly one phase boundary connecting a state Uliq with
the state Uvap and moving with speed s. Then we can define an interface solver

RF (·;n) :

{
(Ãliq × Rd)× (Ãvap × Rd) → R× (Ãliq × Rd)× (Ãvap × Rd)

(UL,UR) �→ (s,Uliq,Uvap).
(1.2.2)

Let us note that the idea of an interface solver does not necessarily require to solve
a continuum-mechanical Riemann problem. In view of the modelling problems
associated with the kinetic relation other more microscopic models could provide
even more accurate information (see [64] for a molecular-dynamical approach).

Let us proceed with the general case. The tangential part of the velocity
field v is independent of the field in normal direction and is just transported.
Consequently it is possible to neglect the tangential components and focus on a
problem only for the unknowns density � and normal velocity v = v ·n. Moreover
the solution of the Riemann problem gets much more easy if we transform the
Euler system (1.2.1) in Eulerian variables (x, t) into Lagrangian coordinates which
we denote by (ξ, t).

Therefore we are lead to consider the following Riemann problem. LetwL/R ∈
A × R be given. We search for a self-similar entropy solution w = (τ, v)T : R ×
[0,∞) → A× R of(

τ
v

)
t

+

(
−v
p(τ)

)
ξ

=

(
0
0

)
in R× (0,∞),

(
τ
v

)
(ξ, 0) =

{
wL = (τL, vL)

T
for ξ < 0,

wR = (τR, vR)
T

for ξ > 0.

(1.2.3)

An entropy solution w of (1.2.3) has to satisfy the entropy condition(
ψ(τ) +

1

2
v2
)
t
+ (p(τ) v)ξ ≤ 0

in the distributional sense (cf. (1.1.21) for the equivalent Eulerian formulation). To
simplify the following analysis in the two-phase case we will always assume that
we have τL ∈ Aliq and τR ∈ Avap.
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System (1.2.3) is of course also a system of hyperbolic conservation laws.
Using the notations as in the Eulerian case the real eigenvalues of the Jacobian of
the flux are

λ1(τ) = −c(τ), λ2(τ) = c(τ), (1.2.4)

where c = c(τ) is the sound speed in Lagrangian coordinates (see (1.1.11)). The
coordinate transformation does also not change the type of the characteristic fields:
both characteristic fields are genuinely nonlinear in the state spaces for the one-
phase and the two-phase pressure.

1.2.2. Elementary waves and phase boundaries. The solution of the Riemann
problem will consist of a wave pattern with different types of waves. For a one-
phase pressure elementary waves (rarefaction and Laxian shock waves) suffice, for
a two-phase pressure additionally several types of phase boundaries are needed. We
first introduce all these waves. The waves connect given left states wl = (τl, vl)

T ∈
A×R with right states wr = (τr, vr)

T ∈ A×R. For more background we refer to
standard text books like [21, 35].

Rarefaction wave. A left state wl and a right state wr are connected by an i-
rarefaction wave (i = 1, 2) if

w(ξ, t) =

⎧⎪⎨
⎪⎩
wl for ξ < λi(τl) t,

w̄(ξ/t) for λi(τl) t < ξ < λi(τr) t,

wr for ξ > λi(τr) t > 0

is a continuous weak solution of system (1.2.3)1 for some smooth function
w̄ : R → A × R. For the velocity component of a 1/2-rarefaction wave we
have vr = vl ±R(τl, τr) with

R(τl, τr) :=

∫ τr

τl

√
−p′(τ) dτ.

Laxian shock wave. A (Laxian) i-shock wave is a discontinuous wave connecting
wl with wr with speed si ∈ R such that

λi(τl) > si > λi(τr) (1.2.5)

holds. Note that (1.2.5) corresponds to (1.1.23) in the Eulerian case. We will
use the term shock wave in this section only for waves in the bulk, that means,
for τl and τr in the same phase for a two-phase pressure.

Recall that any discontinuous wave satisfies the Rankine–Hugoniot con-
ditions (1.1.15), which are simplified in the Lagrangian setting to be

s �τ� + �v� = 0, −s �v� + �p(τ)� = 0, (1.2.6)

where s denotes now the speed of the interface in Lagrangian coordinates. As
a consequence the propagation speed for a 1/2-shock wave is

s1/2 = s1/2(τl, τr) = ∓
√
−p(τr)− p(τl)

τr − τl
.
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For some 1/2-shock wave with τl �= τr we have vr = vl ± S(τl, τr) with

S(τl, τr) = sign(τr − τl)
√
−(τr − τl) (p(τr)− p(τl)).

The entropy condition for a discontinuous wave in the Lagrangian framework
writes as

−sf ≤ 0, f(τl, τr) := �ψ(τ)� + �τ� {p(τ)} . (1.2.7)

Note that (1.2.7) is the interfacial entropy condition (1.1.22) in Lagrangian
coordinates. It is well known that a Laxian i-shock wave satisfies the entropy
condition (1.2.7).

Rarefaction and Laxian shock waves are summarized as elementary waves using
the term i-elementary wave for an i-shock wave and an i-rarefaction wave. They
obey the following compact representation.

vr =

{
vl + E(τl, τr) if i = 1,

vl − E(τl, τr) if i = 2
for E(τl, τr) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
R(τl, τr) if i = 1 and τl < τr,

S(τl, τr) if i = 1 and τl > τr,

R(τl, τr) if i = 2 and τl > τr,

S(τl, τr) if i = 2 and τl < τr.

We proceed to define phase boundaries. The definitions apply only for the choice
of a two-phase pressure for an SI model. Let the states satisfy τl ∈ Aliq, τr ∈ Avap.

Phase boundary. A discontinuous wave, that connects a left state wl and a right
state wr in different phases, and that satisfies the entropy condition (1.2.7) is
called phase boundary. It follows from (1.2.6) that phase transitions propagate
either with speed

se(τl, τr) = −
√
−p(τr)− p(τl)

τr − τl
or sc(τl, τr) = +

√
−p(τr)− p(τl)

τr − τl
.

(1.2.8)
A phase boundary that travels with speed se (sc) is called evaporation (con-
densation) wave. Indeed, for wl = (τl, vl)

T ∈ Aliq × R and wr = (τr, vr)
T ∈

Avap × R, a phase boundary with negative speed is always an evaporation
wave and a phase boundary with positive speed is always a condensation
wave.

We have for evaporation waves vr = vl + P (τl, τr) and for condensation
waves vr = vl − P (τl, τr), with

P (τl, τr) = sign(τr − τl)
√
(τr − τl) (p(τl)− p(τr)).

Subsonic phase boundary. An evaporation wave (A condensation wave) is called
subsonic if

|se(τl, τr)| < c(τl), c(τr)
(
|sc(τl, τr)| < c(τl), c(τr)

)
(1.2.9)
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holds. Due to τl ∈ Aliq and the assumptions on the pressure derivatives in
Definition 1.1.2 |se(τl, τr)| < c(τl) and |sc(τl, τr)| < c(τl) are automatically
satisfied.

Sonic and supersonic phase boundary. An evaporation wave (A condensation
wave) is called supersonic if

|se(τl, τr)| > c(τr)
(
|sc(τl, τr)| > c(τr)

)
(1.2.10)

holds. Note that these waves fulfill the Lax condition (1.2.5). Phase bound-
aries are called sonic if equality holds in (1.2.10). Both types fulfill the entropy
condition (1.2.7).

The functions R, S, E and P are monotone decreasing with respect to the
first argument and monotone increasing with respect to the second argument.
This will become necessary in order to determine unique solutions of the Riemann
problem in Section 1.2.3.

The subsonic phase boundaries for a two-phase pressure require further spec-
ifications. As has been discussed in Section 1.1.3 subsonic phase boundaries are
constrained by a kinetic relation as in (1.1.26). The kinetic relation (1.1.26) can
be rewritten in the Lagrangian setting (see (1.2.7)) as

K(f(τl, τr), s(τl, τr)) := f(τl, τr)−K(s(τl, τr)) = 0. (1.2.11)

Let us denote the domain of possible states τl, τr that can be connected by an
entropy-consistent subsonic phase boundary (i.e., a subsonic phase boundary that
satisfies (1.2.7)) by Apb. For some specific pressure choice we refer to Figure 1.5.
The intersection of the null clines of K(f(·, ·), s(·, ·)) with Apb determine those
states τl, τr, which lead to subsonic phase boundaries that can be admitted in
the solution of the Riemann problem (1.2.3). Because subsonic phase boundaries
correspond to either an evaporation and/or a condensation wave the null cline
should split into two corresponding curves. Unique solvability of the Riemann
problem requires that these two curves are graphs of two monotone functions.
Therefore we will rely in Section 1.2.4 on the following assumption.

Assumption 1.2.1. Let a two-phase pressure p for an SI model and a driving force
K be given.

There are numbers τ scliq ∈ (τmin
liq , τ satliq ), τ sevap ∈ (τmin

vap ,∞) and monotone de-
creasing, differentiable functions

kc : [τ
sc
liq, τ

sat
liq ] → Avap and ke : [τ

sat
vap, τ

se
vap] → Aliq,

that satisfy

kc(τ
sat
liq ) = τ satvap, kc(τ

sc
liq) = τ sevap,

∣∣sc(τ scliq, τ scvap)∣∣ = c(τ scvap), (1.2.12)

ke(τ
sat
vap) = τ satliq , ke(τ

se
vap) = τ scliq,

∣∣se(τ seliq, τ sevap)∣∣ = c(τ sevap), k′e(τ
se
vap) = 0

(1.2.13)

and

(τliq, kc(τliq) ∈ Apb ∀τliq ∈ [τ scliq, τ
sat
liq ]
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and

(ke(τvap), τvap) ∈ Apb ∀ τvap ∈ [τ satvap, τ
se
vap],

such that we have for K from (1.2.11)

K(f(τliq, kc(τliq)), sc(τliq, kc(τliq))) = 0

and

K(f(ke(τvap), τvap), se(ke(τvap), τvap)) = 0.

The functions pair (kc, ke) is called pair of kinetic functions.

The first block of conditions (1.2.12) ensures that Maxwell equilibria (see
(1.1.8)) are admitted as subsonic phase boundaries. Note that for t ≥ 0 the (stand-
ing) discontinuous wave

w(ξ, t) =

{
(τ satliq , 0)T : ξ < 0,

(τ satvap, 0)
T : ξ > 0

(1.2.14)

is a subsonic phase boundary that satisfies (1.2.7) with equality. Since the mass
flux j in Eulerian coordinates is linked by s = −j to the Lagrangian speed we
recover all relevant equilibria in the Eulerian case.

The remaining conditions in (1.2.12) guarantee that solutions of the Rie-
mann problem vary continuously (under, e.g., variation of one of the end states)
from subsonic via sonic to supersonic phase transition pattern. The situation is
illustrated in Figure 1.5.

Before we will proceed with the solutions of the Riemann problem we provide
a note on the relation between the presented driving forces from Remark 1.1.9 and
pairs of kinetic functions.

Remark 1.2.2 (Driving force and kinetic functions).

(a) For the linear ansatz Kα
1 only the choice α = 0 corresponds to a (identical!)

pair of kinetic functions. The graph of the null clines of the corresponding
function K0

1 is plotted in Figure 1.5. The null clines for some Kα
1 with α �= 0,

which are derived from Kα
1 , are also plotted. Obviously, there is no associated

pair of kinetic functions.
(b) If α is small enough the driving forces Kα

2 lead to pairs of (different) kinetic
functions. Some example with p = 1 is presented in Figure 1.5.

(c) In Note 1.1.9(c) we discussed also the choice j = s = 0. This corresponds
to a pair of kinetic functions such that the null clines of the corresponding
function K0 form the upper boundary of Apb.

1.2.3. The Riemann problem for one-phase flow. Let us consider a one-phase pres-
sure from Definition 1.1.1. The study of the Riemann problem in this case is a
classical topic (see, e.g., [35]). We present the main results to compare it to the
two-phase case in Section 1.2.4.



136 C. Rohde

Fig. 1.5. The figure displays the position of the set Apb together with
the graphs of a possible pairs of kinetic functions corresponding to null
clines of K, see Remark 1.2.2.

type τL τ∗ composition L1(τL, τ
∗)

1L A A 1E E(τL, τ
∗)

type τ∗ τR composition L2(τ
∗, τR)

1R A A 2E E(τ∗, τR)

Table 1. Definition of the maps L1, L2 that determine the Lax curves.
The function E is given in Section 1.2.2.

Let initial states wL = (τL, vL)
T ∈ A × R, wR = (τR, vR)

T ∈ A × R be
given. We define a forward 1-Lax curve

L1[wL] = {w∗ = (τ∗, v∗)T | v∗ = vL + L1(τL, τ
∗)},

using a map L1 : A × A → R. All states in L1[wL] can be connected by a 1-
elementary wave to wL. In the same way we use a map L2 : A ×A → R to fix a
backward 2-Lax curve

L2[wR] = {w∗ = (τ∗, v∗)T | v∗ = vR + L2(τ
∗, τR)}.

All states in L2[wR] can be connected by a 2-elementary wave to wR. The defi-
nitions of the maps L1,L2 can be found in Table 1.

Proposition 1.2.3 (Properties of the 1-Lax curve). The maps L1,L2 : A → R

satisfy the following properties.
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(i) The maps L1,L2 are differentiable.
(ii) The map

A → R, τ∗ �→ v∗ = vL + L1(τL, τ
∗)

is differentiable and strictly monotone increasing in A. The map

A → R, τ∗ �→ v∗ = vR + L2(τ
∗, τR)

is differentiable and strictly monotone decreasing in A.

Proof. The statements (i), (ii) can be readily checked using the definition of E.
Note that Definition 1.1.1 ensures as in the Eulerian setting that the characteristic
fields associated to the flux in (1.2.3)1 are genuinely nonlinear. �

The solution of the Riemann problem 1.2.3 can now be obtained by analyzing
the two Lax curves on intersection points.

Theorem 1.2.4 (Existence). For any states wL,wR ∈ A × R the curves L1[wL]
and L2[wR] have a unique intersection point (τ∗, v∗)T ∈ A× R.

The Riemann problem 1.2.3 has a self-similar entropy solution w = w(ξ, t) ∈
A×R that is composed of a 1-elementary wave connecting the left initial state with
the intersection point (τ∗, v∗)T and a wave connecting (τ∗, v∗)T to the right initial
state by a 2-elementary wave, with v∗ = vL + L1(τL, τ

∗) = vR + L2(τ
∗, τR).

The function w is by construction a self-similar entropy solution to Riemann
problem 1.2.3 because elementary waves obey the entropy condition.

Proof of Theorem 1.2.4. By Definition 1.1.1 the maps associated to the Lax curves
satisfy

lim
τ→τ̄

L1(τL, τ) = −∞, lim
τ→τ̄

L2(τ, τR) = ∞,

lim
τ→∞

L1(τL, τ) = ∞, lim
τ→∞

L2(τ, τR) = −∞.

Proposition 1.2.3 ensures with these properties that the function

f(τ) = vR − vL + L2(τ, τR)− L1(τL, τ)

is continuous, strictly monotone decreasing, and onto R. Thus, a unique number
τ∗ ∈ (τ̄ ,∞) exists such that f(τ∗) = 0. This implies the statement of the theorem.

�

1.2.4. The Riemann problem for two-phase flow. Let us now consider a two-phase
pressure p for an SI model from Definition 1.1.2 and a kinetic relation (1.2.11). For
the rest of Section 1.2.4 we suppose that Assumption 1.2.1 holds true with a pair
of kinetic functions (kc, ke). We will analyze the Riemann problem (1.2.3) with
specific volume states τL ∈ Aliq and τR ∈ Avap. The strategy for solving is similar
as in the one-phase case. We will construct a forward and a backward curve, looking
for a unique intersection. The curves will be more complicated because they will
be composed of several waves including phase boundaries. An additional difficulty
stems from the fact that the state space consists of two open sets and the specific
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volume components of all waves are forbidden to take values in the spinodal region
Aspinodal.

We start with the forward 1-Lax curve emitting from the left state wL =
(τL, vL)

T ∈ Aliq × R. The definition of the (generalized) forward 1-Lax curve

L1[wL] = {w∗ = (τ∗, v∗)T | v∗ = vL + L1(τL, τ
∗)}

is again based on a map L1 : Aliq×Aliq∪ [τ satvap,∞) → R (for the sake of simplicity
we use the same notation as in Section 1.2.3). The definition of L1 can be found
in Table 2.

type τL τ∗ composition L1(τL, τ
∗)

1L Aliq Aliq 1E E(τL, τ
∗)

2L Aliq [τ satvap, τ
se
vap] 1E-UE E(τL, ke(τ

∗)) → P (ke(τ
∗), τ∗)

3L Aliq (τ sevap,∞) 1E-UE-1R E(τL, τ
se
liq) → P (τ seliq, τ

se
vap) → R(τ sevap, τ

∗)

Table 2. Definition of the map L1 that determines the 1-Lax curve
L1[wL]. The resulting (multiple) waves for left and right trace specific
volume values τL and τ∗ are composed of the waves given in the fourth
column (from left to right): 1E stands for 1-elementary wave, 1R for 1-
rarefaction wave, UE for subsonic (undercompressive) evaporation wave.
The functions E, P , S and R are given in Section 1.2.2.

We summarize the main properties of the 1-Lax curve in a proposition. Note
that the statements (iv),(vi) verify the well-posedness of the composite structures
in Table 2.

Proposition 1.2.5 (Properties of the generalized 1-Lax curve). Let a left state
(τL, vL)

T ∈ Aliq × R and the map L1 : Aliq ×Aliq ∪ [τ satvap,∞) → R of Table 2 be
given. Then the following properties hold.

(i) The map L1 is continuous.
(ii) The map

Aliq ∪ [τ satvap,∞) → R, τ∗ �→ v∗ = vL + L1(τL, τ
∗)

is differentiable and strictly monotone increasing in Aliq and in [τ satvap,∞).

(iii) It holds that L1(τL, τ
sat
liq ) = L1(τL, τ

sat
vap).

(iv) All propagation speeds are negative. For waves of type 2L and type 3L the
phase transition propagates faster than the elementary wave in the liquid
phase and slower than the rarefaction wave connecting to τ∗ in wave type 3L.

(v) Evaporation waves are either subsonic or sonic.
(vi) The speed of an evaporation wave is limited by the sound speed −c(τ sevap).

Proof. (i) By definition, the map L1 is piecewise continuous. It is readily checked
with Table 2, that also the transition from one domain of definition to another is
continuous.
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(ii) Note that L1 is piecewise smooth. The critical point is τ∗ = τ sevap. A short
calculation gives

lim
τ∗→τ se

vap

dS

dτ∗
(τL, ke(τ

∗)) = 0, lim
τ∗→τ se

vap

dR

dτ∗
(τL, ke(τ

∗)) = 0 with k′e(τ
se
vap) = 0,

lim
τ∗→τ se

vap

dS

dτ∗
(τ sevap, τ

∗) = c(τ sevap), lim
τ∗→τ se

vap

dR

dτ∗
(τ sevap, τ

∗) = c(τ sevap) and

lim
τ∗→τ se

vap

dP

dτ
(ke(τ

∗), τ∗) = c(τ sevap) with k′e(τ
se
vap) = 0 and

∣∣se(τ scliq, τ scvap)∣∣ = c(τ scvap)

for the functions S, R and P , introduced in Section 1.2.2. Thus, the derivatives of
a wave of type 2L and type 3L coincide in τ sevap. The functions S and R are strictly
monotone increasing with respect to the second argument. A short calculation
shows that L1 is strictly monotone increasing also for a wave of type 2L, since
k′e < 0.

(iii) The condition holds, since P (τ satliq , τ satvap) = 0.

(iv)–(vi) By definition, all waves of the first family have non-positive prop-
agation speeds. The speed of the evaporation wave is between −c(τ sevap) and 0.
Due to the properties of a two-phase pressure waves in the liquid phase propagate
faster (in absolute values) than the vapour sound speed. The phase transition in
wave type 3L is sonic and the vapour rarefaction wave is attached. �

The backward curve may contain a condensation wave. Condensation waves
change from subsonic to supersonic or vice versa in the point τ scliq. Therefore the
structure of the generalized 2-Lax curve

L2[wR] = {w∗ = (τ∗, v∗)T | v∗ = vR + L2(τR, τ
∗)},

which is defined from some map L2 : (τmin
liq , τ satliq ] ∪ Avap × Avap → R is more

intricate.

The next statements introduce further switching states in A. The proofs are
simple consequences of Definition 1.1.2. In particular we introduce values τ̂ , τ̌ and
a function gs. The value τ̂ is such that the pressure function has the same slope
in τR as the chord from (τ̂ , p(τ̂ )) to (τR, p(τR)). The value τ̌ is such that the
points (τ̌ , p(τ̌ )), (τ satvap, p(τ

sat
vap)), (τR, p(τR)) lie on one straight line. The function

gs is determined such that the pressure function has the same slope in gs(τ) as
the chord from (τ, p(τ)) to (gs(τ), p(gs(τ))).

Lemma 1.2.6 (The values τ̂ and τ̌ ). For a fixed τR ∈ (τmin
vap , τ scvap] there exists a

unique τ̂ ∈ Aliq, such that

p′(τR) =
p(τR)− p(τ̂ )

τR − τ̂
, (1.2.15)

or equivalently λ2(τR) = sc(τ̂ , τR) holds. Moreover, τ̂ ∈ (τmin
liq , τ scliq].
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type τ∗ τR composition L2(τ
∗, τR)

1R Avap Avap 2E E(τ∗, τR)

2R (τmin
liq , τ̂ ] (τmin

vap , τ scvap] SSC P (τ∗, τR)

3R (τ̂ , τ scliq) (τmin
vap , τ scvap] SC-2R P (τ∗, gs(τ

∗)) → R(gs(τ
∗), τR)

4R [τ scliq, τ
sat
liq ] (τmin

vap , τ scvap] KC-2E P (τ∗, kc(τ
∗)) → E(kc(τ

∗), τR)

5R (τmin
liq , τ̌ ] (τ scvap,∞) SSC P (τ∗, τR)

6R (τ̌ , τ satliq ] (τ scvap,∞) KC-2S P (τ∗, kc(τ
∗)) → S(kc(τ

∗), τR)

Table 3. Definition of L2 that determines L2[wR]. The waves for left
and right trace specific volume values τ∗ and τR are composed of the
waves given in the fourth column (from left to right): 2E stands for
2-elementary wave, SC for sonic condensation, SSC for supersonic con-
densation and KC for stands for a subsonic condensation wave. The
functions E, P , R are given in Section 1.2.2.

On the other hand, for fixed τR > τ scvap, there exists a unique τ̌ ∈ Aliq, such that

p(kc(τ̌ ))− p(τ̌)

kc(τ̌ )− τ̌
=

p(τR)− p(τ̌ )

τR − τ̌
,

or equivalently sc(τ̌ , kc(τ̌ )) = s2(kc(τ̌ ), τR) holds. Moreover, τ̌ ∈ (τ scliq, τ
sat
liq ).

At the value τ̂ , a supersonic condensation wave (see wave of type 2R in
Table 3) splits up into a sonic condensation wave and a 2-rarefaction wave. At
the value τ̌ , a supersonic condensation wave (see wave of type 5R) breaks into a
subsonic condensation wave and a 2-shock wave. Waves of type 3R are composed
of a sonic condensation wave and an attached 2-rarefaction wave, cf. Table 3. The
following lemma is helpful to find the characteristic point.

Lemma 1.2.7 (The function gs). For any given τR ∈ (τmin
vap , τ scvap], equation (1.2.15)

provides a unique τ̂ ∈ (τmin
liq , τ scliq]. There exists a continuous monotone increasing

function gs : [τ̂ , τ
sc
liq] → [τR, τ

sc
vap], τ �→ gs(τ) such that

p′(gs(τ)) =
p(gs(τ)) − p(τ)

gs(τ)− τ
,

or equivalently λ2(gs(τ)) = sc(gs(τ), τ) holds.

Finally, we can define the map L2, see Table 3 below. Analogously to Propo-
sition 1.2.5 we have

Proposition 1.2.8 (Properties of the generalized Lax curve L2). Let a right state
(τR, vR)

T ∈ Avap ×R and the map L2 : (τmin
liq , τ satliq ] ∪Avap ×Avap → R of Table 3

be given. Then the following properties hold.
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(i) The map L2 is continuous.
(ii) The map

(τmin
liq , τmax

liq ) ∪ Avap → R, τ∗ �→ v∗ = vR + L2(τ
∗, τR)

is differentiable and strictly monotone decreasing in (τmin
liq , τmax

liq ) and in Avap.

(iii) It holds that L2(τ
sat
liq , τR) = L2(τ

sat
vap, τR).

(iv) All propagation speeds are positive. In wave 3R, 4R and 6R, the phase tran-
sition propagates slower than the elementary wave in the vapour phase.

Proof. (i) The map L2 is piecewise continuous and it is readily checked with Ta-
ble 3, that also the transition from one domain of definition to another one is
continuous.

(ii) Note that L2 is piecewise smooth. The critical point in the transition of
wave type 2R to wave type 3R is τ∗ = τ̂ , in the transition of wave type 3R to wave
type 4R it is τ∗ = τ seliq and from type 5R to type 6R it is τ∗ = τ̌ . For later use we
derive

dP

dτ
(τ, g(τ)) =

(g′(τ) − 1) sc(τ, g(τ))

2
+

c2(g(τ)) g′(τ) − c2(τ)

2 sc(τ, g(τ))
,

dS

dτ
(g(τ), τR) = −g′(τ) s2(g(τ), τR)

2
− c2(g(τ)) g′(τ)

2 s2(g(τ), τR)

for some smooth function g with τ < g(τ) < τR, the sound speed c in (1.1.11)
and propagation speeds in Section 1.2.2. Furthermore, there holds dR

dτ (g(τ), τR) =
−c(g(τ)) g′(τ).

We first check the limit τ∗ → τ̂ and τR ∈ (τmin
vap , τ scvap]. Note that gs(τ̂ ) = τR

and sc(τ̂ , τR) = c(τR) with Lemma 1.2.7. With the choice g = gs we find

lim
τ∗→τ̂

dP

dτ∗
(τ∗, τR) =

−1

2

(
c(τR) +

c2(τ̂ )

c(τR)

)
,

lim
τ∗→τ̂

dR

dτ∗
(gs(τ

∗), τR) = −g′s(τ̂ ) c(τR),

lim
τ∗→τ̂

dP

dτ∗
(τ∗, gs(τ

∗)) =
−1

2

(
c(τR) +

c2(τ̂ )

c(τR)

)
+ g′s(τ̂ ) c(τR).

Thus, the derivatives of a wave of type 2R and a wave of type 3R coincide in
τ∗ = τ̂ .

Now we check the limit τ∗ → τ scliq at τR ∈ (τmin
vap , τ scvap]. Here, it holds kc(τ

sc
liq) =

gs(τ
sc
liq) = τ scvap and sc(τ

sc
liq, τ

sc
vap) = c(τ scvap) with Assumption 1.2.1. We find

lim
τ∗→τ sc

liq

dP

dτ∗
(τ∗, kc(τ

∗)) =
−1

2

(
c(τ scvap) +

c2(τ scliq)

c(τ scvap)

)
+ c(τ scvap) k

′
c(τ

sc
liq),

lim
τ∗→τ sc

liq

dR

dτ∗
(kc(τ

∗), τR) = lim
τ∗→τ sc

liq

dS

dτ∗
(kc(τ

∗), τR) = −c(τ scvap) k
′
c(τ

sc
liq).
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The term with k′c cancels in wave type 4R such that the result is independent of
the function kc. The same can be done for wave type 3R replacing kc by gs. This
leads to the same result and thus the derivatives coincide in τ∗ = τ scliq.

Finally, we have to check the limit τ∗ → τ̌ and τR ∈ (τ scvap,∞). With
Lemma 1.2.6, it holds sc(τ̌ , kc(τ̌ )) = s2(kc(τ̌ ), τR) = sc(τ̌ , τR). With the above
derivatives, we find that the limits from both sides (type 5R and type 6R) are

lim
τ∗→τ̌

dL2

dτ∗
(τ∗, τR) =

−1

2

(
sc(τ̌ , τR) +

−c2(τ̌ )

sc(τ̌ , τR)

)
.

Monotonicity: the functions E and P are strictly decreasing with respect to
the first argument, thus for wave type 1R, type 2R and type 5R, there is nothing
to do.

Consider dL2

dτ∗ (τ
∗, τR) in case of wave type 3R. All terms with g′s cancel out

since sc(τ
∗, gs(τ

∗)) = c(gs(τ
∗)) holds. The remaining terms are negative such that

L2(·, τR) is a strictly decreasing function. The same holds for wave type 4R with
kc(τ

∗) > τR. The wave is composed of a condensation wave and an attached
2-rarefaction wave, cf. wave type 3R, and all terms with k′c cancel out.

In wave type 4R with kc(τ
∗) < τR and type 6R, the function kc is mono-

tonously decreasing and the term sc + c2(τ∗)/sc is positive. Thus, it remains to
demonstrate that

sc(τ
∗, kc(τ

∗)) +
c2(kc(τ

∗))

sc(τ∗, kc(τ∗))
− s2(kc(τ

∗), τ∗R)−
c2(kc(τ

∗))

s2(kc(τ∗), τR)
≥ 0.

We skip the dependencies and re-arrange the inequality: (s2 − sc)
(

c2

sc s2
− 1

)
≥ 0.

This is true since the speeds in waves of type 4R and type 6R satisfy c > s2 ≥ sc.
Thus, L2(·, τR) is a strictly decreasing function.

(iii) The condition holds due to P (τ satliq , τ satvap) = 0 and (iv) is obvious. �

The solution of the Riemann problem (1.2.3) can now be obtained by ana-
lyzing the two generalized Lax curves on intersection points.

Theorem 1.2.9 (Existence). Consider a two-phase pressure p for an SI model and
a driving force K such that Assumption 1.2.1 holds.

For any states wL ∈ Aliq × R and wR ∈ Avap × R the curves L1[wL] and
L2[wR] have a unique intersection point (τ∗, v∗)T ∈ ((τmin

liq , τ satliq ]∪ (τ satvap,∞))×R.

The Riemann problem (1.2.3) has a self-similar entropy solution w=w(ξ,t)∈
A×R that is composed of a wave connecting the left initial state with the intersec-
tion point (τ∗, v∗)T according to Table 2 and a wave connecting (τ∗, v∗)T to the
right initial state according to Table 3, with v∗ = vL+L1(τL, τ

∗) = vR+L2(τ
∗, τR).

The function w is a self-similar entropy solution of Riemann problem (1.2.3)
by definition: any wave is entropy consistent as explained in Section 1.2.2. It con-
tains exactly one admissible phase transition. Note thatw provides also an entropic
SI solution in the sense of Definition 1.1.10 for the case d = 1 if the phase boundary
is subsonic. The global solution of the Riemann problem in Theorem 1.2.9 requires
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also sonic and even supersonic phase boundaries. This fact might indicate that the
constraints on the kinetic relation are still not realistic. Note that in our approach
subsonic phase transitions are preferred, whenever this is possible.

Proof of Theorem 1.2.9. First we see that τ∗ /∈ (τ satliq , τ satvap), such that we can ex-
clude this interval from our consideration.

The maps associated to the generalized Lax curves satisfy

lim
τ→τmin

liq

L1(τL, τ) = −∞, lim
τ→τmin

liq

L2(τ, τR) = +∞,

lim
τ→∞

L1(τL, τ) = +∞, lim
τ→∞

L2(τ, τR) = −∞.

Set Δ = τ satvap − τ satliq . Proposition 1.2.5 and Proposition 1.2.8 ensure, that the
function

f(τ) =

{
vR − vL + L2(τ, τR)− L1(τL, τ) for τ ≤ τ satliq

vR − vL + L2(τ −Δ, τR)− L1(τL, τ −Δ) for τ > τ satvap

is continuous and strictly monotone decreasing from +∞ to −∞. Thus, τ∗ ∈ (τ̄ ,∞)
exists such that f(τ∗) = 0. If τ �= τ satliq then τ∗ resp. τ∗ +Δ is the unique solution

of vL + L1(τL, τ
∗) = vR + L2(τ

∗, τR). If τ = τ satliq , then also τ = τ satvap solves this
relation. �

We conclude the section with an example that illustrates the complex wave
fan of a two-phase Riemann problem and the effect of different kinetic relations.

Example 1.2.10. In this example we display a prototype solution of (1.2.3) for
two different kinetic relations K1

2 and K0
1, both corresponding to a pair of kinetic

functions (cf. Remark 1.2.2).
We use again the van-der-Waals pressure of Example 1.1.3 and as choice for

the initial condition

wL = (0.57, 0)T ∈ Aliq × R, wR = (50, 0)T ∈ Avap × R,

such that the liquid state is in fact metastable. The solid lines in Figure 1.6 show
the solutions of (1.2.3). Both solutions are composed of a shock wave followed by
an evaporation wave with attached rarefaction wave and a shock wave. In terms
of Table 2 and Table 3 the solution is composed of wave type 3L and type 6R.
We see that the pressure in the liquid phase is higher for more entropy dissipation
while the propagation speed gets slower.

1.3. A finite volume moving mesh method

The numerical approximation of entropic SI solutions of (1.1.13), (1.1.26), (1.1.16)
for a two-phase pressure is complicated due to several reasons. As a free boundary
value problem it does not only suffice to approximate the bulk quantities but
also the interface itself as a geometrical object. The numerical method has to be
designed in a way such that the values from the spinodal set Aspinodal are excluded.
In fact, any time step control fails in the presence of spinodal states which produce
complex transport speeds, see (1.1.18). The kinetic relation as an extra coupling
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Fig. 1.6. Solution of a two-phase Riemann problem with two different
kinetic relations. The left figure shows the pressure and the right one
the velocity as functions of the Lagrangian space variable at time t = 1.

condition has to be directly integrated into the scheme. Finally, the occurrence of
shock waves in the bulk regions requires an upwinding concept for stabilization.

As a first approach let us mention an idea which requires an approximating
DI model (as, e.g., considered in Section 2). The regularization parameter is sub-
stituted by the mesh parameter. In this way the complexity of the SI ansatz is re-
duced and one can use quite standard (finite-volume, finite-difference,. . . ) schemes
for the numerics. Representative works are, e.g., [58, 59]. The major drawback of
this ansatz is that the kinetic relation can only be addressed in an indirect way and
it is hardly possible to adjust the mobility constant in Remark 1.1.9 for a specific
fluid. Moreover the time step control can usually only be done in an ad hoc manner.
The Glimm front tracking/random-choice method is frequently used for tracking
fronts in hyperbolic conservation laws, see [12, 55]. For deterministic versions that
use an extra tracking of the sharp interface one can consult [9, 10, 28, 67, 85]. The
major drawback of all these schemes is the fact that they are not locally conser-
vative. Moving mesh methods can overcome this drawback and this is exactly the
strategy we want to present here. Whereas moving meshes have been routinely
used for a long time in (compressible) fluid mechanics the computation for phase
boundaries has started with [11] in one spatial dimension. We focus here on the
multi-dimensional case, most of the material taken from the recent paper [14].

We conclude by mentioning papers on related applications like on the evolu-
tion of phase boundaries in solids in [45, 66] or the tracking of undercompressive
overshoot waves in porous media [51], where mixed phase volumes are allowed like
in the moving-mesh approach in [16] for compressible multiphase flow.

1.3.1. Finite volume schemes on moving meshes. Up to our knowledge finite vol-
ume moving mesh methods for conservation laws in one space dimension have been
presented firstly by Harten and Hyman [42]. They have chosen the motion of the
mesh points in a way such that the numerical diffusion (caused by averaging in the
Godunov method) is minimized. In [77] moving mesh methods were also used and
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a convergence analysis for one-dimensional moving mesh methods can be found in
[75]. The extension of the method to the two-dimensional case is due to [80] and
afterwards by many others. None of these works deals with explicit solving a free
boundary value problem like we pursue here.

Fig. 1.7. Space-time cell Kst for the case d = 2.

Let for N ∈ N a time partition t0 = 0 < t1 < · · · < tN = T of [0, T ] be
given. For the sake of simplicity we assume D = Rd in Section 1.3.1. We fix some
n ∈ {0, . . . , N − 1}. Consider a prism-like space-time cell [0, T ] × Ω ⊃ Kst =
{(t,x) | tn ≤ t ≤ tn+1,x ∈ K(t)}, see Figure 1.7, with 0 ≤ tn < tn+1 ≤ T ,
K(t) := conv(p0(t),p1(t),p2(t)) for t ∈ [tn, tn+1] and time-dependent points p0 =
p0(t), . . . ,pd = pd(t) ∈ Rd which evolve linearly in time with speed s0, . . . , sd ∈ Rd

according to

pl(t) = pl(t
n) + (t− tn)sl (l = 0, . . . , d). (1.3.1)

Let us first consider the Euler system (1.1.13) in the general conservation law form

(1.1.17). Suppose that we have a function u ∈ C1(Rd × [0, T ), Ũ), that satisfies
(1.1.17) in the classical sense and let us ignore the interface Γ. Integration of
(1.1.17) with respect to the space-time cell Kst leads to the component equations

∫ tn+1

tn

∫
K(t)

ut dx dt+

∫ tn+1

tn

∫
∂K(t)

F (u;n) dz dt = 0.

Evaluating the evolution term involves a geometric transport term, i.e.,∫ tn+1

tn

∫
K(t)

ut dx dt

=

∫
K(tn+1)

u(·, tn+1) dx−
∫
K(tn)

u(·, tn) dx−
∫ tn+1

tn

∫
∂K(t)

(s · n)u dz dt.

(1.3.2)
Here s : ∂K(t) → Rd is the speed of a point x(t) = λpi(t) + (1 − λ)pj(t) ∈ ∂K(t)
with i �= j ∈ {0, . . . , d − 1} and λ ∈ [0, 1], i.e., s(x) = λsi + (1 − λ)sj , and n(t) :
∂K(t) → S

d−1 is the outer unit normal at the boundary of K(t) (for simplicity
using the same notation as for the interface). Altogether we get the generalized
conservative integral form. This gives the conservation form of (1.1.17) on Kst,
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i.e., ∫
K(tn+1)

u(·, tn+1) dx−
∫
K(tn)

u(·, tn) dx

+

∫ tn+1

tn

∫
∂K(t)

F (u;n)− (s · n)u dz dt = 0.

(1.3.3)

Based on the conservation form (1.3.3) on a space-time cell Kst we will derive
a finite volume scheme on moving meshes. Let Pd denote the set all d-polygons
with positive volume. By a fixed mesh with index set I ⊂ Z we mean the set
τ = {Ki |Ki ∈ Pd, i ∈ I}, such that

R
2 =

⋃
i∈I

Ki, K̊i ∩ K̊j = ∅ ∀ i, j ∈ I, i �= j,

and the following property holds: either
∣∣Ki ∩Kj

∣∣
d−1

= 0 or
∣∣Ki ∩Kj

∣∣
d−1

>

0 ⇒ Ki ∩ Kj is a line segment between two common vertices of Ki and Kj .
Here |·|e denotes the e-dimensional Hausdorff measure for e = 1, . . . , d. We define

Si,j = Ki ∩Kj and call it hyper-surface, if |Si,j |d−1 > 0, i �= j. The index set of
all hyper-surfaces is defined as

E =
{
(i, j) ∈ I × I | |Si,j |d−1 > 0

}
.

For i ∈ I, the index set of all neighbors ofKi is given as N(i) = {j ∈ I | |Si,j |d−1 >

0}. For each edge Si,j we define ni,j ∈ Sd−1 as the outer unit vector at Si,j w.r.t.Ki.
The mesh width h is defined as

h := max
(i,j)∈E

{
|Si,j |d−1

}
.

Definition 1.3.1 (Moving mesh). Let a mesh τ = {Ki |Ki ∈ Pd, i ∈ I} on Rd with
an index set I and some interval [t1, t2] be given. Assume that for each i ∈ I there
is a continuous function

Φi : [t1, t2] → La(Ki,R
d), t �→ Φt

i,

with Φi(t1) = id. Here La(Ki,R
d) denotes the space of affine mappings from Ki

to Rd.
We call T = (τ, {Φi}i∈I) a moving mesh for [t1, t2], if

∀ t ∈ [t1, t2] : {Φt
i(Ki)}i∈I =: τ(t) is a mesh with index set I.

We define the time-dependent elements Ki(t) and the time-dependent hyper-
surfaces Si,j(t) of the moving mesh T = (τ, {Φi}i∈I) by

Ki(t) := Φt
i(Ki) and Si,j(t) := Φt

i(Si,j) = Φt
j(Si,j).

Note that Definition 1.3.1 implies that the index set I remains invariant in
time.
Suppose we have a moving mesh (τ, {Φi}i∈I) of R

2 with time-dependent elements
Ki(t), i ∈ I. Then we must introduce (approximate) fluxes to compute the surface
integrals in (1.3.3).
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Definition 1.3.2 (Numerical and geometrical flux functions). Let (τ, {Φi}i∈I) be
a moving mesh for the time interval [tn, tn+1] and denote by si,j the speed of the
midpoint of the edge Si,j .

The Lipschitz continuous functions gn
i,j = gn

i,j(u,v) and hn
i,j = hn

i,j(u,v) are

called numerical flux function and geometrical flux function for the system (1.1.17)
if they fulfill the following properties.

(i) ∀u ∈ U ∀ i ∈ I ∀ j ∈ N(i) :

gn
i,j(u,u) = f(u)·ni,j(t

n+1/2) and hn
i,j(u,u) = −ni,j(t

n+1/2)·si,j u (Consistency)
(1.3.4)

(ii) ∀u,v ∈ U ∀ i ∈ I ∀ j ∈ N(i) :

gn
i,j(u,v) + hn

i,j(u,v) = −
(
gn
j,i(v,u) + hn

j,i(v,u)
)

(Conservation). (1.3.5)

Common choices for the numerical flux are for example the Lax–Friedrichs
flux, the Godunov-(type) flux or the Roe flux, see, e.g., [54]. The geometrical flux
hn
i,j can be treated in exactly the same manner as the numerical flux with the

corresponding flux function h(u) = −(ni,j · si,j)u.

Definition 1.3.3 (Finite volume step on moving meshes). Let T = (τ, {Φi}) be
a moving mesh with index set I for the time interval [tn, tn+1] of length Δtn :=
tn+1 − tn. For {un

i ∈ U}i∈I ⊂ U the mapping

FVS : ({un
i }i∈I , T ) �→ {un+1

i }i∈I

is called finite volume step for (1.1.17), if the values un+1
i are computed from∣∣Ki(t

n+1)
∣∣un+1

i (1.3.6)

= |Ki(t
n)|un

i −Δtn
∑

j∈N(i)

∣∣∣Si,j

(
tn+1/2

)∣∣∣ (gn
i,j(u

n
i ,u

n
j ) + hn

i,j(u
n
i ,u

n
j )
)
,

with tn+1/2 = tn + 0.5Δtn. Moreover, gn
i,j is a numerical flux function and hn

i,j is
a geometrical flux function.

The resulting scheme on moving meshes is summarized as the following al-
gorithm.

Algorithm 1.3.4 (Finite volume scheme on moving meshes for (1.1.17)).

1: procedure Finite Volume Scheme(u0, T, T )
2: t0 = 0, n = 0

3: {u0
i }i∈I =

{
1

|Ki(0)|
∫
Ki(0)

u0 dx
}
i∈I

4: while tn < T do

5: Δtn = min
i∈I

(
|Ki(t

n)| · |∂Ki(t
n)|−1 · λ(un

i )
−1
)

6: {un+1
i }i∈I = FVS({un

i }i∈I , T )
7: tn+1 = tn +Δtn, n = n+ 1
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By λ(u) we denote a positive number that scales with the maximum of the
spectrum of DF (u;n). It realizes a CFL condition to stabilize the explicit finite
volume scheme. We define the approximate solution computed within Algorithm
1.3.4 as the piecewise constant function

uh(x, t) = un
i if t ∈ [tn, tn+1) and x ∈ Ki(t).

In passing we note that the finite volume scheme preserves mass by its construction,
precisely we have ∫

Rd

(uh(x, t
n)− u0(x)) dx = 0.

Up to now we have not taken care about the approximation of the phase boundary
Γ = Γ(t). Therefore we combine the moving mesh method with a special tracking
of the phase boundary.

1.3.2. Finite volume schemes on moving meshes with interface tracking. The basic
idea of the final method is to track a discrete interface that consists of hyper-
surfaces of the moving mesh (e.g., edges for d = 2). If we move interface edges
such that the position of the phase boundary is tracked, we can treat the interface
separately, using a different numerical flux as in the bulk domains. In this way
we can avoid any smearing across the interface with values in the spinodal set
Aspinodal due to averaging in standard numerical fluxes.

The computation of the approximate location of the interface is illustrated
in Figure 1.8 and will define the moving mesh T = (τ, {Φi}) we will need as an
input for the finite volume step in Definition 1.3.3. Therefore we introduce the set
of interface edges in addition to a mesh.

Fig. 1.8. Motion of the interface curve: Mesh at time t = tn (left figure)
and at time t = tn+1.

Definition 1.3.5 (Interface edges, approximate interface). For n ∈ {0, . . . , N − 1}
let a fixed mesh τn with index set I and a set {un

i ∈ U}i∈I be given. We define
the interface edge indices as

E = E(τn, {ui}i∈I) = {(i, j) ∈ E |The states un
i and un

j are in different phases}
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and the approximate interface

Γn
h = Γn

h(τ
n, {un

i }i∈I) =
⋃

(i,j)∈E(τn,{un
i })

Sn
i,j .

An approximate interface is called admissible if it consists of one or more closed
curves without any (self-)intersections.

We know that if we have an admissible approximate interface Γn
h(τ

n, {un
i }i∈I)

each vertex that is part of the interface curve has exactly two incident edges in
the mesh τn. The key tool is now the interface solver R for (1.1.13) as defined in
Section 1.2. It integrates the information of the kinetic relation into the algorithm.
The evolution of the approximate interface Γn

h can be described by the following

procedure. For each interface edge Sn
i,j , (i, j) ∈ E with un

i ∈ Ãliq × Rd and uj ∈
Ãvap × Rd we consider the Riemann problem (1.2.1) with the choices

n := nn
i,j , uL := un

i ,uR := un
j .

Using the interface solver from (1.2.2) let us denote its output by by σn
i,j , U

n
i,j ,

Vn
i,j , i.e.,(

σn
i,j(u

n
i ,u

n
j ),U

n
i,j(u

n
i ,u

n
j ),V

n
i,j(u

n
i ,u

n
j )
)
= RF (·;nn

i,j)
(un

i ,u
n
j ). (1.3.7)

Suppose pn
i,k (i ∈ I, k = 1, . . . , d) being the kth vertex of Kn

i in a mesh τn and
being part of the approximate interface Γn

h. Then pn
i,k has exactly two incident

edges in the mesh, which separate two phases, since Γn
h is a set of closed, non-

intersecting curves. We call these two incident edges Sn
i,j and Sn

i′,j′ , see Figure
1.8. We define the speed of pn

i,k as the weighted average speed computed at Sn
i,j

and Sn
i′,j′

sni,k :=
nn
i,jσ

n
i,j(u

n
i ,u

n
j )
∣∣Sn

i,j

∣∣+ nn
i′,j′σ

n
i′,j′(u

n
i′ ,u

n
j′ )
∣∣Sn

i′,j′
∣∣∣∣Sn

i,j

∣∣+ ∣∣∣Sn
i′,j′

∣∣∣ (1.3.8)

and the time-dependent point pn
i,k(t) as

pn
i,k(t) := pn

i,k(t
n) + (t− tn)sni,k.

The moving mesh is then defined as (τ, {Φi}i∈I) with

Φt
i(x) := x+ (t− tn)

(
sni,d +

∑
k=1,...,d−1

λi,k(x)(s
n
i,k − sni,d)

)
, (1.3.9)

where λn
i,k(x) denote the barycentric coordinates of x in Kn

i . We summarize the
overall process with

Definition 1.3.6 (Interface motion function). Let τn be a mesh with index set I
and let {un

i ∈ U}i∈I be a set with elements in U , such that the approximate
interface Γn

h(τ
n, {un

i }) is admissible.
The mapping

IMF : (tn,Δtn, τn, {un
i }i∈I) �→ (τn, {Φi}i∈I)



150 C. Rohde

is called interface motion function, if Φi, i ∈ I, is computed from formulas (1.3.7),
(1.3.8) and (1.3.9).

It remains to make precise the choice of the numerical fluxes at the edges of
the mesh. Using the interface solver as in (1.3.7) we define

gn
i,j(u,v) =

⎧⎪⎨
⎪⎩
F (Un

i,j(u,v)) · ni,j if u ∈ Ãliq × Rd,v ∈ Ãvap × Rd,

F (Un
i,j(v,u)) · ni,j if u ∈ Ãvap × R

d,v ∈ Ãliq × R
d,

any consistent flux otherwise,

hn
i,j(u,v) =

⎧⎪⎨
⎪⎩
−σn

i,j(u,v)U
n
i,j(u,v) if u ∈ Ãliq × Rd,v ∈ Ãvap × Rd,

+σn
i,j(v,u)U

n
i,j(v,u) if u ∈ Ãvap × Rd,v ∈ Ãliq × Rd,

any consistent flux otherwise.

(1.3.10)
Note that we used the abbreviation F = F (·;nn

i,j). Obviously the only special
choice is done at the discrete interface using there an exact Godunov flux.

Now all tools for the tracking algorithm are given, see Algorithm 1.3.7 below.
However, the motion of the interface may cause narrow or even degenerate cells.
This will affect the size of the time step and may cause that the method does not
reach the final time T . Therefore an additional post-processing step is necessary
to produce a new mesh, which conserves the approximate interface but consists
of more or less regularly shaped volumes. We will not describe this re-meshing
procedure here and refer to [14] and references therein for further informations on
this important issue.

Algorithm 1.3.7 (Tracking algorithm).

1: procedure Tracking-Type Algorithm(u0, T, τ
0)

2: t0 = 0, n = 0

3: {u0
i }i∈I0 =

{
1

|Ki(0)|
∫
Ki(0)

u0 dx
}
i∈I0

4: while tn < T do

5: Δtn = min
i∈In

(
min
i∈I

(
|Ki(t

n)| · |∂Ki(t
n)|−1 · λ(un

i )
−1
))

6: τn = IMF(tn,Δt, τn, {un
i }i∈In)

7: {un+1
i }i∈In = FVS({un

i }i∈In , T n)
8: tn+1 = tn +Δt, n = n+ 1

We conclude the section with a formal definition of the approximate solution
as discrete counterpart of the sharp-interface solution from Definition 1.1.10.

Definition 1.3.8. Let bounded initial data u0, a time T > 0 and a (fixed) mesh
τ0 be given and assume that T n are the moving meshes and {un

i }i∈In the values
computed within Algorithm 1.3.7.
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Then, we define the numerical approximation uh given by Algorithm 1.3.7
as piecewise constant function on the time-dependent elements Ki(t), that is

uh(t, x) = un
i if t ∈ [tn, tn+1) and x ∈ Ki(t) for i ∈ In

and the approximate interface Γh as

Γh(t) = Γh(T n(t), {un
i }i∈In) if t ∈ [tn, tn+1).

1.3.3. Thermodynamical consistency in one spatial dimension. Like for the ana-
lytical setting the numerical approximations should satisfy a discrete form of the
second law of thermodynamics. Usually this is the first step towards a convergence
analysis for conservation laws. We cannot present such results for Algorithm 1.3.7
in arbitrary space dimensions. However a rigorous analytical result is possible for
the one-dimensional case using the Godunov flux as a numerical flux (see Theo-
rem 1.3.9 below). For the multi-dimensional case we present numerical evidence
in Section 1.3.4.

We consider the planar case given by the (rotated) system (1.2.1) in D = R

with flux F (·) := F (·;n). The associated entropy-entropy flux pair (W,Q) has
been introduced in (1.1.20) (for d = 1 the entropy flux is a scalar-valued function).

For a given moving mesh T = (τ, {Φi}i∈I) and some time t ∈ [0, T ] the fixed
mesh τ(t) = {Φt

i(Ki)}i∈I consists of intervals Ki(t). For the sake of simplicity we
choose I = Z and introduce the geometrical notations

(xn
i−1/2, x

n
i+ 1

2
) := Ki(t

n), Sn
i+ 1

2
:= {(z, t)) | z ∈ ∂Ki(t)∩∂Ki+1(t), t ∈ (tn, tn+1)}.

Furthermore let σn
i+ 1

2

= σn
i,i+1 for the slope of Sn

i+ 1
2

in the (t, x)-frame. For the

one-dimensional setting there is a unique ι ∈ Z such that Sn
ι+ 1

2

coincides with the

approximate interface Γh for all n ∈ N. For fixed n ∈ N we can assume without
loss of generality that all other segments Sn

i+ 1
2

are parallel to the t-axis.

The finite volume moving mesh method as explained in Algorithm 1.3.7 com-
putes the numerical approximation uh through the family {un

i }i∈Z and is given
for the planar case by the iteration∣∣Ki(t

n+1)
∣∣un+1

i = |Ki(t
n)|un

i −Δtn
(
gn
i+ 1

2
+ hn

i+ 1
2
− gn

i− 1
2
− hn

i+ 1
2

)
,

u0
i =

1

|Ki(tn)|

∫ x0

i+1
2

x0

i− 1
2

u0(x) dx.
(1.3.11)

As the numerical flux for F we choose the Godunov flux. Using the self-similarity
of the Riemann problem (1.2.1) let U[x/t;uL,vR] := U(x, t) denote the entropy
solution of (1.2.1) which exists due to Theorem 1.2.9. Then the general Godunov

flux is given for s ∈ R and u,v ∈ Ã × R
d by

g(s,u,v) = F
(
U[s;u,v]

)
, (1.3.12)

i.e., it evaluates the constant value of the exact flux on the space-time segment
Sn
i+ 1

2

. Note that (1.3.12) is well posed: even if the solution of the Riemann problem
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jumps across the edge Sn
i+ 1

2

, the Rankine–Hugoniot conditions (1.1.15) hold and

make the flux unique. With definition (1.3.12) we determine the specific fluxes in
(1.3.11) by

gn
i+ 1

2
= g(σn

i+ 1
2
= 0;un

i ,u
n
i+1) for i ∈ Z \ {ι}, gn

ι+ 1
2
= g(σn

ι+ 1
2
;un

ι ,u
n
ι+1),

hn
i+ 1

2
= 0 for i ∈ Z \ {ι}, hn

ι+ 1
2
= −σn

ι+ 1
2
U[σn

ι+ 1
2
;un

ι ,u
n
ι+1].

Recall that only Sn
ι+ 1

2

might not be parallel to the t-axis.

It is the particular property of the numerical approximation uh produced
from the Godunov flux (1.3.12), that it can be characterized for each time level as
an averaged entropy solution for (1.2.1)1. Let us define the function

ūh(x, t) := U
[(
x− xi+ 1

2

)
/(t− tn);un

i ,u
n
i+1

]
(x ∈ Ki(t), t ∈ [tn, tn+1]).

(1.3.13)
This function is composed of single entropy solutions of the Riemann problem
(1.2.1). It is well defined as long as Δtn is small enough such that the wave pattern
do not cross each other. Then ūh solves (1.2.1)1 for the initial datum ūh(·, tn) =
uh(·, tn) and obeys thus the entropy inequality∫ t

tn

∫
R

W (ūh(x, s))Φt(x, s) +Q(ūh(x, s))Φx(x, s) dxds ≥ 0 (1.3.14)

for all non-negative test functions Φ with compact support in R × [tn, s] for s ∈
[tn, tn+1]. The function uh satisfies for x ∈ Ki(t

n+1) by construction

uh(x, t
n+1) =

1

|Ki(tn+1)|

∫ xn+1

i+1
2

xn+1

i− 1
2

ūh(x, t
n+1) dx. (1.3.15)

With these preparations we can now proceed to the main result of this section.

Theorem 1.3.9 (Cell entropy inequality for the finite volumemovingmesh method).
Let {un

i }i∈Z be given for some n ∈ N. Assume for some ι ∈ Z that

un
i ∈ Ãliq × R

d for i ≤ ι and un
i ∈ Ãvap × R

d for i > ι. (1.3.16)

If Δtn is small enough, the following statements hold.

(i) The phase separation property (1.3.16) holds also for t = tn+1.
(ii) There is a function q = q(s;u,v) that is consistent with the function Q−sW

for all s ∈ R and such that the finite volume moving mesh method (1.3.11)
with the Godunov flux satisfies the discrete entropy inequality

|Ki(t
n+1)|W (un+1

i )

≤ |Ki(t
n)|W (un

i )−Δtn
(
q(sni+ 1

2
;un

i ,u
n
i+1)− q(sni− 1

2
;un

i−1,u
n
i )
) (1.3.17)

for all i ∈ Z.

Before we give the proof let us mention that cell entropy inequalities for finite
volume schemes on fixed meshes using the Godunov flux can be found in any text
book, e.g., [61]. The novelty of this result is the moving mesh aspect and the
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application to a conservation law with separated state space. Let us also highlight
property (i). Except the non-conservative ghost-fluid methods we are not aware of
any (practically usable) method that avoids spinodal states.

Proof of Theorem 1.3.9. The statement (i) is a consequence of (1.3.15). The en-

tropy solution ūh(·, tn+1) inKi(t
n+1) is in the convex space Ãliq×Rd for i ≤ ι. The

phase boundary is exactly Sn
ι+ 1

2

. Therefore also the averaged values uh(x, t
n+1)

keep the phase. The same applies for the cells right to Sn
ι+ 1

2

with values in the

vapour state space.

For (ii) we exploit the entropy inequality (1.3.14) by choosing a sequence of
test functions that converge towards the characteristic function of the truncated
cone {(x, t) |x ∈ Ki(t), t ∈ [tn, tn+1]} and obtain the trace relation∫

Ki(tn+1)

W (ūh(x, t
n+1)) dx ≤

∫
Ki(tn)

W (ūh(x, t
n)) dx

− Δtn

|Sn
i+ 1

2

|

∫
Sn

i+1
2

1

2

(
Q(ūh,−(z, t))− σn

i+ 1
2
W (ūh,−(z, t))

)
dz

− Δtn

|Sn
i+ 1

2

|

∫
Sn

i+1
2

1

2

(
Q(ūh,+(z, t))− σn

i+ 1
2
W (ūh,+(z, t))

)
dz

+
Δtn

|Sn
i− 1

2

|

∫
Sn

i− 1
2

1

2

(
Q(ūh,−(z, t))− σn

i− 1
2
W (ūh,−(z, t))

)
dz

+
Δtn

|Sn
i− 1

2

|

∫
Sn

i− 1
2

1

2

(
Q(ūh,+(z, t))− σn

i− 1
2
W (ūh,+(z, t))

)
dz.

Here we have used the left-hand/right-hand traces ūh,±(z, t) = limε→0,ε>0 ūh(z±
ε, t), see also below for the Riemann solution U[·;un

i ,u
n
i+1]. Now we relate uh to

ūh via (1.3.15). Since the left-hand/right-hand traces of the Riemann solutions for
the entropy and the entropy fluxes are constant along Sn

i+ 1
2

we get after evaluating

the surface integrals

1

|Ki(tn)|

∫
Ki(tn+1)

W (ūh(x, t
n+1)) dx ≤ 1

|Ki(tn)|

∫
Ki(tn)

W (uh(x, t
n)) dx

− Δtn

|Ki(tn)|
1

2

(
Q(U−[σ

n
i+ 1

2
;un

i ,u
n
i+1])− σn

i+ 1
2
W (U−[σ

n
i+ 1

2
;un

i ,u
n
i+1])

)

− Δtn

|Ki(tn)|
1

2

(
Q(U+[σ

n
i+ 1

2
;un

i ,u
n
i+1])− σn

i+ 1
2
W (U+[σ

n
i+ 1

2
;un

i ,u
n
i+1])

)

+
Δtn

|Ki(tn)|
1

2

(
Q(U−[σ

n
i− 1

2
;un

i−1,u
n
i ])− σn

i− 1
2
W (U−[σ

n
i− 1

2
;un

i−1,u
n
i ])
)

+
Δtn

|Ki(tn)|
1

2

(
Q(U+[σ

n
i− 1

2
;un

i−1,u
n
i ])− σn

i− 1
2
W (U+[σ

n
i− 1

2
;un

i−1,u
n
i ])
)
.
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With obvious definition of the numerical entropy flux q = q(·,u,v) we rewrite the
last inequality as

1

|Ki(tn)|

∫
Ki(tn+1)

W (ūh(x, t
n+1)) dx

≤ W (un
i )−

Δtn

|Ki(tn)|
(q(sni+ 1

2
;un

i ,u
n
i+1)− q(sni− 1

2
;un

i−1,u
n
i )).

Applying once again (1.3.15) and Jensen’s inequality for the convex entropyW and

values in one of the two convex sets Ãliq/vap × Rd (see (i)) implies the statement
(1.3.17) of the theorem. �

1.3.4. Numerical results for a single bubble. We conclude Section 1 with one nu-
merical experiment taken from [14] that uses Algorithm 1.3.7. Other material can
be found in [13, 14]. Precisely we consider the interaction of a phase boundary with
an elementary wave. We take as initial condition a vapour bubble surrounded by
liquid in Maxwell equilibrium together with a discontinuity at the left, which will
result in a classical wave propagating to the right, i.e., in direction of the bubble.

(�0, �0v1,0, �0v2,0)(x)

=

⎧⎪⎨
⎪⎩
(�satvap = 0.3207, 0, 0)

∥∥x− (0.3, 0)T
∥∥2
2
< 0.1,

(�satliq = 1.8071, 0, 0)
∥∥x− (0.3, 0)T

∥∥2
2
> 0.1 and x1 > −0.5,

(1.7010,−0.4, 0) else.

At the boundary we choose reflecting boundary conditions.

The results of the computation are displayed in Figure 1.9. First of all it is
a remarkable property of the algorithm that the spherical Maxwell equilibrium is
perfectly preserved as long as no perturbation enters the position of the droplet.
This has to be compared to the situation for DI models which account for curvature
effects, see Section 2.4 below.

After it has reached the interface, the phase boundary states correspond not
anymore to Maxwell equilibria, and the interface starts moving. Also, after the
collision one can see the reflected waves in the bulk.

We know that for any entropic SI solution u = (�, �vT )T the total energy
W = W (u) must not increase in time. Taking into account the boundary condition
this means for the example that the quantity

S(t) =

∫
D

W (u(x, t)) dx +

∫ t

0

∫
∂D

m ·Q(u(z, s)) dz ds (1.3.18)

is non-increasing. Here m denotes the outer normal of ∂D.

It can be seen in Figure 1.10 that the algorithm leads to a perfectly monotone
decreasing total entropy.
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Fig. 1.9. Numerical solution for a shock moving towards a phase tran-
sition in Maxwell equilibrium. The initial mesh has 45162 elements. The
number of elements during runtime ranges between 45100 to 45162 due
to the re-meshing process.

Fig. 1.10. Evolution of S = S(t) from (1.3.18).

2. The diffuse interface approach

The SI approach from Section 1 is not only numerically quite complex. It is already
problematic on the modelling level: phenomena like merging of bubbles/droplets
or the nucleation of new phase states are excluded from the start. For these reasons
various diffuse interface (DI) models have been suggested to describe the dynam-
ics of a compressible fluid with liquid-vapour phase transition. The DI models
split into at least two sub-groups: first, that ones that use a second-gradient-
like approach as, e.g., the Navier–Stokes–Korteweg (NSK) models (see [3] and
the literature in the up-coming text). Second, there are the phase field models
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(e.g., [5, 24, 30, 63, 84]). Models from the NSK class start from an extended en-
ergy functional that accounts for more complex interactions between fluid particles
close to a spatial region where phase change takes place. As a consequence the evo-
lution equations are equipped with nonlocal terms. These provide a regularization
effect such that the NSK models result in one system governing the fluid’s dy-
namics in the entire domain D. The same applies for the phase field models. But
they introduce an additional evolution equation for a phase field parameter which
usually realizes a phase separation effect of Allen–Cahn or Cahn–Hilliard type. Re-
gardless of the chosen DI model all of them contain a small interfacial parameter
(denoted by ε > 0 in the sequel), that controls the width of the smeared-out phase
boundary layer. The sharp interface (SI) limit ε → 0 acts as a validation criterion
for all DI models. In this limit they must recover solutions of the SI model (1.1.13)
and a hyper-surface such that across this hyper-surface the coupling conditions
(1.1.15) hold.

In this second section we will restrict ourselves for the sake of brevity to
some instances of the NSK class. To proceed as in Section 1 we will start with
the one-phase case in Section 2.1, which just leads to the compressible Navier–
Stokes equations. Section 2.2 is then concerned with the classical Navier–Stokes–
Korteweg model. We will review its thermodynamical consistency and discuss it
from the numerical point of view. Whereas the analytical situation is quite clear
the classical Navier–Stokes–Korteweg model suffers from various shortcomings in
the discretization process. To overcome some of these problems we will present
variations of the classical Navier–Stokes–Korteweg model in Sections 2.3, 2.4. In
any case we will carefully analyze the thermodynamical consistency of all models.
In particular we will introduce a new entropy-consistent discretization. For parts
of the presentation we will use material including figures from the publications
[23, 70].

2.1. The Navier–Stokes equations for one-phase flow

2.1.1. Modelling and thermodynamical consistency. Like in Section 1 we start this
modeling section with a DI model for one-phase flow: the Navier–Stokes equations.
Let the pressure function p̃ = p̃(�) satisfy Assumption 1.1.1 for one-phase flow. A
DI model that fits to the SI model (1.1.13) is given by the compressible Navier–
Stokes equations [62]

�t + div(�v) = 0,

(�v)t + div(�v ⊗ v + p(�)I) = div(T)
in D × (0, T ). (2.1.1)

The unknowns are density � = �(x, t) : D × [0, T ] → (0, �̄) and velocity v =
v(x, t) : D × [0, T ] → R

d.

The matrix T = T(x, t) ∈ Rd×d in (2.1.1) stands for the viscous part of
the stress tensor which is given for λ = λ(ε), μ = μ(ε) ∈ R with μ ≥ 0 and
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3λ+ 2μ > 0 by

Tij := λdiv(v)δij + 2μDij , Dij :=
1

2

(
vj,xi + vi,xj

)
(i, j ∈ {1, 2}). (2.1.2)

The initial conditions for system (2.1.1) are

�(·, 0) = �0, v(·, 0) = v0 in D (2.1.3)

and as boundary conditions one might assume for t ∈ [0, T ]

v(·, t) = 0 on ∂D. (2.1.4)

Remark 2.1.1. In the Navier–Stokes equations (2.1.1) we have skipped a body
force for the sake of simplicity. In the current Section 2.1 and Sections 2.2, 2.3
a body force can be simply added without changing any of the results. This is
different in Section 2.4 on the computations of equilibrium or close-to-equilibrium
solutions. Inserting, e.g., gravitational forces would not only alter the topology
of the equilbria but of course also the acting forces at the interface. The chosen
ansatz for stabilization has then also account for the contribution of the body force
to the complete energy balance term that is added to the continuity equation, see
(2.4.2)1.

For pertinent results for global weak solutions of (2.1.1), (2.1.3), (2.1.4) we
refer to, e.g., [29, 62] for the isothermal and non-isothermal case. With λ(ε), μ(ε) =
o(1) the SI parameter ε > 0 controls via vanishing viscosity the SI limit in (2.1.1).
In the SI limit (say for simplicity onD = Rd) it is expected that solutions of (2.1.1),
(2.1.3), (2.1.4) realize weak solutions of (1.1.13), in fact the dissipative structure of
T ensures that the SI limit – if it exists – satisfies the entropy criterium (1.1.21) (see
Proposition 2.1.2). Although it is widely believed that solutions of (2.1.1) converge
to an entropic SI solution of (1.1.13), (1.1.15), (1.1.16) there are very less rigorous
results on the existence of the SI limit. In particular the multi-dimensional case is
widely open.

The generic statement on thermodynamical consistency for the one-phase
case is expressed in the following theorem.

Proposition 2.1.2. Let (�,v) be a classical solution of (2.1.1), (2.1.3), (2.1.4). Then
we have for all t ∈ [0, T ]

d

dt

( ∫
D

1

2
�(x, t)|v(x, t)|2 + ψ̃(�(x, t)) dx

)

+

∫
D

2μD(v(x, t)) : D(v(x, t)) + λ(div(v(x, t)))2 dx = 0.

(2.1.5)

Proof. Multiply (2.1.1) with the gradient of the entropy W from (1.1.20), that

is (−|v|2/2 + d
d� ψ̃(�),v

T )T . Integration with respect to space and usage of the

boundary conditions (2.1.4) implies (2.1.5). �
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2.1.2. A thermodynamically consistent finite-volume scheme. In the remainder of
this section we discuss the construction of a finite volume scheme that preserves the
thermodynamical consistency property from Proposition 2.1.2 also on the discrete
level. Our tool is the use of entropy-conservative schemes for systems of hyperbolic
conservation laws as it has been originally introduced by Tadmor [78]. We review
this approach here to prepare the design of finite volume methods for a DI model
for two-phase flow in Section 2.3.2.

We consider the Navier–Stokes equations (2.1.1) for a one-phase pressure
satisfying Assumption 1.1.1. For the sake of simplicity we restrict the construction
to the one-dimensional version(

�
�v

)
t

+

(
�v

�v2 + p̃(�)

)
x

=

(
0

νvxx

)
in R× (0, T ). (2.1.6)

In (2.3.10) we have chosen ν = λ + 2μ. Due to Assumption 1.1.1 the first-order
part of (2.1.6), i.e., the Euler system

Ut + F (U)x = 0 (2.1.7)

is hyperbolic in Ũ := (0, �̄) × R. Here we used (similarly but slightly different as
before in Section 1.2) the notations U = (�,m := �v)T and F (U) = (�v, �v2 +
p̃(�))T . If we recall the discussion from Section 1.1.2 we observe that the pair
(W,Q) given by

W (�,m) = ψ̃(�) +
m2

2�
, Q(�,m) =

m

�

(
ψ̃(�) + p̃(�)

)
(2.1.8)

is an entropy-entropy flux pair for (2.1.7), i.e., W is convex in Ũ , and we have in

particular the compatibility relation (∇W (U))TDF (U) = (∇Q(U))T for U ∈ Ũ .
As a consequence of the entropy’s convexity (and Ũ being convex) the mapping

U �→ V(U) from Ũ to Ṽ := V(Ũ) with

V(U) = (V1(U), V2(U))T = ∇W (U)T

=

(
d

d�
ψ̃(�)− m2

2�2
,
m

�

)T

=

(
d

d�
ψ̃(�)− v2

2
, v

)T

is one-to-one. With an appropriate flux function G = G(V) the system (2.1.7)
can then be rewritten equivalently in terms of the entropy variable V, that is

U(V)t +G(V)x = 0. (2.1.9)

Furthermore the fluxG can be represented as the gradient of the potential function
(cf. [78])

Ψ(V) = V ·G(V) −Q(U(V)). (2.1.10)

In our case we compute

Ψ(V) = V2

(
(V1 + V 2

2 )

(
d

d�
ψ̃

)−1(
V1 +

V 2
2

2

)
−W (U(V))

)
. (2.1.11)
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The numerical approach uses so-called entropy-conservative finite difference
schemes which have been originally introduced by Tadmor in [78]. Let a uniform
(fixed) mesh with cells

Kj = (xj− 1
2
, xj+ 1

2
), xj+ 1

2
=

(
j +

1

2

)
h, j ∈ Z,

and mesh width h = xj+ 1
2
− xj− 1

2
be given. Now let a numerical flux function

g∗ : Ṽ × Ṽ → R2 with g∗(V,V) = G(V) for V ∈ Ṽ be given. We consider a
semi-discrete finite volume scheme for (2.1.7). It takes for t ∈ (0, T ) and j ∈ Z the
form(

�′j(t)
m′

j(t)

)
=− 1

h

(
g∗
j+ 1

2 ,1
(t)−g∗

j− 1
2 ,1

(t)

g∗
j+ 1

2 ,2
(t)−g∗

j− 1
2 ,2

(t)

)
⇔U′

j(t)=− 1

h

(
g∗
j+ 1

2
(t)−g∗

j− 1
2
(t)
)
,

(2.1.12)
such that g∗

j+ 1
2

(t) = g∗(Vj(t),Vj+1(t)). The following result can be found in

[79, Theorem 3.1].

Theorem 2.1.3. Consider the scheme (2.1.12) and assume that

(V − Z) · g∗(V,Z) = Ψ(V)−Ψ(Z) (2.1.13)

is valid for V,Z ∈ Ṽ.
Then and only then the numerical flux g∗ is entropy-conservative, i.e., there

is a scalar function q∗ = q∗(V,Z) such that q∗(V,V) = Q(U(V)) and

W (Uj(t))
′ = − 1

h

(
q∗(Vj(t),Vj+1(t)) − q∗(Vj−1(t),Vj(t))

)
hold for all V,Z ∈ V, t ∈ (0, T ) and j ∈ Z.

The choice of an entropy-conservative numerical flux is not unique. The ex-
istence of a whole family of entropy fluxes plays no essential role for the one-
phase pressure case, but is essential in Section 2.3. Therefore we give the full
representation already now. Dealing with the two-dimensional system (2.1.7) let
{r1, r2}, {l1, l2} be sets of linear independent vectors in R

2 with rk · lk = δkl. Then
we get for VZ := V +

(
l1 · (Z−V)

)
r1

VZ+
(
l2 · (Z−V)

)
r2 = V +

(
l1 · (Z−V)

)
r1 +

(
l2 · (Z −V)

)
r2 = Z, (2.1.14)

that is an affine path connecting V and Z. In [79, Theorem 6.1] it is shown that
any numerical flux of the form

g∗(V,Z) =
Ψ
(
VZ

)
−Ψ(V)

l1 · (V − Z)
l1 +

Ψ(Z)−Ψ
(
VZ

)
l2 · (V − Z)

l2 (2.1.15)

is entropy conservative (and consistent with g).
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Now we can present our semi-discrete finite volume scheme for (2.1.6) that

is given for j ∈ Z by a solution (�j ,mj) : [0, T ) → Ũ of the initial value problem(
�′j(t)
m′

j(t)

)
= − 1

h

(
g∗
j+ 1

2 ,1
(t)− g∗

j− 1
2 ,1

(t)

g∗
j+ 1

2 ,2
(t)− g∗

j− 1
2 ,2

(t)

)

+
ν

h2

(
0

vj+1(t)− 2vj(t) + vj−1(t)

)
(t ∈ (0, T ))

(2.1.16)

and

�j(0) =

∫
Kj

�0(x) dx, mj(0) =

∫
Kj

�0(x)v0(x) dx. (2.1.17)

It is easy to check that this scheme leads to

Theorem 2.1.4 (Discrete energy inequality for one-phase flow). Let �0v
2
0 , �20,

ψ̃(�0) ∈ L1(R) ∩ L∞(R). For j ∈ Z let (�j ,mj) : [0, T ] → (0, �̄) × R be a so-
lution of (2.1.16), (2.1.17).

Then we have for each t ∈ [0, T ) the discrete energy inequality∑
j∈Z

(
(mj(t))

2

2�j(t)
+ ψ̃(�j)

)
≤
∫
R

W (�0(x), �0(x)v0(x)) dx. (2.1.18)

Proof. We multiply the scheme (2.1.16) by Vj(t). Arguing as in [79, p. 463] we
obtain from Theorem 2.1.3 functions q∗ = q∗(V,Z) such that

W (Uj(t))
′ +

1

h
(q∗(Vj(t),Vj+1(t)− q∗(Vj−1(t),Vj(t)))

=
ν

h2

(
0

vj+1(t)− 2vj(t) + vj−1(t)

)
·Vj(t).

Using V2 = v we obtain after adding-up with respect to j ∈ Z and summation by
parts ∑

j∈Z

W (Uj(t))
′ = − ν

h2

∑
j∈Z

(vj(t)− vj−1(t))
2 ≤ 0. �

The inequality (2.1.18) is the complete discrete analogue of the inequality in
Proposition 2.1.2. In fact it must be noted that entropy-disspative schemes which
rely on entropy-conservative numerical fluxes are by now frequently used in the
direct numerical solution of compressible flow problems, we refer to [32, 48] for a
more general approach that in particular includes multiple spatial dimensions.

2.2. The classical Navier–Stokes–Korteweg equations for two-phase flow

2.2.1. Modelling and thermodynamical consistency. Next, we present DI models
for two-phase flow, starting with the classical Navier–Stokes–Korteweg system.
To do this we will extend the pressure function p̃ : (Ãvap ∪ Ãliq) → (0,∞) from
Definition 1.1.2 artificially to a function p̃ : (0, �̄) → (0,∞). Since solutions of a
DI model are expected to be smooth it is necessary to evaluate p̃ also for values
in Ãspinodal like in Figure 2.1.
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Fig. 2.1. Graph of a sample two-phase pressure for a DI model on
(τ̄ ,∞) as a function of specfic volume. The dashed line indicates the
asymptote at τ = τ̄ .

Definition 2.2.1. The function p : (τ̄ ,∞) → (0,∞) is called (two-phase) pressure
for a DI model, if it is a two-phase pressure for an SI model in the sense of Definition
1.1.2 that satisfies additionally

p′ > 0 in Aspinodal.

The extension of the pressure functions in the spinodal region is completely
artificial. We mention in passing that this freedom has been used to trigger SI
limits for DI models (e.g., in [47]). Let now a two-phase pressure for a DI model
be given.

For the unknowns density � = �(x, t) : D × [0, T ] → (0, �̄), velocity v =
v(x, t) : D × [0, T ] → R

d the classical Navier–Stokes–Korteweg (NSK) system is
given by [3, 26, 44, 53]

�t + div(�v) = 0,

(�v)t + div(�v ⊗ v + p(�)I) = div(T) + γ�∇Δ�
in D × (0, T ). (2.2.1)

The initial conditions for system (2.2.1) are as for the one-phase case

�(·, 0) = �0, v(·, 0) = v0 in D. (2.2.2)

For a bounded domain D boundary conditions for (2.2.1) are given for t ∈ [0, T ]
and m ∈ Sd−1 being the outer normal of ∂D by

v(·, t) = 0, m · ∇�(·, t) = 0 in ∂D. (2.2.3)

Note that the choice (2.2.3)2 will induce a 90◦ degree contact angle between the
phases at the boundary. Other choices are of course possible but we note that the
correct description of the three-phase contact line within DI models is still under
discussion.
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Local well-posedness of classical solutions for (2.2.1), (2.2.2), (2.2.3) has been
verified in [26]. The global well-posedness of weak solutions for (2.2.1), (2.2.2),
(2.2.3) is the subject of [8], with a proof given for a one-phase pressure.

Unlike in the one-phase case one can scale λ, μ and γ in different ways with
respect to ε. Counting derivatives a natural scaling appears to be λ(ε), μ(ε) = O(ε)
and γ(ε) = O(ε2). This we will use in our numerical experiments, but see the
formal asymptotic analysis in [25] for various different scalings and consequently
very different SI limit conditions. As in the one-phase case the rigorous analysis of
the SI-limit ε → 0 is widely open in multiple space dimensions. For d = 1 there is
extensive work on traveling waves and associated SI limits towards subsonic phase
boundaries (1.1.24), starting with [38].

Thermodynamical consistency requires for the two-phase regime a generalized
energy with non-local contributions. Precisely we have

Proposition 2.2.2. Let (�,v) be a classical solution of (2.2.1), (2.2.2), (2.2.3). Then
we have for all t ∈ [0, T ]

d

dt

( ∫
D

1

2
�(x, t)|v(x, t)|2 + ψ̃(�(x, t)) +

γ

2
|∇�(x, t)|2 dx

)

+

∫
D

2μD(v(x, t)) : D(v(x, t)) + λ(div(v(x, t)))2 dx = 0.

(2.2.4)

Proof. As in the proof of Proposition 2.1.2 we multiply (2.2.1) with the gradient of

the entropy W from (1.1.20), that is (−|v|2/2 + d
d� ψ̃(�),v

T )T and integrate with

respect to space. This gives all the expressions from (2.1.5) in (2.2.4). The only
new contribution shows up from the third-order term in (2.2.1). For this term we
compute with the boundary conditions (2.2.3) and the mass conservation equation

γ

∫
D

�(x, t)v(x, t) · ∇Δ�(x, t) dx = − γ

∫
D

div(�(x, t)v(x, t))Δ�(x, t) dx

= γ

∫
D

�t(x, t)Δ�(x, t) dx

= −γ

2

d

dt

∫
D

|∇�(x, t)|2 dx.

Thus we obtain the complete statement in (2.2.4). �

Let us consider equilibrium solutions for (2.2.1). For vanishing velocity, i.e.,
static conditions, the generalized energy in (2.2.4) reduces to the van-der-Waals
energy

F ε[�] =

∫
D

ψ̃(�(x)) +
γ

2
|∇�(x)|2 dx. (2.2.5)

With other words, the equilibrium solutions should be minimizers of the functional
F ε. If we fix for some m > 0 the mass in D, that is∫

D

�(x) dx = m, (2.2.6)
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there exists some constant Cε such that the minimizers obey the elliptic equation

−Δ�+
d

d�
ψ̃(�) = Cε. (2.2.7)

The SI limit ε → 0 should identify the static equilibrium (1.1.25) for (1.1.13).
In fact, this has been proven for the one-dimensional case in [37]. Let m/|D| ∈
Aspinodal. Then it turns out that the global minimizer is piecewise constant taking
as values exactly the saturation states �satvap = 1/τ satvap and �satliq = 1/τ satliq from
Definiton 1.1.2. The multidimensional case is technically much more evolved but
the corresponding result can be found in the seminal work of [68].

2.2.2. A numerical illustration. The DI approach leads to one system on the entire
domain D, which shares many properties with the one-phase compressible Navier–
Stokes equations. As a consequence one might choose any appropriate scheme for
the Navier–Stokes equations for the numerical discretization. For the NSK class
we refer to [6, 18, 23, 34, 39, 47, 81], suggesting discontinuous Galerkin methods as
well as finite-element or finite volume schemes. Let us conclude this section with
a numerical example to illustrate the multi-phasic behaviour of the solutions.

Example 2.2.3. The example addresses the classical Navier–Stokes–Korteweg equa-
tions (2.2.1) in D = (0, 1)2. The computations were done with the discontinuous
Galerkin method as described in [23]. The initial velocity vanishes, and the initial
density field can be observed in the first picture of Figure 2.2. Note that blue colour
corresponds to a low value of density (bubble) and red colour to a high value (sur-
rounding liquid). The evolution of density is shown, after t = 100.0 equilibrium
seems to be reached because the remaining bubble is located at the boundary with
spherical shape in the bulk. Note that attaching to the boundary is energetically
favourized in view of the free energy in Proposition 2.2.2. The parameters are
chosen according to

ε =
√
0.0001, μ(ε) = ε, ν(ε) = −2

3
μ, γ(ε) = ε2.

Regardless of these achievements there remain typical numerical difficulties
with the NSK systems (or more general DI models). The interfacial width of a
diffuse phase boundary has to be resolved completely by the mesh to enable stable
computations such that local mesh adaption has to be employed. The strong cou-
pling of the interfacial parameter to physical quantitites might even force to take
very small values for the interfacial parameter. The mixed hyperbolic-elliptic struc-
ture of the classical NSK models prevents the use of stabilised discretizations to
cover convection-dominated flow regimes. Whereas thermodynamical consistency
on the level of equations is straightforward (see Proposition 2.2.2), it is not on the
discrete level.
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Fig. 2.2. Density distribution at times t = 0.0, 0.2, 1.0, 4.0, 100.0.

2.3. Relaxed Navier–Stokes–Korteweg equations for two-phase flow

2.3.1. Modelling and thermodynamical consistency. The classical NSK system in-
volves third-order derivatives which makes it numerically quite complicated. More-
over the first-order part of the classical NSK system coincides with the hyperbolic-
elliptic Euler system. Recall that the state space for the density components now
includes Ãspinodal. As a consequence it is not possible to construct schemes that
are stable as long as the mesh does not resolve the interfacial width scaling with
the SI parameter ε.

Example 2.3.1. We consider the system (2.2.1) for d = 1 with γ = ε2, λ, μ = ε and
initial conditions

�0(x) =

{
1.8, x ∈ (0.3, 0.6)
0.3, else

v0(x) = 0.

The system is solved with a discontinuous Galerkin approach (see [70] for details)
using a uniform mesh with h = 0.005. In view of the mixed hyperbolic-elliptic
structure which does not allow to use any more sophisticated flux function we
choose a simple Lax–Friedrichs flux for the first-order part.

As solution we expect the evolution towards a two-phase equilibrium. We
want to investigate if the discretization method can deal with tiny interfaces which
appear in the SI limit (ε → 0) for fixed h.
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Fig. 2.3. We see the numerical density approximation at t = 1.72 for
the NSK system for two different values of ε. The interface parameter
ε is equal to ε = 0.01 and ε = 0.001. We observe severe oscillations
for the NSK system. In the right figure the total energy evolution from
Proposition 2.2.2 is plotted for various values of h, being oscillating
in contrast to the analytical solution’s behaviour. A computation with
ε = 0.0001 failed due to the occurrence of negative density values.

Figure 2.3 shows, that the method for the NSK system (2.2.1) is not able to
deal with phase transitions for ε < 0.001 < h.

Having in mind the shortcomings of the classical NSK system we discuss in
this section a relaxed NSK system that has been suggested in modified form in
[70, 73].

Let the numbers α, β > 0 be given which we will refer to as the Korteweg
parameters. We consider the relaxed Navier–Stokes–Korteweg (R-NSK) system

�t + div(�v) = 0,

(�v)t + div(�v ⊗ v + p̃(�)I) = div(T[v]) + α�∇(c− �), in D × (0, T ). (2.3.1)

βct − γΔc = α(�− c)

The system (2.3.1) extends the classical NSK system by a screened heat equation
for the additional unknown c = c(x, t) ∈ R. The unknown c should be close to �
such that the initial conditions are chosen as

�(·, 0) = c(·, 0) = �0, v(·, 0) = v0 in D. (2.3.2)

Note that (2.3.1) does not contain higher derivatives on �. With m ∈ Sd−1 being
the outer normal of ∂D, the boundary conditions from (2.2.3) with a Neumann
condition on � change to

v(·, t) = 0, m · ∇c(·, t) = 0 in ∂D. (2.3.3)

Local well-posedness of classical solutions for (2.3.1), (2.3.2), (2.3.3) can be derived
with standard contraction techniques, see, e.g., [73]. It is remarkable that there is a
global existence result for weak solutions that applies also for two-phase pressure
[15]. Before we go on to discuss the relation between the R-NSK system and
the NSK system (2.2.1) let us present the following result on thermodynamical
consistency for (2.3.1).
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Proposition 2.3.2. Let (�,v, c) be a classical solution of (2.3.1), (2.3.2), (2.3.3).
Then we have for t ∈ [0, T )

d

dt

( ∫
D

1

2
�(x, t)|v(x, t)|2 + ψ̃(�(x, t)) +

α

2
(�(x, t)− c(x, t))2 +

γ

2
|∇c(x, t)|2 dx

)

+

∫
D

2μD(v(x, t)) : D(v(x, t)) + λ(div(v(x, t)))2 dx+

∫
D

ct(x, t)
2 dx = 0.

(2.3.4)

Proof. Multiply the first d+1 equations in (2.3.1) with − 1
2 |v|2+

d
d� ψ̃(�), v1, . . . , vd

respectively, add up and integrate with respect to space. Using the first boundary
condition in (2.3.3) we derive as in the other propositions

d

dt

∫
D

1

2
�(x, t)|v(x, t)|2 +W (�(x, t)) dx

+

∫
D

2μD(v(x, t)) : D(v(x, t)) + λ(div(v(x, t)))2 dx

= α

∫
D

�(x, t)v(x, t) · ∇(c(x, t) − �(x, t)) dx

= −α

∫
D

div(�(x, t)v(x, t))(c(x, t) − �(x, t)) dx

= α

∫
D

�t(x, t)(c(x, t) − �(x, t)) dx.

(2.3.5)

For the last line we used the first equation in (2.3.1). The parabolic equation for
c in (2.3.1) and the second condition in (2.3.3) yield after multiplication with ct
the relation∫

D

(ct(x, t))
2 dx =

∫
D

γct(x, t)Δc(x, t) + αct(x, t)(�(x, t) − c(x, t)) dx

= −γ
d

dt

∫
D

1

2
|∇c|2(x, t) dx +

∫
D

αct(x, t)(�(x, t) − c(x, t)) dx.

Thus we obtain with (2.3.5) the equation (2.3.4). �

Static equilibrium solutions of (2.3.1) are provided by minimizers of the func-
tional

F ε,γ [�, c] =

∫
D

ψ̃(�(x)) +
α

2
(�(x) − c(x))2 +

ε2

2
|∇c(x)|2 dx, (2.3.6)

where we have put γ(ε) = ε2. With other words, the equilibrium solutions should
be minimizers of the functional F ε,α if we prescribe mass as in (2.2.6). This func-
tional has been suggested in [7] to approximate minimizers of the original van-der-
Waals functional F ε in (2.2.5). Being regular enough the minimizers satisfy for
some constant Cε,α the following Euler–Lagrange system

d

d�
ψ̃(�) + α(�− c) = Cε,α, ε2Δc=α(�− c). (2.3.7)



Fully Resolved Compressible Two-Phase Flow 167

The SI limit ε → 0 should identify again the static equilibrium (1.1.25) for (1.1.13).
This is also part of the work in [7]. Let m/|D| ∈ Aspinodal. Then in complete
analogy to [68] the SI limit in multiple space dimensions has been analyzed in
[76]. In this work it is also proven that minimizers of (2.3.6) tend for Korteweg
parameter α → ∞ towards minimizers of the van-der-Waals functional (2.2.5). For
the evolutionary system (2.3.1) similar results can be found in [15, 27, 33].
One might interpret the R-NSK system by having a different physical meaning
than the original NSK system in the sense that it models different long-range
interactions between the fluid particles, see also Remark 2.3.3 below. Here we view
it as an approximate system for the NSK system which is numerically much more
tractable: The R-NSK system contains only low-order local differential operators.
The price to pay is an additional equation for the artificial unknown c. But this
equation is a simple linear parabolic equation which can be solved extremely fast
numerically, at least if a fixed mesh is used. But there is another issue which makes
(2.3.1) attractive from the numerical point of view. Setting λ = μ = 0 one can
rewrite the momentum equations in (2.3.1) as

(�v)t+div (�v ⊗ v + p̃α(�)I)=α�∇c, (2.3.8)

with

p̃α(�) = p̃(�) +
α

2
�2. (2.3.9)

If the Korteweg parameter α satisfies

2α >

∣∣∣∣min

{
d2

d�2
ψ̃(r)

∣∣∣∣ r ∈ Ãspinodal

}∣∣∣∣,
the relations (1.1.1) show that p̃′α is monotone increasing. Using the splitting from
(2.3.8) one can then modify the first-order part of the R-NSK system to become
hyperbolic which is not possible for the NSK system. This property paves the way
to use various numerical techniques from the theory of hyperbolic conservation
laws. After a short remark on the physical interpretation of (2.3.1) we present two
examples to underline this claim.

Remark 2.3.3. For β = 0 the equation (2.3.1)3 for the unknown c is a linear elliptic
equation with constant coefficients. It can be solved by convolution of the source
term with the Green kernel. For, e.g., d = 1 one obtains

c(x, t) = [K
√

γ
α ∗ �(·, t)](x),

where Kδ(x) = 1
2δ exp(−|x|/δ) is the kernel function. This expression can be used

to substitute c into the momentum equation, leading to a nonlocal NSK system
for unknowns density and velocity alone, i.e., the momentum equation writes as

(�v)t+
(
�(v)2 + p̃(�)

)
x
=(λ+ 2ν)vxx + α�

(
[K

√
γ
α ∗ �(·, t)]− �

)
x
.

Nonlocal NSK systems starting from nonlocal van-der-Waals energies have been
also suggested in [72]. In fact, the local van-der-Waals energy is only considered in
the original work of van der Waals [83] as an approximation of the nonlocal ones.
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This re-formulation as a nonlocal model can provide a physical interpretation of
the R-NSK model, relating the Korteweg parameter α to micro-scale dimensions.
For the equilibrium case this is discussed in [7].

Example 2.3.4. We perform the computations from Example 2.3.1 now for the
R-NSK system (2.3.1) with the same parameter settings. For the Korteweg pa-
rameters we have chosen β = 0, α = 100.

Using the re-formulation (2.3.8) we apply an upwind Roe-like flux for the
first-order Euler sub-system. This enables us to perform computations for under-
resolved interfaces without having instabilities like in Example 2.3.1.

Fig. 2.4. We see the density at t = 1.72 for the R-NSK system for
three different values of ε (ε = 0.01, 0.001, 0.0001). Although the dif-
fuse interface cannot be resolved on the given mesh the computations
remain stable. In the last figure the total energy evolution from Propo-
sition 2.3.2 is plotted, providing now a monotone decreasing behaviour
as predicted for the analytical solution.

Example 2.3.5. We compute numerical solutions to the R-NSK system (2.3.1) in
two space dimensions to illustrate the effect of merging bubbles. This scenario
can be described with the DI ansatz. We start with two spherical vapour bubbles
with radii 0.3, 0.2, placed initially close to the center of the domain D = (−1, 1)2,
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which is otherwise filled with liquid. Figure (2.5) shows the density distribution
at different times. This test case indicates that the R-NSK system is also able to
describe the qualitative behaviour of a compressible two-phase flow correctly.

Fig. 2.5. Density distribution: The density varies between 0.3 (blue)
and 1.8 (red). The figures show the density field at times t =
0.25, 2.0, 2.3, 40. At t = 0.25, two shock wave layer run off from the
two bubbles. Then the smaller bubble shrinks and the bigger bubble
grows. At t = 2.3 the small bubble collapses and emits a shock wave.
At t = 40 the material seems to be close to a spherical state.

2.3.2. A thermodynamically consistent finite-volume scheme. The numerical com-
putations from Examples 2.3.4, 2.3.5 appear to be quite promising. From the math-
ematical point of view it would be preferable to design a scheme with rigorously
proven properties. We transfer the ideas for hyperbolic conservation laws from
Section 2.1.2 to the R-NSK model (2.3.1). The hyperbolic structure of (2.3.1), see
(2.3.8), is the most important ingredient in this case.

As in Section 2.1 we consider the one-dimensional situation, i.e.,(
�
�v

)
t

+

(
�v

�v2 + p̃α(�)

)
x

=

(
0

νvxx + α�cx

)
,

βct − γcxx = α(c− �)

in R× (0, T ). (2.3.10)

In (2.3.10) we have used again ν = λ + 2μ. Now, let the Korteweg parameter
α > 0 be chosen such that p̃′α(�) > 0 holds for all � ∈ (0, �̄). Then the first-order
conservation law

Ut + Fα(U)x = 0 (2.3.11)
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becomes hyperbolic in Ũ = (0, �̄)×R. Here we used as aboveU = (�,m = �v)T but
Fα(U) = (�v, �v2 + p̃α(�))

T . With other words, for this sub-system of (2.3.10) we
have exactly the same structure as for (2.1.7). Let us also define the corresponding
entropy-entropy flux pair function

Wα(�,m) = ψ̃α(�) +
m2

2�
, Qα(�,m) =

m

�

(
ψ̃α(�) + p̃α(�)

)
, (2.3.12)

which substitutes (W,Q) from (2.1.8). The entropy induces a potential Ψα and thus
we can define a family of entropy-conservative numerical fluxes g∗

α for (2.3.11) by
(2.1.15).

With these preparations we construct now a numerical scheme for the relaxed
NSK system (2.3.10).

For V,Z ∈ Ṽ let

h∗
α(V,Z) =

⎧⎨
⎩

g∗
α,1(V,Z)

V2
: V2 �= 0,

ψ′−1
α

(
V1 +

V2

2

)
: V2 = 0.

(2.3.13)

For j ∈ Z we seek for the functions (�j ,mj , cj) : [0, T ) → U ×R, solving the initial
value problem(

�′j(t)
m′

j(t)

)
= − 1

h

(
g∗
α,j+ 1

2 ,1
(t)− g∗

α,j− 1
2 ,1

(t)

g∗
α,j+ 1

2 ,2
(t)− g∗

α,j− 1
2 ,2

(t)

)

+
ν

h2

(
0

vj+1(t)− 2vj(t) + vj−1(t)

)

+
α

h

(
0

h∗
α(Vj(t),Vj+1(t))

(
cj+1(t)− cj(t)

)
)
,

(t ∈ (0, T ))

(2.3.14)

βc′j(t)−
γ

h2
(cj+1(t)− 2cj(t) + cj−1(t)) = α(�j(t)− cj(t))

and

�j(0) = cj(0) =

∫
Kj

�0(x) dx, mj(0) =

∫
Kj

�0(x)v0(x) dx. (2.3.15)

For this construction we can determine an entropy conservative numerical
flux g∗

α such that we obtain

Theorem 2.3.6 (Discrete energy inequality for two-phase flow). Let �0v
2
0 , �20,

W (�0) ∈ L1(R) ∩ L∞(R). For j ∈ Z let a solution (�j ,mj, cj) : [0, T ] → (0, �̄) ×
R× R of (2.3.15), (2.3.15) be given with

r1 = (1, 0)T , r2 = (−1, 1), l1 = (1, 1)T , l2 = (0, 1)T (2.3.16)

in the flux formula (2.1.15).
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Then we have for each t ∈ [0, T ) the discrete energy inequality

∑
j∈Z

(
(mj(t))

2

2�j(t)
+ ψ̃(�j(t)) +

α

2
((�j(t)− cj(t))

2
+

γ

2h2
(cj+1(t)− cj(t))

2

)

≤
∑
j∈Z

(
(vj(0))

2

2
+ ψ̃(�j(0)) +

γ

2h2
(cj+1(0)− cj(0))

2

)
.

(2.3.17)

Proof. Consider the first component of the numerical flux g∗
α(V,Z) for V,Z ∈ Ṽ

with V2 = 0. Then we have from (2.1.15) with the choice (2.3.16), in particular
for l2

g∗α,1(V,Z) =
Ψ̃α

(
VZ

)
−Ψα (V)

l1 · (V − Z)
l11 +

Ψα (Z) −Ψα

(
V̄Z

)
l2 · (V − Z)

l21

=
Ψα

(
V̄Z

)
−Ψα (V)

l1 · (V − Z)
l11.

Moreover we observe from the path definition (2.1.14) and r1 = (1, 0)T that
WZ2 = W2 = 0. Then the definition of the potential Ψα from (2.1.11) implies

V2 = 0 ⇒ g∗α,1(V,Z) = 0. (2.3.18)

Now we consider the scheme (2.3.2) and multiply the two evolution equations
by Vj(t). Similarly, as in Theorem 2.1.4, Theorem 2.1.3 ensures the existence of
functions q∗α = q∗α(V,Z) such that

Wα(Uj(t))
′ +

1

h
(q∗α(Vj(t),Vj+1(t)− q∗α(Vj−1(t),Vj(t)))

=
εβ

h2

(
0

vj+1(t)− 2vj(t) + vj−1(t)

)
·Vj(t)

+
α

h

(
0

h∗
α(Vj(t),Vj+1(t))

(
cj+1(t)− cj(t)

)
)

·Vj(t)

=
εβ

h2

(
0

vj+1(t)− 2vj(t) + vj−1(t)

)
·Vj(t)

+
α

h

(
0

g∗α,1(Vj(t),Vj+1(t))
(
cj+1(t)− cj(t)

)
)

·Vj(t).

The last line follows from the definition (2.3.13) of h∗
α and in case of Vj,2 = 0 from

(2.3.18) above.
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In the next step we sum up with respect to j ∈ Z and obtain with summation
by parts∑

j∈Z

Wα(Uj(t))
′ ≤ α

h

∑
j∈Z

g∗α,j+ 1
2 ,1

(t)(cj+1(t)− cj(t))

= −α

h

∑
j∈Z

(
g∗α,j+ 1

2 ,1
(t)− g∗α,j− 1

2 ,1
(t)
)
cj(t)

= α
∑
j∈Z

�′j(t)cj(t).

(2.3.19)

For the last equality we used the evolution equation for �j in (2.3.2). We turn to
the equation for cj which we multiply with c′j and add up with respect to j ∈ Z.
This gives again using summation by parts and shifting indices

β
∑
j∈Z

(c′j(t))
2 +

γ

2h2

∑
j∈Z

((
cj+1(t)− cj(t)

)2)′
=

α

2

∑
j∈Z

(
2�j(t)c

′
j(t)− ((cj(t))

2)′
)
.

(2.3.20)
Adding up inequality (2.3.19) and equation (2.3.20) we get the result (2.3.17).
Note that we have skipped in the result all dissipative contributions. �
Example 2.3.7. In this experiment we verify the statement from Theorem 2.3.6 for
the semi-discrete finite volume scheme (2.3.15), (2.3.15) that provides approximate
solutions for the R-NSK system (2.3.1). In the semi-discrete case the relevant free
energy from Proposition 2.3.2 is not monotone increasing in time.

We consider the system (2.3.1) for D = (0, 1) with γ = 0.001, λ, μ = 0.1 and
α = 100, β = 0. The initial conditions are

�0(x) =

{
1.8, x ∈ (0.15, 0.55)∪ (0.665, 0.735)
0.3, else

v0(x) = 0.

The system is solved for periodic boundary conditions, using an explicit Euler
stepping in time on a uniform mesh with mesh parameter h = 0.005. The numerical
solutions for different times are displayed in Figure 2.6. One observes the evolution
towards a two-phase situation with exactly two phase boundaries. In Figure 2.7
the temporal evolution of the total energy quantity

S(t) =

∫
D

1

2
�(x, t)|v(x, t)|2 + ψ̃(�(x, t)) +

α

2
(�(x, t)− c(x, t))2 +

γ

2
|∇c(x, t)|2 dx

is shown. Although Theorem 2.3.6 does not cover the fully-discrete scheme the
energy dissipation is clearly observed.

2.4. Well-balanced Navier–Stokes–Korteweg equations for two-phase flow

We have motivated the NSK system (2.3.1) by numerical arguments. As an ap-
proximation of the original NSK system (2.2.1) it has a clear physical meaning.
The next instance of a Navier–Stokes–Korteweg model, it is called well-balanced
Navier–Stokes–Korteweg (WB-NSK) system, is solely introduced to cure a numer-
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Fig. 2.6. Evolution of the density component �h(·, t).

Fig. 2.7. Evolution of the total energy S(t).

ical problem that comes with the original NSK system: the occurrence of parasitic
currents.

Example 2.4.1. We consider a standard scheme for the NSK system (2.2.1) with
d = 2, in fact a finite-volume scheme as in [23] (choosing the polynomial degree
of the ansatz spaces in the paper to be 0). In Figure 2.8 we see the results of a
computation of an initially static bubble of quadratic shape towards a spherical
configuration. The latter one is close to a static equilibrium. One observes clearly
parasitic currents close to the phase boundary layer. In other words, the analytical
equilibrium is not an equilibrium on the discrete level. Let us however point out
that the oscillating behaviour would vanish under refinement of the mesh.

What is the reason for the parasitic current behaviour? We conjecture that
the parasitic currents are driven by the numerical dissipation that is inherent in
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any scheme. Let us assume that the numerical dissipation has the form of artificial
diffusion. Then the modified equation for the density component might be typically
of the form

�t + div(�v) = δ(h)Δ�+ o(h), (2.4.1)

with δ(h) = O(h) for a first-order scheme. If this holds true there is the following
explanation for the parasitic currents. Smooth static analytical equilibria of (2.2.1)
obey the elliptic equation (2.2.7). In this situation the leading term on the right-
hand side of (2.4.1) cannot vanish: it triggers always variations in the density field,
and thus in the momentum field. Let us conclude this example with the remark

Fig. 2.8. Density fields for t = 0, 5.0, 10.0, computed by a standard
scheme for (2.2.1).

that curing of parasitic currents is a major topic in numerical two-phase flow, see
the recent review article [71].

If the arguments from Example 2.4.1 are correct, this suggests also a cure of
the parasitic current problem: tune the numerical diffusion in a way such that the
numerical dissipation term vanishes close to an equilibrium. This is exactly the idea
of the WB-NSK system. For the unknowns density � = �(x, t) : D× [0, T ] → (0, �̄),
velocity v = v(x, t) : D × [0, T ] → Rd the well-balanced Navier–Stokes–Korteweg
(WB-NSK) system is given for some δ > 0 by

�t + div(�v) = δΔ
(
− γΔ�− 1

2 |v|2 +
d
d� ψ̃(�)

)
,

(�v)t +div(�v ⊗ v + p(�)I) = div(T) + γ�∇Δ�
in D × (0, T ).

(2.4.2)
The initial conditions for system (2.4.2) are

�(·, 0) = �0, v(·, 0) = v0 in D. (2.4.3)

For a bounded domain D boundary conditions for the fourth-order system (2.4.2)
are chosen to be

v(·, t) = 0, m · ∇�(·, t), m · ∇Δ�(·, t) = 0 in ∂D. (2.4.4)

Thermodynamical consistency requires for the two-phase regime a generalized en-
ergy with non-local contributions. Precisely we have
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Proposition 2.4.2. Let (�,v) be a classical solution of (2.4.2), (2.4.3), (2.4.4). Then
we have for all t ∈ [0, T ]

d

dt

(∫
D

1

2
�(·, t)|v(·, t)|2 + ψ̃(�(·, t)) + γ

2
|∇�(·, t)|2 dx

)

+

∫
D

2μD(v(·, t)) : D(v(·, t)) + λ(div(v(·, t)))2 dx

= −
∫
D

δ
∣∣∣∇( − γΔ�(·, t)− 1

2
|v(·, t)|2 + d

d�
ψ̃(�(·, t))

)∣∣∣2 dx.
(2.4.5)

Proof. Once again we multiply now (2.4.2) with the gradient of the entropy W
from (1.1.20), that is (−|v|2/2+ d

d�ψ(�),v
T )T and integrate with respect to space.

This gives all the expressions from (2.1.5) in (2.2.4) and two different terms. From

the multiplication of (2.4.2)1 with −|v|2/2 + d
d� ψ̃(�) we have the additional term

δ

∫
D

(
− |v|2

2
+

d

d�
ψ̃(�)

)
Δ
(
− γΔ�− 1

2
|v|2 + d

d�
ψ̃(�)

)
dx

= δ

∫
D

−
∣∣∇(− |v|2

2
+

d

d�
ψ̃(�)

)∣∣2 − γ
(
− |v|2

2
+

d

d�
ψ̃(�)

)
ΔΔ� dx.

(2.4.6)

Note that we have used here the boundary conditions (2.4.4) during the partial
integration. For the third-order term in (2.4.2) we get also a more complex con-
tribution. For this term we compute with the boundary conditions (2.4.4) and the
extended mass conservation equation (2.4.2)1

γ

∫
D

�v · ∇Δ� dx = − γ

∫
D

div(�v)Δ� dx

= γ

∫
D

�tΔ� dx

− γ

∫
D

δΔ
(
− γΔ�− 1

2
|v|2 + d

d�
ψ̃(�)

)
Δ� dx

= − γ

2

d

dt

∫
D

|∇�(x, t)|2 dx

− γ

∫
D

δΔ
(
− γΔ�− 1

2
|v|2 + d

d�
ψ̃(�)

)
Δ� dx.

Combining the last formula with the term in (2.4.6) gives in particular a perfect
square as on the right-hand side of (2.4.5), the proposition is proven. �

Proposition 2.4.2 shows that at least classical solutions of the WB-NSK sys-
tem (2.4.2) dissipate the same entropy term as the solutions of NSK system (2.2.1),
albeit with a different entropy dissipation rate. If we discretize now (2.4.2) with
a numerical scheme of higher order (such that the numerical diffusion scales in
higher order with respect to h) and let depend δ = δ(h) in an appropriate way
on the mesh parameter we could hope that the right-hand side term of (2.4.2)
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dominates the diffusion in the scheme. By construction it should also vanish for
equilibrium solutions.

Example 2.4.3. We repeat the set-up of Example 2.4.1 with a higher-order method,
discretizing now the system (2.4.2) with δ = h. The resulting scheme looses its
high order but it is able to damp parasitic currents. That is clearly demonstrated
in Figure (2.9).

Fig. 2.9. Density fields for t = 0, 5.0, 10.0 computed by a scheme for
2.4.2. Parasitic currents are suppressed.
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Anal. Non Linéaire, 21(4):401–443, 2004.

[21] C.M. Dafermos. Hyperbolic conservation laws in continuum physics. Springer, 3rd
edition, 2010.
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