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Supervisor’s Foreword

The two outstanding physical theories of the twentieth century are the theory of
general relativity and the theory of quantum mechanics. Both of these have
transformed our understanding of nature. General relativity is associated with large
scales (the cosmos) and quantum mechanics is considered valid on small scales (the
atom). They have led to remarkable success such as the understanding of binary
pulsar dynamics or the detection of gravitational waves for relativity and the cal-
culation of atomic orbits and the discovery of nonlocality for quantum mechanics.
These theories are, however, more than merely approximations at different scales
and as such do not offer an absolute length scale. In fact, they are notoriously
difficult to combine without inevitable paradoxes. The question arises, whether
quantum mechanics and general relativity could play a role on equal length scales
simultaneously and which theory would describe this. Black holes are often por-
trayed as combining both sides, and thus as a benchmark for future theories of
quantum gravity.

Black holes are a consequence of Einstein’s theory of general relativity from
1915. Within months, Schwarzschild found that this theory would predict a grav-
itational field of a point mass, a black hole. The gravitational field in the vicinity of
this point mass would be strong enough to capture all particles, even photons, i.e.
light. The range over which the particles are captured is limited by the event
horizon, which separates the—possibly—escaping fields from the fields falling into
the black hole. Thus, the event horizon signifies the size of the black hole. Outside,
the object would not emit light and be ‘black’.

This was how black holes were viewed until 1974, when Stephen Hawking
considered quantum fields around the event horizon. In a groundbreaking paper,
Hawking showed that quantum effects would lead to the emission of particles from
black holes, ‘Hawking radiation’. This effect would be fuelled by the mass of the
black hole and even intensify as the black hole mass reduces, leading to a final
explosion of particles in the last phase of ‘black hole evaporation’. At last, an object
was found that leads to profound physical effects if the two theories are combined.
Until now, Hawking’s prediction has not been experimentally verified. The uni-
verse is a large laboratory, but we cannot isolate a black hole to perform
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measurements. In fact, it turns out that the cosmic microwave background is far
stronger than Hawking radiation. Although the radiation exists and can be detected
efficiently, the background radiation is too strong.

In physics, the observable effects are described by equations. Each equation,
however, can describe different physical systems, and so it is possible to transfer the
same physics from one system to another. In 1981, Bill Unruh discovered that fluid
flow of water can simulate an event horizon and, in consequence, must emit
‘analogue Hawking radiation’ in the form of sound waves. Although this particular
system is impractical too, it demonstrated in principle that Hawking radiation can
be detected in a terrestrial laboratory without background noise. Since, various
methods have been proposed for the production of analogue Hawking radiation in a
variety of systems, such as Bose—Einstein condensates, polariton condensates or
nonlinear optics. After all, the detection of the elusive Hawking radiation seems
within reach.

A realisation in optics leads to the highest expected particle emission, the highest
effective temperature and no thermal background. Maxime’s thesis is devoted to
this elegant variant of analogue Hawking radiation. The thesis is presented in a form
accessible to interested undergraduate and postgraduate students. Maxime is a
passionate science communicator and gives a full account of the topic in an
introductory and clear way. Starting with the basis of special relativity, the thesis
introduces the relevant concepts of general relativity, focusing on wave motion at
the horizon. In particular, he introduces the thermodynamic physics of black holes
and derives Hawking’s seminal result. The thesis then systematically introduces a
field-theoretical framework for optical analogues, including the kinematics gov-
erning the fields, for light-matter interaction in a dispersive medium. This model
allows for an analytical calculation of the all-important conversion of vacuum
fluctuations into Hawking radiation. For the first time, coupling to non-optical
branches and all kinematic configurations are included in the description. Based on
this, emission spectra and intensities are calculated which give unprecedented
insight into the emission from a highly dispersive system, both from a theoretical as
well as experimental point of view. Maxime also introduces the relevant concepts
for fibre-optical analogues, such as soliton formation and propagation, as an
experimental means to produce optical horizons.

In an experimental part, the thesis develops a clear and systematic way to
experimentally approach the problem. Based on the formalism developed in the
thesis, Maxime analyses the possibility to obtain an experimental signal of
detectable strength, including aspects of spectral resolution and quantum efficiency.
He then demonstrates the construction of an experimental setup and measurements
of unprecedented sensitivity in the search for stimulation of the Hawking effect.

Major parts of the thesis were presented at key international conferences
receiving great interest. The thesis itself was refereed by the ‘founding father’ of the
field, Prof. William Unruh, Vancouver. Optical Hawking radiation has become
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more tangible due to Maxime’s work and it is exciting times to possibly witness the
first detection of optical Hawking radiation, unfortunately too late for Stephen
Hawking. Yet, it is more than satisfying to see the enthusiasm of a new generation
of future academics.

We gratefully acknowledge the support by the EPSRC for this research.

St. Andrews, UK Dr. Friedrich Konig
March 2018



Abstract

Quantum vacuum fluctuations on time-dependant-curved spacetimes cause the
emission of particles. This effect results from the mixing of positive and negative
frequency waves, and its most famous instance is Hawking radiation from black
holes. Unfortunately, the latter cannot be observed in astrophysics, because of its
ultra-low temperature. This thesis considers the problem of recreating the physics of
wave motion on curved spacetimes in the laboratory so as to enable the study the
scattering of waves at the event horizon. Laboratory analogue gravity systems
typically are inhomogeneous, dispersive media in which the velocity of waves may
be controlled to mimic the effects of spacetime curvature. For example, this can be
realised in optics. Here, I present an analytical description of spontaneous emission
in optical analogues. I consider a moving refractive index perturbation in an optical
medium, which exhibits optical event horizons. Based on the field theory in curved
spacetime, I formulate an analytical method to calculate the scattering matrix that
completely describes mode coupling leading to the emission of photon pairs in
various kinematic configurations. I apply the method in a case study, in which I
consider a moving refractive index step in bulk-fused silica. I calculate the emission
spectrum, which is a key observable, in the moving frame as well as in the laboratory
frame. I find that emission from horizons is characterized by an increased photon
flux and a signature spectral shape. In particular, the spectra are dominated by a
negative frequency mode, which is the partner in any Hawking-type emission. This
is interesting as it has never been observed either theoretically or experimentally
before. An experiment aimed at stimulating the emission into negative and positive
frequency modes is assembled. The classical effect of mode conversion in this
optical scheme is clearly shown to be a feature of horizon physics. These theoretical
and experimental methods and findings pave the way to the observation of particles
emitted from the event horizon by the Hawking effect in dispersive systems.

ix
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Chapter 1 ®)
Introduction Check for

Light waves in media can be made to propagate on an effectively curved spacetime.
Such optical spacetimes are curved Lorentzian manifolds which enable the study of
some features of gravity in the laboratory.

Importantly, in the experiment, the effective curvature of the spacetime is not
created by gravity itself!: this is done by modifying the refractive index experienced
by light upon propagation in the medium, I will explain how later in this chapter.
As a result, the dynamics of optical spacetimes are not determined by the Einstein
equations [1, 2] but are implicit in Maxwell’s equations [3-5]. The existence of
these curved spacetimes without gravity is phenomenal, for they enable theoretical
and experimental investigations of uttermost fundamental importance. Their study
requires us to think carefully about the distinction between kinematics and dynamics
in General Relativity. In turn, this opens a new perspective on the connections and
differences between Lorentzian geometry, Einstein’s equivalence principle, and full
General Relativity.

Optical spacetimes are one example of the rich family of laboratory-based ana-
logue gravity systems, in which waves are made to propagate on effectively curved
spacetimes [6]—sibling systems range from fluids to superconducting circuits.
Thanks to these laboratory analogues, we may access generic features of gravity
(that one would usually think of as intrinsically aspects of gravity) which are both
classical and semiclassical in nature: typically (but not exhaustively), it is possible to
study event horizons, and the spontaneous emission of quanta at those horizons by
the Hawking effect [7]. In this Thesis, I use the optical scheme to investigate generic
features of curved spacetimes and Quantum Field Theory in curved spacetimes.

In this introductory chapter, I will briefly sketch the history of the science of
analogue gravity systems. I will review the main physical arguments that motivate
and support this science, and highlight some of its most fascinating and surprising

! Note that the real spacetime structure in any Earth-based laboratory is approximately Minkowskian.
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2 1 Introduction

peculiarities. This will arm the reader with the fundamental ideas of the analogue
gravity research programme, and of the work done in this Thesis. Let us begin with
the historical motivation behind the study of analogue gravity: understanding how
vacuum fluctuations in the vicinity of black holes lead to the spontaneous emission
of quanta by the Hawking effect.

The Hawking effect as the mixing of positive and negative frequency waves

Black holes are believed to result from the gravitational collapse of stars in on them-
selves [8]. These bodies are so compact that the escape velocity from their surface
(this boundary is called the event horizon [9]) is greater than the speed of light, hence
their name. Nothing, even light, can come out of a black hole. Although direct obser-
vation of black holes is possible via their influence on the curvature of spacetime—
they create gravitational waves when they orbit around a point, and emit energy in the
form of gravitational waves upon merging, as was detected by the LIGO-Virgo Col-
laboration in 2016 [10]—the region of spacetime behind the event horizon remains
hidden from us. The event horizon appears to be a one-way door: beyond it, motion
can only be directed toward the centre of the black hole, where a singularity lies [8].
This implies that black holes cannot emit heat. And yet, paradoxically, black holes
seem to be in thermal equilibrium with a thermal bath [11]. In other words, they have
a temperature [12]. This is not allowed by the classical theories of physics, General
Relativity and Thermodynamics, and Hawking found that only a quantum treatment
of the fields near the black hole could explain this effect. He found that field modes
of positive and negative frequency would mix when propagating through the region
of curved spacetime that surrounds the hole [13]. This mixing results in spontaneous
emission of particles (photons, electrons and neutrinos) that propagate away from the
horizon out to infinity, where an observer would thus detect a thermal flux coming
from the hole—Hawking radiation.

Many of the above statements are, to say the least, surprising. The fact that black
holes emit particles by the Hawking effect is surprising. That this results from the
mixing of waves with positive and negative frequency is also surprising. Yet, although
the former surprise was very much of a scientific revolution (and we shall get back
to this shortly), it is, after all, only one more of those “black hole surprises”. The
second surprise, is perhaps a bit more questioning on an intuitive level: it implies that
waves, including light waves, may oscillate with positive and negative frequencies—
but most people never encounter such negative frequency waves. Nevertheless, this
is actually not a novelty.

Indeed, negative frequency waves are present in all field theories, but they are
usually ignored because they are suggestive of redundancies in terms of information
content. And yet, all fields have modes of oscillation of, both, positive and negative
frequency. This is best illustrated when a field A is expressed by Fourier transform,

1 +00 - )
Az, t) = 2—/ dwA(z, w)e ™. (1.1)

™ 00
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Here, the Fourier transform of the field A (z, w) has been integrated over both positive
and negative frequencies w. For a real field, the complex conjugate of the field, A*,
equals the field and hence A(—w) = A*(w). Accordingly, the negative component is
entirely dependent on the positive component.

In fact, the apparent redundancy stated above is not always true: there exist phys-
ically realisable conditions under which the positive and negative frequency compo-
nents of a field may be observed independently. Actually, they can even be made to
mix. For example, this mixing has been observed in nonlinear optics, in an experi-
ment in which energy was transferred from a wave with positive frequency to a wave
with negative frequency [14]. As mentioned in the short introduction to the Hawking
effect above, the motion of waves in the vicinity of a black hole is another example of
these conditions under which positive and negative frequencies mix—which results
in the emission of quanta.” If the latter effect is quantum in nature, the mixing of
positive and negative frequency waves per se, and their very existence, has actually
nothing to do with quantum physics at all.®> As stated above, these exist in all field
theories.

Field theory—waves of positive and negative frequency

I will briefly elaborate upon the existence of negative frequency waves in classical
Field Theory before delving into the abstract considerations of Quantum Field Theory
on curved spacetimes. To this end, I will introduce the topic of field theory via the
study of a one-dimensional string, and demonstrate how negative frequencies thus
arise.

At first, a string can be considered as a many-body system, a collection of point
masses connected together by “springs”. A continuous system with a uniform density
and tension emerges when the number of point masses goes to infinity, and the
distances that separate them go to zero. We begin with a collection of N points
of mass m coupled together with a spring constant k£ such that they form a string
of overall length L. Consider a string closed on itself in a circle, as a ring. Then
the oscillators can be assumed to be moving about their equilibrium positions in a
periodic pattern. A ring of radius considerably greater than the equilibrium separation
can be treated as a linear system with periodic boundary conditions. The oscillators
are constrained to vibrate along the circumference of the ring. The first and last
oscillators are identical, so that if the ith oscillator is displaced from equilibrium by
&;, the periodic boundary conditions are

b0 = n. .
ddy _ diy (12)
dt — dt

%It is in fact in the process of articulating the latter paradigm that the former discovery was made.

3In the Hawking effect, quantum vacuum fluctuations in these different modes are what causes the
emission, see Chap. 3.
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The kinetic and potential energy (KE and PE) of the system are
(1.3)

In the continuum limit, the distance that separates the point masses — 0, N — oo,
the length becomes L = N/ and the, fixed, mass per unit length and string tension are
w=m/l and T = ki, respectively. Then, the displacement and energy of the string
can be defined in terms of a continuous field gz_S,- (1) = qz_S(z,», 1) —> q_S(z, 1), where

PP S o Ry Y L |

i=0
_ — 2 - 2
T e F— L (F . (04, 1)
PE =— B — -T .
2k1§l< I 2 /0 d=| =5,

The field function ¢(z, 1) represents the displacement of an infinitesimal mass from
its equilibrium position at z. The Lagrangian density of this continuous string is given

by
feten— [Fa L (220 1, (s6e0) s
/0 Sat _/0 N2\ o 2 oz ' '

We introduce the wave velocity v = % and, for simplicity, we substitute ¢ —

VT ¢ = ¢. Then,
YN AN
E‘E(F (5) ‘(a?) ) (1.0

Calling upon the principle of least action allows to derive the equations of motion
for the string from the Lagrangian density. Since the boundary conditions (1.2) are
periodic, the boundary terms are zero. Moreover, the variation d¢ at the initial and
final time are zero. The famous Euler-Lagrange equation of motion for a continuous
field is

(1.4)

1 0% 0
——d) - —(b =0 (1.7)
v ot 072

So far, we have shown how a quantity referred to as a continuous field emerges
as the natural way to describe a system with infinitely many particles. It is the
“displacement” of the dynamical system whereby % is a generalized velocity and
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the Euler-Lagrange equation (1.7) is a wave equation. The solutions of the wave
equation which satisfy the periodic boundary conditions are called the normal modes
of the string. They are

& ~ eii(knz—wnl)’ (1.8)
where periodicity requires k, = 2Lﬂ, n=0, £1, £2, ..., with, respectively, k,, and

wy, the wavenumber and frequency of the wave. Inserting (1.8) in (1.7) gives the wave
equation
w? = vk (1.9)

We have arrived at a wave equation with both positive and negative frequency solu-
tions! Let us write the states with positive frequency as

1
bulz, 1) = ﬁe’(k"z‘”'l’), (1.10)

in which case the negative frequency states thus have a time factor ¢’“»’. Since the
wavenumber k,, is either positive or negative, it is convenient to express the negative
frequency states as the complex conjugate of the states (1.10), ¢ (z, 7). Thus the
positive and negative frequency states are related by complex conjugation.

We could conclude this short study here, but it is actually interesting to ask our-
selves the question of the normalisation of states of positive and negative frequency.
We use the canonical momentum

ron=—2F_ 19 (1.11)

a(%) v? Ot

and Noether’s theorem” to write the normalisation condition
i N i 0d} L 0P
E/dz (wid2 = dim) = 5 2[ ( Loy — 67 (1.12)

so the states are not orthogonal in the usual sense. And yet, it can be shown that each
normal mode behaves as an independent simple harmonic oscillator. Wherefrom
quantisation of the field consists in quantising those oscillators.

Later in this dissertation, we shall show how scalar products similar to (1.12) can
be used to define a pseudo norm for modes of the field—whence positive frequency
states are ascribed a positive norm, and negative frequency states are ascribed a
negative norm. In Field Theory, and in particular in Quantum Field Theory, it is
usual to refer to modes of the field by their pseudo norm, that is, one speaks of
positive- and negative norm modes. In Optics, and in particular in Quantum Optics,
the concept of pseudo-norm is not very well known, and practitioners would label
the modes according to their frequency. The norm nomenclature is more general than

4See 3.2.2 for details.
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the frequency one—for the latter may depend on the frame of reference, whilst the
former is frame invariant. Thus, it would be generally more correct to label modes
by their norm. However, in this dissertation, both the QFT and QO communities are
addressed and, in an effort to use their vernacular, we will use both nomenclatures
as follows: we will gradually move from considerations of the frequency of a mode
to that of its norm when frame transformations come into play, and explicitly show
how the norm is defined in terms of the frequency (as measured in a given frame).

In arriving at (1.8), we have not used any tools of Quantum Physics. Instead,
we have merely considered a very-many-body system in the continuous limit—a
field—and shown how the wave equation of this system accepted mode solutions
of positive and negative frequency. Hence we have shown that the classical, real’
field oscillates with both positive and negative frequencies. This is also true for other
fields, such as the electromagnetic field. In this dissertation, we will use the second
quantisation scheme to study various field theories. At various stages in what will
follow, the fundamentals of field theory outlined here will be called upon to describe
wave motion in General Relativity, in fluid flows, and in condensed matter systems
such as optical fibres and bulk silica. We will see how fields in these media have
positive and negative frequency modes of oscillation, and how these can mix, which
results in spontaneous emission of quanta of this field from the vacuum (the state of
lowest energy of the field).® The most famous instance of this effect is undoubtedly
Hawking radiation—which brings us back to our earlier statement that “black holes
emit a thermal flux”.

Hawking radiation, the questions it raises, and the impossibility to observe it

Hawking’s finding poses many questions, such as the exact origin of the flux, the
fate of black holes if this outflowing energy comes at the expense of their mass, and
the information content of the flux. Moreover, the very validity of the assumptions
upon which Hawking’s calculation is based are under question. Indeed, the effect of
the mass of a black hole on the surrounding spacetime is a stretch: to an observer
away from the hole, light emitted from an infalling object appears more and more
redshifted as the object approaches the horizon. Actually, the redshift of light emitted
from the horizon is infinite [8]. If waves from which Hawking radiation originates
were to have propagated from infinity in the past through the region of the collapse
and out to infinity, where the thermal flux can be observed, they will have experienced
an exponential redshift from the region near the horizon to infinity. In other words,
they would have had to have absurdly large frequencies in the past to be a finite-
frequency, detectable, flux at late times. This is called the Trans-Planckian Problem,
because it hints at some unknown physics that is at play when the wavelength of
light is shorter than the Planck scale. Finally, the temperature of Hawking radiation
is inversely proportional to the mass of the black hole from which it seems to escape.

5See Appendix A for further comments on this.

6Such an equation as (1.12) can be used as the basis for a quantum mechanics capable of describing
particle production and annihilation fully: the second quantised form of the theory. In this scheme,
negative norm modes are associated with the creation operator of the field, whilst their positive
norm counterparts are associated with the annihilation operator of the field.
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A very light black hole, of about 3 times the mass of the Sun, would thus radiate with
a temperature 8 orders of magnitude lower than the cosmic microwave background,
the Universe’s own glow. Hawking radiation cannot be observed from astrophysical
black holes.

Laboratory-based analogues of the event horizon

Of course, if the story had ended with this conclusion, the present dissertation would
not have been written, some 43 years after Hawking’s prediction. This is where the
science of analogue gravity comes into play. In order to present the arguments that
form the foundations of the work presented in this Thesis, let us discuss the analogy
between the motion of waves on curved backgrounds and their propagation in a
flowing fluid.

The prediction that a thermal flux propagates away from the vicinity of black holes
was a scientific revolution—but to a rather small community of people. Indeed, in the
early 1970s, the very existence of black holes was still not unequivocally established,
and their physics was largely unknown, even to physicists. In a seminar that he gave at
Oxford, Bill Unruh then explained that one could draw a kinematic analogy between
the flow of ariver toward a waterfall and the effect of black holes on spacetime. Picture
a river that flows toward a waterfall: the velocity flow of the river will increase as the
waterfall approaches. It may be that this increase is such that at a certain point the flow
velocity equals the speed of sound, and beyond this point the flow velocity would be
supersonic (and still increasing, until the water reaches the bottom of the fall). Away
from the fall, because the flow velocity is subsonic, sound waves may propagate up-
or downstream. Although, the closer to the fall they are emitted and the more they
redshift (they shift to lower and lower frequency). A sound wave emitted exactly at
the point at which the flow velocity of the river equals the speed of sound would not
be capable of propagating upstream, against the flow, without experiencing an infinite
redshift. Sound waves emitted beyond this point, down the stream, would be washed
out toward the bottom of the fall, doomed. The point at which the flow velocity
of the river equals the speed of sound is the sonic analogue to the event horizon:
to sound waves, it is the point of non-return. It separates a region of sub- from a
region of super-sonic flow of the fluid in which sound waves propagates. In analogy,
the event horizon in astrophysics separates two distinct regions of spacetime: the
outside region in which light waves may propagate toward or away from the central
singularity, and the inside region in which wave motion is only possible toward the
central singularity.

In 1981, Unruh realised that this analogy is not a mere metaphor—which renders
the kinematics of waves on curved spacetimes more amenable to the intuition of
physicists and a lay audience alike—but actually is genuine: the wave equation for
certain fluids is indeed identical to the equation describing the motion of waves at
the horizon, the metric of curved spacetime [6]. Ergo, some manifestations of black
hole physics, namely the motion of waves in their vicinity, may be reproduced in the
laboratory! Unruh called fluid black hole analogues “dumb holes” and showed that,
in total analogy with their astrophysical counterparts, they should emit a thermal flux:
he calculated that quantum hydrodynamical fluctuations in a moving fluid (described
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by a curved Lorentzian manifold) would convert into pairs of phonons at the sonic
horizon—thus reviving the hopes to shed light on the Hawking emission mechanism.

Many analogue systems have been proposed and studied over the past 36 years:
liquid helium [15], water waves [16, 17], sound waves in Bose-Einstein condensates
[18], slow light [19, 20], electromagnetic waves in waveguides [21] or superconduct-
ing circuits [22] to name a few. The main focus of this Thesis is light in dispersive
media.

Inspired by Unruh’s finding [6] and the waveguide-based proposal of Unruh
and Schiizhold [21], a collaboration of the groups of Leonhardt and Konig at St
Andrews demonstrated the feasibility of creating analogue event horizons with a
moving refractive index profile in dispersive optical media in 2008 [23]. An optical
event horizon can be created by changing the speed of light (i.e., the refractive index
of the medium of propagation) with light itself. For example, a short and intense
laser pulse locally raises the refractive index of a medium by the Kerr effect: under
the pulse, waves will be slowed. Hence, the profile of refractive index created by
the propagating pulse effectively sets the curvature of the spacetime on which waves
propagate. If light under the pulse is slowed below the pulse speed, the pulse moves
superluminally, and two horizons are formed at the boundaries between sub- and
superluminal propagation: light cannot enter the back of the pulse or is captured
falling into the front of the pulse. In analogy with the motion of spacetime in the
River Model of the black hole, the back and the front of the pulse thus act as a white
hole or a black hole event horizon, respectively.” The authors calculated that light
emitted at the horizon would be in a thermal state over a narrow band of frequencies.

As in the case of emission at the astrophysical black hole horizon, spontaneous
emission from the vacuum in analogue systems results from the mixing of field
modes of positive and negative frequency at the dumb hole and optical horizons. The
motion of waves in laboratory systems is influenced by dispersion, which limits the
extent to which waves in the medium may shift in frequency. Dispersion appears to be
the analogue to transplanckian physics, with the advantage that the phenomenology
is perfectly understood. Thus, the study of analogue horizons may be helpful in
understanding the effect of Hawking radiation.

The observation of the generation of negative frequency waves at the horizon
in water waves experiments by Rousseaux and Leonhardt in 2008 [16], and the
confirmation of this effect (and of its thermal nature) by Weinfurtner and Unruh in
2011 [17], were seminal contributions to the field of analogue horizons. They clearly
established that the classical effect of mixing of negative- and positive-frequency
modes at the horizon is genuine, and demonstrated the need for ultra-low temperature
fluid analogues to detect Hawking radiation. In 2016, Steinhauer announced having
observed the entanglement of the emission of sonic waves on either sides of a black-
hole horizon in a Bose-Einstein condensate (BEC) analogue [24]. Simultaneously,
Rousseaux and Parentani reported on the measurement of the two-point correlation
of the randomly fluctuating free surface (i.e., noise) created by the scattering of long-
wavelength waves at a black-hole horizon in a water tank [25]. The findings are very

"The white hole is the time-reversed black-hole-solution to the Einstein’s equations, see 2.1.2.
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interesting [26] and the claims put forth by the authors have to be scrutinised. As for
the water waves experiment [27], the observed correlations do not arise from quantum
vacuum emission at the horizon: itis noise, a classical state, that scatters at the horizon
and not quantum hydrodynamical fluctuations. Thus the observed signal results from
stimulated emission at the horizon and not spontaneous emission—which is the
effect ultimately sought. In the case of the BEC experiment [24], the temperature
of emission at the horizon could not be properly estimated either theoretically or
experimentally because the flow velocity gradient was not directly measured [28,
29]. In those experiments, the detection of individual quanta was not possible, which
renders further independent measurements in different analogue systems necessary.
For example, the quantum state at the output would be best characterised by a robust
measurement of entanglement such as a Bell-type measurement [30]. This would
allow to undoubtedly establish that spontaneous pair emission has been observed.

In that regard, optical analogues are an attractive platform that can contribute
significantly to the articulation of the paradigms of analogue gravity physics and
spontaneous emission from the vacuum. There exist numerous well developed the-
oretical frameworks for a fully quantum description of the interaction of light with
matter in a dispersive medium, and the techniques developed at the crepuscule of the
20th century and dawn of the 21st century allow for precise control of the experi-
mental parameters. In particular, the science of propagation of intense and ultrashort
pulses in optical fibres and the technology of single photon counting have reached a
level of refinement that enables single quantum detection at the output of an optical
fibre. Optical horizons are the only analogue system that will allow for the unam-
biguous detection of the pair of positive- and negative frequency particles emitted at
the horizon—a signature of the Hawking effect.

Content and structure of the dissertation

This dissertation presents the theoretical and experimental study of the scattering
of light on transient inhomogeneities in highly dispersive media. Spontaneous, and
stimulated, emission from the vacuum in various systems, and the kinematics and
mathematical arguments that support the analogy between laboratory systems and
astrophysical black holes are the central problem around which the various chapters
are organised.

In Chap. 2, we begin with an attempt to measure the time and position at which a
moving clock ticks. In a first section, we introduce in this way the concepts of events
and relativity of measurements of events, which are fundamental concepts in the
theories of Special and General Relativity. The transition from Special to General
Relativity is then achieved in an elementary fashion by studying the curvature of
spacetime. We study conditions of extreme curvature, and in particular the case in
which there is a spacetime singularity surrounded by an event horizon—a black
hole. We proceed to elaborate upon the effects of the curvature of spacetime on
waves—namely one way motion inside the horizon and infinite frequency shift upon
propagation from the horizon out to infinity. This allows us to identify key physical
phenomena characteristic of wave motion at the horizon, wherefrom we introduce the
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River Model of the black hole and draw the analogy to fluid mechanics by following
the steps laid out by Unruh.

The formalism is transferred to optics in a second section, when we study the
motion of waves in optical fibres. We explain how a solitary wave may form in
a fibre as a result of the interplay between nonlinear and dispersive effects in the
medium. In particular, we show how the refractive index is increased under a soliton,
and how other waves will experience this transient change in the medium proper-
ties upon interaction and slow down and shift in frequency. We invoke kinematics
arguments of the River Model of the black hole to show how the propagation of a
soliton in the fibre effectively creates a moving horizon. This leads us to considering
the frequency of oscillation of light waves in the fibre, which yields a discussion of
the first observation of the energy transfer from a positive frequency to a negative
frequency wave. Finally, we use a toy-model for a field theory of light-matter inter-
action to show the full mathematical analogy between waves in an optical medium
and waves at the astrophysical horizon.

In the first section of Chap. 3, we look back upon black hole physics and demon-
strate how they resemble thermodynamic objects, which leads us to a paradox: how
could they possibly emit heat since nothing can propagate out of them from beyond
the horizon out to infinity? This failure of classical physics is attended to by means
of a quantum study of a scalar field on a curved background. We use second quan-
tisation to derive Hawking’s seminal result that black holes emit radiation with a
thermal spectrum, and discuss the implications of, and questions related to, this find-
ing. A similar problem is considered in the second section of Chap. 3, where we
quantise a field theory for light-matter interaction in a dispersive medium [31, 32].
A careful study of the dispersion relation allows to draw kinematics analogies with
the case of wave motion on a curved background, and various such configurations
are found to be simultaneously realised at a moving interface in the refractive index
of the medium. We then show how the mixing of modes with positive and negative
frequencies at this interface leads to spontaneous emission from the vacuum and
discuss the implications of this effect.

Chapter 4 is dedicated to the presentation of the numerical results of this Thesis:
spectra of spontaneous emission at a moving interface in a dispersive medium. The
first section presents the analytical method developed to model the interactions of
light with matter considered in Chap. 3. In particular, the unique algebra necessary to
account for the various configurations of modes at the interface in the refractive index
is thoroughly explicated, and its use exemplified. We then show how this method
may be implemented to compute spectra of emission as they can be observed in the
laboratory frame. Numerically computed spectra for bulk silica are presented in a
second section, where we find that the strongest emission is in a mode that has a
negative optical frequency.

The experiment conducted to observe the effects of waves of positive and negative
frequency scattering at a soliton is presented in the last chapter of the dissertation,
Chap. 5. We begin with a derivation that shows that a coherent, continuous wave,
probe of positive frequency would transfer energy to a wave with negative frequency
(observable in the UV) upon scattering at the soliton. This parametric amplification
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of waves with opposite-sign frequency has never been observed before in optics.
We discuss the place of the experiment in the field in the light of other studies
of stimulated emission at the horizon in water waves setups [16, 17, 25] and its
relation to the nonlinear optics experiment [ 14] that established the reality of negative
frequency waves in optics. After explaining the setup, we characterise the ability of
our apparatus to resolve and detect a negative frequency signal. In the next section, we
present the classical effect of horizons on waves: the shift of frequency experienced by
waves impinging on the horizon. We explain how this positive frequency to positive
frequency wave scattering effect is a signature of horizon physics. Advances toward
observing the negative frequency signal are then discussed via a study of the signal
to noise ratio in the UV. In particular, we report the observation of a peak at 247 nm.
We ponder upon the origin of this signal and the possibility of this peak being related
to the signal sought. We then conclude with a discussion of future developments of
this experiment and considerations of the route toward the detection of spontaneous
emission of light quanta in an optical fibre.
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Chapter 2 ®)
Theory of Spacetime Curvature in e
Optical Fibres

From astrophysics to the laboratory, and more precisely to optical fibre systems, this
chapter will present the fundamentals of the science of analogue spacetimes real-
isations. Leaving the concepts of quantum field theory—in curved spacetime and
for light-matter interaction—that describe the spontaneous creation of light from
the vacuum to a later chapter, here we focus on classical physics in its most mod-
ern form: starting from Special Relativity and moving on to introduce concepts
of General Relativity, we will show how a black hole influences the fabric of the
universe. Considering the generative idea of analogue spacetimes, the flow of the
above-mentioned fabric and how it can be recreated in laboratory systems will then
lead us to investigate our experiment: light in optical fibres.

2.1 From Astrophysics to the Laboratory

2.1.1 Curvature of Spacetime

The theories of relativity, Special and General Relativity, have been used since the
first half of the twentieth century to explore the boundaries of Nature. In this section
we wish to gain an understanding of physics in the vicinity of black holes—General
Relativity, the Theory of Gravitation that describes matter and motion near massive
objects. Discussing the key concepts of Special Relativity, the theory of the very
fast, will provide us with the principles essential to examine spacetime curvature as
described by General Relativity. We will see how spacetime curves in the vicinity of
a black hole and what metric best describes this phenomenon.

© Springer International Publishing AG, part of Springer Nature 2018 13
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14 2 Theory of Spacetime Curvature in Optical Fibres
2.1.1.1 Special Relativity

Our journey with Relativity begins with a clock that ticks and moves past a point
in a particular inertial frame. We seek to measure the distance s and time ¢ between
two ticks. ¢ is referred to as the time separation between two subsequent events,
and s is called the space separation. Our common experience, for example with the
siren of an ambulance rushing by us in the street, tells us that these space and time
separation are frame dependent quantities. Yet, all inertial observers agree on the
time as measured by the clock between two events in the frame of the clock. This is
the proper time T,

=1 —5? 2.1)

Because r > s, it is also referred to as the timelike spacetime interval. 7 is invari-
ant, that is frame independent. The above equation recalls the Pythagorean theorem
(7% = t* + 5?) which gives the distance between two points in Euclidean space. Sim-
ilarly, this metric gives the separation between any two events (for which ¢ > s) in
spacetime. It provides all information about the (non quantum) features of spacetime
and can be extended to predict trajectories. One can also find the proper distance, or
spacelike spacetime interval, between two events:

o =52 =12 2.2)

A spacetime interval is then defined as the combination of the spacelike and timelike
spacetime intervals of the metric.

Special Relativity is valid within the inertial frame, that is a flat region of space-
time. In terms of the mathematics of Relativity, this is the realms of particular
pseudo-Riemannian metrics. Take g, a symmetric covariant 2-tensor field (a pseudo-
Riemannian metric on a manifold V'), defined such that

(9i)~" = (9" (2.3)
In a moving frame, it is written as
g =000, (2.4)
with 6/ = {t’, X'y, z’} the coordinates in the moving frame, and in a laboratory
(natural) frame as o
g = gijdx'dx’ (2.5)
with x' = {¢, x, y, z} the coordinates in the natural frame. By definition, g is a non-

degenerate quadratic form: it can be written as a sum of independent real linear forms
of dx' in the moving frame

gijdxidxj = Zei(ﬁi)z, € = *x1. (2.6)
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The number of ¢; = 1 or —1 is the signature of the metric. For all point x € V, g
defines a scalar product between two four-vectors of the vector space

(v, w) := gy (v, w) = g,-j(x)viwj. 2.7

A flat spacetime is a manifold isometric with a pseudo-Euclidean space (that is Re")
with metric o ‘
gijdx'dx) = Zei(dx')z, 6 = +1. (2.8)

i

And a spacetime is locally flat if the manifold V is locally isometric to a flat space.
Flat spacetime is best and most often described by the Minkowski metric, a flat metric
on Re"*!:

g=—(@x"y+) (dx') (2.9)

i=1

which has a (— + + - - - +) signature in the Misner—Thorne—Wheeler convention [1].
In the natural frame (Cartesian coordinates) it is the symmetric, position dependent,

matrix
—-1000

o100
9=l o010
0001

(2.10)

An important concept in Relativity is that of geodesics, the path that a particle
which would not be accelerating follows. It is said of a geodesic that it is a locally
separation-extremising curve. In other words, geodesics are curves that locally give
the shortest distance between two events. To define a geodesic, one has to call on
the principle of causality: because the Minkowski metric is a Lorentzian metric, it is
time oriented, and so is the manifold (flat spacetime, Re™*1) on which it is defined.
The length of a causal curve -y joining x, to x; on V is

b
l = / Ld), @2.11)

with the Lagrangian
L= guscONii’, 50 = B0 (2.12)
= Gap s = N .

with parameters A = a and A = b (\ is the path length). Then a geodesic joining x,,
and x,, is defined as a solution of the Euler equation for this Lagrangian:

d OL oL
d\ Ox®  Ox“

=0. (2.13)
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On flat spacetime, the distance between nearby parallel geodesics is constant. The
acceleration of distance between nearby geodesics is an indicator of a curved space-
time. In the cosmos, most regions of spacetime are flat over only a limited range of
space and time. If a pair of free test particles experiences a relativistic acceleration
with respect to one another (relativistic tidal forces), then spacetime is not flat but
curved. When this is the case, the prevailing theory of Physics is no longer Special
Relativity but General Relativity. Einstein’s genius was to realise that the curvature
of spacetime, the rate of acceleration of distance between nearby geodesics, was
identical to relativistic tidal forces.

2.1.1.2 General Relativity

Newton would appeal to the principle of material indifference to express the idea of
the invariance of physical laws and phenomena upon the reference frame in which
they are expressed. Einstein extended this principle by relying on tensor fields as
objects for physical laws. Since those are intrinsic objects on a manifold, they are
represented by their frame specific components but pass from one frame to the other
via general laws. The extension to Newton’s principle, general covariance, and the
Newton—Galileo equivalence principle (the independence of the acceleration of a
body on its mass under gravity) inspired Einstein to use Lorentzian differential geom-
etry and ushered-in the theory of General Relativity.

Replacing the Minkowski spacetime of Special Relativity by a general Lorentzian
manifold and appealing to the Newton equivalence principle between inertial and
gravitational masses allowed Einstein to invent General Relativity. According to this
theory, a four-dimensional curved Lorentzian manifold unites space and time (which
were previously considered as a priori given structures). The metric of this spacetime
is linked with its curvature and governs its causality structure. Both in Special and
General Relativity, the basic observable quantity is the length of a timelike curve as a
measure of the proper time between two events. A massive object in free fall follows
the timelike geodesics of the metric: their equations of motion are independent of
their mass. Light rays are null geodesics in General Relativity, i.e. the trajectories of
particles with zero rest mass.

There exist various forms of the Einstein field equations [2, 3], for the purpose of
the current discussion it suffices to appeal to the Einstein equation in vacuum. This
states that the Lorentzian metric g must satisfy

Ricci(g) =0, (2.14)

with Ricci the Ricci curvature tensor, a special Riemannian tensor that describes
the curvature of spacetime (see [4] for more details). It is zero because the stress-
energy tensor in space outside a star is zero, we are in vacuum. This equation for
the gravitational field means that, in General Relativity, gravity is identified with the
curvature of spacetime—a massive object will deform spacetime.
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Soon after the publication of Einstein’s theory of General Relativity, Scwharzschild
was the first to construct an exact solution to the Einstein’s equation in vacuum (2.14).
His solution models the gravitational field outside spherically symmetric isolated
bodies, such as the Sun or Earth, or a proton.

2.1.2 The Schwarzschild Spacetime

2.1.2.1 Schwarzschild Metric

Written in standard polar coordinates (¢, r, 8, ¢), the smooth spherically symmetric
metric solution to Einstein’s field equation (2.14) by Schwarzschild is [5]

_1
Jschw = — (1 - 27m> (dn?* + <1 - 27m> (dr)* + r* ((d0)* + sin* 0(d¢)*) .
(2.15)

As for the Minkowski metric, we express the Schwarzschild metric in matrix form
as
—(1-2) 0 0 0
B 0 (1-2"10o 0
9= 0 o 2 o |
0 0 0 r2siné

(2.16)

where ¢ is the time as measured at infinity, and m is a constant that has implications
on the nature of this metric. Indeed,

e when m = 0, the Schwarzschild metric is identical to the Minkowski metric of flat
spacetime,

e when m # 0, the metric is singular for » = 0 and has a coordinate singularity for
r = 2m. Clearly, the sign of the constant m # 0 is very important in determining
the properties of the metric: a metric where m would be negative has been given no
physical interpretation to date. On the other hand, for positive m, the Schwarzschild
metric is a regular Lorentzian metric with ¢ timelike and r spacelike (r > 2m).

For r < 2m, r # 0, the metric is a regular Lorentzian one, but the time- and space-
like character of the ¢ and r coordinates interchanges with the case where the metric
describes a flat spacetime. The case of » = 2m is peculiar and deserves a discussion
of its own. 1 — 27’” vanishes for » = 2m, implying that the Schwarzschild metric in
standard coordinates is singular there: goo vanishes and g,, becomes infinite—the
metric is not a smooth Lorentzian metric for r = 2m. Together with the change in
time- and space-like character of the ¢ and r coordinates for r < 2m, r # 0, this hints
that r = 2m is not a genuine singularity of Schwarzschild spacetime: it only appears
tobeinthe (¢, r, 6, ¢) coordinates, which are unsuited to the region r < 2m. Thus one
cannot make physical predictions from the Schwarzchild metric at » = 2m and needs
to use another coordinate system. This apparent singularity in the Schwarzschild
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metric is important. Indeed, no classical signal (i.e., one not due to a quantum effect)
can escape from the regions r < 2m: the hypersurface Re x {r = 2m} is called an
event horizon. A spacetime with a source of radius @ < 2m is called a black hole.

Let us express the Schwarzschild metric as Eddington [6], Lemaitre [7] and
Finkelstein [8] suggest to do. We perform a change of coordinates for » < 2m from
the canonical Schwarzschild time ¢ to the retarded time v,

v=1+4r—+2mlog(— —1), 2.17)
2m

(note that this change of coordinates from (z, r, 8, @) to (v, r, 8, ¢) is singular for
r = 2m) to express the Schwarzschild metric in the Eddington—Finkelstein (EF)
form:

JEF = — (1 — 2—’") (dv)* + 2drdv + r* (sin® 0(d¢)* + (d0)?). (2.18)
r

This equation defines a vacuum Einsteinian spacetime referred to as the EF black
hole. As g = 0 for r = 2m, the submanifold » = 2m is a null surface. Imposing
f = constant, ¢ = constant, we find two families of radial light rays: one represented
by straight coordinate lines v = constant, and the other given by

2m 4m
—(1——>dv+2dr=O:>dv=(—2 +z>dr (2.19)
r

which integrates for r < 2m to
v =2r +4mlog (|2m — r|) + constant. (2.20)

In the domain » < 2m, the EF metric can be expressed in the Shwarzschild form via
t=v—r—2mln(5 — 1) and reads

-1
JEF = (27’" — 1) (d1)?* — (27’" — 1) dr)* +r* ((d0)* + sin® 0(d¢)*)
(2.21)
with ¢ spacelike and r timelike! The metric is not static anymore. The EF metric is
genuinely singular for » = 0. This is in general interpreted as a spacelike 3-surface,
or hypersurface. An EF spacetime is called a black hole because no future light ray
issuing from a point where r < 2m crosses the event horizon r = 2m (see Fig.2.1).
At this stage, we can digress shortly and remark that, upon time-reversal, there
exists another extension of Schwarzschild spacetime:

r

gwn = — (1 — 2—’") (dv)* — 2drdv + r* (sin® 0(d9)* + (d0)*).  (2.22)
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Fig. 2.1 The history of a Black hole
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This is a white hole, nothing can penetrate into it. Indeed, every outgoing radial null
geodesics in Schwarzschild spacetime emanates from the white hole.

2.1.2.2 Event Horizon

In relativity, the velocity of light in vacuum c is constant, invariant. Yet the curvature
of spacetime, the dependence of the measure of proper time on the observer, causes
light in a gravitational field to redshift, and time to dilate.

It can be shown (see [4]) that, in a Schwarzschild spacetime where both an object
A and the observer O are at rest, the period of the radiation when emitted from the
object T} is related to the period upon observation Ty (r4 < ro) by

2 2
To :\/1 — _m\/(1 — _m)—lTA. (2.23)
ro ra
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Hence the observed period is larger than the emitted period, and an observer would
observe aredshiftin the spectral lines of the atom radiation. In the limit of ﬁ small, we
see that, to a faraway observer (Wheeler’s bookkeeper), a signal ernltted from rA =
2m (source located at the horizon) would have infinite wavelength. This is called the
infinite-redshift effect and has implications for the validity of the Hawking radiation
temperature derivation. This infinite-redshift effect gives full physical meaning to
the common saying that “nothing can escape a black hole”: light emitted from the
horizon would have infinite period upon observation, or, symmetrically, zero period
upon emission. This is not a signal, it cannot be detected [10].

The dependence on the observer of the measure of the proper time can be illustrated
by computing the radial velocity that must be applied to the object A (with respect to
the observer O at rest in the Schwarzschild metric) for it to escape the gravitational
attraction—the escape velocity.

As above, rg is the coordinate of the static observer, and r 4 is that of the test object.
The trajectory of bodies of small size and mass in the gravitational field of a black
hole are timelike geodesics of the Schwarzschild spacetime with mass m < ro /2.
We denote by ds the element of proper time on a timelike curve,

ds* = —gapdx“dx”. (2.24)

Thus the proper-time initial velocity is 7o = dr/ds(O), and the variation of the
time parameter is denoted by i = dt/ds. Our object, which is supposed to be in free
motion after its departure, thus follows a radial geodesic curve and hence satisfies

the equation [4]
2m\ . 2m\ .
l—— t=E=\|1—— )10, (2.25)
r ro

where E is a constant and r is the  coordinate of the static observer. Note that for
the sake of the present computation, we consider a Schwarzschild spacetime with
mass m < ro/2. As aresult of the Definition 2.24,

1
1= <1 — 2—m> (1 — 2—m> 2. (2.26)
r r

Hence the differential equation for the parameter r

.5 2m
= -1+ — (2.27)
r

Clearly, the maximum of r is attained for 7 = 0 (a reversal of velocity implies that
the object turns back at this point). This is for

2m

S —— 2.28
T— g2 (2.28)

r'm =
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Obviously, the parameter r can only maximise to ry; if E < 1. The escape veloc-
ity, corresponding to an infinite value of rj; corresponds to E = 1. By (2.27), this
velocity is

Fo = o (2.29)

For the observer at rest, the relativistic escape velocity (3 is given by the ratio of the
radial space and time components V! and V° of the velocity vector in the proper
frame of this observer (of components (¢, fo) in the natural frame of the coordinates
t, r). The proper frame of the observer is

1
[ 2 2m\ "1
PO = 1= g = (1 — —m) dr. (2.30)
ro ro

The velocity vector has components (7o, fp) in the natural frame of the coordinates

t, r. Therefore,
—1
0 2m . | 2m .
Vi=|l——to, V =/|1—- — Fo. (2.31)
ro ro

And, finally, when E = 1, plugging (2.26) and (2.28) and rearranging yields

v 2m
0 =: 0= /E (2.32)

This escape velocity tends towards the velocity of light when rop — 2m.

If, now, the velocity of the object is less than the escape velocity, according to the
above calculation, the time it takes it to fall back to its departure point is twice the
parameter time it takes to attain r;. We calculate the proper time this takes using

W ds M 2m ] — 2 g
= —dt = E-'"[1-")dt= " " (0)dt, 2.33
w=[ G- ( r) / 5O @3)

with the change of variables
ds 2m 2m\ "' dr
—OP=(1-—)-(1-=— — (0. 2.34
[dt()] ( ro) ( "0) [dt()] (2.34)

We perform yet another change of variables and set (dr/dt)(0) = v (and remember
that m/ro is small) to obtain

(™ 2m  2m  mv?
4 po ALY (2.35)
0

r ro ro
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The proper time as measured by the observer sitting at 7o between the departure and

return is
[ 2
S0 _f 1— P = / 1— —) dr. (2.36)
ro

This proper time differs from that measured in the frame of the object: the delay
(within our approximation) is

(™M 2m m mv?
sS4 —So = -4+ — 4+ — ) dt. (2.37)
0

Since r > ro, this delay is greater than zero. The above derivation shows that, when
spacetime is curved, the proper time measure depends on the observer frame. This is
a significant departure from Special Relativity. Light propagating away from a black
hole will, because of the steep curvature of spacetime, significantly redshift.

Inaninertial frame, no signal can move in any direction faster than light: this means
that the forward light-cone contains all possible worldlines for a passing particle.
Since worldlines can run through a horizon only in the radial inwards direction, the
horizon effectively causally disconnects the inside region from the outside region of
the black hole. As we have seen earlier, no future light ray originating from inside
the horizon of a Schwarzschild black hole can escape to outer space. In addition, in
the inner region of the black hole, where r < 2 m, the radius r decreases inexorably.
This means that motion inside the horizon is possible in only one way, towards the
central singularity. Whatever falls on the black hole and crosses the event horizon
is therefore doomed and feeds our earlier conclusion about the blackness of black
holes.

In conclusion, we have seen that the Schwarzschild metric, solution to Einstein’s
equation for the gravitational field in vacuum, can describe situations of extreme
curvature. These gravitational collapses have been given the name of black holes
because they deform spacetime in such a way that anything coming too close is
doomed to fall on their central singularity. The boundary between the inner and
outer regions of a black hole is referred to as the event horizon. We have shown that
it causally disconnects worldlines, even those of light rays, and that a signal emitted
from this hypersurface would be infinitely redshifted before it reaches a far away
observer (meaning that no signal can travel outwards from the event horizon).

2.1.3 Laboratory Event Horizons

2.1.3.1 The River Model of Flowing Spacetime

Let us have a closer look at the EF metric (2.18), by writing it in yet a different
form, as Painlevé [11] and Gullstrand did [12]. The present form has the advantage
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of offering an intuitive interpretation of the distortion of spacetime in the vicinity of
a black hole. It reads [13]

gpG = —dtpg + (dr + Bdtpg)* + r* ((d6)* + sin’ 0(d¢)*) , (2.38)

with 8 = %:‘ the Newtonian escape velocity (see Eq.2.32, and note that 7 is the
spatial tortoise coordinate of the static observer) and fp the proper time. In this
form, the metric describes ordinary flat space. What is interesting is that space itself
is flowing radially inwards at velocity (3. At the horizon r = rg.y, 8 = ¢ (equals
1 in the metrics units). This metric is the fundamental brick of the River Model of
black holes.

The River Model has the same features as the original Schwarszchild metric. In
particular, an object that falls through the horizon appears redshifted to an outside
observer, and frozen at the horizon: 7p¢ increases so, as the object approaches the
horizon, it takes an ever increasing time for the light it radiates to progress backwards
against the infalling space and finally reach the observer. What is interesting is that
the equations governing the propagation of sound waves in an inviscid, barotropic,
irrotational fluid are identical to those for a massless scalar field propagating in a
General Relativity metric [14]. In other words, such a fluid can be used to reproduce
the physics of black hole event horizons. Unruh showed in 1981 that sound horizons
(of what he calls ‘dumb holes’) emit Hawking Radiation and ushered-in the field of
laboratory analogues to event horizons realisation.

2.1.3.2 Intuition of Dumb Holes

When a fluid flows faster than the speed of sound somewhere in an inhomogeneous
flow, a sonic horizon appears. Since the speed of sound is the maximal speed for
excitations of the fluid, the horizon separates two regions of fluid flow, a supersonic
region from a subsonic region. By analogy these are identified with the inner and outer
regions, respectively, of a black hole. The fluid is a self contained quantum system: its
degrees of freedom are conserved. This means that, in the presence of a sonic horizon,
waves incoming on the horizon (incoming modes) will convert into outgoing modes
(outgoing waves). But waves cannot propagate from inside to outside the horizon
of a black hole, and neither can they in the case of a sonic horizon. Yet, in the case
of the fluid analogue, outgoing modes come from incoming degrees of freedom that
‘turned backwards’ at the horizon—an example of a general phenomenon that occurs
for dispersive waves in an inhomogeneous, dispersive medium.

Sound waves, in the present context, are waves propagating on the fluid (this could
be water) surface, with gravity and surface tension as the restoring forces—because
of the interplay between those forces, a fluid with a free surface is considered to be a
dispersive medium. The frequency dispersion of sound waves implies that waves of
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different wavelengths travel at different phase velocities.! Propagating sound waves
of non-zero amplitude only can exist when the angular frequency w and the wave
number k = 27” (X the wavelength) satisfy a functional relationship known as the
dispersion relation, of the form W= gk tanh(kh), where g is the acceleration by
gravity and & the depth of the water. In a co-moving frame at rest with a fluid flowing
at velocity u, the dispersion relation becomes

(w — uk)* = gk tanh(kh). (2.39)

Because of dispersion, the phase velocity v, = w/k and group velocity v, = dw/0k
are different: i.e., in water, the phase of sound waves will propagate at different
speed from the wave packets. These velocities clearly are frequency-dependent. Or,
conversely, a sound wave whose group velocity changes as it propagates in the
inhomogeneous, dispersive medium, will experience a shift in frequency—and ‘turn
backwards’ at the horizon, as mentioned above. Let us now explain this effect.

In a dispersive fluid, sound waves whose group-velocity is lower than the fluid
flow-velocity will experience a black-hole horizon. Because of the frequency-
dependence of the group-velocity, this horizon is not a sharp interface (unlike the
absolute event horizon of astrophysical black holes). Each incoming sound wave
actually experiences a continuous reversal of its group velocity as it approaches the
point where the fluid flows faster than sound can. This continuous reversal of the
group velocity results from a smooth evolution from one branch of the dispersion rela-
tion (2.39) of the medium to another. The phenomenology of group-velocity reversal
and frequency shift at the horizon is as follows: an incoming, high frequency mode is
dragged toward the horizon by the faster fluid flow. As it moves towards the horizon,
the wave-vector k of the mode decreases and its group velocity increases, eventually
reaching and exceeding the flow velocity. The incoming wave packet then begins
converting into outgoing modes propagating back out away from, and through, the
horizon, into the outside and inside region of the dumb hole, respectively. Indeed,
in a dispersive medium, mode conversion does not imply that energy is transferred
from one incoming mode to one outgoing mode only. On the contrary, one incoming
mode can transfer energy to all of the outgoing modes upon scattering at the horizon.
And, symmetrically, the energy in an outgoing mode can be contributed by all the
incoming modes. Because of dispersion, outgoing modes will have different group
velocity than the incoming mode. For example, under dispersion, the change in wave
vector of the the ‘reflected’” mode is accompanied by a frequency shift, to lower
frequencies: a redshift. That is, the outgoing mode is redshifted with respect to the
incoming mode.

A peculiarity of inhomogeneous, dispersive media, is that they support modes with
both positive and negative frequencies (as can be seen already from Eq.2.39). Like
the scattering of modes at the horizon, this surprising feature will be detailed later in
this dissertation (see Sects.2.2.2, 3.1.2 and 3.2.2 for example). Unruh showed that

IThis is a linear effect (contrarily to amplitude dispersion whereby waves or larger amplitude have
a different phase velocity from small-amplitude waves).
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energy is converted from the positive and negative branch of the dispersion relation
of the fluid in the amount predicted by the Hawking emission theory.

Over the course of the present discussion, the focus has swiftly shifted from the
original system considered by Unruh, acoustic flows [14], to more general consider-
ations of dispersive media. The idea of dumb holes can indeed, as will be exemplified
later in this chapter and all along the present Thesis, be generalised to any medium
where a flow can be made to have a gradient such that its velocity eventually exceeds
that of waves in the medium.

2.1.3.3 Analytical Description of Dumb Holes

Having developed an intuitive understanding of the idea behind the analogy of dis-
persive flows with the kinematics of spacetime in the vicinity of a black hole horizon,
it is possible to establish analytically the connection between these two systems by
deriving the wave equation of acoustics in flowing fluids. In order to proceed analyt-
ically, however, we must constrain our considerations to a nondispersive medium, as
in the initial paper by Unruh [14]. As we will see shortly, this nonetheless captures
the main ideas of the dumb hole proposal. Fluid dynamics are ruled by the equation
of continuity?

Op+V-(pv)=0 (2.40)

and Euler’s equation

pfl—l; =pOv+ (v-V)v) =F, (2.41)
with p the fluid density, v the flow velocity vector field, ¢ the time as measured in the
laboratory frame, and F the sum of all forces exerted on the fluid [15]. Following on
the above discussion and after the work of Unruh [14], the flow is taken to have zero
viscosity with the only forces being those due to the pressure p as well as Newtonian
gravity and arbitrary external driving forces. The latter two are accounted for by the
potential ¢, yielding

F=-Vp—pVo. (2.42)

wherefrom the Euler equation2.41 is rewritten as

1
Ov=—-Vp—Vo—(v-V)v. (2.43)

p
The enthalpy £ of the barotropic fluid can be defined as a function of the pressure as
h(p) = Op % so that Vh = %V p. Furthermore, for a vorticity free flow, a veloc-

2Note that in this section, the partial derivative with respect to a variable is denoted by 0, = %
(only when greek indices , v are written do we use the relativistic-covariant formulation).
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ity potential ¢ can be introduced such that v = —V1 [16] so as to reduce Euler’s
equation to

V. <—a,w +h+ %(vw)z + qb) =0. (2.44)

In order to linearise the equations of motion (2.40) and (2.44) around a back-
ground, the exact motion (p, p, 1) is separated into an average background motion
(po, po, Yo) and low amplitude acoustic disturbances (p;, p1, ¥1) [15]. The conti-
nuity equations (2.40) for the background and acoustic disturbances are

Orpo + V- (povg) =0, (2.45)
0ip1 +V - (pov1 + prvg) = 0. (2.46)

Similarly, the barotropic condition can be used in linearising the Euler equation
(2.44), resulting in the pair

Db+ o+ (V) + 6= 0. (2.47)

1= po (01 + vo - Vi) (2.48)

Additionally, the barotropic assumption p; = g—‘; p1 gives

0
pr = %Po @by + vo - Vi) (2.49)

Substituting the latter consequence of the linearised Euler equation finally reveals
the wave equation that describes the propagation of the linearised scalar potential
11, that is that of acoustic disturbances:

5} 15}
— O (%pa (Orp1 +vo - WJl)) +V- (povwl - iﬂovo (Orp1 + v - Vw1)> =0.
(2.50)
Unruh identified the local speed of sound as }2 = O—Z and realised that Eq. (2.50)
could be cast into the equation of motion for a massless scalar field in a spherically
symmetric geometry with static (inverse) metric [14] (note this is in 3 + 1D)

-1 —vl
=—1 ... 2.51)

it 280 i)
vy : 0 voV)



2.1 From Astrophysics to the Laboratory 27

which compares with the Painlevé—Gullstrand metric (2.38) near the horizon of a
black hole. There is a sonic horizon for the acoustic disturbance ); where the local
speed of sound equals that of the background fluid 1. This is a remarkable result:
the velocity flow of a fluid can be analogous to a curved background for sound waves
provided there is a flow-velocity gradient to supersonic flow. All the results of this
Thesis build upon this finding.?

We will now turn away from fluids and sounds and discuss the translation of
Unruh’s idea of analogues to another setup: light in an optical fibre.

2.2 Developments in Optical Event Horizon Realisation

Light in optical fibres can be made to interact with itself to create a flowing medium.
This section of the Thesis presents the tools of fibre optics that we rely upon to create
those light-fast fluids and the event horizons they feature.

2.2.1 Fiber Optics

Light is an attractive experimental setup: it exhibits quantum properties at any tem-
perature and is well understood and studied. We will here review the essential physics
of light in optical fibres, swiftly progressing from linear optics to the lowest-order
nonlinear response. We will conclude with the introduction of the essential con-
stituent to the realisation of optical event horizons—the physics of the interaction of
a soliton with a weak probe wave.

2.2.1.1 Nonliner Optics and Pulse Propagation

When a weak light wave interacts with a single body, the charged particle of a
molecule or an atom, the wavelength of the output wave is identical to that of the
input wave. Through the interaction with the molecule, the wave can suffer from
attenuation, dispersion, deflection or be delayed, but the characteristic frequency of

31 will here seize the opportunity to remark that I find phenomenal that such an analogy is not only
a powerful metaphor that aids the understanding of manifestations of black hole physics but an
actual mathematical equivalence of the kinematics between the astrophysical and fluid systems. In
order to regain perspective on this finding, I will insist on what I already wrote in the introduction
to this dissertation: the fact that the propagation of sound waves in fluids is described by a curved
Lorentzian manifold does not solely enable laboratory-based study of certain features of gravity.
Rather, this incidentally (and probably even more importantly) also forces us to seriously rethink
what we know of the connections between gravity, General Relativity, Einstein’s equations, and the
difference between kinematics and dynamics in this realm.
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the waves will remain unaffected. The regime of weak light-matter interaction is
ruled by the linear optics approximation.

A monochromatic electromagnetic radiation propagates in an optical fibre with
phase velocity v, = -, where c is the speed of light in vacuum and » the refractive
index of the fibre material (of its core). The ultra short pulses that are usually sent
in optical fibres are however not monochromatic but broadband: they are made of a
wave at the carrier frequency and then numerous other waves at other frequencies
around the carrier and are set by the mode spacing determined by the laser cavity
that travel under an envelope. This envelope propagates with velocity v, (w) = %,
the group velocity. We call n4(w) the (frequency-dependent) group index and define
it as 5

1y(W) = (W) + wev, (2.52)

Ow

it explicitly depends upon the frequency of the wave, and therefore so does v,. The
group velocity of the wave packet is different from (and can be lower than) the
phase velocity of the various frequency components it is made of (for the phase
velocity is also frequency dependent). The phenomenon of frequency-dependence
of the group and phase velocities—they differ in a dispersive medium—is what
is called dispersion. It stems from material and waveguide dispersion, that is the
frequency-dependence of, respectively, the refractive index and the size of the mode
in the fibre. The latter depends mainly on the dimension of the core of the fibre.
As a consequence of group-velocity dispersion, different spectral components of the
pulse, because they will experience different refractive indices, will travel at different
speeds. This results in a temporal broadening of the propagating pulse: the intensity
of the pulse will be dispersed. The overall spectrum of the light packet is however
not affected, for the pulse only spreads in time. Dispersion thus appears to tie in with
the linear approximation. Three regimes of dispersion exist

e Normal dispersion where the high frequency (short wavelength) components travel
faster than low frequency ones,

e Anomalous dispersion where the low frequency (long wavelength) components
travel faster than the high frequency ones,

e The point of zero dispersion.

Dispersion leads to a walk-off between the different spectral components of the
ultrashort light pulse: by (2.52), different frequency components of the pulse will
travel at different group velocity in the medium. Thus the pulse broadens in the
time domain and its peak intensity decreases. This eventually limits the efficiency of
nonlinear effects: because two spectral components will propagate at different speed,
the total electric field leads to lower nonlinearity strength.

In the situation where the light field impinging upon the above-mentioned
molecule has a high intensity, the output wave will have a different frequency. In
fact, if the intensity of the light is high enough, a pulse will induce effects on its
own phase and amplitude through interaction with the molecule, resulting (by the
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virtue of Fourier Transform) in a change in its frequency. This regime of interaction
is called nonlinear optics, because it stems from the nonlinear scattering of light and
the nonlinear nature of the refractive index of the material. In order to understand
why this is, let us explore a simple model of light and matter interaction. We model
the medium in which light propagates, any dielectric such as silica—of which fibres
are made of—for example, as a collection of charged particles. These basically are
composed of light electrons bound to heavy ions. Maxwell’s equations then allow
us to interpret the propagation of light in this medium as propagating disturbances
of the electric and magnetic fields. The polarisation of these fields depends upon
the response of the bound charges within the medium to the electric field. In sim-
ple words, as an oscillating electric field travels in the material, the electric charges
oscillate, inducing an electric dipole and radiating light (this is not instantaneous) at
the driving frequency. In linear optics, when the light is of weak intensity, the polar-
isation of the medium is a linear response to terms of the first power of the electric
field only. Hereafter we will only be interested in intense light fields that induce an
anharmonic motion of the bound electrons of the material through propagation. This
results in the polarisation of the medium becoming nonlinear and light being radiated
at harmonic frequencies of the fundamental driving and wave mixing. For the pur-
pose of this thesis, we will only consider phenomena belonging to the perturbative
regime intensity interval (intensities of the order of 10'! to 5 x 10'3 W.cm™2). In this
regime we consider the charged particles—the electrons—to be bound to the atom
nucleus.
Pulse propagation in optical fibres obeys Maxwell’s equations [17-19]

OB
VXxE=——
. ot’
oD
VxH=J+—,
X J+ o (2.53)
VD = py,
VB = 0.

where E and H are the electric and magnetic fields, respectively, J is the free current
density, p is the free charge density, and B and D are related to E and H by the
constitutive relations
D =¢E+P,
(2.54)
B = pH+ M.
P and M are the polarisation and magnetisation, respectively. The latter is zero in
optical fibres—these are non-magnetic—and so are J and p .—fibres are non con-
ducting and electrically neutral. Substituting the constitutive relations into Maxwell’s
equations yields, via elimination of D and B,
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OH
VX E = —jip—,
x “Oar
OE 0P
VxHz=ee + 2,
xH=ap T (2.55)
I
VE = ——VP,
€0

VH = 0.

Taking the curl of the first equation allows for eliminating the magnetic field. We
have successfully combined Maxwell’s equations for light in a fibre to obtain the
following propagation equation which involves the light field and the polarisation
that is generated by the propagation of this light field:

O*E O*P

Vx(VxXE —_— = —y— 2.56
x (V x E) + poeo i v (2.56)

The product pipep = 1/c? with ¢ being the speed of light in vacuum. As mentioned
previously, the polarisation features both a linear and a nonlinear component:

P(r,t) =Pr(r,t) + Py (1, ). (2.57)

The linear (nonlinear) component of the polarisation is accounted for through the first
(second) term of Eq.2.57. The linear part of the polarisation describes the dispersion
of the medium while the nonlinear part describes the nonlinear effects, through the
first and second two terms of the following equation, respectively:

P(r, 1) = eox VE(r, 1) + eoxPE*(r, 1) + eoxVE (1, 1) (2.58)

where we have Taylor-expanded the electric field of the nonlinear terms and
x®, (k) = (1,2, ...),is the kth order of susceptibility of the medium. The dominant
contribution to the polarisation induced by electric dipoles is provided by the linear
susceptibility ¥V (which is related to the refractive index by n?(w) = 1 + xy(w)).
A medium such as silica has inversion symmetry at the molecular level (silica is said
to be centro-symmetric) and thus zero second order susceptibility x® = 0, making
the third order susceptibility responsible for the lowest-order nonlinear effects in
optical fibres.

2.2.1.2 Optical Pulse

Let us now decompose the electric field associated with short laser pulses into the
product of a modal distribution (spatial distribution of the electric field inside the
waveguide) times a temporal envelope and the carrier frequency.
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F(@r), modal distribution
E(r,z,1) = F(r)A(z, )¢’ { A(z,1),  temporal envelope (2.59)
wo = 2, carrier frequency

Ao

In an experiment, we actually measure the power, and not the amplitude, of the elec-
tromagnetic field P(z, t) = |A(z, t)|?, that is the modulus squared of the envelope).
Typically, a short laser pulse has a peak power ranging from some hundred watts
to hundreds of kilowatts and can be as short as a few femto seconds. Depending on
the peak power and duration of the pulse, the nonlinear effects observed in a fibre
can be very different. As for the modal distribution, it is typically accurate enough
to consider the propagation of the fundamental mode only and to assume its shape
to be Gaussian. Because the transverse energy distribution of the fundamental mode
does not vary through propagation, we generally study the change in shape of the
temporal envelope and disregard the effects of diffraction.

Translating the above considerations into the pulse propagation equation (2.56),
one arrives at the Generalized Nonlinear Schrodinger Equation* (GNLSE) that
accounts for the combined effects of Loss (first term), Dispersion (second term)
and all the nonlinear effects we will elaborate upon in the next paragraph (terms on
the right-most side of the equation) [20]:

0A « i kA
L ZA- — B =
2z T2 2 AR

5 oo (2.60)
iy (1 + iTshocka—T> (A (z, t)/ R(TY|A (2, T - T’)|2dT’) .

Equation (2.60) governs the evolution of the field amplitude A(z,?) (in units of
W~1/2) expressed in a frame of reference moving at the group velocity vy =1/0
of the pulse envelope such that T = ¢ — z/v,. The nonlinear coefficient «y (in units
of W=!.m™!) describes the strength of nonlinear effects. It is related to the effective
mode area’ of the electric field in the fibre A, rr by v = wona/cA.rr—the strength of
the nonlinear effects depends on the intensity and confinement of the electric field in
the fibre (n, is the nonlinear refractive index, see discussion below). The frequency
dependence of the mode area, and thus of +, is described by the term 7y,,cx. The
function R(T) = 1 — f, + f,hg(T) describes the nonlinear response and it includes
both the instantaneous contribution (the Kerr effect) and delayed response (hg(T),
Raman scattering). The coefficient f, represents the Raman fractional contribution
to the overall nonlinear response [20].

“This equation remains valid down to the single cycle regime, when the temporal envelope contains

only one single oscillation of the electromagnetic field.

(f1EPdA)
JIE[*dA >

gration is done over the whole plane of the cross-section of the fibre. For a Gaussian beam with

radius w, the effective area is mw? [20].

5The effective mode area is Aefr = where E is the electric field amplitude. The inte-
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The terms on the left hand side of the equation account for the linear propagation
effects via attenuation () and the dispersion of the propagation constant, while the
terms on the right hand side describe the nonlinear effects. Let us detail the latter
effects: the parentheses on the right of the GNLSE (2.60) describes the temporal
envelope Self-Steepening, v conveys the Self-Phase Modulation (SPM) and Four-
Wave Mixing (FWM) effects whilst the integral describes the Stimulated Raman
Scattering (SRS):

e SPM: Self-Phase Modulation is the effect where a polarized field of light modulates
its own phase. This arises from the frequency dependence of the refractive index
and results in phase shifts in the electric field. The frequency of the pulse being
time-dependent, one observes the appearance of chirp (change in the instantaneous
frequency across the pulse) on a ghost image, see Fig.2.2. The temporal profile
of the spectrum (its time-domain envelope) is not affected by this effect, only the
spectrum broadens. One could say that this is the opposite effect to dispersion: the
SPM-induced chirp is similar to that caused by normal dispersion, such that longer
wavelengths propagate faster within the pulse and are located on the leading edge.

e FWM: Another consequence of the intensity-dependence of the refractive index
is the so-called Four Wave Mixing process, which consists in a nonlinear mixing
between two optical signals at different frequency and the resulting generation of
signals at the frequency difference and sum of the frequencies. Figure 2.3 clearly
shows that the frequency of the four waves involved in the process add up and
that energy is thus conserved. An efficient process where a consequent part of
the energy of the two initial waves is transferred to the newly generated signals
requires the phase of the waves to be matched: all the waves have to be in phase
so that

Bwr) + fwr) = Blws) + Blws) (2.61)

e SRS: The third nonlinear effect encrypted in the GNLSE is Stimulated Raman
Scattering, which stems from the interaction between light and the vibrational
modes of the molecules. This interaction yields a Raman gain to be produced
for a wave with a shorter frequency than the high intensity pump in the case of
Stokes scattering.® The Raman gain profile is very broadband and depends on the
material, Fig. 2.4 depicts it for silica.

The GNLSE can be made to account for the effects of noise, for the frequency-
dependence of the mode area, and for the wave polarisation. This equation is
extremely powerful and widely used in nonlinear fibre optics [20]. The pulse prop-
agation dynamics strongly depends upon the pump wavelength relative to the zero
dispersion wavelength (ZDW): at low wavelength, in the normal dispersion region,
SPM will be observed while FWM actually takes place at the ZDW for example.
The regime of interest for us is that of anomalous dispersion which allows, through
modulation instability, for the generation of solitons in the fibre.

6 Anti-Stokes scattering—frequency up-conversion—is also possible, although Stokes scattering is
more frequency [20].
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Fig.2.2 Self phase modulation: under the Kerr effect, an intense pulse modifies the refractive index
of the fibre material as it propagates. This results in the pulse experiencing an additional phase shift
beside the linear phase shift. In other words, light modulates its own phase: ¢y (t, L) = yP(t)L,
where L is the propagation distance of the pulse and  the nonlinear coefficient of the fibre. The
black line corresponds to the pulse envelope and the grey line the amplitude of the electric field.
Figure adapted from [20]
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Fig. 2.3 Four wave mixing: FWM is the interaction of four waves with distinct frequencies via a
third-order nonlinearity. It describes the annihilation and/or generation of four distinct photons
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Fig. 2.4 Stimulated raman scattering: raman scattering corresponds to the energy transfer from
photons to phonons by an inelastic collision. Through collision the photon energy is changed: it
thus frequency shifts. The Raman gain spectrum for fused silica, at A = 1060 nm, is plotted after [20]
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2.2.1.3 Solitons

We will now investigate the different regimes of soliton propagation in order to
understand in what context optical solitons are created in fibres. In that spirit, we
will proceed to deconstruct the dynamics of soliton propagation step by step and
show how the different nonlinear effects we introduced earlier work together to give
rise to a massive spectral broadening.

Four “regimes” of dynamics can be identified as a function of the dispersion
regime. The evolution of a short pulse (of high peak power, of the order of ten
kilowatts) propagating in the anomalous dispersion regime can be divided into three
stages:

e First the higher-order soliton is being compressed, which results in a spectral
broadening,

e The pulse then splits into a range of small pulses, fundamental solitons. At the
same time, the spectrum starts expanding under the effects of dispersive wave
generation.

e Finally, the wavelength of the fundamental solitons shifts to longer wavelengths
under the effect of Raman self-frequency shift. As a consequence of this wave-
length shift, the peak shifts and the pulse is no longer symmetric or well described
by a Gaussian envelope.

Now that the soliton propagation dynamics has been carefully deconstructed, this
paragraph will present a thorough description of the three evolution stages, starting
with the fundamental soliton. Fundamental solitons essentially are stable solutions
of the nonlinear Schrédinger equation that appear when the chirp from self-phase
modulation balances that of anomalous dispersion. This is described by the following
simplified Nonlinear Schrédinger equation (NLSE):

A 2A
ia—+@a—+7|A|2A:O (2.62)

where the second term accounts for the group velocity dispersion in the anomalous
regime and the last term accounts for the Kerr effect (the nonlinear dependence of
the refractive index upon the intensity of the pumping mechanism). The second order
coefficient 3, = 0?3/0w?|,, is known as the group velocity dispersion (GVD). It
governs the rate of temporal broadening experienced by the pulse. Equation (2.62)
shows that neither Raman scattering nor the frequency dependence of the group
velocity dispersion play a role in the formation of the fundamental soliton.

Mathematically, it is possible to show that, in the anomalous dispersion regime
(B2 < 0), a certain class of solutions may fulfil Eq.(2.62): these are called fun-
damental solitons. Requirements for this are twofold, fundamental solitons must
have [20]:
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e a hyper-secant shape, this is mathematically described by

A(z=0,T)=/Pysech(T/TO), A(z,T)=+/Pysech(T/T0)e "/
(2.63)
Ty is the duration of the pulse and P is the peak power.
e asoliton number N—which determines the maximum energy for which the inter-
play between dispersion and nonlinearity allows for a stable solution—that must

be unity:
N =/La/Lyr =/7PT5 /|| = 1 (2.64)

where, L; = T02|52| and Ly; = 1/(vPy) the dispersion and nonlinear lengths,
respectively.

Fundamental solitons are not the only solution to the NLSE, it actually allows for
higher order solitons to exist. These have an integer soliton number higher than fun-
damental soliton (e.g. 2, 3, 4,...). They correspond to the interference of fundamental
solitons, with different amplitudes and phase, during propagation. In this case, the
soliton is periodic upon propagation:

AGZ+ Ly, T) =A@, T), A(z=0,T) = /Pysech (T/T0). (2.65)

Here, L is the dispersion length, and (3, is the group-velocity dispersion parameter
of the medium at the carrier frequency. Upon propagation, a second order soliton,
for example, goes through a cycle of expansion and compression in the time domain
(and reciprocally compression and expansion in the spectral domain). Nothing binds
fundamental solitons together to form higher-order solitons: they only have the same
velocity and thus interfere constructively. If the degeneracy of the velocities of the
different constituents of a higher-oder soliton is disturbed, that is if these constituents
start propagating at different velocities in the fibre, the interference between them
will not be constructive any more. A soliton of order N > 1 will therefore break into
N fundamental solitons.

2.2.1.4 Pulse and Probe Interaction

The theory developed for this Thesis accounts for the interaction of a soliton with a
weak probe wave, or with waves in the quantum vacuum state (not populated with
photons). We will now proceed to describe such an interaction. For the sake of this
Thesis, itis enough to consider cross-phase modulation only. Consider a fundamental
soliton and a continuous-wave probe of intensity significantly lower than that of the
pulse forming the soliton. Their well-separated central frequencies are denoted wy
and w,, respectively. In practice, the nonlinear interaction between the two fields
is unidirectional with the soliton acting on the probe and the back-reaction being
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negligible because of the low intensity of the second field. The nonlinear polarisation,
which is in the same direction as the probe field E,, reads [21, 22]

.
Py = §€0X(3)|Es|2Ep, (2.66)

where r is 1 if the fields are orthogonally polarized and 3 if the fields are polarized
along the same direction. With such a polarisation, the full wave equation in real
space is [21, 23]’

(02 + B*0)) E, = O} (YE,) = 0. (2.67)
Identifying .
X = Ex(”lEsI2 (2.68)

as the nonlinear susceptibility induced by the pulse and writing the propagation
constant § = wn(w)/c out, we find that this wave equation can be written as

¢*0ZE, — On*(i0)E, — O} (XE,) =0, (2.69)

where from it becomes clear that the susceptibility x induced by the pulse on the
probe is a local change of refractive index. We identified this effect earlier as the
Kerr effect (see Sect.2.2.1).

Let us recall the dynamics of propagation of a wave of low intensity in a bare
fibre. Although the refractive index of the fibre experienced by the wave depends on
its frequency, it is constant along propagation. A weak probe of constant frequency
will therefore propagate with constant group and phase velocity. The wavepacket
propagation is a bit more complex because of dispersion—the difference of the above
mentioned velocities for different frequencies—but the refractive index profile of the
medium is not modified by the probe. And its frequency is thus unchanged. This is
in contrast with the influence of the soliton on the probe: under the Kerr effect it will
modify the susceptibility and the probe will experience a local change of refractive
index,

niy=n"4x. (2.70)

This transient increase in refractive index will have implications on the probe field:
its group and phase velocities will change. And under dispersion, it will frequency
shift. This transient frequency shift, usually almost negligible, can be significant in
the case where the probe and soliton have very small relative speed.

This change in velocity and frequency of a probe wave interacting with a pulse—
soliton—in an optical fibre are the fundamental ingredients of optical event horizons.
Contrarily to ‘dumb holes’ the inhomogeneity of waves in the medium is not induced
by a change in the fluid flow velocity but by a local change in the index of the

"Note that in this section, the partial derivative with respect to a variable is denoted by 0, = %
(only when greek indices p, v are written do we use the relativistic-covariant formulation).
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medium—hence a change in the waves velocity with respect to the medium. In the
next section, we shall elaborate upon the first experiment that demonstrated a classical
effect of analogue event horizons in an optical setup: frequency shifting at the group
velocity horizon.

2.2.2 Fibre-Optical Analogue of the Event Horizon

In this section we will examine further the scheme of an intense pulse propagating
in an optical fibre, and is effect on weak probe waves. We will see how, when the
group velocity of the probe and pulse are matched, the probe experiences a group
velocity reversal in the co-moving frame, in addition to a frequency shift. This, as was
discussed in the River Model of the black hole and its implications (see Sect.2.1.3.1),
is the behaviour of waves at analogue event horizons. We will show how this analogy
for optical waves was first demonstrated.

2.2.2.1 At the Speed of Light

The influence of the pulse on the probe wave is best described in a frame of reference
in which the pulse is stationary. For the purpose of the present discussion, we will
adopt the coordinate transformation of [23]:

(=2 r=1-%, 2.71)
u u
with u the group velocity of the pulse—and hence the speed of the frame. Note the
peculiar implications of this coordinate transformation: the propagation distance has
been normalized with respect to the velocity, which yields the propagation time. To
the exchange of space and time, this transformation is similar to a Galilean trans-
formation. Although ¢ and 7 do not correspond to space and time coordinates in the
moving frame (the transformation is not a Lorentz transformation), they do define a
non-inertial coordinate system in which we can solve the wave equation. As the frame
moves at speed u, itis clear that the pulse remains centred at 7 = 0. We assume a pulse
whose energy distribution does not vary along propagation—that is independent of
(. This implies that the nonlinear susceptibility is simply x = x (7). Expressing the
optical wave equation in terms of the vector potential A, related to the electric
and magnetic fields via E, = —0,A, and B, = 0, A, and substituting the partial
derivatives of the coordinates in the co-moving frame (0, = %(& —0;), 0, =0,)
into the wave equation (2.69), we find the wave equation for weak probe waves in
the presence of an intense pulse

2
u
O — 0. A, +u?B(i0)A, — C—zaﬁ(XaTAp) =0. (2.72)
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Thanks to the exchange of the space and time coordinates, the simple form of the
operator (B%(i8,) is maintained. In the historical method, the authors derived this
wave equation from a Lagrangian.

The wave equation will be solved by decomposing a solution into its plane wave
components. The latter behave according to the dispersion relation of the fibre in the
co-moving frame [21, 23]

W AW (1 == % (n(w) n 2&;))) , 2.73)

with '’ the frequency as measured in the comoving frame. We see that the nonlinear-
ity affects the form of the dispersion profile but not the velocity—u is constant in this
model. The dispersion relation is a second order polynomial, it has two branches cor-
responding to probe waves propagating forward or backward in the moving frame—
co- or counter-propagating, respectively, with respect to the pulse in the laboratory
frame.

2.2.2.2 Fibre-Optical Analogy

Before solving the wave equation (2.72), we explain how a soliton in a fibre acts as
a pair of analogue horizons to probes waves. The propagation of a short and intense
pulse in an optical fibre simulates a flow-velocity profile that moves with the pulse.
Each pulse locally increases the effective refractive index of the fibre because of the
Kerr effect. The speed of light waves in the fibre being determined by the refractive
index, this pulse behaves like a perturbation in the flow velocity of the fibre. A wave
propagating in the same direction as the pulse attempts to move against this flow,
through interaction with the pulse its velocity decreases. To waves in the fibre, the
pulse separates two regions of flow velocity: the outside of the pulse, where it moves
at subluminal speed, from under the pulse, where it moves superluminal. This is in
complete analogy with a moving fluid. Clearly, both edges of the pulse act as an event
horizon: at the trailing edge of the pulse the flow velocity decreases in the direction
of the pulse, this is a white hole horizon. The opposite occurs at the leading edge of
the pulse, this is the time reverse of a white hole horizon, a black hole horizon.
Frequency shifting at the white hole event horizon being easier to explain, we will
first focus on the fate of a wavepacket incident upon the trailing edge of the pulse.
This wavepacket will experience an increase in refractive index and thus be slowed
down as it approaches the pulse. The front of the wavepacket will interact with the
pulse before its back does, and will thus be slowed down earlier—resulting in a
compression of its wavefront, an increase in frequency. In the absence of dispersion,
this would continue indefinitely and the wavepacket would be squashed at the horizon
with ever-increasing frequency. This reminds us of the effect of a white hole on a
wave emitted from its horizon (the time-reverse of the black hole infinite redshift):
an infinite blueshift, and of the Trans-Planckian problem with Hawking radiation.
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Fortunately, this shifting will be limited by dispersion. Indeed, because it depends
on dispersion, as its frequency increases the speed of the wavepacket reduces, until
it becomes slower than the pulse. In the co-moving frame, the wavepacket then
appears to turn around and to be dragged away from the horizon. An analogue white
hole event horizon thus reflects and blueshifts the incoming wavepacket. Owing to
the time-reversal symmetry of the black- and white-hole horizon effects on waves,
we can now simply state that a black hole would redshift and reflect an incoming
wavepacket.

As we will show later (see Sect. 4.3.1) any transient increase in the refractive index
forms an event horizon for optical frequency waves. The value of the frequency shift
of the incoming wavepacket depends on the magnitude of this increase, and can be
easily determined: the process of frequency shifting must conserve the co-moving
energy hw’ (because the Lagrangian describing the interaction is time-invariant in
the co-moving frame). We write the dispersion in a form that explicitly illustrates
the dependence of w’ on én (én ~ x/2n):

W= w (1 _ % (W) + on(w. T))) . (2.74)

Note that the 7 dependent change induced by the pulse has been included in agree-
ment with Refs. [21, 23]. According to this equation, w’ = constant is a condition
that determines a family of contours in the w — dn plane (see an example in Fig.2.5).
During the interaction, «’ lies on one of these contours (determined by w the lab-
oratory frequency of the wavepacket and dn). Reflection in the co-moving frame,
which is accompanied by frequency shifting in the laboratory frame, is possible
when the initial frequency of the wave in the laboratory frame is close to w;,, the
group-velocity-matching frequency (the frequency which has the same group veloc-
ity as the pulse). At w,, the group velocity in the moving frame vanishes. Around wy,,
the w’ = constant contours form parabolas centred at w,,. An incident wavepacket
will thus see its laboratory frequency be modified by the pulse, as it travels along a
parabolic contour and lands at the shifted frequency—that has moving frame group
velocity opposite to that of the incident frequency. Waves outside the event horizon
frequency window® will be able to pass through the pulse.

This geometrical optics description does unfortunately not describe entirely the
interaction of the probe and pulse. Indeed, real waves are spatially extended and do
not have well-defined values of both w and 7. A full wave treatment of the optical field
(see Refs.[21, 23]) reveals that waves are only partially reflected at the pulse. Some
of the wave energy can be transmitted via the tunnelling effect [24]. The amount of
reflection decreases as the incident wave frequency moves away from w,,. We shall
elaborate further on this in Sects. 3.2 and 5.3.

8¢f. Sect.3.2.3.
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2.2.2.3 Frequency Shift at the Horizon

After the waveguide-based proposal [25], a collaboration between the Quantum
Optics groups of Leonhardt and Konig, at the University of St Andrews, was the
first to propose a model for analogue horizons in optical fibres realised by means
of a fundamental soliton propagating in a fibre. They experimentally demonstrated
the frequency shifting of waves at a white hole horizon in a seminal paper published
in 2008 [23]. A full quantum treatment of the field accompanying this publication
established that pairs of photons are emitted from the vacuum at the horizons formed
by the edges of a soliton in the fibre.

If the probe is replaced in the fibre by a set of sufficiently weakly excited modes
(even in the state of quantum vacuum), these will experience the cross Kerr effect
of the pulse [23]. These modes constitute a quantum field of light, and light is a real
electromagnetic wave so, according to Fourier analysis, their oscillations at positive
angular frequency w will be accompanied by the complex conjugate amplitude at
—w. These positive- and negative-frequency modes of the field have a positive- and
negative-norm, respectively, in the field theory [23, 26, 27]. At the event horizon in
the fibre, these modes will mix, thus creating observable light quanta (a more detailed
analysis supporting this statement will be the topic of Chap. 4).

The St Andrews team did not observe the spontaneous emission of light from the
vacuum at a horizon but showed that the expected temperature of emission would
be of the order of 10? Kelvin, many orders of magnitude higher than any other
condensed matter analogue system promises. The scheme they designed benefits
from the fact that all the aspects of the physics of analogue event horizons come
together to facilitate the observation of Hawking Radiation.
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2.2.2.4 An Optical Wave with Negative Frequency?

Before we move on to presenting the novel theory of spontaneous emission of light
quanta at a moving horizon, let us dwell upon the idea of negative frequency waves,
as we did in the introduction for the one-dimensional string. A collaboration inspired
by an original idea of Friedrich Konig indeed reported having observed the transfer
of energy from a soliton to a dispersive wave of negative frequency [28].

All light oscillate with both positive and negative frequencies: the field A is
related to its frequency spectrum A by Fourier transformation, recall Eq. (1.1) from
the introduction—

+oo
A= / Aw) exp™ dw, (2.75)

oo

where the integral extends from negative to positive frequencies. Since A is a real
electric field of light, A* = A, hence A(—w) = A* (w). Accordingly, the negative
part of the spectrum entirely depends upon the positive part, which makes negative
frequencies seem redundant for waves. However, it is possible to perform an exper-
iment where the positive frequency part couples to the negative frequency part, thus
displaying the full complex nature of the electromagnetic field [29].

In quantum physics, the positive- and negative-frequency components of the field
are assigned a positive and a negative pseudo-norm, respectively, by (1.12). In the
field expansion (see Sects. 3.1.2 and 3.2.2 for details), the positive norm mode of
the field is attached to its annihilation operator, and the negative norm mode to its
creation operator. In a process where positive norm modes are coupled to negative
norm modes (and vice versa), the creation and annihilation operators of the field will
mix, which results in the spontaneous creation of photons from the vacuum.

In the experiment [28], a temporal soliton is propagated along an optical fibre. In
the presence of higher order dispersion, the fundamental soliton becomes unstable
and can, in this case, couple to dispersive waves that have the same momentum as the
soliton. This resonance effect is known as Cerenkov radiation [30-32]. The generated
wave is normally of positive frequency (norm), but the momentum conservation also
allows for a negative frequency (norm) solution.

The momentum conservation can be expressed in terms of the Doppler shifted
frequency in the moving frame of the soliton, w’ = w — uk, where u is the velocity
of the soliton and k = nw/c. The resulting condition is w’ = w},, where W’ (W} )
is the frequency of the generated light (input soliton). Momentum conservation in
the laboratory frame corresponds to energy (frequency) conservation in the moving
frame. For the sake of the present argument, we consider a simplified two branches
(positive and negative optical laboratory frequency) dispersion relation of light in the
comoving frame, as displayed in Fig.2.6. The figure shows that, under the Doppler
effect, some parts of the laboratory positive and negative frequency branches have
positive co-moving frequency. Thus, there are two further laboratory frequency w
that share the same w},, with the input soliton. One is of positive laboratory-frame
frequency and is the above mentioned positive frequency resonant radiation (RR)—
or Cerenkov radiation—and the second is of distinctly negative laboratory-frame
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Fig. 2.6 Typical dispersion
relation k = k(w), e.g., for
fused silica glass with
second- and third-order
dispersion, a in the
laboratory reference frame
and b in the reference frame
comoving at the soliton
velocity. Dashed curves
indicate the (laboratory
frame) negative frequency
branches of the dispersion
relation. Figure and caption
from [28]

Fig. 2.7 Experimental
results for negative RR
generation in a
photonic-crystal fiber. a—b
Measured spectra in the
visible and UV regions for
three different input
energies: 246 pJ (dotted
line), 324 pJ (dashed line),
and 366 pJ (solid line). ¢ Full
fiber dispersion relation:
positions of the predicted RR
and negative RR spectral
peaks are indicated. The
inset is a 25 x enlargement of
the curve around the RR
wavelength. Figure and
caption from [28]
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frequency. The authors of [28] call this wave the negative resonant radiation (NRR).
Note that there is no positive solution at minus the negative frequency, except for the
complex conjugate fields, enforcing that the field is real-valued (see Appendix A).
For the experiment, a 7-fs nJ-energy pulse was coupled into a few mm-long fibre.
The pulse compresses in the fibre with a very wide spectrum such that it excites both
the RR and NRR modes. In the laboratory frame, the conjugate field mode to the
NRR lies in the UV, around 230nm depending on the fibre used, very far from the
IR-centred pulse. Thus the energy transfer is less efficient between the pulse and the
NRR than itis between the pulse and the RR. Nevertheless, a clear signal can observed
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at the expected wavelength (see Fig.2.7). It is strongest when w} , = w._;,,,» that is
when energy is transferred from the central laboratory frequency component of the
soliton. Furthermore, it was established that the generation of NRR light depends
on the pulse compression and fibre parameters: the excitation of the NRR mode
critically depends on the spectral support in the ultraviolet [33].

The generation of NRR, via its quantum field origins and also because it ought
to fulfil conditions akin to those of light scattering on an optical event horizon (see
Sect.2.2.2), shed light on the physics of astrophysical particle creation in optical
analogues. It also promises to be an excellent tool to test the theory developed in
Chap. 4.

2.3 Equations of the Optical Spacetime

Before delving into the details of the quantum field theory used in this Thesis, let us
briefly examine the arguments that support the analogy between light in media and
black hole physics. We will here develop a simple, and yet completely relativistic,
theory of light propagation in dispersive media. This is a novel result of this Thesis,
and goes beyond works in the literature that have solely considered the equations for
light in nondispersive media (see, for example, [23, 34—36]) or regimes of dispersion
without group velocity dispersion [37] to draw the analogy with the sonic metric
found by Unruh [14] (2.51). Thus, we develop a different formalism from those
presented previously to explain the formation of a soliton in the fibre or to establish
the existence of horizons in dispersionless media: indeed, the present argument does
not depend upon the details of the mechanism that underlies the existence of the
horizon condition. Rather, we seek a phenomenological understanding drawn from
the mathematics of General Relativity, the peculiarities of the wave equation we call
upon are only a means to this end.

2.3.1 Action in an Optical Medium as an Analogue Metric

Recall the Painlevé—Gullstrand metric (2.38),in 1 + 1D it is
ds* = — (¢ — B*)dr* + d¢* + 2pdTdC. (2.76)

We wish to establish under which conditions the action of light in an optical medium
can be analogous to that of a massless scalar field in (2.76). To this end, we now
develop a completely relativistic theory of light propagation in dispersive, inhomo-
geneous media.

So far in the present chapter, we have always considered that the electromag-
netic field depended only on the longitudinal and time coordinates, z and ¢. This is
motivated by the fact that in the experiments that are relevant to our theory, light
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(for example the pulse and the probe of Sect.2.2.2) propagates in the z direction,
and the variations of the electromagnetic field in the transverse directions effectively
are negligible. For example, in an optical fibre, light propagation is based on total
internal reflection. If we consider the set of transverse modes along y, which is dis-
crete, we can see that, for small y, the energy of the modes with k, > 0 is so large
that these transverse modes can be neglected (A >> Ay). Thus, the electromagnetic
field A (z, t) does not depend on y (the transverse coordinate). That is, the propaga-
tion of the electromagnetic field can be described by an effective actionina 1 4 1
dimensional space.

In a regime of linear dispersion, for frequencies much smaller than the resonance
frequency of a medium (Jw| K 2), the (low-energy) action of the electromagnetic
field A(z, t) on the medium

1 41k
L=3 ((1 + @) (0, A)* + c2(aZA)2> 2.77)

leads to the dispersion relation’

41k
Ak = Wt (1 + §> ) (2.78)

x can be understood as being related to the coupling strength of light in the medium.
Both €2 and  depend on z and ¢ in the laboratory frame.

We here face a problem: the field equation resulting from (2.77) is conformally
invariant, we cannot introduce an analogue effective geometry in 1 4+ 1 dimensions.
To circumvent this, we use the ‘silent’ (extra-)dimension y'® to write an analogue
metric [25] of line element!!

ds®> = —cdr* + <1 + 49%”) (dy* +dz?). (2.79)
Equations (2.77) and (2.79) are the keys to the study of the Lorentzian manifold that
describes the optical spacetime. We may now investigate how the curvature enters
this manifold, or, in other words, under which conditions the propagation of light in
dispersive, inhomogeneous media can be analogous to motion on a curved gravita-
tional background, and when the curvature is such that there is an event horizon.

9We shall derive and explain the full version of this equation in Chap. 3. Note that Eq. (2.78) is an
approximation valid when the medium features only one resonance.

10There is no direct relation between the metric and the wave equation for light in media.

Note that in this section, the partial derivative with respect to a variable is denoted by 9, = 2 __we

= ot
do not use the relativistic-covariant formulation.
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2.3.2 A Black Hole Horizon for Light

We can find under which conditions the modes of oscillation of the electromagnetic
field in the medium will experience an event horizon by pushing the analysis of
our General Relativity toy model Eq. (2.79) further. For this purpose, we rewrite the
metric tensor of Eq. (279" as

—c? 0 0
g=| 0 1+% 0 (2.80)
0 0 1+%

and express this metric in a stationary form by transforming it via
u
dit =~ (dT + C—de) . dz =~ (dC + udr), (2.81)

with v = 1A/1 — u? the Lorentz factor, to

Ak A7k u?
dS2 = — <C2 — l/t2 (1 + ?>> ’deTz + <<1 + §> — C—2> "}/ngz

4 4
+ 2u729ifd§d7 n <1 n g) dy? (2.82)

The transformation from (2.79) to (2.82) consisted in a Lorentz boost to an inertial
frame moving at velocity u with respect to that in which the action was initially
considered—the latter will be referred to as the observer’s frame in the remaining
of the section. In the stationary form (2.82), the metric is similar to (2.76), the
Schwarzschild solution to Einstein’s vacuum equation as expressed by Painlevé [11]
and Gullstrand [12]. As we saw in Sect.2.1.2.1, this metric has a horizon when the
Newtonian (3 velocity of space equals the speed of light ¢, for which ggy = 0.

In regions of the dispersion relation where w is approximately linear in k, in which
(2.78) is valid, the gop component is

4 2
goo o & — u? <1+if> —1-Z (2.83)
Q vy

where we have identified v, = ¢ (1 + 47x/ Qz)_]/ ®__the phase velocity of waves
in the observer’s frame. Thus, there is a black hole when v, = u, in total analogy
with the black hole metric (2.76)!

12The line element and metric tensor are related by Eq. (2.24).
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Clearly, this can only be achieved if €2 and «, the material properties, are not con-
stant in spacetime. By assumption, the material properties are independent of time:
0,2 = 0.k = 0. So one would necessarily resort to a moving spatial disturbance in
the medium—a moving change in the refractive index—to create the conditions such
that v, = u. The preferred frame from which to boost from the observer’s frame is
then obviously that of the moving disturbance (that propagates through the medium
at constant speed u). For the sake of the argument, say we are able to increase the
refractive index of the medium over a finite spatial region, thus creating a Refrac-
tive Index Front (RIF) that propagates at speed u (in the positive z direction in the
observer’s frame). Furthermore, for simplicity, let us assume that only the resonant
frequency €2 is affected (decreased) by this increase in the refractive index (that is,
remains constant throughout the medium, even under the RIF, and 2 depends on ().
Then, by studying the dispersion relation (2.78) one finds that the phase velocity of
light decreases as the refractive index increases. In other words, light is slower under
the RIF. The latter can then act as a black hole event horizon for modes of light that
would have the adequate frequency in the observer’s reference frame.

In a dispersive medium, the group and phase velocity of light modes are different.
Thus there will also be a condition similar to gog = O for the group velocity: v, = u.
This is not well described by the simple toy model (2.78) and the study of this
condition is therefore postponed until the next chapter of this dissertation.

2.3.3 Conclusion and Discussion

In this section of the Thesis, we have presented the theory supporting the science of
optical spacetime realisation. From first principles, Maxwell’s equations for electro-
magnetic waves, we have established a wave equation for light in optical fibre. We
have explored under which conditions a few-cycles and intense light pulse coupled
in an fibre could create a soliton, which, via the Kerr effect, modifies the refractive
index of the fibre, thus creating a flow velocity profile. It was shown how a weak
probe co-propagating with the soliton will experience a transient change in refrac-
tive index and how this bears classical features of gravity—black and white holes. In
particular, we elaborated upon the generation of waves with negative frequencies in
the laboratory at the event horizon, a promising observation that inspired the work
presented herein. In the next chapter we will use the tools of quantum field theory to
explain what the, so far mysterious, Hawking radiation phenomenon is, and how light
can be spontaneously emitted from the vacuum at the event horizon. We will then use
a quantum theory based on a more involved version of the light-matter interaction
model (2.78) to calculate the properties of emission from the quantum vacuum at the
group velocity horizon created by a moving disturbance in the refractive index of a
highly dispersive dielectric.
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Chapter 3 ®)
Spontaneous Emission of Light Quanta oo
from the Vacuum

3.1 Quantum Field Theory in Curved Spacetime

In the previous chapter of this dissertation we used the classical theory of Physics that
rules the dynamics of the Universe on large scales—General Relativity—to study
the behaviour of spacetime around spherical bodies. We introduced the idea of black
holes, regions of spacetime bounded by their event horizon from which nothing can
escape. In this section, we will try to tie General Relativity with Thermodynamics—
broadly speaking, the theory that rules the organization of the Universe. For this
purpose, we will follow the arguments which scientists of the early 1970s had to
contend with, and see how they found that these theories can be united at the event
horizon of black holes. This will eventually lead us to call upon Quantum Physics to
explain how black holes can be in a state of thermal equilibrium—thus introducing
the concept of spontaneous emission of light quanta from the vacuum.

The structure of this section is inspired by that of the series of seminars I gave
to PhysSoc, the undergraduate society at the School of Physics and Astronomy in
St Andrews, in the Autumn of 2016. The material presented here builds on the
content of these seminars, although the treatment will be much more mathematical
and more room will be dedicated to considerations drawn from General Relativity
and, ultimately the quantum theory of fields in curved spacetime. There exists a large
body of work that treats this material in different ways, see for example Carter’s 1973
review [1], Davies’ 1978 review [2], Birrell and Davies’ 1982 book [3], or Jacobson’s
1996 lecture notes [4].

3.1.1 Gravity and Thermodynamics: The Failure of Classical
Physics

The difficulty in classically describing the interaction between the conceptually
dissimilar aspects of fundamental physics accounted for by Thermodynamics and

© Springer International Publishing AG, part of Springer Nature 2018 49
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Gravity arises from the apparent absence of true equilibrium in astrophysics. This is
exemplified by the observation that a star is not made hotter by adding matter to it
but by removing matter from it—contrarily to laboratory thermodynamic systems—
they radiate and get hotter! (like all self-graviting systems [5]). The self-gravitation
effects of stars is only compensated for by their internal pressure (that arises from
their internal kinetic or zero-point quantum pressure) and their temperature (that
arises from thermonuclear fusion). In that regard, stars are a metastable state of mat-
ter in the history of the Universe: would a solar-mass star loose all its heat energy, it
would undergo a dramatic shrinkage to a fraction of its initial size and, after a period
of oscillations, explode in a nova resulting in the formation of a higher tempera-
ture cloud of gas. Heavier stars would undergo gravitational collapse and become
black holes. In any case, a star is a mere, and timely, interlude of matter organisation
between a distended cloud of gas and imploded matter.

We will begin by defining precisely the meaning of the event horizon and thus
pose the problem with black hole entropy. This will lead us to the analogy between
the laws of Thermodynamics and those ruling the size of black holes and to the
formulation of four laws for black hole mechanics. We will rely on the concept of
information [6] to identify the surface gravity of the hole with its temperature. In
terms of classical physics, this procedure leads to a paradox: given that the interior
of the black hole is hidden and inaccessible to us (outside observers) [7], it would
imply that it has a high entropy. Indeed, we cannot tell what has formed the hole—it
being characterised completely by its mass, angular momentum and electric charge,
it can be the result of the gravitational collapse of an infinite number of initial config-
urations [8]. The information about the internal microstates that the initial star was
composed of is wiped out by the collapse to leave only information about the macro
state (characterised by the three global parameters mass, angular momentum, and
electric charge) to be measured by an external observer.2 Thus, on physical grounds,
it appears that the bigger the hole, the more information it would have wiped out
when collapsing. This seems to indicate that the size of the hole provides a measure
of its entropy. We will see how this paradox can be ‘solved’ by calling on quantum
physics to give a meaning to the temperature attached to this entropy.

3.1.1.1 Black Holes and Their Event Horizon

In the previous chapter, we studied the structure of spacetime around a spherical
body in the framework of General Relativity. Stars having exhausted their nuclear
fuel will shrink under their own gravity (because their inner pressure can no longer
compensate their weight). Chandrasekhar calculated that any object heavier than
approximately 1.39 times the mass of the Sun at the onset of shrinkage [9] could not
become a white dwarf—having no low temperature equilibrium it would become a

IThe nuclear mass loss associated with fusion results in energy release that heats up the star.

2In that sense, the black hole represents the state of maximal entropy, that is the equilibrium end
state of gravitational collapse.
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neutron star and/or undergo complete gravitational collapse. We have seen that no
signal could travel outwards from singularities which occur in gravitational collapses,
the latter being hidden behind the event horizon—not visible to an outside observer.

Based on the mathematical framework of General Relativity, we saw how a black
hole on a spacelike surface could be referred to as a connected component of the
region of the surface bounded by the event horizon. Here, we will begin by sum-
marising the properties needed to study black holes. We will then discuss the region
outside a collapsed body in terms of these properties and, by studying possible tra-
jectories for photons (null geodesics), establish where there is an event horizon. We
will follow the steps of Hawking [8] and postulate the existence of stationary black
holes and prove that real solutions to the field equations tend towards these. From
there, we will progress to establishing that the event horizon does indeed have a
spherical topology.

A star having exhausted its nuclear fuel will undergo gravitational collapse. If
the collapse is exactly spherically symmetric, the metric is that of the Schwarzschild
solution outside the star (2.15). It has the following properties:

(i) The surface of the star will shrink inside the Schwarzschild radius rg = zsz .

When this happens, the spacelike 2-surface at rg will be such that both the
future directed families of null geodesics orthonormal to it are converging—it
will be a closed marginally trapped surface. The star will be in such a strong
gravitational field that even outgoing light from it will be dragged inwards.

(i1) There is a spacetime singularity.

(iii)) The singularity is not visible to observers at r > rg. This implies that one can
predict the future in the exterior region from the initial conditions with respect
to the time parameter (Cauchy data) on a spacelike surface.

Work by Penrose [10], Hawking and Ellis [7], and Gibbons [11] in the early 1970s
showed that these three properties hold. Elaborating upon these properties, we will
proceed to show that the surface area of the event horizon cannot decrease with time.

In order to discuss the region outside a collapsed object, one needs a precise
notion of infinity in an asymptotically flat spacetime. This was provided by Penrose’s
concept of a weakly asymptotically simple space [12]. The spacetime manifold M
of such a space can be embedded in a larger, Lorentzian, manifold M with a metric
conformal to that of M—3§,;, = Q?g.,. The function  is smooth and zero, with
non-vanishing gradient, on the boundary of M in M. This boundary consists of two
null hypersurfaces 7+ and F~ which each have topology S> x R!: these represent
the future and past null infinity respectively.?

Let us define the partial Cauchy surface S, a spacelike surface without edge which
does not intersect any non-spacelike curve more than once, and D' (S), the set of
all points p such that every—extended enough—past directed non-spacelike curve
from p intersects S. DV is called the future Cauchy development of S.

3The future of a set is the collection of all spacetime points that can be reached by future-going
timelike or null curves from that set.



52 3 Spontaneous Emission of Light Quanta from the Vacuum

Proposition (iii) above states that it should be possible to predict events near F .
That is, a weakly asymptotic space is (future) asymptotically predictable if S is such
that 7 lies in the closure in M of D*. In other words, a space is asymptotically
predictable if there are no singularities in J*(S), the future of S, which are naked,
i.e., not surrounded by an event horizon of finite radius. This is mathematically
expressed by saying that there is no singularities which lie in the past of future null
infinity J~(S).4

If we consider an asymptotically predictable space in which there are no singu-
larities to the past of S, and suppose there is a closed trapped surface® 7 in D*(S),
then there will be a non-spacelike geodesic in J(S) which is future incomplete and
cannot be seen from the end point F*. That is, there will be a singularity to the future
of 7 as 7T is a trapped surface, the null geodesics orthogonal to 7 are converging.

The past of future null infinity of S, J~(S), thus does not contain 7 : in topological
terms, its boundary j~(F ™) is the event horizon for F* [8]. j~(F ™) is generated
by null geodesic segments which have no future end-point—it is the boundary of the
region from which particles or photons can escape to infinity. Let us call S(¢), (¢ > 0)
a family of partial Cauchy surfaces® in D*(S). For sufficiently large ¢, S(¢) will
intersect the event horizon: B(t) = S(t) — J(F ) will be non-empty. A black hole
is then a region of S(¢) from which there is no escape to ™, a connected component
of B(#) [8].7 The study of spacetimes which possess an event horizon reduces to the
study of the event horizon.

If the collapse was strongly asymptotically predictable, one would also expect
the solution of the field equations outside the event horizon to become stationary
at late times. Armed with this intuition, Hawking postulated stationary solutions
to the field equations outside the event horizon and proved that real solutions do
indeed tend towards these [8]—thus placing certain limits on the possible behaviour
of black holes. An immediate consequence of the definition of the event horizon
as the boundary of a past is that through each point of the horizon surface there
passes a maximally extended future-directed geodesic which remains always in the
horizon—it never reaches F*. These null geodesics are called the generators of
the horizon j~(F*). The convergence of these generators can never be positive
(Hawking provided a proof by contradiction of this statement in [8]). This bears
huge implication in terms of the possible behaviour of black holes: since the null
geodesic segments that generate the event horizon have negative convergence and
have no future end point, the surface area of the boundary of the black hole cannot
decrease with time. Additionally, after Carter, Hawking showed that the event horizon

“4The past of future null infinity of S, j~ (F1), physically represents the set of all events from which
an observer could escape to the asymptotic region.

S5This is a closed, spacelike, 2-surface whose ingoing and outgoing null normal geodesics are both
converging. For example, a sphere at constant » and v in Eddington-Finkelstein coordinates is a
trapped surface if it lies inside the horizon.

6 A partial Cauchy surface is a hypersurface which is intersected by any causal curve at most once.
7 A spacetime in which certain observers can never escape to the asymptotic region, i.e., for which
the past of future null infinity is not the entire spacetime, is a spacetime that has an event horizon.
It is said to possess a black hole.
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of a stationary black hole is a sphere—it has the topology S? (even if two black holes
merge into a bigger black hole, if this resulting black hole is stationary, topologically,
its event horizon will be a sphere).

3.1.1.2 Laws of Black Hole Mechanics

As they were studying the interaction between two black holes as defined in the
previous section, Bardeen and Hawking [13] derived the expressions for the mass
of a stationary axisymmetric solution of the Einstein’s equations for both a black
hole surrounded by matter and for the difference in mass between two neighbouring
such solutions. After their results and treatment, we will see how the area of the
event horizon and the surface gravity, two quantities that appear in their result, are
analogous to the thermodynamics concepts of entropy and temperature respectively.
The argument will culminate in the formulation of four laws of black hole mechanics
corresponding to the four laws of thermodynamics. This shall eventually allow us to
progress to the paradox of thermal equilibrium of black holes.

Already in 1972, Hawking had uncovered the analogy between thermodynamics
and black holes [8]: according to the theory laid out in the previous section, the
surface area of the event horizon of a black hole cannot decrease with time, i.e.
A > 0.8 This is analogous to the second law of Thermodynamics, which states that
the entropy of a system always increases with time.’

Let us digress for a moment and consider the behaviour of a particle outside the
event horizon of a black hole. If the particle rigidly corotates with the black hole,
it will have some angular velocity, a 4-velocity vector as well as an acceleration 4-
vector. The (redshifted) amplitude of the acceleration tends to some constant when the
particle is infinitesimally close to the event horizon.! This constant can be thought
of as the surface gravity k of the black hole [13].

We can now call on Bardeen’s and Hawking’s finding [ 13] that any two neighbour-
ing stationary axisymmetric solutions containing a perfect fluid with circular flow
and a central black hole, whose event horizon has a surface area A, and of angular
momentum Jy, are related by the differential mass formula:

oM = 8£5A+QH51H+f96d1+fﬂ5dN+f9_5d5’ G.1)
T

where 6d J is the change in the angular momentum of the fluid crossing an infinites-
imal surface element, and dd N and 6d S are the change in the number of particles
in—and in entropy of—the fluid crossing the same surface element. ;i and 6 are

85 A is the change in surface area of the event horizon of the black hole.

9Note that it was Hawking who discovered that black hole horizons must grow if there is only
positive energy that falls in, and Bekenstein who later established the link between this observation
and entropy.

10The acceleration of the particle arbitrarily close to the horizon goes to infinity, but from afar this
is multiplied by the redshit factor, which also tends to infinity in this case, yielding a finite constant.
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the “red-shifted” chemical potential and temperature of the fluid. 2y is the angular
velocity of a particle outside the event horizon which corotates rigidly with the black
hole. Let us compare this equation with that of a microscopic non-reversible change
in internal energy in terms of microscopic changes in entropy, and volume for a closed
system in thermal equilibrium—the fundamental thermodynamic relation [14]:

dU =TdS — PdV + ) pdn;, (3.2)

where the p; are the chemical potentials corresponding to particles of type i, and the
usual (reversible and of constant chemical composition) thermodynamic relation has
been generalised to account for potential change in the composition, i.e., the amounts
n; of the chemical components in the system. P and V are the pressure and volume,
respectively, of the closed system of internal energy U. From the first term of (3.1),
one can see that the quantity g- is analogous to the absolute temperature 7 in the
same way that A is analogous to entropy S in (3.2). This is the first law of black hole
mechanics.

Ascribing an effective temperature to the black hole did not shock Bardeen and
Hawking: because time dilation factor tends to zero at the horizon (see Eq.2.36),
the redshifted temperature  of any matter orbiting the hole must tend to zero as the
horizon is approached.

At the time, however, they opposed the above analogy with Thermodynamics
temperature and entropy by the following argument: a black hole cannot be in equi-
librium with black body radiation at any non zero temperature. Indeed, no radiation
can be emitted from the black hole, whereas some radiation will always cross the
horizon into the hole. Furthermore, they note that if one followed this analogy, any
addition of entropy to a black hole would cause some increase in the area of the event
horizon (which is classically constant).

Nonetheless, continuing the analogy between surface gravity and temperature,
one can formulate the remaining two laws of black hole mechanics [8]. The zeroth
law states that the surface gravity is constant over the event horizon, and the third
law stresses that it is impossible to reduce this surface gravity to absolute zero by
any procedure consisting of a finite sequence of operations.

3.1.1.3 The Paradox of Black Hole Heat

In the previous section, we established an analogy between the surface gravity of a
black hole and the concept of temperature in thermodynamics. But how can a black
hole have a temperature: it cannot emit anything, it cannot emit heat. And can thus
not be in thermal equilibrium with incoming radiation. This is a paradox. Calling
on Davies’ idea that information can be equated with negative entropy [2], we will
present the argument used by Bekenstein in 1973 [15] to establish the relationship
between temperature and mass and arrive at the conclusion that classical physics
fails to properly describe the thermodynamics of black holes.
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Let us glance back at Eq. (3.1), and remark that it can be interpreted as an expres-
sion of mass-energy conservation (corresponding to the above first law of black hole
mechanics). Now, after Smarr [16] and from (3.1), we express the total surface area
of the horizon as a measure of size, thus writing:

12
A—47T<2M2—ez+2M2<l—i—J—2> ) (3.3)
_ = .

in units of G = ¢ = 1, and with > < M? and J> < M* (e the electric charge, J the
angular momentum and M the mass of the black hole). In his 1972 theorem [8] upon
which we dwelt earlier, Hawking showed that the horizon area cannot decrease (even
for black holes having an electric charge and angular momentum), thus opening the
route to the study of black hole thermodynamics. From (3.3), and for a Schwarzschild
black hole (¢ = 0, J = 0), we can write

A = 16mM? (34)
and
oM 1 35)
rR=E — = ——. .
OA ~ 4M

wherefrom we can evaluate the entropy of the hole: recalling that, by (3.1), 87TdTI:4 =
ds, it suffices to integrate!! dM = kdA = TdS to arrive at the thermodynamic
relation:

2 S =28T

8m4M (3.6)
M = 28T < energy = 2 entropy X temperature

where the factor 2 entered as a result of the quadratic dependency of A on M. If
we rewrite the thermodynamic relation (3.6) in the form of (3.4), we can express
A and & as the product of two finite quantities M = Ax/4m. As the energy M is
finite, a black hole with zero temperature would seem to have infinite entropy. This
is puzzling.

To understand this puzzle, we resort to the relation between entropy and infor-
mation [2]: a highly ordered system has a low entropy, the amount of information
needed to describe it is very large (it has a high information content). The explanation
for this seemingly counter-intuitive statement goes as follows: the information about
the microstates that initially composed the star is destroyed by the gravitational field
(i.e., the space-time structure) and it becomes inaccessible to an outside observer
because of the event horizon. Before it had collapsed, the star had an ordered and
structured state, that was characterised by information about all the microstates that
composed the star. Upon collapsing, the system changes from this ordered, struc-
tured state to a few-parameter disordered state—after the collapse, the black hole is

1I'The first law of black hole mechanics states that S <> A.
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only characterised by the three global parameters (M J e¢)—and thus less information
is needed to describe it. As the order of a system decreases, its entropy increases:
less information is thus required to describe its state. A system in thermodynamic
equilibrium—such as the black hole, which is the state of maximal entropy of the
collapse—thus appears to be in the state of maximum entropy and minimum infor-
mation content, a small number of parameters is needed to describe it. As a result,
information seems to correspond to negative entropy. Such considerations of infor-
mation are useful in understanding the nature of the event horizon, as defined in a
previous paragraph: the ongoing discussion leads to the conclusion that black holes
possess a large entropy because of all the information they have wiped out. On the
basis of classical physics, the configurations and number of particles that have pro-
duced the black hole is infinite [17]. If we assign one bit of information to each
degree of freedom of these particles, we see that the information content of the black
hole, and hence its entropy, should indeed be infinite.

This unbounded entropy can be considered as being connected with the instability
of matter against total collapse. Just like one would apply quantum theory to an atom
(thereby ascribing it a stable ground state that prevents the electron from spiralling
indefinitely close the nucleus), it is fortunately possible to take into account the quan-
tum nature of the matter that formed a hole. Let us now lay some heuristic arguments
on information and entropy down to arrive at an expression for the temperature of
a black hole. The relation between energy and wavelength of a particle, £ = h/ A,
states that particles that produce the hole must have a wavelength shorter than the size
of the hole for their energy to be located within it. For the radius of a Schwarzschild
black hole, this leads to A >~ 2M, and thus a minimum particle mass of the order of
h/M, and hence to a maximum number of particles that went into forming this hole
of about M?/ h. The entropy can then be estimated to be

2
s — ey (M2 37
h

where kp is the Boltzmann constant and £ is a scaling factor for the entropy of the
hole. It is a dimensionless constant of order unity whose exact magnitude will be
uncovered in the next section. From (3.7), it is clear that S diverges in the classical
limit of 7 — 0O (but is otherwise finite!): one needs to find a full quantum theory of
black holes to set a bound on their entropy. Bekenstein [15] showed that the entropy
is proportional to the area of the event horizon by rewriting (3.7) in the form of (3.4):

ks
" 16mh

(3.8)

From (3.6), we finally find the temperature of a Schwarzschild black hole to be

T = h M~ 3.9
_<2§k3) . G
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By (3.5), this is

T = 2h 3.10
_<§k—3)n, (3.10)

thatis, T is directly proportional to the surface gravity of the hole. The latter equation
implies that a black hole would have to emit energy at the same rate as it absorbed
it: that a hole has a temperature means that it is in thermal equilibrium with a sur-
rounding heat bath at the same temperature. In other words, for the black hole to
have a temperature we must associate with it a thermal equilibrium radiation spec-
trum. Having stated this, the immediate question to pose is that of the origin of this
radiation—what is the mechanism behind it and where it originates from. To answer
this, we will proceed to a fully quantum treatment of fields in the vicinity of black
holes, but we can first make a few comments about the localisation of the radiation
upon emission.

The characteristic wavelength of this radiation will be A\g >~ h/k,T ~ 2M. If we
assume ¢ to be approximately unity, we find that this wavelength is of the order of
the radius of the black hole (as one would have expected from our choice of entropy).
This shows that the notion of location of the origin of the radiation (e.g. inside or
outside the hole) bears no meaning. That is, a temperature can be associated with
the black hole via Eq. (3.10) without having to state that radiation flows out of the
black hole itself. Nonetheless, we do have to consider the black hole as being hot—a
source of heat radiation. Classical physics fails at explaining this, we will therefore
resort to a full quantum treatment to unveil the mystery of black hole radiation and
solve the paradox of black hole heat.

3.1.2 Black Hole Evaporation

In this section, we will elaborate further on the final result of the above paragraph:
that, according to Eq.(3.10), a black hole has a temperature. We will use the frame-
work of relativistic quantum field theory to incorporate the effects of /4, the Planck
constant, in the theory, thus morphing the heuristic thermodynamic analogy into
true thermodynamics. The science of analogue event horizons being similar in treat-
ment to the historical approach to quantum gravity: semiclassical considerations of
quantum fields in a fixed (classical) background—in the present case a black hole
geometry—this section will be used to introduce the basic concepts and tools needed
to undertake this venture.

In what follows, we will see how the vacuum fluctuations of a field in such
a background have an effect on the thermodynamics of black holes via Hawking
radiation. We will begin by studying the history of a light mode in a gravitational
collapse. We will then show how distortions in the background geometry lead to
Hawking radiation being emitted by the hole and dwell upon the physical origin of
this flux.
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3.1.2.1 History of a Light Mode in a Gravitational Collapse

In 1971, Penrose established that it was possible to extract rotational energy from
a black hole with infalling particles [18]. Zel’dovich [19] and Misner [20] then
showed that similar process for waves existed—super-radiance. Zel’dovich [21],
Starobinsky [22] and Unruh [23] identified this process with stimulated emission
and asked whether a rotating black hole would spontaneously radiate. In his efforts
in favour of spontaneous emission from rotating black holes, Hawking first found
that a non-rotating black hole would emit a thermal spectrum of particles [24].

In order to derive this result, it is only necessary to consider the case of a massless,
scalar field in the Schwarzschild spacetime (this can be generalised to any quantum
field in a general black hole spacetime, see for example [3]). So as to avoid the issue
of boundary conditions on the past horizon, we do not consider the full Schwarzschild
spacetime: we imagine that the black hole was formed at some time in the past—on
F~. In what follows, we will find the relationship between waves that propagated
from past null infinity J ~ through the collapsing body—before the horizon formed—
and emerged from it, thus undergoing a very large redshift to J*. For the outgoing
waves F on J* to have finite frequency, the incoming waves f must have left J~ with
very high frequency [25]: we can thus rely on the geometrical optics approximation
to describe their propagation on the background geometry.

In this scheme, a v = constant ingoing ray, of pure positive frequency on J—,
propagates through the collapsing body and emerges as a u = constant outgoing
ray, of positive frequency on J . We relate u and v, the retarded time coordinates for
the modes of the field, by u = g(v), or v = ¢! (v) = G(u)—with v = t 4 r* and
u =1t —r* (see Sect. 2.1.2). The two sets of modes have asymptotic form

N e iwy, onJ~ Foa e”iwu  onJt T
fur e=iwGW o gt 0 YT ) griwe) | on g -11)

We will adapt the general method provided by Birrell and Davies in their book
[3] to derive Hawking’s result for the explicit case of a symmetric ball of matter
imploding across its event horizon. This is a one-dimensional analogue of gravita-
tional collapse that will allow us to investigate the physics of the Hawking emission
mechanism close to the black hole. The ball has a thin shell, and, in its exterior
region, is surrounded by empty space. Thus the unique solution of Einstein’s equa-
tion (2.14) is the Schwarschild spacetime described by the metric (2.15). Following
on the treatment presented in this chapter, we express the line element of this metric
in the Eddington-Finkelstein form (2.18) via the tortoise coordinate transformation
(2.17) and write the retarded space coordinate

r* =r+2Mln(ﬁ — . (3.12)

Inside of the ball, on the other side of the thin shell, the properties of spacetime
are irrelevant [3, 25]. For simplicity, and contrarily to Birrell and Davies, we will
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consider the spacetime to be flat: this will allow us to trace the history of the ingoing
modes as they propagate through the ball and convert into outgoing modes. Inside
the ball, spacetime is thus described by the Minkowski metric of line element (2.24)

ds* = —dT? + dr?, (3.13)

Wedefine V=T + rand U = T — r as the null coordinates constant on the interior
region ingoing and outgoing rays, respectively.

We want to establish the relation between the incoming and outgoing rays on
the black hole, therefore we let » = R(¢) describe the history of the shell (that will
contract inside of its Schwarzschild radius). In this one-dimensional hypersurface,
the metric must be the same as seen from both sides of the shell—this leads to two
conditions: the intrinsic geometry must match and the extrinsic curvatures of each
side of this hypersurface must match. The latter allows for determining R(¢) in terms
of the stress-energy in the shell, which is not needed presently. We thus focus on the
first condition, which reads:

-1
dT? —dR(t)* = (1 — 2—M> dr* — (1 — Z—M) dR(1)*
R(t) R(t)

L (4R®) g [ 2M ) (dr g L 2M AR\
- ( dT ) - ( R(r)) (dT) < R(t)> ( dT ) '
(3.14)

‘We now use these matching conditions to determine the relation between the values
of the null coordinates from F~ through the shell, v and V, through the centre of the
ball, V and U, and through the shell again to F*, U and u—see Fig.3.1. In other
words, we will find the form of the modes of the field in the remote future, after
incoming waves have converged on the centre of the ball, have passed through it to
become outgoing waves and propagated to F . We denote the limiting value of v
for rays which pass through the ball before it has shrunk to the critical compactness
(atr = ry) as vg.

For an incoming null rays entering the ball at a radius finitely larger than 2M,

-1
both (1 — %) and dg}t) are finite, and approximately constant. Thus the 4%

dT

Fig. 3.1 History of a ray
passing through a collapsing
ball. An ingoing ray v enters
the collapsing ball, passes
through the origin, and exits
as an outgoing ray u
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derivative is approximately constant, i.e. t o T. Likewise, in these condition r* is
linearly proportional to r. Hence the relation between v and V for v = vy:

V(@) =av +b, (3.15)

where a and b are constants. At the centre of the shell, » = 0; there, the above
expressions for the null coordinates in the interior region become

UuWw)=V. (3.16)

Upon exiting the shell, at a time Tj at which R(t) = 2M, R(T) ~2M + A(Ty — T)
(where A is a constant). Inserting in the matching conditions (3.14) results in

-2 2 2
(3 ~ (o) (5) -2
dT 2M dT (T — Tp)?
implying
t~—2M1n<T0_T>, T > T, (3.18)

(B is a constant). Likewise, as T — Ty, r* becomes

r ATy — T)
*~2MIn{— —1)~2MIn{ ——— ), 3.19
g n(2M ) n( M ) (3-19)
hence
To—T
u=t—r"~—-4MIn{ —— ). (3.20)
2M B/A

Furthermore, in this limit, U =T —r =T — R(T), so
U~0+AT—-2M — ATy. 3.21)

From Eq.(3.20), and identifying that at R =r =2M, T =1t, one gets that T =
vg — r*. Similarly, Ty = v — r*, and thus

U= g(v) = —4MIn (m) (3.22)

This is the same result as that obtained by Hawking with his general ray tracing
argument in 1975 [26]: he wrote

2M B
v=Gu) =vy— ——e WM

o (3.23)

which is easily obtained from the above equation (again A and B are constants).
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The explicit calculation performed here for the special case of a contracting ball
allowed for reproducing the (more general) result obtained by Hawking when con-
sidering the behaviour of modes of a field in the vicinity of a black hole [25, 26]. In
deriving Eq. (3.22), we have used the history of modes of the field passing through
the gravitational field created by a collapsing ball of matter. Intuitively, we know
that as the incoming waves propagate towards the shell of this ball, they will suffer
a blueshift. Upon re-emerging from the ball and propagating out to J*, they will
be redshifted (this was anticipated by the earlier derivation of Sect. 2.1.2). Since
we consider the case of a collapsing ball—that shrinks as the waves transit through
it—the relative increase in the surface gravity experienced by the outgoing waves
(with respect to that experienced by the incoming waves) will result in this redshift
to be of exponentially larger amplitude than the blueshift.

—iwv 3

From Eq. (3.22), we see that the incoming wave f,, = e is converted by the col-
lapsing ball to the outgoing wave F, = e MINGEEE)  This  factor
—4M In(57 ;’; - ) represents the experience of an asymptotic observer at late time u:
the outgoing null rays suffer an exponentially increasing redshift. Birrell and Davies
pointed out that this redshift is the same as that of the surface luminosity of the
collapsing ball (see [3, 27] and the derivation of 2.1.2.).

Note that the logarithmic dependence which governs the asymptotic form of the
F modes on J T does not depend on the details of the metric inside of the ball. Indeed,
it appeared in the last step of the matching sequence—using a flat spacetime metric
for the interior of the ball was a mere mathematical trick that allowed for arriving
at g(v) (G (u)) without the complicated calculus presented in [3]. Hawking showed
that the result at which we arrived here is more general than considerations of a ball
or ball with a thin shell [25, 26].

3.1.2.2 Hawking Radiation

We will now build on the results of the above paragraph to show how black holes
emit radiation. Essentially, the above considerations resulted in showing that a time-
dependent background geometry would redshift waves propagating through a body
collapsing to a black hole. In what follows, it will be shown that modes of a field that
would be devoid of particles in a remote past would, after having propagated through
the collapse, be sensed as populated by particles by an inertial detector in a remote
future—this is Hawking radiation and results from the disruption of the modes of the
quantum field as they propagate through the collapsing body. We will continue with
the geometrical ray optics argument laid out previously, and follow the treatment of
Hawking [25, 26], Parker [28, 29] and Davies as presented in Birrell and Davies’ 1981
book [3]; again we shall digress slightly from their exact derivation but eventually
arrive at the historical result. In doing so, we will introduce the fundamental tools and
methods of quantum field theory in curved spacetime that will be used throughout
this chapter, and to establish the novel results of this Thesis at a later stage.
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We consider the massless scalar field ¢, that obeys the wave equation
9" Dubyp = (—9) " 20,l(=9) 29" 0, 9] (3.24)

in the Schwarzschild spacetime. Mode solutions of this equation are a complicated
product of spherical harmonics and radial functions, but their detailed form is irrele-
vant to the present considerations—thus for the sake of simplicity we will resort to the
f. and F, modes as defined in (3.11), as solutions to (3.24) in the in and out region
respectively. We can do so if we remember that the dependence upon the angular
coordinates must be the same for each term of all equations in this section. Following
the general quantum theory of fields in curved spacetime [3] we decompose ¢ into
a complete set of f,, (positive frequency on F ) modes:

¢ = / dw(ay fo +al f2). (3.25)
The f,, modes are normalized according to the condition

(fwl ’ fwz) = 6w|w2~ (326)

We assume that no scalar particles were present before the collapse began—the f,
modes are in the quantum vacuum state

a,10) =0, Yw. (3.27)

‘We use the Heisenberg picture to study quantum states that span a Hilbert space—we
will henceforth use the Fock representation as a basis in this space, thus identifying
a,, as the annihilation operator and al’, as the creation operator for quanta in the mode
w. See, for example, Chap.2 in [3] for details of the quantization method on a curved
background.

From Eq. (3.22), we can determine the form of the outgoing modes when traced
back to F~

(3.28)

ioAM In((0o—0) /@M B/A)) 4 g
F, ~
0, v > V.

These outgoing modes are a complete orthonormal set of modes of the field ¢, which
may also be expanded in this set

¢ = / dw(@,F, +a’F?), (3.29)

thus defining a new vacuum state 10)

a,|0) =0, Vw. (3.30)
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We expand the out modes in terms of the in modes

Fo= [ 4t + 8 £ (3.31)
We can evaluate the o, 8., matrices by using Egs. (3.31) and (3.26)

A = (Fwa fw’)a 6ww’ = —(Fw, fj’) (332)

These matrices coefficients have the properties

D (k0 = BukBi) = G (333)
k

D (@ Bk — Burarr) = 0. (3.34)
k
Note that one could also write the converse to (3.31), that is

fo= [ dotat B+ B D). (3.35)

Equating the field expansions (3.25) and (3.29) and using (3.35), (3.31) together with
the orthonormality of the modes (3.26) we can work out the relation between the anni-
hilation operators attached to the incoming and outgoing modes—the Bogoljubov
transformations [30]

ay =) (Ol + F,40). (3.36)

w

and
a, =Y (ah,a0 — Bh,al). (3.37)
UJ/

Glancing at (3.36), one remarks that the two Fock spaces based on the ingoing
and outgoing modes are nontrivially different providing that 3, 7~ 0. Thus the in
vacuum state is not annihilated by the our annihilation operator (and vice versa). In
fact the vacuum of the outr modes contains a certain amount of particles in the in
mode, as will be derived now.

We now rearrange the linear expansion (3.31) to identify the Bogoljubov coeffi-
cients, and insert the form of F on F~ (3.28),

1 Jo [ P
a:/w N e / dve' vel_u4M1n((v0—u)/(2M B/A))’ (338)
27V w J_o
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* I iw'v iwdM In((vo—v)/(2M B/A))
B, =—=—1/— dve'“ Ve 0 . (3.39)
27V w J_o

Both integrands are analytic everywhere except on the negative real axis, because of
the branch cut of the logarithm function. Thus, and posing v = vy — v,

and

% dv/eiw/veiw4Mln((v')/(2M B/A)) =0 (340)
C

around the closed contour C—which is a half-circle. Equivalently to Egs. (3.38) and
(3.39), we could have written in v’:

| o S
of, = — | ZeTivw / dv/e—zw’vezw4M In(v'/(2M B/A)) (3.41)
e 2V w 0

or

1 jw _; e e )
Bw’w — _2_ Zpmiww f dv/etw uetw4M In(v'/2M B/A))’ (342)
™ w 0

which are also analytic according to (3.40). Equating (3.38) and (3.41) and using a
change of variables v’ — —v’ yields

[S) [S)
f dv/eiw’uei;,.)4M1n(v//(2M B/A) _ / dv/e—iw’veiu4M In(—v'/(2M B/A)—ie)
0 0
N (3.43)
— 6471'va/ dv/efiw’veioAM In(v'/2M B/A))
0

To arrive at this result, the relation In(—v'/(2M B/A)—ie) = —im+1In
(v'/(2M B/A)) was used, with € an infinitesimal variation in the phase introduced
to clearly identify the relation between the norm Bogoljubov coefficients.!? This
relation is found by comparing (3.43) with Egs. (3.41) and (3.42):

loww| = ™18, (3.44)

Earlier, the F modes were constructed as a set of positive frequency modes. But,
as can be seen from Eq.(3.35) they are not a linear combination of the in f modes
only: indeed, they are also expanded over some f* modes. These have negative
frequency with respect to the timelike Killing vector field in reference to which the
F modes have positive frequency. Thus the set of in and out modes do not have a
common vacuum state: some 3., will be non zero and the F modes will contain a

12The calculation (3.38)—(3.43) was historically performed by means of I'-functions [3, 26].
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mixture of positive-( ) and negative-( f*) frequency modes. '3

We can find the mean number of particles created into mode w by calculating the
expectation value operator N,, = a’a,, for the number of f-mode particles in the
state |0)

(0IN,,10) = Zlﬁwl # 0. (3.46)

That is, the vacuum of the F,, modes contains Zw |Bsw|? particles in the f,,
mode. In the present case this is

1
a Planck spectrum with a temperature of
Ty = ! (3.48)
"= %M’ '

the Hawking temperature of the black hole.

By Eq. (3.5), the temperature (3.48) is identical to (3.10) (with £ = 872), which we
heuristically arrived at earlier—this demonstrates the thermodynamics basis of black
holes. Black holes emit Hawking radiation, quanta spontaneously created from the
vacuum that propagate away from it and can be observed at late times by an observer
sitting away from the hole.

3.1.2.3 Origin of the Flux: Black Hole Evaporation

We have now resolved the paradox of black hole heat: quanta are emitted from
the vacuum because of the disruption caused by the gravitational disturbance of
imploding matter. This emission is thermal. Because it emits, the black hole can
be in thermal equilibrium. Yet, this discovery raises a few questions: where are the
particles emitted from, what is the source of this radiation, how does this process
obey causality and conservation of energy, what would a freely falling observer see
as they approach and cross the event horizon, what would an observer at late time see
if looking at the black hole, how does Hawking radiation fit in the picture of black
hole information, etc.

The purpose of this dissertation is not to present a Thesis that would have con-
tributed to elucidate any of these intriguing concepts. Nonetheless, for the sake of
completeness, this section will summarise some elements of answer to these many

3particles will be present because |0) will not be annihilated by a,:

a,l0) =Y 3,11 #0. (3.45)
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questions—the curious reader is advised to read the literature to go beyond the basic
arguments that will be laid out below (see for example [3]).

First, let us recall the argument of Sect.3.1.2: the wavelength of the quanta is,
upon emission, comparable with the size of the hole. It is, therefore, impossible to
localise the origin of this emission to within one wavelength: the particle concept
is only useful near F—in the vicinity of the hole, the radiation wavelength being
comparable with the spacetime curvature, the concept of locally-defined particles is
not valid. In his 1975 paper, Hawking called upon the concept of continuous spon-
taneous creation of virtual pairs of particle and antiparticle around the black hole to
explain the origin of the radiation at late times [26]. In this picture, strong tidal forces
in the vicinity of the hole could prevent re-annihilation of the pair that would be sep-
arated by a distance of the same magnitude as their wavelength of emission (the size
of the hole). This would allow for one of the peers to escape to F+ and carry positive
energy away from the hole, thus contributing to the Hawking flux (3.47), whilst the
partner would enter the hole on a timelike path of negative energy relative to J .
Alternatively, Hawking also suggested that the escaping quanta could have tunnelled
through the event horizon out to F*+ [31]. These two competing explanations are
still being debated by the community—we shall not lay the arguments of each party
down here, for they are irrelevant to this Thesis, though introducing the concept of
partner particle will prove to be helpful when studying spontaneous emission from
an optical event horizon.

One of the main arguments against the interpretations presented by Hawking
following on his discovery of the radiation is the ill-defined nature of particles near
the horizon. So, although the mechanism of radiation remains a mystery, one could
still try and find out the source of its energy. It was proposed to do so by calculating the
energy and flux density of this radiation at various positions around the hole—both
locally defined quantities. The mathematical complexity of such an endeavour goes
far beyond the scope of the present work; moreover, people have already dwelt upon it
at length (see, for example [2—4, 32]). Typically, one would calculate the expectation
value of the stress-energy-momentum in the state of the initial vacuum |0)—which
results in showing that the space curvature around a massive body induces a static
vacuum stress. Unruh, Davies and Fulling were the first who envisaged this vacuum
stress as a cloud of negative energy surrounding the body [33]. In the near-horizon
region, between about r = 3M and the horizon, the density of the cloud would be
about the same (and proportional to 1/M?—it would have the energy of one photon
of wavelength of the order of M emitted per time period of the order of M). The
density of the cloud would then drastically decrease at larger rs. In studying the stress-
energy-momentum tensor expectation value, they established that the source of the
energy detected at infinity would come from the gravitational field itself: the negative
energy cloud surrounding the hole would have a comparable energy magnitude to
Hawking radiation and would continuously stream towards the central singularity,
thus steadily reducing the mass-energy of the black hole. So the energy of the thermal
Hawking flux does not come from inside the hole (nothing can cross the event horizon
to outer space) but is provided for by the mass of the hole that depletes, because it
receives negative mass-energy from the incoming vacuum stream. Unruh, Davies
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and Fulling showed in their paper that this description of the sourcing of Hawking
radiation energy satisfies both causality and the conservation of energy [33].

Now when it comes to determining what an observer would actually measure,
it is important to define precisely what question is being asked: the motion of the
observer, as well as their localisation, with respect to the hole must be specified.
Thinking along these lines, one would end up asking two questions: what can an
observer who is freely falling on the hole detect? and what would an observer sitting
away from the hole (Wheeler’s bookkeeper) detect at late times? To answer these
questions, we consider an observer equipped with some apparatus that is able to
measure the total stress-tensor components. A detailed mathematical treatment of
the present questions in a two-dimensional model of a black hole was first provided
in [33] and then explicated further in [3].

A freely-falling observer, falling from a finite distance from the hole, would need
a finite proper time to reach the event horizon. And yet, as measured from infinity (in
u, v coordinates) the free-fall time is infinite (because of the effect of gravitational
time dilation, see Sect. 2.1.2). Therefore, from a distance (say for Wheeler’s book-
keeper), the black hole will emit an infinite amount of radiation during the (infinite)
time that the falling observer needs to reach the horizon. One would thus think that,
to Wheeler’s bookkeeper, the freely-falling observer should really encounter all the
particles emitted by the black hole. As was demonstrated in Sect. 2.1.2, the free-
falling observer will also appear redder and redder to Wheeler’s bookkeeper as they
approach the event horizon, until they seem to remain frozen there with infinitely
long wavelength (and are thus actually invisible). Wheeler’s bookkeeper cannot see
the freely-falling observer reach the event horizon—and because the event horizon
is only a global construct [31], it will not be experienced as a physical barrier by
the freely-falling observer (they would not notice that they are reaching and crossing
it). As they approach the horizon, the freely-falling observer will be surrounded by
particles that are “shorter and shorter” (because their wavelength, size, is “inversely
red-shifted” as the horizon is approached). Again, the ill-definiteness of the notion
of particle prevents us from assessing what they will detect (how would the observer
make sense of a counter click for a particle of significantly different wavelength than
the apparatus dimensions?). Thus, no operational distinction is possible between the
energy fluxes of Hawking radiation and that due to the sweeping of the observer’s
through the negative energy cloud: an observer who crosses the event horizon would
measure a finite energy density (because the two divergences cancel out), in rather
small amounts [2].

In contrast, as we stated above and as shown by Eq. (3.47), from afar, Wheeler’s
bookkeeper will detect a thermal flux coming from the hole (without being able to
trace its exact origin back). In deriving Eq. (3.47), we didn’t account for the effect of
the gravitational potential on the flux at late times. As it turns out, there will be some
backscattering of particle off the spacetime curvature surrounding the hole: only a
fraction of the emitted flux will be able to reach out to the asymptotically flat regions
of spacetime at FT. This is expressed by introducing a notion of probability for
particles created in a mode F to escape to infinity: I the grey-body factor. Wheeler’s
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bookkeeper will thus only detect a flux that is a filtered Planck spectrum (although
this is thermal—see [3]): the further from the black hole the bookkeeper is, the lower
the temperature, and the lower the frequency of the outpropagating modes the lower
their temperature.

In arriving at Hawking’s seminal result, we have used geometrical optics and
assumed that late time, on F T, rays would have a finite frequency. These late time
rays originate from the propagation of vacuum modes from J~ through the collaps-
ing spacetime, that are scattered by the gravitational potential of the hole. Regardless
of the exact event in spacetime at which Hawking radiation is emitted (i.e., at the
horizon or in the vicinity of the hole), the rays get extremely frequency shifted,
according to (2.23), as they propagate through the collapse and out to F*. In Sect.
2.1.2, we showed that radiation emitted at the event horizon would be infinitely red-
shifted as it propagates out to F . Of course, the argument that allowed us to arrive at
Hawking radiation features aspects of this catastrophic redshift: (3.43) really means
that out modes (of retarded coordinate u) will acquire a phase of e*™™“ (with M the
mass-energy of the hole) with respect to the in modes (of retarded coordinate v).
For out rays to have finite frequencies, in rays coming from F~ would have to have
TransPlanckian frequencies—infinitely short wavelength. This is, of course, unphys-
ical. This observation casts some shadow upon the validity of the derivation itself.
To date, this is one of the main objections to the phenomenon of Hawking radiation,
and neither the theories of General Relativity or Quantum Mechanics have provided
a definite answer to what is infamously known as the Transplanckian problem. This
hints at some Physics beyond our understanding. Fortunately, in analogue systems,
this TransPlanckian Problem does not arise, thanks to dispersion—refer back to Sect.
2.1.3 for initial comments on this, and see the conclusion of the next section (Sect.
3.2.4.4) for further comments in the scheme of optical horizon.

Finally, let us examine the effect of Hawking radiation on the black hole itself:
as particles are being radiated away, the hole will loose mass—thus increasing the
flux and accelerating the mass-energy depletion further. Eventually, a black hole
on which no positive-energy particles would fall would evaporate (and explode,'*
as hinted by the title of Hawking’s foundational paper—*“Black hole explosions?”)
[25]. The relationship between Hawking radiation and the information content of
the hole, as well as the final fate of all the information of the hole, remain matters
of passionate debate to date. The present Thesis will not attempt to contribute to
these debates. Indeed, the very ability of analogue horizon systems to answer such
questions has not been clearly established. We will instead focus on shedding light
on the mechanism of Hawking radiation, the spontaneous emission of light from the
vacuum.

14BJack hole explosion refers to the fact that the emission rate goes as 1/M? so that for small holes
this becomes very large, and the lifetime (which goes as M) becomes very small.



3.1 Quantum Field Theory in Curved Spacetime 69

3.1.3 Conclusion and Discussion

In this part of the dissertation, we have used the tools developed in the early 1970s to
investigate the then paradoxical black hole heat. We have established that a stationary
black hole would disturb modes of a massless scalar field in such a way that, when
propagating from remote past infinity to remote future infinity through the gravita-
tional collapse, they would be extensively redshifted. Furthermore, we have shown
how this disruption, caused by the gravitational disturbance of imploding matter,
would result in field quanta to be emitted in a thermal flux propagating from the
hole out to infinity. This, we found, was due to the relationship between incoming
and outgoing modes in our field theory: because they do not span the same vector
space (essentially the gravitational disturbance can be seen as an impedance mis-
match between the in and out regions) positive and negative frequency in modes mix
in forming positive frequency out modes. We then digressed from our mathemati-
cal path to dwell upon considerations that are still under discussion regarding this
thermal flux, Hawking radiation. In particular, we introduced the concept of pairs of
particles and of negative energy falling on the hole to explain what the source of the
Hawking radiation energy flux is.

In what follows, we will see how such ideas can be ported to the experimental
scheme of fibre analogue event horizon (as proposed by the St Andrews collaboration
in 2008 [34]). We will use a model for light and matter interaction in a dispersive
medium to establish a wave equation analogous to the Eddington-Finkelstein metric
by following the method laid out by Unruh (see Ref. [35] and Sect. 2.1.3 for details of
the method). This will reveal how light scatters from negative to positive frequency
modes (and vice-versa) at the horizon—which is the essence of the Hawking emission
mechanism—and leads us to the experimental idea that would allow for proving the
reality of the Hawking emission mechanism.

3.2 Quantum Field Theory in a Condensed Matter System

3.2.1 Quantum Vacuum Emission from a Refractive Index
Front

3.2.1.1 Rational for a Theory

In the preceding section, we have used Hawking’s semi-classical theory of fields
in curved spacetime background: we have studied the fate of modes of a quantised
fields as they propagate in a classical and evolving medium. We thus derived his 1974
result [25] that black holes emit a thermal flux, Hawking radiation (HR). Glancing
back at the final result of Sect.3.1.2.2, that HR is characterized by a Planck spectrum
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(3.48), and expressing it in standard units, we can understand why it has never been
detected:

hed 1227 x 10%kg
StGMks M

M
Thmas = K =6.169 x 10‘8VSK. (3.49)

If we insert the mass of the lightest black hole possible [9], Mgy ~ 1.39My, in
(3.49) we obtain Ty, = 85.75 nK. This is 8 orders of magnitudes below the colour
temperature of decoupled photons that form the Cosmic Microwave Background
(presently of about 2.7260 K [36]). In other words, HR is hidden from us by the
universe’s own glow. It is a euphemism to state that Hawking radiation is hard to
see.

Fortunately, as we saw in Chap. 2, Unruh showed [35] that, in total analogy with
their astrophysical counterparts, dumb holes should emit a thermal flux. Beyond
the realisation that the kinematics were analogous, Unruh’s crucial insight was that
once the analogy has been drawn, it is possible to repeat Hawking’s 1974 semi-
classical argument, only replacing light with perturbations in the field under study
(eg the acoustic field in [35]) to arrive at the conclusion that analogue horizons emit
quanta from the vacuum. He predicted that quantum hydrodynamical fluctuations
in a moving fluid would convert into pairs of phonons at the sonic horizon—thus
reviving the hopes to at least shed light on the Hawking emission mechanism. Note
that in this Thesis, we are agnostic about the identity of quantum vacuum emission
from analogues, i.e., we do not claim or disclaim that it is HR.

Following on the 2008 seminal experimental demonstration of the realisation of
an analogue horizon in optical fibres, in which the authors predicted that the moving
horizons would spontaneously radiate a thermal flux of a 1000 K [34], a handful of
groups have assembled optical analogue experiments: Faccio in Heriot-Watt in the
UK and previously at Insubria, Como, Italy [37], Leonhardt at the Weizmenn Institute
in Israel [38], Genty and Murdoch in Tempere, Finland, and in Aukland, New Zealand
[39], but none of them has managed to observe the spontaneous emission of light
from the vacuum. This is partly due to the lack of detailed analytical predictions of
the wavelength and intensity of the radiation for an actual experiment (although a
wealth of numerical studies has been carried out by Faccio’s group, see for example
[40—42], and others [39, 43-45]). Moreover, the role and influence of dispersion in
the details of the mechanism of spontaneous emission remains a topic of active study.
For example, in recent works, other authors [46—48] have calculated the Hawking
temperature Ty from the surface gravity %me” at the analogue horizon for
various Refractive Index Front (RIF) profiles (smooth and abrupt variations in the
refractive index) in dispersionless media. In addition, Unruh and collaborators have
discussed the rise of a grey body factor under the breakdown of conformal invariance
in a similar analogue toy model as Eq. (2.79) in [49].

Of course, the geometry of the RIF is an important factor in the ability to study
the characteristics of the spontaneous emission: for example, in the case of a pulse in
an optical fibre, the length of the pulse front has to be comparable to the wavelength
of radiation [34]. Furthermore, only smooth variations in the refractive index can be
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studied if one wishes to address concepts such as the relation between the temperature
of spontaneous emission and the surface gravity (a step function in the refractive
index formally corresponds to infinite surface gravity'®). And yet, understanding
the critical conditions needed to observe the spontaneous emission of photons at
an optical horizon can be greatly helped by analytically studying a step-like RIF
geometry'6 [47, 48, 50-52].

In particular, Finazzi and Carusotto developed a fully quantised analytic 1 + 1D
model based on a sharp step behaviour of the dielectric properties of a nonlinear
medium in [47]. At this moving boundary (RIF) between two multibranch disper-
sive media, certain modes may experience either analogue black- or white-hole or
horizonless configurations, leading to mode mixing and spontaneous emission of
radiation. In all configurations, the mismatch in the medium properties on either
side of the boundary leads to the mixing of modes of opposite norm and thus to
spontaneous emission of radiation. They performed numerical evaluations (based on
the material properties of fused silica) of the pair-production processes involved and
discovered that emission is dominant over optical frequencies. In their studies [47,
51], they focused only on emission spectra in positive-norm optical modes of light.
However, emission from the vacuum always comes in a pair of positive-and negative-
norm modes. As is exemplified by the existence of a (negative energy- or frequency)
partner particle to HR, the negative norm modes of the theory play the role of the
partner mode in the Hawking emission mechanism (at the output, one obtains a two-
modes squeezed state). This is relevant, in particular, because these negative norm
modes emit at different laboratory frequencies than their positive-norm parter modes.
Besides, in order to maintain these different configurations, Finazzi and Carusotto
finely adapted the velocity of the RIF when changing the nonlinearity. However, the
nonlinearity in the experiment typically changes independent of the RIF velocity,
leading to a spectral structure strongly dependent on the nonlinearity strength, as
well as to a scaling of the signal with nonlinearity.

3.2.1.2 Outline of the Theory

The results that will now be presented—that form the theoretical component of this
Thesis—were published in the summer of 2015 in Physical Review A, see [53]. We
use the model [47] to reveal the above-mentioned properties of quantum vacuum
emission by following the steps outlined here:

e we first expand the analytical model to consider emission from all modes of all
norms at any frequency and change of refractive index;

15 Although a step-like profile models an infinite slope at the horizon, which would correspond to an
infinite surface gravity and temperature, the calculations show a totally different result. As we will
see, the spectral densities we calculate are finite. I think this is because, ultimately, the amplitude
of waves is limited by dispersion.

1611 the experiment only smooth profiles can be realised. Calculations with an infinitely steep profile
only have a suggestive role in understanding the experiment.
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e hence we obtain emission for different refractive index changes in the frame co-
moving with the RIF without tuning the RIF velocity;

e we convert the spectra to the laboratory frame, including all mode contributions,
inclusive of the important negative-norm ones;

e finally, we find the scaling law for the total photon flux associated with black-hole
emission with increasing nonlinearity—RIF height.

These will all be essential in identifying emission in future optical event horizon
experiments. We will also show how these results yielded the intuition behind the
experiment that we performed in 2016-2017 and that will be presented in the final
chapter of this dissertation.

We begin with an introduction of the theoretical model of the scattering of vacuum
modes at the horizon. We detail how the interaction of light and matter in a uniform
dispersive medium is modelled, and identify the eigenmodes and study their prop-
erties. We then extend this model to consider an inhomogeneous medium composed
of two distinct homogeneous regions (of different optical properties) separated by
a moving RIF. We proceed to constructing eigenmodes of this nonuniform medium
and to describing the scattering of these eigenmodes, that is the mode conversion
process at the RIF, by the Scattering Matrix formalism. Finally, we quantize the field
modes and calculate the photon flux density in the moving and laboratory frames.
Next, in Chap. 4, we consider light-matter interactions in bulk silica—and compute
the spectra of emission in both frames. These spectra allow us to identify in detail
the contributions of the various modes to the emission, and the role of analogue
event horizons. We also integrate the spectra to evaluate the total emission and its
dependence on the refractive-index height.

3.2.2 Light-Matter Interactions in a Dispersive Medium

3.2.2.1 Lagrangian Electrodynamics

In this subsection, we lay out the field theory model that will later support the the-
oretical framework of scattering at a Refractive Index Front (RIF). We begin with
considerations drawn from Electrodynamics, that is the classical description of the
dynamics of the total system (in the present case, the electromagnetic field in a non-
relativistic medium). This will later enable us to describe the interaction processes
between radiation and matter: the scattering of field modes and emission of photons.

In order to describe the interactions of light with a homogeneous and transparent
dielectric medium, we employ a microscopic model inspired by the Hopfield model
of Condensend Matter Theory [54], as was first suggested by Schiitzhold and collab-
orators in [55]. We restrict ourselves to a one-dimensional geometry and scalar elec-
tromagnetic fields and operate at frequencies sufficiently far from the medium reso-
nances to neglect absorption. Matter, in the model, consists of polarisable molecules,

2mc

harmonic oscillators of eigenfrequency (resonant frequency) €2; = == and elastic
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constant /@i_l. In the medium, there is one such harmonic oscillator at each point in
space, but since the coupled electromagnetic field has a large wavelength compared
to the molecular scale of the dielectric, we can consider the dielectric in the contin-
uum limit'” and describe the electric dipole displacement by the massive scalar field
P;. The electromagnetic field (a massless scalar field) in the medium is described by
the vector potential A(x, t) via E = —8;A in temporal gauge.'® In order to repro-
duce the refractive index of most materials, we shall henceforth consider a medium
featuring three resonances. In the rest frame of the medium—the laboratory frame—
the interaction of the electromagnetic field with the three polarization fields of the
medium is described by the Lagrangian density [47, 54, 56]

ELF: __+ 8[
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3.50
8me? 8 (3-30)
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Where the inertia of the harmonic oscillators P; when subjected to an external drive is

m The term linear in A in Eq. (3.50) describes the coupling between the fields.
The Lagrangian density accounts for the free space and medium contributions to the
field through the first two terms and the sum, respectively. Dispersion enters as a
time dependence of the addends of the summation.

From the strong coupling of light with the polar excitations of the medium result
polaritons—hybrid light and matter quasiparticles [57]. As is illustrated on Fig. 3.2,
the coupling of the photon with the excitons leads to an energy anticrossing of
the bare oscillators, thus giving rise to new normal modes of the system known as
polariton branches. The energy shift depends on the overlaps of the electromagnetic
field and polarisation fields; it is proportional to the coupling constant ni_l. In the
case of a medium with three resonances, the dispersion relation resulting from the
anticrossing features four branches arranged around 3 poles: the “top” branch exhibits
gradient larger than the speed of light in the medium whilst the lower (energy)
branches, labelled as “upper”, “middle”, and “lower”, are characterized by a non-
parabolic energy-momentum dispersion. Hereafter, we will only study frequencies
over which the effects attached to the “top” branch can be neglected. Then, the non-
parabolic behaviour of the remaining 3 dispersion branches leads to the effective-mass
approximation [58] according to which polaritons have an effective mass and inherit
from excitons the capacity to interact with each other.!” Hence, Eq. (3.50) describes
a massive scalar field whose modes of oscillation can couple to each other—in what
follows we will study such coupling when those modes scatter at a boundary between
two regions of different refractive index.

7The model does not account for the dispersion changes due to the finiteness of the intersites
distance.

I8Note that in this section, the partial derivative with respect to a variable is denoted by 9, = dz
We do not use the relativistic-covariant formulation.

19Note that the lowest branch is approximately a massless polariton: it can be fitted with a dispersion
relation of the form |w| = c|k| for low wavenumbers (close to £k = 0).
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w w

Fig. 3.2 Light-matter interaction in a dispersive medium. A photon, represented by the green
contour line (of gradient the speed of light ¢) interacts with the exciton of a medium (represented
by the dotted red line, set at the resonant frequency of the medium €2). This interaction results in
the apparition of two distinct polaritons. These quasi particles obey the dispersion relation. The
interaction of one electromagnetic field with one polarisation field yields a two-branches dispersion
relation. The shape of the branches, and distance between them at the closest point (anticrossing),
depend on the elastic constant £~ ! of the exciton of the medium via the inertia (x22)~". The lower
polariton branch asymptotically tends to €2, whilst the upper polariton branch asymptotically tends
toc

3.2.2.2 Action

The step in refractive index (RIF) is propagating in the positive x direction at speed
u. It is convenient to express the Lagrangian density (3.50) in a frame co-moving
with the RIF by applying a Lorentz boost

()= (1)) o)

In this moving frame, the system is stationary—the medium properties are inde-
pendent of time. The Lagrangian density for light in a homogeneous medium there
reads

0-A)%  (O:A)?
L:MF=( )7 (9cA)

8mc? 8
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+
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See (2.81) for the transformation of the differentials. By the principle of least action
[59], we obtain the Hamiltonian density by varying the Lagrangian density (3.52)
with respect to the canonical momentum densities of light

oL 0, A
M, = MF

= S = it (3.53)
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and polarisation fields

OLyF VXD, P —ud:P) Ay
My = = 1A 27 3.54
P90, P) 1 (27C)2 T (3-54)

Thus

3
1
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i=1
From the Hamiltonian density follow the Hamilton equations, the equations of motion
for the fields [59]:

Oh; = 0_H

{ Vi e (3.56)
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where 1); and IT; are any of the field and conjugate momenta A, P;, T4 or I1p,
respectively. We complexify the massive field obtained from the action of (3.52) by
demanding plane wave solutions of the form

V = Ve, (3.57)

where V is the eight-dimensional field operator V = (A P; P, Py 14 T p T p, [ p,)7,
to the dynamical equations (3.56). In Fourier space, 0, = —iw’ and O¢ = ik’, and
(3.56) reads

—iw' A = 47nc?Tl,,

—iw'P, = 52 (M, — A2) fuik'
. 2 v
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(3.58)

Eliminating the fields in (3.58), simple algebra then leads to the generic Sellmeier
dispersion relation of bulk transparent dielectrics:

4dmk;
U2 = (P 1+Z i (3.59)

W2
(27rc)2

where the Lorentz transformations from the laboratory frame to the moving frame was
used to identify w' = y(w — uk) and k' = y(k — %w). This dispersion relation®” is

20Note that (2.78) is an approximate version of this dispersion relation where we have assumed that
w < |£2| for a medium with only one resonant frequency.
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T e

Fig. 3.3 Sellmeier dispersion relation, Eq.(3.59), with three resonances in the laboratory frame.
There are eight branches (black lines). A contour of w’ is shown in blue. Their intersection points
indicate the modes of propagation in the medium (red circles)

plotted in Fig. 3.3: there are eight branches, four with positive laboratory frequency,
and their four negative laboratory frequency counterparts, symmetric about the k
axis.

3.2.2.3 Noether’s Theorem and Norm by the Scalar Product

By construction, the complexified Lagrangian

womsiex | (O, A*D. A O A*D:A
eomp :§< _ OcATO, >+
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(3.60)
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is invariant under any transformation of the global phase of the dynamic fields (A —
¢'?A and P, — €% P;, likewise for the complex conjugate fields) [48, 49]. From
the Lagrangian (3.60), one can calculate the charge density (the net charge per unit

volume) [59]
3 3

p=i(ITHA+ > Ty P = > Py — A*TL,) (3.61)

i=1 i=1
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as well as the current density, the rate of change of charge over time per unit
length dl,

a 3 3
j= / dla—i = —iu(IT A + ZH};R — ZPi*npi — A*TI,). (3.62)
v i=1 i=1

complex

According to Noether’s theorem [60], the continuous symmetry of £, ;" (3.60)
implies a conserved current 0, p + 0, j = 0—this is the continuity equation. In the
moving frame, being the system stationary, 9.p = 0. Thus the continuity equation
for Noether’s current simplifies to 0;j = 0: the current density is a space-time-
independent quantity for the plane wave modes (3.57). Integrating Noether’s charge
density (3.61) results in nothing else than calculating the product of the field operator
V with itself, p = iVInV:

/ pdC =(V,V). (3.63)
—00
. . . . 0 L . o
7 is the symplectic (or selection) matrix—n = Lo ) with I the 4 x 4 identity
—1y

matrix. Equation (3.63) is the norm of an eigenmode®' —an orthonormal plane-wave
solution—of the system by the conserved scalar product

Vi Vi) =1 / dCVI (¢ IVa(C. )

i 3 (3.64)
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defined on the set of our Hamilton equations generalised to complex values (3.58).
The A~! prefactor was inserted for normalisation purposes.

As aresult of our application of Noether’s theorem—the space-time independence
of the charge density—, this Klein-Gordon [3, 59] product (3.64) is a conserved
quantity in 7, and therefore the norm of the state is conserved. The former can be
formally proven by the following algebraic calculation [61]:

21Note that, by replacing the conjugate momenta of the electromagnetic and polarisation fields by
their expression in terms of derivatives of the fields (Eqs. 3.53 and 3.54), one obtains the usual form
of the pseudo norm—as in Eq. (1.12), with ¢ a field. Because of dispersion, this expression would
of course be slightly more complicated, although as readily computable.
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The computation of the first terms yields
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and that of the addends of the summation
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Clearly, 0. (V}, V) = 0.2

Note that the scalar product (3.64) is not positive definite, and thus the norm of
all mode solutions—which is inherited from this scalar product—is not necessarily
positive. In fact, modes that have a negative frequency in the laboratory frame have
a negative norm, whilst modes that have a positive frequency in the laboratory frame

(3.67)

22An alternative proof follows from the observation that, given &,p=0 and (Vi, V5) =
a(Vy, V1) + Z?:l ; (Vi, Vi".>, being the second term of the latter equation zero, the assessment

of time conservation consists in calculating 8, [ a(V1, Vi) d¢ + 8- (Vi, Vi) = [ 8-a (V1, V1) dC.
Ora (Vy, V1) =0, and thus 9« (Vy, V,)=0.
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have a positive norm: Finazzi and Carusotto found that the sign of (V, V) depends

upon that of
a'(' o __ 2 |CUJ’| k Uvy
ACRIGE Rt (1- 7) (3.68)

where C,, is a moving frame frequency dependent normalisation factor for the mode
solutions [47]. Since u < c, the term in brackets in (3.68) is always positive, thus the
sign of the scalar product of V with itself depends upon the rat10 . Itis easy to find
an expression for v, the group velocity of a mode SOlU.thIl in the laboratory frame

from the dispersion relation (3.59)—by definition, v, = dk , and one calculates

dk w dk? w +Z A7k, (3.69)
dv  kdw? 2k (1 —w?/Q2)? ’

wherefrom, glancing back at (3.68), it is obvious that sign|| V|| o sign(w) [47-49,
53, 61].

For simplicity, we shall henceforth refer to the pseudo-norm (3.63) as the norm
of the field solution. Taking the complex conjugate of Eq.(3.63), (V*, V*), yields a
result of opposite sign to the inner product of V with itself. Thus modes belonging
to the upper (lower) half plane of the dispersion relation in energy momentum space
Fig.3.3 have positive (negative) norm. In the comoving frame, positive-frequency
waves with negative norm appear. Such negative norm modes were recently observed
in water wave experiments [62, 63] and in optics [64—66]. As we will see in a later
section, positive moving-frame-frequency negative-norm modes are associated with
spontaneous emission from the quantum vacuum. Due to the conservation of norm,
the generation of negative-norm waves signifies a simultaneous increase in positive-
norm waves, the generation of correlated waves.

3.2.3 Mode Configurations at a Refractive-Index Front

In the previous section we presented a canonical model aiming at describing the
phenomenology of light and matter interaction in a dielectric medium. We found
that mode solutions of the complexified fields equations of motion in a homogeneous
medium could have positive or negative norm as a function of their frequency in the
laboratory frame (the rest frame of the medium). We will now push our classical study
of the electrodynamics of the system further to describe a non-uniform medium.

3.23.1 Phenomenology of the Refractive Index

In this Thesis, we consider the simple geometry of a RIF as shown in Fig. 3.4 in the
comoving frame. The medium is composed of two homogeneous regions, separated
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by the RIF at { = 0, creating a step in the refractive index. The boundary at { = 0
constitutes an infinitely steep RIF which propagates in a steady and rigid way in
the positive ¢ direction. Phenomenologically, the refractive index of a homogeneous
region is described by the dispersion relation (3.59), with dispersion parameters x; g
(ki) and A; g (A; 1) in the right (left) region. The change in refractive index between
the left and right regions is modelled by the step height dn, defined by

n(¢) =n0(—=¢) +ngbd(Q) = ng + onb(—0) (3.70)

0(¢) is the Heaviside step function; and illustrated in Fig. 3.4. In an extension of the
oscillator model by Drude and Lorentz, the index change is described by the scaled
Sellmeier coefficients

Ril, = OKiR 3.71)
>‘i2L = UA?R’ '
where, for small index changes, it follows from (3.59) that
2ngd
R iy (3.72)
nyg—1

with n is the refractive index on the right side [47, 53].

Note that the present microscopic model of the dielectric [54]—a set of harmonic
oscillators (whose properties are described by the x; and \; position-dependent
constants)—cannot possibly account for the reality of the medium. Instead, it is
a simple, phenomenological means to obtain the dielectric constant of the medium
[67]. Indeed, a linear dielectric constant results in reality from a nontrivial collec-
tion of quantum processes. These would be further complicated when considering a
nonlinear dielectric. Therefore, the modulation (3.72) of both constants of the oscil-
lators by (3.71) is merely a proposal to describe the change of the dielectric constant
within a self-consistent theory. To me, this means that the details of the change in the
dielectric constant can equally be accounted for by a modulation of both or either
of k; and );. For the sake of the present work, I have decided to change both (by
(3.71))—others have proceeded likewise (see for example [47]) or otherwise (see
for example [48, 49]).%3 A full review of the various approaches, as well as a thor-
ough verification of the independence of the change in the dielectric constant on the
details of the model, would be important and shall be the subject of future work (see
Appendix B for additional details).

3.2.3.2 Modes in an Inhomogeneous Medium

We saw earlier (see 3.2.2.3) that, as a consequence of the continuous symmetry of
the complexified Lagrangian (3.60), Noether’s theorem yielded a space-time inde-

23Remark that the change in the refractive index described by (3.71) is frequency-dependent.
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Fig. 3.4 Sketch of the RIF in the moving frame: there are two homogeneous regions of uniform
refractive index on the left and right of a dielectric boundary of height dn

pendent current density for plane wave modes (3.57) of the field in a homogeneous
region. This implies that energy is conserved in the moving frame, that is the comov-
ing frame frequency w’ is a conserved quantity—this translates to the condition

Y(w — uk) = const (3.73)

in the laboratory frame (see Refs. [49] or [44, 48] for other ways to arrive at this
condition in different setups). This condition is a straight contour-line of slope u
and w-intercept w = '’ in Fig. 3.3. In terms of polariton physics, this means that we
can identify the modes of propagation of the massive field subject to the dispersion
relation in both regions for a given «w’. Thus solutions of fixed w’ are found at the
intersection points between a line of constant w’ with the various polariton branches
in the dispersion diagram (red circles in Fig. 3.3).

Combining Eqgs. (3.73) and (3.59), the dispersion relation in the laboratory frame
with the conservation of energy in the moving frame, yields the condition that mode-
solutions to the equation of motion have to obey. The dispersion relation (3.59) is an
eighth order polynomial, thus there exists a set of eight (w, k) solutions, modes of
oscillation of the field V that have the same energy in the moving frame. Note that
we consider only positive comoving frequencies w’ low enough for the contour line
(3.73) not to intersect with the top dispersion branch. On either side of the RIF, we
either find eight propagating modes or six propagating modes and two exponentially
growing and decaying modes, respectively, that take on complex w and k.

3.2.3.3 Subluminal Intervals

We now study the nature and configuration of modes as a function of the RIF height
on and for all comoving frequencies w’. Emission spectra with eight propagating
modes on only one side of the boundary were calculated in [47, 51], where the
velocity of the RIF was finely tuned to maintain such a mode structure when the RIF
height was varied. In [53] we addressed the experimentally relevant case allowing
for eight modes to propagate on either side of small refractive-index changes. Here
we present further results for all configurations and step heights. Following on the
above analyses, we focus our attention on the configurations of modes belonging to
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the “middle”-frequency branch in our model (3.59) (where A, < A < A3)—inthe two
materials studied later in this Thesis, this branch corresponds to the optical frequency
interval. We shall henceforth refer to it as the optical branch, whilst the lower and
higher frequency branches will be referred to as IR and UV branch, respectively.
Indeed, for our set of material parameters, we find that the mode configuration only
varies over the optical branch, whilst the nature of modes belonging to other branches
never changes.

In particular, consider the positive frequency optical branch in the moving frame,
depicted in Fig.3.5. The black (orange) curve is the branch on the right (left) side of
the RIF. The number of mode solutions depends on w’. On either side of the RIF, there
is at least one propagating optical mode for all . There is also a frequency interval
over which a line of constant w’ (that would be horizontal in Fig. 3.5) intersects three
times with the optical branch—there, three propagating modes exist: between the
two horizontal dashed black lines and two horizontal dashed orange lines in Fig. 3.5,
respectively. Hereafter, these frequency intervals on either side of the RIF are referred
to as the subluminal intervals (SLIs) [w),.,; , Whaer | a0d [W)i ks Whae g |- Onall other
branches, of positive or negative frequency, there always exist only one mode—i.e.,
one oscillatory solution to the equation of motion.

(b)

W gt

Wener -

K

Fig. 3.5 Sellmeier dispersion relation of fused silica in a frame moving at a velocity u = 0.66c¢.
Part of the optical branch is shown: branches with positive (negative) laboratory frequencies are
represented by thick (thin) curves. A curve for zero refractive-index change dn is shown in black, and
that for a large change, én = 0.12 in (a), medium change n = 0.048 in (b), small change on = 0.02
in (¢), is in orange. Frequency intervals corresponding to black- and white-hole analogue horizons

’ ’

are shaded in orange ([“-’maxu w;'mxk}), and blue ([wmmL, w;nmR]), respectively
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3.2.34 Mode Configurations

Since only the optical modes change in nature (complex or oscillatory) as a function of
the comoving frequency w’, studying their configurations allows to fully characterise
the system. Indeed, as will be shown now, the number of oscillatory optical modes,
as well as their direction of propagation with respect to the RIF, on either side of the
RIF determines the essence of the boundary. That is, whether it acts as an analogue
horizon for modes of the field of a given frequency.

Inside a SLI, one of the three mode solutions has a positive comoving group
velocity % This unique optical mode allows light on the right of the RIF to propagate
away from it. This middle optical mode (see Fig.3.3) on the right is called moR in
what follows. The other two modes have negative comoving group velocity; they
move into the boundary from the right. There is a lower (upper) optical mode denoted
loR (uoR). On either side we can order the modes by the comoving wave number &’
and obtain k:if'R/ L k;",wR/ L < k™®/E (see Fig.3.5). In the laboratory frame, this
translates into w9/ < W"F" < /T Remark that both moR and uoR have
positive laboratory frame group velocity at all frequency—to an observer in the
rest frame of the medium they propagate in the same direction as the RIF—whilst
loR has positive laboratory frame group velocity for low w’ and negative laboratory
frame group velocity for high comoving frequency. Note that, except on the positive
laboratory optical frequency branch, all modes always have negative comoving group
velocity.

Beyond the SLI—i.e., w ¢ [w;nin, w;mx]—only one propagating mode remains.
Two complex-wave-number roots of (3.59) and (3.73) emerge as pairs of exponen-
tially growing and decaying modes that do not propagate. For w’ < w,, ., only mode
uoR/L remains a propagating mode, whereas for w’ > w;, ., only loR/L remains. As
stated earlier, and as can also be seen in Fig. 3.5, for all comoving frequencies there
is one propagating mode that belongs to the negative optical-frequency branch. This
mode has a negative norm (3.63) (see Sect.3.2.2.3) and will hereafter be referred to
asnoR/L.

For all magnitudes in the refractive index change én, the subluminal intervals on
either side of the RIF do not fully overlap: the SLI of the left region is, in general,
different from that of the right region. For small** refractive index changes, the left
and right SLIs overlap and there therefore exist five different combinations of modes
across the RIF, also shown in Fig. 3.6: in growing order of comoving frequency, we
have—

1. W' < w,,;,.-Oneoptical propagating mode (10L/R) exists, and has negative group

velocity in the moving frame, on either side of the boundary.
2. Winp <W <w,. ». Onthe left of the boundary, there exist three optical prop-
agating modes (loL, moL, and uoL) whilst only mode uoR exists on the right.

24The magnitude of the refractive index change giving rise to the various mode configurations
depends on the medium properties. For the sake of the argument presented in this section it suffices
to identify three categories of refractive index change: small, medium, and large—exact numbers
will be provided by the numerical analysis carried in Sect. (4.3).



84 3 Spontaneous Emission of Light Quanta from the Vacuum

All modes in the inhomogeneous medium have negative comoving group veloc-

ity, except for moL that has positive comoving group velocity on the left.

3. wir <w <w, . Three propagating modes (loL/R, moL/R, and uoL/R) exist
on either side of the boundary. Mode moL(R) has positive comoving group veloc-
ity on the left (right) of the RIF, and all other modes have negative comoving group
velocity.

4. w, ., <w <w, .. Only one mode, with negative comoving group velocity,
exists on the left of the boundary, but modes loL/R, moL/R, and uoL/R exist
on the right—with negative, positive, and negative comoving group velocity,
respectively.

5. w' > w, .. Onepropagating mode (loL/R) exists on either side of the boundary.

All propagating modes exhibit negative group velocities.

For medium refractive index change, the SLIs on either side of the RIF do not overlap
at all. There exist five different combinations of modes across the RIF, also shown
in Fig.3.6:

l. W' <w),,; .- One optical propagating mode (uoL/R) exists, and has negative
group velocity in the moving frame, on either side of the boundary.

2. Wi <w <w, . .Onthe left of the boundary, there exist three optical prop-
agating modes (loL, moL, and uoL) whilst only mode uoR exists on the right. All
modes in the inhomogeneous medium have negative comoving group velocity,
except for moL that has positive comoving group velocity on the left.

3. W, <W <w,. ». Only mode loL propagates on the left of the boundary,
whilst only mode uoR exists on the right—all modes in the inhomogeneous
medium have negative comoving group velocity.

4. w) g <w <w, . Only mode loL, that has negative comoving group veloc-
ity, exists on the left of the boundary, but modes loL/R, moL/R, and uoL/R exist
on the right—with negative, positive, and negative comoving group velocity,
respectively.

5. W' > w,, . g- One propagating mode (loL/R) exists on either side of the boundary.

All propagating modes exhibit negative group velocities.

Finally, for a large RIF height, only three mode configurations exist. Indeed, the
refractive index change is then so high that the positive frequency optical labora-
tory branch on the right of the boundary exhibits no pole in the moving frame (see
Fig.3.5)—no SLI exists on the left of the RIF. We then find (as was studied in
[47, 50]) the following configurations:

l. W' <w),;, - One optical propagating mode (loL/uoR) exists, and has negative

group velocity in the moving frame, on either side of the boundary.

2. whig <w <w, .. Only mode loL, that has negative comoving group veloc-
ity, exists on the left of the boundary, but modes loL/R, moL/R, and uoL/R exist
on the right—with negative, positive, and negative comoving group velocity,
respectively.

3. W' > w,, g-One propagating mode (loL/R) exists on either side of the boundary.

All propagating modes exhibit negative group velocities.
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«Fig. 3.6 (Continued) Diagrammatic explanation of the possible mode configurations for positive-
and negative-norm optical modes for various comoving frequencies in the regime of low refractive
index change. Modes are schematically sketched at the step for comoving frequency wy, (blue dashed
line in the dispersion diagrams). The arrows indicate the comoving group velocity of each mode.
Modes noL and noR are the only negative-norm optical modes, on the left and right of the step,
respectively. All other optical modes have a positive norm. The step acts as a black-hole-like horizon
over the orange-shaded interval, and as a white-hole-like horizon over the blue-shaded interval

In [53], we introduced and studied the physics of low refractive index changes—
that describe a typical experiment optical analogue experiment. Likewise, the study
of a medium change in the refractive index is new.

3.2.3.5 Analogy to Gravity

In Sect. 2.3 of this dissertation, we laid out the first argument of the present The-
sis: a Refractive Index Front (RIF) in a dispersive medium can act as an analogue
event horizon to modes of the field. We will now build on this finding and use kine-
matic arguments (after the suggestion [50]) to identify the mode configurations that
reproduce the physics of curved spacetimes. We thus look back at the mode config-
urations identified in the Sect. 3.2.3.4 and begin with the case of the low refractive
index change. Our discussion will take place in the comoving frame, where the RIF
is stationary. Thus we omit the notation “comoving” where this leaves no doubt—for
example the direction of propagation of a mode is always considered with respect to
the stationary boundary at { = 0.

In configurations 1 and 5, the increase in the refractive index in the right region
does not modify either the nature nor the direction of propagation of the sole opti-
cal frequency mode that exists on either side of the RIF: no optical horizon exists.
Configuration 2 is more interesting, and its description is novel: light in mode loL
propagates from the left into the boundary, but cannot enter the right region, because
all modes there have negative group velocity. Over the [w},;,;, W),z ] frequency
interval, the boundary acts as a white hole to modes of the field as light can approach
but not enter the right region. Symmetrically, over the frequency interval of config-
uration 4, light experiences a black-hole horizon at the RIF as it cannot propagate
to the right from beyond the RIF. Finally, configuration 3 is similar to 1 and 5in
that the step in the refractive index does not affect either the nature or the direc-
tion of propagation of the optical modes. It is, however, slightly different from them
in that modes with negative and positive group velocity exist on either side of the
RIF: although the RIF is not a one-way door (as in configurations 2 and 4) and thus
no horizon exists for waves of this frequency, the situation is somewhat analogous
to gravitational disturbances such as gravitational waves. The latter comment is an
original observation of this Thesis.

In the case of a large refractive index change, only configurations 1 (with /oL
instead of uoL), 4 and 5 remain. For medium dn magnitude, all mode configurations
are identical to the low dn case, except for configuration three where only one mode
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can propagate on either side of the RIF, with loL on the left and uoR on the right.
There, the mismatch created by the increase in the refractive index renders the system
horizonless.

3.2.3.6 Optical Horizons

In configuration 2 (4), the region on the right (left) of the boundary corresponds
to the inner region, whilst that on the left (right) corresponds to the outer region,
respectively, of the analogue horizon. Consider configuration 4: on the left of the
boundary, light can only propagate to the left—in only one direction, in analogy
with the interior region of a black hole described by the Painlevé-Gullstrand metric
(2.38) where the spacetime flow is superluminal. In contrast, on the right of the
boundary, light can propagate in both directions (in analogy with a subluminal flow
of spacetime). The symmetrical analogy holds for configuration 2. This analogy to
black- or white-hole physics stems from the disturbance in the refractive index, which
plays the same role as the geometrical disturbance in the vicinity of a black hole.

So, according to our intuition of Sect. 2.3, light in a dispersive medium can be
made to interact with itself so as to create analogue horizons. Note that we also
discovered that a RIF acts simultaneously as a black hole, white hole, and no horizon
boundary (although over different discrete frequency intervals). In the next section
of this dissertation, we will proceed to quantising the field theory, by resorting to
the tools of quantum field theory in curved spacetime presented in Sect. 3.1. We will
thus quantise for small perturbations (the plane wave modes of the inhomogeneous
medium) on a classical geometrical background (the refractive index increase at the
RIF). This will reveal how, in total analogy with black hole physics, fluctuations of
the quantum vacuum at the RIF give rise to spontaneous emission of light.

3.2.4 Scattering of the Quantum Vacuum at the RIF

In the previous section, we have derived solutions on either side of the RIF, we now
construct “global” solutions, i.e., solutions to the equation of motion that are valid
in both regions. These modes correspond to waves scattering at the RIF, and they
describe the conversion of an incoming field, even in the quantum vacuum state, to
scattered fields in both regions. We follow the canonical approach introduced in [56],
developed in the 1990s in [67-72], and used in [47] and [48, 49] to construct these
modes and their scattering matrix and then to quantise the solutions to find photon
fluxes due to spontaneous particle creation.
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3.24.1 Mode Matching Across the Boundary

We now proceed to match the asymptotic stationary modes (3.57) across the refractive
index boundary at ¢ = 0. Since they exist in only one of the two homogeneous regions
separated by the RIF, these modes will henceforth be denoted local modes (LMs).

On physical grounds, we consider all fields, conjugate momenta and time deriva-
tives to be finite. By construction of the model, the elastic constant and inertia of
the polarisation fields are, respectively, discontinuous and continuous at the interface
between the two homogeneous media. In the near-interface region, we gain insight
in the behaviour of the fields and conjugate momenta by integrating the equations
of motion (3.56) over time. We begin with the third equation of (3.58): we integrate
with respect to the spatial coordinate about { = 0 from —e to +e¢, taking the limit
e — 0,

+e A +e 3 . 2
/ i T d¢ = / —dC+/ 'if;) ( p = )dg (3.74)

1

All finite terms integrate to zero for the limit ¢ — 0, thus

.2mc)? | - A
/ Y ( ”Z) (npi - 7—> d¢ = 0, (3.75)
—e I YA c
and (3.74) yields
“+e A//
/ —d¢ =0, (3.76)
_¢ 4m

A” is finite. Thus the vector potential A is continuously differentiable: Ay = Ag
and A} = A%. Proceeding similarly with the second equation of (3.58) leads to the

condition .
u / Pld¢ =0
e (3.77)

That is, the polarisation fields are continuous across the interface. We apply the
same process to the fourth equation of (3.58): all the terms being finite, integrating
and subsequently taking the limit e — O shows that the I1p;s are continuous as well.
Glancing again at the second equation of (3.58) and noticing that all the terms except
P/ are continuous we realise that the spatial derivatives of the polarisation fields are
also continuous: P/, = P/,. Finally, turning back to the fourth equation of (3.58),
in which both P; and I p. (K'T1p) are continuous, we see that the discontinuity in
+; implies that the term O, (uI1p,) must carry a discontinuity. Equating the Hamilton
equations for each side of the step by identifying IT PL = I p.r yields
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(l;[p,.L—uH/PL) = _ iL,
! KiL
(Mpg — ullp ) = —=, (3.78)
' KiR
= 1T, m,, == ( ! ! )
PR ALy RiR RiL ’

That is, l'I’E, is discontinuous.

To sum up, we have found that the fields and their conjugate momenta are contin-
uous at the boundary. The spatial derivatives of all fields and conjugate momenta are
also continuous, with the exception of H/P,' Furthermore, looking at the Hamilton
equations of motion (3.58), we see that the finiteness of the temporal derivatives of
the fields imply that they are continuous.

3.2.4.2 Global Modes of the Inhomogeneous Medium

We now use the S-matrix formalism to relate incoming and outgoing fields at the
RIF. We thus seek bases of in and out modes that live in the two regions of the
inhomogeneous medium and are related by the scattering matrix. These are called
global modes (GMs) We construct the GMs V as

V=Y LUV + Y RVRO), (3.79)

where L® (R®) describes the strength of mode « on the left (right) side of the RIF.
Half of the coefficients in (3.79) are constrained by the matching conditions. We
consider GMs whose asymptotic decomposition comprises only a single LM with
comoving frame group velocity towards (in) or away from (out) the RIF [73]. Thus
there are as many of these GMs as there are propagating local modes. Half of the
GMs emerge from a defining LM « that moves towards the RIF, forming global in
modes V", The other GMs are global out modes V°“'* if o is a LM now moving
away from the RIF. The LMs are the complete physical (i.e., nondivergent) solutions
in the asymptotic regions, thus the sets of V" and V°* modes are two basis sets of
modes. Hence the scattering matrix S is the transformation of modes from the out
basis to the in basis:

Ve =3 "8, V. (3.80)

8

Scattering and spontaneous photon creation occur as the input vacuum state does
not correspond to the vacuum state in the out basis (see Sect.3.1.2.3); that is, the
spontaneous emission follows from S, that governs all mode conversion.
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3.24.3 Quantum Field Theory

We postulate the equivalent of the standard equal-time commutation relations on the
fields A and P; and thus quantise the local field modes and their momenta:

[AO), TA(H] = ihd(¢ — ¢, (3.81)
[P:(0), T, (¢))] = ihd;6(C = ). (3.82)
We expand the field V on the basis of local frequency eigenmodes

V= / dw' Y (v;,%&;j, + veralt ) (3.83)

that are properly normalised with respect to the scalar product (3.64) under the
condition [47]

KVW‘?, v;;> = 5(W) — W))dmsar. (3.84)

According to our quantum theory for the field (see Sect.3.1.2.3), the operators a7,
and &S,T are the annihilation and creation operators of the field mode «.

Alternatively, we can expand the field over positive frequencies only, including
negative-norm modes in the expansion:

o0
V= / dw’ (Z voas + > V5&57) +Hec., (3.85)
0

aeP aeN

where P(N) is the set of modes of positive (negative) norm. We quantise the GMs
by writing the global field V in the basis of global in modes:

o
V= / dw’ (Z vieane 4% Vy“&g?”) +H.c., (3.86)
0

aeP aeN

or global out modes:

o0
V= / do’ (Z voeast 43 V;’/”’“&f)‘,‘“”) + Hec., (3.87)
0

aeP aeN

The expansion (3.86) for in and (3.87) for out modes defines the annihilation and
creation operators for the global modes, as well as the transformation between in
and out creation and annihilation operators of the field. Let A" be the row vector
containing all the annihilation and creation operators for positive- and negative-
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norm global in modes, respectively, and A be the corresponding variable for the
out modes, then the transformation of operators follows from the definition of S [53]:

A% = SA™ (3.88)

3.2.4.4 Scattering of Vacuum States

Having quantised the sets of global in and out modes, we can use scattering theory
to calculate the expectation value in out modes of positive or negative norm when in
modes are in the vacuum state.
Denoting « (&) as a mode of same (opposite) sign in norm as «;, the incoming
state is defined as
10ia) = 42 [04) ® @727 05) = 0. (3.89)

This state is in the vacuum state defined by the destruction operators associated with
the in modes of positive and negative norm. The number of particles operator in an out
mode oy is N = @21t goutar Tt can be written out by identifying the annihilation
and creation operators of the out mode from Eq. (3.87):

Nm — (Z ﬁaa]t&(d + Zﬂ&m&&) (Z 6(101&& + Z ﬁ&(y,*gf“ﬁ)

[}

a
— ﬂaal*ﬂa’alaﬂT&a/ + Z ﬁ&alﬁ&’al*&&&@/T+ (3.90)

ao/ ad’

§ ﬂ(m]tﬁ(‘v’a]t&(ﬂ'&(}’f + 2 :ﬁ(‘mlﬁa’ma@&a’
ao/

ad’

Whence the expectation value for the number of photons in an out mode is (N i > =

<0in

N ‘ O,-,,}. We begin with the second term (all the mixed terms go to zero):

- Y - =
<0in| Zﬂamﬁa ul*aaaa'(' Ioin) — Zﬂzmlﬁa arx g

(101 @™ 10) + (1) (39D
L
because the (1 |1);, term for any mode is nothing but (0;, | aa't0;,) and for the same

mode, aa" — ata = 6(0), thus

(111)i = (Ojul @@ 10;1) + (0in] 6(0) 03) = 6(0). (3.92)
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Furthermore, by (3.89), the first term in the parentheses of (3.91) is zero. Likewise,
all the other terms of (3.90) are zero>—therefore, <1\7 “'> =Y. |p |2. We obtain

the flux density of photons 17 in mode «, the number of particles per unit time A7
and bandwidth in the moving frame,

() _ 1§ g
I = = — g 3.93
S = 18 (3.93)
Note that this result is different from that obtained by Finazzi and Carusotto in [47]:
they had an unargumented factor 27 in their single-mode calculation and their result
was less general—we present here the correct, general, result by means of a detailed
algebraic calculation that cannot be found elsewhere.

3.2.5 Conclusion and Discussion

Before progressing to the numerical computation of the flux (3.93), it is worth com-
menting on some aspects of the physics of optical event horizon. In deriving (3.93),
we found that, as a result of the mixing of positive and negative norm modes of the
field at the RIF, light would be spontaneously emitted from the vacuum. This effect
is ruled by the scattering matrix S that relates in to out modes. In the scheme of
optical analogues, the event at which light is emitted is very well located in space:
light is emitted at the RIF (in the case studied here, at the interface between the two
regions of homogeneous refractive index). This is in contrast with the astrophysical
case for which the exact event at which Hawking radiation is emitted cannot be
easily (or at all) established—see Sect.3.1.2.3 for a discussion of this issue. Inter-
estingly, this is not the only advantage of the optical scheme: the frequency of the
in and out modes is ruled by the dispersion relation of the medium, and both sets of
modes feature only finite frequencies (with the exception of the diverging modes).
Thus, dispersion limits the effect of frequency shifting of the potential on the modes
(the increase in the refractive index that effectively is the curvature of spacetime for
modes of the inhomogeneous medium)—dispersion seems to be the analogue phe-
nomenon to TransPlanckian physics but here the effect is fully understood. Moreover,
in the present case, the derivation of the our flux density (3.93) clarifies greatly the
phenomenon of spontaneous emission of light from the vacuum: it results from the
mixing of modes of positive and negative norm at the RIF and yields (quasi-pairwise)
emission into modes of positive and negative norm. The study of the optical analogue
thus enables us to cast light on various aspects of spontaneous emission from the vac-
uum at the horizon, and to better understand the mechanism of Hawking radiation.
To this end, the next Chapter will present the algorithm that we created to implement

25The commutation of the out modes on the in modes gives zero and all the mixed terms go to zero.
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(3.93) and calculate spectra of emission for any frequency, in all modes, for all mode
configurations, and for a variety of refractive index changes dn in both the moving
and laboratory frame.
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Chapter 4 ®)
Analytics and Numerics e

In this chapter we calculate spectra of emission from the vacuum and study in partic-
ular conditions over which the kinematics of a moving disturbance in the refractive
index of a medium are analogous to the flow of spacetime in the vicinity of a black
hole. As we saw in Chaps. 2 and 3 the kinematics of waves in analogue systems is
dominated by dispersion [1]. This phenomenon regularises the phase singularities at
the horizon (analogue systems do not suffer from the Transplanckian Problem) but
also renders the wave equations less amenable to analytical techniques.

On the other hand, numerical techniques such as finite difference time domain
(FDTD) wave packet simulations [2] or Monte Carlo methods [3] can handle the
complications due to dispersion and straightforwardly evolve an initial state in time.
Such methods are however computationally expensive and do not yield a spectrum
directly. There also exist analytical methods, that are restricted to a fixed frequency
and situations in which the background varies slowly in comparison with dispersion
[4, 5], or some that can only study dispersion relations that are polynomials of low
degree [6, 7]. The latter provide numerical solutions of the ordinary differential
equation (ODE) in position space provided that no exponentially divergent waves
exist and that the gradient of background change is low. However, dispersion relations
that reproduce the refractive index of materials are usually more complicated than
this, and optical experiments typically rely on a large gradient in the background. In
particular, when the background change becomes so steep that it can be approximated
by a step-like discontinuous function, the solution can be found analytically by
matching the plane wave solutions on either side of the interface [8—13].

The analytical method we present here relies on an analytical study of the plane
wave solutions to a complicated dispersion relation that realistically reproduces the
material properties of fused silica or optical fibres, for example (see Chap. 3), in a
one-dimensional background. We study the specific case of a step-like discontinuity
in the refractive index of a dispersive medium. The method directly and efficiently
yields a spectrum, unlike the above-mentioned numerical techniques, and can be gen-
eralised to considerations of rapidly varying background, unlike the above-mentioned
© Springer International Publishing AG, part of Springer Nature 2018 97

M. J. Jacquet, Negative Frequency at the Horizon, Springer Theses,
https://doi.org/10.1007/978-3-319-91071-0_4


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91071-0_4&domain=pdf

98 4 Analytics and Numerics

analytical methods. Contrarily to the direct solution of an ODE in position space, it
is not restricted to a simple polynomial dispersion relation.

Ideally, one would wish to compute spectra for the optical fibre that will be used
in the experiment presented in Chap. 5. Unfortunately, the dispersion relation of
usable Photonic Crystal Fibres (PCF) cannot easily be cast into a Sellmeier form.
This is due to the lack of theoretical knowledge of the fibres. Indeed, the manu-
facturer provides data for the zero dispersion wavelength of the fibres, as well as
experimentally measured dispersion curves—these have then to be experimentally
verified in the laboratory. The result is a discrete set of data points that describe
the dispersion of the fibre, and not an analytical relation like those that the present
algorithm can handle (in other words, one does not obtain the elastic constant or
resonant frequency of the medium by experimental means). It is possible to fit the
experimentally-acquired data with a theoretical Sellmeier dispersion but, in the case
of the PCFs that could be used in the experiment, this yielded unphysical results
over some frequency ranges. Therefore, the development and usage of the method
presented therein will be based on a material for which the theoretical elastic and
resonant frequency constants are known. We will use fused silica, as in the literature
(see, for example, [14]). Incidentally, this shall allow for checking the present results
against the literature.

4.1 Analytical Description of Scattering at the RIF

In the previous chapter of this dissertation, we arrived at an expression for the scatter-
ing matrix, that describes the conversion of an incoming field to an outgoing field. We
now want to devise an analytical method that, from the solutions to the dispersion
relation in each homogeneous media, will allow for building the global solutions
used in calculating the scattering coefficients between incoming and outgoing fields
at the interface.

For this purpose, we consider a single interface: a step in the refractive index
separating two homogeneous regions, as schematically depicted in Fig.3.4. As we
saw in Sect. 3.2.4, at each comoving frequency w’, we find 8 mode solutions of the
fields equations (3.56) on either side of the interface. In Sect. 3.2.3 we then found
that, for a given height of the step (change in the refractive index) there were different,
and distinct, comoving-frequency intervals in which 6 or 8 of the mode solutions in
either region would be oscillatory modes of the field. When there would be only 6
oscillatory solutions, the remaining two would have complex w’ and k'—that is they
would be exponentially growing or decaying waves. Thus, as a function of comoving
frequency, we found 5 mode configurations, depending on the number of oscillatory
solutions on either side of the interface. In what follows, we shall refer to all mode-
solutions (the oscillatory and non-oscillatory solutions alike) as “modes” and only
specify their nature where necessary. We called these modes “local modes” (LMs)
because they exist in the homogeneous regions on either side of the boundary.
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The electromagnetic and polarisation fields and their derivatives in ahomogeneous
regions are related by Eq. (3.58). We also established that the electromagnetic field
and polarisation fields, and their first spatial derivatives, could be matched at the
interface by:

—igs 0 0 0 0 0 0 0
2 ey 0 0 0 v 0
M, c ey B s ) A
Mp, 1 0 it 0 0 0 M 0 P
Mp, 1 _jv? P P,
e 0 0 i | 0 ,, 0 R ”
o, [T 0 0 0 0 —igs 0 0 0 oA
acTp, —iga (L - :_"2;) 1 0 0 0 iYL 0 o0 AP
OcTp, , o ) o 2 Oc Py
OcTp, —isx 0 (%— o 0 0 gk 0 OcPs
w'y W'y
iy 0 0 0 0 itk
4.1

Henceforth, the last vector of (4.1) (that contains the fields and their first spatial
derivatives) will be called W.

In what follows, we will study the relationship, defined by the scattering matrix,
between the incoming and outgoing field for each of the mode configurations (found
in Sect. 3.2.3), as functions of the comoving frequency. In doing so, we will detail the
analytical method used in [15] to calculate the scattering matrix from the matching
conditions (4.1) in all possible mode configurations. We will then return to the disper-
sion relation, and heuristically construct an algorithm that implements the scattering
matrix, to calculate the spectrum of light spontaneously emitted from the vacuum,
as it can be observed in the laboratory frame—which is the main theoretical and
numerical result of this thesis.

4.1.1 Scattering Matrix

In the scattering matrix formalism, the incoming and outgoing fields at the interface
are described in terms of global modes (GMs): there are global in and global out
modes. The method we will develop will allow us to calculate the flux of emission
into the out GMs. These are modes in which light propagates away from the interface,
in either of the homogeneous regions.

GMs are constructed as linear combinations of LMs: an out GM is composed
of one LM that has positive (negative) group-velocity in the high (low) refractive-
index region and a collection of 8 LMs that have negative (positive) group-velocity
in the high (low) refractive-index region. In the presence of non-oscillatory modes,
either the first or one of the later 8 modes may be a non-oscillatory mode. Let
us consider an example: over the black-hole-like interval (mode configuration 4, see
Sect. 3.2.3), there is a unique out GM that allows for light to propagate away from the
interface into the low refractive index region (on the right of the interface in Fig.3.4),
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decomposition of the global

out mode moR. In this ! P
spacetime diagram, there is a : P
unique mode that propagates

away from the scatterer to

the right (green arrow). In Left """ i Rig ht

the past, 7 oscillatory-modes

propagate toward the T
scatterer from the right and §
there is one non-oscillatory : \
mode on the left of the \
scatterer Past

Fig. 4.1 Mode F u tu re -

moR. Its mode decomposition is shown as the spacetime diagram in Fig.4.1: it is
a linear combination of 7 oscillatory LMs, in the right region, that have negative
group-velocity, a non-oscillatory LM on the left, and a unique mode that has positive
group-velocity in the right region.

The converse to the above delineation leads to constructing in GMs, in which
light propagates toward the interface. Since there exist 8 LMs on either side of this
interface, we find 8 in and 8 out GMs. These must be arranged in lowering order
of laboratory-frame frequency w to allow for a consistent treatment of the matching
conditions. Given the relation between the fields, their conjugate momenta and their
derivatives, see Eq.(4.1), the matching conditions are entirely determined by the
fields and their derivatives only. Thus we create a matrix of the eight W LM solutions
to the dispersion relation, which we call W, with

W= (W Wwe w) , 4.2)

with a,,, n=1, 2, ... 8 the mode number, arranged in dgcreasigg order of
laboratory-frame frequency (i.e., n = u, uo, mo, ... nu). The V and W are related
by

B 10 0 0 00 0 0
0 1 0 0 0 0 0 0
Py 0 0 1 0 0 0 0 0
? 0 0 0 1 00 0 0
v=| 7 [=|i= o 0 o0 0 0 0 |w
A T 2
m, T -ty 0o 0 -2 02 0
my 0 i 000 0
2 10 0 —igg0 0 0 -5
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for a field at frequency w’. We call the matrix in (4.3) U, and remark that Det (/) = 0.
In matrices, (4.3) reads V = U W, Since W and W are related by Eq.(3.57), in an

identical fashion to V and V, this statement taken at 7 = 0 and ¢ = 0 becomes
V=Uw.

The matrix of normalisation factors of the different fields that are connected to
the LMs directed toward the interface W' is constructed from the amplitudes of
the LMs on the left or the right side of the interface that have negative or positive
group-velocity, respectively, as

Wtoward — WL/R JZ’/R’ (44)
- toward « _ X
with, for example on the left side, W = WL 6’L” @, the linear combination of

the amplitudes of LMs that have their group-velocity directed toward the interface.
Similarly, ) )
Waway = WL/R O'Z";ZR, (45)

wherefrom , |
ystoward __ _in out T " yyraway T
4 =org Og W , (4.6)

where we have used the relation between the V and W matrices, and called on the fact
that, them being bases sets, the uniqueness of solutions implies that if they transform
at a specific point (¢ = 0 in 4.5), they must do so at any point. In Eq. (4.6), we have
related the amplitude of the incoming field to that of the outgoing field by means of
the scattering matrix S, with

T _ _inT outT_l_ inT _ourT™!
S* =0/ o] =0g 0% . 4.7)

It appears that, in order to calculate the scattering matrix, all that needs being done
is to calculate the above o matrices. These are 8 x 8 matrices whose components
are the coefficient of each LM in the linear expansion of each GM. Thus, they are
calculated by using the matching conditions.

4.1.2 Matching Local Amplitudes to Calculate Global Ones

In terms of the formalism introduced in the previous paragraph, the fields on the left
and on the right of the interface are related by the matching conditions

Wy o) = Wg oy . (4.8)
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for an in field o, and B B
WL O,zllt o — WR O,DRMZ Oz’ (4.9)

for an out field . In Egs. (4.8) and (4.9), the o are 8 x 8 matrices. For every one of
these matrices, there are a further 7 constraints to the 8 matching conditions 4.

e when defining an in GM, we set the amplitude of the other LMs that propagate
toward the interface O;

e under wavepacket normalisation, the defining input LM can be regarded as having
a finite and tiny bandwidth—i.e., for negative times this LM is the only existing
LM and has to be normalised with respect to itself. Thus the defining LM has unit
amplitude.

We now proceed to calculating the o matrices in each mode configuration. Then,
each column in Eq. (4.8) can be written in terms of 8 dimensional column vectors
7r—

e = Agi e, (4.10)

We define the matrix A—that is composed of the product amplitudes of LMs on
either side of the interface—as

A=W, Wg. 4.11)

It is possible to calculate the o matrices in terms of the elements of the A matrix for
each mode configuration. We will now study two such mode configurations in detail,
which will culminate in explicitly deriving the in and out o matrices, yielding the S
matrix.

4.1.2.1 Example 1: Mode Configuration 3—Disturbance in the
Gravitational Field

We arrange both the global and local modes in decreasing order of comoving frame
wavenumber k": u uo mo lo | nl no nu. We use matrices to relate GMs (columns) to
LMs (rows), whereby the first column (row) of a matrix describes the GM (LM) u,
the second uo and so on. In mode configuration 3, there are 8 oscillating LMs on
either side of the interface. Then, (4.10) reads

!For the unphysical (exponentially growing) mode, this is different: it is defined as the unphysical
mode only on one side. This GM serves as in—and identically as out—mode. Hence unphysical
GMs scatter into themselves, by definition.
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10000000
00100000 01000000
00010000
00001000
00000100 (4.12)
00000010
00000001

> > T > > T > > T > > T > > T
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There are 64 unknowns, materialised as “empty” components of the matrices. In
(4.12) we have rewritten the matrix product of the first line in terms of the addition
of the product of the vectors

¢’ =(10000000), &,/ =(©01000000), ...&' =(00000001) (4.13)

with the ith row-vectors aiL'f_ = 5L,. In order to find the o” matrix in this mode
configuration, we proceed to re-arranging (4.12):
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0 As3 Oy Azl A3y —1 Asy Azs Aze Az7 Asg
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aaaaa

In (4.14), the second line can be written as <e1 e A3 ey es5 eg €7 eg) " with 0"
the matrix we presently seek. To obtain it, we multiply from the left the 8 x 8 matrix

on the right-hand-side of the first line of (4.14) with

10— Anooooo
01—§§00000
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qqqqqqqq 00— A“IOOOO
(616,83 84 85851 ¢5)" 00— Asz 01000 | (4.15)
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00—éﬁ00001
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11 Asz 12 Az 5 4 Az
_ AnAs _ ApAyn Ay _ AxnAy
Az Az Az Az As Az Az
_ Ay _An 1 _An __ _ _
ol = o A o o . (416)
Agg — AnAst A o Andw As o4 AsdAw
41 Az 42 Ay Ay M As
AgzA AgzA A AgzA
As1 — é‘izzm A2 — 21332 A_: Ass — SAszzu -

For the out modes, (4.12) is

10000000
01000000 00100000
00010000
00001000
00000100
00000010
00000001

= A , 4.17)

and similar algebra to the above (exchange A and A~') leads to the conclusion that

outT __ inT
Or =0L >

(4.18)

that is, one can be calculated from the other by using elther A or its inverse.

From the above o'"/°“! matrices, we identify the a’L"/ & matrices:
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_ ApAy _ ApAyn A _ ApAn
Ay s A s an Al yv
_ AnAj _ AnAyp An _ AnAx
Az Asz Az Asz Az Az Az
B 0 0 1 0 0000
g =
L _ ApAy _ ApAypn Ag _ AnAn
Aq Az A Asz Az Ay Asz;
_ Ag3As _ Ap3Ayn Ags _ ApAn
Asi Az As2 Az Az As Asz
1 0O 0 O 0 0 0 0
0 1 0 O 0 0 0 0
_Aw _An 1 Aw A Ax Ay Ay
Az Asz Az Az Az Asz Az Az
gg’ = 0 0o 0 1 0 0 0 0
0 0O 0 O 1 0 0 0
0 0O 0 O 0 1 0 0
0 0o 0 O 0 0 1 0
0 0O 0 O 0 0 0 1
1 0O 0 O 0 0 0 0
0 1 0 0 0 0 0 0
Al A Al Al o Ay
Az Ay Ay As3 Az Az Az Az
o= 0 0 O 1 0 0O 0 0
0 0O 0 O 1 0 0 0
0 0O 0 O 0 1 0 0
0 0O 0 O 0 0 1 0
0 0 0 0 0 0 0 1
AL AGAY A-1 ARAY AR -l ARAY
1 A5 TR Ay oAy T4 A5
A—l A2731A]3711 -1 _ A;;A];ZI A_E: A—l _ "“273]A1274l o
A Ay T2 Ay oAy T A5
» 0 0 1 0 0000
Op = —1 41 —14-1 -1 —1 41
A—l _ A Al31 A—l _ A ’4]32 A_43] A—l _ A A134 o
M A T8 Ay oAy T A5
| | | | [ |
-1 _ A§3l“‘1§11 Azl A§31“‘1§21 L;%i Azl AQA];“ _
81 Ay 82 Ay Ay T8 A5
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Thus

O_()ut T _

and

A
10-=,00000

4 Analytics and Numerics

A5
01-2200000 104500000
33 1
00_;]00000 01A5, 00000
As 10A3 00000
A-l
003, 10000 ur—1 | 00A3 10000
_ :}0’ frd
002201000 - 0043 01000
33 o
0042 00100 004300100
A 00A5 00010
A= 3
002200001
33
All_Aﬁ_i}] A12—Ai§232 OAM_AX;‘;M _
Azl_Aii:\ssl A22_Aii3A332 OA24—A§£34 -
A Ax 1 A Ass Ass Az Asy
Az Az Asz3 Az Az A As
A41—Ai23] A42—A‘X232 0A44_A4§i34 o
| | | | [
ASI_AQE;:BI A82_AQX;:32 0A84_A§£34 -

(4.20)

4.21)

Finally, by (4.7), we obtain the scattering matrix when there are 8 oscillatory mode-
solutions on either side of the interface,

Sgx8 =

Ay — —A'ji“ Ary — —Aﬁi“
A — —A‘j:‘” Ay — —Azj::”
A A
Asz Az
Ay — —Aﬁﬁ” Agg — —Aﬁﬁ”
Ag — Aﬁﬁ” Adg — —Aﬁﬁm

_ Ay
Az

_An
Az

1
Az

_An
Az

_ Az
Az

(4.22)

In (4.22), we have completed the derivation of the S matrix for mode configuration
3, the frequency interval over which there are 8 oscillatory solutions to the field
equations on either side of the interface, in terms of the amplitudes of the LMs on
either side of the interface. This derivation followed from the matching conditions
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for the fields and their first spatial derivative at the interface and results in a straight-
forward expression that can easily be implemented—in Mathematica for the sake of
this Thesis and [15].

4.1.2.2 Example 2: Mode Configuration 4—the Black Hole

We will now perform the same steps as those detailed in the above paragraph for the
4th mode configuration found in Sect. 3.2.3. Over the frequency interval of interest,
the RIF acts as a black hole horizon to modes of the field: light cannot propagate
from the region on the left of the interface to the region on the right as motion is only
possible in one direction in the left-hand-side region, whilst motion is possible in
both ¢ directions in the right-hand-side region. We found that there are 8 oscillatory
solutions in the RHS region (with a single mode, mo, allowing light to propagate to
the right, away from the interface), and 6 oscillatory and 2 complex solutions in the
LHS region (with all oscillary solutions having negative comoving group velocity).
In this situation, the in-modes define A as

0 1000000
0 0100000
00100000
0 0010000
0 =A 0001000 (4.23)
0 0000100
0 0000010
0 0000001

in which the global (columns) and local (rows) modes are sorted in decreasing order
moving frame wavenumber k": u uo g lo [ nl no nu for the GMs and LMs on the
left of the interface (first matrix in 4.23), and u uo g, lo I nl no nu for the GMs and
u uo mo lo I nl no nu for the LMs on the right of the interface (third matrix in 4.23).
Conversely, the out-modes define A as

1000000
0

01 00000 0100000
0010000

0001000 =4 (4.24)
0000100
0000010
0000001

with the GMs and LMs ordered as in (4.24). Similar algebra to that used in the
first example 4.1.2.1 allows to find the o-matrices for out-modes on the left of the
interface:
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1 00 O

A g LAy

Ay Ay Ay

0 10 0

o = 0 00 1

0 00 O

0 00 O

0 00 O

0 00 O
= U()utT_l _
0 =
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0
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0 0 0

—1 - -1
Az _A37] _Ax

—1 —1 —1
A33 A33 A33

0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1

10A5/ 00000
0043 00000
01 0 00000
00A3 10000
00401000
00A3 00100
00A3 00010
004300001

For the in-modes on the left of the interface we find

_ ApAs _ ApAp _ ApAs
Ay A -0 Ay yvm
_ AxAs _ AxnAyn _ ApAy
Ay A An A 0 Ay ym
o 0 0 1 0 0000
oint —
L - ApA ApA ApA
Ay — 58 A — =02 0 Ay — =908 — — — —

Az A3

AgzA AgzA AgzA
A81_ 83431 A82_ 833320A84_M____

(4.25)

(4.26)

Wherefrom the scattering matrix in mode configuration 2—in which there are 6 and 8
oscillatory mode-solutions on the left and on the right of the interface, respectively—

1S
_ ApAj _ As
An Az 0 Az
_ ApAy _Apn
An Az 0 Az
S 0 1 0
6x8 —
_ ApAs ) _ Asu
Ang Az 0 Az

_ ApAx g _Ax
A Az 0 Az

4.27)
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As in the previous example, we have worked from the matching conditions for the
fields and their first spatial derivatives to match the amplitudes of the GMs (built
from the LMs—solutions to the dispersion relation on either side of the interface).
We thus algebraically derived the scattering matrix that describes mode mixing over
the interval in which the interface acts as a black hole horizon. Glancing back on
Eqgs. (4.22) and (4.27), we remark that S has a block matrix form, with four partitions
arranged around the 3rd row and 3rd column for (4.22) and 2nd column and 3rd row
for (4.27). This form, which is an intrinsic property of the construction (ordering of
the GMs and LMs) of the S-matrix in our algebra, accounts for the non-coupling of
the oscillatory GMs to the non-oscillatory GMs. It is thus a property that one would
test for when checking the numerical calculation of the S-matrix upon calculating
spectra—as we will do in the next section of this dissertation.

4.1.2.3 Quasi-unitarity of the Scattering Matrix

In performing the algebra toward the scattering matrix in mode configurations 3 and
4, we have encountered the main and usual steps of our algorithm: first we write
the A-matrix that gathers the amplitude of the in- and our-modes on either side
of the interface, second we re-arrange the matrix equations to clearly identify the
components of the o-matrices, we then read off the elements of these matrices on
the left and the right of the interface and finally use the expression of the scattering
matrix as a function of these o-matrices to explicitly derive it. We found that the
scattering matrix is, by construction, a block matrix arranged around a row and a
column that account for the non-coupling of oscillatory GMs with non-oscillatory
GMs.

The “normalised” scattering matrix implemented in the algorithm presented in
this section transforms in GMs into out GMs by Eq. (3.80). The GMs are normalised
by Eq. (3.84) and, as a result of this normalisation, the scattering matrix is a quasi-
unitary matrix. This can be seen by studying the conservation of the probability
current density j (see Eq.3.62) across the interface: the matching conditions across
the interface imply that

3 3
AT+ YD Py, T A= YTy, Py =
i=1 i=1
3 3 (4.28)
—iu(A g+ Y PriTlpe, = Ta A — Y Tp, Piy)

i=1 i=1

= jL = Jjrs
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where the current and fields on the left (right) of the interface have been ascribed a
subfix L (R). Rearranging (4.28) yields

VuurTg Voul — Vin'('g Vin
vinTSTg S vin — Vin'('g Vin (429)
— STg S=g,

where g is the diagonal matrix with N, diagonal elements equal to 1 and N_ equal
to —1, with N, and N_ the number of GMs of positive and negative norm, respec-
tively. In the present case (8 branches dispersion relation), g = diag(1, 1,1, 1,1,
-1, -1, -1).

Since the scattering matrix is quasi-unitary, its rows obey the normalisation condi-
tion (3.84), meaning that numerically adding the amplitude squared of all components
of a row (multiplied by sign(w,), where w,, is the laboratory frame frequency and
« is the mode—u, uo, mo...) should yield 1. Indeed, by (4.29), S is a member of the
indefinite unitary group U (N4, N_). Thus the scattering matrix obeys [S T]* gS=g,
and hence S~ = g [S7]"g.

Now that we have learnt the steps toward deriving the scattering matrix, and
understood what are the essential features of this matrix, we can simply state the
scattering matrix one obtains for mode configurations 1 and 5 (6 oscillatory solutions
only on either side of the interface), and 2 (8 and 6 oscillatory solutions on the LHS
and RHS, respectively, of the interface—the white hole analogue).

4.2 Algorithmic of Laboratory Frame Emission

We now want to use the scattering matrix calculated in the previous section to compute
the laboratory frame spectral density of emission from a dielectric step-like boundary
separating two homogeneous media. For this purpose, we will create an algorithm
that, for each wavelength (as measured in the laboratory frame), returns a scalar
quantity: the spectral density of emission. This density might be the result of emission
into a collection of any of the global modes (GMs) defined in Sect. 3.2.4 (see Eq. 3.79).

We begin our investigation with a close study of the dispersion relation in the
laboratory and comoving frames, and thus identify the modes that contribute to the
emission at each laboratory frame wavelength. Following on which we calculate
the rate of particle production in each contributing mode at each laboratory frame
wavelength, and add them (where necessary) to compute the laboratory frame spectral
density (LSD). This shall allow us, in the final section of this chapter, to identify key
features of spontaneous emission of light at the horizon.
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4.2.1 Journeying Along the Optical Branch

Our aim is to create a function that, for a certain laboratory frame frequency, w, cal-
culates the contributions from all modes in which light is emitted from the boundary
in the medium to the spectral density.

The spectrum that will thus be computed should be observable by some sort of
apparatus at rest with respect to the medium in the laboratory. Thus, we consider
emission as it can be detected from one end of the 1D medium only—say the right,
in reference to the positive x axis direction. On physical grounds, this implies that
light in a mode that would have negative group velocity in the laboratory frame (that
would move to the left) will not be taken into account in our calculations. In other
words, the spectrum will be made of contributions from modes that allow for light
to propagate in the same direction as the refractive index front (RIF) in the medium.
Furthermore, as in earlier calculations, we operate at frequencies for which there are
no contributions from the fop branch in the dispersion relation (3.59). In Fig.4.2,
we plot an example of such an 8 branches dispersion relation for two homogeneous
media that differ in their refractive index in the laboratory frame. Following the
convention used so far in this dissertation, the medium with highest refractive index
(orange curves in Fig.4.2) is the region on the left of the interface (as in Fig.4.2).
Clearly, the medium with lowest refractive index (black curves in Fig.4.2) is then
the region on the right of the interface.

We want to calculate contributions to the laboratory-frame spectral density of
emission (LSD) over optical frequencies. Only oscillatory mode-solutions may con-
tribute to the emission at a given laboratory frame frequency w. By construction of
our field theory (Sect. 3.2.4), monochromatic solutions to the field equations have
positive moving-frame-frequency. These oscillatory mode solutions are found at
the intersection between the w’ = ¢st contour line and the (positive- and negative-
laboratory-frame) optical branch on either side of the interface.

We have previously established that the number of oscillatory mode-solutions is
a function of the comoving frequency w’. We found that there exists up to 5 mode

Fig. 4.2 Sellmeier
dispersion relation (3.59) of
the left (right) region of the
RIF in orange (black) in the
laboratory frame. In each

medium there are three ﬁ /_'
resonances (one is very close

to the horizontal axis), and < k
hence 8 branches. An
increase in the refractive
index distorts the branches
by lowering the resonance
frequencies and increasing
the inertia of the excitons
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configurations in the three realisable regimes of refractive index change at the inter-
face between the homogeneous media of the RIF (as exemplified in Fig. 3.6). These
mode configurations describe the variation of positive-optical-frequency oscillatory
mode-solutions on either side of the interface. Indeed, there is always only one oscil-
latory mode-solution on all other branches of the dispersion relation. In Fig.4.3a
we show the positive-optical-frequency branch (for the two homogeneous regions
around the interface) as seen in the frame co-moving with the RIF at u = 0.66¢. The
study of this diagram tells us which modes are outr GMs at a given w’. Modes that
may contribute to the LSD are found in the interval [wyinr, Winaxr]-

As illustrated on Fig.4.3c, for each w, we find 4 intersection points of positive
frequency on either side of the interface. By symmetry, we also find 4 intersection

(a) ,

WoneRmgef == === ===smmem e mms

W ol maced |

k

Fig. 4.3 Optical branches of the the dispersion relation in the moving and laboratory frame. a
The turning points of the positive laboratory-frame-optical-frequency branch (as seen from the
moving frame) on the left and right side of the RIF, in orange and black, respectively, define the
extrema of the intervals of emission for the modes /oL, moR and uoL. b When Doppler shifted to the
laboratory frame, and because they are defined on different sides of the interface (i.e., in regions of
different refractive indices), these emission intervals are not always distinct anymore: the emission
interval of moR overlaps with those of /oL and uoL at low and high w, respectively. For frequencies
higher than the Doppler shifted zero-comoving-frame-frequency (w’ = 0, phase-velocity horizon
condition, in blue), only noL contributes to the laboratory frame spectral density of emission. ¢
For any laboratory-frame frequency wy, there are always 2 corresponding LMs, of moving-frame
frequencies (w'(wp)1,w'(wo)2, w'(wo)3 and w'(wp)4, in blue) on the positive (laboratory-frame)
optical-frequency branch on either side of the RIF (black—right of the interface, orange, left of
the interface)—as well as their 4 counterparts on the negative (laboratory-frame) optical-frequency
branch (not shown). If these LMs define out GMs, the latter contribute to the emission at wg. Because
LMs and GMs are defined for positive moving-frame frequencies only, the w’ = 0 contour (in blue)
separates the (positive and negative laboratory-frame frequency) optical branch in two regions, only
modes belonging to the regions highlighted in purple in (d) contribute to the LSD
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points of negative frequency on either side of the interface, for a total of 8 intersection
points. The modes that contribute to the emission at w are those that: (1) have positive
comoving frequency and (2) define out GMs. In the left region, local modes (LMs)
noL, loL and uoL define out GMs, whereas in the right region, only moR does.

Now that we have identified the modes that could contribute to optical-frequency
emission, we can dwell back upon the dispersion relation plotted in the moving
frame Fig.4.3a: it is possible to find the moving-frame frequency intervals over
which LMs noL, loL, uoL and moR are oscillatory solutions to the fields equations.
These frequency interval limits can then be boosted back to the laboratory frame
by means of the inverse Lorentz transform 3.51—we draw the Fig.4.3b. In growing
order of frequency, we find that over the interval

o |WminLs Wy R], loL will be the sole contributor to the LSD;
o Wy Wy L], both loL and moR will contribute to the LSD;
o |w, W,y ], only moR contributes to the LSD;
L loL minL uol maxL
o |w LW , moR and uoL contribute together to the LSD;
L WuoL maxL “imoR maxR
o |w, o L wpy H], uoL alone contributes to the LSD;

o W, LWy ], laboratory frame emission will arise from contributions of the neg-
PVH cut

ative norm mode noL.

Note that wpy g is the laboratory-frame frequency for which the moving-frame fre-
quency is w = 0, and w/w , is the maximum moving-frame frequency for which there
are no contributions from the rop dispersion relation branch. All frequencies are
shown in Fig.4.3b. For laboratory frequencies outside of the above-stated intervals,
there is no emission from light in optical modes. When w' = 0, there is a phase
velocity horizon (PVH): the contour-line that would then be drawn separates two
“regions” of the (positive- and negative-) laboratory-frame frequency branch—one
that contribute to the emission from one that does not, see Fig.4.3d.

To summarise, we have identified the modes that contribute to the LSD as a
function of the laboratory-frame frequency. We found that emission stems from
contributions of up to two modes over various intervals—and thus expect the resulting
spectrum to be highly structured in those intervals. This shall later allow us to identify
intervals of horizon-like emission. But first, let us progress further with the writing
of our LSD function and see how to calculate the contribution from each mode.

4.2.2 Rate of Particle Production in a Mode

When computing the laboratory frame spectrum, we will input a laboratory-frame
frequency w to the function we are presently creating, and it will output the density
of emission per unit time and unit bandwidth.
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The algorithm created in Sects.4.1.1-4.1.2 basically calculates the scattering
matrix, i.e., mode conversion in the moving frame. We have previously explained
how to find the moving-frame frequencies w for which a GM contributes to the
laboratory spectral density (LSD) at frequency w. Thus all that remains to be done is
to implement the calculation of I:J‘? (Eq.3.93), with a the out GM that contributes to
emission at w, and to calculate the resulting rate of photon production per unit time
and unit frequency in the laboratory frame. A GM’s contribution to the emission at
w of emission in the laboratory frame is computed by [14]

u ’
19=(1- 17, 430
2= (-5m) =

where v, (w) is the laboratory group velocity at w. The total spectral density at w is
then found by adding the contributions of all GMs to the emission [15]—

1, = 17, (4.31)

«

yielding the spectral density as a function of frequency. The latter converts to the
spectral density as a function of wavelength by the factor w?/(27c).

In conclusion, in this section we have worked through the algorithm that would be
implemented to calculate the total spectral emission density as it can be measured in
the laboratory. In the following section, we will implement this function and compute
spectra of light spontaneously emitted at the RIF.

4.3 Emission Spectra and Photon Flux

In the previous two sections of this dissertation, we have devised two algorithms
based on an analytical calculation: one to derive the scattering matrix that describes
the scattering of an incoming field into an outgoing field, and one to calculate the
emission spectra as they would be observed in the laboratory frame.

The first algorithm describes the steps to be taken to calculate the elements of the
scattering matrix. It is a generic method, that is valid for any physical system that can
be described by a dispersion relation that would feature up to three poles. In present
Thesis we study the scattering of light at a step-like refractive index front (RIF), as
schematically depicted in Fig.3.4.

In this section of the dissertation, we will present the main numerical results of
this Thesis—as they were published in 2015 in [15]: the scattering of input modes in
the vacuum state (devoid of particle, photon, population). This will result in showing
how light is spontaneously emitted from the vacuum at the interface (a result of
quantum fluctuations of the vacuum) according to Eq.(3.93). We will study all the
mode configurations found in Sect. 3.2.3 of this dissertation, and comment on the
particular structure of the emission spectra over specific moving-frame-frequency
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intervals. Further to the findings of [15], we will present results for all modes and
all refractive-index-increase magnitudes (that is, low, medium, and large dn increase
under the step).

We will then proceed to computing the spectra of emission as they can be observed
in the laboratory frame for realistic experimental situations.

4.3.1 Emission in the Moving Frame

We use the scattering matrix to compute the spectra of emission into all modes as
seen from the moving frame. We consider light in bulk fused silica. The material res-
onances are \j 23 = 9904, 116, and 68.5 nm, respectively, and the elastic constants
are K123 = 0.07142, 0.03246, and 0, 05540, respectively [14]. The velocity of the
refractive index front (RIF) is # = 0.66¢, corresponding to a group index of 1.5.

We first consider spectra of emission into moR, the unique right-going mode for
all (small, medium and large) magnitudes of refractive index change dn.

4.3.1.1 Emission into the Uniquely Escaping Mode

Figure4.4a displays the spectrum of emission into moR for a large, medium and
small increase in the refractive index under the RIF. Spectral emission is constrained
to the subluminal interval (SLI) on the right of the interface ([w;nin R w;mx R] in
Fig.3.5) where the mode moR exists. For large (6n > 0.056) and medium (0.04 <
on < 0.056) increase in the refractive index, an optical horizon exists over the entire
right SLI. However, when d# is smaller than 0.04 (small refractive index increase), an
optical horizon exists for only part of this interval (i.e., [w,,, 1+ W, &] in Fig.3.5)
because at lower frequencies the SLIs of the left and right regions overlap (see
Fig.3.5). We observe that for large and medium dn, the emission spectra are quasi-
thermal, with almost constant flux density over the interval of emission. In contrast,
for small dn (see Fig. 4.4d, it appears that the absence of a horizon leads to a significant
decrease in the emission, i.e., mode coupling, although some emission remains. We
observe that the flux density drops at the extrema of the interval of emission. This
decrease in the flux on the edges of the interval is due to the decrease in group-
velocity of moR at these frequencies. Figure 3.5 shows of the gradient of the optical

. . . r_ ) r_ w_
branch in the moving frame goes to0 zero: at w' = W, g OF W' = W, g 5 =

Thus, moR and the interface are velocity matched, meaning that no light in moR may
propagate away from the interface.

In Fig. 4.4b, we plot the emission into moR for increasing magnitudes of dn, from
0.06 to 0.12 (large refractive index change). First, we observe that the shape of the
spectrum does not depend on the increase in the refractive index, only the overall
magnitude of the flux increases with én. Second, we note that for n = 0.12 (magenta
curve), we obtain exactly the same spectrum as was calculated in [14]. In Fig. 4.4c,
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Fig. 4.4 Spectrum of emission into the uniquely right propagating mode moR on the right side of
the RIF. The number of particles per time and bandwidth, the flux density of emission, is calculated
in the moving frame of velocity u = 0.66¢. a Emission is displayed for three values of dn, 2 x
1072,4.9 x 10~2 and 0.12, corresponding to the regimes of low (orange dot-dashed line), medium
(solid red line) and large (solid magenta line) refractive index under the step, respectively. b The
flux density is also plotted for increasing values of dn, the large (6n = 6 x 1072, 8 x 1072, 0.1,
and 0.12 (solid magenta line)), ¢ the medium (0n = 4 x 1072, 4.4 x 1072, 4.9 x 1072 (solid red
line), 5.2 x 1072,5.6 x 1072), and d) the low (n = 3.6 x 1072,3.2 x 1072,2.8 x 1072, 2.4 x
1072, 2 x 1072 (orange dot-dashed line), 1.6 x 1072, 1.2 x 1072, 8 x 1073, 4 x 1073) regime of
refractive index change

we plot the emission for medium index changes, from 0.04 to 0.056. As in the case
of the large refractive change, we observe that the shape of the spectrum does not
depend on én, only the magnitude does. This is because the mode coupling does not
change over the right SLI for such large increases in the refractive index.

Indeed, as was noted above, the shape of the spectrum of emission into moR
only changes for small dn because the right and left SLIs do not overlap fully over
[w;n in R w;nax R], and thus the mode coupling evolves: the nature and number of the
modes that scatter into each other at the interface changes across the interval over
which there is emission into moR and so the coupling coefficients (components of the
scattering matrix (4.7)) change in nature and amplitude. In reference to Sects.4.1.2.1

and 4.1.2.2, the relevant scattering matrix is (4.22) for ' € |:w;m-,, R> Wnax L |:, and

(4.27) for ' € [W},y 1+ Wy & |- Remarkably, over the frequency interval in which
the interface acts as a black hole event horizon to modes of the field, the shape
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Fig. 4.5 Spectrum of
emission as in Fig.4.4d. To 107 -
compare the shapes of the
traces, spectral densities are
scaled such that all traces
line up with the dn = 0.02
(orange dot-dashed line).

on =5.2x1072,3.7 x
10-2,2 x 1072 (orange
dot-dashed line), 7 x .
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of the spectrum is independent of the refractive index change (as was observed
above for dn > 0.01). This can be more clearly seen in Fig. 4.5, in which the spectra
for smaller refractive index changes are scaled up to compensate the lower single-
frequency rate. This is a remarkable result: all traces over orders of magnitude of
index changes line up to the same shape, making it a universal signature of analogue
black-hole emission. Note also that the shape differs for emission outside the black-
hole-frequency interval.

It is also possible to calculate emission into modes in which light propagates on
the other side of the interface (in the high refractive index region)—the following
spectra are original results of this thesis and are, in their majority, presented for the
first time.

4.3.1.2 Emission into All Modes for All Changes of Refractive Index

The scattering matrix also gives us the comoving flux densities of all other optical
modes, of positive and negative laboratory-frame frequency (loL, uoL and noL).
These modes are outgoing modes in the high refractive index region of the RIF (i.e.
light in these modes propagates from the interface to the left in the moving frame).
The flux density is calculated in the regimes of large, medium, and low refractive
change under the step (édn = 0.3, 4.9 x 1072, 2 x 1072). As in the above study of
the spectrum of moR, we observe that the emission is highly structured in intervals
with black- or white-hole horizon, and no horizon. Remark that in the regime of large
refractive index change, there is no turning point in the optical branch in the moving
frame (merely an inflexion, see Fig. 3.5), thus the discrimination between modes /oL
and uoL in the high refractive index region becomes arbitrary. We chose to consider
that mode loL would be the oscillatory solution at all moving-frame frequencies w’
in this case, and thus there is no emission uoL.

Again, the magenta lines in Fig. 4.6 reproduce the results of [14], and the discon-
tinued blue and green, and solid purple, lines reproduce those of [15], for the large
and low refractive index change regimes, respectively. The solid red lines (medium
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Fig. 4.6 Emission spectra of each optical mode in the moving frame. The flux density in mode
loL, a uoL, b and noL, c is plotted in the regimes of large (purple line, dn = 0.3), medium (red line,
on =4.9 x 1072), and low (6n = 2 x 1072) refractive index change under the step. In the regime
of large refractive index change, there is no oscillatory mode uoL under the step. d For intensity
comparison, all positive and negative laboratory-frame frequency modes are plotted together for
dn =2 x 1072 (low refractive index change regime): emission into mode noL, purple solide line;
loL, blue dashed line; uoL, green dotted line; moR, orange dot-dashed line

refractive index change regime) are presented here for the first time. For mode-
intensity comparison purposes, we plotted the emission into all optical modes of
positive and negative norm together in Fig. 4.6d for a fixed on = 0.02. The strongest
emission occurs into the optical mode with negative norm, noL. This emission is due
to coupling with all the other positive-norm modes in the medium and is strongest
where this mode that propagates in the superluminal region couples to a mode that
propagates in the subluminal region (i.e., moR, forw, , ;, <w <w, ). In other
words, the emission in noL is strongest over the analogue black- or white-hole inter-
vals, when pair-wise emission with moR dominates—a phenomenon analogous to
Hawking Radiation in black hole physics.

Mode noL, because it is the mode with strongest emission in the moving frame,
and also because it has a negative norm, draws attention. We thus compute further
emission spectra, for a variety of refractive index changes dn from the low to the
large refractive index change regime (see Fig.4.7a, as well as for the regime of
medium refractive index change (see Fig.4.7b. As for all modes, we observe that
the emission spectra are highly structured in intervals of emission with black- or
white-hole horizons, as well as intervals over which there is no horizons. Likewise,
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Fig. 4.7 Spectrum of emission into the optical mode of negative norm noL, in which light
propagates away from the interface into the high refractive index region of the RIF. Emission
is calculated in the moving frame of velocity u = 0.66c. a The flux density is displayed for
increasing values of dn (4.9 x 1072 (magenta line), 3.6 x 1072,3 x 1072,2 x 1072 (purple line),
1x1072,4x1073,2x 1073, and 1 x 10‘3). b The flux is plotted for decreasing values of
refractive index changes in the medium regime (én = 5.8 x 1072,5.6 x 1072,5.4 x 1072,5.2 x
1072,5 x 1072,4.8 x 1072,4.6 x 1072,4.4 x 1072,42 x 1072,4 x 1072,3.8 x 1072, 3.6 x

1072,3.4 x 1072). ¢ The contributions |S"”LE“|2 of in GMs to the flux in noL are calculated for

dn =2 x 1072. The five positive norm in GMs contribute to emission into noL: uR (black), uoR
(green dotted), moL (orange dot-dashed), loR (blue dashed), and /R (brown)

the spectral width of these intervals saturates once the large refractive index regime
is reached, and thus the features of the spectrum are locked in frequency and only the
density of emission increases. Note that emission is increased over intervals where
the interface acts as a black- or white-hole horizon.

The analytical method developed in Sect. 4.1 also allows for calculating emission
into modes that lie on other branches of the dispersion relation, namely the positive-
and negative- low and up laboratory-frame-frequency branches. There are 4 modes:
two with positive frequency, /L and uL, and two with negative frequency, nlL and nulL.
All define out GMs in which light propagates away from the interface into the high
refractive index region. As noted by Finazzi and Carusotto [14], emission into those
non-optical modes is significantly lower than that in optical modes. They illustrated
their statement with computations of emission into the positive norm modes (/L and
uL) in the large refractive index change regime—here we will present the first results
for all non-optical modes of positive and negative norm in all regimes of refractive
index change.
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Fig. 4.8 Spectrum of emission into all non-optical modes, of positive and negative norm. Emission
is calculated in the moving frame of velocity u = 0.66¢ for a low (én = 0.02, black line), medium
(6n = 0.049, red line), and high (én = 0.3, magenta line) change in the refractive index: emission
into mode a IL, b uL, ¢ nIL, and d nuL

In Fig. 4.8, we observe that emission in non-optical modes of all norm is at least
an order of magnitude weaker than in any optical mode, for all comoving frequency
w’ (see Fig.4.6). This corroborates our earlier intuition that the study of optical
modes only would reveal the essentials of horizon physics in a dispersive medium
such as fused silica. Remark that, although the emission in all non-optical modes
is structured into intervals with black- or white-hole horizon, and no horizon, the
spectrum features vary most in the regime of low refractive index change. We note
that, of all the non-optical modes, n/L (Fig.4.8c) has the highest emission rate. This
mode has a negative norm, and it would be interesting to understand why its flux
density is so much higher than that in other non-optical modes (and actually relatively
close to that in the weakest optical modes).

I foresee this is due to its relative “closeness” with positive-norm optical modes in
the moving frame dispersion diagram (that is, it has a k', moving frame wavenumber,
close to that of loL, for example). Further work should be dedicated to this question,
as one might learn more about the physics of event horizon in dispersive media by
shedding light upon the coupling of negative and positive norm modes across—and
on the same side of—the horizon.



4.3 Emission Spectra and Photon Flux 121

[ (b)

—— trend line power 2.5

u = 0.66c ST d !
W — Interval size

- Linear increase

’

Fig.4.9 Total emission into moR over the subluminal interval [wm WR* w;n ax R]. a estimated photon

number for different velocities # and b size of the interval in the frame moving at u = 0.66¢ as a
function of index change dn

4.3.1.3 Total Black Hole Emission

To conclude with our considerations of emission in the moving frame, it is interesting
to calculate the total photon flux over the SLI [W;mn R w;nax R] by integrating over
the spectrum of Fig.4.4d. In order to convert the flux to a realistic, although very
approximate, photon number, we assume that the RIF propagates over a distance
of 1mm. The resulting photon number as a function of index change Jn is given in
Fig.4.9a. The number of photons excited from the vacuum first grows with power
~ 2.5 of én until n = 0.04. The emission spectrum becomes wider in a linear way,
as shown in Fig. 4.9b. Thus the emission rate for a single mode increases with 6n*/2.
This scaling factor is unexplained and would deserve to be investigated further. As
we explained earlier, in the regime of medium and large refractive index change,
i.e., for dn > 0.04, the spectral width saturates, and the emission rate grows slower
accordingly. However, these index steps are difficult to reach experimentally by
nonlinear pulses. The rate of increase as a function of dn calculated here shall be
an essential guide in forthcoming experimental investigations of the spontaneous
emission of light from a RIF—such a scaling will be a signature that the observed
effect indeed arises from vacuum fluctuations at the horizon.

4.3.2 Emission in the Laboratory Frame

Finally, we arrive at the main theoretical result of this Thesis: we will compute spectra
of emission from the refractive index front (RIF) moving in a dispersive medium as
they can be observed from the laboratory frame. This is a new result, which was
calculated for the first time in [15]. Here, we will take more space to comment
further on the spectra of [15]—in particular we will study the characteristics of the
emission peak in the negative-norm optical-mode, noL, which will be the subject of
the experimental efforts presented in the last chapter of this dissertation.
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The spectra calculated in Sect.4.3.1 would be observable in the moving frame.
In other words, one would need stationary photon counters in the frame moving
(with the RIF, at velocity u = 0.66¢) in the medium to observe the flux density
in various modes. Of course, in an actual experiment, the detectors are located on
an optical table in the laboratory, and are thus at rest in the laboratory frame. And
thus, the spectrum observed is different from those of Sect.4.3.1. In [14], Finazzi and
Carusotto calculated a laboratory frame spectrum for only one mode, which is not the
strongest mode. However, this spectrum is not observable for the following reasons:
first the refractive index change dn they consider cannot be reached experimentally;
second, on either side of the RIF, each moving frame frequency w' corresponds to
up to eight different laboratory frequencies for the 8 modes involved, as in Fig.3.3.
In this section, we will make use of the analytical method we created in Sect.4.2 to
calculate emission from 200 to 7000 nm in the laboratory frame. As we explained
when detailing the algorithm, we calculate emission with only positive laboratory
group velocity, and we found that emission at a fixed laboratory frequency may arise
from several optical modes.

4.3.2.1 Laboratory Frame Spectral Density in Fused Silica

Figure4.10 shows laboratory spectra in bulk fused silica for three index changes in
the low refractive index change regime (dn < 0.04). As the spectrum is composed
of contributions from different modes for different mode configurations, it exhibits
a number of sharp features that we will now proceed to describe. Note that we
choose to limit the range of optical wavelengths such that no modes in the top
branch of the dispersion relation (3.59) are excited, resulting in a cut-off at 230 nm
(this will of course be material dependent). Starting from this cut-off wavelength,
we first encounter a peak around 250 nm—which is actually the largest spectral
density obtained, and corresponds to emission from the negative-norm mode noL.
We shall come back to this peak and comment on its features later, but we can
already dwell upon its existence: emission is generated by the pairwise coupling
of two modes of opposite norm. Mode noL is the only negative-norm mode on the
optical branch, and because of the shape of the dispersion in the UV, it covers a rather
small laboratory spectral interval (between the solid violet and red vertical lines in
Fig.4.10). Therefore, all emission due to the coupling of two optical modes leaves a
contribution within this emission peak in the UV spectral range. The optical emission
being by far the strongest, this UV interval contains emitted photons almost every
time a photon is emitted at all.

The coupled positive-norm mode (i.e., the partner photon), if optical, can be
found at the remaining optical frequencies. Not all coupled mode pairs are separated
by a black- or white-hole-type horizon. For example, intervals with horizons, as
schematically sketched in Fig.3.6, are found between the two sets of black and
orange dashed lines in Fig.4.10 but not in the adjacent spectral regions. The short
(long) wavelength interval (indicated by arrows in Fig.4.10) corresponds to a black-
hole (white-hole) configuration. We observe that the presence of optical horizons
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Fig. 4.10 Emission spectral density in the laboratory frame. At each wavelength the total spectral
flux density, the number of photons emitted per unit time and unit bandwidth (in photon per nm
and per ps), is the sum of contributions from all modes. Emission is concentrated in the UV in a
narrow spectral peak generated from mode noL. Emission is also strong over spectral horizon-type
intervals. Spectra are calculated for wavelengths above the violet line, beyond which there are no
contributions from the top dispersion branch. The red line corresponds to w =0 (phase velocity
horizon). The black and orange dashed lines indicate the interval of the black-hole (white-hole)
mode configuration for the moR (loL) mode at short (long) free-space wavelengths

leads to an enhancement of the emission. Modes moR and loL exhibit clear horizon
emission profiles” between the black and orange dashed lines, and their intervals
of emission are indicated by arrows. Over the visible range, emission from moR
dominates.

Figure4.10 also shows traces for lower nonlinearities. As expected, the spectral
density decreases, and the intervals of optical horizons, associated with strong emis-
sion, narrow. The red line at 286 nm corresponds to zero moving-frame frequency
(w’ = 0, phase velocity horizon condition); no major spectral features seem to be
associated with this position. This is more clearly seen when taking a closer look at
the emission peak in the UV.

4.3.2.2 Emission Peak into the Negative-Norm Optical-Mode

We now focus on this peak in the UV: in Fig.4.11, we plot an excerpt of Fig.4.10
that shows the interval over which the highest density of emission can be observed.
For wavelengths between 230 and 286 nm, emission is due to contributions from
light in mode noL only. For longer wavelengths (beyond the red line), only mode
uoL contributes to the emission. We see very clearly that the transition from emission
from noL to uoL is smooth and that no spectral feature is associated with this position.

2In Sect.4.3.1 we saw that emission over the (white- and black-hole) horizon intervals is charac-
terised by a “shark fin” shape. We identified this as a signature of horizon physics, as illustrated in
Figs.4.5 and 4.7.
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So it seems that the existence of a phase velocity horizon at this wavelength does not
influence the rate of emission. Note that this wavelength lies outside of the horizon-
type intervals, that are delimited by dotted orange and black vertical lines in Fig.4.11.
Evidently, emission is increased over these horizon-type intervals, and the spectral
shapes observed in the moving frame (refer to Fig.4.11) feature in the laboratory
frame spectral density—they are merely mirrored by the effect of the boost: in the
moving frame, mode noL has negative group velocity, whilst in the laboratory frame
ithas positive group velocity. As aresult, the UV peak is highly structured in intervals
with horizon-type and no horizon emission, with the largest spectral density obtained
at 251 nm (corresponding to the onset of the frequency-interval over which the RIF
acts as a black hole horizon).

As can be seen from the dispersion relation in the moving frame (see Fig.3.5),
and from the spectra computed in Fig.4.10, as the height of the RIF (the change in
refractive index dn) decreases, the intervals with horizon emission narrow. So the
peak at 251 nm in Fig.4.11 would move to shorter and shorter wavelengths as én is
lowered, and its spectral density would decrease. Referring to the experimental data
of [16], in which a fundamental soliton of height dn = 8 x 10~7 was propagated in
an optical fibre, we can compute the spectrum of light spontaneously emitted from
the vacuum of a RIF of height of the order of 107° in bulk fused silica. This is
shown in Fig. 4.12: the high spectral density feature is now extremely narrow, with a
bandwidth of 1.5 x 10~* nm, and a strength of about 2 x 10'3 photons per unit time
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Fig. 4.11 UV peak of the laboratory frame spectral density of emission from a RIF. The RIF (of
height n = 0.02) in fused silica moves at velocity u = 0.66¢, and this temporally varying medium
excites photon pairs out of the vacuum. For each photon pair created on the optical branch of the
dispersive medium, one photon will lie in the interval [230 nm, 286 nm] because that is the interval
over which the unique optical mode with negative norm mode contributes to emission as measured in
the laboratory frame. The spectrum is structured in intervals of emission with black-hole, white-hole
and no horizons
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Fig. 4.12 Laboratory frame emission for dn =2 x 107 from a RIF moving at u = 0.66¢ in
bulk fused silica. a Only the negative-norm optical-optical frequency mode noL contributes to the
emission between the purple and red lines, and only the positive-norm optical-frequency mode uoL
contributes to the emission beyond the red line. In b, we have zoomed in around the 209 nm region
to display the clear black-hole-horizon-type emission feature of the UV peak

and unit bandwidth. The peak remains significantly strong with respect to emission
at other wavelengths, which should make it an adequate target for an experiment.

The quantum state at the output is expected to be a two-mode squeezed vacuum
state if only two modes were involved (see the argument of Sect. 3.1.2, and in
particular the derivation leading to Eq. 3.46). However, the present study makes clear
(via Fig.4.7d for example, or Eq. 3.93) that, for each moving-frame frequency, each
mode can couple to up to five positive-norm and three negative-norm modes. Thus
we expect the final quantum state on the optical branch to be in a mixed state across
the optical modes. Yet, coupling between particular mode pairs seems to dominate
in parts of the spectrum—over intervals in which there are horizons—, in particular
within the optical branch (see Fig.4.6d and the almost-equal flux density in moR
and noL). Further characterization of the exact state emerging is needed—and one
might want to compute a correlation map between the modes in the moving and in
the laboratory frame to scrutinise it.

4.3.3 Conclusion and Discussion

It would be interesting to compute such a spectrum as Fig.4.11 for a different geom-
etry of the RIF, for example a more realistic pulse shape such as a hyperbolic secant
squared, to assess which of the numerous features displayed in Fig.4.11 are con-
served. Efforts in this direction have been pursued in recent publications, see for
example [9, 17, 18], in which analytical or numerical calculations in the moving
frame were carried for smooth RIF geometries—but no spectrum in the laboratory
frame, or even pulse-like geometries (with asymptotically-flat, low-refractive-index,
regions on either side of a symmetric bell-shaped RIF) were considered.
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In the search for spontaneous emission from an optical setup, the study of the
simple geometry of the step-like RIF has proven extremely informative in that it
allowed for:

1. clearly establishing the matching conditions between the fields on either side of
the interface;

2. clearly identifying the various contributors to emission in positive and negative
norm modes—for example, Figs.4.6d and 4.7d make clear which mode takes
part in the quasi-pair-wise emission;

3. creating an analytical method and algorithms to describe the scattering of an
incoming field into outgoing fields without approximations—indeed, in contrast
with the above-mentioned publications, we consider exact solutions to the fields
equations in asymptotically flat regions around the interface, and do not resort to
the JWKB approximation, for example;

4. discovering signature features of event horizon physics in dispersive media, such
as the increase in the photon flux and the shape of this increase;

5. computing the first spectrum of light spontaneously emitted from the vacuum as
it can be observed in the laboratory frame.

Such an analytical method as that presented in the first part of this chapter
(Sect.4.1) can be used to parse a pulse into discrete regions, and to thus calcu-
late a scattering matrix for incoming fields on the right and on the left of the (now
spatially symmetric) RIF into outgoing fields (on the right and on the left of the RIF).
This original idea of Konig’s has not yielded any result yet, but is under investigation
by others in the Quantum Optics group at St Andrews.

In [19], the authors make use of the algorithm developed in [10] to calculate
spectra for a smooth hyperbolic secant squared profile in the refractive index of a
fibre. Their findings and methods will be compared to these of this Thesis in a later
paragraph—see Sect. 5.5.

For the sake of this Thesis, we content ourselves with a step-like RIF geometry
and the spectra computed in this chapter.’ The most interesting feature of these
spectra, for what follows, is certainly the high spectral density UV peak. Indeed,
as we discussed above, this peak stems from contributions of light in the unique
negative-norm optical-frequency mode in the medium. In the mechanism of photon
pair creation from the vacuum at an interface, one of the two peers will have a negative
norm (like the Hawking partner does in the theory of Chap. 3), so any positive norm
photon emitted at a wavelength beyond the UV peak will be correlated to a photon
within the peak interval. In particular, photons in this UV peak (more precisely those
within the black-hole horizon feature of the peak) will be entangled with photons in

3As was discussed in the introduction of this chapter, the dispersion relation used to compute
the spectra is not that of the medium used in the experiment of Chap. 5: it is that of bulk fused
silica (BFS) and differs from that of the photonic crystal fibre (PCF). Considering BFS allowed
for checking our results against the literature. In contrast, it is not possible to use a physically
meaningful analytical relation for the dispersion of the PCF. This examination is the subject of
ongoing work at St Andrews.
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the unique mode that allows for light to escape from the boundary (like the Hawking
radiation, again).

In an experiment, one cannot realise a step-like but a smooth RIF. Nevertheless,
because of its pair-wise emission origin and of the refractive index of materials in
the UV, the negative-norm optical peak will always have a large spectral density and
narrow bandwidth relative to the rest of the spectrum of spontaneous emission. For
most materials that can be used in an optics experiment nowadays (e.g. bulk fused
silica, diamond or fused silica PCFs), this peak will lie in the UV. It thus appears
as an observable of choice in any experiment that would aim at detecting photons
emitted by an optical black-hole horizon.

In the next chapter of this dissertation, we will present the experimental efforts that
were conducted in this direction: we will, in particular, see how positive-norm light,
in a non-vacuum state, incoming on the RIF would scatter into the negative-norm
mode, yielding parametric amplification of the emission in this mode.
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Chapter 5 ®)
Experimental Observation of Scattering e
at a Moving RIF

5.1 Stimulated Scattering

Looking back to the previous chapters of this dissertation, we see that we have suc-
cessfully explained how an analogue to the horizon of a black-hole could be created
by means of a light-induced disturbance in the refractive index of a dispersive dielec-
tric (see Sect.2.3); and how the study of the conditions under which this happens
can shed light on various aspects of black-hole physics. In particular, in Sect. 3.2,

© Springer International Publishing AG, part of Springer Nature 2018 129
M. J. Jacquet, Negative Frequency at the Horizon, Springer Theses,
https://doi.org/10.1007/978-3-319-91071-0_5


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91071-0_5&domain=pdf
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we expanded and used a quantum theory for light in a dispersive medium to cal-
culate the rate of spontaneous emission from the vacuum at a moving front in the
refractive index (RIF). This study shed some new light on the effect of particle pair
creation at the (analogue) horizon: on the one hand, we showed that spontaneous
emission—that results from the mixing of a variety of positive and negative norm
modes at the RIF—takes place at all frequencies, even at frequencies at which the
conditions for the RIF to act as an analogue horizon are not met. On the other hand,
we found that emission was stronger around the horizon-like frequency-intervals
with a characteristic spectral shape.

Furthermore, over the horizon intervals, quasi pairwise particle production seems
to dominate—with strong emission in a unique (positive norm, optical) mode allow-
ing for light to “escape from the horizon” and a negative norm (optical) mode in
which light “falls behind the horizon”, in a process a la Hawking. Interestingly, we
also found that contributions from this latter mode (called noL) yielded the high-
est spectral density as it can be measured in the laboratory, in particular over the
analogue-black-hole frequency interval.

The findings summarised above stem from the study of the scattering of incoming
field modes in the vacuum state, and help understand the conditions that an exper-
iment aimed at observing spontaneous emission of light from the vacuum would
have to meet. To date, no such optical experiment has been successfully conducted,
but the classical effects of the horizon on waves has been extensively studied and
demonstrated—see for example the experiments of [1, 2]. In these experiments, a
mode of light in a coherent state was sent on the RIF and the resulting reflection
and frequency shift were observed. This phenomenon, in the framework described
in Sect.3.2 of this dissertation, is nothing else than the scattering of an incoming
mode of positive norm (populated with photons, since it is a coherent state) in an
outgoing mode, of positive norm as well, that allows for light to propagate away
from the RIF into the analogue-outside region (the low refractive index region, for
¢ > 0, of Fig.3.4).

Let us cast this statement in a derivation: we can use the scattering theory outlined
in Sect. 3.2.4 to calculate the expectation value of our modes when an in mode is in
a coherent state. Denoting « () as a mode of same (opposite) sign in norm as ay,
the incoming state is defined as |pa,) = [7a,) ® 3, 0p 10a) ® 3_5 105). This state
is populated with photons in a unique mode of positive norm « that is in a coherent
state, whilst all other positive and negative norm modes are in the vacuum vacuum
state.

The number operator in an out mode « is given by Eq. (3.90). Whence the expec-
N ‘ na0>.
For clarity, we will perform the algebra term by term, beginning with the first term:
by 4% |pa,) = 1 1m0),

tation value for the number of photons in the out mode is <1\7 ‘”> = (nao

(Pao| Z ﬁaamﬂa’m&a‘r&a’ |p%> — Zﬂam*ﬂa’al |,,7|2 (5@%5&%
aa’ o’ (51)

|2 2
= 67" Inl”.
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The second term was calculated in Sect.3.2.4 by Eq.(3.91) and yields ) | o |2.

Now, calling on a*a*" |ny) = (nx> Inx) + [nx), and recalling that the incoming
modes of negative norm are in the vacuum state, |05), which implies that the first
term goes to zero, it follows that a®*'a*a®" = |1)y. Wherefrom the third term of
(3.90) goes to zero:

<p%‘ Zﬂaal*ﬂ&’al*&&T&d’T |pao> = 16 <77ao Ila/> =0, (5.2)

ad/

and so does the fourth one-

(p(!o‘ Z ﬁa'alﬁﬂ,(llaﬁ,&(}” ‘pa[)) = (1(_y| 6(!0(!177 |T]ag> = 0. (5.3)

Therefore, the expectation value in an out mode when one of the positive-norm
in modes is in a coherent state is

(Rre) = 1o Ping? - 3187 P (54)

The second term is the expected contribution from the vacuum (an incoming mode
of opposite sign in norm to the considered out mode will scatter into it and the action
of its creation operator on the vacuum will result in a photon being emitted). The first
term is due to, in quantum optics, parametric amplification: an in state comprising
photons in one positive norm mode only will stimulate emission into any out state,
irrespective of the sign of the norm of the latter. Indeed, upon introducing the out
mode o, we have made no assumption regarding the sign of its norm—the above
derivation actually holds for both positive- and negative-norm out modes. To the best
of my knowledge, this is an original finding of this Thesis: it is the first time that the
stimulation of outgoing states of negative norm by monochromatic coherent input
states of positive norm is introduced in the field of optical analogues.

Two experiments performed by Rousseaux et al. [3] and Weinfurtner et al. [4]
already demonstrated the phenomenon of stimulated scattering from a positive to a
negative norm wave at the group velocity horizon in a water-based setup. Note that
there is a debate in the community as to whether these water wave experiments were
performed in the linear or nonlinear regime [5, 6]. In that regard, the 2016 experiment
by Rousseaux and collaborators [7] more clearly demonstrates physics belonging to
the linear regime. Likewise, the first experimental observation of negative-norm light
in optics, by Konig, Faccio and collaborators in 2012, was performed in the nonlinear
regime [8]. In that experiment (see Sect.2.2.2 for a more detailed discussion), the
pulse sent in the dielectrics was well above the power-level for fundamental soli-
tons. Thus it is a nonlinear effect, whereby photons from the pulse were scattered
to different frequencies—including the Negative Resonant Radiation (NRR) in the



132 5 Experimental Observation of Scattering at a Moving RIF

UV—that was observed.! Although the observation [8] was a convincing evidence of
negative-norm light created by parametric generation, this experiment did not pro-
vide well-defined input mode frequencies as the stimulation resulted from the broad
spectrum of a collapsing pulse. Furthermore, because of the high intensity, and the
induced nonlinear propagation of the pulse, it is unclear whether the scattering of
the incoming modes (from the pulse itself) into outgoing modes can be described by
the (linear) physics of event horizons.

In terms of the optics experiments [1, 2], this means that the observed (positive
norm) frequency shifts were accompanied by transfer of energy from the probe to
a wave of negative norm. This effect was not observed at the time, though, and
we here propose to do so. For this purpose, we assemble an experiment allowing
for an incoming laser beam to impinge on a fundamental soliton propagating in an
optical fibre, to probe the effect of energy transfer to a negative norm wave at the
analogue horizon. This chapter is the experimental component of the Thesis, and
shall culminate in comments on the observation of the above-mentioned effect in
fibre optics. In the next section, we will present the setup assembled to preform the
experiment. We will explain the choice of the laser used to create the soliton in the
optical fibre, and that of the frequency filtering and measurement techniques used
to observe frequency shifting at the horizon. We will then dedicate a section to the
observation of positive-norm to positive-norm frequency shifts, and comment on the
various theories that can describe this effect. Following on which, the chapter will
conclude with the presentation of the efforts made towards the detection of light
scattered from the positive-norm in mode to the negative-norm out mode—that lies
in the UV in the present case. Finally, we shall make some remarks on the present
endeavour and look out to the future of this experiment.

5.2 A Journey, at the Speed of Light, on an Optical Table

In this section of the dissertation, we will look at all the apparatus and optical elements
used in the setup that was created to observe the frequency shifting of light at the
optical horizon. The optical elements fall into two categories: the optics used to
prepare the state of light sent in the fibre, and the optics used to collect the output
and distribute it to the various measurement devices. Likewise, the apparatus can be
separated between the lasers used to create the input, and the measurement devices
we chose to probe the output. All are arranged around the optical fibre in which
the phenomena of interest take place. This section presents all of these in the order

I'The experiment that was realised for this Thesis relies on the propagation of a fundamental soliton
in the fibre. This modifies the refractive index by the Kerr effect—which is a nonlinear effect—and
the photons that are scattered at the pulse edges come from a different light field, a probe. The latter
scatters linearly on the refractive index front: although this front is created by nonlinear means, the
scattering described by Eq. (5.4) and implemented in the experiment is a linear process, unlike the
generation of NRR from higher-order soliton pulses.
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Fig. 5.1 Schematic of the experimental setup. The Verdi V6 laser delivers a single frequency CW
beam at 532 nm that is used to pump the DelMar cavity and coupled in the fibre (PCF) and used as
a probe wave. The DelMar cavity outputs ultrashort, pJ-energy, pulses of central wavelength 750 to
890 nm that are propagated through a pair of dispersion compensation prisms (DCP1 and DCP2)
twice to create negative group velocity dispersion (GVD) and compensate for the broadening of
the pulses upon interaction with all other optics. HWP1 and PBC are used to control the amount of
IR light that reaches the tip of the fibre. HWPIR and HWPG are used to align the polarization of
the pulse that generates the fundamental soliton in the fibre and that of the probe wave. Visible-IR
reflectors, MG1 and MG2 for the green, MIR and the dichroic filter for the IR, are used to aim the
co-polarised input beams through the input coupler IC on the tip of the PCE. The UV component
in the output beam is collimated by the output coupler OC (UV-condenser triplet). The spectral
characteristics of the visible and IR components of the light can be measured by inserting VISI in
the output beam, and further inserting a dichroic and notch filters before the CCD spectrometer. The
UV component of the beam is isolated from all other light by spatially and frequency filtering the
output beam by means of iris and the cascaded reflection filter CRF (composed of 2 UV mirrors)
and UV mirrors, respectively. UV light is then probed with sub nm precision by the single photon
counter SPC installed behind the monochromator

one would encounter them in when journeying on the optical table, from the lasers
through the fibre and to the measurement devices—as shown on the bird-eye view
schematic of the setup in Fig.5.1.

5.2.1 Pulse and Probe Sources

In the experiment, the front in the refractive index (RIF) of the fibre is realised by
means of an intense few-cycle pulse that creates a soliton (see Sect.2.2.1 for the
theoretical description of this effect). The RIF is probed with a continuous wave
(CW) laser beam of wavelength 532 nm.
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Fig. 5.2 Schematic of the Trestles 100 folded cavity, DelMar Photonics

5.2.1.1 Probe Laser

The probe wave is provided by a CW laser at 532 nm wavelength (Verdi V6, Coherent
Inc.), that delivers 6 W of output power in the TEMy transverse mode. The output
spectrum of this laser is actually an extremely narrow line at 532 nm, of width less
than 5 MHz.? This single-frequency (single longitudinal mode) operation makes it
ideal to probe the effect of frequency-shifting at the RIF: the coherent state that will
be scattered at the RIF will be of a single, monochromatic, comoving frequency w’,
as in the calculations (5.4).

5.2.1.2 Pulse Laser

A 3W, 532 nm beam provided by the Verdi laser is coupled to the cavity of a Tita-
nium:Sapphire laser (Trestles100, Del Mar Photonics, Inc.) and used to pump it to
create pulses shorter than 100 fs, with a repetition rate of 81 MHz, in the IR.

This laser is based on a folded cavity design (see Fig. 5.2, composed of 10 mirrors
(including M1, M2, HR and the output coupler (OC)), a Titanium-Sapphire crystal
(TiS), alens for the focusing of the pump radiation (L), two prisms (P1 and P2), and a
slit (S). This folded design results, in particular, in a virtually astigmatism-free output
beam. It also enables the tuning of the central wavelength of the IR pulses—in the
experiments described in this thesis, I could create pulses of central wavelength, A,
749-887 nm (the Ti:Sapphire gain range extends from 710 to 950 nm) of duration
between 50 and 85 fs. These pulses are created by means of the Kerr lens mode-
locking (KLM) principle of operation [9].

As we will see later, the experiment solely requires the propagation of a funda-
mental soliton in the fibre, thus the IR power impinging on the tip of the fibre ought

2Manufacturer data, measured over 50ms with a thermally stabilized reference etalon at maximum
specified output power.
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Fig. 5.3 Output spectra of the pulse laser (Trestles100, Delmar Photonics Inc.). The central wave-
length of the pulses is tuned from 750 to 890 nm. The (normalised) spectral density of the pulse at
all wavelengths is characteristic of a cavity soliton—it can be fitted with hyperbolic secant shape,
as exemplified for the A, = 840 nm pulse (AX = 8.8 nm, Ty = 48 fs, Ep = 8.94 pJ)

to be much lower than the maximal output power attainable. I obtained average pow-
ers above 200 mW for pulses of central wavelength A. between 790 and 870 nm.
For output pulses of central wavelength beyond this range, I obtained lower average
powers, typically below 190 mW. I observed that the pulses at the output of the laser
all had a spectral density that could be fitted with a hyperbolic secant function, as in
Fig.5.3. This is a signature of cavity solitons, i.e., the pulses propagating inside the
cavity are discrete solitons.

5.2.1.3 Keeping the Pulses Short

As can be seen in Fig. 5.3, the pulse emitted by the pulse laser are relatively broad-
band, with a bandwidth (measured at the full width at half maximum) A\ = 8.8
nm at 840 nm, corresponding, by the time-bandwidth product AAA? > 0.315\3 /¢
[9], to a pulse length 7wy = 84fs. Upon reflection on surfaces, or transmission
through the material of the various optical elements on the way to the tip of the opti-
cal fibre, such short-broadband pulses experience positive group velocity dispersion
(GVD) and thus broaden. To compensate for this broadening, which is detrimental to
the control of the soliton ultimately generated in the fibre, the beam is passed twice
through a pair of dispersion compensation prisms (DCP1 and DCP2) by means of a
reflection on a mirror positioned after the second prism (as can be seen on Fig.5.1).
Careful alignment of the beam path through the pair allows to create negative (or
anomalous) dispersion: high frequency components are made to travel faster than the
lower ones, thus negatively chirping the pulse (see the Ph.D. dissertation of McLen-
hagan [10] for the various GVD and GDD techniques developed by the St Andrews
group). Two passages through the pair result in a negative GVD that compensate
for the interaction with other optical elements further in the beam path down to the
fibre tip, and ensures that the pulse used to create the soliton is indeed an unchirped
hyperbolic secant one.
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5.2.2 Polarisation and Coupling of Input Light

Continuing our journey on the optical table towards the tip of the fibre, alongside the
IR pulse, we first encounter some polarisation optics. As was mentioned earlier, and
will be calculated later, the realisation of a RIF in the optical fibre does not require
the full average power available at the output of the Trestles100.

5.2.2.1 Polarising the Input Light

In order to control the power impinging on the tip of the fibre, we use a combination of
polarisation optics, a half-wave plate (WPHO5M 808, Thorlabs Inc.) and a polarising
beam cube (PBS052, Thorlabs Inc.), labelled as HWP1 and PBC, respectively, in
Fig.5.1. Both intended for use over the spectral range 620—1000 nm, which, as can
be seen on Fig. 5.3, covers the full pulse bandwidth for all central wavelengths. The
IR beam is linearly polarised, along an axis that can be rotated, by HWP1. As a
function of the polarisation state sent on the PBC, none, a fraction, or all of the
power (up to Fresnel reflection) will be transmitted through it. Behind the PBC, and
before the IR beam encounters the coupling optics, it goes through a second half-
wave plate, HWPIR (WPHO5M 808, Thorlabs Inc.) on Fig.5.1. HWPIR is used to
rotate the linear polarisation of the IR beam and to align it to either the polarisation
axes of the fibre, or in parallel with the green beam.

The green probe consists of the, undepleted, remains of the 3 W of 532 nm light
used to pump the pulse laser: mirrors M1 and M2 (that constitute the telescope
around the Ti:Sapphire crystal in the Trestles100 cavity) are transparent at 532 nm,
and let 300 mW of the pump beam escape the cavity via an aperture (as can be
seen on Fig.5.2). This Gaussian beam is directed towards the coupling optics by
reflection on 4 mirrors—in particular MG1 and MG2 (see Fig.5.1) are used to aim
the beam through the coupling lens onto the tip of the fibre. After MG2, a half-
wave plate (HWPG, WPH05M-532) specified for 532 nm is used to rotate the linear
polarisation of the green beam. In the experiment, the input IR and green beams are
co-polarised. The two half-wave plates, HWPG and HWPIR, are not exactly aligned
in their respective mounts, as can be seen on Fig. 5.4. This was gauged by measuring
the power in the light reflected on a glass slide set at the Brewster angle in the linearly
polarised beam as is diagrammatically illustrated in Fig.5.4: a microscope slide is
placed at 104° in the IR (green) beam reflected (transmitted) through a dichroic
filter—the role of which will be explained later—and the power meter head collects
light reflected (in a p-polarisation state) from the slide. The amount of light in this
reflected beam varies as HWPIR, or HWPG, is rotated, and the result is shown in
Fig.5.4. We see that there is a difference of 60° between the, e.g., horizontal axis of
the two waveplates.
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Fig. 5.4 Measurement of half-wave plates axes alignment by Brewster reflection. The incoming
polarisation of the IR and green beam is controlled via rotation of HWPIR and HWPG, respectively.
P-polarised light (after reflection on, for the IR, or transmission through, for the green, a dichroic
filter) is reflected on the microscope slide (inserted at 104°, the Brewster angle, in the beams), and
the resulting power is collected on the power meter head. The power in the Brewster reflection is a
Sin function of the HWP angle

5.2.2.2 Coupling Light in the Fibre

Input light, from the IR and green beams, has to be focused on the tip of the fibre, to
a waist of less than 2 pm (to match the surface area of the core of the fibre, which
dimensions will be detailed later) along the direction of the fibre axis. This implies
that the two beams have to be made collinear and then focused by the same optical
element. To achieve collinearity, the IR light is reflected onto the coupling optics
by means of a dichroic filter (660IK25, Comar Optics Ltd), whilst the green beam
is transmitted through it towards the fibre. As can be seen from the manufacturer
data in Fig.5.5, the dichroic filter has a high reflectivity, of almost 100%, over the
wavelength range of the IR laser beam, and a transmission of close to 95 % at 532
nm—at 45° incidence.

The collinear IR and green beam are then focused on the tip of the fibre by a
(f = 3.1 mm) aspheric lens (C330TMD-A, Thorlabs Inc.), whose coating reflectivity

Fig. 5.5 Transmission 660 IK - typical transmission data
curves (at normal and 45 100 : [ [

degree incidence) of the
dichroic filter (6601K?25, %T
Comar Optics

Ltd)—Manufacturer data

— 45

50

450 550 650 750 *(nm) 850
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Fig. 5.6 Reflectance curve
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is plotted in Fig.5.6. This lens transmits close to a 100 % of the light in the IR and
green beam, in particular, at 532 nm, the reflectance is of only 0.5%, making it
suitable to focus the green beam onto the tip of the fibre.® Unfortunately, this lens
suffers from chromatic aberrations: the green and IR foci are not found at the same
point along the lens-fibre axis. To compensate this, the green light is focused by
a (f = 300 mm) lens before the filter, at the point at which light propagated from
the back end of the fibre, and back through the coupling lens was focused. In doing
so, I was able to couple up to 60 mW of green light into the fibre—for a coupling
efficiency of 20%. As a function of the central wavelength of the IR pulse, I could
achieve an IR-coupling efficiency of 21 to 39%.

5.2.3 Optical Fibre

Now we arrive at the central element of the setup, the medium in which the pulses
generate the RIF that scatters the green probe to other, positive- and negative-norm
modes of oscillation of the electromagnetic field. Our theoretical study of Sect.2.2.1
will now seem less fortuitous: the medium of choice for the optical study of analogue
horizons is a photonic crystal fibre (PCF). PCFs are a particular type of optical
fibres engineered to efficiently confine high intensity, ultrashort, pulses of short-IR
wavelength in their core. In particular, the dispersion of PCFs can be tailored to
generate a regime of anomalous dispersion for such short-IR wavelengths as those
delivered by the Trestles100 (in the 800 nm regime, see Fig.5.3).

3 Again, although only 90 to 98 % of the incoming IR is transmitted through the lens, and thus
focused on the tip of the fibre, this does not matter in this experiment: indeed, the laser delivers an
output power sufficient to accommodate for the losses at the lens, and all the optics on the way to
the fibre, and nevertheless generate a fundamental soliton in the fibre.
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5.2.3.1 Characteristics of the Fibre

Recalling the Nonlinear Schrodinger equation stated in Sect.2.2.1, Eq. (2.62), we
identified (3, as the second order dispersion parameter, or GVD parameter, 3, =
%n (w)w/c with n(w) the effective (frequency-dependent) refractive index. For bulk
fused silica, of which conventional fibres are made, it can be calculated that 3, is
zero at A = 1270 nm [10]. We called this wavelength the zero dispersion wavelength
(ZDW). The region of anomalous dispersion lies at wavelengths longer than the
ZDW. In fibres, there is a waveguide contribution to the dispersion that shifts the
ZDW. This contribution can be made large enough by engineering PCFs, to move
the region of anomalous dispersion to wavelengths as short as that of the Trestles100,
or even the into visible. There exists many PCFs design, and they all have in common
the main idea of surrounding the wavelength-size core of the fibre with a pattern of
wavelength-size air holes running the length of the PCF. The two main core designs
are a “missing” hole, or solid-core, or a hollow core.

The fibre used in this experiment is the NL-1.5-670 (Blaze Photonics), that has
a solid core of diameter 1.5 pm surrounded by a microstructure of ~2 pwm holes
(the cladding), as can be seen in Fig.5.8. Its ZDW is 670 nm, thus pulses of central
wavelength 790-870 nm propagate in the anomalous dispersion region of the fibre
and can thus generate solitons. With the fibre parameters communicated by the man-
ufacturer, a nonlinear coefficient, v, of 250/W/km and a group velocity dispersion,
D, of 145 ps/nm/km (see Fig.5.7), we can use Eq. (2.64) to calculate the peak power
of fundamental solitons generated at all wavelengths on Fig.5.3: we obtain peak
powers on the order of Pp = 200 W, see Fig.5.9a. The average power necessary to
generate such solitons is calculated by [9]

Povg = Vrep Pp Trwhm, (5.5)
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Fig. 5.7 Dispersion curve of NL-1.5-670. Data courtesy of Blaze Photonics
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Fig. 5.8 SEM image of the
tip of PCF NL-1.5-670. Data
acquired by Andrea Di
Falco—University of St
Andrews

with 7wy = 1.763Tp, for a hyperbolic secant pulse, and the pulse duration speci-

fied above: 50fs (yielding a Ty of 28.4fs for a repetition rate of 81 MHz). The average
power depends on the central wavelength A of the pulse, as in Fig.5.9b, and is on
the order of 1 mW for an N = 1 (fundamental) soliton. As was repeatedly stated in
the preceding argument, the average power delivered by the Trestles100 is in large
excess of what is needed to generate a fundamental soliton in the fibre. Indeed, even
with a coupling efficiency of only 20% (lowest efficiency achieved in this experi-
ment), a beam of only SmW would suffice. This figure also comes as a confirmation
of the adequacy of the experiment design so far: few optical elements (6 mirrors, two
HWP, a PBC, a dichroic filter and a lens) induce positive GVD in the pulse (for a
total of &~ +375fs?), that is compensated for by the two passages through the pair of
dispersion compensation prisms and the fibre (that has a GVD of —41.1fs*/cm [10]).
This design enables control over the three input pulse parameters of importance in
this experiment: the input energy, the input polarisation, and the duration (and chirp)
of the pulse upon impinging on the tip of the fibre and generating a fundamental
soliton.

In addition to their short-wavelength anomalous-dispersion region, and their abil-
ity to confine high-intensity IR light in their core via mode sieving,* PCFs also allow
for long-distance undisturbed propagation of the fundamental soliton by minimis-
ing pulse broadening through propagation—thus allowing for nonlinear interactions
over long distances. And, thus, for long distances soliton-probe interactions—in the
experiments presented in this thesis, the probe scattered on the edge of the soliton
over the total length of the fibre, 1.2 m. The output of the fibre falls in two categories:
strong output (the green and IR components of the beam) and weak output (the UV
component of the beam). These have to be measured with different apparatus and
have to be isolated from each other, as will be detailed in the coming two sections.

4The lower order modes, that have a large cross section, cannot escape from the core of the fibre
because the “wires” between the cladding holes are too narrow [11].
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Fig. 5.9 Fundamental (N = 1) soliton in the fibre (PCF NL-1.5-670). a Peak power of a funda-
mental soliton generated in the fibre for increasing central wavelength from 750 to 900 nm. The
peak power is calculated by Eq. 2.64. b Average power necessary to generate a fundamental soliton
in the fibre for increasing central wavelength from 750 to 900 nm. The average power is calculated
by Eq.(5.5)

5.2.3.2 Fundamental and Higher Order Solitons in the Fibre

The experiments presented in this Thesis rely on the fine control of the order (fun-
damental, N = 1, or higher order) of the soliton that is propagated in the fibre. This
order can be determined by comparing the spectrum at the output of the fibre with
that of the input pulse for varying output powers. The pulse propagating in the fibre
generates a fundamental soliton when the two traces overlap: up to a redshift of the
central wavelength due to Raman scattering, the spectrum of the fundamental soliton
will be identical in wavelength and energy (surface area in temporal space) to that
of the incoming pulse.

I acquired spectra of the IR pulses in the fibre for increasing output power from
0.25 to 16 mW at all wavelengths from 749 to 887nm. An example of the study
of the soliton number is shown on Fig.5.10 for a input pulse of 840 nm central
wavelength (as on Fig.5.3): the average output power necessary to the formation
of a fundamental, N = 1, soliton is 1.25mW. A 7 = 93 fs, \. = 842 nm soliton, of
bandwidth 8 nm and energy 8.3 pJ then forms in the fibre. Note that this average
power is larger than what can be calculated by (5.5) and is shown in Fig.5.9. This is
due to the coupling efficiency at this wavelength: it being low, the mode must overlap
with the cladding and only a fraction of its energy is propagated in the core of the
PCF, where fundamental soliton are generated and propagate. The spectral shape of
the soliton slightly differs from that of the input pulse because of the rotation of the
polarisation axes of the fibre over the full length of the fibre (and possibly as a result
of the overlap of the input mode with the cladding and core of the PCF).

For higher average output power, the propagation of the IR pulse results in the
formation of two pulses that move away from each other in frequency because of
Raman scattering. Input pulses that have a shorter wavelength, closer to the ZDW of
the fibre will also generate a dispersive wave whose wavelength will shorten as the
average power in the fibre is increased.
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Fig. 5.10 Soliton order as a function of the average output power. An input pulse of central wave-
length 840nm (black) is propagated in the PCF. The input and output spectra are normalised
to the N =1 soliton energy. Output spectra for increasing average power Paye from 0.25 to
16 mW are measured, corresponding to soliton numbers of a 0.63, b 0.89, ¢ 1 (P = 1.25mW
and Epe;x = 8.3mlJ), d 1.18, e 1.41, f 2, g 2.53, and h 3.58. Note the change in the scale of the
spectra. The spectra are plotted against wavelength, from A = 800nm to A = 1100nm

5.2.4 Strong Output Measurements Setup

Both ends of the fibre are set on two three-dimensional micrometer piezo stages,
that allow for further refinement of the tip-(in/out)coupling-optics alignment. Light
from the end tip of the fibre is collected by a 15 mm UV-condenser triplet (NT
49-693 aspheric UV lens, 0.5 NA, Edmund Optics) chosen for its Numerical aper-
ture (NA) that matches the NA of the fibre in the UV, and its coating and focal
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length that are specified in the UV—where the signal ultimately lies. Because of
the strong chromatic aberration of these optics, “visible” light (at 532nm and the
(red or blue) frequency shifted light) are not collimated when light in the UV is.
Because the final aim was to measure an extremely weak (few photons) signal in
the UV, I chose to collimate the UV beam and to use a diverging visible beam to
measure the positive-norm-to-positive-norm frequency shifts. This choice will be
commented further in Sect.5.4.1.1. Visible light from the fibre is directed to the
CCD spectrometer (AvaSpec-ULS2048-EVO, Avantes BV) by a reflector (BB5-
EO2, Thorlabs Inc.) inserted in the beam (VISI)—thus simultaneous measurements
of the positive-norm-to-positive-norm and positive-norm-to-negative-norm scatter-
ing processes is not possible with this setup. This is a drawback only in terms of the
duration of the measurement procedure and does not impact the final result. On the
contrary, a setup allowing for simultaneous measurements had initially been designed
but was found to be too lossy in the UV.

5.2.4.1 Frequency Filtering in the Visible

As will be calculated in the following section of this dissertation (see Sect. 5.3.1), only
a certain amount of the probe energy actually scatters off the edges of the pulse. Thus
there is a strong beam exiting the fibre at 532 nm wavelength, that has to be filtered
out to allow for measuring the (approximate) spectral density in, and wavelength
of, the frequency shifted light. The dielectric mirror VISI will reflect over 99% of
the incoming light for any polarisation state of the visible light. In order to avoid
saturation by the green or IR output in the spectrum regions of the red or blue shifted
light, two dichroic filters are inserted in the beam after the mirror: another short-pass
filter (660IK25) to filter out the infrared light, and a notch filter centred at 532 nm
(NF03-532E-25, Laser2000 Ltd.) to suppress the strong 532 nm component left-
over from the probe-pulse interaction. The notch filter has a suppression bandwidth
of 17 nm centred around 533 nm, where it effectively acts as a 63 dB attenuator, see
Fig.5.11. Additionally, I found that, contrarily to what Fig.5.11 suggests, the notch
filter actually heavily blocks light in the UV, with an attenuation of over 30dB over
the range 220-280 nm. Incoming light is focused on the entrance slit of the CCD
spectrometer by means of a 15 mm lens.

5.2.5 Probing the Invisible

As was said earlier, the output light is collected by a 15mm UV-triplet lens that
allows for collimating the UV component of the beam. This UV beam is directed at
the UV-measurement apparatus, that consists of an avalanche photomultiplier tube
(single photon counter, SPC) placed behind a monochromator. In the experiment,
we measure the signal rate in photons per second (Hz) down to the single photon
regime. To direct the beam to the measurement apparatus, UV reflectors have to be
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used. Indeed, optics that do not have a coating specifically made for the UV will
strongly absorb over this wavelength range—this is, for example, the case with the
above-mentioned visible reflector.

5.2.5.1 Improving the SNR by Filtering Out Contaminating Light

As we will see in a following section of this dissertation, we expect a signal of
very few photons per second, so each of those that come out of the fibre are a
precious and scarce resource that has to be carefully handled on the way to the
measurement apparatus. At the same time, the visible and IR components of the
output beam are much stronger, by many orders of magnitude: the average IR output
power for the fundamental soliton regime is on the order of 1 mW (see Sect.5.3.3)
whilst the output power of the green is of about 60mW—these would create rates of
about 4.2 x 10"°Hz and 1.6 x 10'7Hz, respectively, on the SPC. I observed that, if
unfiltered, the green and IR components of the output beam would smear out in the
monochromator: green and IR photons scatter off the grating and yield background
counts at all wavelengths. This “smearing effect” is not well understood and is not
linear in wavelength. I measured that the green component of the beam creates a
background of 2, 000 Hz, whilst the IR component creates a background of only
100 Hz over the range Thus, the green and IR have to be filtered out of the beam
that will eventually reach the monochromator to reach a regime of signal to noise
ration (SNR) allowing for detection of a few-Hz UV-signal. In this section, I will
discuss the various filtering techniques that were developed and implemented in the
experiment to isolate the UV signal from light that contaminates the SNR—the green
and IR components of the beam and the background light of the laboratory. These
are: the use of UV-coated optics (mirrors and lenses) that absorb long-wavelength
(green and IR) light, the insertion of a UV-bandpass filter, and the spatial isolation
from the (diverging) long-wavelength components of the beam and background light
of the laboratory.



5.2 A Journey, at the Speed of Light, on an Optical Table 145

All the optics used in the experiment are standard, off-the-shelf, components
that are not well specified in the 220-240 nm wavelength-range (for example, the
reflectivity of UV-coated mirrors over this range is not given by the manufacturer)—
thus we had to measure these properties. In all the experiments aimed at gauging
the UV abilities and characteristics of our setup, we used a DHS lamp (AvaLight-
DH-S, Avantes Ltd.), that emits a relatively structured spectrum over the interval
220-260 nm, see Fig.5.12. We measured the reflectivity of our UV-coated mirrors,
“UV mirrors” (11-1620, Optarius Ltd.), in the region 220-240 nm by measuring the
power a UV-bandpass filter (228 fs 25-25, Andover Corp.) would let through before
the collimated beam from the DHS lamp had been reflected on the mirrors, and after
reflection. The reflectivity of the UV mirrors at near-normal incidence was measured
to be of about 92%.

A usual isolation technique in optics consists in inserting interference filters in the
beam, that only transmit light over a narrow wavelength interval. The UV-bandpass
filter is very efficient at filtering out light, even over its transmission bandwidth,
as can be seen on Fig.5.13. For example, the above mentioned background counts
detected at all UV wavelengths as a result of the smearing of the strong green and
IR components of the beam are totally suppressed by this filter. However, its peak
transmittance is only 25% at 228 nm, with a narrow 20 nm bandwidth. Thus, any
experimental setup featuring this filter and the UV mirrors would discard so much
UV light on the way to the entrance slit of the monochromator that it would not be
a sustainable option (further arguments supporting this statement will be given in a
following paragraph, see 5.4.1.1). Thus, we could not include it in our setup and had
to resort to other filtering techniques to filter the green component out of the beam.

As can be seen in Fig.5.1, we used an arrangement of three double bounces on
a pair of UV mirrors to filter the green and IR components of the beam out. We
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Fig. 5.12 Spectrum of the bare, collimated, beam of the DHS lamp (AvaLight-DH-S, Avantes
Ltd.). Data measured with the SPC and monochromator
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coupled the green laser only in the fibre, and measured an output power of 60mW,
and found that only 2 W of these remained after the beam had passed through the
“cascaded reflection filter” (CRF). So the beam was attenuated by a factor 3 x 10*—
4 orders of magnitude or (40 dB). CRF transmits 62% of the (220-240nm) UV light
provided that the collimated component of the beam has a diameter < 4 mm. Despite
the strong attenuation of the green and IR component of the beams, the smearing
effect still creates a background of the order of 100 Hz and 10 Hz, respectively. In
order to further reduce this background, we installed an aperture (‘iris’ in Fig.5.1) to
spatially filter the green (and diverging) component of the fibre-output beam. Further
comments will be made on this when the measurements are presented.

The decontaminated beam is directed toward the entrance slit of the monochro-
mator, on which it is focused by a 100 mm UV lens (PC UV 248-400 nm AR,
Comar Ltd.). The UV detection apparatus consists of a single photon counter (SPC)
positioned behind a Czerny-Turner monochromator. The latter is made of a pair of
curved mirrors arranged around a grating. The first mirror spreads the light on the
grating,’ and the second one refocuses the diffracted light onto the exit slit of the box,
behind which the single photon counter sits. As we will see shortly, this monochro-
mator (Acton SpectraPro 2500i, Princeton Instruments Inc.) allows for the number
of photons in the beam to be measured for a single wavelength with sub-nanometer
precision by the SPC.

5.2.6 Spectral Sensitivity of the Setup in the UV

In this section, I present the investigation of the spectral sensitivity of the detec-
tion apparatus in the UV. In particular, the edge of the spectral sensitivity of the
monochromator and its coupling optics lies close to the wavelength region at which
the signal is expected to be observed. At this edge the spectral response becomes

Suv holographic grating 1800 g/mm, 360° turret, ARC-1-36HUYV, Princeton Instruments Inc.
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highly non-uniform and therefore a calibration procedure is required.® This spectral
sensitivity will be uniquely set by the monochromator box: indeed, the single photon
counters are based on avalanche photomultiplier tubes (PMA 182, PicoQuant) that
have a set quantum efficiency in the relevant UV region of 15 to 20%, see Fig.5.14.
The monochromator, on the other hand, will have a varying sensitivity as a function
of the wavelength—this is what we need to measure.’

5.2.6.1 Spectral Resolution in the UV

In order to measure the spectral resolution and bandwidth of the monochromators,
we used a commercial UV lamp provided to us by the Organic Semiconductors
Centre (OSC) at St Andrews in their explosive-detection experiments: the “Tiramisu”
lamp—the spectrum of which was measured when they lent it to us and is shown
on Fig.5.15. This spectrum has many features, and we decided to focus on three
of these that have a very narrow bandwidth: the falling ramp at 192 nm, and the
peaks at 250 and 365 nm. The lack of information on the chemical content of the
radiating plasma implies that it was impossible to determine whether these features
were characteristic of emission lines or other emission processes, but this did not
prevent the study from being carried out because they appeared to be very stable

This had already been investigated by Dr McLenaghan for her Thesis (see [10]) but I found that
the setup that was designed at the time was based on mirrors that had a low reflectivity in the UV.
Moreover, no reliable data regarding the quantum efficiency of the setup over the required spectral
region was available, thus making the present measurements necessary. It is worth noting that the
procedure described here represents unique advancements made by the Quantum Optics Group at
St Andrews toward using such apparatus to probe low intensity UV signals.

"Where the CCD spectrometer allows for measurements of the whole spectrum, the data acquisition
system for the monochromator allows either the monitoring of the signal at a fixed wavelength in
real time or scans to be taken over a wider range of wavelengths.
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Fig. 5.15 Spectrum of the Tiramisu lamp from the OSC at St Andrews. Measured data

in their spectral and density properties. In what follows, we assess how well the
monochromator can resolve these features. To do so, we set the width of the entrance
and exit slits of the monochromators to equal aperture. The former is based on the
Czerny-Turner design—see Fig. 5.16: a broadband illumination source (e.g., the light
of the Tiramisu lamp, Fig.5.12) is aimed at the entrance slit (A), which is placed
at the focus of a curved mirror (C) that collimates the light and reflects it upon
the grating (D). The collimated light is diffracted from the grating and collected by
another curved mirror (E) which refocuses the light, now dispersed, on the exit slit
(F). At the exit slit, the wavelength components of the broadband light are spread
out—each wavelength arrives at a separate point in the exit-slit plane. The range of
bandwidth transmitted through the exit slit is a function of the width of the slits.

We wish to determine the wavelength resolution of the monochromator. The spec-
tral resolution, in nm, that is a function of the entrance and exit slits width (these are
equally set), it the minimal resolvable wavelength difference. Because the width of
the entrance and exit slits is always set equal, these will indifferently be referred to
as the “slit width”.

The measured spectra for increasing slit width inform us about the resolution of the
monochromator over the wavelength range. The procedure to determine the spectral
resolution of the monochromator is as follows: spectra acquired for large slit widths
are fitted with a reference spectrum acquired for the narrowest slit width. The larger
the slit width, the more light will enter the monochromator, thus the amplitude of the
feature being scanned will increase. Furthermore, as was said earlier, the larger the
slit width, the more details of all features become coarser and, ultimately, disappear.
Therefore, the reference spectrum is fitted to the data by adjusting its amplitude and
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Fig. 5.16 Photograph of the
Czerny-Turner
monochromator (Acton
SpectraPro 25001, Princeton
Instruments Inc.). The main
components of the
monochromator are
identified as A entrance slit,
B plane mirror, C collimator
(curved mirror), D grating
(1800 g/mm grating), E
focuser (curved mirror), and
F exit slit

resolution—this is achieved by smoothing the reference spectrum with a Gaussian
distribution of amplitude 4 and standard deviation o

e—SZ/Uz

Var

The reference spectrum was taken with a slit width of 0.01 nm, smaller than the
specified instrument resolution. The parameter o for each slits width is the resolution
of the monochromator for this slit width and wavelength (or wavelength range).
I automated this fitting procedure in Mathematica, thus allowing for fast and reliable
fitting and o calculation. I varied the slit width between 0.01 and 0.5 mm, and could
fit the 250 and 365 nm peaks with a Gaussian distribution (5.6) up to a slit width
of 0.1 mm. For apertures wider than 0.1 mm, the spectrum was clearly distorted
and spread with no recognizable features of the peak left. Likewise, the smoothing
procedure failed to yield a reasonable resolution for the ramp measured with a 0.25
mm slit width—although the spectral features of it were still recognisable. Examples
of the fit for each spectral feature is plotted in Fig.5.17, for slits width of 0.05 mm.
I also measured the spectral resolution of the monochromator at 532 nm by using
light from the probe laser sent through the fibre (without an IR pulse).

The resolution decreases with slit width and levels for very small widths. The
spectral resolution for the three features of the Tiramisu lamp and the 532nm line
are shown in Fig.5.18. There is a difference between the resolution measured for
the 192 nm ramp and the 250 and 365 nm peaks (those two are similar), as well as
with the resolution at 532 nm. The latter difference may be because the grating is not
designed to work identically at such dissimilar wavelengths. Princeton Instruments
specifies a spectral resolution of 0.05 nm for the 1800 g/mm grating at 435.8 nm

g(s)=h (5.6)
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Fig. 5.17 Gaussian fitting of spectral features of the Tiramisu lamp. Raw data for a slit width of
0.05mm is shown in dotted blue, and the smoothed high resolution spectra are shown in solid red
for the 192 nm ramp and the 250 and 365 nm peaks
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Fig. 5.18 Resolving power o~ ! of the monochromator (in nm~1) for varying (equal) entrance and
exit slit width (in mm). No data is shown for slit widths larger than 0.05 mm for the 250 and 365 nm
peaks (in blue and red, respectively) because the feature shape and counts saturated for such large
slits

and a 0.01 mm slit width—note that the value obtained at 532, 0.04 nm, is close to
these specifications. The spectral resolution is clearly sub-nanometre for most slits
opening.
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5.2.6.2 Quantum Efficiency in the UV

In the previous paragraph, we established that narrow-linewidth UV signals can be
resolved with a sub-nm resolution by the monochromator for narrow slit widths. In
order to fully characterise the spectral sensitivity of the detection apparatus, we now
need to estimate the quantum efficiency of the apparatus in detecting photons in this
spectral feature. Any finite exit slit width s corresponds to a bandwidth A ). If the
signal of wavelength A to be detected has a bandwidth A\ < Ay, it is possible to
formulate an estimation of the quantum efficiency from the reflectivity of the optics
of the monochromator and detection efficiency of the SPC at the signal wavelength,
as specified by the manufacturer. This can be easily confirmed experimentally by
measuring the power of a narrow-linewidth signal on a power meter, and comparing
it with the signal measured by the monochromator and SPC. If, however, the signal
has a bandwidth such that A\ > A, there will be losses at the exit slit.

When carrying out the experimental assessment of the quantum efficiency of
the detection apparatus, we did not have a quasi-monochromatic, narrow-linewidth,
source that emits in the UV range over which we expect to observe the signal.
Actually, the only source that emits at short-enough wavelengths was the DHS lamp.
Light from the lamp transmitted through the UV filter has the appropriate wavelength,
but is very broadband (218-238 nm FWHM, see Fig.5.13). Only a fraction of the
(broadband) light incident on the exit slit will enter the SPC. For a broadband source,
these losses make the quantum efficiency artificially smaller. Thus, it is necessary to
measure the losses at the exit slit to estimate the quantum efficiency of the detection
apparatus.

Measuring a narrow-bandwidth feature of the spectrum for increasing slit width
reveals an apparent broadening in the bandwidth of this feature. The broadening, in
nm, is related to the change in slit width s by the dispersion of the grating and a
convolution with a top-hat distribution—the transmission of the monochromator for
this wavelength. In the previous section, we determined the spectral resolution of the
monochromator, i.e., the bandwidth of the exit slit, for very narrow (equal) entrance
and exit slit widths. Unfortunately, the signal is expected to have a very low intensity,
and wider slit widths will have to be used to detect it. For example, in Sect.5.4.1.2 we
will present spectra of a peak at 260 nm that is expected to be much more intense than
the signal: this peak was sufficiently strong to be observed for (equal) entrance and
exit slit widths of 0.25 mm or larger, for which our earlier investigation in Sect. 5.2.6.1
did not yield conclusive spectral resolution. Thus, we now proceed to measuring the
smearing of features of the (filtered) DHS lamp spectrum for very large slit widths,
from 0.25 to 3 mm in order to infer the spectral resolution.

To that aim, one may calculate the transmission bandwidth of the exit slit,
A)g = as, that depends on the slit width s and the dimensionless scaling parameter
a (of order 10~°), that relates the slit width to the bandwidth of the slit. Smoothed
or smeared spectra for large slit width s® are given by

8In (5.7), the spectrum is smoothed with a top-hat distribution of width A\, the transmission
function of the slit.
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as

1 2
R\ = —/ Ro(X)dN, (5.7)
aso _%

where Ry () is a reference spectrum acquired for a narrow slit width so = 0.25 mm.
We remark that
Ro(A) = SV AN, = SN aso, (5.8)

with S(\) being the instrument limited spectral density.” From (5.7) and (5.8) we
obtain « as s
R(\) = w0 = Ro(A) >ax,» (5.9)

where < Ro(\) >4, is the average of the spectrum Ry()) taken over the bandwidth
as = A ). The transmission of the slit is then found by the ratio of the energy in the
spectrum over A\, i.e., the integral over A\, of the large-slit spectrum (5.7), with
the energy of the full spectrum
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As in Sect.5.2.6, the above procedure was automated in Mathematica. We find an
optimal fitting parameter o ~ 1.8 x 10~° for slit widths s > 0.25mm. Thus a slit of
width s = 3mm (widest opening of the entrance and exit slits) covers a bandwidth of
5.25 nm. This yields Teyi¢ 51i (229nm) = 11.1 %: this is the fraction of the light from
the broadband source that arrived at the exit slit that will reach the sensitive surface
of the SPC. Finally, the reduced quantum efficiency of the setup with losses at the
slit is calculated by multiplying the quantum efficiency of the SPC, nspc (), with
the transmission of the slit and the reflection efficiency of the monochromator:

Treduced ()\) =Tnspc ()\) Texit slit ()\) nmonochromalor()\) . (5 1 1)

Let us estimate the reduced quantum efficiency. The three mirrors of the monochro-
mator are specified to have a reflectance of Rpirror = 92% around 229 nm, whilst the
grating is specified to have Rgraing = 66% reflectance at 225 nm. Thus, under the
assumption that the incoming light is focused at the entrance slit and does not clip,
the efficiency of the monochromator at 229 nm is

92\’ 66
nmonochromator()\) = Rmirmr()\)3 Rgraling()\) = (m) X m = 50.6 %. (512)

So only 50.6% of the (filtered) DHS light that enters the monochromator will reach
the exit slit. When a measurement at 229 nm is performed, the exit slit will transmit

9The spectral density is limited in amplitude and bandwidth by the width of the slit, which sets the
spectral resolution of the monochromator. See Sect.5.2.6.
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11.1% of this light through to the SPC: in total, only 5.62% of the input light will
reach the SPC. Given the quantum efficiency of the SPC, 15% (see Fig.5.14), this
gives a reduced quantum efficiency, from entrance aperture to detection, of 0.84%
at 229 nm when the entrance and exit slits of the monochromator are fully open to
s =3 mm.

Experimentally, we measure the amount of light from the DHS lamp transmit-
ted through the UV-filter with a power meter, and get 52.3nW =+ 5nW. With the
monochromator (s = 3 mm) and SPC, we observe 5.24 x 10® counts per second at
229 nm, that is a power of 0.448 nW—yielding a quantum efficiency of 0.86%. This
value is, within the error of the measurements'® equal to that estimated in the pre-
vious paragraph. This study demonstrates that the quantum efficiency of detection
for a broadband spectrum will be reduced by the monochromator spectral resolution
(which is a function of the width of the entrance and exit slits). It also confirms that
the reflection efficiency of the monochromator and the quantum efficiency of the
SPC are close to those specified by the manufacturer—50.6 and 15 %, respectively.

Fortunately, we do expect the UV signal, of wavelength &~ 220 nm, to have a very
narrow linewidth. In this case, there will be virtually no loss at the exit slit, even for
wide slit widths. In this case, the signal will be detected with a quantum efficiency
of Nguantum (A) = Rmonochromator(A) X spc(N) & 7.6 % for A = 220 nm. Given this
low quantum efficiency of the detection apparatus, it is clear that we cannot afford
to lose light in the UV by other filtering techniques than the CRF introduced in
Sect.5.2.5.1. In particular, resorting to the 228 nm bandpass filter is significantly
worse, for it transmits a maximum of 25% of the incident light across its bandwidth.

To conclude, in this section of the dissertation, we have presented the investigation
of the spectral resolution of the detection apparatus, and found that we could measure
spectral features of incident light with sub-nm precision for very narrow slit widths,
and a quantum efficiency of 7.6% (for wide slit widths) in the deep UV region, where
parametric amplification in the negative-norm mode occurs. This brings our journey
on the optical table to an end: we now know all the details of the experimental
setup assembled for this thesis and can proceed to looking into the results of the
experimental observation of the scattering of a positive-norm mode on the sides of a
fundamental soliton in the fibre.

5.3 Scattering to a Positive-Norm Mode

In this section of the dissertation, we discuss the phenomenon of scattering from a
in mode oy of positive norm to and out mode «; of positive norm, and present the
original experimental results that demonstrate this effect. The main two experiments
relevant to the present considerations were carried out in St Andrews and presented

10Note that these measurements fluctuate in time, thus their precision is not better than 5%, and the
counts are collected over a wide, 5.25 nm, bandwidth.
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in [1, 2], for the scattering of an IR and a visible probe, respectively, on a soliton
generated by an IR pulse.

5.3.1 Positive-Norm Scattering Efficiency

In this Thesis, a visible, CW, probe is scattered on a soliton in the PCF. The efficiency
of this scattering process is ruled by Eq. (5.4), where the amount of of light in the
in coherent mode depends on two parameters: the magnitude of the refractive index
change under the soliton and the velocity difference between the in mode and the
soliton. As for the former, as we already discussed in Sect.2.2.2 of this dissertation,
in the scattering process, the comoving frequency w’ is a conserved quantity, and
so the probe frequency w follows a contour line of w’ as a function of the nonlinear
index induced by the pulse—see Fig.2.5. The nonlinear susceptibility experienced
by the soliton pulse at the carrier wavelength A\ is [1, 12]

CA()DO

on=——
(woTp)?

(5.13)

where Dy denotes the dispersion parameter at )\, and wy is the carrier frequency. As
was shown in Sect. 4.3, any increase dn in the refractive index of a dispersive medium
leads to mode mixing at the interfaces between regions of low and high refractive
index—and thus to parametric amplification, transfer of energy to the out mode.'!
However, all of the light in the probe wave might not be able to scatter at the interface.
Indeed, because the group velocities of the probe v, (w,rop.) and of the pulse u are
similar, only a small fraction of the total probe light can be converted within the finite
length of the fibre. Thus, the amount of energy available for the scattering process,
that is, the fraction of the probe power that can be scattered into outgoing modes (of
positive and negative norm alike) is dependent on the repetition rate, the length of
the fibre and the inverse of the difference between u and vg (wprope) [11:

1 1
Nint = VrepL - - (5.14)

u Vg (Wprobe)

For our experimental setup, 7);,; is maximally on the order of 10~* [2].

The effect of frequency shifting is also described by the theory presented in this
thesis. Consider a RIF, as schematised in Fig. 3.4, that models the leading edge of
a soliton in the fibre. As we saw in Sect.3.2.3, there exists a frequency interval
over which a mode in which light propagates towards the RIF scatters into a mode
in which light propagates away from the RIF (the uniquely escaping mode moR).

"Note that in this dissertation, we sometimes adopt the expression “frequency shift” to describe
parametric amplification of an out mode of positive-norm. This is inherited from the language of
the community (see for example [1]).
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A symmetrical configuration exists if the RIF models the falling edge of the soliton.
However, when considering the process of scattering to a single positive-norm mode,
it is actually possible to use a simple, dispersion-less, tunnelling model that imple-
ments the NLSE (2.62) to determine the efficiency of the probe-pulse interaction [2].
The model [2] has the advantage of readily allowing for the study of smooth pulse
profiles. A derivation of the quantum tunnelling of a wave at a smooth interface
in a dispersion-less medium is provided in Appendix C of this dissertation, for the
sake of conciseness only the main results and phenomenological arguments will be
presented here.

5.3.2 Tunnelling Model for Probe-Pulse Interaction

Here I present the analytical theory of scattering of light at solitons in fibres, includ-
ing frequency shifts and wave tunnelling. In the frame moving with the soliton,
that is assumed to be unaffected by the probe and has an amplitude of the form
P, sech? (1/Ty), the NLSE (2.62) can be written as [2]

O*A; 2 ., 5
52 " E (61(w —w,,) + ryPy sech (T/T())) A =0, (5.15)

where A is the amplitude of the probe wave, 7 is the retarded time (see 2.62), (3
and 3, are the first and second derivatives of the propagation constant 3(w),'? « is
the fibre nonlinearity and r is a factor accounting for the reduction in cross-phase
modulation due to conditions such as the relative polarization orientation or mode
size mismatch. The analogy of (5.15) with the Schrodinger equation in quantum
mechanics allows to investigate quantum mechanical problems with classical fibre
optics.

To the probe wave, the soliton is a constant one-dimensional potential, for which
the transmission and reflection coefficients, 7 and R, can be found. For a step-like
potential these are the (3 coefficients of Sect.3.2.4. For a hyperbolic secant squared
potential they are (see Appendix C):

1 £
T = R = ,
14+¢ 1+¢
cos’(m/2/1=B) . B <1 (5.16)

sinh? (m(w—wu)Ty) *

cosh?(7/2/B—1) . B>1

sinh? (m(w—wu)Ty) —

5:

The transmission through the soliton—the potential barrier — is therefore determined
by only two parameters: the ratio of detuning to the soliton bandwidth (w — w,,) Ty,

123, is the inverse of the group-velocity of the probe and (3, is the GVD parameter at the probe
wavelength, see Sect.5.2.3.
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and the normalized barrier height B = 8rfyP0T02 /B2. In [2], F. Konig found that
effective reflection on the barrier can be achieved for very large detuning, and is
not limited by the spectral width of the soliton-pulse (provided that B is sufficiently
large). Contrarily to the photon picture of Four Wave Mixing (FWM), the mode con-
version at stake here is a collective effect of the modes of the soliton and the probe,
and not a phase matched mixing of only four modes. Indeed, the barrier height
required for frequency shifting was found to increase quadratically, and not expo-
nentially as FWM would require.'® This is a remarkable result: frequency shifting
at the soliton-edge is a feature of horizon physics for which no simple alternative
explanation (such as FWM) can be provided by nonlinear optics. Considering the
efficiency of reflection of a CW probe at the soliton, the conversion efficiency R
(Eq.5.16) is reduced by 7;,,, the fraction of the probe light that interacts with the
soliton, to the total efficiency 7;,,. Phenomenologically, one sees that: the larger the
detuning of the probe from the group velocity of the soliton, the more light collides
with the soliton with higher relative speed. For small detunings there is negligible
tunnelling and the probe is nearly perfectly reflected. For larger detunings, all the
probe light tunnels through the soliton and B, the height of the barrier required for
efficient frequency shifting, decreases quadratically.

5.3.3 Visible Frequency Shifts at the Horizon

The findings of the dispersion-less tunnelling model shed light on the physics of
frequency shifting at the horizon. In this process, an in mode of positive norm scatters
at the refractive index front (RIF), into an out mode of positive norm and positive
group velocity in the moving frame. Because of the Doppler shift, this out mode
does not have the same laboratory frame frequency w as the in mode, although they
share the same moving frame frequency w’—energy is conserved in the moving
frame. Since the in and out modes have a different laboratory frame frequency, it is
commonly said that the in mode was frequency shifted by the RIF—and, indeed, if all
of its light were made to scatter on the RIF, for appropriate RIF height, light coming
out of the fibre would only be in the out mode. And, actually, in the experiment, the
output light is measured after remaining light of the in-mode-frequency has been
filtered. From the theory presented in the previous section, it is possible to calculate
both the efficiency of this frequency shifting effect and the wavelength at which light
in the out mode will be observable in the laboratory.

Because of the nature of the setup used in the experiments presented here, a large
fraction of the frequency shifted light could not be measured. Thus, measurement of
the efficiency of the scattering of positive-norm to positive-norm light at the soliton
was not made. However, the experimental results presented here allow for extending
the mapping of the frequency shifting as a function of detuning. This frequency

131n particular, the edges of the curve of efficiency of the frequency shifting effect as a function of
the soliton-probe detuning are different from the exponential fall one would obtain for FWM [2].
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detuning is achieved by tuning the central wavelength of the pulse (see Fig.5.3), i.e.
the soliton velocity. The wavelength that the probe will shift to is determined by the
fibre dispersion and the conservation of w’, by

ON = Lvyepo(w — wp). 5.17)

0 A depends on the relative velocity of the probe and soliton, according to dispersion,
as well as on the interaction length. The dispersion relation for the PCF is based on
an approximate calculation of the group index obtained from a silica strand model
[2] which reproduced the group velocity matching condition in [10]. The dispersion
relation was then fitted to a Sellmeier model for dispersion. We found that the best
fit was obtained for a material with two resonances in the IR. We checked that
the Sellmeier equation (3.59) thus enforced allowed for reproducing the theoretical
predictions of [8, 10]—and indeed, we find a central wavelength for the NRR of 224
nm, where J. McLenaghan observed it at 222 + 1 nm.'* Furthermore, the prediction
of the wavelength of light shifted from 532 nm matches that of [2]: we obtain a shifted
wavelength that depends approximately hyperbolically on the central wavelength of
the soliton, as shown by the (calculated) red curve on Fig.5.19.

In the experiment, the group velocity of the soliton is set by its centre wavelength
in the dispersive fibre. I tuned this wavelength to realise situations where the probe
wave (at A\ = 532 nm) is slower than the soliton and is overtaken by it, and vice versa.
Figure 5.20 displays two epitome spectra of the frequency shifted probe light. These
spectra correspond to a —9 and +13 nm spectral shift of the probe. The spectral
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Fig. 5.19 Location of shifted probe spectra for different soliton wavelengths. The red curve is the
prediction from the dispersion curve of the PCF. The wavelength of the shifted probe spectra was
measured with a precision that depends on reflection on the various optics, and the complicated
features that depend on Raman interaction and higher order dispersion [13]

14See Sect. 2.2.2 for a presentation of the underlying theory.
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Fig. 5.20 Two spectra of the blue and the red shifted probe light. The input light initially was
centred at A = 532 nm, but filtered in the output by means of a notch filter (see Fig.5.11 for its
transmittance). The soliton was tuned to 845 and 825 nm, respectively. Spectral shifts of —9 nm
(blue) and 413 nm (red) are observed. The relative spectral density are not representative of the
efficiency of the frequency shifting process for they are distorted by clipping of the beam on the
optics and the filtering effect of the notch filter

width and structure depend on parameters such as the detailed pulse shape—which
is affected by Raman interaction and higher order dispersion [13]—and remains to
be fully explained.

I repeated this experiment with various pulse wavelengths, from 749 to 887 nm
(see Fig. 5.3) to map out the frequency shifting as a function of detuning. Figure 5.19
shows the measured centre wavelength of the shifted probe wave as a function of
soliton wavelength. These results further those presented in [2] and are the most
extensive map to date. Note that the centre wavelength of the shifted light follows
the condition set by the dispersion of the fibre, thus the soliton had approximately
constant group velocity, unaffected by higher order dispersion. The spectra presented
here are remarkable: as stated previously (see the argument following Eq.5.16) the
input light at 532 nm was red- and blue-shifted to up to 560 nm and down to 505
nm, respectively—that is, over a maximum of 28 and 27 nm, which is 1.8 times
the bandwidth of the soliton! This comes as an experimental confirmation of the
understanding we drew from the theory: frequency shifting at the soliton is not
a mere manifestation of four wave mixing but a genuine and signature feature of
horizon physics.

5.4 Scattering to a Negative-Norm Mode

Itis possible to carry out a similar analysis to that presented in the previous section to
calculate the wavelength at which light in the negative norm mode will be observed:
for a given carrier frequency, the group velocity of the pulse that generates the soliton
in the fibre will depend upon the dispersion of the fibre. After a Lorentz boost, the
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Fig. 5.21 Diagrammatic
phenomenology of scattering
at the soliton edge (black
sech? profile) in the
comoving frame. Energy in
the positive-norm in mode
moL (uoR) scatters at the
soliton into an out mode of
positive norm, uoL (moR),
and an out mode of negative
norm noL

frequency shifts to w’ = v (wprobe — #k) in the moving frame, with u the velocity of
the frame (taken to be u = vgpyiee). Energy transfer from in to out modes occurs for
constant comoving frequency w’. The conservation of energy in the moving frame
translates to a contour line of slope u and ordinate at origin w = '’ (as exemplified
on Fig. 3.3 by the blue contour line). Considering scattering at the front (back) of the
soliton, light in the positive-norm, coherent, in mode uoR (moL) will be red-(blue-)
shifted to the positive-norm out mode moR (uoL) that is an oscillatory mode in the
same refractive index region as the in mode—that is on the low refractive index side
of the interface—as diagrammatically depicted on Fig.5.21. In addition, Eq.(5.4)
states that some energy will be transferred to an out mode of negative norm, noL, by
parametric amplification. This negative-norm out mode allows for light to propagate
away from the soliton in the low-refractive-index region on the left of the soliton, as
in Fig.5.21.

Scattering into noL is allowed because the contour line of constant w’ that passes
through the point of frequency wprobe (the frequency of the 532 nm cw probe wave in
the laboratory frame) intersects with the dispersion branch of negative-laboratory-
frame optical frequency, as is exemplified in Fig.3.3. More precisely, Fig.5.22c
shows the negative-laboratory-frequency optical branch, and two such w’ contour
lines, for the extremal central pulse wavelengths attained in the experiment, 800 nm
in (a) and 865 nm in (b). A theoretical prediction, the purple curve on Fig.5.22d,
shows the calculated wavelength of mode no over the whole range. The wavelength at
which light in the negative-norm mode will be observed, in the neighbourhood of 220
nm, varies by less than 7 nm for the full range of soliton wavelengths. Note that this
wavelength range is independent of the change in refractive index under the soliton,
for the out mode of negative-norm allows for light to propagate away from the soliton
in the low refractive index region. This is in contrast with the study of the soliton
edge, modelled as a step, presented in Chap.4, according to which the out mode
of negative norm allows for light to propagate away from the refractive index front
(RIF) in the high refractive index region. Thus, although it is possible to calculate
the expected output wavelength (see Fig.5.22d), the efficiency of the parametric
amplification process described by Eq. (5.4) cannot be calculated by using a step in
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Fig. 5.22 a-d: Determination of the wavelength of light in the optical negative-norm mode noL
as a function of the wavelength of the soliton. The branch of negative optical-laboratory-frequency

w is shown in blue. Contour lines of constant comoving frequency w’ = w;mbe are shown for the

extremal central wavelengths of the soliton generated in the experiment: a A\, = 800 nm, and b
Ac = 865 nm. An excerpt of the branch of negative optical-laboratory-frequency is shown in (c) to
illustrate the bandwidth across which the w’ = cst line sweeps along the branch. The wavelength at
which light in noL should be observed is plotted against the central wavelength of the pulse in (d)

the refractive index—a more complex and realistic profile is needed and this was not
at all considered for this Thesis.

In the moving frame of the soliton, a nonliinear refractive index region is sur-
rounded by two asymptotic regions of linear index. This setting is typical for pulses
propagating in dielectric media. Such a configuration is illustrated in Fig. 5.21: mode
uoR transfers energy to mode noL that allows for light to propagate on the other side
of the soliton. Thus, one would intuitively expect the efficiency of the scattering to
depend upon the change in refractive index induced by the soliton, as well as on
the soliton pulse-length. A more quantitative prediction is difficult to make without
careful study of the dispersion relation and thorough implementation of the algo-
rithm presented in Chap. 4 for a parsed profile. For example, one would expect that
reflection upon the interior edges of the soliton would yield an etaloning effect in
the spectrum of modes transmitted through the high refractive index region under
the soliton to the low refractive index region on the opposite side of the soliton. '3

151 ikewise, it would not be surprising if the scattering efficiency depended upon the edge of the
soliton profile with which the probe would interact: energy transfer might be more efficient if
the probe interacts with the back than with the front of the soliton, for scattering into no would
then resemble a reflection process (whereas it would resemble a transmission process, through the
‘etalon’, if the probe would scatter on the leading edge of the soliton).
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. . . 2 .
Thus, in what follows, a scattering coefficient |ﬂp“’be*”” | ~ 10719, a preliminary
calculation with a soliton is used as a quantitative guide in the search for the negative-
norm signal.

5.4.1 Signal to Noise Ratio in the UV

As in all experiments, the measurements we perform are limited by the signal to
noise ratio (SNR), where the signal is the detectable rate and the noise presently is
the dark counts and the background (light from the laboratory and from the green
and IR components of the beam). In this section, we use the techniques presented in
Sect.5.2.5 to improve the SNR by filtering the noise strengther than the signal.

5.4.1.1 UV Signal Strength

Let us first estimate the signal strength. As in Sect.5.3, we assume a pulse-probe
interaction efficiency 7;,; = 10™%. This is combined with Eq.(5.4) to calculate the
power scattered from the in mode to the out mode:

Puv = Nint | ﬂpmbeq""Ppmbef ~ 107 x 1071 x 60 x 107°W = 0.6fW, (5.18)

where we assumed that 60 mW of green light propagate in the fibre. This power is
limited by the coupling efficiency of 532 nm light in the fibre, and ultimately by
the amount of input power available (< 300 mW with the current setup). Assuming
negligible fibre losses in the UV, the expected photon rate at the output of the fibre is

_ Puodi 60 x 10717).s7! x 220 x 10%m

= ~ — 664 Hz, 5.19
K he . 6.626 x 1015 x 3 x 10°m.s| g (5.19)

with & the Planck constant and ¢ the speed of light in vacuum.

The total quantum efficiency of the setup over the emission range of no is set by the
product of: the transmission efficiency of the UV-condenser triplet, the transmission
efficiency of CRE, the reflection efficiency of the corner-UV mirror, the transmission
efficiency of the focusing lens and the quantum efficiency of the detection apparatus,
see Sect.5.2.5. These quantities are summarised in Table5.1. Recalling that the SPC
has a quantum efficiency of ~15% at 229 nm, we obtain a total detection efficiency
Tdetection ~ 3.4% for our setup. According to the output power calculated in Eq. (5.18),
this means that the signal strength, i.e. the registered count rate of the signal, is

Sno = Mno Ndetection = 20 Hz. (5.20)
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Table 5.1 Transmission and reflection efficiency of the optical elements in the UV. Except where
stated otherwise, the efficiencies are specified for A = 229 nm at normal incidence

Optical element T (%) R (%)
UV-condenser triplet 89 -

UV mirror - 923
UV mirror (45° incidence) - 95
CRF (6 bounces) 62 -

UV lens 84 -
Monochromator mirrors - 92
Monochromator grating (at 225 nm) - 65
Monochromator (3 mm slits width) 50.6 -
UV-filter 20 -

With this signal strength, care has to be taken in the eperimental layout to avoid
filters with a low signal transmission. The probe being essentially a single frequency
mode, we expect light in no to be concentrated in a relatively narrow peak in the
spectrum, which should allow for isolating this very weak signal from the noise.

5.4.1.2 Background Counts in the UV

We now seek the best SNR for the signal strength calculated in the previous paragraph.
As was discussed in Sect.5.2.5.1, we have tested a number of filtering techniques to
reduce the background counts in the UV. In addition to direct filtering of the beam,
the detection apparatus was physically isolated from the rest of the laboratory by
means of a light-tight box that lets only the beam in. As a result of this physical
“boxing”, the laboratory background is N, < 1Hz over the UV range, see Fig.5.23.
This background is measured by coupling the IR pulse and 532nm probe into the
fibre and blocking the end of the fibre so that no light escapes from it for slit width
of 3 mm—thus only light scattered on the various surfaces of interaction with the
input beams can possibly reach the detector. With this background alone, the SNR

would be g
SNRbackground = NLO > 20. 5.21)

b

Unfortunately, as was mentioned earlier, the remnant of the green light scatters off
the grating and increases the background in the UV-measurement.

The 532 nm probe light is not fully filtered between the fibre and the entrance slit
of the monochromator. In the monochromator, this uncollimated light scatters off the
grating and creates counts at all wavelengths in the UV, as can be seen in Fig. 5.24. It
shows the evolution of this “green background” as a function of the diameter of the
iris set before CRF. The green background decreases as the iris is closed, as we would
expect from spatial filtering. The green background is attenuated by about one order



5.4 Scattering to a Negative-Norm Mode 163

Fig. 5.23 Minimal J
background counts in the
UV. These counts are due to
the glow of the laboratory
itself—that is, to light that
reaches the detector after
reflection/refraction of the
intense IR and green input
beams on various surfaces in
the laboratory and the dark
counts
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of magnitude from an iris diameter of 15 to 2.5 mm. Note that as the background
decreases, a peak at 266 nm emerges—corresponding to second harmonic generation
from the strong CW light at 532 nm. This is remarkable: this weak SHG, although
not phase-matched, has arate S = 20 Hz in all four data sets. This shows that the
iris does only filter out the green light an lets the UV components unattenuated. So,
due to this filtering process, the SNR has increased by one order of magnitude. The
TH peak is at wavelengths much longer than the emission range of no and does not
affect observations at shorter wavelengths. The green background never disappears
at shorter wavelengths, and can be higher than the expected signal strength for large
iris diameters—thus we shall use small iris diameters in order to improve the SNR.

In contrast to the green light, the IR light in the beam does not create any increase
in the background counts, as can be seen in Fig.5.25. According to the theory of
Sect.5.3.2, an increase in the soliton energy reduces the tunnelling probability and
increases the coefficient of scattering to a negative norm mode, |ﬂpr°be'”0 |2. Although
Sect.5.4.1.2 was using fundamental solitons, we also use N > 1 solitons, with aver-
age powers of 2 mW (N = 1.26), 4 mW (N = 1.79) and 8 mW (N = 2.53) to
increase the signal strength. As shown in Fig.5.25, we observe a narrow peak at
262 £ 1nm wavelength. This peak is the third harmonic (TH) generated from the
soliton. For A7y = 262 4+ 1 nm, the fundamental lies at 796 & 3nm. We consis-
tently observe TH at this wavelength, which implies that its generation relies on the
bandwidth of the pulse (which is ~ 10 nm, see Fig.5.3). The TH is generated at
wavelengths longer than the range of emission of no and does not affect the SNR for
no detection: considering the IR background only, N;g = 1Hz

Sno _ 20. (5.22)

SNR;z = =
IR Nix

To summarise, background from the laboratory is negligible (with an average rate
below 1 Hz at all wavelengths). Likewise, the IR does not deteriorate the SNR in the
UV. We note, however, the presence of a peak, due to THG from the IR pulse, at a
wavelength far from the region of interest. Only the green probe creates counts in
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Fig.5.24 Green background—Background in the UV due to the scattering of the green light off the
grating in the monochromator. Spectra are shown for varying iris diameters: a 15 mm, b 10 mm, ¢ 5
mm and d 2.5 mm for a 532 nm CW power of 50 mW in the fibre. The minimal background counts
without incident light on the monochromator and SPC are shown in Fig.5.23. Note the change of
scale from (a) to (d): the green background decreases and lets a 20 Hz peak at 266 nm emerge
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Fig. 5.25 IR background—background in the UV due to the propagation of IR light alone in the
fibre. Average power of 8 mW for a central wavelength of 806 nm. Iris diameter of 15 mm. The
background between 200 and 258 nm is indistinguishable from detector dark counts (cf. Fig.5.23)
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the UV, which can be limited to rates below 20 Hz by closing the iris down to 5 mm,
without loosing genuine UV counts (such as the very well defined second harmonic
generation peak). This yields a SNR of

Sﬂo ~
Ny + Nigp + Ng — Ng — Ny

SNRyy = 1 (5.23)

where we have subtracted the dark counts twice. Over the range 218-223 nm a signal
of 20 Hz would be observed with a signal to noise ratio of 1. Closing the iris further,
to 2.5 mm, yields SNRyy =~ 3.3. The emergence of the SHG peak from the CW
probe, as shown in Fig. 5.24, seems to indicate that the UV beam is not significantly
attenuated by such the small iris—we may readily use this spatial filter to better the
SNR.

5.4.2 UV Spectra

In this section, I will present the results of the experimental investigation of pulse-
probe interactions. As was shown earlier, the propagation of the IR pulse in the fibre
does not create abackground in the UV would lower the SNR at the signal wavelength,
even when the average IR power is such thata N > 1 soliton is generated in the fibre.
Generating a high order soliton might be an interesting path to a higher signal to noise
ratio (SNR). Indeed, as was said earlier, the increase in the refractive index under
the soliton is larger than for N = 1 solitons, which effectively increases the height
of the potential barrier (yielding a larger scattering coefficient). However, I also
observe that the propagation of a higher order soliton in the fibre may lead to third
harmonic generation (THG), resulting in the appearance of a narrow peak at large UV
wavelengths (beyond 260 nm). It is necessary to assess the effect that the scattering
of the probe on the IR pulse may have on THG, to rule out any contamination of the
SNR at the signal wavelength.

5.4.2.1 Third Harmonic Generation

Let us first study the power dependence of third harmonic generation (THG): the
evolution of the third harmonic (TH) peak as the average power of a pulse centred
at A\, = 806 nm is increased is shown in Fig.5.26. For this central wavelength, the
N =1 soliton has a bandwidth AX. = 10 nm. For N= 1, in (b), there is a very
narrow spectral feature (SN R = 6) at A\ = 266 nm, that broadens and increases in
amplitude as the IR power increases. Note that the peak shifts to longer wavelengths
as the soliton order increases: e.g., for Py, =4 mW (e)), N ~ 2, THG occurs at
Arg = 275 nm. This clearly demonstrates the extreme dependence of THG on phase-
matching and group-velocity matching.
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Fig. 5.26 Evolution of the third harmonic (TH) peak as the average power of a pulse centred at
Ae = 806 nm is increased. Spectra for power a 0.5 mW, b 1 mW, ¢ 2 mW, d 3 mW, e 4 mW, f 5
mW, g 6 mW, h 7 mW, and i 8 mW are shown. Note the change in the scale of the spectra. The
minimal background counts without incident light on the monochromator and SPC are shown in
Fig.5.23. The background created by the IR in the UV is of maximum 2Hz

Considering, Fig.5.26¢, the THG pulse generated at Ary = 266 nm has a band-
width of AA\ry = 5 nm, that is actually the bandwidth of the slit open at 3 mm. Thus
we cannot determine the pulse duration from this data. However, we can assume
that the generated THG pulse width is comparable to the pump pulse [14], but,
because of dispersion, the two move at different speeds through the fibre. Because
of this group-velocity mismatch, the spectrum of third harmonic may not be located
at exactly A./3. To understand this, let us study the phase-matching condition for
THG: for a quasi-CW pump launched at frequency w,, this takes the form [14]

AB = BruBwe) —3f(we) = Bwe/c) (nrr Bwe) — n(we)) =0, (5.24)

where f(w) and n(w) are the (frequency-dependent) propagation constant and
effective mode index, respectively. The phase-matching of Eq.(5.24) implies that
nr g (Bw,) has to match 7 (w,). This is only possible if the TH propagates in a higher-
order transverse mode, which only occurs if the difference between the refractive
index at w, and that at wr g is less than the core-cladding index difference—a quantity
which is of the order of 0.1 for most PCFs [11]. If, now, we consider an ultrashort
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pump which is rather broadband, like the pulses in the experiment, we should expand
the propagation constants of Eq. (5.24) for the pulse carrier frequency, 5(w;r), and
the central frequency of the THG pulse, 87y (w7 ), in Taylor series around those fre-
quencies. Retaining terms up to first order in these expansions only, we find that [14]

AB = PruBwe) —3f(we) + 3 (w —we) AB, (5.25)
where 3 (w — w,) is the frequency shift of third harmonic and A3, = vg_Tl = vg_llR
is the GDD between the pump and the TH frequencies. The condition A3 = 0 is
satisfied when TH is shifted from 3w, by —(8ry Bw.) — 36(w.))/ApB;. This shift
depends on the group-velocity mismatch. In Fig.5.26 we see that TH is shifted to
longer wavelengths (shorter frequencies). We also observe that the THG spectrum
exhibits two distinct peaks for high average IR power. This is because the N >
1 soliton fissions into two pulses (as in Fig.5.10), one of which moves to longer
wavelengths than the fundamental, to which the longer-UV TH is phase-matched.

Equation (5.25) shows how broad the spectrum of the fundamental has to be
to contain phase-matched fundamentals. However, although both the propagation
constants of the pulse and the TH were developed in Taylor series to arrive at this
result, thus keeping wry = 3w,, it can also be interpreted as follows: for low pulse
energies, (8ry(Bw.) —36(w.)) = 0 and the process is phase-matched. Increasing
the power, however, creates different nonlinear contributions in 87y and 8. Thus
(Bru Bwe) — 38(w,)) is no longer 0 and (5.25) shows that a slightly different fre-
quency becomes phase-matched, namely w = w, — (Bry (Bw.) — 38(w.))/3A0;.
This might account for slight discrepancies between the theoretical phase-matched
wavelengths of either of the TH peaks and the measured wavelengths.

Note that these spectra exhibit no feature at short UV wavelengths, where the
noise (due to the laboratory background and IR background, see Sect.5.4.1.2) is
of maximum 2 Hz, as can be seen on Fig.5.26a. Thus, although it may shift in
wavelength as a function of the fibre mode in which it propagates, TH will not affect
the SNR at the signal wavelength. I also verified that TH exponentially disappears for
longer pulse wavelengths: for A, > 820 nm, no TH peak was observed, even for high
average IR powers of the order of 8mW. Beyond these observations, I established
that THG also depends on the coupling efficiency of the input IR beam in the fibre.
Indeed, for the pulse central-wavelength regime at which TH was normally observed
(790-820nm), if the coupling efficiency was decreased to only 10% (by misaligning
the input beam on the tip of the fibre), no TH peak was observed. This is because
the IR mode then mostly overlaps with the cladding and not with the core, and the
phase-matching condition (5.25) cannot be fulfilled because n(3w,) — n(w.) < 0.1.
This comes as a complement to the argument drawn in Sect.5.2.3.2, in which the
average IR power necessary to generate a fundamental soliton was found to be higher
than in the calculations that assume that all the IR power was confined to the core.
Thus, lowering the coupling efficiency of the IR beam in the fibre might be another
means to better the SNR at the signal wavelength if we find that the interaction of
the probe with higher-order solitons lowers the SNR.
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5.4.2.2 Pulse-Probe Interactions

It is finally time to scan the UV when the 532nm CW light is made to interact with
a fundamental soliton in the IR. In the experiment, I scanned a four-dimensional
parameter range: the central wavelength and average power of the IR pulse could be
varied independently, the probe power could be varied, and the diameter of the iris in
front of CRF could be varied. In Fig.5.27, a UV spectrum for a P,y = 8mW pulse
at A, = 865 nm interacting with a 33 mW, 532 nm, CW probe is shown. Above the
background created by the green beam (b, = 30HZ) we clearly see a S»4; = 15 Hz
peak of bandwidth AX47 = 5 nm at A = 247 nm. The signal to noise ratio (SNR) in
this configuration is only SN Rges = 2, but the peak is clearly visible. The SNR could
be improved by subtracting the green background from the spectrum. However, we
note that the level of this green background is lower than that recorded for an iris of
15 mm diameter. Moreover, the SHG peak from the green probe is not observed in
this spectrum. This is because the probe power is lower for this measurement—down
from 50 mW in Fig. 5.24 to 33 mW. Thus the energy available for SHG is lower and
the peak remains hidden in the 15 Hz background.

No signal at the expected wavelength (\; ~ 220 nm) can be seen in Fig. 5.27. Fur-
thermore, the peak at 247 nm (“mid-UV-wavelength peak™) is intriguing: no obvious
phase-matched process yields a peak at this wavelength. Note that its spectral shape
is likely given by the transmission of the monochromator slits: it is characteristic of
a top-hat function. Recalling the signal strength calculated in Sect.5.4.1.1, §,,,, we
note that it is similar to the amplitude of this mid-UV-wavelength peak. For A, = 865
nm, the 532 nm probe is slower than the pulse and thus interacts with its leading
edge. Unfortunately, the interaction of the probe with the leading edge of other long-
wavelength pulses did not yield a similar peak across the parameter range, i.e., I
did not observe the mid-UV-wavelength peak for 835nm < A\, < 887nm, except at
Ac = 865 nm, for Py, = 8 mW and an iris diameter of 15 mm.'®

On the other hand, the peak was consistently observed for short-wavelength pulses,
such that the probe interacts with their trailing edge. In Fig.5.28, we study the
evolution of the spectral properties of the mid-UV-wavelength peak for pulses of
central wavelength increasing from 800 to 825 nm and average IR power 8 mW. The
spectrum is peaked at 246 4 Inm, with maximal rates Sy4¢ max = 130 Hz. Although
the shape of the peak does vary across the range, its central wavelength seems to be
locked at 246 £ 1nm, except for A\, = 800 nm (in Fig.5.28a) and A, = 825 nm (in
Fig.5.28f), for which the mid-UV-wavelength peak is centred at 243 nm +1nm, and
for which the maximal rate is much lower (about 40 Hz). Note that the iris is closed

16The repeatability of the measurements and scans of the parameter range depends on the mode-
locking of the laser and the temporal evolution of the coupling efficiency of the input beams (IR
and green) in the fibre. The measurements were barely reproducible at intervals of one hour, and
not reproducible from one day to the other.
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to 8 mm and the noise level (created by the green, IR and laboratory backgrounds)
is Nyy ~ 10Hz. Thus the SNR for this peak is very good:

S246

SNRy46 =
Nyv

~ 13. (5.26)

From the spectra in Figs. 5.28 and 5.27, it seems that the peak is relatively insensi-
tive to the central wavelength of the IR pulse. It would be interesting to determine the
set of parameters which this mid-UV-wavelength peak depends on such as the probe
and pulse powers, relative polarisation of the pulse and probe, interaction length or
coupling efficiency of the pulse or probe beams. First, we investigate the dependence
on the probe power: the latter is adjusted by controlling the coupling efficiency of
the input green beam in the fibre—that is, by lowering this efficiency by means of
overlapping more or less the green mode with the cladding (where it is less guided
than in the core). In Fig. 5.29, spectra for varying probe power are shown: the peak
intensity decreases dramatically with the probe power, and the SNR drops from 13
(for P, = 65 and 60 mW, as in Figs.5.28 and 5.29, respectively) to 4 for P, = 50
mW (Fig.5.29b). The peak can barely be seen in Fig.5.29¢ for P, = 45, at which
point the SNR is just above 1.

Note that no mid-UV-wavelength TH (at 266 nm) was observed on any of the
spectra for which the mid-UV-wavelength peak (246 nm) was detected, as exem-
plified on Fig.5.29a. We see that, beyond the mid-UV-wavelength peak, there is
only one other notable spectral feature: a peak at 303 nm, which corresponds to the
long-UV-wavelength TH seen on Fig. 5.26. This indicates that the regime of IR cou-
pling efficiency is such that the 266 nm TH is not phase matched with the IR pulse.
The coupling efficiency of the IR might be influenced by the strong green power
impinging on the tip of the fibre via thermal effects which would yield a physical
deformation of the tip of the fibre such that the IR mode overlaps more or less with
the cladding.
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Fig. 5.28 UV spectrum for a 65 mW, 532 nm, CW probe interacting with short-wavelength pulses,
for average IR powers of 8 mW. The central wavelength of the pulse is shifted by increments of
5 nm from A, = 800 nm in (a) to A, = 825 nm in (f). No THG at longer UV wavelengths was
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Fig.5.29 Evolution of the mid-UV-wavelength peak for varying 532 nm probe power and constant,
8 mW, \. = 806 nm, pulse power. a Two consecutive measurements for P, = 60 mW are shown
in blue and orange (they mostly overlap). The probe power is then lowered to, b 50 mW and ¢ 45
mW. Note the change in scale of the spectra

Considering the spectra of the 266 nm TH peak for P;x = 8 mW on Fig.5.26,
the appearance of the mid-UV-wavelength peak at 246 nm cannot be interpreted as a
blueshift of the TH. Indeed, the relative amplitudes are too dissimilar. Furthermore,
Eq. (5.25) only allows for red- or blue-shifting of the TH as a function of the fibre
dispersion, which is a material property that can most likely not be significantly
modified by the CW probe power. Remember that we observed that two TH peaks
could be phase-matched with the pulse, and that both of them shifted to longer wave-
length, thus a blueshift of more than 20 nm appears extreme, if not impossible. So
we cannot explain the generation of the 246 nm peak by means of an obvious nonlin-
ear interaction between the probe and the pulse. Moreover, in [8] the negative-norm
signal generated from the soliton was observed around 220 nm, and we predicted
similar wavelengths for mode no, thus it would be rather surprising if the signal were
observed at 246 nm. One could of course wonder whether this peak could be the
signal we seek. No conclusive study could be carried to assess this question.
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5.4.2.3 Digging in the Unseen

The results presented in the previous section do not allow for the formulation of
a firm interpretation of the mid-UV-wavelength peak at 246 nm. Further investiga-
tions looking into the effects of the variation of parameters such as the IR power or
relative polarisation of the pulse and probe would be necessary to this end. In such
investigations, additional optics in the input green beam should be used to allow for
its input power to be varied to control the output power, in place of the method used
in the present experiments. Indeed, changing the coupling efficiency appears to be a
poor method of power management: it is clear that the efficiency of interaction with
the IR pulse changes as a function of the overlap of the green mode with the core
and the cladding. Likewise, the influence of the coupling of the green beam on the
coupling efficiency of the IR beam should be mitigated, for, at present, it clearly has
an influence on the higher-order modes in which IR light may propagate, and UV
light may be generated.

Now, turning to the sought UV signal, theoretically generated by energy transfer
from the positive-norm probe into a negative-norm mode, it is unclear why it has
not been detected. Looking back at Eq. (5.23), we found that the various spatial- and
frequency-filtering techniques implemented should allow for a signal around 220 nm
to be detected with a SNR of at least 1, with a noise of 20 Hz due to the background
created (iris diameter: 5 mm). Closing the iris down to 2.5 mm even seems to improve
this SNR by a factor 4 at the desired wavelength (see Fig.5.24d). It might however
be that although the SNR for second harmonic generated at 266 nm is increased
by closing the slit, it would not be the case for a signal at 220 nm—the short-UV-
wavelength component of the beam might diverge strongly at the iris and be filtered
out of the beam that reaches the monochromator and single photon counter (SPC),
thus reducing the SNR at 220 nm. Indeed it is not a surprise that the SNR is good
at 266 nm, for the alignment of the UV beam-path was performed by optimising the
rate measured by the SPC at this wavelength (generated by third-harmonic from the
IR pulse in the fibre). Actually, one could think of using the 247 nm peak to bring the
alignment closer to its optimal settings for short UV-wavelengths. The 220 nm signal
in the output of the fibre (with a rate of production of 663 Hz, as in Eq. (5.19)) would
ultimately need to be focused down at the iris, so as to allow for closing the latter
down to 2.5 mm. Then, according to the calculation (5.20), a rate of 20 Hz should be
detected by the SPC. At which point, a SN Ry ~ 4 would enable for unequivocal
detection of the signal.

It might also be that the signal production rate by the interaction of the probe and
the pulse in the fibre is lower than in our calculations. In which case, Eq. (5.19) would
yield a lower rate. This could be due, for example, to fibre losses (by absorption) in
the UV. Let us assume, for the sake of the argument, that an SNR of 1 is the limit
of detection. In Sect.5.4.1.2, we have established that the minimal rate at 220 nm
that would allow for detection with a SNR of 1 is ~5Hz. This is a factor 4 below
the rate estimated with no fibre losses. In other words, if less than 25% of the light
calculated in Eq. (5.19) would be exiting the fibre, this signal could not be detected.
Thus, losses in the UV larger than 5 dB per meter of fibre would suffice to reduce
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the SNR beyond the limit of detection. If we continue along this line of thought,
we arrive at the conclusion that a shorter piece of fibre should be used in order to
counter the effects of absorption in the UV. Of course, this would imply reducing
the efficiency of the interaction between the probe and the pulse, which linearly
depend upon the interaction length L;,; = Lv,, by (5.14), with L = 1.2 m the fibre
length and v,., = 81 MHz the repetition rate of the laser [1]. Clearly, a compromise
between a very short piece of fibre that would not reduce the UV rate by absorption
excessively and a minimal interaction length for 7;,, to not reduce 7,, extremely
would have to be found.

Beyond the modification of the fibre length and the filtering of the output, the
SNR may be improved by increasing the height of the potential barrier on which
the probe scatters. In Sect.5.4.1.2 we suggested to do so by generating higher order
solitons. This could also be achieved by propagating a shorter pulse, down to the
few-cycle regime, in the fibre. The change in the refractive index experienced by the
probe at the soliton edge would then be extreme even for a fundamental soliton, for
few-cycle pulses are extremely steep (with the refractive index varying significantly
over acycle of light). One could also think of using a pulse as the probe to be scattered
at the soliton. This circumvents the issue of interaction length, for all the energy in
the probe pulse can be made to scatter at the soliton over a very short distance, of
the order of a few wavelengths, for adequate group-velocity mismatches.

In conclusion, efforts still have to be put in to dig in the unseen and observe the
scattering of a probe of positive-norm to a negative-norm signal at the horizon.

5.5 Conclusion and Discussion

In this section we look back on the experiment presented in this Chapter, and discuss
its importance. This discussion basically falls under two main considerations: the
intrinsic value of the experiment and its contribution to the field of analogue horizons.
We begin with the former by looking out at the route toward the observation of
spontaneous emission at an optical horizon, which leads us to comparing the results
of the Thesis with investigations of others in the community.

5.5.1 Stimulated and Spontaneous Scattering at the Horizon

The study of the scattering of a probe pulse on a soliton was already suggested in [15].
In this numerical study, the authors interpreted the transfer of energy to the negative-
norm mode as a resonant process similar to the generation of NRR, as described
in Sect.2.2.2. However, in the beginning of this section, see Sect.5.1, we clearly
established that the energy transfer is actually due to parametric amplification by
means of the scattering of a wave at the horizon and is not a manifestation of ordinary
nonlinear fibre optics but a signature effect of analogue horizon physics. In observing
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this effect, we thus hope to shed some light on the physics of scattering at the horizon.
Most importantly, the modes involved in the effect of stimulated scattering also play a
role in the effect of spontaneous emission at the horizon: they are in and out modes of
the scattering process, regardless of their incoming state (that is, whether or not they
are populated with photons). Therefore, observing the stimulated effect of positive-
to-negative-norm scattering will yield essential information about the characteristics
of emission from the vacuum.

For example, given the dispersion relation of the fibre in the UV, and the narrow
size of the frequency interval over which a front in the refractive index acts as an
analogue horizon, the wavelength at which light in the negative-norm mode (the
partner in a pair-emission process a la Hawking) will be observed should be very
similar, if not identical, to that at which the signal in the present experiment would be
detected. As in the stimulated case, this negative-norm mode will allow for light to
propagate away from the soliton in the left-hand-side region of low refractive index
(as in Fig.5.21). And, in a similar fashion to the stimulated regime, spontaneous
emission in the other mode of the pair (light in the mode that allows for it to “escape”
the horizon) will be emitted on both sides of the soliton simultaneously, but over
two distinct wavelength intervals. These two intervals of emission correspond to
those over which light from the coherent probe would be red- or blue-shifted, as
in Fig.5.21. Thus these intervals lie on either side of the wavelength at which the
probe and pulse would have the same laboratory-frame group-velocity, the velocity-
matched wavelength. For the PCF used in the experiment, the central wavelength of
the IR pulse that propagates (at v, = %c) in the medium at the same group-velocity
as the 532 nm probe is A\, = 835 nm—see Fig. 5.19: this is the pulse wavelength for
which the probe energy does not shift.

5.5.2 Calculation of Spontaneous Emission Around
the Group-Velocity-Matched Wavelength

In order to articulate the argument of the previous section, it is necessary to know
the wavelength and density of emission of light spontaneously emitted from the
vacuum. At this point, I refer back to my study of the dispersion relation and emission
spectra of bulk fused silica, presented in Chap. 4. For a RIF of height dn = 2 x 107°
(as is created in the experiment) moving at v, = %c in the dispersive medium, the
velocity-matched wavelength is A, = 396 nm, and the spectrum of spontaneous
emission in the positive-norm modes is as in Fig. 5.30 (the spectrum of emission in the
negative-norm mode is shown in Fig. 4.12). The group-velocity-matched wavelength
is indicated by a vertical red line and we see that emission into the modes that allow
for light to propagate away from the interface is almost symmetrical around \,,, with
short wavelength emission being slightly weaker than long wavelength emission.
The discrepancy between the densities at short and long wavelengths are due to the
difference in refractive index between the two regions of emission. Indeed, in this
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Fig. 5.30 Spectral density of spontaneous emission in the laboratory around the group-velocity-
matched wavelength. The spectrum is calculated for a RIF as in Fig. 3.4, of height dn = 2 x 1079,
moving at speed vgg3s = 1.9992439 x 108 m.s~! in bulk fused silica. The group-velocity-matched
wavelength, \,, = 396.328 x 10~° nm, is indicated by the vertical red line

calculation, a step geometry for the RIF is considered (as in Fig. 3.4), and thus light
at short wavelengths is emitted in mode uoL in the high refractive index region. In a
real experiment, light at short wavelengths would be emitted in mode uoL as well,
but this would allow for light to propagate away from the symmetric refractive index
profile (as in Fig.5.21) in the low refractive index region. I expect that the density of
emission of light in uoL and moR would then be strictly identical—this deserves to
be thoroughly investigated.

Bermudez and Leonhardt calculated a similar spectrum in [16] in 2016, but did not
compare their results with those we had obtained in [17]. They found that the spec-
trum of emission is indeed symmetrical around \,,. They studied a simple quadratic
dispersion relation, and described the refractive index of the medium by means of
a Taylor expansion (as introduced in [1] and developed in [12, 18]). They calculate
spectra of spontaneous emission from an extremely short pulse, of Ty = 2 fs, thatis a
1.25 cycle-long pulse (for A\, = 800 nm) in the laboratory frame. Such a short pulse
can probably not be created in an actual experiment, propagate through a dispersive
medium or not contaminate the signal frequencies with its own bandwidth. Yet, it
is interesting to see that in this limit of pulse-length, the step-like potential provides
results close to those obtained with a more complicated refractive index profile.

Resorting to a Taylor expansion of the propagation constant F(w) to model the
refractive index is common in nonlinear optics but cannot provide an accurate per-
spective on horizon physics. Indeed, our study (based on a Sellmeier model for the
refractive index of a dispersive medium) clearly demonstrated that energy transfer
between various branches of the dispersion relation may occur (and not only between
negative- and positive-optical-frequency branches). This cannot be grasped by the
common Taylor-expansion-approach that is restricted to the study of one branch only.
Furthermore, the Sellmeier model can be straightforwardly generalised to account
for near medium-resonances absorption, which would be helpful in studying the scat-
tering of waves incoming with very high frequencies on the horizon—which is one
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of the main theoretical unknowns of Hawking’s seminal calculation [19] (see also the
discussion in Sect. 3.1.2). Thus the present Thesis opens unprecedented opportunities
to further investigate (analogue and astrophysical) horizon physics.

5.5.3 The Case for Optical Horizons

The experiment performed in this Thesis is an important step forward in the devel-
opment of the science of optical horizons. For the optical fibre used in this experi-
ment, the phase-matched wavelength is \,, = 566 nm, and intervals of spontaneous
emission in the positive-norm mode of the pair will lay symmetrically around this
wavelength. The emission peaks are expected to be comparatively as narrow and
well-defined as those in Fig. 5.30. As was introduced in Sect. 5.5, emission in the UV
due to contributions from the negative-norm partner will be concentrated in a very
narrow interval similar to the interval over which the signal sought in the experiment
should be detected (218223 nm). Thus, observing the stimulated effect of scatter-
ing into this negative-norm mode paves the way to the detection of the spontaneous
emission partner, and thus of photon pairs. Indeed, the advantage of the optical setup
over other analogue systems (such as water waves [3, 4]) is that it allows for direct,
unambiguous, observation of single quanta. Measuring the state of entanglement
of the output boils down to measuring correlations in photon-numbers between the
negative-norm and positive-norm modes, which are directly accessible quantities,
down to the single-photon regime and is not limited to ensemble averages, in optical
experiments.

The ability provided by optical experiments to observe single quanta is very
important in the case of analogue physics: as we have seen in the previous paragraph,
spontaneous emission into the positive-norm mode of the pair will take place over
two distinct intervals in the visible simultaneously. In contrast, emission into the
negative-norm mode of the pair will be observed over a single, narrow bandwidth,
interval in the UV. Thus, quantum correlations between two sets of intervals will have
to be measured: the UV-short-wavelength intervals for emission from the analogue
white hole horizon, and the UV-long-wavelength intervals for emission from the
analogue black hole interval. In both case, knowledge of the interval of emission of
the negative-norm partner is key, and the theory and experiment presented in this
Thesis is the important step towards identifying it.

In fluid experiments, such as Bose-Einstein Condensates [20—-22] or water waves
[3, 4], only one of the two analogue horizon configurations can be realised at once'”:
one may only create the analogue to a black- or a white-hole horizon. In optics, we
may create both simultaneously, for modes in the vacuum state scatter at both edges
of the soliton continuously. Furthermore, although the detection of the pair emitted

7For example, in the waterfall configuration investigated in [21], a black-hole horizon only is
created. An extra potential barrier would have to be set in the fluid flow to create a white-hole
horizon as well.
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at the horizon is destructive in both fluids and optical experiments (for example, to
be detected on a single photon counter, the photon has to be absorbed by the material
and cannot be used for anything else subsequently), in the optical case, the quantum
state at the output can be used as a resource for other experiments. Indeed, photons
are aresource easily handled, even stored, in the laboratory, and can be transferred (or
their state teleported [23]) over great distances: provided that one does not perform a
destructive measurement (that would be aimed at characterising the quantum state),
photons emitted at the horizon can be redirected to other setups. Light spontaneously
emitted from the vacuum at the optical horizon thus appears as a new and attractive
source of entangled light, for it will be created in a strongly entangled state—very
close to a pure state, as we saw in Sects.3.2.4 and 4.3.2.
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Chapter 6 ()
Conclusion ek

This Thesis consists of the study of the scattering of light at the horizon. Particular
emphasis is put on the optical scheme, whereby light in an optical fibre is made
to interact with itself to create an effective curvature of spacetime. A theoretical
investigation of the motion of light on such a curved background, and of the resulting
mixing of waves of positive and negative frequency, is conducted. This mode mixing
yields spontaneous emission from the vacuum. An experiment in which an incoming,
positive frequency, wave is populated with photons is assembled to observe the
transfer of energy from this wave to an outgoing wave of negative frequency at the
horizon. This is a classical, stimulated version of the quantum experiment that aims
at validating the mechanism of Hawking radiation.

Universality of the Hawking radiation mechanism

Hawking radiation is the late time thermal flux originating from the vicinity of the
event horizon of black holes [1, 2]. Any light that propagates through the region
of gravitational collapse will experience an exponential gravitational redshift, which
implies that the outgoing particles of which black hole radiation is made must be taken
to correspond to extremely high frequency radiation at the horizon. Such a Trans-
Planckian regime is not described by General Relativity or Quantum Physics—it
might be the dominion of Quantum Gravity—and is thus not properly described by
the semi-classical approach of Hawking’s. This raises questions about the validity
of the derivation and the existence of the effect itself.

The fate of Hawking radiation, which is widely seen as a test bench for future
theories of Quantum Gravitation, is however not sealed: some laboratory-based sys-
tems mimic the kinematics of fields in the vicinity of black holes, and in particular
at the event horizon [3]. In total analogy with their astrophysical counterparts, these
“dumb holes” will emit a thermal flux. This discovery of Unruh’s ushered-in the field
of analogue horizons.

Most analogue systems are based on the analogy between the motion of waves in
fluids and the motion of waves on a curved background. The problem with Trans-
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Planckian waves has a direct analogue in fluid systems in terms of the failure of the
hydrodynamic limit: it cannot be assumed that perturbations have a wavelength much
longer than the healing wavelength and, just like there is no theory for the micro-
physics of spacetime, there is not one for fluids either. Jacobson suggested modelling
the effect of the underlying microphysics on linear fluctuations by considering a mod-
ified dispersion relation [4]: he postulated that a modified dispersion relation could be
used to understand the breakdown of continuous fluid models due to atomic effects.
Unruh then performed numerical simulations in which he demonstrated that, in the
presence of dispersion, late-time radiation is not caused by exponentially large quan-
tum fluctuations [5]. This was also applied by Corley to the gravitational case [6].
More recently, Unruh and Schiitzhold proposed to factor Trans-Planckian effects into
the calculation of Hawking radiation via a non-trivial dispersion relation and thus
established the universality of the Hawking radiation mechanism [7].

Epistemology of analogue systems

These studies have inspired a number of people who created a large body of the-
oretical studies of analogue systems, and assembled a handful of experiments to
investigate various aspects of analogue horizon physics. Of particular importance is
the experiment of Steinhauer who announced having observed correlated emission
of phonons at the horizon created in a Bose-Einstein Condensate (BEC) in 2016 [8].

However, further arguments have to be gathered to validate the statement that the
observed radiation is of the same class as Hawking radiation. At present, it being the
only experiment in which the effect of spontaneous emission has been observed, a
BEC with sonic horizon cannot be unequivocally linked to astrophysical black holes.
Thus the available evidence is not of the appropriate epistemic type to confirm that
black holes do radiate [9]. It lacks external validation.

Other analogue experiments, by means of Unruh and Schiitzhold universality
argument, may rescue the situation: would spontaneous emission be observed in
some other setting, confidence in the universality principle would increase and the
claim that Hawking radiation is emitted at analogue horizons would be brought closer
to validation.

A good candidate scheme is light in an optical fibre. As was mentioned in the
beginning of the Conclusion, and demonstrated throughout the dissertation, light in
dispersive media can be made to interact with itself and create an analogue event
horizon at which spontaneous emission from the vacuum occurs.

Contributions to the field

Spontaneous emission from the vacuum in various systems, and the kinematics
and mathematical arguments that support the analogy between laboratory systems
and astrophysical black holes are the central problem around which this Thesis has
revolved. The contributions of the present work to the endeavours of the community
are both theoretical and experimental. They may be deconstructed in the following
5 themes:

e an analytical study of the scattering of light at an interface between two media
homogeneous in their refractive index;
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e the development of an algorithm to calculate the spectra of spontaneous emission
at the interface in all regimes of refractive index change and frequency at the
interface, in both the moving and laboratory frame;

e the computation of the first analytical spectra of spontaneous emission as it can
be observed in the laboratory frame—including emission in mode solutions of
negative frequency;

e an analytical demonstration that emission into a negative frequency mode solution
is parametrically amplified when a monochromatic, positive frequency, coherent
wave scatters at the interface in the refractive index;

e the experimental investigation of the effect of energy transfer from a monochro-
matic, positive frequency, continuous wave to positive- and negative frequency
waves upon scattering at the horizon created by a soliton in an optical fibre.

The collection of these themes, alongside more general considerations drawn from
the state-of-the-art in the field of analogue horizons was presented in this disserta-
tion. For example, the theoretical study' yielded the discovery that an interface in
the refractive index of an inhomogeneous medium would simultaneously act as a
black- and white hole emitter, as well as a horizonless emitter, as a function of the
frequency and the magnitude of the refractive index change [10]. This is in contrast
with the common thought that an interface is either a black- or white hole emitter. The
implementation of the algorithm allows for direct and fast calculation of spectra, and
can be generalised to simulate a variety of refractive index profiles. It thus appears
to be a good advance in a field that has been relying on purely numerical studies
until recently (see Robertson’s work for a similar study to this Thesis [11, 12]). The
computation of the spectral density of emission in the laboratory frame, as a result
of contributions from all optical modes of positive- and negative frequency, yielded
the observation that emission was strongest into the negative frequency mode, in
the UV. This mode has a negative norm and is the partner in all pair-wise emission
process la Hawking. Thus it shall be a target of choice in any optical investigation
of the spontaneous emission of light from the vacuum. Furthermore, the existence
of this UV peak inspired the design of the experiment, that was aimed at detecting
energy transferred to this peak from a positive frequency wave upon scattering at the
horizon.

Similar experiments have already been carried out in water waves, in which
the generation of negative norm waves from the horizon was observed [13, 14].
Moreover, this experiment will yield crucial information toward the observation
of correlated photon pairs emitted at the horizon, which is the ultimate signature of
spontaneous emission. Observing this emission would contribute to the validation of
analogue systems as appropriate source systems to probe the physics of astrophysical
black holes.

"Which included a proof that, in regimes over which the dispersion is linear, the wave equation is
analogous to the Painlev-Gullstrand metric—that is, the interface is an analogue horizon.
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Appendix A
Positive and Negative Frequency

In this appendix, we will discuss further arguments in favour of the consideration of
the sign of frequency of a mode of a field. The discussion will be based on the study
of sinusoidal functions.

Sinusoidal functions

A sinusoid is a function of the form
x(t) = Asin(wt + ¢), (A.1)

where ¢ is an independent (real) variable, and the fixed parameters A (the amplitude),
w (the radian frequency), and ¢ (the initial phase) are all real constants. The argument
of the sine function, wt + ¢ is referred to as the instantaneous phase. Since the sine
function is periodic with period 27, the range of the initial phase is usually restricted
to any values between 0 and 27. The radian frequency w is the time derivative of the
instantaneous phase—w = %(wt + ).

A sinusoid’s frequency content may be graphed in the frequency domain by rep-
resenting its spectral magnitude by (unit-amplitude, and ¢=0 case)

1 . 1 .
in(w, ) = o-e — e, A2
sin(wyt) 5:¢ 5:¢ (A.2)

That is, the spectrum of a unit-amplitude sinusoid of radian frequency w, (and phase
m/2) consists of two components with amplitude 1/2, one at frequency w, /27 and
the other at frequency —w, /2.

Complex sinusoids

We define the complex sinusoid from Euler’s Identity
WD = cos(wt + @) + i sin(wt + @), (A3)
by multiplying it with an amplitude A > 0
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At = A cos(wt + ¢) + i A sin(wt + ¢). (A4)

From this equation, we see that a complex sinusoid consists of a real part and an imag-
inary part—its in-phase and phase-quadrature components, respectively. A complex
sinusoid has a constant modulus—a constant complex magnitude.

Given its constant modulus, a complex sinusoid must lie on a circle in the complex
plane: a positive-frequency sinusoid (¢/“, w > 0) traces out counter-clockwise cir-
cular motion along the unit circle as ¢ increases, while a negative-frequency sinusoid
(e, w > 0) traces out a clockwise circular motion.!

Positive-and negative-frequencies components of a real field

By Euler’s Identity, all real sinusoids consist of a sum of opposite circular motion:
this is best seen by writing out

el Witd) _ p—i(wi+e)

sin(wt + ¢) = T . (A.5)

It is obvious that every real sinusoid consists of an equal contribution of positive-
and negative-frequency components.?> Spectrum analysis [1] tells us that every real
signal contains equal amounts of positive and negative frequencies. If we denote the
spectrum of the real signal x(#) by X (w), we have

X (—w)| = [X(W)]. (A.6)

So why do we usually not consider the negative frequency component of real
signals? Well, it is because complex sinusoids have a constant modulus: amplitude
envelope detectors (typically, power meters) “compute” the square root of the sum
of the squares of the real and imaginary part of the signal to obtain the instantaneous
peak amplitude. In other words, we usually convert real sinusoids into complex ones,
by removing the negative-frequency component, before processing them.

I'Note that both positive- and negative-frequency sinusoids are necessarily complex.
2 A real sinusoid is the sum of a positive-frequency and a negative-frequency complex sinusoid.



Appendix B
Modelling of a Change in the Dielectric Constant

In this section of the appendix, we will comment further on the modelling of the
dielectric constant in the Sellmeier model, and the modification of this dielectric
constant when the refractive index is increased (e.g. by the Kerr effect in the fibre
optical experiment of Chap. 5 of this dissertation).

Sellmeier coefficients in the Hopfield model

In Sect.3.2.3, I explained how the Sellmeier coefficients (the resonance frequency
w; = ZAﬂ and elastic constant x; ) of the medium (a set of polarisation fields modelled
by harmonic oscillators) were modified by the frequency-dependent change in the
refractive index under the step of height dn (as illustrated in Fig.3.4) by Eq. (3.71). 1
argued that, in the light of the present lack of theoretical description of the collection
of quantum processes from which the dielectric constant of a material arises, the
Hopfield model of the dielectric [2] was only an approximation of physical reality.
In a scheme based on this approximation, the modulation by (3.71) of the Sellmeier
coefficients is a usual description of the change in the dielectric constant within a
self-consistent theory.

The question then arises of which of the two coefficients, the resonant frequency
or the elastic constant, should be modified to best account for the change in the
dielectric constant. I argued that we do not, at present, have at our disposal a good
theoretical argument that would discriminate between the two effects—or indeed a
combination of both, as proposed in [3, 4] and used in this Thesis and [5].

Atthe onset of their study, one thus has to make a choice as to which modification to
make: either x; or w;, or both x; and w;, are modified by the change in the refractive
index (of amplitude dn)—note that, in any case, this change has to be frequency
dependent. From this choice stem the matching conditions. As I demonstrated in
Sect.3.2.4, if x; is to be modified by dn (independently of the modification of w;),
then there is a discontinuity in the elastic constant at the interface. On the other hand,
even if w; is modified by dn (independently of the modification of «;), this does
not create a discontinuity at the interface (the resonant frequency is continuous at
the interface for any amplitude of én). So the choice mentioned above influences
the matching conditions, and thus it influences the scattering matrix (because the
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elements of the matrix stem from the matching conditions and the amplitude of the
modes at the interface).

Dispersion relation

I think that this Thesis demonstrated how the structure and shape of the dispersion
relation influence the spectra of emission at the refractive index front (RIF). With this
in mind, I would argue that looking at the dispersion relation, which can be readily
calculated for any of the three cases we are interested in, may shed some light on the
impact of the modification of the Sellmeier coefficients on the spectra of spontaneous
emission. For simplicity, we will here focus on the optical branch, and the modes of
optical frequency (of positive and negative norm).

Figure B.1 displays the positive-norm optical branch of the dispersion relation in
the laboratory frame, and the positive- and negative-norm optical branch in the mov-
ing frame (the frame co-moving with the RIF at velocity u = 0.66¢). The branches
are shown in the low- and high-refractive-index region, for dn = 0.048 at the step.
We see that, as only the resonant frequency wj; is changed by the increase in the
refractive index, the distance in the laboratory frame (Fig. B.1a) between the optical
branch in the low- and high-refractive-index regions is largest around & = 0 and at
large |k|. In the moving frame (Fig. B.1d), the positive- and negative-norm branches
in the high-refractive-index region are very close to their low-refractive-index region
counterparts. Thus we expect the moving frame frequency intervals over which the
RIF acts as a black-hole and a white-hole to be very narrow. The situation is almost
exactly opposite in the case in which only the elastic constant «; is changed by the
increase in the refractive index (Fig. B.1b), the branch in the high refractive index
region overlaps with that in the low refractive index region around & = 0 and at large
|k|, and is furthest away in the medium |k| regime. In the moving frame (Fig. B.1e), the
high-refractive-index region branches (of positive- and negative-norm) are far from
overlapping with the low-refractive-index region one. Thus we expect the moving
frame frequency intervals over which the RIF acts as a black-hole and a white-hole
to be relatively large—comparably to the case in which both the Sellmeier coeffi-
cients are modified, as discussed in Chaps. 3 and 4 and plotted in Fig. B.1c and f for
comparison.

Note that the overall curvature of the dispersion relation does not seem to be
affected by the independent change in the Sellmeier coefficients. Thus it is reasonable
to assume that the shape of the spontaneous emission spectra will not drastically
change either. That is, they should exhibit the same horizon-like features (such as
the “shark fin”) as those presented in Chap.4.

Spectra of emission

The algorithm presented in Chap.4 is based on the matching conditions found in
Sect.3.2.4: it allows for calculating the scattering matrix if the elasticity «; is dis-
continuous, and if the resonant frequency w; is continuous, at the interface only. This
means that, unfortunately, the case of continuous (unchanged) «; cannot be investi-
gated without modifying the algorithm, after having found out about the new ana-
Iytical expression for the matching conditions and relations between Global Modes
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Fig.B.1 Change of elasticity and/or resonance frequency by refractive index increase. Left column:
positive-norm optical branch in the laboratory frame; right column: positive- and negative-norm
optical branch in the moving frame. The branches are shown in the low refractive index region
(black) and high refractive index region (orange), with dn = 0.048 in bulk fused silica. In (a) and
(d), only the resonant frequencies w; and w, are changed; in (b) and (e), only the elastic constants
K1 and ky are changed; in (¢) and (e), both the resonant frequencies w; and w, and elastic constants
1 and k7 are changed (as in Chaps. 3 and 4). A contour line of constant moving frame frequency w’
is shown on the laboratory frame dispersion plots (a, b and c) to aid the visualisation of the change
in the Sellmeier coefficients

(GM) in the inhomogeneous medium. Thus, spectra in the case of unchanged &;
and changed w; cannot be computed presently. On the other hand, it is possible to
compute spectra in the case of changed x; and unchanged w; can be—and the case
in which both are affected by the increase in the refractive index was the subject of
Sect.4.3.

I here present new numerical results that allow for comparing the impact of chang-
ing both x; and w;, or changing solely «;. The moving-frame photonic flux in the
negative-norm optical mode noL and the uniquely escaping mode moR (that has a
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Fig. B..2 Emission spectra h1wlminLh Wmink P Wmax A W maxr
of optical modes of positive- 107" w

and negative-norm in the
moving frame in bulk fused
silica. The flux density in
mode noL (purple curve) and
moR (orange-dashed curve)
is shown for a step height

on = 0.048. In a both the
Sellmeier coefficients are
modified (as in Fig.4.6d) and
in b only the elastic constants
k1 and ko are modified. The ‘ ‘ ‘
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positive norm) are shown in Fig. B.2 when both Sellmeier coefficients are modified
in (a), and when only «; is modified in (b). As anticipated in the above paragraph, the
overall shape of the spectra is not significantly affected by the fact that the resonant
frequency is not changed in Fig. B.2b). Horizontal lines indicating the limits of the
subluminal intervals (see Sect.3.2.3) when both Sellmeier coefficients are modified
are shown for reference. When only the elastic constant is modified, the characteristic
features of the spectra (“shark fin”) are slightly shifted to higher frequencies, and it
seems that the emission is overall weaker. Moreover, the emission in noL is stronger
than in moR over the black-hole interval (between fw),, , and Aw,, . ), Which is a
departure from the equality of the fluxes observed when both Sellmeier coefficients
are modified to model the frequency-dependent change in the refractive index.

From these spectra, it is sound to assume that the spectrum of emission when
only the resonant frequency of the medium would be modified would feature the
same shark fin features (and possibly lower flux amplitudes), although over narrower
intervals. The spectrum would then be appreciably different from those presented
on Fig. B.2. Such numerical calculations should definitely be carried to check those
predictions.


https://doi.org/10.1007/978-3-319-91071-0_4
https://doi.org/10.1007/978-3-319-91071-0_4
https://doi.org/10.1007/978-3-319-91071-0_3

Appendix B: Modelling of a Change in the Dielectric Constant 189

Fig. B.3 Laboratory
Spectral Density with
modified Sellmeier
coefficients. Spectra are
calculated for a step of
height n = 0.048 in bulk
fused silica. Dashed-blue:
spectrum when x| and k2
only are modified; black:
spectrum when both
Sellmeier coefficients are
modified 107

_\
<
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I also calculated the density of spectral emission in the laboratory frame in the
case in which only «; is modified to account for the frequency-dependent change
in the refractive index under the step of height dn = 0.048. The LSD is shwon in
blue in Fig. B.3: we see that it is mostly similar to the reference spectrum obtained
in Sect.4.3.2, shown here in black. As for the moving frame spectra, the emission
is mostly lower when only the elastic constant is modified, and the horizon features
are blue-shifted with respect to the reference spectrum.

From these spectra, it is unclear that an optical experiment in glass would allow
for clearly distinguishing the best theoretical model (modification of either or both
of the Sellmeier coefficients). As I already said in the body of the dissertation, the
present theory of the dielectric constant by means of the Hopfield model, and of its
modification by an increase in the refractive index by modification of the Sellmeier
coefficients has not to be taken too literally: modifying either or both of the elastic
constant and resonance frequency is merely a means to account for the frequency
dependent change in the refractive index. Unfortunately, the present theory does not
account for the collection of quantum processes that would accurately describe the
dielectric constant. Further study could be dedicated to extensively studying this
puzzle, but for the sake of the present Thesis, modifying both «; and w; is good
enough.
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Appendix C
Scattering at a Smooth Profile in a Nondispersive
Medium

In this appendix, I demonstrate how to calculate the wave equation for the one
dimensional motion of a particle in the field of potential U (x),

Uo

Ux)=———.
x) cosh? ax

(C7

I then shown how to calculate the coefficients of scattering (reflection and transmis-
sion) at such a smooth profile.

Exact solution
The one dimensional motion of a quantum particle in the field of potential U (x) is

described by the Schrodinger equation

>V 2m

T3tz E-U)W =0 (C.8)

In the present case, this reads

d*v Uy
— +2m|{E— ——— | ¥ =0. C.9
dx? " ( cosh? ax) ©3)
If we take
§ = tanh(x), (C.10)

where we have implicitly rescaled the problem so that x — ax, then

sinh(x) /o) — 1

= = C.11
¢ cosh(x) cosh(x) ( )
and
d / / 2 -2
T =¢ =tanh'(x) = 1 — & = cosh™“(x). (C.12)
X
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Thus we get
d\? d d_d¢ d 5 5 5\ dV
) w=——w = (1 =(1- C.13
(dx) dxd§ dx dx|:( §>d§] ( f)[( €>d§] ( )

and Eq. (C.9) can be written as a function of :

@ (1-¢) 2 [0-) |+ T (- (- ) w=0

d o AV 2mE 1 2m .
- E[(l_g )d_§i|+<h2a21—£2 - hzazU‘))‘y_O‘

Using the replacements k = ¥22£ and s = 3 < L 1), and noting that

(C.14)

h a’h?

s(s+1)=— i’g‘gz", the Schrodinger equation (C.14) can be expressed as

o0 (5rpemen)ern e

This equation can also be written under a hyper-geometric form by making the
_ik
substitution W = (1 — £2)" > w(¢). Equation (C.15) becomes

d%[( -&) 5[(1 —g)h w(f)]]+("2 e +s<s+1>) (( 52)*%(5)) =

(C.16)
The computation of the first term of the above equation yields
) d ik — ik
T [(1 - &) (6; (1-&) " o+ (- (@ﬂ

d [ ik —ik —ik
=—[§’E(1—52) Tw©+ (-8 w/(f)}
2\~ 2 K
=S (-9 T -5 (1-8) F we +
k _ ik
+eo(1-6) WO+

ik — ik _ik
4 (_26) (1 _ lg) (1 _ 52) 2a w’(f) + (l _ 52)1 2a W"(f)-
(C.17)
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Substituting back into Eq. (C.16) and dividing by (1 — 52) 2 yields

. 2 .
_w<_&_sz_s+"_2)_25(1_f>wf+(1_g2)w"=o. (C.18)
(0% (6]

«

Finally, momentarily changing the variable to u = % (1 — &), and expressing w as a
function of u - W' = —2w'(u) and w" = 4w"(u) - leads to the Schrodinger equation
in its hyper-geometric form

uw(l —u)w") + (1 — —) (1 —2u) W' (u) — (—% —S) (—% + 5+ 1) wu) =0. (C.19)

The exact solution of the problem is the wave function

w=(1—52)52F[—%—s——k+s+11 f —(1—5)} (C.20)

finite for £ = 1 (i.e. forx — o0). This solution satisfies the condition that, as x — oo,
1 — & — 2e72%% Indeed,

h o h 2 —2ax
(1—€) = (1 — tanh(au)) = oM@ —sinh(ax) - 2¢ .21
cosh(ax) ey 4 e—ox
so for x — 00,
(1—&) =l 207 N (C.22)
=1lim o e b e . .

Physically, this means that as x tends towards infinity, the wave function should only
include the transmitted wave (which is proportional to exp(ikx)). The asymptotic
form of the wave function as x — oo (£ — 1) (i.e., the wave function before the
barrier) is found by transforming the hyper-geometric function [eq:exact solution]
with the aid of formula e7 in appendix e of Landau and Lifshitz’ book [6].

£ (1-%yp (&) ik ik | _ik 1
_ 2 2a «a « _r _ - _
_( 5) [ s+ DT (s) F( a ss+1 a’l (1 §)>

S R ELTIE o o
(C.23)

hen x — —o00, £ — —1 gnd F — 1. As (1 —£2) % = (1 — tanh(xa)?) * =
W 2 2

ik
ik ax —ax '\ a
cosh(ax)e = (%) ,and
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ik ik
2% 24

1-¢

[1 }“:(l—amﬂ+fﬁ"— 1<1+€>h=(””“. (C24)

5(1_5) ik

@

i

2 7% e—ax « _ e~ kx 1 % eik.t .
When x — o0, (1= €2) % — ()" = 5 and [§ (1 = ©)]" — £, which
leads to

«T(1-%)r (% o T(1—#®)p (it
W:Le_fw_i_%e;k ( a) ( (y)

. — . C.25
2 Fs+DTG) 20 T(-%2—s)T(s+1-%) (€2

The wave function is composed of the reflected and transmitted waves which are,
respectively, the first and second term of Eq. (C.25).

Reflection and transmission coefficients

From Eq. (C.25) it is possible to calculate the reflection coefficient of the potential
barrier: it is enough to take the squared modulus of the ration of coefficients in this
function - ik |2 ik 2 ik 2
e LEPIC(E —s)PIT (s +1 - )|
IT (s + 1) 2T () PIT (=) 12
_ er (_%_S) |2|F(S+1_%) ? (C.26)

—sm__(=m) us
- - Tk
sin(7s) s sin(7rs) o sin(%)

-2 . .
k k
= wu‘ <_l_ —s) 2|7 (s 41— l_) 2.
7T o o

Here can be recognised

sin?(7s) ik ik ik ik
R = 3 r-——-s)Jr{——s)r(s+1——|)ri{s+14+ —
s [0} (e} (e} (e}

as ' (z) I () r{-z) ra-z
R— — sin%(7s)
" sinm (% 4+ s)sinm (& —)
R— — sin? (rs)
B (sin (7s) cos (W%) + cos (7s) sin (7‘['%)) (— sin (7s) cos (ﬂ'%) + cos (7s) sin (77%))
R— —sin? (7s)

cos? (mrs) sin? (ﬂ'%) _ sin? (75) cos? (F%) .

(C.27)
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Finally, the transmission coefficientis D =1 — R

cos (ms) sin? ( ’k) sin? (7rs)cos2( &) + sin* (rs)

N cos? (7s) sin ( ’k) — sin? (7s) cos? ( ’k)

_cos (7s) sin® (wi) — sin? (s) [0052 ( i) — 1]

cos? (ms) sinh® (r£) — sin? (7s) cosh? (%)

B sin® () [cos? (ms) + sin (7rs)]

" sinh? (wf—y) — sin? (s) sinh? ( E) + sin? (7s) cosh? (wf—l) (C.28)
B sinh? (w%) B sinh? (ﬂ'é)

~ sinh? (7%) + sin® (s)  sinh? (m5) + cos? (m (s + 1))

sinh? (%)

D =
. 2 k 2(1 _ 8mUy
sinh (w(y) + cos (zm/l h%ﬁ)
f Sng 1 . h :
72 < 1, or, in the opposite case,

sinh? (T(%)

D= . (C.29)
sinh? (74) 4 cos? (%w Sh’;'fjg - 1)
Useful gamma-functions properties
I'(s+1) =sI(s)
™
M=) =77 —
sin (7s) sI" (s)
I'(1l—s5)T (s) =——
sin (7rs)
(C.30)
r o
Tl s sin (7s)
P Gs) P = —
" ssin (7s)

()" =I (s*)

if s € R.
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