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Prologue

Can music be defined? “You are the music while the music lasts”—music is so
defined by T.S. Eliot. Music is one of the oldest entities of human culture, played a
very important role in the evolutionary process. There is no culture which has no
language; there is no culture which has no music; this book intends to explore this
universal nature of music. Tagore in his famous conversation with Einstein says “In
India, the measure of a singer’s freedom is in his own creative personality. He can
sing the composer’s song as his own, if he has the power creatively to assert himself
in his interpretation of the general law of the melody which he is given to interpret”.
The conversation which took place almost a century ago is still very much relevant
in the present context. Still today, most people in the Indian subcontinent see music
as a thing of art and craft, something in diametrically opposite poles to Science. It is
only from the last two decades of the twentieth century that scientists began to
understand the huge potential of systematic research that Indian Classical Music has
to offer in the advancement of cognitive science as well as psychological research.
The aim of any dramatic performance is to emote in the minds of audience a
particular kind of aesthetic experience, which is described as “Rasa”. The concept
of “Rasa” or emotion is said to be the most important and significant contribution
of the Indian mind to aesthetics. The ardor to obtain insights into these complex
musical structures and their cognitive counterparts led to the foundation of this
book. This book tries to seam together these two parallel domains of art and science
with the help of another fascinating concept of the last century—the Chaos. The
Chaos theory is said to be the new link between human and nature; where appar-
ently random, disordered processes are characterized with some inherent order. The
fractal techniques—which are essentially an offshoot of the chaos theory act
essentially as a mathematical microscope delving into the depths of complex
acoustic and EEG signal with such a high resolution that is not achievable by other
methods. With the fractal tools, apparently random chaotic nonlinear signals reveal
themselves in such a simple form in front of the readers. There lies the beauty of the
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technique which is so complicated in technical details, yet yields so simple outputs.
Starting from a unique insight into the modalities of Indian classical music, this

book takes the readers to an idiosyncratic journey where they learn about how the
emotions prevail in human mind even after they have stopped listening to the song
to an objective method for capturing “improvisational” cues in Hindustani Music
(HM). Improvisation, which is one of the forte of HM makes it separate from its
Western counterpart, which mostly relies on written compositions has been dealt
with objectively for the first time in this book. The readers also have novel insights
into the neural mechanisms of a Hindustani classical musician when he is imagining
or performing a raga; whether he is visualizing something or there is something
else. A recent neuro-imaging based fMRI study published in Nature Scientific
Reports says “creativity cannot be fully explained in terms of the activation or
deactivation of a fixed network of brain regions; rather, when creative acts engage
brain areas involved in emotional expression, activity in these regions strongly
influences which parts of the brain’s creativity network are activated, and to what
extent”. This prompted the need of a robust correlation based study to identify
which regions of the brain are involved during a creative act which has been
elaborately dealt with in this book. The book also shows how the simplest of
acoustical stimuli, a tanpura drone has the ability to regulate and change brain state.
Gestalt phenomenon in music is also dealt with in this book, where the question of
nonrecognition of music is addressed with the help of different scaling methods by
clipping certain frequency ranges. HM is known throughout the world because of
its ability to convey emotions (or rasas as it is called in India) to its listeners, and
that the emotions are often ambiguous, i.e., consists of more than one emotions.
This eccentric feature is addressed in this book with an attempt to categorize and
objectify emotional appraisals both from acoustic as well as neuro-scientific per-
spective. Finally, the book signs off with a number of new EEG signal processing
techniques which have the ability to monitor single EEG frequency and has great
potential in feature extraction as well as in the ambitious single neuron monitoring
project. This is the first of its kind study with such a high resolution to look into the
real-time EEG data.

The wide spectra of topics covered in this book will help the readers in better
understanding of the intimate relationship between music and the emotional
experience and its neuro-cognitive significance which in turn can guide to use
proper music as an effective therapeutic agent, which is the ultimate long-term goal
for conducting this kind of research work. Application of derived knowledge from
the work may be utilized in different physiological counseling centers, chronic
physiological ailing persons and in school education.

The authors hope that this compilation of the original research work on the
analysis on musicality and brain through fractal analysis will definitely provide a
platform and a direction for inquisitive students and researchers of music, psy-
chologists, and neuro-scientists to think objectively on the premises. The authors
also feel that this work will stimulate more exhaustive research in different genres
of music for its enrichment.
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Chapter 1
Introduction

Neuroscience can’t tell you what beauty is,
but if you find it beautiful the medial orbito-frontal cortex
is likely to be involved; you can find beauty in anything

—Semir Zeki

1.1 Music and Science

Music is one of the oldest forms of art that has survived the perks of globalization
and evolved in new forms. It has been integrated with the cultural activities of
mankind from time immemorial. Probably because of the integral relationship
between music and culture, it sparked interest among early philosophers in every
civilization and India is no exception. The recorded evidence of musical activities in
India dates back to more than 2000 years. There have been attempts to a sort of
metaphysical rationalization in music in early days followed by attempts, at times,
to formalize music including structures in some domains of it. A definite direction
in the paradigm of music analysis seemed to emerge universally which was mainly
attributed to the perception of pitch. The other cognitive phenomena of attention,
among others, were loudness, timbre and rhythm. Pitch began to be conceived not
as a continuum but a repetitive set of discrete intervals. Notably this discretization
of continuum has striking similarity in terms of numbers, measures and repeata-
bility in the music of completely different origin in different parts of the world. As
the development of music continued, number of intervals grew and ultimately
stabilized in a reasonably small numbers. The big intervals later on began to be
divided into smaller sub-intervals because of the need to understand finer aesthetic
perception. In Indian musical structures, swaras (intervals) and shrutis (microtonal
intervals) emerged some 2000 years back. The ancient period witnessed intense
debate and theorization by different philosophers of music. The basic premise on
which these debates relied is the acute sense of perception simply because of the
absence of appropriate tools for objective measurement of the related matters.
Modern scientific research aims to understand everything about music: it’s basic
structure; it’s biological, emotional and psychological effect on humans and the
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brain; its healing abilities; and its function in the evolutionary process. Why can a
person relate to music without learning it first? Why does music evoke such an
emotional response? Why does some music evoke a strong response in some and
not in others? How did music come to be? With the development of robust scientific
tools for analysis of music, we have seen a great interest among experts in the fields
of neuroscience, psychology, biology, physiology, physics and education who are
working alongside musicians to unravel the mysteries of music. A comprehensive
scientific approach therefore needs to address the physical reality of acoustics and
the mental realities of semiotics. In Indian music, this approach needs to have a
dimension somewhat different from that obtainable for western music as Indian
classical music (ICM) focuses more on melody created using a sequence of notes
while in Western Classical music (WCM) apart from melody, there is stress on
harmony too i.e. different notes are played together instead of in a sequence. Thus,
ICM is mainly monophonic while in WCM the stress lies to a great extent in
polyphonic composition. Datta et al. (2017) in their recent book has discussed a
comprehensive overview of the basics of Hindustani music and the associated
signal analysis and technological development.

To our mind, it is this ultimate reality, where matter and mind play equal roles,
the science of music should and must graze. The formation of a linkage between the
natural processes of progress from sensory perception to concept formation inherent
in human mind is to be included in the scheme of science. It is useful to recollect
here the caution given by Pauli (Schuster 1995) “…. pure logic is fundamentally
incapable of constructing such a linkage. The most satisfactory course, it seems, is
to introduce at this point a postulate of an order …., the relation between sense
perception and Idea remains a congruence of the fact that both the soul and what is
known as perception are subject to an order objectively conceived.” This order is to
be born and this is the real challenge of science in music.

The study of music cognition is drawing an increasing amount of research
interest as there is an increasing understanding among scientists that music is a
universal human trait, which plays crucial roles in everyday life and at different
stages of life. Also, from the perspective of studying the human mind, the cognitive
processing of music simultaneously engages most of the perceptual, cognitive, and
emotional processes. Like language, music is a human universal involving per-
ceptual discrete elements organized into hierarchically structured sequences. Music
can thus provide the study of brain mechanisms, underlying complex sound pro-
cessing, and also can provide novel insights into the functional and neural archi-
tecture of brain functions. The change in the structure and form of music might
bring a change in the neural dynamics which can be studied in detail using the
modern tools of neuroscience. Thus, the study of music cognition in general is
important for studying the structural patterns of music in general as well as to gain
novel insight into the complex neural dynamics.

From a physical point of view, musical signals are approximately periodic in
micro and macro forms. In this approach, musical signals seem to have a deter-
ministic behavior but this is not really the case, as music would then be a deter-
ministic issue of rational human thought (Baroni et al. 1999). On the other hand,
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there is a widespread opinion (in linguistic, aesthetic and cognitive philosophy) that
music is a complex, and multidimensional nonlinear system (Frova 1999).
A number of earlier studies are based on rhythmic and harmonic structure of the
musical notes, while frequency analysis may fail to decipher the real dynamics in
case of polyphonic recordings. A few studies have been done to correlate complex
actions coordinated by people with complex rhythmic musical sequence (Large
2000; Loehr et al. 2011). One such study says (Large 2000) that as people listen to
rhythmic structure of music; a stable multi-periodicity pattern arises psychologi-
cally, which is a manifestation of the temporal structure of the rhythm. Non-linear
dynamical modeling for source clearly indicates the relevance of non-deterministic /
chaotic approaches in understanding the speech/music signals (Hsü and Hsü 1990;
Datta et.al. 2008; Sengupta et.al. 2001, 2010, 2010b; Bigrelle and Iost 2000). In this
context, fractal analysis of the signal which reveals the complex geometry
embedded in signal assumes significance. The Electroencephalography (EEG) on
the other hand is a neuro-scientific bio-sensor which gives plentiful information
about the complex neuronal interactions happening in different locations of the
brain in the form of scalp potentials. The complex EEG signals arising from dif-
ferent lobes of brain has been assessed with a number of methods of which
non-linear techniques have been found to be most appropriate due to the presence
of inherent spikes in EEG data. In this book, we look forward to study mainly
various ways in which music (with special emphasis given on Hindustani Classical
Music) conveys emotions and the associated brain correlates involved in emotion
processing by fractal analysis of both the music signals and EEG signals.

1.2 Music and Emotion: Looking into Historical
Perspective

Music has existed in one way or another for over thirty thousand years.
Archeologists discovered that early Neanderthals were able to create simple flutes.
However, early humans most likely did not have the ability to do much with music
since they were hunters and gatherers. As a result, early humans were probably
much too concerned with making sure that they did not wake up one morning and
discover that the herds of wild game that they had been hunting had moved on. Not
until much later in history did humans begin to connect music with the ability to
heal. Ancient Egyptians thought that their gods gave them music so they could heal
and purify their souls. The ancient Greeks connected music with the power to heal
the body. Yet, music was not explored in greater detail with regard to its healing
abilities until about thirty years ago. Since then, people have dedicated more time
and money into researching the physical effects of music on the mind and body.
Since World War II, the health benefits of music have become more recognized in
mainstream medicine. Today, no human culture is known that does not have music.
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“Music medicine” has only begun to receive serious scientific consideration, with
rigorous medical research beginning to build up in the late 1980s.

The ability of music to activate “pleasure centers” (Blood and Zatorre 2001) and
induce a wide range of emotions has been well established in the last decade or so
(Juslin and Sloboda 2001; Scherer 2005). Listening to music and appreciating it is a
complex process that involves memory, learning and emotions, Music is remark-
able for its ability to manipulate emotions in listeners. However, the exact way in
which the brain processes music is still a mystery. What are the specific features of
music which induce emotional responses, and how do they induce? Can certain
specific features of music only trigger emotional responses? If so, what are they?
Till date there is no single unified theory of music and emotion to which everyone
agrees. A number of theories have been proposed to address such questions and
include influential discussions by Aristotle, Charles Darwin, Suzanne Langer,
Leonard Meyer, Peter Kivy, and many others but the fundamental question still
remains: Do music convey emotional arousal directly or are there certain cognitive
processes and motor neurons involved which mediate the link?

A wide range of human response based psychological studies were conducted
over the last century to know the exact modality in which emotional appraisal takes
place due to various features of music. These studies revealed that specific features
of music such as intensity (loudness), tempo, dissonance, and pitch, are strongly
associated with emotional expressions. A small change in any of these features
results in considerable change of emotional expressions (Ilie and Thompson 2006)
and affective experience (Husain et al. 2002; Ilie and Thompson 2011).

In Hindustani Music (HM), the study of emotions has gained momentum only
from the last decade of 20th century, though HM is known to convey a wide range
of emotional experiences as briefed in Bharata’ Natyashastra (Martinez 2001).
A number of works tried to harvest this immense potential by studying objectively
the emotional experiences attributed to the different ragas of Hindustani classical
music (Balkwill and Thompson 1999; Balkwill et al. 2004; Wieczorkowska et al.
2010; Sengupta et al. 2012; Mathur et al. 2015), but all the studies deal with the
psychological aspects of music induced emotion. We will first discuss a number of
studies in the psychological domain which deal with the emotional appraisal of
music and then we continue on to how the same can be done from a neuro-scientific
approach.

1.3 Psychological Analysis of Emotion

The psychological studies of music induced emotions mostly believe that affective
experience can be explained on the basis of two continuous dimensions—arousal
and valence (Russell 1999, 2003). These dimensions of the circumplex model
supposed to be orthogonal, where in any emotion can be characterized by its
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coordinates in a two-dimensional space. The 2-D emotion model has been used
extensively in a number of earlier studies (for e.g., Krumhansl 1997; Schmidt and
Trainor 2001; Husain et al. 2002; Kreutz et al. 2008; Vieillard et al. 2008). In one
study, multidimensional scaling was used to examine the underlying structure of
emotional responses to music (Bigand et al. 2005). Listeners were asked to group
pieces on the basis of their similarity in emotional meaning. Dimensional models
assume that positive and negative valence lie on opposite ends of a bipolar
dimension (Russell 1991; Fontaine et al. 2007); hence it was assumed that positive
and negative emotions are mutually exclusive and cannot be felt simultaneously
(Russell and Carroll 1999). But the beauty of any music, especially Hindustani
Music lies in its ambiguous nature i.e. the ability to convey multiple emotions
which has also been supported by a few studies (Hunter et al. 2008; Larsen et al.
2009). In both of these experiments, listeners recorded higher levels of simulta-
neous happy and sad feelings when the tempo and mode cues were mixed compared
to when they were consistent. Another interesting finding was that sad-sounding
music elicited higher levels of mixed feelings compared to happy-sounding music.

There are a number of methods employed by the researchers to assess the
emotional rating from the listeners. Mostly, listeners are asked to rate the emotion to
the extent they feel the or perceive the effect of a particular emotion (e.g., Gagnon
and Peretz 2003; Hunter et al. 2008). Another method is to present listeners with a
list of possible emotions and ask them to indicate which one (or ones) they hear
(e.g., Gundlach 1935). A third approach is to require participants to rate pieces on a
number of dimensions (often arousal and valence; e.g., Schmidt and Trainor 2001;
Vieillard et al. 2008). Though a number of studies in this domain, there is still a lot
of debate regarding what emotions they measure, felt or perceived emotions.
A number of studies report that perceived and felt musical emotions are associated
(Evans and Schubert 2008; Hunter et al. 2010), i.e. when listeners feel sad after
listening to sad music (Garrido and Schubert 2013, 2015). In general, however,
emotions are perceived more strongly than experienced (Evans and Schubert 2008;
Gabrielsson and Lindström 2010; Hunter et al. 2010). For example, a recent study
report that participants feel happy while listening to sad music (Garrido and
Schubert 2013), there is also a theory of time dilation while listening to pleasant
music (Ghosh et al. 2016) or negative emotions when listening to pieces they like
(and presumably find aesthetically pleasing; Schubert 2013).

But, there is a dearth in literature when it comes to the use of robust scientific
methods being applied for categorization and quantification of emotions perceived
from music. In the next section, we will explain in brief about the details about the
advent of chaos theory and its implications in assessment of musical emotions using
fractal techniques.
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1.4 Chaos Theory: Small Fluctuations Large Outcome

Chaos is said to be the science of surprises, of the nonlinear and the unpredictable. It
teaches us to expect the unexpected. While most traditional science deals with sup-
posedly predictable phenomena like gravity, electricity, or chemical reactions, Chaos
Theory deals with nonlinear things of the Universe, that are effectively impossible to
predict or control, like turbulence, weather, the stock market, our brain states, internet
traffic, seismic data, so on and so forth. The chaos theory can be best explained on the
basis of “Butterfly Effect” developed by Edward Lorenz during his tenure as meteo-
rologist at the Massachusetts Institute of Technology. The main essence of this theory
was that small perturbations in the initial state lead to large fluctuations in the future
which were beautifully substantiated with the help of following statement: “e.g. a
butterfly flapping its wings in South America can affect the weather in Central Park”.
Unpredictability also plays an important role in defining the state of a complex system
as we are never aware fully of the initial state of the system. These phenomena are often
described by fractal mathematics, which captures the infinite complexity of nature.
Fractals are said to be human’s immediate link with nature. Benoit Mandelbrot
developed the field of fractal geometry (Mandelbrot 1977) which played a key role in
the emergence of chaos theory. Chaos is not simply disorder but explores the transitions
between order and disorder, which often occur in surprising ways. Many natural objects
exhibit fractal properties, including landscapes, clouds, trees, organs, rivers etc., and
many of the systems in which we live exhibit complex, chaotic behavior. Recognizing
the chaotic, fractal nature of our world can give us new insight, power, and wisdom. In
his pioneer work Poincaré (1914, 2013) says: “If we knew exactly the law of nature and
the situation of the universe at the initial moment, we could predict exactly the situation
of that same universe at a succeeding moment. But even if it were the case that the
natural laws had no longer any secret for us, we could still only know the initial
situation approximately. If it enabled us to predict the succeeding situation with the
same approximation, that is all we require, and we should say that the phenomenon had
been predicted, that it is governed by laws. But it is not always so: it may happen that
small differences in the initial conditions produce very great ones in the final phe-
nomena. A small error in the former will produce an enormous error in the latter.
Prediction becomes impossible, and we have the fortuitous phenomenon”. Thus, in
case of deterministic chaos, measurements made on the state of a system at a given time
may not allow us to predict the future situation, despite the fact that the governing
equations are exactly known. By definition, these equations are named chaotic and that
they predict a deterministic chaos. But with the advent of mathematics and technology,
it has now become possible to perform numerical calculations of the time evolution of
the properties of systems sensitive to initial conditions. It is also known that deter-
ministic chaos is always associated with nonlinear systems; and nonlinearity is a
necessary condition for chaos but not a sufficient one. In this regard, the use of fractal
and multifractal techniques to assess a number of nonlinear physiological and bio-
logical systems assumes great importance. This techniques form the main forte of this
book and has been discussed in the next section elaborately.
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1.5 Fractals and Multifractals: A New Dialogue Between
Human and Nature

A fractal is a rough or fragmented geometrical object that can be subdivided in
parts, each of which is (at least approximately) a reduced-size copy of the whole.
Fractals are generally self-similar and independent of scale (fractal dimension)—the
degree of roughness or brokenness or irregularity in an object. They are created by
repeating a simple process over and over in an ongoing feedback
loop. A fundamental characteristic of fractal objects is that their measured metric
properties, such as length or area, are a function of the scale of measurement.
A classical example to illustrate this property is the ‘‘length” of a coastline
(Mandelbrot 1967). When measured at a given spatial scale d, the total length of a
crooked coastline L(d) is estimated as a set of N straight line segments of length d.
Since the small intricate details of the coastline are not measured in lower resolu-
tion, the length L(d) of the coastline keeps on increasing with the increase of
measurement scale of ‘d’.

Figure 1.1 objectively gives an assessment about how the length of the British
coastline changes when the scale of measurement is varied and made as small as
possible.

As one looks closer we observe that the large triangle is composed of three
smaller triangles half the size (side length) of the original, which in turn are
composed of three smaller triangles, and so on, and so on. On all scales the
Sierpenski triangle is an exactly self-similar object. In this regard, a fractal tool acts
as a mathematical microscope zooming its way into the intricate complex details of
an otherwise random object/signal/image (Fig. 1.2).

Fig. 1.1 The coastline of
Britain in different scales
Source http://www.duke.edu/
*mjd/chaos/chaos.html
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Fractal geometry allows bounded curves of infinite length, and closed surfaces
with infinite area. It even allows curves with positive volume, and arbitrarily large
groups of shapes with exactly the same boundary. This is exactly how our lungs
manage to maximize their surface area. Our lungs cram the area of a tennis court
into the area of just a few tennis balls. The kidneys, the liver, the pancreas are all
organs constructed along self-similar fractal rules (Figs. 1.3, 1.4, 1.5, and 1.6).

On the other hand, a multifractal is a set of intertwined fractals. Self-similarity of
multifractals is scale dependent (spectrum of dimensions). It is well-established
experience that naturally evolving geometries and phenomena are rarely charac-
terized by a single scaling ratio; different parts of a system may be scaling differ-
ently. That is, the clustering pattern is not uniform over the whole system. Such a
system is better characterized as ‘multifractal’ (Lopes and Bertouni 2009).
A multifractal can be loosely thought of as an interwoven set constructed from
sub-sets with different local fractal dimensions. Real world systems are mostly
multifractal in nature. Nowadays, fractal geometry is used to describe many

Fig. 1.2 The Sierpenski
triangle: A common example
of fractal image Source
https://en.wikipedia.org/wiki/
Sierpinski_triangle

Fig. 1.3 Influenza Virus
Source www.sciencephoto.
com
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Fig. 1.4 Swine Flu Virus
Source www.sciencephoto.
com

Fig. 1.5 Bacteria Source
www.sciencephoto.com

Fig. 1.6 Blood vessels
Source www.sciencephoto.
com

1.5 Fractals and Multifractals: A New Dialogue Between Human and Nature 9



complex phenomena. Fractals help us understand turbulence, not just how it arises,
but the motion of the turbulence itself. Blood vessels can also be considered as
fractals, as they can be divided down into smaller and smaller sections. They
perform what has been described as “dimensional magic”, squeezing a large surface
area into a limited volume. So are earthquakes. The distribution of earthquakes was
known to fit a mathematical pattern. This pattern was picked up by geologists and
found to be fractal. The fractal dimensions of a metal’s surface also tell us a lot
about its strength. Since it was proposed MFDFA has been applied in diverse fields
starting from turbulence analysis (Telesca and Lovallo 2011), traffic movements
(Shang et al. 2008), faults and joint systems (Lin and Chen 2013), geological time
series (Hajian and Movahed 2010), blood flow oscillations (Liao and Jan 2011) to
stock exchange (Yuan et al. 2009; Gu et al. 2010), words in literature (Marcussen
2014), radar pulses (Hu et al. 2006) and even for the prognosis of diseases (Dutta
et al. 2013; Ghosh et al. 2014). In the domain of music induced emotion, a number
of recent works by the authors (Banerjee et al. 2016, 2017; Sanyal et al. 2016a,
2016b; Maity et al. 2015) deal with the discrimination of neural state under the
influence of two different sets of emotional music. A number of chapters in this
book also deals with these features. The next section of this book gives an intro-
duction to how different musical clips affect our brain states and how, emotions can
be quantified with the help of robust fractal techniques.

1.6 How Music Affects Our Brain: From a Neuro-Physical
Approach to Fractal Analysis Techniques

Music engages much of the brain, and coordinates a wide range of processing
mechanisms. This naturally invites consideration of how music cognition might
relate to other complex cognitive abilities. The tremendous ability that music has to
affect and manipulate emotions and the brain is undeniable, and yet largely inex-
plicable. Very little serious research had gone into the mechanism behind music’s
ability to physically influence the brain and even now the knowledge about the
neurological effects of music is scarce.

The human brain is said to be the complex organ in the Universe and what’s
more fascinating is that it is organized by chaos. The organizational geometry of
human cortical grey matter was the subject of study for Zhong (2008). The analysis
on all spatial sizes shows fractality up to the measurement of 2.5 mm depending on
cortex thickness. Also, the folding of the brain shows fractality for the largest
spatial scales. As a whole, it can be said that fractality exists in both area and
volume of the brain. Thus, human brain functional networks demonstrate a fractal
small-world architecture which supports critical dynamics and task-related spatial
reconfiguration while preserving global topological parameters. It involves billions
of interacting physiological and chemical processes that give rise to experimentally
observed neuro-electrical activity, which is called an electroencephalogram (EEG).
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Music can be regarded as input to the brain system which influences the human
mentality along with time. Since music cognition has many emotional aspects, it is
expected that EEG recorded during music listening may reflect the electrical
activities of brain regions related to those emotional aspects. The results might
reflect the level of consciousness and the brain’s activated area during music lis-
tening. It is anticipated that this approach will provide a new perspective on cog-
nitive musicology.

Music is widely accepted to produce changes in affective (emotional) states in
the listener. However, the exact nature of the emotional response to music is an
open question and it is not immediately clear that induced emotional responses to
music would have the same neural correlates as those observed in response to
emotions induced by other modalities. Although there is an emerging picture of the
relationship between induced emotions and brain activity, there is a need for further
refinement and exploration of neural correlates of emotional responses induced by
music. Cognitive musicology was envisaged by Seifert (1993) and Leman (1994) to
be composed from diverse disciplines such as brain research and artificial intelli-
gence striving for a more scientific understanding of the phenomenon of music. In
recent years, computational neuroscience has attracted great aspirations, exempli-
fied by the silicon retina (Chow et al. 2004) and the ambitious Blue Brain Project
that aims at revolutionizing computers by replacing their microcircuits by models of
neocortical columns (Markram 2006). Research activity in auditory neuroscience,
applied to music in particular, is catching up with the scientific advances in vision
research. Shamma et al. (2001) proposed that the same neural processing takes
place for the visual as well as for the auditory domain. Other researchers suggested
biologically inspired models specific to the auditory domain; e.g., Smith and
Lewicki (2006) decomposed musical signals into gammatone functions that
resemble the impulse response of the basilar membrane measured in cats.

Brain imaging grants access to music-related brain processes directly rather than
circuitously via psychological experiments and verbal feedback by the subjects.
A lot of experimental work in auditory neuroscience has been performed, in par-
ticular exploring the innate components of music abilities. In developmental studies
of music, magnetoencephalograms have been used to study fetal music perception
(Eswaran et al. 2002). Mismatch negativity in newborns has shown how babies
discriminate pitch, timbre, and rhythm (Stefanics et al. 2007). A summary of
electroencephalogram research in music leads Koelsch and Siebel (2005) to a
physiologically inspired model composed of modules, e.g., for gestalt formation
and structure building where the special features of the model are the feedback
connections enabling structural reanalysis and repair. EEG has been used in cog-
nitive neuroscience to investigate the regulation and processing of emotion for the
past decades. Linear signal analysis methods such as Power Spectral Density
(PSD) of alpha, theta and gamma EEG frequency rhythms have been used as an
indicator to assess musical emotions (Schmidt and Trainor 2001). Asymmetry in
alpha or theta power among the different regions of brain has been used in a number
of studies as an emotion identification algorithm (Lin et al. 2010; Sammler et al.
2007; Schimdt and Hanslmayr 2009). Though the frontal lobe has been proven to
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the most vital when it comes to the processing of musical emotions in healthy as
well as depressed individuals, there are other lobes also which has been identified to
be associated with emotional responses. In (Sarlo et al. 2005) it was shown that the
alpha-power changes at right parietal lobe, while the theta-power changes at right
parietal lobe (Aftansas et al. 2004), pleasant music produces an increase in the
frontal midline (Fm) theta power (Sammler et al. 2007), while degrees of the
gamma band synchrony over distributed cortical areas were found to be signifi-
cantly higher in musicians than non musicians (Bhattacharya and Petsche 2001).
Human being interacts with music both consciously and unconsciously at behav-
ioral, emotional and physiological level. Listening to music and appreciating it is a
complex process that involves memory, learning and emotions. To this end,
Bhattacharya and Petsche (2005) have presented a phase synchrony analysis of
EEG in five standard frequency bands: delta (< 4 Hz), theta (4–8 Hz), alpha (8–
13 Hz), beta (13–30 Hz), and gamma (> 30 Hz). The analysis was done using
indices like coherence and correlation in two groups of musicians and non musi-
cians. They observed a higher degree of gamma band synchrony in musicians.
Frequency distribution analysis and the independent component analysis
(ICA) were used to analyze the EEG responses of subjects for different musical
stimuli. It was shown that some of these EEG features were unique for different
musical signal stimuli (Bhattacharya and Petsche 2001). Lin et al. (2014) used
independent component analysis (ICA) to systematically assess spatio-spectral EEG
dynamics associated with the changes of musical mode and tempo. The results
showed that music with major mode augmented delta-band activity over the right
sensorimotor cortex, suppressed theta activity over the superior parietal cortex, and
moderately suppressed beta activity over the medial frontal cortex, compared to
minor-mode music, whereas fast-tempo music engaged significant alpha suppres-
sion over the right sensorimotor cortex.

The scalp EEG arises from the interactions of a large number of neurons whose
interactions generally nonlinear and thus they can generate fluctuations that are not
best described by linear decomposition. On the other hand, the classical nonlinear
dynamics method such as correlation dimension and Lyapunov exponents are very
sensitive to noise and require the stationary condition, while EEG signals often are
highly non-stationary. But, the use of non linear parameters to determine the music
induced emotional states from EEG data is very scarce in literature. Natarajan et al.
(2004) used nonlinear parameters like Correlation Dimension (CD), Largest
Lyapunov Exponent (LLE), Hurst Exponent (H) and Approximate Entropy (ApEn)
are evaluated from the EEG signals under different mental states. The results
obtained show that EEG to become less complex relative to the normal state with a
confidence level of more than 85% due to stimulation. It is found that the measures
are significantly lower when the subjects are under sound or reflexologic stimula-
tion as compared to the normal state. The dimension increases with the degree of
the cognitive activity. This suggests that when the subjects are under sound or
reflexologic stimuli, the number of parallel functional processes active in the brain
is less and the brain goes to a more relaxed state. Gao et.al. (2007) was the first to
apply the scaling technique called Detrended Fluctuation Analysis (DFA) on EEG
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signals to assess the emotional intensity induced by different musical clips. In this
study two scaling exponents’ b1 and b2 was obtained corresponding to high and
low alpha band. It was concluded that emotional intensity was inversely propor-
tional to b1 and directly proportional to b2.

1.7 Study of Effects of Music on Brain:
An Indian Perspective

Music in India has great potential in this study because Indian music is melodic and
has somewhat different pitch perception mechanisms. Western classical music
which is based on harmonic relation (Martinez 2001) between notes versus the
melodic mode (raga) structures in the Hindustani classical music system
(HCM) within the rhythmic cycle music may demand qualitatively different cog-
nitive engagement. The analysis of EEG data to determine the relation between the
brain state condition in the presence of HCM and its absence would therefore be an
interesting study. How rhythm, pitch, loudness etc. interrelate to influence our
appreciation of the emotional content of music might be another important area of
study. This might decipher a technique to monitor the course of activation in the
time domain in a three-dimensional state space, revealing patterns of global
dynamical states of the brain. It might also be interesting to see whether the arousal
activities remain after removal of music stimuli.

Despite the world’s diversity of musical cultures, the majority of research in
cognitive psychology and the cognitive neuroscience of music have been conducted
on subjects and stimuli from Western music cultures. From the standpoint of
cognitive neuroscience, identification of fundamental cognitive and neurological
processes associated with music requires ascertaining that such processes are
demonstrated by listeners from various cultural backgrounds and music across
cultural traditions. It is unlikely that individuals from different cultural backgrounds
employ different cognitive systems in the processing of musical information. It is
more likely that different systems of music make different cognitive demands.

Western classical music which is based on harmonic relation between notes
versus the melodic mode (raga) structures in the Indian classical music system
(ICM) within the rhythmic cycle music may demand qualitatively different cog-
nitive engagement. To elaborate this point further, ICM music is monophonic or
quasi monophonic. Unlike the western classical system, there is no special notation
system for music. Instead letters from the colloquial languages are used to write
music. For instance notations of the ICM such as ‘Sa, Re, Ga’ may be written in
Hindi, Kannada or Tamil where as the Western classical system music includes a
unique visuo-spatial representation. It emphasizes on reading the exact position of
symbol indicating a whole tone or a semitone on the treble or a bass clef. The scale
systems (Ragas) are quite elaborate and complex provides a strict framework within
which the artist is expected bring out maximum creativity. Although specific
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emotion (rasa) is associated with particular raga, it is well known that the same
raga may evoke more than one emotion. Well trained artists are able to highlight a
particular rasa by altering the structures of musical presentations such as stressing
on specific notes, accents, slurs, gamakas or taans varying in tempo etc. Musicians
as well as ardent connoisseurs of music would agree that every single note has the
ability to convey an emotion. Many experience a ‘chill’ or ‘shiver down the spine’
when a musician touches certain note or sustains of a note. The meter system is
again quite complex. Indian rhythm and metre system is one of the most complex
systems compared to other meters used in world music. Film music, which has been
influenced by music from all over the world, is much more popular in the current
times. Therefore implicit of knowledge of the Western chord system is perhaps
present in our population. ICM is chiefly an oral tradition with importance given on
memorizing compositions and raga structures and differences exist in the methods
of training even within the two traditional systems of ICM. Semantics of Indian
music would differ from that of the western classical music system or other forms of
musical system. More often than not music in Indian culture is intimately associated
with religious and spiritual practices. Hypothetically these differences in the
musical systems perhaps makes qualitatively different demand on the cognitive
functions involved and thereby qualitatively varying degree of involvement of the
specialized neural networks implicated in musical processing. Research endeavours
are yet to be carried out in this direction.

In India research in the area of Music Cognition is still in its infancy. The effect
of Indian classical music and rock music on brain activity (EEG) was studied using
Detrended fluctuation analysis (DFA) algorithm, and Multi-scale entropy
(MSE) method (Karthick et al. 2006). This study concluded that the entropy were
high for both the music and the complexity of the EEG increases when the brain
processes music. Another work in the linear paradigm (Geethanjali et al. 2012)
analyses the effect of music (carnatic, hard rock and jazz) on brain activity during
mental work load using electroencephalography (EEG). EEG signals were acquired
while listening to music at three experimental condition (rest, music without mental
task and music with mental task). The findings show that while listening to jazz
music, the alpha and theta powers were significantly (p < 0.05) high for rest as
compared to music with and without mental task in Cz. While listening to Carnatic
music, the beta power was significantly (p < 0.05) high for with mental task as
compared to rest and music without mental task at Cz and Fz location. It has been
concluded from the study that attention based activities are enhanced while lis-
tening to jazz and Carnatic as compared to Hard rock during mental task. Chen
et al. (2008) monitored the brain wave variation by changing the music type (techno
and classical) and the results showed when the music was switched from classical to
techno, there was a significant plunge of alpha band and from techno music to
classical there was an increase in beta activity.

The presence of multifractality in tanpura, sitar, sarod and flute signals is studied
through an examination of relationship between q and Dq and the functional
relationship between Dqs (Datta et al. 2008; Sengupta et al. 2005, 2010a, b).
Braeunig et al. (2012) describes a new conceptual framework of using tanpura
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drone for auditory stimulation in EEG. In a laboratory setting spontaneous brain
electrical activity was observed during Tanpura drone stimulation and periods of
silence. The brain-electrical response of the subject is analyzed with global
descriptors, a way to monitor the course of activation in the time domain in a
three-dimensional state space, revealing patterns of global dynamical states of the
brain. Fractal technique has been applied to assess change of brain state when
subjected to audio stimuli in the form of tanpura drone (Maity et al. 2015), studying
hysteresis effects (Banerjee et al. 2016) and in a number of other studies. The EEG
time series has been used to perform this study and the corresponding non-linear
waveform of EEG was analyzed with the widely used DFA/MFDFA techniques.
The following chapters give an elaborate account of all these studies performed at
Sir C.V. Raman Centre for Physics and Music, Jadavpur University in the last
decade or so. In this context, it is also worth mentioning that some excellent and
rigorous research work in the area of music signal analysis was done at the ITC
Sangeet Research Academy during the last three decades (Banerjee et al. 1983;
Sengupta et al. 1983, 1989, 1995, 2000, 2001, 2005, 2007, 2010; Sengupta 1990;
Banerjee and Nag 1991; Datta et al. 1997, 1998, 2006, 2007; Chakraborty et al.
2009).

The chapters in the book are intended to look objectively into various questions
perturbing serious researchers of music and non linearity. It primarily contains the
results of the exhaustive research done in the area at Sir C V Raman Centre for
Physics and Music, Jadavpur University, India. The book arises out of the need to
consolidate this scattered knowledge in a structured and comprehensive manner.
The authors also feel that there is a need for awareness about the immense potential
of combining experimental and experiential approach in this kind of unique
research in the subcontinent. While consolidating these scattered results, each of the
experiments was thoroughly and critically examined and whenever necessary the
experiments were redone including review of the data. We hope that the book may
be useful to musicologists in general and those interested in the area of music
cognition and music therapy. This may also be of interest to people who want to
know about different application of non linear dynamics. It is also hoped that the
book will go a long way in narrowing the gap between musicians and scientists.
The book may give the scientific mind a new field to play with.
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Chapter 2
Non Linear Techniques for Studying
Complex Systems

Clouds are not spheres, mountains are not cones,
coastlines are not circles,
and bark is not smooth,
nor does lightning travel in a straight line

—Benoit Mandelbrot

2.1 Introduction

In the words of Mendelbrot, a fractal is defined as a “A rough or fragmented
geometric shape that can be subdivided in parts, each of which is (at least
approximately) a reduced/size copy of the whole.” In the last two or three decades
much research has gone into the research of chaos theory which mainly deals with
the dynamics of different complex systems that are found in nature. Chaos can be
found everywhere, from nature’s most intimate considerations to art of any kind.
Chaos theory is the study of how systems that follow simple, straightforward,
deterministic laws can exhibit very complicated and seemingly random long term
behavior. With the advent of chaos theory we now have a number of robust tools
which can deal with a variety of complex signals like DNA sequence, earthquake,
turbulent water flows, weather changes, financial time series, faults in bone and
most importantly human bio-signals. The use of fractal dimension has opened a
whole new plethora of studies dealing with complex dynamics of these signals. This
chapter is essentially a detailed description of the different algorithms used in
various sections of this book. We start off with conventional Fourier decomposition
methods which were used to compare with the non-linear methods and then con-
tinue with the various non-linear methods which have been used for assessment of
various EEG and music signal data.

Most frequently used techniques of EEG analysis such as Fourier decomposition
are essentially linear, but the human brain is the most complex nonlinear system.
The scalp EEG arises from a large number of neurons, whose interactions with the
neighboring neurons as well as with remote neurons are ought to be nonlinear and
thus they can generate fluctuations that are not best described by linear
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decomposition. Hence, it is important to analyze these signals with the help of
techniques which are robust against non-stationarities inherent in these signals as
well as the spikes present. Classical methods of signal analysis work well mostly on
stationary signals, so we need a new solution—new methods. Non-linear dynamical
analysis has emerged as a novel method for the study of complex systems in the
past few decades. The non-linear analysis method is effectively applied to elec-
troencephalogram (EEG) data to study the dynamics of the complex underlying
behavior. The growth of this method as a tool for mental health evaluation mainly
rests on the non-invasive nature of EEG. The approach is based on the principles of
non-linear dynamics and deterministic chaos that involves the characterization of
the system attractors with its invariant parameters.

For a neuronal network such as the brain, nonlinearity is introduced even on the
cellular level, since the dynamical behavior of individual neurons is governed by
threshold and saturation phenomena. Moreover, the hypothesis of an entirely
stochastic brain can be rejected due to its ability to perform sophisticated cognitive
tasks. For these reasons, the electroencephalogram (EEG) appears to be an
appropriate area for nonlinear time series analysis techniques, the practical spin-off
from the theory of deterministic chaos.

Nonlinear dynamics (more precisely in this case—chaos theory) provides many
new ways of analyzing signals, such as fractal methods. Some of these methods
determine the scaling exponent of the signal which indicates the presence or
absence of fractal properties (self-similarity). The FD of a waveform represents a
powerful tool for transient detection. This feature has been used in the analysis of
ECG and EEG to identify and distinguish specific states of physiological function.
The fractal tool thus can essentially be compared with a mathematical microscope
zooming its way into the inherent complex patterns of the signal and deducing a
complex scaling exponent from the apparent random pattern. Many robust algo-
rithms are available to determine the FD of the waveform. There are different
methodological approaches and their respective statistical parameters to capture
fractality namely Correlation dimension, Lyapunov exponent, Box counting
method etc. These are very sensitive to noise and require the stationary condition
while EEG signals are highly non stationary. For this reasons, we use a nonlinear
method named Detrended Fluctuation Analysis (DFA) followed by Multifractal
Detrended Fluctuation Analysis (MFDFA) which has the ability to capture scale
varying nature of different naturally occurring time-series signals. To further elu-
cidate how the internal dynamics of one signal affects the other, or in other words
what is the degree of cross-correlation among the two, we take the help of
Multifractal Detrended Cross Correlation analysis (MFDXA) which gives the
cross-correlation coefficient as an output. Other unique and new methods used for
feature extraction from EEG signals like neural jitter/neural shimmer and pitch
extraction have also been discussed in detail in this chapter.

Music signals are far more complex in their dynamics as compared to the EEG
signals due to the superposition of a large number of frequency components and
hence their treatment with conventional power spectrum techniques is not justifi-
able. The MFDFA technique is much more accurate than the conventional DFA
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technique especially in case of music signals because of the fact that there are
segments with extremely large variation as well as segments with very small
variation (i.e. they are multifractals) therefore, the normal distribution considering
second order RMS variation cannot be applied and all the q-order moments need to
be considered. This method is very useful in the analysis of various non-stationary
time series and it also gives information regarding the multifractal scaling beha-
viour of non-stationary signals. The music signals were initially processed with
music analysis software Wavesurfer (Sjölander and Beskow 2000) and Cool Edit
(Johnston 1999) before being used for listening test and EEG data acquisition.

The raw EEG signal is generally contaminated by various types of external
artifacts such as eye blinks, muscular movement etc. Eye blinks and eye movements
are characterized by frequency of less than 4 Hz and high amplitude. So, it is
essential to get an EEG data which are free from these artifacts, which may induce
considerable error in the final results. We propose a novel data-driven noise
removal technique called Empirical Mode Decomposition (EMD) which helps in
generation of noise/artifact-free EEG data in a few steps.

The Wavelet Transform Technique (WT) have also been utilized as a superior
alternative to conventional Fourier Transform (FT) technique which decomposes
the complete EEG signal into its five characteristic frequency bands viz. Delta (d):
0–4 Hz (2) Theta (h): 4–8 Hz (3) Alpha (a) 8–13 Hz (4) Beta (b): 13–30 Hz
(5) Gamma (c): 30–50 Hz. As most of the previous works in the domain of EEG
signal processing uses the spectral power from these bands as a feature for dis-
tinguishing one brain state from another, we felt the need to compare the results
obtained from non-linear analysis of these very spectral bands. Hence the WT
technique has been applied in a number of studies elaborated later in this book. In
the next sections, we present algorithms of the various techniques utilized later in
this book, some of which have been used widely while some are entirely new based
on our research in this subject. Firstly, the novel EMD technique utilized for
removing the artifacts from raw EEG signal.

2.2 Empirical Mode Decomposition (EMD)

EMD is a decomposition method for non-stationary and nonlinear signals (Huang
et al. 1998). The EMD technique decomposes a signal into a number of intrinsic
mode functions (IMFs) that represent fast to slow oscillations. An IMF is a function
that satisfies two conditions:

(1) the number of extrema and the number of zero crossings must either be equal
or differ by at most one; and (2) at any point, the mean value of the envelope
defined by the local maxima and the envelope defined by the local minima is zero.
To obtain an IMF from the original signal x, a sifting process is performed (Huang
et al. 1998) as follows:

First, all extrema of the original signal x need to be identified. All local maxi-
mum points are connected by a cubic spline line to form the upper envelope eu. All
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local minima points are connected likewise to form the lower envelope el. The mean
of eu and el, a1, is calculated as:

a1 ¼ eu þ elð Þ
2

ð2:1Þ

The difference between the original signal and the mean is defined as the first
component h1:

h1 ¼ x� a1 ð2:2Þ

In the next sifting process, h1 is treated as the signal, and the mean a11 of its local
maxima and local minima is found. Thus, we have:

h11 ¼ h1 � a11 ð2:3Þ

Subsequently, we can repeat this sifting procedure k times until h1k is an IMF,
with:

h1k ¼ h1ðk�1Þ � a1k ð2:4Þ

Therefore, the first IMF component derived from the original signal is desig-
nated as:

c1 ¼ h1k ð2:5Þ

The sifting process has been stopped when an IMF has been established by
limiting the size of the standard deviation (SD), calculated from the two consecutive
sifting sequences as below:

SD ¼
XT
t¼0

½h1ðk�1ÞðtÞ � h1kðtÞ�2
h21ðk�1ÞðtÞ

ð2:6Þ

A typical value for SD can be set between 0.2 and 0.3 (Huang et al. 1998). In our
case the value was set to 0.25. To extract the 2nd IMF component, we remove c1
from the original signal x:

r1 ¼ x� c1 ð2:7Þ

The residual r1 is treated as a new signal, and the same sifting process is applied
to obtain the 2nd IMF component c2 and the residual:

r2 ¼ r1 � c2 ð2:8Þ
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This procedure is repeated on the subsequent residuals rj’s, until the final
residual rJ no longer contains any oscillation information,

rj ¼ rj�1 � cj ð2:9Þ

By summing up Eqs. (2.7)–(2.9), we can obtain:

x ¼
XJ
j¼0

cj þ rj: ð2:10Þ

Thus, original signal x is decomposed into J empirical modes cj’s and a residue rJ.
Since, the artifacts lies in the low frequency regions (<3.5 Hz) (Bizopoulos et al.

2013; Jung and Saikiran 2016), the IMFs that appear in this band are rejected. Thus,
the filtered signal is the sum of the remaining IMFs and more specifically, only the
first few IMFs including the residue were kept (Bizopoulos et al. 2013). We have
obtained noise free EEG data for all the electrodes using the EMD technique and
used this data for further analysis and classification of acoustic stimuli induced EEG
features.

Figure 2.1a–k shows a representative figure of the F3 electrode in 10 s duration
which was subjected to EMD technique and the noise-free EEG data. The sifting
process was continued until the final residue is a constant, a monotonic function, i.e.
a function with only one maxima or minima from which no more IMF’s can be
derived. We have set the value of SD to be 0.25 after which the sifting process has
been stopped.

The noise-free signal obtained after the removal of muscular and blink artifacts
has been used as the input for the wavelet transformation technique (Fig. 2.2).

2.3 Wavelet Transform

Wavelet transform forms a general mathematical tool for signal processing with
many applications in EEG data analysis (Selesnick et al. 2005; Dimoulas et al.
2007; Hazarika et al. 1997). Its basic use includes time-scale signal analysis and
decomposition of EEG signal. We have used WT technique to decompose the noise
cleaned EEG signal obtained from the previous step into various frequency bands
i.e. alpha (9–13 Hz), delta (1–3 Hz), theta (4–8 Hz), beta (14–30 Hz). The DWT
(Akin et al. 2001) analyzes the signal at different frequency bands with different
resolutions by decomposing the signal into a coarse approximation and obtains
detailed information. DWT generally employs two sets of functions, called the
scaling functions and wavelet functions, associated with low pass and high pass
filters, respectively. The decomposition of the noise free signal into different fre-
quency bands is done by successive high pass and low pass filtering of the time
domain signal. The original signal x[n] is first passed through a half band high pass
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(a): Raw EEG Signal (b): IMF 1

(c): IMF 2 (d): IMF 3

(g): IMF 6 (h): IMF 17 

(e): IMF 4 (f ): IMF 5

Fig. 2.1 Empirical Mode decomposition of a 10 s ‘with drone’ EEG signal of F3 electrode
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(k): Residue 

(i): IMF 8 (j): IMF 9 

Fig. 2.1 (continued)

Fig. 2.2 Raw EEG signal and Artifact free EEG signal of 10 s
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filter g[n] and a low pass filter h[n]. This constitutes one level of decomposition and
can mathematically be expressed as follows:

yhigh k½ � ¼
X

x n½ �:g 2k � n½ � ð2:11Þ

ylow k½ � ¼
X

x n½ �:h 2k � n½ � ð2:12Þ

where yhigh[k] and ylow[k] are the outputs of the high pass and low pass filters
respectively, after sub sampling by 2. This decomposition halves the time resolution
since only half the number of samples now characterizes the entire signal. However,
this operation doubles the frequency resolution, since the frequency band of the
signal now spans only half the previous frequency band, effectively reducing the
uncertainty in the frequency by half. The above procedure, which is also known as
the sub band coding, can be repeated for further decomposition (Sivanandam and
Deepa 2006; Mehrotra et al. 1997). Using the DWT technique we have extracted
the amplitude envelope as well as the time series data corresponding to the two
different experimental conditions for all the frontal electrodes.

The amplitude envelope of alpha and theta frequency ranges have been obtained
for all the frontal electrodes in “before drone” and “with drone” conditions. The
time series data for the alpha and theta frequency ranges have also been obtained.
Figures 2.3 and 2.4 are representative figures which demonstrate the change of
alpha and theta frequency rhythms under the application of drone music (Maity
et al. 2015). The figure shows a 10 s EEG alpha and theta rhythm for F3 electrode
in the two experimental conditions. A definite response is reflected in both the low
frequency ranges under the application of drone.
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Fig. 2.3 10 s alpha frequency range data for a “before drone” and b “with drone” condition
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The obtained data from WT technique is subjected to DFA/MFDFA/MFDXA
methods while sometimes the complete EEG signal has also been subjected to these
techniques.

2.4 Detrended Fluctuation Analysis

Detrended Fluctuation Analysis (DFA) is used to analyze the long range temporal
correlations (LRTC) of the observed fluctuations in EEG. In the realm of complex
cognition, scaling analysis technique was used to confirm the presence of univer-
sality and scale invariance in spontaneous EEG signals (Linkenkaer-Hansen et al.
2001; Peng et al. 1994). In stochastic processes, chaos theory and time series
analysis, DFA is a method for determining the statistical self-affinity of a signal. It
is useful for analyzing time series that appear to be long-memory processes (di-
verging correlation time, e.g. power-law decaying autocorrelation function) or 1/f
noise. The obtained exponent is similar to the Hurst exponent, except that DFA may
also be applied to signals whose underlying statistics (such as mean and variance)
or dynamics are non-stationary (changing with time). DFA method was applied in
(Karkare et al. 2009) to show that scale-free long-range correlation properties of the
brain electrical activity are modulated by a task of complex visual perception, and
further, such modulations also occur during the mental imagery of the same task. In
case of music induced emotions, DFA was applied to analyze the scaling pattern of
EEG signals in emotional music (Gao et al. 2007) and particularly Indian music
(Banerjee et al. 2016). The DFA of a time series [x1, x2,…,xN] are as follows.
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Fig. 2.4 10 s theta frequency range data for a “before drone” and b “with drone” condition
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Step 1: Converting the noise like structure of the signal into a random walk like
signal. It can be represented as:

!ðiÞ ¼
X

ðxk � �xÞ ð2:13Þ

where �x is the mean value of the signal.
Step 2: The whole length of the signal is divided into Ns number of segments

consisting of certain no. of samples. For s as sample size and N the total length of
the signal the segments are

Ns ¼ int
N
s

� �
ð2:14Þ

The original signal with the extracted trends has been shown in the Figs. 2.5 and
2.6 given at the end of this section.

Fig. 2.5 Raw signal with the polyfit trends as found in Steps 1 and 2

Fig. 2.6 Complete Signal with poly-fit trends
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Step 3: The local RMS variation for any sample size s is the function F(s, v).
This function can be written as follows:

F2ðs; vÞ ¼ 1
s

Xs

i¼1

fY ½ðv� 1Þsþ i� � yvðiÞg2 ð2:15Þ

Step 4: The q-order overall RMS variation for various scale sizes can be
obtained by the use of following equation

FqðsÞ ¼ 1
Ns

XNs
v¼1

½F2ðs; vÞ�q2
( ) 1

qð Þ
ð2:16Þ

Step 5: The scaling behaviour of the fluctuation function is obtained by drawing
the log-log plot of Fq(s) versus s for each value of q.

FqðsÞ� sh ðqÞ ð2:17Þ

where h(q) is called the generalized Hurst exponent expressed as the slope of a
double logarithmic plot (Fig. 2.7). For q = 2, we obtain the monofractal scaling
exponent or a. A monofractal time series is characterized by unique h(q) for all
values of q. The parameter a (scaling exponent, autocorrelation exponent,
self-similarity parameter etc.) represents the autocorrelation properties of the signal.
DFA technique was applied following the NBT algorithm used in Hardstone et al.
(2012). The scaling exponent provides a quantitative measure of long range tem-
poral correlation (LRTC) that exists in the EEG. When the EEG is completely
uncorrelated (Gaussian or non-Gaussian probability distribution), the calculation of
the scaling exponent yields 0.5, also called “white noise”.

When applied to EEG data with LRTC, power-law behavior will generate
scaling exponents with greater than 0.5 and less than 1. As the scaling exponent
increases from 0.5 to 1, the LRTC in the EEG are more persistent (decaying more
slowly with time). If a scaling exponent is greater than 1, the LRTC no longer
exhibits power law behavior. Finally, if the scaling exponent = 1.5, this indicates
Brownian noise, which is the integration of white noise. It can be converted into the
Hurst exponent H = a – 1 and the estimated FD accordingly as

DDFA ¼ 3� a: ð2:18Þ

The FD values were computed from Eq. (2.18) for all the frequency rhythms.
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2.5 Multifractal Detrended Fluctuation Analysis (DFA)

The real-life fractal patterns that we see hardly scale according to a single scaling
exponent, rather there should be multiple scaling laws to capture their growth or
variation over time. These spatial and temporal scale variations indicate a multi-
fractal structure of a particular signal that is defined by a multifractal spectrum of
power law exponents. For these more practical cases, Kantelhardt et al. (2002)
formulated the MFDFA algorithm which is essentially a generalization of the DFA
algorithm as given before but takes into account different scaling ratios. For
Eq. (2.17), putting q = 2, the standard DFA procedure is retrieved. We are inter-
ested in how the generalized q dependent fluctuation functions Fq(s) depend on the
time scale s for different values of q. Hence, we must repeat steps 2–4 for several
time scales s. It is apparent that Fq(s) will increase with increasing s. Of course,
Fq(s) depends on the DFA order m. By construction, Fq(s) is only defined for
s � m + 2. Again Step 5 is repeated with different values of q;

Step 5: Determination of the scaling behavior of the fluctuation functions by
analyzing log-log plots Fq(s) versus s for each value of q. If the series xi are

Fig. 2.7 a–c A sample log-log plot of alpha wave of an EEG signal in the three different
experimental conditions
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long-range power-law correlated, Fq(s) increases, for large values of s, as a
power-law,

Fq sð Þ� shðqÞ ð2:17Þ

In general, the exponent h(q) may depend on q. For stationary time series, h(2) is
identical to the well-known Hurst exponent H. Thus, we will call the function h(q)
generalized Hurst exponent.

The generalized Hurst exponent h(q) of MFDFA is related to the classical scaling
exponent s(q) by the relation

sðqÞ ¼ qhðqÞ � 1 ð2:19Þ

A monofractal series with long range correlation is characterized by linearly
dependent q order exponent s(q) with a single Hurst exponent H. Multifractal signal
on the other hand, possess multiple Hurst exponent and in this case, s(q) depends
non-linearly on q (Ashkenazy et al. 2003).

The singularity spectrum f(a) is related to h(q) by

a ¼ hðqÞþ qh0ðqÞ ð2:20Þ

f að Þ ¼ q½a� h qð Þ� þ 1 ð2:21Þ

where a denoting the singularity strength and f(a), the dimension of subset series
that is characterized by a. The width of the multifractal spectrum essentially denotes
the range of exponents. The spectra can be characterized quantitatively by fitting a
quadratic function with the help of least square method (Figliola et al. 2007) in the
neighbourhood of maximum,

f ðaÞ ¼ Aða� a0Þ2 þBða� a0ÞþC ð2:22Þ

Here C is an additive constant C = f(a0) = 1 and B is a measure of asymmetry of
the spectrum. So obviously it is zero for a perfectly symmetric spectrum. We can
obtain the width of the spectrum very easily by extrapolating the fitted quadratic
curve to zero.

Width W is defined as,

W ¼ a1 � a2

with

f ða1Þ ¼ f ða2Þ ¼ 0

The width of the spectrum gives a measure of the multifractality of the spectrum.
Greater is the value of the width W greater will be the multifractality of the spectrum.
For a monofractal time series, the width will be zero as h(q) is independent of q.
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The origin of multifractality in a EEG time series can be verified by randomly
shuffling the original time series data (Figliola et al. 2007). In general, two different
types of multifractality are present in a time series data: (i) Multifractality due to a
broad probability density function for the values of the time series. Here, the
multifractality of the time series cannot be removed by random shuffling and the
shuffled data has the same variation of h(q) as the original data (ii) Multifractality
due to a variety of long-range correlations due to the small and large fluctuations. In
this case, the probability density function of the values can be a regular distribution
with finite moments, for e.g. a Gaussian distribution. The corresponding shuffled
series will exhibit non-multifractal scaling, since all long-range correlations are
destroyed by the shuffling procedure. All long range correlations that existed in the
original data are removed by this random shuffling and what remains is a totally
uncorrelated sequence. Hence, if the multifractality of the original data was due to
long range correlation, the shuffled data will show non-fractal scaling. If any series
has multifractality both due to long range correlation as well as due to probability
density function, then the shuffled series will have smaller width W and hence
weaker multifractality than the original time series.

The qth order fluctuation function Fq(s) for 10 points of q in between −5 and +5
was obtained. The time series values of both the waves have been randomly
shuffled to destroy all the long range correlations present in the data, and what
remained is a totally uncorrelated sequence. The regression plot of ln (Fq(s)) versus
ln(s) averaged for different values of q (q = −3 to q = + 3 is shown in the plot for
scales varying from 16 to 1024) for a sample electrode F3 is given in Fig. 2.8(a–d)
for both alpha and theta waves. The slope of the best fit line thus obtained from ln
(Fq(s)) versus ln(s) plot gives the values of h(q). It is seen from Fig. 2.8 that the

(a): ln(Fq(s)) vs. ln(s)for alpha (b) ln(Fq(s)) vs. ln(s) for shuffled alpha 

(c): ln(Fq(s)) vs. ln(s)for theta (d) ln(Fq(s)) vs. ln(s) for shuffled theta

Fig. 2.8 a–d Plot of ln(Fq(s)) versus ln(s) showing different h(q) corresponding to each q
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Fig. 2.9 Variation of h(q) with q for original and shuffled series

shuffled values of both alpha and theta do not change with the values of q, and thus
has a fixed slope h(q) = H, which is the conventional Hurst exponent for
monofractal time series.

For monofractal time series, h(q) is independent of q, since the scaling behavior of
the variances F2(s, v) is identical for all segments v, and the averaging procedure in
Eq. (2.18) will give just this identical scaling behavior for all values of q, only if
small and large fluctuations scale differently, there will be a significant dependence of
h(q) on q. For positive values of q, h(q) describes the scaling behavior of the segments
with large fluctuations. Usually the large fluctuations are characterized by a smaller
scaling exponent h(q) for multifractal series. On the contrary, for negative values of q,
the segments v with small variance F2(s, v) will dominate the average Fq(s). Hence,
for negative values of q, h(q) describes the scaling behavior of the segments with
small fluctuations, which are usually characterized by a larger scaling exponent.

A representative figure for variation of h(q) with q for two different time-series is
shown in Fig. 2.9a, b. It is clearly evident from the figures that the values of h(q)
decreases with the increase of q, showing multifractal scaling in both the signals.
For monofractal signals, a single value of Hurst exponent is obtained corresponding
to different values of q, like the shuffled value of h (q) as seen in both the figures,
where h(q) remains almost constant with the change of q. The amount of multi-
fractality can be determined quantitatively in each of the windows of each signal
from the width of the multifractal spectrum [f(a) vs. a]. The shuffled width obtained,
is found to be always smaller than the original width of the signal (Fig. 2.10). This
ascertains the fact that multifractality in the signals is both due to long range
correlations as well as broad probability density function. In the ideal case, the
shuffled data should behave as a monofractal signal with no multifractal scaling.
Thus, in the plot of Hurst exponent, it is seen that the shuffled values of h(q) does
not change in general with q, and in the f(a) versus a plot, the shuffled series will
show a peak at a0 close to 0.5. A representative figure (Fig. 2.11) shows the f(a)
versus a plot for a single person in the alpha and theta frequency range for the two
experimental conditions.

As a generalization of the DFA method, the detrended cross-correlation analysis
(DCCA) is proposed to investigate the long-term cross-correlations between two

2.5 Multifractal Detrended Fluctuation Analysis (DFA) 35



non stationary time series (Podobnik et al. 2008, 2009; Podobnik and Stanley 2008;
Xu et al. 2010), and Multifractal Detrended Cross-Correlation Analysis (MF-DXA)
can unveil the multifractal features of two cross-correlated signals (He and Chen
2011; Jiang and Zhou 2011; Wang et al. 2013; Ghosh et al. 2014).

2.6 Multifractal Detrended Cross-Correlation Analysis
(MFDXA)

MFDXA method was first used by Zhou (2008) and is an offshoot of the gener-
alized MFDFA method. Here, we compute the profiles of the underlying data series
x(i) and y(i) as

Fig. 2.10 f(a) versus a curve
for original and shuffled series

Fig. 2.11 Variation of
spectral width in alpha and
theta domain

36 2 Non Linear Techniques for Studying Complex Systems



X ið Þ �
Xi

k¼1

x kð Þ � xavg

" #
for i ¼ 1. . .N

Y ið Þ �
Xi

k¼1

x kð Þ � xavg

" #
for i ¼ 1. . .N

ð2:23Þ

The next steps proceed in the same way as the MFDFA method, with the only
difference being we have to take 2Ns bins here. The qth order detrended covariance
Fq(s) is obtained after averaging over 2Ns bins.

Fq sð Þ ¼ 1=2 Ns

X2Ns
v¼1

F s; vð Þ½ �q=2
( )q=2

ð2:24Þ

where q is an index which can take all possible values except zero because in that
case the factor 1/q blows up. The procedure can be repeated by varying the value of
s. Fq(s) increases with increase in value of s. If the series is long range power
correlated, then Fq(s) will show power law behavior

Fq sð Þ� skðqÞ:

If such a scaling exists ln Fq will depend linearly on ln s, with k(q) as the slope.
Scaling exponent k(q) represents the degree of the cross-correlation between the
two time series. In general the exponent k(q) depends on q. We cannot obtain the
value of k(0) directly because Fq blows up at q = 0. Fq cannot be obtained by the
normal averaging procedure; instead a logarithmic averaging procedure is applied

F0 sð Þ ¼ 1=2 Ns

X2Ns
v¼1

F s; vð Þ½ �
( )

� sk 0ð Þ ð2:25Þ

For q = 2 the method reduces to standard DCCA. If scaling exponent k(q) is
independent of q, the cross-correlations between two time series are monofractal. If
scaling exponent k(q) is dependent on q, the cross-correlations between two time
series are multifractal. Furthermore, for positive q, k(q) describes the scaling
behavior of the segments with large fluctuations and for negative q, k(q) describes
the scaling behavior of the segments with small fluctuations. Scaling exponent k(q)
represents the degree of the cross-correlation between the two time series x(i) and y
(i). The value k(q) = 0.5 denotes the absence of cross-correlation. k(q) > 0.5
indicates persistent long range cross-correlations where a large value in one variable
is likely to be followed by a large value in another variable, while the value
k(q) < 0.5 indicates anti-persistent cross-correlations where a large value in one
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variable is likely to be followed by a small value in another variable, and vice versa
(Movahed and Hermanis 2008).

Zhou (2008) found that for two time series constructed by binomial measure
from p-model, there exists the following relationship:

k q = 2ð Þ � hx q = 2ð Þþ hy q = 2ð Þ� ��
2 ð2:26Þ

Podobnik and Stanley have studied this relation when q = 2 for monofractal
Autoregressive Fractional Moving Average (ARFIMA) signals and EEG time series
(Podonik and Stanley 2008).

In case of two time series generated by using two uncoupled ARFIMA pro-
cesses, each of both is autocorrelated, but there is no power-law cross correlation
with a specific exponent (Movahed and Hermanis 2008). According to
auto-correlation function given by:

C sð Þ ¼ xðiþ sÞ � xh i½ � x ið Þ � xh i½ �h i � s�c ð2:27Þ

The cross-correlation function can be written as

Cx sð Þ ¼ xðiþ sÞ � xh i½ � y ið Þ � yh i½ �h i� s�c
x ð2:28Þ

where c and cx are the auto-correlation and cross-correlation exponents, respec-
tively. Due to the non-stationarities and trends superimposed on the collected data,
direct calculation of these exponents are usually not recommended; rather the
reliable method to calculate auto-correlation exponent is the DFA method, namely
c = 2 − 2h (q = 2) (Movahed and Hermanis 2008). Recently, Podobnik et al.
(2011), have demonstrated the relation between cross-correlation exponent, cx and
scaling exponent k(q) derived by Eq. (2.2) according to cx = 2 − 2k (q = 2). For
uncorrelated data, cx has a value 1 and the lower the value of c and cx more
correlated is the data. In general, k(q) depends on q, indicating the presence of
multifractality. In other words, we want to point out how two non-linear signals are
cross-correlated in various time scales.

The qth order detrended covariance Fq(s) was obtained from relations 3 and 4
for values of q from −5 to +5 in steps of 1 just like the MFDFA part. Power law
scaling of Fq(s) with s is observed for all values of q as is seen from Fig. 2.8a–d
same as those found for MFDFA. We have also shown variation of h(q) with q for
Part 1 of four clips by means of MF-DFA in Fig. 2.9. The plot depicts multifractal
behavior of cross-correlations because for different q, there are different exponents;
that is, for different q, there are different power-law cross-correlations. Further from
the same figure we can see that the value of H(q) depends on q for all the four
samples that we have taken in this study. We know that H(q) = 0.5 indicates that
the series is an independent random process, and for H(q) < 0.5 it is characterized
by long-range anti-correlations while for 0.5 < H(q) < 1, it is featured by long-term
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correlations. In this case the signal is stationary. The exponent H (q = 2) is
equivalent with the well-known Hurst index. A representative figure (Fig. 2.12)
reports the variation of cross correlation exponent k(q) with q for two particular
samples (Part 1 for Sample 1 and Sample 2), also the variation of h(q) with q for
those two samples obtained from MFDFA technique are also shown in the same
figure for comparison.

The variation of k(q) with q for the two cross correlated signals (Part 1 for
Sample 1 and Sample 2) show that they are multifractal in nature (Fig. 2.12). To
illustrate further the presence of multifractality in the cross-correlated music signals,
i.e. to have information about the distribution of degree of cross-correlation in
various time scales, a representative multifractal spectrum was plotted for the two
signals in Fig. 2.13. The way to characterize multifractality of cross correlation
between two samples is to relate via a k(q) Legendre Transform as in the case of

Fig. 2.13 Multifractal
cross-correlated Spectrum of
samples 1 and 2 (Part 1)

Fig. 2.12 Variation of k(q)
and h(q) for two sound signals
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single series (Feder 2013). The growth of the width of f(a) or equivalently Δa
shows the increase in degree of multifractality of the coupled signals. Again, it
becomes evident from the spectrum that the cross correlated signals are multifractal
in various time scales.

Jones and Kaul (1996) were the first to reveal a stable negative cross-correlation
between oil prices and stock prices. The negative cross-correlations were also found
in a number of previous works (Chen 2009; Berument et al. 2010; Reboredo et al.
2014). A negative value of cross correlation is an indication of strong
cross-correlation between the two samples for which the cross correlation is being
carried out. Using the MFDXA technique we have estimated the degree of
cross-correlations between neuronal potentials originating from different lobes of
human brain as well as parts of musical clip.

In the next section, we proceed to propose novel algorithms for feature
extraction from raw EEG data which may open up new vistas in developing an
automated emotion classification algorithm from music induced EEG signal
analysis.

2.7 Estimation of Neural Jitter and Shimmer

Jitter conventionally refers to the variability of fundamental frequency while
shimmer refers to the variability in the peak to peak amplitude (Farrús and
Hernando 2009). These parameters have long been used by scientists working on
speech and music signal processing for characterization of a speech/music signal. In
speech signal processing, jitter/shimmer is a measure for vocal stability of a person.
A jitter of less than 1% and a shimmer of less than 7% in frequency/amplitude is
considered for a normal person, which increases/decreases in case of voice disorder.
EEG signals possess almost the same properties in temporal domain like
music/speech signal. Hence, applying the same concept to neural EEG domain, we
have termed this factor as neural-jitter and neural-shimmer for EEG signals. These
parameters are being calculated essentially to measure the perturbation index of a
signal. We started off with calculation of neural jitter and shimmer percentage for
different types of stimuli induced EEG signals and compared them with rest-state
EEG signals. In this way we look to develop a threshold value/percentage like the
one in speech signal which can objectively help in the assessment of mental state of
a person. EEG signals (Fig. 2.14) are obtained in the temporal domain showing the
variation of Extracellular Field Potentials (Buzsáki et al. 2012) with respect to time.
Digital Signal processing methods allows converting between temporal domains to
frequency domain. The transform is called Fourier Transform (Bracewell 1965)
which generates Fourier coefficient for each frequency present in the temporal
signal. The plot of the frequency domain, which shows the Fourier coefficients, is
called frequency spectrum, (Fig. 2.15). The work is aimed to look into proposing a
novel technique to calculate traditional Jitter/Shimmer in neural signals. The EEG
signals were transformed into frequency domain double sided frequency spectrum
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(Fig. 2.16). The Fourier coefficients can be both real and complex. The plot and
analysis was made with the absolute values of the coefficients. Single sided spec-
trum (Fig. 2.17) was used for analysis instead of double sided. An attempt to
analyze the single sided frequency spectrum is made by considering only top 20%
frequency coefficients. Threshold is 20% of (Amax) where is Amax the largest Fourier
coefficients (Fig. 2.18). The Fourier coefficients above Amax=5 continue to posses

Fig. 2.14 Sample EEG signal plotted against y and x axes where y represents the values of the
signal at different times ‘t’ and x represents the time ‘t’ axis

Fig. 2.15 Two-sided amplitude spectrum
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its values and below Amax=5 becomes zero (Fig. 2.19). This transformation is
expected to be good as values less than Amax=5 are literally less so losing those
coefficient is expected not to cause much loss of information. A Frequency
thresholding (FT) matrix is computed storing values of time periods (2 � pi � xÞ, x
are the frequencies with non zero Fourier coefficients in thresholding curve and the
corresponding fourier coefficients. Figure 2.19 shows the plot with non-zero
coefficients only. The time elements in FT matrix serve as Ti in calculating the jitter
and the corresponding coefficient elements in FT matrix serve as Ai in the shimmer
calculation.

Fig. 2.17 Thresholding operations

Fig. 2.16 Single-sided amplitude spectrums
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Fig. 2.18 Single-sided amplitude spectrums of the signal after thresholding with zero Fourier
coefficients

Fig. 2.19 Single-sided amplitude spectrums of the signal after thresholding with non-zero Fourier
coefficients
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Measurement of Neural Shimmer Values:

Shimmer is the variation of peak-to-peak amplitude. It is defined as the mean
absolute difference between amplitudes of successive periods divided by the mean
value of the amplitudes. Mathematically, given as

1
N�1

PN�1
i¼1 jAi � Aiþ 1j
1
N

PN
i¼1 Ai

where N is the number of periods and Ai is the amplitude.

Measurement of Neural Jitter Values:

Jitter is the perturbation of fundamental frequency. It can also be defined as the
deviation from true periodicity of an apparently periodic signal, given as the mean
absolute difference between successive periods divided by the mean value of the
periods. Mathematically, given as

1
N�1

PN�1
i¼1 jTi � Tiþ 1j
1
N

PN
i¼1 Ti

where N is the number of periods and Ti is the duration (in seconds) of the ith
period.

The jitter and shimmer values essentially gives an estimate of the perturbations
in the amplitude/frequency of the EEG signals. These perturbations when computed
as a function of time will give a time series which is essentially record of the
fluctuation of the fluctuations. Non-linear scaling methods detailed above can be
used for scaling the fluctuation property of jitter/shimmer time series.

2.8 Estimation of Pitch of EEG Signal
from Zero-Crossings

EEG signal comprises of a number of spectral components. The lower and upper
cut-offs of the frequency range of an EEG signal is indistinguishable, essentially
ranging from of 0.5 to 30 Hz. As has been iterated before, EEG rhythms are
categorized as follows: Delta (0–4 Hz), Theta (4–7 Hz), Alpha (8–13 Hz), Beta
(14–30 Hz) and Gamma (30–50 Hz). We use the DWT algorithm explained in this
chapter for decomposing an EEG signal into these frequency bands first. The EEG
sampling frequency being 256 Hz in our case. We considered 3 signals containing
respectively the 3 frequency bands, namely, Alpha, Theta and Gamma obtained
from wavelet decomposition of a particular EEG signal. Suppose ‘X’ denotes the
signal containing frequencies in the Alpha band. The recorded time of each signal
was 2 min, i.e., 120 s. So, we attempt to divide ‘X’ into intervals of length 1 s, the
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total number of segments being 120. In each of these segments we calculated the
number of zero-crossings, that is, the number of times the curve cuts the time axis.
We denote the number of zero-crossings for each interval ‘i’ as Zi, since the value
changes with the interval number. The number of zero crossing or the zero crossing
rate (ZCR) is an indirect way of measuring the fundamental frequency which has
been used in a number of studies (Kedeem 1986; Scheirer and Slaney 1997; Roads
1996) in the acoustic domain. Using the same technique, we sought to have an idea
of the neural pitch of an EEG signal. For a particular signal (say F4 electrode, Alpha
band signal for Subject 1 in resting state) we have a Pitch matrix denoted as ‘P’
which essentially contains each of Zi for each interval i where i ranges from 1 to
120. The size of this P matrix is 1	120 (a row matrix containing the number of
columns = number of segments as mentioned previously). For a particular electrode
for 3 frequency band signals we concatenate the matrix P which now becomes
3	120. Using MATLAB we show scatter plots of Zi as a function of
i. Figure 2.20a–c denotes the variation of ZCR in F3 electrode under the effect of a
pair of music of contrast emotion. While Fig. 2.20a shows the distribution in rest
condition, Fig. 2.20b, c denote the distribution of zero crossing under the effect of
happy and sad music clip respectively.

A simple glance to the figures reveal that the distribution pattern significantly
changes under the effect of two different categories of music clips. The probability
distribution plot of different fundamental frequencies is expected to reveal unique
information about the processing of different emotions in human brain. The same
has been repeated for theta and gamma frequency ranges and analyzed rigorously to

(a) (b)

(c)

Fig. 2.20 a ZCR in rest condition, b ZCR in happy music, c ZCR in sad music
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find the existence of a preferred fundamental under the influence of a certain group
of music clips. The ‘preferred fundamental’ is the one whose probability is the
maximum under the effect of a certain music and has been coined with a new
terminology “neural pitch”. The “neural pitch” of an EEG signal is actually the
most basic and simplest feature of all other which have been used till date. The
probability distribution curves obtained from the values of ZCR is essentially the
void probability distribution calculated over time. The neural pitch analysis can thus
be extended in the form of DFA/MFDFA analysis to study the fluctuation pattern of
the void probability distribution. This will enable us to have an estimate of the
fractal/multifractal scaling pattern (if any) of the probability distribution of voids.
We sincerely believe that this feature has immense potential in categorization and
classification of different EEG brain states. The new features in the domain of EEG
signal processing viz. neural jitter, shimmer and pitch have been discussed at length
in Chap. 10 of this book.
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Chapter 3
Emotions from Hindustani Classical
Music: An EEG based study including
Neural Hysteresis

Memory believes before knowing remembers.
Believes longer than recollects,
longer than knowing even wonders

—William Faulkner

3.1 Introduction

3.1.1 Background

The ability of human brain to perceive and respond to emotional music has long
been a subject of interest for musicologists and psychologists. But, the
neuro-cognitive aspects of this arousal based activities have captured the interest of
the neuro-scientists only in the last decade. Music like speech is also a mode of
communication between human beings. The communicator endeavors to commu-
nicate certain messages, be it mood, feelings, expression and the like. Through this
he creates a story, a sort of ambience for the audience. A scientific understanding of
music must begin by taking into account how minds act in the ambience of music.
In a sense music appears to be a more fundamental and universal phenomena than
speech. In speech communication the listener has to know the language of the
speaker to get the message. In creating music an artist produces an objective
material called sound which along with lyrics contribute to communication. It is
possible for a listener to identify with the mood of the artist irrespective of the
knowledge of the lyrics by merely feeling the senses of music. Herein lies the
importance of a study which involves different type of emotional clips and their
respective differential response in the particular lobes of human brain.

Music cognition has become a very interesting interdisciplinary subject of
research since emotions elicited by music are complex processes comprising of
several interacting parameters which are very difficult to assess objectively. None
the less modeling of emotion is also a challenging problem. With the development
of robust neuro-biosensors like EEG, fMRI, PET, one can modestly attempt to
identify correlates relevant to different specific emotions. The development of
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robust tools to analyze the intricate EEG waveform has also given a good window
to study the neural attributes corresponding to songs of different emotions.
Listening to music regularly helps to keep the neurons and synapses more active.
Depending on the way sound waves are listened or pronounced, they have an
impact in the way neurological (brain and nerve) system work in the human body.
Neurological studies have identified that music is a valuable tool for evaluating the
brain system (Peretz and Zatorre 2005). It is also observed that while listening to
music, different parts of the brain are involved in processing music, this include the
auditory cortex, frontal cortex and even the motor cortex (Kristeva et al. 2003).
Research findings indicate some of the cognitive tests are more influenced by
exposure to music (Schellenberg et al. 2007).

3.1.2 What Is Hysteresis?

In terms of physics, “Hysteresis” means the dependence of a system on its history,
or in other words, the amount of “memory” retained by the system of its previous
state. This phenomenon is observed in magnets, where a lagging in the values of
resulting magnetization in a magnetic material (as iron) is observed due to a
changing magnetizing force. Whether the hysteresis effect is present in the case of
neurons triggered by musical stimuli has not yet received the attention of cognitive
neuroscientists. Hysteresis is usually investigated using designs comprising of
“ascending” and “descending” sequences, that is, sequences ordered in terms of a
certain physical parameter (Miura et al. 2013). In this case we used a positive
emotional clip as an ascending sequence while another clip conveying negative
emotion consisted of the descending one. In the middle, “no music” or rest con-
ditions comprised of the neutral states which we considered as the baseline or the
threshold value. In case of music induced emotions, it would be interesting to know
which emotions stay longer in the human brain and whether it has any relationship
to the type and genre of music. We attempt here the study with Hindustani music
utilizing a rigorous non-linear approach as elaborated later.

3.1.3 Neural Plasticity and Hysteresis

A number of previous reports deal with neural plasticity—i.e. the ability of human
brain to reorganize itself by forming new neural connections throughout their life.
But, all these reports mainly deal with long-term memory affects which gradually
decline with ageing, i.e. the brain is said to lose its plasticity with age. We are
mainly concerned with short term memory and arousal based effects which can be
recorded instantaneously with the application of musical stimulus. Works in per-
ceptual hysteresis show that the content of one’s perception at time t depends on the
recent history of the perceptual system (Kleinschmidt et al. 2002). In the visual
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domain, Sacharin et al. (2012) showed that when subjects are presented with certain
facial emotional expressions evolving over time from a particular emotion to
another, they persist in perceiving the original emotion. In this paper, we wanted to
test whether hysteresis-like effects are present in brain response to emotional
musical stimuli. To test our prediction, we used a protocol which reveals the time
duration for which the neuronal activation persists even after the removal of the
musical stimuli.

3.1.4 Hindustani Classical Music and Emotions

Music in the Indian subcontinent has been a source of aesthetic delight from time
immemorial. From the time of Bharata’s Natyashastra (Ghosh 2002), there have
been a number of treatises which speak in favor of the various rasas (emotional
experiences) that are conveyed by the different forms of musical performances. The
aim of any dramatic performance is to emote in the minds of audience a particular
kind of aesthetic experience, which is described as “Rasa”. The concept of “Rasa”
is said to be the most important and significant contribution of the Indian mind to
aesthetics. The study of aesthetics deals with the realization of beauty in art, its
relish or enjoyment, and the awareness of joy that accompanies an experience of
beauty; but till date science had nothing to do with the aesthetic experiences cor-
responding to a particular performance and was kept as a separate entity.

It is only from the last two decades of the 20th century that scientists began to
understand the huge potential of systematic research that Hindustani Music
(HM) has to offer in the advancement of cognitive science as well as psychological
research. A number of works tried to harvest this immense potential by studying
objectively the emotional experiences attributed to the different ragas of Hindustani
classical music (Balkwill and Thompson 1999; Martinez 2001; Wieczorkowska
et al. 2010). The raga is a sequence of musical notes and the play of sound which
delights the hearts of people. The word Raga is derived from the Sanskrit word
“Ranj” which literally means to delight or please and gratify (Brahaspati 2002).
Although there are a number of definitions attributed to a Raga, it is basically a
tonal multifarious module. In HM the existing phrases are stretched or compressed,
and the same may happen to motives from the phrases; further motives may be
prefixed, infixed and suffixed. Phrases may be broken up or telescoped with others,
and motives or phrases may be sequenced through different registers (Neuman
1990). Thus, during a performance, a singer steadily loosens the strangle hold of the
rules of music in a subtle way. He does not flout them, he merely interprets them in
a new way, which is the beauty of Hindustani classical music and there comes the
wisdom that Raga and its grammar are only means and not ends in themselves.
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3.1.5 EEG and Musical Emotions

Each type of music has its own frequency, which can either resonate or be in
conflict with the body’s rhythms (heart rate). Studying EEG dynamics typically
relies on the calculation of temporal and/or spectral dynamics from signals recorded
directly from the scalp. Due to volume conduction, EEG data recorded at the scalp
are linear mixtures of electrical potentials projected from multiple distinct cortical
domains and non-brain artifacts arising from eye blinking, lateral eye movement,
muscle tension, etc. (Onton and Makeig 2006). Each frequency band of the EEG
rhythm relates to specific functions of the brain. EEG rhythms are classified into
five basic types: i) delta (d) 0.5-4Hz, (ii) Theta (h) 4–8 Hz,(iii) alpha (a) 8-13Hz,
(iv) beta (b) 13-30 Hz and (v) gamma (c) 30-50 Hz.

It has been observed that pleasant music produces a decrease in the alpha power
at the left frontal lobe and unpleasant music produces decrease in the alpha power at
the right frontal lobe (Tsang et al. 2001; Schimdt and Trainor 2001; Sammler et al.
2007). Also, activity in the alpha frequency band has been found to be negatively
related to the activity of the cortex, such that larger alpha frequency values are
related to lower activity in the cortical areas of the brain, while lower alpha fre-
quencies are associated with higher activity in the cortical areas (Davidson 1988;
Mizuki et al. 1992). Davidson (1988) have shown that disgust cause less alpha
frequency in the right frontal region than happiness while, happiness cause less
alpha power in the left frontal region. Frontal midline (Fm) theta has been mostly
related to heightened mental effort and sustained attention during various functions.
The Fm theta power was positively correlated not only with scores of internalized
attention but also with subjective scores of the pleasantness of the emotional
experience. Furthermore, two studies on the relationship between Fm theta and
anxiety reported negative correlations between Fm theta during mental tasks and
anxiety measures (Mizuki et al. 1992; Suetsugi et al. 2000). It has also been shown
that pleasant music would elicit an increase of Fm theta power (Sakharov et al.
2005). Recent researches have demonstrated that the modulation of gamma band
activity (GBA) in time windows between 200 and 400 ms following the onset of a
stimulus is associated with perception of coherent visual objects (Müller et al.
1999), and may be a signature of active memory. GBA has also been found sen-
sitive to emotional vs non emotional stimuli and more specifically it was related to
the arousal effect: GBA was enhanced in response to aversive or highly arousing
stimuli compared to neutral picture (Balconi and Lucchiari 2008). While listening
to music, degrees of the gamma band synchrony over distributed cortical areas were
found to be significantly higher in musicians than non musicians (Bhattacharya and
Petsche 2001a; Bhattacharya et al, 2001). Another study reports higher order
inter-frequency phase synchrony between delta oscillations in anterior and gamma
oscillations in posterior region for musicians. Also, consistent left hemispheric
dominance, in terms of the strength of phase synchrony, was observed in musicians
while listening to music, whereas right hemispheric dominance was observed in
non-musicians (Bhattacharya and Petsche 2005). The gamma band EEG distributed
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over different areas of brain while listening to music can be represented by a
universal scaling which is reduced during resting condition as well as when lis-
tening to texts. (Bhattacharya and Petsche, 2001b). Specifically, (Summerfield et al,
2002) have found that gamma activity increases after subjects had been made aware
of the stimulus. So, we envisaged to study the response of all three bands in
emotion elicited by Hindustani music stimuli.

3.1.6 Use of DFA to Assess Emotions and also Neural
Hysteresis

There have been a few studies which assess the emotion elicited by different ragas
of Hindustani music (Balkwill and Thompson 1999; Chordia and Rae 2007;
Wieczorkowska et al. 2010; Patranabis et al. 2013; Mathur et al. 2015). In the study
made by Balkwill and Thompson (1999), Western listeners were asked to rate the
expression of emotions by 12 different ragas. The study made by Wieczorkowska
et al. (2010) also studied the Raga-Rasa relationship and on a cross-cultural para-
digm where listeners from both India as well as from West participated. A recent
study by Mathur et al. (2015) with 122 participants across the globe revealed that
not only a particular raga is capable of eliciting emotion, but the emotional content
varies across different portions of the rendition of raga—namely alaap and gat. All
these are human response studies which strengthen the assumption that Hindustani
ragas are powerful elicitor of emotion and robust analysis techniques are required to
quantitatively assess the emotional arousal from a particular musical clip. To
estimate the hysteresis effects, we used a positive emotional clip as an ascending
sequence while another clip conveying negative emotion consisted of the
descending one. In the middle, “no music” or rest conditions comprised of the
neutral states which we considered as the baseline or the threshold value. In case of
music induced emotions, it would be interesting to know which emotions stay
longer in the human brain and whether it has any relationship to the type and genre
of music. We attempt here the study with Hindustani music utilizing a rigorous
non-linear approach as elaborated next.

We used a scaling analysis technique called Detrended Fluctuation Analysis
(DFA) to analyze the long range temporal correlations (LRTC) of the observed
fluctuations in EEG. In the realm of complex cognition, scaling analysis technique
was used to confirm the presence of universality and scale invariance in sponta-
neous EEG signals (Bhattacharya 2009). In stochastic processes, chaos theory and
time series analysis, DFA is a method for determining the statistical self-affinity of a
signal. It is useful for analyzing time series that appear to be long-memory pro-
cesses (diverging correlation time, e.g. power-law decaying autocorrelation func-
tion) or 1/f noise. The obtained exponent is similar to the Hurst exponent, except
that DFA may also be applied to signals whose underlying statistics (such as mean
and variance) or dynamics are non-stationary (changing with time). DFA method
was applied in (Karkare et al. 2009) to show that scale-free long-range correlation
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properties of the brain electrical activity are modulated by a task of complex visual
perception, and further, such modulations also occur during the mental imagery of
the same task. In case of music induced emotions, DFA was applied to analyze the
scaling pattern of EEG signals in emotional music (Gao et al. 2007) and particularly
Indian music (Karthick et al. 2006). The advantage of using this model is that we
can define arousal and valence levels of emotions with the calculated FD values.
For example, the increase in arousal level corresponds to the increase of FD values
(Olga et al. 2012). Fractal dimension (FD) values of EEG could reveal geometric
complexity of the signals. It has been shown that FD could be applied in real-time
EEG signal processing to identify different brain states (Accardo et al. 1997;
Sourina et al. 2011; Liu et al. 2010). Applications of fractal dimension in EEG
analysis were given in (Sourina et al. 2008, 2009) where music was used to elicit
emotions. In (Sourina et al. 2011; Wang et al. 2010) concentration levels of the
subjects were recognized from EEG, and FD values were used as the classification
features.

3.1.7 Overview of Our Work

The objective of this study is to analyze the effect of Hindustani music on brain
activity during the normal relaxing condition, using electroencephalography (EEG).
Four (4) different Hindustani music raga clips of contrasting emotion
(romantic/sorrow) were used in the study. EEG was performed on ten (10) subjects
while they listened to the two pair of clips conventionally known to portray contrast
emotions. The subjects were made to listen to the 3 min 40 s clip of happy emotion
(Chayanat/ Bahar) first followed by the 3 min 40 s clips which convey sad emotion
(Darbari Kanada/ Mian ki Malhar). Each period of listening was separated from
the other by a resting period of 3 min 40 s which was maintained to see how long
the arousal based activities persisted in human brain after the removal of stimulus.
Two different experiments were conducted to assess the emotional response from
Chayanat/ Darbari Kanada and Bahar/Mian ki Malhar. While the objective of the
first experiment is to study the hysteresis like phenomenon in human brain while
the second study mainly focuses on the categorization and quantification of emo-
tional cues from Hindustani classical music. The brain response corresponding to
the frontal electrodes were only taken in consideration throughout this chapter as
the frontal lobe proves to be the most important when it comes to higher order
cognitive processing. Also, In this context, we studied the valence lateralization
theory in human brain which proposes that a particular emotion is processed in a
particular direction of the brain.

DFA technique was used to quantify how the scaling pattern of EEG frequency
rhythms changed as the emotional appraisal from a certain music clip changed. The
findings show that alpha and theta frequency ranges showed consistent arousal
based activities as is evident from their respective rise of DFA scaling exponents
while the subjects were listening to the music clips. The arousal based activities
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persisted for quite some time even after the stimulus were removed. The gamma
frequency ranges were also studied in this context, but failed to provide any con-
clusive results in this direction which may possibly due to the limitations of EEG
system. It was also observed that when the music stimuli were removed, significant
alpha brain rhythms persisted, showing residual arousal activities. This is analogous
to the conventional ‘Hysteresis’ loop where the system retains some ‘memory’ of
the former state, but in case of emotions induced by musical stimuli.

3.2 Experimental Details

3.2.1 Subjects Summary

Ten (10) (Male-6, Female-4) healthy right handed volunteers participated in this
study. The ages of participants were in the range of 20–45 years (average age =
26 years and SD = 7.39 years) and average body weight was 65 kg. They had no
formal musical training and could thus all be considered as non-musicians. All
experiments were performed at the Sir C.V. Raman Centre for Physics and Music,
Jadavpur University, Kolkata. The experiment was conducted in the afternoon with
a normal diet in a normally conditioned room sitting on a comfortable chair and
performed as per the guidelines of the Institutional Ethics Committee of SSN
College for Human volunteer research. All subjects gave written consent before
participating in the study, approved by the Ethics Committee of Jadavpur
University, Kolkata.

3.2.2 Choice of Ragas: Chayanat and Darbari
Kanada/Bahar and Mian Ki Malhar

The two pair ragas chosen for our analysis were “Chayanat”/“Bahar” (romantic/joy)
and “Darbari Kannada”/ “Mian ki Malhar” (pathos/sorrow). Variations in the timbre
were avoided by making the same artist play the two ragas with the same sitar. Both
the signals were normalized to within 0 dB and hence intensity or loudness and
attack cue are not being considered. Each of these sound signals was digitized at the
sample rate of 44.1 kHz, 16 bit resolution and in a mono channel. From the
complete playing of the ragas, segments of about 3 min and 40 s were cut out for
analysis of each Raga. Help was taken of some experienced musicians for identi-
fying the emotional phrases in the music signal along with their time intervals,
based on their feelings. A sound system (Logitech R_Z-4 speakers) with high S/N
ratio was used in the measurement room for giving music input to the subjects.
The EEG experiment was conducted in the afternoon (around 2 p.m.) in a room
with the subjects sitting in a comfortable chair. There were two round of experi-
ments with the two sets of music clip of contrast emotion.
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3.2.3 Experimental Protocol

Since the objective of this study was to analyze the effect of Hindustani music on
brain activity during the normal relaxing condition, the frontal lobes were selected
for the study. EEG was done to record the brain-electrical response of ten male
subjects. Each subject was prepared with an EEG recording cap with 19 electrodes
(Ag/AgCl sintered ring electrodes) placed in the international 10/20 system.
Another experiment was also conducted with Bahar/ Mian ki Malhar as the two set
of clips which conveyed contrast emotion with 10 more participants using the same
methodology as in this experiment.

Figure 3.1 (obtained from Recorders and Medicare EEG Systems manual)
depicts the positions of the electrodes. Impedances were checked below 5 kX. The
ear electrodes A1 and A2 linked together have been used as the reference elec-
trodes. The same reference electrode is used for all the channels. The forehead
electrode, FPz has been used as the ground electrode. The EEG recording system
(Recorders and Medicare Systems) was operated at 256 samples/s recording on
customized software of RMS. The data was band-pass-filtered between 0 and 50 Hz
to remove DC drifts. Each subject was seated comfortably in a relaxed condition in
a chair in a shielded measurement cabin. They were also asked to close their eyes.
Since the subjects were not instructed to gaze at a fixation cross presented on a
screen and to simultaneously rate the music during the recording, closing eyes
helped them to attentively yet comfortably listen to music in the long experiment.
The subjects were not instructed to identify any specific musical structures.

Fig. 3.1 The position of electrodes on the head are depicted
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A sound system (Logitech R_Z-4 speakers) with high S/N ratio was set up in the
measurement room that received input from outside the cabin. After initialization, a
17 min 40 s recording period was started, and the following protocol was followed:

1. Three Minutes No Music
2. 3 min 40 s With Music (Chayanat)
3. 3 min 40 s No Music
4. Sequence 2–3 was repeated With Music (Darbari Kannada)

Each signal length was 3 min 40 s. Markers were set at start, signal onset/offset,
and at the end of the recording. On the second day, the same protocol was followed,
only Music 1 and Music 2 have been replaced by “Bahar” and “Mian Ki Malhar”
respectively.

3.3 Methodology

In order to eliminate all frequencies outside the range of interest, data was filtered
within a range of 0.5–50 Hz using a finite impulse response (FIR) filter. The filter
order for the FIR filter is set to two cycles of the lower frequency limit of that
particular band, in order to accurately detect the oscillations while also limiting the
temporal integration caused by the filter. Thus, in case of alpha band (8–13 Hz), the
filter order is set to be two cycles of 8 Hz each, similar procedure was used for the
other frequency bands. The amplitude envelope of the alpha (8–13 Hz), theta (4–
7 Hz) and gamma (30–50 Hz) frequency range was obtained using wavelet trans-
form technique. DFA was performed on the obtained amplitude envelope to
quantify the scaling exponent, a for the different experimental conditions following
the procedure given in Linkenkaer-Hansen et al. (2001).

3.3.1 Empirical Mode Decomposition (EMD)

EMD is a decomposition method for non-stationary and nonlinear signals (Huang
1998). The EMD technique decomposes a signal into a number of intrinsic mode
functions (IMFs) that represent fast to slow oscillations. The EMD technique has been
elaborated in the Methodology Chapter (Chap. 2) of this book. We have obtained
noise free EEG data for all the electrodes using the EMD technique and used this data
for further analysis and classification of acoustic stimuli induced EEG features.

3.3.2 Wavelet Transform

Wavelet transform (WT) forms a general mathematical tool for signal processing
with many applications in EEG data analysis (Selesnick et al. 2005; Dimoulas et al.
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2007; Hazarika et al. 1997a, b). The amplitude envelope of the different frequency
rhythms were obtained using the above technique for ‘before music’, ‘with music’
as well as ‘without music’ conditions in the two different frontal lobes i.e. F3 (left)
for Chayanat and F4 (right) for Darbari.

3.3.3 Detrended Fluctuation Analysis (DFA)

Earlier work has shown the importance of frontal electrodes in case of processing of
emotions. So, we chose to study the variation of scaling exponent corresponding to
various frequency rhythms in the two frontal electrodes while listening to music of
contrast emotions. It has now been known that the human brain is obviously a
complex nonlinear system (Hwa and Ferree 2002; Ferree and Hwa 2003; Lee et al.
2002; Peng et al. 1995). The scalp EEG arises from a large number of neurons
whose interactions are generally nonlinear (Linkenkaer-Hansen et al. 2001) and
thus they can generate fluctuations that are not best described by linear decom-
position (Ferree and Hwa 2002). On the other hand, the classical nonlinear
dynamics method such as correlation dimension and Lyapunov exponents are very
sensitive to noise and require the stationary condition, while EEG signals often are
highly non-stationary (Lee et al. 2002). Chaos analysis based on the assumption of
low-dimensional attractors has also been applied to qualify the nonlinear behavior
of the EEG, but in fact, the underlying neural populations are unlikely to obey
entirely low-dimensional dynamics (Ferree and Hwa 2002). In our study, DFA
technique has been applied to discuss the scaling behavior of the fluctuations in the
amplitude envelope of alpha, theta and gamma frequencies while listening to
emotional music.

DFA has been developed for quantifying correlation properties in non-stationary
signals (Peng et al. 1995), e.g., in physiological time series, because long-range
correlations can also come from the artifacts of the time series data. The amplitude
envelope of the different frequency rhythms obtained from DWT technique elab-
orated above has been used to compute the scaling exponent using DFA. DFA
technique was applied following the NBT algorithm used in Hardstone et al.
(2012). The procedure to compute DFA has been elaborated in chapter 2 of this
book. The FD values were computed from DDFA = 3 − a for all the frequency
rhythms in F3 and F4 electrodes in all the experimental conditions.

3.4 Results and Discussion

The amplitude envelope of alpha frequency rhythm corresponding to F3 electrode
for the three experimental conditions has been shown in a representative Fig. 3.2
for a particular subject.

58 3 Emotions from Hindustani Classical Music: An EEG Based Study …



DFA was applied on the extracted amplitude envelopes on a moving window
basis with a window size of 22s taking an overlap of 50% between the windows.
A single scaling exponent a was obtained corresponding to each window of 22 s.
The total duration of the musical clip was 220 s; hence the window size of 22s was
chosen to facilitate ten values of scaling exponents within the total recording period
of “with music” and “after music” conditions.

A representative scaling plot computed from the amplitude envelope of alpha
frequency rhythm shown for the electrodes F3 and F4, has been shown in Figs. 3.3
and 3.4 for all the experimental conditions.

Fig. 3.2 Amplitude envelope of alpha wave in F3 for (i) before music (ii) with Chayanat and
(iii) after Chayanat

Fig. 3.3 a–c: Scaling plot of alpha wave of F3 electrode in the three experimental conditions

Fig. 3.4 a–c: Scaling plot of alpha wave of F4 electrode in the three experimental conditions
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Fractal dimension was computed against the EEG channels F3 and F4 for alpha,
theta and gamma frequency rhythms using Eq. (4). We have observed earlier
(Sanyal et al. 2013) that the alpha frequency in the frontal electrodes was low in the
odd electrodes for raga Chayanat (happy) and low in the even electrodes for raga
Darbari (sad). The FD values of the ‘after the withdrawal of music’ tend to be lower
than the ‘with music’ condition. Due to multivariable data, two EEG channels were
selected from the left and right hemispheres to simplify further investigation. Left
and right FD values, which revealed significant patterns, are shown in Figs. 3.5, 3.6
and 3.7 for both ‘with music’ and ‘after the withdrawal of music’ conditions in case
of alpha, theta and gamma frequency rhythms. The plot for the variation of the FD
in the latter case was done for 220 s in the ‘without music’ condition. For com-
parison they are drawn in the same time scale. The figures depict the FD values of
the alpha, theta and gamma rhythms in time intervals of 22 s. Since both the music
specimens are of 220 s duration, EEG was continued for another 220 s after the
withdrawal of music. The error bars in all the plots represent the SD values com-
puted for different time windows in each experimental condition.

The sole objective was to see how long the memory of the former state (i.e. that
particular music) remains after its withdrawal. It is observed that in Chayanat, FD of
the alpha at F3 shows high complexity in the neural processing in different time
regions, depicting high arousal for happy music. After its withdrawal, in the next
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Fig. 3.5 a Variation of FD with time of alpha frequencies of F3 for Chayanat and after its
removal. b Variation of FD with time of alpha frequencies of F4 for Darbari and after its removal
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220 s, the FD of alpha remains high up to 120 s and then falls, thereby showing
retention of the emotion of Chayanat for 120 s. In the case of Darbari also, FD of
the alpha at F4 shows high complexity in the neural processing in different time
regions depicting high arousal for sad music. After its withdrawal, in the next 220 s,
the FD of alpha remains high up to 77 s and then falls, thereby depicting retention
of the emotion of Darbari for 77 s. In case of theta frequency rhythms, the arousal
effects are not so much prominent, though the left frontal lobe i.e. F3 shows high
complexity till 77 s for Chayanat and then decays. But in F4, neural complexity of
theta rhythm decreases roughly 33s after the removal of Darbari. In case of gamma
frequency rhythm, we failed to find any such residual arousal effects as is evident
from Fig. 3.7. The variation of FD values after the removal of Chayanat and
Darbari corresponding to gamma frequency rhythm in both the left and right
hemisphere is absolutely random and is unable to decipher any conclusive result.

Rigorous analysis of the FD and alpha frequency data obtained from our
experiment for both the music clips in ‘with music’ and ‘without music’ condition
reveals that the Fractal Dimension (FD) values of alpha frequency increase and
hence complexity increases in “with music” condition (for both clips) and decreases
in “after music” condition. The average FD value of alpha for ‘after music’
(Darbari) is greater than that of Chayanat as shown in Table 3.1. This clearly
indicates retention of the previous state of brain and eventually leads to some
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Fig. 3.6 a Variations of FD with time of theta frequencies of F3 for Chayanat and after its
removal. b Variation of FD with time of theta frequencies of F4 for Darbari and after its removal
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evidence of hysteresis. In case of theta and gamma waves the change of FD value
was insignificant as is evident from the values given in Table 3.1. ANOVA (Miller
2004) tests were performed in the three frequency domains for the three experi-
mental conditions i.e. ‘before music’, ‘with music’ and ‘after music’ for both the
electrodes. Table 3.2 reports the ANOVA parameters for the two electrodes cor-
responding to alpha, theta and gamma waves. The significant value was set to
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Fig. 3.7 a Variation of FD with time of gamma frequencies of F3 for Chayanat and after its
removal. b Variation of FD with time of gamma frequencies of F4 for Darbari and after its removal

Table 3.1 The average FD and the SD value of alpha wave for different conditions

Alpha wave Before
Music

With
Chayanat

After
Chayanat

With
Darbari

After
Darbari

mean FD 1.3884 2.1059 1.6828 2.3018 1.9278

SD 0.2024 0.3958 0.4585 0.3575 0.2805

Theta wave

mean FD 2.2257 2.332 2.3734 2.3546 2.3193

SD 0.1359 0.0715 0.0846 0.0823 0.1028

Gamma
wave

mean FD 2.2232 2.240 2.1212 2.1510 2.2372

SD 0.0464 0.0797 0.0831 0.0868 0.1088
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p = 0.05 in One Way ANOVA performed here. The ANOVA results are found to
be significant only for alpha frequency rhythms for both the electrodes. For gamma
and theta frequencies, ANOVA tests yielded a value of p > 0.05 which can be
considered as insignificant, hence the average graph is plotted only for alpha fre-
quency range. Also, the variation among the means in case of alpha rhythm was
found to be significantly greater than what is expected by chance, even at 95%
confidence level. All tests for ANOVA were performed in the SPSS software
package for Windows (Coakes and Steed 2009).

Post hoc analysis test in the form of Tukey-Kramer multiple comparison test was
performed for the alpha frequency domain which yielded a significant value of
p < 0.05. The results for F3 and F4 electrode are given below in Table 3.3. We see
that in the odd electrode, F3, significance level is maximum for comparison between
‘before Chayanat’ and ‘with Chayanat’ condition and is minimum for both the
without music condition. In the even electrode F4, maximum significance is found in
the ‘with Darbari’ and ‘after Darbari’ condition. Although the ANOVA results
indicate that in case of F3 electrode, the values of “Before Music” and “After Music”
are not significant, we may mention the fact that our study concerns with retention of
emotion only after withdrawal, which we emphasize as our primary goal.

The fractal dimension analysis of alpha frequency rhythms might provide a
simple summary of the complex dynamics across physiologically meaningful time
scales. This is manifested in Fig. 3.8, from where we can see that after removal of
both types of stimuli; FD values remain high for a certain time duration and then
decays off. Using nonlinear methods such as DFA can lead to additionally useful
information such as a hysteresis effect in the case of neurons triggered by audio
stimuli, viz. emotive music. The change of average FD values obtained from theta
and gamma frequencies was not very much significant as compared to alpha fre-
quency range.

Table 3.3 Tukey-Kramer multiple comparison test results

Comparison Mean
difference

q p-value

F3 electrode (alpha waves)

Before Music vs With Chayanat −0.7175 6.153 Highly
significant

p < 0.001

Before Music versus After Chayanat −0.2944 2.525 Not significant p > 0.05

With Chayanat versus After
Chayanat

0.4231 3.628 Significant p < 0.05

F4 electrode (alpha waves)

Before Music versus With Darbari 0.0854 1.022 Not significant p > 0.05

Before Music versus After Darbari 0.4594 5.492 Significant p < 0.05

With Darbari versus After Darbari 0.3739 4.471 Highly
Significant

p < 0.01
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The second experiment mainly focuses on the quantification and categorization
of emotions from Hindustani music and hence we studied the response to music
clips over the five electrodes namely F3, F4, F7, F8 and Fz.

The following table (Table 3.4) gives the DFA scaling exponent values for
Bahar and Mian ki Malhar.

The following Fig. 3.9 shows the variation in alpha and theta spectral power
values as well as the scaling exponents in the 2nd experiment for the five frontal
electrodes.

The alpha power as well as the alpha scaling exponent decreases for the 1st music
(i.e. Bahar or happy music) in the odd electrodes F3 and F7. This goes in line with
our previous knowledge (Banerjee et al. 2016), which says that the processing of
happy emotion takes place in the left hemisphere of the brain. As is found in previous
studies decrease in alpha power corresponds to higher arousal based activities, we
have also found here that the dip in alpha power corresponds to a dip in complexity
of neural activities. In case of the 2nd music (i.e. Mia ki Malhar or sad music), there
is also a dip in spectral alpha power but the dip is not as significant as in the case of
1st music. But the scaling exponent or the complexity shows a rise corresponding to
2nd music. Interestingly, the even electrodes F4 and F8 follow almost the same
pattern as the odd ones, with the alpha scaling exponents showing a sharp dip
corresponding to the 1st music, while it rises for the 2nd music. It may be inferred
loosely that the emotional content or the emotion eliciting capacity of the 2nd music
may not be as strong as that of the 1st music. But the alpha spectral power values
form a prominent dip for the 2nd music as compared to the 1st music for the even
electrodes. In this case the behavior of the alpha spectral power values goes in
opposition to the scaling exponent values. In the frontal midline electrode, i.e. Fz, the
alpha power dips for both the music and again increases after the removal of music.
The alpha scaling exponent does not vary significantly in the Fz electrode
throughout the experimental period. The theta spectral power increases more for the
2nd music, also the dip in theta scaling exponent is more in case of the 2nd music.
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(b(i) Variation of spectral power for F3 electrode  (b(ii)) Variation of scaling exponent for 
F3 electrode 

 (c(i) Variation of spectral power for F4 electrode  (c(ii)) Variation of scaling exponent for 
F4 electrode 

 (d(i) Variation of spectral power for F7 electrode (d(ii)) Variation of scaling exponent for 
F7 electrode 

(e(i)) Variation of spectral power for F8 electrode       (e(ii)) Variation of scaling exponent for 
F8 electrode 

0

0.1

0.2

0.5

0.6

0.7

0.8

1 2 3 4 5 6 7 1 2 3 4 5 6 7

-0.05

0.05

0.15

0.25

0.5

0.7

0.9

0.0

0.1

0.1

0.2

0.2

0.5

0.7

0.9

0
0.05

0.1
0.15

0.2
0.25

0.5

0.7

0.9

1 2 3 4 5 6 7 1 2 3 4 5 6 7

1 2 3 4 5 6 7 1 2 3 4 5 6 7

1 2 3 4 5 6 7 1 2 3 4 5 6 7

 (a(i)) Variation of spectral power for Fz electrode  (a(ii)) Variation of scaling exponent for
 Fz electrode 

0

0.1

0.2

0.5

0.6

0.7

0.8

1 2 3 4 5 6 7 1 2 3 4 5 6 7

Theta

Alpha

Theta

Alpha

Theta

Alpha

Theta

Alpha

Fig. 3.9 a (i) Variation of spectral power for Fz electrode a (ii) Variation of scaling exponent for
Fz electrode. b (i) Variation of spectral power for F3 electrode b (ii) Variation of scaling exponent
for F3 electrode. c (i) Variation of spectral power for F4 electrode c (ii) Variation of scaling
exponent for F4 electrode. d (i) Variation of spectral power for F7 electrode d (ii) Variation of
scaling exponent for F7 electrode. e (i) Variation of spectral power for F8 electrode e (ii) Variation
of scaling exponent for F8 electrode

3.4 Results and Discussion 67



In the odd electrodes F3 and F7, the theta spectral power again increases for both the
music and then decreases after the removal of musical stimuli, while the theta scaling
exponent shows a significant dip for the 2nd music while it increases to a small
extent for the 1st music. This result is an interesting one, as the subjects may have
found the 2nd music (conventionally a sad one) to be more pleasant than that of the
1st. In the even electrodes, F4 and F8, the theta spectral power again increases, to a
greater extent for the 2nd music, to a smaller extent for the 2nd music. The theta
scaling exponent shows a sharp dip for the 2nd music, while it increases a little for
the 1st one. ANOVA test revealed significant value in the alpha frequency domain
during Part 3 and 4 (p = 0.048811), for the 2nd music also in Part 5 and Part 6
(p = 0.0319). All tests were performed in SPSS Package for Windows.

To summarize, in this work we have described how the DFA method can be
applied to reveal the complexity in the alpha, theta and gamma frequency rhythms
extracted from EEG data while listening to emotional music and after the with-
drawal of music. The work presents new data regarding neuro-cognitive functioning
of the brain in the alpha and theta frequency domain in response to musical stimuli.
Most works in this genre have made the use of linear techniques and are focused
mainly in the alpha and theta frequency domains. The linear techniques fail to
decipher the finer level of information embedded in the data that non-linear
methods succeed to. The use of a robust non linear technique like DFA has helped
us to identify the finer intricate details of complex EEG data both with and without
music. We have tried to compare the data obtained from two sets of Hindustani
Raga music which are conventionally known to elicit two contrasting emotions
(happy/joy and sorrow/pathos). Our study indicates that using nonlinear methods
such as DFA can lead to additionally useful information such as a hysteresis effect
in the case of neurons triggered by audio stimuli, viz. emotive music.

3.5 Conclusion

In this work, for the first time rigorous non-linear EEG signal processing approach
has been taken to estimate the emotional arousal based responses to different ragas
of Hindustani Classical music. That Hindustani music is an elicitor of a variety of
emotional responses is well known—even a single raga doesn’t always convey a
single emotion but a variety of emotional responses during the course of rendition
of the raga. The neural response to Hindustani raga music poses to be an inter-
esting piece of study as the way in which the brain interprets this genre music is still
a mysterious affair and this work, for the first time tries to get an overview of the
response. The overall conclusions from this study have been listed as under:

1. Fractal dimension (DFA) analysis of the alpha frequency rhythm, which is the
manifestation of complexity in the neuron activity show that arousal activities
were enhanced for some time (*120 s for Chayanat raga while *77 s in case
of Darbari raga) in both the left and right frontal lobes corresponding to happy
and sad music respectively.
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2. The variation of degree of complexity shows a clear retention of that particular
emotion even after the withdrawal of music. The left frontal lobe being more
active in case of raga Chayanat and the right frontal lobe being more active in
case of raga Darbari may point in the direction of valence lateralization of
emotional appraisal even in case of Hindustani music.

3. A hysteresis-like phenomenon was observed in case of emotions induced by
Hindustani music stimuli. The alpha complexity remained higher both in case of
odd and even electrode for some time, even after the music stimuli was removed
and the participants were in resting state.

4. The obvious fluctuation in the brain arousal states (indicated by sudden dips and
spikes in FD values) may be an indication that Hindustani classical music is
ambiguous in nature: i.e. there is no fixed emotion and that the emotional
content varies even during the course of a particular rendition. This may cause
the periodic fluctuations of alpha/theta FD values when the listeners were lis-
tening to the two ragas of contrast emotion.

5. In case of sad music (raga Mian ki Malhar), the results show considerable
ambiguity in respect to conventional wisdom and the results that we obtained.
This inspires us to revisit and redefine the concept of sadness again.

6. Fractal analysis of the alpha frequency band further hints that in case of
pathos/sad emotion, retention time is more as is evident from the FD values.
This data is new and is of extreme importance in the context of recent research
interest on enhancement of memory with music.

7. Further, the FD values corresponding to “during music” and “after music”
conditions are highly significant as supported by one way ANOVA test and
subsequent post hoc analysis. This observation speaks in favor of the fact that
hysteresis like effect may be present in case of music induced emotions.

The present investigation and its findings demand that more rigorous analysis of
large samples of EEG data with different types of music needs to be done to frame a
robust algorithm for acquiring a thorough knowledge of music processing in the
brain, particularly the neuro-dynamical behavior of memory retention. With this
cue, we move on to the next Chapter which deals with the creativity and perception
associated when a professional artist imagines as well as listens to a raga.
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Chapter 4
Musical Perception and Visual Imagery:
Do Musicians visualize while
Performing?

Melody and harmony are like lines and colors in pictures.
—Rabindranath Tagore

4.1 Introduction

Music and human brain are two of the most beautiful creations found in this nature.
Music has its power to evoke many shades of different emotions in the human brain.
For the past few decades, researchers are trying to gather in depth knowledge about
how an external music stimulus is perceived in brain and then emotions are elicited
as a result. Due to the advancement of modern technology and high speed com-
puting, this area of research has taken a new dimension. After the development of
neuro bio-sensors like EEG, fMRI, detailed quantitative study of the brain state
change has been possible while the subjects listened to various types of music
stimuli. Now, if we look at the other face of the coin, the first question that comes to
our mind is “What about the musicians who create/compose that music we listen to
everyday?” This thought eventually evokes a number of questions. The most fas-
cinating one among all of them is: What does a musician think at the precise
moment when he/she creates a particular music? People are striving to get an
answer to this question for years, but until the discoveries of neuro sensors, there
was no scientific way which could reveal the picture inside the human brain in the
exact moment of creating something artistic.

Issues of artistic creativity might involve too many variable parameters such as
personality, inherent artistic ability, mood etc. and it becomes very difficult to tackle
all these parameters simultaneously. But, with the onset of neurocognitive science
we have robust neuro-imaging techniques with which we look forward to have an
accurate insight of brain response while an artist is mentally creating as well as
listening to a particular musical composition (raga in our case). Simply put, a raga
in Hindustani Classical music is a musical theme created by choosing a specific set
of notes from within an octave. Different sets of notes evoke different moods and
inspire different feelings (Balkwill and Thompson 1999). The literature regarding
perception and imagination of a musical stimuli involving Hindustani raga music is
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quite scarce, though it is quite rich and diverse when it comes to the variety of
emotions induced by it (Wieczorkowska et al. 2010; Mathur et al. 2015; Banerjee
et al. 2016). The Electroencephalography (EEG) is a neuro scientific tool which
gives precise measurement of the timing of the response because of its high tem-
poral resolution, which is an advantage of EEG over PET (Positron Emission
Tomography) or fMRI (functional Magnetic Resonance Imaging). A number of
EEG studies have been conducted with the help of power spectral analysis to assess
musical emotions (Bhattacharya and Petsche 2001; Schmidt and Trainor 2001;
Sammler et al. 2007; Davidson 1988). These studies mostly speak in favor of the
lateralization theory when it comes to the processing of positive and negative
emotions. Most of the power spectral studies show that activity in the alpha fre-
quency band is negatively related to the activity of the cortex, such that larger alpha
frequency values are related to lower activity in the cortical areas of the brain, while
lower alpha frequencies are associated with higher activity in the cortical areas
(Schmidt and Trainor 2001; Davidson 1988). It has also been shown that pleasant
music would elicit an increase of Fm theta power (Sammler et al. 2007). Most of the
earlier works make use of coherence properties between the lobes using linear
power spectral analysis in various frequency ranges to assess the amount of
interdependence. Coherence, a parameter obtained from spectral analysis of the
EEG, is the normalized cross-spectrum of two signals and reflects the correlation
between them with respect to frequency. Applied to EEG analysis, the value of
coherence lies in its providing data on the relationships between the electric
oscillations recorded from two locations on the skull (Petsche et al. 1993). While
listening to music, degrees of the gamma band synchrony over distributed cortical
areas were found to be significantly higher in musicians than non-musicians
(Bhattacharya and Petsche 2001). Musical training can have strong effects on the
structural and cognitive development of brain (Pinho et al. 2014; Schneider et al.
2002; Bengtsson et al. 2005; Kleber et al. 2010; Pantev and Herholz 2011; Hyde
et al. 2009; Schlaug et al. 2005).

In this work, we endeavored to study the neuro-dynamical effect of mentally
composing as well as listening to a ‘raga’ taking the help from two experienced
performers of Hindustani classical music. No previous study, to the best of our
knowledge, has rigorously analyzed the non-linear aspects of EEG signal to study
creative musical imagery on trained musicians with auditory stimuli (in our case—a
sample of Hindustani raga music).

4.1.1 Creativity in Musical Performances: Brain Response

Creativity in musical performances is gaining rapid importance as a field of research
in recent years; the primary question being how to assess creative correlates during
a performance. The primary hitch in these approaches being the proper definition of
creativity. A general definition is given by Stein (1953) which says creativity is the
production of something both novel and useful. The literature on musical creativity
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is quite large with its facets ranging from musicology (Richardson and Saffle 1983),
psychology (Simonton 2000; Byrne et al. 2003), cognitive science (Dietrich 2004)
and art history (Sloboda 1988); but it is the cognitive modalities of creative
improvisation during a performance that is currently drawing huge interest.

Musical improvisation is by far the most challenging task that an artist has to
undertake, requiring the real-time generation and production of novel melodic and
rhythmic sequences in line with an ongoing musical performance. Thus, under-
standing musical improvisation is crucial to understand how in general creative
processes are conducted in human being.

Assessment of creative thinking using EEG based studies has been one of the
predominant issues of neuroscience that provided contradictory results in the past.
A group of researchers in favor of the lateral dominance have, come to the con-
clusion that the right hemisphere and its regions are specialized for creative tasking
(Bhattacharya and Petsche 2005; Bowden and Jung-Beeman 2003; Mihov et al.
2010), while a number of studies have come up with contradictory evidence
(Martindale et al. 1984; Razumnikova and Bryzgalov 2006). Although, it seems a
bit impractical to assume that only the right hemisphere is involved in the process of
creative thinking as there is stupendous amount of correlation among the hemi-
spheres involved in different perceptual and cognitive tasks (Chiarello and Maxfield
1996). A recent neuro-imaging study (Bashwiner et al. 2016) reports increased
surface area for subjects reporting high levels of musical creativity which suggests
that domain-specific musical expertise, default-mode cognitive processing style,
and intensity of emotional experience might all coordinate to motivate and facilitate
the drive to create music. Earlier brain-imaging studies pointed the importance of
Pre-Frontal cortex (PFC) in case of creative thinking (Jung et al. 2013; Beaty et al.
2014), while a study on Jazz musicians (Limb and Braun 2008) reveals that
improvisation (compared to production of over-learned musical sequences) was
consistently characterized by a dissociated pattern of activity in the prefrontal
cortex.

4.1.2 Improvisation in Hindustani Music

As we focus our work mainly around the genre of Indian classical music, we need
to know what is usually meant by “musical improvisation” in Hindustani music
(HM). Till date, no study tries to harvest the immense potential that a Hindustani
musician has to offer when it comes to the study of creativity in musical perfor-
mances. In contrast to western music, our HM imposes no hard and fast restriction
of composed melodies on the performers while performing a “Raga”. This genre of
music offers the musicians an infinite canvas for improvising within the structured
framework of a raga, hence every musician in this genre is a composer as well as a
performer simultaneously. A musician while performing expresses the raga
according to his mood. Thus even if one particular artist sings or plays the same
Raga and same Bandish twice, certainly there will be some dissimilarities in

4.1 Introduction 75



between the two renditions. These differences which make the two renditions of the
same raga unique in their own way are generally termed as improvisations. Unlike
symphony or a concerto, Raga is unpredictable; it is eternally blooming, blos-
soming out into new and vivid forms during each and every performance which is
the essence of “improvisation” (McNeil 2007).

4.1.3 Musicians and Visual Imagery: Claims and Beliefs

The images which we see not through our eyes, but through our mind are what we
call “visual imagery”. A person who is having a visual imagery is believed to
process certain information in his brain as though he perceives some stimuli like
sight, sound, smell etc. when none of these stimuli are actually present. Study of
this visual imagery is drawing attention from researchers of various disciplines like
psychology, cognitive science and recently neuroscience. This visual imagery is
closely linked with music creation and perception too.

Over the years the performers of Hindustani raga music insist that while per-
forming or composing a musical piece, they have a visual imagery of that particular
composition/raga in their mind which helps them to improvise and reach to the
audience better. According to claims these images can vary from an artist to another
for a particular raga or composition. Also the nature of imagery may vary for an
artist over time but, there is one certainty that some sort of visual imagery is always
present in their mind. These claims can now be verified scientifically after the
invention of bio-sensors like EEG, fMRI etc. Not much scientific studies have been
found till date which could reflect some lights in this domain.

4.1.4 Musical Imagination and the Role of Occipital Lobe

From previous knowledge, it is now a well accepted fact that the frontal lobe of our
brain is usually associated with reasoning, cognitive processing and expressive
language; the temporal lobe is important for interpreting sounds and the language
we hear while the occipital lobe is important for interpreting visual stimuli and
information processing (Mellet et al. 1995, 1996, 1998; Kosslyn 1996). Generally,
there is strong evidence that perception and imagination of music share common
processes in the brain. In his recent review of the literature on auditory imagery,
Hubbard (2010) concludes that “auditory imagery preserves many structural and
temporal properties of auditory stimuli” and “involves many of the same brain areas
as auditory perception.” The same is also found by Schaefer (2011) whose “most
important conclusion is that there is a substantial amount of overlap between the
two tasks (music perception and imagery), and that internally creating a perceptual
experience uses functionalities of normal perception.” A number of studies dealing
with verbal instructions also provide report that the so-called dorsal route known to
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process visuospatial features can be recruited even by auditory verbal stimuli
(Mellet et al. 1996, 1998, 2000). Also, in addition to higher order visual areas,
mental imagery shares common brain areas with other major cognitive functions,
such as language, memory and it reflects the high degree of interaction between
mental imagery and other cognitive functions (Mellet et al. 1998). The precise route
and nature of visual imagery remains to be determined though it has been suggested
by previous researchers that musical stimuli may be more effective in generating
visual imagery.

4.1.5 Use of MFDFA and MFDXA to Study
Musical Imagination

The brain is said to be the most complex structure found in human body and the
EEG signals generated from brain are essentially non-stationery and scale varying
in nature (Chen et al. 2002). There has been increasing evidence that spontaneous
brain responses, as recorded from single neuron to millions of neurons, is not
necessarily random; on the contrary, it could be better characterized by persistent
long-range temporal correlations and scale-free dynamics (Kantelhardt et al. 2001).
Different scaling exponents can be revealed for many interwoven fractal subsets of
the time series. So, a multifractal analysis of the data would be more appropriate
than a single scaling exponent as is obtained from Detrended Fluctuation Analysis
(DFA) (Peng et al. 1995).

As mentioned in Sect. 3.1.4, we identified three different lobes of the brain
namely frontal, temporal and occipital whose functions mostly concur with our
work. We therefore chose one pair of electrodes from each of these lobes (F3/F4
from frontal, T3/T4 from temporal O1/O2 from occipital) to study the brain elec-
trical response of the artist while he is creating as well as listening to a raga of his
choice. The non stationary time signals of EEG generated from different electrodes
are best analyzed with the MFDFA technique (Maity et al. 2015). Multifractal
Detrended Fluctuation Analysis of EEG time series helps us to quantify the arousal
based effects in each of the chosen lobes during musical imagery and perception.
Next, the signals from the two different groups of electrodes are analyzed with the
help of MFDXA technique to assess the inter lobe as well as intra lobe cross
correlation from EEG recordings of the same person during creating and perceiving
music. Then using Wavelet Transform (Akin et al. 2001) technique, the EEG
signals obtained from two different lobes of brain were separated into alpha and
theta frequency rhythms and again analyzed with the help of MFDXA technique.
This analysis can unveil the higher-dimensional multifractal measures of two
cross-correlated signals and can provide a quantitative parameter depicting ‘degree
of cross-correlation’. The resultant cross correlation exponent gives the degree or
the amount by which the two signals are correlated. It is worth mentioning here, that
though a number of previous works referred here rely on fMRI or PET data, robust
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non-linear techniques such as MFDFA and MFDXA can only be applied on EEG
time series data obtained from different electrodes in the brain.

When a musician is listening and also imaging a certain raga in their mind, they
claim that the role of musical expectancy as well as the memory of the just listened
phrases and the possible connection to this with immediately following expected
musical events is higher. This may lead to strong correlations among specific
frequency bands in the specific lobes where the processing of musical imagery and
perception takes place. The complexity of the EEG time series obtained from these
particular lobes may also be suitably affected when the processing of musical
imagery or perception is taking place. This was the main objective behind this
work, where we quantitatively analyze the arousal based effects in each lobe during
creative composition as well as perception of a musical piece, and also analyze the
degree of cross-correlation between different lobes of the brain during these
experimental conditions. What we look forward to in this paper is to conjure a
paradigm in which we can identify the lobes of brain mostly involved during
perception and mental improvisation (or imagination) of a raga piece.

4.2 Experimental Details

4.2.1 Subjects Summary

Twomale professional performers ofHindustanimusic (age between 45 and 50 years,
average body weight *60 kg) voluntarily participated in the study. One of them is a
renowned vocalist and the other an eminent sitar player, both of them performing in
stage for more than 30 years. The two performers were chosen keeping in mind their
difference in musical pedagogy which means their mode of musical training is dif-
ferent, so we can assume that their mode of expression and creative improvisation is
different. Both the subjects are researchers associated with Sir C.V. Raman Centre for
Physics and Music, Jadavpur University, Kolkata, India. Non musicians were not
involved in this study as creative imagery of a Hindustani raga can only be perceived
by an experienced musician. The experiments were performed at the Sir C.V. Raman
Centre for Physics and Music, Jadavpur University, Kolkata. The experiment was
conducted in the afternoon with a normal diet in a normally conditioned room sitting
on a comfortable chair and performed as per the guidelines of the Institutional Ethics
Committee. All subjects gave written consent before participating in the study,
approved by the Ethics Committee of Jadavpur University, Kolkata.

4.2.2 Choice of Raga: Jayjayanti

Both the musicians (henceforth referred to as Subject 1 and Subject 2) were asked
to choose a common raga and the instruction for them was to imagine the alaap or
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introductory part of the chosen raga as they would have done during any perfor-
mance. Both of the participants chose raga Jayjayanti for this particular study.
Raga Jayjayanti follows the characteristics of “Khamaj Thaat” and conventionally
said to evoke a happy mood in listeners as well as performers. Following the
prescription of the performers, both of them were asked to bring a 3 min recording
of their own recital of the same music sample (a 3 min alaap of raga Jayjayanti).
The alaap portion of each raga was chosen as the inherent form of the entire raga is
essentially established and identified in this part. The alaap part gradually reveals
the mood of the raga using all the notes used in that particular raga and allowed
transitions between them with proper distribution over time. It reflects the tem-
perament, creativity and uniqueness of musical training of a musician.

4.2.3 Experimental Protocol

Each of the chosen sound signals was digitized at the sample rate of 44.1 kHz, 16
bit resolution and in a mono channel. Both the signals were normalized to within
0 dB and hence intensity or loudness and attack cue are not being considered.
A sound system (Logitech R_Z-4 speakers) with high S/N ratio was used in the
measurement room for giving music input to the subjects. Then, each subject was
prepared with an EEG recording cap with 19 electrodes (Ag/AgCl sintered ring
electrodes) placed in the international 10/20 system.

Figure 4.1 depicts the positions of the electrodes. Impedances were checked
below 5 kX. The ear electrodes A1 and A2 linked together have been used as the
reference electrodes. The same reference electrode is used for all the channels. The
forehead electrode, FPZ has been used as the ground electrode. The EEG recording
system (Recorders and Medicare Systems) was operated at 256 samples/s recording
on customized software of RMS. The data was band-pass-filtered between 0 and
50 Hz to remove DC drifts. Each subject was seated comfortably in a relaxed

Fig. 4.1 The lobes and
electrodes chosen for our
analysis

4.2 Experimental Details 79



condition in a chair in a shielded measurement cabin. They were also asked to close
their eyes. A sound system (Logitech R_Z-4 speakers) with high S/N ratio was set
up in the measurement room that received input from outside the cabin. After
initialization, a 20 min recording period was started, and the following protocol was
followed:

1. 2 min 30 s “Before think”
2. 2 min 30 s “While thinking raga Jayjayanti”
3. 2 min 30 s “After think”
4. 5 min resting period
5. 2 min 30 s “Before Listen”
6. 2 min 30 s “With listen raga Jayjayanti”
7. 2 min 30 s “After Listen”

4.3 Methodology

Noise free EEG data were obtained for all the electrodes using the EMD technique
as described in Chap. 2 and these data were used for further analysis and classi-
fication of acoustic stimuli induced EEG features. In order to eliminate all fre-
quencies outside the range of interest, data was filtered within a range of 0.5–50 Hz
using a FIR filter. The amplitude envelope of the alpha (8–13 Hz), theta (4–7 Hz)
and gamma (30–50 Hz) frequency range was obtained using wavelet transform
technique. Data was extracted for these electrodes according to the time period
given in the Experimental protocol section i.e. for Experimental conditions 1–7.

MFDFA was performed on the obtained amplitude envelope to calculate the
Multifractal spectral width (W) for the different experimental conditions as well as
MF-DXA technique was applied to analyze the degree of cross-correlation between
different lobes of the brain during these experimental conditions.

4.4 Results and Discussion

The EEG data extracted from each electrode was filtered with the help of EMD
technique. The entire analysis was done in two steps. In the first part, multifractal
analysis was performed on the noise reduced time series data obtained for the
chosen six electrodes following the methodology mentioned above. The qth order
fluctuation function Fq(s) for 10 points of q in between −5 to +5 was obtained. The
time series values of both the waves have been randomly shuffled to destroy all the
long range correlations present in the data, and what remained is a totally uncor-
related sequence. The regression plot of ln (Fq(s)) versus ln(s) averaged for dif-
ferent values of q (q = −3 to q = +3 is shown in the plot for scales varying from 16
to 1024) for a sample electrode F3 is given in Fig. 4.2a–b for the different
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experimental conditions. The slope of the best fit line thus obtained from ln(Fq(s))
versus ln(s) plot gives the values of h(q). It is seen from Fig. 4.2 that the shuffled
values of the EEG time series data do not change with the values of q, and thus has
a fixed slope h(q) = H, which is the conventional Hurst exponent for monofractal
time series.

A representative figure for variation of h (q) with q of a person corresponding to
“imagination” and “listening” part has been shown in Fig. 4.3. It is clearly evident
from the figures that the values of h (q) decreases with the increase of q, showing
multifractal scaling in all the EEG time signals. For monofractal signals, a single
value of Hurst exponent is obtained corresponding to different values of q, like the
shuffled value of h (q) as seen from the figures, where h(q) remains almost constant
with the change of q. The amount of multifractality can be determined quantita-
tively in each of the windows of each signal from the width of the multifractal
spectrum [f(a) vs a]. The shuffled width obtained, is found to be always smaller
than the original width of the signal (Fig. 4.4). This ascertains the fact that

(a) (b)

Fig. 4.2 a ln(Fq(s)) versus ln(s) for F3 b ln(Fq(s)) versus ln(s) for shuffled F3

(a) (b)

Fig. 4.3 a Variation of h(q) versus q for “imagination” in F3 electrode. b Variation of h(q) versus
q for “listening” in F3 electrode
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multifractality in EEG waves is both due to long range correlations as well as broad
probability density function. In the ideal case, the shuffled data should behave as a
monofractal signal with no multifractal scaling. Thus, in the plot of Hurst exponent,
it is seen that the shuffled values of h (q) does not change in general with q, and in
the f(a) vs. a plot, the shuffled series will show a peak at a0 close to 0.5. For the
sake of comparison, the multifractal spectrum for a single person in the three
experimental conditions (“before”, “during” and “after thinking”) corresponding to
F3 electrode has been plotted in Fig. 4.5.

Tables 4.1, 4.2, 4.3 and 4.4 give the averaged multifractal spectral width values
computed for Subject 1 and 2 while “imagining” and “listening” to the same raga.
Table 4.1 gives the averaged multifractal spectral width while Subject 1 is thinking
the raga ‘Jay Jayanti’ for a period of 2 min 30 s while Table 4.2 denotes the values
when the subject is listening to the same raga ‘Jay Jayanti’. Each recording period
was divided into three windows of 45 s each taking an overlap of 50% within each
window; the spectral width was computed for each window. From the values
obtained in the three windows, we obtained a weighted average of spectral width
corresponding to each experimental condition for our analysis and studied the
variation of spectral width corresponding to each condition shown in the following
tables. Tables 4.3 and 4.4 represent the same for Subject 2. The SD values com-
puted for each condition have also been shown in the following tables which give
the variation of complexity values in the six different electrodes while ‘imagining’
and ‘listening’ to the raga.

Figures 4.6, 4.7, 4.8 and 4.9 shows graphically the variation of spectral width for
the two musicians while imagining and listening of the raga Jay Jayanti. The error

Fig. 4.4 Original and shuffled multifractal width in F3 electrode
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Fig. 4.5 Variation of multifractal width in F3 electrode for three different conditions

Table 4.1 Variation of multifractal width while imagining raga ‘Jay Jayanti’ for Subject 1

Electrodes Before imagination (BI) During imagination (DI) After imagination (AI)

F3 0.445 ± 0.04 0.705 ± 0.09 0.553 ± 0.07

F4 0.417 ± 0.06 0.626 ± 0.02 0.501 ± 0.04

O1 0.443 ± 0.03 0.693 ± 0.04 0.607 ± 0.03

O2 0.429 ± 0.07 0.625 ± 0.06 0.556 ± 0.05

T3 0.423 ± 0.02 0.418 ± 0.07 0.429 ± 0.06

T4 0.405 ± 0.05 0.410 ± 0.08 0.429 ± 0.05

Table 4.2 Variation of multifractal width while listening to raga ‘Jay Jayanti’ for Subject 1

Electrodes Before listening (BL) During listening (DL) After listening (AL)

F3 0.422 ± 0.05 0.672 ± 0.04 0.570 ± 0.03

F4 0.359 ± 0.06 0.608 ± 0.07 0.513 ± 0.08

O1 0.457 ± 0.08 0.672 ± 0.11 0.531 ± 0.04

O2 0.418 ± 0.07 0.570 ± 0.09 0.492 ± 0.02

T3 0.396 ± 0.03 0.641 ± 0.06 0.461 ± 0.06

T4 0.398 ± 0.02 0.622 ± 0.04 0.451 ± 0.05
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Table 4.4 Variation of multifractal width while listening to raga ‘Jay Jayanti’ for Subject 2

Electrodes Before listening (BL) During listening (DL) After listening (AL)

F3 0.537 ± 0.04 0.881 ± 0.12 0.633 ± 0.04

F4 0.535 ± 0.11 0.753 ± 0.04 0.627 ± 0.03

O1 0.442 ± 0.02 0.646 ± 0.06 0.562 ± 0.03

O2 0.439 ± 0.04 0.632 ± 0.04 0.552 ± 0.02

T3 0.465 ± 0.04 0.770 ± 0.09 0.555 ± 0.04

T4 0.492 ± 0.04 0.703 ± 0.05 0.527 ± 0.03
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Fig. 4.6 Variation of
multifractal width while
imagining raga ‘Jay Jayanti’
for Subject 1

Table 4.3 Variation of multifractal width while imagining raga ‘Jay Jayanti’ for Subject 2

Electrodes Before imagination (BI) During imagination (DI) After imagination (AI)

F3 0.406 ± 0.04 0.704 ± 0.05 0.430 ± 0.02

F4 0.395 ± 0.02 0.595 ± 0.08 0.404 ± 0.03

O1 0.488 ± 0.03 0.671 ± 0.06 0.499 ± 0.03

O2 0.449 ± 0.03 0.621 ± 0.04 0.488 ± 0.03

T3 0.409 ± 0.04 0.410 ± 0.04 0.388 ± 0.04

T4 0.435 ± 0.07 0.435 ± 0.06 0.408 ± 0.04
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Fig. 4.7 Variation of
multifractal width while
listening to raga ‘Jay Jayanti’
for Subject 1
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bars in all the figures denote the SD values computed for that particular experi-
mental condition. The response of each subject was studied individually keeping in
mind personality specific traits which are supposed to be very much predominant in
this study due to differences in school of musical training of the two subjects chosen
here.

A careful investigation of the figures leads to the following interesting obser-
vations. The values of multifractality in general increase for all the electrodes while
imaging the raga Jay Jayanti except for the T3 and T4 electrode, where the spectral
width remains almost the same for both the subjects. This can be attributed to the
fact that temporal lobe is mostly involved in processing of auditory stimuli, since
there is no auditory stimulus involved while the subjects are mentally recreating the
imagery; the temporal electrodes may have remained inert. In contrast, during the
“listening part” we see that both the temporal electrodes (T3 and T4) are strongly
simulated as the complexity increases to a large extent in both the subjects. Another
interesting observation is that the two electrodes in the occipital lobe. i.e. O1 and
O2 show considerable response in both the experimental conditions for the two
performers. Though the increase in complexity is more pronounced in the “during
imagination” part, but the response in “during listening” part is also quite significant
especially for Subject 1. This is quite a gripping observation considering the fact
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Fig. 4.8 Variation of
multifractal width while
imagining raga ‘Jay Jayanti’
for Subject 2
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for Subject 2
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that occipital lobe is primarily known to process visual stimuli (Mellet et al. 1995;
Kosslyn 1996). This result may offer a passive support to the claim made by a
section of musicians that while performing (or listening to) a raga, they have a
visual picture of the raga in their mind. This “visual imagery” may be the cause for
increase of complexity of occipital electrodes during the “imagination” and “lis-
tening” period as found here. The odd electrodes F3, T3 and O1 show much greater
response compared to the even electrodes in both “imagination” and “listening” part
of the raga. This may be due to the fact that raga Jay Jayanti is conventionally
assigned to the positive hemisphere of emotional model (Martinez 2001); and a
number of earlier studies which speak in favor of hemispheric dominance (Schmidt
and Trainor 2001; Sammler et al. 2007; Trainor and Schmidt 2003; de Manzano
and Ullén 2012; Sato and Aoki 2006) claim that left hemisphere is involved in
processing of positive emotions. In the “after imagination” as well as “after lis-
tening” part, the complexity decreases to a large extent for all the electrodes but
does not return to the initial value. This observation is evidence on “hysteresis” of
brain (Banerjee et al. 2016)—the brain has a unique property of retaining musical
memory even after the removal of stimulus. The frontal electrodes have been
known to be associated mainly with cognition in a number of previous experiments;
our results also show that the two frontal electrodes respond significantly both
during musical imagery and listening. But the interesting fact is that no previous
study has focused on the occipital lobe, which has reported remarkable results here.
Both the electrodes O1 and O2 have shown sharp increase in complexity for both
the experimental conditions, also the retention of musical memory is much higher in
these two electrodes.

Next, the cross correlation coefficient is evaluated for all possible combinations
of electrodes during the two experimental conditions. All the data sets were first
transformed to reduce noise in the data. The integrated time series were then
divided to Ns bins where Ns = int (N/s), N is the length of the series. The qth order
detrended covariance Fq(s) was obtained for values of q from −5 to +5 in steps of 1.
Power law scaling of Fq(s) with s is observed for all values of q. Figure 4.10 is a
representative figure which shows the variation of scaling exponent, k(q) with q for
two frontal electrodes F3 and F4 in the “listening” period is displayed. For com-
parison, we have also shown variation of H(q) with q individually for the same two
electrodes F3 and F4 by means of MF-DFA in the same figure. If the scaling
exponent is a constant, the series is monofractal, otherwise it is multifractal. The
plot depicts multifractal behavior of cross-correlated time series as for q = 2 the
cross-correlation scaling exponent k(q) is greater than 0.5 which is an indication of
persistence long-range cross-correlation between the two electrodes. In the same
way, k(q) was evaluated for all the possible combinations. The q-dependence of the
classical multifractal scaling exponent s(q) is depicted in Fig. 4.11 for the elec-
trodes F3 and F4. From Fig. 4.11 we can see s(q) is nonlinearly dependent on q,
which is yet another evidence of multifractality. We also plotted the multifractal
width of the cross correlated signals of F3 and F4 in Fig. 4.12. The presence of
spectral width of cross correlated EEG signals confirms the presence of
multifractality.
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The averaged cross correlation coefficient cx for q = 2 corresponding to the
different experimental conditions along with their SD values for the various com-
bination of electrodes are given in Tables 4.5, 4.6, 4.7 and 4.8 for the two subjects.
As already said, negative values of cx correspond to strong cross correlation

Fig. 4.10 Variation of k(q) versus q for F3 and F4 electrode

Fig. 4.11 Variation of s(q) versus q for F3 and F4 electrode
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between the two non-linear signals; we report the variation of cross-correlation
coefficients in the different lobes while the performers “imagine” and “listen” to the
raga Jay Jayanti. The figures that follow (Figs. 4.13, 4.14, 4.15 and 4.16) show a
quantitative measure of how the cross-correlations between different lobes are
affected while musical imagery and listening is constituted in a performer’s brain.
Figures 4.17, 4.18, 4.19 and 4.20 show how the same combination of lobes behaves
when after the removal of the stimuli.

These studies indicate that the cross correlation between the two frontal elec-
trodes, F3 and F4 significantly increases in both the experimental conditions which
in turn supports the conventional wisdom that the role of frontal lobe is very
significant when it comes to higher level cognitive processing. The recreation of the
imagery of a particular raga involves higher order cognitive processing in the
performer’s brain, hence the strong correlation between the two frontal electrodes
become eminent. The correlation between the temporal electrodes and other elec-
trodes becomes sufficiently enhanced during the “listening” period of the raga as
compared to the “imagination” period. As is seen from the figures, for both the
subjects, degree of cross correlation rises considerably for F3-T3, F3-T4, O1-T3
and O1-T4 for the “listening” period, while the enhancement is not so pronounced
during the “imagination” period. This may be due to the simultaneous involvement
of cognitive as well as auditory skills of the performer which is manifested in the
enhancement of cross-correlation between the particular lobes. The correlation
between frontal and occipital lobes (F3-O1, F3-O2) has been found to significantly
increase both during “imagination” and “listening” of the raga. The degree of cross
correlation between F4-O2 and F4-O1 increased to a great extent during “imagi-
nation” part of the raga, but decreases during “listening” part. This result implies in
the direction of simultaneous processing of cognitive and visual information in the

Fig. 4.12 Multifractal spectral width for cross correlated F3 and F4 electrode
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performer’s brain. The intra lobe cross-correlation between the temporal electrodes
T3-T4 is also sufficiently enhanced during the “listening” of the raga, while the rise
is negligible during the “imagination” part. Another curious observation is the
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remarkable enhancement in the degree of cross correlation between the two
occipital electrodes O1 and O2 for both the subjects. It has been found that the
cross-correlation coefficient increases significantly both “during imagination” and
“during listening” of the raga; though the subjects were sitting with their eyes
closed while the EEG experiment was performed. In case of Subject 2, the increase
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is much higher in the “listening” part. This result may have a far reaching con-
clusion, that when an artist is imagining a raga or listening to a raga performed by
him, he is actually visualizing a picture of the raga in his mind, which eventually
leads to higher degree of cross correlation manifested in the occipital lobe. After the
removal of music stimulus, it is seen that the degree of cross-correlation decreases
unanimously for all the electrodes to various extent; thus it can be said that music as
a stimuli is able to enhance the correlation between different lobes of the brain to
different extent, while the removal of the stimuli leads to decrease of cross
correlation.

In the second part of our analysis, for more rigorous results we decided to
observe the variations in the different frequency regions (viz. alpha, theta etc.) of
EEG signal during “imagining” and “listening” to a raga. For this the amplitude
envelope of the alpha (8–13 Hz) and theta (4–7 Hz) frequency ranges were
obtained using wavelet transform technique. On the obtained EEG time series data
of alpha and theta rhythms, MFDXA analysis was performed.

From these figures we observe that in the imagination stage, the predominance of
alpha correlation is very strong; as we see strong increase in almost all the electrode
combinations. The increase in alpha cross-correlations among the fronto-occipital
electrode combinations are the strongest followed by the fronto-temporal electrodes
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and the occipital electrodes. The increase in cross-correlations among the
fronto-occipital electrodes may be a signature of the simultaneous interplay of
cognitive and visual domain processing in the performer’s mind as he conjures up
the entire raga from his musical memory. Also the intra-lobe cross correlation for
both alpha and theta rhythms in frontal (F3-F4) and temporal (T3-T4) lobe show a
decrement while imagining the raga. In the listening period, the cross correlation of
theta frequency rhythms take a significant part for different electrode combinations
along with alpha rhythms. The intra-lobe cross-correlation in frontal (F3-F4) and
occipital electrodes (O1-O2) decrease significantly; while the intra lobe
cross-correlation in temporal lobe (T3-T4) increases. The inter lobe correlation for
F4-O2 electrodes increase consistently for both alpha and theta rhythms. Most
significant changes are noticed in the fronto-temporal electrode combinations where
F3-T3 and F3-T4 show a significant increase, while the other two register decrease
in both the frequency rhythms, though theta is again predominant. In the
occipital-temporal domain, the theta cross-correlation in O1-T3 increases signifi-
cantly while for all other electrode combinations there is an average increase in both
alpha and theta cross-correlations. The fronto-temporal and occipital-temporal
increase in degree of correlation points in parallel processing of auditory and
cognitive information as the artist is constantly relating the raga clip with his
previous musical expertise and trying to conjure an image of the entire raga.

In the “after think” part, it is seen that the degree of cross-correlation for both
alpha and theta rhythm decreases significantly for all the electrode combinations in
different lobes of the performer’s brain; with the highest decrease being registered
in F4-O1 and O1-T4 combination. This leads to the general conclusion, that after
the performer stops creating the raga picture in his brain, activity in different
regions of the brain gets dilated which essentially leads to the decrease in the degree
of cross-correlation in alpha and theta frequency rhythms. In the “after listen” part,
even after the removal of stimulus, strong increase in theta and alpha
cross-correlations are noticed in almost all the lobes; with the change being max-
imum in the fronto-temporal combinations as well as intra lobe occipital (O1-O2)
and frontal (F3-F4) combinations. In the fronto-temporal combinations, the
response is exactly reverse to what is seen in “with stimulus” condition, indicating
the neuronal interactions returning to their basal state after the removal of stimulus;
while the strong alpha correlations in the other electrode combinations like F4-T4
and O2-T4 indicates signifies the retention of musical auditory memory of the raga
in the mind of the participants. This retention effect is more pronounced for theta
rhythms in all electrode combinations of fronto-occipital and occipital-temporal
domain. This retention is almost absent in case of thinking. This retention may have
been caused as the subjects probably continued to think/imagine the raga even after
removal of the auditory stimuli (Figs. 4.21 and 4.22).

The following figures (Figs. 4.23 and 4.24) show the same response in case of
Artist 2:

In most cases, the observations are almost similar to the 1st subject, though a few
minor deviations from the previous artist are noted. For Subject 2, in the thinking
part, the theta cross-correlation also increases significantly for the same electrode
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combinations as in Subject 1 along with alpha rhythms. The occipital-temporal
cross-correlations again show consistent increase; depicting again the simultaneous
processing of cognitive and musical memory during the mental recreation of the
raga. In the listening part, the observations are almost the same for the previous
artist, with the theta cross-correlations being the most predominant; with significant
increase in the occipital-temporal cross correlations. The enhancement in
occipital-temporal correlations may be a signature of concurrence of auditory
stimuli and musical cognition in the artist’s brain. Here the intra lobe temporal
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cross-correlations in alpha frequency domain also show an increase compared to the
1st artist. In the “after think” part, again the response is similar to 1st subject, with
the alpha/theta cross-correlations decreasing in most of the cases; with the excep-
tion being alpha cross-correlation in O1-T3 and O1-T4 electrode where residual
neuronal activities lead to further increase in cross-correlations. The frontal
intra-lobe (F3-F4) alpha and theta correlation also increases further showing
enhancement of neuronal interactions even after thinking. In the after listen part, the
theta cross-correlation mostly bears the signs of retentive features in various lobes;
with the degree of cross-correlation increasing further even after the stimulus is
removed. Interestingly the intra-lobe occipital (O1-O2) and frontal (F3-F4) corre-
lation increases for both alpha and theta frequency rhythms. The results have
obvious ramifications in the form of differential musical processing and retention of
musical memory by the two different performers belonging to different school of
musical pedagogy.

These responses may vary for other musical pieces as with the change of the
musical content of the piece, the emotion associated with it also changes. Raga Jai
jayanti is conventionally known to evoke happy emotion in listeners. As both
subjects were asked to imagine and listen to the same raga so, we can safely
compare their results. Thus, with the help of this study we have reported for the first
time, the effect on alpha and theta cross-correlations among different lobes of brain
when an artist is performing creative tasks and improvising on a musical piece as
well as when he is listening to the same musical composition sung by himself.

4.5 Conclusion

“If a person can’t read or write, you don’t assume that this person is incapable of
it, just that he or she hasn’t learned how to do it. The same is true of creativity.
When people say they’re not creative, it’s often because they don’t know what’s
involved or how creativity works in practice.” wrote Sir Ken Robinson in his book
The Element (2009). In this work, we have tried to visualize with the help of robust
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scientific methods, a general response of human brain while performing creative
task. This work presents new data regarding neuro-cognitive basis of creative
imagery and perception of a Hindustani raga. No previous study has been made
using rigorous non-linear technique to assess quantitatively the degree of arousal
and the variation of degree of cross-correlation between the different lobes of brain
when a performer imagines and creates an imagery of the raga. The Multifractal
Detrended Cross-Correlation Analysis (MFDXA) is a robust non-linear analysis
technique developed recently which gives brilliant insight into the degree of
cross-correlation existing in different lobes of human brain. The alpha and theta
brain rhythms have been previously related to a number of modalities related to
musical emotion processing in earlier studies, but this work for the first time, tries to
quantify the correlations existing in alpha and theta rhythms to creative appraisal
based task with the help of MFDXA technique.

The work presents the following interesting conclusions:

1. The multifractal spectral width, which is a measure of complexity increases for
the frontal and occipital lobes during creative musical imagery by a performer.
The temporal lobe also report significant increase in complexity along with the
other two lobes during perception of auditory stimuli of the same musical piece.
The strong activity of occipital lobe both during imagination and perception of
musical piece is a fascinating outcome of this study. Interestingly, this obser-
vation persists for both the musicians studied.

The alpha cross correlation plays a significant role when the performer cogitates
the raga in his mind; with the increment being most prominent in the
fronto-occipital and fronto-temporal lobe. In case of musical appreciation, i.e. when
an artist is listening to the raga sung/played by him, the theta cross-correlation is
mostly affected in the fronto-temporal and occipital-temporal domain indicating
simultaneous processing of cognitive and auditory data. This study also shows that
inter-lobe cross-correlation is more affected during any creative processes compared
to the intra-lobe correlation except in case of occipital lobe which is greatly affected
during thinking for both subjects. The strong cross-correlation between the occipital
electrodes both during imagination and perception of the musical piece probably
supports the claim that when an artist is creating or listening to a raga, he is actually
visualizing a picture of the raga in his mind. Musical creativity and improvisation
thus mostly involves interplay between frontal, temporal and occipital lobes, since
the correlation among these are the highest as is seen from our study.

2. In case of auditory stimulus, the cross-correlations of alpha as well as theta
remain consistently high for some time in certain regions (viz.
occipital-temporal domain, intra lobe temporal domain etc.) of the brain, even
after the removal of stimuli, while in the “after thinking” period, the degree of
cross-correlation decreases very quickly to its basal value in almost all regions.
Thus a “hysteresis” like effect is evident in different electrodes which were
elicited by musical stimuli, shows that the musical memory is retained in the
brain for some time even after the removal of stimuli. This finding could have
far-reaching effects if successfully applied to cognitive music therapy.
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Although we analyzed the responses of two musicians (a vocalist and an
instrumentalist) separately, expecting that each person can have different cognitive
appraisals, we could not find any remarkable discrepancies in the results of the two.
This may be due to the musical pedagogy of the two; both being trained in
Hindustani classical music for many years, their imagination and improvisation of
raga Jay Jayanti may be on similar lines.

Finally, we can conclude from what we have explored using EEG rhythms from
different electrodes extracting features of functioning of different lobes, their intra
and inter-correlation, that a straightforward jacketing of auditory-cognition route
may be more empirical—the real scenario is a bit complicated, involving simul-
taneous processing of musical emotions in a number of different lobes. Some of the
features of this interdependence, obtained from the degree of cross correlation of
alpha/theta rhythms between two lobes, are revealed for the first time from our new
data. Future works in this domain includes EEG data from a greater number of
samples as well as a variety of musical cognitive tasks which may reveal higher
degree of correlation between other lobes also. Also, comparing the data of musical
appreciation of performers with that of naïve listeners is also an interesting piece of
work; to see the difference in EEG response pattern of professionals and naïve
listeners. A new model of emotion elicited by musical stimuli need to accommodate
the findings of this investigation in regard to pronounced cross-correlation obtained
in the occipital, frontal and temporal lobes. The obtained data may be of immense
importance when it comes to studying the neuro-cognitive basis of creativity and
alertness to a certain cognitive function. Taking help of this MFDFA technique, the
next Chapter deals with how a simple acoustical stimulus like tanpura drone can
change the brain state of an individual.
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Chapter 5
Tanpura Drone and Brain Response

Simplicity is the ultimate sophistication
—Leonardo da Vinci

5.1 Introduction

Musical research over the last century has become increasingly entwined with the
scientific areas of acoustics and psychoacoustics (Fastl and Zwicker 2007). With the
advent of neurocognitive techniques as well as novel non-linear dynamic chaos
theory, it has become possible to study the effect of music on cognitive activity of
brain quantitatively. Thus, it has become a topic of extreme research interest as new
data is scarce, so it is difficult to arrive at a confident conclusion.
Electroencephalography (EEG) is a very efficient technique to measure the
non-linear fluctuations generating from different electrodes located in various lobes
of the brain. It has been observed that different parts of the brain are activated in a
different way on exposure to a variety of music. Earlier studies in the linear domain
reported a dip in alpha frontal power in left frontal lobe for happy music while a sad
music results in dip of alpha power in the right frontal lobe (Schmidt and Trainor
2001; Tsang et al. 2001). The frontal midline theta power was reported to increase
while a pleasant music is played (Sakharov et al. 2005). But, very few studies have
been conducted in the non linear domain, which reported the effect of musical
stimuli on EEG brain waves (Gao et al. 2007; Karthick et al. 2006; Sourina et al.
2012). In view of this, in the present investigation, we have made an attempt to
assess in-depth the effect of a simple musical stimuli played in Tanpura on the EEG
pattern of human brain quantitatively using latest state-of-the-art nonlinear tech-
niques. Tanpura is a plucked string instrument extensively used as a drone provider.
The resounding twangs of the strings create the perfect ambience for Indian
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classical music. This work is essentially the report of new, quantitative data on the
effect of Tanpura drone in human brain.

5.1.1 What Is Tanpura Drone?

The Tanpura (sometimes also spelled Tampura or Tambura) is an integral part of
classical music in India. It is a fretless musical instrument. It consists of a large
gourd and a long voluminous wooden neck which act as resonance bodies with four
or five metal strings supported at the lower end by a meticulously curved bridge
made of bone or ivory. The strings are plucked one after the other in cycles of few
seconds generating a buzzing drone sound. The Tanpura drone primarily establishes
the “Sa” or the scale in which the musical piece is going to be sung/played. One
complete cycle of the drone sound usually comprises of Pa/Ma (middle octave)—Sa
(upper octave)—Sa (upper octave)—Sa (middle octave) played in that order. The
sounding of Tanpura drone acts as a canvas in Indian Raga Music and provides
contrast to the tune and melody without introducing rhythmic content of its own. Its
sound is considered very sweet and melodious and it stimulates both the musician
and the audience. The peculiar sounding of Tanpura arises from the strings’ grazing
touch of the bridge in vertical direction, so they are clamped at different lengths, as
has been observed and first described in the 1920s by the famous Indian physicist
CV Raman (Raman 1921). This phenomenon is called jvari (pronounced jovari) in
musical terms, which means “life giving” (Braeunig et al. 2012). The length where
the string touches the ivory bridge is controlled by fine cotton threads that are
carefully adjusted between the bridge and the strings during instrument tuning. The
periodic change of length in the plucked string creates amplitude fluctuations in the
higher harmonics so that the mechanical energy is spread out to very high fre-
quencies (Bhattacharyya et al. 1956; Carterette et al. 1988, 1989; Houtsma and
Burns 1982). The listener of Tanpura drone is captivated by its extremely rich
harmonic structure. Later on a lot of study has been done on different aspects of
Tanpura sound signals (Sengupta et al. 1983, 1989, 1995, 1996, 2002, 2003, 2004;
Sengupta and Dey 1988; Ghosh et al. 2007). Even material characterization of
Tanpura has been attempted by electron microscopic analysis (Mukhopadhyay et al.
1998). Acoustic Tanpura drones can be recreated using technical means like digi-
tization of sound—although they fail to reproduce the important subtle imperfec-
tions of an acoustic Tanpura. Common substitutes for drone instruments are
electronic sruti boxes, which are nowadays superseded by software generators and
sampled sound. The latter are good for experimentation because the Electronic
Substitute Tanpura (EST) allows a researcher to control its parameters in a repro-
ducible manner.
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5.1.2 How Does a Tanpura Drone Affect Brain Rhythm?

The drone signal has repetitive quasi-stable geometric forms characterized by
varying complexity with prominent undulations of intensity of different harmonics.
Thus, it will be quite interesting to study the response of brain to a simple drone
sound using different linear and non-linear techniques. Because there is a felt
resonance in perception, psycho-acoustics of Tanpura drone may provide a unique
window into the human psyche and cognition. Traditionally, the human EEG power
spectrum is divided into at least five frequency bands: delta, theta, alpha, beta, and
gamma. (1) Delta (d): 0–4 Hz; (2) Theta (h): 4–8 Hz; (3) Alpha (a): 8–13 Hz;
(4) Beta (b): 13–30 Hz; (5) Gamma (c): 30–50 Hz. In the past decades, each
frequency band has been related to specific functions. Now it is time to find out how
each of these frequency bands in human brain is affected when the subject listens to
a Tanpura drone in a particular pitch for some time.

Earlier “Fractal Analysis” technique has been used to study the non linear nature
of the Tanpura signals (Sengupta et al. 2005). The drone environment is free of
semantic content, such as melody or rhythm, similar to an acoustical Ganzfeld
(Metzger 1930). From a complete waveform cycle of Tanpura drone, no sound
objects with a distinct borderline can be recognized. In the Ganzfeld, cognitions
arise spontaneously out of intrinsic activity (Pütz et al. 2006). The case is similar for
cognition of Tanpura drone also. An earlier study which used non-linear DFA
technique to analyze EEG data reported two distinct categories of subjects in
response to drone sound, for one group the overall complexity increases in many
major electrodes of frontal lobe while for the other group of subjects complexity
decreases (Banerjee et al. 2014). Global Descriptors (GD) have also been used to
identify the time course of activation in human brain in response to Tanpura drone
(Braeunig et al. 2012).

5.1.3 Use of Tanpura Drone as a Baseline

The question of reference for baseline EEG in the resting condition where the
subject has no task to perform is addressed in one of our works (Braeunig et al.
2012). We hypothesize that drone sounds are sufficiently neutral to the subject in
that they are not popping into the fore of cognition, evoking reactions to the
stimulus. This assumption is needed in order to define the resting condition where
the subject has no task to perform (no-task resting frame). Drone can provide
contrast but is not prompting a response. In a laboratory setting spontaneous brain
electrical activity in the form of EEG response were observed during Tanpura drone
stimulation and periods of silence. The sound stimulus was given by an electronic
substitute Tanpura (EST) that allows controlling of its parameters. The timbral
characteristics of the drone samples are given. The brain-electrical response of the
subject is analyzed with global descriptors (GD), a way to monitor the course of
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activation in the time domain in a three-dimensional state space, revealing patterns
of global dynamical states of the brain. Timbral characteristics such as tristimulus
T1, T2, and T3 and the odd and even parameters have been chosen in view of the
energy distribution in partials, whereas spectral brightness, irregularity and inhar-
monicity are descriptive of the harmonic content.

The EEG signals from 19 electrodes have been averaged in windows of 1 s
width. With overlap of 50% the time resolution is 0.5 s. After removal of outliers
the time series for the three global descriptors are displayed including the derived
dimensions E and I. The first eye-catching features are the undulations during drone
that show 3–4 drops of field strength (activity), which correlates with an increase in
frequency and complexity. These undulations have a width of roughly 30 s (which
is very slow). The simultaneous increase in Omega complexity can be interpreted as
emergence of new cognitive modules (either by insertion or decay). Reduced
activity is an indication that available energy is shared by more processes.

5.1.4 Use of MFDFA to Assess the Effect of Drone

In previous researches employing chaos theory it has been seen that biomedical
signals like EEG possesses property of fractality i.e. they exhibits self similarity on
different scales (Kantelhardt et al. 2002; Easwaramoorthy and Uthayakumar 2010).
There are two type of fractality—multifractality and monofractality. Various
investigations have employed Detrended Fluctuation Technique (DFA) to study the
robustness of human EEG signals to non-stationarity (Lee et al. 2002; Peng et al.
1995). Though DFA has a wide spectrum of applications, many geophysical signals
as well as medical patterns do not represent simple monofractal behavior which can
be accounted for by a single scaling exponent (Kantelhardt et al. 2001; Hu et al.
2001), for e.g. if the signal consists of random spikes or a crossover timescale
which separates regimes with different local behavior such as EEG signals. Thus
different scaling exponents are required for different parts of the EEG time series
indicating a time variation of the scaling behavior (Chen et al. 2002). In view of
above facts, a multifractal analysis of EEG data would be more appropriate.
Furthermore, the prerequisite of MFDF analysis i.e. large time series is also satisfied
in our EEG data sample.

The main aim of this work is to study the different levels of neural activation in
the human alpha and theta brain rhythms under the effect of simple acoustical
stimuli using different EEG feature classification technique such as WT and
MFDFA. The linear methods (such as power spectral density, FFT study etc.) miss
out on the intricate details of the non-stationary EEG signals and rely on a coarse
approximation for arriving at a conclusion. MFDFA is the most advanced
non-linear tool found till date for studying non-linear, non-stationary EEG
dynamics. The results show that there are significant changes in the complexity of
alpha and theta brain rhythms corresponding to all the frontal electrodes even when
a simple acoustic drone signal is played.
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5.2 Experimental Details

5.2.1 Subjects Summary

10 young musically untrained right handed adults (6 male and 4 female) voluntarily
participated in this study. Their ages were between 19 and 25 years
(SD = 2.21 years). None of the participants reported any history of neurological or
psychiatric diseases, nor were they receiving any psychiatric medicines or using a
hearing aid. Informed consent was obtained from each subject according to the
ethical guidelines of the Ethical Committee of Jadavpur University. All experiments
were performed at the Sir C.V. Raman Centre for Physics and Music, Jadavpur
University, Kolkata.

5.2.2 Processing of Tanpura Drone

The Tanpura stimuli given for our experiment was the sound generated using
software ‘Your Tanpura’ in C# pitch and in Pa (middle octave)—Sa (upper octave)
—Sa (upper octave)—Sa (middle octave) cycle/format. The signal was normalized
to within 0 dB and thus the variation of intensity is not being taken into account.
Time of each complete cycle was about 4.5 s. From the complete recorded signal a
segment of about 2 min was cut out at the zero point crossing using open source
software toolbox Wavesurfer (Sjölander and Beskow 2009). Variations in the timbre
were avoided as same signal were given to all the participants. Figure 5.1 depicts a
single cycle of Tanpura drone signal of 4.5 s duration that was given as an input
stimulus to all the informants.

5.2.3 Experimental Protocol

The EEG experiments were conducted in the afternoon (around 2 PM) in an air
conditioned room with the subjects sitting in a comfortable chair in a normal diet
condition. All experiments were performed as per the guidelines of the Institutional
Ethics Committee of Jadavpur University. Each subject was prepared with an EEG

Fig. 5.1 Waveform of one complete cycle of Tanpura drone signal
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recording cap with 19 electrodes (Ag/AgCl sintered ring electrodes) placed in the
international 10/20 system. Figure 5.2 depicts the positions of the electrodes.

Impedances were checked below 50 kΩ. The EEG recording system (Recorders
and Medicare Systems) was used to record the brain-electrical responses of the
subjects at a rate of 256 samples/second with the customized software of RMS. The
data was band-pass-filtered between 0.5 and 70 Hz to remove DC drifts and sup-
press the 50 Hz power line interference. A 6 min EEG recording was done as per
the following protocol:

Part 1: 2 min No Music
Part 2: 2 min With Tanpura drone
Part 3: 2 min No Music
Markers were set at the onset and at the end of the experiment.

5.3 Methodology

The raw EEG signal is generally contaminated by various types of external artifacts
such as eye blinks, muscular movement etc. Eye blinks and eye movements are
characterized by frequency of less than 4 Hz and high amplitude. Thus, it is
essential to identify these artifacts and to remove them from the raw EEG signal to
get a noise free EEG data. A novel data driven technique called Empirical Mode
Decomposition (EMD) was used to de-noise the EEG signal. Then different brain
rhythms having different frequency regions were isolated with the help of widely
used wavelet transform (WT) technique. For this the noise cleaned EEG signal was
used as an input for the WT technique. The amplitude envelope of the alpha and
theta frequency rhythms as well as their time series data were extracted for all the
informants. Only the seven odd and even frontal electrodes (F3, F4, F7, F8, Fp1,
Fp2 and Fz) were chosen for this study as earlier works have shown frontal elec-
trodes play the most significant role during cognition of specific auditory musical

Fig. 5.2 The position of
electrodes according to the
10–20 international system
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stimuli. Now, using the MFDFA technique on the extracted alpha and theta brain
rhythms, we have obtained the Hurst exponent for different values of q, Multifractal
spectral width (W) of the two rhythms and then analyzed the change in multi-
fractality in these signals when a constant repetitive music (here Tanpura drone)
was played.

5.4 Results and Discussions

The multifractal analysis was performed on the amplitude envelope of alpha and
theta wave obtained from the wavelet transform technique following the method-
ology mentioned above. The qth order fluctuation function Fq(s) for 10 points of
q in between −5 and +5 was obtained. The time series values of both the waves
have been randomly shuffled to destroy all the long range correlations present in the
data, and what remained is a totally uncorrelated sequence. The regression plots of
ln (Fq(s)) versus ln(s) averaged for different values of q (q = −3 to q = + 3) were
drawn for scales varying from 16 to 1024 for all the electrodes for both alpha and
theta waves. h(q) was determined from the slope of the best fit line of this ln(Fq(s))
versus ln(s) plot. From previous knowledge we know that the shuffled values of
both alpha and theta do not change with the values of q, and thus has a fixed slope
h(q) = H, which is similar to the conventional Hurst exponent for monofractal time
series. The statistical fit for the different values of h(q) for different values of q were
then calculated for the seven frontal electrodes both in “before drone” and “with
drone” condition corresponding to alpha and theta frequency domain. The SD
values are computed for each q taking into account the h(q) values of 10 subjects.
For positive values of q, h(q) describes the scaling behavior of the segments with
large fluctuations. Usually the large fluctuations are characterized by a smaller
scaling exponent h(q) for multifractal series. On the contrary, for negative values of
q, the segments v with small variance F2(s, v) will dominate the average Fq(s).
Hence, for negative values of q, h(q) describes the scaling behavior of the segments
with small fluctuations, which are usually characterized by a larger scaling expo-
nent. For both alpha and theta frequency ranges, we have found considerable
variation of h(q) with the change of q from −5 to +5, indicating the presence of
strong multifractality in the waves. In the randomly shuffled series, where all the
correlations have been destroyed, a non multifractal scaling hshuf(q) * 0.5 is
observed in most cases. The values of hshuf(q) remain almost unaffected by the
change of q, showing monofractal behavior for the shuffled series. As for the
original data, all the h(q) values fall within the interval 0.5–1, indicating that both
the alpha and theta time series have long range correlations in different scales as is
evident from the variance of h(q) values corresponding to different q’s. Another
interesting observation from the tables is that the generalized Hurst exponent val-
ues, in general increase for all q’s as we move from “before drone” to “with drone”
condition. The increase in h(q) values, though in different order, occurs uniformly
for all the seven frontal electrodes.
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A representative figure for variation of h(q) with q of a single person corre-
sponding to alpha and theta waves has been shown in Fig. 5.3. It is clearly evident
from the figures that the values of h(q) decreases with the increase of q, showing
multifractal scaling in both alpha and theta frequency domain. For monofractal
signals, a single value of Hurst exponent is obtained corresponding to different
values of q, like the shuffled value of h(q) as seen in Fig. 5.3, where h(q) remains
almost constant with the change of q. The amount of multifractality can be deter-
mined quantitatively in each of the windows of each signal from the width of the
multifractal spectrum [f(a) versus a]. The shuffled width obtained, is found to be
always smaller than the original width of the signal (Fig. 5.4). This ascertains the
fact that multifractality in alpha and theta waves is present both due to long range
correlations as well as broad probability density function. In the ideal case, the
shuffled data should behave as a monofractal signal with no multifractal scaling.

Fig. 5.3 a Variation of Hurst exponent h(q) with q for alpha and theta. b Original and shuffled
values of Hurst exponent h(q)

Fig. 5.4 f(a) versus a curve for a alpha and b theta waves
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Thus, in the plot of Hurst exponent, it is seen that the shuffled values of h(q) does
not change in general with q, and in the f(a) versus a plot, the shuffled series will
show a peak at a0 close to 0.5. A representative figure (Fig. 5.4) shows the f(a)
versus a plot including the original and shuffled width for a particular person
corresponding to alpha and theta frequency domain in the frontal electrode F3.

For the sake of comparison, the multifractal spectrum for a single person in the
alpha and theta frequency range for the two experimental conditions has been
plotted in Fig. 5.5. The values of the spectral widths for all the persons were
averaged for each of the electrode and the Standard Deviation values were com-
puted corresponding to each electrode and frequency domain. These are given in
Table 5.1.

Fig. 5.5 Variation of spectral
width in alpha and theta
domain

Table 5.1 Alpha and theta multifractal spectral widths for the frontal electrodes

Electrode Frequency
rhythm

Before drone
(multifractal
width)

Shuffled
width

With drone
(multifractal
width)

Shuffled
width

F3 Alpha 0.787 ± 0.018 0.1326 1.147 ± 0.019 0.1241

Theta 0.924 ± 0.118 0.1795 1.082 ± 0.057 0.1983

F4 Alpha 0.799 ± 0.016 0.1810 1.131 ± 0.017 0.1512

Theta 0.922 ± 0.093 0.3396 1.273 ± 0.088 0.2671

F7 Alpha 0.951 ± 0.012 0.1972 1.200 ± 0.012 0.2084

Theta 0.793 ± 0.019 0.3441 1.018 ± 0.116 0.2808

F8 Alpha 0.817 ± 0.020 0.0896 1.165 ± 0.015 0.1445

Theta 0.898 ± 0.077 0.2160 1.093 ± 0.036 0.1948

Fp1 Alpha 0.860 ± 0.015 0.1720 1.225 ± 0.010 0.1419

Theta 0.972 ± 0.027 0.1548 1.087 ± 0.052 0.2609

Fp2 Alpha 0.852 ± 0.016 0.1197 1.072 ± 0.013 0.1415

Theta 0.708 ± 0.087 0.2736 1.212 ± 0.113 0.1722

Fz Alpha 0.800 ± 0.015 0.1268 1.287 ± 0.016 0.1309

Theta 0.927 ± 0.061 0.2078 1.173 ± 0.110 0.1139
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The variation of multifractal width with respect to alpha and theta frequency
domain under the application of drone for all the frontal electrodes has been shown
in Figs. 5.6a–g. The Standard Deviation (SD) values computed from the multi-
fractal analysis have been shown as error bars in all the figures.

From the figures it is evident that in all the frontal electrodes multifractality of
alpha waves increase from “no music” to “with drone” condition. The frontal
midline electrode reports maximum increase in multifractality of alpha waves,
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while F7 electrode reports minimum increase. In case of theta waves, the multi-
fractality also show an increase for all the frontal electrodes. The even electrodes
Fp2 and F4 report maximum increase in theta multifractality while all the other
frontal electrodes exhibit a general increase in multifractal width. The increase in
multifractal width is consistent with our previous finding for Hurst exponent, where
the h(q) values increase under the effect of drone in all the frontal electrodes.
ANOVA (Freud and Miller 2004) tests were performed to test the statistical sig-
nificance of the results. It was found that the averaged values were significantly
different even at 95% confidence interval. This study presents a new data in the
form that even a simple musical input like Tanpura drone produces an increase in
complexity of alpha and theta waves in all the frontal electrodes. Thus, with the
help of different non linear analysis techniques, we have shown that there is a
considerable increase in alpha and theta spectral width and hence complexity of
these particular brain waves when subjects listen to Tanpura drone. The increase in
complexity of brain is related to more stable and accurate behavioral performance in
humans (Lippé et al. 2009). Increase in brain complexity can thus be regarded as to
be a measure for the brain reaching a healthier and active state. It is an interesting
observation that with the help of a simple acoustical signal like Tanpura drone we
have been able to achieve a state of brain in which the person can be said to be in a
more pleasant and a relaxed state. This analysis could provide to be very fruitful in
the context of cognitive music therapy.

5.5 Conclusion

The work presents a new data regarding neuro-cognitive activation human brain
when presented with simple acoustical drone stimuli. Empirical Mode
Decomposition (EMD) technique was used to neutralize the EEG data from spu-
rious fluctuation patterns arising due to various artifacts. Then the resultant clean
EEG data was decomposed into the alpha and theta frequency domain using
Discrete Wavelet Transform (DWT) and they were analyzed with MFDFA tech-
nique. The analysis clearly reveals that even an input of simplest music significantly
affects dynamics of brain functioning manifesting in different types of emotion.

The main findings of this work may be summarized as follows:-

1. From the values of generalized Hurst exponents h(q)s, it has been ascertained
that both long range as well as short range fluctuations are present in the alpha as
well as theta waves, and the presence of multifractality is ascertained in these
waves.

2. One very interesting and new finding which deserves mentioning is that, the
input of drone always enhances the theta as well as alpha complexity for all the
frontal electrodes. The MFDFA method reveals the presence of multifractal
scaling in case of both alpha and theta waves. This information is entirely new
and has not hitherto been reported in literature. Previous studies dealt with linear
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techniques like Fast Fourier Transform (FFT) to extract the alpha and theta
power from various frontal electrodes, and related rise and fall of alpha and theta
spectral power as a measure of elicitation of emotion. The linear techniques have
a major drawback that they miss out on finer intricate details of the signal which
sophisticated non-linear techniques like MFDFA can. In this case, multifractal
spectral width corresponding to alpha and theta frequency domain for all the
electrodes reported an increase from a very small value to a large value.

3. Furthermore, the Tanpura signal has a “buzzing” sound (drone) in which par-
ticular harmonics resonate with focused clarity. This ensures the perseverance of
a tranquil atmosphere in the experiment room. This work is a pioneer in
establishing the efficiency of non-linear analysis to study the ever-changing
brain dynamics, and may be some day we will be able to consider the degree of
complexity of brain waves as a measure of the well being of an individual. In
this context, this study can have crucial application in the area of cognitive
music therapy.

To conclude, this work presents sufficiently new and interesting findings which
will be of extreme importance when it comes to music induced emotion identifi-
cation and cognitive music therapy using EEG bio-signals. This study can be
repeated with a variety of emotive music to see how the multifractality of alpha and
theta waves vary under the application of these musical clips. This could be an
important tool for specification of emotion digitally. The next chapter deals with the
long-debated issue of universality of music taking the help of robust
neuro-scientific tools.
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Chapter 6
Genesis of Universality of Music: Effect
of Cross Cultural Instrumental Clips

I sing the body electric…
…in the depth of my soul there is a wordless song….

—Walt Whitman

6.1 Introduction

6.1.1 What Is Universality of Music?

Music is a common phenomenon that crosses all borders of nationality, race, and
culture. A tool for arousing emotions and feelings, music is said to be far more
powerful than language. An increased interest in how the brain processes musical
emotion can be attributed to the way in which it is described as a “language of
emotion” across cultures (Bukofzer 2013). More than any other stimulus, music has
the ability to conjure up images and feelings that need not necessarily be directly
reflected in memory. In the words of musicians, “music can communicate and
transcend across cultural and linguistic boundaries in ways not possible by any
other language”. But what is meant by “universal” and “language”? Every culture
has their own language, as well as their own form of music; which vary signifi-
cantly from one culture to another. A number of studies have shown that listeners
are able to identify two basic emotions from musical clips of unfamiliar genre—
happy and sad. There are certain basic features of musical clips viz. pitch, tempo
and rhythm, manipulating one or two of these is enough to change the emotional
state of the listener. Higher pitch, more fluctuations in pitch and rhythm, and faster
tempo convey happiness, while the opposite conveys sadness; and these features
remain constant for music across all cultures, which might be the reasons why
music is called a “universal language”.

© Springer Nature Singapore Pte Ltd. 2018
D. Ghosh et al., Musicality of Human Brain through Fractal
Analytics, Signals and Communication Technology,
https://doi.org/10.1007/978-981-10-6511-8_6

117



6.1.2 Previous Research to Look for Universal
Cues of Music

A number of studies in Western music culture deals with extraction of certain
features of music perception which are universal and which are developed due to
exposure to a certain culture (Balkwill and Thompson 1999; Trehub 2003; Hauser
and McDermott 2003; Peretz 2006; Fritz 2009). In one of these studies (Fritz 2009)
it is reported that native Africans (Mafa) population recognized three basic emo-
tions (happy, sad, fear) from Western musical samples which led to the conclusion
that these basic emotions in Western music can be recognized universally. There are
only a few studies which make an effort to study musical cues which transcend
cultural boundaries and are identifiable by people across all cultures (Balkwill and
Thompson 1999; Balkwill et al. 2004; Gregory and Varney 1996). Most of these
studies deal with psychological analysis of human response data for identification
of musical cues across cultures like Westerners being made to listen to Hindustani
music. The overall phenomenon in how music evokes emotion still contains a veil
of mystery; the reasons behind the ‘thrill’ or ‘chills’ generated while listening to
music are strongly tied in with various theories based on synesthesia (Loui 2013).
Instrumental music is said to be brain’s food. Earlier studies have found that lis-
tening and training in instrumental music has positive effects on cognitive devel-
opment in children (Schlaug et al. 2005). Training in instrumental music results in
greater growth in manual dexterity and music perception skills, significantly
improved verbal and mathematical performance and more gray matter volume in
the brain (Hyde et al. 2009; Hallam 2010; Wan and Schlaug 2010). People perform
logic tasks better in the presence of instrumental music as opposed to vocal music,
according to another study (Chamorro-Premuzic et al. 2009). Researchers found
that those listening to classical music seemed more involved in the task, possibly
brought on by the relaxing nature of the music (Phillips 2004). Those suffering from
pain and/or depression should listen to instrumental music for relaxation and relief
(Erkkilä 2008; Ozdemir and Akdemir 2009). Music therapy is instituted in many
hospitals and hospices to relieve stress and provide comfort. Researchers have also
found that playing slow instrumental music, including jazz, harp and piano music,
reduced pain and anxiety in patients following open-heart surgery (Voss et al.
2004). Till date, there is no study which deals with the neuro-cognitive manifes-
tation of universal cues associated with different genres of music.

6.1.3 Neuro-Cognition of Emotional Music
Across Different Cultures

Music has the unique ability to evoke a wide variety of emotions involving valence
(quality of a particular emotion) as well as arousal (quantity or bodily activation
corresponding to a particular emotion) based affects (Russell 1980). Valence is a
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subjective feeling of pleasantness or unpleasantness while arousal is a subjective
state of feeling activated or deactivated (Russell 1989). A number of studies have
been conducted to test the validity of arousal-valence model in musical emotions, of
which mostly are based on human response data (Scherer 2004; Juslin and Laukka
2004; Salimpoor et al. 2009), while a few studies use neuro-bio sensors (Schmidt
and Trainor 2001; Kim and André 2008). Most of the studies related to emotional
aspects of music are centered on Western music, while only a few studies deal with
Hindustani music (Mathur et al. 2015; Wieczorkowska et al. 2010) and its neural
correlates (Banerjee et al. 2016). A number of issues like universality,
arousal-valence and its linkage with modularity or neural correlates have been
baffling scientists for quite some time. This prompted us to use a wide variety of
instrumental music originating from different parts of the globe and study their
arousal and valence based effects in human brain using electroencephalography
(EEG) using robust non-linear analysis techniques.

A number of previous studies speak in favor of the valence lateralization model,
according to which positive emotions are associated with greater left frontal activity
while the negative emotions are associated with increased right frontal activity
(Schimdt and Trainor 2001; Trainor and Schmidt 2003; Sammler et al. 2007;
Koelsch et al. 2006), although it seems a bit unrealistic to think that specific regions
of the brain will be involved in processing a particular emotion, while others remain
inert. A number of studies thus report against this lateralization theory claiming that
a number of regions work together for the processing of musical emotions (Khalfa
et al. 2005; Hamann and Mao 2002; Khalfa et al. 2008a, b) mainly happiness and
sadness, as these are the most reliably induced musical emotions (Balkwill and
Thompson 1999). A common feature of most of these studies is that they con-
centrate on the frontal lobe mainly during the perception and cognition of emotion,
but a few studies have also reported the involvement of temporal lobe in the
processing of musical emotions (Blood et al. 1999; Olson et al. 2007; Khalfa et al.
2008a, b), as well as occipital lobe in some cases (Kosslyn and Pylyshyn 1994;
Mellet et al. 1995). Though the occipital lobe is mostly attributed to information
and visual stimuli processing, the debate whether musical stimuli is able to produce
mental imagery is well known. Thus, it would be interesting to see the response of
occipital electrodes along with others when presented with musical stimulus con-
veying a palette of emotions. Most of the referred studies here use fMRI (functional
Magnetic Resonance Imaging) or PET (Positron Emission Tomography) techniques
which generally have high spatial resolution but lack in temporal precision. EEG
data on the other hand have high temporal resolution in the form of time series data
obtained from different corners of the brain which help in identifying specifically
the regions which are more stimulated or activated in response to a particular
emotional stimuli. A number of previous EEG studies based on linear analysis in
the form of Power Spectral Density (PSD) have marked alpha activity as a mediator
to identify emotional response (Schmidt and Trainor 2001; Trainor and Schmidt
2003; Sammler et al. 2007; Schmidt and Hanslmayr 2009) while a few also con-
sider theta power (Sammler et al. 2007; Aftanas and Golocheikine 2001). Most of
these studies speak in favor of asymmetric processing, where a decrease in left
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frontal alpha power is a mark of positive emotional processing, while a decrease in
right frontal alpha power is a mark of negative emotion processing (Schmidt and
Trainor 2001; Trainor and Schmidt 2003; Sammler et al. 2007). The rise in Frontal
Midline (Fm) theta power was seen to be associated with processing of pleasant
music (Sammler et al. 2007; Aftanas and Golocheikine 2001). But all these studies
are based on linear Fourier Transform (FT) technique which has some obvious
drawbacks as illustrated in (Conte et al. 2009; Klonowski 2009). The FT technique
assumes the EEG signals to be linear and stationary, does not involve the inherent
spikes in the time series, thus involving a major loss in data (Huang 1998).

6.1.4 Use of MFDFA on EEG to Assess Universality
and Domain Specificity of Musical Emotion

EEG is a neuro-scientific bio-sensor which provides plentiful information about the
complex human brain dynamics according to electrical activity in brain tissues
(waves i.e. plot of voltage over time between electrodes by using the summation of
many action potentials sent by neurons in brain) against human emotion elicited by
music. The scalp EEG arises from the interactions of a large number of neurons
whose interactions generally nonlinear and thus they can generate fluctuations that
are not best described by linear decomposition. On the other hand, the classical
nonlinear dynamics method such as correlation dimension and Lyapunov exponents
are very sensitive to noise and require the stationary condition, while EEG signals
often are highly non-stationary. In recent past, the DFA has become a very useful
technique to determine the fractal scaling properties and long-range correlations in
noisy, non-stationary time-series. It has been widely applied to diverse fields such
as DNA sequences, heart rate dynamics, neuron spiking, human gait, and economic
time-series and also to weather related and earthquake signals (Ossadnik et al. 1994;
Peng et al. 1994; Blesić et al. 1999; Ashkenazy et al. 2001). DFA has also been
applied to EEG signals to identify music induced emotions in a number of studies
(Gao et al. 2007; Karthick et al. 2006; Banerjee et al. 2016). Gao et al. (2007)
related emotional intensity with the scaling exponent, while a recent study
(Banerjee et al. 2016) relate the variation of alpha scaling exponent generated from
DFA technique with the retention of musical emotions—an evidence of hysteresis
in human brain. But DFA has its own limitations. Many geophysical signals as well
as bio-signals do not exhibit monofractal scaling behavior, which can be accounted
for by a single scaling exponent (Hu et al. 2001; Kantelhardt et al. 2001), therefore
different scaling exponents are required for different parts of the series (Chen et al.
2002). Consequently a multifractal analysis should be applied.

The Multifractal Detrended Fluctuation Analysis (MFDFA) technique was first
conceived by Kantelhardt et al. (2001) as a generalization of the standard DFA.
MFDFA has been applied successfully to study multifractal scaling behavior of
various non-stationary time series (Sadegh Movahed et al. 2006; Telesca et al.
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2004; Kantelhardt et al. 2003) as well as in detection or prognosis of diseases (Dutta
et al. 2013, 2014), Figliola et al. 2007a, b). The multifractals are fundamentally
more complex and inhomogeneous than monofractals (Stanley et al. 1999) and
describe time series featured by very irregular dynamics, with sudden and intense
bursts of high-frequency fluctuations (Davis et al. 1994). EEG signals are essen-
tially multifractals as they consist of segments with large variations as well as
segments with very small variations, hence when applied to the alpha and theta
EEG rhythms, the multifractal spectral width will be an indicator of emotional
arousal corresponding to particular clip. In case of music induced emotions, a recent
study (Maity et al. 2015) used the multifractal spectral width as an indicator to
assess emotional arousal corresponding to the simplest musical stimuli—a tanpura
drone.

6.1.5 Overview of Our Work

The objective of this study is to analyze the effect of cross-cultural instrumental
music signals on brain activity during the normal relaxing condition, using a robust
non-linear analysis technique—MFDFA. It is well known that listening to music is
a complex process for the brain, since it triggers a sequel of cognitive and emotional
components. The choice of instrumental music was done so as to avoid any conflict
that may arise due to cognition of language present in the musical clips. Our study
therefore focuses on measuring the emotions elicited by the instrumental music
stimuli in terms of neuron arousals. For this, we chose eight (8) 30 s instrumental
clips originating from across different cultural attributes. The clips were chosen
keeping in mind they convey a wide range of emotional arousal so that we can get a
method to automatically identify the amount of arousal each clip causes. The clips
were first standardized on the basis of a human response data of 100 respondents.
The informants were asked to rate the clips in 2-dimensional emotional axes
comprising of four basic emotions namely—joy, sorrow, anxiety and calmness in a
5 point scale. The clips which have maximum rating in the scale of 4/5 are those
which have maximum arousal corresponding to a particular emotion. In this way,
we can identify the clips which cause maximum arousal in the listeners. Next, EEG
was conducted on 20 participants chosen arbitrarily from the 100 respondents who
participated in the listening tests. The participants are made to listen to the 30 s
clips in the same order in which they gave the listening test. The EEG signals were
obtained from five frontal electrodes (F3, F4, F7, F8 and Fz), two temporal elec-
trodes (T3/T4) and two occipital electrodes (O1/O2). The signals from each elec-
trode were preprocessed with the well known EMD (Wu and Huang 2009)
technique to make it free from blink/muscular artifacts (Looney et al. 2008; Chen
et al. 2014). The artifact-free EEG signals were then subject to Wavelet Transform
(WT) (Hazarika et al. 1997) technique to extract the theta and alpha time series data.
Next the alpha and theta EEG brain rhythms were subject to the MFDF analysis
which gives the alpha and theta multifractal spectral width corresponding to each
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musical clip. These neuronal arousals might be a manifestation of change of
complexity as obtained from the variation of the multifractal width. The multifractal
spectral width is known to be a measure of complexity of the EEG signal. The
spectral width corresponding to the alpha and theta domain varies significantly from
one clip to another and has unique manifestation in frontal, temporal and occipital
lobe. This could be helpful as a parameter for emotion identification from music
stimuli. Also, the arousal based effects from a musical clip can be localized with the
help of this technique along with the identification of a parameter from which we
can nullify or support the valence lateralization theory. Summing up, in this study,
we provide a novel technique where, with the help of a single parameter (i.e.
multifractal width) we can categorize, quantify musical emotion processing
accomplished by different regions of human brain.

6.2 Experimental Details

6.2.1 Collection of Human Response Data

Participants were recruited through word of mouth and social media platforms.
Since the study was conducted both on online and offline basis, participants from
across the country participated in the study, but more than half the participants were
from Kolkata. All the offline data were collected at the Sir C.V. Raman Centre for
Physics and Music, Jadavpur University. In this study, ratings from 100 participants
(F = 37, M = 63) were considered for analysis presented herewith. The subjects
chosen had no formal musical training.

The subjects were asked to listen to eight (8) cross cultural instrumental musical
clips of 30 s duration with a gap of 30 s between consecutive clips and mark their
emotional arousal in a scale of 5. The clips were chosen in such away that it covers the
entire human emotional spectra. Themarkings on the emotional scale were based on a
subject’s perception of the meaning of “happy”, “sad”, “calm” or “anxious”. There
was no biasing imposed on the listener regarding the marking of clips. Corresponding
to each musical clip, two pairs of emotion in a 5 point scale were given as shown:

An Instruction Sheet was given along with a Response form to each subject, and
the subjects were asked to mark each clip on the emotional scale shown. If the
subjects were not emoted by any clip, they were asked not to mark the scale. When
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a subject marked a emotional rating in 4/5, it implies high arousal corresponding to
that particular musical clip. In this way, the average emotional grading corre-
sponding to each musical clip is obtained, with which we compare the data obtained
from EEG.

6.2.2 Processing of Music Signals

The following instrumental clips each of 30 s duration were chosen for our study
(Table 6.1). Both the signals were normalized to within 0 dB and hence intensity or
loudness and attack cue are not being considered. Each of these sound signals was
digitized at the sample rate of 44.1 kHz, 16 bit resolution and in stereo channel.

6.2.3 Subjects Summary

20 (M = 14, F = 6) musically untrained adults chosen randomly from the pool
created from listening test data who voluntarily participated in this study. The
average age was 23 years (SD = 2.35 years) and average body weight was 65 kg.
Each subject was made to sign a consent form prepared according to the guidelines
of the Jadavpur University Ethics Committee. All experiments were performed at
the Sir C.V. Raman Centre for Physics and Music, Jadavpur University, Kolkata.
The experiment was conducted in the afternoon with a normal diet in a normally
conditioned room sitting on a comfortable chair and performed as per the guidelines
of the Institutional Ethics Committee of SSN College for Human volunteer
research. The study was approved by the Jadavpur University Ethics Committee
(Approval No.: 3/2013).

During the EEG acquisition period, the 20 subjects were made to listen to the
same clips as in the listening test. Each experimental condition lasted for around
10 min. Each song clip of 30 s was followed by a resting period of 30 s during
which no music was played. Subjects were asked to keep their eyes closed and to sit

Table 6.1 Details of the instrumental clips chosen for our study

Clip no. Clip name Artist Instrument used

Clip 1 Amelie Road Crossing Yann Tiersen Accordion

Clip 2 Raga Bhairavi Ustad Amjad Ali Khan Sarod

Clip 3 Tocotta and Fugue in D’ minor J.S. Bach Organ

Clip 4 Earthquake Ustad Zakir Hussain Tabla

Clip 5 Hachiko Soundtrack Jan A.P. Kaczmarek Piano

Clip 6 Raga Mishra gara Pt. Nikhil Banerjee Sitar

Clip 7 Raga Sudh Sarang V.G. Jog Violin

Clip 8 Water Dewdrops Pt. Shivkumar Sharma Santoor
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calmly during each condition. First, the baseline (that is, a resting condition) was
recorded for each subject before the start of the experiment with 2 min of ‘no
music’ condition.

The music was presented with the computer-sound system (Logitech R _ Z-4
speakers) with very low S/N ratio was used in the measurement room for giving
music input to the subjects ca. 120 cm behind the head of the subjects with a
volume of 45–60 dB. The volume was adjusted individually within this range since
the individually chosen pieces of music were typically listened at different sound
volumes. For example, Hard-Rock is typically louder than classical music.
The EEG experiment was conducted in the afternoon (around 2 PM) in a room with
the volunteers sitting in a comfortable chair.

6.2.4 Experimental Protocol

Since the objective of this study was to analyze the effect of cross-cultural con-
temporary instrumental music on brain activity during the normal relaxing condi-
tion, the frontal, temporal and occipital lobes were selected for the study. EEG was
done to record the brain-electrical response of 20 subjects. Each subject was pre-
pared with an EEG recording cap with 19 electrodes (Ag/AgCl sintered ring
electrodes) placed in the international 10/20 system. Figure 6.1 depicts the posi-
tions of the electrodes. Impedances were checked below 50 kΩ. The EEG recording
system (Recorders and Medicare Systems) was operated at 256 samples/s recording
on customized software of RMS. The data was band-pass-filtered between 0.5 and
35 Hz to remove DC drifts and suppress the 50 Hz power line interference. The ear
electrodes A1 and A2 linked together have been used as the reference electrodes.
The same reference electrode is used for all the channels. The forehead electrode,
FPz has been used as the ground electrode. Each subject was seated comfortably in
a relaxed condition in a chair in a shielded measurement cabin. They were also
asked to close their eyes. After initialization, a 10 min recording period was started,
and the following protocol was followed:

Fig. 6.1 The position of
electrodes according to the
10–20 international system
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1. 60 s No Music (Resting Condition)
2. 30 s Clip 1
3. 30 s No Music
4. 30 s Clip 2
5. 30 s No Music
6. 30 s Clip 3
7. 30 s No Music
8. 30 s Clip 4
9. 30 s No Music

10. 30 s Clip 5
11. 30 s No Music
12. 30 s Clip 6
13. 30 s No Music
14. 30 s Clip 7
15. 30 s No music
16. 30 s Clip 8
17. 60 s After Music

Markers were set at start, signal onset/offset, and at the end of the recording.

6.2.5 Methodology

6.2.5.1 Pre-processing of EEG Signals

We have obtained noise free EEG data for all the electrodes using the EMD
technique as in Maity et al. (2015) and used this data for further analysis and
classification of acoustic stimuli induced EEG features. The amplitude envelope of
the alpha (8–13 Hz) and theta (4–7 Hz) frequency range was obtained using
wavelet transform technique. Data was extracted for these electrodes according to
the time period given in the Experimental protocol section i.e. for Experimental
conditions 1–17.

6.2.5.2 Wavelet Transform

Wavelet transform (WT) forms a general mathematical tool for time-scale signal
analysis and decomposition of EEG signal. We have used WT technique to
decompose the EEG signal into various frequency bands i.e. alpha and theta.
The DWT (Akin et al. 2001) analyzes the signal at different frequency bands with
different resolutions by decomposing the signal into a coarse approximation and
obtains detailed information. The time series data of alpha and theta waves were
obtained corresponding to each experimental condition. On the obtained time series
data, MFDFA analysis was performed.
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6.2.5.3 Multifractal Analysis of EEG Signals

The analysis of the alpha and theta EEG signals are done using MATLAB (Ihlen
2012) and for each step an equivalent mathematical representation is given which is
taken from the prescription of Kantelhardt et al (2002). The width of the spectrum
gives a measure of the multifractality of the spectrum. Greater is the value of the
width W greater will be the multifractality of the spectrum. For a monofractal time
series, the width will be zero as h(q) is independent of q.

The origin of multifractality in a EEG time series can be verified by randomly
shuffling the original time series data (Figliola et al. 2007a, b). All long range
correlations that existed in the original data are removed by this random shuffling
and what remains is a totally uncorrelated sequence. If any series has multifractality
both due to long range correlation as well as due to probability density function,
then the shuffled series will have smaller width W and hence weaker multifractality
than the original time series. In this case we have seen that the original alpha and
theta waves show multifractality values much higher than their corresponding
shuffled values. This corroborates the findings of our previous work (Maity et al.
2015) where the origin of multifractality in alpha and theta waves is ascribed both
due to long range correlation and probability distribution function.

6.3 Results and Discussions

The emotional ratings for each clip given by the respondents in the listening test are
given in tabular form in Table 6.2. All the markings by the listeners from 1 to 5
corresponding to a particular emotion have been grouped under that emotion in the
table.

On the basis of Table 6.2, the following radar plots are shown (Fig. 6.2a–h)
which gives the level of arousal and valence of the listeners in response to each
instrumental clip:

It is evident from the figures that Clips 1/8 and 2/7 have similar arousal but are of
opposite valence, as Clips 1 and 8 have been rated to be joyful with almost 90%
strength while Clips 2 and 7 have been rated to be sorrowful with almost 80%

Table 6.2 Strength of
emotional response from
listening test of 100
informants (in percentage)

Joy Anxiety Sorrow Calm

Clip 1 96 52 4 37

Clip 2 13 6 83 93

Clip 3 32 99 53 1

Clip 4 58 100 5 10

Clip 5 50 15 50 68

Clip 6 16 10 78 83

Clip 7 6 13 86 86

Clip 8 100 3 0 93
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Fig. 6.2 a Emotional plot for Clip 1, b Emotional plot for Clip 2, c Emotional plot for Clip 3,
d Emotional plot for Clip 4, e Emotional plot for Clip 5, f Emotional plot for Clip 6, g Emotional
plot for Clip 7, h Emotional plot for Clip 8
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strength. In a similar manner Clips 3/4 have been reported with 95% strength to
convey anxiety while Clips 5/6 have been shown to be calm with 80 and 70%
strength respectively. In this way, we have identified the arousal and valence
corresponding to each instrumental clip and standardized the emotional appraisal
pertaining to the clips. Next, the obtained EEG data for 20 participants for the same
set of 8 cross cultural instrumental clips were analyzed with the help of well known
MFDFA technique (Kantelhardt et al. 2002). Initially, the noise free EEG data was
subjected to WT technique where from the amplitude envelope for alpha and theta
waves were obtained for all the chosen electrodes. The time series data of the alpha
and theta waves so obtained were analyzed with MFDFA method. The qth order
fluctuation function Fq(s) for 10 points of q in between −5 and +5 was obtained.
The slope of the best fit line obtained from ln(Fq(s)) versus ln(s) plot gives the
values of h(q). A representative figure for variation of h(q) with q in response to
Clip 1 for a particular electrode F3 (for a sample person) in both alpha and theta
domain have been shown in Figs. 6.3 and 6.4. The shuffled values of h(q) has also
been shown in the same figure (in blue dotted lines). The variation of h(q) with
q clearly indicates a multifractal behavior for both alpha and theta waves, as the
shuffled values show remarkable difference from that of the original values. It is
also evident from the figures that in most cases the values of h(q) decreases with
increasing q which as another evidence of multifractality in the time series. The
shuffled values of the time series, on the other hand shows very little variation or
sometimes no variation, showing monofractal behavior, since all the long range
correlations are destroyed during random shuffling of the time series data.

The amount of multifractality can be determined quantitatively in each of the
electrode from the width of the multifractal spectrum [f(a) vs. a]. A representative
figure showing the multifractal spectrum for alpha and theta waves (both original
and shuffled for a single person) before and after playing Clip 1 for electrode F3

Fig. 6.3 Variation of original and shuffled values of h (q) vas q in F3 electrode for alpha waves.
a Part 1 F3, b Part 2 F3
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Fig. 6.4 Variation of original and shuffled values of h (q) vas q in F3 electrode for theta waves.
a Part 1 F3, b Part 2 F3

Fig. 6.5 Multifractal spectrum [f(a) vs. a] of alpha waves for a particular electrode F3. a Part 1
F3, b Part 2 F3

Fig. 6.6 Multifractal spectrum [f(a) vs. a] of theta waves for a particular electrode F3. a Part 1
F3, b Part 2 F3
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have been shown in Figs. 6.5 and 6.6. As is evident from the figure the values of
Wshuffled are in general lower than the values of Woriginal. This indicates that the
multifractality in the EEG signal is due to both broad probability distribution as
well as long range correlation. But, multifractality due to long range correlation is
more effective as the shuffled values show much less multifractalilty as compared to
the original value in both the frequency domains. In case of shuffled values, the
spectral width shows a peak value at around 0.5, which shows monofractal behavior
for the shuffled signals. For the sake of comparison, in Fig. 6.7 we have shown the
variation of multifractal width in both alpha and theta domain the response to
Clip 1. It is evident that the spectral width is significantly different for the different
experimental conditions ascribed to the emotional intensity of the clips and the
arousal caused in different locations of the brain.

The values of spectral width were averaged for all the persons and the averaged
values are presented in Table 6.3 along with the Standard deviation (SD) values
computed for each experimental condition.

Table 6.3 shows the variation of multifractal width in different experimental
conditions 1–17 for the different electrodes chosen in our study in both the fre-
quency domains. We have computed the changes in multifractal widths for the four
different categories of emotional arousal chosen. Thus, we have tried to see the
changes in brain response when the valence is kept constant for two different clips.
In this way, the following figures show the changes in multifractal spectral width of
alpha and theta waves for the four emotional categories chosen (computed in
percentage).

Figure 6.8 gives the change in multifractal width (in percentage) corresponding
to alpha wave for the nine electrodes chosen.

The figures have the following interesting observations:

1. Clips 1 and 8 which were rated as *90% joy in the listening test data have
reported a decrease in spectral width unanimously across all the scalp electrodes

Fig. 6.7 Variation of multifractal width in alpha and theta domain for F3 electrode in response to
Clip 1
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of the frontal, temporal and occipital lobes. The maximum dip, however are seen
in the odd electrodes, i.e. F3, F7, O1 and T3 respectively, though the even
electrodes have significant fall in spectral width as is evident from the figures.
The simultaneous involvement of the different lobes of brain in the processing of
joyful musical clips points in a direction opposite to the conventional valence
lateralization theory, which says that only the left frontal lobe is involved in
processing of joyful emotions. Here, we see that though the percentage of fall in
complexity is higher in the left electrodes (of all the lobes), the complexity
changes significantly for the even electrodes as well.
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Fig. 6.8 a Change in alpha multifractal width for the two high joy clips, b Change in alpha
multifractal width for the two high sorrow clips, c Change in alpha multifractal width for the two
high anxiety clips, d Change in alpha multifractal width for the two high serenity clips

6.3 Results and Discussions 133



2. In case of Clips 2 and 7 rated as*80% sorrow, we see differential processing of
the sad emotion in respect to left and right frontal electrodes. The left frontal
electrodes F3 and F7, as well as the left occipital electrode O1 show an increase
in complexity of alpha rhythms while, the right frontal electrodes F4 and F8
register a dip in complexity. The temporal electrodes show opposite phe-
nomenon compared to the frontal one, with T3 showing a dip in complexity
while in T4 complexity increases a little.
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Fig. 6.8 (continued)
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3. In case of valence anxiety, we again find unanimous response across all the
scalp electrodes which show a dip in complexity, except for F4 where a rise in
complexity is seen for both Clips 3 and 4. The arousal effects corresponding to
alpha rhythms are more significant again for the frontal electrodes F3, F8 and an
occipital electrode O1, while F4 demonstrates a considerable increase in alpha
multifractality. We thus hypothesize that both anxiety (alias fear) and joy (alias
happy) can be regarded as intense emotions which cause an arousal in almost all
the lobes of the brain, manifested in a sharp dip in the multifractality of alpha
rhythms generated from the respective lobes.

4. The emotion “serene” failed to generate any significant response from other
electrodes except the frontal F3 and F4, which have registered a dip in the
complexity. This can be attributed to the intensity of the valence “serene”. We
have seen that emotions with high intensity have generated an uniform response
in alpha rhythms across the electrodes, while the emotions with low intensity
have generated lateralized or negligible response in the electrodes.

5. Another interesting observation is that, whatever be the valence of the musical
clips, the frontal electrodes F3 and F4 have always shown significant increase or
decrease of alpha multifractality. This corroborates the findings of previous
works where the frontal lobe was attributed to be the main contributor for
processing of musical emotions. Though, in these work we have seen electrodes
from other regions getting aroused while processing of musical emotions.

6. The figures also provide a new knowledge regarding the age old debate of
universality of music (Fritz et al. 2009). Here Clips 1 and 8 consists of
instrumental clips of different cultures namely Western and Indian classical
respectively, but the response obtained across the wide variety of subjects in
listening test as well as in the EEG alpha rhythm analysis is strikingly uniform.
In the same way Clips 3 and 4 are cross cultural clips which have shown to
convey anxiety (or fear) valence in the listeners significantly. Also the response
in the EEG alpha rhythm multifractality is consistent in all the electrodes. The
clips 5 and 6 though cross-cultural and induce consistent amount of same
valence (i.e. calm or serenity) in the listeners, report ambiguous response in the
listening test. The arousal caused is more significant in Clip 6 (Indian Classical)
as compared to Clip 5 (Western).

One way ANOVA (Miller 2004) tests were conducted separately for the clips
belonging to the same valence. While the clips with valence joy and anxiety yielded
95% confidence in results, clips belonging to the valence sorrow and serene yielded
90 and 80% confidence in results respectively.

The following figures show the response of the same clips in theta domain. The
difference in multifractal spectral width (in percentage) in response to each of the
Clips is computed from Table 6.3 and plotted in Fig. 6.9a–d.

In case of theta domain, the responses of EEG data to the different cross cultural
instrumental clips shows to have a certain level of inconsistency as compared to the
values obtained in the alpha domain. Nevertheless, we have the following
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observations from the graphs of multifractal width obtained from analysis of theta
frequency:

1. The two cross-cultural instrumental clip 1 and 8, having high joy content again
show uniform dip in theta multifractal width throughout all the electrodes in
general. All the frontal electrodes show significant dip in theta complexity along
with the frontal midline electrode Fz, which has been earlier reported to play a
significant role in theta domain to be a marker for pleasantness of a musical
clip. An interesting point to be noted here is that Clip 8 i.e. the Hindustani
instrument consistently has a lesser dip in spectral with compared to the 1st clip,
the Western accordion. In electrodes O1 and T3, even an increase in theta
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Fig. 6.9 a Change in theta multifractal width for the two high joy clips, b Change in theta
multifractal width for the two high sorrow clips, c Change in theta multifractal width for the two
high anxiety clips, d Change in theta multifractal width for the two high serenity clips
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multifractality is manifested in Clip 8, which hints in the direction of differential
cognitive engagement to some extent in the theta domain when it comes to
processing of different types of music.

2. In case of the two sad clips, most of the electrodes remain inert to some extent
except for the two temporal electrodes T3 and T4, where sufficient increase in
theta multifractality is noted. The two occipital electrodes, O1 and O2, also
shows differential processing of the sorrow clips, the multifractality in the odd
electrode increase, while it decreases in the even ones. Clips 2 and 7, though
instruments of Indian classical show different arousal in different positions of
brain as is evident from the figures, thus in F3 we have sharp dip for Clip 7,
while for Clip 2 we have sharp dip in F4 electrode. This can be attributed to the
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Fig. 6.9 (continued)
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differential arousal caused by the two same valence clips. Thus, in the theta
domain we have identified the regions in which the valence, sorrow is processed
from the arousal caused in the particular lobes manifested in the changes of theta
complexity.

3. The two high anxiety cross-cultural clips show distinct ambiguity in the arousal
activities corresponding to different electrodes. In the two temporal electrodes,
consistent increase in theta multifractality is noted along with two frontal
electrodes, F4 and Fz. Electrodes F3 and O1 show differential processing of the
two cross-cultural high anxiety clips. While in F3, Clip 3 causes a dip in
multifractality, in O1 we have significant increase for Clip 3, the reverse effect is
seen for Clip 4 (Indian classical instrument). This may be the cause of different
intensities of the valence anxiety induced by the Western classical instrument
Organ and the Indian classical instrument, Tabla.

4. The two cross cultural clips conveying the valence calmness or serenity has
given inconsistent results even in the theta domain, as in the alpha domain. In
the valence, calm, the temporal lobes remain almost unaffected showing little or
no change in most cases.The theta multifractality decreases for frontal electrodes
F7 and F8, while differential arousal based activities are seen in O1 and O2. In
both these occipital electrode, theta multifractality increases for Clip 5 (Western
instrument, piano) while it increases considerably for Clip 6 (Indian classical
instrument, sitar). The reverse effect is seen for the frontal midline electrode Fz.
Again, this observation hints in the direction of different cognitive engagement
for the musical clips of two different genres.

One way ANOVA (Miller 2004) gave 90% confidence in results for the happy
clips. 80% for the sorrow and anxiety clips respectively, 70% for the serenity clips.

Thus, we have compared the clips belonging to the same valence but having
different arousal intensity in the theta domain. The musical clips which have the
same arousal and different valence can also be identified by their specific response
in the different electrodes as briefed above. With these observations, we look
forward to device an algorithm which can be applied as an automated one for the
identification of musical emotions using latest state of the art non-linear techniques.

6.4 Conclusion

Music has been in the human civilization for eons. It has often been referred to as
the universal language which is, and has been present in all human civilization
known. A group of researchers even claim that music came much before speech.
The effect of music on brain has been well documented in the past; one of them
even goes to the extent to claim that individuals with Alzheimer’s disease often
recognize songs to the end of life. Recognizing and categorizing musical emotion
thus remains a challenging problem primarily due to the inherent ambiguities of
human emotions. The perception of emotion is particularly important in the musical

138 6 Genesis of Universality of Music …



domain because music appears to be primarily dedicated to evoking emotions.
According to Yehudi Menuhin (http://www.menuhin.org/), a well known violinist
“Music creates order out of chaos: for rhythm imposes unanimity upon the
divergent, melody imposes continuity upon the disjointed, and harmony imposes
compatibility upon the incongruous.”

In this study, we envisaged to do the task of categorization and differentiation of
four basic musical emotions with the help of robust non-linear MFDFA analysis
and develop a parameter with which we can quantify and differentiate arousal and
valence effects of cross cultural musical clips. The main findings of this work can be
pointed as under:

1. The multifractal analysis of alpha frequency data points strongly in the direction
of universality of music predominantly in the processing of two strong emotions
(joy and anxiety) uniformly throughout the brain areas. The strong involvement
of all the scalp electrodes in the processing of these two emotions is substan-
tiated by the decrease in alpha complexity uniformly for the two instrumental
clips of different origin. The decrease in alpha multifractal width can thus be a
strong indicator of the valence of emotions and the amount of change can give a
measure of arousal corresponding to that clip.

2. The other two emotions i.e. sorrow and calm give an indication of the lateral-
ization processing of valence, leading to differential increase or decrease of
alpha multifractality in odd-even (left/right) electrodes. Thus, we have an idea
about electrode specificity also, regarding which emotion is processed by which
electrodes, or whether all the electrodes take part simultaneously in the pro-
cessing of valence.

3. In case of multifractal analysis on theta frequency, we have distinguishable
response for Indian and Western instrumental clips of the same valence. Though
the musical Clips for joy uniformly caused a decrease in multifractality across
all the electrodes, but the arousal (measured from the amount of change of
multifractality of theta) is significantly different for the two cross-cultural clips.
This may be caused due to familiarity or other effects as the participants of the
EEG test are all of Indian origin. Other clips gave electrode (alias lobe) specific
arousal corresponding to a specific valence in the theta domain.

This work presents new and interesting data shedding light on universality of
human brain functions as well as domain specificity of arousal valence in musical
emotion. We have developed the multifractal spectral width (of alpha or theta EEG
waves) as a parameter through which we can explore the arousal and valence based
effects of different musical clips. The application of this work in the direction of
cognitive music therapy on psychological patients utilizing a diverse variety of
instrumental clips is immense. Investigating with more number and variety of clips
and greater respondents in EEG study would lead to more robust and definite
results. Finally, we can conclude that this work provides, for the first time, new data
which may link the concept of arousal-valence based emotion with domain specific
activity of the brain and shows a window to the comprehension of interactive brain
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function with the help of cross-cultural music. The next chapter deals with Gestalt
phenomenon in musical signals, which frequencies we actually hear when we are
listening to a song. MFDFA technique is used to assess the change in neural
complexity when certain frequencies are clipped off from a song.
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Chapter 7
Gestalt Phenomenon in Music: Which
Frequencies Do We Really Hear?

“…a piece of music which is initially too complex for an
individual to like, may, with repeated playings, move down to a
lower complexity level at which liking may begin to emerge”.

—Paul Davies

7.1 Introduction

How does human being perceive and recognize a musical sound? Is there any
specific frequency region of music which makes a particular song identifiable? If so,
what is the corresponding brain response to that particular frequency band? In the
domain of auditory signal processing, what is the manifestation of this change in
perception of the particular song? These are a few questions which we try to venture
with the help of this study.

7.1.1 What Is Gestalt Psychology?

Gestalt is a psychology term which means “unified whole”. It refers to theories of
visual perception developed by German psychologists in the 1920s. These theories
attempt to describe how people tend to organize visual elements into groups or
unified wholes when certain principles are applied (Koffka 2013). The various
principles which make use of gestalt psychology are similarity, continuation, clo-
sure and proximity. A number of experiments in the visual domain try to explore
the paradigm of gestalt psychology using ambiguous figures as visual stimuli.
Ambiguous figures provide a fascinating exception from our normally stable visual
world: On prolonged inspection, the ‘‘Necker cube’’ undergoes a sudden,
unavoidable reversal of its perceived front-back orientation (Kornmeier and Bach
2004). This particular study tries to look into an Event Related Potential
(ERP) correlate of endogenous reversal from ambiguity to disambiguity of a Necker
2D lattice: a negativity starting at about 160 ms with a first major deflection at
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250 ms after presentation of the ambiguous stimulus, and restricted to occipital and
parietal locations. Such multistability in perception can arise from a variety of
stimulus types, involving alterations in a pattern’s perceived depth, direction of
motion, or visibility (Necker 1832; Ramachandran and Anstis 1985; Rubin 1958;
Dutour 1760), and have been used extensively in the visual sciences as a tool for
investigating mechanisms of perceptual organization in a number of studies (Mori
et al. 1982; Attneave 1971; Dune 1988).

7.1.2 Applications of Gestalt in Visual Domain

There is a group of research work which deals with the creative manifestations of
gestalt therapy (Dune 1988; Brown 1969, 1970); which begin with the application
of the principles of Gestalt theory, such as figure/ground, the principles of good
Gestalt, Prägnanz and closure, as well as viewing perception as an active process.
The reorganization of familiar, chronically poorly configured elements into some-
thing new and valuable and therefore beautiful reflects the embeddedness of Gestalt
therapy in field theory.

According to a research at Cambridge University (Rayner et al. 2006), it doesn’t
matter in what order the letters in a word are, the only important thing is that the
first and last letter be at the right place. The rest can be a total mess and you can still
read it without problem. This is because the human mind does not read every letter
by itself but the word as a whole. The whole idea of gestalt phenomenon in music
originated from this experiment which is carried out mainly in the visual domain;
we thought of reproducing the same type of experiment in the auditory domain
which led us to developing the protocol of this particular experiment.

7.1.3 Gestalt in Auditory Domain

Although the main focus of gestalt theory has been on the visual domain, a number of
works have been done in the auditory domain as well (Deliege 1987; Frankland and
Cohen 2004; Todd and Werner 1999; Narmour 1989; Lerdahl and Jackendoff 1983),
using the various principles of gestalt theory viz. proximity, similarity closure etc. If seen
loosely, visual and auditory perceptions are poles apart from one another; one is spatial
perception, the other temporal. However it is easy to see how each contains elements of
the other—visual perception also changes over time, just like musical/auditory per-
ception; when we look at moving or changing forms, even when we see a static image
our eyes move across it in meaningful patterns. Further, our two ears allow us to detect
distance and direction, and our musical sensibilities perceive movement in a space
defined by such dimensions as timbre, pitch, duration, distortion, resonance and so on.
Gjerdingen (1999) applies the Grossberg-Rudd neural model of apparent movement in
vision to music and reveals definite similarities between visual and aural perception such
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as luminance/amplitude and colour/timbre. But yet the overall experience of seeing and
hearing seem to be such different experiences. Gjerdingen (1999) offers a beautiful
explanation for this, that while high-level cognition of vision and sound may be anal-
ogously weak, their low-level neural processes show striking similarities. That is, even
though sound and light are very different mediums, the brain may process them in very
similar ways. Western musical theory explores Gestalt principles in mainly two areas—
grouping and expectation (Lerdahl and Jackendoff 1983); while groups vary from
simple drum beats, a note to a complete musical piece; expectation is the influence of
our previous perception on a recent event. No study, till date explores the scaling
properties of music signals which have been doctored keeping in mind the principles of
gestalt theory, as well as the brain response to that particular music signals.

7.1.4 Creativity and Gestalt Theory

Creativity in Gestalt theory means venturing beyond self-expression and entering
the dynamics of the productive interchange within the therapeutic relationship, and
thus creation of a space which is not ventured earlier. A formal definition for
creative thinking, as ascertained by Guilford (1957) is “conceptual redefinition” or
“the ability to redefine or reorganize objects of thought”. The Gestalt
Transformations test has shown very strong loadings on this factor (Kettner et al.
1959). The gestalt therapy system is truly integrative and includes affective, sen-
sory, cognitive, interpersonal, and behavioral components where therapists and
patients are encouraged to be creative in doing the awareness work. But all these
works look into gestalt therapy mainly from the view of art and craft and not any
scientific phenomenon. In this work, we envisaged to study gestalt-like phe-
nomenon in a new light of sound scientific principles and the inherent brain
dynamics associated with it.

7.1.5 Response of Brain to Certain Frequency Bands
of Music Using Non-linear Techniques

Each type of music has its own frequency, which can either resonate or be in
conflict with the body’s rhythms (heart rate). Studying EEG dynamics typically
relies on the calculation of temporal and/or spectral dynamics from signals recorded
directly from the scalp. Each frequency band of the EEG rhythm relates to specific
functions of the brain. EEG rhythms are classified into five basic types: (i) delta (d)
0.5–4 Hz, (ii) Theta (h) 4–8 Hz, (iii) alpha (a) 8–13 Hz, (iv) beta (b) 13–30 Hz and
(v) gamma (c) 30–50 Hz. It has been observed that pleasant music produces a
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decrease in the alpha power at the left frontal lobe and unpleasant music produces
decrease in the alpha power at the right frontal lobe (Tsang et al. 2001; Schimdt and
Trainor 2001; Sammler et al. 2007). Also, activity in the alpha frequency band has
been found to be negatively related to the activity of the cortex, such that larger
alpha frequency values are related to lower activity in the cortical areas of the brain,
while lower alpha frequencies are associated with higher activity in the cortical
areas (Davidson 1988; Mizuki et al. 1992). Davidson (1988) have shown that
disgust cause less alpha power in the right frontal region than happiness while,
happiness cause less alpha power in the left frontal region. The Frontal midline
(Fm) theta power was positively correlated not only with scores of internalized
attention but also with subjective scores of the pleasantness of the emotional
experience. Furthermore, two studies on the relationship between Fm theta and
anxiety reported negative correlations between Fm theta during mental tasks and
anxiety measures (Mizuki et al. 1992; Suetsugi 2000). It has also been shown that
pleasant music would elicit an increase of Fm theta power (Sakharov et al. 2005).
Recent researches have demonstrated that the modulation of gamma band activity
(GBA) in time windows between 200 and 400 ms following the onset of a stimulus
is associated with perception of coherent visual objects (Muller et al. 1999), and
may be a signature of active memory. While listening to music, degrees of the
gamma band synchrony over distributed cortical areas were found to be signifi-
cantly higher in musicians than non musicians (Bhattacharya et al.2001;
Bhattacharya and Petsche 2001a).The gamma band EEG distributed over different
areas of brain while listening to music can be represented by a universal scaling
which is reduced during resting condition as well as when listening to texts
(Bhattacharya and Petsche 2001b).

The scalp EEG arises from the interactions of a large number of neurons whose
interactions generally nonlinear (Linkenkaer-Hansen et al. 2001) and thus they can
generate fluctuations that are not best described by linear decomposition (Hwa and
Ferree 2002). On the other hand, the classical nonlinear dynamics method such as
correlation dimension and Lyapunov exponents are very sensitive to noise and require
the stationary condition, while EEG signals often are highly non-stationary (Lee et al.
2002). Chaos analysis based on the assumption of low-dimensional attractors has also
been applied to qualify the nonlinear behavior of the EEG, but in fact, the underlying
neural populations are unlikely to obey entirely low-dimensional dynamics (Hwa and
Ferree 2002).

In recent past, the Detrended Fluctuation Analysis (DFA) (Peng et al. 1994) has
become a very useful technique to determine the fractal scaling properties and
long-range correlations in noisy, non-stationary time-series (Hardstone et al. 2012).
DFA is a scaling analysis method used to quantify long-range power-law correla-
tions in signals—with the help of a scaling exponent, a, to represent the correlation
properties of a signal. In the realm of complex cognition, scaling analysis technique
was used to confirm the presence of universality and scale invariance in sponta-
neous EEG signals (Bhattacharya 2009). In case of music induced emotions, DFA
was applied to analyze the scaling pattern of EEG signals in emotional music and
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particularly Indian music (Banerjee et al. 2016). But DFA has its own limitations.
Many geophysical signals as well as biosignals do not exhibit monofractal scaling
behavior, which can be accounted for by a single scaling exponent (Hu et al. 2001;
Kantelhardt et al. 2001), therefore different scaling exponents are required for
different parts of the series (Chen et al. 2002). Consequently a multifractal analysis
should be applied.

The Multifractal Detrended Fluctuation Analysis (MFDFA) technique was first
conceived by (Kantelhardt et al. 2002) as a generalization of the standard DFA.
MFDFA has been applied successfully to study multifractal scaling behavior of
various non-stationary time series (Kantelhardt et al. 2003; Sadegh et al. 2006;
Telesca et al. 2004) as well as in detection or prognosis of diseases (Dutta et al.
2013). The multifractals are fundamentally more complex and inhomogeneous than
monofractals (Stanley et al. 1999) and describe time series featured by very
irregular dynamics, with sudden and intense bursts of high-frequency fluctuations
(Davis et al. 1994). EEG signals are essentially multifractals as they consist of
segments with large variations as well as segments with very small variations,
hence when applied to the alpha and theta EEG rhythms, the multifractal spectral
width will be an indicator of emotional arousal corresponding to particular clip. In
case of music induced emotions, a recent study (Maity et al. 2015) used the mul-
tifractal spectral width as an indicator to assess emotional arousal corresponding to
the simplest musical stimuli—a tanpura drone.

7.1.6 Doctoring of Clips from Tagore Songs

We chose to study brain response to different frequency bands of 4 musical clips—
i.e. 4 pre-recorded Tagore songs, sung by a renowned artist without any accom-
paniment. Music in general is polytonic, i.e. a number of pure tones mixed together
in such a way that it sounds harmonius; musical sound produced by human voice in
this way is also periodic albeit highly complex in nature. The different frequency
bands were also analyzed with the same techniques as used for the analysis of EEG
signals. To avoid any variation arising due to the change of timbral parameters,
recordings from the same singer were taken for our experiment. From the complete
recording, approximately 20 s clips were clipped and segregated into five frequency
bands viz. Band 1 (50–1 kHz), Band 2 (1–2 kHz), Band 3 (2–3 kHz), Band 4 (3–
4 kHz) and Band 5 (4 kHz and above) using Fast Fourier Transform
(FFT) techniques.

7.1.7 Overview of Our Work

This work is first of its kind which looks to find brain response corresponding to
various frequency bands of music. The response corresponding to each frequency
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band may shed new light about how human brain perceives and recognizes a known
musical clip. For this, 4 different clips of Tagore songs were doctored into 5
different frequency bands as explained in the previous section. Next a human
response data was collected from about 100 participants, where the respondents
were asked to mark the band in which they could not identify the song. The clips
were played in a jumbled manner with the original clip being always played ini-
tially, so that the respondents are aware of what song they are listening to. From the
resulting human response data, it was seen that maximum non-recognition is being
seen in the 4th and 5th band, while in spite of the removal of fundamental frequency
and two/three higher harmonics, the respondents can clearly recognize the song in
the 2nd and 3rd band. From this observation it is clear that human mind can
recognize musical timbre till around 3 kHz even without the presence of funda-
mental frequency, while a switch occurs above that, which leads to its
non-recognition. With this cue, we sought to understand the EEG brain response of
this switch, where the human mind is unable to process the frequency bands. For
this, a pool of 20 subjects was randomly chosen from the pool of 100 respondents
who participated in the human response study and EEG experiment was performed
on them using the same protocol in which psychological response was taken. Next,
10 electrodes were chosen (F3, F4, F7, F8, T3, T4, T5, T6, O1 and O2) from
different locations of the brain whose modalities match with our work, and time
series data were extracted from each one of them. The time series data obtained
from each of the 10 electrodes were separated into alpha, theta and gamma fre-
quency rhythms for each of the experimental condition and analyzed with the help
of MFDFA technique. The multifractal spectral width obtained for each of the
experimental condition acts as a parameter with which we can identify the arousal
based activities in different lobes of brain. From the results obtained we see there is
a definite switch in the alpha, theta and gamma complexities in different lobes in
response to 4th and 5th band (where there is non-recognition), with the response
most significant in the temporal lobe and gamma band. With this work, we try to
venture into a hitherto unexplored domain of human brain response to different
frequency bands of music, which may be a cue to study the gestalt principles in the
auditory domain. Also, the application of robust state of art non-linear methods to
assess EEG data makes the study a crucial one in the field of auditory cognitive
neuroscience. The results and implications are discussed in detail in the following
sections.

7.2 Experimental Details

7.2.1 Collection and Analysis of Human Response Data

Participants for psychological data were recruited mostly through word of mouth
and social media platforms. All the listening test data were collected at the Sir C.V.
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Raman Centre for Physics and Music, Jadavpur University over a period of
2 months. In this study, response from 100 participants (F = 46, M = 54) were
considered for analysis presented herewith, who participated voluntarily. The
subjects chosen had no formal musical training.

For the listening test, a template like the one given in Fig. 7.1 were made for
each of the sample and presented to the respondents. The template consists of the
clips in the following order:

Original Clip => Band 3 (2–3 kHz) (Part 1) => Band 2 (1–2 kHz) (Part
2) => Band 5 (4–5 kHz) (Part 3) => Band 4 (3–4 kHz) (Part 4) => Band 1 (50–
1 kHz) (Part 5).

A resting time of about 5 s were given between each successive clip. All the
clips were normalized to keep the amplitude constant.

Approximately 20 s clips from four popular Tagore songs sung by a renowned
singer (without any accompaniment) were taken for our analysis, with the original
clip being played first, followed by the jumbled order of clips. An Instruction
Sheet along with a response form like the one given below (Fig. 7.2) was given to
the respondents where they were asked to mark the parts where they could not
recognize the song.

Fig. 7.1 The template of music clip containing different frequency bands played randomly

Fig. 7.2 Response sheet to identify the non-recognition of each song
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7.2.2 Subjects Summary

20 (M = 13, F = 7) musically untrained adults chosen randomly from the pool
created from listening test data who voluntarily participated in this study. The
average age was 23 years (SD = 2.35 years) and average body weight was 60 kg.
Informed consent was obtained from each subject according to the guidelines of the
Ethical Committee of Jadavpur University. All experiments were performed at the
Sir C.V. Raman Centre for Physics and Music, Jadavpur University, Kolkata. The
experiment was conducted in the afternoon with a normal diet in a normally con-
ditioned room sitting on a comfortable chair and performed as per the guidelines of
the Institutional Ethics Committee of SSN College for Human volunteer research.

7.2.3 Experimental Protocol

During the EEG acquisition period, the 20 subjects were made to listen to the same
clips in the same order as in the listening test. Each experimental condition lasted
for around 12 min. Each song clip of 20 s was followed by a resting period of 5 s
during which no music was played. Subjects were asked to keep their eyes closed
and to sit calmly during each condition. First, the baseline (i.e. a resting condition)
was recorded for each subject before the start of the experiment with 1 min of ‘no
music’ condition.

The music was presented with the computer-sound system (Logitech R _ Z-4
speakers) with very high S/N ratio was used in the measurement room for giving
music input to the subjects ca. 120 cm behind the head of the subjects with a
volume of 45–60 dB. The EEG experiment was conducted in the afternoon (around
2 PM) in a room with the volunteers sitting in a comfortable chair.

Since the objective of this study was to analyze the effect of different frequency
bands of music on brain activity during normal relaxing conditions, the frontal,
temporal and occipital lobes were selected for the study. EEG was done to record
the brain-electrical response of 20 subjects. Each subject was prepared with an EEG
recording cap with 19 electrodes (Ag/AgCl sintered ring electrodes) placed in the
international 10/20 system. Figure 7.3 depicts the positions of the electrodes.
Impedances were checked below 50 kΩ. The EEG recording system (Recorders
and Medicare Systems) was operated at 256 samples/s recording on customized
software of RMS. The data was band-pass-filtered between 0.5 and 35 Hz to
remove DC drifts and suppress the 50 Hz power line interference. The ear elec-
trodes A1 and A2 linked together have been used as the reference electrodes. The
forehead electrode, FPz has been used as the ground electrode. Each subject was
seated comfortably in a relaxed condition in a chair in a shielded measurement
cabin. They were also asked to close their eyes. After initialization, a 10 min
recording period was started, and the following protocol was followed:
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1. 60 s No Music (Resting Condition)
2. 20 s Clip 1 (Original)
3. 5 s No Music
4. 20 s Clip 1 Band 3 (Part 1)
5. 5 s No Music
6. 20 s Clip 1 Band 2 (Part 2)
7. 5 s No Music
8. 20 s Clip 1 Band 5 (Part 3)
9. 5 s No Music

10. 20 s Clip 1 Band 4 (Part 4)
11. 5 s No Music
12. 20 s Clip 1 Band 1 (Part 1)
13. 30 s Resting period

The same protocol was repeated for Clips 2, 3 and 4 with a 30 s resting period in
between each clip. Markers were set at start, signal onset/offset, and at the end of
the recording.

7.3 Methodology

We have obtained noise free EEG data for all the electrodes using the EMD
technique as in Maity et al. (2015) and used this data for further analysis and
classification of acoustic stimuli induced EEG features. The amplitude envelope of
the alpha (8–13 Hz), theta (4–7 Hz) and gamma (14–30 Hz) frequency range was
obtained using wavelet transform technique. Data was extracted for these electrodes
according to the time period given in the Experimental protocol section i.e. for
Experimental conditions 1–13.

Fig. 7.3 The position of
electrodes according to the
10–20 international system
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The Wavelet Transform technique (Akin et al. 2001) was used to extract the
alpha, theta and gamma band EEG signals as elaborated in the methodology
chapter. On the obtained time series data, MFDFA analysis was performed.

The alpha, theta and gamma band EEG signals were subjected to multifractal
analysisis using MATLAB (Ihlen 2012) and for each step, an equivalent mathe-
matical representation is given following Kantelhardt et al. (2002). The width of the
obtained spectrum gives a measure of the multifractality of the spectrum. Greater is
the value of the width W greater will be the multifractality of the spectrum. For a
monofractal time series, the width will be zero as h(q) is independent of q.

7.4 Results and Discussions

From the results of listening test data, a percentage response chart like the one given
in Table 7.1 is plotted:

It is seen for most of the clips, there is a definite switch in human perception
above Band 3 i.e. above 3 kHz frequency; the human ear is not able to recognize
the song from somewhere above this frequency range; which follows that in Band 5
(which contains frequencies from 4 kHz and above) almost all the participants were
unable to recognize the song. In the following sections we will try to discuss the
brain correlates associated with this switch in perception. From the human response
study, we get an important cue that up to 3 kHz frequency human brain follows the
principle of closure and is able to perceive the entire song even when the funda-
mental along with a few more harmonics have been cut off. But above that, mostly
there is non-recognition for that particular song except for certain percentage of
listeners who are able to perceive the song even above that from the melodic cues
attached to a specific song.

The amount of multifractality and hence the complexity can be determined
quantitatively in each of the electrode from the width of the multifractal spectrum
[f(a) vs a]. The values of multifractal widths have been averaged for the 20 persons
and the variation of complexities from the resting (no music condition) have been
computed for all the experimental conditions. In the following figures the variation
in alpha, theta and gamma complexities in response to the various frequency bands
of 4 music clips have been shown graphically for each of the 10 electrodes we
chose to study Fig. 7.4(a–d):

Table 7.1 Amount of
Non-Recognition of Song
from a listening test of 100
informants (in percentage)

Band 1 Band 2 Band 3 Band 4 Band 5

Clip 1 0 0 20 78 100

Clip 2 0 0 13 89 95

Clip 3 0 0 15 86 100

Clip 4 0 0 16 89 97
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A general glance into the figures help us to identify that there is a characteristic
switch from Band 3 to Band 4, in the complexities corresponding to each of the
frequency band in all the frontal electrodes. While for all the frequency bands up to
3, there is a general decrease in alpha, theta and gamma complexities, a sudden
spike in the complexities is seen corresponding to Band 4 and Band 5, which are the
regions of non-recognition as is verified from the psychological test data. The
sudden increase in complexity is very prominent in the alpha and gamma frequency
range of right frontal electrodes F4 and F8. The theta frequency range gives
somewhat ambiguous results wherein any specific pattern is not observed for the
various frequency bands of music given as input. For some songs, specifically 3 and
4, however we find that the alpha and theta complexities taking ajump from Band 3
only; which may be a cue that the respondents had some confusion in perceiving the
song from this frequency band also. The variation in multifractal widths for the four
temporal electrodes is given in Fig. 7.5(a–d):

For the temporal electrodes, the switch from recognition to non-recognition
shows the same signature as in the case of frontal electrodes, but since the temporal
lobes are generally associated with auditory processing, the manifestation of change
is also very strong here. In this case, however we find the response is strongest in
the T5 and T6 electrodes, whereby a definite rise in alpha and gamma complexity is
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seen in Band 4 and Band 5 as compared to their fall in other frequency bands of
music. An interesting observation here is that for Sample 4, the alpha complexity
decreases for all the temporal electrodes which may be a symbol of recognition of
this particular music clip, although theta and gamma complexity registers an
increase. For Sample 1, the theta and gamma complexity reports a decrease under
the effect of Frquency Band 4 for all the electrodes, which may be a signature of the
respondents being able to recognize the song, while in Band 5 their sudden increase
may be due to complete non-recognition. In general, for the first two low frequency
bands of music, there is a decrease in complexity for all the EEG frequency bands;
while for the last two high frequency bands there is a general increase in complexity
for most of the EEG frequency bands in case of the temporal electrodes. The
Fig. 7.6 (a and b) show the change in complexities for the two occipital electrodes
O1 and O2.

Although, occipital electrodes are associated with processing of visual imagery,
any musical piece is associated with some sort of visual imprint in the minds of the
listener and hence, the response of occipital electrodes in the perception of different
sections of a musical piece is very important. For both the electrodes, we find that
the signature for onset of non recognition, i.e. a sudden increase in alpha, theta and

-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

Original Band 1 Band 2 Band 3 Band 4 Band 5

-0.4
-0.3
-0.2
-0.1
0.0
0.1
0.2
0.3
0.4

Original Band 1 Band 2 Band 3 Band 4 Band 5

F7 

F8

(c)

(d)

Fig. 7.4 (continued)

156 7 Gestalt Phenomenon in Music: Which Frequencies Do We Really Hear?



gamma multifractal width comes at Band 2 for Sample 4, while for Sample 1 it
comes at Band 3. The other two samples behave in a similar manner as is found in
the temporal and frontal electrodes, with the onset of non-recognition coming at
Band 4. For the occipital electrodes, theta band also plays an important role as a
marker to detect the switch from recognition to non-recognition of musical fre-
quency bands.

We find the strongest response for all the EEG frequency ranges in the 1st band
of music, i.e. which contains the fundamental frequency as well as 2/3 higher
harmonics. This is fairly reasonable as this part contains all the signature of the
original song; hence it is easy for the respondents to form a mental imagery for that
particular song, which eventually leads to strong arousal in the occipital electrodes
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for that particular song. Eventually as more and more frequency bands are cut-off
from the musical clips, the occipital lobe fails to perceive the original music and
hence we see a decreasing arousal based response in Band 2 and a sudden jump in
Band 3/Band 4 where there is complete non-recognition and hence no corre-
sponding visual imagery.

Thus, with the help of this study we have tried to establish a threshold for gestalt
phenomenon in music, whereby brain fails to perceive a musical piece above a
particular resonant frequency, i.e. the cue for recognition of that particular musical
piece is lost, and hence the closure property of gestalt principle fails.

7.5 Conclusion

With this work, we tried to venture an unknown horizon of gestalt principle—i.e. is
there a cut-off frequency beyond which human mind cannot recognize even a
known piece of music. We used a robust non-linear technique for the analysis of
EEG data—MFDFA to identify the brain response if there exists such a cut-off
frequency for musical piece. The study yields the following interesting conclusions:
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1. From the psychological data, it is seen that human brain is unable to perceive a
musical frequency above a frequency of 3 kHz in general, although there are
certain exceptions; but we can safely assume 3 kHz as the switch over fre-
quency while above 4 kHz there is complete non-recognition, i.e. there are
almost no musical element left above 4 kHz which will help the human mind to
identify the song. The frequency bands below 3 kHz however are easily iden-
tified by the participants as the original song, though the fundamental frequency
and a number of overtones have been removed from the piece.

2. To find the EEG correlates for the switch, alpha, theta and gamma complexity
were studied for 10 electrodes in frontal temporal and occipital region.
Statistical analysis showed the arousal based effects were most strong in the
right frontal electrodes, F4 and F8 as well as right temporal electrodes T4 and
T6; which leads us to the conclusion that perception and recognition based
activities are mostly performed in the right frontal and temporal lobe; with the
response in T6 and F4 being the strongest in all.
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3. We studied the complexity values corresponding to the three frequency ranges
of EEG data, with the conclusion that alpha and gamma are the most important
markers of gestalt principle in music. The complexity values for both these
frequency ranges decrease when the human brain is able to identify a known
musical piece, and increase suddenly whenever there is non-recognition of a
particular piece. Mostly, we see that switch comes in Band 4 (i.e. for music
signals above 3 kHz), and in some exceptional cases, in Band 2 (i.e. between
2 kHz and 3 kHz) also. The theta frequency range however plays a significant
role in case of the occipital electrodes, where it can be safely used as a marker to
distinguish between the two states.

To conclude, in this work, we have proposed a novel algorithm with which one can
categorize between two states of human mind in response to a well known doctored
musical clip which is devoid of certain frequency values. We see that up to a certain
frequency band, it can easily perceive the musical piece, while above that range, it
becomes unrecognizable. To know the exact value of this cut-off, experiments are going
on by fine tuning the Band 4 into smaller and smaller groups to yield the exact/range of
threshold value(s) where this switch from recognition to non-recognition occurs. The use
of robust algorithm like MFDFA leads to new and interesting results in the domain of
neuro-cognition of musical pieces. Although we obtained certain variations from Sample
to Sample, but those small variations can be neglected as statistical fluctuations, and
hence a definite threshold is obtained above which the closure principle of gestalt fails.
This study has the potential to impact applications like generation of humanized clips
from machines, audio editing as well as researchers of creativity who look for unique
behaviors of human brain. Ambiguity—the most important facet of Hindustani classical
music is analyzed with the help of robust non-linear techniques in the next Chapter.
Acoustical as well as EEG signals have been analyzed to categorize and quantify
different emotional clips.
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Chapter 8
Emotion and Ambiguity: A Study

Learning to live with ambiguity is learning to live with
how life really is, full of complexities and strange surprises

—James Hollis

8.1 Introduction

8.1.1 Emotions in Hindustani Music
and the Importance of Ambiguity

In North Indian Classical Music, raga forms the basic structure over which indi-
vidual improvisations is performed by an artist based on his/her creativity. The raga
is a sequence of musical notes and the play of sound which delights the hearts of
people (Raja 2005). The word Raga is derived from the Sanskrit word “Ranj” which
literally means to delight or please and gratify. The listener has to listen to several
pieces of the Raga in order to recognize the Raga. The goal of a performer of
Hindustani music is to convey the musical structure and expression so that the
audience gets pleasantness (Jairazbhoy 1995; Martinez 2001). The presentation of a
Raga is started with Alap. The Alap is the opening section of a typical Hindustani
Music (HM) performance. In the alap part, the raga is introduced and the paths of
its development are revealed using all the notes used in that particular raga and
allowed transitions between them with proper distribution over time. In India,
music (geet) has been a subject of aesthetic and intellectual discourse since the
times of Vedas (samaveda). Rasa was examined critically as an essential part of the
theory of art by Bharata in Natya Sastra, (200 century BC). The rasa is considered
as a state of enhanced emotional perception produced by the presence of musical
energy. Although unique, one can distinguish several flavors according to the
emotion that colors it. Several emotional flavors are listed, namely erotic love
(sringara), pathetic (karuna), devotional (bhakti), comic (hasya), horrific (bhaya-
naka), repugnant (bibhatsa), heroic (vira), fantastic, furious (roudra), peaceful
(shanta). Italics represent the corresponding emotion given in the Indian treatises.

© Springer Nature Singapore Pte Ltd. 2018
D. Ghosh et al., Musicality of Human Brain through Fractal
Analytics, Signals and Communication Technology,
https://doi.org/10.1007/978-981-10-6511-8_8

165



Although there have been a number of studies to decipher emotions elicited by
Western Classical music using various brain-computer interaction techniques (Kim
et al. 2010; Eerola and Vuoskoski 2011; Wieczorkowska et al. 2006; Hunter and
Schellenberg 2010; Koelsch et al. 2006), there has been a dearth of such studies
when it comes to Hindustani Classical music. Few studies (Ross and Rao 2012;
Belle et al. 2009; Datta et al. 2012) look to identify a particular raga with the help
of computer-aided techniques while some look to detect emotional appraisal from
various ragas of Hindustani music (Balkwill and Thompson 1999; Wieczorkowska
et al. 2010; Sengupta et al. 2012; Mathur et al. 2015). The detection of emotional
cues from Hindustani Classical music is a demanding task due to the inherent
ambiguity present in the different ragas, which makes it difficult to identify any
particular emotion from a certain raga. Also, no two performances in Hindustani
music are identical as opposed to Western music culture, as there is ample scope for
improvisation within melodic framework of a particular raga (Slawek 1998;
Rahaim 2012; Sanyal et al. 2004; Banerjee et al. 2016). Every performer of this
genre is essentially a composer as well as an artist as while performing a Raga the
way the notes are approached and rendered in musical phrases and the mood they
convey are more important than the notes themselves. Hence, it requires a very high
resolution mathematical microscope to procure information about the inherent
complexities and time series fluctuations that constitute an acoustic signal (Sanyal
et al. 2016).

8.1.2 Non Linear Source Modeling of Musical Instruments

Musical instruments are often thought of as linear harmonic systems, and a
first-order description of their operation can indeed be given on this basis. The term
‘linear’ implies that an increase in the input simply increases the output propor-
tionally, and the effects of different inputs are only additive in nature. The term
‘harmonic’ implies that the sound can be described in terms of components with
frequencies that are integral multiples of some fundamental frequency, which is
essentially an approximation and the reality is quite different. Most of the musical
instruments have resonators that are only approximately harmonic in nature, and
their operation and harmonic sound spectrum both rely upon the extreme nonlin-
earity of their driving mechanisms. Such instruments might be described as
‘essentially nonlinear’ (Fletcher 1999).

The three instruments chosen for our analysis are sitar, sarod and flute. All of
them have been phenomenal for the growth and spread of Hindustani classical
music over the years. The first two are plucked string instruments having a
non-linear bridge structure, which is what gives them a very distinct characteristic
buzzing timbre. It has been shown in earlier studies that the mode frequencies of a
real string are not exactly harmonic, but relatively stretched because of stiffness
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(Morse 1948), and that the mode frequencies of even simple cylindrical pipes are
very appreciably inharmonic because of variation of the end correction with fre-
quency; hence a non linear treatment of the musical signals generated from these
instruments become invincible. Non-linear fractal analysis/physical modeling of
North Indian musical instruments were done in a few earlier works (Fletcher 1999;
Burridge et al. 1982; Datta et al. 2008; Siddiq 2012; Das and Das 2006; Sengupta
et al. 2010a, b, Sengupta et.al. 2005) but using them to quantify and categorize
emotional appraisal has never been done before. That music has its effect in trig-
gering a multitude of reactions on the human brain is no secret. However, there has
been little scientific investigation in the Indian context (Balkwill and Thompson
1999; Wieczorkowska et al. 2010; Mathur et al. 2015; Slawek 1998; Rahaim 2012;
Sanyal et al. 2004; Sengupta et al. 2012; Banerjee et al. 2016; Sanyal et al. 2016) on
whether different moods are indeed elicited by different ragas and how they depend
on the underlying structure of the raga.

8.1.3 Neural Response to Emotional Stimuli

The exact way in which different emotions are processed in the human brain has
been the subject of a number of psychological studies (Hariri et al. 2002;
Vuilleumier et al. 2002; Buhle et al. 2014) in the last few decades, most of which
involved the use of visual stimuli to evoke emotion in human mind. However, in
case of music induced emotions, whether the induced emotional response is similar
to the other modalities or whether there is significant difference between them is an
open question. In a number of EEG studies, it has been found that pleasantness of
music has been reported to be positively correlated with power spectral density
(PSD) in the theta band (4–7 Hz) over the prefrontal cortex (Sammler et al. 2007)
while the reported valence (pleasantness/unpleasantness) and arousal (intensity/
energy) of musical stimuli have been reported to correlate with frontal alpha
(8–13 Hz) asymmetry (Schmidt and Trainor 2001). A number of studies posit on
the inter-connectivity of brain lobes (Daly et al. 2014; Koelsch 2014) during a
variety of cognitive processing motor control (Daly et al. 2012), emotional
responses to audio-visual stimuli (Costa et al. 2006), and perception of music
(Bhattacharya et al. 2001). Most of these apply the coherence features to assess
connectivity features between different lobes, which successfully discriminate
between two or more groups of music-induced emotions. But, these measures are
mostly linear and lead to huge data loss in the form of inherent spikes of EEG data
which are averaged in the form of square wave approximation. The non-linear
techniques take into account these inherent spikes of EEG data and hence are much
more accurate than the conventional linear techniques and may shed new light on
the neural assembly networks of human brain in regard to emotion processing.
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8.1.4 Use of MFDFA to Assess
Acoustical/Human Response

The human brain response to a pair of ragas which portray contrast emotion has
been elaborately studied in Chap. 3. In this chapter, the main focus is to make use of
the acoustic features of different musical instruments to classify the emotional
manifestations of different ragas as well as to see the corresponding brain corre-
lates. Whether there exists a certain threshold beyond which the emotional context
of a particular raga changes to other in respect of acoustic parameters. In this
context, the ambiguous clips also play an important factor acting as a bridge
between two clips of contrast emotions and hence the parameter extracted from
them will be an interesting one in the quest for quantification of music induced
emotions. We chose 3 min alap portion of six conventional ragas of Hindustani
classical music namely, “Darbari Kanada”, “Yaman”, “Mian ki malhar”,
“Durga”, “Jayjayanti” and “Hamsadhwani” played in three different musical
instruments. The first three ragas correspond to the negative dimension of the
Russell’s emotional sphere (Posner et al. 2005; Russell 1991), while the last three
belong to the positive dimension (conventionally). The music signals were analyzed
with the help of latest non linear analysis technique called Multifractal Detrended
Fluctuation Analysis (MFDFA) which determines the complexity parameters
associated with each raga clips. The MFDFA technique is superior to other con-
ventional techniques due to the fact that it accounts both the small and large
variations present in the music signal by varying the q-order moments. This tech-
nique has been successfully applied in the past to detect complexity parameters
associated with music clips (Jafari et al. 2007; Telesca and Lovallo 2011; Banerjee
et al. 2017; Bhaduri and Ghosh 2016; Sanyal et al. 2016) and further to classify
music clips based on this parameter. With the help of this technique, we have
computed the multifractal spectral width (or the complexity) associated with each
raga clip and further to classify them on the basis of their emotional attribute. The
complexity values give clear indication in the direction of categorization of emo-
tions attributed to Hindustani classical music. It is observed that the ragas which
belong to the positive valence normally possess lower values of complexity, while
those belonging to the negative valence have comparatively higher values of
complexity. Also, specific cues are obtained for each of the musical instruments
used in this study, which makes each of the inherent ambiguities present in the
ragas of Hindustani classical music beautifully reflected in the results. The com-
plexity value corresponding to different parts of a particular raga becomes almost
similar to the values corresponding to parts of a different raga. This implies
acoustic similarities in these parts and hence the emotional attributes of these parts
are bound to be similar. Furthermore, EEG was done on a sample pool of partic-
ipants using the same music clips to see if any correlation can be obtained between
the acoustic and neural complexities. The frontal, temporal and occipital electrodes
were analyzed in this regard and interesting observations were found in regard to
categorization of emotions as well as specification of instrumental characteristics’
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using this technique. In this way, we have tried to develop automated algorithm
with which we can classify and quantify emotional arousal corresponding to dif-
ferent ragas of Hindustani music. The study can be developed further with a wide
variety of signals including vocal music which will lead to the generation of an
automated algorithm with which we can conclusively identify and quantify emo-
tional cues corresponding to a particular music clip originating from a characteristic
source.

8.2 Experimental Details

8.2.1 Choice of Three Pairs of Ragas

Six different raga clips of Hindustani Classical music played in traditional flute,
sitar and sarod were taken for our analysis. The ragas were chosen by an expe-
rienced musician such that they belong to the positive and negative valence of the
2D emotional sphere illustrated in Fig. 8.1 (Russell 1991).

The three pairs of ragas were chosen in a way that half of them belong to the
positive valence while the other three belong to the negative valence as corrobo-
rated from a listening test conducted beforehand and also in ancient treatises
(Ghosh 2002) of Hindustani music. In this way we want to have an acoustic as well
as neuro-cognitive categorization of emotional appraisal from ragas of Hindustani
music. We chose 3 min alap portion of six conventional ragas of Hindustani
classical music namely, “Darbari Kanada”, “Yaman”, “Mian ki malhar”,
“Durga”, “Jayjayanti” and “Hamsadhwani” played in three different musical

Fig. 8.1 Russell’s 2D circumplex model of emotion
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instruments. The following table gives the details of the artistes and their respective
instruments which we have used for our analysis (Table 8.1).

8.2.2 Analysis of the Acoustic Signal Using MFDFA

Musical structures can be explored on the basis of multifractal analysis and non-
linear correlations in the data. Traditional signal processing techniques are not
capable of identifying such relationships, nor do they provide quantitative mea-
surement of the complexity or information content in the signal. The three pairs of
raga signals were digitized at the rate of 22,050 samples/sec 16 bit format. The
alaap part was considered for analysis because the characteristic features of the
entire raga is present in this part and that it uses all the notes used in that particular
raga and allowed transitions between them with proper distribution over time.
Moreover this part is free from accompaniment. Each three minutes signal is
divided into four equal segments of 45 s each. We measured the multifractal
spectral width (or the complexity) corresponding to each of the 45 s fragments of
the Hindustani raga.

8.2.3 Subjects Summary for EEG

10 right handed adults (8 male and 2 female) voluntarily participated in this study.
None of them had any conventional musical training in Indian classical music.
Their ages were between 18 and 28 years (SD = 2.25 years). None of the partici-
pants reported any history of neurological or psychiatric diseases, nor were they
receiving any psychiatric medicines or using a hearing aid. Informed consent was
obtained from each subject according to the ethical guidelines of the Ethical
Committee of Jadavpur University. All experiments were performed at the Sir C.V.
Raman Centre for Physics and Music, Jadavpur University, Kolkata.

8.2.4 Experimental Protocol

During the EEG acquisition period, the 10 subjects were made to listen to the same
clips of 6 ragas for all 3 instruments. To prepare the input music stimuli for EEG

Table 8.1 Details of artists
chosen

Artistes Instruments used

Ustad Ali Akbar Khan (Artist 1) Sarod

Pt. Hariprasad Chaurasia (Artist 2) Flute

Pt. Nikhil Banerjee (Artist 3) Sitar
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experiments, about 2 min were extracted from each of the raga clips that were used
during acoustical analysis. Subjects were asked to keep their eyes closed and to sit
calmly during each condition. First, the baseline (that is, a resting condition) was
recorded for each subject before the start of the experiment with 2 min of ‘no
music’ condition. Then the music clips were played using the computer-sound
system (Logitech R _ Z-4 speakers) with very low S/N ratio keeping the volume
fixed throughout the experiment. The speakers which were used in the measurement
room for giving music input to the subjects were placed 120 cm behind the head of
the subjects. The EEG experiment was conducted in the afternoon (around 2 PM) in
a room with the volunteers sitting in a comfortable chair.

From previous knowledge the frontal, temporal and occipital lobes of human
brain were selected for analysis as the objective of this study was to find out the
effect of listening to 3 pairs of different ragas of Hindustani music evoking two
contrasting emotions. Each subject was prepared with an EEG recording cap with
19 electrodes (Ag/AgCl sintered ring electrodes) placed in the international 10/20
system. Figure 8.2 depicts the positions of the electrodes. Impedances were
checked below 50 kΩ. The EEG recording system (Recorders and Medicare
Systems) was operated at 256 samples/s recording on customized software of RMS.
The data was band-pass-filtered between 0.5 and 35 Hz to remove DC drifts and
suppress the 50 Hz power line interference. The ear electrodes A1 and A2 linked
together have been used as the reference electrodes. The same reference electrode is
used for all the channels. The forehead electrode, FPz has been used as the ground
electrode. After initialization, a 21 min recording period was started, and the fol-
lowing protocol was followed: first the raga clips in sarod were played, and then
the same procedure was followed for flute and sitar respectively with a 30 min
interval between each set of 21 min recording. Markers were set at start, signal
onset/offset, and at the end of the recording.

Fig. 8.2 The position of
electrodes according to the
10–20 international system
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1. 2 min Before Music (Resting Condition) (BM)
2. 2 min Clip 1(Raga Jayjayanti) (M1)
3. 1 min No Music (R1)
4. 2 min Clip 2 (Raga Mian ki malhar) (M2)
5. 1 min No Music (R2)
6. 2 min Clip 3 (Raga Hamsadhwani) (M3)
7. 1 min No Music (R3)
8. 2 min Clip 4 (Raga Darbari Kanada) (M4)
9. 1 min No Music (R4)

10. 2 min Clip 5 (Raga Durga) (M5)
11. 1 min No Music (R5)
12. 2 min Clip 6 (Raga Yaman) (M6)
13. 2 min After Music (Resting Condition) (AM).

8.3 Methodology

To analyze the non-linear complex EEG and music signals, MFDFA technique
proposed by Kantelhardt et al. (2002) was used here. The 3 min music clips were
divided into four equal parts of 45 s each and was subjected to multifractal analysis
which gave the multifractal spectral width (or complexity) as the output.
During EEG analysis, we considered each of the experimental conditions as a
separate single window and analyzed their complexity using the same non-linear
technique, so that we get a direct correspondence between the acoustic and neural
characteristics of emotional appraisal. The detailed algorithm for this technique has
been discussed elaborately in the second chapter of this book.

8.4 Results and Discussions

The following figures (Figs. 8.3, 8.4, 8.5, 8.6, 8.7 and 8.8) give the variation of
complexity values for the chosen music signals for all the artistes in the different
parts. The y-axis gives the variation of multifractal spectral width while the x-axis
denotes the 4 parts of the 3 min music clip.

We see that in most cases the variation of multifractal widths within a particular
raga is almost similar for all the artistes; though the characteristic values of mul-
tifractal widths are distinctly different from one clip to other. For example, in case
of Artist 2, we find that the characteristic multifractal width is on the higher side for
raga Hamsadhwani while the same is on quite lower side for raga Darbari
Kanada; though the variation of spectral width is similar among the different
artistes who played the same raga. The similarity in fluctuation patterns within each
raga may be attributed to the strict intonation pattern followed by all the artistes
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during the performance of a raga; while the difference in the characteristic values
may be a signature of artistic style as well as the instrument in use. This technique
may thus be useful in getting a cue for timbral quantification of a musical instru-
ment. Also, in many parts we find that an artist has deviated significantly from the
characteristic pattern of that raga; herein lies the cue for artistic improvisation
where the artist uses his own creativity to create something new from the obvious
structure of raga. This modality of improvisation is very specific to Hindustani
classical music form and has been extensively studied in the next chapter of this
book. In Fig. 8.4, we see that in the last part the complexity value significantly
increasing for the sitar clip as opposed to the sarod clip; while in Fig. 8.8 we find
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that in the 2nd part complexity value dipping for the flute clip as opposed to the
other two clips where the complexity values are increasing. This feature elucidates
how a particular artist of Hindustani music uses his/her own skills to create
something new in each performance of the same raga. In this way, we can have an
estimate of how much an artist improvises during the rendition of a particular raga.

The averaged values for each raga clips have been given in the following table
(Table 8.2) and the corresponding fig (Fig. 8.9) shows the values for each artist.
The SD values have also been computed for the rendition of each raga by an Artist.

From the above figure it is clear that there is distinct categorization of emotional
responses corresponding to each raga clip. In case of sarod and sitar, we find that
raga Hamsadhwani (corresponding to happy emotion) has a lower value of
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complexity as opposed to the flute clip where the complexity value is significantly
high. The complexity values corresponding to raga Darbari (depicting sad emo-
tion) are consistently high for sarod and sitar while that is significantly low for flute
clip. In case of the other pair Jayjayanti (happy clip) and Mia ki malhar (sorrow
clip), we see that there is similarity in response for sarod and flute, i.e. complexity
values on the higher side for happy clip while it is lower for sad clip; the response is
vice versa for sitar clip. In case of the other pair, i.e. raga Durga (mainly on the
happier side but is mixed with other emotions like romance, serene etc.) and raga
Yaman (mainly on the negative side of Russel’s emotional sphere but is mixed with
other emotions like devotion etc.) there was considerable ambiguity even when it
comes to human response psychological data. The same has been reflected in our
results where the average difference in complexity of these two ragas is not so
significant as compared to the other two pairs. Our study thus points in the direction
of timbre specific categorization of emotion in respect to Hindustani raga music.
We see that the emotion classification works the best for flute where the difference
in complexity for the happy and sad clips is the maximum; while the difference is
minimum for sarod, thus it is difficult to categorize emotions from acoustic sarod
clips.

Table 8.2 Variation of multifractal width corresponding to ragas by different artistes

Hamsadhwani Darbari Jayjayanti Mia ki
malhar

Durga Yaman

Artist 1 (Sarod) 0.62 ± 0.04 0.80 ± 0.02 0.67 ± 0.04 0.58 ± 0.03 0.81 ± 0.06 0.72 ± 0.03

Artist 2 (Flute) 1.07 ± 0.06 0.44 ± 0.04 0.67 ± 0.06 0.42 ± 0.07 0.54 ± 0.04 0.44 ± 0.04

Artist 3 (Sitar) 0.42 ± 0.03 0.64 ± 0.06 0.40 ± 0.02 0.61 ± 0.02 0.56 ± 0.02 0.45 ± 0.04
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Fig. 8.9 Clustering of multifractal widths for each artist corresponding to each raga
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Now, analysis of human brain response (EEG signals) before, during and after
listening to the six chosen raga clips played in three different instruments yield
many interesting information in the domain of music cognition and emotion pro-
cessing. First the complete 21 min raw EEG of a single subject was cut along the
temporal markers for 13 different experimental conditions. Then using wavelet
transformation technique alpha and theta frequency bands were extracted and
Multifractal spectral width was calculated for each part using MFDFA technique.
The same procedure is followed for each of the 10 subjects for all 3 instruments.
The average changes in the spectral width values between two consecutive
experimental conditions for both alpha and theta band are plotted in Figs. 8.10,
8.11, 8.12, 8.13, 8.14 and 8.15.

In the above figures we can observe distinct changes in the human brain
response when a subject is listening to raga clips. These responses slightly vary
from one instrument to another. Also a few major dissimilarities are found between
the responses of frontal, occipital and temporal lobe. Though for all subjects the
measure of baseline complexity i.e., spectral width value in initial rest state was
different, but the pattern of change in spectral width values with the change of
different experimental conditions remained same. From Fig. 8.10 we observe that in
case of F3 (left frontal) electrode, for all happiness evoking ragas (i.e., Jayjayanti,
Hamsadhwani, Durga) the spectral width increases from the previous rest state. The
increment is highest during listening to raga Hamsadhwani. In case of the other
three ragas evoking opposite emotion we observe a mixed response in F3 electrode,
i.e., during listening to Mia ki malhar and Yaman in sarod and sitar the spectral
width value decreases for both alpha and theta band, but when the same two ragas
were played in flute spectral width increased, though in case of Darbari a dip is
observed for all three instruments. This probably indicates towards the dependence
of emotion on the particular piece the subject is listening to, rather than the entire
raga and also the timbre of the concerned instrument plays an important role in it.
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Another observation is that “happy” ragas when played in flute lead to higher
increment in spectral width compared to sarod and sitar, while for “sad” ones, more
prominent changes are observed mainly in sarod or in few cases sitar. In every rest
state following a particular music, the spectral width values changed to bring back
the neural system towards its initial state, though some retention is always present.
These retentions are usually more prominent in alpha band compared to the theta
band. In right frontal F4 electrode, (Fig. 8.11) these results matched in some parts,
but the major dissimilarity was that in F4 the spectral width increased both in alpha
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and theta band during listening to all six ragas. Raga Darbari exhibits the most
prominent increment in spectral width. Here the dominance of flute during happier
parts and that of sarod in the opposite ones is revealed more distinctly. In the left
occipital (O1 electrode) region, (Fig. 8.12) the results almost resonated with that of
F4, though here the “sad” ragas feature significantly greater elicitation in spectral
width on average compared to the “happy” ones. Another interesting observation is
that during the last two music clips i.e., Raga Durga and Yaman, the average
change in spectral width, both in alpha and theta band, is lesser than the other ragas
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in almost all the electrodes. This may indicate towards the emotional ambiguity
present in those ragas as the inherent ambiguity could have denied a sharp incre-
ment or decrement in spectral width values during listening to them. In electrode
O2, (Fig. 8.13) representing right occipital region, the response is more disordered
than O1. All the happy ones trigger positive change in spectral width values of
alpha and theta band but the response is strangely chaotic for the “sad” ragas.
During Mia ki malhar, a dip is featured for all three instruments, while during
Darbari, the sarod clips caused a sharp increment in both alpha and theta band on
the contrary to that of flue and sitar. On the other hand, during Yaman an increment
in width is observed for all the instruments. In O2 electrode, most prominent hike in
spectral width is observed during Raga Hamsadhwani. The response of temporal
region is somewhat different from the other two regions concerned. In left temporal
T3 electrode (Fig. 8.14) the two prominently happy ragas i.e., Jayjayanti and
Hamsadhwani caused a dip in spectral width for all three instruments whereas the
sad ones i.e., Mia ki malhar and Darbari contributed in a hike for both alpha and
theta band. The responses got mixed up during the “ambiguous emotion” con-
veying pair. During Raga Durga, sitar and flute featured a decrease in spectral
width values but sarod caused an increment whereas during Yaman, only flute
yielded a negative change. In right temporal T4 electrode, (Fig. 8.15) for all
experimental conditions the change in fractal width values are much lesser than that
of T3 on average but, the results are almost similar to that of left temporal region.
The only difference is that in T4, during Raga Durga, sarod triggered a negative
change along with flute and sitar reported a positive change in spectral width values
for both alpha and theta frequency bands. These observations act as strong evidence
for timbre dependence of emotion, especially in case of ambiguous emotion
evoking ragas.
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Thus, in this work we have developed an automated emotion classification
algorithm with which we can quantify and categorize emotions corresponding to a
particular instrument. Also, the complexity values give a hint for style recognition
corresponding to a particular artist.

8.5 Conclusion

This study presents a first-of-its kind data in regard to categorization and quan-
tification of emotional arousal based responses to Hindustani classical music. The
inherent ambiguities said to be present in Hindustani classical music is also
reflected beautifully in the results. That a particular raga can portray an amalga-
mation of a number of perceived emotions can now be tagged with the rise or fall of
multifractal width or complexity values associated with that raga. The study pre-
sents the following interesting conclusions which have been listed below:

1. For the first time, an association has been made with the timbre of a particular
instrument with the variety of emotions that it conveys. Thus for effective
emotional classification, timbre of the instrument will play a very important role
in future studies.

2. The multifractal spectral width has been used as a timbral parameter to quantify
and categorize emotional arousal corresponding to a particular clip played in a
specific instrument.

3. We try to develop a threshold value for a particular instrument using multi-
fractal spectral width, beyond which emotions will change. The following
figures (Fig. 8.16) summarize the results:

Fig. 8.16 Use of multifractal
width as a tool to categorize
emotions in different
instruments
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(i) From the plot it is clear that emotional classification can be best done with the
help of flute where the complexity values of happy and sad clips are distinctly
different from one another.

(ii) There is an overlap in case of sarod clips between happy and sad complexity
values. This can be attributed to the inherent ambiguity present in the clips of
Hindustani classical music, i.e. there cannot be anything as complete joy or
complete sorrow, there remains always states which are between joy and sor-
row, which is beautifully reflected in the overlap part of the two emotions.

Coming to the human response analysis part, the major observations are:

1. In all of the frontal and occipital electrodes (i.e., F3, F4, O1 and O2) happiness
evoking ragas are triggering positive change in spectral width values in both
alpha and theta frequency regions of human brain for all three instruments
whereas the “sad” ragas tend to generate a mixed response in many cases. In F4
and O1 all the sad clips also feature an increase in the spectral width values but,
in F3 and O2 we observe timbre dependence of emotion playing a major role as
the same raga when played in flute is yielding a positive change in complexity
measure whereas in case of sarod and sitar the changes are negative.

2. In temporal lobe the gross scenario is exactly the opposite to that of frontal and
occipital lobe. Both in left and right temporal lobe the “conventionally happy”
ragas (i.e., Raga Jayjayanti & Hamsadhwani) are causing a decrement in the
spectral width values for both alpha and theta bands. The response is just
opposite for “conventionally sad” ragas (i.e., RagaMia ki malhar & Darbari) for
which the width values increase for all three electrodes. The “ambiguous emotion
evoking” third and last pair i.e., Raga Durga & Yaman produces a result where a
perfect overlapping is observed between the responses for “conventionally
happy” and “conventionally sad” ragas. Again, the timber difference is a key
contributing factor in determination of emotion for these ambiguous ragas.

3. In all the six electrodes chosen for analysis, one strange similarity in response is
observed—for the “happy” ragas, the rate of change in multifractal spectral
width is maximum for both alpha and theta frequency band when the clips are
played in flute and for “sad” ragas, sarod clips are contributing in maximum
change of complexity. Among the three “happy” ragas, Raga Hamsadhwani
when played in flute leads to an unusually high change in spectral width whereas
among “sad” ragas, Raga Darbari in sarod yields the most prominent response.

4. The rest (or no music) state between any two consecutive music clips feature a
response where the spectral width values adjust themselves intending to bring
the complexity level back to their initial sate. But, some retention of emotional
memory from the previous music clip is always present which resists the
change. This hysteresis effect is more pronounced in alpha band than theta band.

5. Compared to the conventionally happy and sad ragas, the average change in
complexity during Raga Durga and Yaman is much lesser in almost all the
electrodes. This may have been caused due to the inherent emotional ambiguity
present in different phrases of these two ragas.
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Combining the results from acoustic and human brain response (EEG) analysis
using the same technique, we can safely say that the results corroborate in almost
every aspect. In acoustic analysis, we found that the spectral width values for
“happy” ragas were most distinctly higher and wide stretched in case of flute. In
brain response also, this result is resonated in both alpha and theta frequency
domain. Similarly, following the trend of acoustic analysis, the “sad” ragas are
found to evoke more prominent response when played in sarod. Like acoustic
analysis it is evident from the brain response also that in Hindustani Classical
Music, the concept of “absolute happy” and “absolute sad” music is not entirely
true; rather the emotions fall in a grey region between these two. For some ragas
the emotional response of the subjects are biased towards happiness, while for some
others they are biased in the opposite direction. Also, an emotion, conventionally
associated with a particular raga, is actually very much dependent on the particular
piece of the raga the subject is listening to. In this context, the timbre of the musical
instrument in which it the clip is being played also play an important role. In this
experiment we chose the six raga clips played by same maestro for each instru-
ment, but if this work can be repeated using clips from different artists playing the
same ragas in same instrument, artist style dependence of emotion can be found
also. In conclusion, this study provides a novel tool and a robust algorithm with
which future studies in the direction of emotion categorization using music clips
can be carried out keeping in mind the timbral properties of the sound being used.
Improvisation—a term which involves a whole lot of features is something which
gives Hindustani music its worldwide fame. But what is improvisation? Can it be
defined objectively? The next chapter looks at this unique topic in light of robust
scientific analysis.
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Chapter 9
Improvisation—A New Approach
of Characterization

Improvisation enjoys the curious distinction of
being the most widely practiced of all musical
activities and the least acknowledged and
understood.

—Bailey 1992 p. ix

9.1 Introduction

9.1.1 Complex Structure of Music Signals

From a physical point of view, musical signals are approximately periodic in micro
and macro forms. In this approach, musical signals seem to have a deterministic
behavior but this is not really the case, as music would then be a deterministic issue
of rational human thought (Baroni et al. 1999). On the other hand, there is a
widespread opinion (in linguistic, aesthetic and cognitive philosophy) that music is
a complex, and multidimensional nonlinear system (Frova 1999). A number of
earlier studies are based on rhythmic and harmonic structure of the musical notes,
while frequency analysis may fail to decipher the real dynamics in case of poly-
phonic recordings. A few studies have been done to correlate complex actions
coordinated by people with complex rhythmic musical sequence (Large 2000;
Loehr et al. 2011). One such study (Large 2000) says that as people listen to
rhythmic structure of music; a stable multi-periodicity pattern arises psychologi-
cally, which is a manifestation of the temporal structure of the rhythm. In this study,
we want to specify some parameters with which we can quantify the improvisa-
tional cues in four different renditions of a single “raga” performance of a
Hindustani music performer.

© Springer Nature Singapore Pte Ltd. 2018
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9.1.2 Brief Introduction to Raga in Hindustani
Classical Music

The raga is a sequence of musical notes and the play of sound which delights the
hearts of people. The word Raga is derived from the Sanskrit word “Ranj” which
literally means to delight or please and gratify (Brahaspati 2002). Although there
are a number of definitions attributed to a Raga, it is basically a tonal multifarious
module. The listener has to listen to several pieces of the Raga in order to recognize
the Raga. The goal of a performer of Hindustani music is to convey the musical
structure and expression so that the audience gets pleasantness. The presentation of
a Raga is started with Alap. The Alap is the opening section of a typical Hindustani
Music (HM) performance (Swarganga 2013). In the alap part, the raga is intro-
duced and the paths of its development are revealed using all the notes used in that
particular raga and allowed transitions between them with proper distribution over
time. Alap is usually accompanied by the tanpura drone only and sung at a slow
tempo or sometimes without tempo. Then comes the vilambit bandish part where
the lyrics and tala are introduced. Bandish is a fixed, melodic composition in
Hindustani vocal or instrumental music, set in a specific raga, performed with
rhythmic accompaniment by a tabla or pakhawaj, a steady drone, and melodic
accompaniment by a sarangi, harmonium etc. (Neuman 1990). Vilambit is a type of
bandish which is sung at a very slow tempo, or laya, of 10–40 beats per minute.
In HM the existing phrases are stretched or compressed, and the same may happen
to motives from the phrases; further motives may be prefixed, infixed and suffixed.
Phrases may be broken up or telescoped with others, and motives or phrases may be
sequenced through different registers (Neuman 1990). Thus, during a performance,
a singer steadily loosens the strangle hold of the rules of music in a subtle way. He
does not flout them, he merely interprets them in a new way, which is the beauty of
Hindustani classical music and there comes the wisdom that Raga and its grammar
are only means and not ends in themselves. The way in which a performer interprets
a raga during each specific performance is unique and is the very essence of
improvisation in Hindustani music (HM). Unlike symphony or a concerto, Raga is
unpredictable; it is eternally blooming, blossoming out into new and vivid forms
during each and every performance which is the essence of “improvisation”
(McNeil 2007).

9.1.3 Improvisation: Hindustani Classical Versus
Western Music

Improvisation is a common form of musical practice across cultures, and yet
remains scarcely studied or understood from a scientific musical analysis point of
view. It is said that—in Hindustani music (HM), other than Aarohan (ascending),
Aborohan (descending), Chalan (main phrase) and Bandish (composition),
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everything depends on the artist’s own imagination, creativity, Talim (learning) and
Riyaz (intense practice) (Ravi Shankar 1992). There is no notation in HM system
like western music and the musician is himself the composer. Indian classical
musicians as well as musicologists have excelled improvised music as part of a
living oral tradition, whereas Western music as a dead tradition of replicating
written scores. A musician while performing expresses the raga according to his
mood and environment surrounding him. Thus there are differences from one
rendition to another. Even if an artist sings or play same Raga and same Bandish
twice then there is supposed to be some dissimilarity in between the two perfor-
mances. These differences in the rendition of a raga several times on different days
are generally called improvisation. A number of studies in ethnomusicology reports
musical tradition among performers and the interactions that play an important role
shaping the social hierarchy of North Indian Classical music (Clayton and Leante
2015; Clayton, 2005, 2007). In Western musicology, improvisation is considered as
an opposite of composition, hence traditionally been regarded as an inferior to art
music, where the importance of pre-composition is paramount (Sadie and Tyrell
2001). The situation is a stark contrast in Hindustani classical music, where “im-
provisation” is the central and defining term in any performance. Improvisation is
crucial and indispensible feature of Hindustani Music (HM) which depends upon
the imagination, originality and ingenuity of a particular artist (Hamill 2005) and
can be best identified by analyzing the variation imposed by the artist in different
renditions of the same musical piece. There have been a number of approaches to
study improvisations, especially in jazz and folk music (Berliner 2009; Sertan and
Chordia 2011; Johnson-Laird 1991) while in music therapy; the analysis of
improvisations is gaining more ground in recent years, informing directly the
therapeutic process (Thaut 1988; Lee 2000; Erkkila et al. 2004; Anagnostopoulou
et al. 2012). Another recent study (Walton et al. 2015) using cross wavelet spectral
analysis sheds new light on the spontaneous improvisation made by the coordi-
nation of the musician with his/her co-performers to produce novel musical
expressions. Performative gestures are considered important to listening amongst all
genres of music (Thompson et al. 2005). For e.g., in an analysis of B. B. King’s
music, it was found that some gestures have the effect of drawing the listeners’
attention to local aspects of music, specifically to the nuanced treatment of indi-
vidual notes, and away from larger scale musical structure (Gritten et al. 2011). The
importance of gesture has been realized until recently (Kendon 2004; Parrill and
Sweetser 2004) as something outside language; Indian music, with its emphasis on
note combinations has often regarded gestures as something outside music. In
Hindustani classical music, the gestures that accompany improvisation are closely
coordinated with the vocal action; they are never taught explicitly and seem to come
as an expression for melody. The importance of gestural dispositions in Hindustani
raga performances has been extensively studied in (Rahaim 2008). A study
(Wieczorkowska et al. 2010) on search for emotion in Hindustani vocal music
based on human response data showed that segments from the same raga elicit
different emotions which can be assigned into prescribed categories. Also
cross-cultural similarity of the elicited response is significant. Another recent study
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on Indian classical instrumental music also based on human response data cate-
gorizes the alap and gat portion of raga as elicitor of specific distinct emotions
(Mathur et al. 2015). In the present study, for the first time, we attempt to quantify
the improvisational cues in a Hindustani music performance with the help of dif-
ferent non-linear parameters.

9.1.4 Earlier Studies to Capture Improvisation

Musical improvisation is generally defined as the creative activity of immediate (“in
the moment”) musical composition, which combines performance with communi-
cation of emotions and instrumental/vocal techniques (Alperson 1984). In Western
music, there have been a number of studies which look to study the neuro-scientific
basis of musical improvisation especially in case of Jazz musicians (Donnay et al.
2014; Berkowitz and Ansari 2010; Beaty 2015). The concept of musical impro-
visation was made distinct from the memory retrieval and the main objective being
identifying brain regions involved in the spontaneous composition of novel melodic
sequences, while controlling for the influence of simply recalling previously per-
formed sequences from memory (Bengtsson et al. 2007; Limb and Braun 2008). In
the study by Limb and Braun (2008), professional jazz musicians were asked to
memorize a novel melody before the study. The experimental protocol involved
performing musical sequences on an MRI-compatible keyboard while a
pre-recorded jazz rhythm section played. Participants were cued to perform the
memorized melody, freely improvise over the pre-recorded rhythm, play a
one-octave scale, or improvise. In the case of Hindustani classical music, other than
Aarohan (ascending), Aborohan (descending), Chalan (main phrase) and Bandish
(composition), everything depends on the artist’s own imagination, creativity,
learning and practice of the musician. Hindustani musicians have ample liberty
compared to their Western counterparts as there is no notation system like western
music and the musician is himself the composer. A musician while performing a
particular raga expresses it according to his/her mood and the ambiance. Hence,
there are significant differences from one rendition to another. Even during the
rendition of the same Raga and the same Bandish twice there is inevitably a number
of dissimilarities in between two performances. These differences in the rendition of
the same raga on different days are the essence of “improvisation” in Hindustani
music.

9.1.5 Fractal Study on Music Signals

At first sight music shows a complex behavior: at every instant components (in
micro and macro scale: pitch, timbre, accent, duration, phrase, melody etc.) are
close linked to each other (Di Lorenzo 2002). All these properties (above stated in a
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heuristic characterization) are peculiar of systems with chaotic, self organized, and
generally, non linear behavior. Therefore, the analysis of music using linear and
deterministic frameworks seems not to be useful.

Music too, has non-uniform property in its movement (Su and Wu 2006; Telesca
and Lovallo 2011). In another recent study (Oświęcimka et al. 2011), multifractal
technique has been applied to separate different genres of music based on their
multifractal spectral width.

Therefore, the melodic fragments of a raga sung by a musician of HM on different
days will produce certain changes in nature of the phrases due to improvisation. It has
been shown earlier that fractal dimension calculated from a song is a good measure of
the complexity of its notation (Das and Das 2005; Su and Wu 2006). Also earlier studies
showed that same song when sung by different performers, the fractal dimension
changes (Das and Das 2010). The fractal character is only one of many aspects that
define a composition. The human mind may use one or more models of perception in
order to determine whether a given melody or musical structure is ugly or beautiful
(Beran 2004). Fractal dimensions of time series data might reveal the presence of
non-linearity in the art of production mechanism and therefore the complexity of the
time sequences of the phrases where the performer have improvised, might vary. These
may be reflected through the change in their fractal dimensions. Another major objective
of the present study is to see whether fractal dimensions are related to the improvisations
made by the artist. Non-linear dynamical modeling for source clearly indicates the
relevance of non-deterministic / chaotic approaches in understanding the speech/music
signals (Behrman 1999; Bigrelle and Iost 2009; Hsü and Hsü 1990; Sengupta et al.
2001, 2005, 2010). In this context fractal analysis of the signal which reveals the
geometry embedded in signal assumes significance. Voss and Clarke (1975) showed
that the frequency characteristics of musical signal behave similar to the 1/f noise.
Interestingly, this type of noise, called pink noise occurs very commonly in nature (Bak
1996) and it is this noise which sounds most pleasant to the human ear. Some other
studies (Su et al. 2008; Boon and Olivier, 2005) applied fractal tools to the pitch
variations and revealed irregularities in scaling behavior and long range characteristics.
Music data is a quantitative record of variations of a particular quality over a period of
time. One way of analyzing it is to look for the geometric features to help towards
categorizing the data in terms of concept (Devaney 1989). Hencefractal analysis would
be a good technique to obtain the power exponent that defines the scale invariant
structure of the whole signals.

9.1.6 Essence of Multifractal Study on Music Signals

It is well-established experience that naturally evolving geometries and phenomena
are rarely characterized by a single scaling ratio; different parts of a system may be
scaling differently. That is, the clustering pattern is not uniform over the whole
system. Such a system is better characterized as ‘multifractal’ (Lopes and Bertouni
2009). A multifractal can be loosely thought of as an interwoven set constructed
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from sub-sets with different local fractal dimensions. Real world systems are mostly
multifractal in nature. Music too, has non-uniform property in its movement (Su
and Wu 2006). In the domain of music analysis, using multifractal detrended
fluctuation analysis (MF-DFA) method, frequency series of Bach pitches have been
analyzed and multifractality due to long range correlation and broad probability
distribution function have been identified (Jafari et al. 2007). In (Su and Wu 2006),
the authors show that both melody and rhythm can be considered as multifractal
objects by separating both of them as series of geometric points, while in (Demos
et al. 2014) the authors use the DFA technique to relate body movements of
performers to the expression embedded in it. Live performances encompass a
variety of such musical features including tempo fluctuations (Holden et al. 2009),
notation and timbre variation to name a few. Several other researchers have used the
fractal analysis technique to examine musical movements and musical structure
(Das and Das 2006; Patra and Chakraborty 2013; Zlatintsi and Maragos 2013;
Rankin et al. 2014). Thus, the multifractal nature of music signals is well estab-
lished and could prove to be an important tool when analyzing improvisational cues
in a specific performance of Hindustani raga. In this context, taking the entire
signal as a time series for analysis can be interesting as we are considering all the
properties as a whole to ratify the multifractal nature of music and to investigate
cues which distinctly separates on performance from another.

9.1.7 Multifractal Cross Correlation
Study and Its Implications

Detrended Cross-Correlation Analysis (DCCA) was proposed (Podobnik et al. 2008a) to
investigate power-law cross-correlations between two simultaneously recorded time
series in the presence of non-stationarity. As a generalization of the DFA method, the
DCCA is proposed to investigate the long-term cross-correlations between two non
stationary time series (Podobnik et al. 2008a, b, 2009a, b, 2011; Xu et al. 2010;
Hedayatifar et al. 2011), and Multifractal Detrended Cross-Correlation Analysis
(MF-DXA) can unveil the multifractal features of two cross-correlated signals (Zhou
2008; He and Chen 2011; Jiang and Zhou 2011; Wang et al. 2013; Ghosh et al. 2014).
The noisy signals in many real-world systems display long-range autocorrelations and
these cross-correlations can be accurately quantified with the help of DCCA (Horvatic
et al. 2011) technique.

In this chapter, the main aim is to give the readers an insight on to how different
linear and non-linear techniques can be utilized to decipher different cues to
encapsulate improvisation in Hindustani music. We try to see the presence of
multifractality as well as multifractal cross correlations in the music signal of
Hindusthani classical music rendered by an eminent maestro. Four such renderings
of the same maestro of raga Sur Malhar have been taken for analysis. The linear
cues for improvisation include duration of pause between notes, duration of notes,
total number of pauses, note pattern before and after pause, phrasal patterns,
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transition among notes etc. In the non-linear domain, our objective is to see the
difference in complexity in the four signals though he sung the same raga. The
results reveal interesting new information regarding the improvisation cue in
Hindustani music which are discussed in detail.

9.2 Experimental Details

9.2.1 Choice of Ragas

Four different renderings of raga Sur Malhar by an eminent maestro of Hindustani
Vocal Music was taken. The raga falls under the broad class Kafi that. Three
minutes from the portion of vilambit bandish part in mid tempo was cut out from
each rendering. The signals are digitized at the rate of 22,050 samples/sec 16 bit
format. A Bandish provides the literature ingredient of the raga in each individual
rendition for traditional structured singing. The bandish part was taken so that the
notes used in all the renderings are same and hence the changes in musical structure
will be mainly due to the improvisations made by the artist. Also, the artist makes
his own improvisations in the raga predominantly in the bandish part. Each three
minutes signal is divided into six equal segments of 30 s each. This was done to see
the change of complexity in each time window for each song. Part 1 of all the four
signals which were analyzed for multifractality have been plotted in the following
Fig. 9.1a–d.

9.3 Methodology

Each of the music clips have been analyzed with the help of MFDFA technique
proposed by Kantelhardt et al (2002) to assess the complexity values corresponding
to each part. MFDXA technique proposed by Zhou (2008) have also been used to
assess the degree of cross-correlation between parts of the same or different clips
taken for our analysis. The detailed algorithm for MFDFA and MFDXA techniques
are same as given in the Methodology chapter.

For the experiment in the linear domain, Pitch of each signal was extracted using
standard software wavesurfer. From the pitch we have detected the notes and the
pause parts of each piece of signals. For this we took help of expert musicians to
locate and extract the tonic ‘sa’ (Datta et al. 2006). Once the frequency of tonic ‘sa’
is identified, the other notes can be measured using standard shruti ratios. Since all
the four signals were sung by a single artist, we can neglect the timbre aspects as a
cue for improvisation. From the data so obtained, duration and number of pause
between notes, duration of notes, usage of notes between pause and phrasal patterns
were measured.
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9.4 Results and Discussion

Musical structures can be explored on the basis of multifractal analysis and non-
linear correlations in the data. Traditional signal processing techniques are not
capable of identifying such relationships, nor do they provide quantitative mea-
surement of the complexity or information content in the signal. Music signals can
therefore generate fluctuations that are not best described by linear decomposition
(Jennings et al. 2004). On the other hand, the classical nonlinear dynamics method

Fig. 9.1 a Waveform of 30 s Sample 1, b Waveform of 30 s Sample 2, c Waveform of 30 s
Sample 3, d Waveform of 30 s Sample 4
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such as correlation dimension and Lyapunov exponents are very sensitive to noise
and require the stationary condition.

Every musical composition/element can be considered as a nonlinear complex
time series—the multifractal width (w) being a quantitative measure of its com-
plexity. In other words, more w—more local fluctuations in temporal scale and thus
this parameter is very sensitive to characterize and quantify a particular music
signal to a level which is not possible with any other method. In a similar manner,
small w implies less local fluctuations in temporal scale. Thus, similar w means that
the two musical signals have similar complexity (or same local fluctuations) in the
temporal scale. Hence, multifractal spectral width can be considered as the best
parameter for the characterization of a music sample. In this paper we verify the
presence of multifractality in the same musical signals sung in four different days by
an eminent vocalist. For this, we have taken 3 min from the bandish part of the
rendering by the vocalist. The vocalist has rendered the same raga (Sur Malhar) in
four different days. Since the raga is same, the notes and the phrases are same,
though the vocalist and the raga rendered are same but there should be some
difference in the phrasal structure. Hence, we have divided the 3 min song signal
into six equal segments and studied mutifractality using MFDFA technique in all
the segments for all the signals. Each of the 30 s segment was divided into 5
windows of 6 s each and the average multifractal width has been given in Table 9.1
along with the variance.

For a monofractal time series we get unique value of h(q) for all q. If the small
and large fluctuations scale vary differently, then h(q) will depend on q or in other
words the time series is multifractal. A representative figure for variation of h
(q) with q for a particular part of each signal for four different music signals have
been shown in Fig. 9.2a–d. The shuffled values of h(q) has also been shown in the
same figure. The following representative figures show the variation of Hurst
exponent h(q) with q for the Part 1 of the four samples:

The variation of h(q) with q clearly indicates multifractal behavior, the shuffled
values showing remarkable difference from that of the original values. It is also
evident from Fig. 9.2 that in all cases the values of h(q) decreases with increasing
q. Also, the shuffled values of h(q) remains constant with the change of q, which is
a characteristic of a monofractal scaling.

The amount of multifractality can be determined quantitatively in each of the win-
dows of each signal from the width of the multifractal spectrum [f(a) vs a]. The
multifractal nature of the scaling properties can be depicted by the multifractal spectrum
f(a) versus a as shown in Fig. 9.3a–d. The multifractal spectrums were then fitted to
eqn. 8 and the multifractal widths were obtained for all parts of the four samples. To
ascertain the origin of multifractality the corresponding randomly shuffled series was
also analyzed. The randomly shuffled series exhibits weaker multifractality indicating
that the origin of multifractality is due to both long range correlations and broad
probability distribution. In an ideal case, for a sufficiently long series the shuffled series
would have monofractal properties when the randomly shuffled series has smaller width
as compared to the original series. Figure 9.3a–d is a representative figure which shows
that in Part 1 of all the four signals, the shuffled series f(a) versus a has a weaker
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multifractality as compared to the original signal. The same trend is observed in all the
other parts of the four samples. The destruction of all long range correlations in the data
makes the shuffled series monofractal in nature. Ideally f(a) should be independent of a.
Since the data size is quite large in this case, the inference drawn from the results are
reasonably significant and the difference in means is also relevant statistically as affirmed
later by ANOVA and subsequent post hoc tests. Table 9.1 gives the values of mean
multifractal spectral width for the six different parts of the four samples along with their
Standard Deviation (SD) values computed analytically from the different parts of the
same sample. The shuffled widths are also given in the adjacent column.

The variation of multifractal width for the 1st parts of the four music signals
(both original and shuffled) is shown in a representative Fig. 9.4. The blue graphs
give the randomly shuffled width. As is evident from the figure, the shuffled width
(Wshuffled) in all cases is much smaller than the original width (Woriginal). This
confirms that the multifractality in the music signal is due to both broad probability
distribution as well as long range correlation.

Analysis of the values show that though the artist have sung the same raga
having the same phrasal structure, still all the six parts for all the four signals show
remarkably different values of multifractal spectral width. This difference is can be

(a) Part 1 Sample 1 (b) Part 1 Sample 2

(c) Part1 Sample 3 (d) Part1 Sample 4

Fig. 9.2 The variation of Hurst exponent for Part 1 of the 4 samples
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(a) Part 1 Sample 1 (b) Part 1 Sample 2

(c) Part1 Sample 3 (d) Part1 Sample 4

Fig. 9.3 f(a) versus a plot showing the original data as well as randomly shuffled data

Fig. 9.4 Variation of
multifractal width within each
sample
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attributed to the change in the duration of notes, note to note transitions and the
variation in the use of pauses within the phrasal structure. Thus, we can say that
there is a change in amount of multifractality when the rendering of same raga
music was on different days by the same vocalist. This may be caused due to the
musical improvisation done by the singer on each day which singing the same raga.
The audience is pleased on all the four days when the performer creates different
mood or ambience while singing the same raga, in spite of the different modula-
tions made by the artist keeping in mind the demand of the audience.

Apart from studying the variation of multifractality in different renditions, it will
also be interesting to study the change of multifractal values in different parts within
each sample. In that respect, Fig. 9.4 gives the variation of spectral widths in the
various parts of each of the four samples.

As is evident from the figure, there is considerable variation multifractal width
within different parts of the same sample. Thus there is significant variation of
complexity in musical structure even in the same musical signal, for e.g. in Sample
4 the spectral width varies from as low as 0.27 to as high as 1.15. Such a large
variation in complexity within different parts of the same sample can be ascribed to
varying emotions conveyed to the audience by the artist during the performance. It
can also be ascribed to the varying style of rendition of the same raga in different
days which has led to the significant difference in their complexity.

One Way ANOVA (Coakes and Steed 2009) was performed to test the significance
of the results obtained in Table 9.1. The six parts of four samples were analyzed with the
help of ANOVA technique. The significance level was set to p < 0.05. Post hoc analysis
in the form of Tukey’s HSD test was performed only if ANOVA results were significant
between the groups. The ANOVA results are elaborated in Table 9.2. All the tests were
performed with 95% confidence intervals between the parts analyzed.

Tukey-Kramer multiple comparison tests were performed for Parts 2–6 which
yielded significant results in the one way ANOVA tests. The results of post hoc
analysis are reported in Table 9.3. Sample 1 versus 2 and Sample 2 versus 4 were
reported to be highly significant in all the parts, while Sample 1 versus 3 and
Sample 3 versus 4 reported to be mostly significant. Except with a few spurious
aberrations, we can say that the means of the reported data varied significantly
within themselves as well as within groups.

Next, MFDXA was performed for each part between all the samples using the
methodology given above. All the data sets were first transformed according to
relation 2 to reduce noise in the data. The integrated time series were then divided
to Ns bins where Ns = int (N/s), N is the length of the series. The qth order
detrended covariance Fq(s) was obtained from relations 3 and 4 for values of
q from −5 to +5 in steps of 1 just like the MFDFA part. The values of cross
correlation coefficient cx (q = 2), are provided in Table 9.4. We have also shown
variation of h(q) with q for Part 1 of the four clips by means of MF-DFA in
Fig. 9.1. The plot depicts multifractal behavior of cross-correlations because for
different q, there are different exponents; that is, for different q, there are different
power-law cross-correlations. Further from the same figure we can see that the
value of H(q) depends on q for all the four samples that we have taken in this study.

9.4 Results and Discussion 197



T
ab

le
9.
2

A
N
O
V
A

va
lu
es

fo
r
th
e
di
ff
er
en
t
pa
rt
s
of

m
us
ic

sa
m
pl
es

Pa
rt
s
of

m
us
ic

sa
m
pl
e

Pa
rt
1

Pa
rt
2

Pa
rt
3

Pa
rt
4

Pa
rt
5

Pa
rt
6

So
ur
ce

df
F

p
F

p
F

p
F

p
F

p
F

p

T
re
at
m
en
t
(b
et
w
ee
n

ex
pe
ri
m
en
ta
l
co
nd

iti
on

s)
3

0.
43

0.
73

6
11

.5
0.
00

1
25

.5
4

<0
.0
01

4.
58

0.
03

2
25

.9
9

<0
.0
01

10
.0
4

0.
00

3

R
es
id
ua
l
(w

ith
in

ex
pe
ri
m
en
ta
l
co
nd

iti
on

s)
9

T
ot
al

12

df
de
gr
ee
s
of

fr
ee
do

m

198 9 Improvisation—A New Approach of Characterization



We know that H(q) = 0.5 indicates that the series is an independent random pro-
cess, and for H(q) < 0.5 it is characterized by long-range anti-correlations while for
0.5 < H(q) < 1, it is featured by long-term correlations. In this case the signal is

Table 9.3 Tukey-Kramer
multiple comparison test
results

Part 2

Comparison Mean difference q p-value

Sample 1 vs 2 14.45 12.546 <0.001

Sample 1 vs 3 2.53 4.587 <0.0448

Sample 1 vs 4 1.96 2.1688 0.0979

Sample 2 vs 3 4.78 7.956 <0.0031

Sample 2 vs 4 12.35 10.378 <0.001

Sample 3 vs 4 1.34 2.419 0.228

Part 3

Sample 1 vs 2 18.8 12.51 <0.0001

Sample 1 vs 3 15.76 11.33 <0.0001

Sample 1 vs 4 6.42 6.2125 <0.002

Sample 2 vs 3 4.93 9.104 0.003

Sample 2 vs 4 19.24 9.901 <0.0001

Sample 3 vs 4 8.42 7.337 <0.0065

Part 4

Comparison Mean difference q p-value

Sample 1 vs 2 6.92 9.4027 0.0004

Sample 1 vs 3 7.3 6.4988 0.002

Sample 1 vs 4 1.58 2.218 0.16

Sample 2 vs 3 4.85 6.904 0.0029

Sample 2 vs 4 12.85 7.1849 <0.0001

Sample 3 vs 4 7.19 9.712 0.0003

Part 5

Comparison Mean difference q p-value

Sample 1 vs 2 7.19 8.8636 0.0004

Sample 1 vs 3 4.04 6.663 0.0397

Sample 1 vs 4 2 2.3495 0.092

Sample 2 vs 3 5.23 5.9675 0.0119

Sample 2 vs 4 7.45 6.5138 <0.0003

Sample 3 vs 4 4.82 4.636 0.063

Part 6

Comparison Mean difference q p-value

Sample 1 vs 2 10.44 11.23 <0.0001

Sample 1 vs 3 4.24 6.46 <0.037

Sample 1 vs 4 3.24 3.81 0.048

Sample 2 vs 3 4.75 7.37 0.003

Sample 2 vs 4 11.18 9.426 <0.0001

Sample 3 vs 4 2.32 3.87 0.059
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stationary. The exponent H(q = 2) is equivalent with the well-known Hurst index.
A representative figure (Fig. 9.5) reports the variation of cross correlation exponent
k(q) with q for two particular samples (Part 1 for Sample 1 and Sample 2), also the
variation of h(q) with q for those two samples obtained from MFDFA technique are
also shown in the same figure for comparison.

The variation of k(q) with q for the two cross correlated signals (Part 1 for
Sample 1 and Sample 2) show that they are multifractal in nature. To illustrate
further the presence of multifractality in the cross-correlated music signals, i.e. to
have information about the distribution of degree of cross-correlation in various
time scales, a representative multifractal spectrum was plotted for the two signals in
Fig. 9.6. The way to characterize multifractality of cross correlation between two
samples is to relate via a k(q) Legendre Transform as in the case of single series
(Feder 2013). The growth of the width of f(a) or equivalently Δa shows the increase

Fig. 9.5 Variation of
k(q) and h(q) for two sound
signals

Fig. 9.6 Multifractal
cross-correlated spectrum of
Sample 1 and 2 (Part 1)
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in degree of multifractality of the coupled signals. Again, it becomes evident from
the spectrum that the cross correlated signals are multifractal in various time scales.

Jones and Kaul (1996) were the first to reveal a stable negative cross-correlation
between oil prices and stock prices. The negative cross-correlations were also found
by Refs (Chen et al. 2009; Berument et al. 2010; Reboredo et al. 2014). A negative
value of cross correlation is an indication of strong cross-correlation between the
two samples for which the cross correlation is being carried out. The cross corre-
lation exponent cx reported in Table 9.4 along with the corresponding SD values.
MFDXA was carried out amongst six parts of all the four signals taken for analysis.
Figure 9.7 depicts the variation of cross correlation coefficient among the various
parts of the 4 music signals, S1, S2… denote Sample Numbers in the Figure.

As is evident from the figure, strong cross-correlation is observed in Parts 2, 3
and 4 for almost all the samples i.e. for these parts the value of cx is negative for all
the cases. Part 1 as well as the last two parts (Parts 5 and 6), in general do not have

-1.5

-1

-0.5

0

0.5

1

1.5

2

PART 1 PART 2 PART 3 PART 4 PART 5 PART 6

C
ro

ss
-c

or
re

la
ti

on
 c

oe
ff

ic
ie

nt
 

x

Different parts of the Music Signal

S1-S2

S1-S3

S1-S4

S2-S3

S2-S4

S3-S4

Fig. 9.7 Variation of cross-correlation coefficient among different samples

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

M
ul

ti
fr

ac
ta

l w
id

th

Part 1     Part 2       Part 3     Part 4       Part 5      Part 6   

signal1

signal2

signal3

signal4

Fig. 9.8 Variation of multifractal spectral widths in different parts of the four samples

202 9 Improvisation—A New Approach of Characterization



strong cross-correlation between them as is evident from the positive values of cx.
The four renditions of the same raga are different from one another due to the
variation of note-to-note sequences, interval between notes and other modulating
factors which corresponds to the “improvisational modulation” made by the artist
during each and every rendition. Thus we may hypothesize that the artist has made
variation in the rendition of the raga in those parts for which we are not getting any
strong cross correlation, in this case especially in Part 1 while to some extent in
Parts 5 and 6. Every rendition of the raga is different and unique as it embodies
elements of the musician’s vision, as well as his interpretation and this uniqueness
might be manifested in those parts which do not have strong cross correlation
coefficient among one another.

Further, the multifractal width (obtained from MFDFA technique) of the dif-
ferent parts of the four samples has been plotted in Fig. 9.8.

It is clearly observed from the figure that Parts 1, 5 and 6 of all the signals have
varied multifractal width showing that the signals are quite different in complexity
in those time windows. For other parts of the four signals, i.e. Parts 2–4, the
multifractal widths form a cluster i.e. their spectral widths are almost same,
depicting similar complexity. We can therefore say that the observed fluctuations of
the mutifractal width along the music sequences confirm the non-uniformity feature
in the structures of melodic and rhythmic motions of music. In Parts 2–4, the
multifractal widths are almost of the similar order for all the four signals studied,
implies that the local fluctuations are comparable for these. This in turn substan-
tiates our notion that the pattern of rendition in these parts mostly remains similar
and the performer has stuck to the protocol during these parts. While in Parts 1, 5
and 6 the multifractal widths (and hence complexity of the signal) have shown
considerable variation implying that the vocalist has made a number of subtle
improvisations in the raga which has lead to the huge variety in the complexity
patterns of these parts. This curve of mutifractal width characterizes the melodic as
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well as the rhythmic phrasal patterns of music in different time windows. Thus, it is
evident multifractal width can be used as parameter with which it may be possible
to characterize and quantify improvisational cues in Hindustani music
performances.

In the linear domain, Fig. 9.9 shows the % use of notes by the artist in his four
raga renderings.

It clearly indicates that there is no definite rule in using notes for the raga in
Hindustani music (HM). Artist improvised his performance in every raga. Here we
can definitely say that the artist’s most preferable note for this raga is ‘ma’. Notes
‘sa’ and ‘ni’ were least sung by the artist. If the peaks of each note are joined by a
line then we will find that the nature of the curves for the four ragas is similar and
hence the use of notes is almost similar in all the four ragas. We also measured the
total number of notes along with the number of cycles (number of phrasal patterns
repeats within the time frame). Artist used 404, 791, 537 and 282 notes within the
time three second along with cycles of phrases 26.1, 34.4, 27.5 and 20.1. This gives
the information about tempo. So, tempo is directly proportional to the number of
cycles. It was found that Sample 2 shows the highest tempo while Sample 4 is of
slowest tempo. Tempo of Sample 2 is slower than Sample 3. Hence it can be safely
said that the artist used his liberty to improvise his every performance in terms of
tempo or rhythm, usage of notes and also the uses of sequence of notes.

Meend is the transition between two notes with a sliding tone. It is an essential
and integral part of HM that gives the essence of HM which is strictly prohibited in
western music (Datta et al. 2009). We measured meend used by the artist for the
whole signal. Along with this, we also measured the % of ascending meend
(AM) which means the sliding from lower note to higher note and % of descending
meend (DM) which means the sliding from higher note to lower note. Table 9.5
gives the percentage use of AM and DM in the four experimental samples.

From the table we find that there is very little difference in AM and DM for four
signals when measured for the whole signal at a time. Such difference cannot play
any significant role in discussing about improvisation in performance. So we
extended our study further and measured the % use of meend between two suc-
cessive notes (like sa , re, ma , pa, etc.), between two alternate notes (like sa ,
ga, ma , dha, etc.), between 2 jump note (like sa , ma, ma , ni, etc.), between 3
jump notes (like sa , pa, ma , sa, etc.) and between 4 jump notes (like sa , dha,
ma , re, etc.). Artist has an unique preference of using meend between successive
notes and alternate notes. Meend between higher orders notes were rarely used
(none found for Sample 1 and 2). Meend patterns are different for the four signals
and hence can be considered as an important cue for improvisation in musical
performances.

Figure 9.10(a–d) shows the relationship of the ratio of duration of pause to the
duration of note vs. number of notes.

The pause to note ratio can be considered as a cue for evaluation of tempo of a
rendition. From the distribution of Sample 1, it is seen that the artist hardly used
long pause between notes, whereas artist used frequent short durational pause and
hence tempo was slow. Distribution for Sample 2 shows that the artist used a few
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long pauses between notes, but here artist also resorted to lesser number of short
durational pause compared to the others and hence the tempo of the rendering was
faster. But the distribution for Sample 4 shows that the artist used maximum
number of long durational pause between notes and so this is the signal with lowest
tempo. In Sample 3, artist also used considerable number of long durational pause.
From all the four distributions we can observe that no definite rule of using pause
between notes is there in HM, rather artist have complete liberty to use pause as
they wish or needed as per extracting the perfect essence and mood of the raga.

With the help of different rigorous non-linear techniques we have thus studied
the variation of complexity of musical structure in different portions of bandish of a
raga and the results show that complexity varies appreciably within the same
performance as well as within different performances. A high value of cross cor-
relation coefficient cx signifies those portions of the raga which are strongly cor-
related i.e. they are bound by a tight framework of notes, note sequences etc., while
the less correlated portions are those where the artist improvises and shows his
uniqueness. In the linear domain also, a number of interesting features were studied
in this chapter which further reinforces the concept of improvisation in Hindustani
music. We have therefore provided an innovative mean to disclose the intrinsic
property of Hindustani music called improvisation.

9.5 Conclusion

“Improvisation” refers to those elements of a musical performance which are
generated spontaneously by the performer. Even during the performance of a
musical composition, there will be some elements that are not pre-conceived, which
will become the amazement factor for the audience. Examples of such improvi-
sation can be variations in different parts of the raga added by the performer during
the course of performance. Hindustani classical vocal music stands apart as one of
the more difficult vocal forms, wherein the artist acts both as composer as well as
singer; improvising at every instant during the performance. Improvisation is cru-
cial and indispensible feature of Indian Classical Music which depends upon the
imagination, originality and ingenuity of a particular vocal artist. Keeping within a
fixed framework of the raga, a musician makes variation in the scansion of the
lyrics over the period of rhythm as well as in the intricate details of the melodic
structure. This is the essence of improvisation in Hindustani classical music, whose
cues can only be identified with rigorous nonlinear techniques; such as MFDFA or
MFDXA. The work leads to the following interesting conclusions:

1. MFDFA performed on the four vocal musical performances (in a 30 s window)
by the same artist based on the same raga show clear evidence of multifractal
nature. This multifractal nature of music signals may be coming from the
multidimensional nature of music. The origin of multifractality in the music
signals can be ascribed to the presence of long range correlation and broad
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probability density function as confirmed by randomly shuffling the original
data. The presence of long range temporal correlations in music signal may be
the cause why it sounds pleasant to the human ear and the reason why it is a
source of delight for people throughout the Globe.

2. The multifractal widths (obtained from MFDFA technique) show significant
variation for different samples. But, we have found a clustering area which
consists of Parts 2, 3 and 4 for each sample, where the values of multifractal
widths are more or less close to each other indicating close proximity of tem-
poral fluctuations and complexity features of all the signals in these parts. We
thus hypothesize, that these are the parts where the four different renditions are
quite similar to one another and the performer is following the rigid framework
of notes to establish the raga.

3. In Parts 1, 5 and 6 the multifractal widths (obtained from MFDFA) for each of
the sample are considerably different from one another; i.e. the complexity
features of the signal are greatly different. We hypothesize these portions as the
“improvisation” part which makes each rendition unique from the other even
though they have the same characteristic of that particular raga (here Sur
Malhar). Each unique rendition is able to create a different mood or ambience in
which the audience is captivated because of the improvisation part. The per-
formers use his/her own artistic experience and tradition to improvise and
reinvent each individual performance in a new light.

4. Multifractal Detrended Cross Correlation Analysis (MFDXA) was done
between the different samples for specific parts to ascertain the degree of cross
correlation (in the form of cross correlation exponent, cx) among the signals.
The results corroborated our previous findings and strong correlation was noted
for Parts 2, 3 and 4 in case of all the possible combinations of correlation
between samples. Other parts showed varying degree of cross correlation. Thus,
it can be concluded that those parts which are strongly cross correlated are the
parts which are alike one another and those parts which are not strongly cor-
related (but also not anti-correlated) are the parts in which improvisation takes
place.

5. Note patterns before onset and after offset of phrasal patterns do not change
from one rendition to other. Number of notes used by the artist is another
important cue. This reflects the preference of artist’s stress on a particular note
or notes. This also could be treated as the style of the artist. Ratio of pause
duration and non-pause duration reflects the tempo of the rendering and an
important cue of improvisation. The sliding pattern (meend) between notes also
changes among different renditions. These features are the key that an expert
musician keeps on changing from one performance to another as per the then
mood of the artist and his surroundings. Also some parameters like stress on
note, stress on silence etc. can be the cue of style of the artist

Thus, with the help of rigorous latest nonlinear analysis techniques (MFDFA
and MFDXA), we have proposed an automated algorithm with which one can
identify the improvisational cues in a performance. MFDFA technique is by far the
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most suitable method—where in the measurement of ‘w’ (the multifractal spectral
width), ideas of complexity and determinism are reintroduced and embedded. This
method exhibits its novelty to use ‘w’ as the cue for improvisation at the deepest
level of understanding and measurement. One should note that the multifractal
width of the cross correlated signals (obtained from the MFDXA technique) can
show signs of improvisation, but the cross correlation exponent (used in this study)
is a more rigorous parameter for the assessment of improvisation. A naïve listener,
who can recognize the changes in different performance perceptually, will now be
able to conclusively identify the improvisational cues in each performance. Several
linear features have also been studied in this context which can also be categorized
as important improvisational cues in Hindustani music performances. From the
performer’s point of view, this study will help the performer to have a quantitative
assessment of his improvisation. This in turn will help in the popularization of
Hindustani classical music. We conclude emphasizing that the importance of this
study in application area for cognitive music therapy is also immense. As we near
the end of this book, the need arises for exploring new and novel methods for
feature extraction from raw EEG signals. The next chapter introduces three unique
features of EEG viz. neural jitter, shimmer and neural pitch. These features have
been utilized in a number of studies in the acoustic domain but, in the neural
domain, for the first time they have been applied in the next chapter.
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Chapter 10
Neural Jitter-Shimmer and Extraction
of Pitch from EEG Signals

When I was dealing with cancer, I was working on a book about
finances.
I realized that the same methodology that the doctors were
using to cure me,
you could use to cure your finances.
Health and wealth are so linked, it’s amazing.

—Hill Harper

10.1 Introduction

The Electroencephalography (EEG) signal is a temporal record of the complex neu-
ronal fluctuations arising from different locations of the human brain. In the last few
decades there have been extensive research to extract emotional attributes from EEG
signals as they provide specific features in regard to specific emotional state of a
person (Liu et al. 2010; Wang et al. 2011; Petrantonakis and Leontios 2014; Liu and
Sourina 2014). Emotion is defined as “a complex set of interactions among subjective
and objective factors, mediated by neural/hormonal systems, which can give rise to
affective experiences such as feelings of arousal, pleasure/displeasure” (Mulligan and
Scherer 2012). Music is considered to be a very important aspect of music research
because of its ability to induce “emotional powers” i.e. expression of a wide variety of
emotions in humans (Juslin and Laukka 2004; Juslin and Västfjäll 2008). This
complex set of interactions can be assessed with the help of a variety of linear as well
as non-linear EEG features such as power spectral features (Sammler et al. 2007;
Trainor and Schmidt 2003; Logeswaran and Bhattacharya 2009), wavelet transform
(Murugappan et al. 2010), Support Vector Machine (Lin et al. 2008), entropy features
(Duan et al. 2013), neural network (Chai et al. 2010) as well as fractal dimension
based methods (Sourina and Liu 2011; Sengupta et al. 2016; Banerjee et al. 2016).
Chapter 3 in this book deals with how emotional cues arising from Hindustani music
stimuli can be quantified with the application of scale-free fractal techniques; in this
chapter we make use of the same music stimuli and analyze the EEG signals with few
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novel techniques—such as neural jitter/shimmer and estimation of fundamental fre-
quency, which have long been used for speech/music signal analysis.

10.1.1 Application of Jitter/Shimmer and Pitch
in Speech and Music Analysis

Acoustic jitter and shimmer are measures of the cycle-to-cycle variations of fun-
damental frequency and amplitude, respectively, which have long been used for the
description of pathological voice quality in a number of studies (Farrús 2007;
Gelfer and Fendel 1995; Teixeira et al. 2013), while a few studies deal with
emotional classification of speech using these features (Li et al. 2007; Yacoub et al.
2003; Casale et al. 2008). Jitter and shimmer are commonly measured for long
sustained vowels, and values of jitter and shimmer above a certain threshold value
are said to be related to pathological voices, which are perceived by humans as
breathy, rough or hoarse voices (Brockmann et al. 2008; Wolfe et al. 1995;
Dejonckere et al. 2001). Brockmann et al. (2008) reported that significant differ-
ences can occur in jitter and shimmer measurements between different speaking
styles, especially in shimmer measurement. Jitter is a measure of vocal stability and
for normal voices, the jitter value for normal voices are less than 1%. Vocal
shimmer is same as frequency perturbation, but analogous to amplitude where
amplitude perturbation or vocal shimmer serves as an index of vocal stability.
Excessive shimmer in any voice is a measure for the perception of hoarseness.
A mean cycle-to-cycle amplitude difference of 0.7 dB or variation of less than 7%
of mean amplitude is normal. Jitter is affected mainly because of lack of control of
vocal fold vibration and shimmer with reduction of glottic resistance and mass
lesions in the vocal folds, which are related with presence of noise at emission and
breathiness (Slyh et al. 1999). In depth studies on jitter and shimmer was also done
in case of Hindustani classical music signals (Sengupta et al. 2000, 2001, 2003,
2007). In all these studies it was observed that jitter and shimmer are significantly
less in case of non singers compared to the singers. In case of Tanpura also, jitter
and shimmer are less compared to human voice. Also there is no correlation of jitter
and shimmer with pitch. Classification of tanpuras could be done by studying their
jitter and shimmer and complexity perturbations. In case of Harmonium, jitter is
negligible but shimmer is comparable to those found in human speech. No corre-
lation was found for jitter with respect to pitch in harmonium.

Pitch is the perceptual correlate of the fundamental frequency f0 but perception is
not equivalent to measurement. The musical pitch of an audio signal is a perceptual
feature, relevant only in the context of a human listening to that signal. f0 is
determined by rate of vocal fold vibration and is often used in voice assessment.
According to Behlau (2001), fundamental frequency is determined physiologically
by the number of cycles that the vocal folds make in a second, and they are the
natural result of the length of these structures. The fundamental frequency f0 is
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usually the lowest frequency component, or partial, which relates well to most of
the other partials. In the domain of audio signal processing, pitch detection or
fundamental frequency estimation has been done in a number of studies where the
goal of a f0 estimator is to find f0 in the midst of the other harmonically related
components of the sound. A number of time-domain methods are used for f0
extraction which deciphers how often the waveform fully repeats itself working on
principle that if a waveform is periodic then there exist extractable time-repeating
events that can be counted. Of these, Zero Crossing Rate (ZCR) technique (Hess
2012; Kedem 1986; Roads 1996; Scheirer and Slaney 1997) has been used in a
number of studies which essentially computes the number of times waveform
crosses zero per unit time. The ZCR has been often accused of computational errors
since the speech signals contain a number of higher harmonic which signifies that
the waveform might cross the zero line more than twice per cycle. An initial
filtering of the higher harmonics is a good way to develop a robust f0 detector which
removes the higher partials, but the threshold frequency needs to be chosen
meticulously, so as not to remove the f0 partial while removing as much
high-frequency information as possible. In case of EEG signal analysis, the scenario
is not so complex because the sampling frequency of EEG is much lower than that
of speech or music signals and hence pitch detection algorithms do not suffer from
such drawbacks. In this chapter we make a novel attempt to device a robustalgo-
rithm for automated pitch/fundamental frequency determination for EEG data.

10.1.2 Different EEG Frequency Bands and Their
Importance

The complex EEG signals arising from different electrodes of human brain can be
transformed to five different frequency bands depending on the correlates of
emotion processing:

(i) delta (d) 0–4 Hz, (ii) theta (h) 4–8 Hz, (iii) alpha (a) 8–13 Hz and (iv) beta (b)
13–30 Hz and (v) gamma (c) 30–50 Hz. In the past decades, each frequency band has
been related to specific functions, which will be briefly reviewed here for alpha, theta
and gamma frequency ranges as these have been found to be most significant in case
of emotion appraisal. One of the common indicators of emotional states is the
alpha-power asymmetry derived from the spectral differences between a symmetric
electrode pair at the anterior areas of the brain (Allen et al. 2004; Schmidt and Trainor
2001). Other spectral changes and brain regions were also reported, which are asso-
ciated to emotional responses, such as the alpha-power changes at right parietal lobe
(Heller 1993; Sarlo et al. 2005, the theta-power changes at right parietal lobe (Aftanas
et al. 2004), the frontal midline (Fm) theta power (Schutter et al. 2001), the beta-power
asymmetry at the parietal region (Sammler et al. 2007), and the gamma spectral
changes at the right parietal regions (Balconi and Lucchiari 2008). Although emotion
is one of complex and less-understood cognitive functions generated in the brain and
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associated with several brain oscillations in combinations (Basar et al. 1999), the
aforementioned evidences proved the feasibility of using EEG to characterize emo-
tional states. Recent researches have demonstrated that the modulation of gamma band
activity (GBA) in time windows between 200 and 400 ms following the onset of a
stimulus is associated with perception of coherent visual objects (Balconi and
Lucchiari 2008), and may be a signature of active memory. GBA has also been found
sensitive to emotional versus non emotional stimuli and more specifically it was
related to the arousal effect: GBA was enhanced in response to aversive or highly
arousing stimuli compared to neutral picture. While listening to music, degrees of the
gamma band synchrony over distributed cortical areas were found to be significantly
higher in musicians than non musicians (Bhattacharya et al. 2001; Bhattacharya and
Petsche 2001a, b). Another study reports higher order inter-frequency phase syn-
chrony between delta oscillations in anterior and gamma oscillations in posterior
region for musicians. Also, consistent left hemispheric dominance, in terms of the
strength of phase synchrony, was observed in musicians while listening to music,
whereas right hemispheric dominance was observed in non-musicians (Bhattacharya
and Petsche 2005). The gamma band EEG distributed over different areas of brain
while listening to music can be represented by a universal scaling which is reduced
during resting condition as well as when listening to texts (Bhattacharya and Petsche
2005). Specifically, (Summerfield et al. 2002) have found that gamma activity
increases after subjects had been made aware of the stimulus. In this context, it would
be interesting to see how the jitter/shimmer characteristics in the EEG domain vary
under the influence of same Hindustani music stimuli used in Chap. 3.

10.1.3 Evaluation of Neural Jitter/Shimmer and Extraction
of Fundamentals

The EEG time-series signals possess almost the same properties as that of
speech/music signals except that they are far less complex due to much lower sam-
pling rate and hence the presence of higher harmonics is much subdued. Hence the
standard techniques applicable to speech/music signal analysis must also be applicable
for EEG signal analysis for extraction of certain features or characterization of EEG
signal. The frequency perturbation in alpha, theta and gamma range has been termed
as neural jitter while the analogous feature in the amplitude domain has been termed as
neural shimmer. Similar to the case of acoustic signals, using these features we look
for some threshold values which will characterize the neuronal cognitive state of
consciousness of a subject or a group of subjects. Similarly, using the ZCR technique
we have extracted the pitch/fundamental frequency (ies) corresponding to each fre-
quency group of EEG signals. The pitch of an EEG signal may be an characteristic of
the individual and the variation of pitch under the influence of any external stimuli
could help in the categorization and quantification of emotional cues. The variation of
neural jitter/shimmer and fundamental frequency under the effect of musical stimuli
has been used in this study as a parameter with which one can categorize and quantify
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emotional states of listeners. While this is a very specific nature of study using these
robust parameters, the authors hope that this would carve the way for a wide vista of
studies using these features.

10.1.4 Probability of Occurrence of Fundamentals? Does
a Preferred Fundamental Exist?

The EEG signals have been acquired for 10 participants under the influence of two
Hindustani music clips of contrast emotions with sufficient rest time in between
them as in the protocol described in Chap. 3. For each experimental condition, the
fundamental frequency was extracted using the ZCR technique as explained above.
The probability of occurrence of a particular fundamental has been computed in the
form of a distribution curve plotted for each particular experimental condition. The
probability distribution curves revealed that there are certain fundamentals which
are more probable in case of rest state while there exists some other fundamentals
which are more probable under the influence of specific type of music. This
interesting observation leads to another apparent question i.e. whether there exists a
preferred fundamental for each and every cognitive task that we perform. We also
found the existence of different categories of preferential fundamental frequencies
under the effect of emotional Hindustani music.

10.2 Experimental Details

The experimental protocol is exactly the same as that in Chap. 3 and the dataset is
also the same. EEG recording was done with two ragas—Chayant and Darbari
Kanada of Hindustani music for the 5 subjects. From the complete playing of the
ragas, segments of about 2 min were cut out for analysis of each raga. Listening test
was conducted beforehand with 100 participants to standardise the emotional
content of each musical clip. 75% of the participants found Chayanat to be joyful,
80% found Darbari to convey pathos emotion. These findings were corroborated
with the brain response data. The drone signal has been used as a baseline over
which the emotional arousal corresponding to other musical clips have been taken.
The tanpura drone creates a repetitive buzzing sound which helps to create an
atmosphere without evoking any specific emotion.

After initialization, a 12 min recording period was started, and the following
protocol was followed:

1. 2 min No Music
2. 2 min Tanpura Drone
3. 2 min With Music 1 (Chayanat)
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4. 2 min No Music
5. 2 min With Music 2 (Darbari Kannada)
6. 2 min After Music

Markers were set at the start and the end to mark the onset and completion of
each experimental paradigm.

10.3 Methodology

In order to eliminate all frequencies outside the range of interest, data was band pass
filtered with a 0.5–35 Hz FIR filter. The amplitude envelope of the alpha (8–
13 Hz), theta (4–7 Hz) and gamma (30–50 Hz) frequency ranges were obtained
using wavelet transform technique The amplitude envelope of the different fre-
quency rhythms were obtained for ‘before music’, ‘with music’ as well as ‘without
music’ conditions for total 19 electrodes Fz, Cz, Pz, Fp1, Fp2, F3, F4, C3, C4, P3,
P4, O1, O2, F7, F8, T3, T4, T6. EEG signals have played a crucial role in the
domain of music cognition (Maity et al. 2015; Banerjee et al. 2016; Banerjee et al.
2017). The jitter and shimmer components were computed for each of the three
frequency ranges followed by the existence of a fundamental. estimation of pitch
for alpha and theta frequency range. The probability distribution was also computed
for each fundamental frequency obtained from the ZCR technique to get a cue for
To simplify the measurements, six electrodes, F3, F4, O1, O2, T3 and T4 i.e. a pair
from each lobe was considered for estimation of neural pitch.

10.4 Results and Discussion

The jitter and shimmer values were calculated for each of the experimental con-
ditions as illustrated in the Experimental Protocol Section. The neural jitter com-
puted showed very little variance across the six different experimental conditions;
the variance occurring mostly after the fourth places of decimal. So we can safely
assume that there is negligible or almost no change in the neural jitter values under
the effect of various stimuli, and therefore it can be considered as a source char-
acteristic. The neural shimmer values, however showed significant changes under
the effect of different emotional stimuli and could prove to be a robust parameter for
categorization and classification of perceived musical emotions. In the following
figures (Figs. 10.1, 10.2, 10.3, 10.4, 10.5 and 10.6) the variation of neural shimmer
values have been plotted for different frequency ranges under the effect of a par-
ticular stimuli and also what happens after the removal of that stimuli. The after
stimulus part have been incorporated to have a look at the retentive capacities of the
different lobes of brain when the music stimulus have been removed.

218 10 Neural Jitter-Shimmer and Extraction of Pitch from EEG Signals



In case of alpha frequency range, we find that the shimmer values increase for
most of the electrodes under the effect of raga Chayanat. The increase is most
prominent in the frontal electrodes with the highest being noted in the left frontal F3
electrode, indicating the greater involvement of left frontal lobe in the processing of
positive emotions. The neural shimmer also increases quite consistently in the two
fronto-parietal electrodes (FP1 and FP2) as well as in the right parietal (P4) and
occipital (O2) electrodes. The central midline electrode (Cz) registers a significant
dip in neural alpha shimmer along with left temporal (T3) one. Another interesting
observation that comes from the plot is that except for a few electrodes, the aroused
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Fig. 10.1 Neural shimmer (alpha) during and after Chayanat
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Fig. 10.2 Neural shimmer (alpha) during and after Darbari Kanada
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level of neural shimmer does not change even after the removal of stimuli, but is
retained for some time. Except for few electrodes like Fz, Cz and F7, F8 where
there is significant dip in the alpha neural shimmer values after the removal of
stimulus. Thus, we can say that a raga of positive emotion increases the neural
simmer of alpha range mostly in a positive manner and that is retained for quite
some time even after the removal of the stimuli.

In case of raga Darbari, conventionally associated with sad emotion, we find the
effect in neural shimmer is exactly in contrast with the first case. Here, we find that
the neural shimmer values are decreasing significantly under the effect of raga
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Fig. 10.3 Neural shimmer (theta) during and after Chayanat
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Darbari in most of the electrodes, with the dip being most significant in case of
right frontal (F4) and temporal (T4) electrode. This may be an indication in the
direction of negative emotions being processed in the right hemisphere of brain.
The right central (C4), parietal (P4) and occipital (O2) electrodes also display
consistent fall in the neural shimmer values. In this case, we also see that the
retention is not so pronounced as in the previous case and the neural shimmer
values increase consistently after the removal of stimuli. The results point strongly
in the direction of valence lateralization theory or that the different lobes are
involved in processing different emotions.
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Fig. 10.5 Neural shimmer (gamma) during and after Chayanat
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In case of theta frequency range, we find that the shimmer values decreases for
most of the electrodes under the effect of raga Chayanat. The decrease is most
prominent in the right central (C4) electrode, followed by the O1, F7, F4, T4 and Cz
electrodes. The right temporal, i.e., the T6 electrode shows a significant increase in
neural shimmer value. After removal of stimuli the dip in the neural shimmer values
is retained for few electrodes, especially which is significant for the right Central
(C4) electrode which also showed the most drop while the clip was on. Also, the
right frontal electrode F4 shows a significant rise in the neural shimmer value after
the removal of stimuli. Thus, we can say that a raga of positive emotion decreases
the neural shimmer of theta range.

In case of theta frequency range, we find that the shimmer values increase for
most of the electrodes under the effect of raga Darbari which is just in contrast with
that of raga Chayanat. The increase is prominent in the right central (C4), left
fronto-parietal (Fp1) and left temporal (T5) electrodes, followed by FP2, P4, F8, T6
and O2 electrodes. The left central (C3) electrode shows a decrease in neural
shimmer value along with left Occipital (O1) electrode. After the removal of stimuli
the aroused level of the neural shimmer values is retained for few electrodes, while
there is a significant dip in the neural shimmer value for right frontal (F4) electrode
which in case of raga Chayanat showed an increased value of neural shimmers.

In case of gamma frequency range, we find the shimmer values increase for most
of the electrodes under the effect of raga Chayanat. The increase is most prominent
in most of the electrodes with the highest being noted in the left fronto-parietal Fp1
electrode, which implies that fronto-parietal lobe plays an important role in the
processing of positive emotions. The neural shimmer also increases quite consis-
tently in the two fronto-parietal electrodes (FP2 and FP3) as well as in the left
temporal (T3) and occipital (O1) electrodes. The frontal midline electrode
(Fz) registers a significant dip in neural gamma shimmer along with right temporal
(T4) one. Another interesting observation that comes from the plot is that except for
a few electrodes, the aroused level of neural shimmer changes after the removal of
stimuli except for few electrodes like Fz, Pz and T5, P3 where there is significant
rise in the gamma neural shimmer values after the removal of stimulus. Thus, we
can say that a raga of positive emotion increases the neural shimmer of gamma
range mostly in a positive manner.

In case of raga Darbari for gamma frequency range, we find the effect in gamma
neural shimmer is exactly the opposite with what we have found in case of raga
Chayanat. Here, we find that the neural shimmer values are decreasing significantly
under the effect of raga Darbariin most of the electrodes, with the dip being most
significant in case of central midline (Cz), left temporal (T5) and right temporal
(T6) electrodes. The left and right central (C3, C4) and parietal (P3, P4) electrodes
also display consistent fall in the neural shimmer values. The left and right occipital
(O1 and O2) shows an increase in the shimmer values along with Fp1 and T3. In
this case, we also see that the retention is not pronounced after the removal of
stimuli but Cz electrode shows the maximum drop in the shimmer value both before
and after the removal of clip.
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Jitter is conventionally defined as the cycle-to-cycle variation of fundamental
frequency, that is, the average absolute difference between consecutive periods
divided by the average value of the individual periods, expressed as in Eq. 2. When
applied to the neural domain, jitter may be considered as a measure of perturbation
suffered by the fundamental EEG frequency; since this perturbation is essentially
constant for a particular person, we could not find significant variations in the jitter
parameter under the influence of a variety of stimuli. But, the analysis may be
carried out differently using other parametric measures to evaluate neural jitter
which may have definite far reaching conclusions in the modeling of emotions.

The next section focuses on the probability distribution of various fundamental
frequencies in the alpha and theta range for the six electrodes viz. F3, F4, O1, O2,
T3 and T4 taken for our experiment. Figures 10.7, 10.8 and 10.9 give the proba-
bility distribution in respect to the alpha frequency range. The numbers in brackets

0

0.05

P(8)
P(9)
P(10)
P(11)
P(12)
P(13)
P(14)
P(15)

0.1

0.15

0.2

0.25

0.3

0.35 Part 1     Part3       Part 4    Part 5    Part 6

0

0.05

0.1

0.15

0.2

0.25

0.3 Part 1     Part3     Part 4    Part 5      Part 6

(a)  (b)

Fig. 10.7 Alpha probability distribution for a F3 and b F4 electrode

0

0.05

0.1

0.15

0.2

0.25

0.3 Part 1 Part3     Part 4    Part 5      Part 6

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
Part 1      Part3     Part 4     Part 5     Part 6

(a) (b)

P(8)
P(9)
P(10)
P(11)
P(12)
P(13)
P(14)
P(15)

Fig. 10.8 Alpha probability distribution for a T3 and b T4 electrode

10.4 Results and Discussion 223



indicate the probability of getting that frequency in a particular experimental
condition.

In the F3 electrode, we find that Probability of getting frequency 11 (or P(11)) is
the highest for Music 1 while P(12) or the probability of getting frequency 12 is the
highest for Music 2 or sad clip. It is also noted that the preferred fundamental for a
particular emotion remains high even in the next ‘no music’ state, which is the case
that we obtained in Chap. 3 also. In case of right frontal electrode, the case becomes
almost reverse with P(13) showing the highest probability for Music 1 and P(11)
showing the highest probability for Music 2 i.e. for sad clip. This observation
speaks in favor of valence lateralization theory which says that there is differential
processing of emotions in right-left lobes of human brain. In the temporal lobe,
again we see the same response with P(12) being the highest for Music 1 while P
(11) being the highest for Music 2 in T3 electrode, while P(11) is the highest for
Music 1 and P(13) is highest for Music 2 in T3. Again, we see that the preferred
fundamental remains with high probability even after the removal of stimulus or the
‘no music’ condition. In the occipital electrodes, an interesting observation is that in
the period between two contrast emotional music clips, we find that the probability
of frequency 10 or P(10) increases considerably. Since the occipital lobe is asso-
ciated with visual imagery mainly, the ZCR of 10 may correspond to some sort of
visual imagination/memory in the mind of the participants. Apart from this, P(11) is
the maximum for Music 1 while P(12) is the maximum for Music 2. In the right
occipital electrode, O2 again we find that P(11) is maximum for Music 1 but P(13)
is the maximum for Music 2. Thus, we see that when we say of response in the
alpha frequency range it essentially means response within a range of 11–13 Hz
frequency which have shown to play a key role in most of the emotional parts here.
Although, the other frequencies are present but their response is not that significant
which may lead to effective categorization of emotion from EEG data only. The
next set of Figs. (10.10, 10.11 and 10.12) show the identical response only in the
theta frequency range i.e. 3–8 Hz.
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For both the frontal electrodes, F3 and F4 we find that P(5) is the most preferred
fundamental for both Music 1 and Music 2, while during the ‘no music’ state we see
that F3 has P(4) as the highest value while for F4 P(6) has the highest value. Thus, the
retention factor for the happy music is not that significant here, while for the sad music
i.e. after Music 2 we find P(5) remain considerably high in the ‘after music’ part also.
In the temporal electrodes, T3 has P(4) highest for Music 1 while P(6) highest for
Music 2, while T4 has P(6) as the highest probability for both the music clips. In O1,
again we find that P(5) has the highest value for both the clips with the retention factor
quite high again for the sad clips, though in case of happy clip there are signs of good
retention in occipital lobe. In case of O2, P(6) is the highest probability for Music 1
while again P(5) scores very high for Music 2 again with strong retention i.e. the value
of P(5) is quite high even in the ‘after music’ state or Part 6. Thus, we can say that the
response in theta frequency range is not as noteworthy as that of alpha frequency range
when it comes to categorization of human emotions. Although we find the presence of
a preferred fundamental under the effect of emotional music clips, it is not being
possible to label emotions using theta frequency range. Also in this study it has been
observed that response in theta frequency range means the activation of the three main
fundamentals viz. 4–6 Hz. Other fundamentals do not play any major role in the
response corresponding to theta region.

10.5 Conclusion

In this work, we propose three novel parameters—neural jitter, shimmer and pitch
whose variations has been used as a parameter to quantify and categorize emotional
arousal using Hindustani classical music as a stimuli. This is the first of its kind
study which delves into such depth of the complex EEG signal never done before.
The resolution of these techniques are so high, that it is possible for the first time to
see, scale and manipulate individual frequency fundamentals from each of the
conventional frequency ranges of EEG signals. The study yields the following
interesting conclusions:

1. The neural jitter is a subjective parameter which is very much dependent on the
state of consciousness of a particular person and thus remains mostly unaffected
by any type of emotional music stimuli. In the domain music signal analysis,
jitter has largely been used as a parameter which defines the timbral charac-
teristic of a musical instrument. In the same way, we propose to use neural jitter
as a parameter which defines the state of consciousness of a human being.

2. The neural shimmer has been calculated for different frequency bands of EEG,
reveals interesting data regarding the arousal and retention of different emotions
in human brain. In the alpha frequency range, elevated levels of neural shimmer
are representation of positive emotion while diminished levels are marker for
negative emotion. The retention is higher in case of positive emotion as com-
pared to negative.

226 10 Neural Jitter-Shimmer and Extraction of Pitch from EEG Signals



3. In case of theta frequency range, just the opposite response is found in case of
arousal by positive and negative emotional music. The central lobe seems to be
the most affected by positive stimuli while the temporal and fronto-parietal
electrodes are mostly affected in case of negative stimuli. Again, the retention
based effects are more prominent in case of the 1st clip as compared to the 2nd.

4. The gamma frequency range reveals almost the same result as the alpha range,
with elevated and diminished levels are markers of positive and negative emotional
stimuli respectively. The left fronto parietal, frontal and temporal lobe plays sig-
nificant part in the processing of positive emotion, while the central, parietal and
temporal lobes are strongly associated with negative emotions.

5. The EEG pitch estimation with ZCR technique proves to be quite effective for the
alpha frequency region with clear distinction being obtained in the probability dis-
tribution values for happy and sad emotion. There is also an indication of differential
processing of emotion with contrast response being obtained in the opposite lobes.

6. The probability distribution in theta region does not effectively distinguish the
two emotional states but it gives a cue about the arousal based response. We find
the same fundamental frequency with high probability in both the emotional
clips. Thus, we can conclude that we can identify the valence of emotional state
in the alpha frequency range while the arousal can be extrapolated from the
response in theta frequency range.

7. It becomes a reality for the first time to monitor individual EEG frequencies and
see how their contribution varies in totality when we talk about changes in a
particular frequency range of EEG signals. Using this method, we have found
that 11–13 Hz is the most significant contributor for the alpha frequency
response, while 4–6 Hz is the highest contributor in the theta response.

In this way, we propose a novel algorithm which can be utilized for quantifi-
cation and categorization of emotional arousal in respect to musical clips. More
rigorous works being carried out in this domain include the variation of neural jitter
or shimmer values within the span of particular emotional stimuli- i.e. we envisage
to characterize the fluctuation of fluctuations. The probability distribution that we
obtain here using the ZCR algorithm is essentially the void probability distribution
(Bhaduri and Ghosh 2016, 2017; Mondal et al. 2014) which is being widely used in
high energy physics to study its scaling phenomenon. The pitch analysis of EEG is
also being extended in the form of DFA/MFDFA analysis to study the fluctuation
pattern of the void probability distribution. This will enable us to have a look at the
fractal/multifractal scaling pattern (if any) of the probability distribution of voids.
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Epilogue

The book is a comprehensive record of novel ideas and experiments traversing
across various discipline viz. physics, mathematics, musicology, psychology,
psycho-acoustics and most importantly neuro-science. This epilogue looks at
themes and trends that hint at future journey of exploring musical rhythm of brain in
the light of findings detailed in this book. In this age of nano-technology, when the
focus is mostly on the finest details of matter, there is a need to revisit the idea of
keeping “mind over matter”. The ambitious Big Brain Project of the US
Government hopes to obtain brain wiring diagrams that will reveal patterns of
neural activity giving insight into the underlying basis for sensory function,
thought, memory and emotion—and will provide a new understanding of what in
these circuits goes awry in psychiatric and neurodegenerative diseases. Similarly,
the experiments reported in this book try to harnesses the immense power that
music (specifically Hindustani music) has to offer in regulating or often changing
the brain states of individuals. We sincerely hope that this book will encourage
more people to take up music as an effective therapeutic agent and use it in a more
scientific way. A number of novel signal processing tools for feature extraction
from EEG/sound signals which will be beneficial for future students/researchers
who wish to do innovative works in this eccentric field of research.

Future works in this direction include one of the most challenging one i.e.
“music of the brain”, which essentially means sonification of the low-frequency
EEG signal and making it audible to the human ear. This will also lead to the
manifestation of a direct correlation between an EEG signal and a music signal—a
pioneering work in this domain. The simultaneous neural processing of melody and
rhythm in different sections of the human brain is also an interesting area of future
research. How do the variations of linear features like amplitude, pitch, timbre etc.
affect the non-linear parameters like Hurst exponent, Multifractal spectral width is
also a fascinating area of research. We know that if the dynamics of a certain raga
goes wrong, or certain phrases are interchanged, seasoned listeners can identify
perceptually, but what are the neural manifestations of the same is unknown and
could have enthralling implications. Summing up, this extraordinary research area
throws wide a number of problems for inquisitive researchers.
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It may not be out of place to mention that Sir C V Raman Centre for Physics and
Music, Jadavpur University, India, since 2010 is relentlessly working to develop
fractal analytics representation as a superior alternative to linear analytics approach
for scientific study of the cognitive aspect of Hindustani music. This book will go a
long way with the aspiration that physicists, musicians and neuroscientists are
woven in the same fabric. Remembering Tolstoy’s expression “Music is the
shorthand of emotion”…

Thus, Quest for Knowing the Unknown Continues………..
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