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Preface

Massive penetration of operators in physics started with the birth of Quantum Me-
chanics. The mathematical methods used in quantum theory, being rather elemen-
tary at the very beginning, rapidly achieved a high level of sophistication. It was
realized soon that relevant information on the operators may be collected in the ob-
jects called the spectral functions, which depend on the operator in question and on
a real or complex parameter. In the context of quantum field theory (QFT) the most
frequently used spectral function is the heat kernel. This function was first applied
to the problems of quantum physics by Fock [111] already in 1937, and then by
Schwinger in his seminal paper [225]. In 1960’s DeWitt [77–80] put the heat ker-
nel as a corner stone for his method of calculating quantum corrections. About 10
years later, Dowker and Critchley [92] and Hawking [155] suggested a regulariza-
tion scheme of quantum field theory based on another prominent spectral function,
the zeta-function. All these works determined for the rest of the century a landscape
of methods of quantum field theory based on geometrical properties of operators.
This has led to very interesting and important developments in practically all ar-
eas of QFT, ranging from quantum gravity, to anomalies, strings, and the Casimir
effect. Apart form powerful technical tools this approach provided the physicists
with a new rather adequate language to describe complicated phenomena, and with
a new, very fruitful, point of view on quantum effects in general.

The main idea of the approach is easy to understand even without knowing pre-
cise definitions. Consider a QFT on some curved space. The spectrum of quantum
fluctuations is defined by the spectrum of an operator, say, a Laplacian, on this space.
The aim then is two-fold. On one hand, it is to relate quantities of interest in QFT,
such as a ground state energy, to functions of the spectrum of this operator, i.e.,
to spectral functions. On the other hand, one looks for a connection of the spectral
functions to geometric characteristics of the space. It is desirable to have sufficiently
general relations operating with essential ingredients of the problem, such as geo-
metric invariants of the manifold, and not depending on inessential features, for
instance, on a particular choice of coordinates.

Interestingly, similar problems were being solved in mathematics at about the
time. Kac [165] put the problem in the following way: Can one hear the shape of
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a drum? In other words, knowing the acoustic eigenfrequencies, what can one say
about the geometry? Probably the first step in this direction was done long ago
by H. Weyl [257, 258] who found a relation between asymptotic distribution of
eigenvalues of a Laplacian and the volume of the manifold. Minakshisundaram and
Pleijel [189] derived more detailed relations involving other geometric invariants.
A firm basis for such kind of calculations was developed by Seeley [226–228], and
a powerful technique for actual computations was suggested by Gilkey [132].

By mid 1980’s the methods related to spectral functions, mainly to the heat ker-
nel, became standard in QFT, especially in curved space, but also in all cases when
non-trivial geometry and topology were essential. The famous Birrell and Davies
book [37] could be found on the desk of practically everyone even remotely con-
nected with quantum gravity, often accompanied by a more technical review by
Barvinsky and Vilkovisky [26]. New challenges appeared very soon. Among them
there were spectral problems with boundaries stemming from quantum cosmology,
strings, and the Casimir effect. Then appeared problems with various types of sin-
gularities following from the brane world scenario and black hole physics. Finally,
the 21st century put spectral problems on noncommutative spaces in the center of
interest.

Of course, many good books appeared meanwhile. Some of them are listed be-
low as recommended literature. There is, however, a gap, which we would like to
fill in by the present work. We were aiming at writing a text starting with the level of
an advanced textbook, i.e., containing all basic information, especially on the math-
ematical side, and gradually reaching rather advanced physical topics. We tried to
make the book as selfcontained as possible to be useful for both active researchers
and graduate students. Inclusion of more than a hundred exercises with their solu-
tions makes it possible to use this material in lecture courses on physical applications
of the spectral theory.

These aims determined the choice of the material and the style of the presen-
tation. The exposition of main mathematical methods is very detailed, though not
always reaching the depth and generality of specialized research monographs. In
applications, instead of studying one particular area in all detail, we took examples
from various fields, including finite temperature field theory, anomalies, quantum
solitons, strings, and noncommutative field theories. In each case, we demonstrate
how the use of general methods allows to achieve interesting and important results
in an elegant and relatively easy manner. All applications are taken from active ar-
eas of research. We organized this material to prepare the reader to work further on
his/her own in any specific area of QFT.

This book is organized as follows. Part I contains some basic information and
serves to settle notations, but not only. Chapter 1 devoted to differential geometry,
contains some less standard material on boundaries and singularities. Chapter 2 in-
troduces main notions of QFT basing on relativistic inner products rather than on
usual operator quantization. This facilitates applications to the problems in the rest
of this book and, in particular, is more convenient in relation to free fields theories
in classical backgrounds.

Part II is devoted to mathematical foundations, namely, to the spectral geom-
etry. Chapter 3 explains main properties of operators. Chapters 4, 5 are the cen-
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tral Chapters for this book. Chapter 4 is an introduction to the heat equation and
asymptotic properties of the heat kernel expansion. It is organized so that to present
briefly a variety of techniques for computation of the heat coefficients on different
base manifolds. Chapter 5 contains definitions of main spectral functions, lists their
properties, and methods of computation. It defines zeta-functions and determinants
of differential operators, explains their transformation properties and the merit of
the index theorem. Much space is devoted to variations of the determinants, which
will later serve as a basis for calculations of quantum anomalies. Chapter 6 deals
with non-linear spectral problems, for which the “eigenvalues” enter the operator
itself.

Part III contains applications to various problems in physics. The chapters in this
part are relatively independent, except Chap. 7 which introduces the effective ac-
tion, a notion used many times later on. We use the spectral geometry methods to
reproduce a number of known QFT results which are derived usually with the help
of Feynman diagrams. Among them are one-loop effective potential and beta func-
tions in gauge theories. In Chap. 8 we turn to the quantum anomalies and calculate
almost all known types of anomalies, including gravitational and parity anomalies,
for two dimensional models. In Chap. 9 we consider the methods of calculations of
the vacuum energy, with the quantum corrections to the kink mass being the prin-
cipal example. Applications to string theory are contained in Chap. 10 where we
derive the Born-Infeld action for open strings and come to noncommutativity of the
coordinates of string endpoints. Chapter 11 is devoted to spectral geometry and field
theory on noncommutative manifolds, which is studied by using the same universal
tools.

Each chapter contains exercises. Some of them are included for pure pedagogical
reasons, others are interesting as a complementary material. In any case, exercises
are an integral part of this book. We encourage the reader at least to look at their
formulations. Solutions to all exercises are given in Part IV.

Not to distract the attention of the reader we avoided references in the main text
unless absolutely necessary. Instead, we added sections with literature remarks at
the end of each chapter. Because of a vast volume of material we were not able
to mention all relevant references. Instead we tried to give a starting point for a
literature search.

Here we like to mention several general sources. For more mathematics we rec-
ommend the monographs by Gilkey [133, 134] and the one by Kirsten [169], which
contains also an analysis of physical applications. The review paper [243] gives an
overview of the heat kernel methods in QFT. There are numerous research mono-
graphs treating various aspects of applications of spectral functions to QFT and
quantum gravity [18, 53, 100, 101, 103–105]. A recent elementary introduction
into quantum physics in curved spaces including some of the heat kernel methods
is [194]. A very detailed discussion of quantum anomalies may be found in the book
by Bertlmann [35]. For a long time the zeta-function techniques were applied to cal-
culation of the Casimir effect. Modern status of this area is described in [45, 187].

We benefited from numerous discussions with our friends and colleagues, and we
are grateful to all of them. Special thanks go to J. Buchbinder and H. Grosse for a
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number of valuable remarks. This work was made possible due to generous support
from various grant agencies. In particular, D.V.V. was supported by DFG while in
Germany, and by FAPESP and CNPq while in Brazil.
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Notation Index1

M : manifold
n: dimensionality of M
∂M : boundary of M
gμν : metric tensor on M , g = detgμν
R
n−,n+ : pseudo-Euclidean space with the signature (n−, n+)

signature of the metric on Lorentzian manifolds is (1,3), the time coordinate corre-
sponds to a negative component of the metric
�λμν : Christoffel connection (1.4)
[A,B] =AB −BA, {A,B} =AB +BA
∇μ: covariant derivative, usually the one which annihilates the metric,

∇μgνρ = 0

components of the Riemann tensor Rσ ρμν are defined in (1.9), (1.10) as

(∇μ∇ν −∇ν∇μ)Vρ =−VσRσ ρμν,

Rλμνκ = ∂ν�λμκ − ∂κ�λμν + �ημκ�λνη − �ημν�λκη
Ricci tensor, (1.15), scalar curvature, (1.16), are, respectively

Rμν =Rσμσν, R = gμνRμν.
ε̃μ1μ2...μn : totally antisymmetric Levi-Civita symbol of rank n, ε̃12...n = 1
εμ1μ2...μn : Levi-Civita tensor of rank n, εμ1μ2...μn = g−1/2ε̃μ1μ2...μn

χ[M ]: Euler characteristic of M
Cβ : two-dimensional cone (1.96)
E : fiber bundle over M with the fiber F , locally E = M × F
e
μ
a : orthonormal frame (1.44)
wabμ : Levi-Civita connection (1.51)

1Here we list main notations in the order of their appearance in the text.
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xvi Notation Index

another expression for the Riemann curvature tensor (1.52):

Rabμν = ∂μωνab − ∂νωνab +ωμacωνcb −ωμacωμcb
γ μ: Dirac gamma-matrices (1.55)

{γ μ, γ ν} = γ μγ ν + γ νγ ν = 2gμν

γ a = γ μeaμ
γ∗: chirality matrix defined in (1.59) for even dimension n
ψ̄ =ψ†β: Dirac conjugated spinor, β ≡ iγ a=0, β2 = 1
I [ϕ,φ]: classical action, ϕ is a set of dynamical variables, φ is a set of

background fields

classical stress-energy tensor (1.22):

T μν = 2√−g
δI

δgμν

�: co-dimension k hypersurface in M , (ni)μ normals to �, i = 1, . . . , k.
Normal vector is assumed to be inward pointing if � = ∂M is a
boundary of M

(Ki)μν : extrinsic curvatures of �, if hαμ tensor which projects on the tangent
space to �, then

(Ki)μν =−hαμhβν∇βniα
Extrinsic curvature of the boundary is defined in (1.87)
〈f1, f2〉: relativistic product (2.9), f1, f2 are two solutions to a wave equation
�f , 	f are, respectively, imaginary and real parts of a complex quantity f
L2: Hilbert space of square integrable functions on M or of square

integrable section of E
(f1, f2): scalar product in L2

L: second order elliptic operator on L2, see (3.1) and (3.2)
/D: Dirac type operator, see (3.6) and (3.7)
ζR(s, a): generalized Riemann zeta function (5.4)
ζ(s;L): zeta function of an elliptic operator L
K(x,y|t): heat kernel, see (4.3)–(4.5)
tr: trace over bundle indices
TrL2 : functional trace on L2

K(Q,L; t): heat trace for an operator L, (4.6), Q is a partial differential operator
K(L; t)≡K(1,L; t)
K(f,L; t): smeared heat trace (4.9) for an operator L and a test function f
ap(f,L): heat kernel coefficients for the smeared trace, see (4.9)
ap(Q,L): heat kernel coefficients for K(Q,L; t), expressions for ap(Q,L) are

listed in (4.124) when Q is a matrix valued function
ρ(λ): spectral density, see (5.37)
N(λ): counting function, see (5.38)
ρα(λ): smeared spectral density (the Riesz means of the spectral density

ρ(λ)), see (5.40)
W [φ]: (one loop) effective action
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Chapter 1
Geometrical Background

1.1 Fields and Particles

Experimental data available at present tell us that the high energy physics should
be formulated as a quantum field theory. In accelerator experiments, one detects
particles which are excitations of fields characterized by certain energy, momentum,
spin, charge and etc. One distinguishes the matter fields (leptons and quarks) and the
fields which carry their interactions (photons, gluons and vector bosons).

The quantum field theory is based on two sorts of fundamental physical postu-
lates. The first type of postulates is formulated as a requirement to symmetries of the
theory, while the second one determines the quantization procedure. The principle
of gauge covariance in the theory of strong and electro-weak interactions enables
one to fix almost uniquely the structure of the underlying equations.

The gravitational interactions do not fit well into this scheme. The Einstein equiv-
alence principle of classical general relativity states that results of physical experi-
ments do not depend on the velocity of a locally falling frame of reference. In anal-
ogy to field theories, this principle can be formulated as a symmetry requirement, in
a form of invariance with respect to local coordinate transformations. The difficulty
is that classical gravity theory is essentially non-linear and its quantum version is not
known yet. The gravitational field in this book will be always considered classical.

To set the stage for further analysis we give an outlook of the mathematical struc-
ture of the field theory including general relativity.

1.2 Riemannian Manifolds

We begin with definitions from Riemannian geometry which constitutes mathemat-
ical foundation of the general relativity theory.

A real n-dimensional manifold M is a space which looks around each point
like a real plane, R

n. More precisely, M can be covered by (open) subsets Mi

such that for each i there is an injection fi : Mi → R
n and, if Mj intersects Mk
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the map fjf
−1
k is smooth. This definition is just a different way to say that one

may introduce a coordinate system near each point of the manifold, and that if two
coordinate systems overlap, different coordinates of the same point are related by a
smooth coordinate transformation.

Clearly, existence of a coordinate system is absolutely necessary for field theory.
Since field theory equations contain derivatives with respect to coordinates, one also
has to assume that these derivatives are well defined (almost) everywhere, so that
the smoothness condition is also understood.

One can define tensors as functions on M having k lower (covariant) and l upper
(contravariant) indices and transforming according to the following law:

T ′ν1...νl
μ1...μk

= ∂xρ1

∂x′μ1
. . .
∂xρk

∂x′μk
∂x′ν1

∂xσ1
. . .
∂x′νl
∂xσl

T σ1...σl
ρ1...ρk

. (1.1)

Tensors with a single index, such as V μ or Vμ, are called vectors. Tensors without
indices are called scalars. They do not change under coordinate transformations,
ϕ′(x′)= ϕ(x).

The important notion is the Riemannian manifold which is a manifold equipped
at each its point with a symmetric non-degenerate tensor gμν(x). This tensor is
called the metric tensor or, simply, the metric. The metric tensor is symmetric and
can be used to define the scalar product of two vectors in the given point,

(V1 · V2)g(x)≡ V μ1 (x)gμν(x)V ν2 (x).
We also define the inverse metric gσρ by the equation: gσνgνμ = δσμ where δ is the
Kronecker symbol.

At any given point of M the metric tensor can be brought by a coordinate trans-
formation to the form gμν(x) = ημν where ημν is the flat metric, i.e. a purely di-
agonal matrix with certain number of −1’s and +1’s on its diagonal. This set of
minuses and pluses, (n−, n+), is called the signature of the metric. The signature
must be constant across the manifold, and n− + n+ = n since we suppose that the
metric is non-degenerate. The manifolds with the signature (1, n− 1) are called the
Lorentzian manifolds. They play a particularly important role in physics since our
space-time is an example of such a manifold. In applications to general relativity
the diagonal elements are −1,+1,+1,+1. A flat manifold with such signature is
called Minkowski space-time. In general, a manifold with the signature (n−, n+)
where n± �= 0 is called pseudo-Riemannian (or pseudo-Euclidean). Locally these
manifolds look like R

n−,n+ (which is R
n−+n+ with a constant metric of the sig-

nature (n−, n+)). If the metric is positive definite, n− = 0, the manifold is called
Euclidean. In what follows we call Euclidean Riemannian manifolds simply Rie-
mannian manifolds.

On Riemannian manifolds the metric tensor determines an interval between two
nearby points xμ and xμ + dxμ

ds2 = gμν(x) dxμ dxν. (1.2)

Another important notion is a transport of a vector V (x) (or a tensor) from a point
xμ to the nearby point xμ + dxμ. The transport is defined to preserve the scalar
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product of any two transported vectors,

(V1 · V2)g(x)= (Ṽ1 · Ṽ2)g(x + dx). (1.3)

Under this transport the components of the vector change as Ṽ (x + dx)= V (x)+
δV (x). The variation δV (x) is proportional to dxμ and to the components of V (x)
(the latter follows from linearity of (1.3) with respect of each of the arguments). For
a contravariant vector one can write δV μ(x) = −�μλν(x)V λ(x) dxν , where �μλν(x)
is a three-index object which depends on the coordinates. The condition (1.3) alone
is not enough to fix the transport uniquely. A distinguished case is the parallel trans-
port. By analogy with flat space, it is defined by the requirement that there is a local
coordinate system, such the components of any vector under the transport to an
infinitely close point do not change. Thus, in the vicinity of each point there are
coordinate transformations which null the coefficients �μλν(x). Together with (1.3)
this condition yields the so-called Christoffel connection

�ρμν =
1

2
gρσ (∂μgνσ + ∂νgμσ − ∂σ gμν). (1.4)

Only these connections are used in this Chapter. Another way to infer these connec-
tions from (1.3) is to require the symmetry �ρμν = �ρνμ. This latter condition is the
same as the absence of torsion.

The parallel transport can be used now to introduce the covariant derivative for
tensorial objects. The covariant derivative of a vector ∇μV (x) is defined through
the difference between the value of the vector V (x+ dx) at the point xμ+ dxμ and
the result of the parallel transport to this point of the vector V (x),

∇μV (x)dxμ ≡ V (x + dx)− Ṽ (x + dx). (1.5)

For contravariant vectors this immediately yields

∇μV ν = ∂μV ν + �νμλV λ. (1.6)

By the construction, the two-index object ∇μV ν is a tensor.
The operation of the parallel transport can be extended to an arbitrary rank tensor

and enables one to define the covariant derivative

∇μT σ1...σl
ρ1...ρk

= ∂μT σ1...σl
ρ1...ρk

− �σ1
μνT

νσ2...σl
ρ1...ρk

− �σ2
μνT

σ1ν...σl
ρ1...ρk

− · · ·
+ �νμρ1

T σ1...σl
νρ2...ρk

+ �νμρ2
T σ1...σl
ρ1ν...ρk

+ · · · (1.7)

such that the object ∇μT σ1...σl
ρ1...ρk is a tensor. For scalars the covariant derivative coin-

cides with the partial derivative. It can be checked with the help of (1.7) that

∇μgνρ ≡ 0. (1.8)

This identity is a consequence of the fact that parallel transport preserves the scalar
product, see (1.3). From now on we may move indices up and down, V μ = gμνVν ,
Vν = gμνV μ. Due to (1.8), this operation commutes with the covariant derivative.

One can always introduce a coordinate system such that first partial derivatives of
gμν vanish at a given point. Equation (1.4) implies then that �ρμν = 0 at this point.
We shall call such coordinate systems locally inertial (by borrowing this notion
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from relativity theory). Of course, in general second derivatives of the metric and
first derivatives of the Christoffel connection are not zero even in a locally inertial
frame.

We say that M is flat if at each point (i.e. globally) the metric can be brought
the to the flat form gμν = ημν by a coordinate transformation. Since �ρμν = 0, the
covariant derivatives commute, and since the covariant derivatives are tensorial ob-
jects, they commute in any coordinate system. One may introduce an object which
characterizes how far a manifold M differs from the flat one, in other words, how
curved it is. This object is called the Riemann tensor and is defined through the
equation

(∇μ∇ν −∇ν∇μ)Vρ =−VσRσ ρμν, (1.9)

where V is an arbitrary vector. Explicitly,

Rλμνκ = ∂ν�λμκ − ∂κ�λμν + �ημκ�λνη − �ημν�λκη. (1.10)

It is convenient to consider also the Riemann tensor with all indices down, Rμνρσ =
gμλR

λ
νρσ . From the definition it is clear that this tensor has the following symmetry

properties:

Rμνρσ =−Rνμρσ =−Rμνσρ =Rσρμν. (1.11)

The cyclicity property,

Rμνρσ +Rμσνρ +Rμρσν = 0, (1.12)

is a little bit harder, but also follows the same way. We also note the Bianchi identity:

Rμνλρ;σ +Rμνσλ;ρ +Rμνρσ ;λ = 0, (1.13)

where we used the semicolon to denote covariant derivatives of a tensor,

T ......;ν1...νk
:= ∇νk . . .∇ν1T

...
... . (1.14)

The Bianchi identity (1.13) follows from the commutation (Jacobi) identity

[∇μ, [∇ν,∇λ]] + [∇ν, [∇λ,∇μ]] + [∇λ, [∇μ,∇ν]] = 0.

We stress, that the Riemann tensor is not covariantly constant in general. If
∇μRνρσλ = 0 for all ν, μ, ρ, σ and λ the manifold M looks locally as a product of
spheres with the standard metric (cf. Exercise 1.3).

One can construct two other important objects by contracting indices in the Rie-
mann tensor. These are the Ricci tensor,

Rμν =Rσμσν, (1.15)

and the scalar curvature

R = gμνRμν. (1.16)

Obviously, the Ricci tensor is symmetric, Rμν =Rνμ.
If the manifold M is orientable, one can introduce another important object,

namely the n rank Levi-Civita tensor εμ1μ2...μn . We fix some numbering of the co-
ordinates x1, . . . , xn and define an n-index Levi-Civita symbol ε̃ by requiring (i)
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that ε̃12...n = 1, and (ii) that ε̃μ1μ2...μn is totally antisymmetric. This object is glob-
ally well defined if and only if M is orientable. The Levi-Civita tensor reads then
εμ1μ2...μn = g−1/2ε̃μ1μ2...μn , where g = detgμν (see Exercise 1.2). This object is
parity-odd, i.e. it changes the sign if one reverses the orientation on M . It is conve-
nient to use the Levi-Civita symbol for calculation of determinants. For example,

detgμν = 1

n!gμ1ν1 . . . gμnνn ε̃
μ1...μn ε̃ν1...νn . (1.17)

It is also easy to derive that εμ1μ2...μn = g1/2ε̃μ1μ2...μn , and that the Jacobian of a
general coordinate transformation can be represented as follows:

det

(
∂xμ

′

∂xν

)
= 1

n!
∂xμ

′
1

∂xν1
. . .
∂xμ

′
n

∂xνn
εν1...νnεμ′

1...μ
′
n
. (1.18)

For any antisymmetric tensor Fμ1...μp of rank p we can define a Hodge dual tensor

∗Fμ1...μn−p = 1

p!(n− p)!ε
μn−p+1...μn

μ1...μn−p Fμn−p+1...μn, (1.19)

which is an antisymmetric tensor of rank n−p. Repeating the Hodge star operation
twice one gets back the original tensor, perhaps up to a sign, ∗ ∗F = (−1)p(n−p)F .

1.3 Gravity Action and Dynamical Equations

An important notion in classical and quantum theories is the action functional or
simply the action. Vanishing of the first variation of the action determines equations
of motion of the corresponding model. Thus, the action may serve as a definition
of the model. Symmetry principles are formulated as a requirement that the action
preserves its form under certain transformations of its arguments (fields). We give
several examples starting from the gravity theory.

The Einstein Theory can be determined by the so-called Einstein-Hilbert action

IEH[g] = 1

16πGN

∫
M
dnx

√−g(R − 2�) (1.20)

which is defined on Lorentzian manifolds. Here GN is the Newton constant, � is
the cosmological constant. Note that dnx

√−g is the invariant measure on the man-
ifold, and (1.20) is invariant under the general coordinate transformations. The total
gravity action is I [ϕ,g] = IEH[g] + Im[ϕ,g] where Im[ϕ,g] is a contribution from
matter fields ϕ. Examples of Im[ϕ,g] for a number of models are given below.

The Einstein equations are determined are the extremum conditions for the total
action. Variation of IEH[g]+Im[ϕ,g] with respect to the metric yields (see formulae
(1.104)–(1.107))

Rμν − 1

2
Rgμν +�gμν = 8πGNTμν, (1.21)
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T μν = 2√−g
δIm

δgμν
. (1.22)

The “source” on the right hand side of (1.21) is called the stress-energy tensor Tμν
of matter fields. In (1.21), the system of units where the speed of light is equal to
unity is implied.

In the Riemannian gravity one uses a Euclidean Einstein-Hilbert action with the
convention

IEH[g] = − 1

16πGN

∫
M
dnx

√
g(R − 2�). (1.23)

The solutions with Tμν = 0 are called the vacuum solutions. If a Riemannian
manifold solves the vacuum Einstein equations for some � it is called the Ein-
stein manifold. The Ricci tensor on a Einstein manifold is covariantly constant,
Rμν;ρ = 0.

Particles in a Gravitational Field Consider a pair of points (A,B) on a
Lorentzian M connected by a path x = x(τ) (where τ is a real parameter), so that
x(0) = A and x(1) = B . One can define an interval between A and B along this
particular path by the integral

D(A,B)=
∫ B

A

ds =
∫ 1

0
dτ

√
−gμν dx

μ

dτ

dxν

dτ
(1.24)

and use this functional as an action for point particles. If A and B are not too far
away from each other there is a unique path, called the geodesic, which minimizes
D(A,B). If x(τ) is a geodesic, it satisfies the geodesic equation:

d2xμ

dτ 2
+ �μρσ

dxρ

dτ

dxσ

dτ
= 0. (1.25)

Equations (1.25) hold when τ is chosen to be an affine parameter (i.e. dτ is pro-
portional to the interval

√|ds2|). On the Lorentzian manifolds the geodesic lines
may have null tangent vector dxμ/dτ . They are called null geodesics and describe
trajectories of light rays.

It follows from (1.5) and (1.25) that the tangent vector dxμ/dτ is parallel trans-
ported along the geodesics.

Topological Theories The Levi-Civita tensor can be used to construct topological
actions on Riemannian manifolds M . These are the actions which do not depend on
the metric and are determined by topological properties of M only. Consider first
a rank p antisymmetric tensor field A(p)μ1...μp and construct a corresponding “field
strength”

F (p+1)
μ1...μp+1

=∇[μ1A
(p)
μ2...μp+1], (1.26)

where the square brackets denote antisymmetrization of the enclosed indices. Our
normalization conventions include 1/(p + 1)! so that the antisymmetrization of
an already antisymmetric tensor is an identity operation. For example, F[μν] =
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1
2 (Fμν − Fνμ). Since the Christoffel symbol is symmetric in the lower indices, it
does not contribute to (1.26), and one can replace covariant derivatives by the ordi-
nary ones,

F (p+1)
μ1...μp+1

= ∂[μ1A
(p)
μ2...μp+1]. (1.27)

This means that F (p+1) actually does not depend on the metric. Let us choose nat-
ural numbers q1, q2, . . . , qk such that q1 + q2 + · · · + qk = n and consider a Chern-
Simons type action

ICS =
∫

M
dnx g1/2εμ1...μq1ν1...νq2 ...ρ1...ρqk A(q1)

μ1...μq1
F (q2)
ν1...νq2

. . . F (qk)ρ1...ρqk

=
∫

M
dnx ε̃μ1...μq1ν1...νq2 ...ρ1...ρqk A(q1)

μ1...μq1
F (q2)
ν1...νq2

. . . F (qk)ρ1...ρqk
. (1.28)

From the representation on the first line of (1.28) it is obvious that ICS is diffeomor-
phism invariant. The second line of (1.28) tells us that ICS is topological, i.e. it does
not depend on the metric.

The Euler Characteristic For a closed Riemannian manifold M of even dimen-
sion n= 2p one can introduce a functional(

22(p+1)πpp!)χp[M ]
=

∫
M

√
g d2px εμ1μ2...μ2p−1μ2pε

ν1ν2...ν2p−1ν2pRμ1μ2
ν1ν2
. . .R

μ2p−1μ2p
ν2p−1ν2p .

(1.29)

One can show that χp[M ] is a topological invariant which takes an integer value.
It is called the Euler number. For example, for a 2-sphere S2 the Euler number
equals 2. Definition (1.29) can be extended to manifolds with a boundary.

1.4 Physical Examples of Manifolds

De Sitter Space We begin with a simple example in four dimensions. It is the
de Sitter solution to the vacuum Einstein equations (1.21) with a positive cosmolog-
ical constant, �> 0,

ds2 =−dt2 + a2 cosh2
(
t

a

)
d�2

3. (1.30)

Here a ≡
√

3
�

and

d�2
3 = dρ2 + sin2 ρ(sin2 θ dϕ2 + dθ2)

is the metric on a three-dimensional hypersphere S3 with unit radius.
Metric (1.30) can be used in applications to cosmological models. It describes a

universe which first contracts till the moment t = 0 and then expands.
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The element (1.30) is the metric of a hypersurface embedded in a flat Minkowski
space one dimension higher

−(X0)
2 + (X1)

2 + (X2)
2 + (X3)

2 + (X4)
2 = a2. (1.31)

This hypersurface is called the de Sitter space and is sometime denoted as dS4. The
parametrization which corresponds to (1.30) is

X0 = a sinh

(
t

a

)
, X4 = a cosh

(
t

a

)
cosρ,

X1 = a cosh

(
t

a

)
sinρ sin θ sinϕ, X2 = a cosh

(
t

a

)
sinρ sin θ cosϕ,

X3 = a cosh

(
t

a

)
sinρ cos θ.

The de Sitter space is maximally symmetric and has a positive curvature. As follows
from (1.31), its group of isometries is SO(1,4).

The de Sitter space is an example of a Lorentzian manifold. In the Euclidean
Einstein theory an analog of the de Sitter space is hypersphere S4. It is a maximally
symmetric space with positive curvature and the isometry group SO(5). One can get
from the de Sitter metric the metric on S4 by assuming imaginary time t = iη in
(1.30).

Another important space which is called anti-de Sitter space (AdS) is obtained
under the following changes in (1.31): X2

1 →−X2
1 and a2 →−a2. It has the isom-

etry group SO(2,3).

Black Hole Solutions One of the most interesting solutions of the Einstein equa-
tions are those which describe black holes, i.e. regions of space-time where the
gravitational field is so strong that nothing including light signals can escape these
regions and reach an external observer. The imaginary surface which separates the
“visible” and “invisible” (from the point of view an external observer) regions of
space is generated by null geodesics and is called the horizon of the black hole.

We give a simple example of a static black hole which is the Schwarzschild
solution to the vacuum Einstein equations with zero cosmological constant. In the
region outside the horizon the line element of this solution is

ds2 =−
(

1 − rH
r

)
dt2 +

(
1 − rH

r

)−1

dr2 + r2 d�2
2, (1.32)

where d�2 is the line element on the unit two-sphere

d�2
2 = dθ2 + sin2 θ dϕ2. (1.33)

Here it is assumed that r > rH . rH is a parameter, r = rH corresponds the position
of the horizon. In terms of the massM of the black hole rH = 2MG, and, by going
to physical units, one can easily find [251] that rH = (M/M
)× 3 km whereM
 is
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the mass of the Sun. In general, (1.32) describes the gravitational field of a spherical
body of the massM and some radius R (in this case r ≥R > rH ).

The Schwarzschild coordinates (1.32) are singular at r = rH . It is a pure coor-
dinate singularity because geodesic lines of particles falling in the black hole can
be smoothly continued inside the horizon. The latter fact means that Schwarzschild
coordinates are defined on a chart which covers only a part of the entire black hole
geometry. To see this consider, for example, an ingoing light ray whose trajectory is
given by the simple equation t + r∗ = const, where

r∗ = r + rH ln

∣∣∣∣ r − rHrH

∣∣∣∣ (1.34)

is the Regge-Wheeler coordinate. Let us introduce the new coordinate v = t + r∗,
then (1.32) takes the form

ds2 =
(

1 − rH
r

)
(−dt2 + dr∗2)+ r2 d�2

2

=−
(

1 − rH
r

)
dv2 + 2dr dv+ r2 d�2

2. (1.35)

These coordinates are called the ingoing Eddington-Finkelstein coordinates because
trajectories of ingoing null geodesics here are simply v = const. In these coordinates
detgμν is nonsingular and, therefore, the metric is invertible and nonsingular at r =
rH . Thus, one can extend the domain of definition of r to non-negative values, 0<
r <∞. The point r = 0 is a real singularity where the curvature tensor is blowing

up. Indeed, one can check that RμνλρRμνλρ ∼ r2
H

r6 . More details about local and
global geometry of black holes can be found in [238, 251].

Black Hole Instantons If in (1.32) we make the time coordinate purely imagi-
nary, t = iτ , we obtain a metric on a Riemannian manifold

ds2 =
(

1 − rH
r

)
dτ 2 +

(
1 − rH

r

)−1

dr2 + r2 d�2
2. (1.36)

The surface r = rH , called the Euclidean horizon, differs from horizon in the
Lorentzian geometry. Let us introduce the coordinate

ρ =
∫ r

rH

dr ′√
1 − rH

r ′

such that in the position of the Euclidean horizon becomes ρ = 0. Near ρ = 0 the
metric (1.36) reads

ds2 = κ2ρ2 dτ 2 + dρ2 + r2
H d�

2
2, (1.37)

where κ = 1/(2rH ). Regularity of the solution at ρ = 0 requires that τ is a cyclic
coordinate with the period 2π/κ . If this is the case the geometry described by metric
(1.36) is smooth everywhere and is a solution to the Euclidean vacuum Einstein
equations without cosmological constant. It is called the black hole instanton and is
used to describe thermodynamic properties of a black hole.
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1.5 Fiber Bundles and Matter Fields

In this book we study quantum effects due to matter fields on an external back-
ground. Therefore, we first need to describe classical matter fields on Riemannian
manifolds. The fields are functions on a manifold which are characterized by some
internal structure. For example, they may belong to the space of a representation of
a group of internal symmetries (a gauge group). Fields also have a spin structure.
The leptons and quarks have spin 1/2 and are described by spinor fields while the
gauge bosons have spin 1 and they are vector fields.

To describe these additional structures we need the notion of fiber bundles. Sup-
pose we have some manifold M which we shall call the base manifold, and some
other manifold F which we shall call the fiber. A fiber bundle over M with fiber
F is a manifold which locally looks as a direct product M ×F . We already know
that M can be covered by a set of local coordinate neighborhoods Mj . Let in each
neighborhood the bundle E be the product manifold Mj ×F . The global topology
of E is defined by the set of transition functions�ij which tell how the fibers match
up in the overlaps Mi ∩ Mj . These functions are maps �ij : F |Mi

→ F |Mi
in

Mi ∩Mj .
We require that the transition functions belong to a group G of transformations

of the fiber space F . G is called the structure group of the fiber bundle.
Our discussion in this section is based upon [99], where the reader can find more

details and formal definitions.
If the fiber bundle is a direct product also globally,

E = M × F , (1.38)

it is called trivial fiber bundle.
A section of E is a rule which takes a point ϕ(x) on each fiber F for each point

of the base manifold M . A local section is defined only over a subset of M . Global
sections are defined over the whole M . The existence of global sections depends on
the topology of E . There are fiber bundles which admit no global sections. ϕ(x) is
what we call a field on M in the physical context.

In most of the physical applications the field ϕ(x) takes values in a linear space,
F = R

k . Even if the fields themselves do not belong to a linear space (as in the case
of gravity or non-linear sigma models), their fluctuations do. Therefore, in what
follows we restrict ourselves to the case F = R

k . Then transition functions �ij
belong to GL(k,R). Such bundles are called vector bundles. k is called the bundle
dimension. One can replace R

k by C
k to obtain a complex vector bundle.

Consider two vector bundles E1 and E2 with the same base manifold M . One
can define a tensor product bundle E1 ⊗E2 by taking the tensor product of the fibers
F1 and F2 at each point of M . Similarly one can define the Whitney sum E1 ⊕ E2
by taking the direct sum of the fibers.

For each vector space F one can define the dual vector space F ∗ as a space
of linear maps from F to R. Therefore, one can also define the dual vector bundle
E ∗ to E as a bundle whose fibers are F ∗ pointwise on M . The fiber F can be
equipped with an inner product (called the fiber metric). In such a case, one can
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define an inner product of sections. This construction is particularly important for
quantization. A fiber metric defines a linear isomorphism between E and E ∗. The
examples of inner products will be given below.

An important example of a bundle is the so-called principal bundle P . The fiber
of this bundle is a Lie group G (which is a manifold). Transition functions of P
belong to G and act by left multiplications. Principal bundles can be used to define
gauge transformations with the gauge group G.

The transition functions �ij have been introduced above as maps between fibers
on the overlaps of two neighborhoods. One can also view these functions as local
changes of local bases in the bundle or as local gauge transformations. Local sec-
tions of vector bundles change covariantly under these transformations. That means
that if ϕ(x) is a section, and if g(x) ∈ G (where G is the structure group of the
bundle), then ϕ(x) is mapped to g(x)ϕ(x). Obviously, ∂μϕ(x) is not a covariant
object. To make derivatives covariant one has to introduce a connection ωμ, so that
the covariant derivative

∇μϕ(x)= ∂μϕ(x)+ωμ(x)ϕ(x) (1.39)

is indeed covariant provided we postulate the following transformation rule for ωμ:

ωμ→ g∂μg−1 + gωμg−1. (1.40)

In a local basis ωμ is just a matrix-valued function. One introduces also a field
strength

�μν = ∂μων − ∂νωμ +ωμων −ωνωμ, (1.41)

which is also covariant.
We consider now the so-called tangent and cotangent bundles. First we introduce

tangent and cotangent spaces. To define the tangent space Tx(M ) to the manifold
M at a point x one takes a function f (x) and expands it in a Taylor series near x:

f (x + ξ)= f (x)+ ξμ∂μf (x)+ · · · (1.42)

Vector fields on M are then identified with the directional derivatives ξμ∂μ with
smoothly varying coefficients ξμ. The tangent space Tx(M ) is then defined as a
vector space spanned by the tangents at x to all curves passing through x. The
tangent bundle T (M ) is a vector bundle whose fibres at a point x ∈ M are given by
the tangent space Tx(M ). The cotangent space is defined as the dual T ∗

x (M ) to the
vector space Tx(M ). The cotangent bundle T ∗(M ) is the dual to T (M ). One says
that a natural local basis on T (M ) is given by partial derivatives {∂μ}, and that a
natural local basis for T ∗(M ) is given by differential one-forms {dxμ}. The bundle
dimension of T (M ) and T ∗(M ) is obviously n.

The reader may get an impression that the definitions in the preceding paragraph
were too abstract and that they came too fast. In fact, the construction above is
presented here just to provide a bridge to the mathematics literature (cf. [99], where
we took this material from). For our purpose it will be enough to identify vector
fields (which are derivatives according to the definition above) with the coefficient
functions ξμ, i.e. with contravariant vectors as we defined them in the previous
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section. Their “duals” are then covariant vector fields. Now, it is easy to figure out
what the tangent and cotangent bundles really are.

The Riemannian metric is a natural fiber metric on T (M ) and T ∗(M ). Thus, on
a Riemannian manifold, T (M ) is always isomorphic to T ∗(M ), and this isomor-
phism simply moves the vector indices up and down with the help of the metric gμν .
In what follows we do not make much distinction between the tangent and cotangent
bundles.

Locally on a Riemannian manifold (with a positive definite metric) one can al-
ways introduce an orthonormal basis eμa , a = 1, . . . , n such that

eμa (x)e
ν
b(x)gμν(x)= δab. (1.43)

We follow the convention that the letters from the beginning of the Latin alphabet
are used to enumerate the elements of the basis. They are called “flat” or “tangen-
tial” indices as opposed to the vector indices denoted by the Greek letters and called
“curved”. The basis vector eaμ are called the vielbeins. According to (1.43) the viel-
beins can be interpreted as a “square root of the metric”.

There is a dual basis eaμ = δabgμνeνb such that the following relations hold:

eaμe
μ
b = δab , eaμe

ν
a = δνμ, eaμe

b
νδab = gμν. (1.44)

One can move flat indices up and down with the help of the Kronecker symbol δab
as we did it with the curved indices with the help of the metric. With the help of the
vielbein one can transform flat indices to curved indices and vice versa,

va = eaμvμ, vμ = eμa va. (1.45)

Since there exists a positive definite fiber metric (induced by the Riemannian
metric) which must be preserved by the transition functions�ij , the structure group
of the bundle is reduced to O(n). In particular, the relation between vectors of dif-
ferent basis sets is

ẽμa (x)=O b
a (x)e

μ
b (x), (1.46)

where O b
a (x) make elements of matrices which belong to O(n).

Let us now introduce a connection. The covariant derivative is defined as usual,

∇μva = ∂μva +w a
μ bv

b. (1.47)

We define the covariant derivative for tensorial object with several indices by ex-
tending the rule from the previous section. Namely, we put one w-connection for
each flat index and one Christoffel connection for each curved index. For example,

∇μT abν = ∂μT abν +w a
μ cT

c
bν +w c

μbT
a
cν − �ρμνT abρ. (1.48)

There could be, of course, various choices for the connection. However, we would
like to have a connection which is consistent with all other structures we have al-
ready defined on the manifold. In particular, we require that covariant differentiation
commutes with contractions of flat indices. This implies

0 =∇μδab =w ab
μ +w ba

μ , (1.49)
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i.e. the connection is antisymmetric. Consequently, ωμ belongs to the Lie algebra
so(n) of the structure group O(n). Next we require that the vielbein is covariantly
constant,

∇μeaν = 0. (1.50)

This condition can be solved for ωμ:

w ab
μ = eνb�ρμνeaρ − eνb∂μeaν . (1.51)

This connection is called the Levi-Civita connection. The field strength for this con-
nection is defined by the Riemann curvature tensor

∂μw
ab
ν − ∂νw ab

ν +w a
μ cw

cb
ν −w a

μ c w
cb
μ =Rabμν, (1.52)

see Exercise 1.7.
Now we can describe all tensor fields in the vector bundle language. But what

about the spinors? We need the so-called spin bundles. The structure group in this
case is the spin group Spin(n) which can be introduced as follows. Consider the al-
gebra of the Dirac gamma-matrices, γ a , a = 1, . . . , n. These are Hermitian traceless
2[n/2] by 2[n/2] matrices, which obey the so-called Clifford anticommutation relation

{γ a, γ b} = γ aγ b + γ bγ a = 2δabI, (1.53)

where I is a unit 2[n/2] by 2[n/2] matrix. In what follows in relations with the gamma-
matrices we shall not write I explicitly. There are infinitely many sets of γ ’s which
satisfy (1.53). The matrices of one set are linear combinations of the matrices of the
other set, γ̃ a =Oabγ b. It follows from (1.53) that matricesOab belong toO(n). The
Clifford algebra is also invariant with respect to unitary transformations Sγ aS+,
S+ = S−1. The two sorts of transformations can be related,

Sγ aS+ =Oabγ b. (1.54)

Equation (1.54) can be used to define the elements S of the spin group Spin(n) if ma-
tricesOab belong to the group SO(n) (have unit determinant). Because each element
of SO(n) corresponds to two elements, S and −S, one says that Spin(n) is a double
covering of SO(n). A consequence of this fact, known from text books on quantum
mechanics, is that a spinor changes its sign under a rigid rotation by the angle 2π .

Equation (1.54) is used to relate the structure groups Spin(n) and SO(n). A
spinor field, ψ(x), on a Riemannian manifold M belongs to representation of the
spin group. Under a change of the basis (1.46) the spinor transforms as ψ ′(x) =
S(x)ψ(x) where matrices S satisfy (1.54). With respect to coordinate transforma-
tions ψ(x) changes as a set of scalars. In what follows we assume that the base
manifold M admits a well-defined spinor structure although it is not so in general
because of topological obstructions.

We have to introduce an action functional for spinors which is invariant with
respect to coordinate transformations and the structure group transformations. To
this aim we use vielbeins to construct at the each point of M a local set of gamma-
matrices γ μ(x)= eμa (x)γ a satisfying the following Clifford relation:

{γ μ, γ ν} = 2gμν. (1.55)
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Note that γ μ’s depend on coordinates while γ a’s do not.
Next we have to define a suitable connection on the spin bundle. As we have

observed above, the components of the connection on the tangent bundle are sim-
ply the generators of the rotation group. Therefore, it is natural to suppose that the
connection in the spinor bundle ω[s]

μ is proportional to the same generators but taken
in the spinor representation of corresponding Lie algebra, i.e. ω[s]

μ ∼ ω abμ [γa, γb].
The coefficient can be recovered either on some group theoretical grounds, or by
demanding that the gamma-matrices commute with the covariant derivative

[∇μ,γ a] = [w[s]
μ ,γ

a] +w a
μ bγ

b = 0. (1.56)

(Note that if γ a appears on the right from the covariant derivative the index a should
also be contracted with an appropriate connection term.) This condition yields the
so-called spin-connection

w[s]
μ = 1

8
w ab
μ [γa, γb]. (1.57)

The corresponding field strength is again given by the Riemann curvature tensor

∂μw
[s]
ν − ∂νw[s]

μ +w[s]
μ w

[s]
ν −w[s]

ν w
[s]
μ = 1

4
γ aγ bRabμν. (1.58)

If n is even one can define a chirality matrix γ∗ = in/2γ1γ2 . . . γn. One can check
that

γ∗γ μ =−γ μγ∗, γ 2
� = 1, γ †

� = γ∗. (1.59)

In four dimensions γ∗ is usually denoted as γ5, and sometimes the same notation is
used for other n.

The existence of the chirality matrix shows that in even dimensions n the spin
group has two representations given by 2n/2−1 by 2n/2−1 matrices.

Now, we know how to incorporate arbitrary spin-tensor fields in the vector bun-
dle scheme. Additional gauge indices are not a problem as well. One should simply
add to the covariant derivative a term containing corresponding gauge field, see ex-
amples in Sect. 1.6. The main advantage of this approach is that one can consider
abstract vector bundles and connections on them. The results will be valid for arbi-
trary spins and gauge groups.

Till now we discussed Riemannian (Euclidean) manifolds. Some comments
about the features of the Lorentzian manifolds are in order. In this case the orthonor-
mal basis contains one time-like vector with a negative norm and n− 1 space-like
vectors of a positive norm. As a consequence, the “flat” metric which is used to
move flat indices up and down should be ηab = diag(−1,1, . . . ,1)ab instead of δab .
Thus,

eaμe
b
μηab = gμν, eaμe

b
μg
μν = ηab. (1.60)

The structure group of the bundle over a Lorentzian manifold is the Lorentz group
O(1, n− 1) or the group of pseudo-orthogonal transformations which leaves invari-
ant the quadratic form determined by the metric ηab .
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The definition of γ -matrices should take into account the signature of the space-
time as well. The Clifford commutation relation should read

{γ a, γ b} = 2ηab (1.61)

(cf. (1.53)). The Spin(1, n− 1) group is defined by the relation analogous to (1.54),

Sγ aS−1 =�abγ b, (1.62)

where �ab belong to SO(1, n− 1). Generators of the Spin(1, n− 1) group can be
expressed in terms of the gamma-matrices, see Exercise 1.9. In the Lorentzian the-
ory the gamma-matrix γa=0 is anti-Hermitean because (γa=0)

2 = −1, see (1.61).
Therefore, matrices S are not unitary. Instead, one can show (see Exercise 1.10) that

βS†β = S−1, (1.63)

where we choose the following convention: β ≡ iγ a=0 =−iγa=0.
By keeping this feature in mind one can give the definition of the spin bundles

over Lorentzian manifolds and the definition of the structure Spin(1, n− 1) group.
The spinor field transforms as

ψ ′(x)= S(x)ψ(x). (1.64)

Its conjugated spinor (the so-called Dirac conjugated spinor) is defined as

ψ̄ =ψ†β (1.65)

and transforms as ψ̄ ′(x) = ψ̄(x)S−1(x). One can move on and use vielbeins to
construct at the each point of M a local set of gamma-matrices γ μ(x)= eμa (x)γ a
which satisfy the Clifford relation (1.55) where the metric gμν now has the signature
(1, n− 1). The definitions of the covariant derivatives, spin-connection (1.57) and
field strength (1.58) are left the same.

On even-dimensional manifolds one can still introduce a chirality matrix γ∗
which satisfies (1.59). The spin group in even dimensions n has two representa-
tions (by 2n/2−1 by 2n/2−1 matrices) which are related according to (1.63). In four
dimensions the corresponding group Spin(1,3) is isomorphic to SL(2,C) (complex
rank 2 matrices with unit determinant).

Our final remark is related to the notion of conjugated spinors. The spin group
transformations for a spinor ψ and its complex conjugation ψ∗ are different. One
can introduce a spinor ψc which transforms as ψ and is called a charge conjugated
spinor,

ψc = Cψ̄T . (1.66)

The matrix C is determined by the equations

Cγ Tμ C
T =−γμ, (1.67)

where the superscript T is used for transposed matrices. Explicit construction of the
matrix C is discussed in Exercise 1.11.

For certain signatures of the space-time one can take a real representation for the
gamma-matrices, which is called the Majorana representation. Then the space of
real spinors is invariant with respect to the corresponding Spin group. Such spinors
are called the Majorana spinors.
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1.6 Examples of Field Models

Having discussed general properties of matter fields we are ready to give several ex-
amples of their action functionals. We require that the considered models are gauge
invariant and obey the principle of equivalence. The latter means that the function-
als are invariant with respect to coordinate transformations and actions of structure
Lorentz and Spin(1, n− 1) groups.

Scalar Model describes a free charged scalar ϕ. The example of scalars is the Higgs
field which plays the key role in the standard theory of electroweak interactions. The
action of the most simple model is

I [ϕ,g,A] = −
∫
dnx

√−g(gμν(Dμϕ)∗Dνϕ +m2ϕ∗ϕ), (1.68)

where Dμ = ∂μ+ ieAμ. The metric gμν and the gauge potential Aμ are considered
as external (not dynamical) fields. The functional (1.68) is invariant with respect
to the coordinate transformations and local U(1) gauge transformations ϕ′(x) =
eieλ(x)ϕ(x), A′

μ(x)=Aμ(x)− ∂μλ(x). The equation of motion for the field ϕ,

(DμDμ −m2)ϕ = 0, (1.69)

can be obtained by requiring that the first variation of the action (1.68) with respect
to ϕ vanishes. According to (1.22), variation of the action with respect to the metric
yields the stress-energy tensor

Tμν = 2(Dμϕ)
∗Dνϕ − gμν((Dσϕ)∗Dσϕ +m2ϕ∗ϕ). (1.70)

Analogously, variation of Aμ yields the electric current

Jμ = 1√−g
δI

δAμ
, (1.71)

Jμ =−ie((Dμϕ)∗ϕ − ϕ∗Dμϕ). (1.72)

The coordinate and gauge invariance of the action functional imply the following
identities ∇μT μν = 0, ∇μJμ = 0 provided that ϕ obeys equation of motion (1.69).

The operator (D2 −m2) in (1.69) is a second order hyperbolic type operator (see
the definition in Sect. 3.4). According to the general theory of differential equations,
a solution to (1.69) can be uniquely fixed by a set of Cauchy data on a space-like
hypersurface �. These data include the value of the field on � and its first normal
derivative. Strictly speaking, this procedure requires that � is Cauchy hypersurface,
i.e. any non-space-like curve intersects � exactly once [156]. A Lorentzian space-
time is called globally hyperbolic space-time if it possesses a Cauchy hypersurface
[156]. In what follows we consider models in globally hyperbolic spacetimes.

The Dirac Fields ψ describe particles with spin 1/2, such as electrons, muons
and quarks. The action of the model and the equations of motion are

I [ψ,g,A] = −1

2

∫
dnx

√−gψ̄(γ μDμ +m)ψ + c.c., (1.73)
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(γ μDμ +m)ψ = 0. (1.74)

The covariant derivatives are defined asDμ =∇μ+ ieAμ, where ∇μ = ∂μ+w[s]
μ is

the spinor covariant derivative. The functional (1.73) possesses U(1) gauge invari-
ance. It is also invariant with respect to coordinate and Spin(1,3) transformations
(1.64).

One assumes that the spinor field has an odd Grassmann parity, i.e. that compo-
nents of the spinor field anticommute. The parity does not play any role in the Dirac
equation (1.74) since it is linear. However, considering spinors as commuting vari-
ables in the action (1.73) may lead to some inconsistencies already at the classical
level, see Exercise 1.12.

Vector Fields Charged and neutral vector bosons are observed in experiments.
Together with the photon they are responsible for electroweak forces. The classical
action for a massive neutral vector field Aμ is

I [A,g] = −1

4

∫
dnx

√−g(FμνFμν + 2M2AμA
μ), (1.75)

where Fμν =∇μAν−∇νAμ is the Maxwell field strength tensor. Variation of (1.75)
results in equation of motion

∇νF νμ −M2Aμ = 0. (1.76)

If M = 0 the functional (1.75) is the Maxwell action for photons in an external
gravitational field.

Non-Abelian Gauge Fields We discuss the theory of non-Abelian gauge fields
taking as an example the gauge group SU(N). The fundamental representation of
this group is given by unitary N ×N matrices with the unit determinant. The non-
Abelian gauge theory with the group SU(3) describes gluons which mediate in-
teractions between quarks. The corresponding quantum theory is called quantum
chromodynamics, or QCD. The action of the gauge fields is the Yang-Mills action

I [B,g] = 1

2

∫
dnx

√−g trFμνF
μν. (1.77)

The strength tensor is Fμν = [Dμ,Dν], whereDμ =∇μ+Bμ and the following rule
is applied: [∂μ,f ] = (∂μf )+ f ∂μ − f ∂μ = (∂μf ). The gauge fields Bμ are anti-
Hermitian matrices which belong to the fundamental representation of the Lie alge-
bra su(N) of the SU(N) group. The functional (1.77) is invariant under the gauge
transformations B ′

μ =UBμU−1 +U∇μU−1, where U is an element of SU(N).
The Yang-Mills equations which determine the extrema of functional (1.77) are

[Dμ,Fμν] = 0. (1.78)

Let Ta be a basis of su(N). Then [Ta,Tb] = fabcTc. It can be shown that fabc is
a totally anti-symmetric real tensor. One can use normalization, trTaTb = − 1

2δab ,
and consider decomposition Bμ = BaμTa , where Baμ are real vector fields, a =
1, . . . ,N2 − 1.
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Let Bμ be a solution to (1.78). One can consider a small perturbation Aμ near
Bμ. The perturbations obey linearized equations which follow from (1.78)

[Dν(B),Gνμ] + [Aν,Fνμ(B)] = 0, (1.79)

Gμν = [Dμ(B),Aν] − [Dν(B),Aμ], (1.80)

where the covariant derivatives Dμ(B) and the strength tensor Fμν(B) are deter-
mined in terms of the background field Bμ.

1.7 Isometries

An important property of a manifold is a group of its isometries. Isometries are
transformations of coordinates which do not change the form of the metric. Trans-
formations of the metric under infinitesimal diffeomorphisms (x′)μ = xμ − ξμ fol-
low from (1.1) and are determined in terms of the Lie derivative

Lξ gμν ≡ gμν(x′)− gμν(x)=∇μξν +∇νξμ. (1.81)

Thus, the isometries exist if for a given metric there are vector fields ξμ(x) which
are solutions to the equations

∇μξν +∇νξμ = 0. (1.82)

Equations (1.82) are called the Killing equations. The solutions to (1.82) are called
the Killing vectors.

One can also define the Lie derivatives of matter fields as variation of their form
under diffeomorphisms, Lξφ(x)= φ(x′)− φ(x). It is easy to see that, e.g., the Lie
derivatives of scalar and vector fields are

Lξϕ = ξμ∂μϕ, LξA
μ = ξν∇νAμ −Aν∇νξμ. (1.83)

A field configuration φ preserves its form under isometry transformation generated
by a Killing vector field ξ if the corresponding Lie derivative vanishes Lξφ = 0.

One can prove that a manifold of the dimension n may have no more than
n(n+ 1)/2 Killing vectors. For example, the hyperplane R

n has n(n+ 1)/2 isome-
tries which are rotations and translations. Manifolds having maximal number of
Killing vectors are called maximally symmetric. The Riemann tensor on such man-
ifolds reads

Rμνρσ = C(gμρgνσ − gμσgνρ), (1.84)

where C =R/(n(n− 1)), and R is the scalar curvature. The scalar curvature of any
maximally symmetric space is constant.

On a Lorentzian manifold, there is a special class of isometries which plays an
important role in applications and, in particular, for interpreting properties of field
excitations. These are isometries with respect to a time-like Killing vector field.
They are global time translations. If such a Killing vector exists, the components of
the metric tensor do not depend on time in a suitable coordinate system. Then the
manifold M is called stationary.
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On a maximally symmetric manifold M one can define the so-called Killing
spinors. These are solutions to the equations

Dμε =
[
∇μ + ia

2
γμ

]
ε = 0, (1.85)

where ∇μ is the spinor covariant derivative on M , γμ are the corresponding gamma-
matrices, and a2 = C. The property that M is symmetric together with Eqs. (1.56),
(1.58) guarantee that [Dμ,Dν]ε ≡ 0 and (1.85) are consistent. Killing spinors are
studied and used in Exercises 1.17 and 3.4.

There is an important class of field models which are invariant with respect to
rescaling of fields (according to their physical dimension) and a conformal trans-
formation of the background metric δgμν = λgμν , where λ is a parameter. Such
models are said to be scale invariant or conformally invariant. If a theory is scale
invariant it makes sense to consider also a group of symmetries which are ‘isome-
tries’ up to a conformal transformation of the metric. More precisely, generators of
these diffeomorphisms are solutions to the so-called conformal Killing equation

∇μξν +∇νξμ = 2

n
(∇ξ)gμν. (1.86)

The solutions to (1.86) are called conformal Killing vectors. For example, conformal
Killing vector on R

n is ξμ(x)= xμ. We return to conformal symmetries in Chap. 8.

1.8 Hypersurfaces and Boundaries

The Einstein-Hilbert action (1.20) as well as action functionals discussed in Sect. 1.6
are well defined on compact closed manifolds. Physical manifolds like, for example,
de Sitter, (1.30), and Schwarzschild, (1.32), solutions are not compact. To avoid
integrations in the functionals over infinite regions one may “put the system in a
box” or assume that the background manifold has a boundary such that the region
restricted by the boundary has a finite volume. Boundaries, boundary conditions and
corresponding boundary terms in the action play an important role both in classical
and quantum theories, see Exercise 1.15.

If a manifold M has a boundary, locally in the vicinity of the boundary it looks
as R

n−1 × R+. The boundary is a manifold one dimension lower which we denote
∂M . We restrict ourselves to smooth boundaries. Let us choose a coordinate system
in such a way that yj are coordinates in the boundary and the remaining coordinate
z increases when moving from the boundary. Then the normal vector nμ is defined
by the condition nμ dyμ = 0, or nj = 0. We shall also assume that n is normalized,
nμn

μ = 1 (for Riemannian manifolds), and that n is an inward pointing. Note that
ni = giμnμ may not vanish. The boundary of a Lorentzian manifold may be space-
like or time-like if the normal vector is time-like or space-like, respectively. In the
remaining part of this section we consider Riemannian manifolds. Generalization to
boundaries in Lorentzian manifolds is straightforward.
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The internal geometry of the boundary is defined by the induced surface metric
g̃ij = gij and by its inverse g̃ij , g̃ij g̃jk = δik . Note that in general g̃ij �= gij . With the
metric g̃ij one can construct the Christoffel symbol on the boundary, the Riemann
and Ricci tensors, and the scalar curvature. To distinguish these objects from their
counterparts defined in the bulk we write the boundary quantities with the tilde.

The way how the boundary ∂M is embedded in M is characterized by the ex-
trinsic curvature (which is also called the second fundamental form of the boundary)

Kμν =−hλμhρν nλ;ρ, (1.87)

where hνμ = δνμ−nμnν is the projector on a space tangent to ∂M at the given point.
The extrinsic curvature is symmetric, Kμν =Kνμ, and is orthogonal to the normal,
Kμνn

ν = 0. Note, that because of the projectors in (1.87) this definition does not
contain derivatives of nμ in the normal direction (which would require an extension
of nμ to the vicinity of the boundary).

There is a very convenient coordinate system near the boundary which is called
the Gaussian coordinates. In this system the coordinate z= xn measures the distance
from the boundary along geodesics which are normal to the boundary. The line
element then reads

(ds)2 = (dxn)2 + gjk dxj dxx. (1.88)

Obviously, in this system

�nnn = �nnj = �jnn = 0, �ijk = �̃ijk. (1.89)

The extrinsic curvature is given by very simple equations

Kij = �nij =−1

2
∂ngij , Kij =−�inj . (1.90)

The remaining components, Knn and Kjn, vanish.
One can define covariant derivatives with respect to the metric on the bound-

ary. We shall denote them by ∇̃i or by the colon. For example, ∇̃j vi = vi:j =
∂j vi − �̃kjivk . The extrinsic curvature measures the difference between the covariant
derivatives in the bulk and on the boundary,

∇j vi − ∇̃j vi =−Kijvn. (1.91)

To give an example consider a n-dimensional ball in R
n with the radius r . Its

boundary is the (n− 1)-dimensional sphere Sn−1. It is easy to check that the extrin-
sic curvature reads

Kij = 1

r
gik. (1.92)

In this case, Kij is proportional to the metric. In general, for a surface embedded in
R
n the extrinsic curvature is a matrix constructed from the main curvature radii of

the surface.
Consider two points A and B belonging to the boundary ∂M and the geodesic

line x(τ) in M connecting A and B . The boundary (or a subsurface) is called to-
tally geodesic if x(τ) ∈ ∂M for τ ∈ [0,1] and for each pair (A,B) on ∂M . The
boundary is totally geodesic if and only if Kij = 0 identically.
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The extrinsic curvature is the main geometric invariant on the boundary. By
means of the following Gauss-Codazzi equations one can express some other ge-
ometric quantities in terms of Kij :

Rijkl = R̃ijkl −KjlKik +KjkKil , (1.93)

Rnjkl =Kjl:k −Kjk:l , (1.94)

where R̃ijkl is the Riemann tensor constructed from the boundary metric.
Let us now explain how one can construct invariants associated with the bound-

ary. The general recipe is to take a scalar on the boundary and to integrate it over
∂M with the weight

√
detgij . The scalars can be constructed by contracting all in-

dices i, j , k etc. of arbitrary tensors on the boundary and taking the trace over all
bundle (gauge and spin) indices. This recipe looks precisely as the one for construct-
ing the bulk invariants, except that on the boundary we have much more tensors. In
addition to all tensors existing in the bulk, one can also construct tensors from the
extrinsic curvature and its derivatives. Note, that since Kij is defined on the bound-
ary only, one can differentiate it only tangentially. Normal derivative of the extrinsic
curvature makes no sense. Due to (1.93) the boundary Riemann tensor is not an
independent quantity. Note, that normal indices need not be contracted. For exam-
ple,

∫
∂M dn−1x

√
detgijR;n and

∫
∂M dn−1x

√
detgij tr�jnKik:l g̃j i g̃kl are allowed

invariants.

1.9 Defects of Geometry

In various physical examples one may encounter background spaces which are
smooth everywhere except some hypersurfaces � located inside the space. Outside
� the space can be considered as a manifold. Because the tangent space is not de-
fined on � the curvature cannot be defined in this region as well. There are however
the situations when the curvature characteristics cannot be defined locally (either
because of discontinuities or as a result of topological obstructions) while integrals
of curvature invariants still have a meaning.

In this case we call � a defect of the geometry. Below we give two most im-
portant examples of defects: when � is a codimension one or codimension two
hypersurface.

Codimension One Defects and Branes Singularities on hypersurfaces of dimen-
sion (n− 1) located inside the manifold are called branes (from membranes). From
the mathematical point of view, branes occur when one glues together two smooth
manifolds, M+ and M−, along their common boundary � = ∂M+ = ∂M−. Ob-
viously the geometric quantities induced on the brane from M+ and M− which
define internal geometry of � (such as the metric, connection along the brane, etc.)
must agree, but other quantities may not. One of the quantities which may jump is
the extrinsic curvature. The smooth situation corresponds to K+

ij = −K−
ij (the mi-

nus sign appears due to opposite orientations of the inward pointing normals in M+
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and M−). The jump of the extrinsic curvature is therefore K+
ij +K−

ij , and it is de-
termined by the matter distribution on �. The corresponding equation is called the
Israel junction condition [162] (see Exercise 1.16). An example of such situation is
the brane-world metric

(ds)2 = (dx5)2 + eα|x5|(ds4)2, (1.95)

where α is a real constant. A four-dimensional brane with the line element (ds4)2,
is located at x5 = 0.

A more down to earth situation when singularities appear on hypersurfaces is
of a non-geometric origin. It correspond to singular potentials, like delta functions,
concentrated on hypersurfaces. Such potentials describe semi-transparent bound-
aries and occupy a position between smooth potentials and hard (non-penetrable)
boundaries.

Conical Singularities A well-known type of codimension two defects on Rie-
mannian manifolds are conical singularities. It is instructive to start discussion of
such manifolds with a two-dimensional metric

ds2 = dρ2 + ρ2 dτ 2, (1.96)

where 0 < ρ <∞ and τ be a cyclic coordinate, 0 < τ ≤ β . If β = 2π , the line
element represents the metric on a two-dimensional plane written in the polar coor-
dinates. If β �= 2π , one deals with a two-dimensional cone. We denote the cone Cβ .
The tip of the cone, ρ = 0, is a singular point because the length of a circle with the
center at the tip and radius ρ does not equal 2πρ.

The conical space has a non-trivial curvature which behaves as a distribution at
the tip. To see this it is convenient to consider another metric

ds2 = dθ2 + sin2 θ dτ 2, (1.97)

where 0 ≤ θ ≤ π . If τ ranges from 0 to 2π the metric (1.97) defines the line element
on the sphere S2. If 0< τ ≤ β and β �= 2π the space (1.97) has conical singularities
at the “north” and “south” poles (θ = 0,π ). We denote this space S2

β . One can define

S2
β as a limit of a sequence of smooth closed 2-spaces with the topology of S2. This

assumption implies that the Euler characteristics (1.29) of S2
β equals 2. By using

(1.29) for p = 1 one can write for S2
β∫

S2
β

√
g d2x R = 4πχ1[S2

β ] = 8π. (1.98)

The integral of the curvature consists of the two pieces:∫
S2
β

√
g d2x R = 4β + Ising. (1.99)

The first term in the r.h.s. of (1.99) comes from points outside the poles where
the scalar curvature is standard, R = 2. The second term, Ising, is due to singular
behavior of the curvature at the poles. By comparing (1.98) and (1.99) one concludes
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that Ising = 4(2π − β). Thus, each conical singularity with coordinates xs yields a
delta function contribution to the curvature

Rsing(x)= 2(2π − β) 1√
g

∑
xs

δ(2)(x − xs). (1.100)

In physical applications one can meet a general type of manifolds with conical
singularities. These are manifolds which possess internal co-dimension two hyper-
surfaces � such that in the vicinity of � a manifold has the structure Cβ ×�.

In many problems there may exist a global Killing vector field ∂τ on a manifold
such that conical singularities are fixed points of ∂τ . Manifolds with this property
make a family of spaces denoted by Mβ and parametrized by β . All representatives
of a family have an identical local geometry outside �. There is a member of the
family, M = M2π , which does not have conical singularities. One can use M to
define a pair of vector fields ni which are orthogonal to � and normalized as (ni ·
nj ) = δij , and determine extrinsic geometrical invariants of �. Due to the O(2)
isometry extrinsic curvatures of � vanish. Invariants of the other type are

Rii ≡
∑
i

Rμνn
μ
i n
ν
i , Rijij ≡

∑
ij

Rμλνρn
μ
i n
λ
jn
ν
i n
ρ
j , (1.101)

where Rμν and Rμλνρ are the components of the Ricci and Riemann tensors of M
at �. The quantities (1.101) are O(2) invariant, i.e. do not depend on orientation
of ni . There are other similar invariants on � of the same dimensionality. For in-
stance, the scalar curvature R of M and a scalar curvature R� of � itself. The
Gauss-Codazzi equation, however, tells that

R� =R − 2Rii +Rijij . (1.102)

Thus, the only independent invariants of the lowest dimensionality are Rii , Rijij ,
and R. We will use these quantities in Sect. 4.7 when studying spectral geometry on
base manifolds with conical singularities.

1.10 Literature Remarks

There is a number of excellent introductions in the physical and mathematical foun-
dations of the general relativity theory. It is enough to mention classical monographs
by Weinberg [252], Misner, Thorne and Wheeler [191], and Synge [235]. A more
elaborate discussion of geometrical formulations used in Sects. 1.2, 1.5 can be found
in Eguchi, Gilkey and Hanson [99]. Other recommended books are [164, 175, 196].

The most complete source of information about classical and quantum properties
of black holes is the monograph by Frolov and Novikov [114].

For an introduction to group theory motivated by application to quantum field
theory we refer to the book by Barut and Raczka [25].

A useful introduction to the Killing equations and symmetric manifolds is pre-
sented in [252]. Here one can find a proof of a number of statements made in
Sect. 1.7.
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The role of boundary terms both in classical and quantum gravity has been em-
phasized by York [260] and by Gibbons and Hawking [130].

The ‘defects of geometry’ discussed in Sect. 1.9 are the geometrical notions mo-
tivated by physical models. The branes are the objects which are used in the non-
Einstein theories of gravity. The idea is that the four-dimensional world may be a
domain-wall (a brane) in higher-dimensional space-time. The braneworlds models
which appeared in [212, 213, 220] allow short-distance modification of the Einstein
theory and predict a new scale of quantum gravity effects.

Codimension 2 defects received much attention first in connection with cosmic
strings [250], hypothetical objects whose creation during the phase transitions in the
early universe is predicted by grand unification models. Another example are solu-
tions to the Einstein equations which describe configurations of several black holes.
These configurations can be made static if black holes are connected by struts which
result in conical singularities. It is also worth mentioning that conical defects appear
in the so-called off-shell formulation of black hole thermodynamics, see e.g. [114].
Two-dimensional manifolds with a finite number of conical singularities are called
thornyfolds [115]. More general singular manifolds are called conifolds [222]. Coni-
folds have singularities with the structure of higher-dimensional cones and appear
in applications to string theory.

Recommended Exercises are 1.7–1.11, 1.13, and 1.17.

1.11 Exercises

Exercise 1.1 Find transformation properties of the Christoffel connection �ρμν ,
see (1.4), under a change of the coordinates.

Exercise 1.2 Prove that on a Riemannian manifold the object εμ1...μn = g−1/2ε̃μ1...μn

is a tensor. Here ε̃μ1...μn is the totally antisymmetric Levi-Civita symbol such that
ε̃12...n = 1, g = detgμν .

Exercise 1.3 Calculate the Riemann tensor, the Ricci tensor, and the scalar curva-
ture on a two-sphere of the radius r . Make sure that

Rμνρσ = r−2(gμρgνσ − gμσgνρ). (1.103)

Exercise 1.4 Prove the following variational formulae:

δg = ggμνδgμν, (1.104)

δRσμλν =∇λ(δ�σμν)−∇ν(δ�σμλ), (1.105)

δRμν = 1

2

[∇λ∇νδgλμ +∇λ∇μδgλν −∇λ∇λδgμν −∇ν∇μ
(
gλσ δgλσ

)]
,

(1.106)

δR =−δgμνRμν +
[∇λ∇μδgλμ −∇λ∇λ

(
gμνδgμν

)]
. (1.107)
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Exercise 1.5 Check that the Schwarzschild metric (1.32) takes the form (1.35) in
the Eddington-Finkelstein coordinates r , v = t + r∗ where r∗ is defined by (1.34).

Exercise 1.6 Find the stress-energy tensor of the vector field model (1.75).

Exercise 1.7 Use the definitions of the Riemann tensor, (1.10), and the connection,
(1.51), to prove the relation

∂μω
ab
ν − ∂νω abν +ω aμ cω

cb
ν −ω aμ c ω

cb
μ =Rabμν,

where Rabμν = eaλebρRλρμν .

Exercise 1.8 Check that γ -matrices obey the following rule of Hermitian conjuga-
tion

β(γμ)
†β =−γμ, (1.108)

where β = iγ a=0.

Exercise 1.9 Find an expression for the generators of Spin(1, n− 1) in terms of the
gamma-matrices

Exercise 1.10 Prove that in the Lorentzian theory there is the following relation for
the matrices of the Spin(1, n− 1) group:

βS†β = S−1.

Exercise 1.11 Consider the Dirac spinor on a four-dimensional Lorentzian mani-
fold. Find a matrix C which is used to define the charge conjugated spinor ψc, see
Eqs. (1.66), (1.67). Prove that ψ and ψc belong to equivalent representations of the
spin group.

Exercise 1.12 Show that the Majorana fermions defined at the end of Sect. 1.5
cannot interact with vector fields. Show that if the Majorana spinor were taken a
commuting field, it had to be massless.

Exercise 1.13 Consider a two-dimensional spherical cap which is obtained from the
two-sphere by restricting the angle θ in (1.33) to the interval [0, θ0]. Calculate the
extrinsic curvature. Make sure that for θ0 = π/2 the boundary is totally geodesic.

Exercise 1.14 Calculate the extrinsic curvatures K+
ij and K−

ij for the brane-world
metric (1.95).

Exercise 1.15 Consider the Einstein-Hilbert action (1.20) on a Lorentzian manifold
M with a boundary ∂M . As follows from (1.107) variations of the action result in
boundary terms which contain variations of the metric tensor δhμν on ∂M and
normal derivatives of variations of the metric at the boundary.
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Find the variation of the following functional in the presence of boundary terms:

ĨEH[g] = 1

16πGN

∫
M
dnx

√−g(R − 2�)+ 1

8πGN

∫
∂M
dn−1x

√
hK.

(1.109)

Check that boundary terms with normal derivatives do not appear and, hence, this
functional is extremal on solutions to the Einstein equations provided that metric
on ∂M is fixed. The form of the action (1.109) was suggested by Gibbons and
Hawking [130].

Exercise 1.16 Consider a brane (see Sect. 1.9) which is a codimension one defect
of the geometry. By using results of the previous problem derive the Israel junction
condition

(Kλμ − hλμK)+ + (Kλμ − hλμK)− = 8πGNT μν. (1.110)

The l.h.s. of this relation describes the jump of extrinsic curvature on the brane,
T μν is the stress-energy tensor of the matter localized on the brane

T μν = 2√
h

δIbrane[ϕ,h]
δhμν

, (1.111)

Ibrane[ϕ,h] is the corresponding action of the matter localized on the brane, and hμν
the metric induced on the brane.

Exercise 1.17 Show that the Killing equation(
∇μ + i

2
γμ

)
ε = 0, (1.112)

on the unit two-sphere (1.97) admits two independent solutions. Use the Killing
spinors to construct the Killing vectors on S2.



Chapter 2
Quantum Fields

2.1 Relativistic Inner Product

In this Chapter we start a systematic discussion of a quantum theory in external
classical background fields. First, we introduce a specific inner product and define
quantization conditions based on this product.

The method of quantization which we present below is not a substitute for more
profound methods, like the full Hamiltonian analysis or the so-called BRST ap-
proach, but it allows one to arrive faster to the results in the lowest order of the
perturbation theory on non-trivial backgrounds. In this section, we shall be rather
sloppy with a mathematical side of the statements, ignore all the functional anal-
ysis issues, for example, and simply use a finite-dimensional intuition in infinite-
dimensional spaces of fields.

Let ϕ be a non-interacting field on a Lorentzian space-time M . We call ϕ a dy-
namical variable to distinguish it from the background. It is assumed that ϕ belongs
to a section in a fiber bundle over M . We further assume that M is a globally
hyperbolic space-time. The dimensionality n of M is not fixed (n≥ 2).

Let us choose on M some coordinate system xμ ≡ (t, xk), where k = 1, . . . , d
and d = n − 1. Here, we assume existence of a foliation M by spatial sections,
so that at least locally the space-time manifold looks as a direct product of a one-
dimensional “time” and a d-dimensional “space”. As we saw (see Sect. 1.6), small
fluctuations ϕ obey linearized equations of motion of the form

P(∂t , ∂k)ϕ(t, x
k)= 0, (2.1)

where for integer spin fields P(∂t , ∂k) is a second order hyperbolic type partial dif-
ferential operator. For spin 1/2 fields P(∂t , ∂k) is a first order operator, see (1.74).

Let f1 and f2 be a pair of solutions to (2.1). We are going to introduce a so-
called relativistic inner product, 〈f1, f2〉, between these solutions. The product is
constructed through a conserved current corresponding to some global symmetry.
Since the inner product and the current must depend on two fields instead of one,
we have to double the number of fields in the quadratic form of the action. This is
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done in the following way. Consider first the case of a complex field and write the
quadratic action which generates the linearized equations (2.1) as

I2[ϕ] =
∫
dnx

√−g ϕ∗Pϕ, (2.2)

where all vector or gauge indexes (if any) are suppressed. An example of a func-
tional which can be brought to this form (after integrating by parts) is the scalar
action (1.68). Although (2.2) is a rather typical form of the quadratic action it is
not universal. In some cases, for instance, for an action of small fluctuations in the
(ϕϕ∗)2 model, there may also appear (ϕ∗)2 and ϕ2 terms. We shall comment how
to deal with such models in the end of this section.

Next, we go from (2.2) to a sesquilinear form

I [f1, f2] =
∫
dnx

√−g f ∗
1 Pf2 ≡

∫
dnx

√−gL(f ∗
1 , f2) (2.3)

such that I2[ϕ] = I [ϕ,ϕ]. We assume that the operator P is at least formally
self-adjoint (see Sect. 3.1), therefore the form is Hermitian. The sesquilinear form
I [f1, f2] is linear in the second argument and antilinear in the first. The quantities
I [f1, f2], L(f ∗

1 , f2) can be considered as a field theory action and a Lagrange den-
sity, respectively. Indeed, one gets for fk the same equations of motions (2.1) by
requiring that variations I [f1, f2] over fk have to vanish. If P is a second order
operator we shall always assume that second derivatives in I [f1, f2] are eliminated
by integrating by parts and L(f ∗

1 , f2) contains at most first derivatives of f1 and f2.
The functional I [f1, f2] has an obvious global symmetry {f1, f2} → {eiαf1,

eiαf2} which implies the existence of a conserved current. To derive this current,
consider an infinitesimal version of the transformations

δαf
∗
1 =−iαf ∗

1 , δαf2 = iαf2 (2.4)

and assume for a moment that the transformation parameter α depends on the co-
ordinates, α→ α(x). Then, transformations (2.4) are no longer symmetries of the
action. Nevertheless, the variation of (2.3) vanishes on constant α and, hence, is
proportional to the derivative of α,

δαI [f1, f2] = −
∫
dnx

√−g(∂μα) · jμ[f1, f2]

=
∫
dnx

√−gα · ∇μjμ[f1, f2] (2.5)

for some current jμ. Next, suppose that f1 and f2 are solutions to the classical field
equations. Then, any infinitesimal variation of the action vanishes, including the one
given in (2.4) with arbitrary local parameter α. In other words, on shell δαI = 0 for
any alpha, and the current jμ is conserved

∇μjμ(f1, f2)= 0. (2.6)

The arguments presented above also provide us with a method to compute the con-
served current. For bosonic theories with actions depending on the first derivatives
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at most, one can easily show, that

jμ(f1, f2)α = ∂L(f
∗
1 , f2)

∂f2,μ
δαf2 + ∂L(f

∗
1 , f2)

∂f ∗
1,μ

δαf
∗
1 (2.7)

or

jμ(f1, f2)= i
(
∂L[f ∗

1 , f2]
∂f2,μ

f2 − ∂L[f
∗
1 , f2]

∂f ∗
1,μ

f ∗
1

)
. (2.8)

These statements are a particular case of what is known as the Noether theo-
rem for global symmetries. We shall also deal with the Noether theorem for local
symmetries in Chap. 8. The current jμ(f1, f2) is called the Noether current.

Let us take a space-like hypersurface � in M and construct the following inner
product between the classical solutions

〈f1, f2〉 =
∫
�

d�μ jμ(f1, f2), (2.9)

which is called the relativistic inner product. The product is linear in the second
argument f2 and anti-linear in f1, and is Hermitian, 〈f1, f2〉 = 〈f2, f1〉∗. Here
d�μ = nμ dethddx, nμ is a unit future directed vector orthogonal to �, dethddx
is the invariant measure on�. The continuity property (2.6) ensures that the product
〈f1, f2〉 does not depend on local deformations of �.

We call 〈f1, f2〉 a relativistic product to distinguish it from another inner product
between sections of the fiber bundles defined in Sect. 1.5. Let us give now a couple
of examples.

Charged Scalar Field For the model described by the action (1.68) we assume
that the gauge field is a background field, and ϕ is dynamical, and obtain

jμ(f1, f2)= i(f ∗
1Dμf2 − (Dμf1)

∗f2). (2.10)

The continuity equation (2.6) can be checked directly. It follows from the iden-
tity ∇μ(f ∗

1Dμf2)= (Dμf1)
∗Dμf1 +f ∗

1 (D
μDμf2) and Eq. (1.69). The relativistic

product constructed from this current is called the Klein-Gordon product.

Spinor Fields Consider the model (1.74). By repeating the computations pre-
sented above and taking care of the order of fields, one arrives at

jμ(ψ1,ψ2)=−iψ̄1γμψ2. (2.11)

For the case when the field ϕ is real, instead of (2.2) one has the functional

I2[ϕ] = 1

2

∫
dnx

√−g ϕPϕ. (2.12)

The corresponding complex Hermitian sesquilinear form is

IR[f1, f2] = 1

2

∫
dnx

√−gf ∗
1 Pf2. (2.13)

(Notice the difference between real and complex field actions in the coefficient
1/2.) The Noether current which is used to construct the relativistic product is given
by (2.8). Examples involving real fields are as follows.
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Vector Fields For the model described by equation of motion (1.76) after the
replacement fk →A

μ
k one finds

jμ(A1,A2)= i(Aν1)∗Fμν(A2)− iAν2(Fμν(A1))
∗. (2.14)

The same product holds for the gauge potential in the Maxwell theory.

Linearized Yang-Mills Theory For the theory described by the linearized equa-
tions (1.79)

jμ(A1,A2)=−2i Tr((Aν1)
+Gμν(A2)− (Gμν(A1))

+Aν2), (2.15)

where the tensor Gμν is defined in (1.80).
The following useful permutation property of the product can be now inferred

from (2.10), (2.11), (2.14), (2.15):

〈f1, f2〉 = ±〈f ∗
2 , f

∗
1 〉. (2.16)

Here the plus sign in the r.h.s. corresponds to the (non-Grassmann) Dirac fields and
the minus sign stands for scalar and vector fields. The sign, thus, depends on whether
the spin is integer or half-odd-integer. For spinor fields the star operation in (2.16)
can be replaced with the charge conjugation defined in (1.66), see Exercise 2.7.

As we have already mentioned above, not any quadratic action depending on
complex fields can be represented through a sesquilinear form. To overcome this
difficulty one has to introduce independent real fields as real and imaginary parts
of the original complex field, diagonalize the action and then complexify it as we
have just described. As a result, one obtains a conserved current, but the number of
complex degrees of freedom is twice the original one.

2.2 Quantization and Single-Particle Excitations

To set the stage for the quantization we start with anti-linear functionals acting on
classical solutions. Each such functional can be constructed as ϕ[f ] = 〈f,ϕ〉, where
ϕ is some fixed solution to the classical equations. It is allowed to multiply these
functionals calculated for several solutions with different arguments. In this way,
one obtains multilinear functionals. One can as well define complex conjugated lin-
ear functionals ϕ+[f ] = 〈ϕ,f 〉 = (ϕ[f ])∗ and introduce ‘real’ functionals which
obey the restriction 〈ϕ,f 〉 = 〈ϕ∗, f 〉. With the help of (2.16) the reality condition
can be written as

ϕ+[f ] = ±ϕ[f ∗], (2.17)

where the plus or minus signs correspond to spin 1/2 or spins 0 and 1, respectively.
The star operation for spin 1/2 fields denotes the charge conjugation (1.66). In the
case of spin 1/2 fields, the classical solutions will be considered as commuting (clas-
sical) spinors, while the functionals ϕ will anticommute before the quantization.
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Quantization means that to each classical solution f one puts into a correspon-
dence an operator ϕ[f ] and its Hermitian conjugate ϕ+[f ]. These operators act
on vector spaces, the so-called Fock spaces discussed below. The operators ϕ[f ],
ϕ+[f ] are operator-valued distributions, an analog of classical functionals defined
above. Thus, they are denoted by the same letter. Like the classical functionals,
ϕ[f ], ϕ+[f ] are, respectively, anti-linear or linear in their arguments. It is also re-
quired that operators preserve symmetry properties of the classical functionals.

The operators are required to obey the following quantization conditions:

[ϕ[f1], ϕ+[f2]]± ≡ ϕ[f1]ϕ+[f2] ± ϕ+[f2]ϕ[f1] = �〈f1, f2〉, (2.18)

where the parameter � is the Planck constant. Starting with Sect. 2.6 we shall put
� = 1. For integer spin fields one uses the commutator [,]− and says that the fields
obey the Bose statistics, for half-odd-integer spins one uses anti commutator [,]+
which implies the Fermi statistics. The quantization condition (2.18) is fully covari-
ant, it does not depend on the choice of coordinates and the Cauchy surface used.
The features of a particular model which is quantized are encoded in the relativistic
product and properties of the classical solutions fk .

Classically, the bosonic field functionals commute, while the fermionic ones an-
ticommute. Quantization means that we deform these simple (anti-)commutation
relations by adding a non-zero right hand side to relation (2.18). The Plank constant
� plays the role of a deformation parameter.

One can define Hermitian operators by condition (2.17). These operators corre-
sponds to real fields. Quantization in this case is determined by the same rule (2.18).

As a next step one has to consider the two problems: to find an operator analog
of a local field and to describe elementary field excitations. The second task is mo-
tivated by the fact that a free field theory can be interpreted as a system of infinitely
many oscillators. We have to find a way how to decouple different oscillations and
introduce the corresponding creation and annihilation operators by following the
quantum mechanical example.

To solve the two problems we need a basis which brings the relativistic inner
product to a canonical form. In this section, it is convenient to consider models
where the relativistic product is non-degenerate, i.e. if 〈f1, f2〉 = 0 for all f2, then
f1 = 0. An important example of theories with the degenerate product are gauge
theories. They will be considered in Sect. 2.3.

When the relativistic product is non-degenerate it can be diagonalized by intro-
ducing a basis {fA}, so that 〈fA,fB〉 = λAδAB . Because of the hermiticity of the
inner product, the eigenvalues λA are real. By a suitable rescaling one can make
these eigenvalues equal to ±1. This yields a set of modes {f (+)i , f

(−)
j } which satis-

fies the following conditions:

〈f (+)i , f
(−)
j 〉 = 0, (2.19)

〈f (±)i , f
(±)
j 〉 = ±δij , for Bose statistics, (2.20)

〈f (±)i , f
(±)
j 〉 = δij , for Fermi statistics. (2.21)
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Here δij is the Kronecker symbol if i, j are discrete indices, and it is a delta-function
if i, j take continuous values.

We call f (±)i the single-particle modes. In the case of Bose fields the relativistic
product is not positive-definite, and the modes f (+), f (−) have positive or negative
norm, respectively. In the case of Fermi fields the product is positive, see Exer-
cise 2.7. The division on “+” and “−” modes in this case is related to other prop-
erties, for example, to the sign of the frequency carried by the mode in stationary
or asymptotically stationary space-times, see details in Sect. 2.5. In certain cases
the “−” spin 1/2 modes can be also defined as charge conjugated “+” modes, see
below.

Any solution to field equations (2.1) can be uniquely represented as a linear com-
bination of f (+)i and f (−)j ,

f (x)=
∑
i

cif
(+)
i (x)+

∑
j

djf
(−)
j (x), (2.22)

where ci and dj are some complex numbers which can be determined with the help

of the normalization conditions (2.19)–(2.21), ci = 〈f (+)i , f 〉, dj = ∓〈f (−)j , f 〉. If
i and j take continuous values the sums in (2.22) correspond to integrals.

Local field operators can be defined by analogy with (2.22). First one introduces
the operators

ai = ϕ[f (+)i ], b+i =∓ϕ[f (−)i ], (2.23)

called the annihilation and creation operators, respectively. In the definition of b+i
the minus sign corresponds to the Bose statistics, the plus sign is for the Fermi
statistics. By using (2.22), (2.23) and the assumption that f (±)i is a complete set of
modes the operator functionals ϕ[f ] can be represented as

ϕ[f ] =
∑
i

ciai +
∑
j

dj b
+
j . (2.24)

The local operator of a quantized field is then defined as

ϕ(x)=
∑
i

aif
(+)
i (x)+

∑
j

b+j f
(−)
j (x). (2.25)

This formula together with (2.24) allows one to write the operator functionals in
the form, ϕ[f ] = 〈f,ϕ〉, where the local operator (2.25) appears as an argument in
the product. The important feature of the quantized field operator ϕ(x) is that it is a
formal solution to the field equations (2.1). Due to this property, Eq. (2.25) is a key
formula for computing quantum averages.

The creation and annihilation operators (2.23) solve the problem of an oscilla-
tor representation of a free field theory. Indeed, by using (2.18) and normalization
conditions (2.19)–(2.21) one arrives at the following commutation relations:

[ai, a+j ]± = �δij , [bi, b+j ]± = �δij (2.26)
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(commutators between ai and bj vanish). Apart from a different meaning of the
indices i and j , these commutators are identical to those appearing in quantum
mechanics of harmonic oscillator.

Formal polynomials of creation and annihilation operators modulo relation (2.26)
form an associative algebra. It can be represented by linear operators acting on the
Fock space, which can be introduced in the following way. First, one takes a special
vector |0〉 such that

ai |0〉 = bi |0〉 = 0, (2.27)

for all annihilation operators. It is called the vacuum vector or the ground state.
Other vectors which constitute a basis in the Fock space are obtained by acting on
|0〉 by all possible monomials of the creation operators,

|i1, . . . ik, j1 . . . jp〉 = Ci1,...ik,j1...jp (a+i1 )n1 . . . (a+ik )
nk (b+j1)

m1 . . . (b+jp )
mp |0〉, (2.28)

where Ci1,...ik,j1...jp are normalization coefficients. These states describe fields ex-
citations with a fixed number of quanta.

There can be infinitely many different ways to specify field excitations and to
choose a set of single-particle modes f (±)i . This also implies that the ground state is
not universal. The ground state with respect to one set of quanta may look as a state
containing quanta defined in a different way. Indices i and j describe quantum num-
bers such as, for example, spin of the quanta and the momentum in a certain frame
of reference. Thus, the choice of modes is determined by physical characteristics
of the systems which are measured. The different sets of creation and annihilation
operators are related to each other by unitary transformations called the Bogoliubov
transformations, see Exercise 2.2.

At the end of this section a comment on quantum theory of real fields is in order.
The equations of motion for real fields are invariant with respect to the complex
conjugation or the charge conjugation (as in case of spin 1/2 fields). By taking into
account (2.16) and conditions (2.19)–(2.21) one can conclude that (f (−)j )∗ = f (+)j .
Since the corresponding operators are Hermitian, Eqs. (2.17) and (2.23) show that
operators ai and bi coincide and just one set of these operators, say ai and a+i , is
used in this case.

2.3 Comments on Gauge Fields

Consider now theories with a degenerate relativistic inner product. The degener-
acy means that there are classical solutions ξ for which the product with any other
solution f vanishes identically, 〈f, ξ 〉 ≡ 0. Such a situation happens in theories
where gauge fields are dynamical variables and we call ξ gauge modes. The ex-
amples are the Maxwell and Yang-Mills models (the model (1.75) for M = 0 and
the model (1.77), respectively). In both models the classical action and equations of
motion are invariant with respect to the gauge transformations δξf = ξ . For Yang-
Mills fields and other fields with non-linear dynamics this property applies to small
perturbations which are described by linear equations.
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The gauge modes are unphysical degrees of freedom because they do not con-
tribute to physical quantities. In contrast, one can define physical modes as solutions
f with a non-vanishing norm 〈f,f 〉 �= 0. Modes related by a gauge transformation,
f and fξ = f + ξ , are physically equivalent. One says that they belong the same
orbit of the gauge group.

Consider classical functionals introduced in Sect. 2.2. In the case of gauge theo-
ries, let us require that ϕ[f ] acts on a set of all physical modes and does not vanish
identically on this set. By their definition, the functionals ϕ[f ] are gauge invariant,
ϕ[f ] = ϕ[fξ ], thus, one can also say that they are defined on the orbits of the gauge
group.

When going to quantum theory one replaces classical functionals with operator
functionals ϕ[f ] also acting on the orbits. Introduction of the gauge invariant oper-
ators is justified because the r.h.s. of the commutation relations (2.18) is gauge in-
variant. Such quantization approach can be called “quantization in physical modes”.

Instead of working with an orbit it is more convenient to choose one of its rep-
resentatives, a particular mode by requiring that the mode obeys certain conditions.
This is called a gauge fixing procedure. The fact that gauge conditions eliminate the
gauge freedom implies that their solutions intersect each orbit of the gauge group
in exactly one point. Generically, such conditions cannot be chosen globally on the
whole space of the fields, but, since we are working with small fluctuations only, it
is not a problem.

Let us illustrate the method by using a pure Maxwell theory. The gauge modes
here have the simple form, ξμ = ∂μλ, where the gauge parameter λ is a sufficiently
smooth function. For any potential Aμ there is a gauge parameter λ such that after
the corresponding transformation the potential satisfies the so-called Lorentz con-
dition ∇μAμ = 0. This condition does not eliminate the gauge freedom completely
because it is invariant under the transformations where the gauge parameter is a
solution to equation ∇2λ = 0. This extra freedom is fixed by requiring that some
components of the potential are vanishing, for example, that A0 = 0 (on classical
solutions). This means that the number of physical degrees of freedom of a photon
in n dimensions is n−2. For a theory in Minkowski space-time the above conditions
can be written as A0 = ∂iAi = 0. This confirms the fact that the physical degrees of
a photon are two polarizations orthogonal to the spatial momentum.

Once the gauge is fixed and physical modes are chosen one can proceed as in
Sect. 2.2. In particular one can introduce (gauge invariant) creation and annihilation
operators by Eq. (2.23), require decomposition (2.24), and finally define local field
operators (2.25) in the given gauge.

In the rest of the book this procedure will be implied but not actually used. One
just needs spectra of physical modes to calculate corresponding spectral functions,
see Chap. 7, and show that calculation of physical quantities does not depend on
the choice of the gauge conditions. “Quantization in physical modes” can be re-
lated to standard methods and attributes of quantum gauge theories, such as the
Faddeev-Popov quantization etc., which are more convenient in interacting theo-
ries. We shall briefly comment on this in Sect. 7.8. More intuition on gauge models
can be acquired from Exercises 2.6, 2.9, 2.10.
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2.4 Canonical Quantization

In quantum mechanics one imposes canonical commutation relations

[q,π] = i� (2.29)

between the canonical coordinates q and their respective momenta π . The general
scheme of quantization of free fields introduced above is equivalent to canonical
quantization. The canonical momenta π are defined by the variational derivative

π(x)= δL

δϕ̇(x)
(2.30)

of the Lagrangian L . Here ϕ̇ denotes the time derivative and, therefore, the defini-
tion of the momenta depends on the choice of the coordinate system. If t is a time
coordinate the Lagrangian in this system is defined as the density of the classical
action, I = ∫

dtL .
Let us demonstrate equivalence of the two quantization procedures for the scalar

field model (1.68) in Minkowski space-time. For a complex scalar field there are two
sets of canonical coordinates and conjugate momenta, ϕ,π = ϕ̇+ and ϕ+,π+ = ϕ̇.
Let us fix an inertial frame of reference with the coordinates xμ = (t,x) and choose
� as a constant time hypersurface t = const. On �

〈f1, f2〉 = i(f1, ḟ2)− i(ḟ1, f2), (2.31)

where (f1, f2) is an inner product in the Hilbert space L2 on �

(f1, f2)≡
∫
ddx f ∗

1 (x)f2(x). (2.32)

From (2.31) one gets

ϕ(fk)= i(fk, ϕ̇)− i(ḟk, ϕ)= i(fk,π+)− i(ḟk, ϕ). (2.33)

It should be emphasized that fk(t,x) and ḟk(t,x) at t fixed represent independent
variables, the Cauchy data for the solutions fk(x). If one chooses f1 = ḟ2 = 0,
Eqs. (2.18) and (2.33) imply the commutation rules

[(ḟ1, ϕ), (f
∗
2 ,π)] = i�(ḟ1, f2) and [ϕ(x),π(y)] = i�δ(x − y), (2.34)

which coincide with (2.29). In the same way one gets other commutators between
canonical variables.

In Minkowski space it is easy to construct normalized “modes” f (±)i . One of
such examples is the so-called plane waves

f (+)p (x)= 1√
2ωp(2π)d/2

e−iωpt+ipx, (2.35)

f
(−)
p (x) = (f (+)p (x))∗. The vector p ∈ R

d is the momentum of the mode, ωp =
(p2 +m2)1/2 is the energy. It can be checked, that (2.35) are properly normalized,

〈f (±)p , f
(±)
k 〉 = ±δ(p − k). (2.36)
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The operators

a+(p)=−〈f (−)p , ϕ+〉, b+(p)=−〈f (−)p , ϕ〉 (2.37)

are creation operators for particles and anti-particles with fixed energies and mo-
menta.

In the solutions (2.35), a transition from one inertial frame to another generates
a covariant transformation of quantities (ωp,p) as components of a four vector pμ.
This means that (2.35) is a universal set of modes (plane waves) for all inertial ob-
servers. This also implies that for all such observers the vacuum state |0〉 is unique.

2.5 Quantum Theory on Stationary Backgrounds

Suppose that external classical background fields are stationary, i.e., there is a coor-
dinate system xμ = (t, xi) where the background fields do not depend on the time
coordinate t . In this case the energy of an isolated system is conserved. There are
two definitions of the energy which can be found in the literature. One is determined
in terms of the stress-energy tensor (1.22),

E =
∫
�

Tμνt
μ d�ν, (2.38)

where tμ is the Killing vector field which generates translations along the time coor-
dinate t . The integral is taken over a space-like surface � (which can be chosen as a
surface of constant time). Another definition of the energy is known as the canonical
energy or the Hamiltonian,

H =
∑
i

∫
ddx ϕ̇i

δL

δϕ̇i
−L, (2.39)

where L is the Lagrangian of the system and ϕi is a set of dynamical variables
together with its time derivatives ϕ̇i = ∂tϕi . Definition (2.39) implies that the La-
grangian does not contain time derivatives higher than the first order. It can be shown
[122] that E and H differ by a surface term which vanishes under the suitable
boundary conditions, see an example in Exercise 2.11.

If the background is stationary the classical canonical energyH [f ] computed for
a solution f to the equation of motion (2.1) can be represented as

H [f ] = i

2
(〈f, ḟ 〉 + 〈f+, ḟ+〉). (2.40)

For theories with a real (Hermitian) fields one finds

H [f ] = i

2
〈f, ḟ 〉. (2.41)

We leave the proof of these statements in different models for Exercise 2.8.
An important property of the theory on a stationary background is that the time

variable is separated. As a consequence, one can introduce a special set of solutions
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to (2.1) which are the eigenfunctions of the operator i∂t ,

i∂tf
(±)
i (x)=±ω(±)i f

(±)
i (x). (2.42)

We assume that ω(±)i > 0. Thus, “+” and “−” modes are eigenfunctions of i∂t
with positive or negative eigenvalues, respectively. The numbers ω(±)i determine the
spectrum of single-particle excitations and are called the single-particle energies.

The spectrum of single-particle energies is determined by an eigenvalue problem
which follows from (2.1). For integer spin fields the operator P(∂t , ∂k) is a second
order partial differential operator. For these fields (2.1) is reduced to

(P0ω
2 + P1ω+ P2)fω(x

k)= 0, (2.43)

where Pk is a k-th order differential operator. For spin 1/2 fields the problem like
(2.43) is obtained by taking the square of the Dirac equation (1.74). The operators
Pk do not commute between each other in general. Equation (2.43) is a non-linear
spectral problem which is discussed in Chap. 6.

The normalization constant in the relativistic product is chosen such that the en-
ergies of elementary field excitations (described by f (±)i ) coincide with frequencies
of the modes. To see this for complex fields, we first use (2.40) and (2.42) to get

H [f (±)i ] = ±ω(±)i 〈f (±)i , f
(±)
i 〉. (2.44)

Then the cases of Bose and Fermi statistics are considered separately.

Bose Statistics If the normalization condition (2.20) is satisfied, Eq. (2.44) yields

H [f (±)i ] = ω(±)i . (2.45)

This equation implies that H [f ] ≥ 0, which may not be the case in general. In static
space-times (when the Killing field tμ is orthogonal to constant time hypersurfaces)
one can guarantee positivity of H for systems whose stress-energy tensor satisfies
the so-called weak energy condition [156]. The condition requires that Tμνuμuν ≥ 0
for any time-like vector uμ.

The energy operator is constructed from its classical analog H when classical
fields are replaced with corresponding operators. Substitution of (2.25) in (2.40) and
using commutation relations (2.26) yields the quantum Hamiltonian in the following
form:

H =
∑
i

ω
(+)
i a+i ai +

∑
j

ω
(−)
j b+j bj +E0. (2.46)

The constant E0 in the r.h.s. of (2.46) is given by an infinite series

E0 = �

2

∑
i

ω
(+)
i + �

2

∑
j

ω
(−)
j . (2.47)

The result, as expected, is equivalent to the energy of an infinite number of har-
monic oscillators. In field theory, the series (2.47) diverge and require a regulariza-
tion (a cutoff) at large frequencies ω(±)i . One finds with the help of (2.27) that the
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ground state is the eigenvector of the energy operator,H |0〉 =E0|0〉. For this reason
E0 is called the energy of zero-point fluctuations or the vacuum energy. The vacuum
energy will be a special subject of Chap. 9.

Hermitian Bose fields are considered in the same way. In this case there is a
single sort of creation and annihilation operators, say a+i , ai and the single type of
frequencies, ωi = ω+

i = ω−
i . Therefore,

H =
∑
i

ωia
+
i ai +E0, (2.48)

E0 = �

2

∑
i

ωi . (2.49)

To get (2.48) one has to use Eq. (2.41) for the energy.

Fermi Statistics If the normalization condition (2.21) is satisfied, it follows from
(2.44) that

H [f (±)i ] = ±ω(±)i . (2.50)

Thus, the classical energy is negative for modes with negative frequencies. On the
quantum level contributions of negative and positive frequency modes to the en-
ergy have equal forms and signs because of Fermi statistics. When one uses anti-
commutation relations (2.26) the energy operator looks as follows:

H =
∑
i

ω
(+)
i a+i ai +

∑
j

ω
(−)
j b+j bj +E0, (2.51)

E0 =−�

2

∑
i

ω
(+)
i − �

2

∑
j

ω
(−)
j . (2.52)

The negative constant E0 is the vacuum energy.

Relation to Classical Mechanics We finish this section with the following com-
ment. The relativistic product (2.9) is a structure which appears already in the clas-
sical mechanics for a finite number of degrees of freedom. Consider a system of N
variables qk(t) whose evolution is described by the Hamilton equations. One can
find the corresponding canonical momenta pk(t) and define the following symplec-
tic form [224]:

�(q1,p1;q2,p2)= i
N∑
k=1

(q1,k(t)p2,k(t)− p1,k(t)q2,k(t)), (2.53)

where (qi,k,pi,k) are solutions to the Hamilton equations for the given system. One
can show that ∂t�(q1,p1;q2,p2) = 0 and check that the canonical energy com-
puted on a solution qk(t) can be written as [224]

H [q] = i�(q, ∂tq). (2.54)

Thus, (2.53) is an analog of product (2.9), while (2.54) is an analog of (2.40).
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2.6 Green’s Functions

In this section we introduce a number of the so-called two-point Green’s functions.
Consider as an example a scalar field ϕ in the Minkowski space-time. The equation
of motion is, see (1.69),

(−∂μ∂μ +m2)ϕ(x)= 0. (2.55)

With the help of local field operators (2.25) one can define the following functions:

G+(x, x′)= 〈0|ϕ(x)ϕ+(x′)|0〉, (2.56)

G−(x, x′)= 〈0|ϕ+(x′)ϕ(x)|0〉, (2.57)

iG(x, x′)= [ϕ(x),ϕ+(x′)] =G+(x, x′)−G−(x, x′), (2.58)

G(1)(x, x′)= 〈0|ϕ(x)ϕ+(x′)+ ϕ+(x′)ϕ(x)|0〉 =G+(x, x′)+G−(x, x′), (2.59)

iGF (x, x
′)= θ(t − t ′)G+(x, x′)+ θ(t ′ − t)G−(x, x′), (2.60)

GR(x, x
′)=−θ(t − t ′)G(x, x′), (2.61)

GA(x, x
′)= θ(t ′ − t)G(x, x′). (2.62)

Here θ(x) is a step function, θ(x)= 1 for x > 0 and θ(x)= 0 for x < 0. The names
of the functions are the following:G+ andG− are the Wightman functions,G is the
Pauli-Jordan function, G(1) is the Hadamard function, GF is the Feynman function
(or the Feynman propagator),GR ,GA are retarded and advanced Green’s functions,
respectively.

Since the field operators obey (2.55) the Green’s functions are solutions to similar
homogeneous or inhomogeneous equations. For instance, it follows from (2.58) that

(−∂μ∂μ +m2)G(x, x′)= 0, (2.63)

where the differential operator acts either on the argument x or x′. The same equa-
tion holds for G−, G+, and G(1). For the Feynman function one finds

(−∂μ∂μ +m2)GF (x, x
′)= δ(n)(x − x′), (2.64)

where δ(n)(x − x′) = δ(t − t ′)δ(x − x′). To get the r.h.s. of (2.64) one has to take
into account canonical commutation relation (2.34), see Exercise 2.12.

Equations (2.25), (2.26) can be used to rewrite the Green’s function in terms of
single-particle modes. For instance, for the Wightman and the Pauli-Jordan func-
tions one gets

G+(x, x′)= 〈0|ϕ(x)ϕ+(x′)|0〉 =
∑
i

f
(+)
i (x)(f

(+)
i (x′))∗, (2.65)

G−(x, x′)= 〈0|ϕ+(x′)ϕ(x)|0〉 =
∑
j

(f
(−)
j (x′))∗f (−)j (x), (2.66)

iG(x, x′)=
∑
i

f
(+)
i (x)(f

(+)
i (x′))∗ −

∑
j

(f
(−)
j (x′))∗f (−)j (x). (2.67)

Other Green’s functions can be expressed similarly.
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The same representations, (2.65)–(2.67), hold for theories in arbitrary back-
ground fields. The Green’s functions (except for the Pauli-Jordan function which
is determined by the commutator) depend on the choice of the vacuum state.

By using (2.65)–(2.67) one can show that the Green’s functions above have sin-
gularities on the light cone (x − x′)μ(x − x′)μ = 0. There may be singularities of
different types: power or logarithmic singularities, delta-function-like singularities
or discontinuities.

It is instructive to give explicit expressions for Green’s functions for a mass-
less scalar field in a four-dimensional Minkowski space-time. The modes are de-
fined by (2.35) with d = 3 and m = 0. Due to translation invariance of the
Minkowski space-time the Green’s functions depend on the difference of the argu-
ments, G(x,x′)=G(0, x′ − x)≡G(x′ − x). A straightforward computation yields
for the Wightman functions, see Exercise 2.16,

G±(x)= 1

4π2s2
± i

4π
ε(t)δ(s2), (2.68)

where x = (t,x), s2 = s2(x)≡ −t2 + x2 is the invariant interval between x and 0,
and ε(t)= θ(t)− θ(−t) is the sign function. With the help of (2.58), (2.59), (2.60),
and (2.68) one gets the following expressions for the Pauli-Jordan, the Hadamard,
and the Feynman functions:

G(x)= 1

2π
ε(t)δ(s2), (2.69)

G(1)(x)= 1

2π2s2
, (2.70)

GF (x)=− i

4π2s2
− 1

4π
δ(s2). (2.71)

The Pauli-Jordan function (2.69) vanishes outside s = 0. For massive fields it van-
ishes under weaker conditions, if the interval is space-like, s2(x) > 0. This means
that the field operators in causally disconnected points commute. Such a property
holds in general, see Exercise 2.18.

2.7 Computation of Averages

The two-point Green’s functions play an important role in physical applications.
They are used in perturbation methods in quantum theories of interacting fields, see
discussion in Sect. 7.7. Here we describe how the Green’s functions can be used to
find expectation values of operators corresponding to physical observables.

As an example, consider the vacuum expectation value for the stress-energy ten-
sor of the scalar field discussed in the previous section. The classical stress-energy
tensor in this model is, see (1.70),

Tμν = 2∂μϕ
∗∂νϕ − ημν(∂σ ϕ∗∂σ ϕ +m2ϕ∗ϕ). (2.72)
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In quantum theory the stress-energy tensor becomes an operator which is obtained
from (2.72) by replacing classical fields with the corresponding operators. The vac-
uum average 〈0|Tμν |0〉 suffers from divergences which appear in the averages of
products of field at coinciding points, like in 〈0|ϕ(x)ϕ(x)|0〉. Such averages are re-
lated to the Wightman function (2.56) which, as we have seen already, is singular
when its arguments coincide.

To deal with the divergences one uses the so-called point-splitting method. For
example, the regularized average of the stress-energy tensor can be defined as

〈0|Tμν(x)|0〉 ≡ lim
x′→x

〈0|2∂μϕ+(x′)∂νϕ(x)− ημν(∂σ ϕ+(x′)∂σ ϕ(x)

+m2ϕ+(x′)ϕ(x))|0〉. (2.73)

Here x and x′ are close points, such that x− x′ is not light-like. This expression can
be also written in terms of the Wightman function

〈0|Tμν(x)|0〉 = lim
x′→x

[2∂ ′μ∂ν − ημν(∂ ′σ ∂σ +m2)]G−(x′, x), (2.74)

where ∂μ = ∂/∂xμ and ∂ ′μ = ∂/∂(x′)μ. In the limit x′ = x the singularities of the
Wightman function result in singularities of the average (2.73). The singular terms,
however, can be separated from the finite ones and subtracted. The physical justifi-
cation for this operation, which is called a renormalization, is explained in Sect. 7.5.
The example of computation based on formula (2.74) is given in Exercise 9.1 to
Chap. 9.

For non-interacting fields the point-splitting method is quite general. Consider a
local classical quantity O which is, like the stress-energy tensor or gauge currents,
a quadratic polynomial of the field variables ϕ and its derivatives up to the second
order. It can be written as a coincidence limit

O(x)= lim
x→x′

DAB(x, x
′)ϕA(x)ϕB(x′), (2.75)

whereDAB(x, x′) is a bi-differential operator,A and B are field indices. In quantum
theory the average value of the observable O is determined by using (2.75)

〈O(x)〉 = lim
x→x′

DAB(x, x
′)〈ϕA(x)ϕB(x′)〉, (2.76)

where, as before, the correlator 〈ϕA(x)ϕB(x′)〉 can be expressed in terms of a two-
point Green’s function. The physical quantity is obtained from (2.75) after subtract-
ing the divergent parts. The operatorDAB(x, x′) corresponding to a given O may be
non-unique. It is not a problem if different definitions after subtracting divergences
yield the same result.

There is an alternative method of computing the averages of operators which is
based on using the effective action and is our main interest. We shall return to this
issue in Chap. 7.
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2.8 Quasinormal Modes

In constructing a quantum theory along the lines of previous sections one may en-
counter solutions to wave equations (2.1) which look similar to the single-particle
modes but have nothing to do with quantum excitations. One type of such modes
has a vanishing norm. This may happen because the modes have zero frequency or
they are related to pure gauge degrees of freedom, see Exercise 2.6.

In this section we describe another type of classical solutions, the so-called quasi-
normal modes. Although these modes have complex frequencies and are not normal-
izable they carry important information about physical properties of the system. As
an example we consider a two-dimensional scalar field model with the wave equa-
tion

(∂2
t − ∂2

x + V (x))ϕ(t, x)= 0. (2.77)

It is assumed that −∞< x <∞ and the “background field” is described by a “po-
tential” V (x). We suppose that V (x) is a smooth bounded function with a compact
support, such that V (x)= 0 if |x|> b > 0.

The spectrum of single-particle energies related to eigenvalues of the operator
−∂2
x + V has a continuous part, and it is the only part if V (x) > 0. How can com-

plex frequency modes appear in this problem? Suppose that a solution to (2.77)
is determined at some initial moment, say at t = 0, by the Cauchy data, ϕ(0, x),
∂tϕ(0, x), which have a compact support. The quasinormal modes appear when one
studies asymptotic of ϕ at late times.

Let us start with construction of a general solution to (2.77). We use the Laplace
transform

χ(λ, x)=
∫ ∞

0
e−λtϕ(t, x) dt, (2.78)

which enables us to represent the solution in the integral form

ϕ(t, x)= 1

2πi

∫
C

etλχ(λ, x) dλ. (2.79)

The contour C in the complex plane goes parallel to the imaginary axis such that
	 λ= a > 0. The function χ(λ, x) is defined through a one-dimensional problem

(λ2 − ∂2
x + V (x))χ(λ, x)= j (λ, x) (2.80)

with a “source” determined by the Cauchy data,

j (λ, x)≡ ∂tϕ(0, x)+ λϕ(0, x). (2.81)

To get (2.80) from (2.77) one has to start with the Laplace transform of ∂2
t ϕ and

integrate by parts
∫ ∞

0
e−λt ∂2

t ϕ(t, x) dt = λ2χ(λ, x)− j (λ, x). (2.82)
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The solution to (2.80) can be written with the help of a Green’s function Gλ(x, y)

χ(λ, x)=
∫ ∞

−∞
dy Gλ(x, y)j (λ, y), (2.83)

(λ2 − ∂2
x + V (x))Gλ(x, y)= δ(x − y). (2.84)

The differential operator in (2.84) does not depend on time. We shall describe a
method how to construct Gλ(x, y) in a way which differs from the procedure ap-
plicable to time-dependent Green’s functions (2.65)–(2.67). Consider the homoge-
neous equation

(λ2 − ∂2
x + V (x))f (λ, x)= 0. (2.85)

A pair of independent solutions to (2.85), fk , can be determined by their asymptotic
behavior at x→±∞. Because V (x)= 0 for |x|> b one can choose the following
asymptotics

f1(λ, x)∼ e−λx, x� b, (2.86)

f2(λ, x)∼ e+λx, x�−b. (2.87)

The Wronskian of the system

W(λ)= 1

2
(f ′

2(λ, x)f1(λ, x)− f ′
1(λ, x)f2(λ, x)), (2.88)

does not depend on the coordinate x and is not vanishing on independent solutions,
W(λ) �= 0. One can check (see Exercise 2.21) that a solution to (2.84) can be written
as

Gλ(x, y)= gλ(x, y)
W(λ)

,

gλ(x, y)= θ(x − y)f1(λ, x)f2(λ, y)+ θ(y − x)f1(λ, y)f2(λ, x).

(2.89)

It can be shown that the Laplace transform χ(λ, x), see (2.78), is uniquely de-
termined for 	 λ > 0 by (2.83), (2.89) and is a bounded function provided that the
Cauchy data (the “source” j (λ, x)) have a compact support.

The way how one can determine the late time behavior of the solution ϕ(t, x)
provided that its initial perturbation is localized in a finite region is the following.
Consider representation (2.79) and use (2.83), (2.88) to get

ϕ(t, x)= 1

2πi

∫ ∞

−∞
dy

∫
C

dλetλ
gλ(x, y)

W(λ)
j (λ, y). (2.90)

Because t > 0 one can add to the contour C a semicircle lying in left half of the
complex plane. Then integration in (2.90) is equivalent to integration over a closed
contour and can be performed by using the Cauchy theorem. IfW(λ) have complex
zeros λk (	 λk < 0) the contour integral in (2.90) acquires contributions from the
residues of 1/W(λ) at λk . At late t the main contribution to (2.90) is determined by
the pole λ0 with the smallest real part |	λ0|. Therefore, at late t

ϕ(t, x)� etλ0ϕ0(x), (2.91)

where ϕ0(x) is some function.
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It can be shown that for positive potentials V (x) with a compact support the
Wronskian always has a countable number of zeros. The idea behind finding these
zeros is quite simple. IfW(λ)= 0 the corresponding solutions, fk(λ, x), are not in-
dependent. Suppose that for a certain complex value λ (	λ > 0) the wave equation
(2.77) allows for a solution, f̄ (λ, x), which has both asymptotics, f̄ (λ, x) ∼ e±λx
at x → ∓∞. It then follows from (2.86), (2.87) that λ is one of the zeros of the
Wronskian.

Such solutions f̄ (λ, x) are called the quasinormal modes. The complex num-
bers λ which are the zeros of the Wronskian are called the quasinormal spectrum.
The ringing frequencies of a bell, which can be heard, are related to the quasinor-
mal spectrum. The inverse of |	λ0| yields the lifetime of the main overtone which
decays the last.

Let us emphasize once again that quasinormal frequencies despite their physical
importance are not eigenvalues of the operator −∂2

x +V because the corresponding
modes are not normalizable.

2.9 Literature Remarks

Commutation relation (2.18) of free fields on a gravitational background has been
used by a number of authors, see e.g. a pioneering paper by Chernikov and Tagirov
on quantum theory in de Sitter space-time [65]. An alternative way would be to
postulate, by following DeWitt [77], the local commutation relations as

[ϕ(x),ϕ+(x′)] = iG(x, x′),
whereG(x,x′) is the Pauli-Jordan function which can be defined in classical theory
by Eq. (2.67). This scheme of quantization is manifestly covariant and is equivalent
to (2.18) on globally hyperbolic space-times.

A quantization procedure of fields of different spins in Minkowski space-time
along with properties and singularity structure of Green’s functions is described in
detail in the classical book by Bogoliubov and Shirkov [40]. Among the modern
monographs on quantum field theory we mention the book by Peskin and Schroeder
[205] and the book by Weinberg [253].

Quantization of gauge theories and constrained dynamics is presented in many
books, see e.g. [108, 137]. We should note that a method of “quantization in physical
modes” discussed in Sect. 2.3 may fail on some curved backgrounds, see e.g. [105,
242]. Although what is described in Sect. 2.3 and later in Sect. 7.8 is enough to
demonstrate applications of the spectral theory to different problems with quantum
gauge fields.

Quasinormal modes encode important characteristics of frequencies and life-
times of gravitational waves emitted at late stages by a black hole after its per-
turbation, see more on this subject in the book by S. Chandrasekhar [62]. A recent
review of quasinormal modes of stars and black holes can be found in [171, 173].
Possible role of quasinormal modes in quantum gravity theory is discussed in [160].
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There are several reasons why we do not discuss in this book higher-spin fields
(spins 3/2, 2 and etc.). The main reason is that we study here the Lagrangian field
theories while a problem of a Lagrangian formulation for higher spin fields is open
in general and details in its resolution are still missing. Classical free Lagrangian
higher spin field theories in Minkowski space-time were formulated in the middle
of 70th of the last century. However, coupling of these fields to arbitrary exter-
nal backgrounds or interaction among higher spin fields faces the problem of con-
sistency. A consistent interacting massless spin 2 field theory is general relativity,
non-contradictory interacting massless spin 3/2 and 2 fields enter in supergravity.
At present, there exists Lagrangian formulation for massless and massive arbitrary
higher spin fields in anti de Sitter (AdS) space-time. Besides, spin 3/2 and 2 field
Lagrangian formulation exists in the Einstein space. As for general higher spin in-
teraction, it seems that Lagrangian formulation should include an infinite tower of
all higher spin fields (like in string theory) and it is not so clear how to quantize
such theories. The higher spin fields in the AdS space can be quantized by standard
methods and, in principle, the mathematical techniques which are considered in this
book can be applied to study an effective action in this case. As far as we know, such
a consideration has never been carried out in general, besides spin 3/2 and 2 fields.

Recommended Exercises are 2.5, 2.6, 2.8, 2.10, 2.16.

2.10 Exercises

Exercise 2.1 Prove that the integral Q= ∫
�
d�μ jμ on a hypersurface � does not

change under smooth local transformations � if ∇μjμ = 0.

Exercise 2.2 Consider the following linear combination of single-particle modes
f
(±)
i :

f̃
(+)
i =

∑
k

α
(+)
ik f

(+)
k +

∑
p

β
(+)
ip f

(−)
p , (2.92)

f̃
(−)
j =

∑
k

α
(−)
jk f

(+)
k +

∑
p

β
(−)
jp f

(−)
p , (2.93)

where α(±)ik and β(±)ip are some complex numbers.

1) Find relations between α(±)ik and β(±)ip which guarantee that f̃ (±)i form another
set of single-particle modes which satisfy (2.19)–(2.21).

2) Find a transformation from creation and annihilation operators determined by
modes f (±)i to creation and annihilation operators determined by modes f̃ (±)i

(this transformation is called the Bogoliubov transformation after N.N. Bogoli-
ubov who introduced it in the theories of superfluidity and superconductivity).

3) Calculate the number of particles of the new sort in the vacuum state (2.27).



48 2 Quantum Fields

Exercise 2.3 Consider free scalar field model (1.69) in a general gravitational and
gauge background. Prove that the general quantization scheme presented in Sect. 2.1
coincides with the canonical quantization.

Exercise 2.4 Consider a theory of free quantum fields on a globally hyperbolic
space-time M . Prove that the quantization condition (2.18) implies that

[ϕ(x1), ϕ
+(x2)]± = 0 (2.94)

when points x1 and x2 are on a Cauchy surface �. By the definition of � (see
Sect. 1.6) such points are casually independent.

Exercise 2.5 Consider a vector field action

I [A,g] = −1

2

∫
dnx

√−g(∇νAμ∇νAμ +RμνAμAν +M2AμA
μ), (2.95)

where Rμν is the Ricci-tensor of the background metric. What is the difference
between this model and model (1.75)? Why quantization of (2.95) yields a theory
with unphysical properties?

Exercise 2.6 What is the difference between the massive and massless vector mod-
els (1.75)? Note that the massless model is the Maxwell theory in a vacuum. Identify
physical degrees of freedom in the Maxwell theory.

Exercise 2.7 Prove that the norm 〈ψ,ψ〉 of c-number valued (non-Grassmann)
spinor fields defined on a smooth space-like hypersurface by (2.9), (2.11) is pos-
itive. Prove the following property:

〈ψc1 ,ψc2 〉 = 〈ψ2,ψ1〉, (2.96)

where ψc denotes a charge conjugated spinor, see (1.66). If ψ1 and ψ2 are Grass-
mann fields, a minus sign appears in the equation above.

Exercise 2.8 Derive formulae (2.40), (2.41) for the canonical energy in station-
ary backgrounds for models of scalar (1.68), spinor (1.73), vector (1.75), and non-
Abelian gauge fields (1.79).

Exercise 2.9 Let ωi be the spectrum of single-particle energies in a field model on
a stationary background. One can define a spectral function

�=
∑
i

f (ωi), (2.97)

where f (x) is some smooth function which decays fast enough to ensure conver-
gence of the series. One of the examples of the spectral function is the regularized
vacuum energy, see (2.47), where f (x) = x/2 (f (x) = 0 for x > a where a is a
regularization parameter). Other examples are studied below.

Find a relation between the spectral functions of the vector models (1.75) and
(2.95). Consider both massive and massless cases.
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Exercise 2.10 Consider a theory of linear order perturbationsAμ of a SU(N) gauge
field over the background field Bμ, where Bμ is a static solution to Yang-Mills
equations (1.78). The equations for the perturbations are (1.79).

By analogy with the Maxwell theory, see Exercise 2.6, study the single-particle
spectrum ωi of the perturbations in the Lorentz-like gauge [Dμ,Aμ] = 0. Find a
representation of the spectral function (2.97) in this gauge in terms of the spectral
functions of some unconstrained fields.

Exercise 2.11 Consider a model of a real scalar field with the so-called non-
minimal coupling between the field and the curvature scalar

I =−1

2

∫
dnx

√
g(∂μϕ∂μϕ +m2ϕ2 + ξRϕ2). (2.98)

By using definitions (2.38), (2.39) calculate the energy and the Hamiltonian for this
model on a static background. Find the difference between the two quantities and
show that it is reduced to a surface term.

Exercise 2.12 Prove the equation

(−∂μ∂μ +m2)GF (x, x
′)= δ(n)(x − x′)

for the scalar Feynman function in Minkowski spacetime, see Sect. 2.6.

Exercise 2.13 Consider a massless field on a circle, i.e. field in two-dimensional
space-time which obeys the periodic condition in spatial coordinate, ϕ(t, x + l) =
ϕ(t, x). Prove that the Wightman function for this model has the form

G+(0, xμ)=− 1

4π

[
ln

(
−4 sin

au

2
sin
av

2

)
+ i

2
a(u+ v)

]
, (2.99)

where a = 2π/l, xμ = (t, x), u= t − x, v = t + x and �t = ε > 0.

Exercise 2.14 Get the following expression for the Wightman function of the mass-
less two-dimensional field on an interval of the length l:

G+(xμ, (x′)μ)= 1

4π
ln

[
cosa�t − cosa(x + x′)
cosa�t − cosa(x − x′)

]
, (2.100)

where a = π/l and �t = t ′ − t , �t ′ > 0. The boundary condition for the field is
ϕ(t, l)= ϕ(t,0)= 0.

Exercise 2.15 By using explicit expressions for the Wightman functions (2.99),
(2.100) derive canonical commutation relation for the massless scalar field on a
circle and on an interval.

Exercise 2.16 Prove expressions (2.68) for the Wightman functions of a massless
scalar field in four-dimensional Minkowski space-time.
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Exercise 2.17 Consider a massive scalar field in four-dimensional Minkowski
space-time. Show that the Feynman, advanced and retarded Green’s functions can
be defined in the so-called momentum representation

G (0, x)= 1

(2π)4

∫
d4p

e−ipx

p2 +m2
, (2.101)

where each of these functions is specified by a prescription how to pass the poles
in the denominator. The following notations are used in (2.101): p is a four-
dimensional momentum, p = (p0,p), px =−p0t + px, p2 =−p2

0 + p2.
Find also analogous prescription for the Wightman and Pauli-Jordan functions.

Exercise 2.18 By using results of Exercise 2.17 demonstrate the Lorentz invariance
of Green’s functions.

Exercise 2.19 Consider the Cauchy problem

(−∂μ∂μ +m2)ϕ(x)= 0, (2.102)

ϕ(x)|t=0 = ϕ1(x), ϕ̇(x)|t=0 = ϕ2(x). (2.103)

Show that a solution to (2.102), (2.103) can be written with the help of the Pauli-
Jordan function,

ϕ(x)=
∫
dy[∂tyG(x, y)|ty=0ϕ1(y)−G(x,y)|ty=0ϕ2(y)]. (2.104)

Exercise 2.20 By using the point-splitting method, see (2.76), define the average
value of the electric current for scalar and spinor field models (1.68), (1.73) in
Minkowski spacetime. For the classical current use the definition (1.71).

Exercise 2.21 Consider Eq. (2.84) for a one-dimensional Green’s functionGλ(x, y).
Let fk(λ, x) be two independent solutions to the homogeneous equation (2.85) and
W(λ) be their Wronskian (2.88). Demonstrate that the Green’s function can be
written as

G(x,y)= 1

W(λ)
(θ(x − y)f1(λ, x)f2(λ, y)+ θ(x − y)f1(λ, y)f2(λ, x)). (2.105)
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Chapter 3
Operators and Their Spectra

3.1 Differential Operators on Manifolds

To develop the quantum theory further one needs a number of mathematical notions.
We begin with the theory of linear operators, the mathematical cornerstone of the
quantum theory. The form of the operators is related to classical field equations, as
discussed in Chaps. 1 and 2. We start with a bit abstract setting and find out which
properties of the operators are essential to have well-defined spectral problems so
that the eigenmodes can be used in the quantization. We are not going to present the
mathematical theory of operators on manifolds to any degree of completeness. Our
aim is to introduce the main notions so that the reader may consult more advanced
literature. For the reasons which will be explained latter we assume in the most
part of this and next Chapters that the base manifold is Riemannian (the Euclidean
signature). Lorentzian manifolds are the subject of separate digressions.

In physical applications one mostly deals with the operators of a Laplace type.
In a local basis such operators can be represented as

L=−(gμν(x)∂μ∂ν + aμ(x)∂μ + b(x)), (3.1)

where gμν is the Riemannian metric, aμ(x) and b(x) are some matrix valued func-
tions. In general, instead of gμν there can be a matrix valued function. We shall not
consider this case because it leads to more complicated spectral properties. Note
also that operators having a matrix valued coefficient in front of the second deriva-
tive term are called non-minimal. One can transform L to an explicitly covariant
form

L=−(gμν∇μ∇ν +E), (3.2)

where the covariant derivative ∇ = ∇[R] + ω contains both Riemann, ∇[R], and
“gauge”, ω, parts. One may express

ωρ = 1

2
gνρ

(
aν + gμσ�νμσ

)
,

E = b− gνμ(∂μων +ωμων −ωσ�σνμ),
(3.3)
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where �σνμ is the Christoffel symbol (1.4) associated with gμν . These formulae can
be used to extend our definition of the Laplace operator from a local chart to sections
of a vector bundle, i.e., to make the operator globally defined. This is done simply
by saying that ω is a connection, and E is an endomorphism on F (M ). In the
present context, this means that we have fixed transformation properties of ωμ and
E under gauge transformation from the structure group of the bundle. Namely, ω is
transformed as in Eq. (1.40), and E is transformed homogeneously, E→ gEg−1.
The simplest example of the operator (3.1) is the scalar Laplacian

�ϕ ≡−∇μ∇μϕ =−g−1/2∂μ
(
g1/2gμν∂νϕ

)
. (3.4)

This operator acts on scalar functions. Another example is an operator acting on
vector fields,

�(1)Vμ ≡ (−∇α∇αδνμ +Rνμ
)
Vν. (3.5)

The form of �(1) is dictated by classical equations for vectors, see, e.g. Exer-
cises 2.5, 2.6.

An important class of partial differential operators is given by operators of the
Dirac type. By definition, /D is of the Dirac type if its square, /D2, is of the Laplace
type. Clearly, any operator of the form

/D = iγ μ∂μ + V (x) (3.6)

with an arbitrary zero order part V (x) is of the Dirac type. It is convenient to rewrite
(3.6) in explicitly covariant form,

/D = iγ μ(∂μ +ω[s]
μ )+ Ṽ (x), (3.7)

where ω[s]
μ is the spin-connection, see Eq. (1.57). An example of (3.7) appeared in

the equation of motion (1.74) for a spin 1/2 fieldψ . The associated Laplace operator
is

�(1/2)ψ ≡ (iγ μ∇μ)2ψ =
(
−∇α∇α + 1

4
R

)
ψ, (3.8)

where R is the scalar curvature. This equation is called the Lichnerowicz formula.
Generalizing the examples given above one arrives at the notion of a differential

operator. In a local basis a differential operator of order p reads

p∑
k=0

c
μ1...μk
k (x)∂μ1 . . . ∂μk . (3.9)

It is essential that operator (3.9) includes partial derivatives up to some finite order.
Differential operators are defined on some spaces of functions. Let us discuss

briefly what are these spaces. Since the operator L in (3.1) contains two partial
derivatives, the functions it acts on should have at least two well behaving deriva-
tives. These functions belong to the so-called Sobolev space. As we know from
Chap. 2, to construct a quantum theory one needs the space of square integrable
functions, denoted by L2. Let us remind, that any convergent sequence in L2 has its
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limit also in L2. Thus the space is complete and is a Hilbert space. We shall suppose
that our operators can be extended to L2 in a meaningful way. For example, this can
be done with the help of the Fourier transform because the action of L and /D on the
plane waves is well defined. The action of these operators on the square integrable
functions can be obtained by summing up the Fourier series.

The Fourier transformation can be used to introduce even more general notion of
the operators, the pseudodifferential operators. Let f (x) be a function on R

n and let
f̃ (k) be its Fourier component,

f (x)=
∫
eikx f̃ (k) dnk. (3.10)

The action of a pseudodifferential operator P on f is defined as

Pf (x)=
∫
eikxp(x, k)f̃ (k) dnk, (3.11)

where p(x, k) is a smooth function of both arguments. If p(x, k) grows at large |k|
as |k|q , one says that P has the order q . Usually one also requires that lth derivative
of p(x, k) with respect to k grows no faster as |k|q−l . The function p(x, k) is called
the symbol of P . In this way one can define operators of a fractional order. One
can also extend the notion of a pseudodifferential operator to operators on arbitrary
manifolds.

Differential operators belong to the class of pseudodifferential operators. For ex-
ample, the symbol of a Laplace operator L reads

pL(x, k)= gμν(x)kμkν − iaμ(x)kμ − b(x). (3.12)

Consider an operator P of a finite positive order q . One defines the leading sym-
bol σP (x, k) as the part of p(x, k) which scales as |k|q at large k. The importance
of the leading symbol for studying differential operators will become evident soon.

Another important notion is the ellipticity property of differential operators. By
definition, P is elliptic if its leading symbol σP (x, k) is non-degenerate for all
x ∈ M and all k �= 0. Since the leading symbol is understood as a linear map on
the fiber space the ellipticity means that the map is an isomorphism.

For P = L the leading symbol is σL = k2 × I , where I is the identity map in
the fiber space, i.e. it is an identity matrix with internal or spin indexes, see for
example (3.5). Consequently, the Laplace operator L is elliptic. For the Dirac type
operators σ /D =−kμγμIint, where Iint is an identity matrix in the internal (or gauge)
space. Obviously, σ 2�D = k2Iint ⊗ Ispin is non-degenerate for k �= 0. Hence σ /D is non-
degenerate itself, and Dirac operators are elliptic.

Ellipticity means that at large momenta the term with the highest derivatives
dominates, so that the spectrum behaves in a predictable way. An elliptic operator
on a compact manifold may have only a finite number of zero eigenvalues. For a
Laplacian even a stronger statement is possible: the number of negative eigenvalues
on a compact manifold is finite.

In most of the physical applications one deals with Hermitian vector bundles,
see Sect. 1.5. This means that for any two elements, f1, f2 from the fiber at each
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point of the base manifold M there is a bilinear form (f1(x), f2(x))x called the
fiber metric. For example, for tangent vectors, this may be just their scalar product,
(V1(x),V2(x))x = gμν(x)V μ1 (x)V ν1 (x). The bilinear form is assumed to be Hermi-
tian, (f1(x), f2(x))x = (f2(x), f1(x))

∗
x , and invariant under an action of the struc-

ture group. By using the fiber metric one can define the inner product of two ele-
ments from the corresponding Hilbert space L2,

(f1, f2)=
∫

M
dnx

√
g (f1(x), f2(x))x. (3.13)

The inner product (3.13) should not be confused with the relativistic product (2.9)
which we used for the quantization. The inner product is used to define the norm
‖ · ‖ on the Hilbert space. By definition, ‖f ‖ = (f,f )1/2.

By using (3.13) one can introduce an operator D† adjoint to an operator D,

(D†f1, f2)= (f1,Df2). (3.14)

If D† =D one says that D is symmetric. To check whether a (pseudo-)differential
operator is symmetric one has to integrate by parts in the inner product (3.14) to
move D from f1 to f2. Usually this can be done for closed manifolds. If the base
manifold has a boundary the boundary conditions on f1 and f2 have to ensure that
D is symmetric. We shall return to this problem in Sect. 3.2.

A symmetric operator is called selfadjoint if the domains in L2 where D and
D† are defined coincide. We shall mostly ignore this requirement assuming that
operators are selfadjoint on a suitable domain.

Selfadjoint operators have real eigenvalues. A Laplacian L is selfadjoint if in a
suitable local basis the connection ωμ is represented by an anti-Hermitian matrix,
and if E(x) is Hermitian in the same basis (if the bundle metric (,)x is assumed to
be positive definite).

We now consider several simple examples. The first example is the scalar Laplace
operator

�=−∂2
1 − ∂2

2 − · · · − ∂2
n (3.15)

on an n-dimensional torus, M = T n. By definition, functions on T n satisfy the
periodic conditions f (x1, . . . , xμ, . . . , xn) = f (x1, . . . , xμ + lμ, . . . , xn) for each
coordinate xμ. The periods lμ are real numbers. One requires that � acts on the
periodic functions which belong to the corresponding Hilbert space L2(T n). The
eigenspectrum of � can be easily found by taking into account the periodicity con-
ditions,

�fk(x)= λkfk(x), fk = (l1l2 . . . ln)−1/2 exp(ikμx
μ), (3.16)

λk = kμkμ, kμ = 2πqμ/lμ, (3.17)

where {qμ} ∈ Z
n. The functions fk form an orthonormal set in L2,

(fk, fk′)=
∫

M
dnx f ∗

k (x)fk′(x)= δk,k′ . (3.18)
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Decomposition of functions from L2(T n) in the basis {fk} is known as the Fourier
series.

Another example is the scalar Laplacian on a unit two-sphere, see (1.97). By
using (3.4) in the coordinates (θ, τ ) on S2 one obtains the following expression:

�f =−(
∂2
θ + cot θ∂θ + (sin θ)−2∂2

τ

)
f. (3.19)

In quantum mechanics this operator is known as the square of angular momentum.
Its eigenfunctions are the spherical harmonics Yl,m,

�Yl,m(θ,φ)= l(l + 1)Yl,m(θ,φ), (3.20)

where l = 0,1,2, . . . , and m changes between −l and +l. The eigenvalues of �
depend on l only. Therefore, the degeneracy of each eigenvalue is dl = 2l + 1.

In general, the eigenvalues and degeneracies of the scalar Laplacian on a unit
n-sphere Sn are

λl = l(l + n− 1), l = 0,1,2, . . . , (3.21)

dl = (2l + n− 1)(l + n− 2)!
l!(n− 1)! . (3.22)

Exact spectrum on Sn can be also found for non-zero spin Laplacians.

3.2 Boundary Conditions

In physical applications one has to deal with classical and quantum problems on
manifolds with boundaries, see Sect. 1.8. If the manifold M has a boundary, ∂M ,
the definition of a differential operator D requires certain conditions on ∂M for
functions which D acts on. The need for boundary conditions is known from early
years of mathematical physics. Indeed, the equation

Df = J (3.23)

with a given J cannot be solved for f unless one imposes suitable restrictions on
the behavior of f on ∂M .

Let us briefly discuss the number of boundary conditions. Suppose that the man-
ifold M has the topology ∂M × R

1. For an initial value (Cauchy) problem for the
equation Df = J where D is a differential operator of order q and ∂M is an “ini-
tial” surface one requires to fix q independent initial data, for example, f and its
first q − 1 normal derivatives on ∂M . Implicitly, in this problem there is another
boundary, which is the “final” surface. In case of two explicit boundaries, ∂M1 and
∂M2, one can as well impose q/2 conditions at each boundary, that is q/2 condi-
tions along the whole boundary ∂M1 ∪ ∂M2. The same is, of course, true when M
has a topology of a ball and a closed boundary ∂M . One can conclude that for an
order q operator q/2 boundary data on ∂M are required. For Laplace type operators
this means one boundary condition for each field component. For a Dirac operators
one has to fix one half of the spinor components.
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The spectral problems following from the boundary conditions must be math-
ematically consistent. The rest of this section will be devoted to formulation and
study of such consistency conditions.

Let us give some examples of the boundary problems mentioned above. The first
example is the one-dimensional Laplacian

L=−∂2
x (3.24)

on the interval [0, l]. To fix the spectrum one has to impose a single condition at
each of the points x = 0 and x = l. There are two most common choices how to do
this. One can either fix the values of the field,

f |x=0,l = 0, (3.25)

or the values of first derivatives,

∂xf |x=0,l = 0. (3.26)

These are the so-called Dirichlet, (3.25), and Neumann, (3.26), boundary conditions.
The eigenfunctions of L in both cases are easy to find:

Dirichlet: fk = l−1/2 sin(kxπ/l), k = 1,2, . . . ;
Neumann: fk = l−1/2 cos(kxπ/l), k = 0,1,2, . . . .

(3.27)

The eigenvalues read

λk =
(
kπ

l

)2

. (3.28)

These eigenvalues are real and non-negative. Indeed, after integrating by parts and
using (3.25) or (3.26) one gets

(Lf1, f2)− (f1,Lf2)=−∂xf1 · f2
∣∣x=l
x=0 + f1 · ∂xf2

∣∣x=l
x=0 = 0. (3.29)

Therefore, both Dirichlet and Neumann boundary conditions make the operator
(3.24) selfadjoint on the interval on a suitable domain of definition. One may notice
now that the asymptotic behavior of the spectrum for large k for operators on an
interval and on a circle, see (3.17), are very similar.

The next case is the Laplace operator on a manifold with a closed boundary. The
simplest example is a two-dimensional disc (1.96). The Laplace operator reads

Lf =−
(
∂2
ρ +

1

ρ
∂ρ + 1

ρ2
∂2
τ

)
f, (3.30)

where we used coordinates 0 ≤ τ < 2π , 0 ≤ ρ ≤ ρ0 with ρ0 being the radius of the
disc. Consider the Dirichlet boundary conditions

f (ρ0, τ )= 0. (3.31)

One can separate the radial and angular dependence of f and write the eigenmodes
as

fk,λ(ρ, τ )= J|k|(ρλ1/2) exp(ikτ ), (3.32)
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where k ∈ Z, J|k| are the Bessel functions, and λ’s are eigenvalues,

Lfk,λ = λfk,λ, (3.33)

defined by the boundary condition

J|k|(ρ0λ
1/2)= 0. (3.34)

The situation when the spectrum can be found only implicitly, through the solutions
of a transcendental equation, is typical for boundary value problems. From the the-
ory of the Bessel functions it follows that the eigenvalues are real and positive. For
large z and positive integer k we have the following asymptotic expression for the
Bessel functions

Jk(z)∼
√

2

πz
cos

(
z− kπ

2
− π

4

)
. (3.35)

Therefore, large eigenvalues are defined by zeros of the cosine in (3.35). Again, like
in the previous examples, one may notice that the spectrum looks very similar to
spectrum on a torus, see (3.17).

We now give an example when the presence of boundaries does lead to essential
modifications of the spectrum and physical properties of the system (the example is
borrowed from Appendix B of [176]). Consider the Laplace operator

L=−∂2
1 − ∂2

2 (3.36)

on a cylinder M = [0,1] × S1 (0 ≤ x2 ≤ 2π ) with the boundary conditions

∂1f |x1=0 = 0, (∂1 + iα∂2)f |x1=1 = 0. (3.37)

There are two sets of eigenmodes,

fk1k2 = exp(ik2x
2) cos(k1x

1), (3.38)

f̄k̄1k2
= exp(ik2x

2) cosh(k̄1x
1), (3.39)

where k2 = 0,±1,±2, . . . . The both sets satisfy (3.37) at x1 = 0 while the condition
at x1 = 1 determines discrete values of k1 and k̄1,

k1 tank1 =−αk2, k̄1 tanh(k̄1)= αk2. (3.40)

Obviously, the eigenvalues of the first set (3.38) are k2
1 + k2

2 and L is non-negative.
The eigenvalues of the second set are −k̄2

1 + k2
2 . For positive αk2 the second relation

(3.40) always has two solutions. For sufficiently large |k2| they are

k̄1 ≈±αk2 (3.41)

up to exponentially small corrections. Thus, the eigenvalues −k̄2
1 + k2

2 of L are
positive if |α| < 1 and negative if |α| > 1. That is for |α| > 1 the operator L has
infinitely many “negative” modes.

The example above is not of a pure academic interest, similar boundary con-
ditions appear in the theory of open strings (cf. Chap. 10). In that case |α| = 1
corresponds to a critical value of background gauge fields.



60 3 Operators and Their Spectra

An infinite number of “negative” modes may be related to peculiar properties
of a system. If L is the operator which defines eigenfrequencies of fluctuations (see
Chap. 2) through Lϕ = ω2ϕ, negative eigenvalues of L correspond to the states with
imaginary frequencies, which, in turn, indicates instability of the system.

The boundary conditions should lead to problems with physically reasonable
properties. To achieve this, it is not enough to require that the operator is elliptic,
like for closed manifolds. One has to make sure that the boundary value problem
satisfies the so-called weak and strong ellipticity conditions. We do not discuss these
conditions here. The interested reader can consult Literature Remarks at the end of
this Chapter for further remarks and references. Instead, we list several boundary
conditions which are known to lead to elliptic boundary value problems for the
Laplace operator (3.2).

For this purpose it is convenient to introduce a boundary operator B and write
the boundary conditions as

Bf = 0. (3.42)

Since we shall mostly discuss free field theory, we consider linear operators B. We
also do not include inhomogeneous terms in the right hand side of (3.42).

Dirichlet Boundary Conditions are the simplest boundary conditions which gen-
eralize (3.25). The boundary operator in this case reads

Bf ≡ BDf = f |∂M , (3.43)

so that BD simply restricts f to the boundary.

Robin Boundary Conditions, which are also called generalized Neumann bound-
ary conditions, correspond to the boundary operator

BNf = (∇n +S )f |∂M (3.44)

with S being a matrix valued function on ∂M . In the mathematical language S is
an endomorphism of the restriction of the vector bundle E to the boundary. There
are two advantages of the Robin boundary conditions over the Neumann ones. First
of all, the partial derivative ∂n is not a covariant object. Therefore, it is natural to
write down boundary conditions with the covariant derivative ∇n. Adding S is very
important for technical reasons: one can vary connection and S simultaneously so
that the boundary operator (3.44) remains invariant.

Mixed Boundary Conditions One can also mix up the boundary conditions de-
fined above by requiring that some components of f satisfy Dirichlet, and the rest
satisfies Robin boundary conditions. More precisely, one introduces two comple-
mentary projectors, D and N , D+ N = 1, and defines the boundary operator
as

Bmixf = Df |∂M + (∇n + S ) Nf |∂M . (3.45)
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As we shall see below, natural boundary conditions for spin 1/2 and spin 1 fields
belong to this class.

Oblique boundary conditions generalize the condition (3.37). The operator has the
form

Bo = (∇n + �i∇̃i + S )f |∂M , (3.46)

where ∇̃i are covariant derivatives with respect to the metric on the boundary, see
Sect. 1.8. These conditions lead to an elliptic boundary value problem only if abso-
lute values of all eigenvalues of all matrices �i do not exceed one.

For all these boundary conditions the spectrum of the Laplace operator behaves
“nicely”. In particular, there could be at most a finite number of negative and zero
modes. Also, the distribution of large positive eigenvalues is universal: it is governed
by the Weyl formula (5.39) to be discussed in Sect. 5.4.

Let us now discuss in more detail boundary conditions for the Dirac operator. As
we have already explained above, since the Dirac operator is a first order differential
operator one needs boundary conditions on one half of the spinor components. Let
us choose a projector  D which selects a half of the components and impose the
Dirichlet boundary conditions

 Dψ |∂M = 0. (3.47)

There may be many different choices for D . It is natural to require that the normal
component of the spinor current vanishes on the boundary,

ψ†γ nψ |∂M = 0, (3.48)

where γ n = γ μnμ and nμ is a unit vector orthogonal to the boundary ∂M . Sup-
pose that M is an even-dimensional manifold. Then it is easy to show that for the
projector

 D = 1

2
(1 ± iγ∗γ n), (3.49)

where γ∗ is the chirality matrix, the condition (3.48) is indeed satisfied.
The Dirac operator squared is a Laplace type operator. Therefore, the eigenvalue

problems for /D and for the corresponding Laplacian /D2 should be in some sense
equivalent. However, for L = /D

2 one has to double the number of boundary con-
ditions. To see where the missing conditions come from consider the eigenvalue
equation /Dψ = λψ . By acting with the projector  D on both sides of this equation
one obtains the condition

 D /Dψ |∂M = 0, (3.50)

which should hold at least on eigenfunctions of /D. This second condition leads
to mixed boundary conditions for /D2. Indeed, consider a simple case when M =
R
n−1 × R+ and /D = iγ μ∂μ. Then

 D /Dψ = iγ n∂n(1 − D)ψ + iγ j ∂j Dψ, (3.51)
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where ∂j denote partial derivatives with respect to the coordinates tangential to the
boundary. The second term on the right hand side of (3.51) vanishes on the bound-
ary due to (3.47). The first term together with (3.50) yields Neumann boundary
conditions for (1 − D)ψ . Hence, we arrived at mixed boundary conditions of the
type (3.45).

3.3 Bounded and Compact Operators

Let us now discuss the properties of infinite-dimensional operators related to bound-
edness of their spectra.

Let P be a linear operator on a Hilbert space with the norm ‖ · ‖. P is called
bounded if for f from its domain

sup
‖f ‖≤1

‖Pf ‖<∞. (3.52)

To understand whether an operator is bounded, one should check how it acts on the
Fourier harmonics. Let us note that if f = ∑

fkck , where fk are normalized Fourier
harmonics, then ‖f ‖ = (∑ |ck|2)1/2. Then, the set ‖f ‖ ≤ 1 looks like a unit ball in
the space spanned by ck . If the operator is selfadjoint its boundedness is equivalent
to the boundedness of the set of the eigenvalues. As an example, let us consider the
standard Laplacian L (3.24) on an interval. The spectrum is given by (3.28), and it
is unbounded, so that the operator (3.24) is unbounded as well. All eigenvalues of
the operator

Q= (l2L+ 1)−1 (3.53)

are between 0 and 1 and, therefore, the operator Q is bounded.
For further purposes we should distinguish bounded and compact domains. An

example of a bounded domain is a “unit ball”, i.e. a set of functions defined by
‖f ‖ ≤ 1. A compact space is defined as a space where any infinite sequence of
elements contains a convergent subsequence. The space of functions satisfying
‖f ‖ ≤ 1 is not compact in the infinite-dimensional case. As a consequence of the
definition, bounded operators map a bounded domain to a bounded domain. By us-
ing the stronger requirement one can also consider compact operators which map
a bounded domain to a compact domain. To see whether a linear operator is com-
pact it is enough to check this property on the unit ball. If ek is a (countable) basis
of normalized elements in the Hilbert space, the sequence with the n-th element
given by 1

2en is contained in the unit ball, but does not contain a convergent subse-
quence since the distance between any two elements is 1/

√
2. To make the image of

the ball compact, the operator P must provide enough “squashing” of the ball, i.e.,
enough regularization for high momenta. The operator of multiplication by a con-
stant c, while being obviously bounded, does not give such “squashing” (consider,
e.g., the sequence cen which belongs to the image of unit ball). Therefore, the oper-
ator of multiplication by a constant is not compact. The operatorQ defined above in
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Eq. (3.53) is compact. For example, the sequence {fn} with fl being an eigenfunc-
tion of L, see Eq. (3.27), is mapped to a convergent sequence. To prove this, it is
enough to note that the distance ‖Qfk −Qfn‖ ≤ 2(N2π2 + 1)−1 for k,n > N , and
that it goes to zero as N → ∞. Similarly, one can prove that the image of any se-
quence contained in the unit ball has a convergent subsequence. Compact operators
are norm limits of sequences of finite-rank operators.

It is convenient to study the properties of operators by looking at their spectrum.
However, not every operator has a complete set of eigenfunctions. For an operator T
consider T †T , which is at least formally selfadjoint and should have a complete set
of non-negative real eigenvalues. By taking positive square roots of these eigenval-
ues, one can define the “absolute value” of T as |T | = (T †T )1/2. The eigenvalues
of |T | are called singular values of T and denoted sk(T ). For a compact operator T
one can arrange sk(T ) in a non-increasing order. If p is a non-negative real number,
a compact operator T is said to be Schatten p-class if the sum

∑
k sk(T )

p is con-
vergent. One writes then T ∈ L p . Two important particular cases are the Hilbert-
Schmidt class L 2 and the trace class L 1. For T ∈ L 1 trace of T is absolutely
convergent and does not depend on the orthogonal basis used.

In the infinite-dimensional case many “nice” properties of the operators hold
modulo a compact operator. For example, any Laplacian is invertible modulo the
projector on its zero subspace. In a similar sense one can define complex powers of
Laplace type operators [227].

The notions of bounded, unbounded and compact operators will be used when
discussing the spectral triples in Sect. 11.5.

3.4 Lorentzian Signature

Let us now discuss operators on Lorentzian manifolds, see Sect. 1.2. A typical ex-
ample of this kind is the D’Alambert operator in the Minkowski space

� =−ημν∂μ∂ν = ∂2
0 − ∂2

1 − · · · − ∂2
n−1. (3.54)

The eigenfunctions of this operator are plane waves (2.35) which can be written (up
to a normalization coefficient) as

�eikx = k2eikx = (−k2
0 + k2

1 + · · · + k2
n−1)e

ikx, (3.55)

where kx = kμxμ and kμ is a “momentum” of the plane wave. The spectrum of � is
obviously not positive definite. The operators whose leading symbol behaves similar
to (3.55) are called second order hyperbolic operators, and this notion replaces the
notion of the elliptic operators.

Even more drastic changes appear for the Dirac operator. The inner product of
the spinor fields which is invariant with respect to the structure group Spin(1, n−1),
see Sect. 1.5, contains the γ 0 matrix,

(ψ ′,ψ)=
∫

M

√−gψ̄ ′ψ, ψ̄ ≡ iψ†γ 0. (3.56)
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This product is not positive definite. The notion of selfadjointness is defined with
respect to (3.56). Since the γ -matrices in Minkowski space are “γ 0-Hermitian”

γ 0γ μγ 0 = γ μ† (3.57)

the hermiticity condition for the Dirac operator reads

γ 0 /Dγ 0 = /D
†
. (3.58)

If there are boundaries, one has to impose boundary conditions on a half of the
spinor components. This can be done similarly to the Euclidean case by choosing
(3.47). If the normal vector to the boundary is spacelike, nμnμ = 1, one can take the
projector, for example, as

 D = 1

2
(1 + γ n). (3.59)

Then the boundary conditions are

 Dψ |∂M = 0, ψ̄(1 − D)|∂M = 0 (3.60)

and the current flow through the boundary vanishes,

ψ̄γ nψ |∂M = 0, (3.61)

if both ψ̄ and ψ satisfy (3.60). This last property makes it possible to prove her-
miticity of the Dirac operator in the presence of boundaries, see Exercise 3.2. Note,
that in contrast to the Euclidean case, projector (3.59) does not contain the chiral-
ity matrix γ∗. Therefore, boundary conditions (3.60) exist on both even- and odd-
dimensional manifolds.

3.5 Literature Remarks

The theory of differential and pseudodifferential operators is a large area of mathe-
matics. To study the basics one can consult any textbook on mathematical physics or
on functional analysis, as, e.g. the classics [195, 218] or more recent [141]. A more
focused exposition of pseudodifferential operators can be found in Shubin [233].
Boundary value problems are discussed in Grubb [148]. Further references will be
given in the next Chapter.

In Sect. 3.2 we have mentioned the weak and strong ellipticity conditions for
operators on manifolds with boundaries. The idea behind these conditions which
we have not discussed in details, is very simple, though the technical side is rather
complicated. One formulates an auxiliary one-dimensional boundary value prob-
lem keeping in the operator just the normal derivatives and replacing all tangential
derivatives by corresponding momenta. One further simplifies this boundary value
problem by picking up the “main” parts of the operator and of the boundary con-
dition, a procedure similar to extraction of the leading symbol of an operator. Then
one analyses the spectrum of this simplified boundary value problem. If there are
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no eigenvalues in some “forbidden” area of the complex plane, the boundary value
problem is elliptic. For further reading we suggest the references [133, 148]. A nice
simple explanation of the ellipticity properties of boundary value problems is given
in [33].

Local boundary conditions for the Dirac operator, called the bag boundary con-
ditions, were introduced in [66, 67]. Spectral theory of these boundary conditions
was developed [50], see also [181].

3.6 Exercises

Exercise 3.1 Prove that the operator L in Eq. (3.36) is symmetric under the bound-
ary conditions (3.37). Check by a direct computation that the modes from different
sets (3.38) and (3.39) are orthogonal.

Exercise 3.2 Prove that under boundary condition (3.47) with (3.49) the Dirac op-
erator (3.7) is symmetric (provided that Ṽ (x) is hermitian).

Exercise 3.3 On any two-dimensional manifold a vector field Vμ can be decom-
posed as

Vμ = !,μ + εμνϕ,ν + V Hμ . (3.62)

This decomposition is called the Hodge-de Rham decomposition. In the language of
differential forms, the first term on the right hand side corresponds to exact form, the
second—to co-exact forms, and the third one is a harmonic vector field satisfying
�(1)V Hμ = 0. Find the spectrum of vector Laplacian (3.5) on the unit S2 by using the
decomposition (3.62) and the fact that there no harmonic vectors on the two-sphere.

Exercise 3.4 Find the spectrum of the Dirac operator on S2. Use eigenfunctions of
the scalar Laplacian on S2 and results of Exercise 1.17 to construct explicitly the
eigenfunctions of the Dirac operator.

Exercise 3.5 Prove the following property for the Dirac operator squared (the Lich-
nerowicz formula):

(iγ μ∇μ)2 =−∇α∇α + 1

4
R,

where R is the scalar curvature of the base manifold. This property is used to define
the spinor Laplacian �(1/2), see (3.8).

Exercise 3.6 Consider a Dirac type operator

/D = iγ μ(∂μ + Vμ + iγ∗Aμ) (3.63)

Suppose that the base manifold is flat and bring the operator /D2 to the canonical
form −(∇2 +E). For Aμ = 0 the relation which is required to be obtained is called
the Weitzenböck formula.



Chapter 4
Heat Equation

4.1 The Heat Kernel

Let L be an elliptic second-order differential operator acting on sections of a vector
bundle over a Riemannian manifold M . Positivity is not assumed, so that a finite
number of negative eigenvalues is allowed. We shall actually concentrate on oper-
ators of Laplace type, though most of the results will be valid in a more general
context. For the given operator L one can define an important object known as the
heat operator e−tL. This can be done with the help of the so-called heat equation:

(∂t +L)u(x; t)= 0, for t > 0 (4.1)

with the initial condition

u(x;0)= f (x), (4.2)

where f (x) is a function from L2. The solution u(x; t) can be written as u(x; t)=
e−tLf (x) thus defining the heat operator e−tL.

This construction also determines a kernel, the heat kernel K(x,y|t),
u(x; t)=

∫
dny K(x, y|t)f (y). (4.3)

The equation for the heat kernel can be written in the form

(∂t +Lx)K(x, y|t)= 0, (4.4)

K(x,y|0)= δ(n)(x, y), (4.5)

where δ(n)(x, y) is the kernel of the unit operator on the space of smooth sections of
the vector bundle. If L is a scalar Laplacian on R

n, this kernel is simply the Dirac
delta-function δ(n)(x − y).

As an example, let us consider a free Laplacian � = −∂2
μ on a torus T n (cf.

(3.15)). Let us expand the function f in a Fourier series f = ∑
k ckfk(x), where fk

is plane wave (3.16). The heat operator is diagonal in the plane wave basis. It maps
e−t� : ck �→ e−tk2

ck . We see, that for t > 0 the heat operator improves the behavior
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of the Fourier coefficients ck at large momenta kμ and, consequently, it also makes
the functions more smooth. In particularly, for a positive t , the heat operator exists
and maps L2 to C∞. For this reason, e−t� is called an infinitely smoothing operator.
Obviously, the presence of some lower powers of k in the operator, as it happens in
a Laplacian on a curved Riemannian manifold M , does not change our conclusion
since e−tk2

dominates over all other contributions anyway. Therefore, the existence
of the heat operator is related only to the property of the symbolic spectrum (the
ellipticity). Other conventional assumptions, such as, for instance, the property of
self-adjointness of the operator L, are not needed for this purpose.

Precisely the same reason, namely the fall-off properties of the heat operator
at large momenta, guarantees existence of the heat trace on the space of square
integrable functions L2,

K(Q,L; t)= TrL2(Q exp(−tL)), (4.6)

where Q is a partial differential operator. We shall mostly consider the cases when
Q is a function (a zero-order operator), or even when Q is the unity. In this latter
case we shall use the notation

K(L; t)≡K(1,L; t). (4.7)

This is a spectral function which can be written as

K(L; t)=
∑
λ

e−tλ, (4.8)

where the sum is taken over all eigenvalues λ of L. Let us emphasize again that (4.8)
does not require that L is a self-adjoint operator.

Suppose L is an elliptic second order partial differential operator on a manifold
M of dimension n, where M either a compact manifold or M has a boundary
and the boundary conditions for L belong to one of the classes of strongly ellip-
tic boundary conditions listed in Sect. 3.2. As will be shown below there is a full
asymptotic series for any smooth function f as t→+0

K(f,L; t)= TrL2(f exp(−tL))�
∞∑
p=0

t
p−n

2 ap(f,L). (4.9)

This asymptotic series is called full since the summation over p extends to infinity.
In this book we call ap the heat kernel coefficients.

4.2 Asymptotics of the Heat Kernel

We start our discussion of the asymptotic behavior of the heat trace with several
examples of operators with known spectrum. The heat trace can be represented as
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an infinite series, and our task will be to evaluate the series at small t . A very useful
instrument is the Poisson summation formula

∞∑
k=−∞

h(2kπ)= 1

2π

∞∑
k=−∞

∫ ∞

−∞
dy h(y)e−iky, (4.10)

which is valid for any absolutely integrable bounded function h(y). To illustrate
how this formula works let us consider an asymptotics of the following simple sum
at small t :

∞∑
k=−∞

e−tk2
. (4.11)

Formula (4.10) can be applied to (4.11) if we choose h(y)= exp(−ty2(2π)−2). The
integral over y is easy to calculate,

1

2π

∫ ∞

−∞
dy h(y)e−iky =

√
π

t
e−

k2π2
t . (4.12)

This shows that all terms in the sum on the right hand side of (4.10) are exponentially
small except for k = 0. Therefore, at t→+0,

∞∑
k=−∞

e−tk2 �
√
π

t
+ O(e−1/t ). (4.13)

Now we are able to evaluate the asymptotic expansion of the heat kernel for the
Laplacian (3.15) on T n. The spectrum is given by (3.16) and (3.17).

K(�; t)=
∑
q∈Zn

exp

(
−t

∑
μ

2πq2
μ

l2μ

)
� l1l2 . . . ln
(4πt)n/2

+O(e−1/t ). (4.14)

The symbol O(e−1/t ) denotes terms which vanish faster than any power of t and
are not relevant for our purposes. One can see that asymptotic expansion (4.14) is
indeed of the form announced above in Eq. (4.9).

Another example where the asymptotic expansions can be obtained explicitly is
the Laplace operator � on unit spheres. The spectrum in this case is known, see
(3.20). For heat kernels on S2 and S3 one finds

K(�S2; t)� 1

t
+ 1

3
+ t

15
+O(t2), (4.15)

K(�S3; t)�
√
π

4

(
1

t3/2
+ 1

t1/2
+ t

1/2

2

)
+O(e−1/t ), (4.16)

see Exercises 4.2 and 5.2. These expressions again confirm Eq. (4.9).

4.3 DeWitt Approach

The most powerful and the most general method of evaluating the heat trace asymp-
totics was suggested in 1975 by Gilkey [132]. Many works in physics used an earlier
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method by DeWitt [77] which is based on recursion relations between the heat ker-
nel coefficients at non-coinciding arguments. We start with a brief explanation of
DeWitt’s approach.

Let us first consider a free Laplacian on R
n with unit flat metric. A solution to

the heat equation (4.4) with the initial condition (4.5) for L=−∂2
μ reads

K(x,y|t)= 1

(4πt)n/2
exp

(
− (x − y)

2

4t

)
(4.17)

(cf. Exercise 4.1).
By using this result, let us try to guess the heat kernel of a scalar Laplacian on a

curved manifold without boundaries in the limit when points x and y are close and
the parameter t is small. One expects that in this limit expression (4.17) holds up to
curvature corrections. DeWitt proposed the following ansatz

K(x,y|t)∼ 1

(4πt)n/2
�

1/2
VVM(x, y)e

− σ2(x,y)
4t

∞∑
p=0

bp(x, y)t
n. (4.18)

Here g(x)= detgμν(x), σ 2(x, y) is the geodesic distance between two close points
x and y with coordinates xμ and yμ, respectively. It is assumed that there are no
caustics, i.e., geodesic lines form a regular coordinate system near x or y. A biscalar
determinant

�VVM(x, y)= [g(x)g(y)]−1/2 det

[
−1

2

∂2σ 2(x, y)

∂xμ∂yν

]
(4.19)

is called the Van-Vleck–Morette determinant. If x and y are close to each other,
the kernel (4.18) looks similar to the flat-space kernel (4.17). The coefficients bp
describe corrections due to the curvature, and the presence of �VVM(x, y) makes
the whole expression covariant.

Let us give an idea how to substantiate ansatz (4.18) and find the coefficients
bp(x, y) for the case of the scalar Laplacian L=−∇μ∇ν . We work in the so-called
Riemann normal coordinates (RNC) centered at the point y. In RNC, the coordinates
of the other point x have the following meaning: xμ = slμ where s is the length of
the geodesics connecting points x and y, while lμ is a unit vector at the point y
which is tangent to this geodesic curve. If the caustics are absent there is a single
geodesic connecting any two points. In addition we require that metric at the point
y coincides with ημν , a flat metric. Thus, by the definition of RNC σ 2(x, y) =
xμxνημν . The other advantage of RNC is that the geodesic equation looks as in flat
space-time d2xμ/ds2 = 0.

In RNC instead of (4.18) we have

K(x,y|t)= 1

(4πt)n/2
�

1/2
VVM(x)e

− x2
4t

∞∑
p=0

bp(x)t
p, (4.20)

where we have taken into account that �VVM(x, y) = g−1/2(x) ≡ �VVM(x). This
expansion can be substituted in the heat equation (4.4) to get the relation
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∞∑
p=0

bp(x)

((
p− n

2

)
tp−1 + x2

4t2
tp

)

=�−1/2
VVM

∞∑
p=0

(
�

1/2
VVMbp

(
− 1

4t
∇2x2 + (∇x

2)2

16t2

)

− 1

t
xμ∇μ(�1/2

VVMbp)+∇2(�
1/2
VVMbp)

)
tp. (4.21)

Next we note that

(∇x2)2 = 4x2,

∇2x2 = 1√
g
∂μ(

√
ggμν∇νx2)=�VVM∂μ(�

−1
VVM2xμ)= 2xμ�VVM∂μ�

−1 + 2n

and equate coefficients in front of the powers of t in (4.21) to get the recursion
relations

(p+ 1)bp+1 + xμ∂μbp+1 =�−1/2
VVM ∇2(�

1/2
VVMbp), (4.22)

xμ∂μb0 = 0. (4.23)

It remains to show that in the DeWitt ansatz (4.18) there is a solution to the
recursion relations. This can be easily shown by finding explicit form of the first
coefficients. Because K(x,y|t)= δ(D)(x − y) in the limit t → 0 we conclude that
b0 = 1. Let us compute now the next coefficient b1 in the limit xμ = 0 (i.e. when the
points x and y coincide). By taking into account that dxμ/ds = xμ/s one comes to
equation for the Levi-Civita connection

�λμν(x)x
μxν = 0. (4.24)

It can be solved perturbatively when point x is close to y. In particular, the form of
the metric compatible with (4.24) and the choice of RNC is

gμν(x)= ημν − 1

3
Rμανβx

αxβ +O(x4). (4.25)

From (4.22) we have

b1(0)=∇2�
1/2
VVM(x) at x = 0.

It follows from (4.25) that

g(x)= 1 − 1

3
Rμνx

μxν +O(x4), �
1/2
VVM = 1 + 1

12
Rμνx

μxν +O(x4).

Therefore, ∇2�
1/2
VVM = 1

6R at x = 0 and

b1 = 1

6
R.

This result can be used to find first terms in the asymptotic expansion of the trace of
the heat kernel at small t
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K(−∇2; t)
=

∫
dnx g1/2K(x,x|t)∼ 1

(4πt)n/2

∫
M
dnx g1/2(b0 + b1t + · · ·), (4.26)

valid for a compact manifold without boundaries. By comparing with (4.9) we ob-
tain

a2p = (4π)−n/2
∫

M
dnx g1/2bp. (4.27)

In particular,

a0 = (4π)−n/2
∫

M
dnx g1/2 = volM

(4π)n/2
, a2 = (4π)−n/2

∫
M
dnx g1/2R

6
. (4.28)

We see, that the odd-numbered coefficients a2k+1 vanish, which is a general feature
of all Laplace type operators on manifolds without boundaries.

4.4 Gilkey Approach

This approach consists of two main steps. First, one uses general properties of the
heat kernel expansion to fix the heat kernel coefficients up to several unknown con-
stants. Second, one applies some “functorial” relations between the heat kernels of
different operators and uses particular case calculations to find these unknown con-
stants. The ultimate success of this method depends on the choice of a proper family
(“category”) of spectral problems under the consideration. If the family is too wide,
the combinatorial complexity becomes overwhelming so that practical calculations
are not possible. If the family is too narrow, one cannot find enough useful relations
between the members of this family.

In this section we consider generalized Laplacians (3.2) on compact manifolds
without boundaries. For such operators there is an asymptotic expansion (4.9). What
can we say about the coefficients ak of this expansion on general grounds? One can
prove that all ak(f,L) are locally computable. This means that they can be ex-
pressed as integrals over the manifold M of local invariants. For an operator (3.1)
these local invariants are bundle traces of local covariant expressions linear in f
and polynomial in E, the gauge field strength �μν (Eq. (1.41)), the Riemann tensor
Rμνρσ (Eq. (1.10)) and their covariant derivatives. There are two different sym-
metries which have to be taken into account. The first one is the diffeomorphism
invariance which simply tells us that the result for the heat trace asymptotics must
not depend on a particular choice of the coordinate system. In practice this means
that all vector indices in the polynomials described above should be contracted in
pairs. The second invariance is related to gauge transformations. The gauge trans-
formations are defined by the formula (1.40) for ωμ and change E as gEg−1. The
operator L transforms homogeneously, L→ gLg−1, and all factors of g are can-
celed out after taking the trace. All relevant invariants have been already described
in Sects. 1.2 and 1.5.
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In the rest of this section computation of the heat coefficients will be divided in
several steps. Each of the steps serves to describe either a particular property of the
heat asymptotics or a useful technique.

Dimensional Analysis of the Structure of the Heat Coefficients To restrict
powers of the fields appearing in the heat kernel coefficients we have to define
canonical mass dimensions of all quantities. We assign the dimension −1 to the co-
ordinate, �xμ� =−1, then the dimension of the derivative is +1, �∂μ� = 1. The same
dimension should be assigned to the covariant derivative, �∇μ� = 1, and ��μν� = 2.
We keep the metric dimensionless, �gμν� = 0. Since E appears in L in a linear
combination with ∇2 we have to put �E� = 2. Also, �Rμνρσ � = 2. The canoni-
cal dimension of a monomial is simply a sum of canonical dimensions of multi-
pliers. Since all expressions below will be linear in the smearing function f , one
can choose any value for its canonical dimension. We take �f � = 0. The spectral
parameter t appears in an exponential multiplied with L. To keep tL dimension-
less, we take �t� = −�L� = −2. The invariant of the lowest possible dimension is∫
dnx

√
g tr(f ), where tr is a trace over the bundle indexes. This invariant has di-

mension −n, and has to be multiplied with t−n/2 in the heat kernel expansion. This
explains the lowest power of t in expansion (4.9). In general, the mass dimension of
the integrand appearing in ap(f,L) must be p. All possible invariant polynomials
of the fields have even dimension. Consequently,

a2k+1(f,L)= 0 (4.29)

on manifolds without boundary. As we shall see below, on manifolds with bound-
aries non-trivial coefficients a2k+1(f,L) are allowed.

Now we are ready to write down several leading heat kernel coefficients.

a0(f,D)= (4π)−n/2
∫

M
dnx

√
g tr(α0f ), (4.30)

a2(f,D)= (4π)−n/2 1

6

∫
M
dnx

√
g tr

(
f (α1E + α2R)

)
, (4.31)

a4(f,D)= (4π)−n/2 1

360

∫
M
dnx

√
g tr

(
f

(
α3E

μ

;μ + α4ER+ α5E
2 + α6R

μ

;μ

+ α7R
2 + α8RμνR

μν + α9RμνρσR
μνρσ + α10�μν�

μν
))
. (4.32)

Here α0–α10 are undetermined dimensionless constants. This is about all the invari-
ance properties can give. To determine the values of the constants we shall use other
methods.

Product of Base Manifolds and Universality of αk First let us consider the case
when M is a direct product of two manifolds, M = M1 × M2, with coordinates
x1 and x2 respectively. Let also L be a sum of two operators L1 and L2 acting in-
dependently on M1 and M2, L = L1 ⊗ 1 + 1 ⊗ L2. This implies that the bundle
indices are also independent. One can think of a vector Laplacian as an example.
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One can write symbolically exp(−tL)= exp(−tL1)⊗ exp(−tL2). Next we multi-
ply both sides of this equation by f (x)= f1(x1)f2(x2), take the trace, and perform
the asymptotic expansion in t to get

ak(x;L)=
∑
p+q=k

ap(x1;L1)aq(x2;L2). (4.33)

Let us take M1 being a unit one-dimensional circle S1 and L1 = −∂2
1 . We keep

M2 and L2 arbitrary. According to (4.14) the only non-vanishing coefficient
ap(x1;−∂2

1 ) is a0(x1;−∂2
1 )= (4π)−1/2. Equation (4.33) yields

ak(x;1 ⊗L2 − ∂2
1 ⊗ 1)= (4π)−1/2ak(x2;L2) (4.34)

for all k and L2. All geometric invariants associated with 1 ⊗ L2 − ∂2
1 ⊗ 1 are the

same as for L2 but taken in a lower dimension. Since we have extracted a power
of (4π)−n/2 in the formulae (4.30)–(4.32) explicitly, we conclude that the constants
αj do not depend on the dimension of the manifold. Therefore, the constants αj
are universal for any manifold, any vector bundle, and any Laplacian L. This is an
extremely important property which allows us to make conclusions about the heat
trace asymptotics in any dimensions by considering just simplest low-dimensional
examples.

Simplest Base Manifolds Let us put f ≡ 1 and take the operator on a torus T n.
Equation (4.14) immediately gives

α0 = 1. (4.35)

Next we consider scalar Laplacians on unit spheres S2 and S3. In the both cases
E = 0 and �μν = 0, so that only the Riemann curvature given by (1.84) with C = 1
contributes. Since

volS2 = 4π, volS3 = 2π2 (4.36)

(see Exercise 4.3) the leading terms in expansions (4.15), (4.16) confirm the
value (4.35) for α0. On unit Sn one has: R = n(n− 1), RμνρσRμνρσ = 2n(n− 1),
RμνR

μν = n(n − 1)2. By using these values we see that both expressions, (4.15)
and (4.16), give the same value

α2 = 1 (4.37)

for an undetermined constant in (4.31). Next we compare the term proportional to t
in expansion (4.15) to general expression (4.32) for a4. We obtain

2α7 + α8 + 2α9 = 12. (4.38)

The same procedure applied to the t1/2-term of the heat kernel expansion (4.16) on
S3 yields

3α7 + α8 + α9 = 15. (4.39)

Let us return to the product formula (4.33). Now we impose no restrictions
on M1 and M2 and take L1 and L2 being scalar Laplacians. Let R1 and R2
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be scalar curvatures on M1 and M2, respectively. Then the scalar curvature of
M = M1 × M2 is R = R1 +R2. Let us take k = 4 in (4.33) and collect the terms
on both sides of this equation which contain R1 ·R2. This gives

1

360
2α7 =

(
α2

6

)2

.

Constant α2 is calculated in (4.37). Therefore,

α7 = 5. (4.40)

The conditions (4.38) and (4.39) yield

α8 =−2, α9 = 2. (4.41)

The terms in the heat kernel expansion which contain undifferentiated E are
relatively easy. Consider the case when E is constant and proportional to the unit
matrix. Then K(f,L0 − E; t) = etEK(f,L0; t). By expanding this equation in t
and comparing to (4.30)–(4.32) we obtain

α1

6
= α0,

α4

360
= α2

6
,

α5

360
= α0

2
,

or

α1 = 6, α4 = 60, α5 = 180. (4.42)

Later we shall also use an infinitesimal equation which governs the E-dependence
of the heat kernel expansion

d

dε

∣∣∣∣
ε=0
ak(1,L− εf )= ak−2(f,L). (4.43)

Dependence on Gauge Fields and Potentials The part of the heat kernel expan-
sion which does not depend on the curvature can be evaluated by a rather direct
method. Let us consider a Laplacian on a unit torus T n acting on complex one-
component scalar fields (i.e. on sections of a complex line bundle over T n). The
fibres are one-dimensional, so that we shall drop the symbol “tr” of the bundle trace
until the end of this calculation. To calculate the heat trace of the operator f e−tL
we use the normalized plane wave basis (2π)−n/2eikx where k ∈ Z

n. In this basis

K(f,L; t)=
∑
k∈Zn

∫
T n

dnx

(2π)n
e−ikxf (x) exp(−tL)eikx

=
∑
k∈Zn

∫
T n

dnx

(2π)n
f (x) exp(t ((∇μ + ikμ)2 +E)). (4.44)

On the second line of the equation above the operators act on a constant unit func-
tion (not written explicitly). Since to calculate the functional trace we have used
a particular basis, the expression does not look gauge invariant. Explicit gauge in-
variance will be restored at the end of the calculation. We already know that the
heat kernel expansion is organized according to the canonical mass dimension of
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the fields. Therefore, one can isolate in (4.44) the factor e−tk2
and expand the rest

of the exponential in a power series of dimensional quantities E and ∇ ,

K(f,L; t)=
∑
k∈Zn

∫
T n

dnx

(2π)n
e−tk2

f (x)

(
1 + t (∇2 +E)− t

2

2
4(k∇)2

+ t
2

2
(∇2∇2 +∇2E +E∇2 +E2)

− 4t3

6

(
(k∇)2E +E(k∇)2 + (k∇)E(k∇))

− 4t3

6

(
(k∇)2∇2 +∇2(k∇)2 + (k∇)∇2(k∇))

+ 16t4

24
(k∇)4 + · · ·

)
. (4.45)

The above method is based on the rule of counting the dimensions, see the begin-
ning of this subsection. Since the expansion in t corresponds to an expansion in
the canonical mass dimension, it is guaranteed, the existence of the expansion in ∇
and E. The summation over k can be performed by using the following asymptotic
formulas:

∑
k∈Zn

e−tk2 =
(
π

t

)n/2
+O(e−1/t ),

∑
k∈Zn

e−tk2
kμkν = 1

2t
δμν

(
π

t

)n/2
+ O(e−1/t ), (4.46)

∑
k∈Zn

e−tk2
kμkνkρkσ = 1

4t2
(δμνδρσ + δμρδνσ + δμσ δνρ)

(
π

t

)n/2
+O(e−1/t ).

This yields

K(f,L; t)= (4πt)−n/2
∫
T n
dnx f (x)

(
1 + tE + t

2

2
(∇2∇2 +∇2E +E∇2 +E2)

− t
2

3
(∇2E +E∇2 +∇μE∇μ)− t

2

3
(2∇2∇2 +∇μ∇2∇μ)

+ t
2

6
(∇μ∇ν∇μ∇ν +∇2∇2 +∇μ∇2∇μ)+O(t3)

)
. (4.47)

All the derivatives combine into commutators and we finally get

K(f,L; t)= (4πt)−n/2
∫
T n
dnx f (x)

[
1 + tE

+ t2
(

1

2
E2 + 1

6
E

μ

;μ + 1

12
�μν�

μν

)]
. (4.48)
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This result confirms the values of α0 (4.35), of α1 and α5 (4.42), and also gives new
values

α3 = 60, α10 = 30. (4.49)

The Method of Conformal Variations One universal constant, namely α6, still
remains to be calculated. This gives us an opportunity to introduce another powerful
method. Namely, we shall use transformations of background fields under which any
Laplacian L transforms homogeneously, L→ Lσ = e−2σL, where σ is a smooth
function on M . The transformation law for the metric is just the standard local Weyl
transformation,

gμν → e−2σ gμν. (4.50)

Transformations (4.50) are called conformal transformations and are related to inter-
esting features of quantum theory on curved manifolds, see Sect. 8.5. To the linear
order in σ we have: δgμν =−2σgμν and δgμν =+2σgμν . The rules

δ�ρμν = δρμσ;ν + δρν σ;μ − gμνσ ;ρ,
δRλμνκ = 2Rλμνκσ + gλκσ;νμ − gμκσ;νλ − gνλσ;κμ + gμνσ;κλ, (4.51)

δR =−2Rσ − 2(n− 1)σ μ

;μ
follow from (4.50) and explicit definitions (1.4), (1.10) and (1.16). We remind, that
the semicolon denotes covariant derivative, see (1.14). Since we requested that L as
a whole transforms homogeneously, the matrix valued functions aμ and b (see (3.1))
must also transform homogeneously, δaμ = −2aμσ , δb = −2bσ . By using (3.3),
we find

δωμ = 1

2
(2 − n)σ;μ,

δ�μν = 0, (4.52)

δE =−2Eσ + 1

2
(n− 2)σ μ

;μ .

It is important to keep in mind that transformations (4.52) are not the Weyl trans-
formations, in general. Note, that generic operators of the Laplace type need not
transform homogeneously under the Weyl transformations.

Let us now study how the heat kernel transforms under the conformal variations
that we have defined. To have an explicit small parameter we write σ(x)= εf (x).
Then

d

dε

∣∣∣∣
ε=0

Tr
(
e−tLεf

) = Tr
(
2f tLe−tL

) =−2t
d

dt
K(f,L; t). (4.53)

By expanding (4.53) in asymptotic power series in t we note that

d

dε

∣∣∣∣
ε=0
ak(1,Lεf )= (n− k)ak(f,L). (4.54)
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This is a powerful relation which we shall use in Sect. 5.7. With its help one can
prove the following conformal relation (see Exercise 4.4):

d

dε

∣∣∣∣
ε=0
an−2(e

−2εf F,Lεf )= 0, (4.55)

where F is a matrix-valued function. We apply (4.55) to n= 6 and collect all terms
containing Ff μ ν

;μ ν . Obviously, such terms can only come from E
μ

;μ and R μ

;μ in
(4.32). The coefficients can be easily found from (4.51) and (4.52) and one con-
cludes that α6 = 12.

This was the last universal constant which had to be determined. Now one can
summarize our results for the first heat coefficients a0, a2 and a4 on a compact
manifold without boundaries

a0(f,L)= (4π)−n/2
∫

M
dnx

√
g tr(f ), (4.56)

a2(f,L)= (4π)−n/2 1

6

∫
M
dnx

√
g tr

(
f (6E +R)), (4.57)

a4(f,L)= (4π)−n/2 1

360

∫
M
dnx

√
g tr

(
f

(
60E μ

;μ + 60ER+ 180E2

+ 12R μ

;μ + 5R2 − 2RμνR
μν + 2RμνρσR

μνρσ + 30�μν�
μν

))
. (4.58)

As we shall see in Sect. 7.5 these results are of crucial importance for quantum field
theories in an external background field in 4 space-time dimensions.

Examples for Various Spins First, let us consider the scalar Laplacian �(0) =
−DμDμ + ξR acting on charged scalar fields Dμ = ∇μ + ieAμ, with Aμ being
an Abelian gauge field with the field strength Fμν =∇μAν −∇νAμ. This operator
takes the canonical form (3.2) with ωμ = ieAμ, �μν = ieFμν and E = −ξR. Let
us put the smearing function f = 1. Then

a2(�
(0))= (4π)−n/2 1

6

∫
M
dnx

√
g(1 − 6ξ)R, (4.59)

a4(�
(0))= (4π)−n/2 1

360

∫
M
dnx

√
g
(
(180ξ2 − 60ξ + 5)R2

− 2RμνR
μν + 2RμνρσR

μνρσ − 30e2FμνF
μν

)
. (4.60)

The next example is the vector Laplacian �(1) defined in (3.5). In this case the
bundle indices are the vector indices, E ν

μ = −R νμ , and the field strength �μν is
defined through the commutator of Riemannian covariant derivatives

[∇μ,∇ν]vρ = (�μν) σρ vσ
yielding

(�μν)
σ
ρ =−Rσρμν.

Now we are ready to calculate the traces
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tr(E)=−R, trER =R2,

trE2 =RμνRμν, tr�μν�
μν =−RμνρσRμνρσ .

All terms in (4.57) and (4.58) which depend on the Riemann curvature only are unit
matrices in the bundle indices, so that the corresponding traces give a multiplier of
n. Finally, we have

a2(�
(1))= (4π)−n/2 n− 6

6

∫
M
dnx

√
gR, (4.61)

a4(�
(1))= (4π)−n/2 1

360

∫
M
dnx

√
g
(
(5n− 60)R2

+ (180 − 2n)RμνR
μν + (2n− 30)RμνρσR

μνρσ
)
. (4.62)

The last example is the spin 1/2 Laplacian �(1/2) = /D
2
(B) where /D(B) =

iγ μ(∇[s]
μ + gBμ) with a non-Abelian gauge field Bμ taken in an N -dimensional

unitary representation of the Lie algebra corresponding to the gauge group (one
can take, e.g., the fundamental representation of su(N)). The corresponding field
strength Fμν = ∂μBν − ∂νBμ + g[Bμ,Bν] is also a matrix in the same representa-
tion. In this case the bundle indices are both gauge and spinor indices. The covariant
derivative ∇μ is exactly Dμ(B). After some algebra one gets

E = g
4
[γ μ, γ ν]Fμν − 1

4
R,

�μν = 1

4
γ aγ bRabμν + gFμν.

Let us calculate traces of the invariants which appear in (4.57) and (4.58). Let r =
2 n/2" be the number of components of a Dirac spinor in n dimensions, and let t̃r be
a trace over the gauge indices. Then

trR =NrR, tr 6E =−(3/2)NrR,
tr 60ER =−15NrR2,

tr 180E2 = 45

4
NrR2 − 90rg2t̃r(FμνF

μν),

tr 30�μν�
μν =−15

4
NrRμνρσR

μνρσ + 30rg2t̃r(FμνF
μν).

By collecting everything together, one obtains

a2(�
(1/2))=−(4π)−n/2Nr

12

∫
M
dnx

√
gR, (4.63)

a4(�
(1/2))= (4π)−n/2 r

360

∫
M
dnx

√
g

(
N

(
5

4
R2 − 2RμνR

μν

− 7

4
RμνρσR

μνρσ

)
− 60g2t̃r(FμνF

μν)

)
. (4.64)
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4.5 Base Manifolds with Boundaries

Simple Examples Let us take the standard scalar Laplacian on the interval
I = [0, l] with Dirichlet or Neumann boundary conditions at the endpoints. The
spectrum is given by (3.27) and (3.28). The corresponding heat traces can be easily
evaluated by reducing them to (4.13). We obtain

K(�I ,Dt)=
∑
k>0

exp

(
−t k

2π2

l2

)
= 1

2

(
l√
πt

− 1

)
+O(e−1/t ), (4.65)

K(�I ,N t)=
∑
k≥0

exp

(
−t k

2π2

l2

)
= 1

2

(
l√
πt

+ 1

)
+O(e−1/t ). (4.66)

We see, that these asymptotic expansions have the form (4.9), but in contrast to the
case without boundaries also a coefficient a1 with an odd index appears.

On some manifolds one can derive an explicit expression for the heat kernel by
the method of images. Consider a half-space M = R

n−1 × R+. Then the kernel

KD,N(x, y|t)= (4πt)−n/2
[

exp

(
− (x − y)

2

4t

)
∓ exp

(
− (x − y

∗)2

4t

)]
, (4.67)

where y∗ = (y1, . . . , yn−1,−yn), satisfies the heat equation for both x, y inside
M and Dirichlet (respectively, Neumann) boundary conditions if x or y is on the
boundary. For curved boundaries, if both x and y are near the boundary the heat
kernel may be approximated by a combination of two terms, one depending on
the length of the geodesic going directly from x to y, and another one—of the
geodesic reflected at the boundary. Therefore, one can in principle write down an
ansatz similar to (4.18) and apply the DeWitt recursion procedure [185]. However,
for practical use this method appears to be too complicated.

Structure of the Heat Kernel Coefficients The method of Gilkey works per-
fectly well also on manifolds with boundaries. The only problem is that the number
of independent invariants increases, and expressions for the heat kernel coefficients
grow longer. Here we illustrate the method with the examples of Dirichlet

ϕ|∂M = 0 (4.68)

and Robin (or modified Neumann)

(∇n + S )ϕ|∂M = 0 (4.69)

boundary conditions (see (3.43) and (3.44) where the notations are explained). First
of all, we have to discuss the general structure of heat kernel coefficients. These
coefficients are local. This means they contain bulk and boundary contributions.
The bulk parts “do not see the boundary”, i.e., if the smearing function vanishes in a
vicinity of the boundary, the heat kernel coefficients look precisely as in the previous
section. The boundary contributions are constructed from bulk and specific bound-
ary invariants which were described in Sect. 1.8. Roughly speaking, in addition to
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former invariants one can use normal derivatives and the extrinsic curvature Kij .
The arguments based on canonical mass dimensions of the fields still work, but one
has to define dimensions of the new invariants. For example, for the extrinsic curva-
ture we have �Kij � = 1 because K contains one derivative of the metric. For Robin
boundary conditions �S � = 1 because S appears in the condition (4.69) in a linear
combination with a derivative. Since we have new invariants of odd dimension, the
coefficients a2k+1 need not vanish. Therefore, we can write for Dirichlet boundary
conditions

a0(f,L)= (4π)−n/2
∫

M
dnx

√
g tr(f ), (4.70)

a1(f,L)= (4π)−(n−1)/2
∫
∂M
dn−1x

√
h trβD1 (f ), (4.71)

a2(f,L)= (4π)−n/2 1

6

[∫
M
dnx

√
g tr

(
f (6E +R))

+
∫
∂M
dn−1x

√
h tr

(
βD2 fK

j
j + βD3 f;n

)]
(4.72)

and for Robin (Neumann) boundary conditions

a0(f,L)= (4π)−n/2
∫

M
dnx

√
g tr(f ), (4.73)

a1(f,L)= (4π)−(n−1)/2
∫
∂M
dn−1x

√
h trβN1 (f ), (4.74)

a2(f,L)= (4π)−n/2 1

6

[∫
M
dnx

√
g tr

(
f (6E +R))

+
∫
∂M
dn−1x

√
h tr

(
βN2 fK

j
j + βN3 f;n + βN4 fS

)]
. (4.75)

As before, βD,Nj are undetermined constants.

Products of Base Manifolds We may use the product formula (4.33) on mani-
folds with boundary (though it now contains δ-function like contributions on both
sides). Let us choose M1 being S1. The boundary has the product structure as well,
∂M = S1 × ∂M2. One can also choose the boundary conditions consistent with the
product structure: it is enough to require that S in (4.69) does not depend on the
coordinate x1 of S1. Then formula (4.34) is true, and it tells us that the constants
β
D,N
j do not depend on n. (This property, however, does not hold for boundary con-

ditions which are not consistent with the product structure. The example is related
to non-local Atiyah-Patodi-Singer boundary conditions [14–16]. The heat kernel
coefficients in this case depend on n in a rather complicated way.)

To define βD,N1 , let us consider a Laplacian on the trivial base manifold M =
I = [0, l]. The boundary consists of two points, and Eqs. (4.71) and (4.74) yield

a1(�I ,D)= 2βD1 , a1(�I ,N )= 2βN1 .
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We compare these expression with (4.65) and (4.66) to obtain

βN1 =−βD1 = 1

4
. (4.76)

Isospectral Operators Let us take another one-dimensional example which pro-
vides the value of βN4 . This example appears to be more complicated but it is rather
instructive. As above, the base manifold is the interval [0, l]. Let us introduce first
order operators

D± = ∂x ± V (x), (4.77)

where V (x) is a smooth function of the coordinate, and define with their help two
Laplacians

L1 =−D+D−, L2 =−D−D+. (4.78)

As a consequence, the operators satisfy the so-called ‘intertwining’ relations,
D−L1 = L2D−, D+L2 = L1D+. Let ϕ(1)λ be an eigenfunction of L1, L1ϕ

(1)
λ =

λϕ
(1)
λ for λ �= 0. Then

ϕ
(2)
λ =D−ϕ(1)λ (4.79)

is an eigenfunction of L2 corresponding to the same eigenvalue λ. Indeed, L2ϕ
(2)
λ =

−D−D+D−ϕ(2)λ = D−λϕ(1)λ = λϕ(2)λ . Acting with D+ on ϕ(2)λ gives ϕ(1)λ up to a
normalization,

ϕ
(1)
λ ∝D+ϕ(2)λ . (4.80)

We conclude, that the spectra of L1 and L2 can be identified up to zero modes of
D± (i.e. L1 and L2, are isospectral up to zero modes).

We use the boundary conditions which are consistent with the intertwining rela-
tions and suppose that ϕ(2)λ satisfies Dirichlet boundary conditions,

ϕ
(2)
λ |∂M = 0 (4.81)

for all λ. Then Eq. (4.79) yields Robin boundary conditions for ϕ(1)λ ,

(∂x − V )ϕ(1)λ |∂M = 0. (4.82)

The boundary conditions (4.81) and (4.82) allow us to integrate by parts without
introducing boundary terms in inner product (3.13). If ϕ and ϕ′ satisfy (4.82), one
can easily check that (ϕ′,L1ϕ) = (D−ϕ′,D−ϕ). A similar relation holds for L2.
Consequently, L1 and L2 are symmetric non-negative operators whose zero modes
coincide with zero modes of D− and D+, respectively.

The zero modes of D± are:

ϕ±0 = c± exp

(
∓

∫ x

0
V (y)dy

)
, (4.83)
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where c is a constant. The Robin condition (4.82) does not restrict c−, while the
Dirichlet condition yields c+ = 0. Therefore, there are no zero modes in the Dirich-
let sector (for L2), but there is always one normalized zero mode in the Robin sector
(for L1). We arrive at a remarkable relation between the heat kernels

K(L1; t)− 1 =K(L2; t), (4.84)

where −1 on the left hand side is a contribution from the zero mode of L2. Besides
this zero mode, the spectra coincide, and so do the heat kernels. By expanding (4.84)
in an asymptotic series in t , we obtain

a1(L1)− 1 = a1(L2), (4.85)

ak(L1)= ak(L2) for k �= 1. (4.86)

Let us write our operators more explicitly, L1,2 = −(∂2
x ∓ (∂xV )− V 2). All as-

sociated geometric invariants are trivial, ωμ = 0, and

E1,2 =∓(∂xV )− V 2. (4.87)

For the operator L1 we should also define S . It reads

S (x = 0)=−V (0), S (x = l)= V (l). (4.88)

Let us remind, that ∂n is a derivative with respect to an inward pointing unit vector,
to that ∂n|x=0 = ∂x , ∂n|x=l = −∂x . Now we are ready to study the consequences
of (4.85) and (4.86). For k = 0 Eq. (4.86) is satisfied trivially. The condition (4.85)
confirms the values (4.76) of βN,D1 . For k = 2 Eq. (4.86) yields

0 = (4π)−1/2 1

6
(V (l)− V (0))(12 − βN4 )

or

βN4 = 12. (4.89)

To get this equality one had to integrate in the bulk parts in (4.72) and (4.75) the
term ∂xV in E1 and E2.

Using Conformal Maps All other constants will be defined by using conformal
variations. The relations (4.51) and (4.52) derived in the previous section remain
true. One has to define conformal properties of specific “boundary” variables. Con-
formal transformations preserve angles. Therefore, the normal vector to the bound-
ary will remain normal, but its length will change. To compensate this change under
infinitesimal conformal transformations of the metric (4.50) we require δnμ = σnμ
and δnμ =−σnμ. The extrinsic curvature transforms as

δK
j
j =−σKjj − (n− 1)σ;n (4.90)

(see Exercise 4.6).
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The Dirichlet boundary condition (4.68) is obviously conformally invariant. Con-
sider the Robin boundary conditions (4.69). From Eq. (4.52) we find

δ(∇n)= δ(nμ∇μ)=−σ∇n + 1

2
(2 − n)σ;n.

To achieve conformal invariance of the boundary value problem we have to define
conformal transformations of S in such way that the inhomogeneous term in the
equation above is canceled,

δS =−σS − 1

2
(2 − n)σ;n. (4.91)

Then δ(∇n+S )=−σ(∇n+S ), and the functions which satisfied the Robin con-
dition before the conformal transformation, will also satisfy the conformally trans-
formed Robin condition.

Consider the scalar Laplacian L=� on a two-dimensional disc of a unit radius
(n= 2). Put f = 1. The extrinsic curvature of the boundary is given by (1.92),

K
j
j = 1. (4.92)

For Dirichlet boundary conditions Eq. (4.72) gives

a2(�disc,D)= 1

12
βD2 , (4.93)

where the only contribution comes from the extrinsic curvature. For Robin boundary
conditions with S = 0 we have similarly from (4.72)

a2(�disc,N )= 1

12
βN2 . (4.94)

We can also consider the same operator on a two-dimensional hemisphere and use
the fact that the hemisphere is conformally equivalent to the disc. To proceed, the
operators for these base manifolds will be denoted as �disc,D(N) and �h.s.D(N). The
conditions E = 0 and S = 0 are conformally invariant (see (4.52) and (4.91), re-
spectively). According to (4.54) the coefficient a2 is conformally invariant in n= 2,

a2(�disc,D(N))= a2(�h.s.,D(N)).

The extrinsic curvature of the boundary of the hemisphere vanishes (see Exer-
cise 1.13). Therefore, the only contribution to the heat kernel coefficient a2 comes
from the scalar curvature R = 2,

a2(�h.s.,D)= a2(�h.s.,N )= 1

6
. (4.95)

We conclude that

βD2 = βN2 = 2. (4.96)

Let us now return to the generic case. By collecting all boundary terms with f;n
in the conformal variations (4.54) in (4.72) and (4.75) (by taking into account total
derivatives in the bulk) we obtain
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(−3n+ 6)f;n = (n− 2)βD3 f;n, (4.97)

(3n− 6)f;n = (n− 2)βN3 f;n, (4.98)

where we have used (4.96) and (4.89). These relations yield

βD3 =−3, βN3 = 3. (4.99)

This completes the calculations of three leading heat kernel coefficients for Dirichlet
and generalized Neumann (Robin) boundary conditions.

There is another more economic way to obtain the results above, see Exercise 4.7.

4.6 Base Manifolds with Codimension One Defects

There are numerous physical applications when background spaces are smooth ev-
erywhere except some internal hypersurfaces�. Examples discussed in Sect. 1.9 are
related to various kinds of defects of the geometry. Although curvature at the defects
cannot be defined locally, integrals of curvature invariants still may be meaningful.

The heat kernel coefficients in the asymptotic expansion (4.9) are integrals of
geometrical characteristics of the base manifolds. Therefore, the asymptotics may
be well-defined in the presence of the defects. A natural question is the form of the
heat coefficients in this case.

We begin with co-dimension one defects. A singular manifold of this type is
constructed from two smooth manifolds M+ and M− glued together along their
common boundary �. The fields on M+ and M− should also be glued together in
some way. Let us define on � a set of data, ϕ±, ϕ±;n, which represent, respectively,
the limiting values of a field ϕ and its normal derivative when one approaches �
either from inside M+ or M−. On M+ and M− the field is assumed to be smooth
outside �. If we are interested in spectral problems for a Laplace type operator, the
following suitable matching conditions between the data on� have to be introduced

ϕ+;n = S++ϕ+ + S+−ϕ−,
ϕ−;n = S−+ϕ+ + S−−ϕ−.

(4.100)

Here S±∓ are maps between the restrictions of the fiber bundles E± over M± to �.
Note that we do not imply any relations between E±. Even dimensions of E± may
not coincide (the case of completely different fields interacting across the brane �).
To make sure that the number of conditions is correct, let us put S+− = S−+ = 0.
Then (4.100) is a pair of Robin boundary conditions on M+ and M− which indeed
specify a well-defined spectral problem on each of the manifolds.

There exist much more invariants associated with the spectral problems of this
type than in the case of Dirichlet or Neumann boundary value problems. Since most
of geometric quantities may jump on �, we have the limiting values of E from two
sides of � instead of just one value of E on the boundary, two extrinsic curvatures,
etc. However, the calculations of the heat trace asymptotics are not much harder
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than the corresponding calculations for local boundary conditions. To illustrate this
point, let us consider a particular case of a delta-function potential concentrated on
the brane. Take the operator

L=−(gμν∇μ∇ν +E(x)+ V (x)δ�), (4.101)

where, for simplicity, we assume that E(x) and the connection in ∇ are smooth
across �, but the normal derivative of the metric may jump. The δ-function is de-
fined such that for any smooth function f on M

∫
M
f (x)δ�(x)

√
detgμν d

nx =
∫
�

f (x)
√

detgik d
n−1x. (4.102)

The operator (4.101) does not define yet any well-posed spectral problem. Let us
discuss what kind of matching conditions should be imposed. Because a product of
δ� with a function which has a discontinuity at � is meaningless we have to request

ϕ+ = ϕ−. (4.103)

To determine the second matching condition we use the Riemann normal coordi-
nates (1.88) near �, choose a small part σ ⊂�, and integrate the eigenvalue equa-
tion Lϕ = λϕ over a cylinder σ × [−ε, ε]. In the limit ε→ 0 only the contributions
from the first and the third terms in (4.101) survive, and we arrive at the condition

∫
σ

(
(ϕ+;n + ϕ−;n)+ V ϕ

)√
detgij d

n−1x = 0. (4.104)

For an arbitrary σ this equation implies that

(ϕ+;n + ϕ−;n)+ V ϕ = 0. (4.105)

We come to the following formulation of the spectral problem for operator (4.101)
on a brane: it is a standard spectral problem inside M+ and M− for the smooth part
of L (without the delta-term) supplemented by two matching conditions (4.103) and
(4.105).

Let us now consider the heat trace asymptotics. Obviously, due to the locality
of the heat kernel coefficients, they may be expressed through the integrals over
M± and � of the invariants constructed from usual bulk geometric quantities (E,
Riemann tensor, field strength, etc.) and the new geometric quantities on the brane,
namely, K±

ij and V . Each integrand has a definite mass dimension, as described
in Sect. 4.5, and �V � = 1. There are several obvious statements which reduce the
number of relevant invariants considerably:

1. In the smooth limit, i.e., when K+
ij + K−

ij = 0 and V = 0 the brane contribu-

tion should vanish. This rules out the only possible invariant
∫
�
dn−1x

√
h tr(f )

which may appear in a1. Neither a0 nor a1 have brane contributions.
2. The heat kernel coefficients must be invariant under exchange M+ and M−.

This rules out the term (K+i
i −K−i

i ) which could have appeared in a2.
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By assuming that the smearing function f is smooth across �, we arrive at the
following expression for the heat kernel coefficient a2:

a2(f,L)= (4π)−n/2 1

6

[∫
M+∪M−

dnx
√
g tr

(
f (6E +R))

+
∫
�

dn−1x
√
h tr

(
β�2 f (K

+j
j +K−j

j )+ β�4 fV
)]
. (4.106)

One must determine the constants β�2 and β�4 . The numeration of the constants
will become clear in a moment. Consider the case when M+ and M− are two
identical manifolds, and the restrictions of L on these manifolds coincide. In other
words, we have two mirror images of a manifold with boundary �. The operator
L commutes with the reflections M+ ↔ M−. Consequently, all eigenfunctions can
be divided into two sets, symmetric and antisymmetric ones. It is easy to show that
antisymmetric functions satisfy Dirichlet boundary conditions on�, while symmet-
ric functions satisfy Robin boundary conditions (3.42), (3.44) with S = 1

2V . These
properties follow from the matching conditions above, Eq. (4.105), see Exercise 4.8.
If we define the heat kernel coefficients ak(f,L)D,R for the restriction of L on M
with the boundary conditions that we have just defined, the following statement is
obvious

ak(f,L)= ak(f,L)N + ak(f,L)D. (4.107)

Taking k = 2 in this formula, and using (4.72) and (4.75), we obtain:

β�4 = 6, β�2 = 2. (4.108)

It is interesting to note, that simply substituting E = δ�V in the bulk integral in
(4.106) reproduces correctly the β�4 coefficient. This property holds for all linear in
V terms having a “smooth” origin, but is, of course, lost for more singular terms,
such as V 2, for example.

To calculate higher heat kernel coefficients in the presence of codimension 1
defects one can use all other techniques introduced in Sects. 4.2 and 4.5.

4.7 Base Manifolds with Conical Singularities

Heat Kernel on a Cone Consider now the heat kernel asymptotics on manifolds
with conical singularities which are co-dimension 2 defects. The starting point is
the heat kernel of the scalar Laplace operator L=−∂2

μ on a two-dimensional cone
Cβ with metric (1.96). The heat kernel on Cβ allows a simple representation in
terms of the heat kernel on a two-plane R

2,

K
(
x(τ), x′(0)|t) = 1

4πt
e−(x(τ)−x′(0))2/4t , (4.109)

see (4.17). In polar coordinates (ρ cos τ,ρ sin τ)

(x(τ )− x′(0))2 ≡ ρ2 + (ρ′)2 − 2ρρ′ cos τ. (4.110)
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Fig. 4.1 The integration
contour in Eq. (4.113)

Without any loss of generality and on the base of the rotation symmetry we put the
angular coordinate of one of the points equal to zero.

To find an appropriate representation for the kernel on Cβ we first consider
(4.109) as a function of τ and use the Cauchy theorem to write

K
(
x(τ), x′(0)|t) = 1

2πi

∮
1

z− τ K
(
x(z), x′(0)|t)dz, (4.111)

where the contour in the complex plane goes in the positive direction along a circle
with the center at the point z = τ . The integration contour can be transformed into
two lines C parallel to the real axis. The lines can be further replaced by a sequence
of congruent contours A=A0

⋃
n An, n=±1,±2, . . . , see Fig. 4.1. Each An con-

sists of two parts: in the upper plane it goes from (2n + 1)π − ε + i∞ to (2n −
1)π + ε+ i∞, in the lower plane from (2n−1)π + ε− i∞ to (2n+1)π − ε− i∞.
The contours An are chosen so that to have a periodic structure and to ensure con-
vergence of the integrals. The latter property can be checked by using (4.109) and
(4.110). Let us introduce a kernel

K∞
(
x(τ), x′(0)|t) ≡ 1

2πi

∫
A0

1

z− τ K
(
x(z), x′(0)|t)dz (4.112)

and rewrite (4.111) after changing the variables in the following simple form:

K(x(τ), x′(0)|t)= 1

2πi

∞∑
n=−∞

∫
An

1

z− τ K
(
x(z), x′(0)|t)dz

=
∞∑

n=−∞
K∞

(
x(τ + 2πn), x′(0)|t). (4.113)

The last line is ‘the sum over images’. As a result of the summation, the func-
tion (4.112) which is not periodic in τ is converted to a periodic function (4.109).
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One can conclude that K∞(x(τ ), x′(0)|t) is a heat kernel on an infinitely-sheeted
Riemannian surface with the branch point at ρ = 0 in coordinates (ρ, τ ), where
0< ρ <∞, −∞< τ <∞.

The heat kernel on Cβ (denoted as Kβ ) can be obtained from K∞ by an analo-
gous procedure, i.e. by a summation over images with the period β

Kβ
(
x(τ), x′(0)|t) =

∞∑
n=−∞

K∞
(
x(τ + βn), x′(0)|t). (4.114)

By taking into account (4.112) and the known summation formula (4.128), see Ex-
ercise 4.9, one arrives at a simple representation

Kβ
(
x(τ), x′(0)|t) = 1

2iβ

∫
A0

cot
π

β
(z− τ)K(

x(z), x′(0)|t)dz, (4.115)

known also as the Sommerfeld formula. All results concerning heat kernel expan-
sions on manifolds with conical singularities actually follow from (4.115). The for-
mula can be also derived in a traditional manner by using explicit form of eigen-
functions of the Laplace operator on a cone.

To proceed, we transform A0 in (4.115) to a small circle around the point z= 0
and a contour A′ which consists of two vertical lines, (−π − i∞,−π + i∞) and
(π + i∞,π − i∞), so that

Kβ
(
x(τ), x′(0)|t) =K(

x(τ), x′(0)|t)

+ 1

2iβ

∫
A′

cot

(
π

β
z

)
K

(
x(z), x′(0)|t)dz. (4.116)

The presence of a conical singularity influences the last term. Consider the smeared
trace Kβ(f,L; t) (see (4.9)) where f is a test function with a finite integral on Cβ .
It is sufficient to assume that f does not depend on τ . Then

Kβ(f,L; t)= t−1a0(f,L)

+ 1

2i

∫
A′

cot

(
π

β
z

)∫ ∞

0

exp(−ρ2

t
sin2 z

2 )

4πt
f (ρ)ρ dρ dz, (4.117)

a0(f,L)= 1

4π

∫
Cβ

d2x
√
g f (x). (4.118)

At small t the main contribution to the last integral in the r.h.s. of (4.117) comes
from the integration near ρ = 0. In this region one can replace f (ρ) by its Taylor
series and perform the integration. Up to exponentially small terms this yields

Kβ(f,L; t)∼ t−1a0(f,L)+ a2(f,L)+ · · · , (4.119)

a2(f,L)= 1

12γ

(
γ 2 − 1

)
f (0), (4.120)
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where γ = 2π
β

. To perform integration in the complex plane we used formula (4.131)
from Exercise 4.11. As follows from (4.120), the conical singularity yields a delta-
function like contribution. It is interesting to note that for a small angle deficit
|γ − 1| � 1 this result can be written as

a2(f,L)� 1

12π
(2π − β)f (0)= 1

24π

∫
d2x

√
gRsing(x)f (x), (4.121)

where Rsing(x) is a distributional curvature of the conical space, see Eq. (1.100). In
this limit the heat coefficient can be obtained from formula (4.28) for smooth mani-
folds if one formally replaces the curvature scalar by the distributional curvature.

The case of general manifolds with conical singularities has been discussed ear-
lier in Sect. 1.9. Such manifolds possess internal co-dimension two hypersurfaces
� such that in the vicinity of � a manifold has the structure Cβ ×�. We assume
that there is a global Killing vector field ∂τ on the manifold such that conical sin-
gularities are fixed points of ∂τ . A family of such manifolds which have identical
local geometry outside � but different periodicities in τ is denoted by {Mβ}. The
heat trace asymptotics on Mβ have the same form as on the base manifolds with
co-dimension 1 defects. The conical singularities produce extra terms in the heat
coefficients in a form of local invariant functionals on �. The structure of these
terms however is not universal and depends on the type of the operator. This follows
already from the analysis of the lowest coefficients such as a2(f,L). Indeed, for
operators L=�(0), �(1/2) and �(1) (see Eqs. (3.8), (3.5)) on a family of manifolds
Mβ without boundaries

a2(f,L)= (4π)−n/2 1

6

∫
Mβ−�

dnx
√
g tr

(
f (6E +R))

+ π

3γ

∫
�

dn−2y
√
hf (y)

[
σ1(γ

2 − 1)+ σ2(γ − 1)
]
, (4.122)

where σ1 = tr I for operators �(0) and �(1), σ1 = − 1
2 tr I for operator �(1/2), the

constant σ2 = −12 for �(1) and vanishes for the other operators. Calculations for
the spinor Laplacian can be found in Exercise 4.12. Higher coefficients have a sim-
ilar structure. For example, contribution from the conical singularities to coeffi-
cient a4(f,L) have a form of integrals over � of the invariants Rii , Rijij , and R
multiplied by polynomials (γ p − 1) where p = 1,2,4. The invariants are defined
in (1.101).

4.8 Literature Remarks

The heat equation (4.1), (4.2) was originally used to describe the heat propagation in
various media. The solution (4.3) may represent the evolution of temperature u(x; t)
at a given point x over time t . The form of the operator L in this case is determined
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by the thermal conductivity of the media. The heat equation has many other appli-
cations ranging from study of the Brownian motion to financial mathematics.

Chapter 4 does not pretend to a complete exposition of the invariance properties
and mathematical applications of the heat equation. Its focus is on the results hav-
ing direct applications to quantum field theory. General sources on the heat kernel
expansions are [34, 133, 134, 169]. The style of Ref. [243] is closest to that of this
book, though [243] contains more material and is somewhat less pedagogical. There
are several commonly used names for the heat coefficients ap(f,L) in (4.9): the
Hadamard-Minakshisundaram-DeWitt-Seeley coefficients, the Seeley-Gilkey coef-
ficients, or the Fock-Schwinger-DeWitt coefficients.

We have not discussed general asymptotic expansions (4.9) for the trace
K(Q,L; t) where Q is a partial differential operator. This material can be found
in the book by Gilkey [134].

An extensive historical survey of the heat equation and invariance properties can
be found in the sources listed above. Here we would like to mention some pioneering
papers on spectral functions and their applications in quantum field theory [111, 189,
225]. For an overview of the DeWitt approach to the heat kernel one can consult
[26, 37, 77]. Details on the applications of the Gilkey method to local boundary
conditions can be found in [52]. Recent advances in the worldline formalism are
reported in [29].

In our treatment of singular surfaces (branes) we follow [135, 136]. Pioneering
papers on a scattering theory on a wedge and a cone belong to Sommerfeld [234].
An analysis of Laplacians on a cone can be found in more recent mathematical
works [43, 63, 83, 167]. The quantum theory near cosmic strings and point-like
conical singularities was first considered by Dowker [87, 88], as well as by Deser
and Jackiw [75]. For a general form of the heat kernel asymptotic expansions on
spaces with conical singularities see [89, 90, 120, 121, 124] and a review in [113].

There are several important topics which have not been mentioned in this Chap-
ter. Result (4.17) for a plane implies that the heat kernels can be introduced for
Laplace operators on non-compact manifolds. Well-studied examples are operators
on hyperbolic type manifolds discussed in detail in [55] along with a number of
physical applications. Homogeneous spaces in general are the case which allows
simplified or even exact expressions for the corresponding heat kernels. We do not
dwell on this interesting topic because it requires elements of harmonic analysis on
homogeneous spaces. This would take us too far from the main subject. An inter-
ested reader can find these results in a review article [57]. One of the separate and
rather broad subjects is approximate methods of calculation of the heat kernels. The
methods depend on the properties of the manifolds and on a physical problem where
the heat kernel is applied. Some of these approximations are suggested in [17, 26–
28]. Finally, we should mention results aimed to extend the heat kernel technique to
theories with broken Lorentz symmetry and non-local operators, see e.g. [198].

Also we have not discussed operators and the heat coefficients associated with
higher spin theories. Just to show that properties of higher spin theories may be quite
unusual we mention an analysis of massive and massless spin 2 and 3/2 fields on
anti-de Sitter backgrounds [82, 96, 97]. The a4 coefficients for the corresponding
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operators can be computed in the massive and massless cases and it can be shown
that the two sets of coefficients do not coincide in the massless limit.

Recommended Exercises are 4.1, 4.2, and 4.12.

4.9 Exercises

Exercise 4.1 Prove that the heat kernel of the operator L = −∂2
μ on the plane R

n

has the form

K(x,y|t)= 1

(4πt)n/2
exp

(
− (x − y)

2

4t

)
,

see Eq. (4.17).

Exercise 4.2 By explicit summation prove formula (4.16) for heat kernel of the
Laplace operator on 3-sphere S3.

Exercise 4.3 Calculate the volume of an n-dimensional unit sphere,

volSn = 2π(n+1)/2

�(n+1
2 )

. (4.123)

Exercise 4.4 Consider a conformal transformation Lεf = e−εf L of a Laplace op-
erator L where f is a smooth function on a base manifold M . Prove conformal
relation (4.55)

d

dε

∣∣∣∣
ε=0
an−2(e

−2εf F,Lεf )= 0,

where F is a matrix-valued function and n is the dimensionality of M .

Exercise 4.5 Let L be an operator of Laplace type and let Q be a matrix valued
function (an endomorphism). Suppose that the base manifold is Riemannian, flat,
and does not have a boundary. The heat trace (4.6) has the expansion

K(Q,L; t)�
∞∑
p=0

t
p−n

2 ap(Q,L). (4.124)

Prove the following expressions for the heat kernel coefficients:

a0(Q,L)= (4π)−n/2
∫

M
dnx tr(Q), (4.125)

a2(Q,L)= (4π)−n/2
∫

M
dnx tr(QE), (4.126)

a4(Q,L)= (4π)−n/2
∫

M
dnx tr

(
Q

(
1

6
E

μ

;μ + 1

2
E2 + 1

12
�μν�

μν

))
. (4.127)
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Exercise 4.6 Consider conformal variation of the metric gμν → e−2σ gμν of a man-
ifold M with a boundary ∂M . Prove formula (4.90) for conformal variations of the
extrinsic curvature of ∂M

δK
j
j =−σKjj − (n− 1)σ;n.

Exercise 4.7 Suggest a method to derive the coefficients βD,N2 which determine
the contribution of the extrinsic curvature to the heat coefficient a2(f,L) on a base
manifold with a boundary. Prove Eq. (4.96) without using the example of a two-
dimensional disc and a hemisphere.

Exercise 4.8 Let M+ = M− be two identical manifolds glued along their common
boundary ∂M± =� to make a manifold M = M+ ∪M− with a codimension one
defect on �. Take some functions fs and fa on M+ and make from them symmet-
ric and antisymmetric functions on M : fs(x+) = fs(x−) and fa(x+) = −fa(x−),
where x+ ∈ M+ and x− ∈ M− are identical points. Show, that fs and fa satisfy the
conditions (4.103) and (4.105) on M , provided that fs and fa on M+ satisfy the
Robin and Dirichlet boundary conditions, respectively.

Exercise 4.9 Prove the following summation formulae

∞∑
k=−∞

1

z+ ka = π
a

cot
πz

a
, z �= 0,±1,±2, . . . , (4.128)

∞∑
k=−∞

eikα

z+ ka = π
a

ei(π−α)z/a

sin πz
a

, z �= 0,±1,±2, . . . , (4.129)

where a is real and α lies in the interval 0< α < 2π .

Exercise 4.10 Consider the heat kernel for the scalar Laplacian on a cone Cβ with
the following periodicity property

Kβ,α
(
x(τ + β), x′(0)|t) = eiαKβ,α(x(τ), x′(0)|t), (4.130)

for 0 < α < 2π . Find a generalization of the Sommerfeld formula (4.115) which
relates Kβ,α with the heat kernel on the plane.

Exercise 4.11 Prove the following formulae

1

iβ

∫
A′
dz cot

π

β
z

1

sin2 z
2

=−2

3
(γ 2 − 1), (4.131)

1

iβ

∫
A′

dz

sin π
β
z

cos z2
sin2 z

2

=−1

3
(γ 2 − 1), (4.132)

where γ = 2π
β

.
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Exercise 4.12 Consider on Cβ the spinor Laplacian �(1/2) = −∇μ∇μ, see
Eq. (3.8). The covariant derivatives ∇μ = ∂μ + wμ can be determined by viel-
beins in the polar coordinates ρ, τ . In the basis γμ = (σ1, σ2), where σk are the
Pauli matrices the Levi-Civita connection has a single non-vanishing component
wτ =− i

2σ3.
Find an analog of the Sommerfeld representation (4.115) which relates the heat

kernel of the spinor Laplacian on Cβ to the heat kernel of the scalar Laplacian on
the plane. Calculate on Cβ the corresponding spinor heat coefficient a2(f,L).



Chapter 5
Spectral Functions

5.1 Where do the Spectral Functions Come From?

For a finite-dimensional linear operator (a matrix) one can define a determinant,
a trace, and traces of powers of the operator. All these objects are independent of
a particular orthonormal basis chosen to represent the operator, and therefore they
contain important invariant information. One can show that notions of a determinant
can be extended to infinite-dimensional operators, and the difficulties with the con-
vergence of series, which naively define determinants and traces, can be resolved.
A systematic approach to the invariants associated with linear operators is based on
the notion of spectral functions. These are functions defined on the spectrum of the
operator which depend additionally on a complex or real parameter. A typical ex-
ample of a spectral function is the heat trace K(L; t) for a Laplace operator L, see
Eq. (4.8).

To illustrate how spectral functions appear in the context of quantum physics
let us return to the computation of the vacuum energy discussed in Sect. 2.5. The
vacuum energy for a real field is formally given by the series, see (2.49),

E = 1

2

∑
i

ωi, (5.1)

over the frequencies ωi of single-particle modes. Formula (5.1) does not make much
sense since ωi grow with i, and the sum in (5.1) is divergent. As has been al-
ready explained, a sum like (5.1) should imply a regularization at large frequencies.
Let us consider a particular method to regularize the series. Basing on our finite-
dimensional experience only, we can rewrite (5.1) formally as

E = 1

2
Tr(H), (5.2)

which is still ill-defined as well. Then by introducing a regularization parameter s
Eq. (5.2) is replaced by

Es = 1

2

∑
i

ω1−s
i = 1

2
Tr(H 1−s). (5.3)
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For a sufficiently large positive s the sum in (5.3) is convergent. One can make
calculations for such values of s and then continue Es analytically to the “physical”
value s = 0. By itself this procedure still does not make the result finite, but it allows
to isolate a divergent part and to remove it eventually by a suitable renormalization
procedure.

We have just demonstrated, how one can define a spectral function Es of the
operator H depending on a spectral parameter s. A natural extension of this con-
struction is the so-called generalized zeta-function of the operator, which will be
considered below in detail.

5.2 The Riemann Zeta-Function

The zeta-function of differential operators was first introduced as a generalization of
the Riemann zeta-function. That is why we consider the Riemann zeta-function first.
This function is defined as a sum over natural numbers rather than over a spectrum
of a differential operator. Nevertheless, the analytical properties of all zeta-functions
are very similar.

Consider the series

ζR(s, a)=
∞∑
n=0

(n+ a)−s , (5.4)

where Re s > 1 and a �= 0,−1,−2, . . . . Function ζR(s, a) is called the generalized
Riemann zeta-function, see [30], or the Hurwitz zeta-function.

The Riemann zeta-function ζ(s) is a particular case of (5.4)

ζR(s)= ζR(s,1)=
∞∑
n=1

n−s . (5.5)

The single-particle energies of the simplest scalar field model on a circle, discussed
in Exercise 2.13, are ωn ∝ n, n= 1,2, . . . and the regularized vacuum energy (5.3)
for this model is expressed in terms of the zeta-function, Es ∝ ζR(s).

In practical calculations it is convenient to use integral representations for the
Hurwitz functions. To find such a representation for ζR(s, a) note that for 	 s > 0,
	a > 0 ∫ ∞

0
dt e−(n+a)t t s−1 = (n+ a)−s�(s), (5.6)

where �(s) is the gamma-function,

�(s)=
∫ ∞

0
dt e−t t s−1. (5.7)

It follows from (5.7) that

ζR(s, a)= 1

�(s)

∫ ∞

0
dt ts−1 e

(1−a)t

et − 1
. (5.8)
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Formula (5.8) can be used to construct an analytical continuation of ζR(s, a) to
the whole complex plane. Furthermore, it can be shown that ζR(s, a) has only one
singular point s = 1 where it has a simple pole. This singularity appears as a result
of a divergence in the integral in (5.8) at the lower limit of integration. By using
(5.8) it is easy to show that near s = 1

ζR(s, a)� 1

s − 1
. (5.9)

To study the analytical structure of zeta-functions we need the Bernoulli polynomi-
als Bn(x), which are defined as coefficients in the series

sexs(es − 1)−1 =
∞∑
n=0

Bn(x)
sn

n! , |s|< 2π. (5.10)

It is instructive to introduce also the Bernoulli numbers Bn

s(es − 1)−1 =
∞∑
n=0

Bn
sn

n! , |s|< 2π. (5.11)

The Bernoulli polynomials are expressed in terms of Bernoulli numbers as

Bn(x)=
n∑
m=0

n!
m!(n−m)!Bmx

n−m, (5.12)

Bn(0)= Bn. (5.13)

One has

B0(x)= 1, B1(x)= x − 1

2
, B2(x)= x2 − x + 1

6
, (5.14)

B3(x)= x3 − 3

2
x2 + 1

2
x, B4(x)= x4 − 2x3 + x2 − 1

30
, . . . (5.15)

Note that

B2n+1 = 0 (5.16)

for n≥ 1. The Bernoulli polynomials can be used to find values of the zeta-function
at negative integer arguments. To this aim let us represent (5.8) as

ζR(s, a)= 1

�(s)

∫ 1

0
dt ts−1 e

(1−a)t

et − 1
+ I1(s, a), (5.17)

where I1(s, a) is determined by the integral over t from 1 to infinity. We can use the
expansion (5.11) in the integral in the first term on the right hand side of (5.17) to
write

ζR(s, a)= 1

�(s)

N∑
n=0

Bn(1 − a)
n!(s + n− 1)

+ I1(s, a)+ I2(s, a), (5.18)
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where N is a natural number such that N − 1>−	 s. The term I2(s, a) is equal to

I2(s, a)= 1

�(s)

∫ 1

0
dt ts−2

[
t
e(1−a)t

et − 1
−

N∑
n=0

Bn(1 − a)s
n

n!

]
. (5.19)

It is easy to see that both I1(s, a), I2(s, a) vanish for s = −k (k < N − 1) because
of the poles of the gamma-function at those points,

�(s)� (−1)k
1

k!(s + k) .
There is however a non-trivial contribution at s = −k which comes from the first
term in (5.18) where the zero of the gamma-function in the denominator is compen-
sated. As a result, we find

ζR(−k, a)= (−1)k
Bk+1(1 − a)
k+ 1

=−Bk+1(a)

k + 1
. (5.20)

Here we have used the property Bn(1 − x)= (−1)nBn(x). With the help of (5.20)
one can also find the values of the Riemann zeta-function at positive integers. The
key formula here is the Hurwitz relation

ζR(s)= 2�(1 − s)
(2π)1−s

sin
πs

2
ζR(1 − s). (5.21)

This yields

ζR(2m)= (−1)m+1(2π)2m
B2m

2(2m)! . (5.22)

Note, that because of (5.16), the Riemann zeta-function has zeros at all negative
integers.

5.3 Zeta-Function of an Operator

One can generalize the notion of the Riemann zeta-function and introduce a zeta-
function (ζ -function) of an operator. Let L be a self-adjoint second order elliptic
differential operator. Suppose that the eigenvalues λ of L are real and positive, i.e.
L is a positive-definite operator. In this case the ζ -function of the operator L is
defined as

ζ(s;L)=
∑
λ

λ−s . (5.23)

In Chap. 3 we argued that on any compact manifold the large eigenvalue asymp-
totics of all second-order elliptic operators look similarly (up to a factor). There-
fore, one can easily estimate the growth λ−s at large eigenvalues and conclude that
series (5.23) converges if 	 s > n/2, where n is the dimensionality of the base man-
ifold M , see Exercise 5.1.
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The ζ -function can be analytically continued in the parameter s from the domain
	 s > n/2 to the entire complex plane. One can show that it is a meromorphic func-
tion of s which has a finite number of poles on the real axis � s = 0. The poles can
be found with the help of asymptotic expansion of the heat kernel (4.9). To this aim
we express the ζ -function in terms of the corresponding heat trace K(L; t)

ζ(s;L)= 1

�(s)

∫ ∞

0
dt ts−1K(L; t). (5.24)

The above formula follows from the integral representation for the �-function (5.7).
At large t the heat trace behaves as K(L; t)∼ e−tλ0 , where λ0 is the lowest eigen-
value of L. Since the definition of the zeta-function is valid for positive operators
only, λ0 > 0, and the integral (5.24) is convergent at the upper limit. The divergences
which may result in poles come from the lower integration limit. We represent

ζ(s;L)= f1(s)+ f2(s), (5.25)

f1(s,L)= 1

�(s)

∫ 1

0
dt ts−1K(t;L). (5.26)

The function f2(s) has no poles. For f1 we can replace K(t;L) by its asymptotic
(4.9) (with the convention ap(L)≡ ap(1,L)). This yields

f1(s)∼ 1

�(s)

∞∑
p=0

ap(L)

s + p−n
2

. (5.27)

This shows, that the function �(s)ζ(s;L) has simple poles at s = n−p
2 with the

residues

Res(�(s)ζ(s;L))
s= n−p

2
= ap(L). (5.28)

Since the product �(s)ζ(s;L) has a simple pole at s = 0, the ζ -function itself is
regular at s = 0. Consequently, the derivative ζ ′(s;L) also is well defined at s = 0.
Another consequence of (5.25), (5.27) is the expression

ζ(−k;L)= (−1)kk!an+2k(L), (5.29)

where k is a natural number.
These results can be extended with corresponding modifications to positive semi-

definite operators, i.e., self-adjoint operators whose eigenvalues are not negative.
The generalized ζ -function of such an operator L is defined as

ζ(s;L)=
∑
λ�=0

λ−s . (5.30)

Let N0 be the number of modes corresponding to vanishing eigenvalue λ= 0 (zero
modes). We define

K̃(L; t)=K(L; t)−N0. (5.31)
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Then

ζ(s;L)= 1

�(s)

∫ ∞

0
dt ts−1K̃(L; t). (5.32)

If ap are the coefficients of the asymptotic expansion of K(L; t), the coefficients
of K̃(L; t) are ãp , where ãp = ap if p �= n and ãn = an − N0. The residues of
�(s)ζ(s,L) are determined by ãp through formula (5.28).

Clearly, a finite number of negative modes is not a problem since the trace over
the negative subspace is finite-dimensional. Also, the eigenvalues may be complex
in a “controllable way”. In this case, one should define the phase of λ−s , i.e. to
place a branch cut for lnλ in the complex plane. To do this properly one usually
requires that the leading symbol of L has no spectrum in conical neighborhood of a
ray coming from the origin.

If L is a positive operator andQ is some other operator then in addition to ζ(s;L)
one can define the function

ζ(s;L,Q)= Tr(QL−s). (5.33)

Our final remark concerns extension of these notions to arbitrary self-adjoint
operators which have finite or infinite (like in case of the Dirac operator) number
of negative eigenvalues. For such an operator L one can introduce the so-called
eta-function

η(s;L)=
∑
λ>0

λ−s −
∑
λ<0

|λ|−s . (5.34)

If there are no vanishing eigenvalues one can write (5.34) as

η(s;L)= Tr(L(L2)−
1
2 (s+1)). (5.35)

The latter definition enables one to relate the η-function with the ζ -function (5.33)

η(s;L)= ζ
(

1

2
(s + 1),L,L2

)
. (5.36)

The eta-function characterizes the spectral asymmetry of operator L.

5.4 Spectral Density and Its Asymptotic Properties

In this section we introduce other types of spectral functions. Let L be a second
order self-adjoint positive-definite elliptic differential operator acting on the sections
of a bundle over a compact base manifold M . One can define the spectral density
of L

ρ(λ)=
∞∑
λ0

δ(λk − λ), (5.37)
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and the counting function

N(λ)=
∫ λ

0
dσ ρ(σ ). (5.38)

Here λ is a real parameter and the sum in (5.37) goes over all eigenvalues λk of L.
The counting function yields the total number of eigenvalues λk which do not

exceed λ. Strictly speaking, N(λ) may be approximated by a smooth function only
at large λ. In this limit all counting functions exhibit universal asymptotic properties
determined by the Weyl formula

N(λ)� λn/2a0

�(n/2 + 1)
∼ λn/2Vn, (5.39)

where a0 is the leading heat kernel coefficient in (4.9), and Vn is the volume of
M . Before we consider derivation of (5.39) let us note that computation of the sub-
leading terms in the Weyl formula meets a difficulty because starting with a certain
order these terms become smaller then fluctuations of N(λ) when λ goes from one
eigenvalue to the next one. This means, that an expansion in powers of λ cannot
approximate N(λ).

The way out of this difficulty is to work with smoothed functionsN(λ) and ρ(λ).
The smoothing can be done in different ways, and one of them is to use the so-called
Riesz means. A “smoothed” spectral function, ρα(λ), is defined as

ρα(λ)= 1

�(α)

∫ λ

0
(λ− σ)α−1ρ(σ )dσ, (5.40)

where α is a complex parameter, 	α > 0. It follows from (5.40) that ρ1(λ)=N(λ)
and ρ0(λ)= ρ(λ). Note also that ρα(λ) can be interpreted as a fractional derivative
∂−αλ ρ(λ), see [202].

There is a simple relation between ρα(λ) and the trace of the heat kernel,
∫ ∞

0
e−tλρα(λ)dλ= t−αK(L; t). (5.41)

Suppose now, that α �= k/2 where k is an integer. Then, at large λ the spectral func-
tion ρα(λ) is represented by the asymptotic series

ρα(λ)∼
∞∑
p=0

ap
λ(n−p)/2+α−1

�(
n−p

2 + α) . (5.42)

One can substitute (5.42) in (5.41), and check that this series reproduces the short t
expansion (4.9).

In the limit α→ 1 the leading term in (5.42) correctly reproduces (5.39). When
regularization is removed one encounters the above mentioned difficulty with the
sub-leading terms in the Weyl formula because all terms in (5.42) with p = n+ 2N ,
where N is a natural number, disappear at α = 1. The expansion terminates and
cannot reproduce the entire heat kernel asymptotics (4.9).
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The problem can be formally avoided if the sub-leading terms are treated as
generalized functions. One can write

ρ(λ)∼
∞∑
p=0

ap∂
p−n

2
λ δ(λ). (5.43)

We used the fact that [128]

lim
β→−n

x
β−1
+
�(β)

= ∂nx δ(x), (5.44)

where n= 0,1,2, . . . and xβ−1
+ = xβ−1 for x ≥ 0 and xβ−1

+ = 0 for x < 0. We shall
use formula (5.43) in Chap. 6.

5.5 Determinants of Second Order Elliptic Operators

Consider a finite-dimensional non-degenerate matrix L with positive eigenvalues λ.
For each λ one can write the identity lnλ= −d(λ−s)/ds|s=0 and define the deter-
minant of L by the relation

ln detL=− d
ds

Tr(L−s)|s=0. (5.45)

If L is a differential operator the sum
∑
λ lnλ is divergent. Ray and Singer proposed

to use (5.45) and formula (5.23) to define the determinant of an operator in terms
of its zeta-function. If L is a positive-definite self-adjoint second order operator one
can give the following definition

ln detL≡−ζ ′(0;L). (5.46)

As was explained in Sect. 5.3, the derivative ζ ′(0;L) is well defined because the
zeta-function is regular at s = 0 .

The Ray-Singer (5.46) definition omits all divergences present in the sum∑
λ lnλ. The structure of these divergences however is of interest for physical ap-

plications. It is time to investigate this question in more detail. Let us start with the
asymptotic formula

−
∫ ∞

δ

dt

t
e−tλ = lnλδ+ γ +O(λδ), (5.47)

where δ > 0, γE = 0.577216 . . . is the Euler constant. One can use (5.47) as a moti-
vation for the following definition:

∑
λ

lnλ≡−
∫ ∞

δ

dt

t
Tr(e−tL). (5.48)

The next step is to shift in (5.48) the power t−1 to t1−s , put δ = 0 and define a
regularized determinant as

(ln detL)s =−μ2s
∫ ∞

0

dt

t1−s
K(L; t). (5.49)
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A constant μ of dimension of the mass was introduced here to keep proper dimen-
sionality of the whole expression. The right hand side of (5.49) is convergent if
s > n/2 and one can use Eq. (5.24) to obtain

(ln detL)s =−μ2s�(s)ζ(s;L). (5.50)

This is so-called zeta-function regularized determinant. Near the value s = 0 this
expression is divergent and reads

(ln detL)s =−
(

1

s
− γE + lnμ2

)
ζ(0,L)− ζ ′(0,L)+ O(s). (5.51)

One can identify the determinant with the finite part of (ln detL)s

ln detL≡−ζ ′(0,L)− ln(μ2) · ζ(0,L). (5.52)

By simply neglecting the second term on the right hand side of (5.52), which is
equivalent to the choice μ= 1, one reproduces the Ray-Singer definition (5.46). It
follows from (5.29), that

ζ(0,L)= an(L), (5.53)

therefore the divergent part of the zeta-regularized determinant is determined by the
heat kernel coefficient an(L).

These definitions may be extended to higher order positive elliptic operators.
Suppose now, that the operators A, B and AB have zeta-determinants. In contrast
to the finite-dimensional case, determinant of the product need not be the product of
determinants. The fraction

detA · detB

det(AB)
(5.54)

is called therefore the multiplicative anomaly.
We conclude this section by a somewhat disappointing remark: there is no uni-

versal definition of the determinant valid for any elliptic differential operator, see
Sect. 5.10.

5.6 Zeta-Function and Determinant of the Dirac Operator

The Dirac operator has an infinite number of negative modes and the definition of its
regularized determinant requires some modifications with respect to what has been
discussed in the previous section. Suppose that the Dirac operator /D is selfadjoint,
and, therefore, that the spectrum is real. Let us assume for a while that the spectrum
of eigenvalues is discrete λk and does not contain zero modes. The corresponding
zeta-function may be defined as above,

ζ(s, /D)=
∑
λk

λ−sk . (5.55)



104 5 Spectral Functions

The new feature here is the presence of negative modes and a related ambiguity in
the phase of their contributions. We fix this ambiguity in the following way:

ζ(s, /D)=
∑
λk>0

λ−sk + e−iπs
∑
λk<0

(−λk)−s . (5.56)

In any even number of dimensions, there is a chirality matrix γ∗. For some
choices of the Dirac operator (see, e.g., Eq. (8.17) below) the chirality matrix anti-
commutes with /D, see Sect. 5.9 for a more detailed discussion. Consequently, the
non-zero spectrum of /D is symmetric with respect to the reflection λ→−λ. There-
fore, one can write

ζ(s, /D)= (1 + e−iπs)
∑
λk>0

λ−sk = (1 + e−iπs)
∑
λk>0

(λ2
k)

−s/2

= 1

2
(1 + e−iπs)

∑
λk �=0

(λ2
k)

−s/2 = 1

2
(1 + e−iπs)ζ(s/2, /D2

). (5.57)

The zeta-regularized determinant of the Dirac operator is defined as in (5.50)

ln(det /D)s =−μs�(s)ζ(s, /D). (5.58)

Note that the factor μs (instead of μ2s ) appears in (5.58) due to a different canonical
dimension of the Dirac operator. Near s = 0 we have

ln(det /D)s =−
(

1

s
− γE + lnμ− iπ

2

)
ζ(0, /D2

)− 1

2
ζ ′(0, /D2

). (5.59)

This definition is a useful tool to study properties of the determinant of the Dirac
operator. We shall apply it to the analysis of the anomalous behavior of regularized
determinants under symmetry transformations.

5.7 Transformations of Determinants of Laplace Type Operators

In a number of applications one needs to know how determinants of operators trans-
form under variations of background fields. An important class of these transforma-
tions is related to symmetries of the classical action. This class will be discussed in
Chap. 8 in detail. In this section, we derive some useful general relations.

Consider two Laplace type operators, L and L̄, which are related as L =
e

1
2 OL̄e

1
2 O , and connect them through a homotopy L(α) = e α2 OL̄e

α
2 O with α ∈

[0,1]. We further assume that all L(α) are of Laplace type, and that e
α
2 O form a

one-parameter group. This implies in particular that e
α
2 O is invertible for all α.

Let us make a short pause to explain a subtlety regarding infinite-dimensional
operators. In the finite-dimensional case, any operator of the form eA is invertible
with the inverse being e−A. In the infinite-dimensional case this is not necessarily so.
For example, e−t� with the standard Laplacian � and t > 0 is not invertible since
et� grows exponentially at large momenta and is not defined on a dense domain
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of L2. Therefore, the operators e−t� do not form a group, but only a semi-group,
called the heat semi-group.

Returning to the problem in question, we may write

L(α + δα)= L(α)+ δα 1

2
(OL(α)+L(α)O) (5.60)

to the linear order in δα. To calculate variation of the heat kernel, it is convenient to
use the Duhamel formula

eA+B = eA +
∫ 1

0
e(A+B)uBe(1−u)A du, (5.61)

which has a purely combinatoric origin. With the help of this relation we can write

δe−tL =−
∫ t

0
due−uL(δL)e−(t−u)L. (5.62)

The formula is valid if the operators under the integral exist, which is indeed our
case since both u and t −u remain non-negative in the whole interval of integration.
By taking the trace, we obtain

d

dα
K(1,L(α), t)=−t Tr(OL(α)e−tL(α))= t d

dt
K(O,L(α), t). (5.63)

Equation (5.63) can be written also in an infinitesimal form

δTr e−tL(α) =−t Tr
(
O(α)L(α)e−tL(α)

)
δα. (5.64)

Apart from the variations (5.60) generated by the operator O , some other, rather
complicated transformations of L may lead to the same result (5.64).

Next, let us analyze the variation of zeta-function. Since L(α) can have zero
modes, we write

ζ(s,L,O)≡ 1

�(s)

∫ ∞

0
dt ts−1[Tr

(
Oe−tL − PrNO

)]
(5.65)

(with PrN being a projector on the null-subspace of L) and consider variation of the
unsmeared zeta function

ζ(s,L(α))= 1

�(s)

∫ ∞

0
dt ts−1(Tr e−tLα −N)

, (5.66)

whereN is the number of zero modes. Since the transformations e
1
2αO are invertible

for all α, the number of zero modes does not change, and one obtains:

d

dα
ζ(s,L(α))= 1

�(s)

∫ ∞

0
dt ts−1 Tr

(−tOL(α)e−tL(α)). (5.67)

Let us look more attentively at the operator under the trace. On the zero subspace
of L(α) the heat operator equals to the identity, and the operator L(α) maps this
subspace to zero. Therefore, nothing changes in the equation above if we replace
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e−tL(α) by (e−tL(α)−PrN). After integrating over t one gets back the zeta-function,
i.e.
d

dα
ζ(s,L(α))=−�(1 + s)

�(s)
Tr

(
OL(α)L(α)−(s+1)) =−sζ(s,L(α),O). (5.68)

This relation may now be taken at s = 0. One immediately concludes, that
ζ(0,L(α)) does not depend on α, while the variation of the derivative ζ ′(0,L(α))
is proportional to ζ(0,L(α),O),

ζ(0,L)= ζ(0, L̄), (5.69)

ζ ′(0,L)= ζ ′(0, L̄)−
∫ 1

0
dα ζ(0,L(α),O), (5.70)

where, we remind that L̄= L(0) and L= L(1).
The last formula defines also the transformation rule of Ray-Singer determinant

(5.46)

δ ln detL= ζ(0,L,O)δα = (an(O,L)− PrN(O))δα, (5.71)

given here in the infinitesimal form. PrN(O) denotes here the trace of O restricted
to the zero subspace of L.

5.8 Other Definitions of Determinants

There are other regularizations of determinants besides the zeta-function one. Re-
strict, for example, the integration in (5.49) at some small cutoff parameter δ > 0.
Since the integral is now convergent, one can take the limit s→ 0 and define the
regularized determinant by formula

(ln detL)PTC,δ =−
∫ ∞

δ

dt

t
K̃(L; t). (5.72)

This regularization is known as the proper-time cutoff (PTC) regularization. In gen-
eral, such a regularization can be applied to any spectral function associated to the
operator L. In particular, one can consider a “regularized zeta-function”,

ζδ(s;L)= 1

�(s)

∫ ∞

δ

dt ts−1K̃(L; t). (5.73)

The difference between ζδ(s;L) and ζ(s;L), Eq. (5.32), is that the regularized zeta-
function vanishes at s = 0, ζδ(0;L)= 0.

In the limit δ→ 0 determinant (5.72) is divergent,

(ln detL)PTC,δ ∼
n−1∑
p=0

2ap(L)

p− n δ
p−n

2 + (an(L)−N) ln δ. (5.74)

This is a complete structure of divergences of a determinant of a second order oper-
ator. One can note, by comparing (5.51) with (5.74), that the zeta-function method
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reproduces the logarithmic divergences only. In the framework of the PTC regular-
ization the finite (renormalized) part of the determinant can be defined as

ln detL= lim
δ→0

[
(ln detL)PTC,δ −

n−1∑
p=0

2ap(L)

p− n δ
p−n

2 − ζ(0,L) ln δ
]
. (5.75)

There are other definitions of determinants which we do not discuss here. All
of them are based on certain regularization prescriptions followed by a subtraction
of the divergent parts. The value of the finite part depends, of course, on the sub-
traction. We remark that it is subtraction procedure (5.75) which results in the same
transformations of the determinants as considered in Sect. 5.7 (though the Ray-
Singer definition appears to be the most suitable to derive these transformations).
Consider, as an example, the simplest transformation of the operator δL = Lα,
where |α| � 1. This is just a rescaling, L̄ = μL, with μ = 1 + α. From (5.71)
one immediately gets

δ ln detL= ζ(0,L)α (5.76)

for the Ray-Singer definition. Let us show that this transformation is reproduced
by the PTC definition (5.75). First, note that the regularized quantity (ln detL)PTC,δ
does not change if together with rescaling of the operators we rescale the cutoff
parameter, δ̄ = μ−1δ. Consequently, it follows from definition (5.75) that

δ ln detL= lim
δ→0

[
n−1∑
p=0

(
2ap(L)

p− n δ
p−n

2 − 2ap(L̄)

p− n δ̄
p−n

2

)
+ ζ(0,L) ln δ/δ̄

]
, (5.77)

where we took into account that ζ(0, L̄)= ζ(0,L). According to results of Sect. 4.4
canonical mass dimension of ap(L̄) is p − n while the dimension of δ is 2. There-
fore, the terms in (5.77) with powers of δ cancel out, while the last term repro-
duces (5.76).

5.9 Index Theory

There is an important connection between spectral properties of differential oper-
ators and topology. This connection is the subject of the index theory which we
briefly outline in the present section. The idea is quite simple and is based on the
index of an operator which is the difference between the number of zero modes of
the operator and the number zero modes of its adjoint. The index can be related to
an integral of some local invariants which are combinations of heat kernel coeffi-
cients. Since the index is an integer it cannot change under smooth deformations of
the metric of the base manifold or of a bundle over the manifold. This means, that
the index is a topological invariant. By studying index of operators one gets not only
topological invariants, but also very convenient local expressions for them.

Let M be a compact Riemannian manifold with or without boundary and E1, E2
be two vector bundles over M . Each Ek is supposed to be equipped with a positive
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definite inner product (.,.)k , k = 1,2, see (3.13). Consider an operator D+ which
acts on sections of E1 and maps them to sections of E2. By using the inner products
we can define an adjoint to D+ by requiring (ϕ2,D+ϕ1)2 = (D†

+ϕ2, ϕ1)1 for all
sufficiently well behaving sections ϕk of Ek . To make the notations more symmetric
we denote D− ≡D†

+. Let us define operators L1 =D−D+ and L2 =D+D− acting
on smooth sections of E1 and E2, respectively. Suppose that L1 and L2 are elliptic.
An elliptic operator on a compact manifold has a finite number of zero modes. One
can show that the zero modes ofD+ andD− coincide with zero modes ofL1 andL2,
respectively, see Exercise 5.7. Therefore, the numbers of zero modes ofD+ andD−
are finite and we can define the index of the operator D+ as

index(D+)=N1 −N2, (5.78)

where N1 is the number of zero modes of D+ and N2 is the number of zero modes
of its adjoint.

By using the intertwining relations

D+L1 = L2D+, D−L2 = L1D− (5.79)

one can show with the help of Exercise 5.8 that all non-zero eigenvalues of L1 and
L2 coincide. Since both L1 and L2 are elliptic one can define corresponding heat
kernels and calculate their difference

K(t,L1)−K(t,L2)=
∑
λ1

e−tλ1 −
∑
λ2

e−tλ2 =N1 −N2 = index(D+), (5.80)

where λk are eigenvalues of Lk . Suppose that Lk are Laplace type operators which
allow asymptotic expansion (4.9). Then one can expand both sides of (5.80) in
power series in t to get

ak(D+)− ak(D−)= 0 for k �= n,
an(D+)− an(D−)= index(D+).

(5.81)

Equation (5.81) is called the index theorem. It shows that certain combinations
of the heat coefficients is an integer number and, thus, are topological, or homo-
topy, invariants. This follows from the properties of the heat kernel coefficients, see
(4.56)–(4.58) and (4.70)–(4.75), which depend smoothly on the potential, curvature,
extrinsic curvature and other fields which characterize the fiber bundle and the op-
erator. Smooth variations of these quantities cannot change the index. Of course, no
“essential” changes are allowed. For example, one cannot replace Dirichlet bound-
ary conditions by the Neumann ones.

Let us discuss the index for a number of examples. Our first example was already
presented in Sect. 4.5. The operators D± have been given there by Eq. (4.77), while
(5.81) is equivalent to (4.85) and (4.86). The corresponding index is invariant with
respect to smooth variations of the potential V .

The example above can be modified by choosing D+ = eρ(x)∂x where ρ(x) is a
smooth function. The corresponding adjoint operator is D− = −eρ(x)(∂x + ρ′(x)).
As in the previous example we choose Dirichlet boundary conditions on the sections
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of E1, i.e. ϕ1|∂M = 0. Since D− maps smooth sections of E2 to smooth sections of
E1 it means that D−ϕ2 satisfies the Dirichlet conditions, which is equivalent to a
Robin boundary condition for ϕ2, i.e. (∂x + ρ′(x))ϕ2 = 0 on the boundary. Both L1

and L2 are of Laplace type and one can use (4.71) and (4.74) to calculate the index
by using (4.76) to find the constants βD1 and βN1 . One still has

index(D+)=−1 (5.82)

independently of ρ. This example shows that the index is invariant under smooth
variations of the function ρ which mimics the metric of a base manifold. Here one
has a one-dimensional analog of a topological invariance.

Note that there are no zero modes for Dirichlet boundary conditions since
D+ϕ(0)1 = 0 yields constant mode ϕ(0)1 , and Dirichlet boundary conditions require

ϕ
(0)
1 = 0. There is always one zero mode in the Neumann sector, since D−ϕ(0)2 = 0

always has a solution ϕ(0)2 = e−ρ which automatically satisfies the Robin conditions
given above.

The last example is related to the Dirac operator /D. Consider a spin bundle over
an even-dimensional manifold without boundaries, see Sect. 1.5. A generic Dirac
operator is locally defined by (3.6). Let us assume that the zeroth order part V is
such that

γ∗ /D =− /Dγ∗, (5.83)

where γ∗ is the chirality matrix, see (1.59). One can always choose a basis such that

γ∗ =
(
I 0
0 −I

)
, (5.84)

where I is a unit matrix. Then, due to (5.83), the Dirac operator has the form

/D =
(

0 D−
D+ 0

)
(5.85)

with some operatorsD+ andD− called chiral operators. It is assumed that the Dirac
operator is self-adjoint. This implies that D+ =D†

−. The bundle E1 corresponds to
the spinors of positive chirality (positive eigenvalues of γ∗), and E2 corresponds
to the negative chirality spinors. The projectors on positive and negative chirality
spinors are

P± = 1

2
(1 ± γ∗). (5.86)

The index measures the difference of numbers of positive and negative chirality zero
modes of the Dirac operator and takes the following form:

index(D+)= Tr
(
e−tD−D+)− Tr

(
e−tD+D−) = Tr

(
γ∗e−t /D

2)
. (5.87)

Formula (5.87) has important physical applications related to the so-called chiral
anomalies. Explicit calculations are given in Sect. 8.2.
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5.10 Spectral Functions Related to Transformations of Chiral
Operators

The chiral operators D+ and D− which have been discussed in the last example of
the previous section are considered in a number of theoretical settings. The defini-
tion of the determinants of such operators is not possible because the operators act
between sections of different bundles. For example,D+ maps smooth sections of E1
(positive chirality spinors) to smooth sections of E2 (negative chirality spinors).
Moreover, typical form of the leading part of D+ is ∂1 + i∂2 (as for the Dirac oper-
ator in two dimensions with an appropriate choice of γ -matrices). The eigenvalues
of such an operator are spread over the whole complex plane, so that it is hardly
possible to define any spectral function.

In physical applications it is sometimes enough to define transformation prop-
erties of a determinant of D+ without defining determinants of chiral operators
themselves. This task is much easier and can be resolved with the help of spectral
functions, in analogy to the methods of Sect. 5.7. By anticipating a more physical
discussion of the next Part of this book, we may say that this corresponds to dealing
directly with the anomalies without calculating the effective action.

To study spectral properties of the chiral operator D ≡D+ we introduce an aux-
iliary chiral operator D̄ which maps sections of E2 to sections of E1. The operator
D̄ is not specified. The only requirement is that another auxiliary operator DD̄ is of
Laplace type. The role of D̄ is to compensate the main part of the phase of spectrum
of D+, so that only relatively small fluctuations of the phase remain. By analogy
with (5.85) we also introduce a Dirac type operator

D̂ =
(

0 D̄

D 0

)
, (5.88)

which acts on smooth sections of the bundle E1 + E2. Consider the spectral func-
tion ln det D̂, where the Ray-Singer formula is used to define the determinant. We
shall study transformation properties of ln det D̂ under variations of D when D̄ is
assumed to be fixed.

To proceed we specify transformation as

δ±D = GD±DG , (5.89)

where a generator G is some operator which maps sections of E1 to sections of
E1 and sections of E2 to sections of E2. The operator G should satisfy the same
restrictions as O in Sect. 5.7. After simple algebra one gets

δ± Tr e−tDD̄ =−t TrG
(
DD̄e−tDD̄ ± D̄De−tD̄D)

, (5.90)

where we used the Duhamel formula (5.62). In terms of the operator L ≡ D̂2,
Eq. (5.90) takes the form similar to (5.63),

δ± Tr e−tL = δ± Tr e−tDD̄ + δ± Tr e−tD̄D

= 2δ± Tr e−tDD̄ =−t Tr
(
O±Le−tL

)
, (5.91)
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O− =−2γ�G , O+ = 2G , (5.92)

with γ� defined in (5.84). We have noticed here that the heat traces of the operators
DD̄ and D̄D differ by a constant associated with the number of zero modes. By
using now (5.71) and assuming that D̄ is fixed one gets the following transformation
law:

δ± ln det D̂ = 1

2
δ ln detL= 1

2
ζ(0,L,O±). (5.93)

It is convenient to consider variations of the absolute value |det D̂| and of the phase
�(D̂) of the determinant

ln |det D̂| = 1

2
(ln det D̂ + ln det D̂+)= 1

2
(ln detDD+ + ln det D̄D̄+), (5.94)

�(D̂)= i

2
(ln det D̂+ − ln det D̂). (5.95)

When applying (5.93) to (5.94), (5.95) it is convenient to fix D̄ when the variation
is performed as D̄ =D+ =D−. Then D̂ = /D and L= /D

2 is a Hermitian operator.
This implies that

δ± ln |det D̂| = 1

4
ζ
(
0, /D2

, (O± +O+± )
)
, (5.96)

δ±�(D̂)= i

4
ζ
(
0, /D2

, (O+± −O±)
)
. (5.97)

It follows then from (5.92) that the absolute value does not transform when the gen-
erator is anti-Hermitian, G + = −G , transformation of the phase vanishes for Her-
mitian generators G + = G . Note that according to (5.94) variations of the absolute
value at fixed D̄ can be written as

δ± ln |det D̂| = 1

2
δ± ln detDD+ = 1

2
δ± ln det /D. (5.98)

Thus, one can also get transformation (5.96) for the absolute value by using re-
sults of Sect. 5.7, see Exercise 5.10. Equations (5.93), (5.96), (5.97) will be used in
Chap. 8.

An obvious drawback of the method described above is that it depends on the
choice of the auxiliary operator D̄.

5.11 Literature Remarks

The Riemann zeta-function was introduced by B. Riemann in 1859. Besides of ap-
plications to quantum theory it plays a prominent role in mathematics, in particular
in the number theory. Riemann conjectured that all zeros of ζ(s) (in addition to its
zeros at negative integers) lie on the line 	 s = 1/2 and that the distribution of these
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zeros is related to the distribution of prime numbers. The proof of the Riemann
hypothesis is included in Hilbert’s list of problems and has not been given so far.

There are a number of monographs devoted to different aspects of the zeta-
function of differential operators and their physical applications. Among them are
the monographs by Elizalde et al. [100, 101]. A generalization of formula (5.28) for
the zeta-function ζ(s;L,Q), see (5.33), can be found in [134].

The references for the Weyl formula (5.39) are standard textbooks, see e.g. [237].
The smoothing of the counting function N(λ) and the spectral density ρ(λ) is dis-
cussed e.g. in [22, 117]. The smoothing in terms of the Riesz means (5.40) was used
by Fulling [118], while the form of the sub-leading terms in (5.43) as distributions
has been pointed out by Dowker [91].

The multiplicative anomaly was introduced by Kontsevich and Vishik [174]. For
more references and physical applications, see e.g. [102, 139].

The index theorem is perhaps one of the most beautiful and powerful discov-
eries of mathematics in 20th century. In 2004 M. Atiyah and I.M. Singer, the au-
thors of the theorem, have been awarded the Abel Prize “for their discovery and
proof of the index theorem, bringing together topology, geometry and analysis, and
their outstanding role in building new bridges between mathematics and theoretical
physics”.

The topological invariants which appear in the index theory are very useful in a
number of physical applications. For instance, for analyzing classical solutions of
field equations since the invariants determine so-called topological charges of the
solutions (the monopole magnetic charge, e.g.). They are also important in studying
quantum corrections to such solutions, especially in the case of supersymmetric
models, see Sect. 9.6. The presence of a topological charge indicates in many cases
that some global symmetries of classical theory are broken at the quantum level.
This effect is a particular manifestation of a quite general phenomenon, quantum
anomalies which are discussed in Chap. 8.

The auxiliary Dirac operator D̂ introduced in Sect. 5.10 in relation to transfor-
mations of chiral operators was suggested by Alvarez-Gaumé and Ginsparg in [6, 7]
for operators in external gauge fields. More references on chiral operators are given
in Sect. 8.8.

Recommended Exercises are 5.5 and 5.6.

5.12 Exercises

Exercise 5.1 Let L be a Laplace operator �, see Eq. (3.4), on a unit n-sphere Sn.
Show that the series

∑
λ λ

−s , where λ are eigenvalues of�, converges if 	 s > n/2.

Exercise 5.2 By using the spectrum of the Laplace operator � on a unit sphere
S2, the zeta-function ζ(s,� + 1/4), and relation (4.15) verify the first terms in
asymptotic expansion (4.15).
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Exercise 5.3 Consider a (1 + 1)-dimensional theory of a complex massless scalar
field on a circle with “twisted” periodicity condition ϕ(t, x+ l)= eibϕ(t, x), where
b is a real constant, 0< b < 2π . Find the vacuum energy in this model by using the
ζ -function regularization.

Exercise 5.4 By using results of Exercise 3.3 find the heat coefficient a2(�) for
the heat kernel of the vector Laplacian (3.5) on the unit two-sphere S2

β with conical
singularities, see Eq. (1.97). Use this result to find the same coefficient on a cone.

Exercise 5.5 Consider a quantum theory of a charged scalar field (1.68) interacting
with a classical constant magnetic field. Field equation (1.69) can be written as

(Dμ(A)Dμ(A)−m2)ϕ = (−∂2
t −L(A))ϕ = 0, (5.99)

L(A)=−(∂k + ieAk)(∂k + ieAk)+m2, (5.100)

where k = 1, . . . , n. The spatial part of the wave operator, L(A), is a Laplacian.
Express the zeta-function ζ(s;L(A)) in dimensions n= 2 and n= 3 in terms of

the generalized Riemann zeta-function (5.4). Suppose for simplicity that the scalar
field is located in a region with a finite but large volume V (neglect boundary ef-
fects). The strength of the magnetic field is B .

Exercise 5.6 Consider a one-parameter family of second order elliptic operators
L(α) defined in Sect. 5.7. Prove the following formula for the heat coefficients of
this family:

d

dα
ap(Lα)= p− n

2
ap(Lα,O), (5.101)

where n is the dimensionality of the corresponding base manifold.

Exercise 5.7 Prove that zero modes of D+ coincide with zero eigenmodes of L1,
see Sect. 5.9.

Exercise 5.8 Use intertwining relations (5.79) to demonstrate that the non-zero
eigenvalues of L1 and L2 coincide.

Exercise 5.9 Find variation of the phase of the determinant of the chiral part of
the Dirac operator /D(B)= iγ μ(∂μ+Bμ) on a flat even-dimensional manifold with
SU(N) gauge field Bμ. Take transformation of the field in the following form:

B ′
μ(x)=U†(x)(Bμ(x)+ ∂μ)U(x), (5.102)

where U belongs to the SU(N) group. Carry out explicit computations for dimen-
sions of the base manifold n= 2 and n= 4.

Exercise 5.10 Use formula (5.71) to find transformation of ln det /D, where /D is
given by (5.85), and the chiral part of the operator transforms as

δ±D+ = GD+ ±D+G , (5.103)
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see (5.89). Check that the result coincides with transformation (5.96) which fol-
lows from relation (5.98) between det /D and the determinant of the auxiliary oper-
ator D̂.



Chapter 6
Non-linear Spectral Problems

6.1 Formulation of the Problem

As it was discussed in Sect. 2.5, wave equations on stationary backgrounds allow
separation of variables and take the form of spectral problem (2.43) for single-
particle energies. A straightforward generalization of (2.43) is(

P0ω
k + P1ω

k−1 + · · · + Pk−1ω+ Pk
)
fω(x)= 0, (6.1)

where Pl is a partial differential operator of the l-th order and operators Pl , Pm
may not commute for l �= m. Problems like (6.1) are non-linear with respect to
the spectral parameter ω. In the mathematical literature they are called polynomial
operator pencils [182]. In the present book we call (6.1) non-linear spectral problem
(NLSP) of the polynomial type.

The simplest example of NLSP appears in quantum theory in a static classi-
cal electric potential. For example, substitution ϕ(t, x)= e−iωtϕω(x) in the Klein-
Gordon equation (1.69) for a charged field in a static gauge potential, Aμ dxμ =
�dx0, yields the problem(

(ω+ e�)2 + ∂i∂i −m2)ϕω(x)= 0. (6.2)

Equation (6.2) can be brought to form (6.1), where P2 = ∂i∂i −m2 + e2�2, P1 =
2e�, P0 = 1. The operators P1 and P2 do not commute if the gauge potential �
depends on coordinates.

A less trivial example of (6.1) in quantum field theory will be considered latter.
The non-linear spectral problems are quite common. They also appear in quantum
mechanics when the potential in the Hamilton operator depends on the energy.

The aim of the present Chapter is to show how the methods of the spectral geom-
etry are extended to NLSP’s. We introduce a spectral function analogous to the heat
trace, and show that its asymptotics are expressed in terms of integrals of local geo-
metrical invariants. Sometimes, the spectral problem may have a polynomial struc-
ture like (6.1) only at large values of the spectral parameter. We call these problems
asymptotically polynomial NLSP and show how to find asymptotics in this case.
An example of asymptotically polynomial NLSP is provided by noncommutative
theories and it is discussed in Chap. 11.
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6.2 A Method of Finding the Spectrum

There is a method to find the spectrum of an NLSP by reducing it to linear spectral
problems. We focus on a second order problem like (2.43) and bring it to a slightly
different form [

ω2 −L(ω)]ϕω(x)= 0, (6.3)

L(ω)= L2 +ωL1 +ω2L0. (6.4)

It is assumed that L(ω) acts on the space L2 associated to a vector bundle over a
compact n-dimensional Riemannian manifold M with metric hik . We take L(ω) in
the following form relevant for applications:

L(ω)=−(∇k + iAk + iωak)(∇k + iAk + iωak)+ωB + V. (6.5)

Here the index k is raised and lowered with the help of metric hik , ∇k is a connection
on M , a Ak , ak , B and V are some matrix-valued functions. The base manifold
M has the meaning of a constant-time section of a physical spacetime. The inner
product in L2 is defined as

(f1, f2)=
∫

M

√
hdnx f ∗

1 ηf2, (6.6)

where η is a Hermitian matrix. We suppose that L(ω) is a self-adjoint operator for
real values of the parameter ω. In applications, η may not be positive-definite. For
example, for vector fields η is the Minkowski metric. Therefore, the inner product
(6.6) is Hermitian, but may be indefinite, i.e. the space L2 may have an indefinite
metric.

Consider now the spectral problem associated to (6.3)

L(ω)ϕ
(ω)
λk

= λk(ω)ϕ(ω)λk , (6.7)

where ω is a real parameter and k enumerates the eigenvalues. The eigenvalues
λk(ω) are real because L(ω) is Hermitian. Moreover, if L(ω) is a positive elliptic
operator, one can show that its spectrum is bounded from below.

Given (6.7), the approach to (6.3) is simple: one should find λk(ω) for any ω and
then look for the roots of the algebraic equation

χ(ω,λk)= 0, (6.8)

χ(ω,λk)= ω2 − λk(ω). (6.9)

For further purposes we introduce the following function:

χ ′(ωk)= ∂ωχ(ωk,λk), where ω2
k = λk(ωk). (6.10)

It is assumed that for a fixed branch of eigenvalues λk(ω) the derivative over ω is
taken and after that the result is considered at one of the roots of (6.8). In what fol-
lows we denote the eigenvalues of NLSP by ω instead of ωk . Different eigenvalues
will be denoted by different letters, say ω and σ .
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The role of function χ ′ becomes evident if we consider the wave equation[
(1 −L0)∂

2
t +L2 + iL1∂t

]
ϕ(t, x)= 0. (6.11)

As was explained in Sect. 2.1, normalization of modes in a relativistic theory is
determined by the relativistic product rather than inner product (6.6). The corre-
sponding product for (6.11) is

〈ϕ,ψ〉 = i(ϕ, ψ̇)− i(ϕ̇,ψ)− (ϕ,L1ψ)− i(ϕ,L0ψ̇)+ i(ϕ̇,L0ψ), (6.12)

where ϕ̇ = ∂0ϕ. This bilinear form does not depend on time on the solutions
to (6.11). According to (6.12), the product of any two solutions, ϕω(t, x) =
e−iωtϕω(x), ϕσ (t, x)= e−iσ tϕσ (x) (where ϕω(x) and ϕσ (x) are eigenfunctions to
(6.3)), can be written in the form

〈ϕω,ψσ 〉 = (ω+ σ)(ϕω, (1 −L0)ψσ )− (ϕω,L1ψσ ). (6.13)

An important relation follows from (6.13),

〈ϕω,ψσ 〉 = δωσχ ′(ω)(ϕω,ψω), (6.14)

where δωσ = 0, if ω �= σ , and δωσ = 1, if ω = σ . The derivation of (6.14) is left as
Exercise 6.1.

The quantity χ ′(ω) relates the two norms: the norm associated to the inner prod-
uct (,) in L2 and the norm introduced with the help of the product 〈,〉. It follows that
two eigenfunctions of (6.3) are orthogonal with respect to 〈,〉 if they are orthogonal
with respect to (,).

The analysis of spectral asymptotics of NLSP can be simplified if we require that

χ ′(ω)= ε(ω)|χ ′(ω)|, (6.15)

where ε(ω) is the sign function.
The requirement (6.15) is related to physical features. If (6.6) is positive defi-

nite, say, η = 1, it follows from (6.15), (6.14) that the relativistic norm 〈ϕω,ϕω〉
is positive (negative) for modes with positive (negative) frequency. This property
guarantees that all solutions have positive canonical energy H [ϕ], see Sect. 2.5 and
Eqs. (2.44), (2.45).

Note, that if the field equations are invariant under the charge conjugation, the
eigenvalues λ(ω) are symmetric functions of ω.

The problems like (6.3) may have complex eigenvalues ω. The eigenfunctions
ϕω with complex frequencies have zero norm (6.12), 〈ϕω,ϕω〉 = 0. It means that
complex frequency modes do not contribute to the energy (H [ϕω] = 0) and they
should not be quantized.

6.3 Spectral Geometry of Non-linear Spectral Problems

Let ω be real eigenvalues of (6.3). Consider the spectral function (a ‘pseudo-trace’):

K(t)= 1

2

∑
ω

e−tω2
, t > 0, (6.16)
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where the sum is taken over all eigenvalues including negative ω. The coefficient
1/2 in the right hand side of (6.3) is introduced for the convenience: if L(ω)= L2
the pseudo-trace K(t) coincides with the trace of the heat kernel of L2.

It turns out that the asymptotic expansion of the pseudo-trace has the form of the
standard heat kernel asymptotic (4.9),

K(t)∼
∞∑
p=0

apt
p−n

2 . (6.17)

The coefficients ap are analogs of the heat coefficients, and they are related to the
heat coefficients ap(ω) for the operator L(ω). If ω is fixed, one can write

K(L(ω); t)= Tr e−tL(ω) ∼
∞∑
p=0

ap(ω)t
p−n

2 . (6.18)

The fact that the operatorL(ω) has a polynomial dependence on ω, see (6.4), implies
a similar structure for ap(ω),

a2k(ω)=
k∑
m=0

am,kω
m, a2k+1(ω)=

k∑
m=0

bm,kω
m. (6.19)

The highest power of ω in ap(ω) is determined by the presence of the term ωB in
L(ω). We show below that the coefficients for the pseudo-trace can be represented
as

a2k =
2k∑
m=k
(−1)k−m

�(−n2 +m)
�(−n2 + k) a2(m−k),m, (6.20)

a2k+1 =
2k∑
m=k
(−1)k−m

�(−n−1
2 +m)

�(−n−1
2 + k) b2(m−k),m. (6.21)

Therefore, the asymptotic expansion of (6.17) is given in terms of integrals of local
geometrical invariants of background fields and the notion of the spectral geometry
is fully applicable to the polynomial NLSP’s.

6.4 Derivation of Asymptotic Expansions

Suppose that the operator L(ω) is a Laplace-type operator for real ω and the spec-
trum of L2 = L(0) is strictly positive. The proof of (6.17) is based on a relation
between K(t) and K(L(ω); t). To find this relation one can represent (6.16) as fol-
lows:

K(t)= 1

2

∫ ∞

−∞
dω

∑
λk(ω)

δ(χ(ω,λk)) |∂ωχ(ω,λk)|e−tω2
. (6.22)
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By using (6.15) and the integral representation for the δ-function the right hand side
of (6.22) can be brought to the form

K(t)= 1

4π

∫ ∞

−∞
dω ε(ω)

∑
λk(ω)

∫ ∞

−∞
dx eixχ(ω,λk)∂ωχ(ω,λk)e

−tω2

= 1

4π

∫ ∞

−∞
dω ε(ω)

∫
C

dz e−ω2(t−iz)
(

2ω+ 1

iz
∂ω

)
K(L(ω); iz). (6.23)

The integration contour over x in (6.23) was deformed in a contour C lying in the
complex plane and going from −iε − ∞ to −iε + ∞ where ε is a small positive
parameter. To proceed, we represent K(L(ω); t) in an integral form

K(L(ω); t)=
∫ ∞

μ

e−tλρ(λ,ω)dλ, (6.24)

where ρ(λ,ω) is the spectral density, see Sect. 5.4. Parameter μ is chosen to be
smaller than the lowest eigenvalue λ0(ω). One can use now (6.24) in (6.23) to get

K(t)= 1

4π

∫ ∞

−∞
dω ε(ω)

∫
C

dz e−ω2(t−iz)
∫ ∞

μ

dλe−izλ

×
(

2ωρ(λ,ω)+ 1

iz
∂ω∂λN(λ,ω)

)
, (6.25)

where N(λ,ω) is the counting function

N(λ,ω)=
∫ λ

μ

dσ ρ(σ,ω). (6.26)

The last term in the brackets in (6.25) can be integrated by parts over λ. Then the
integral over z results in the delta-function δ(λ−ω2), and one gets the final expres-
sion

K(t)=
∫ ∞

0
dλe−λtρ(λ), (6.27)

ρ(λ)= 1

2

(
ρ̃(λ,

√
λ)+ ρ̃(λ,−√

λ)
)
, (6.28)

ρ̃(λ,ω)= ρ(λ,ω)+ 1

2ω
∂ωN(λ,ω). (6.29)

As was explained in Sect. 5.4, the asymptotic expansion of the heat trace can be re-
lated to the asymptotic properties of the smoothed spectral function (see Eq. (5.40)).
To establish this relation, we define the function

ρα(λ,ω)= 1

�(α)

∫ λ

μ

(λ− σ)α−1ρ(σ,ω)dσ, (6.30)
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where α is a regularization parameter, α �= k/2, where k is an integer. At large λ,
the spectral function behaves according to (5.42),

ρα(λ,ω)∼
∞∑
p=0

ap(ω)
λ(n−p)/2+α−1

�(
n−p

2 + α) . (6.31)

To get asymptotics of the spectral density (6.28), the smoothing procedure is applied
to (6.29),

ρ̃α(λ,ω)= ρα(ω,λ)+ 1

2ω
∂ωρα+1(λ,ω). (6.32)

It follows from (6.31) that at large λ

1

2
(ρ̃α(λ,ω)+ ρ̃α(λ,−ω))∼

∞∑
p=0

ãp(ω)
λ(n−p)/2+α−1

�(
n−p

2 + α) , (6.33)

ãp(ω)= 1

2

[
ap(ω)+ ap(−ω)+ 1

2ω
∂ω(ap+2(ω)+ ap+2(−ω))

]
, (6.34)

where the property ∂ωa0(ω) = 0 has been taken into account. Equation (6.19) im-
plies that

ã2k(ω)=
∞∑
m=0

ã2m,kω
2m, b̃2k+1(ω)=

∞∑
m=0

b̃2m,kω
2m, (6.35)

ã2m,k = a2m,k + (m+ 1)a2(m+1),k+1,

b̃2m,k = b2m,k + (m+ 1)b2(m+1),k+1,
(6.36)

where a2m,k , b2m,k are assumed to vanish for 2m> k. Then

1

2

(
ρ̃α(λ,

√
λ)+ ρ̃α(λ,−

√
λ)

) ∼
∞∑
p=0

a(α)p
λ(n−p)/2+α−1

�(
n−p

2 + α) . (6.37)

Coefficients a(α)p can be found with the help of (6.35), (6.36). After some algebra
one gets

a
(α)
2k =

2k∑
m=k
(−1)k−m

�(−n2 +m− α)
�(−n2 + k − α) a2(m−k),m, (6.38)

a
(α)
2k+1 =

2k∑
m=k
(−1)k−m

�(−n−1
2 +m− α)

�(−n−1
2 + k− α) b2(m−k),m. (6.39)

Asymptotics of spectral density (6.28) is obtained from (6.37) in the limit α→ 0.
To this aim one should treat its coefficients as generalized functions, in the way
explained in Sect. 5.4,

ρ(λ)= 1

2
lim
α→0

(
ρ̃α(λ,

√
λ)+ ρ̃α(λ,−

√
λ)

) ∼
∞∑
p=0

ap ∂
p−n

2
λ δ(λ). (6.40)



6.5 An Example 121

Here the symbol ∂γλ for γ �= n denotes the fractional derivative defined by (5.42).

The coefficients ap ≡ a(0)p are given by relations (6.20), (6.21).
By comparing (6.40) with (5.43), one can conclude that the series exactly corre-

sponds to the short t pseudo-trace asymptotic (6.17). This completes the proof our
statements in Sect. 6.3.

6.5 An Example

Let us demonstrate how the obtained asymptotics can be used in physical applica-
tions. As an example, we consider a conformally coupled scalar field,(

−∇2 + 1

6
R

)
ϕ = 0 (6.41)

in a rotating frame of reference in the Einstein universe R1 × S3. Here R = 6/ρ2 is
the scalar curvature and ρ is the radius of the hyper sphere S3. In what follows we
put ρ = 1. The corresponding background metric is

ds2 =−(dx0)2 + sin2 θ dψ2
1 + cos2 θ dψ2

2 + dθ2, (6.42)

where 0 ≤ θ ≤ π/2, 0 ≤ψ1,ψ2 ≤ 2π . In the frame which rotates along ψ1 with the
angular velocity � (|�|< 1/ρ) the metric takes the form

ds2 =−B(dx0 +A1 dψ1)
2 + sin2 θ

B
dψ2

1 + cos2 θ dψ2
2 + dθ2, (6.43)

B = 1 −�2 sin2 θ, A1 =� sin2 θ B−1, (6.44)

where the coordinate ψ1 is changed to ψ1 + �x0. It is convenient to use confor-
mal invariance of (6.41) and make a conformal transformation of the metric to the
following form

ds2 =−(dx0 +A1 dψ1)
2 + dl2, (6.45)

dl2 = 1

B

[
sin2 θ

B
dψ2

1 + cos2 θ dψ2
2 + dθ2

]
≡ hjk dxj dxk. (6.46)

The line element dl2 is the metric on a compact three-dimensional manifold M

without boundaries. After the substitution ϕ(x0, xi) = e−iωx0
ϕω(x

i) in Eq. (6.41)
taken on background (6.45) one comes to a non-linear spectral problem (6.3) with
respect to ω. An explicit form of operator (6.4) can be easily determined,

L(ω)=−(∇k + iωak)(∇k + iωak)+ 1

6
R̄ + 1

24
FjkFjk. (6.47)

Here Fjk = Ak,j − Aj,k and Aj dxj = A1 dψ1, ∇k are the covariant derivatives
on M , R̄ is the scalar curvature of M .
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This physical example is convenient because the spectrum of corresponding
NLSP can be found explicitly. If ωn are energies of quanta in the non-rotating frame
(6.42) the energies in the rotating frame (6.43) are ωnm = ωn + m� where m is
the projection of the angular momentum on the rotation axis. For model (6.41) the
spectrum is ωn = n+1, where n= 0,1, . . . , which follows from the spectrum of the
Laplacian on S3. The number m takes values −n≤m≤ n and ωnm has a degener-
acy dnm = n−|m|+1 for givenm and n, see, e.g. [157]. The spectrum of the NLSP
also includes negative energies ωnm = −ωn +m�. The positive (negative) energy
states have a positive (negative) norm defined with respect to the product (6.12).
The latter property is easy to understand if we note that signs of ωnm and ωn are the
same and (6.12) coincides with the Klein-Gordon product. Thus, the requirement
(6.15) is satisfied.

Since positive and negative parts of the spectrum are symmetric, pseudo-trace
(6.16) can be written as

K(t)=
∞∑
n=0

n∑
m=−n

(n− |m| + 1) e−(n+1+m�)2t . (6.48)

Its short t expansion should have the form (6.17) where n = 3, and a2k=1 = 0 be-
cause M has no boundaries. The first coefficients for (6.48) can be found explicitly,
see Exercise 6.3,

a0 =
√
π

4

1

1 −�2
, a2 =−

√
π

12

�2

1 −�2
. (6.49)

Expressions (6.49) are in agreement with formula (6.20). Indeed, one can check that
a0 is proportional to the volume of M3, see (6.46). For operator (6.47) definitions
(6.19) yield

a0,1 =− 1

(4π)3/224

∫
M3

h1/2 d3x F jkFjk,

a2,2 =− 1

(4π)3/212

∫
M3

h1/2 d3x F jkFjk.

(6.50)

The coefficient a2, as defined by (6.20), reads

a2 = a0,1 + 1

2
a2,2 =− 1

(4π)3/212

∫
M3

h1/2 d3x F jkFjk. (6.51)

It coincides exactly with (6.49).

6.6 Asymptotically Polynomial Spectral Problems

The short t expansions of the pseudo-trace are determined by the distribution of
large eigenvalues. This observation suggests that formulae (6.17), (6.19)–(6.21) can
be extended to the case when a non-linear spectral problem has a polynomial form
only at asymptotically large values of the spectral parameter.
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Consider a generalization of the operator L(ω), see Eq. (6.5), of the following
form

L(ω)=−(∇k + iAk(ω))(∇k + iAk(ω))+ V (ω), (6.52)

where the gauge connections Ak(ω) and the potential term V (ω) are some suf-
ficiently smooth functions of the spectral parameter which admit the following
asymptotics:

Ak(ω)∼Ak +ωak + e.s.t., (6.53)

V (ω)∼ V +ωB + e.s.t. (6.54)

valid at large |ω| up to exponentially small terms (“e.s.t.”). The operator L(ω) in
this limit takes form (6.4)

L(ω)∼ L2 +ωL1 +ω2L0 + e.s.t. (6.55)

We call spectral problems which reduce to (6.3) up to the exponentially small terms
asymptotically polynomial NLSP. Relations (6.53)–(6.54) imply that at large |ω| the
heat coefficients of operator (6.52) have a structure similar to (6.19), i.e.

a2k(ω)=
k∑
m=0

am,kω
m + e.s.t., a2k+1(ω)=

k∑
m=0

bm,kω
m + e.s.t. (6.56)

In this case short t expansion (6.17) of the pseudo-trace must hold and, moreover,
the coefficients ap are still expressed in the form (6.20), (6.21) with the help of
quantities am,k and bm,k from (6.56).

Examples of asymptotically polynomial NLSP which satisfy these properties ap-
pear in noncommutative theories, see Chap. 11. One of such examples will be de-
scribed in due course.

6.7 Literature Remarks

The spectral theory of polynomial operator pencils [182] is a field of mathematics
where important pioneering results were established by Keldysh [168]. In addition
to applications we study here, quadratic and more general operator polynomials
appear in other physical problems, for instance, in oscillations of a viscous fluid,
Schrödinger equation with energy-dependent potential and etc.

Asymptotic expansions (6.17), (6.20), (6.21) were derived in [123]. A number of
consequences of these relations are considered in Exercises 7.8, 7.9 to Chap. 7. This
Chapter also contains some physical applications of NLSP such as high-temperature
asymptotics in quantum field models, see Exercise 7.19.
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6.8 Exercises

Exercise 6.1 Prove the relation between the two products

〈φω,ψσ 〉 = δωσχ ′(ω)(φω,ψω)

for two eigenfunctions of NLSP, see the discussion in Sect. 6.2.

Exercise 6.2 Consider the problem

[ω2 −L2]ϕω = 0, (6.57)

where L2 is a second order positive elliptic operator on a compact space. We sup-
pose that the lowest eigenvalue λ0 of L2 is positive, λ0 > 0. Now, if ω is replaced
to ω− !, where ! is a real parameter, the eigenvalue problem becomes non-linear[

ω2 −L(ω)]ϕ′ω = 0, (6.58)

L(ω)= L2 − !2 + 2!ω, (6.59)

where ϕ′ω = ϕω+! . By assuming that !2 < λ0 check validity of formulas (6.20),
(6.21).

Exercise 6.3 Introduce the zeta-function

ζ(ν)=
∑
nm

dnmω
−2ν
nm (6.60)

for the spectrum of the field in the rotating Einstein universe considered in Sect. 6.5.
Calculate the coefficients in the pseudo-trace expansion from the zeta-function,

a0 =
√
π

2
lim
ν→3/2

(ν − 3/2)ζ(ν), (6.61)

a2 =√
π lim
ν→1/2

(ν − 1/2)ζ(ν), (6.62)

and prove formulas (6.49).
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Chapter 7
Effective Action

7.1 A Route from Classical to Effective Action

In this Chapter we give an elementary introduction to the method of effective action,
explain which applications it is used for and show how the effective action can be
calculated in terms of the spectral functions.

It is known that the variational derivatives of a classical action with respect to
background fields yield physical quantities O(x) such as, for example, the stress-
energy tensor or the gauge current, see Eqs. (1.22) and (1.71). The effective action,
in some sense, is a quantum analog of the classical action whose variations with
respect to background fields produce averages of corresponding operators 〈O(x)〉.
Computations of averages were discussed in Sect. 2.7 in terms of the Green’s func-
tions in the framework of the point splitting procedure. Now, we relate this proce-
dure to the effective action.

Suppose that I [ϕ,φ] is a classical action of classical background fields φ and
some dynamical variables ϕ, say, scalar fields. The base manifold is assumed to be
Riemannian. The variables ϕ are assumed to be non-interacting (free) fields. Since
I [ϕ,φ] is quadratic in ϕ it can be written as

I [ϕ,φ] = (ϕ,PE[φ]ϕ), (7.1)

where PE[φ] is a Laplace type operator discussed in Sect. 3.1. The notations and
relation of PE[φ] to classical equations of motions in Lorentzian spacetimes are
explained in the next sections.

Let us denote the effective action as W [φ] and define it by the familiar spectral
function

W [φ] = 1

2
ln detPE[φ], (7.2)

where the quantity ln detPE[φ] is determined by using some regularization prescrip-
tion, say, by Ray-Singer formula (5.46). This definition, at least formally, allows one
to express the action in terms of a Gauss-type functional integral,

e−W [φ] =
∫

[Dϕ]e−I [ϕ,φ]. (7.3)
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The integral in the right hand side would be well-defined if PE[φ] had a finite num-
ber of eigenvalues. In this case it is possible to give a prescription for the integration
measure [Dφ], see Exercise 7.1.

In a field theory one is dealing with an infinite number of degrees of freedom.
Therefore, the integral in (7.3) is just a symbol which we use for illustrative purposes
only. For example, one can introduce with its help the Green’s function G(x,x′) of
the operator PE[φ]. If PE[φ] does not have zero modes the Green’s function is
defined as G(x,x′)= P−1

E (x, x
′) and can be formally written as

G(x,x′)= eW [φ]
∫

[Dϕ]ϕ(x)ϕ(x′)e−I [ϕ,φ]. (7.4)

Which quantum state the correlatorG(x,x′) corresponds to will be explained latter.
Consider an expectation value of some local operator O . Its calculation can be

done by using the point-splitting method discussed in Sect. 2.7. Suppose that O is
defined as a limit (2.75) with some bilinear differential operator D(x,x′). Then it
follows from (2.76) and (7.4) that

〈O(x)〉 = lim
x→x′

D(x,x′)G(x, x′)= eW [φ]
∫

[Dϕ]O[ϕ,φ](x)e−I [ϕ,φ]. (7.5)

The quantity O[ϕ,φ](x) in (7.5) is just the classical expression for O . If the classical
quantity O is defined by using variational procedure,

O[ϕ,φ](x)= δI [ϕ,φ]
δφ(x)

, (7.6)

it follows immediately from (7.5) that the analogous variation formula holds for the
quantum average

〈O(x)〉 = δW [φ]
δφ(x)

. (7.7)

This is the reason why W [φ] is called the effective action.
One of advantages of the effective action method is that (7.7) yields mathemat-

ically meaningful expressions because W [φ] is well-defined by virtue of the Ray-
Singer formula. The effective action represents an alternative to the point-splitting
method. If PE were a finite-dimensional matrix one could write with the help of
(7.2) and (7.7) ∫

dnx 〈O(x)〉δφ(x)= 1

2
Tr

[
δφPE · P−1

E

]
. (7.8)

The right hand side of (7.8) has the same structure as the analogous definition in
terms of the point-splitting method, see Eq. (7.5).

We have just presented a very crude idea of the effective action. In theories of
interacting quantum fields the effective action has a broader applicability and can be
defined as a generating functional for certain class of Green’s functions. Since we
restrict ourselves to free fields, the motivations presented above will be enough for
the subsequent analysis.
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7.2 Statistical Physics

Our first step is to show that the physical meaning of the effective action for positive-
definite operators is related to finite-temperature theories. We begin therefore with
a brief introduction in statistical physics.

If the background fields are stationary there exist time-independent quantum
states which describe a thermal equilibrium of a system at finite temperatures T .
The parameters of the system can be determined with the help of the partition func-
tion

Z(β)=
∑
n

e−βEn , (7.9)

where β = T −1 and the sum goes over all possible states of the Fock space char-
acterized by the energies En. Since the zero-point fluctuations are not related to
thermal excitations of the system one does not take into account in (7.9) the vacuum
energy E0. Therefore, En = En −E0, where En is a total energy of the Fock state.
The series (7.9) converges for β > 0. This definition can be also written in another
form

Z(β)= Tr e−β:H :, (7.10)

where :H : = H − E0 is the so-called normally ordered Hamiltonian. A finite-
temperature state is a mixed state. The average value of an operator O in such a
state is

〈O〉β = Z−1(β)Tr
(
Oe−β:H :). (7.11)

To proceed, it is convenient to introduce the free energy of the system

F(β)=−β−1 lnZ(β). (7.12)

From (7.11) one can easily find, for example, that the average of the thermal energy
is expressed in terms of the free energy,

E (β)= ∂

∂β
(βF(β)). (7.13)

Another important object is the entropy of the system S which can be inferred from
the relation

F(β)= E − T S. (7.14)

Together with (7.13) this yields

S(β)= β2 ∂

∂β
F(β). (7.15)

The microscopic meaning of entropy is discussed in a variety of textbooks on statis-
tical mechanics. We are not going to repeat this material here. The purpose of Ex-
ercise 7.3 is to show that the entropy measures the number of microscopical states
corresponding to given macroscopic parameters of the system.
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Our interest is non-interacting field theories. In this case the free energy can be
easily related to the spectrum of single-particle energies ωi discussed in Sect. 2.5.
If the fields are quantized according with the Bose statistics,

F(β)= β−1
∑
ωi

ln
(
1 − e−βωi ). (7.16)

In the case of Fermi statistics,

F(β)=−β−1
∑
ωi

ln
(
1 + e−βωi ). (7.17)

The summation here goes over all single-particle energies ω(+)i and ω(−)i . For real

fields, ω(+)i and ω(−)i coincide, and one uses one type of the energies only.
The derivation of (7.16), (7.17) is simple. One has to note that the system of free

fields is just a set of harmonic oscillators with frequencies ωi , see the form of the
energy operators, Eqs. (2.46), (2.51). The partition function for a Bose oscillator
with a frequency ωi is

Zi(β)=
∞∑
n=0

e−βωin = 1

1 − e−βωi . (7.18)

For Fermi statistics, because of the Pauli principle, the sum terminates,

Zi(β)=
1∑
n=0

e−βωin = 1 + eβωi . (7.19)

The entire free energy is determined by the partition function (7.10) which is the
product of Zi(β).

One may say that a finite-temperature theory is a theory with evolution in an
imaginary time. Indeed, the operator generating the time evolution is defined as

Û (t)= e−it :Ĥ :. (7.20)

By comparing this formula with (7.10) one concludes that

Z(β)= Tr Û (−iβ)=
∫
dϕ 〈ϕ|Û (−iβ)|ϕ〉, (7.21)

i.e. the partition function is obtained from (7.20) as a result of the substitution

t→−iβ. (7.22)

Transformation (7.22) is called the Wick rotation. Taking the trace in (7.21) is equiv-
alent to imposing periodic boundary conditions in the Euclidean “time” τ because
one sums over all “transition amplitudes” 〈ϕ|Û (−iβ)|ϕ〉 which start and end at the
same configuration ϕ.
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7.3 Effective Action and Free Energy

Quantum Mechanics There is a relation between effective action (7.2) and free
energy (7.16), (7.17). To see this, we start with a quantum-mechanical model: a sin-
gle Bose oscillator with the frequency ω being in a thermal state with the tempera-
ture T = β−1. We define the effective action for the oscillator

W+(β)≡−1

2
ζ ′+(0, β) (7.23)

in terms of the following ζ -function:

ζ+(s, β)≡
∞∑

l=−∞

[
σ 2
l +ω2]−s . (7.24)

One can show that ζ+(s, β) is well-defined at 	 s > 1/2 and its value in the rest part
of the complex plane can be obtained by analytical continuation. The numbers

σl = 2πl

β
(7.25)

are called the Matsubara frequencies. It can be shown, see Exercise 7.7, that

W+(β)= ln
(
1 − e−βω) + βω

2
= β(F (β)+E0), (7.26)

where E0 = ω/2 and F(β) is the free energy of the oscillator which follows
from (7.18). On the other hand, the Ray-Singer formula (5.46) allows one to con-
sider W+(β) as a determinant of an operator,

W+(β)= 1

2
ln det(−∂2

τ +ω2),

provided that −∂2
τ + ω2 acts on a space of functions ϕ(τ) subject to the periodicity

condition

ϕ(τ + β)= ϕ(τ). (7.27)

The corresponding base manifold is a circle of the length β . It is easy to see that
W+(β) is given in terms of a path integral like (7.3) with the classical action

I [ϕ] = 1

2

∫ β

0
dτ

(
(∂τ ϕ)

2 +ω2ϕ2), (7.28)

where ϕ(τ)’s are periodic functions (7.27). Note that equation of motion in such
classical theory, ∂2

τ ϕ = ω2ϕ, is related by the Wick rotation t→−iτ to the equation
of motion for a harmonic oscillator.

The case of a Fermi oscillator is considered analogously. One defines the effec-
tive action

W−(β)=− ln
(
1 + e−βω) − βω

2
= β(F (β)+E0), (7.29)
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where F(β) = −β−1 ln(1 + e−βω) is the free energy of a single Fermi degree of
freedom with the frequency ω. The vacuum energyE0 =−ω/2 differs from the vac-
uum energy of a boson by the sign, see Sect. 2.5 and Eq. (2.52). The r.h.s. of (7.29)
is chosen to coincide with (7.26). One can prove that

W−(β)= 1

2
ζ ′−(0, β), (7.30)

ζ−(s, β)=
∞∑

l=−∞

[
σ 2
l +ω2]−s , (7.31)

where the Matsubara frequencies are now defined as

σl = 2π

(
l + 1

2

)
1

β
. (7.32)

Derivation of (7.30) is left as Exercise 7.7. The effective action can be rewritten by
using the Ray-Singer formula,

W−(β)=−1

2
ln det(−∂2

τ +ω2)=− ln det(∂τ +ω), (7.33)

where the operators act on a space of functions on the circle subject to the anti-
periodic condition

ψ(τ + β)=−ψ(τ). (7.34)

On the last line of (7.33) we used the fact that ∂τ + ω and ∂τ − ω have the same
spectra (as a consequence of the symmetry of the Matsubara frequencies (7.32)).
The operator ∂τ + ω is analogous to the Dirac operator /D. The definition of the
spectral function ln det(∂τ +ω) follows the procedure developed in Sect. 5.6.

The difference between the Bose and Fermi statistics is not only in the boundary
conditions. The functionalsW+ andW− have different signs by the logarithms of the
determinants. For this reason W− is defined by the so-called Berezin path integral

e−W−(β) =
∫
Dψ̄Dψe−I [ψ̄,ψ], (7.35)

I [ψ̄,ψ] =
∫
ψ̄(τ )(∂τ +ω)ψ(τ) dτ, (7.36)

where ψ(τ) and ψ̄(τ ) are Grassmann functions which obey (7.34). The integration
rules for a single degree of freedom are∫

dψ = 0,
∫
dψ̄ = 0,

∫
ψ dψ = 1,

∫
ψ̄ dψ̄ = 1. (7.37)

It is implied that the differentials dψ and dψ̄ are Grassmannian variables as well. It
can be easily found∫

dψ̄ dψ e−aψ̄ψ =
∫
dψ̄ dψ (1 − aψ̄ψ)= a. (7.38)

This formula serves as a motivation for (7.35), as is shown in Exercise 7.2.



7.3 Effective Action and Free Energy 133

Field Theory Consider a free quantum field on a stationary background. Similar
to the case of a single oscillator there is a relation between the free energy and the
effective action in a field theory. To give an idea how this relation appears we use a
complex scalar field model, as an example.

Equations of motion on stationary backgrounds take the form, see Sect. 2.5,

P(∂t , ∂k)ϕ(t, x
k)=−(gμν∂μ∂ν + aμ∂μ + b(x))ϕ(t, xk) (7.39)

= (−P0∂
2
t + P1i∂t + P2

)
ϕ(t, xk)= 0, (7.40)

where xk are spatial coordinates and Pp is a p-th order differential operator which
does not depend on t . After the substitution ϕ(t, xk) = e−iωtϕω(xk) in (7.39) one
comes to nonlinear spectral problem (6.3)

P(iω, ∂k)ϕω(x
k)= [−ω2 +L(ω)]ϕω(xk)= 0, (7.41)

L(ω)= L2 +ωL1 +ω2L0. (7.42)

Here Lp is a p-th order operator. Examples of Eqs. (7.41), (7.42) were discussed in
Sect. 6.1.

With the help of (7.16) and the eigenvalues ωi of (7.41) one defines the free
energy F(β). The aim is to express F(β) in terms of the corresponding effective
actionW(β) which is the logarithm of determinant of some operator PE . The expe-
rience with the harmonic oscillator suggests that PE after Wick rotation (7.22) can
be associated with wave equation (7.40). Therefore, we propose, and then prove, the
following relation:

W(β)= ln detPE =−ζ ′(0;PE), (7.43)

where PE = PE(∂τ , ∂k)≡ P(i∂τ , ∂k). The periodic boundary conditions (7.27) with
respect to coordinate τ are implied in (7.43). We also assume that PE does not have
zero eigenvalues. Since ϕ is supposed to be complex, the r.h.s. of (7.43) does not
contain a factor of 1/2.

In general, PE it is not self-adjoint due to terms which contain a single time
derivative. It is however a Laplace type operator, which means that its heat ker-
nel K(PE; t) is well-defined. The zeta-function ζ(s;PE) is determined in terms of
K(PE; t) by (5.24) despite the complex eigenvalues. Consider the eigenvalue prob-
lem

PEϕ� =�ϕ�. (7.44)

Due to the isometry in τ and periodicity (7.27) one can make the substitution

φ�(τ, x)= eiσlτ φ�(x), (7.45)

where σl are the Matsubara frequencies (7.25), and get with the help of (7.42) the
following problem:

(σ 2
l +L(iσl))ϕ�(x)=�ϕ�(x). (7.46)
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It is convenient to consider a related sequence of the eigenvalue problems motivated
by (6.7)

L(iσl)ϕ
(σl)
λ (x)= λ(iσl)ϕ(σl)λ (x). (7.47)

Then spectrum in (7.44) is �l = σ 2
l + λ(iσl). We assume for simplicity that the

spectrum of λ(iσl) is discrete and consider the zeta-function

ζ(s;PE)= !−2s
∑
σl

∑
λ

(σ 2
l + λ(iσl))−s . (7.48)

Series (7.48) converges when 	 s > n/2, where n is the number of space-time di-
mensions, n ≥ 2. It is easy to see that λ∗(iσl) = λ(−iσl) and, therefore, ζ(s;PE)
is real for real values of s (as a consequence of the symmetry of the Matsubara
spectrum, −σl = σ−l). That is why W(β) is real as well.

By using the Cauchy theorem one can rewrite (7.48) as

ζ(s;PE)= !
−2s

2πi

∑
σl

∑
λ

∫
C

dz

z− σl (z
2 + λ(iz))−s . (7.49)

The contour C consists of two parallel lines, C+ and C−, in the complex plane.
C+ goes from (iε + ∞) to (iε − ∞) and C− goes from (−iε − ∞) to (−iε +
∞). Summation over σl in (7.49) can be performed with the help of (4.128) (see
Exercise 4.9)

ζ(s;PE)= !
−2sβ

4πi

∑
λ

∫
C

dz cot

(
βz

2

)
(z2 + λ(iz))−s . (7.50)

For the integral over C+ we use the identity

cot

(
βz

2

)
= 2

β

d

dz
ln

(
1 − eiβz) − i,

while for C−

cot

(
βz

2

)
= 2

β

d

dz
ln

(
1 − e−iβz)+ i.

One can change z to −z on C− to get

ζ(s;PE)= βf1(s)+ f2(s;β), (7.51)

f1(s)= !
−2s

2π

∑
λ

∫ ∞

−∞
(x2 + λ(ix))−s dx, (7.52)

f2(s;β)= !
−2s

2πi

∑
λ

∫
C+
dz
d

dz
ln

(
1 − eiβz)[(z2 + λ(iz))−s + (z2 + λ(−iz))−s].

(7.53)
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The function f2(s;β) represents a purely ‘thermal part’ of the zeta-function. It van-
ishes at zero temperature because of exponentially small factor coming from eiβz.

The contour C+ in (7.53) can be deformed to make the integrand exponentially
small at large z due to the factor eiβz. One can integrate then by parts to get

f2(s;β)
= s !

−2s

2πi

∑
λ

∫
C+
dz ln

(
1 − eiβz)

(
∂zχ̆(z, λ)

(z2 + λ(iz))s+1
+ ∂zχ̆(−z,λ)
(z2 + λ(−iz))s+1

)
,

(7.54)

where χ̆ (z, λ)≡ z2 + λ(iz). With the help of (7.43) and (7.51) the effective action
is expressed as

W(β)=−(
f ′

2(0;β)+ βf ′
1(0)

)
. (7.55)

To proceed one notes that f2(s;β) has a form sg(s;β) where g(s;β) is a function
which is finite at s = 0. Hence, f ′

2(0;β)= g(0;β), see (7.54). To compute g(0;β)
one adds to C+ a large semicircle lying in the upper half of the complex plane
and makes a closed contour. The exponent eiβz in the logarithm in (7.54) guarantees
that integration over the semicircle vanishes at large radii. The Cauchy theorem then
implies that

−f ′
2(0;β)=

∑
z+

ln
(
1 − eβiz+)+ ∑

z−
ln

(
1 − eβiz−)

, (7.56)

where z± are roots of algebraic equations

z2± + λ(±iz±)= 0. (7.57)

(One should choose the roots in the upper part of the complex plane, � z± > 0.) Let
us return to Eqs. (6.8), (6.9) for the spectrum of physical single-particle energies
wi in case of non-linear spectral problems. If we put z = iω, Eq. (7.57) becomes
equivalent to (6.8). On physical grounds we assume that all frequencies ωi are real,
therefore, all roots of (7.57) lie on the imaginary axis. One concludes that

−f ′
2(0;β)=

∑
wi

ln
(
1 − e−βwi ) = βF(β), (7.58)

where F(β) is the free energy of the system. The sum in (7.58) includes both the
positive and negative norm modes (the corresponding energies are w(+)i and w(−)i )
discussed in Sect. 2.1. For a real field, λ(iz)= λ(−iz) and the two terms in (7.54)
coincide.

According to (7.55) the relation between W(β) and the free energy is the same
as in the case of the harmonic oscillator,

W(β)= β(F (β)+E0). (7.59)

The constant E0,

E0 =−f ′
1(0) (7.60)
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has the meaning of the vacuum energy. We leave the proof of this fact for Exer-
cise 7.10.

Let us emphasize that problem (7.41) is uniquely defined by the wave opera-
tor (7.40) but the opposite statement is not true. It is clear, for example, that the
wave operators P(∂t , ∂k) and P ′(∂t , ∂k) = f (x)P (∂t , ∂k) (where f (x) is a non-
degenerate function of spatial coordinates) describe the same single-particle spec-
trum ωi . Therefore, the theories determined by the operators P and P ′ have the
same free energy. The effective actions of these theories, however, differ by finite
terms. This happens because there is a non-trivial transformation from ln detPE to
ln detP ′

E due to the properties of the Ray-Singer determinants considered Sect. 5.7.
It follows from (7.59) that the vacuum energies for theories determined by P and
P ′ differ as well.

We have analyzed a scalar field model. The results can be extended to the case of
Dirac fermions. The free energy in this case is given by (7.17) and can be related by
(7.59) to the effective actionW(β)=− ln det /D. This is an extension of Eqs. (7.29)
and (7.33) for a single Fermi oscillator.

7.4 Complex Geometries

To summarize the previous section, the free energy in a finite temperature field the-
ory can be determined in terms of an effective action which is the Ray-Singer de-
terminant for some class of Laplace type operators PE , see (7.43). The information
about the quantum state appears in periodic or anti-periodic boundary conditions
in temporal coordinate τ which has the period β = 1/T . For the purposes of the
present section it is convenient to use the notation φE for background fields and
W [φE] for the effective action.

The Green’s function for the operator PE is expressed in terms of the thermal
averages

G(x,x′)= θ(τ )〈(ϕ̂E(x)ϕ̂+E (x′))〉β + θ(−τ)〈(ϕ̂+E (x′)ϕ̂E(x))〉β, (7.61)

where x = (τ, yk), x′ = (0, (y′)k) and

ϕ̂E(τ, y)≡ ϕ̂(−iτ, y), (7.62)

see Exercises 7.12–7.14. One can immediately conclude, based on arguments of
Sect. 7.1, that variations of the effective action over φE yield values of certain oper-
ators in the thermal state.

To proceed with this statement we should dwell on properties of background
fields. The operator PE can be brought to the following form:

PE =−(gμνE ∂μ∂ν + aμE∂μ + b(x)), (7.63)

see (3.1). PE is obtained from a “Lorentzian” operator P under the Wick rota-
tion t → −iτ . By the construction, coefficients in (7.63) are related to coefficients
in (7.39) as

gττE =−gtt , gτkE = igtk, gikE = gik, aτE = iat , akE = ak. (7.64)
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To understand better the physical meaning of these quantities one can introduce a
functional IE[ϕ,φE] ≡ (ϕ+,PEϕ) which is a Euclidean analog of the classical ac-
tion. The dynamical variables ϕ in IE[ϕ,φE] are defined on some complex manifold
ME with a metric (gE)μν which is the inverse matrix of gμνE . Evidently, the line el-
ement on ME is obtained from the metric ds2 = gμν dxμ dxν on the corresponding
physical Lorentzian space-time M under the Wick rotation. If the theory contains
the gauge connections determined by the vector aμ their time components have to
be complexified as well, in accord with (7.64).

One concludes that a finite-temperature theory is equivalent to a covariant theory
on a complex background φE . There is a simple rule which relates a physical sta-
tionary background φ to its complex counterpart φE : the complex fields (the metric,
gauge connections and etc.) are obtained from the physical fields by multiplying
their components by the factor iq−p where q and p are, respectively, the number of
upper and lower temporal indexes.

Consider variations of W [φE] with respect to the Euclidean metric,

T
μν
E (x)=

2√
det |gE |

δW [φE]
δ(gE)μν(x)

. (7.65)

The arguments of Sect. 7.1 allow one to relate T μνE to the thermal average of the
components of the stress-energy tensor,

T ττE =−〈T̂ t t 〉β, T τkE = i〈T̂ tk〉β. (7.66)

Expectation values of other operators can be defined analogously.

7.5 Renormalization

The effective action method is equivalent to computations with the help of the point-
splitting procedure. There is, however, an apparent contradiction because the aver-
ages in the point-splitting procedure contain divergent terms which arise from the
singularities in Green’s functions, see Sect. 2.7.

The fact that effective action (7.43) appears to be free from the divergences is
an artifact of the ζ -function regularization. A complete structure of the divergences
in quantities like ln detPE can be studied with the help of PTC regularization con-
sidered in Sect. 5.8. By using (5.74) one can find the divergent part, Wdiv, of the
effective action,

Wdiv[φE, δ] = 2
n−1∑
p=0

ap(PE)

p− n δ
p−n

2 + (an(PE)−N) ln δ. (7.67)

Here δ is a regularization parameter, N is the number of zero modes of PE , and
ap(PE) are the heat kernel coefficients of PE . Variations of Wdiv over the metric
yield the divergent part of stress-energy tensor (7.65), in agreement with the point-
splitting method.
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Let us briefly describe the renormalization procedure which enables one to get
rid of the divergences and get physical quantities. Consider, as an example, the Ein-
stein equations (1.21) and assume that the quantum matter is the only source of the
gravitational field. One can cast the equations in a slightly different form,

1

8πGN

(
Rμν − 1

2
Rgμν

)
+ �

8πGN
gμν = 〈T̂μν〉β. (7.68)

The idea of renormalization is that the geometrical structure of the leading divergent
terms in 〈T̂ μν〉β coincides with the structure of the geometrical terms on the left
hand side of (7.68). Thus, one can redefine (renormalize) the coupling constants,
such as GN and �, to absorb divergences.

This procedure is more convenient to carry out on the level of the effective action.
Consider a functional

�[gE] = IB [gE] +W [gE]. (7.69)

Here IB [gE] is some classical action which has a pure geometrical form. It in-
cludes the Einstein action and some higher curvature terms. For instance, in a four-
dimensional theory, n= 4, on a closed manifold

IB [gE] = I [gE;GB,�B, ciB ] =
∫
d4x

√
gEL, (7.70)

L=
[
− �B

8πGB
− R

16πGB
+ c1

BR
2 + c2

BRμνR
μν + c3

BRαβμνR
αβμν

]
. (7.71)

(The difference in the sign with respect to the gravity action in the Lorentzian the-
ory (1.20) is related to the Wick rotation.) The constants GB,�B, ci are called the
“bare” constants. Coefficients ap(PE) in (7.67) are integrals of curvature powers
on ME , see (4.30)–(4.32). The quadratic curvature terms in (7.71) are needed to
eliminate the logarithmic divergences determined by a4(PE). The logarithmic term
N ln δ is non-local. It reflects the presence of infrared divergences, which have to be
treated in a different way.

The renormalization prescription consists in adding the divergent partWdiv[gE, δ]
to the bare classical action and redefining the couplings

I [gE;GB,�B, ciB ] +Wdiv[gE, δ] = I [gE;GN,�,ci], (7.72)

Wren[gE] =W [gE] −Wdiv[gE, δ]. (7.73)

The constants GN , �, ci are identified with the physical classical couplings while
the rest partWren[gE] (renormalized effective action) is used for calculation of quan-
tum corrections. For example, a quantum non-minimally coupled scalar field with
the operator PE = −∇2 + ξR + m2 results in the following relation between the
bare and physical Newton constants:

1

GN
= 1

GB
+ 1

2πδ

(
1

6
− ξ

)
. (7.74)

The physical value of GN is well measured. The precise values of the cosmolog-
ical constant � and couplings ci are a matter of future physical tests.
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7.6 Mean Field and the Coleman-Weinberg Potential

The effective action can be used to calculate averages of operators. In particular,
one can use this method to find the average value of a dynamical variable itself.
Consider, as an example, a model of a real scalar field in four-dimensional space-
time (n= 4). The corresponding action (after the Wick rotation) is

I [ϕ] =
∫
dτ d3x

[
1

2
∂μϕ∂

μϕ +U(ϕ)
]
, (7.75)

where U(ϕ) is a classical potential. The space-time is flat and the field is contained
in a box of a large volume V . The potential U(ϕ) is assumed to be an even polyno-
mial of ϕ such that U ′′(ϕ) > 0.

Let us write ϕ(x) in the following form

ϕ(x)= φ + χ(x) (7.76)

and require that ∫
V

d3x χ(x)= 0. (7.77)

Here φ is a constant which can be defined (in accord with (7.77)) as

φ = 1

V

∫
V

d3x ϕ(x). (7.78)

Hence, φ is the average value of the classical field configuration in the volume
V . In what follows we identify φ with a quantum average of the field operator,
the so-called mean field. Deviations χ(x) are related to quantum fluctuations. The
configuration φ serves as a classical background for χ(x).

Suppose that the system considered is in a thermal equilibrium with the temper-
ature T = β−1. The equilibrium state implies that φ does not depend on time. To
use the results of the previous sections we need a linear approximation in the theory.
This is possible when excitations are small and their self-interactions can be ne-
glected as compared to the interaction with the background. In this regime classical
action (7.75) can be approximated by the expression

I [φ + χ] = βVU(φ)+ I1[χ,φ] +O(χ3), (7.79)

I1[χ,φ] = 1

2

∫
d4x

[
∂μχ∂

μχ +m2(φ)χ2], (7.80)

m2(φ)=U ′′(φ). (7.81)

In the given approximation the total action can be written as

�[φ] = VβU(φ)+W [φ], (7.82)

where W [φ] is the effective action of the excitations

W [φ] = 1

2
ln detPE[φ]. (7.83)
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The operator PE = !2(−∂2 +m2(φ)) is defined on the base manifold S1 ×R3, the
length of S1 being equal to β . A dimensional parameter ! is introduced to make the
operator dimensionless.

In the considered approximation χ is a non-interacting field and its average van-
ishes, 〈χ̂〉β = 0, see Exercise 7.15. As a consequence, 〈ϕ̂〉β = φ. What is left to
determine is the value of φ. It is natural to require that φ coincides with a minimum,
φ0, of the total action

∂�[φ]
∂φ

∣∣∣∣
φ=φ0

= 0. (7.84)

The requirement comes from the classical theory. Also in statistical physics the
equilibrium state corresponds to a minimum of the free energy.

The divergent partWdiv[φ, δ] of (7.83) is determined by (7.67),

Wdiv[φ, δ] = βV

16π2

(
− 1

4δ2!4
+ m

2(φ)

2δ!2
+ (m

2(φ))2

4
ln δ

)
. (7.85)

Since PE is dimensionless, so does the regularization parameter δ. The physical
high-energy cutoff is δ−1/2!−1. There is a mismatch in the factor 1/2 in (7.85) with
respect to (7.67) because the field is real. Boundary terms in (7.85) are neglected
because the volume V is large.

The renormalization can be carried out if Wdiv[φ, δ] has the same structure as
the classical action I [φ] = βVU(φ). Let U(φ) be a N -th order polynomial in φ.
According to (7.81) and (7.85), the divergent part Wdiv[φ, δ] is a polynomial of the
order 2(N − 2). Renormalization condition requires that 2(N − 2) ≤ N or N ≤ 4.
This implies the following form for the potential:

U(φ)= a
2
φ2 + b

12
φ4, (7.86)

where a and b are some constants. We omit an additive constant in the potential
U(φ) because it does not change its minimum. Once the divergences are renormal-
ized away, one can use the Ray-Singer formula for a finite part of effective action
(7.83)

W [φ] = −1

2
ζ ′(0;PE). (7.87)

We have to stress that the divergent part of the effective action is defined up to a
finite expression having the same structure asWdiv. Consequently, the same expres-
sion may appear with an opposite sign in (7.87). This ambiguity corresponds to a
finite renormalization of couplings and has to be removed by imposing the so-called
normalization conditions discussed in Exercise 7.16.

Our primary interest is the vacuum state which is a limit of vanishing tempera-
ture (β→ ∞). In this limit, because the volume V is large, the heat kernel can be
approximated as K(PE; t) � (Vβ/!4) exp(−tm2!2)/(4πt2)2. This yields for the
zeta-function

ζ(s;PE)= βV

16π2!4

(m2!2)2−s

(s − 1)(s − 2)
. (7.88)
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It is convenient to introduce a density �[φ] of action (7.82),

�[φ] = �[φ]/(βV ). (7.89)

With the help of (7.86)–(7.88) one finds

�(φ)=U(φ)+ 1

64π2

(
U ′′(φ)

)2 ln
(
!2U ′′(φ)

)
. (7.90)

It is implied that U ′′(φ) > 0. Derivation of (7.90) ignores the condition (7.77). The
only eigenfunction of PE which does not respect (7.77) is a constant mode with
the eigenvalue m2(ϕ). The contribution of this mode has to be excluded from the
spectrum. The corresponding modification of the potential is not essential, however,
in the limit of large volume.

The function �(φ) is an important object called the Coleman-Weinberg po-
tential. The Coleman-Weinberg potential includes the classical part U(φ) given
by (7.86) in terms of the renormalized constants a, b and a quantum correction. Min-
imal points of �(φ) determine the values of the mean field in the quantum theory.
Properties of the Coleman-Weinberg potential are further studied in the exercises to
this Chapter.

7.7 Feynman Diagrams and Beta Functions

The notion of the effective action goes beyond the scope of non-interacting finite-
temperature theories. The effective action can be introduced in the presence of inter-
actions and it acquires an additional meaning as a generating functional for a certain
class of Green’s functions, so-called one-particle irreducible diagrams. Some effects
related to interactions can be described even with techniques introduced in the pre-
vious sections. These effects are reduced to interactions between dynamical and
background fields.

To illustrate this idea consider the effective action in quantum electrodynamics
(QED). Due to the presence of virtual electron-positron pairs the electric potential
of a test particle in a vacuum state in QED differs from the Coulomb form. Modi-
fication of the Coulomb’s law can be taken into account by adding to the classical
Maxwell functional the effective action of an electron in a background electric field
with potential Aμ

W [A] = − ln det!( /D(A)+m). (7.91)

Here /D(A)= iγ μDμ(A), Dμ(A)= ∂μ + ieAμ, m is the mass of the electron and
e is its charge. The action is defined by the corresponding determinant in a gauge
background. It is a variation of W [A] over Aμ that yields a quantum correction to
the Maxwell equations.

For a computational convenience we use finite-temperature formalism and as-
sume that Aμ is static, though little changes in the calculations for a generic form of
the background electromagnetic potential. The vacuum case is restored in the limit
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of zero temperature. In the PTC regularization the action is

W [A] = −1

2
ln det!2(L(A)+m2)= 1

2

∫ ∞

δ

dt

t
K(L(A); t)e−tm2

, (7.92)

L(A)= /D
2
(A)=−Dμ(A)Dμ(A)+ ie

4
[γ μ, γ ν]Fμν. (7.93)

We have rescaled in (7.92) the dimensionless PTC cutoff parameter by multiplying
it by the factor !2. From now on δ has the dimension of the length square.

The strength of the electromagnetic field is supposed to be weak, |eFμν | �m2,
where Fμν is the Maxwell tensor. Under these conditions, because of the factor

e−tm2
, the main contribution to (7.92) comes at small t (δ < t <m−2). One can use

the asymptotic expansion for K(L(A); t) to get

W [A] � 1

2

∑
p=0

ap(m
2)2−p/2�

(
p/2 − 2,m2δ

)
. (7.94)

Here ap are the heat coefficients of L(A), and

�(z, x)=
∫ ∞

x

dy yz−1e−y

is the incomplete gamma-function, x > 0. We neglect boundary effects and use a
short x asymptotic of �(z, x) to get the following expansion:

W [A] ∼ C + a4

2
lnm2δ + a6

2m2
+ a8

2m4
+ · · · . (7.95)

We have noted that a2 = 0, see (4.57). The coefficient a0 yields a constant divergent
contribution C which is not essential for the further discussion. It follows from
(4.58) that

a4 = e2

24π2

∫
d4x FμνF

μν, (7.96)

where
∫
d4x = β ∫

d3x. It is not difficult to understand that each coefficient ap is a
polynomial in the fine-structure constant α ≡ e2/(4π), the order of the polynomial
being [p/4], p is even. Therefore, (7.94) can be also rearranged as an expansion
in α. One may say that (7.94) sums contributions of what is known as the one-
loop Feynman diagrams. Each such a diagram consists of a fermion loop and a
number of lines corresponding to Aμ, called the “external legs”. Examples of one-
loop diagrams are shown on Fig. 7.1. A diagram proportional to αk has the following
structure:∫

d4x1 d
4x2 . . . d

4x2kW
μ1,μ2,...,μ2k
(2k) (x1, x2, . . . , x2k)Aμ1(x1) . . .Aμ2k (x2k)

= (−1)ke2k
∫
d4x1 d

4x2 . . . d
4x2k Tr

[
γ μ1G(x1 − x2)γ

μ2G(x2 − x3) . . .

. . . γ μ2kG(x2k − x1)
]
Aμ1(x1) . . .Aμ2k (x2k) (7.97)
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Fig. 7.1 Feynman diagrams which contribute to the effective action in QED. The loops correspond
to propagation of virtual electrons and positrons, the legs are the photons. The vertexes describe
interaction of virtual particles with the external electromagnetic background. Each vertex carries
the electric charge e

where G = ( /D(0) + m)−1 is the Green function for the Dirac spinor, see the Ex-
ercise 7.22. Our results follow in the limit of large m. Diagrams with odd num-
ber of legs vanish in agreement with the symmetry of the effective action (7.91),
W [A] =W [−A]. This property constitutes a statement of the Furry theorem.

Heat kernel coefficient (7.96) is related to a diagram on Fig. 7.1 with two legs.
This diagram determines the so-called polarization operator and results in modifica-
tion of the Coulomb’s law. It is the only one-loop diagram which is divergent in four
dimensions. The coefficient a8 is proportional to the integral of (FμνFμν)2 and cor-
responds to a finite diagram with four legs. This diagram determines photon-photon
scattering.

Let us discuss renormalization of the divergences. The total action in a static
gauge field is the sum of classical and quantum parts (compare with (7.82))

�[A] = 1

4

∫
d4x FμνF

μν + �W [A]

= Z(δ)
4

∫
d4x FμνF

μν + �
a6

2m2
+ �

a8

2m4
+ · · · , (7.98)

Z(δ)= 1 + �
e2

12π2
lnm2δ. (7.99)

Here we have restored the Planck constant �. To remove the divergences one defines
a new gauge potential Āμ = √

ZAμ. After that the first term in the effective action
takes the canonical form,

Z(δ)

4

∫
d4x FμνF

μν = 1

4

∫
d4x F̄μνF̄

μν, (7.100)

where F̄μν is the strength for Āμ. Because we restrict ourselves to the effects up to
first order in � one can just replace Aμ by Āμ in the next terms in (7.98).

If charged particles are present, there must be an interaction term in the La-
grangian, eA0ρ, where ρ is a density of the particles. To preserve the form of the
interaction, the field redefinition should be accompanied with a renormalization of
the charge, ē= e/√Z, and of the fine-structure constant. One gets the relation

1

ᾱ
= 4π

ē2
= Z(δ)

α
= 1

α
+ �

3π
lnm2δ. (7.101)

Here ᾱ is identified with an observable coupling, α is the bare constant.
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We have calculated the divergent part of effective action only. The finite part,
which generates the amplitudes, is a more complicated non-local functional of the
background fields. However, some of the amplitudes may be viewed upon as clas-
sical ones but with the charges depending on a characteristic momenta μ of the
particles participating in these amplitudes. In QED such running coupling constant
is α(μ2). The rate of change of α(μ2) is measured by the so-called beta function

β(α)= μ2 dα(μ
2)

dμ2
. (7.102)

It is an amazing property of some renormalizable field theories, including QED,
that the beta function can be calculated from the same formula (7.101) with the
replacement α(μ2) = ᾱ(1/δ) where μ2 = 1/δ, i.e. by using the cut-off instead of
the energy scale. This fact, related to the lack of dimensionful parameters in an
asymptotic regime, will be left here without further comments. The interested reader
can consult textbooks mentioned at the end of this Chapter. In QED at the one-loop
order the formula (7.101) with μ= 1/

√
δ yields

β(α)= �
α2

3π
. (7.103)

Positivity of the beta-function indicates that in QED the coupling grows with ener-
gies.

7.8 Gauge Fields and Ghosts

Let us discuss, in a rather non-rigorous manner, some generic features of the ef-
fective action of quantized gauge fields. To set the stage we first consider a simple
example and return to results of Sect. 2.3.

The example is the free energy of photons in a pure Maxwell theory in a static
gravitational field. To define the free energy one needs the single-particle spectrum
of physical modes. One can use results of Exercises 2.5, 2.6, 2.9. In the Lorentz
gauge ∇μAμ = 0 the Maxwell equations are reduced to

∇2Aμ −RνμAν = 0, (7.104)

where Rνμ is the Ricci tensor of the background metric. Let ω(1)i be the single-

particle spectrum (vector modes) for Eq. (7.104), and ω(0)i be the corresponding
spectrum (scalar modes) for scalar equation ∇2ϕ = 0 on the same background. It
follows from the results of Exercise 2.9 that the free energy of photons is repre-
sented in the following form:

F(β)= F(1)(β)− 2F(0)(β), (7.105)

where F(1)(β) and F(0)(β) are defined by (7.16) for the vector and scalar modes,
respectively. Subtracting the contribution of the scalar modes in (7.105) is needed
because the spectrum of vector modes which are solutions to (7.104) is larger than
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the physical spectrum. To satisfy the Lorentz gauge condition, one has to exclude the
longitudinal modes for which ∇μAμ �= 0 and the modes Aμ = ∂μλ with ∇2λ= 0.

An analogous representation, E0 = E(1)0 − 2E(0)0 , can be written for the vacuum
energy of photons.

Let us note that F(β) is a gauge-independent object. One can use other gauge fix-
ing conditions leading to different functionals F(1)(β) and F(0)(β). The functional
F(β) remains unchanged.

An interesting result for the effective action of photons follows from (7.105).
If one takes into account its relation with the free energy, Eq. (7.59), the action
acquires the form

W(β)= 1

2
ln det(�(1))− ln det(�(0)), (7.106)

where �(1) and �(0) are vector and scalar Laplacians (3.5) and (3.4), respectively.
One should pay attention to the last term in the r.h.s. of (7.106) where the determi-
nant of the scalar Laplace operator enters with a wrong sign. Quantum fields which
could be responsible for this term in the action should transform as scalars but quan-
tized according with the Fermi statistics. Since such fields are unphysical they are
called ghosts, namely the Faddeev-Popov ghosts.

Although we have started on a static background, formula (7.106) is valid on an
arbitrary Euclidean space. In this generic case, the argument the effective action W
depends upon is not the inverse temperature β , but rather the whole n-dimensional
geometry.

The appearance of ghosts does not mean, of course, that the theory is pathologi-
cal. The ghosts are needed to keep the right number of physical degrees of freedom
and to carry out the computation in a convenient way. Related to the existence of
ghosts there is a special type of a global symmetry which plays an important role in
quantizing the gauge theories. To see it let us write a classical action whose quanti-
zation leads to (7.106)

I [A,c, c̄] =
∫
dnx

√
g

[
1

4
FμνF

μν + 1

2
(∇A)2 +∇μc̄∇μc

]
, (7.107)

where c and c̄ are the ghost and anti-ghost fields. The functional is invariant with
respect to the so-called Becchi-Rouet-Stora-Tyutin (or BRST) transformation

δAμ(x)=∇μ(λc(x)), δc̄(x)=−λ∇A(x), δc= 0, (7.108)

where λ is a Grassmann variable which anti-commutes with the ghost fields.
What we have just revealed is a particular application of a general approach to

quantization of gauge theories. In fact, the approach has been suggested to deal with
non-Abelian gauge fields. Consider an action I [A] for some gauge fields A which
is invariant under infinitesimal gauge transformations δξA= l(ξ) where ξ is a local
parameter, and l is a linear operator which can depend on A or on other fields. Be-
cause of the gauge symmetry I [A+ δξA] = I [A] the action is degenerate, and so
is the relativistic inner product constructed from a linearized version of this action,
see Sect. 2.3. To eliminate this degeneracy, let us introduce a set of gauge-fixing
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conditions F (A)= 0. These conditions eliminate the gauge freedom meaning that
their solutions intersect each orbit of the gauge group in exactly one point. Gener-
ically, such conditions cannot be chosen globally on the whole space of the fields,
but as we have already pointed out, since we are working with small fluctuations
only, this is not a problem. Clearly, we need, roughly speaking, one gauge fixing
conditions for each gauge transformation. Then one adds a gauge-breaking term
1
2

∫
dnx

√−g(F (A))2, where one must include a summation if there is more than
one condition per point. Also, one has to introduce ghost fields c̄ and c with the
Lagrangian density c̄F (l(c)), so that the total action becomes

Igauge fixed[A,c, c̄] = I [A] +
∫
dnx

√
g

[
1

2
(F (A))2 + c̄F (l(c))

]
, (7.109)

where the ghosts have the same transformation properties with respect to the space-
time symmetries as the gauge transformation parameters, but are Grassmann vari-
ables. After the gauge freedom has been fixed, the resulting action is non-degenerate
and can be quantized in the usual way, though with the fields having a non-standard
statistics. One can easily see that action (7.107) has precisely the form (7.109).

The situation is not always so easy. In many models one has to introduce higher
(cubic, quartic, etc.) ghost terms in the action as well as more ghosts fields (the so-
called “ghosts for ghosts”). However, the very simple formalism described above
works for most of the models in the leading (one-loop) order of the perturbation
theory. This all is, of course, well known, and is included here mostly for the ref-
erence purposes. An important and less trivial application of the spectral theory in
case of non-Abelian gauge models is considered in the next section.

7.9 The Asymptotic Freedom in Quantum Chromodynamics

We complete this Chapter with a computation of the one-loop beta function in the
quantum chromodynamics (QCD). The computation is rather challenging in terms
of Feynman diagrams and our purpose is to demonstrate here a full power of an
alternative technique based on the spectral theory.

Before starting actual calculations, we have to make an important comment. The
principal role of effective action in quantum field theory is to generate Feynman
diagrams through variational derivatives with respect to background fields. Strictly
speaking, only the so-called one-particle-irreducible diagrams may be generated,
but these are the graphs responsible for renormalization. Therefore, removing diver-
gences from the effective action one simultaneously renormalizes all diagrams to a
given order. It is clear therefore that the background fields must be essentially un-
constrained to allow arbitrary (small) variations. In this section, our purpose is rather
moderate: we like to calculate the charge renormalization only. That is, we are inter-
ested in the coefficient in front of FμνFμν in divergent part of the effective action.
Clearly, to calculate just this coefficient it is sufficient to consider a rather restricted
set of background fields (as, e.g., a stationary field satisfying classical equations of
motion). For such fields we may safely use the construction of the effective action
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presented above in this Chapter. For generic background fields one has to use a
more profound scheme based on the Legendre transform, which is explained in any
textbook on quantum field theory.

QCD is a gauge theory of the color SU(3) group with the spinors (quarks) be-
longing to the fundamental representation and the gauge fields called gluons with
the classical action

I =
∫
d4x

[
1

4
FaμνF

aμν + ψ̄ /Dψ
]
, (7.110)

with the Dirac operator /D = iγ μDμ(A),Dμ(A)= (∂μ+gAaμTa). Here Ta = iλa/2
are anti-Hermitean generators of the algebra su(3) corresponding to the color group
SU(3), and λa are the Gell-Mann matrices. These generators satisfy the conditions

trTaTb =−1

2
δab, [Ta,Tb] = fabcTc, (7.111)

where the structure constants fabc are totally antisymmetric. These structure con-
stants are used to construct the field strength Faμν = ∂μAν − ∂νAμ + gfabcAbμAcν
in the usual way. The gluon fields belong to the adjoint representation of the al-
gebra su(3) where the basic generators are represented by the structure constants,
ad(Ta)bc =−fabc . The corresponding trace form is

tr(ad(Ta) ad(Tb))= facdfadc =−3δab. (7.112)

The color indices a, b, c are moved up and down with the Kronecker delta, which
makes their actual position inessential. The gluon fields are proportional to the unit
matrix in flavor indices. For simplicity we suppose that quarks are light and their
masses are neglected.

The quantization can be performed with the help of Exercises 2.9, 2.10 by using
explicit mode analysis, as in case of QED. Here we apply the quantization scheme
of Sect. 7.9. The both methods, of course, yield the same results. Let Bμ denote the
background gluon field, and Aμ denote fluctuations over the background. We use a
set of Lorentz-like background gauge conditions

0 = F c(A)= (Dμ(B)Aμ)c = ∂μAcμ + gfabcBaμAbμ. (7.113)

We use the same letter for the covariant derivatives acting on spinors and vector
fluctuations since they are the same objects taken in two different representations.
The linearized gauge transformation of Aμ reads

δξA
a
μ =Dμ(B)ξa. (7.114)

By collecting everything together, substituting in (7.109), and truncating to the
quadratic order in Aμ and ψ one obtains the following gauge fixed action:

Igauge fixed =
∫
d4x

[
1

2
Aaμ(−D2(B)abδμν + 2gF(B)cμνfabc)A

bν + ψ̄ /D(B)ψ

+ c̄aD2(B)abcb
]
. (7.115)
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Consequently, the effective action consists of two contributions

W [B] =Wf [B] +Wg[B]. (7.116)

Here,Wf [B] is the effective action of quarks in the background gauge field,

Wf [B] = − ln det! /D(B). (7.117)

The quark part Wf [B] is an analog of electron-positron effective action (7.117) in
QED. Since the gluons have a self-interaction they contribute to the total action as
well:

Wg[B] = 1

2
ln det!2(−δμν D2(B)+ 2gFμν

) − ln det!2(−D2(B)
)
, (7.118)

where we suppressed the color index structure.
One can now proceed as in Sect. 7.7 to get (compare with (7.95))

W [B] = C − 1

2

(
a
(1)
4 − 2a(0)4 − a(1/2)4

)
ln l−2δ + · · · , (7.119)

where the dots denote non-divergent terms of higher order in the gauge strength
or in its derivatives. Since the fields are massless, an infrared cutoff parameter l
associated with a size of the system has been introduced. The value of l plays no
role for further analysis. The heat kernel coefficients a(1)4 , a(0)4 , a(1/2)4 correspond to
the operators

L(1) =−δμν D2(B)ab + 2gFμcνfabc, (7.120)

L(0) =−D2(B)ab, (7.121)

L(1/2) = /D
2
(B)=−Dμ(B)Dμ(B)+ g

4
[γ μ, γ ν]FaμνTa. (7.122)

To complete the calculation it only remains to calculate the traces in (4.58). Note
that for the operator L(1) the trace is taken over vector and color indices, while
for L(0)—over color indices only. In both cases condition (7.112) is useful. The
trace for L(1/2) is a spinor trace, a color trace in the fundamental representation (see
normalization condition (7.111)), and a trivial trace over the flavor indices which
produces a factor of Nf in (7.125) below

a
(1)
4 = 5g2

16π2

∫
d4x Fa μνF

μν
a , (7.123)

a
(0)
4 =− g2

64π2

∫
d4x Fa μνF

μν
a , (7.124)

a
(1/2)
4 = g

2Nf

48π2

∫
d4x Fa μνF

μν
a , (7.125)

where Fa μν is always the strength of the background field B . Therefore,

a
(1)
4 − 2a(0)4 −Nf a(1/2)4 = g2

16π2

(
11

2
− Nf

3

)∫
d4x Fa μνF

μν
a . (7.126)
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The total action is the sum of the classical Yang-Mills action and a quantum correc-
tion,

�[B] = 1

4

∫
d4x Fa μνF

μν
a +W [B] = Z(δ)

4

∫
d4x Fa μνF

μν
a + · · · , (7.127)

Z(δ)= 1 − g2

8π2

(
11

2
− Nf

3

)
ln l−2δ, (7.128)

where we used (7.119). The renormalization is reduced to the redefinition of fields
and the coupling, B̄μ =√

ZBμ, ḡ = g/√Z. The non-Abelian strength tensor Fa μν
in the classical Yang-Mills action includes the term gfabcBbμB

c
ν . This term is renor-

malized under the above redefinitions. The relation between the physical coupling
constant, ᾱg = ḡ2/(4π), and the bare coupling, αg = g2/(4π), follows from (7.128)

1

ᾱg
= 1

αg(δ)
= 1

αg
− 1

2π

(
11

2
− Nf

3

)
ln l−2δ. (7.129)

The running coupling αg(μ) is defined by (7.129) with some energy scale μ =
1/

√
δ. This yields the famous QCD beta-function

β(αg)= μ2 dαg(μ
2)

dμ2
=− α

2
g

6π

(
33

2
−Nf

)
. (7.130)

The sign of the beta-function depends on number of quark flavors Nf . The sign is
negative if Nf ≤ 16, which is the case of QCD. Thus the QCD running coupling
decreases at short distances and quark interactions become weaker. This is an im-
portant physical phenomenon known as the asymptotic freedom.

7.10 Literature Remarks

Quantum field theories at finite temperatures have been formulated in pioneering
works by E. Fradkin, T. Matsubara, J. Schwinger, see [183, 184] in the middle of
the twentieth century. They have a number of important applications ranging from
QCD to physics of the early universe. It was not the aim of this Chapter to give a
consistent introduction to finite temperature theories. Rather we used this formalism
because the corresponding wave operators are of Laplace type and spectral functions
are well-defined. More details can be found in vast existing literature. We mention
just few references. Functional integral representation of the partition function is in-
troduced in the classical book by R. Feynman and A. Hibbs [109]. A review of finite
temperature theories can be found in [119, 177], a fundamental modern monograph
is [166].

The complex manifolds and a Wick rotation in gravity theories were first mo-
tivated and described in works by Hartle and Hawking [154] and by Gibbons and
Hawking [129–131]. The metric on complex manifolds ME has the positive-definite
signature but contains complex components, see Sect. 7.4. If M is a stationary man-
ifold which describes a solution to the Einstein equations the metric of its complex
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counterpart, ME , can be made real if some of its parameters are analytically contin-
ued to imaginary values. After that ME becomes a genuine Riemannian manifold.
The obtained geometries are solutions to the Euclidean Einstein equations and are
called the gravitational instantons. An example of a gravitation instanton is given
in Sect. 1.4. The Euclidean approach can be used to formulate thermodynamics of
black hole. One can show [130] that Euclidean Einstein action on a black hole in-
stanton is analogous to a free energy and can be used to infer thermodynamical
characteristics of a black hole. Properties of gravitational instantons are discussed
in [99].

The effective action is an integral part of almost all modern text books on quan-
tum field theories, see e.g. [161, 163, 205, 253]. So does a discussion of the asymp-
totic freedom discovered by Gross and Wilczek [145], and Politzer [209]. The au-
thors of this discovery were awarded the Nobel Prize in Physics in 2004. A pedagog-
ical introduction to quantization of gauge theories and Faddev-Popov ghosts [107]
is presented in [108]. The methods of renormalization group theory are presented in
full in [241].

The number of references where effective action in external backgrounds and its
applications is discussed is too big to be reviewed. The classical book here is by
Birrell and Davies [37]. Some other monographs are [18, 53, 100, 101, 103–105,
193, 194]. Few more known research papers useful for introduction in the subject
are: a classical paper on finite temperature quantum theory in static space-times is
[93], a pioneering calculation of the effective action on S4 with application to phase
transitions in de Sitter universe is [4]. More properties of the effective action is
discussed in the exercises below and in the next Chapter.

Recommended Exercises are 7.4, 7.7, 7.8, 7.9, 7.12–7.14, 7.16, 7.19, 7.21.

7.11 Exercises

Exercise 7.1 Let L be a second order positive operator with a discrete spectrum.
Find arguments in favor of the following definition of the functional integral∫

[Dϕ]e−(ϕ,Lϕ) ≡ (detL)−1/2, (7.131)

where ln detL is determined by using Ray-Singer formula (5.46).

Exercise 7.2 Let /D be a selfadjoint Dirac-type operator which does not have zero
eigenvalues. Use Berezin rules (7.37) to define the following path integral:∫

[Dψ̄][Dψ]e−(ψ̄, /Dψ) ≡ (det /D). (7.132)

Moreover, ln(det /D)≡− 1
2ζ

′(0, /D2
) if the spectrum of /D is symmetric.

Exercise 7.3 Show that the thermodynamical entropy can be represented as

S � lnN, (7.133)
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where N is the number of microscopic states corresponding to given macroscopic
parameters (energy, pressure and etc.).

Exercise 7.4 Find asymptotics of the free energy of a quantum scalar field in a
thermodynamical limit. Suppose that system is in a cubic box of a volume V = ln−1

in a n-dimensional Minkowski space-time and the temperature T is high, T l� 1.
Use this formula to reproduce the Stefan-Boltzmann law for the energy of black
body radiation in n= 4

E = π
2

45
V T 4. (7.134)

Exercise 7.5 Calculate the free-energy of a massless scalar field on an interval of
the length l (in two-dimensional Minkowski space-time). Consider the thermody-
namical limit T l� 1 and find subleading corrections to the leading term in the free
energy discussed in Exercise 7.4.

Exercise 7.6 Define the free energy of a massless scalar field on a circle of length l
(in two-dimensional Minkowski space-time) which rotates with a constant angular
velocity � (�< 2π/l). Calculate the free energy in the thermodynamical limit.

Exercise 7.7 Use formulas [142]
∞∑
l=1

ln

(
1 + ω

2

σ 2
l

)
= ln

(
1 − e−βω)+ βω

2
− lnβω, (7.135)

∞∑
l=0

ln

(
1 + ω

2

σ̃ 2
l

)
= ln

(
1 + e−βω)+ βω

2
− ln 2, (7.136)

to prove (7.26) and (7.29). The Matsubara frequencies σl , σ̃l are given by (7.25)
and (7.32), respectively.

Exercise 7.8 Consider the wave operator of the form PE(z) = z2 + L(iz), where
L(iz) is a Laplace type operator and z is a complex parameter having the meaning
of frequency, see (7.41). Use the asymptotic expansions

TrL2 exp(−tPE)∼
∞∑
p=0

t
p−n

2 ap(PE),

K(L(ω); t)= Tr e−tL(ω) ∼
∞∑
p=0

ap(ω)t
p−n/2,

and decompositions (6.19),

a2k(ω)=
k∑
m=0

am,kω
m, a2k+1(ω)=

k∑
m=0

bm,kω
m,
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to prove the following representation for the heat coefficients ap(PE):

a2k(PE)= β

2π

2k∑
m=k
(−1)k−m�

(
m− k + 1

2

)
a2(m−k),m, (7.137)

a2k+1(PE)= β

2π

2k∑
m=k
(−1)k−m�

(
m− k+ 1

2

)
b2(m−k),m. (7.138)

Exercise 7.9 Use (7.137) and results of Chap. 6 to prove the following relation be-
tween the heat coefficient an(PE) of the operator PE(z)= z2 +L(iz) and the coef-
ficient an in pseudo-trace expansion (6.17) for a NLSP associated with the operator
L(ω):

an(PE)= β√
4π
an. (7.139)

The relation holds on a space-time with even dimensions n, corresponding NLSP
(6.3) is (n− 1)-dimensional.

Exercise 7.10 Let f1(s) be defined by (7.52). Prove that −f ′
1(0) in equality (7.60)

can be related with a (suitably regularized) vacuum energy

E0 = 1

2

∑
i

ωi .

Exercise 7.11 Consider representation (7.51) for the zeta-function ζ(s;PE). Prove
that the singular part of the function f1(s) (see definition (7.52)) in the com-
plex plane of the parameter s reproduces poles of ζ(s;PE). Use formulas (7.137),
(7.138).

Exercise 7.12 Consider a free complex field ϕ which obeys the Bose statistics
(a scalar field, for example) and its decomposition into creation and annihilation
operators

ϕ(x)=
∑
i

aif
(+)
i (x)+

∑
j

b+j f
(−)
j (x),

see Sect. 2.1, Eq. (2.25). It is assumed that ϕ is defined on a stationary background
and the corresponding single-particle spectrum is strictly positive, ω(±)i > 0. Find a
representation of the Wightman functions

G+
β (x, x

′)= 〈ϕ̂(x)ϕ̂+(x′)〉β, G−
β (x, x

′)= 〈ϕ̂+(x′)ϕ̂(x)〉β
in terms of single particle modes. By using this representation show that G+

β , as a
function of the time variable t , can be analytically continued in the complex plane
z = t + iτ and defined in the strip −β < τ < 0, −∞ < t <∞. Analogously, G−

β

can be defined in the strip 0< τ < β , −∞< t <∞.
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Exercise 7.13 On a stationary background the Green’s functions depend on a single
time coordinate. It is convenient to use the following notation:

G±
β (t;y, y′)≡G±

β (x, x
′),

where the arguments are x = (t, yk), x′ = (0, (y′)k) and yk are purely spatial coor-
dinates. Let us define a new Green’s function, G̃β(z, y, y′), such that

G̃β(z, y, y
′)=G+

β (z, y, y
′), if � z < 0, (7.140)

G̃β(z, y, y
′)=G−

β (z, y, y
′), if � z > 0, (7.141)

where z= t + iτ . By using results of the Exercises 2.4 and 7.12 prove the following
properties (which hold in case of fields with the Bose statistics):

i) G̃β(z, y, y′) is an analytic function of z everywhere in the strip −β < Im z <

β , −∞ < t <∞ except the domains where the Wightman functions G±
β have

singularities;
ii) there is a periodicity property

G̃β(z− iβ, y, y′)= G̃β(z, y, y′) (7.142)

which allows one to continue G̃β further in the complex plane.

Exercise 7.14 Introduce the function G(τ, y, y′) ≡ G̃β(−iτ, y, y′). Based on re-
sults of Exercise 7.13 prove the following properties:

i) G can be written as a time-ordered correlator,

G(τ, y, y′)= 〈TE(ϕE(x)ϕ+E (x′))〉β
= θ(τ )〈(ϕE(x)ϕ+E (x′))〉β + θ(−τ)〈(ϕ+E (x′)ϕE(x))〉β, (7.143)

where the operators ϕE are defined as ϕE(τ, y)≡ ϕ(−iτ, y);
ii) G obeys the periodicity condition, G(τ + β,y, y′)=G(τ, y, y′);

iii) G is a solution to the equation:

PE(∂τ , ∂i)G(x, x
′)= δ(n)(x, x′). (7.144)

Here δ(n)(x, x′)= δ(n)(x−x′)/√|det(gE)μν | and components of the metric are
defined in (7.64).

Exercise 7.15 Prove that 〈ϕ〉β = 0 if ϕ is a free field.

Exercise 7.16 Consider a scalar field theory with the classical potential

U(ϕ)= λ
4
(ϕ2 −μ2)2. (7.145)

It is supposed that λ > 0. To fix the parameters of the corresponding Coleman-
Weinberg potential in a quantum theory the following conditions can be imposed:

�′(ϕ =±μ)= 0, �′′(ϕ =±μ)= 2λμ2. (7.146)
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Give an interpretation of these conditions and derive the Coleman-Weinberg poten-
tial (7.90) for this model by using (7.146).

Exercise 7.17 Consider a model which consists of a charged complex scalar field
interacting with an Abelian gauge field. The classical Lagrangian is

L[ϕ,Aμ] = −1

2
(Dμϕ)

∗Dμϕ − λ
4
(|ϕ|2 −μ2)2 − 1

4
FμνF

μν, (7.147)

where Fμν = ∂μAν − ∂νAμ and Dμ = ∂μ − ieAμ. The theory is invariant with
respect to localU(1) gauge transformations. The classical potential has a continuous
family of minima at |ϕ| = μ. Model (7.147) can be used to illustrate the Higgs
mechanism; the gauge group is spontaneously broken in the vacuum state because
the gauge field acquires a mass m2

v = e2μ2 when |ϕ| = μ.
Calculate the Coleman-Weinberg potential for model (7.147) in the regime when

e2 � λ. Show that in the ground state quantum corrections result in appearance of a
new minimum where the symmetry is restored.

Exercise 7.18 Coleman-Weinberg potential (7.90) was derived by assuming that
U ′′(φ) > 0. If U ′′(φ) < 0 the single-particle spectrum contains modes with imagi-
nary frequencies. These are the modes whose spatial momenta |p| are smaller than
the “mass” m=√−U ′′(φ). Although such modes do not contribute to energy (see
the discussion in the end of Sect. 6.2) and they should not be quantized, one can
formally use the following definition of the ground state effective potential

�(φ)=U(φ)+ V −1
∑
i

ωi, (7.148)

where summation goes over both real and imaginary energies with a convention that
	ωi > 0 and � ωi < 0.

Use (7.148) to extend (7.90) to the case U ′′(ϕ) < 0 and derive the following
formula:

�(φ)=U(φ)+ 1

64π2

(
U ′′(φ2)

)2[ln |U ′′(φ2)| − iπθ(|U ′′(−φ2)
)]

=U(φ)+ 1

64π2

(
U ′′(φ2)

)2 ln
(
U ′′(φ2)− iε). (7.149)

The presence of complex energy modes results in an instability of the system. Show
that the imaginary part, � �(φ), can be used to find a probability for the system to
decay in a unit volume per unit time.

Exercise 7.19 The high temperature limit is one of the regimes when the effective
action can be computed analytically and has a number of important applications.

Consider a theory whose single particle spectrum in a stationary spacetime is
described by a non-linear spectral problem which can be brought to form (6.3).
Suppose that the coefficients ap of asymptotic expansion (6.17),

K(t)= 1

2

∑
ω

e−tω2 ∼
∞∑
p=0

apt
p−(n−1)/2,
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are known. Show that at large temperatures the effective action of the theory (7.2)
can be approximated as

W [φE] � − 2n√
πβn−1

n−1∑
p=0

γn,p�

(
n− 2p

2

)
ζ(n− 2p)a2p

(
β

2

)2p

+ β√
π
an ln(μβ), (7.150)

where ζ(x) is the Riemann zeta-function (5.5). The expansion is applicable to the
case of a complex scalar field or a Dirac field on a closed manifold of the space-
time dimension n. The coefficient γn,p = 1 for Bosons and γn,p = 1 − 22p+1−n for
Fermions.

The last term in the r.h.s. of (7.150) is absent for n odd. The parameter μ is
proportional to the mass gap of the theory.

Exercise 7.20 Use (7.150) to calculate the effective potential for the model (7.145)
at high temperatures and show that the mean field in this state vanishes.

Exercise 7.21 Consider an electron-positron plasma at a high temperature T in
an external electric field. Compute the free energy (or the effective action) of the
plasma by using approximation (7.150) and show that the electric field of a test

charge e is screened at distances 1/M(T ), whereM(T )=
√

1
3e

2T 2 is the so-called
Debye mass.

Exercise 7.22 Consider a formal decomposition of effective action (7.92) in QED

W [A]
=

∞∑
k=0

∫
d4x1 d

4x2 . . . d
4x2kW

μ1,μ2,...,μ2k
(2k) (x1, x2, . . . , x2k)Aμ1(x1) . . .Aμ2k (x2k).

(7.151)

Prove that the coefficientsW(2k) are given by formula (7.97).



Chapter 8
Quantum Anomalies

8.1 Noether Theorems

The aim of this Chapter is to use the spectral methods to demonstrate violation of
classical symmetries in quantum models. The symmetry violation appears as non-
conservation on a quantum level of certain quantities which are ‘integrals of motion’
in the classical theory. One calls this property quantum anomalies.

A general relation between classical symmetries and conservation laws in physics
is given by the first and second Noether theorems. The first theorem applies when a
system has a finite-dimensional continuous Lie group of symmetries, for example an
axial symmetry or translational invariance. The theorem states that there exist quan-
tities, so-called Noether charges, which are conserved in time, and the number of
the charges equals the dimensionality of the symmetry group. The second Noether
theorem is applied when there is an infinite-dimensional continuous group of sym-
metries and it yields covariant conservation laws for certain currents. Examples of
such symmetries are diffeomorphisms and local gauge transformations.

To give an idea of the Noether theorems, consider a classical action I [ϕ,φ] with
the dynamical variables ϕ and background fields φ. Suppose that transformations
of an infinite-dimensional continuous group G do not change the action, I [ϕ,φ] =
I [ϕ′, φ′]. By using invariance of the action and boundary conditions one arrives at
the following identity:

δλI [ϕ,φ] =
∫
dnx

[
δI [ϕ,φ]
δφ

δλφ + δI [ϕ,φ]
δϕ

δλϕ

]
= 0, (8.1)

where δλφ = φ′ − φ, δλϕ = ϕ′ − ϕ are infinitesimal variations of the variables gen-
erated by the group G with a set of parameters λ. The variations with respect to the
dynamical variables ϕ vanish if the fields satisfy the equations of motion. To proceed
with the second term in the r.h.s. of (8.1) one should specify the transformations of
the background fields. Quite generically, one can write

δλφ
a(x)= (dabμ∇μ + f abcφc(x))λb(x). (8.2)

Here a, b, c are sets of indexes carried by the field, dabμ, f abc are some matrices,
the form of these matrices being specified by the symmetry. The group parameters
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λb(x) are some arbitrary sufficiently smooth functions which are assumed to have
compact supports. Equations (8.1), (8.2) then imply a “conservation law”

(dabμ∇μ − f abcφc(x))Ja(x)= 0, (8.3)

Ja(x)= g−1/2 δI

δφa(x)
, (8.4)

where g is the determinant of the background metric. We shall see that Eqs. (8.3)
have a covariant form.

The quantities Ja are called the Noether currents. Equations (8.3), (8.4) express
the second Noether theorem and, in accord with the theorem, the Noether currents
are “conserved” provided the dynamical variables ϕ obey classical equations of mo-
tion.

If ϕ are quantized on a classical background φ, one defines the effective ac-
tion W [φ]. This functional is an analog of classical functional I [ϕ,φ] discussed in
Sect. 7.1. In the quantum theory the classical currents Ja are replaced with quantum
averages of the corresponding operators,

〈Ja(x)〉 = g−1/2 δW [φ]
δφa(x)

, (8.5)

in accord with (7.7). We shall see below that in certain cases the effective action
W [φ] may not be invariant under transformations of φ generated by the continu-
ous group G even if G is a symmetry group of the corresponding classical action
I [ϕ,φ]. If the variation of W [φ] is non-vanishing,

δλW =
∫
dnx

√
gAa(x)λ

a(x) �= 0, (8.6)

the Noether identity (8.3) for the quantum currents is violated and takes the form

(dabμ∇μ − f abcφc(x))〈Ja(x)〉 = −Aa(x). (8.7)

The right hand side of (8.7) is called the quantum anomaly. We consider now some
typical examples.

Gauge Symmetries The first example is related to models of scalar and spinor
fields interacting with a background vector potential Aμ, see Eqs. (1.68), (1.73), re-
spectively. The models are invariant with respect to transformations of a local gauge
U(1) group. Transformation of the background field δλAμ = −∇μλ is a simplest
form of (8.2). The Noether current calculated with the help of (8.4) coincides with
usual electric current (1.71).

If spinors are massless and space-time is even dimensional the theory also allows
a global U(1) group with transformations ψ ′ = e−iγ�λψ . The parts of a spinor with
different chiralities (introduced in Sects. 5.9 and 5.10) then transform in different
ways. This symmetry is called chiral. The chiral transformations can be made local
and become a gauge symmetry if an additional gauge potential is introduced to
compensate terms in the action which appear due to transformations of spinors.
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One can then define a corresponding conserved Noether current called the axial
current. In a quantum theory the chiral symmetry is broken and the axial current is
not conserved. This effect which is studied in details in Sect. 8.2 is called the axial
anomaly.

Diffeomorphism Invariance The equivalence principle requires that action of
matter fields in the presence of gravity is invariant with respect to coordinate trans-
formations. The diffeomorphisms generate transformations of the metric and matter
fields, δξgμν = Lξ gμν , δξφ = Lξφ, which have form (8.2), see Sect. 1.7 and (1.81),
(1.83). The Noether currents corresponding to the group of diffeomorphisms are de-
termined by (8.4) in terms of the variations over the background metric and coincide
with components of the stress-energy tensor T μν defined by (1.22). It follows from
the second Noether theorem that T μν has zero covariant divergence

∇μT μν = 0. (8.8)

If the background manifold has isometries, a number of integrals of motion ap-
pear according to the first Noether theorem. If ξμ is a Killing field which generates
the given group of isometries the corresponding charge is

Q(ξ)=
∫
�

d�μ θμ(ξ), (8.9)

θμ(ξ)= Tμνξν, ∇μθμ(ξ)= 0, (8.10)

where the integral goes over a space-like hypersurface �. Validity of the conserva-
tion law for the current θμ(ξ) and independence ofQ(ξ) on� is guaranteed by (8.8)
and Killing equation (1.82). As an example, one can mention stationary space-times
where ξ is time-like Killing field which generates time translations. The Noether
charge (8.9) in this case is just the energy of a system.

As we shall see in Sect. 8.4, even the fundamental law (8.8) may be violated in
quantum theories. This happens, e.g. in models of quantized chiral spinors. Appear-
ance of a non-trivial term in the r.h.s. of (8.8) is known as a gravitational or Einstein
anomaly.

Conformal Symmetry If the classical action does not contain dimensional con-
stants like masses it may be invariant with respect to local conformal transforma-
tions of the metric, δσ gμν =−2σgμν , and corresponding rescalings of matter fields.
It is not difficult to see from (8.2) that Noether condition (8.3) is reduced to

T μμ = 0. (8.11)

Models having this symmetry belong to a class of the so-called conformal field
theories. Noether conditions (8.11) do not include derivatives of the currents because
the derivatives do not appear in the transformation δσ gμν .

If the space-time admits a conformal vector field ξ , the first Noether theorem
predicts another conserved chargeQ(ξ). The charge is still defined by (8.9), (8.10).
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Condition (8.8) and conformal Killing equation (1.86) guarantee that the Noether
current θ(ξ) has zero divergence.

In quantum case, the trace of the expectation value of the stress-energy tensor
usually is not zero even in conformal theories. This phenomenon is called the Weyl
anomaly or conformal anomaly. We return to it in Sect. 8.5.

Local Lorentz Symmetry In a theory on a gravitational background there is an
additional group of invariance. The group acts on vielbeins eμa (x) as local SO(n) or
SO(1, n−1) transformations depending on whether the background is a Riemannian
or a Lorentzian manifold, see (1.46) and Sect. 1.5.

To be more specific we suppose that the manifold is Riemannian. From variations
of the vielbeins, δλe

μ
a =Mabeμb λ, and from (8.2) one then arrives at the following

Noether condition:

T aμe
μ
b Mab = 0, (8.12)

T aμ ≡−e−1 δI

δe
μ
a

, (8.13)

where e= det eaμ =√
g. In a pure metric theory one can use Eq. (1.43) for vielbeins

and relate (8.13) with definition of the stress-energy tensor (1.22),

T νμ = eνaT aμ. (8.14)

Thus, (8.12) can be written in the form

TμνM
μν = 0, (8.15)

where Mμν = eμa eνaMab . The generators Mab of SO(n) group are antisymmetric
matrices, Mab = −Mba . Therefore, Eq. (8.15) is satisfied identically because the
metric stress-energy tensor is symmetric.

In quantum theory of spinor fields the vielbeins appear in the effective as in-
dependent variables. That is why the stress-energy tensor cannot be derived as a
variation over the metric and it is not a priory symmetric. This is precisely what
happens in models of quantized chiral spinors where T μνMμν �= 0. This property is
called the Lorentz anomaly and it is closely related to the gravitational anomaly. We
shall return to this subject in Sect. 8.3.

We now give derivation of the above mentioned anomalies in different models by
using results of Sects. 5.7 and 5.10.

8.2 Axial Anomaly

Our first example is a well-known violation of a chiral gauge symmetry. We consider
spin 1/2 fields on an even-dimensional Riemannian manifold M without bound-
aries. The corresponding classical action is

I [ψ,V,A] =
∫

M
dnx

√
gψ+ /Dψ. (8.16)
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Because the base manifold has the Euclidean signature the Hermitian conjugation
ψ+ is used instead of the Dirac one, compare with (1.73). Let us take the Dirac
operator in the form

/D = iγ μ(∂μ + Vμ + iγ∗Aμ), (8.17)

where Vμ and Aμ are background vector and axial vector fields, respectively. The
fields are supposed to take values in a representation of a Lie algebra of some com-
pact gauge group G. They are also supposed to be anti-Hermitian matrices. This
guarantees that Dirac operator (8.17) is symmetric or formally self-adjoint with re-
spect to the product

(ψ1,ψ2)=
∫

M
dnx ψ̄1(x)ψ2(x), (8.18)

see Sect. 3.1.
Consider the following two types of gauge transformations:

δ−ψ =−ρψ, δ−ψ+ =ψ+ρ,

δ−Aμ = [Aμ,ρ], δ−Vμ = ∂μρ + [Vμ,ρ];
(8.19)

and

δ+ψ =−iλγ∗ψ, δ+ψ+ =−iψ+λγ∗,

δ+Aμ = ∂μλ+ [Vμ,λ], δ+Vμ =−[Aμ,λ].
(8.20)

The parameters ρ and λ are anti-Hermitian matrices depending on coordinates and
taking values in the same representation of the Lie algebra of G as for the back-
ground fields.

One can check that (8.19), (8.20) generate simple variations of the Dirac operator

δ− /D = /Dρ − ρ /D, δ+ /D = i(λγ∗ /D + /Dλγ∗). (8.21)

It follows then from (8.21) that transformations (8.19), (8.20) do not change the ac-
tion (8.16) and, therefore, they are symmetries of the given classical theory. δ+ trans-
formations (8.20) are known as axial gauge symmetries. Transformations (8.19),
(8.20) belong to a class of variations (8.2) considered in Sect. 8.1. So one can intro-
duce classical axial and vector Noether currents (8.4)

J
μ
A = g−1/2 δI

δAμ
, J

μ
V = g−1/2 δI

δVμ
, (8.22)

and establish the concrete form for Noether identities (8.3)

∇μJμV + [V μ,JμV ] + [Aμ,JμA ] = 0, (8.23)

∇μJμA + [V μ,JμA ] − [Aμ,JμV ] = 0. (8.24)

Let us check which of these symmetries is violated at the level of the correspond-
ing effective action. In terms of the regularized determinant of the Dirac operator the
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effective action is − ln det /D(V,A). It is convenient to use the results of Sect. 5.10
and Exercise 5.10. Relations (5.89), (5.96) and (5.98) yield the following result:

δ− ln det /D(V,A)= 0, (8.25)

δ+ ln det /D(V,A)= 2iζ
(
0, /D2

, γ�λ
)
. (8.26)

We noticed here that ρ and λ are anti-Hermitian and used (8.21). Axial gauge sym-
metries (8.20), therefore, are violated in the quantum theory and result in the axial
anomaly,

∇μ〈JμA 〉 + [V μ, 〈JμA 〉] − [Aμ, 〈JμV 〉] = −A , (8.27)

A =−2ig−1/2 δ

δλ
ζ
(
0, /D2

, γ�λ
)
. (8.28)

Usual gauge transformations (8.19) are not violated at the quantum level and pre-
serve the Noether law (8.23). An example of calculations of the axial anomaly can
be found in Exercise 8.1.

Even though the axial symmetry is violated at the quantum level, the Lie algebra
relations (commutators) between gauge and chiral transformations remain intact.
By applying these relations to the effective action one obtains important equations
among the anomalies. These equations are called the Wess-Zumino consistency con-
ditions [255].

8.3 Lorentz Anomaly

In this and the next sections we study gravitational anomalies that appear in quan-
tum models of chiral spinors in space-times of even dimensions. We are going to
the spectral methods developed for elliptic operators. Therefore, transition to the
Euclidean space is desirable. The structure of spin representations in Euclidean
and Minkowski signature spaces is quite different. Consequently, Wick rotation of
spinors is a rather nontrivial procedure. There are different inequivalent prescrip-
tions for this procedure. For a overview we refer the reader to [240]. Here we shall
only present an example of difficulties which occur when chiral spinors are Wick
rotated naively. In Minkowski signature even-dimensional space, if γ∗ψ = ψ , then
ψ̄γ∗ = −ψ̄ . Since /D is block anti-diagonal in the chiral basis,

/D = iγ μ∇(s)μ =
(

0 D−
D+ 0

)
(8.29)

in the Lagrangian ψ̄ /Dψ the fermions of a fixed chirality are coupled to the fermions
of the same chirality only. Hence, it is possible to define a classical action for the
fermions of just one chirality. In Euclidean space the situation is different. For a
positive chirality ψ , γ∗ψ = ψ , the conjugated spinor satisfies ψ†γ∗ = ψ†. Conse-
quently, the classical action ψ† /Dψ is identically zero if ψ is restricted to be of
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a fixed (positive or negative) chirality. This explains many difficulties with chiral
fermions in Euclidean space.

Nevertheless, one can do quantum calculations with chiral spinors in Euclidean
space. Roughly speaking, the recipe is: calculate all traces over the spinor indices in
Minkowski space and do the Wick rotation only afterwards. Then one can apply all
usual methods, like the point splitting procedure, to calculate the averages.

We shall use a different approach. We want to derive the gravitational anoma-
lies by employing the spectral methods. However, in the case of chiral theories a
straightforward introduction of the effective action is problematic because one can-
not define the determinant of the chiral operator D, see Sect. 5.10. This problem is
not crucial: for physical quantities O which follow from variations over background
fields φ one needs to know spectral functions related to variations of D rather than
the effective action itself. That is why we postulate that∫

dnx 〈O(x)〉δφ(x)≡−δφ ln det D̂, (8.30)

D̂ =
(

0 D̄

D 0

)
. (8.31)

Here D̄ is a “D−” type chiral operator which is assumed to be fixed under the
variations. The operator D̂ is of the Dirac type and we use Ray-Singer formula
(5.46) to define ln det D̂ =−ζ ′(0, D̂2). The motivation for (8.30) is as follows. If D
and D̄ were finite-dimensional matrices one could write

δφ ln det D̂ = Tr
[
δφD ·D−1].

This variation has the same structure as Eq. (7.8) in Sect. 7.1. By taking into ac-
count (7.8) we define the chiral effective action W as a functional whose variations
coincide with variations of ln det D̂,

δφW ≡−δφ ln det D̂, (8.32)

under fixed D̄. The background field in the considered case is the metric. Varia-
tions of W can be found by using results of Sect. 5.10. After the variation has been
performed, we identify the auxiliary operator as D̄ =D−.

For simplicity, we shall use two-dimensional models on Riemannian manifolds to
demonstrate the appearance of the gravitational anomalies. The corresponding struc-
ture group of a spin bundle is Spin(2). It is equivalent to a group ofU(1) chiral gauge
transformations. Let us consider this property of two-dimensional theories more
carefully. It is convenient to use a complex basis of vielbeins, e= (e1 + ie2)/

√
2,

(e · e)= (ē · ē)= 0, (e · ē)= 1, (8.33)

where ē= e∗. The Levi-Civita connection (1.51) and the scalar curvature are

(wμ)
ab =−(∇μea · eb)=−ε̄abvμ, (8.34)

R = εμν(vμ,ν − vν,μ). (8.35)
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Here ε̄12 =−ε̄12 = 1, ε̄11 = ε̄22 = 0, εμν =√
g ε̄μν , and

vμ =−1

2
ε̄ab(wμ)

ab = i(ē · ∇μe). (8.36)

A Lorentz rotation of the vielbeins,

(e′)1 = cosλe1 + sinλe2, (e′)2 =− sinλe1 + cosλe2, (8.37)

e′(x)= e−iλ(x)e(x), (8.38)

generates a gauge-like transformation

v′μ = vμ + ∂μλ. (8.39)

In fact, vμ looks as a gauge potential in a sort of 2D chiral gauge theory, see Eqs.
(8.16), (8.17). This interpretation follows from the form of the spin connection

∇(s)μ ψ =
(
∂μ + i

2
γ�vμ

)
ψ, (8.40)

see definition (1.57). We used in (8.40) the matrices γμ = eaμσa , a = 1,2, where
σa are the Pauli matrices, γ� = iσ1σ2. From (8.39) and (8.40) it is easy to see that
Lorentz rotations of a spinor field are chiral U(1) transformations

ψ ′(x)= e−i λ(x)2 γ�ψ(x). (8.41)

One can now determine the chiral parts D± of operator (8.29),

D+ = i√2ēμ
(
∂μ + i

2
vμ

)
, D− = i√2eμ

(
∂μ − i

2
vμ

)
. (8.42)

These definitions is our starting point for studying the effects of gravitational anoma-
lies.

Variation of the operator D under Lorentz rotations (8.41) is

δλD(e)=D′(e′)−D(e)= i

2
(λD +Dλ). (8.43)

It follows from the results of Sect. 5.10 that the rotations change the phase �(D)
and do not change the absolute value of the determinant. For transformations (8.43),
when D̄ at the last step is identified with D−, Eq. (5.97) yields

δλ�(D)= 1

2
ζ
(
0, /D2

, λ
)
. (8.44)

One can use the relation between the zeta-function and the heat coefficients,

ζ(0,L,O)= an(O,L)− PrN(O), (8.45)

where PrN(O) denotes the trace of projection of the operator O on the space of the
zero modes of operator L, see Eq. (5.65). With the help of (4.57), (8.32), and (8.45)



8.4 Einstein Anomaly 165

one easily finds the variation of the effective action

δλW =−iδλ�(D)= 2ic
∫ √

g d2x R(x)λ(x)+ i

2
PrN(λ), (8.46)

where c = 1/(48π). For simplicity, we have assumed that the parameter λ(x) has
a compact support, thus possible boundary terms do not appear in (8.46). To see
how it violates the Noether condition (8.15), we take (8.13) as the definition of the
stress-energy tensor and rewrite (8.46),

δλW =−
∫
e d2x T aμδLe

μ
a . (8.47)

As in (8.37) the Lorentz variations of vielbeins are δλe
μ
a =Mabeμb λ, where Mab =

ε̄ab . It follows then from (8.46) and (8.47) that

εμνTμν =−2icR − iz
2
, (8.48)

z= g−1/2 δ

δλ
PrN(λ)=

N∑
j=1

ψ
†
j (x)ψj (x), (8.49)

where Tμν = gμρeρa T aν , see (8.14), and εμν = eμa eνb ε̄ab . ψj , j = 1, . . . ,N are the

zero modes of /D2.
The r.h.s. of Eq. (8.48) is called the Lorentz anomaly. The Lorentz anomaly con-

sists of the two terms: a universal term determined by the curvature scalar R and
the contribution of zero modes, z. The z-term depends on boundary conditions and
global properties of the background manifold M . It may be absent or be unimpor-
tant because it is inverse proportional to the volume of M .

The Lorentz anomaly makes the stress-energy tensor Tμν non-symmetric. There-
fore, such tensor cannot appear in a diffeomorphism invariant gravity theory as a
variation of the action over the metric.

8.4 Einstein Anomaly

Consider now transformation (8.32) under a change of coordinates (x′)μ = f μ(x).
We are interested in the variation of the operator

δξD(x)ϕ(x)≡D′(x)ϕ(x)−D(x)ϕ(x) (8.50)

under coordinate transformations (x′)μ = xμ − ξμ(x) generated by a vector field
ξμ(x). The operator D acts on functions ϕ which carry no indices and the objects
like Dϕ behave as scalars. If one takes into account that D(x′)ϕ(x′) = D(x)ϕ(x)
the r.h.s. of (8.50) can be rewritten as

δξD(x)ϕ(x)= [∂ξ ,D]ϕ(x), (8.51)
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where ∂ξ = ξμ∂μ and terms O(ξ2) were neglected. Variation (8.51) belongs to a
class of operator transformations (5.89) discussed in Sect. 5.10. With the help of
(5.93) one gets the variation of the effective action

δξW = ζ (0, /D2
, γ�∂ξ

) = a2
(
γ�∂ξ , /D

2) − PrN(γ�∂ξ ). (8.52)

If the diffeomorphism generating field ξμ has a compact support, a straightforward
computation yields,

δξW = ic
∫ √

g d2x R(3vμξμ + εμνξμ;ν)− PrN(γ�∂ξ ). (8.53)

As in the case of Lorentz transformations, (8.46), the first term in (8.53) is pure
imaginary.

The computation of a2(γ�∂ξ , /D
2
) in (8.52) is based on methods of [51]. By anal-

ogy with (4.43),

ap(O,L)= i∂εap+2(L(ε))|ε=0, (8.54)

L(ε)= L+ iεO, (8.55)

where L is a Laplace type operator and O is a first order differential operator. The
proof of (8.54) is rather straightforward and we leave it for the reader. In the case
considered here

L(ε)= /D
2 + iεγ�∂ξ . (8.56)

The operator L(ε) can be represented as

L(ε)=−Dμ(ε)Dμ(ε)− iε
2
γ�∇ξ + ε

2
vμξμ + 1

4
R +O(ε2), (8.57)

Dμ(ε)=∇(s)μ − i

2
γ�εξμ ≡∇μ + w̃μ. (8.58)

The terms O(ε2) are not important for (8.54). Operator (8.57) has form (3.2) with

�μν = i

2
γ�

(∇μvν −∇νvμ − ε(∇μξν −∇νξμ)
)
, (8.59)

E =− iε
2
γ�∇ξ + ε

2
vμξμ + 1

4
R+O(ε2), (8.60)

where we used (8.57) and (1.41). Equation (4.58) for n= 2 yields

∂εap+2(L(ε))|ε=0 = 1

48π

∫ √
g d2x R

(
3vμξμ + εμνξμ;ν

)
. (8.61)

Together with (8.54) this relation results in (8.53).
To find the Noether conditions one should write δξW in terms of stress-energy

tensor (8.13),

δξW =−
∫ √

g d2x T aνLξ e
ν
a =−

∫ √
g d2x ξν

(∇μT μν + ελρT λρvν). (8.62)
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Variations of the vielbeins are determined by Lie derivative Lξ e
ν
a =∇ξ eνa −∇ea ξ ν ,

see (1.83). To get (8.62) we have integrated by parts, used (8.14) and (8.36). Equa-
tions (8.53), (8.62) give

∇μT μν + ελρT λρvν =−ic(3vνR +∇μ(εμνR)
) + qν, (8.63)

qν = g−1/2 δ

δξν
PrN(γ�∂ξ ), (8.64)

and, if the Lorentz anomaly (8.48) is taken into account, one gets a Noether condi-
tion associated with the coordinate transformations

∇μT μν =−ic(vνR +∇μ(εμνR)
) + zν. (8.65)

The right side of this equation is called the Einstein anomaly. The term zν is related
to the presence of zero modes. It can be written in the following covariant form:

zν = qν + i

2
zvν = g−1/2 δ

δξν
PrN

[
γ�(ξ · ∇(s))

] =
N∑
j=1

ψ
†
j γ�∇(s)νψ, (8.66)

where we have used (8.49), (8.64) and definition (8.40).
One can add to T μν a number of local terms known as the Bardeen-Zumino

polynomial and introduce the tensor

T̃ μν = T μν + ic(vν;μ + vμ;ν − 2gμν(∇v)) + icεμνR. (8.67)

The modified stress-energy tensor is symmetric, εμνT̃ μν = 0, and free of the
Lorentz anomaly. This transformation also brings the Noether condition (8.65) to
a ‘standard’ form

∇μT̃ μν =− ic
2
∇μ(εμνR)+ zν (8.68)

which is usually used in the literature (though customary the contribution of zero
modes zμ is omitted). Equation (8.68) is instructive because it shows that the
Lorentz and Einstein anomalies are interrelated, and that they are different mani-
festations of a single phenomenon. One can add to T̃ μν the local term (ic/2)εμνR
which eliminates the Einstein anomaly but leaves the modified stress-energy tensor
non-symmetric.

Some remarks about the terminology used in the literature are in order. Equation
(8.65) is called consistent anomaly. The word ‘consistent’ means that the corre-
sponding stress-energy tensor T μν can be derived from an effective action in the
course of a variation procedure. This is not a completely obvious statement since
we defined only the variations of the effective action rather than the effective action
itself. This consistent anomaly condition does not have a covariant form due to the
presence of the connection term. On the other hand, the anomaly written in the form
(8.68) is manifestly covariant, and it is called the covariant anomaly. The covari-
ant anomaly is not consistent in a sense that T̃ μν may not follow from an effective
action as a result of variation over the metric.
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8.5 Conformal Anomaly

One more example of symmetries which may be broken by quantum effects are
conformal transformations of the metric, see Sect. 1.7. An example of a theory with
the conformal symmetry is a massless scalar field ϕ with a special type of non-
minimal coupling to the curvature. The action of the theory is

I [ϕ,g] = −
∫
dnx

√
g

(
gμν∇μϕ∇νϕ + n− 2

4(n− 1)
ϕ2R

)
, (8.69)

where R is the scalar curvature for the background metric gμν . The functional (8.69)
does not change under the following transformations:

ḡμν(x)= e−2σ(x)gμν(x), (8.70)

ϕ̄(x)= e(n−2)σ (x)/2ϕ(x), (8.71)

where σ(x) is a sufficiently smooth function. The Noether theorem states that the
stress-energy tensor of the field ϕ has a vanishing trace, see (8.11).

Field theory models which are conformally invariant on the classical level usu-
ally loose this property after the quantization. This happens because of the renor-
malization procedure, which eliminates a contribution of high energy modes and
introduces some scale in the theory.

Let us demonstrate the origin of the conformal anomaly for model (8.69). The
effective action of the model is

W [g] = 1

2
ln detL[g], (8.72)

L[g] = −∇2 + n− 2

4(n− 1)
R. (8.73)

According to (8.70), (8.71), the operator L[g] transforms as

L[ḡ] = e n+2
2 σL[g]e− n−2

2 σ . (8.74)

To apply the results of Sect. 5.7, consider a family of operators

Lα[g] = e n+2
2 ασL[g]e n−2

2 ασ . (8.75)

One can easily check that

d

dα
Tr e−tLα =−t2 Tr

(
σe−tLα

)
. (8.76)

By using (5.64) and (5.71) one finds the anomalous scaling of the effective action

W [ḡ] −W [g] =
∫ 1

0
dα ζ(0,Lα[g], σ ), (8.77)

or, in infinitesimal form,

δW [g] = ζ(0,L[g], σ ). (8.78)
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From this transformation law and the definition of the stress-energy tensor (1.22)
one obtains a modified Noether condition (8.11)

T μμ = n
2

1√
g

(
δζ(0,L,σ )

δσ

)
σ=0
. (8.79)

The right hand side of (8.79) is called the conformal anomaly or the Weyl anomaly.
To give an example let us consider (8.69) in two dimensions where the curvature

coupling is not required. Suppose that the background Riemannian manifold M has
topology of a disc, and impose the Dirichlet condition on ϕ at the boundary ∂M .
The 2d Laplacian L=−∇2 in this case does not have zero modes. Therefore,

ζ(0,L,σ )= a1(σ,L)= 1

24π

(∫
M

√
g d2x Rσ + 2

∫
∂M

√
hdx Kσ

)
, (8.80)

where K is the trace of the extrinsic curvature of ∂M . From (8.79) and (8.80) one
finds the anomalous trace,

T μμ = R

24π
. (8.81)

To get this result we have assumed that conformal variations σ vanish on the bound-
ary.

8.6 Using Anomalies to Calculate the Effective Action

Chapter 7 and the exercises there provided us with a number of examples where
effective actions can be written in a form of local functionals of background fields.
In general, however, the effective action, as distinct from a classical action, is es-
sentially non-local and its calculation is rather involved. The aim of this section is
to give an idea about the non-local structure of the effective action by using two-
dimensional models which allow a simple analytical treatment.

The idea of the method is the following: in two-dimensional models where the
background fields can be brought to some trivial configuration by a symmetry trans-
formation the effective action is reduced to the quantum anomaly of the correspond-
ing transformation. By the words ‘some trivial configuration’ one usually means
either constant background fields or configurations where the effective action can
be computed exactly.

Gauge Theories We begin with a computation of the effective action for fermions
in an external Abelian gauge field Vμ,

W [V ] = − ln det /D(V ), (8.82)

/D(V )≡ iγ μ(∂μ + iVμ). (8.83)

The vector potential Vμ is assumed to be real, the base background manifold is flat.
As was already discussed in Exercise 3.3 any vector field in two dimensions can be
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represented as

Vμ = ∂μ!(x)+ εμν∂νϕ(x)+ V Hμ . (8.84)

The harmonic vector field VHμ and the scalar fields obey the equations

∂μV Hμ = εμν∂νV Hμ = 0, (8.85)

!=−�−1∂νV
ν, ϕ = 1

2
�−1εμνFμν, (8.86)

where it is implied that �! �= 0, �ϕ �= 0. It follows from (8.85) that �VHμ = 0. The
field strength is Fμν = ∂μVν − ∂μVν .

The parameter ! determines a gauge transformation of Vμ which does not change
the determinant of the Dirac operator, see Sect. 8.2. Since the effective action does
not depend on ! we put ! = 0. One can now use the property of two-dimensional
gamma-matrices, εμνγ ν = iγ∗γ μ, to represent the Dirac operator as

/D(V )= e−γ∗ϕ /D(V H )e−γ∗ϕ. (8.87)

This equation can be interpreted as an Abelian chiral (axial) transformation of
/D(V H ). By taking into account that chiral transformations are anomalous one can

write

W [V ] =W [V H ] + A (ϕ), (8.88)

where A (ϕ) is the two-dimensional axial anomaly. The harmonic vector field VHμ
is an example of a trivial configuration.

The following calculation of the anomaly is based on the results of Sect. 5.7. One
defines a family of Laplace-type operators

Lα ≡ (
e−αγ∗ϕ /D(V H )e−αγ∗ϕ

)2
, (8.89)

where α is a real parameter, and notes that

d

dα
Tr e−tLα =−4t Tr

(
ϕγ�e

−tLα ). (8.90)

By using (5.64) and (5.71) one finds

A (ϕ)=−1

2
(ln detL1 − ln detL0)= 2

∫ 1

0
dαζ(0,Lα, γ�ϕ). (8.91)

If the contribution of zero modes in the zeta-function is neglected one can put
ζ(0,Lα, γ�ϕ)= a2(γ�ϕ,Lα)∼ α. It is straightforward to see that

W [V ] =W [V H ] − 1

16π

∫
d2x d2y F(x)�−1(x − y)F (y). (8.92)

Here we have used (8.86) and put F = εμνFμν . It is the last term in the r.h.s. (8.92)
which carries non-localities typical for the effective action.
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Gravity Theories We now consider computation of the effective action of a mass-
less scalar field on a two-dimensional manifold M . This is a theory with the con-
formal anomaly discussed in Sect. 8.5. Suppose that M is related by a conformal
transformation to some simple manifold M̄ . The metric ḡμν on M̄ is considered as
a trivial background. For example, for a manifold M with a boundary M̄ may be a
disk. The effective action can be written as

W [g] =W [ḡ] +A [σ, ḡ], (8.93)

where A [σ, ḡ] is a conformal anomaly and σ is a parameter of a conformal trans-
formation from M to M̄ , see (8.70). The derivation is based on formula (8.77).
Equation (8.75) yields a family of operators Lα[g] = e2ασL[g] which satisfy (8.76).
By using (8.80), one gets

W [g] =W [ḡ] − 1

24π

∫ 1

0
dα

(∫
M
d2x

√
gαRασ + 2

∫
∂M
dx

√
hαKασ

)
, (8.94)

where (gα)μν = e−2ασ gμν , and Rα , Kα are the corresponding curvatures computed
for (gα)μν ,

Rα = e2ασ (R + 2α∇2σ
)
, (8.95)

Kα = eασ (K + ασ;n), (8.96)

see Exercise 8.5. These relations allow one to integrate in (8.94) over α and obtain

W [g] =W [ḡ] − 1

24π

(∫
M
d2x

√
g(Rσ − (∇σ)2)+

∫
∂M
dx

√
h(2K + 3σ;n)σ

)
.

(8.97)

A possible contribution of zero modes of the scalar Laplacian on M is not taken
into account in (8.97). Their effect is studied in Exercise 8.6.

If M is conformally flat and does not have boundaries the effective action can
be written in the following non-local form:

W [g] = 1

48π

∫
d2x

√
gd2x′

√
g′R(x)�−1(x, x′)R(x′), (8.98)

where we used the results of Exercise 8.5, see Eq. (8.118). In a number of physical
applications functional (8.98) is known as the Polyakov nonlocal action.

The effective action (8.98) can be also represented in an equivalent local form.
Consider the following two-dimensional gravity theory where dynamical variables
are the metric gμν of M and a scalar field ϕ which is non-minimally coupled to the
curvature of M ,

IL[g,ϕ] = − 1

8π

∫
M
d2x

√
g

(
−(∇ϕ)2 + 2

γ
Rϕ + μ

γ 2

)
. (8.99)

Such a theory is called the Liouville gravity and possesses a nontrivial dynamics. If
a ‘cosmological constant’ vanishes, μ= 0, and M has no boundaries, equations for
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the metric in the Liouville gravity (8.99) coincide with the equations which follow
from (8.98) provided ϕ satisfies its equations of motion as well, see Exercise 8.7.
Formally the Liouville theory follows from (8.97) under the identification

ϕ = 2

γ
σ, γ =√

12. (8.100)

The Liouville gravity is a classical conformal theory where the algebra of confor-
mal transformations, the so-called Virasoro algebra, has a central extension with a
central charge c= 12/γ 2.

8.7 Parity Anomaly and the Chern-Simons Action

In this Chapter we have studied quantum anomalies related to continuous symme-
tries. Quantum corrections may also break discrete symmetries. In this last section
we briefly discuss this effect by using example of the so-called parity anomaly which
may appear in any odd number of dimensions.

Let us take the Dirac operator /D in a gauge background Vμ, see Eq. (8.83). The
parity transformation is a reflection of all coordinates and components of the vector
field Vμ. Under this transformation all eigenvalues λk of the Dirac operator change
the sign. Classically, the reflection operation can be compensated by inverting the
sign of the γ -matrices, i.e., by going to another representation of the Clifford al-
gebra. In a quantum theory, if the spectrum is not symmetric, the parity symmetry
may be violated in regularized quantities. In the zeta-function regularization, this
happens due to the choice of the phase in front of the second sum in (5.56).

Consider the effective action of fermions W [V ] which is determined by (8.82).
We assume that the base manifold is three-dimensional Euclidean space. The gauge
field Vμ may be non-Abelian, in general. We recall formula (5.58),

ln(det /D)s =−μs�(s)ζ(s, /D), (8.101)

for the zeta-regularized determinant. The zeta function itself is given by (5.56). Con-
trary to the situation in even dimensions considered in Sect. 5.6, in odd dimensions
the spectrum of the Dirac operator may not be symmetric, and there may exist a
parity-odd part of the zeta function

1

2
(ζ(s, /D)− ζ(s, /DP ))= 1

2
(1 − e−iπs)

[∑
λk>0

(λk)
−s −

∑
λk<0

(−λk)−s
]

= 1

2
(1 − e−iπs)η(s, /D), (8.102)

where /DP is the parity transformed Dirac operator, and η(s, /D) is the eta-function
defined in (5.34). The zero of the factor 1− e−iπs cancels the pole of the �-function
in (8.101) at s = 0. Thus, the parity-odd part of the effective action is finite,

WP-odd[B] = iπ
2
η(0, /D(B)). (8.103)
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It is convenient to use an integral representation for the eta-function,

η(s, /D)= 2

�((s + 1)/2)

∫ ∞

0
dt ts Tr

(
/De−t2 /D

2)
, (8.104)

which follows from (5.36). The variation of η(s) with respect to Vμ in /D yields

δη(s, /D)= 2

�((s + 1)/2)

∫ ∞

0
dt ts

d

dt
Tr

(
(δ /D)te−t2 /D

2)
. (8.105)

Now, by taking s → 0 and assuming that the heat kernel decays fast enough at
t2 →∞, which is usually true, one arrives at the result

δη(0, /D)=− 2√
π

lim
t→0

Tr
(
(δ /D)te−t2 /D

2)

=− 2√
π

lim
t→0

Tr
(
(δ /D)t1/2e−t /D

2)
. (8.106)

To evaluate this limit we use heat kernel expansion (4.9). The coefficient a0 does
not contribute because of the γ -trace and we are left with the expression

δη(0, /D)=− 2√
π
a2(δ /D, /D

2
). (8.107)

Next, one can use (4.126) with Q = δ /D = −γ μVμ and E given in (12.105) with
A= 0, calculate the gamma-matrix trace with the help of the relation

tr(γ μγ νγ ρ)= 2iεμνρ, (8.108)

and obtain

δη(0, /D)=− 1

4π2

∫
d3x εμνρ tr(δVμ · Fνρ), (8.109)

where the trace is now taken over the remaining gauge indices. This variational
equation can be solved. The result up to a constant is

η(0, /D)=− 1

4π2

∫
d3x εμνρ tr

(
Vμ∂νVρ + 2i

3
VμVνVρ

)
. (8.110)

Finally, by substituting (8.110) in (8.103), we obtain

WP-odd[V ] = −1

2
ICS[V ], (8.111)

ICS[V ] = i

4π

∫
d3x εμνρ tr

(
Vμ∂νVρ + 2i

3
VμVνVρ

)
. (8.112)

Functional (8.112) is called the Chern-Simons action.
The Chern-Simons action has numerous physical applications. One of them is

the quantum Hall effect. To understand this phenomenon, let us take an Abelian
electromagnetic gauge field Vμ =Aμ. The cubic term in (8.112) then vanishes. The
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Wick rotation to physical Minkowski space results in an imaginary factor in front of
the action. The electric current induced by quantum effects is

〈jμ〉 ∼ δSCS

δAμ
∼ εμνρFνρ.

Consequently, a constant electric field Ei ∝ F0i in 2 + 1 dimensions produces a
constant current jk ∝ εk0iEi in the direction orthogonal to the electric field. This
is what the Hall effect is about. The coefficient in front of the Chern-Simons action
defines the Hall conductivity.

8.8 Literature Remarks

In classical theories symmetries are important for understanding different phenom-
ena such as conservation laws, integrability of equations of motion, and others. In-
troduction to Noether theorems together with a historical account and further ref-
erences on this subject can be found in [54]. The derivation of the first Noether
theorem is given, e.g., in [40].

The chiral anomaly was discovered by Adler, Bell and Jackiw [2, 31] in 1969.
This became one of very fruitful insights in properties of quantum field theories. The
absence of the anomalies is an important consistency requirement for a quantum
model, otherwise appearance of the anomalies must result in observable physical
effects. For example, the chiral anomalies cancel out in the Standard Model of elec-
troweak interactions while the Adler-Bell-Jackiw anomaly is vital for understanding
the low-energy hadron physics.

Our focus here was on application of spectral methods for derivation of the
anomalies. That is why a large portion of the known material on anomalies has not
been included in this Chapter. For example, we have not discussed algebraical and
topological techniques of determining anomalies, in particular how anomalies are
related via so-called decent equations to characteristic classes. As well, we have not
described an important observation by Fujikawa [116] that the reason for the chiral
anomaly is in non-invariance of the integration measure in the path integral over
fermion fields. A comprehensive discussion of these questions together with other
mathematical aspects of quantum anomalies can be found in the book by Bertlmann
[35]. Some other useful expositions of anomalies are [161, 192]. Spectral meth-
ods are used in finite-mode regularization approach by Andrianov and Bonora [11]
which has applications to the hadron physics [12].

The gravitational anomalies in two dimensions play an important role in the
string theory on the world sheet. They were first found by Alvarez-Gaume and
Witten [8] by using Feynman diagrams in the linearized gravity theory. One can
show that the gravitational anomalies exist in the space-times with the dimension
n = 4p + 2 where p = 0,1,2, . . . , see [8]. The equivalence of the Lorentz and
Einstein anomalies was demonstrated by Bardeen and Zumino [24]. The fact that
consistent and covariant anomalies can be related by adding a local polynomial was
also established in [24]. The heat kernel method was used for calculation of the



8.9 Exercises 175

gravitational anomalies in [179, 180]. An overview of various approaches to the
Wick rotation of chiral fermions can be found in [240].

Conformal anomalies are more of a theoretical interest. Among their physical
applications one should mention two-dimensional models where the conformal and
the gravitational anomalies are related to the flux of the Hawking radiation from a
black hole [48, 68, 219]. A review on 2D gravities is [149]. A historical account of
works on conformal anomalies is [95].

In conformal field theories in two dimensions the conformal anomalies are re-
lated to the central extension of the Virasoro algebra of conformal transformations.
The Liouville theory mentioned in Sect. 8.6 is known from 19th century as a theory
of negatively curved surfaces. A review of its properties and relation to the Virasoro
algebra can be found in [81, 229].

The fact that the femions in 3 dimensions generate the Chern-Simons action
through the parity anomaly was discovered in mid 1980’s [9, 199, 200, 216, 217],
see [98] for a review. In our presentations of this topic we mostly follow [9, 76, 247].

The examples of non-localities in the effective action presented in this Chapter
is just a small part of a very broad subject of techniques and approximations used
to calculate the effective action. This subject goes well beyond the scope of this
book. Among most important references we mention covariant perturbation theory
of Barvinsky and Vilkovisky [27, 28]. Some of its applications to finite-temperature
theories can be found in [151, 152].

Recommended Exercises are 8.1, 8.3, 8.6, 8.9.

8.9 Exercises

Exercise 8.1 Calculate the axial anomaly for the effective action discussed in
Sect. 8.2

W [V,A] = − ln det /D(V,A), (8.113)

where /D(V,A) = iγ μ(∂μ + Vμ + iγ�Aμ). Consider the case of a gauge theory in
two dimensions.

Exercise 8.2 Consider a chiral theory on a flat even-dimensional manifold with an
SU(N) background gauge field Bμ. The variation of the effective action is defined
as

δW [B] = −δ ln det D̂(B), (8.114)

where D̂(B) has a block form analogous to (8.31) where D = D+(B) is a chiral
part of the operator /D(B) = iγ μ(∂μ + Bμ), and D̄ does not depend on Bμ. The
classical theory is invariant with respect to the gauge transformations

δλBμ(x)= i(∂μλ(x)+ [Bμ(x),λ]), (8.115)
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where the gauge parameter λ+ = λ belongs to the Lie algebra of SU(N). Find the
anomalous Noether condition (8.7) for the current

〈Jμ〉 = δW

δBμ
. (8.116)

Exercise 8.3 In a diffeomorphism invariant gravity theory prove that the definitions
of the stress-energy tensor in terms of metric and vielbein variations are equivalent,

T μν = 2√
g

δI

δgμν
, T aμ ≡−e−1 δI

δe
μ
a

, (8.117)

where e= det eaμ =√
g, g = |detgμν |, see Eqs. (1.22) and (8.13).

Exercise 8.4 For the operators D± defined in (8.42) check that (D+)† =D−.

Exercise 8.5 Prove that (8.69) does not change under transformations of the metric
and scalar fields, (8.70), (8.71). To this end, prove the transformation law

R̄ = e2σ (R + (n− 1)
(
2∇2σ + (2 − n)(∇σ)2)), (8.118)

K̄ = eσ (K + (n− 1)σ;n
)
, (8.119)

where R̄ andR are curvature scalars for ḡμν and gμν , respectively. Infinitesimal con-
formal changes of some geometrical quantities are listed in (4.51), (4.52) and (4.90).

Exercise 8.6 Calculate the effective action of a two-dimensional massless scalar
field on a compact space without boundaries by taking into account the presence of
zero modes of the operator −∇2.

Exercise 8.7 Prove that on a manifold without boundaries functionals (8.97) and
(8.99) give equivalent equations for the metric.

Exercise 8.8 The massless Dirac field is an example of a classical conformal field
theory. Prove that the Dirac operator under conformal transformations of metric
(8.70) changes as

/D[ḡ] = e n+1
2 σ /D[g]e− n−1

2 σ , (8.120)

/D[g] = iγ μ∇(s)μ = iγ μ(∂μ +w[s]
μ ). (8.121)

Exercise 8.9 By using (8.70) calculate the trace anomaly and the effective action
for a spinor field on a two-dimensional background,

W [g] = − ln det /D[g], (8.122)

where /D[g] is defined in (8.121).

Exercise 8.10 Prove that Chern-Simons action (8.112) is gauge invariant up to sur-
face terms.



Chapter 9
Vacuum Energy

9.1 The Definition

In this Chapter we take a closer look at the vacuum energy. As earlier, we restrict
ourselves by free quantum fields. “Free” means here that quantum fluctuation do not
have self-interactions, though the interactions with classical background fields may
be rather nontrivial. Computations of the vacuum energy and first evidences for its
physical importance have been exposed in Chap. 7 where we discussed properties
of the Coleman-Weinberg potential in the Minkowski space-time.

The aim of the present Chapter is to introduce a number of typical physical prob-
lems and some spectral methods which allow one to do computations when back-
ground is non-trivial, as for example, when background fields are not constant, or
when background manifolds have boundaries. Our only requirement is that external
classical system should be static, so that we have a well defined notion of energy of
quantum fluctuations and can apply results of Sect. 2.5.

Let ωi be single-particle energies. Consider the formal expression for vacuum
energy (2.49) of a Bose field. In this Chapter we use the following zeta-function
regularization of equations like (2.49):

Es = μ
2s

2

∑
i

(ω2
i )

1
2−s . (9.1)

The physical value of vacuum energy corresponds to the limit s→ 0. A real param-
eter μ has the dimension of a mass and is introduced to keep the physical dimension
of the regularized vacuum energy. In expressions like (9.1) all frequencies squared
are assumed to be positive. Complex and zero ωi correspond to modes which are
not quantized, see remarks in the end of Sect. 6.2. Such energies are not included
in (9.1). In this Chapter we put the Planck constant � = 1.

In general, the single-particle energies ωi are determined by a non-linear spectral
problem like (7.41). Without loss of generality we suppose that in (7.41) the operator
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L(ω) does not depend on the spectral parameter, i.e. ω2
i are just eigenvalues of an

elliptic second order operator L. One may write (9.1) as

Es = μ
2s

2
Tr(L

1
2−s)= μ

2s

2
ζ

(
−1

2
+ s,L

)
. (9.2)

If the number of space-time dimensions is d + 1 a base manifold for L is d-
dimensional. By using Eq. (5.28) one can relate the divergent (pole) part of the
vacuum energy to a heat kernel coefficient,

Es =− 1

4
√
π
an(L)

1

s
+O(s0), (9.3)

where n = d + 1. A similar divergent term appears in the corresponding finite-
temperature effective action ln detPE , as a logarithmic divergence in (7.67), see
Chap. 7. There is a relation between the heat coefficients, an(L)=

√
4πan(PE)/β ,

where PE is the corresponding “wave” operator in n dimensions, (7.43), and 1/β
is the temperature. A direct check of this relation in a general setting is contained
in Exercise 7.9. The divergences of Es and of the effective action are equivalent
because the vacuum energy is a part of the effective action, see (7.59). Thus, the
standard renormalization procedure eliminates the 1/s terms and leaves Es finite in
the limit s→ 0.

Although (9.3) lists only logarithmic divergences (poles 1/s) other types of di-
vergent terms may be present in other regularizations. It may happen that some of
these divergences are not removed by the standard renormalization. This can be
caused by a mathematical idealization of physical conditions, which is a common
problem in case of systems with boundaries, see discussion below.

9.2 The Casimir Effect

One of manifestations of the vacuum energy is an interaction of neutral bodies or
surfaces in empty space due to quantum fluctuations. This phenomenon has an ex-
perimental confirmation and is called the Casimir effect.

Consider, for example, two parallel metal plates. Their interaction appears be-
cause the amount of energy stored in vacuum fluctuations of the electromagnetic
field between the plates depends on a distance between the plates. Mathematical
reasons behind that are the following. Conducting plates screen the field. The com-
ponents of the electric field are decomposed on a tangential part, which is parallel to
plates, and a normal part, orthogonal to the plates. If the plates are ideally conduct-
ing the tangential part of the electric field vanishes on the plates, i.e. it obeys there a
Dirichlet condition. The boundary conditions affect the single-particle spectrum ωi
and, hence, vacuum energy (9.1).

We carry out the computation for a simpler situation of a real scalar field ϕ. The
parallel plates are embedded in a three-dimensional space, the separating distance is
l. The scalar field is assumed to satisfy the Dirichlet boundary condition on the both
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plates. The single-particle energies of the modes, which are solutions to the wave
equation �ϕ = 0, read

ωk,n =
√

k2 + π
2n2

l2
, (9.4)

where k ∈ R
2 is the momentum tangential to the plates, and n = 1,2, . . . is the

wave number in the direction orthogonal to the plates. Since there is a translation
invariance in the directions along the plates it makes sense to calculate the energy
density per unit area of the plates, Es =Es/V , where V is the area of a plate and Es
is defined by (9.2). In the limit V →∞ the energy density turns out to be finite and
is given by the following formula:

Es = μ
2s

2

∞∑
n=1

∫ ∞

0

dλ

4π

[
λ+ π

2n2

l2

] 1
2−s
. (9.5)

To obtain this relation one should correctly fix the integration measure over the
tangential momenta k. This can be done in different ways. For instance, we may
note that for finite V the sum over discrete spectrum can be replaced by an integral
with measure dN(λ), whereN(λ) is the counting function studied in Sect. 5.4. In the
considered case λ = k2 are eigenvalues a two-dimensional Laplacian. To perform
the V →∞ limit, one can use (5.39) and conclude that dN(λ)/dλ= V/(4π).

The integral over λ in (9.5) and then the sum over n are easily performed,

Es = μ
2s

8π

1

s − 3/2

∞∑
n=1

(
πn

l

)3−2s

= μ
2s

8π

ζR(2s − 3)

s − 3/2

(
π

l

)3−2s

, (9.6)

where ζR(2s − 3) is the Riemann zeta-function (5.5). This expression is finite at
s→ 0, and with the help of (5.20), (5.15) we obtain

E = lim
s→0

Es =− π2

1440l3
. (9.7)

This energy density is negative. Consequently, the corresponding force between the
plates, F = ∂E /∂l, is attractive. It is F that is called the Casimir force and is mea-
sured in experiments. The Casimir force for electromagnetic field is two times the
force in the scalar case.

The explanation of the fact that no poles are encountered in (9.6) when regular-
ization is removed is the following. The divergent part of the vacuum energy in the
given regularization is determined by (9.3). We need to know the heat coefficient a4.
The bulk part of a4 vanishes because the field is massless and the base manifold is
flat, see (4.58). Since the boundary is flat the only boundary invariant for this system
is the area integral of the plates. This invariant enters a1, see (4.71), not a4. Thus,
the boundary part of a4 vanishes as well.

In other regularizations there may appear divergences related to a1. These di-
vergences are a mathematical artifact: in a physical world pure Dirichlet conditions
cannot be realized because there cannot exist ideally conducting metal plates. For-
tunately, a1 does not depend on the distance between the plates. Thus, a1 does not
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Fig. 9.1 The integration
contour C in Eq. (9.9)

enter the Casimir force which is the derivative of the energy with respect to the
distance, and the force is finite.

Further examples of calculation of the Casimir energy can be found in Exer-
cises 9.1–9.3.

9.3 Calculations on the Complex Plane

In general, the single-particle spectrum is not known explicitly but is rather given by
roots of some function. We describe a method how to do computations in this case.

The method is based on a convenient representation of the vacuum energy in
terms of a contour integral in the complex plane and can be described as follows.
Suppose that the single-particle spectrum is determined by the eigenvalues {λ} of an
operator L, i.e. ω2

i = λ. Let the spectrum of L be positive and discrete, and assume
that the eigenvalues λn are defined as roots of the equation

f (λ)= 0. (9.8)

The function ∂λ ln(f (λ)) has poles with unit residues at λ= λn. Consequently, mod-
ulo some natural assumptions on the analytic properties of f , the zeta-function of
L can be represented by a contour integral

ζ(s,L)= 1

2πi

∫
C

dλλ−s∂λ ln(f (λ)), (9.9)

where the contour C runs anticlockwise around the positive semiaxis, see Fig. 9.1.
Once the integral definition of ζ(s,L) is known one can use (9.2) for computation
of Es .

To illustrate the method, let us consider computation of the vacuum energy for
a smooth static potential V (x) in 1 + 1 dimensions. We take a one-dimensional
operator

L=−∂2
x +m2 + V (x) (9.10)

and assume that V (x) vanishes fast enough as x→ ±∞. Any constant part of the
potential may be absorbed in m2. There are two types of eigenmodes of the opera-
tor L. The discrete spectrum is formed by the bound states with the eigenfrequen-
cies ω2

i = m2 − κ2
i . The corresponding eigenmodes behave as e±κix at x→ ∓∞,

thus decay at infinity and have a finite L2 norm. For quantum stability of the sys-
tem (to avoid imaginary single-particle energies) the mass should be sufficiently
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large, m ≥ κi for all bound states. For a smooth potential, the number of bound
states is finite. There is also continuum spectrum with the single-particle energies
ω2(k)=m2 + k2. Corresponding modes oscillate at large distances as e±ikx . They
have an infinite L2 norm and are normalized to a delta-function in the momentum
space.

The vacuum energy has two separate contributions EB and EC , from the bound
states and the continuum spectrum, respectively,

E =EB +EC. (9.11)

The bound state part is given by a finite sum

EB = 1

2

∑
i

(m2 − κ2
i )

1/2 (9.12)

and is convergent, so that no regularization is needed for this part.
The continuum spectrum part is given by a momentum integral which is usually

divergent and has to be regularized. To define a zeta-regularized expression and to
find a form of the spectral density, it is convenient to introduce boundaries at x =±l
with some large l which will be sent to infinity at the end of the calculations.

Without boundaries, for each momentum k there are two independent solutions
η1, η2 of the wave equation with the asymptotic behavior

η1 ∼ eikx + s12e
−ikx, η2 ∼ s22e

−ikx for x→−∞,
η1 ∼ s11e

ikx, η2 ∼ s21e
ikx + e−ikx for x→∞. (9.13)

The entries of the scattering matrix sij depend on the momentum k. Let us assume
for simplicity that the potential V is symmetric. Then s11 = s22 and s21 = s12. One
can compose symmetric and antisymmetric solutions whose asymptotics at x →
±∞ are (s11 + s21)e

ik|x| + e−ik|x| and ±((s11 − s21)e
ik|x| − e−ik|x|), respectively.

Now, let us impose Dirichlet boundary conditions η(x = ±l) = 0 for some very
large l, so that we are allowed to substitute the asymptotic behavior of the solutions
in those conditions. The condition that either symmetric or antisymmetric solution
vanishes at the boundary can be expressed through a single equation

f (k)= ((s11 + s21)e
ikl + e−ikl)((s11 − s21)e

ikl − e−ikl)= 0, (9.14)

which selects the spectrum of wave numbers k. This spectrum is discrete. We al-
ready know how one defines the regularized vacuum energy in the discrete spectrum,

EC(l, s)= 1
2

∑
(k2 +m2)

1
2−s , where the sum is extended to all positive solutions of

(9.14). As explained above, we use an integral representation

EC(l, s)= 1

2

∮
dk

2πi
(k2 +m2)

1
2−s ∂
∂k

lnf (k). (9.15)

The integration contour consists of one branch at k = 	 k + iε, a second branch at
k = 	 k − iε, and a small segment −ε ≤ �k ≤ ε along the imaginary axis. Along
the upper part of the contour we keep in f (k) only the terms with exp(−ikl) since
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exp(ikl) vanishes as l→∞. Along the lower part of the contour we retain exp(ikl).
The contribution from the third part can be dropped. One has then

EC(l, s)= 1

2

∫ ∞

0

dk

2πi
(k2 +m2)

1
2−s ∂
∂k
(4ikl + ln(s2

11 − s2
21)). (9.16)

We have included boundaries, and they may carry vacuum energy not related to
the potential V . Now, we must subtract this energy from (9.16). This is the vacuum
energy of free scalar fields (V = 0) of the same mass m obeying the same Dirichlet
boundary conditions. For such fields the scattering matrix is trivial, s12 = s21 = 0,
s11 = s22 = 1, so that the subtraction of corresponding vacuum energy is equivalent
to dropping the term 4ikl in (9.16). Now we can take the limit l→∞ to obtain

EC(s)= 1

2

∫ ∞

0

dk

2πi
(k2 +m2)

1
2−s ∂
∂k

ln(s2
11 − s2

21). (9.17)

From the scattering theory we know that

s2
11 − s2

21 = e2iς(k), (9.18)

where ς(k) is the phase shift. We have,

EC(s)= 1

2π

∫ ∞

0
dk(k2 +m2)

1
2−s∂kς(k). (9.19)

We can rewrite this formula differently,

EC(s)= 1

2
2
∫ ∞

0
dk(k2 +m2)

1
2−sρ(k). (9.20)

The multiplier of 1/2 above is the usual prefactor in the vacuum energy, the factor
of 2 appears due to the symmetry of the spectrum with respect to reversing the sign
of the momentum, and

ρ(k)= 1

2π
∂kς(k) (9.21)

is the spectral density introduced in Sect. 5.4.
There is an important particular case of reflectionless potentials, s12 = s21 = 0.

For such potentials

ς(k)= i
∑
i

ln
k − iκi
k + iκi = 2

∑
arctan

(
κi

k

)
, (9.22)

where κi are the same numbers which characterize the bound state energies, see
(9.12). For such potentials the condition (9.14) which defines the spectrum looks
particularly simple

sin(2kl + ς(k))= 0. (9.23)

Let us suppose that we deal with a reflectionless potential and calculate the con-
tribution from a single bound state κ to the vacuum energy. The corresponding spec-
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Fig. 9.2 The integration path
in (9.25) is represented by a
double horizontal line. The
integral is split into two
identical parts, and the
corresponding paths are then
rotated in opposite directions
towards the imaginary axis

tral density reads

ρ̄(k)=− κ

π(k2 + κ2)
. (9.24)

(Here and in what follows we put a bar over contributions of the single bound state.)
This spectral density is negative. The reason is that the spectral densities we consider
are not full spectral densities but rather their differences with respect to that for free
fields. The corresponding continuous spectrum contribution to the vacuum energy
is given by

ĒC(s)=− κ
π

∫ ∞

0
dk(k2 +m2)

1
2−s 1

k2 + κ2
. (9.25)

This integral can be evaluated in its present form, but we prefer to make an analytic
continuation to imaginary momenta. Continuation to imaginary momenta yields an
integral which converges faster and is more suitable for numerical evaluation.

The integrand in (9.25) has two simple poles at k = ±iκ and two branch cuts
starting at k = ±im, see Fig. 9.2. We divide the integral (9.25) in two equal
parts, and turn the integration path in one of them upwards, k→ iq , and in the
other—downwards, k → −iq . One should be careful with the phase factors ap-

pearing due to the continuation. For q < m the multiplier (k2 + m2)
1
2−s is re-

placed by (m2 − q2)
1
2−s for both directions of the rotation. For q > m, the bracket

(k2 +m2)
1
2−s receives the phase (q2 −m2)

1
2−seiπ( 1

2−s) when rotated upwards, and

the phase (q2 −m2)
1
2−se−iπ( 1

2−s) when rotated downwards. Next we take the inte-
gral along the negative imaginary semi-axis and change there q→−q . As a result,
the contributions from q <m almost cancel each other up to a contribution from the
pole, which is finite at s→ 0, so that we can remove the regularization there

Ēpole =−1

2
(m2 − κ2)

1
2 . (9.26)

Remarkably, this term cancels precisely the corresponding contribution from the
discrete spectrum, see (9.12),

Ēpole + ĒB = 0. (9.27)
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The rest of the integral yields

Ē(s)= ĒC(s)+ ĒB = cos(πs)

π

∫ ∞

m

dq(q2 −m2)
1
2−s κ

κ2 − q2
. (9.28)

This integral is divergent at s → 0. To isolate the divergence, let us add and
subtract a term,

κ

κ2 − q2
=

(
κ

κ2 − q2
+ κ

q2

)
− κ

q2
. (9.29)

The integral of the term in the brackets is convergent, so that we can put s = 0 there
and evaluate the corresponding contribution

Ēfin = 1

π

[√
m2 − κ2 arcsin(κ/m)− κ]. (9.30)

The last term on the right hand side of (9.29) produces a divergent contribution to
the vacuum energy

Ēdiv(s)=−κ cos(πs)

π3/2
m−2s�

(
3

2
− s

)
�(s). (9.31)

To obtain a finite result we have to get rid of the pole in Ēdiv. The standard renor-
malization procedure cannot be applied in the absence of a corresponding classical
theory. To resolve this problem we use additional physical arguments. It is natural
to require that quantum fluctuations become effectively frozen at very large mass of
the field. Thus, quantum corrections must disappear when m is infinite. In practice,
this means that we have to discard all terms in the vacuum energy which do not
vanish in the limit m→∞.

The part Ēfin vanishes as m→ ∞ and satisfies the requirement. The part Ēdiv

near s = 0 contains a pole term proportional to m, and finite additions proportional
tom and lnm. Therefore, Ēdiv(s) should be subtracted completely from the vacuum
energy.

We accept for the time being that (9.30) represents a correct contribution of a
single bound state to the vacuum energy. A comparison of this scheme to a renor-
malization procedure is given below as an example of quantum corrections to the
kink mass. Here we stress that validity of this or other subtraction prescription must
be checked separately for each physical system in question.

9.4 Quantization of a Kink

Let us now apply the methods of the previous section to a concrete system. We
consider a ϕ4 model in 1 + 1 dimensions. The classical action reads

I =−1

2

∫
dt dx

(
(∂μϕ)

2 + λ
2
(v2

0 − ϕ2)2
)
. (9.32)
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Here λ and v0 are positive constants. The equations of motion following from this
action admit the famous kink solution

φkink = v0 tanh

(
v0

√
λ

2
(x − xk)

)
. (9.33)

The integration constant xk describes the position of the kink. For the sake of sim-
plicity, we put xk = 0 in what follows. Solution (9.33) interpolates between two
minima of the potential with x =±v0. The mass of the kink

Mkink = v
3
0

√
2λ

3
(9.34)

can be defined as the value of the classical Hamiltonian for theory (9.32),

H = 1

2

∫
dx

(
(∂xϕ)

2 + π2
ϕ + λ

2
(v2

0 − ϕ2)2
)
, (9.35)

calculated at ϕ = φkink.
One can represent ϕ = φkink + χ and quantize small fluctuations χ by consider-

ing the kink as a background. Such a procedure is sometimes called the quantization
of the kink. The vacuum energy of χ determines a quantum correction to the mass
of the kink.

To study the spectrum of the fluctuations we expand action (9.32) in χ . The linear
in χ part vanishes due to the equations of motion, while for the quadratic part one
gets

I2 =−1

2

∫
dt dx

(
(∂μχ)

2 + λχ2(−v2
0 + 3φ2

kink)
)
. (9.36)

Variation of I2 results in the following equation:[−∂2
0 + ∂2

x + λv2
0

(
1 − 3 tanh2(v0

√
λ/2x)

)]
χ = 0. (9.37)

The asymptotic value of the potential in (9.37) defines the effective mass of quantum
fluctuations

m2 = 2λv2
0 . (9.38)

After subtracting the mass the potential in (9.37) gets in the family of so-called
modified Pöschl-Teller potentials. The corresponding scattering amplitudes can be
found in Problem 38 of [110], where one can learn that this is a reflectionless po-
tential with two bound states

κ1 =m, κ2 =m/2. (9.39)

The first bound state is the translational zero mode with vanishing frequency. It
corresponds to rigid translations of the kink.

One can now add up two contributions corresponding to κ = κ1 and κ = κ2 in
(9.30) to obtain the mass shift of the kink:

�H =m
(

1

4
√

3
− 3

2π

)
=√

2λv0

(
1

4
√

3
− 3

2π

)
. (9.40)
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Let us emphasize that what we sum up are not contributions of the bound states to
the formula like (9.12) (these are already canceled against the contributions of the
poles in the spectral density), but rather contributions of bound states to the phase
shift in the continuum spectrum for a reflectionless potential.

9.5 Supersymmetric Models

In the remaining part of this Chapter we discuss so-called supersymmetric models.
The supersymmetry (SUSY) is a certain symmetry between bosons and fermions.
Although SUSY is not yet discovered in Nature, it has interesting mathematical
features. In particular, SUSY leads to many cancellations between bosonic and
fermionic contributions to the vacuum energy and makes calculations of quantum
corrections especially simple.

In this section we introduce some basic elements by using an example of N = 1
supersymmetric model in 1 + 1 dimensions. The model is described by the action:

I =−1

2

∫
dt dx

(
(∂μϕ)

2 +U ′(ϕ)ψ̄ψ + ψ̄γ μ∂μψ − 2FU − F 2). (9.41)

Here ϕ is a real scalar field, and ψ is a Majorana spinor. We take γ -matrices in the
Majorana representation

γ 0 =−iσ 2 =
(

0 −1
1 0

)
, γ x = σ 3 =

(
1 0
0 −1

)
. (9.42)

In this representation the components of ψ are real, hence, ψ̄ = iψT γ 0. We use the
following notation for components of a two-component spinor:

ψ =
(
ψ+
ψ−

)
.

Theory (9.41) is specified by a function U(ϕ) called a superpotential. A concrete
form U(ϕ) is not fixed. The field F is a non-dynamical degree of freedom. It can be
removed from the action by means of its equation of motion,

F =−U(ϕ). (9.43)

That is, F is an auxiliary field.
Supersymmetry is defined as a set of transformations between scalar and spinor

fields (between bosonic and fermionic degrees) which leave action (9.41) invariant.
The SUSY transformations are

δϕ = ε̄ψ, δψ = (γ μ∂μϕ + F)ε, δF = ε̄γ μ∂μψ, (9.44)

where the SUSY parameter ε is a constant Majorana spinor.
Let us introduce some more notions. Since transformations (9.44) are parametriz-

ed by a single Majorana spinor they are N = 1 SUSY. Since this spinor does not
depend on the space-time coordinates this SUSY is called rigid.
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The invariance with respect to transformations (9.44) does not require equations
of motion. One calls them ‘off-shell’ transformations. If F is excluded from (9.41)
by means of (9.43) one arrives at the action

Ĩ =−1

2

∫
dt dx

(
(∂μϕ)

2 +U ′(ϕ)ψ̄ψ + ψ̄γ μ∂μψ +U2). (9.45)

This functional is invariant under the SUSY transformations

δ̃ϕ = ε̄ψ, δ̃ψ = (γ μ∂μϕ −U)ε, (9.46)

provided that the equations of motion are satisfied. The equations of motion for
(9.45) are

∂2ϕ − 1

2
U ′′(ϕ)ψ̄ψ −UU ′ = 0, (9.47)

(/∂ +U ′(ϕ))ψ = 0. (9.48)

where /∂ ≡ γ μ∂μ. Transformations (9.46) are called ‘on-shell’.
By following a general method discussed in Sect. 8.1 one can define a Noether

current associated to the supersymmetry,

jμ =−(/∂ϕ +U(ϕ))γμψ. (9.49)

It is called the supercurrent. Since jμ is divergence free, ∂μjμ = 0, and has two
spinorial components, there are two Noether charges

Q± =
∫ +∞

−∞
dx j0±. (9.50)

The charges are conserved on-shell.
Our next step is to introduce an algebra associated to the SUSY. Since the con-

sidered theory is classical we define the canonical structure and use the canonical
brackets. Let us rewrite action (9.45) in a Hamiltonian form (in the notations of
[158])

Ĩ =
∫
dt dx

(
− i

2
(ψ̇+ψ+ + ψ̇−ψ−)+ 1

2
(ϕ̇πϕ − π̇ϕϕ)−H

)

≡
∫
dt dx

(
−1

2
(C−1)ABżA · zB −H

)
. (9.51)

Here πϕ = ϕ̇ is the canonical momentum (2.30) and {zA} ≡ {ϕ,πϕ,ψ+,ψ−}. The
Hamiltonian density

H = 1

2

(
(∂xϕ)

2 + π2
ϕ +U2 +U ′ψ̄ψ + ψ̄γ x∂xψ

)
(9.52)

does not contain time derivatives. The canonical bracket of two functionals F1(z)

and F2(z) is introduced as

{F1,F2}C =
∫
dx dy

∑
AB

δ(r)F1

δzA(x)
CAB

δ(l)F2

δzB(y)
δ(x − y), (9.53)
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where the matrix CAB is fixed in (9.51). The derivatives δ(r) and δ(l) are right
and left variational derivatives. For practical use, this means that before taking the
derivative one has to bring zA in F1 to the rightmost position changing the sign
whenever a fermionic variable is commuted through another fermionic variable.
Likewise, zB in F2 has to be moved to the leftmost position. In particular,

{zA(t, x), zB(t, x′)}C = CABδ(x − x′),
and, more explicitly,

{ϕ(t, x),πϕ(t, x′)}C = δ(x − x′), (9.54)

{ψ±(t, x),ψ±(t, x′)}C =−iδ(x − x′). (9.55)

We use a subscript C to avoid confusions with anti-commutators of operators. Note
that the above canonical brackets are subject to the so-called grading rules, i.e., the
bracket of two fermions is symmetric, while the bracket of a boson with either boson
or fermion is antisymmetric. Upon quantization the canonical brackets are replaced
by commutators or anti-commutators, and the right hand side of (9.55) is multiplied
by i�. This is consistent with the approach of Sect. 2.4, cf. Eq. (2.29).

The on-shell SUSY transformations (9.46) can be written in terms of the brackets
with supercharges (9.50),

δ̃zA =−{ε̄Q, zA}C. (9.56)

One says that the SUSY transformations are generated by the supercharges.
Consider now static (ϕ̇ = 0) bosonic (ψ = 0) configurations. For such configura-

tions the Hamiltonian, which is the space integral of H , see (9.52), is

H = 1

2

∫
dx

(
(∂xϕ)

2 +U(ϕ)2) = 1

2

∫
dx

(
(∂xϕ ±U)2 ∓ 2∂xϕU(ϕ)

)
. (9.57)

Let us introduce a function W(ϕ) such that

W ′(ϕ)=U(ϕ). (9.58)

If we note ∂xϕU(ϕ)= ∂xW(ϕ) the Hamiltonian (9.57) becomes

H = 1

2

∫
dx

(
∂xϕ ±U)2 ∓ [

W(+∞)−W(−∞)]. (9.59)

Since the integrand in the equation above is non-negative, one concludes that

H ≥ |W(+∞)−W(−∞)|, (9.60)

and the equality is achieved if and only if

∂xϕ ±U(ϕ)= 0. (9.61)

Inequality (9.60) is called the Bogomolny-Prasad-Sommerfield (BPS) bound [41,
210], and (9.61) is called the Bogomolny equation.

Let us differentiate (9.61) with respect to x

0 = ∂2
xϕ ±U ′(ϕ)∂xϕ = ∂2

xϕ −U ′(ϕ)U(ϕ), (9.62)



9.5 Supersymmetric Models 189

where at the last step we used again the Bogomolny equation. One immedi-
ately recognizes the equation of motion for static bosonic configurations following
from (9.45). Therefore, the Bogomolny equation implies the equation of motion.

Static bosonic configurations satisfying the Bogomolny equation are called the
BPS states. An interesting feature of the BPS states is that they preserve “1/2” of the
supersymmetries of the model. Indeed, since ψ = 0, SUSY variations of the scalar
field vanish automatically, δϕ = 0. SUSY variation of the fermionic field yields

δψ =
(
∂xϕ −U 0

0 −∂xϕ −U
)
ε. (9.63)

This variation vanishes if we take either the upper sign in (9.61) and ε+ = 0, or the
lower sign in (9.61) and ε− = 0.

Let us now fix some classical background field φ(x). We suppose that the super-
potential U has several (at least two) zeros, so that U2 has at least two minima. We
consider a static solution φ(x) to the Bogomolny equation

∂xφ −U(φ)= 0, (9.64)

where we fixed one of two possible signs for definiteness. This solution is invariant
under the SUSY transformations with an arbitrary real parameter ε+ and ε− = 0.
The energy of the solution is finite

H(φ)=W(φ(+∞))−W(φ(−∞))≡ Zb. (9.65)

Therefore, such a solution is a supersymmetric soliton.
One can study the canonical algebra of ε+ SUSY transformations. Since these

transformations are generated by the supercharge Q− it is enough to calculate the
canonical bracket of two Q−. A straightforward computation yields

{Q−,Q−}C =−2i(H −Z), Z = Zb(φ)+Zf (ψ) , (9.66)

where Zb is defined above in (9.65), H is the full Hamiltonian following from
(9.52), and

Zf = 1

4

∫
dx ∂x(ψ̄ψ). (9.67)

The quantity Z is called the topological charge. It appears in the SUSY algebra
in a topologically non-trivial situations. The charge Z belongs to the center of the
algebra, and is also called the central charge. The invariance of a state with respect
to the ε+ transformation implies that this state is annihilated by Q−, and, due to
(9.66) also yields the BPS bound on the mass of the state.

To give a simplest example one can consider a supersymmetric extension of the
ϕ4 theory (9.32). In this case

U(ϕ)=
√
λ

2
(v2

0 − ϕ2), (9.68)

W(ϕ)=
√
λ

2

(
v2

0ϕ − 1

3
ϕ3

)
. (9.69)

Equation (9.64) is easily integrated yielding kink solution (9.33).
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9.6 Quantum Corrections to Supersymmetric Solitons

The aim of this section is to quantize small fluctuations above supersymmetric soli-
tons φ in two dimensions and derive an analytic formula for the shift of the soliton
mass for any superpotential.

We start with the fermionic fluctuations. The linearized Dirac equation

γ μ∂μψ +U ′(φ)ψ = 0

in components reads(
∂x +U ′(φ) −∂0

∂0 −∂x +U ′(φ)

)(
ψ+
ψ−

)
= 0. (9.70)

Since the background is static, one can substitute the single-particle modes
ψ±(t, x)= eiωf tψ±(ωf , x) in (9.70) and get

iωf ψ+(ωf , x)= (∂x −U ′(φ))ψ−(ωf , x),
iωf ψ−(ωf , x1)= (∂x +U ′(φ))ψ+(ωf , x). (9.71)

By iterating these equations one obtains

ω2
f ψ+(ωf , x)=−D−D+ψ+(ωf , x),

ω2
f ψ−(ωf , x)=−D+D−ψ−(ωf , x),

(9.72)

where

D± = ∂x ±U ′(φ). (9.73)

The operators D± are precisely the same as considered in Sect. 4.5, see (4.77). The
isospectrality, the intertwining relations (4.78), and other important properties were
already established there. We conclude that the eigenvalues ω2

f in (9.72) are non-
negative and identical for ψ±, see also Sect. 5.9.

Let us now turn to the bosonic fluctuations. We represent ϕ = φ+χ , and expand
Eq. (9.62) up to the linear order in the fluctuation χ ,

−∂2χ + [U ′(φ)U ′(φ)+U(φ)U ′′(φ)]χ = 0. (9.74)

This yields the eigenvalue problem for the bosonic single-particle modes χ(t, x)=
eiωbtχ(ωb, x),

ω2
bχ(ωb, x)=−D+D−χ(ωb, x). (9.75)

The Bogomolny equation (9.64) has been used here to write

U(φ)U ′′(φ)=U ′′(φ)∂xφ = ∂x(U ′(φ)).
By comparing (9.75) and (9.72) one concludes that non-zero bosonic and fermionic
single-particle energies, ωb and ωf coincide. This fact is a direct consequence of
the supersymmetry.

Since bosonic and fermionic contributions to the vacuum energy come with op-
posite signs one would conclude that the vacuum energy of the fluctuations in the
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supersymmetric models is identically zero. In general, this conclusion is not correct
because it does not take into account the divergences of the vacuum energy and the
need to work with regularized quantities.

Consider the zeta-function regularization of vacuum energy (9.2). One can hope
that some cancellations between bosonic and fermionic contributions hold for the
regularized energies. However, this requires at least a discrete spectrum. Thus, one
has to introduce boundaries and suitable boundary conditions. Suppose that the soli-
ton φ(x) is localized somewhere near x = 0. Typically φ(x) approaches its asymp-
totic values exponentially fast as x→±∞. We put boundaries at x =±l. Since all
quantum fluctuations in these models are typically massive, one may expect that for
l large enough quantum effects caused by the presence of boundaries decouple from
the effects related to the soliton. In this case a concrete form of the boundary condi-
tions is not relevant and one may choose any set of consistent boundary conditions
which is convenient.

As we know from Sect. 3.2 admissible local boundary conditions for spinors in
Minkowski space read

(
1 ± γ μnμ

)
ψ |∂M = 0. (9.76)

Here nμ is an inward pointing unit normal to the boundary. On the right boundary,
x = l/2, this vector has the components nμ = (0,−1), while on the left boundary it
is nμ = (0,1). Therefore, if the signs in (9.76) are different on the left and on the
right, there are two possible choices: either ψ+|∂M = 0 or ψ−|∂M = 0.

Let us study the first opportunity, ψ+|∂M = 0. From the first of Eqs. (9.71) we
find that ψ− should satisfy Robin boundary conditions, D−ψ−|∂M = 0. Since the
single-particle energies for ψ− and χ are defined by the same operators −D+D−
(cf. (9.72) and (9.75)) one should impose Robin boundary conditions also on χ . One
has, therefore, the two sets of boundary conditions

set A: ψ+|∂M = 0, (∂x −U ′(φ))ψ−|∂M = 0,

(∂x −U ′(φ))χ |∂M = 0
(9.77)

and

set B: ψ−|∂M = 0, (∂x +U ′(φ))ψ+|∂M = 0,

χ |∂M = 0.
(9.78)

One can also impose different boundary conditions on different components of the
boundary, but we will not use this option. One can easily show that the both sets of
boundary conditions are supersymmetric, see Exercise 9.5.

Up to obvious redefinitions, boundary conditions (9.77) and (9.78) coincide with
the boundary conditions used in Sect. 4.5, see (4.81) and (4.82). It was demonstrated
there that the operators D+D− and D−D+ are isospectral on the interval [−l, l] up
to zero modes. The regularized vacuum energy of this system vanishes,

�H tot
s = μ

2s

2

( ∑
ωb �=0

ω1−2s
b −

∑
ωf �=0

ω1−2s
f

)
= 0. (9.79)
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This does not, however, mean that the mass shift of the soliton is zero. For a suffi-
ciently large l total vacuum energy consists of two parts,

�H tot =�H bou +�H sol. (9.80)

Thus, the vacuum energy �H sol associated with the soliton is precisely compen-
sated by the vacuum energy �H bou localized near the boundaries. To calculate the
mass shift of the soliton one should simply calculate �H bou and reverse the sign.

Near the boundaries and far away form the soliton one can use some effective
field theory. This is a theory of free fields with the mass given by asymptotic value
of the potential, and the boundary conditions defined by asymptotic values of the
superpotential through (9.77) or (9.78).

Consider a free massive scalar field on an interval [−l, l] subject to the Robin
boundary conditions

(∂x +S1)χ |x=−l = (−∂x + S2)χ |x=l = 0 (9.81)

with arbitrary S1 and S2. Generic oscillating solution can be represented as
A sin(kx)+B cos(kx). By substituting this solution into boundary conditions (9.81),
one obtains the following condition which defines the spectrum:

sin(2kl + α1 + α2)= 0, (9.82)

α1,2 = arctan(S1,2/k). (9.83)

Condition (9.82) coincides with (9.23) if one identifies ς(k) with α1 + α2. By com-
paring Eq. (9.83) with (9.22) we arrive at a remarkable result: the phase shift pro-
duced by a Robin boundary condition coincides with 1/2 of the phase shift of a
reflectionless potential with a bound state κ = S . Consequently, the same relation
holds true for the corresponding vacuum energies.

Note, that we do not have to worry about the spectrum with imaginary k since
corresponding contributions are canceled against the poles of the spectral density, as
we have already seen in Sect. 9.3. On can also see, that Dirichlet boundary condition
produces zero phase shift in the corresponding eigenvalue equation and does not
contribute to the vacuum energy. This justifies that we did not ascribe any vacuum
energy to the Dirichlet boundaries in the previous section.

Let us now apply this result to the effective field theory near the boundaries of the
soliton. As x→ ±∞ the classical field φ approaches fast (typically, exponentially
fast) the asymptotic values φ±. Absolute minima of the potential correspond to the
zeros of the superpotential, i.e. U(φ±) = 0. As it is clear from the field equations,
the mass of fluctuations near the boundaries is given by

m2± = (U ′(φ±))2. (9.84)

Let us suppose for simplicity that

m2− =m2+. (9.85)

(If the masses are different, the consideration is a bit more involved technically.)
Let us consider the set A, (9.77), of boundary conditions. The contribution of ψ+
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cancels 1/2 of the contribution of the bosonic field, and, consequently, we have
noncompensated 1/2 of the contribution of a bosonic Robin mode with

S1 =−U ′(φ−), S2 =U ′(φ+). (9.86)

Now, by using (9.30) and the relations between contribution from boundary condi-
tions and bound states derived above, we calculate the vacuum energy associated
with the boundaries:

�H bou =− 1

4π
(U ′(φ+)−U ′(φ−)), (9.87)

which yields for the vacuum energy of the soliton

�H sol = 1

4π
(U ′(φ+)−U ′(φ−)). (9.88)

In the particular case of the ϕ4 kink (9.33) described by the superpotential (9.68)
we have

�H kink =−
√
λ

2

v0

π
. (9.89)

As a consistency check one may verify that the set B, (9.78), of boundary conditions
leads to the same expression for the vacuum energy.

The last problem which we have to discuss is what happens with the BPS bound
and the supersymmetry in quantum theory? Let us remind that the solitons satisfy
the BPS bound (the equality sign in (9.60)). This is a consequence of the Bogomolny
equation (9.61), which, is equivalent to conservation of 1/2 of the supersymmetries.
One has two consequences of quantum corrections: change of the mass of the kink
which results in a violation of the BPS bound and a change of the central charge.
It turns out that the two effects are consistent and compensate each other. Let us
demonstrate this property in our approach.

Action (9.45) is invariant under SUSY transformations (9.46) up to boundary
terms. It is not possible to introduce boundary terms in the action to compensate
boundary terms generated by the SUSY. The reason is an algebraic one. Anticom-
mutators of some of the SUSY transformations contain the translation operator on
the right hand side. This fact implies an invariance of the theory under translations,
which is inevitably broken by the presence of boundaries.

It is possible to preserve 1/2 of the supersymmetries in the presence of bound-
aries. Let us introduce a boundary functional

I bou =
∫
dt Z (9.90)

whereZ is defined in (9.66). One can easily check that the action I+I bou, where the
bulk action I is given by (9.45), is invariant with respect to the ε+ transformations
(ε− = 0) including the boundaries and without imposing any boundary conditions
on the fields. Adding a new term to the action results in a contribution to the Hamil-
tonian, which reads now

H tot =H −Z. (9.91)
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(Note that Z does not contain time derivatives.) The canonical bracket of two super-
charges (9.50), where the integration is restricted to a finite interval,

{Q−,Q−} =−2iH tot (9.92)

gives the total Hamiltonian without an extra term.
Let us make sure that the new boundary action is consistent with boundary con-

ditions (9.77) and (9.78). Variation of the classical action I + I bou with respect to
the fields produces equations of motion (9.47), (9.48) in the bulk plus the boundary
term ∫

∂M
dt nx(ψ−δψ+ + (∂xϕ −U(ϕ))δϕ). (9.93)

Here nx is the x-component of the inward pointing unit normal to the boundary, i.e.,
nx = ±1 at x = ∓l. This boundary term obviously vanishes for conditions (9.78).
To show this for (9.77) one has to note that the condition for the bosonic fluctuations
there is nothing else as a linearized version of the equation ∂xϕ − U(ϕ)= 0. Also
in the part quadratic in fluctuations all boundary terms vanish, see Exercise 9.7.

We may conclude therefore that one-loop quantum correction �H tot is the same
as calculated above, i.e., �H tot = 0. Moreover, the initial bulk Hamiltonian H may
be identified withH sol, andH bou—with −Z. We see, that in this approach, quantum
corrections to the mass of the soliton are compensated by quantum corrections to the
central charge, and the BPS bound is saturated.

9.7 Literature Remarks

There exist many good books and review articles devoted specifically to the Casimir
effect. Relatively recent sources are [45, 187, 188]. Therefore, the presentation in
Sect. 9.2 was rather sketchy.

The first calculation of a force that appears between two parallel metal conduct-
ing plates was done by H. Casimir in 1948. The Casimir force is of the order of
10−3 N for the separation distance of 100 nm and the plates area of the order of one
square meter. First experimental studies of the effect date back to 1958. Since that
period the Casimir effect has been explored both theoretically and experimentally
for a number of geometrical configurations. Its experimental verification is on the
level of a few percents either for parallel plates of for interaction between a plate and
a sphere. It should be noted that the sign of the Casimir force depends on the shape
of the surfaces. For example, the Casimir energy of a single conducting sphere is
positive, thus, the Casimir force is repulsive. The use of the zeta-regularization in
the Casimir energy calculations was pioneered in [10, 38].

Some authors include in the notion of the Casimir effect all physical manifes-
tation of the vacuum energy. The most important manifestation of vacuum fluctua-
tions is related to their contributions to the cosmological constant �, see Eq. (7.68).
There is a mounting number of cosmological data that the cosmological constant
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may constitute the so-called dark energy, an exotic form of matter which accelerates
expansion of the Universe [204].

A modern development of the contour integration methods in calculations of
spectral functions is reviewed in [170]. For a recent review on quantum corrections
to masses of topological solitons one may consult [5].

Quantum corrections to the ϕ4 kink in 1 + 1 dimensions and the shift of kink
mass (9.40) were first calculated by Dashen, Hasslacher and Neveu [74]. Other im-
portant early sources on quantum solitons are [106, 138, 211]. In our treatment of
the vacuum energy in terms of the scattering data, contributions of the bound states,
and the bosonic kink mass shift we follow [42] and [47]. The large mass subtraction
scheme used to get (9.40) was discussed in some detail in [44, 45, 47].

The same mass shift (9.40) can be obtained in a framework of the renormaliza-
tion procedure, when the divergences are removed by renormalizing the mass of
the field ϕ, and demanding that the one loop effective potential has a minimum at
ϕ = v0, see [214]. One can show [47] that for all two-dimensional theories with a
scalar background the condition above is equivalent to the large mass subtraction
scheme used in Sect. 9.3. Moreover, the both methods are equivalent to the heat ker-
nel subtraction scheme which is frequently used in calculations on a curved back-
ground [37] (when one drops the entire contribution of a2 to the vacuum energy).
A review of solitons is [211].

An introduction to supersymmetry can be found in [254, 256].
For a long time it was believed that due to the compensation of bosonic and

fermionic contributions to the vacuum energy the mass shift of solitons in the pres-
ence of supersymmetry vanishes. It was demonstrated in [214] that carefully taking
into account the renormalization effects one must obtain a non-zero vacuum energy
of the kink in 1 + 1 dimensions.

General aspects of supersymmetric solitons are reviewed in [231]. In (9.51) we
used conventions of [158]. The appearance of a topologically non-trivial central
charge, see Eq. (9.66) was first observed by Witten and Olive [259]. This effect is
common for all SUSY models. After a non-zero mass shift of the supersymmetric
kink was obtained [214] this effect has been interpreted as a new anomaly [143,
197, 232] (see [215]). In our treatment of the mass shift we follow [47]. The anal-
ysis of correction to the central charge is new, but it uses essentially the notion of
“supersymmetry with boundary conditions” [32].

9.8 Exercises

Exercise 9.1 Use two methods to compute the Casimir energy for a real massless
scalar on a circle. The first method is to introduce regularized energy as

E0(ε)= 1

2

∑
k

ωk e
−εωk , (9.94)

where ε > 0 is a regularization parameter. The second method is to use the Green’s
function of the fields and a point-splitting method described in Sect. 2.6, see (2.74),
(12.276).
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Exercise 9.2 Consider quantum field theory on the so-called Einstein universe

ds2 =−dt2 + r2 d�2
d, (9.95)

where d�2
d is the line element on a hypersphere Sd , d = n − 1, of a unit radius.

Find the Casimir energy of a massless scalar field with conformal coupling (see the
model (8.69)) on background (9.95). Consider for simplicity the case n = 4 and
compare it with results of Exercise 9.1.

Exercise 9.3 Find the vacuum energy on the Einstein universe for a Weyl spinor.

Exercise 9.4 Check that action (9.45) is invariant under SUSY transforma-
tions (9.46).

Exercise 9.5 Show that boundary conditions (9.77) and (9.78) are invariant under
linearized SUSY transformations with ε− = 0.

Exercise 9.6 By applying formula (9.88) to the anti-kink solution �anti-kink =
−�kink one obtains �H anti-kink = −�H kink. This result seems to contradict P -
invariance of the theory (change of the sign of spatial coordinates). How can this
contradiction be resolved?

Exercise 9.7 By using the background field formalism, and choosing for simplicity
a bosonic background field only, show that both bulk and boundary one-loop diver-
gences in the theory described by the classical action I + I bou (see (9.45), (9.90))
are removed by a single renormalization of the superpotential.



Chapter 10
Open Strings and Born-Infeld Action

10.1 Open Strings in Background Gauge Fields

Spectral methods in the presence of non-trivial boundary conditions have many ap-
plications which go beyond the studies of the vacuum energy. In this Chapter we
discuss boundary effects in a model of quantized extended one-dimensional objects,
‘strings’. Such objects or, more correctly, their supersymmetric extensions are con-
sidered in the string theory. They have very interesting properties and one of these
properties is established here by applying the spectral theory.

We begin with necessary definitions. Our starting point is the so-called bosonic
string. The ‘trajectory’ of a string, as distinct from the path of a particle, is a two-
dimensional manifold M called a world-sheet. Thus, the bosonic string theory
is two-dimensional. The coordinates on M are σ (goes along the string) and τ
(an analog of a proper time coordinate for a particle, see (1.24)). The manifold
where the string propagates is called a target manifold. The coordinates of the tar-
get manifold are denoted as Xμ and the string embedding is described by equations
Xμ =Xμ(σ, τ).

The strings with ‘free’ endpoints are called open strings. In this case the world-
sheet manifold M has a boundary ∂M . The following discussion is restricted to the
case when the target space and, hence, the world-sheet have Euclidean signatures.
The world-sheet metric is denoted as hab(σ, τ ), a, b= 1,2. The metric on the target
space is Gμν(X).

To determine equations for string ‘trajectories’ one considers Xμ(σ, τ) as dy-
namical variables and, like in case of a particle action (1.24), introduces an action
functional

I [X] = 1

4πα′

∫
M
d2x

√
hGμνh

ab∂aX
μ∂bX

ν + 1

2πα′

∫
∂M
Aμ(X)dX

μ. (10.1)

Here we use the convention xa = {σ, τ }, and dXμ = ∂τXμ dτ along the boundary.
The coupling α′ is called the string tension. The first term in (10.1) is known as the
Polyakov string action.

D. Fursaev, D. Vassilevich, Operators, Geometry and Quanta,
Theoretical and Mathematical Physics,
DOI 10.1007/978-94-007-0205-9_10, © Springer Science+Business Media B.V. 2011

197

http://dx.doi.org/10.1007/978-94-007-0205-9_10


198 10 Open Strings and Born-Infeld Action

Let us dwell on the symmetries of (10.1). First of all, this functional is invariant
with respect to coordinate transformations in the target space as well as with re-
spect to diffeomorphisms in the world-sheet. Additionally there are transformations
of the boundary vector-function A′

μ(X) = Aμ(X)+ ∂μλ(X) which do not change
the action (10.1) since there is no boundary in the τ direction and corresponding
integrations by parts do not produce any boundary terms. Thus, one can interpret
Aμ(X) as an Abelian gauge field. It is known, that strings can interact with gauge
fields only at their end points, and the second term in (10.1) describes such an inter-
action. Finally one can note that (10.1) has a conformal invariance related to local
rescalings of the world-sheet metric hab .

From a geometrical view point equations following from the action (10.1) define
the string world-sheet as a minimal surface in the Euclidean target space, i.e. the
surface of a least area. From a different point of view, the coordinates Xμ are a set
of two-dimensional fields while (10.1) is an action functional of some non-linear
field model, so-called sigma model. To apply results obtained above in this book
one has to reduce this model to a theory of free fields, i.e., to make a linearization
over a background.

Let us suppose that the target space metric is constant Minkowski metric Gμν =
δμν and consider fluctuations of the string, Xμ = X̄μ + √

2πα′ ξμ, which deviate
it from some classical trajectory X̄μ. The action for the fluctuation part ξμ follows
from (10.1)

I2[X̄, ξ ] = 1

2

∫
M
d2x

√
hδμνh

ab∂aξ
μ∂bξ

ν

+ 1

2

∫
∂M

dτ
(
Fμν(X̄)ξ

ν∂τ ξ
μ + ξνξρ∂τ X̄μ∂νFρμ(X̄)

)
, (10.2)

see Exercise 10.1. After integrating by parts in the volume term in (10.2) one obtains

I2[X̄, ξ ] = −1

2

∫
M
d2x

√
hξμδμνh

ab∇a∇bξν

+ 1

2

∫
∂M
dτ

(−ξμδμν∂nξν + Fμν(X̄)ξν∂τ ξμ + ξνξρ∂τ X̄μ ∂νFρμ(X̄)
)
.

(10.3)

If the boundary term in (10.3) is non-vanishing, it results in a delta-function-like
potential with the support on ∂M in field equations for the string fluctuations ξμ.
To avoid this singular term one has to impose certain boundary conditions on ξμ

which fix uniquely the spectrum of the fluctuations.
As we know, quantum effects may produce corrections to the boundary part of

the effective action for ξμ. Since the corrections depend on the boundary vector-
potential Aμ they should be added to the boundary term in classical action (10.1).
In this way the corrections may modify the boundary conditions on ξμ one started
with. To ensure this does not happen and the theory is self-consistent one has to
impose certain conditions on the vector-field Aμ itself. An interesting property of
this simple model is that consistency conditions on Aμ are equivalent to equations
in a classical non-linear electrodynamics of the Born-Infeld type.
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10.2 Quantum Corrections for Oblique Boundary Conditions

The aim of this section is to derive a divergent part of the effective action for the
string fluctuations in the presence of the boundary potential Aμ by using results of
the spectral theory.

First, let us discuss boundary conditions on ξμ which eliminate the boundary
term in (10.3). It is clear that one can impose either Dirichlet conditions

ξμ|∂M = 0, (10.4)

or a kind of generalized Neumann conditions(
−δμν∂n + 1

2
(Fμν∂τ + ∂τFμν)+ (∂τ X̄ρ) · 1

2
(∂νFμρ + ∂μFνρ)

)
ξμ|∂M = 0.

(10.5)

Equations (10.5) are presented in a manifestly symmetric form, for the reasons
which are explained later. Such a symmetrization is always possible since it does
not affect the quadratic form of the action.

It is allowed to mix up boundary conditions (10.4) and (10.5), i.e. to assume
that some components of ξμ satisfy (10.5) while the other components obey (10.4).
Conditions (10.5) are genuine open string conditions. The Dirichlet condition (10.4)
means that some of the string endpoints are confined to a subsurface in the target
space which is called a Dirichlet brane or simply a D-brane. Conditions (10.5) be-
long to the class of the oblique boundary conditions (3.46).

Let us study now the boundary value problem for a Laplacian with the boundary
conditions

Bϕ =
(
∇n + 1

2
(�i∇i +∇i�i)+S

)
ϕ|∂M = 0. (10.6)

This condition is practically the same as (3.46) except that in (10.6) we use a sym-
metric combination of ∇i in �i in order to simplify the hermiticity analysis. The
difference between (3.46) and (10.6) is just a shift of S .

By comparing (10.6) with (10.5) one can see that

�νμ =−Fμν, (10.7)

Sνμ =−(∂τ X̄ρ) · 1

2
(∂νFμρ + ∂μFνρ). (10.8)

The connection for this system is trivial. Since the boundary is one-dimensional we
do not write a world-sheet vector index for �. Both � and S are matrices with
target-space indices. Note, that � is antisymmetric, while S is symmetric. This is,
in fact, a general feature. The Laplacian is formally selfadjoint with boundary con-
ditions (10.5) provided that �i and S are anti-Hermitian and Hermitian matrices,
respectively. This statements is an easy extension of Exercise 3.1. If one adopts dif-
ferent conventions for the Euclidean theory so that an extra i appears in front of Aμ,
the hermiticity properties of S and � are reversed, and the Laplacian is no longer
selfadjoint.
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Let us discuss leading coefficients of the heat kernel expansion. We leave without
a proof that asymptotic expansion (4.9) indeed takes place for moderate �, and the
coefficients are locally computable as in Sect. 4.5. However, when we try to write
down general expressions for the heat kernel coefficients we immediately meet a
difficulty. The canonical mass dimension of �i is zero, and therefore, �i may ap-
pear in the heat kernel coefficients in arbitrary power. Besides, in general �i do not
commute with each other, so we have some ordering ambiguities. To make the situ-
ation easier we suppose that all �i commute. This assumption does not impose any
restrictions on the field configurations in the case of strings since there is just one �.
The coefficient a0, which has volume contributions only, remains as before (4.56).
For next two coefficients one can write

a1(L)= (4π)−(n−1)/2
∫
∂M
dn−1x

√
h tr(γ (�)), (10.9)

a2(L)= (4π)−n/2 1

6

[∫
M
dnx

√
g tr(f (6E +R))

+
∫
∂M
dn−1x

√
h tr

(
b0(�)K

j
j + b2(�)S + σ(�)Kij�i�j

)]
. (10.10)

To avoid a confusion we should note that in these expressions we follow conven-
tions of Sect. 4.5 for the case of n-dimensional base manifold M . In (10.9), (10.9)
we introduced γ , b0, b2 and σ as arbitrary functions of �2. A somewhat strange
nomenclature is consistent with references discussed in Sect. 10.4. The calculations
of γ , b0, b2 and σ are rather involved but still doable with the help of a rather smart
extension of standard methods [19–21, 94, 186]. The result reads

γ = 1

4

[
2√

1 + �2
− 1

]
,

b0 = 6

[
1

1 + �2
− 1√−�2

artanh
(√−�2

)]+ 2,

b2 = 12

1 + �2
,

σ = 1

�2
(2 − b0).

(10.11)

In the limit �→ 0 one reproduces the heat kernel coefficients for Neumann bound-
ary conditions (4.74) and (4.75).

As we have already mentioned, �i are typically anti-Hermitian. Therefore,
�2 ≤ 0. As �2 approaches −1 the heat kernel coefficients blow up due to the loss of
strong ellipticity of the boundary value problem. This phenomenon has been briefly
discussed in Sect. 3.2, see (3.37)–(3.41). In the context of the string theory the di-
vergence points out to a critical value of the filed strength Fμν .

Now we are ready to evaluate divergent part of the one-loop effective action for
open strings

W [A] = 1

2
ln det�[A],
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where � is the Laplace operator on the string-world sheet M for boundary condi-
tions (10.5). In zeta-function regularization (5.51)

Wdiv[A] = − 1

2s
a2(�). (10.12)

Since the target space is flat the string world-sheet can be chosen as a flat minimal
surface. This is possible at least when ∂M is a plane, Kij = 0. If these conditions
are assumed one gets from (10.7), (10.8), (10.10), (10.11), and (10.12) the following
result:

Wdiv[A] = 1

4πs

∫
∂M
dτ ∂τ X̄

ρ · (∂μFνρ + ∂νFμρ)[1 + F 2]−1μν. (10.13)

We do not derive Eqs. (10.11) which are used to establish the boundary diver-
gences in the effective action. This can be found in the references given above. To
justify (10.13) one can use an alternative approach based on the Green’s functions
for open strings, see Exercises 10.3–10.5.

10.3 The Born-Infeld Action and Noncommutative Coordinates

Correction (10.13) looks similar to the boundary term in classical action (10.1). This
motivates us to write

Wdiv[A] = 1

s

1

2πα′

∫
∂M
dτ ∂τ X̄

ρ · βAρ , (10.14)

βAρ ≡ 1

2
α′(∂μFνρ + ∂νFμρ)[1 + F 2]−1μν. (10.15)

As was pointed out in Sect. 10.1 the theory is consistent if

βAμ = 0. (10.16)

This condition also ensures conformal invariance in the string theory, though we
shall not go into details of this interpretation. Note, that βAμ depends on Aμ and on
the derivatives of Aμ with respect to the target space coordinates. A remarkable fact
is that condition (10.16) is equivalent to the equations which can be derived from
the following action on the target space:

IBI =
∫
dNX

√
det(δμν + iFμν). (10.17)

Functional (10.17) is called the Born-Infeld action (or the Dirac-Born-Infeld action).
N is the number of target space dimensions. The factor i appeared in Euclidean
space due to our conventions.

In the weak field approximation, when Fμν is small, (10.17) can be expanded in
a power series. The first non-trivial term, which is an integral of FμνFμν , has the
standard Maxwell form. The Born-Infeld action, therefore, describes a non-linear
extension of the standard Maxwell electrodynamics.
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Another remarkable result of the theory of open strings is a noncommutativ-
ity of the coordinates of the string endpoints. Let us evaluate the commutator
[Xμ(τ),Xν(τ )] when both operators are taken at the boundary for constant �. To
this end we need the Green’s function of ‘fields’ Xμ taken on the boundary. The
Green’s function is computed in Exercise 10.2, see (10.23). Its boundary value up
to an inessential constant part reads

G(τ, τ ′)= G ln(τ − τ ′)2 + 1

2

�

1 + �2
sign(τ − τ ′), (10.18)

where G is a symmetric matrix whose precise form plays no role. One can argue,
that this Green’s function is exactly the vacuum expectation value

G(τ, τ ′)= 〈X(τ)X(τ ′)〉 (10.19)

and that the commutator is recovered in the time-ordered limit

[Xμ(τ),Xν(τ )] = lim
ε→0

[
Gμν(τ, τ − ε)−Gμν(τ, τ + ε)] (10.20)

yielding

[Xμ,Xν] = iδμνθ, (10.21)

where

θ = �

1 − �2
. (10.22)

The factor i appears in (10.21) due to continuation to the Minkowski signature space
accompanied by �→ i�, which we performed at the last step.

We conclude that the coordinates of the string endpoints do not commute, and,
hence, an effective field theory on a D-brane has to be a theory constructed on a
noncommutative space. Such theories are discussed in the next Chapter.

10.4 Literature Remarks

String theory belongs to one of the most exciting areas of modern theoretical
physics. String is seen as an extended object at very high energies only. The low-
energy limit of strings is defined by the condition that certain string beta-functions
vanish. These beta-functions can be calculated by the methods of quantum field the-
ory in external fields. An extensive introduction to string theory can be found in the
textbooks [144, 208].

The metric Gμν and the boundary vector field Aμ are fields on the target space.
From the world-sheet standpoint they can be also viewed as sets of couplings. Each
of these fields can be expanded in a Taylor series, and the coefficients in front of the
powers of Xμ play a role of independent coupling constants. Therefore, the string
action (10.1) describes a two-dimensional field theory with an infinite number of
couplings. Since Aμ(X) plays the role of couplings correction (10.14) represents
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counterterms to these couplings. In this sense βAρ introduced in (10.15) are related
to beta-functions for the couplings Aμ.

The Born-Infeld action was derived from open strings by Fradkin and Tseytlin
[112, 239]. The derivation based on the string beta-functions was presented in the
works [1, 56], from which we borrowed some of the material. The Dirichlet condi-
tions on some of the string coordinates (the D-branes) were discussed in this context
in [73, 178]. Latter on the Dirichlet branes became important due to the seminal
work by Polchinski [207].

We have not fixed the dimensionality of the target manifold N . The bosonic
string theory is consistent provided that the target space has 26 dimensions. In many
sources an extra multiplier of i appears in front of Aμ in (10.1) meaning that differ-
ent conventions for the continuation to the Euclidean space are used. Our conven-
tions ensure that the fluctuation operator is selfadjoint.

Oblique boundary conditions have been studied in mathematics since a long time,
see [147]. The problem of calculating the heat trace asymptotics for these boundary
conditions was first addressed in [186], and the results of this work were later ex-
tended and improved by Avramidi and Esposito [19–21] and by Dowker and Kirsten
[94] (the former authors discuss also the strong ellipticity in the context of these
boundary conditions). The heat kernel calculations were applied to string theory in
[176, 203].

Our derivation of noncommutativity of the coordinates of string end points fol-
lows the analysis of [223, 230].

10.5 Exercises

Exercise 10.1 Calculate second-order terms in the background field expansion of
open string action (10.1).

Exercise 10.2 Let M = R × R+, so that the coordinates on M have the following
ranges: τ ∈ R and σ ∈ R+. Let � be a Laplace operator on M subject to boundary
conditions (10.6) with a constant � and S = 0. Prove that the Green’s function
G=�−1 has the following form:

G(x,x′)=− 1

4π

[
ln |z− z′|2 + 1 + i�

1 − i� ln(z− z̄′)+ 1 − i�
1 + i� ln(z̄− z′)

]
, (10.23)

where z= τ+ iσ , z′ = τ ′ + iσ ′. Since the imaginary part of z− z̄′ is always positive,
and the imaginary part of z̄− z′ is always negative, it is convenient to put the branch
cut of the logarithm along R−.

Exercise 10.3 Let M = R × R+ and let G0(z, z
′) be the Green’s function

of the free scalar Laplacian � = −∂2 satisfying Neumann boundary condition
∂σG0(z, z

′)|σ=0 = 0. Demonstrate that the two-point function GS(z, z′) obeying
the Dyson equation

GS(z, z
′)=G0(z, z

′)+
∫
dτ ′′G0(z; τ ′′,0)S(τ ′′)GS(τ ′′,0; z′) (10.24)
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is the Green’s function of the same operator satisfying the Robin boundary condition

(∂σ + S(τ))GS(z, z′)|σ=0 = 0. (10.25)

Solve (10.24) perturbatively.
The method which allows one to construct perturbative Green’s functions satis-

fying various boundary conditions from free (or simpler) Green’s functions is called
the multiple reflection expansion [22, 23, 153]. The example considered here is
taken from [46, 176].

Exercise 10.4 Consider an effective action W for a theory with oblique boundary
conditions (10.6). The dependence ofW on the boundary function S can be estab-
lished perturbatively if S is sufficiently small. Use the multiple reflection expansion
discussed in Exercise 10.3 to show that the first term in the expansion of the action
in S is

W1(S )∝
∫
∂M
dτ tr(S (τ )G(τ,0; τ ′,0)), (10.26)

where G is the Green’s function (10.23) and |τ − τ ′| is assumed to be a small
regularization parameter.

Exercise 10.5 Use results of Exercise 10.4 and Eq. (10.26) to derive divergent part
(10.13) of the string effective action.

Exercise 10.6 Prove that the equations of motion for the Born-Infeld action (10.17)
yield conditions (10.16).



Chapter 11
Noncommutative Geometry and Field Theory

11.1 Motivations for Noncommutative Geometry

In this last Chapter we go from a traditional material to new frontiers where the
methods of spectral geometry can be applied. We consider noncommutative theo-
ries which are a beautiful example of how physics and mathematics have a mutual
influence.

When studying open strings we have encountered a space with noncommuting
coordinates, see (10.21). Such spaces are called noncommutative (NC). Open strings
suggest an example of a real noncommutative plane with the following commutator
of the coordinates:

[xμ, xν] = iθμν, (11.1)

where θμν , in general, is a constant real anti-symmetric tensor.
There are several reasons to formulate quantum theories on the noncommutative

plane or on its generalizations. The key point is that quantum gravity effects prevent
coordinates from being simultaneously measurable with arbitrary high precision at
very small scales. In accelerator experiments a large energy of colliding particles
is concentrated in a small region. Increasing the energy cannot be unlimited be-
cause at a certain value the region collapses to form a microscopic black hole. Some
information may be lost inside the black hole horizon and this fact implies that
quantum-mechanical operators corresponding to the coordinates do not commute
between themselves.

The noncommutativity is not necessarily a property of high energy phenomena.
It may exist in physical systems which are not related to quantum gravity, for a
example in condensed matter under description of so-called planar electrons in an
external magnetic field. Such systems are interesting because of applications to the
quantum Hall effect.
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11.2 The Star Product

To construct models on noncommutative spaces one needs to revise a number of
notions from Chap. 1. The first step is to find a suitable realization of commuta-
tion relation (11.1). A straightforward approach would be to represent (11.1) by
operator-valued coordinates xμ. However, this way is not convenient because in
such approach even a classical field ϕ(x) on the NC plane becomes an operator-
valued function.

A more simple option is to replace the usual commutative product of functions
by a new noncommutative star product. Let f and g be two smooth functions from
the Schwartz space on R

n, i.e. functions which vanish as |xμ| → ∞ together with
all their derivatives. On the Schwartz space the star product can be defined by the
Moyal formula

(f � g)(x)= exp

(
i

2
θμν∂xμ∂

y
ν

)
f (x)g(y)

∣∣∣∣
y=x
. (11.2)

The exponential in (11.2) should be understood as a formal expansion in the non-
commutativity parameter θμν , though a strict convergence of this expansion is rather
problematic, in general. With some efforts, however, the formula (11.2) can be re-
placed by a convergent expression, the so-called Rieffel formula. We skip further
details. The star product is an essentially non-local operation. The usual product is
recovered from (11.2) in the limit θμν → 0.

With some precautions, since xν are not from the Schwartz space, the Moyal
formula can be applied to coordinates themselves. In mathematical language this
corresponds to considering the multiplier algebra [140]. In particular, one can check
that

xμ � xν − xν � xμ = iθμν. (11.3)

If the left hand side of (11.3) is identified with a commutator one gets a required
realization of commutation relation (11.1). The NC plane with the Moyal product is
called the Moyal plane.

One can check several basic properties of star product (11.2). The product is
associative and it is Hermitian,

(f � g)∗ = g∗ � f ∗, (11.4)

with respect to the complex conjugation operation. The product is closed in the
sense that ∫

dnx f � g =
∫
dnx f · g. (11.5)

The star multiplication by a plane wave is a composition of the ordinary product and
a shift

f � eikx = f (xμ − θμνkν/2)eikx, eikx � f = f (xμ + θμνkν/2)eikx . (11.6)
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The product of two plane waves looks very simple,

eikx � eiqx = ei(k+q)xe− i
2 k∧q, k ∧ q ≡ kμθμνqν. (11.7)

Since left and right actions by multiplications of the algebra of functions on itself
are different it is convenient to introduce two multiplication operators,

L(f1)f2 ≡ f1 � f2, R(f1)f2 ≡ f2 � f1, (11.8)

the left and the right ones, respectively.
The star product is a convenient tool to formulate a field theory on the NC plane.

One can simply take a field action on a commutative manifold and replace every-
where the usual products by the star products. For example, an NC version of Eu-
clidean ϕ4 constructed in this way is

I [ϕ] = 1

2

∫
dnx

(
(∂μϕ)

2 +m2ϕ2 + λ

12
ϕ � ϕ � ϕ � ϕ

)
. (11.9)

The quadratic terms do not contain star multiplication due to (11.5). A non-local
nature of the noncommutative field theory associated with the star operation appears
in the interacting terms.

Such a straightforward formulation of the noncommutative theory is not unique
but we shall accept it for further discussion.

11.3 The Heat Trace of Operators on the Moyal Plane

Let us introduce some basic spectral functions of operators on the Moyal plane and
discuss their main properties.

To determine a possible structure of the operators we use model (11.9) as a guide.
The decomposition ϕ = φ + χ of the field in (11.9) into a background part φ and a
fluctuation χ yields in the second order the action

I2[χ,φ] = 1

2

∫
dnx χP (φ)χ. (11.10)

Here P is the following operator:

P =−∂2
μ +m2 + λ

6
(R(φ � φ)+L(φ � φ)+L(φ)R(φ)), (11.11)

which is a generalization of a scalar Laplacian where a potential term is replaced
by the terms with left and right Moyal multiplications. If a connection were present
it might have contained left and right parts, L(λμ) and R(ρμ), respectively. Thus,
a fairly general Laplacian on the Moyal plane is

P =−(∇μ∇μ + Ê), (11.12)

∇μ = ∂μ +R(ρμ)+L(λμ),
Ê = L(l1)+R(r1)+L(l2)R(r2),

(11.13)
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where functions lk , rk , and components ρμ, λμ of vector fields belong to the
Schwartz space. The metric in (11.12) is flat.

Let us illustrate, in a quite unrigorous way, how effects of noncommutativity
appear in the spectral theory. As an example we consider the unsmeared heat trace

K(P ; t)= Tr(e−tP ) (11.14)

and estimate its behavior at small t for the class of operators (11.12).
As follows from (11.6) and (11.7) the Moyal multiplication is a combination of

the usual multiplication and a shift. The shift is an operator of a unit norm. As a
consequence, the Moyal multiplication by a smooth function is a bounded operator,
see Sect. 3.3. One may expect, therefore, that it is allowed to isolate in e−tP the
“main part”, e−t� with � = −∂μ∂μ, and expand the rest of the exponential in the
power series of ∇ and Ê, as has been done in the commutative case, cf. Eqs. (4.44)–
(4.48).

It is enough to understand how to deal with a typical term in this expansion which
has the structure

T (l, r)= Tr(L(l)R(r)e−t�), (11.15)

where l and r are some smooth functions of the background fields appearing in
the operator P . This quantity is a heat trace for the free Laplace operator with two
smearing functions, one acting from the left, and one from the right, i.e.

T (l, r)≡K(L(l)R(r),�, t). (11.16)

The trace in (11.15) can be calculated by sandwiching the expression between plane
waves, e−ikx and eikx , and integrating over k. It is also convenient to expand l(x)
and r(x) in the Fourier integrals

r(x)= 1

(2π)n/2

∫
dnq r̃(q)eiqx,

l(x)= 1

(2π)n/2

∫
dnq ′ l̃(q ′)eiq ′x.

(11.17)

If there are compact dimensions, one has to use sums instead of the integrals. One
obtains

T (l, r)=
∫
dnx

∫
dnk

(2π)n
e−tk2〈L(l)R(r)〉k, (11.18)

where

〈L(l)R(r)〉k ≡ e−ikx � l(x) � eikx � r(x). (11.19)

That is, the operator R(r)L(l) acts on eikx , and the result is multiplied with e−ikx
from the left. One finds

〈L(l)R(r)〉k = 1

(2π)n

∫
dnq dnq ′ r̃(q)l̃(q ′)ei(q+q ′)xe

i
2 k∧(q−q ′)e−

i
2 (q

′−k)∧(q+k).

(11.20)
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One can then integrate over x, get a delta-function δ(q + q ′), and integrate with its
help over q ′. The result is

T (l, r)=
∫
dnk dnq

(2π)n
e−tk2

l̃(−q)r̃(q)e−ik∧q . (11.21)

To get some experience of working with such expressions one may consider the
case when either r(x) or l(x) is a constant. In the terminology used in perturba-
tion expansions in an NC quantum field theory, this is the case of so-called planar
diagrams. One easily obtains the expression

T (l,1)= 1

(4πt)n/2

∫
dnx l(x), (11.22)

which coincides with the one for the commutative case. The same result can be
obtained on the torus. In (11.21) no asymptotic expansion is assumed yet.

Note that constant functions are not from the Schwartz space since they do not
decay at the infinity. The asymptotic expansions for Schwartz class smearing func-
tions may look quite differently. Moreover, for non-constant functions (the so-called
non-planar case) the result depends on weather the space is compact or not.

To illustrate these properties we choose M = R
n and perform the integration

over k by completing the square in the exponential

T (l, r)=
∫

dnq

(4πt)n/2
l̃(−q)r̃(q) exp

(
− 1

4t
θμμ

′
θνμ′qμqν

)
. (11.23)

In the commutative limit, θ = 0, Eq. (11.23) reproduces the heat trace of the free
Laplace operator smeared with the function f (x)= l(x)r(x).

If θμν is non-degenerate one may note that contributions to the integral in (11.23)
are exponentially suppressed for momenta which lie in the region |θμνqν | > √

t .
Therefore, in the limit t → 0 one can decompose l̃(−q) and r̃(q) near q = 0 in
Taylor series. Leaving only the leading terms in the series one obtains

T (l, r)= (det θ)−1[l̃(0)r̃(0)+O(t)], (11.24)

or, in the coordinate representation,

T (l, r)= (det θ)−1 1

(2π)n

∫
dnx l(x)

∫
dny r(y)+ O(t). (11.25)

Formulas (11.22) and (11.25) allow one to make two important conclusions re-
garding the heat trace asymptotics for a non-degenerate θ .

First, if only left or only right Moyal multiplications appear in the expansion
of the operator exponent in the heat trace the corresponding contributions to the
asymptotics have the same structure as in the commutative case. The differences
are in numerical coefficients and in changing usual products of fields to the star
products.

Second, if the both types of multiplications appear in the same monomial, the
corresponding contributions are essentially non-local and have no smooth commu-
tative limit. Fortunately, such terms are O(t0). Moreover, if we are interested in
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terms containing the fields from the operator P rather than the smearing functions
only, additional powers of t appear, making the total power of the proper time pos-
itive. Hence, if the results of commutative quantum theories are extended to NC
QFT’s one may conclude on the base of Eq. (5.74) that non-planar terms do not
bring new divergences at one loop.

An explicit example of the heat kernel calculations on a Moyal plane is consid-
ered in Exercise 11.2.

11.4 Quantization of Noncommutative Solitons

Let us consider the spectrum of quantum fluctuations above NC solitons in 1 + 1
dimensions. As a model we take an NC version of action (9.32)

I [ϕ] = −1

2

∫
d2x

(
(∂μϕ)

2 + λ̃
2
(v2

0 − ϕ � ϕ)2
)
. (11.26)

We put twiddle over λ to avoid confusions with another coupling constant used in
(11.9). The relation between couplings reads m2 =−λ̃v2

0 , λ= 6λ̃.
On static solutions of the equations of motion following from (11.26) the star

multiplication in two dimensions coincides with the usual multiplication and the
noncommutativity plays no role. Therefore, the commutative kink (9.33) is still a
solution. However, the spectrum of fluctuations is deformed. The fluctuations are
described by the linearized equation

[∂2
0 − ∂2

1 − λ̃v2
0 + λ̃(L(φ2)+R(φ2)+L(φ)R(φ))]χ = 0 (11.27)

with φ ≡ φkink. Since the kink is static, we can look for the solutions of (11.27)
in the form χ = eiωtηω(x). In two dimensions any skew-symmetric matrix can be
represented as

θμν = 2#εμν, (11.28)

where # is a number. Hence, we obtain the following equation for η:

[ω2 + ∂2
x + λ̃v2

0 − λ̃(φ2+ + φ2− + φ+φ−)]ηω(x)= 0, (11.29)

where φ±(x)= φ(x±), x± = x ±#ω. For the sake of simplicity let us put

λ̃v2
0 = 2. (11.30)

One can then rewrite (11.29) as

L(ω)ηω ≡ [−∂2
x +M2 + V (x;ω)]ηω = ω2ηω, (11.31)

where the constantM2 = 4 is selected in such a way that the potential

V (x;ω)= 2(tanh2(x+)+ tanh2(x−)+ tanh(x+) tanh(x−)− 3) (11.32)

vanishes for x→±∞. An example of V (x;ω) for #ω = 4 is shown on Fig. 11.1.
We see that this potential has a form of a well with a frequency-dependent effec-
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Fig. 11.1 The potential
V (x;ω) for #ω= 4 as a
function of x

tive width of order #ω. For large #ω the potential looks practically as a square
well. One can derive an intriguing property of the corresponding non-linear spectral
problem: at large # the number of bound states grows linearly with # [249].

Let us define a spectral density ρ(ω) for non-linear spectral problem (11.31) by
requiring that ρ(ω)dω is the number of solutions for (11.31) with the eigenvalues
between ω and ω+ dω. In the case of a discrete spectrum the spectral density is a
sum of delta-functions, see Sect. 5.37. With this spectral density, we can define a
regularized vacuum energy

E(s)= 1

2

∫
dωρ(ω)(ω2)

1
2−s (11.33)

and a pseudo-trace

K(t)=
∫
dωρ(ω)e−tω2

, (11.34)

see (6.16). Note that (11.33) coincides with the definition of the vacuum energy in
commutative theories. We just take this fact as granted without any proof.

As an example of quantum calculations in NC theories let us evaluate the di-
vergent part of vacuum energy (11.33). We shall use the techniques developed in
Chap. 6.

Let us suppose that there is an asymptotic expansion (6.17) for (11.34). (A more
careful analysis shows that this is indeed true.) The functions E(s) and K(t) are
related through the Mellin transform. Particular form and the origin of the spectral
density ρ(ω) is not essential as long as the assumption regarding the asymptotic
properties of K(t) holds. The pole part of the vacuum energy is given, therefore, by
relation (9.3),

Epole = 1

4
√
π

1

s
a2. (11.35)

To calculate a2, according to Chap. 6, one has to consider the heat kernel for an
auxiliary spectral problem

K(L(ω); t)= Tr(e−tL(ω) − e−t (−∂2
x+M2)). (11.36)
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Here an “empty space” contribution was subtracted for convenience. The spectral
problem for L(ω) with a fixed ω is a very simple problem with a fixed potential.
Obviously, there is an asymptotic expansion

K(L(ω); t)�
∞∑
n=1

tn−1/2a2n(ω), (11.37)

a2(ω)=−(4π)−1/2
∫
dx V (x;ω), (11.38)

a4(ω)= (4π)−1/2
∫
dx

[
1

2
V (x;ω)2 +M2V (x;ω)

]
. (11.39)

By using (11.32) one obtains

a2(ω)= 4√
π
(#ω coth(2#ω)+ 1). (11.40)

For large ω we have up to exponentially small terms (e.s.t.)

a2(ω)= ωa1,1 + a0,1 + e.s.t. (11.41)

a1,1 = 4#√
π
, a0,1 = 4√

π
, (11.42)

see (6.19). For a future use we note that

a0,1 =− λ̃√
π

∫
dx

(
φ2 − v2

0

)
. (11.43)

Here one can use an explicit form of the kink solution and restore the v0-dependence
with the help dimensional arguments.

Other heat kernel coefficients have a similar behavior

a2p(ω)= ωa1,p + a0,p + e.s.t. (11.44)

This spectral problem is an asymptotically polynomial NLSP in the terminology of
Chap. 6. One can use (6.20) to obtain

a2 = a0,1. (11.45)

This formula together with Eq. (11.35) defines the divergent part of the vacuum
energy. By using (11.43) and comparing it to the classical action (11.26) one imme-
diately concludes that the divergence may be canceled by a renormalization of v2

0 ,
which is the same as the mass renormalization.

One can also prove that the pole term is 2/3 of the corresponding value in the
commutative case. The easiest way to see this is to repeat the calculations starting
with (11.40) directly at # = 0. This yields a2(ω)

#=0 = 6/
√
π (naturally, not de-

pending on ω). Therefore, a#=0
1,1 = 0, a#=0

0,1 = 6/
√
π . This gives the desired relation

between the pole parts, in agreement with the result of Exercise 11.2 obtained for
different asymptotic conditions on the background fields.
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11.5 Noncommutative Geometry and the Spectral Action
Principle

A rigorous mathematical approach to noncommutative geometry was suggested by
A. Connes. The idea is to formulate a set of axioms which any geometry should
satisfy without relying on coordinate charts, and then abandon the requirement of
commutativity. The approach allows one to give definitions of geometric structures
when the very notion of a point is not well-defined, as in the case of Moyal spaces.
Below we give a brief description of these ideas.

The central notion of noncommutative geometry is the spectral triple (A,H , /D)

consisting of an algebra A, a Hilbert space H , and a Dirac operator /D. Let us
consider the elements of the spectral triple one by one.

We start with the algebra. Clearly, continuous functions on a manifold M form a
commutative associative algebra with respect to the point-wise product. Therefore,
to any M one can associate an algebra. According to the Gelfand-Naimark theorem
converse is also true: any associative commutative algebra (with some restrictions,
as e.g., being a C∗ algebra, which are not important for further discussion) is an al-
gebra of continuous functions on some manifold. An algebra defines a manifold in
this sense. Let us now abandon the restriction that the algebra is commutative. One
can then say that a noncommutative associative algebra A (with some additional
requirements) defines a noncommutative manifold. In the discussion below we shall
freely switch between continuous and smooth functions, which is a relatively harm-
less procedure.

As we know, dynamical fields over a manifold belong to a vector bundle over this
manifold, and square integrable sections (fields) form a Hilbert space. Therefore,
an abstract Hilbert space H can be used to describe dynamical variables. Internal
background geometry of a manifold is described by background fields, which may
be a metric or a gauge field, for example. Such fields enter naturally the Dirac oper-
ator which acts on H . If H is the space of square integrable spinors, and /D is the
standard Dirac operator, we return to the situation which appeared in the previous
Chapters.

To be able to say that abstract objects (A ,H , /D) indeed represent generaliza-
tions of corresponding notions in the commutative geometry to noncommutative
setting, one has to impose certain restrictions, which are called the Axioms of Spec-
tral Triples. The axioms are the following:

(a) the algebra A is represented on H by bounded operators,
(b) /D is an unbounded self-adjoint operator on H such that for every a ∈ A the

operators a( /D ± i)−1 are compact,
(c) for every a ∈A the operators [ /D,a] are bounded.

To discuss the meaning of these axioms one has to use definitions of bounded
and compact operators, see Sect. 3.3.

If A = C∞(Rn), and H is the space of square integrable spinors on R
n, the

point-wise multiplication by functions from A maps H to itself, and this is obvi-
ously a bounded operator. The axiom (a) requests the same property from the star
product.
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The partial derivative i∂μ multiplies each exp(ikx) by −kμ and is therefore un-
bounded. The same holds for the standard Dirac operator iγ μ∂μ on the space of
square integrable spinors, which is also unbounded, as in the first part of the ax-
iom (b). The operator a /D−1 provides a “regularization at high momenta” (which is
necessary to be compact) in the usual commutative case, modulo possible problems
with the invertibility. To avoid these problems, one adds an imaginary number ±i,
which definitely does not belong to the spectrum of a selfadjoint operator. The ax-
iom (b) requests that this construction works in the noncommutative case as well.
However, an even better regularization at high momenta can be achieved if one uses
a higher order elliptic differential operator instead of the Dirac operator. This is ex-
cluded by the axiom (c). Indeed, the commutator with a multiplication operator can
“eat” one derivative, so that [a, iγ μ∂μ] = −iγ μ(∂μa) becomes a bounded opera-
tor, but it cannot eat two derivatives. The axiom (c) is a requirement (in an abstract
language) that /D is first order.

It should be emphasized that the comments above are intended to give an idea
of what a spectral triple looks like. In any particular case a proof that the axioms
(a)–(c) are satisfied may be rather tedious. For example, a rigorous proof that the
Moyal plane is a spectral triple can be found in [126], and it is far from being trivial.

Suppose /D depends on some NC background fields φ. Given a spectral triple,
one can define an action for φ by using the spectral action principle of Chamseddine
and Connes. The idea is to define a functional of background fields φ in terms of a
spectral function of /D(φ). The definition is the following:

Ispec[φ] = Tr
[
χ( /D(φ)/�)

]
. (11.46)

Spectral action (11.46) depends on a cutoff function χ (which is usually supposed
to be symmetric) and a cutoff parameter �. In the limit �→∞, the spectral action
can be decomposed through the heat kernel of /D2,

Ispec[φ] �
∑
k

�n−2kχ2ka2k( /D
2
), (11.47)

where the coefficients χ2k are defined through the Laplace transform of χ .
If /D is just the usual Dirac operator on curved base manifold expansion (11.47)

gives very reasonable results. The first term is the cosmological constant, the second
one gives the Einstein action and etc. Interestingly, even the boundary terms in the
gravity action come out correctly [60]. In this regard the spectral action principle
is quite similar to the idea by Zeldovich and Sakharov that gravity action may be
entirely induced by quantum effects of fields propagating on a given space-time.
That is, the classical action of background fields is an effective action of quantum
excitations over the given background. In this case the cosmological constant, the
Newton constant are induced constants which are determined in terms of parameters
of dynamical fields and the cutoff �. In the same way one can induce the action of
gauge and other background fields.

As has been explained in Sect. 11.3 the Moyal multiplication by a smooth func-
tion is a bounded operator. Let us complete the spectral triple by a Dirac operator
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having some interesting physical content. The electromagnetic field on the Moyal
space can be described by the Dirac operator of the form [127]

/D =−iγ μ(∂μ + iL(Aμ)− iR(Aμ)), (11.48)

which, in addition to the axioms formulated above, satisfies also some reality con-
ditions. According to (11.47), to evaluate the spectral action in leading order it is
enough to calculate the first non-vanishing heat kernel coefficient. Let us do this on
a four-dimensional Euclidean Moyal plane. The squared Dirac operator reads

/D
2 =−gμν(∂μ + iL(Aμ)− iR(Aμ))(∂ν + iL(Aν)− iR(Aν))

− i

4
(L(Fμν)−R(Fμν))[γ μ, γ ν], (11.49)

where we introduced a constant ‘metric’ gμν for a technical purpose. The method
we are going to use is algebraic and based on properties of the traces like (11.15). It
is easy to show that

Tr[(L(l)R(r))μ1...μm∂μ1 . . . ∂μme
−t�]

= imG(m)μ1...μm
Tr[(L(l)R(r))μ1...μme−t�], (11.50)

where, for odd m the coefficients G(m) vanish, while for even m they may be ob-
tained by consecutive differentiation of (11.15) with respect to gμν . One has to keep
in mind that (11.15) is modified by the volume element

√
g under the integral, and

that gμν is symmetric, so that not all of the components are indeed independent. For
example,

δ

δgμν
gρσ =−1

2
(gμρgνσ + gμσ gνρ).

In particular, one has

G(2)μν =
√
g

2t
gμν,

G(4)μνρσ =
√
g

4t2
(gμνgρσ + gμρgνσ + gμσgνρ).

(11.51)

To evaluate the heat trace one has to represent −t /D2 =A+B , where A=−t�,

and B is the rest. Next, one expands e−t /D
2

in B . Note, thatA and B do not commute
and the Duhamel formula (5.61) should be used, which gives

eA+B = eA
(

1 +B + 1

2
[B,A] + 1

2
B2 + 1

6

[[B,A],A] + 1

3
[B,A]B

+ 1

6
B[B,A] + 1

24

[[[B,A],A]
,A

]

+ 1

8

[[B,A],A]
B + 1

8
[B,A]2 + O(B3)

)
. (11.52)
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Now we have all the instruments to make the calculations, which are rather straight-
forward, though lengthy. The result is that a0 does not depend on Aμ, a2 = 0, and

a4( /D
2
)= 1

12π2

∫ √
g d4x F 2

μν, (11.53)

where

Fμν = ∂μAν − ∂νAμ + iAμ � Aν − iAν � Aμ (11.54)

is the noncommutative field strength. Note, that in contrast to the commutative case
there are quadratic terms.

Due to (11.47), the leading term in the spectral action is proportional to (11.53).
Although in the commutative limit the field Aμ disappears from Dirac operator
(11.48), the spectral action remains non-trivial in this limit and becomes just the
Maxwell action! Note, that the heat kernel coefficient (11.53) in this limit is twice
the corresponding coefficient for commutative case (7.96).

Noncommutative physics and noncommutative mathematics are very active areas
of research with a constantly changing landscape. For this reason, we do not include
any concluding section to this Chapter. Application of the spectral theory methods
to quantum field theory is a continuing story.

11.6 Literature Remarks

Standard reviews on NC field theory are [86, 236]. These references contain an ex-
tensive literature survey on the history and applications of noncommutativity. The
Doplicher-Fredenhagen-Roberts approach to noncommutative space-times was sug-
gested in [84, 85], for review see [206]. One can also find here arguments why clas-
sical gravity effects prevent coordinates from being simultaneously measurable with
arbitrary high precision.

The Moyal formula (11.2) is also called the Gronewold or the Weyl formula.
We have not aimed here at presenting a quantum field theory on noncommutative

spaces. Instead our purpose was to introduce elements of the spectral theory which
are related to such quantized models. Short remarks on the quantization of the NC
version (11.9) of Euclidean ϕ4 model are the following. This model is not renor-
malizable on the Moyal plane in four dimensions at all orders. To make this model
all-loop renormalizable one has to modify the kinetic term [146, 150]. Crucial differ-
ences between planar and non-planar cases are related to the phenomena of mixing
between UV and IR scales in NC field theories, for a more detailed discussion see
[13, 64, 190].

The heat kernel expansion on Moyal spaces was studied in [125, 127, 244, 246],
see also a mini-review [248]. If one has compact NC dimensions, or if θ is degen-
erate, the behavior of non-planar contributions may differ considerably from what
was described in Sect. 11.3. In particular, non-planar contributions to the heat kernel
expansion on an NC torus depend crucially on the number-theory nature of the NC
parameter [127].
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Our treatment in Sect. 11.4 of the NC kink is borrowed from [172].
Section 11.5 deals with an area which was initially a part of pure mathematics.

Its many technical tools are very similar to those of quantum field theory. Moreover,
there are very interesting applications of the ideas of noncommutative geometry to
particle physics [71]. Our exposition here is not quite rigorous and complete. An
interested reader may refer the classical monograph by Connes [69] or other useful
sources, such as [71, 141, 159].

There is a large variety of formulations of the Axioms of Spectral Triples in the
literature. One can impose some additional requirements to make the spectral triple
real, or orientable, or irreducible, or else. A fairly complete overview of various
formulations can be found in [36].

The spectral action principle was proposed by Chamseddine and Connes [59].
For a review of applications of the NC geometry to particle physics, see [58]. Phys-
ical motivations for the spectral action principle are very similar to the idea that
gravity may be entirely induced by quantum effects. The induced gravity principle
was suggested by Zeldovich [261] and Sakharov [221]. A somewhat random choice
of reviews on the induced gravity and its applications includes [3, 113, 201]. For a
derivation of the Standard Model from the spectral action principle on a space with
a “finite noncommutativity” see [61, 70, 71].

11.7 Exercises

Exercise 11.1 Prove that Moyal product (11.2) is associative and satisfies prop-
erty (11.5).

Exercise 11.2 Calculate the heat kernel for operator (11.11) on a two-dimensional
Moyal plane up to the order φ2 and up to zeroth order in explicit derivatives, i.e.,
the derivatives which do not enter the star product. Analyze possible ultraviolet
divergences in this model and their renormalization.

Exercise 11.3 Show that a Dirac operator with the leading part /D = iγ aL(eμa )∂μ
cannot be used to form a spectral triple in the sense of Axioms from Sect. 11.5.
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Chapter 12
Solutions to Exercises

12.1 Chapter 1. Geometrical Background

1.1 First, we note that δgμν = −gμρgνσ (δgρσ ). Then it is easy to prove by in-
spection that the variation of � under arbitrary variation of the metric reads:

δ�ρμν =
1

2
gρσ ((δgμσ );ν + (δgνσ );μ − (δgμν);σ ). (12.1)

The diffeomorphism variation of �ρμν follows from (1.81).

1.2 To prove that εμ1...μn is a tensor one has to demonstrate that it transforms
properly under the diffeomorphism transformations. Let suppose that εμ1...μn is in-
deed a tensor and derive the corresponding transformation rule. By Eq. (1.1)

ε
′μ′

1...μ
′
n = ∂x

μ′
1

∂xμ1
. . .
∂xμ

′
n

∂xμn
εμ1...μn . (12.2)

The right hand side of this equation is a totally antisymmetric rank n tensor. There-
fore, it must be proportional to εμ

′
1...μ

′
n . This yields

ε
′μ′

1...μ
′
n = εμ′

1...μ
′
n

1

n!εν′1...ν′n
∂xν

′
1

∂xμ1
. . .
∂xν

′
n

∂xμn
εμ1...μn = εμ′

1...μ
′
n det

(
∂xμ

′

∂xμ

)
. (12.3)

This is precisely the transformation rule which follows from the definition
εμ1μ2...μn = g−1/2ε̃μ1μ2...μn .

1.3 The line element on the two-sphere reads (ds)2 = r2(dθ2 +sin2 θdϕ2), where
ϕ ∈ [0,2π[, θ ∈ [0,π]. The only non-zero components of the Christoffel connection
are

�θϕϕ =− cos θ sin θ, �
ϕ
ϕθ = �ϕθϕ = tan θ. (12.4)

Due to the symmetry properties of the Riemann tensor it is enough to calculate

Rϕθϕθ = 1 (12.5)
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in order to define all other components and to prove (1.103). The Ricci tensor is
proportional to the metric, Rμν = gμν , so that S2 is an Einstein manifold. The scalar
curvature is a constant, R = 2.

1.4 This is just a direct computation using the definitions.

1.5 The key relation is

dr∗ =
(

1 − 2M

r

)−1

dr. (12.6)

The rest follows automatically.

1.6 A direct computation of the stress-energy tensor for model (1.75) yields

Tμν = FμρF ρ
ν +M2AμAν − 1

4
gμν

(
FλρF

λρ + 2M2AλA
λ
)
. (12.7)

1.7 First we note that the left hand side of (1.52) is nothing else than the com-
mutator of two covariant derivatives acting on a vector with a single flat index. We
calculate

[∇μ,∇ν]va = eρa[∇μ,∇ν]vρ =−eρavσRσρμν =−vbRbaμν, (12.8)

where we used (1.9). Equation (1.52) follows immediately.

1.8 Equation (1.108) follows from the definition of β , Clifford relation (1.61),
and the properties of the Lorentzian gamma matrices (γa)† = −γa , if a = 0, and
(γa)

† = γa , if a �= 0.

1.9 To find the generators, let us rewrite (1.62) in an infinitesimal form with S =
1 + s + · · · , �ab = δab + λab + · · · . We have the equation

[s, γ a] = λabγ b, (12.9)

which is solved by

s =−1

8
λab[γ a, γ b], (12.10)

thus giving us the desired form of the generator s.

1.10 Let us restrict ourselves to the transformations S which can be connected to
the unit element of the group Spin(1, n− 1). They are exponents of the generators,
i.e., S = exp(s). By using (1.108) and (12.10), one finds

s† =−1

8
λab[γ b†, γ a†] = 1

8
λab[βγ aβ,βγ bβ] = −βsβ.

Consequently,

S−1 = exp(−s)= exp(βs†β)= βS†β.
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1.11 Let us take the so-called Dirac representation of the gamma matrices

γ 0 = i
(
I 0
0 −I

)
, γ a = i

(
0 σa

−σa 0

)
, (12.11)

where a = 1,2,3, and σa are the Pauli matrices

σ 1 =
(

0 1
1 0

)
, σ 2 =

(
0 −i
i 0

)
, σ 1 =

(
1 0
0 −1

)
. (12.12)

In this representation β = iγ a=0 and γa=2 are real and symmetric matrices while
γ 1 and γ 2 are antisymmetric. One can choose C = βγ a=2. Obviously C∗ = C
and CT = C−1 = −C. One then easily proves (1.67). Another useful relation is
(Cβ)γ a(Cβ)= γ a∗. Consider an infinitesimal Spin(1,3) transformation of ψ ,

δψ = sψ.
Then

δψc = C(sψ)T = Cβs∗ψ∗ = sCβψ∗ = sψc,
which means that the spinor ψc belongs to the same representation as ψ . Conse-
quently, the Majorana condition ψ =ψc is Lorentz covariant.

1.12 The interaction of a spinor field with a vector field is described by the term
Aμψ̄γ

μψ , see (1.73). The matrix γ 0γ μ is always Hermitian. In the Majorana rep-
resentation it is also real and, hence, symmetric. Besides, the Majorana spinors are
real, ψ† = ψT . Therefore, the interaction term written above is a symmetric form
computed on two identical anticommuting spinors. Such forms vanish identically.

On the same grounds, the γ 0 matrix in the Majorana representation is antisym-
metric. Therefore, on commuting Majorana spinors the mass term vanishes.

1.13 In this case the coordinate on the boundary is ϕ. The inward pointing unit
vector has only one non-zero component nθ =−1. By using (12.4) one immediately
obtains

Kϕϕ = sin θ0 cos θ0 = 1

sin θ0
gϕϕ. (12.13)

For θ0 → 0 the last equation becomes the familiar expression for the extrinsic cur-
vature of the 2-ball (1.92). For θ0 = π/2 the extrinsic curvature is indeed zero. The
equatorial circle is a totally geodesic submanifold in S2 (and indeed it is a geodesic
line in S2).

1.14 One finds with the help of (1.90)K+
ij =K−

ij =−α2 gij where gij is the metric
on the brane.
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1.15 Consider variation

δ

∫
M
dnx

√−g(R − 2�)

= bulk t. −
∫
∂M
dn−1x

√
hnλ

(∇μδgλμ −∇λ
(
gμνδgμν

))
, (12.14)

where ‘bulk t.’ denote the bulk terms, nμ is the inward pointing unit vector to ∂M .
To get (12.14) we used (1.107). Note that one can always choose a special coordinate
system (fix a gauge) where the following variations of the metric on ∂M vanish:

nλδgλμ = 0, nλnμ∇μδgλν = 0. (12.15)

Embedding of ∂M can be described by the equation f (x) = 0. A function f de-
termines the normal vector nμ = χf,μ, where χ is a normalization coefficient,
χ−2 = gμνf,μf,ν . It is implied that the embedding equation remains unchanged
under variations of the metric. Then, it follows from (12.15) that in the chosen co-
ordinates δχ = 0. Therefore, δnμ = 0 as well.

By using this fact one can proceed with the r.h.s. of (12.14)

δS ≡−
∫
∂M
dn−1x

√
hnλ

(∇μδgλμ −∇λ
(
gμνδgμν

))

=−
∫
∂M
dn−1x

√
h

(−δgλμ(∇μnλ)− gμν(nλ∇λδgμν))

=−
∫
∂M
dn−1x

√
h
(
δhλμK

μλ − gμν(nλ∇λδgμν)), (12.16)

where we used the definition of extrinsic curvature (1.87). Consider now variation
of the trace of the extrinsic curvature:

δK =−δhμνnμ;ν − hμνδnμ;ν =−δhμνnμ;ν + hμνδ�λμνnλ
=−1

2
hμνnλ∇λδgμν. (12.17)

By taking into account (12.17) and the second condition in (12.15) one can rewrite
(12.16) as

δS =−
∫
∂M
dn−1x

√
h
(
δhλμK

μλ + 2δK
)

=−2δ

[∫
∂M
dn−1x

√
hK

]
−

∫
∂M
dn−1x

√
hδhλμ(K

λμ − hλμK). (12.18)

With the help of (12.18) one can find variation of (1.109)

δĨEH[g] = bulk t. − 1

16πGN

∫
∂M
dn−1x

√
hδhλμ(K

λμ − hλμK) (12.19)

If the metric on ∂M is fixed, δhμν = 0, the variation of the modified action (1.109)
vanishes provided that the metric in the bulk is a solution to the Einstein equa-
tions (1.21).
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1.16 The action in the presence of the brane can be written in following form:

I [ϕ,g] = 1

16πGN

∫
M
dnx

√−g(R − 2�)

+ 1

8πGN

∫
∂M
dn−1x

√
h(K+ +K−)+ Ibrane[ϕ,h]. (12.20)

The second term in the r.h.s. of (12.20) contains extrinsic curvatures on the both
sides of the brane. This term is introduced to take into account the defect of the
geometry and ensure the correct variational procedure. The variation of the action
follows from formula (12.19)

δI [ϕ,g] = bulk t. − 1

16πGN

∫
∂M
dn−1x

√
hδhλμ

× [
(K
λμ
+ − hλμK+)+ (Kλμ− − hλμK−)

] + δhIbrane[ϕ,h]. (12.21)

This immediately yields the junction conditions (1.110).

1.17 The two-dimensional gamma-matrices γ μ can be defined with the help of the
Pauli matrices σi . One can choose such a representation of γ μ that the spinor covari-
ant derivative takes the form ∇μψ = ∂μψ + i

2σ3ωμψ where ωμdxμ = − sin θ dτ .
A pair of explicit solutions to (1.112) is

ε1(τ, θ)= eiτ/2
[

sin(θ/2 + π/4)
− cos(θ/2 + π/4)

]
, ε2(τ, θ)= e−iτ/2

[
cos(θ/2 + π/4)
sin(θ/2 + π/4)

]
,

(12.22)

where τ and θ are coordinates on S2, see (1.97). The Killing spinors obey anti-
periodic boundary conditions

εi(τ + 2π, θ)=−εi(τ, θ), (12.23)

and are normalized as ε†
i εj = δij with i, j = 1,2. There are 3 Killing vectors on S2.

One can check with the help of (1.112) that the following vectors:

(V 0)μ = ε†
1γμε1 =−ε†

2γμε2, (V +)μ = ((V −)μ)∗ = ε†
2γμε1 (12.24)

satisfy Killing equation (1.82). The vectors can be written as Vμ = εμν∇μϕ where ϕ
are 3 dipole eigenmodes of the scalar Laplacian with the eigenvalues l(l + 1)= 2.
The dipole modes are ϕ0 = sin θ , ϕ± = cos θe±iτ .

12.2 Chapter 2. Quantum Fields

2.1 On a constant time hypersurface t = const the future-directed normal vec-
tor is nμ = −gμ0/

√|g00| and so d�μ = −gμ0/
√
g00(detgij )1/2 ddx. To prove
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the required formula one has to take into account that detgij = |g00|detg, hence
d�μ =−gμ0√g ddx. Then one gets

Q1 −Q2 =
∫
�1

d�μ jμ −
∫
�2

d�μ jμ =
∫
B

√
g dnx∇μjμ = 0,

where Q1 and Q2 are the integrals over undeformed and deformed surfaces �1
and �2, respectively. B is the volume bounded by �1 ∪�2.

2.2 The conditions on the coefficients in (2.92), (2.93) are the following:∑
k

ᾱ
(±)
ik α

(±)
jk −

∑
p

β̄
(±)
ip β

(±)
jp =±δij , (12.25)

∑
k

ᾱ
(+)
ik α

(−)
jk −

∑
p

β̄
(+)
ip β

(−)
jp = 0, (12.26)

where the bar denotes the complex conjugation. Conditions (12.25) guarantee
(2.20), while (12.26) ensure (2.19).

The Bogoliubov transformation to a new set of creation and annihilation opera-
tors follows from (2.23), (2.92), (2.93),

ãi = 〈f̃ (+)i , φ〉 =
∑
k

ᾱ
(+)
ik ak −

∑
p

β̄
(+)
ip b

+
p , (12.27)

b̃+j =−〈f (−)j , φ〉 =
∑
p

β̄
(−)
jp b

+
p −

∑
k

ᾱ
(−)
jk ak. (12.28)

The constants α’s and β’s in (12.27), (12.28) are called the Bogoliubov coefficients.
It is easy to check that vectors (2.28) in the Fock space are the eigenvectors of

operators Ni(a) = a+i ai , Nj(b) = b+j bj . The corresponding eigenvalues are num-
bers of quantum excitations of different sorts in the given state. The number of new
particles in the vacuum state |0〉, see (2.27), is

〈0|ã+i ãi |0〉 =
∑
p

|β(+)ip |2, 〈0|b̃+j b̃j |0〉 =
∑
k

|α(−)jk |2. (12.29)

The vacuum does not change if the Bogoliubov transformations do not mix creation
and annihilation operators of different sorts.

2.3 The proof that two quantization approaches coincide is analogous to the proof
given for the scalar theory in Minkowski space-time in Sect. 2.4. One has to take
into account that the expression for d�μ obtained in Exercise 2.1 and find by using
(2.30) the canonical momentum

π(t, x)=−√
g
(
D0ϕ

)+
(t, x).

The product (2.9) can be written as

〈f1, f2〉 = i(f1,π
∗
2 )− i(π∗

1 , f2), (12.30)
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where πk =−√
gD0fk and

(f, g)=
∫
�

ddx f ∗g (12.31)

is a standard inner product. (It should be noted that (12.31) is defined with a non-
invariant measure.) One also finds that

ϕ(fk)= i(fk,π+)− i(π∗
k , ϕ). (12.32)

Because fk and πk are independent Cauchy data on � it follows from (2.18) that
[
(π∗

1 , ϕ), (f
∗
2 ,π)

] = i(π∗
1 , f2). (12.33)

The latter is equivalent to the local commutator
[
ϕ(x),π(y)

] = iδd(x − y) (12.34)

in the canonical approach.

2.4 To prove (2.94) for Bose fields one can consider a scalar model and use results
of Exercise 2.3. Let f1, f2 be two solutions to the wave equations. We choose the
Cauchy data on � such that fk|� = 0 and ∂nfk|� ≡ χk �= 0. We also assume that
functions χ1, χ2 have compact supports on � in a small neighborhood of points
x1 and x2, respectively. It follows from (12.30) that 〈f1, f2〉 = 0. The commutator
(2.94) vanishes as a consequence of postulate (2.18).

2.5 The equations of motion for model (2.95) are

∇2Aμ −RνμAν −M2Aμ = 0. (12.35)

It follows from Eqs. (1.76) for model (1.75) that there is constraint ∇A = 0. If
∇A= 0 Eqs. (1.76) reduce to (12.35). Therefore, solutions to (1.76) are a subclass of
solutions to (12.35) determined by the condition ∇A= 0. Because of this condition
the vector field in (1.76) has n−1 independent components in n-dimensional space-
time, while the vector field in (2.95) is unconstrained.

The unconstrained vector field can be uniquely decomposed onto transverse, A⊥,
and longitudinal, A‖, components,

A=A⊥ +A‖, A‖ = ∇ϕ, ∇A⊥ = 0, (12.36)

where ∇2ϕ =∇A. It follows from (12.35) that

(∇2 −M2)∇A= 0, (12.37)

and, hence, ϕ =M−2∇A.
The difference between (1.75) and (2.95) is in longitudinal components. Let us

consider the relativistic product on a space of solutions to (12.35). The product is

〈A1,A2〉(1) =
∫
�

d�μ j(1)μ (A1,A2), (12.38)
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j (1)μ (A1,A2)= i(Aν1)∗∇μA2ν − iAν2∇μ(A1ν)
∗. (12.39)

If A1 and A2 are solutions to (12.35) the current j (1)μ (A1,A2) is divergence free.
By using (12.38) one can construct a quantum theory of unconstrained fields with
commutation relations

[A(f1),A(f2)] = 〈f1, f2〉(1). (12.40)

The relativistic product in model (1.75) is defined in terms of the current jμ(A1,A2),
see (2.14). A direct check shows that

jμ(A1,A2)= j (1)μ (A1,A2)+ i∇A∗
1A2μ − i∇A2A

∗
2μ +∇νQμν(A1,A2), (12.41)

Qμν(A1,A2)= i(A∗
1μA2ν −A∗

1νA2μ). (12.42)

The last term in the r.h.s. of (12.41) yields a total divergence in the product 〈A1,A2〉.
Thus, for transverse solutions which vanish at spatial infinity or obey suitable
boundary conditions the two inner products are equivalent,

〈A⊥,A⊥〉 = 〈A⊥,A⊥〉(1). (12.43)

One concludes that a quantum theory of transverse vector fields in model (2.95) is
equivalent to a quantum theory of vector model (1.75).

To see unphysical properties of (2.95) let us calculate the product of two longi-
tudinal modes (A‖

k)μ = ∂μϕk where ϕk are two scalar functions which are solutions
to (12.37). A straightforward calculation shows that

〈A‖
1,A

‖
2〉(1)

= i
∫
�

d�μ
[−M2(ϕ∗1∇μϕ2 −∇μϕ∗1ϕ2

)+∇ν(∇νϕ∗1∇μϕ2 −∇μϕ∗1∇νϕ2
)]

=−M2〈ϕ1, ϕ2〉, (12.44)

where we used (12.37) and omitted a total divergence. Therefore, the relativistic
product of longitudinal components coincides up to a constant with the relativistic
product 〈ϕ1, ϕ2〉 of scalar fields, see (2.9), (2.10). The important point is that the two
products differ by the sign. This means that longitudinal components have a wrong
norm (implying non-standard commutation relations) and they are unphysical de-
grees of freedom.

2.6 In the massless case vector model (1.75) is invariant under the gauge trans-
formations A′

μ = Aμ + ∇μλ. One can use these transformations to fix the gauge,
i.e. make the components Aμ to obey certain conditions. We choose the Lorentz (or
Feynman) condition ∇A= 0, as an example of a coordinate covariant gauge.

The field equations in this gauge become

∇2Aμ −RνμAν = 0 (12.45)

and coincide with (12.35) atM = 0, see Exercise 2.5. The difference between mas-
sive and massless theories is that the Lorentz gauge does not eliminate all unphysical
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degrees of freedom. The gauge transformationsA′
μ =Aμ+∇μλwith ∇2λ= 0 leave

(12.45) invariant. As one can see, these transformations are excluded ifM �= 0.
The consequence of the additional symmetry is that the massless vector field

has one degree of freedom less then the massive field. In the Maxwell theory in
n-dimensional space-time there are n − 2 independent components of the gauge
field (in four dimensions they are two polarizations of the photon). The reduction of
degrees of freedom follows from the fact that the transverse solutions to (12.45) of
the form A⊥ = ∇λ, where ∇2λ= 0, have the vanishing norm

〈A⊥
1 A

⊥
2 〉(1) = 〈A⊥

1 A
⊥
2 〉 = 0. (12.46)

The inner product of A⊥ = ∇λ with any other transverse solution vanishes as well.
Thus, such fields make no contribution to physical observables.

The remaining gauge freedom can be eliminated by fixing one of the compo-
nents, say, by putting A0 = 0 in some coordinate frame. In Minkowski space-time
combination of the two conditions yields spatially transverse fieldA0 = 0, ∂iAi = 0.

2.7 If nμ is a unit normal vector to a space-like hypersurface � then the norm
defined on � is 〈ψ,ψ〉 = −i ∫

�

√
hd3x ψ̄nμγμψ , where h is the determinant

of the metric induced on �. Let us choose veilbeins eμa such that eμa=0 = nμ
on �. Then nμγμ = γa=0 and the product takes manifestly positive form 〈ψ,ψ〉 =∫
�

√
hd3x ψ+ψ .

The proof of (2.96) is straightforward.

2.8 Representations (2.40), (2.41) can be found for each particular model with the
help of the equations of motions on stationary backgrounds. The key point is that
these equations are linear. It is convenient to express the relativistic products (2.9)
in terms of fields and their canonical momenta.

Scalar Fields To get (2.40) for model (1.68) of a complex scalar field one can use
(12.30), see Exercise 2.3. To derive (2.41) for real scalar field ϕ one has to take into
account the normalization of the action (compare with (1.68))

I [ϕ,g] = −1

2

∫
dnx

√−g(∂μϕ∂μϕ +m2ϕ2). (12.47)

The definition of the relativistic product for real scalars is determined by (2.9),
(2.10).

Spinor Fields Consider model (1.73) on a stationary background. The canonical
variables and conjugate momenta are ψ , π = 1

2
√
gψ̄γ0, ψ̄ , π̄ = − 1

2
√
gγ0ψ . The

canonical Hamiltonian is

H [ψ] =
∫
dD−1x(πψ̇ + ˙̄ψπ̄)= i

2

∫
dD−1x

√
gψ̄γ0ψ̇ + c.c., (12.48)

and, if one takes into account (2.11),

H [ψ] = i

2
〈ψ, ψ̇〉 + c.c. (12.49)
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With the help of (1.67) formula (12.49) can be rewritten as

H [ψ] = i

2

(〈ψ, ψ̇〉 + 〈ψc, ψ̇c〉), (12.50)

which is equivalent to (2.40). Form (12.50) is invariant with respect to the charge
conjugation operation.

Vector Fields The relativistic product for vector model (1.75) follows from (2.9)
and (2.14),

〈A1,A2〉 = i(A1,π2)− i(π1,A2), (12.51)

(A,π)≡
∫
dDx(Aμ)∗πμ. (12.52)

Here πi = −√
gF 0i , π0 = 0. In the canonical approach πi are the momenta con-

jugated to spatial components Ai of the vector field. The canonical momentum π0

conjugated to A0 vanishes. With the help of (12.51) and equations of motion (1.76)
one comes to (2.41).

Non-Abelian Gauge Fields The linearized equations of motion (1.79) can be
rewritten in the equivalent form as

[Dν, [Dν,Aμ]] − [Dμ, [Dν,Aν]] −RμνAν + 2[Aν,Fνμ] = 0. (12.53)

One can define the linearized action (which yields (12.53) after the variation)
and find the canonical momenta πμ conjugated to Aμ. In the matrix form πμ =
−√
gG0μ and π0 ≡ 0. Then the canonical energy taken on solutions to (12.53) can

be written as

H [A] = 1

2
(π, Ȧ)− 1

2
(π̇ ,A), (12.54)

(f1, f2)≡−2
∫
dxD−1 Trf1f2. (12.55)

If the background fields are stationary the energy can be represented as

H = i

2
〈A, Ȧ〉, (12.56)

which agrees with (2.40). The product in (12.56) is defined by (2.9) and (2.15).

2.9 Consider first a vector field with a non-zero mass M . Let ωi and ω(1)i be
the single-particle spectra for vector models (1.75) and (2.95), respectively. As was
shown in Exercise 2.5, the set of ωi is a subset in ω(1)i which corresponds to the

transverse modes. To get ωi from ω(1)i one has to exclude the energies ω(‖)j of the

longitudinal components of the vector field. According to (12.37), ω(‖)j coincide
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with energies ω(0)i of a real scalar field in the given space-time. Thus, the spectral
function of vector model (1.75) can be written in the form

�=
∑
i

f (ωi)=�(1) −�(0). (12.57)

Here �(1) is the spectral function of model (2.95) and �(0) is the same spectral
function of a scalar field with equation (∇2 −M2)ϕ = 0.

The spectral function � for massless vector field (an Abelian gauge field) can be
found in a similar way by using results of Exercise 2.6. In the Lorentz gauge one
gets

�=�(1) − 2�(0). (12.58)

Here�(1) is the spectral function in the vector field theory described by (12.45) and
�(0) is the spectral function of a massless scalar field with the equation ∇2ϕ = 0.
The difference between (12.58) and (12.57) is in additional subtraction of �(0)
which eliminates a contribution of transverse modes with zero norm, see (12.46).
These modes, as we have seen, also obey the massless scalar field equation.

Representations (12.57), (12.58) turn out to be very convenient in applications.
They enable one to reduce the problem of finding spectral functions of constrained
fields to the same problem for unconstrained fields, which is easier.

2.10 If the background field Bμ satisfies (1.78) Eqs. (12.53), see Exercise 2.8, are
invariant under the following gauge transformations:

A′
μ =Aμ + [Dμ,λ], (12.59)

where λ= λ(x) is an element of the corresponding Lie algebra. The gauge freedom
(12.59) can be used to impose the Lorentz-like gauge

[Dμ,Aμ] = 0. (12.60)

In this gauge (12.53) becomes

[Dν, [Dν,Aμ]] −RμνAν + 2[Aν,Fνμ] = 0. (12.61)

The physical solutions are a subclass among solutions to (12.53) which obey
(12.60). Such solutions can be called “transverse” and denoted as A⊥. Like in case
of the Abelian gauge theory there is a residual gauge symmetry among the trans-
verse modes, Aμ→Aμ + [Dμ,λ] provided that [D, [D,λ]] = 0.

The relativistic product on a space of solutions to (12.61) is

〈A1,A2〉(1) =
∫
�

j(1)μ (A1,A2), (12.62)

jμ(A1,A2)=−2i Tr
(
Aν1[Dμ,A2ν] − [Dμ,A1ν]Aν2

)
. (12.63)

One can show that for the transverse solutions the two products, (12.62) and (2.15),
coincide,

〈A⊥
1 ,A

⊥
2 〉(1) = 〈A⊥

1 ,A
⊥
2 〉. (12.64)
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Let us now describe the single-particle spectrum ωi of solutions to (12.53) in the
Lorentz-like gauge. Let ω(1)i be the single-particle energies corresponding to uncon-

strained solutions to (12.61). The physical spectrum is a subset in ω(1)i . Consider
a scalar multiplet ϕ in the same representation of the Lie algebra which obeys the
following equation on the background Bμ

[Dμ, [Dμ,ϕ]] = 0. (12.65)

One can prove that quantity ϕ = [D,A] obeys (12.65) if Aμ is a solution to (12.61).

Therefore, the spectrum ω(0)i of the single-particle frequencies of ϕ yields the spec-
trum of solutions to (12.53) which are not transverse and should be eliminated.

Now one has to take into account that some transverse modes may have a van-
ishing norm. Such modes are A⊥

μ = [Dμ,ϕ] and ϕ again obeys (12.65). It is not
difficult to check that

〈A⊥
1 ,A

⊥
2 〉(1) = 0. (12.66)

In this gauge there is a full analogy between non-Abelian and Abelian models. One
concludes that the spectral function of the linearized non-Abelian perturbations is

�=�(1) − 2�(0), (12.67)

where�(1) is the spectral function in theory (12.61) and�(0) is the spectral function
of the massless scalar field with Eq. (12.65).

2.11 The equation of motion for non-minimally coupled field is

∇2ϕ − (m2 + ξR)ϕ = 0. (12.68)

One can use (1.107) to get the stress-energy tensor for model (2.98)

Tμν = φ,μφ,ν − 1

2
gμν

(
φ,ρφ

,ρ +m2φ2)

+ ξ
[(
Rμν − 1

2
gμνR

)
φ2 + gμν(φ2)

,ρ

;ρ − (φ2);μν
]
. (12.69)

On a static space-time the Killing field is orthogonal to constant time hypersurfaces
� and energy (2.38) takes the form

E =−
∫
�

T 0
0
√−g dn−1x. (12.70)

Hamiltonian (2.39) can be expressed as

H =
∫

B
H

√−g dn−1x, (12.71)

where the Hamiltonian density is

H = 1

2

(−g00φ2
,0 + gijφ,iφ,j + (m2 + ξR)φ2). (12.72)
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By taking into account (12.69) one arrives at the following relation:

−T 0
0 = H − ξ(R0

0φ
2 + gij (φ2);ij

)
. (12.73)

The last term in r.h.s. of (12.73) can be rewritten,

(φ2);ij = �φ2 − g00(φ2);00 = g00((φ2),0,0 − (φ2);00
) + 1√−g ∂i

(√−ggij ∂jφ2)

= 1√−g ∂i
(√−ggij ((φ2),j − φ2wj

)) +∇μwμφ2. (12.74)

Here wμ = 1
2∇μ ln |g00| is a time-independent acceleration of the Killing observer.

It can be shown that ∇μwμ = −R0
0 , so that for static space-times relation (12.73)

takes the form

−T 0
0 = H − ξ 1√−g ∂i

(√−ggij ((φ2),j − φ2wj
))

(12.75)

which shows that E and H differ by a surface term.

2.12 To prove (2.64) one has to take into account the simple identity

∂t [θ(t − t ′)G+(x, x′)+ θ(t ′ − t)G−(x, x′)]
= θ(t − t ′)∂tG+(x, x′)+ θ(t ′ − t)∂tG−(x, x′) (12.76)

which follows from the fact that the commutator of field operators at coinciding time
arguments vanishes. The second time derivative of (12.76) contains a term with the
commutator of ϕ(x) and ∂ϕ(x). This term is responsible for the r.h.s. of (2.64).

2.13 The single-particle modes for the massless field on a circle are

f
(+)
k (t, x)= 1√

4π |k|e
−ia(|k|t−kx),

where a = 2π/l and k = ±1,±2, . . . . The Wightman function for the field on a
circle can be obtained by using definition (2.56)

G+(t, x)=G+(0, xμ)= 1

4π

∞∑
k=1

1

k
(eikau + eikav)= 1

4π
(g(au)+ g(av)), (12.77)

where u= t − x, v = t + x and

g(z)=
∞∑
k=1

1

k
eikz. (12.78)

To take the sum we assume that � t > 0, � z > 0. Note that

f (z)=
∞∑
k=1

eikz =− 1

2i

(
cot
z

2
+ i

)
, (12.79)
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g(z)= i
∫ z

dz′ f (z′)=− ln

(
−2i sin

z

2

)
− i

2
z. (12.80)

The constant of integration in (12.80) is fixed by condition g(iτ )= 0 at τ →∞. By
using (12.80) in (12.77) one gets (2.99).

2.14 The Wightman function for the field on an interval is derived analogously
to the Wightman function on a circle. By using definition (2.56) and single-particle
modes

f
(+)
k (t, x)= 1√

πk
e−iakt sinakx,

where a = π/l and k = 1,2, . . . , one finds

G+(x, x′)=− 1

4π

(
g
(
a(�t + x + x′)

) + g(a(�t − x − x′)
)

− g(a(�t + x − x′)
) − g(a(�t − x + x′)

))
, (12.81)

where �t = t ′ − t , Im t ′ > 0. After taking into account (12.80), this yields

G+(x, x′)= 1

4π
ln

[
sin a2 (�t + x + x′) sin a2 (�t − x − x′)
sin a2 (�t + x − x′) sin a2 (�t − x + x′)

]
, (12.82)

which coincides with (2.100). Equation (12.82) has a suitable form to check that
G+ is a solution to the wave equation on an interval.

2.15 The Wightman functions (2.99), (2.100) can be used to derive canonical
commutation relation. Indeed, as follows from definitions,

[φ(t,x), φ̇(t,x′)] = ∂ ′t [G+(x, x′)−G+(x′, x)]t ′=t . (12.83)

Consider field on a circle. From (2.99) we find

∂ ′tG+(x, x′)=− a

8π

(
cot
a

2
u+ cot

a

2
v+ 2i

)
. (12.84)

The identity (4.128) can be used to write (12.84) as

∂ ′tG+(x, x′)=− 1

4π

[ ∞∑
k=−∞

(
1

u− lk + 1

v− lk
)
v+ ia

]
. (12.85)

The next step is to note that �u=� ε and

1

x + iε = P
1

x
− iπδ(x), (12.86)

where the symbol P means the principal value. Thus, for r.h.s. of (12.83) we get

∂ ′t
[
G+(x, x′)−G+(x′, x)

]
t ′=t = iδl(x − x′), (12.87)

where δl(x) is a delta-function on a circle with of the length l

δl(x)=
∞∑

k=−∞
δ(x + kl). (12.88)

It is easy to see that δl(x + l)= δl(x).
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The problem on an interval can be solved in the same way. One should note that
the delta-function on the interval with the Dirichlet conditions can be written as

δl,D(x, x
′)= δ2l (x − x′)− δ2l (x + x′), (12.89)

where δ2l (x) is the delta-function on the circle of the length 2l, see (12.88). It can
be checked that δl,D(x, x′) satisfies the Dirichlet conditions for the each arguments.

2.16 With the help of (2.35), (2.65) one gets the following expression for the
Wightman function of a massless scalar field:

G+(x)= 1

(2π)3

∫
dp
2|p|e

i(|p|t−px) = 1

4π2x

∫ ∞

0
dp eipt sinpx = 1

4π2s2+
.

The integration implies that � t = ε > 0. Therefore, the interval has to be defined
as s2+ ≡ −t2 + x2 − iε(t)ε. Equation (2.68) follows if one applies rule (12.86).
Expression for G−(x) is obtained by complex conjugation.

2.17 First let us note that the Wightman function in the model in question is

G+(0, x)= 1

(2π)3

∫
dp

1

2ωp
ei(ωpt−px), (12.90)

where prescription � t > 0 is assumed. Consider now integral (2.101)

G (0, x)= 1

(2π)4

∫
d4p

e−ipx

p2 +m2
(12.91)

and the identity

1

p2 +m2
=− 1

2ωp

(
1

p0 −ωp
− 1

p0 +ωp

)
. (12.92)

Let us show how to use (12.91) to specify the Feynman propagator, see (2.60).
We replace the denominator in (12.91) to p2 + m2 + iε, where ε > 0 is a small
parameter. At t > 0 integral (12.91) can be taken by making a closed contour in
the upper complex plane of p0, while at t < 0 the contour should be taken in the
lower plane. The result of the integration will be determined by the poles of (12.92).
Because of iε term there will be a single pole in the upper plane at p0 = ωp + iε
and a single pole in the lower plane at p0 = −ωp − iε. This follows from the fact
that at small ε expression p2 + iε is equivalent to −p2

0 + (ωp + iε)2. By taking this
into account we find from (12.91), (12.92)

G (0, x)=− i

(2π)3

∫
dp

1

2ωp

[
θ(t)ei(ωpt−px) + θ(−t)e−i(ωpt+px)]

=−i(θ(t)G+(0, x)+ θ(−t)G−(0, x))=GF (0, x). (12.93)

Analogously one can define advanced and retarded Green’s functions. For instance,
GA(0, x) requires to change p0 in (12.91) to p0 − iε, ε > 0. Then at t < 0 the
integral over p0 can be replaced by a closed contour in the lower complex plane. In
this region the denominator does not have poles and GA(0, x)= 0.
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Finally, let us dwell on the momentum representation of Green’s functions which
obey homogeneous equations. All of them are determined in terms of the Wightman
function for which we can write

G+(0, x)= 1

(2π)3

∫
d4p δ

(
p2 +m2)θ(p0)e

−ipx. (12.94)

It is easy to see that (12.94) coincides with (12.90).

2.18 The Lorentz invariance of the Feynman propagator is obvious after taking
into consideration results of Exercise 2.17. Consider the Lorentz invariance of other
functions. To this aim it is enough to discuss the Wightman function. Consider
(12.94). Except for the function θ(p0) it has a manifestly covariant form. Thus
we only need to show that p0 does not change sign under the Lorentz transfor-
mations. To be more precise we consider transformations yμ = �μνxν that pre-
serve the norm, x2 = y2, and among these transformation we are interested in a
subgroup of O(1,3) such that det� = +1, �0

0 > 0 (which consists of the so-
called proper ortho-chronal Lorentz transformations). It is easy to understand that
�0

0 =+√
1 +�0

i�0
i . Because of the delta function in (12.94) we can assume that

p0 =+√
p2 +m2. Therefore,

p′
0 =�0

νpν =�0
0p0 +�0

ipi ≥�0
0p0 − (�0

i�0
i )1/2(p2)1/2 > 0,

i.e., after the transformation the sign is left positive, if p0 > 0.

2.19 To prove that (2.104) is a solution to (2.102), (2.103) one has to use the fact
that the Pauli-Jordan function is a solution to (2.63) with the initial conditions

G(x,y)|tx=ty = 0, ∂txG(x, y)|tx=ty =−δ(x − y),

which follow from definition (2.58) and commutation relations at coinciding times.

2.20 The expression for the scalar gauge current follows from (1.72)

〈Jμ(x)〉 = ie lim
x→x′

(
(Dμx )

∗ −Dμ
x′

)
G+(x, x′),

G+(x, x′)= 〈0|ϕ+(x)ϕ(x′)|0〉.
The classical current for spinor field (1.73) is

Jμ(x)= ieψ̄γ μψ.
The average of the quantum current is

〈Jμ(x)〉 = ie lim
x→x′

(γ μ) ba (G
+)ab(x, x

′),

where

(G+)ab(x, x
′)= 〈0|ψ̄a(x)ψb(x′)|0〉

is the Wightman function for the spinor field.

2.21 The proof that (2.105) yields a solution to (2.84) is straightforward.
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3.1 For arbitrary f1 and f2 satisfying (3.37) we calculate

(Lf1, f2)− (f1,Lf2)=
∫ 2π

0
dx2(−f ∗

1 (x
1 = 1) · ∂1f2(x

1 = 1)

+ ∂1f
∗
1 (x

1 = 1) · f2(x
1 = 1)

)
, (12.95)

where we used the fact that the surface integral at x1 = 0 vanishes due to (fist)
Dirichlet condition (3.37). By using second condition (3.37) we transform the right
hand side of (12.95) as∫ 2π

0
dx2 iα

(
f ∗

1 (x
1 = 1) · ∂2f2(x

1 = 1)+ ∂2f
∗
1 (x

1 = 1) · f2(x
1 = 1)

)
. (12.96)

There is no boundary in x2 direction. One can integrate by parts in (12.96) to demon-
strate that the two terms in the brackets cancel against each other. This proves that
L is symmetric.

To check that two sets (3.38) and (3.39) are orthogonal one has to show this
for modes fk,m and f̄k̄,m, where m= 0,±1,±2, . . . . The scalar product of the two
modes is

(fk,m, f̄k̄,m)= 2π
∫ 1

0
dx1 coskx1 cosh k̄x1 = cosk cosh k̄

k2 + k̄2
(k tank+ k̄ tanh k̄),

and it vanishes if one uses (3.40). Of course, orthogonality of the modes follows
from general arguments based on the symmetry of the operator L.

3.2 Obviously,

(ψ1, /Dψ2)− ( /Dψ1,ψ2)=−i
∫
∂M
dn−1x

√
g̃ψ

†
1γ
nψ2. (12.97)

The integrand in (12.97) vanishes on the boundary. Indeed,

ψ
†
1γ
nψ2|∂M =ψ†

1γ
n( D + (1 − D))ψ2|∂M

=ψ†
1γ
n(1 − D)ψ2|∂M =ψ†

1 Dγ
nψ2|∂M = 0, (12.98)

where we used the property γ n(1− D)= Dγ n (which follows from (3.49)), and
ψ

†
1 D|∂M = 0 (which follows from boundary condition (3.47) on ψ1).

3.3 By using the commutation relations between covariant derivatives one can
demonstrate that

�(1)(!,μ)= (�(0)!),μ, �(1)(εμνϕ
,ν)= εμν(�(0)ϕ),ν, (12.99)

where �(0) is scalar Laplacian (3.19). Obviously, the zero-modes of the scalar
Laplacian corresponding to constant ! and ϕ do not contribute to the Hodge-de
Rham decomposition. Thus, the transverse and longitudinal eigenvectors of the op-
erator �(1) are εμνϕ

,ν
l , ϕl,μ where l = 1,2, . . . and ϕl are the spherical harmonics
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(3.20) with eigenvalues l(l + 1) (for the sphere of the unit radius). One concludes
that the operator �(1) on the unit sphere has the eigenvalues l(l + 1) with the de-
generacy 2(2l + 1) and l = 1,2, . . . .

On a side note, we remark that the absence of harmonic vectors on S2 can be
understood through the following topological formula

n0 − n1 + n2 = χ1[M ] (12.100)

which relates the Euler characteristic χ1[M ], see (1.29), to the so-called Betti num-
bers np . The Betti number Bp is the number of harmonic p-index antisymmetric
fields (p-forms). For scalars, n0 = 1 corresponding to one constant harmonic scalar.
On a two-dimensional manifold, scalars are Hodge-dual to two-index antisymmetric
fields (two-forms), so that n2 = 1 is an expected result. The Euler characteristic of
the two-sphere is χ1[S2] = 2. Therefore, relation (12.100) predicts n1 = 0, which
means the absence of harmonic vector fields.

3.4 The eigenvalue problem of the Dirac operator is

γ ρ∇ρψλ = iλψλ. (12.101)

The eigenfunctions can be represented as

ψl =
[
ilϕl + γ μ(∂μϕl)

]
εi, (12.102)

ψ−l−1 = [−i(l + 1)ϕl + γ μ(∂μϕl)
]
εi, (12.103)

in terms of the Killing spinors εi , see Eq. (12.22), and the eigenfunctions ϕl of
the scalar Laplacian, �(0)ϕl = l(l + 1)ϕl . The index l takes the values 0,1,2, . . . .
The eigenfunctions ψl and ψ−l−1 correspond to the eigenvalues il and −i(l + 1),
respectively. One concludes that the spectrum of the Dirac operator on S2 is λn = in,
n= 0±1,±2, . . . . The degeneracy of the modes is 2(2|n|+1). Note that the Killing
spinors are zero modes of the Dirac operator.

3.5 One writes

(iγ μ∇μ)2ψ =−γ μγ ν∇μ∇νψ =−1

2
{γ μγ ν}∇μ∇νψ − 1

2
γ μγ ν[∇μ,∇ν]ψ

and uses identities (1.58) for the spin-connection. The rest of the proof follows from
the symmetry properties of the Riemann tensor and Clifford relations (1.55).

3.6 After some algebra Eqs. (3.3) give

ωμ = Vμ + i

2
[γμ, γν]Aνγ∗, (12.104)

E = 1

4
[γμ, γν]Fμν + iγ∗DμAμ − (n− 2)AμA

μ + n− 3

4
[γ μ, γ ν][Aμ,Aν],

(12.105)
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where Fμν = ∂μVν − ∂νVμ + [Vμ,Vν] and DμAν = ∂μAν + [Vμ,Aν]. The cal-
culation of the field strength �μν is a bit lengthy but otherwise straightforward
(cf. [243]). It yields

�μν = Fμν − [Aμ,Aν] − iγ∗γ ρ(γνDμAρ − γμDνAρ)+ iγ∗Aμν
+ [Aμ,Aρ]γ ργν − [Aν,Aρ]γ ργμ − /Aγμ /Aγν + /Aγν /Aγμ, (12.106)

where /A= γ μAμ and

Aμν ≡ ∂μAν − ∂νAμ + [Vμ,Aν] − [Vν,Aμ]. (12.107)

12.4 Chapter 4. Heat Equation

4.1 It is obvious that the Fourier integral

K(x,y|t)= (2π)−n
∫
dnk e−tk2

eikμ(x−y)μ (12.108)

solves heat equation (4.4) for L=� on R
n and satisfies initial condition (4.5). Next

we perform the integral over k to arrive at representation (4.17).

4.2 Asymptotics of the heat kernel on S3 are easy to get from (4.13). The corre-
sponding eigenvalues and degeneracy are

λl = l(l + 2)= (l + 1)2 − 1, dl = (l + 1)2, (12.109)

see (3.21) and (3.22). Thus, the heat kernel for the Laplacian on S3 reads

K(�S3 , t)=
∞∑
l=0

dle
−tλl = et

∞∑
m=1

m2e−tm2

= e
t

2

∞∑
m=−∞

m2e−tm2 = e
t

2

d

dt

( ∞∑
m=−∞

e−tm2

)

= e
t

2

d

dt

(√
π

t
+O(e−1/t )

)
= e

t

4t

√
π

t
+O(e−1/t ), (12.110)

where (4.13) has been used.

4.3 The easiest way to do this calculation is to consider an (n+ 1)-dimensional
Gaussian integral ∫

dn+1x e−x2 = π(n+1)/2.

The same integral calculated in the polar coordinate system reads

(volSn)
∫ ∞

0
dr rne−r2 = (volSn)

1

2
�

(
n+ 1

2

)
.

By comparing this line with the line above one obtains formula (4.123).
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4.4 Consider a two-parameter family of Laplacians, L(ε1, ε2)= e−ε1f (L− ε2F).
Due to (4.54)

d

dε1

∣∣∣∣
ε1=0

an(1,L(ε1, ε2))= 0.

Let us now differentiate this equation w.r.t. ε2

0 = d

dε2

∣∣∣∣
ε2=0

d

dε1

∣∣∣∣
ε1=0

an(1,L(ε1, ε2))

= d

dε1

∣∣∣∣
ε1=0

d

dε2

∣∣∣∣
ε2=0

an(1,L(ε1, ε2)). (12.111)

Further, by (4.43),

d

dε2

∣∣∣∣
ε2=0

an(1,L(ε1, ε2))= an−2(e
−ε1f F,L(ε1,0)).

By substituting this equation in (12.111) one arrives at (4.55).

4.5 There are three ways to derive (4.125)–(4.127).
Method 1. One can use the variational relation

d

dε

∣∣∣∣
ε=0
ak(1,L− εQ)= ak−2(Q,L), (12.112)

which is an analog of (4.43). It is easy to reproduce a0(Q,L) and a2(Q,L), but to
derive a4(Q,L) one needs a6(1,L).

Method 2. One can repeat calculations (4.44)–(4.48) with the replacement
f →Q. Since one never commutes any operator through f or Q during these cal-
culations, result (4.125)–(4.127) is obvious.

Method 3. One can find all invariants of proper canonical dimension which may
appear in a0(Q,L), a2(Q,L) a4(Q,L). It is easy to understand that only the invari-
ants which appear in (4.125)–(4.127) are allowed. Proper coefficients are recovered
by considering the particular case Q = f · I , where I is the unit matrix, and by
comparing to (4.56)–(4.58). This method also works for curved M .

4.6 By definition (1.87) we have

K
j
j =Kμμ =−nμ;μ =−∂μnμ − �μρμnρ, (12.113)

where we used the identity nμn
μ

;ν = 0 which follows from differentiating nμnμ = 1.
It is convenient to suppose that the coordinate system is Gaussian (1.88) before the
conformal transformation. Then

δ∂μn
μ =−σ;n. (12.114)

Next, by using (4.51), we obtain

δ�μρμn
ρ = σKjj + nσ;n. (12.115)

Then Eq. (4.90) follows from (12.113), (12.114) and (12.115).
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4.7 The method is the following. One rewrites conformal relations (4.97) and
(4.98) without using (4.96), i.e. assuming that the constants βD,N2 are unknown:

−(n− 4)f;n − βD2 (n− 1)f;n = βD3 (n− 2)f;n,
−(n− 4)f;n − βN2 (n− 1)f;n + 6(n− 2)f;n = βN3 (n− 2)f;n.

Each of these equations should hold for arbitrary n with β’s independent of n.
Therefore, the two lines above actually mean four conditions on β’s, which are
enough to get both (4.96) and (4.99).

4.8 For the symmetric function condition (4.103) is satisfied automatically, while
the second matching condition (4.105) yields: 0 = (f+

s;n+ f−
s;n)+Vf = 2fs;n+V ,

which is the Robin condition with S = 1
2V . For the antisymmetric function, conti-

nuity condition (4.103) yields the Dirichlet condition. Then the second condition is
a consistency check.

4.9 By assuming that � z > 0 one finds

∞∑
k=−∞

eikα

z+ ka =−i
∞∑

k=−∞
eikα

∫ ∞

0
ei(z+ka)λ dλ

=−2πi
∞∑

m=−∞

∫ ∞

0
eizλδ(aλ+ α− 2πm)dλ, (12.116)

where we used (12.88). Let the parameter a be positive. Then for 0 < α < 2π the
contribution to the sum in the right hand side of (12.116) comes from the terms with
m = 1,2, . . . and one immediately arrives at formula (4.129). If α = 0 there is an
extra contribution to the sum from the term with m= 0. By taking into account that
on the half axis

∫ ∞
0 δ(λ)dλ= 1/2 one gets (4.128).

4.10 The heat kernel with given periodicity property is determined by the sum-
mation formula

Kβ,α
(
x(τ), x′(0)|t) =

∞∑
n=−∞

einαK∞
(
x(τ + βn), x′(0)|t) (12.117)

which is analogous to (4.114). One can use (4.129) to get the following representa-
tion:

Kβ,α
(
x(τ), x′(0)|t) = 1

2iβ

∫
A

ei(π−α)(z−τ)/β

sin π
β
(z− τ) K

(
x(z), x′(0)|t)dz, (12.118)

which relates Kβ,α with the heat kernel on the plane. The contour A is shown on
Fig. 4.1.

4.11 The proof of formulas (4.131)–(4.132) is based on a residue calculation.
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4.12 We start with the heat kernel K(x(τ), x′(0), t) of the spinor Laplacian on a
two-dimensional plane R

2. Here one can use the Cartesian coordinates and associ-
ated veilbein basis. In this case the covariant spinor derivatives are trivial, ∇μ = ∂μ,
and the spinor Laplacian is �(1/2) =−∂2

μ. Hence,

K
(
x(τ), x′(0), t

) = IK(0)
(
x(τ), x′(0), t

)
, (12.119)

where I is a unit 2 by 2 unit matrix and K(0)(x(τ ), x′(0), t) is the scalar heat kernel
(4.109). To proceed it is necessary to go to a veilbein basis associated with the
polar coordinates τ,ρ because the Cartesian basis cannot be used on a cone. The
spinor connections for polar coordinates are ∇μ = ∂μ + wμ, wμ dxμ = − i

2σ3 dτ .
Transformation from one sort of connections to another is

U(τ)∂μU
−1(τ )=∇μ, U(τ)= exp

(
i

2
σ3τ

)
. (12.120)

The heat kernel on R
2 for veilbeins in polar coordinates is K̃(x(τ ), x′(0)|t) ≡

U(τ)K(x(τ), x′(0)|t). The difference between K̃ and K is in the periodicity prop-
erties:

K
(
x(τ + 2π), x′(0)|t) =K(

x(τ), x′(0)|t),
K̃

(
x(τ + 2π), x′(0)|t) =−K̃(

x(τ), x′(0)|t).
The heat kernel on the cone can be defined as

Kβ
(
x(τ), x′(0)|t) =

∞∑
n=−∞

(−1)nK̃∞
(
x(τ + βn), x′(0)|t) (12.121)

where

K̃∞
(
x(τ), x′(0)|t) ≡ 1

2πi

∫
A

1

z− τ K̃
(
x(z), x′(0)|t)dz (12.122)

is the spinor heat kernel on the infinitely sheeted Riemann surface (−∞< τ <∞).
The integration contour A is shown on Fig. 4.1. Kernel (12.121) changes the
sign when τ is increased by β and corresponds to the spin connection wμ dxμ =
− i

2σ3 dτ . With the help of (4.129) for α = π one then finds the required represen-
tation

Kβ
(
x(τ), x′(0)|t) = 1

2iβ

∫
A

1

sin π
β
(z− τ)U(z)K

(0)(x(z), x′(0)|t)dz. (12.123)

This is an analog of the Sommerfeld formula for the spinor Laplacian.
To study the asymptotic expansions, Eq. (12.123) can be written as

Kβ
(
x(τ), x′(0)|t)

=K(
x(τ), x′(0)|t) + 1

2iβ

∫
A′

1

sin π
β
(z− τ)U(z)K

(
x(z), x′(0)|t)dz. (12.124)
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The contour A′ consists of two vertical lines. The smeared trace Kβ(f,L; t) with a
test function f which does not depend on τ can be written as

Kβ(f,L; t)

= t−1a0(f,L)+ 1

2i

∫
A′

trU(z)

sin π
β
z

∫ ∞

0

exp(−ρ2

t
sin2 z

2 )

4πt
f (ρ)ρ dρ dz, (12.125)

a0(f,L)= 1

4π

∫
Cβ

d2x
√
g f (x) tr I. (12.126)

One can note that trU(z) = cos(z/2) tr I. By taking into account formula (4.132)
and acting in the same way as in Sect. 4.7 we arrive at the following result:

Kβ(f,L; t)∼ t−1a0(f,L)+ a2(f,L)+ · · · , (12.127)

a2(f,L)=− 1

24γ
(γ 2 − 1)f (0) tr I, (12.128)

where γ = 2π
β

.

12.5 Chapter 5. Spectral Functions

5.1 The domain of convergence of the series follows from explicit expressions
(3.21), (3.22) for the spectrum of the Laplacian on an n sphere.

5.2 One can note that the heat kernel for the Laplacian on S2 is represented as

K(�; t)=
∞∑
l=0

(2l + 1)e−t l(l+1) =
∞∑
l=0

(2l + 1)e−t (l+1/2)2et/4

= et/4K(�+ 1/4; t). (12.129)

The operator�+1/4 on S2 is positive definite and its zeta-function is related to the
generalized Riemann zeta-function (5.4),

ζ(s,�+ 1/4)=
∞∑
l=0

(2l + 1)(l + 1/2)−2s = 2ζR(2s − 1,1/2). (12.130)

According to (5.28) the heat kernel coefficients are expressed through the poles of
�(s)ζ(s),

ap(�+ 1/4)= 2 Ress=(2−p)/2(�(s)ζR(2s − 1,1/2)). (12.131)

As we have explained in Sect. 5.2 the zeta-function ζR(z, a) has a single pole
at z = 1 with a unit residue. Consequently, ζR(2s − 1,1/2) has a pole at s = 1
with Res = 1

2 . The corresponding heat-kernel coefficient is a0(�+ 1/4) = 1. The
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poles of �(s) at non-positive integers s generate higher heat kernel coefficients. The
residues are defined by (5.20), (5.14) and (5.15). In particular, a2(�+ 1/4) = 1

12 ,
a4(�+ 1/4)= 7

32·15 .
Thus, we find that

K(�; t)� et/4
(

1

t
+ 1

12
+ 7t

32 · 15
+O(t2)

)
(12.132)

in accord with Eq. (4.15).

5.3 The spectrum of single-particle energies in this model is ωn = |kn|, kn =
2π
l
n+ b

l
, n= 0,±1,±2, . . . . In the ζ -function regularization

E0 = 2π

l

[
ζ

(
−1,

b

2π

)
+ ζ

(
−1,− b

2π

)
+ b

2π

]

=−2π

l

((
b

2π

)2

+ 1

6

)
+ b
l
. (12.133)

5.4 If we assume some regularization of the singularity in Sβ , the spheres S2 and
S2
β have the same topologies and the same Hodge-de Rham decompositions. One

concludes basing on the results of Exercise 3.3 that in the both cases the relation
between the heat kernels of the vector and scalar Laplacians has the form

TrK(�(1); t)− n1 = 2 TrK(�(0); t)− 2n0. (12.134)

Here n1 and n0 are the numbers of zero modes of the operators �(1) and �(0),
respectively. These numbers do not depend on either the base manifold is S2 or S2

β ,
n0 = 1, n1 = 0. Therefore,

a2(�
(1))= 2a2(�

(0))− 2. (12.135)

The form of the scalar coefficient a2(�
(0)) on S2

β is known from results of Sect. 4.7.
It is not difficult conclude from (12.135) that on a cone

a2(�
(1))= 2a2(�

(0))+ (γ−1 − 1) (12.136)

where γ = 2π/β . The latter formula agrees with (4.122) for n= 2.

5.5 We discuss in details theory (5.99) in three-dimensional spacetime, n = 2.
Generalization to n= 3 is straightforward, see discussion in [101].

The spatial components of the vector-potential can be chosen as A1 = 0,A2 =
Bx1, where B is the strength of the magnetic field. Laplacian (5.100) takes the form

L(A)=−∂2
x + (∂y + ieBx)2 +m2. (12.137)

For the large volume the eigenfunctions of this operator are

ϕ�(x, y)= 1√
2π
eipkyψl(x),
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where ψn(x) are the eigenfunctions for the problem(−∂2
x − (pk + eBx)2 +m2)ψl(x)= λlψl(x). (12.138)

After a coordinate redefinition, x′ = x+pk/(eB), one reduces (12.138) to an eigen-
value problem which determines the spectrum of a harmonic oscillator with the fre-
quency ω = eB in quantum mechanics (we assume that eB is a positive constant).
One easily concludes that

λl = 2eB

(
l + 1

2

)
+m2,

where l = 0,1,2, . . . .
The summation over pk in the spectral functions yields a factor C(V,B). This

factor is formally divergent even if V is finite because eigenvalues of L(A) coincide
with λn. The divergence occurs because finite size effects were ignored. If L is a size
of the system along the x coordinate the eigenvalues of the operator L(A) should
coincide with those in the absence of the gauge field at |pk| � BeL. To fix C(V,B)
consider the trace of the heat kernel

Tr e−tL(A) = C(V,B)
∞∑
l=0

e−tλl = C(V,B)

cosh(Bet)
e−tm2

. (12.139)

The short t asymptotic of this trace is determined by large eigenvalues and it should
coincide with the asymptotic of the operator when the gauge field is absent,

Tr e−tL(A) ∼ 2V

4πt
. (12.140)

(Factor 2 appears because the scalar field is complex.) By comparing (12.139) and
(12.140) one concludes that C(V,B) = Be/(2π). For the zeta-function of L(A)
one, therefore, has

ζ(s;L(A))= BeV
2π

∞∑
l=0

(
2eB

(
l + 1

2

)
+m2

)−s
= V (2Be)

1−s

4π
ζR(s, a),

(12.141)

a = 1

2
+ m2

2eB
,

where ζR(s, a) is the generalized Riemann zeta-function (5.4).
This solution is taken from [39].

5.6 By definition, the asymptotic expansion of the trace derivative yields

d

dα
Tr e−tLα ∼

∑
p=0

t (p−n)/2 d
dα
ap(Lα). (12.142)

It follows from (5.63) that

d

dα
Tr e−tLα =−t Tr

(
OLαe

−tLα ) = t d
dt

Tr
(
O e−tLα

)
. (12.143)

This yields (5.101).
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5.7 Suppose ϕ(0)1 is a zero mode of D+. Then L1ϕ
(0)
1 =D−D+ϕ(0)1 = 0, and ϕ(0)1

is a zero eigenmode of L1. Suppose that ϕ̃(0)1 is a zero eigenmode of L1. Then,

0 = (ϕ̃(0)1 ,L1ϕ̃
(0)
1 )1 = (D+ϕ̃(0)1 ,D+ϕ̃(0)1 )2. Since the inner product (.,.)2 is positive

definite, D+ϕ̃(0)1 = 0. This completes the proof.

5.8 Let L1ϕ
(λ)
1 = λϕ(λ)1 . Consider ϕ(λ)2 ≡ D+ϕ(λ)1 . Then L2ϕ

(λ)
2 = L2D+ϕ(λ)1 =

D+L1ϕ
(λ)
1 = λD+ϕ(λ)1 = λϕ(λ)2 , so that ϕ(λ)2 is an eigenmode of L2 with the same

eigenvalue λ. This argumentation fails only if ϕ(λ)2 = D+ϕ(λ)1 = 0, i.e., if ϕ(λ)1 is a
zero eigenmode of L1. One can also repeat the same calculations after exchanging
the roles of L1 and L2.

5.9 Equation (5.102) implies the following transformation of the operator:

/D(B ′)=U+ /D(B)U, (12.144)

or, in infinitesimal form,

δ /D(B)= i( /D(B)λ− λ /D(B)), (12.145)

where λ+ = λ belong to the Lie algebra of SU(N). The chiral parts D±(B) of the
Dirac operator transform in the same way,

δD±(B)= i(D±(B)λ− λD±(B)). (12.146)

Consider transformation of the phase. Equations (5.89), (5.92) and (5.97) yield

δ�(D̂(B))=−ζ(0, /D2
(B), γ�λ). (12.147)

Note that (5.97) shows that transformation (12.144) does not change the absolute
value of det D̂(B). If zero modes are neglected one finds after simple algebra and
with the help of (4.126) for n= 2

δ�(D̂(B))=− i

4π

∫
M
d2x t̃r(λF ), (12.148)

where F = εμνFμν , Fμν = [Dμ(B),Dν(B)], F+ = −F , and the trace t̃r extends
over the indices of the gauge group. For n= 4 it follows from (4.127) that

δ�(D̂(B))=− 1

32π2

∫
M
d4x t̃r(λFμνF̃

μν), (12.149)

where F̃ μν = εμνλρFλρ . To derive (12.148), (12.149) we used the representation
/D

2
(B)=−(Dμ(B)Dμ(B)+E), E =− 1

4 [γ μ, γ ν]Fμν .

5.10 First of all, from Eqs. (5.96), (5.98) one finds

δ± ln det /D = 2δ± ln |det D̂|D̄=D− = 1

2
ζ
(
0, /D2

, (O± + O+± )
)
. (12.150)
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Let us reproduce (12.150) by using Eq. (5.71),

δ± ln det /D = 1

2
δ± ln detL= 1

2
ζ(0,L, Õ±), (12.151)

where L= /D
2 and generators Õ± should be determined from (5.64). One has

δ± Tr e−tL = 2δ± Tr e−tD+D−

=−2tδ± Tr
[
(δ±D+)D− +D+(δ±D−)

]
e−tD+D−

=−2t Tr(G + G +)
(
D+D−e−tD+D− ±D−D+e−tD−D+)

, (12.152)

where we have used the arguments given for (5.90). By comparing (12.152) with
(5.64) one concludes that

Õ+ = 2(G + G +), Õ− =−2γ�(G + G +). (12.153)

Thus, Õ± = O± + O+± , see (5.92), and (12.151) coincides with (12.150).

12.6 Chapter 6. Non-linear Spectral Problems

6.1 We start with definition of product for two eigenfunctions

(ω2 − (L2 +ωL1 +ω2L0))φω = 0,

(σ 2 − (L2 + σL1 + σ 2L0))ψσ = 0.
(12.154)

Suppose first that ω �= σ . Then

〈φω,ψσ 〉 = (ω+ σ)(φω, (1 −L0)ψσ )− (φω,L1ψσ )

= 1

(ω− σ)(φω, ((ω
2 − σ 2)(1 −L0)− (ω− σ)L1)ψσ )≡ 0, (12.155)

where we used Eqs. (12.154).
If ω= σ (12.155) becomes

〈φω,ψω〉 = (φω, (2ω(1 −L0)−L1)ψω)= (φω, (2ω− ∂ωL(ω))ψω), (12.156)

where ∂ωL(ω) = L1 + 2ωL0. Let us take into account that ψω coincides with an
eigenfunction φ(ω)� of an operator L(ω) with some eigenvalue �(ω),

L(ω)φ
(ω)
� =�(ω)φ(ω)� (12.157)

(as earlier, we imply that �(ω) is specified by some indexes but do not write them
explicitly). The parameter ω is determined from the equation ω2 =�(ω). Let ω in
(12.157) be a free real parameter. Take the derivative of the both sides of (12.157)
over ω and in the final formula put ω2 =�(ω). We get

∂ωL(ω)ψω = ∂ω�(ω)ψω + (ω2 −L(ω))ξω, (12.158)

where ξω = ∂ωφ(ω)� at ω2 =�(ω). Substitution of (12.158) in (12.156) yields

〈φω,ψω〉 = (2ω− ∂ω�(ω))(φω,ψω), (12.159)

which coincides with (6.14).
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6.2 The pseudo-trace corresponding to (6.58) is

K(t)= 1

2

∑
ω

e−tω2 = 1

2

∑
λ

(
e−t (

√
λ−!)2 + e−t (

√
λ+!)2), (12.160)

where λ are eigenvalues of L2. One can consider (12.160) as a result of a non-
linear transformation of the spectrum, λ→ (

√
λ± !)2. Expression (12.160) can be

rewritten as

K(t)= e−tρ2 ∑
λ

e−tλ cosh(2tρ
√
λ ). (12.161)

By using Taylor series for coshx one can represent (12.161) in the following form:

K(t)= e−tρ2
∞∑
p=0

(tρ)2p

(2p)! (−1)p∂pt K(L2; t). (12.162)

This expression can be used to study short t expansions of K(t) starting from the
asymptotic K(L2; t). The check of (6.20), (6.21) is now straightforward.

6.3 Equation (6.3) can be written as

ζ(s)= 1

�(s)

∫ ∞

0
t2s−1

∞∑
n=0

n∑
m=−n

(n− |m| + 1)e−(n+1+m�)t dt. (12.163)

Summation over m and n can be perform explicitly. After that one should study the
poles of the integral at s = 1/2 and s = 3/2 and use (6.61), (6.62). This again can be
done explicitly because the poles appear as a result of the divergence of the integral
on the lower limit.

12.7 Chapter 7. Effective Action

7.1 Let ϕ be a function from the Hilbert space of the operator L, and let {ϕλ} be
a set of normalized eigenfunctions of L with eigenvalues λ. One has

ϕ =
∑
λ

bλϕλ, bλ = (ϕλ,ϕ). (12.164)

The “integration” in (7.131) can be formally specified as a usual integration over the
coefficients bλ, ∫

[Dϕ]e−(ϕ,Lϕ) =
∏
λ

∫ ∞

−∞
dbλ e

−λ|bλ|2 . (12.165)

This expression has a meaning if the spectrum of L is restricted, λ≤�, by a ultra-
violet cutoff �. Then∫

[Dϕ]e−(ϕ,Lϕ) =N(�) exp

(
−1

2

∑
λ≤�

lnλ

)
, (12.166)

whereN(�) is a numerical coefficient. Finally one can replace the series
∑
λ≤� lnλ

by the Ray-Singer formula and take the limit �→∞.



12.7 Chapter 7. Effective Action 249

7.2 One uses eigenfunctions of /D,

/Dψλ = λψλ.
The eigenfunctions of the conjugated operator are ψ̄λ. The eigenfunctions are “nor-
malized”, (ψ̄λ,ψσ )= δλσ . The field allows a decomposition

ψ(x)=
∑
λ

cλψλ(x), ψ̄(x)=
∑
λ

c̄λψ̄λ(x), (12.167)

where cλ, c̄λ are some Grassman variables. By taking into account (7.37), (7.35)
one should adopt the integration rules∫

dcλ = 0,
∫
dc̄λ = 0,

∫
c̄λ dcσ =

∫
cλ dc̄σ = 0, (12.168)

∫
cλ dcσ = δλσ ,

∫
c̄λ dc̄σ = δλσ . (12.169)

The integral (7.132) can be formally written as∫
[Dψ̄][Dψ]e−(ψ̄, /Dψ) =

∏
λ

∫
dc̄λ dcλe

−λc̄λcλ . (12.170)

This yields, in analogy with the Bose case,∫
[Dψ̄][Dψ]e−(ψ̄, /Dψ) = exp

( ∑
0<λ≤�

lnλ+
∑

−�≤λ<0

(ln(−λ)+ iπ)
)
, (12.171)

where� is a cutoff. The quantity in the exponent can be related to first order deriva-
tive of the zeta-function of the Dirac operator (5.56), see Sect. 5.6. Then one can
use formulas (5.57)–(5.59) and remove the cutoff �.

7.3 Let us represent (7.9) as

Z(β)=
∫
dEμ(E)e−βE, (12.172)

μ(E)=
∞∑
n=0

δ(E −En). (12.173)

Function μ(E) is the spectral density of the energy operator. One can put μ(E)=
ef (E) and estimate the integral in (12.172) as

Z(β)� ef (E∗)−βE∗ , (12.174)

where E∗ =E∗(β) is defined by the condition

∂Ef (E)E=E∗ = β. (12.175)

It is easy to see by using (7.13), (7.15) that in the given approximation

E (β)=E∗(β), (12.176)
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S(β)= f (E∗(β)). (12.177)

Therefore μ(E) � eS and the number of states in the interval of energies
(E,E +�E) is eS�E.

7.4 The single-particle spectrum for such theory in n= d + 1 dimensional space-
time is

ω(n1, . . . , nd)= (k2
1 + k2

2 + · · · + k2
d)

1/2. (12.178)

where kp = πnp/l and np = 1,2, . . . . The free energy

F(β)= β−1
∑
np

ln
(
1 − e−ω(n1,...,nd )

)
(12.179)

in the thermodynamical limit is reduced to the integral

F(β)= β−n V
πd

∫
xi>0

ddx ln
(
1 − e−x2

i
)

=−T n V

d(2π)d
�(n)ζ(n)�(Sd−1), (12.180)

where V = ld and �(Sd−1) = 2πd/2/�(d/2) is the volume of the hypersphere
Sd−1. The final answer is

F(β)=−T n V
πd/2

�

(
n

2

)
ζ(n). (12.181)

It is not difficult to get from (12.181) and definition (7.13) the Stefan-Boltzmann
law (7.134).

7.5 The free energy of a scalar field on an interval of length l with the Dirich-
let boundary conditions is determined by the single-particle spectrum ωk = πk/l,
where k = 1,2, . . . ,

F(β)= β−1
∑
k=1

ln
(
1 − e−πβk/l). (12.182)

In the thermodynamical limit, β/l� 1, one can replace the sum by an integral and
use the Euler-MacLourain formula

∞∑
n=1

f (n)=
∫ ∞

0
dx f (x)−

∫ 1

0
dx f (x)+ 1

2
f (1)+

∞∑
k=1

(−1)k
Bk+1

(k + 1)!f
(k)(1),

(12.183)

where Bk are the Bernoulli numbers and a function f (x) is supposed to decrease at
infinity together with all its derivatives. With help of (12.183) one gets

F(β)�− lπ

6β2
− 1

2β
ln
β

2l
. (12.184)

The leading term reproduces result (12.181).
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7.6 To define the free energy one needs the single-particle spectrum in the rotating
frame. The spectrum in the frame which is at rest is ωk = 2πk/l, k = 1,2, . . . .
The quantity pk = ±2πk/l is the momentum of a particle rotating clock-wise or
counter-clock-wise, the angular momentum of the particle ismk = lpk/(2π) (taking
into account that l/(2π) is the radius of the circle). Thus, in the frame which rotates
with the angular velocity � the single-particle spectrum is

ω±
k (�)= ωk ±�k = (1 ± �̄)ωk, (12.185)

where �̄= l�/(2π). The partition function is

F(β)= F+(β)+ F−(β), (12.186)

where F±(β) have the same form as partition function for the system on an interval
with the length l± = l/(1 ± �̄). One can now apply formula (12.181) to get

F(β)�− lπ

6β(1 − �̄2)
. (12.187)

7.7 We focus on the proof of (7.26), the case of Bose statistics. Generalization to
Fermi statistics is straightforward. One should use the relation

∞∑
l=1

ln

(
1 + ω

2

σ 2
l

)
= lim
N→∞

[
N∑
l=1

ln(σ 2
l +ω2)−

N∑
l=1

ln(σ 2
l )

]

=− lim
s→0

d

ds

[ ∞∑
l=1

(σ 2
l +ω2)−s −

∞∑
l=1

(ω2)−s
]

(12.188)

and note that

lim
s→0

d

ds

∞∑
l=1

(ω2)−s =− lnβ. (12.189)

Relation (7.26) follows from (7.135), (12.188) and (12.189).

7.8 We assume that a background manifold is closed and prove (7.137). General-
ization to spaces with boundaries is straightforward. One writes

Tr e−tPE =
∞∑

l=−∞
e−σ 2

l t Tr e−tL(iσl), (12.190)

where σl are defined in (7.25), and uses (6.18) and (6.19) to get the following short
t expansion:

Tr e−tPE ∼
∞∑
p=0

tp−(n−1)/2
p∑
q=0

aq,p

∞∑
l=−∞

e−σ 2
l t σ

q
l . (12.191)
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In the limit of small t for m even one has the asymptotic formula
∞∑

l=−∞
e−σ 2

l t σ
q
l ∼ β

2π
�

(
q + 1

2

)
t−(q+1)/2, (12.192)

for m odd the sum vanishes. By using (12.192) in (12.191) and comparing the result
with the asymptotic of K(t;PE) one gets (7.137).

7.9 Formula (7.139) follows from (7.137) and (6.20). (One should change n to
n− 1 in (6.20).)

7.10 To avoid the problem of divergences one can modify (7.52) by introduction,
for example, a factor eiεz,

f1(s)=−!
−2s

4π

∑
λ

∫
C+
dz

[
(z2 + λ(iz))−s + (z2 + λ(−iz))−s]eiεz, (12.193)

where ε > 0 is a small parameter which serves to regularize the integral near s = 0.
One can integrate in (12.193) by parts and neglect terms which are linear in ε. This
yields

f1(s)=−s !
−2s

4π

∑
ω

∫
C+
dz z

[
∂zχ̆(z, λ)

(z2 + λ(iz))s+1
+ ∂zχ̆(−z,λ)
(z2 + λ(−iz))s+1

]
eiεz.

(12.194)

The presence of the regularizing factor enables one to replace C+ with a closed
contour lying in the upper part of the complex plane and use the Cauchy theorem to
get:

E0 = 1

2

∑
i

ωie
−εωi , (12.195)

where ωi are single-particle frequencies. Derivation of (12.195) is analogous to the
derivation of Eq. (7.56). The quantity (12.195) is the regularized vacuum energy,
where the contribution of high-frequency modes is suppressed at the scale ω∼ ε−1.

7.11 On a closed base manifold the singular part of the zeta-function is, see
Eq. (5.28),

ζ (pole)(s;PE)= 2

�(s)

∞∑
k=0

a2k(PE)

2s + 2k− n, (12.196)

where a2k(PE) are the heat coefficients of PE . To investigate the poles of f1(s) we
rewrite (7.52) as

f1(s)= 1

2π

∫ ∞

−∞
dxζ

(
s; (L(ix)+ x2)

)

= 1

2π�(s)

∫ ∞

−∞
dx

∫ ∞

0
dt ts−1 Tr e−t (L(ix)+x2). (12.197)
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We put here != 1, for simplicity. The operator L(x) is defined in (7.41). The poles
of f1(s) are determined by the behaviour of the integral at small t . Therefore, one
can define the pole part f (pole)

1 (s) of f1(s) by (12.197) where the integration over t
is restricted by the interval (0,1). The heat kernel of L(ix) can be replaced here by
its asymptotic (6.18)

f
(pole)
1 (s)= 1

2π�(s)

∫ ∞

−∞
dx

∫ 1

0
dt ts−1e−tx2

∞∑
k=0

a2k(L(ix))t
(2k−n+1)/2.

(12.198)

The integral exists at 	 s > (n− 1)/2. One can now use (6.18) and the left formula
in (6.19). After integration in (12.198) over x and t one gets

f
(pole)
1 (s)= 1

π�(s)

∞∑
k=0

[k/2]∑
m=0

�(m+ 1/2)

(2s + 2(k−m)− n)(−1)ma2m,k. (12.199)

Note that odd powers of x do not contribute to (12.199), while each even power of
the order 2m yields the factor i2m = (−1)m. The result can be rewritten as

f
(pole)
1 (s)= 1

π�(s)

∞∑
k=0

1

2s + 2k− n
2k∑
m=k

�(m− k + 1/2)(−1)m−ka2(m−k),m.

(12.200)

One can now use (7.137) to get (12.196) from (12.200).

7.12 A straightforward computation yields

G+
β (x, x

′)=
∑
i

1

1 − e−βω+
i

f
(+)
i (x)(f

(+)
i (x′))∗

+
∑
j

1

e
βω−
j − 1

(f
(−)
j (x′))∗f (−)j (x), (12.201)

G−
β (x, x

′)=
∑
j

1

1 − e−βω−
i

(f
(−)
j (x′))∗f (−)j (x)

+
∑
i

1

e
βω+
j − 1

f
(+)
i (x)(f

(+)
i (x′))∗. (12.202)

At the vanishing temperature, β−1 = 0, expressions (12.201), (12.202) coincide
with (2.56), (2.57).

To study the properties of the Wightman functions under analytical continuation
in the complex plane of the time coordinate we first note that the Green’s functions
depend only on the difference in time coordinates of the two points. It is convenient
to separate time and spatial coordinates and introduce the definition

G±
β (t;y, y′)=G±

β (x, x
′), (12.203)
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for space-time coordinates x = (t, yk), x′ = (0, (y′)k) with yk being purely spatial
coordinates. Consider an analytical continuation of the Wightman function in the
complex plane. It is easy to see thatG+

β (z;y, y′) where z= t + iτ can be defined in
the strip −β < τ < 0. This fact follows from (12.201), the positivity of the single-
particle spectrum, and the definition of the single-particle modes, which implies that

f
(±)
i (t + iτ, y)= e±τω(±)i f (±)i (t, y). (12.204)

If −β < τ < 0 the series (12.201) forG+
β (t+iτ ;y, y′) converge at large ω(±)i . Anal-

ogously, it follows from (12.202) that G−
β (z;y, y′) with z = t + iτ can be defined

in the strip 0< τ < β , −∞< t <∞.

7.13 To demonstrate that relations (7.140), (7.141) define a single function in
some domain of the complex plane, let us note that operators ϕ(x) and ϕ+(x′) com-
mute if points x and x′ are taken on a Cauchy hypersurface in a globally hyperbolic
space-time, see Exercise 2.4. We are working with stationary space-times imply-
ing the global hyperbolicity. The constant time hypersurfaces are an example of the
Cauchy hypersurfaces.

We assume that a constant time Cauchy hypersurface allows at least small defor-
mations. This means that two casually independent points x = (t, y) and x′ = (0, y′)
may be on a Cauchy hypersurface at least for some values of t . The commutator of
operators at these points is vanishing, see (2.94), and the Wightman functions co-
incide, G+

β (t;y, y′) = G−
β (t;y, y′). In Minkowski space-time this equality holds

when |t |< d(y, y′) where d(y, y′) is the spatial distance between y and y′.
These arguments show that there is a single function G̃β(z, y, y′) defined by

(7.140), (7.141) in the strip −β < � z < β , −∞< t <∞, except domains where the
Wightman functions have singularities. In the Minkowski space-time G̃β(z, y, y′) is
analytic everywhere in the strip except two cuts at � z= 0, |	 z| ≥ d(y, y′).

The proof of the second property, Eq. (7.142), is based on (7.140), (7.141) and
the identity

G+
β (z− iβ, y, y′)=G−

β (z, y, y
′), (12.205)

which follows from (12.201),(12.202).

7.14 Representation (7.143) follows from (7.140), (7.141). The second property
(ii) follows from (12.205). Equation (7.144) can be checked by using (7.143).

One should note that the field operators obey the equations PEϕ̂E(x)= 0 which
results from the Lorentzian equation P ϕ̂(x)= 0 under the Wick rotation. Therefore,
PE(∂

x)G(x, x′)= 0 if x �= x′.
The time derivative of the step functions θ(±τ) yields a delta-function and the

corresponding terms are combined in the commutator of the operators on a constant-
time hypersurface, see (2.18) and (12.34). The commutator produces the required
delta-function in the r.h.s. of (7.144).
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7.15 Since a free field is system of harmonic oscillators it is enough to prove that
for a single oscillator

〈â+〉β = 0. (12.206)

Consider to this aim a theory described the Hamiltonian

Ĥ (j)= ωâ+â + j â+ + j∗â (12.207)

where an interaction with an external classical source is introduced. Define the par-
tition function

Z(β, j)= Tr e−βĤ (j). (12.208)

The average (12.206) can be written as

〈â+〉β =−β−1 ∂

∂j
lnZ(β, j)j=0. (12.209)

To compute Z(β, j) we make the transformation

b̂+ = â+ +ω−1j∗, b̂= â +ω−1j, (12.210)

where b̂+ and b̂ obey the standard commutation relation, and get

Ĥ (j)= ωb̂+b̂− 1

ω
|j |2. (12.211)

Therefore,

Z(β, j)= eβω−1|j |2Z(β, j = 0). (12.212)

Equation (12.206) follows from (12.212).

7.16 We note that the extremum of U(ϕ) at ϕ = 0 is unstable point. Stable points
are at ϕ = ±μ. One can study the excitations near, say ϕ = μ, and see that they
behave as a free field with a mass m2 = 2λμ2.

The normalization conditions (7.146) identify the parameter μ with the average
value of the field in quantum theory at the minimum of the effective potential. They
also require that the mass of field excitations near the minimum coincides with the
mass of the classical theory.

The corresponding CW-potential is given by the expression which follows from
(7.90)

�(ϕ)= a
2
ϕ2 + b

12
ϕ4 + λ2

64π2
(3ϕ2 −μ2)2 ln(3ϕ2 −μ2). (12.213)

For the classical part we use (7.86). For simplicity we put ! = 1, one can do this
because redefinition of ! is equivalent to change of constants a and b. Conditions
(7.146) yield

a =−λμ2 + 3λ2μ2

32π2
(2 ln(2μ2)+ 7), (12.214)
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b= 3λ− 27λ2

32π2
(2 ln(2μ2)+ 3). (12.215)

After using (12.214), (12.215) in (12.213) we come to expression

�(ϕ)=−1

2
μ2λ

(
1 − 21

32π2
λ

)
ϕ2 + 1

4
λ

(
1 − 27

32π2
λ

)
ϕ4

+ ϕ4 + λ2

64π2
(3ϕ2 −μ2)2 ln

3ϕ2 −μ2

2μ2
. (12.216)

Note that the coupling λ is dimensionless so one may say that approximation we
use is good enough when λ� 1. Thus, although quantum corrections in this model
do affect the shape of the potential they do not change its global characteristics in
the range of validity of this approximation. The potential still has two minima as in
the classical theory.

7.17 If e2 � λ quantum fluctuations of the gauge field dominate and quantum
effects of the scalar field ϕ can be neglected. The contribution of the vector field to
the Coleman-Weinberg potential can be easily found.

When |ϕ| = φ the vector field has the mass m2 = m2(φ) = e2φ2. Quantization
of a massive vector field was discussed in Exercises 2.5, 2.9. It follows from results
of Exercise 2.9 that in Minkowski space-time the massive vector field is equivalent
to three scalar bosons with the same mass, see Eq. (12.57) for the vacuum energy.
Thus, for the Coleman-Weinberg potential one gets

�(φ)= a
2
φ2 + b

12
φ4 + 3

e2

64π2
φ2 ln(e2φ2), (12.217)

where constants a and b can be fixed as earlier, by conditions (7.146). This yields

�(φ)=−λ
2
μ2

(
1 − 3e2

16π2λ

)
φ2 + λ

4

(
1 − 9e4

32π2λ

)
φ4

+ 3e2

64π2
φ2 ln

φ2

μ2
. (12.218)

The important feature of the Higgs model which makes it different from the pure
scalar model is that quantum corrections can change properties of the effective po-
tential already in the vacuum state. It is easy to see that at e2 > 16π2λ/3 the poten-
tial has a new minimum at φ = 0 where the symmetry is not broken.

7.18 The reason why the imaginary part of (7.148) can be connected with the
decay probability is the following. Each complex frequency mode can be considered
as a harmonic oscillator with a negative potential −|ω|2x2/2. Classically the particle
cannot stay at the point x = 0 for a long time because of fluctuations. This means
that states with complex energy modes cannot be stable. A time interval during
which a quantum particle with a complex frequency ω stays at the point x = 0 is
τ ∼ |ω|−1 (this follows from the fact that the wave-function of a particle changes
with time as e−iωt ). The quantity 2τ−1 can be considered as a probability for a
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given state to decay per unite time. Indeed, the probability to go for a unit time
from a state |ψ〉 to itself is p = |〈ψ |e−iω|ψ〉|2 � 1 − 2ω. The probability to go to a
different state is 1 − p = 2ω.

For a large number of particles with imaginary energies ωi being in a large vol-
ume V one can define the probability for the entire system to decay in a unit volume
per unit time as � = 2V −1 ∑

	 ωi=0 |ωi |. Therefore, � = −2��(φ). The sign by
the imaginary part of the complex effective potential should be chosen so that to get
the correct decay factor exp(−�) for probability per unit time.

To give a proof of (7.149) compute first the real part of �(φ). One uses a zeta-
function to regulate the series over the real frequencies

ζ(s)≡
∑

�ωi=0

ω−2s
i =

∑
p2
i >m

2

(p2
i −m2)−s , (12.219)

where pi are the components of a momentum. By assuming that the system is in a
box of a large volume one gets

ζ(s)= 4πV

(2π)3

∫ ∞

m

dpp2(p2 −m2)−s = V

(2π)2
m3−2s �(1 − s)�(s − 3

2 )

�(− 1
2 )

. (12.220)

Therefore,

1

2

∑
Imωi=0

ωi = 1

2
lim
s→− 1

2

(
ζ(s)− 2 Res ζ(−1/2)

2s + 1

)
= V

64π2
m4 lnm2, (12.221)

where m2 =−U ′′(φ), and

	�(φ)=U(φ)+ 1

64π2
(U ′′(φ))2 ln |U ′′(φ)|. (12.222)

It is instructive to compare this result with the corresponding expression (7.90)
which we obtained earlier for U ′′(φ) > 0. The imaginary part of the effective poten-
tial can be determined in terms of the following function:

ζ̃ (s)=
∑

	 ωi=0

(ω2
i )

−s =
∑
p2
i <m

2

(m2 − p2
i )

−s . (12.223)

There is no problem with convergence of this sum at large p2 and the direct compu-
tation yields

ζ̃ (s)= V

(2π)2
m3−2s �(1 − s)�( 3

2 )

�( 5
2 − s) . (12.224)

Thus,

��(φ)=− 1

2V
ζ̃ (−1/2)=− π

64π2
(U ′′(φ))2. (12.225)

By combining (12.222), (12.225) in (7.148) one arrives at (7.149). The advantage
of (7.148) is that the effective potential can be an analytic function of φ at least in
some part of the complex plane provided rules how to bypass the branching points
in ωi(φ) = 0 are formulated. Our convention, �ωi < 0, is achieved if U ′′(φ) is
replaced to U ′′(ϕ)− iε where ε > 0 is a small addition.
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7.19 We give the proof of (7.150) for a Bose field (e.g., a charged scalar field)
on a closed manifold. Generalization to the case of Fermions as well as to spaces
with boundaries is straightforward. The effective action is given by the Ray-Singer
formula (7.43). With the help of (12.190) the zeta-function (7.48) can be represented
as

ζ(s;PE)= !
−2s

�(s)

∫ ∞

0
dt ts−1

∞∑
l=−∞

e−σ 2
l t Tr e−tL(iσl). (12.226)

At large temperatures (small β) the main contribution to terms with σl �= 0 comes
from the integration over small t . In this region one can use asymptotic expansion
(6.18) for the heat kernel of L(iσl).

By using (6.18) in (12.226) one can integrate over t , then one can perform the
summation over σl �= 0 by taking into account (6.19). This yields

ζ(s;PE)� ζ(s;L(0))

+ 2!−2sκn−1−2s

�(s)

∞∑
p=0

ζ(2s + 2p+ 1 − n)�
(
s + p− n− 1

2

)
a2p,sκ

−2p,

(12.227)

a2p,s =
2p∑
m=p

�(s +m− n−1
2 )

�(s + p− n−1
2 )
(−1)m−pa2(m−p),m. (12.228)

Here κ = 2π/β , and ζ(z) is the Riemann ζ -function. The quantities a2m,p are de-
termined in (6.19). It follows from (6.20) and (12.228) that

a2p,s=0 = a2p,

where a2p are the coefficients of pseudo-trace expansion (6.17) on a closed (n− 1)-
dimensional space. Therefore, from (7.43) and (12.227) one finds

W [φE] � −ζ ′(0;L(0))

+ 2κn−1
n−1∑
p=0

ζ(2p+ 1 − n)�
(
p− n− 1

2

)
a2pκ

−2p + β√
π
an ln(μβ)

=−ζ ′(0;L(0))− 2n√
πβn−1

n−1∑
p=0

ζ(n− 2p)�

(
n− 2p

2

)
a2p

(
β

2

)2p

+ β√
π
an ln(μβ). (12.229)

This equation coincides with (7.150) for the case of a Bose field. We omitted here
a singular part which comes from the term with 2p = n. This singularity is of an
infrared origin and it appears because we do not take into account the presence of
the mass gap (a smallest eigenvalue ω0 = μ> 0 of the single-particle spectrum). If
this is done carefully, the singularity does not appear.
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7.20 We use (12.229) to get for the model considered

W [φ] � βV
(
−π

2

90
β−4 + 1

24
m2β−2 + 1

32π2
(m2)2 ln(μβ)

)
. (12.230)

An overall factor of 1/2 is introduced here because the field is supposed to be real.
The leading term in (12.230) determines the Stefan-Boltzmann law (7.134) for the
gas of scalar particles. One can replace the mass gap μ to the mass of the field m.

This results in the following expression for the effective potential at high temper-
atures

�(φ,β)�U(ϕ)+ 1

24
m2β−2 + 1

64π2
(m2)2 lnm2β2, (12.231)

where m2 = U ′′(φ). (Here the constant term has been omitted.) The main effect
comes from the term quadratic in temperature. For model (7.145) one gets

�(φ,β)� λ
4
(φ2 −μ2)2 + 1

24
β−2λ(3φ2 −μ2). (12.232)

As a consequence, if T 2 > 4μ2 the effective potential has a global minimum at
φ = 0.

7.21 First, let us study the single-particle spectrum for electrons and positrons in a
static electro-magnetic field. Consider the Dirac equation in Minkowski space-time

[
γ μ(∂μ − ieAμ)+m

]
ψ = 0, (12.233)

where Aμ is a static vector-potential of the external electro-magnetic field, and m is
the electron mass. After the substitution ψω(t, x)= e−iωtψω(x) the Dirac equation
(12.233) is reduced to the following problem:

(ω−H(ω))ψω = 0, (12.234)

H(ω)= iγ0(γ
k(∂k − ieAk)+m)− eA0. (12.235)

The operator H(ω) is Hermitean. If λ(ω) are eigenvalues of H(ω), one has the
algebraic problem

ω− λ(ω)= 0. (12.236)

By using the chirality matrix γ� let us bring (12.234) to a NLSP of form (6.3)

−(γ�iγ0(ω−H(ω)))2φω = (ω2 −L(ω))φω = 0, (12.237)

L(ω)=−DkD
k +m2 − e2A2

0 + e
2
(F − 2iγ0γ

k∂kA0)− 2eA0ω, (12.238)

where Dk = ∂k − ieAk and F = (∂jAk − ∂kAj )γ jγ k . Another way to get (12.237)
is to start from (γ μ(∇μ − ieAμ) − m)(γ ν(∇ν − ieAν) + m)φ = 0. Spectrum pf
(12.237) coincides with the spectrum of (12.234).
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The effective action of the system at high temperatures can be written with the
help of (7.150)

W [A] ∼ −7π7/2

90β3
a0 − π

3/2

6β
a2 + a4

2
√
π
β ln(mβ). (12.239)

The coefficients ak correspond to operator (12.238). By using formulae (6.18),
(6.19), (6.20) and results of Chap. 5, one can find

(4π)3/2a0 = 4V, (12.240)

(4π)3/2a2 = 4
∫
d3x(−m2 + 2e2A2

0), (12.241)

(4π)3/2a4 = 2e2

3

∫
d3x FμνF

μν, (12.242)

where Fμν = ∂μAν − ∂νAμ is the Maxwell stress tensor.
The total effective action for the static gauge field is (see (7.98))

�[A] = −1

4

∫
d4x FμνF

μν +W [A]. (12.243)

By and taking into account (12.239)–(12.242) one gets

�[A] = −β
∫
d3x

(
−c(T )

4
FμνF

μν + 1

2
M2(T )A2

0

)
, (12.244)

c(T )= 1 − e2

24π2
ln(T /ρ), M2(T )= 1

3
e2T 2. (12.245)

It is assumed that (12.244) is given in terms of the renormalized fields and the
charge (see discussion in Sect. 7.7). The functional (12.244) describes an effec-
tive three-dimensional gauge theory, where the component A0 acquires an effective
mass M(T ). As a result the Coulomb field of the charge in the plasma is screened
at the distances larger than 1/M(T ).

To be able to neglect the pair creation by the electric field we had to suppose that
the mass m is large. However, the mass gives rather non-interesting contributions to
the effective action, and it has been dropped from the final answer.

7.22 According to (7.151) one can give the following definition:

W
μ1,μ2,...,μ2k
(2k) (x1, x2, . . . , x2k)= (2k)! δ2kW [A]

δAμ1(x1) . . . δAμ2k (x2k)

∣∣∣∣
A=0
. (12.246)

The odd variations vanish at A = 0 as a result of the symmetry W [A] =W [−A].
Let us define the Green’s function for the spinor field

( /D(A)+m)G(A)= I (12.247)

where we used symbolic notation I for the delta-function. Variation of the Green’s
function is
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δAG(A)= (−ie)G(A)γ μG(A)δAμ. (12.248)

Provided a cutoff parameter is introduced one has from (7.91), (12.248)

δW [A]
δAμ

=−ieTr(G(A)γ μ),

δ2W [A]
δAμδAν

= (−ie)2 Tr(G(A)γ μG(A)γ ν).

(12.249)

Relations (12.246) are obtained by considering higher order derivatives at A= 0.

12.8 Chapter 8. Quantum Anomalies

8.1 One should use the following properties of the γ -matrices in two dimensions:

γ∗ = i

2
εμνγ

μγ ν = iγ 1γ 2, (12.250)

γ∗γ ρ =−iερνγν, [γμ, γν] = −2iεμνγ∗. (12.251)

This allows one to rewrite the Dirac operator /D(V,A), see (8.17), as

/D(V,A)= iγ μ(∂μ + Vμ + εμρAρ
) ≡ /D(V̄ ), (12.252)

where we introduced an operator and a vector field

/D(V̄ )= iγ μ(∂μ + V̄μ), V̄μ = Vμ + εμνAν.
The chiral anomaly is easily calculated with the help of (8.26),

δλW [B] = −2iζ(0, /D2
(V̄ ), γ∗λ)= 1

2π

∫
M
d2x tr(λF ), (12.253)

F = εμνFμν, Fμν = [Dμ,Dν], Dμ = ∂μ + V̄μ.
The trace refers to the gauge group indices only. Here we have ignored a possible
contribution of the zero modes.

8.2 Transformations (8.115) change the phase of the chiral effective action
(8.114). The variations can be found by using formula (5.96),

δλW [B] = −iδ�(D+(B))= iζ(0, /D2
(B), γ∗λ). (12.254)

The corresponding computations were done in Exercise 5.9. For the theory in two
dimensions which we use as an example one gets

δλW [B] = − 1

4π

∫
M
d2x tr(λF ), (12.255)

where F = εμνFμν , Fμν = [Dμ(B),Dν(B)], F+ = −F . From (12.255) one gets
the anomalous Noether condition for the current (8.116)

∂μ〈Jμ〉 + [〈Jμ〉,Bμ] = − i

4π
εμνFμν. (12.256)

A contribution of zero modes is ignored.
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8.3 The proof of the relation Tμν = gμρeρa T aν , where Tμν and T aν are defined in
(8.117), is based on definition of veilbeins (1.43). This implies that

δgαβ(x)

δeσa (y)
=−δ(n)(x − y)(gασ eaβ + gβσ eaα).

8.4 The relation (D+)† =D− for operators (8.42) follows from the fact that D+
can be written as

D+ϕ = i√2

(
∇μ − i

2
vμ

)
ēμϕ,

where ∇μ is a covariant derivative acting on vector fields. To prove this property
one has to use definition of the complex basis (8.33) and relations

ēμeν + ēνeμ = δμν , ∇ ē= i(ē · v),
which follow from the definition.

8.5 The prof of (8.118), (8.119) and the solution to the exercise follows straight-
forwardly from the definitions (1.4) and (1.10).

8.6 The scalar Laplacian L = −∇2 has a single normalized zero mode ϕ0 on a
compact closed manifold M

ϕ0 = 1√
V
, (12.257)

where V = volM and (ϕ0, ϕ0) = 1. For anomaly calculation one uses Eq. (5.71).
One has

Pr(α)n (σ )= (ϕ(α)0 , σϕ
(α)
0 ), (12.258)

where ϕ(α)0 is the zero mode of the operator Lα , see Eq. (8.75) for n = 2. From
(12.257) one finds

Pr(α)n (σ )=
1

Vα

∫ √
g d2x σ(x)e−2ασ(x) =−1

2

d

dα
lnVα, (12.259)

where Vα is the volume of the space with the metric (gα)μν . Then instead of (8.97)
the effective action takes the following form:

W [g] =W [ḡ] − 1

24π

∫
M
d2x

√
g(Rσ − (∇σ)2)+ 1

2
ln
V

V̄
. (12.260)

8.7 Consider a conformal transformation of M on a flat space M̄ with metric
ḡμν = ημν . Then the relation between the curvature R and σ takes the form,

R =−2∇2σ =−2e−2σ ∂2σ, (12.261)
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were ∂ are usual derivatives. In the new frame effective action (8.97) on a space
without boundaries takes the form

W [g] = − 1

24π

∫
M̄
d2x

(
(∂σ )2 + λe2σ ). (12.262)

Variation over σ yields the Liouville equation

∂2σ = λe−2σ . (12.263)

The equations of the Liouville gravity are obtained by varying the metric and the
field φ

R =−γ�φ, (12.264)

φ,μφ,ν − gμν 1

2
(∇φ)2 − 2

γ
(gμν�φ −∇μ∇νφ)+ μ

2γ 2
gμν = 0. (12.265)

The trace of Eqs. (12.264) is

�φ = μ

2γ
. (12.266)

After identifications (8.100) the last equation coincides with Liouville equation
(12.263). By comparing (12.266) with (12.264) one concludes that solutions to the
Liouville theory are constant curvature spaces.

8.8 Formula (8.120) follows from the definition of the spin connection w[s]
μ , see

Eqs. (1.51), (1.57).

8.9 By acting in analogy with the case of scalar fields (see (8.75), (8.76)) one
defines the family of operators

Lα[g] = L[gα] = ( /D[gα])2 = (
e
n+1

2 ασ /D[g]e− n−1
2 ασ

)2
, (12.267)

d

dα
Tr e−tLα =−2t Tr

(
σe−tLα

)
. (12.268)

Equation (12.268) coincides with (8.76). Therefore, from (5.59) and (5.70) one finds

W [ḡ] −W [g] = −(
ln det /D[ḡ] − ln det /D[g]) =−1

2

(
ζ ′(0,L[ḡ])− ζ ′(0,L[g]))

=
∫ 1

0
dα ζ

(
0, ( /D[gα])2, σ

)
. (12.269)

If one ignores contribution of zero modes the spinor action differs from the effective
action of a massless scalar field only by the sign (ζ(0,Lα,σ ) is given by (8.80) with
a reversed sign on the right hand side).

8.10 This is a straightforward calculation based on (8.19).
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12.9 Chapter 9. Vacuum Energy

9.1 For the model on a circle the single particle energies are ωk = (2π/l)k, k =
1,2, . . . . The degeneracy is dk = 2.

First method. Sum (9.94) can be easily computed

E0(ε, l)=−∂ε
(

1

2

∑
k

dk e
−εωk

)
=−∂ε 1

eεa − 1
, (12.270)

where a = 2π/l. By using formula

1

ez − 1
� 1

z
− 1

2
+ z

12

one finds

E0(ε, l)= l

2πε2
− π

6l
+O(ε2). (12.271)

To understand the physical meaning of this result consider the energy density

ρ(ε, l)=E0(ε, l)/ l = 1

2πε2
− π

6l2
+O(ε2). (12.272)

It has yet a divergent part, but as one can note the divergence does not depend on the
size of the circle l. This means that the difference of energy densities on the circles
of different sizes is a well-defined quantity. In particular, in the limit of infinite l
(12.272) represents the energy on the line

ρ0(ε)= 1

2πε2
. (12.273)

Therefore, the difference

ρsubtr(l)= lim
ε→0
(ρ(ε, l)− ρ0(ε))=− π

6l2
(12.274)

remains finite in the limit ε→ 0.
The energy and the force which appear under the change of the size of the circle

are, respectively,

E0(l)=− π
6l
, F (l)=−∂E0(l)/∂l =− π

6l2
. (12.275)

Second method. By using explicit expression (2.99) for the Wightman function
and the point-splitting method, see Sect. 2.7, one defines

ρ(x)= 〈T00(x)〉 = lim
x′→x

1

2
[∂t ∂ ′t + ∂x∂

′
x]G+(x, x′). (12.276)

One gets

〈T00(x)〉 = − π

2l2
1

sin2 π(x−x′)
l

. (12.277)
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This expression corresponds to the points with coordinates x = (t,x), x′ = (t,x′).
In the limit when x′ approaches x we find

〈T00(x)〉 = − 1

2π(x − x′)2
− π

6l2
+O(

(x − x′)2
)
. (12.278)

The first, divergent term in r.h.s. of this expression does not depend on the size l.
This term is the same as the divergence in the stress energy tensor on the line. One
can subtract from the energy density its value on the line and come to the finite result

〈T subtr
00 (x)〉 = − π

6l2
, (12.279)

which agrees with (12.274).

9.2 The spectrum of single-particle energies on the Einstein universe is deter-
mined by the spectrum of the Laplace operator � on S3. The eigen values λn
of � are λn = r−2n(n + 2) where n = 0,1,2, . . . . Each eigenvalue is degenerate
and has multiplicity dn = (n+ 1)2. The single-particle energies are determined by
equation ω2

n = λn + m2. If m = r−1 we find ωn = (n + 1)/r . The corresponding
vacuum energy can be computed by using formulas from Chap. 5. For a real field
E0 = (240r)−1. This result can be compared with the vacuum energy of a massless
field on a circle. This model can be considered as a two-dimensional analog of the
Einstein universe, R1 × S1, and its vacuum energy, as we saw was negative, see
(12.275). Thus, the Casimir force on S1 is the force of attraction, while the force on
S3 is repulsive.

9.3 The spectrum of single-particle energies of the Weyl spinors is ωn = n+ 3/2
with the degeneracy (n + 1)(n + 2). The eigenvalues for ψ and ψc coincide be-
cause the gauge fields are absent. By formula (9.1) one gets E0 = r−1(ζ(−3,3/2)−
1
4ζ(−1,3/2))=−17/(960r).

9.4 Any two anticommuting Majorana spinors, ψ and ξ , obey the identity

ψ̄ξ = ξ̄ψ, ψ̄γ μξ =−ξ̄ γ μψ. (12.280)

By using this and neglecting all surface terms one can calculate the SUSY variations
of four terms in action (9.45):

δ1 =
∫
d2x ε̄ψ∂2

μϕ,

δ2 =
∫
d2x U ′(ε̄γ μ∂μψ + ε̄ψU),

δ3 =
∫
d2x(−ε̄ψ∂2

μϕ +Uε̄γ μ∂μψ),

δ4 =
∫
d2x(−UU ′ε̄ψ).

(12.281)

Now it is obvious that δ1 + δ2 + δ3 + δ4 = 0 up to surface terms.



266 12 Solutions to Exercises

9.5 The linearized SUSY transformations with the ε+ parameter read:

δφ = iψ−ε+, δψ+ = (∂xχ −U ′(φ)χ)ε+, δψ− = ∂0χε+. (12.282)

To prove that the boundary conditions, (9.77) or (9.78) are SUSY invariant, one has
to show that the SUSY variations of the fields satisfy the same boundary conditions
as the fields themselves. This statement is obvious for the ψ+ and χ boundary con-
ditions from set A, and for the boundary conditions on χ from set B. Since ∂0χ

satisfy the same boundary conditions as χ , the boundary conditions on ψ− in both
sets are also SUSY invariant. The only remaining boundary condition is the one on
ψ+ in set B. We have (∂x +U ′(φ))δψ+ =D−D+χε+. This expression vanishes on
the boundary due to (9.75) and Dirichlet boundary condition on χ .

9.6 The anti-kink solution satisfies the Bogomolny equation (9.61) with the plus
sign (instead of minus for the kink). As a consequence, the anti-kink is invariant
under the SUSY transformations with ε+ = 0. It is easy to check then that in the
SUSY boundary conditions (9.77) and (9.78) roles of ψ+ and ψ− are interchanged,
and the sign in front of U ′ is reversed. Formula (9.88) receives an overall minus
sign. The anti-kink solution has the same mass shift (9.89) as the kink solution.

9.7 Let us introduce a bosonic background field φ which now is not supposed to
be static or to satisfy the equations of motion. One-loop quantum corrections are
governed by the part of the classical action which is quadratic in quantum fluctua-
tions χ , ψ

[S + Sbou]2 =−1

2

∫
M
d2x

[
χ(−∂2

μ +U ′2 +UU ′′)χ + ψ̄(/∂ +U ′)ψ
]

+
∫
∂M
dt nx

[
1

2
χ(∂x −U ′)χ − 1

4
ψ̄ψ

]
. (12.283)

Here, the superpotential and its derivatives depend on the background field φ. The
boundary part vanishes under the conditions (9.77) or (9.78), and the bulk part de-
fines an eigenvalue problem for certain hyperbolic operators. To make these opera-
tors elliptic, we perform a Wick rotation, ∂0 → i∂2. The spatial coordinate will be
denoted as x1. In the bosonic sector we have

Lb =−∂2
1 − ∂2

2 +U ′2 +UU ′′. (12.284)

In the fermionic sector we obtain a Dirac operator

/DE =
(
∂1 +U ′ −i∂2

i∂2 −∂1 +U ′

)
(12.285)

which is not Hermitian but is unitarily equivalent to its conjugate,

/D
†
E =

(
0 1
1 0

)
/DE

(
0 1
1 0

)
. (12.286)
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Due to this property, all complex eigenvalues of /DE come in pairs with their conju-
gates, and one can write

ln det /DE = 1

2
ln det( /D†

E
/DE). (12.287)

The operator

Lf = /D
†
E
/DE =−∂2

1 − ∂2
2 +

(
−∂1U

′ +U ′2 i∂2U
′

−i∂2U
′ ∂1U

′ +U ′2

)
(12.288)

is suitable for the heat-kernel analysis of the one-loop divergences. In the zeta-
function regularization the divergent part of the one-loop effective action reads

Wdiv =− 1

2s

(
a2(Lb)− 1

2
a2(Lf )

)
, (12.289)

where an extra 1/2 in front of a2(Lf ) appeared since we are dealing with real Ma-
jorana spinors. Another complication appears because ψ+ and ψ− satisfy different
types of boundary conditions in both sets (9.77) and (9.78), and ψ± are mixed up
in (12.288) due to the off-diagonal terms. Therefore, we have mixed boundary con-
ditions (3.45) in the fermionic sector, which cannot be reduced to a sum of Dirichlet
and Neumann problems if ∂2U �= 0. We have not calculated the heat kernel expan-
sion for mixed boundary conditions. At least for the leading coefficients this may be
done by the same methods which we used in Sect. 4.5 above (see [49, 52]). First, let
us extend S to the whole space of spinors by means of the equation NS N = S
(see (3.45) for definitions). This yields in our case

Sf =
(

0 0
0 −n1U

′
)

(12.290)

for the conditions (9.77) (when  N is a projector on ψ−), and

Sf =
(
n1U

′ 0
0 0

)
(12.291)

for (9.78) (when  N is a projector on ψ+). Obviously, boundary conditions (3.45)
are equivalent to (9.77) or (9.78) depending on the choice of  N .

We have, strictly speaking, a new type of boundary conditions for which the heat
kernel expansion is not known. Therefore, we should extend our previous results
for a2 with Dirichlet and Neumann boundary conditions to spectral problems with
mixed conditions (3.45). Let us count the boundary invariants which may appear
in a2(L) for mixed boundary conditions. The extrinsic curvature of the boundary
is zero, so there is just one quantity of the mass dimension one, and this is S ,
as for Robin boundary conditions. It does not make sense to multiply S by  D
or  N (both projectors have a unit mass dimension), so that the number of pos-
sible terms remains the same as for Robin boundary conditions. Namely, we have
only the boundary integral of tr(S ). The coefficient in front is easily recovered by
considering a particular case when the Dirichlet space shrinks to zero and compar-
ing to (4.75) and (4.89). The result, which actually unifies (4.75) and (4.72) for flat
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boundaries, flat bulk, and unit smearing function, reads

a2(L)= (4π)−n/2
[∫

M
dnx tr(E)+

∫
∂M
dn−1x tr(2S )

]
. (12.292)

In the bosonic sector we have Sb = −n1U
′ and Sb = 0 for (9.77) and (9.78) re-

spectively. The matrix valued potentials E (not to be confused with the vacuum
energy) are easily extracted from (12.284) and (12.288). By collecting everything
together, we obtain the same result for both sets of boundary conditions:

Wdiv =− 1

2s

1

4π

[∫
M
d2x(−UU ′′)−

∫
∂M
dt n1U

′
]
. (12.293)

Both bulk and boundary divergences can be removed by renormalizing the superpo-
tential

δU = 1

8πs
U ′′ (12.294)

in classical bulk and boundary actions (9.45) and (9.90). In the particular case of ϕ4

model, Eq. (9.68), this is just the mass renormalization.

12.10 Chapter 10. Open Strings and Born-Infeld Action

10.1 Since we assumed that the target space metricGμν is constant, the bulk term
is easy. It immediately yields the first line of (10.2). The boundary term gives in the
second order in ξ∫

∂M
dτ

(
(∂νAμ(X̄))ξ

ν∂τ ξ
μ + 1

2
∂τ X̄

μ · ξνξρ∂ν∂ρAμ(X̄)
)
. (12.295)

Let us remind that ∂μ denotes a partial derivative with respect to X̄μ. Consider the
first term in (12.295)∫

∂M
dτ(∂νAμ)ξ

ν∂τ ξ
μ

= 1

2

∫
∂M
dτ

(
(∂νAμ)ξ

ν∂τ ξ
μ − ξμ∂τ (∂νAμξν)

)

= 1

2

∫
∂M
dτ

(
(∂νAμ) ξ

ν∂τ ξ
μ − ξμ∂τ ξν · ∂νAμ − ξμξν∂ν∂ρAρ · ∂τ X̄μ

)

= 1

2

∫
∂M
dτ

(
Fνμ(X̄)ξ

ν∂τ ξ
μ − ξμξν∂ν∂ρAρ · ∂τ X̄μ

)
, (12.296)

where we used integration by parts (there is no boundary in the τ -direction) and the
chain rule ∂τAμ(X̄) = ∂νAμ(X̄) · ∂τ X̄ν . The first term on the last line of (12.296)
already coincides with corresponding term in (10.2). The second term combines
with the second term in (12.295) to give the remaining term in the second-order
boundary action (10.2).
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10.2 The statement of this exercise consists of two parts. First, one has to prove
that

�G(x,x′)= δ(x, x′) (12.297)

on M . The second and the third terms in (10.23) do not have singularities on M and
do not contribute to (12.297). The first term in (10.23) is the standard Green’s func-
tion on R

2 (cf. (2.68)) which generates the delta-function in (12.297). The boundary
conditions (10.6) can be checked by a straightforward computation. We have

∂σG|σ=0 = 1

(1 + �2)|z− z′|2 (−4σ ′�2 − 4�(τ − τ ′)),

∂τG|σ=0 = 1

(1 + �2)|z− z′|2 (4(τ − τ
′)+ 4�σ ′).

These equations yield

(∂σG+ �∂τG)|σ=0 = 0,

which proves the boundary conditions (10.6) in the particular case we consider in
this exercise.

10.3 First we have to check that �zGS(z, z′) = δ(z − z′) when both z and z′
are inside the manifold. Let us apply �z to the Dyson equation (10.24). The first
term on the right hand side produces the delta function. The second term produces
a contribution containing δ(z − τ ′′), which is identically zero since z is inside the
manifold, and τ ′′ is on the boundary.

The Green’s function G0 can be obtained from the Green’s function (10.23) by
simply taking � = 0,

G0(z, z
′)=− 1

4π

[
ln |z− z′|2 + ln |z− z̄′|2]. (12.298)

Let us differentiate this function with respect to σ when the second argument in on
the boundary.

∂σG0(z; τ ′′,0)=− 1

π

σ

(τ − τ ′′)2 + σ 2
. (12.299)

Now let us differentiate Eq. (10.24) with respect to σ and then put σ = 0. The
first term on the right hand side gives zero due to the boundary condition on G0.
The second term contributes because of a singularity on the Green’s function for
coinciding arguments. The integral over τ ′′ is performed by using the delta-function
which appears due to the identity

lim
σ→0

σ

(τ − τ ′′)2 + σ 2
= πδ(τ − τ ′′).

This proves boundary condition (10.25).
Perturbation series which solve (10.24) can be obtained if one takes GS =G0 as

a zeroth approximation and then iterates (10.24):
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GS(z, z
′)

=G0(z, z
′)+

∫
dτ1G0(z; τ1,0)S(τ1)G0(τ1,0; z′)

+
∫
dτ1

∫
dτ2G0(z; τ1,0)S(τ1)G0(τ1,0; τ2,0)S(τ2)G0(τ2,0; z′)+ · · · .

(12.300)

10.4 We give the proof for the case when � = 0 and leave its extension to the
case � �= 0 to the reader. The correction to the action in the linear order in S can
be computed as a variation of the determinant

W1(S )= 1

2
δS ln det�= 1

2
TrGδS�=−1

2
Tr�δSG (12.301)

where G=G0 and

δSG(z, z
′)=

∫
dτ1G0(z; τ1,0)S (τ1)G0(τ1,0; z′)

see Eq. (12.300). These relations give (10.26).

10.5 Since we restricted ourselves to a flat geometry, we expect that the diver-
gence of the effective action is proportional to a surface integral of tr(b2(�)S ).
Since an overall coefficient plays no role we need to reproduce in the divergent part
the structure (1 + �2)−1.

The divergent term we are looking for does not contain derivatives of � and we
can impose the condition � = const, as in (10.23). Since we need the terms which
are linear in S we can use a perturbation expansion in S of Exercise 10.4.

Note that we keep τ ′ − τ fixed and use this difference as a regularization param-
eter (by assuming that τ > τ ′). The singular part of the propagator is

G(τ,0; τ ′,0)=− 1

2π
ln |τ − τ ′|2[1 + �2]−1, (12.302)

see (10.23). This yields the divergent part of the effective action to the linear order
in S ,

W1(S )div ∝ ln |τ − τ ′|2
∫
∂M
dτ tr(S (τ )[1 + �2]−1), (12.303)

which correctly reproduces the functional dependence of a2(L) on S and �. A pre-
cise numerical coefficient can be restored by comparing this result to the case � = 0
(cf. (4.75), (4.89)).

10.6 Suppressing the target space vector indices we write

√
det(1 + iF )= exp

1

2
tr ln(1 + iF )

= exp
1

4
tr ln[(1 + iF )(1 − iF )] = exp

1

4
tr ln(1 + F 2),
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where we used that Fμν is antisymmetric, so that only even powers F contribute to
the trace, and, consequently, reversing the sign in front of F does not change the
result. Next,

δIBI =
∫
dNX

√
det(1 + iF )1

4
tr

[
δF 2

1 + F 2

]
.

Now it is obvious that the field equations following from the Born-Infeld action are
equivalent to conditions (10.16) where βAμ is given by (10.15).

12.11 Chapter 11. Noncommutative Geometry and Field Theory

11.1 It is enough to demonstrate the associativity on plane waves. By using (11.7),
we have

(eikx � eipx) � eiqx = ei(k+p+q)xe− i
2 (k∧p+(k+p)∧q),

eikx � (eipx � eiqx)= ei(k+p+q)x e− i
2 (k∧(p+q)+p∧q).

The two lines above coincide. To prove (11.5), one has to integrate by parts and use
the property θμν∂μ∂ν = 0.

11.2 To the order we are interested in, the heat trace reads

K(P, t)= Tr(e−tP )

� Tr

(
−λt

6
(R(φ � φ)+L(φ � φ)+L(φ)R(φ))e−t�

)
e−m2t

=−λt
6
e−m2t (T (1, φ � φ)+ T (φ � φ,1)+ T (φ,φ)).

By using (11.22) and (11.24) one transforms the last line in the equation above to

− λ

12π

∫
d2x φ � φe−m2t − λt(det θ)−1

6(2π)2
e−m2t

[∫
d2x φ

]2

.

The second non-local term in this formula is O(t), and, therefore, it does not gen-
erate any divergence. The first term is O(t0) and contributes to a divergence. Due
to (11.5), this divergence can be removed by a mass renormalization. It is easy to
see that the divergent part is 2/3 of that in the commutative ϕ4 in two dimensions.

11.3 The commutator [L(f ), iγ aL(eμa )∂μ] contains a first-order unbounded part
−iγ aL(eμa � f )∂μ in contradiction to the axiom (c) of spectral triples. Calculations
of the heat kernel expansion for such operators are very involved [72, 245]. This
also explains some difficulties in construction of gravity theories on Moyal spaces.
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Christoffel, 5
Levi-Civita, 15
spin, 16, 164

Coulomb’s law, 141
Counting function, 101, 179
Covariant derivative, 13, 14
Creation operator, 34

D
D-brane, 199
de Sitter space, 9, 10
Debye mass, 155
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Determinant
of Dirac operator, 104
of second order operator, 102
Van-Vleck–Morette, 70
zeta-function regularized, 103

DeWitt ansatz, 70
Dirac conjugation, 17
Dirac equation, 18
Dirac operator, 213
Duhamel formula, 105, 110, 215
Dyson equation, 203

E
Effective action, 127, 131, 139, 145
Einstein-Hilbert action, 7, 21
Entropy, 129
Eta-function, 100
Euler number, 9, 24
Euler-MacLourain formula, 250
Extrinsic curvature, 22, 27, 223

F
Faddeev-Popov ghosts, 145
Faddeev-Popov quantization, 36
Feynman diagrams, 142
Feynman propagator, 41, 49
Fiber bundle, 12
Field operator, 34
Fine-structure constant, 142
Fock space, 33, 35
Free energy, 129
Functional integral, 127
Furry theorem, 143

G
Gauge fixing, 36
Gauge fixing conditions, 145
Gauss-Codazzi equation, 23, 25
Gaussian coordinates, 22
Gelfand-Naimark theorem, 213
Geodesic distance, 70
Geodesic equation, 8, 70
Grassmann variable, 145
Gravitational instantons, 150
Green’s function, 136, 203, 235, 269

advanced, 41, 50
general, 41
retarded, 41, 50

Ground state, 35

H
Hadamard function, 41
Hall conductivity, 174
Hall effect, 173

Hamiltonian, 38
Heat

equation, 67
kernel, 67
kernel asymptotics, 68
kernel coefficients, 68
operator, 67
trace, 68

Heat semi-group, 105
Higgs mechanism, 154
High temperature limit, 154
High-energy cutoff, 140
Hodge dual, 7
Hodge-de Rham decomposition, 65
Hyperbolic space, 29

I
Index of an operator, 107
Index theorem, 108
Index theory, 107
Induced gravity, 217
Intertwining relation, 82
Isospectral operators, 82
Israel condition, 28

J
Jacobi identity, 6

K
Killing equation, 20

conformal, 21
Killing spinor, 21, 225, 238
Killing vector, 20, 25, 28, 38, 159

conformal, 21, 159
Kink solution, 185, 210

L
Leading symbol

of differential operator, 55
Levi-Civita tensor, 6, 8
Lichnerowicz formula, 54, 65
Liouville gravity, 171
Lorentz gauge, 36, 144

M
Majorana spinor, 17, 223
Manifold

Lorentzian, 4
maximally symmetric, 20
Riemannian, 4
stationary, 20
target, 197

Matching conditions, 85
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Matsubara frequencies, 131, 133
Maxwell tensor, 19
Maxwell theory, 32, 35, 48, 216
Method of images, 80
Minkowski space-time, 4
Moyal

plane, 206, 207
product, 206, 208, 214

Multiple reflection expansion, 204

N
Noether

charge, 157, 187
current, 31, 158
theorem, 31, 157

Noncommutative torus, 216
Nonlinear spectral problem, 133

O
One-loop diagrams, 142
Operator

adjoint, 56, 107
bounded, 62, 208, 213
chiral, 109
compact, 62
differential of order p, 54
elliptic, 55
non-minimal, 53
of Dirac type, 54
of Laplace type, 53
positive-definite, 98
pseudodifferential, 55
scalar Laplace, 54
Schatten class, 63
selfadjoint, 56
semi-definite, 99
singular value of, 63
spin 1/2 Laplace, 54
symmetric, 56
trace class, 63
vector Laplace, 54

P
Parallel transport, 5
Partition function, 129
Pauli matrices, 223
Pauli-Jordan function, 41, 50
Photon-photon scattering, 143
Physical modes, 36
Planck constant, 143
Plane wave, 37
Point-splitting, 50, 128
Poisson summation formula, 69
Polyakov nonlocal action, 171

Polyakov string action, 197
Pseudo-trace, 117, 152

Q
Quantization condition, 33, 48
Quantum average, 128
Quantum chromodynamics, 146
Quantum correction, 141
Quantum electrodynamics, 141
Quantum Hall effect, 205

R
Ray-Singer formula, 102, 132
Reflectionless potential, 182
Regge-Wheeler coordinate, 11
Regularization

proper-time cutoff, 106, 137
Relativistic inner product, 29
Renormalization, 138
Ricci tensor, 6, 144
Riemann normal coordinates, 70, 86
Riemann tensor, 6
Riesz means, 101
Running coupling, 144

S
Scalar curvature, 6
Scalar field, 31
Schwarzschild metric, 10, 27
Single-particle energy, 39, 177
Single-particle mode, 34
Sommerfeld formula, 89, 242
Space

Hilbert, 55
L2, 54
Schwartz, 206
Sobolev, 54

Space-time
stationary, 159

Spectral
action, 214
asymmetry, 100
density, 100, 182
function, 68, 95, 231
triple, 213, 214

Spherical cap, 27
Spin bundle, 15
Spinor field, 31
Stationary background, 38
Statistics

Bose, 33
Fermi, 33

Stefan-Boltzmann law, 151
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Stress-energy tensor, 8, 18, 27, 38, 42, 137,
232

String theory, 47, 197
Supercurrent, 187
Superpotential, 186
Supersymmetry, 186

T
Tensor, 4
Thermal averages, 136
Thermal energy, 129
Topological charge, 189
Torsion, 5

U
UV/IR mixing, 216

V
Vacuum energy, 40, 95, 136, 177
Vacuum vector, 35
Vielbein, 14, 160, 163
Virasoro algebra, 172

W
Weak energy condition, 39
Weitzenböck formula, 65
Wess-Zumino conditions, 162
Weyl formula, 101
Wick rotation, 130, 136
Wightman function, 41, 49, 152, 234, 253
World-sheet, 197
Wronskian, 45

Y
Yang-Mills theory, 19, 32, 35, 49

Z
Zero modes, 99, 107
Zeta-function, 134

Hurwitz, 96
of Dirac operator, 103
of second order operator, 98
Riemann, 96
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