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Chapter 1
Introduction

The concept of network served for a long time as a metaphor supporting a
structural approach, i.e., an approach that puts the accent on the relations among
the constituents of a given system, in a wide range of scientific fields, from biology
to sociology, and spanning organizational levels from subcellular organization to
social organization. In all those fields we can observe a shift from the use of the
concept of network as a metaphor to a more substantial notion [12, 43, 82], which
has led to what is now known as complex networks science.

The science of complex networks provides an interdisciplinary viewpoint for
the study of complex systems, as it constitutes a unifying language that permits to
abstract from the specific details of a system to focus on its structure of interactions.
The result of this operation of abstraction is a graph model of the system. On its turn,
a graph is a specific mathematical object, and a plethora of mathematical tools has
been developed to deal with it. Admittedly, the real power of representing a complex
system through a graph lies in the hypothesis that the structure and function of the
system under study are intimately related to one another. Paraphrasing Wellman
[82]: It is a comprehensive paradigmatic way of taking structure seriously by
studying directly how patterns of ties determine the functioning of a system.

Now, we understand a complex network as a system whose patterns of interac-
tions cannot be described by a random graph model with a Poissonian distribution
for the connections. From the point of view of a physicist, complex networks
are systems that display a strong disorder with large fluctuations of the structural
characteristics. As such, the tools developed in condensed matter theory and in
statistical physics revealed to be well suited to study the architecture of complex
networks [28]. While statistical physics provides complex networks science with
a set of tools, graph theory stands at its basis providing a formal language. The
first step in complex network research is to represent the structure of the system

© The Author(s) 2018
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2 1 Introduction

under study as a graph, followed by an analysis of the topological features of the
obtained representation through a set of informative measures. This first step can be
understood as the formal representation of the system, while the second one can be
seen as the topological characterization of the system’s structure [22].

Both the peculiar nature of complex networks as topological structures (in
comparison, for example, with a lattice) and the particular nature of the system under
study push the need for the definition of structural metrics. The degree distribution
is the most simple example of a structural metric needed for a gross characterization
of the inhomogeneity of a networked system. The degree of a node in a network is
the number of connections it has to other nodes and the degree distribution is the
probability distribution of these degrees over the whole network. While it is really
uninformative in a homogeneous system (a lattice, a random regular network, or a
poisson random graph), it gives a basic understanding of the degree of the disorder in
the case of complex networks. So much so, that the discovery that many networked
system has power law degree distributions set the start of the current interest in
complex networks science.

On the other hand, the needs of each particular field of research serve as a
guide for the definition of particular structural metrics that quantify some relational
concepts developed in that field. This is the case of the plethora of centrality
measures defined to capture the relation of power in social network analysis
[30]. The topological characterization of a complex network also implicitly allows
for classifications, either of the constituents of the system, or when comparing
different systems. However, understanding the structure of a complex network
means, roughly speaking, to comprehend what is informative, and what is the
result of chance (or of structural constraints). Therefore, a third step in complex
network investigation is its statistical characterization, that is, the quantification of
the statistical significance of network properties and their dependencies. Crucial in
this step is the generation of appropriate null models since once a structural property
is recognized as statistically significant, a mechanism for the emergence of such a
property could be proposed and further investigated [59].

Finally, the core hypothesis that the structure and the function are intimately
related to one another returns. The fourth step is then the functional characterization,
i.e., the study of the relations between the structure and the dynamics (as a proxy of
the function). From a physicist point of view, the interest is in studying the critical
properties of dynamical processes defined on complex networks, as models of real
processes and emergent functions. The crucial point is that many of the peculiar
critical effects showed by processes defined on complex networks are closely
related and universal for different models, basically reinforcing the hypothesis of
the relation between the structure and the function, together with the “statistical
physical” approach [28]. On the other hand, when a particular system is under study,
this part of the investigation deals with the task of finding the structural properties
that may explain the observed phenomena.
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1.1 From Simple Networks to Multiplex Networks

The concept of multiplex networks may be anchored in communication media or
in the multiplicity of roles and milieux. When focusing on the former aspect, one
realizes that the constituents of a complex system continuously switch among a
variety of media to make the system perform properly. On the other hand, focusing
on the latter, one takes into account the fact that interactions are always context
dependent as well as integrated through different contexts.

The term multiplexity was coined in early 1962 in the social anthropology
framework by Max Gluckman (in [32]) to denote “the coexistence of different
normative elements in a social relationship,” i.e., the coexistence of distinct roles
in a social relationship. While this first definition focus on context and roles,
Kapferer offered a second definition based on the overlap of different activities
and/or exchanges in relationships, focusing on the social relationship as a medium
for the exchanges of different types of information [40]. The duality between
media and roles in founding the multiplexity of social relations is still present in
the contemporary debate, with authors like David Bolter and Richard Gusin [7]
advocating the former, and others like Lee Rainie and Barry Wellman the latter [64].
However, whether defined by roles or media, multiplexity always refers to “multiple
bases for interaction” in a network [78].

It is indubitable that new push for the formal and quantitative research in
multiplex networks comes from the social and technological revolution brought
by the Internet and mobile connections. Chats, online social networks, and a
plethora of other human-to-human machine mediated channels of communications,
together with the possibility of being always online (hyper-connectivity [81]), have
accelerated the proliferation of layers that makes “the sociality.” Although it has
a longer history in the field of social sciences, the concept of multiplexity, and
consequently of multiplex networks, is not restricted to them. For example, it is
gaining an important role in contemporary Biology, where we can observe the same
shift from its use as a metaphor to a more substantial notion of the concept of
multiplex networks. In particular, it is associated with the method of integration
of multiple sets of omic data (data from genomics, proteomics, and metabolomics)
on the same population; as well as to the case of meta-genomic networks where
the dynamical interactions between the genome of the host and that of the microbes
living in it, the cross-talk being mediated by chemical and ecological interactions.
As with the case of social multiplex networks, also in biology the origin of the
renovated interest in multiplex networks is largely due to a technological jump that
has made it possible the availability of large and diverse amounts of data coming
from very different experimental settings.

Also in the traditional field of transportation networks, the notions of mul-
tiplexity and multiplex networks have a natural translation in different modes
of transportation connecting the same physical location in a city, a country, or
on the globe. Finally, in the field of engineering and critical infrastructures, the
concept of multiplexity applies to the interdependence of different lifelines [14].



4 1 Introduction

Even if the notion of multiplexity was introduced years ago, the discussions
included few analytical tools to accompany them. This situation arose for a simple
reason: although many aspects of single-layer networks are well understood, it is
challenging to properly generalize even the simplest concept to multiplex networks.
Theoretical developments on multilayer networks in general, and on multiplex
networks in particular, have gained steam only in the last few years, for different
reasons, among which surely stands the technological revolution represented by the
digitalization and the social transformations that have accompanied it, as we have
mentioned before.

Now, we understand multiplex networks as a nonlinear superposition of complex
networks, where components, being them social actors, genes, devices, or physical
locations, interact through a variety of different relationships and communication
channels, which we conceptualize as different layers of the multiplex network.
This conceptualization of a multiplex network poses a number of challenges to the
science of complex networks: from the formal description of a complex network
(starting from the fact that a constituent of a networked system, represented by a
node in a traditional single layer network, is no more an “elementary” unit, indeed
it has an internal—possibly complex—structure that must be formally represented),
to the ultimate goal of understanding how this new level of structural complexity
represented by the interaction of different layers reveals itself in the functioning of
the system.

In this Springer Brief, we provide, based on our own research experience, a
formal introduction to the subject of Multiplex Networks. Despite the relative
youth of this topic, there are already many results available in the literature, both
concerning the structural and topological characterization of these networks as well
as on the dynamics on top of them. Additionally, ours is not the only approach to
characterize multiplex networks, and therefore, the reader might also find several
references in which the notation and terminology are different to the one discussed
here. In this sense, ours is a “biassed” introduction, although we think it is a natural
one and easier to follow for those that already have some basic knowledge of single
layer networks. It is also worth stressing that we do not revise all the body of
works that deal with the topology of multiplex networks, but those to which we,
as researcher, have contributed the most. Topics such as community detection, time
dependent multiplex networks, and the definition and use of several (perhaps more
secondary) metrics have not been addressed here. A final limitation of the present
book is that it only presents some aspects of general dynamical processes (mainly
diffusion and spreading dynamics) whenever we need them to illustrate the need to
use the multiplex perspective.

The main reason to proceed in this way is because we believe that a first
introduction to the topic needs to address what topological aspects are relevant, and
then discuss what is their impact on dynamics (a second argument is that there are
simply too many dynamics that have been studied already and discussing them is
beyond the scope of the present text). The monograph is organized in a way that once
the basic definitions are understood, the reader can navigate through the different
chapters independently (most of the time). We hope that both the choice of topics
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and the way they are presented help the interested reader to introduce herself in
the subject as well as that the present contribution can be used for an introductory
course to multilayer networks at the postgraduate level.
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Government of Aragón, Spain through a grant to the group FENOL, MINECO, and FEDER funds
(grant FIS2014-55867-P), and the European Commission FET Projects Multiplex (grant 317532)
and Plexmath (grant 317614).



Chapter 2
Multiplex Networks: Basic Definition
and Formalism

In this chapter, we present and define multiplex networks as they will be used in this
book. It is common to introduce multiplex networks as a particular specification of
the more general notion of multilayer networks [44], conversely, we prefer to have
the former as a primary object. We then show how this structure can be represented
by adjacency matrices, introducing the notion of “supra-adjacency” matrix. A
different algebraic representation of multiplex networks is possible by means of
higher-order tensors, the supra-adjacency matrix being a particular flattening of an
adjacency tensor representing the multiplex network under some assumptions [25].
We will briefly introduce this formalism in Chap. 7 and show some applications.

This introductory chapter represents an effort to set a formal language in this area,
and it is intended to be general and complete enough as to deal with the most diverse
cases. Although it might seem pedantic, setting a rigorous algebraic formalism is
crucial to make it possible and, in a certain sense, automatic, furthermore complex
reasoning, as well as to design data structures and algorithms.

2.1 Graph Representation

A networked system N is naturally represented by a graph. A graph is a tuple
G(V,E), where V is a set of nodes, and E ⊆ V ×V is a set of edges that connects a
pair of nodes. Nodes represent the components of the system, while edges represent
interactions or relations among them. If an edge exists in G between node u and
node v, i.e., (u, v) ∈ E, they are said to be adjacent, and we indicate the adjacency
relation with the symbol ∼, i.e., we will write u ∼ v if (u, v) ∈ E. When needed,

we write u
G∼ v to explicitly state that the adjacency relation is referred to the

particular graph G.
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In order to represent a networked system in which different types of relations
or interactions exist between the components—a multiplex network—the notion
of layer must be introduced. Let L = {1, . . . , m} be an index set, which we call
the layer set. A layer is an index that represents a particular type of interaction or
relation. | L |= m is the number of layers in the multiplex network, i.e., the number
of different kind of interactions/relations in the system. Now, consider a set of nodes
V , where nodes represent the components of the system, and let GP = (V , L, P )

be a binary relation, where P ⊆ V ×L. The statement (u, α) ∈ P , with u ∈ V , and
α ∈ L, is read node u participates in layer α. We call the ordered pair (u, α) ∈ P

a node-layer pair and we say that the node-layer pair (u, α) is the representative
of node u in layer α, thus P is the set of the node-layer pairs. In other words,
we are attaching etiquettes to nodes that specify in which type of relations (layers)
the considered node participates in.

GP = (V , L, P ) can be interpreted as a (bipartite) graph where P is the edge
set. | P |= N is the number of node-layer pairs, while | V |= n is the number of
nodes. If each node u ∈ V has a representative in each layer, i.e., P = V × L, we
call the multiplex a node-aligned multiplex, and we have that | P |= mn. As we
shall see later, things are always simpler when the multiplex is node-aligned.

In this way, each system of relations or interactions of different kinds is naturally
represented by a graph Gβ(Vβ,Eβ), where Vβ = {(u, α) ∈ P | α = β}, that is, Vβ

is a subset of P composed by all the node-layer pairs that have the particular index
β as second element. In other words, it is the set of all the representatives of the
node set in a particular layer. The edge set Eβ ⊆ Vβ × Vβ represents interactions
or relations of a particular type between the components of the systems. We call
Gβ(Vβ,Eβ) a layer-graph and we can consider the set of all layer-graphs M =
{Gα}α∈L. | Vβ |= nβ is the number of node-layer pairs in layer β. For node-aligned
multiplex networks we have nα = n, ∀α ∈ L.

Finally, consider the graph GC on P in which there is an edge between two
node-layer pairs (u, α) and (v, β) if and only if u = v; that is, when the two edges
in the graph GP are incident on the same node u ∈ V , which means that the two
node-layer pairs represent the same node in different layers. We call GC(P,EC) the
coupling graph. It is easy to realize that the coupling graph is formed by n =| P |
disconnected components that are either complete graphs or isolated nodes. Each
component is formed by all the representatives of a node in different layers, and we
call the components of GC supra-nodes.

We are now in the position to say that a multiplex network is represented by the
quadruple M = (V , L, P,M):

• the node set V represents the components of the system,
• the layer set L represents different types of relations or interactions in the system,
• the participation graph GP encodes the information about what node takes part

in a particular type of relation and defines the representative of each component
in each type of relation, i.e., the node-layer pair,



2.1 Graph Representation 9

Fig. 2.1 The multiplex
network is represented by the
quadruple
M = (V , L, P,M):, i.e., the
layer set L = {a1, a2}, the set
of the node-layer pairs P =
{(1, a1), (2, a1), (3, a1), (2, a2), (3, a2)},
the node set V = {1, 2, 3}.
Supra-nodes are [(1, a1)],
[(2, a1), (2, a2)], and
[(3, a1), (3, a2)]

a

a1

2

(1, a1 )
(2, a1 )

(3, a1 )

(2, a2 )

(3, a2 )

• the layer-graphs M represent the networks of interactions of a particular type
between the components, i.e., the networks of representatives of the components
of the system.

Figure 2.1 illustrates the notation used to describe the multilayer organization.
Next, consider the union of all the layer-graphs, i.e., Gl = ⋃

α Gα . We call such
a graph the intra-layer graph. Note that, if each layer-graph is connected, this graph
is formed by m disconnected components, one for each layer-graph.

Finally, we can define the graph GM = Gl∪GC , which we call the supra-graph.
GM is a synthetic representation of a multiplex network. Note that supra-nodes are
cliques1 in GM.

To summarize, up to now, we have two different entities representing the compo-
nents of a multiplex network: nodes and node-layer pairs. A node corresponds to a
“physical object,” while node-layer pairs are different instances of the same object.
For instance a node could represent an online user, while node-layer pairs would
represent different accounts of the same user in different online social networks;
or a node could represent a social actor, while node-layer pairs would represent
different social roles (friend, worker, family member) of the same social actor; or a
node could stand for a location in a transportation network, while node-layer pairs
would represent stations of different transportation modes (e.g., streets, highways,
and subways).

The connection between nodes and node-layer pairs is given by the notion
of supra-nodes: i.e., cliques in the supra-graph formed by node-layer pairs that
are instances of the same object. Moreover, for clarity, we denote nodes using
the symbols u, v,w; for brevity, we may indicate a node-layer pair with a single

1A clique, C, in an undirected graph G = (V ,E) is a subset of the vertices, C ⊆ V , such that
every two distinct vertices are adjacent.
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symbol instead of using the ordered pair (u, α), and we will use the symbols i, j, h.
To round off the basic definitions used henceforth, let’s also define l(u) = {(u, α) ∈
P | α ∈ L} to be the set of all node-layer pairs that correspond to the same
node u. Note that not every node has a representative in every layer, and l(u) may
have cardinality 1. We call κu = |l(u)| the multiplexity degree of the node u, that
is, the number of layers in which an instance of the same object u appears. We
also define l−1(i) to be the unique node that corresponds to the node-layer pair i.
Furthermore, when it is clear from the context, we may refer to node-layer pairs
simply as nodes.

2.2 Matrix Representation

Given a graph G(V,E), we can associate to it a matrix A(G) whose elements auv =
1
u

G∼v
, where 1x is the indicator function, i.e., it is equal to one if the x is true,

otherwise it is zero. The matrix A(G) is called the adjacency matrix of G, and
by identifying a network N with its graph representation, we say that A(G) is the
adjacency matrix of N.

We can consider the adjacency matrix of each of the graphs introduced in the
previous section. The adjacency matrix of a layer graph Gα is a nα × nα symmetric
matrix A(α) = A(Gα), with aα

ij = 1
i
Gα∼ j

, i.e., if and only if there is an edge between

i and j in Gα . We call them layer adjacency matrices.
Likewise, the adjacency matrix of GP is an n × m matrix P = P(GP ), with

puα = 1
u

GP∼ α
, i.e., if and only if there is an edge between the node u and the layer α

in the participation graph; that is, only if node u participates in layer α. We call it the
participation matrix. The adjacency matrix of the coupling graph GC is an N × N

matrix C = C(GC), with cij = 1
i
GC∼ j

, i.e., if and only if there is an edge between

node-layer pair i and j in GC ; that is, if they are representatives of the same node in
different layers. We can arrange the rows and the columns of C such that node-layer
pairs of the same layer are contiguous. It results that C is a block matrix with zero
diagonal blocks. Besides, rows and columns can be arranged in a way such that the
off-diagonal blocks are diagonals. Thus, cij = 1, with i, j = 1, . . . , N represents
an edge between a node-layer pair in layer 1 and a node-layer pair in layer 2 if
i < n1 and n1 < j < n2. We call this the standard labeling and we assume that
node-layer pairs are always labeled this way. Note that this labeling also induces a
labeling of node-layer pairs in layer-graphs such that the same row and column in
different layer adjacency matrices correspond to the representative of the same node
in different layers.

In addition, when in the previous section we said that we may use a single symbol
i instead of using the ordered pair (u, α) to indicate a node-layer pair, we were
stating that we identify a node layer pair with its index in the corresponding layer
adjacency matrix. In the same way, l(u) can now be interpreted as the set of layer
adjacency matrix indexes that correspond to a given node u.
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Considering the example in Fig. 2.1, we have:

A(a1) =
⎡

⎣
0 1 1
1 0 0
1 0 0

⎤

⎦ ,

A(a2) =
[

0 1
1 0

]

,

and

P =
⎡

⎣
1 0
1 1
1 1

⎤

⎦ .

Note that in this example the labeling is not standard. One has to exchange the
labeling of nodes 1 and 3 in order to have a standard labeling.

2.2.1 The Supra-Adjacency Matrix

Given a supra-graph GM, we consider its adjacency matrix A(GM) and we call
it the supra-adjacency matrix Ā. Just as GM, Ā is a synthetic representation of
the whole multiplex M. By definition, assuming the standard labeling, it can be
obtained from the intra-layer adjacency matrices and the coupling matrix in the
following way:

Ā =
⊕

α

Aα + C, (2.1)

where
⊕

represents the direct sum. We also define A = ⊕
α Aα , and we call it

the intra-layer adjacency matrix. By definition, the intra-layer adjacency matrix is
the adjacency matrix of the intra-layer graph Gl , A = A(Gl). Figure 2.2 shows the
supra-adjacency matrix, the intra-layer adjacency matrix, and the coupling matrix
of a multiplex network.

Ā takes a very simple form in the case of node-aligned multiplex networks,
that is

Ā = A+ Km ⊗ In, (2.2)

where ⊗ represents the Kronecker product, Km is the adjacency matrix of a
complete graph on m nodes, and In is the n × n identity matrix.
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Fig. 2.2 Example of a
multiplex network. The
structure of each layer is
represented by an adjacency
matrix A(i), where i =1, 2.
C(lm) stores the connections
between layers l and m. Note
that the number of nodes in
each layer is not the same

It is even simpler when layer-graphs are identical:

Ā = Im ⊗ A + Km ⊗ In, (2.3)

where A is the adjacency matrix of each identical layer graph. Equation (2.3) is just
the Kronecker sum of A and Km.

For instance, if we have two layers, L = {1, 2} with edge set E1 =
{[(1, 1), (2, 1)], [(2, 1), (3, 1)]} and {E2 = [(1, 2), (2, 2)], [(2, 2), (3, 2)]}, we
have that

Ā = I2 ⊗ A + K2 ⊗ I3

=
[

1 0
0 1

]

⊗
⎡

⎣
0 1 0
1 0 1
0 1 0

⎤

⎦+
[

0 1
1 0

]

⊗
⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦

=
[

A 0
0 A

]

+
[

0 I3

I3 0

]

=
[

A I3

I3 A

]

Some basic metrics are easily calculated from the supra-adjacency matrix. The
degree of a node-layer i is the number of node-layers connected to it by an edge in
GM and is given by

Ki =
∑

j

Āij . (2.4)

Sometimes we write i(α) as an index, instead of simply i, to explicitly indicate that
the node-layer i is in layer α even if the index i already uniquely indicates a node-
layer pair. Since Ā can be read as a block matrix, with the A(α) on the diagonal
blocks, the index i(α) can be interpreted as block index. It is also useful to define
the following quantities

eα =
∑

β<α

nβ, (2.5)
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which we call the excess index of layer α. Notice that nβ is the number of node-
layer pairs in layer β. The layer-degree of a node-layer i, ki(α), is the number of
neighbors it has in Gα , i.e., ki(α) =∑

j aα
ij . By definition of Ā

ki(α) =
nα+eα∑

j=1+eα

Āij . (2.6)

The coupling degree of a node-layer i, ci(α), is the number of neighbors it has in the
coupling graph, i.e., ci(α) =∑

j cij . From Ā we get

ci(α) =
∑

j<eα,
j>nα+eα

Āij . (2.7)

By definition

ci = κl−1(i) − 1. (2.8)

Finally, we note that the degree of a node-layer can be expressed as

Ki(α) =
∑

j

Āij = ki(α) + ci(α). (2.9)

Equation (2.9) explicitly expresses the fact that the degree of a node-layer pair is the
sum of its layer-degree plus its coupling-degree.

2.2.2 The Supra-Laplacian Matrix

Generally, the Laplacian matrix, or simply the Laplacian, of a graph with adjacency
matrix A(G) is given by

L(G) = D − A(G) (2.10)

where D(G) = diag(k1, k2, . . . ) is the degree matrix.
Thus, it is natural to define the supra-Laplacian matrix of a multiplex network as

the Laplacian of its supra-graph

L̄ = D̄ − Ā, (2.11)

where D̄ = diag(K1,K2, . . . , KN) is the degree matrix.
Besides, we can define the layer-Laplacian of each layer-graph Gα as

L(α) = D(α) − A(α), (2.12)
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and the Laplacian of the coupling graph

LC = � − C (2.13)

where � = diag(c1, c2, . . . , cN ) is the coupling-degree matrix.
By definition, we have

L̄ =
⊕

α

L(α) + LC. (2.14)

As it was the case of the supra-adjacency matrix, Eq. (2.14) takes a very simple form
in the case of a node-aligned multiplex, i.e.,

L̄ =
⊕

α

(L(α) + (m − 1)IN) − Km ⊗ In, (2.15)

and when layer-graphs are identical:

L̄ = Im ⊗ (L + (m − 1)In) − Km ⊗ In, (2.16)

where L is the Laplacian of each identical layer-graph.

2.2.3 Multiplex Walk Matrices

A walk on a graph is defined as a sequence of adjacent vertices. The length of a walk
is the number of edges it contains. For a simple graph (which has no multiple edges),
a walk may be specified completely by an ordered list of vertices [83]. A step is the
elementary component of a walk, i.e., two adjacent nodes.

Here, supra-walk is defined as a walk on a multiplex network in which, either
before or after each intra-layer step, a walk can either continue on the same layer or
change to an adjacent layer. We represent this choice by the matrix:

Ĉ(β, γ ) = βI + γ C (2.17)

where I is the N × N identity matrix, the parameter β is a weight that accounts
for the walk staying in the current layer, and γ is a weight that accounts for the
walk stepping to another layer. In a supra-walk, a supra-step consists either of only
a single intra-layer step or of a step that includes both an intra-layer step changing
from one layer to another (either before or after having an intra-layer step). In the
latter type of supra-step, note that we are disallowing two consecutive inter-layer
steps. In other words, supra-walks are walks on the supra-graph GM with this latter
prescription.
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Roughly speaking, a multiplex walk matrix is a matrix that encodes the permis-
sible steps in a multiplex network. The matrix AĈ encodes the steps in which after
each intra-layer step a walk can continue on the same layer. On the other hand,
the matrix ĈA encodes the steps in which before each intra-layer step a walk can
continue on the same layer. Both matrices AĈ and ĈA can be interpreted as the
adjacency matrix of a directed (possibly weighted) graph. We call such graphs
auxiliary supra-graph.

In general, depending on the rules prescribed to walk the multiplex, one can
define an auxiliary supra-graph GM whose adjacency matrix is M = M(A, C).
It should be noted that, by definition, the supra-adjacency matrix is also a walk
matrix. The need of such matrices comes from the fact that, as we will see in the
next chapter, often it is of interest to treat intra and inter-layer edges differently,
where changing layer is an action of a different nature with respect to going from a
node to a different one.

2.3 Coarse-Graining Representation of a Multiplex Network

Because of the structure of a multiplex network, it is natural to try to aggregate the
interaction pattern of each different layer in a single network somehow. An operation
that is called dimensionality reduction, whereas the result of such operation leads to
an object named aggregate network. Several candidates for the aggregate network
have been proposed in the literature such as the average network [73], the
overlapping network [6], the projected monoplex network or the overlay network
[25]. As in [69], we claim that the natural definition of an aggregate network is given
by the notion of quotient network. In addition, the quotient network framework
allows to introduce in a symmetric way another aggregate network, the network of
layers, that encodes the connectivity pattern between layers. In a sense that will be
more clear in Chap. 4, the notion of quotient graph underpins the notion of multiplex
network. Figure 2.3 shows, in a schematic way, a multilayer network and the two
quotient networks that can be derived from it. We next describe in detail how they
are obtained.

2.3.1 Mathematical Background

Let us first provide a brief, but self-contained description of network quotients.

2.3.1.1 Adjacency and Laplacian Matrices

Suppose that {V1, . . . , Vm} is a partition of the node set of a graph G(V,E) with
adjacency matrix A(G), and write ni = |Vi |.
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(b)

(a)

(c)

(b)

(a)

(c)

Fig. 2.3 Schematic representation of a multiplex network with 4 layers and 8 nodes per layer (a),
and its two quotients: the network of layers (b), and the aggregate network (c). In (a), dashed lines
represent inter-layer edges. The quotient (b) is undirected, as all layers have the same number of
nodes. The quotient (c) is only partially drawn, it is directed, and the edge thickness is proportional
to the weight. The network of layers (b) corresponds to the layer interconnection structure, while
the aggregate network (c) represents the superposition of all the layers onto one. In this sense, they
can be thought of as “horizontal” and “vertical” quotients, as the figure suggests. Both quotients
clearly represent a dimensionality reduction or coarsening of the original multilayer network

The quotient graph Q of G is a coarsening of G with respect to the partition.
It has one node per cluster Vi , and an edge from Vi to Vj weighted by an average
connectivity from Vi to Vj

bij = 1

σ

∑

k∈Vi
l∈Vj

akl, (2.18)

where we have a choice for the size parameter σ : we will use either σi = ni , or
σj = nj , or σij = √

ni
√

nj . We call the corresponding graph the left quotient,
the right quotient, and the symmetric quotient, respectively. Fortunately, the matrix
B = (bij ) has the same eigenvalues for the three choices of σ (see below). We refer
by quotient graph to any of these three spectrally equivalent graphs with adjacency
matrix B. Observe that the symmetric quotient is undirected, while the left and right
quotients are not, unless all clusters have the same size, ni = nj for all i, j .

The quotient formalism holds in more generality for any real symmetric matrix,
as we explain here. Let A = (aij ) be any real symmetric n × n matrix. Write
X = {1, 2, . . . , n}, let {X1, . . . , Xm} be a partition of X, and let ni = |Xi |. We write
Aij for the submatrix consisting of the intersection of the k-rows and l-columns of
A such that k ∈ Xi and l ∈ Xj . In particular, Aij is an ni × nj matrix. Define bij as
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the average row sum of Aij ,

bij = 1

ni

∑

k∈Xi
l∈Xj

akl . (2.19)

The m×m matrix Ql(A) = (bij ) is called the left quotient matrix of A with respect
to the partition {X1, . . . , Xm}. We can express Ql(A) in matrix form, as follows.
Let S = (sij ) be the n × m characteristic matrix of the partition, that is, sij = 1
if i ∈ Xj , and 0 otherwise. Then ST AS is the matrix of coefficient sums of the
submatrices Aij , and, hence, Ql(A) = 
−1ST AS, where 
 = diag(n1, . . . , nm).

There are two alternatives to Ql(A), called the right quotient and the symmetric
quotient, written Qr(A) and Qs(A). They correspond to replacing 1/ni in (2.19) by
1/nj respectively 1/

√
ni
√

nj . In matrix form, we have Qr(A) = ST AS
−1 and
Qs(A) = 
−1/2ST AS
−1/2. Note that Ql(A) is the transpose of Qr(A), and they
are not symmetric unless ni = nj for all i, j .

Nevertheless, these three matrices have the same spectrum (the proof is straight-
forward):

Lemma 1 Let X, D be m × m matrices, with D diagonal. Then the matrices DX,
XD and D1/2XD1/2 have all the same spectrum.

Summarizing, the left quotient, the right quotient, and the symmetric quotient
graph of a graph G with adjacency matrix A is the graph Q with adjacency matrix
B = Ql(A), B = Qr(A), and B = Qs(A), respectively. Consider the left quotient
of A with respect to the partition. Observe that the row sums of Ql(A) are

di = 1

ni

∑

k∈Vi

dk, (2.20)

the average node degrees in Vi . Let D be the diagonal matrix of the average node
degrees. Then we define the quotient Laplacian as the matrix

LQ = D − Ql(A). (2.21)

(See Chap. 4 for a full discussion on this choice.) Moreover, let Q̃ be the loopless
quotient of G, that is, the quotient network Q with all the self-loops removed. As
the quotient Laplacian ignores self-loops (see Chap. 4), we have LQ = LQ̃.

2.3.1.2 Regular Quotients

A partition {V1, . . . , Vm} of the node set is called equitable if the number of edges
(taking weights into account) from a node in Vi to any node in Vj is independent of
the chosen node in Vi
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∑

l∈Vj

akl =
∑

l∈Vj

ak′l for all k, k′ ∈ Vi, (2.22)

for all i, j . This indicates a regularity condition on the connection pattern between
(and within) clusters. If the partition is equitable, we call the quotient network
regular. A source of regular quotients is network symmetries [50, 51]. We call a
partition almost equitable if the condition (2.22) is satisfied for all i �= j (but not
necessarily for i = j ), that is, if the regularity condition is satisfied after ignoring
the intra-cluster edges. In this case, we call the quotient graph Q almost regular.
Note that the quotient Q being almost regular is equivalent to the loop-less quotient
Q̃ being regular.

2.3.2 The Aggregate Network

Define the node characteristic matrix Sn = (siu). Sn is an N ×n matrix with siu = 1
if and only if the node-layer i is a representative of node u, i.e., it is in the connected
component u of the graph GC . We call it a characteristic matrix since nodes partition
the node-layer set and Sn is the characteristic matrix of that partition.

Then, the adjacency matrix of the aggregate network is given by:

Ã = 
−1ST
n ĀSn, (2.23)

where 
 = diag{κ1, . . . , κn} is the multiplexity degree matrix.
We also define the average connectivity between nodes u and v as

duv = 1

κu

∑

i∈l(u)
j∈l(v)

Āij , (2.24)

and write du for duu. In this way, in an aggregate network, each node has a self-
loop weighted by du, and a directed edge from u to v weighted by duv . Note that
in general the aggregate network is directed. However, if the multiplex network is
node-aligned, then the aggregate network is not directed.

We also define a loop-less aggregate network, that is just the aggregate network
without self-loops, i.e.,

W̃ = Ã − diag(Ã) (2.25)

It is worth noting that

W̃ = 
−1ST
n ASn. (2.26)
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Finally, we define the sum aggregate network as

W = ST
n ASn, (2.27)

and note that for node-aligned multiplex networks we have

W = mW̃. (2.28)

2.3.3 The Network of Layers

Likewise, define the layer characteristic matrix Sl = {siα} as an N ×m matrix with
siα = 1 only if the node-layer i is in layer α, i.e., in the connected component α of
the graph Gl . We call it a characteristic matrix since it is the characteristic matrix of
the partition of the node-layer set induced by layers.

In the same way, the network of layers has adjacency matrix given by

Ãl = 
−1ST
l ĀSl , (2.29)

where 
−1 = diag{n1, . . . , nm}.
Finally, we define the average inter-layer degree from α to β as

dαβ = 1

nα

∑

i∈Vα
j∈Vβ

aij . (2.30)

This represents the average connectivity from a node in Gα to any node in Gβ . If
α = β we write dα for dαα , and call it the average intra-layer degree. Thus, each
node corresponds to a layer, with a self-loop weighted by the average intra-layer
degree dα , and there is a directed edge from layer α to layer β weighted by the
average inter-layer degree dαβ .

2.4 Supra-Walk Matrices and Loopless Aggregate Network

By definition, the quantity (AĈ)nij + (ĈA)nij counts the number (the weight) of
different supra-walks (or cycles if i = j ) of length l between node-layer pairs i

and j . From the symmetric properties of A and C it follows that

(ĈA)lij = (AĈ)lj i . (2.31)

Thus, the number (the weight) of supra-walks of length n between node-layer pairs
i and j is given by:

N (l)ij = (AĈ)lij + (AĈl
)Tij . (2.32)
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Here, we want to give the relation between the number of supra-walks in the
multiplex network and the number of walks in the sum aggregate network when
changing layer has no cost. We have the following result connecting the walk
matrices AĈ(β, γ ) and Ĉ(β, γ ) and the sum aggregate network in the particular
cases in which changing layer has no cost:

Lemma 2 The right (left) quotient of AĈ(β, γ ) (Ĉ(β, γ )A) is equal to the sum-
aggregate network when β = γ

Proof Observe that Ĉ(β, β) = βSST and remember that ST S = 
, then
QR(AĈ) = ST A.βSST S
−1 = βST AS = W The result for (ĈA) follows by
transposition. �

Besides, we can prove the following

Lemma 3 QL(Ĉ(β, β)A)ST = ST AĈ(β, β)

Proof QL(Ĉ(β, β)A)ST = β�−1ST ĈASST = α�−1ST SST ASST =
αST ASST = ST AĈ(β, β)

The result for Ĉ(β, β)A follows by transposition. �
The previous result follows from the fact that if a walk exists from i to j in AĈ,

then it exists a walk from j to i in ĈA and vice versa. It is interesting to note that
this implies that the in (out) degree of a node layer i in AĈ (ĈA) with respect to an
element of the partition only depends on the element of the partition it belongs to.
Armed with Lemmas 2 and 3 we can prove that

Theorem 1
∑

i∈l(u),j∈l(v) N (l)ij = 2Wl
uv

The proof follows from Lemma 3 by induction. The relation established in this
section will be crucial in the next chapter in order to correctly generalize different
structural metrics defined for single-layer networks to multiplex networks.



Chapter 3
Structural Metrics

A structural metric of a network is a measure of some property directly dependent on
the system of relations between the components of the network, i.e., by representing
the network with a graph, a structural metric is a measure of a property that depends
on the edge set. Since there is a correspondence between graph and adjacency
matrix, a structural metric can be expressed as a function of the adjacency matrix,
but it is not necessary. This fact differentiates structural metrics and other kinds of
metrics, such as spectral metrics, that are defined only once an adjacency matrix is
introduced.

Structural metrics can be local or global. A local metric p measures the property
of a single node or pair of nodes, and we refer to the value of that metric on a node i

or a pair of nodes i, j as pi , pij respectively. The global version P of p measures the
corresponding overall property of the network. In general, a global metric is defined
as a mean of local ones. An example of a structural metric is the connectivity k. As
we have seen, the connectivity ki of a node i is the number of neighbors the node i

has. The global connectivity is defined as the mean connectivity K = 1
N

∑
i ki . The

characteristic path length L is a global metric defined as L = 1
n(n−1)

∑
i �=j lij , where

lij is the geodesic distance between the nodes i and j measured as the minimum
number of edges connecting i and j .

Although in the two examples given above the global metric is simply the mean
of the local one, it is not always the case, as for the clustering coefficient (see
note 2 in Sect. 3.1). The term local and global may have a different meaning in
this context; in fact, they may refer to the topological scale at which the system
is considered. In this sense, the connectivity is a local measure since it takes into
account only the first neighbors of a node, while the geodesic distance between
two nodes is a global metric since it takes into account the whole network. The
quantitative description of structural network properties is a core task of complex
network research. Firstly, it allows for the classification of different structures and
the description of different categories. On the other hand, it is the first step for the
investigation of the relations between structure and dynamic/function. Finally, it
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allows the construction of models that reproduce the structural features of an empiric
system under study, as well as to inquire if a property of a system is the result
of chance or if it reveals something on the particular way the system evolved.
An example of the latter is the fact that recognizing that the clustering coefficient
of an empiric social network is on average greater than that of a random graph
allowed to propose the triadic closure as a crucial mechanism in the evolution of
social networks. The other way around, the quantitative evaluation of the clustering
coefficient between model networks and empirical ones allows the validation of the
triadic closure hypothesis. Thus, it is crucial to define a set of structural metrics for
multiplex networks.

Here, we dare to suggest a list of requirements a structural metric should fulfill in
order to be properly defined. A structural metric for multiplex networks should

• reduce to the ordinary single-layer metric (if defined) when layers reduce to one,
• be defined for node-layer pairs,
• be defined for non-node-aligned multiplex networks.

The first requirement refers to the generalization of standard single-layer metrics to
multiplex networks. It seems reasonable, although it is not trivial. In fact, usually
generalizing “the naive way” leads to metrics that do not fulfill this requirement.
We discuss this point in the next session in the particular case of the clustering
coefficient. The second requirement takes into account the fact that node-layer pairs
are the basic objects that build up a multiplex network, thus, in general, to define
a metric only on some version of the aggregate network is not enough. The third
requirement comes from the fact that, although it is easier to deal with node-aligned
multiplex networks from an analytical point of view, real world multiplex networks
in general are not node-aligned. Because of that, it is worth defining metrics for the
general case, even when an analytic treatment is only possible in the node-aligned
case.

An additional requirement is needed only in the case of intensive metrics:

• For a multiplex of identical layers when changing layer has no cost, an intensive
structural metric should take the same value when measured on the multiplex
network and on one layer taken as an isolated network.

This last requirement, that asks for a sort of “normalization,” is needed in order
to avoid spurious amplification of the value that a quantity takes just because of the
number of layers. This list of requirements has not the pretension to be interpreted as
a set of axioms and surely it is not definitive nor complete, but in our opinion it has
the power to guide the generalization of standard single-layer metrics to multiplex
networks in a systematic way, as well as to guide the theoretical development of
new genuinely multiplex metrics.

In summary, we can recognize that it is insufficient to generalize existing diag-
nostics in a naïve manner and that one must instead construct their generalizations
from first principles. In the following sections of this chapter, we will build on the
basic notion of walks and cycles to properly generalize clustering coefficients and
subgraphs centrality to multiplex networks.
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3.1 Structure of Triadic Relations in Multiplex Networks

In the present section, we focus on triadic relations, which are used to describe the
simplest and most fundamental type of transitivity in networks [42, 49, 55, 79, 80].
Following [19], we present multiplex generalizations of clustering coefficients,
which can be done in myriad ways, and (as we will illustrate) the most appropriate
generalization depends on the application under study.

There have been several attempts to define multiplex clustering coefficients [5, 6,
9, 10, 21], but there are significant shortcomings in these definitions. For example,
some of them do not reduce to the standard single-layer clustering coefficient or
are not properly normalized [19]. The fact that some definitions of multiplex
clustering coefficients are mostly ad hoc makes them difficult to interpret. We
present the definitions given in [19] that build on the basic concepts of walks and
cycles to obtain a transparent and general definition of transitivity. This approach
also guarantees that clustering coefficients are always properly normalized. It
reduces to a weighted clustering coefficient [85] of an aggregated network for
particular values of the parameters; this allows comparison with existing single-
layer diagnostics. Two additional, very important issues, are also addressed: (1)
Multiplex networks have many types of connections, and the given definition of
multiplex clustering coefficients are (by construction) decomposable, so that the
contribution of each type of connection is explicit; (2) because the given notion
of multiplex clustering coefficients builds on walks and cycles, it does not require
every node to have a representative in all layers, which removes a major (and very
unrealistic) simplification that is used in other definitions.

In an unweighted single-layer network, the local clustering coefficient Cu of
node u is the number of triangles (i.e., triads) that includes node u divided by the
number of connected triples with node u in the center [55, 80]. The local clustering
coefficient is a measure of transitivity [49], and it can be interpreted as the density
of a focal node’s neighborhood. For the present purposes, it is convenient to define
the local clustering coefficient Cu as the number of 3-cycles tu that starts and ends
at the focal node u divided by the number of 3-cycles du such that the second step
of the cycle occurs in a complete graph (i.e., assuming that the neighborhood of
the focal node is as dense as possible).1 In mathematical terms, tu = (A3)uu and
du = (AFA)uu, where A is the adjacency matrix of the graph and F is the adjacency
matrix of a complete graph with no self-edges. (In other words, F = J − I, where J
is a complete square matrix of 1s and I is the identity matrix.)

The local clustering coefficient is thus given by the formulas Cu = tu/du.
This is equivalent to the usual definition of the local clustering coefficient: Cu =
tu/(ku(ku − 1)), where ku ≥ 2 is the degree of node u (the local clustering
coefficient being 0 for nodes of degree 0 and 1). One can calculate a single global

1Note that we use the term “cycle” to refer to a walk that starts and ends at the same physical node
u. It is permissible (and relevant) to return to the same node via a different layer from the one that
was used originally to leave the node.
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clustering coefficient for a monoplex network either by averaging Cu over all nodes

or by computing C =
∑

u tu∑
u du

. Henceforth, we will use the term global clustering

coefficient for the latter quantity.2 In the following, we will give the definitions of
the clustering coefficients for multiplex networks.

3.1.1 Triads on Multiplex Networks

In addition to 3-cycles (i.e., triads) that occur within a single layer, multiplex
networks also contain cycles that can traverse different additional layers but still
have 3 intra-layer steps, thus involving three nodes. Such cycles are important for
the analysis of transitivity in multiplex networks. In social networks, for example,
transitivity involves social ties across multiple social environments [76, 79]. In
transportation networks, there typically exist several means of transportation to
return to one’s starting location, and different combinations of transportation modes
are important in different cities [31]. For dynamical processes on multiplex
networks, it is important to consider 3-cycles that traverse different numbers of
layers, so one needs to take them into account when defining a multiplex clustering
coefficient. For these reasons, it is crucial to build the clustering coefficient on the
notion of supra-walk. Thus, the number of 3-cycles for node-layer pair i is then

tM,i = [(AĈ)3 + (ĈA)3]ii , (3.1)

where the first term corresponds to cycles in which the inter-layer step is taken after
an intra-layer one and the second term corresponds to cycles in which the inter-
layer step is taken before an intra-layer one, see Chap. 2. The subscript M refers
to the particular way that we define a supra-walk in a multiplex network through
the multiplex walk matrices AĈ and ĈA. However, one can also use other types of
supra-walks, and we will use different subscripts when we refer to them. Exploiting
the fact that both A and Ĉ are symmetric, Eq. (3.1) becomes

tM,i = 2[(AĈ)3]ii . (3.2)

It is useful to decompose multiplex clustering coefficients that are defined
in terms of multilayer cycles into the so-called elementary cycles by expanding
Eq. (3.2) and writing it in terms of the matrices A and C. That is, write tM,i =∑

E∈E wE (E)ii , where E denotes the set of elementary cycles and wE are weights
of different elementary cycles. One can use symmetries in the definition of cycles

2 The definition we adopt for the global clustering coefficient is an example of a global structural
metric that is not defined as the mean value over all the nodes of its local version. Actually, it
is defined as the ratio between the mean number of closed triples and the mean number of open
triples.
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AAA AACAC ACAAC ACACA ACACAC

Fig. 3.1 Sketch of the elementary cycles AAA, AACAC, ACAAC, ACACA, and ACACAC.
The orange node is the starting point of the cycle. The intra-layer edges are the solid lines, and
the intra-layer edges are the dotted curves. In each case, the yellow line represents the second
intra-layer step

and thereby express all of the elementary cycles in a standard form with terms
from the set E = {AAA,AACAC,ACAAC,ACACA,ACACAC}. See Fig. 3.1
for an illustration of elementary cycles and Sect. 3.1.2 for details on deriving the
elementary cycles. Note that some of the alternative definitions of a 3-cycle lead to
more elementary cycles than the ones that we just enumerated.

To define multiplex clustering coefficients, both the number t∗,i of cycles and a
normalization d∗,i are needed. The symbol ∗ stands for any type of cycle: the 3-cycle
defined above, an elementary cycle, or the alternative definitions of 3-cycles based
on alternative ways to walk the multiplex networks, i.e., on different walk matrices.

Choosing a particular definition implies a given way to calculate the associated
expression for t∗,i . To determine the normalization, it is natural to follow the same
procedure as with monoplex clustering coefficients and use a complete multiplex
network F = ⊕

α F(α), where F(α) = J(α) − I(α) is the adjacency matrix for a
complete graph on layer α. We can then proceed from any definition of t∗,i to d∗,i by
replacing the second intra-layer step with a step in the complete multiplex network.
For example, we obtain dM,i = 2(AĈFĈAĈ)ii for tM,i = 2[(AĈ)3]ii . Similarly,
one can use any other definition of a cycle as a starting point for defining a multiplex
clustering coefficient.

The definition of local and global clustering coefficients for multiplex networks
analogously to single-layer networks follows from the above formulation. We can
calculate a natural multiplex analogue to the usual single-layer local clustering
coefficient for any node-layer pair i of the multiplex network. Additionally, a node
u allows an intermediate description for clustering between local and the global
clustering coefficients. The definitions are

c∗,i = t∗,i
d∗,i

, (3.3)

C∗,u =
∑

i∈l(u) t∗,i
∑

i∈l(u) d∗,i
, (3.4)
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C∗ =
∑

i t∗,i
∑

i d∗,i
, (3.5)

where l(u) is as in Chap. 2.
We can decompose the expression in Eq. (3.5) in terms of the contributions from

cycles that traverse exactly one, two, and three layers (i.e., for m = 1, 2, 3) to obtain

t∗,i = t∗,1,iβ
3 + t∗,2,iβγ 2 + t∗,3,iγ

3 , (3.6)

d∗,i = d∗,1,iβ
3 + d∗,2,iβγ 2 + d∗,3,iγ

3 , (3.7)

C(m)∗ =
∑

i t∗,m,i
∑

i d∗,m,i

. (3.8)

We can similarly decompose Eqs. (3.3) and (3.4). Using the decomposition in
Eq. (3.6) yields an alternative way to average over contributions from the three types
of cycles:

C∗(ω1, ω2, ω3) =
3∑

m

ωmC(m)∗ , (3.9)

where �ω is a vector that gives the relative weights of the different contributions. C(1)∗ ,
C

(2)∗ , and C
(3)∗ are said layer-decomposed clustering coefficients. There are also

analogs of Eq. (3.9) for the clustering coefficients defined in Eqs. (3.3) and (3.4).
Each of the clustering coefficients in Eqs. (3.3)–(3.5) depends on the values of the
parameters β and γ , but the dependence vanishes if β = γ . Unless we explicitly
indicate otherwise, we assume in the following calculations that β = γ .

3.1.2 Expressing Clustering Coefficients Using Elementary
3-Cycles

An elementary cycle is defined as a term that consists of products of the matrices A
and C, i.e., there are no sums, after one expands the expression for a cycle (which
is a weighted sum of such terms). Because we are only interested in the diagonal
elements of the terms and we consider only undirected layer-graphs and coupling
graphs, we can transpose the terms and still write them in terms of the matrices A
and C rather than also using their transposes. There are also multiple ways of writing
nonsymmetric elementary cycles [e.g., (AACAC)ii = (CACAA)ii].

The adopted convention is that in which all elementary cycles are transposed
so that it is selected the one in which the first element is A rather than C when
comparing the two versions of the term from left to right. That is, for two equivalent
terms, we choose the one that comes first in alphabetical order. The set of elementary
3-cycles is thus E = {AAA, AACAC, ACAAC, ACACA, ACACAC, CAAAC,
CAACAC, CACACAC}.
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As usual, the normalization formulas can be obtained replacing the second
A term with F . This yields a standard form for any local multiplex clustering
coefficients

c∗,i = t∗,i
d∗,i

, (3.10)

with

t∗,i = [wAAAAAA+ wAACACAACAC + wACAACACAAC
+ wACACAACACA+ wACACACACACAC
+ wCAAACCAAAC + wCAACACCAACAC
+ wCACACACCACACAC]ii (3.11)

d∗,i = [wAAAAFA+ wAACACAFCAC + wACAACACFAC
+ wACACAACFCA+ wACACACACFCAC
+ wCAAACCAFAC + wCAACACCAFCAC
+ wCACACACCACFCAC]ii , (3.12)

where i is a node-layer pair and the wE coefficients are scalars that correspond
to the weights for each type of elementary cycle (these weights are different for
different types of clustering coefficients). Note that the parameters β and γ have
been absorbed into these coefficients. Possible elementary cycles are shown in
Fig. 3.1.

3.1.3 Clustering Coefficients for Aggregated Networks

A common way to study multiplex networks is to aggregate layers to obtain either
multi-graphs or weighted networks, where the number of edges or the weight of
an edge is the number of different types of edges between a pair of nodes [44].
One can then use any of the numerous ways to define clustering coefficients for
weighted single-layer networks [58, 70] to calculate clustering coefficients for the
aggregated network. One of the weighted clustering coefficients is a special case of
our multiplex clustering coefficient. References [1, 36, 85] calculated a weighted
clustering coefficient as

CZ,u[1] =
∑

vw WuvWvwWwu

wmax
∑

v �=w WuvWuw

= (W3)uu

((W(wmaxF)W)uu

, (3.13)
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where W is the sum aggregate adjacency matrix as defined in Chap. 2, the quantity
wmax = maxu,v Wuv is the maximum weight in W, and F is the adjacency matrix
of the complete unweighted graph. We can define the global version CZ of CZ,u

by summing over all the nodes in the numerator and the denominator of Eq. (3.13)
(analogously to Eq. (3.5)).

For node-aligned multiplex networks, the clustering coefficients CZ,u and CZ are
related to our multiplex clustering coefficients CM,u and CM . Letting β = γ = 1
and summing over all layers yields

∑
i∈l(u)((AĈ)3)ii = (W3)uu (see Sect. 2.4).

That is, in this special case, the weighted clustering coefficients CZ,u and CZ are
equivalent to the corresponding multiplex clustering coefficients CM,u and CM .
That is, CM,u(β = γ ) = wmaxCZ,u and CM(β = γ ) = wmaxCZ . Note that
this relationship between our multiplex clustering coefficient and the weighted
clustering coefficient in Eq. (3.13) is only true for node-aligned multiplex networks.
If some nodes are not shared among all layers, then the normalization of our
multiplex clustering coefficient depends on how many nodes are present in the local
neighborhood of the focal node. This contrasts with the “global” normalization by
wmax used by the weighted clustering coefficient in Eq. (3.13).

3.1.4 Clustering Coefficients in Erdős-Rényi (ER) Networks

Almost all empirical networks contain some amount of transitivity, and it is often
desirable to know if a network contains more transitivity than would be expected
by chance. In order to examine this question, one typically compares values of the
clustering coefficient of a network to what would be expected from some random
network that acts as a null model. The simplest random network to use is an Erdős-
Rényi (ER) network. In this section, we give formulas for expected clustering
coefficients in node-aligned multiplex networks in which each intra-layer network
is an ER network that is created independently of other intra-layer networks and the
inter-layer connections are created as described in Chap. 2.

The expected value of the local clustering coefficient in an unweighted monoplex
ER network is equal to the probability p of an edge to exist. That is, the density
of the neighborhood of a node, measured by the local clustering coefficient, has
the same expectation as the density of the entire network for an ensemble of
ER networks. In multiplex networks with ER intra-layer graphs with connection
probabilities pα , the same result holds only when all the layers are statistically
identical (i.e., pα = p for all α). Note that this is true even if the network is
not node-aligned. However, heterogeneity among layers complicates the behavior
of clustering coefficients. If the layers have different connection probabilities, then
the expected value of the mean clustering coefficient is a nontrivial function of the
connection probabilities. In particular, it is not always equal to the mean of the
connection probabilities. For example, the formulas for the expected global layer-
decomposed clustering coefficients are
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〈C(1)
M 〉 =

∑
α p3

α∑
α p2

α

≡ p3

p2
, (3.14)

〈C(2)
M 〉 = 3

∑
α �=κ pαp2

κ

(b − 1)
∑

α p2
α + 2

∑
α �=κ pαpκ

, (3.15)

〈C(3)
M 〉 =

∑
α �=κ,κ �=μ,μ�=α pαpκpμ

(b − 2)
∑

α �=κ pαpκ

. (3.16)

The expected values of the local clustering coefficients in node-aligned ER multi-
plex networks are

〈cAAA,i〉 = 1

b

∑

α∈L

pα ≡ p , (3.17)

〈cAACAC,i〉 = 1

b

∑

α∈L

pα ≡ p , (3.18)

〈cACAAC,i〉 = 1

b

∑

α∈L

∑
κ �=α p2

κ
∑

κ �=α pκ

, (3.19)

〈cACACA,i〉 = 1

b

∑

α∈L

pα ≡ p , (3.20)

〈cACACAC,i〉 = 1

b(b − 1)

∑

α∈L

∑
κ �=α;μ�=κ,α pκpμ
∑

κ �=α pκ

. (3.21)

Note that c
(1)
M,i = cAAA,i and c

(3)
M,i = cACACAC,i , but the 2-layer clustering

coefficient c
(2)
M,i arises from a weighted sum of contributions from three different

elementary cycles.
In Fig. 3.2 it is illustrated the behavior of the global and local clustering

coefficients in multiplex networks in which the layers consist of ER networks with
varying amounts of heterogeneity in the intra-layer edge densities. Although the
global and mean local clustering coefficients are equal to each other when averaged
over ensembles of single layer ER networks, the same is not true for multiplex
networks with ER layers unless the layers have the same value of the parameter p.
The global clustering coefficients give more weight than the mean local clustering
coefficients to denser layers. This is evident for the clustering coefficients c

(1)
M,i and

C
(1)
M , for which the ensemble average of the mean of the local clustering coefficient

c
(1)
M,i is always equal to the mean edge density, whereas the ensemble average of

the global clustering coefficient C
(1)
M has values that are greater than or equal to the

mean edge density. This effect is a good example of a case in which the situation in
multiplex networks differs from the results and intuition from single layer networks.



30 3 Structural Metrics

A B C

D E F

Fig. 3.2 (a, b, c) Global and (d, e, f) local multiplex clustering coefficients in multiplex networks
that consist of ER layers. The markers give the results of simulations of 100-node ER node-
aligned multiplex networks that we average over 10 realizations. The solid curves are theoretical
approximations (see Eqs. (3.14)–(3.16) of the main text). Panels (a, c, d, f) show the results
for three-layer networks, and panels (b, e) show the results for six-layer networks. The ER
edge probabilities of the layers are (a, d) {0.1, 0.1, x}, (b, e) {0.1, 0.1, 0.1, 0.1, x, x}, and (c, f)
{0.1, x, 1 − x}

In particular, failing to take into account the heterogeneity of edge densities
in multiplex networks can lead to incorrect or misleading results when trying to
distinguish among values of a clustering coefficient that are what one would expect
from an ER random network versus those that are a signature of a triadic-closure
process (see Fig. 3.2).

3.2 Transitivity in Empirical Multiplex Networks

In Table 3.1, we show the values of layer-decomposed global clustering coefficients
for multiplex networks (four social networks and two transportation networks)
calculated in [19]. Note that the two transportation networks are not “node-aligned.”
To help give context to the values, the table also includes the clustering-coefficient
values obtained for ER networks with matching edge densities in each layer.
Those examples show that multiplex clustering coefficients give insights that are
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impossible to infer by calculating weighted clustering coefficients for aggregated
networks or even by calculating them separately for each layer of a multiplex
network.

For each social network in Table 3.1, note that CM < C
(1)
M and C

(1)
M >

C
(2)
M > C

(3)
M . Consequently, the primary contribution to the triadic structure of

these multiplex networks arises from 3-cycles that stay within a given layer. We
observe that all clustering coefficients exhibit larger inter-layer transitivities than
would be expected in ER networks with identical edge densities, and that the same
ordering relationship (i.e.,C(1)

M > C
(2)
M > C

(3)
M ) holds. This observation suggests

that triadic-closure mechanisms in social networks cannot be considered purely at
the aggregated network level, because these mechanisms appear to be more effective
inside of layers than between layers. For example, if there is a connection between
individuals u and v and also a connection between v and w in the same layer, then
it is more likely that u and w “meet” in the same layer than in some other layer.

The transportation networks examined exhibit the opposite pattern with respect
the social networks. For example, for the London Underground (“Tube”) network,
in which each layer corresponds to a line, C

(3)
M > C

(2)
M > C

(1)
M holds. This reflects

the fact that single lines in the Tube are designed to avoid redundant connections.
A single-layer triangle would require a line to make a loop among 3 stations. Two-
layer triangles, which are a bit more frequent than single-layer ones, entail that two
lines run in almost parallel directions and that one line jumps over a single station.
For 3-layer triangles, the geographical constraints do not matter because one can
construct a triangle with three straight lines.

In Fig. 3.3a, we show a comparison of the layer-decomposed local clustering
coefficients. Observe that the condition c

(1)
M,i > c2

M,i > c
(3)
M,i holds for most of the

nodes. In Fig. 3.3b, the expected values of the clustering coefficients of nodes
in a network generated with the configuration model3 is subtracted from the
corresponding values of the clustering coefficient observed in the data to discern
whether we should also expect to observe the relative order of the local clustering
coefficients in an associated random network (with the same layer densities and
degree sequences as the data). Similar to the results for global clustering coefficients,
we see that taking a null model into account lessens—but does not remove—the
difference between the coefficients that count different numbers of layers.

It is known that local values of the clustering coefficient are typically correlated
with the degree of the nodes in single-layer networks. To compare, Fig. 3.4a
shows how the different multiplex clustering coefficients depend on the unweighted
degrees of the nodes in the aggregated network for the Kapferer tailor shop. Note
that the relative order of the mean clustering coefficients is independent of the
degree. In Fig. 3.4b, we illustrate the fact that the aggregated network for the airline
transportation network exhibits a nonconstant difference between the curves of

3We use the configuration model instead of an ER network as a null model because the local
clustering coefficient values are typically correlated with nodes degrees in single layer networks
[55], and an ER-network null model would not preserve degree sequence.
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A B

Fig. 3.3 Comparison of different local clustering coefficients in the Kapferer tailor-shop network.
Each point corresponds to a node. (a) The raw values of the clustering coefficient. (b) The
value of the clustering coefficients minus the expected value of the clustering coefficient for
the corresponding node from a mean over 1000 realizations of a configuration model with the
same degree sequence in each layer as in the original network. In a realization of the multiplex
configuration model, each intra-layer network is an independent realization of the monoplex
configuration model. Figure from [19]
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Fig. 3.4 Local clustering coefficients versus unweighted degree of the aggregated network for (a)
the Kapferer tailor-shop network and (b) the airline network. The curves give the mean values of
the clustering coefficients for a degree range (i.e., we bin similar degrees). Note that the horizontal
axis in panel (b) is on a logarithmic scale. Figure from [19]
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CM,u and the weighted clustering coefficient CZ,u. Using a global normalization
(see the discussion in Sect. 3.1.3) reduces the clustering coefficient for the small
airports much more than it does for the large airports. That, in turn, introduces a
bias.

The airline network is organized differently from the London Tube network.
When comparing these networks, note that each layer in the former encompasses
flights from a single airline. For the airline network (see Fig. 3.4b), we observe that
the two-layer local clustering coefficient is larger than the single-layer one for hubs
(i.e., high-degree nodes), but it is smaller for small airports (i.e., low-degree nodes).
However, the global clustering coefficient counts the total number of 3-cycles and
connected triplets and it thus gives more weight to high-degree nodes than to low-
degree nodes, and we thus find that the global clustering coefficients for the airline
network satisfy C

(2)
M > C

(1)
M > C

(3)
M . The intra-airline clustering coefficients have

small values, presumably because it is not in the interest of an airline to introduce
new flights between two airports that can already be reached by two flights via the
same airline through some major airport. The two-layer cycles correspond to cases
in which an airline has a connection from an airport to two other airports and a
second airline has a direct connection between those two airports. Completing a
three-layer cycle requires using three distinct airlines, and this type of congregation
of airlines to the same area is not frequent in the data. Three-layer cycles are more
likely than single-layer cycles only for a few of the largest airports.

The examples from empirical data show that different notions of multiplex
transitivity are important in different situations. For example, the balance between
intra-layer versus inter-layer clustering is different in social networks versus trans-
portation networks (and even in different types of networks within each category, as
illustrated explicitly for transportation networks), reflecting the fact that multilayer
transitivity can arise from different mechanisms. Such differences are rooted in the
new degrees of freedom that arise from inter-layer connections and are invisible
to calculations of clustering coefficients on single-layer networks obtained via
aggregation. In other words, transitivity is inherently a multilayer phenomenon:
all of these diverse flavors of transitivity reduce to the same description when
one throws away the multilayer information. Generalizing clustering coefficients
for multiplex networks makes it possible to explore such phenomena and to gain
deeper insights into different types of transitivity in networks. The existence of
multiple types of transitivity also has important implications for multiplex network
motifs and multiplex community structure. In particular, we can conclude that the
definition of any clustering notion for multiplex networks needs to be able to handle
such features.
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3.3 Subgraph Centrality

In this section, we scale up the topological scale at which we consider the system and
we will look at cycles and walks of all lengths. In single-layer networks, subgraph
centrality is a well-established metric to measure the connectedness of a node at all
scales as a generalization of the clustering coefficient that looks at a local scale.
Having established the parallelism between walks in single-layer networks and
supra-walks in multiplex networks, the definition of subgraph centrality and the
communicability can be generalized in a direct and standardized way.

3.3.1 Subgraph Centrality, Communicability, and Estrada
Index in Single-Layer Networks

The f -centrality of a node u in a single-layer network given a function f is
defined as f (A)uu and the f -communicability between two distinct nodes u and
v as f (A)uv [29]. Estrada and Rodríguez-Velázquez [29] defined the subgraph
centrality of a node u in a single-layer network in a combinatorial way as the infinite
weighted sum of closed walks of different lengths in the network starting and ending
at vertex i, where the weights are the factorial of the length of each walk, i.e.

Gi =
∑

l

μi(l)

l! (3.22)

where the number of cycles of length l attached to i is μi(l) = (Al )ii .
It is easy to recognize that the subgraph centrality has the following functional

form:

Gi = (exp(A))ii . (3.23)

It coincides with the f -centrality, the function f being the exponential. Thus, the
f -communicability is defined in the same way:

Gij = (exp(A))ij . (3.24)

The matrix G is the communicability matrix, having on its diagonal the subgraph
centrality of each node, while its off-diagonal elements encode the communicability
between pairs of nodes. The Estrada index of a network is defined as

SC =
∑

i

Gi = T r exp(A) = T r(G) (3.25)
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3.3.2 Supra-Walks and Subgraph Centrality for Multiplex
Networks

The f -centrality of node-layer pair i can be defined as a convex combination of
f (AĈ)ii and f (ĈA)ii

ki = c1f (AĈ)ii + c2f (ĈA)ii , c1, c2 > 0. (3.26)

Accordingly, the f -communicability between two distinct node-layer pairs i and j

can be defined as a convex combination of f (AĈ)ij and f (ĈA)ij

kij = c1f (AĈ)ij + c2f (ĈA)ij , c1, c2 > 0 (3.27)

The supra-communicability matrix is defined as K = c1f (AĈ)+c2f (ĈA), c1, c2 >

0. Since f (A)T = f (AT ), by using the fact that both A and Ĉ are symmetric, we
can simplify the previous definition:

K = c1f (AĈ) + c2f (AĈ)T . (3.28)

As in the case of the clustering coefficient, the f -centrality of a node u results
defined as the mean of the f -centrality of the node-layer pairs representing it:

k̃u = 1

κu

∑

i∈l(u)

ki, (3.29)

and the f -communicability between two distinct nodes u and v is defined as the
mean of the f -communicability between each node-layer pairs representing them

k̃uv = 1

κu

∑

i∈l(u)i∈l(v)

c1f (AĈ)ij + 1

κv

∑

i∈l(u)i∈l(v)

c2f (ĈA)ij . (3.30)

We recognize that the matrix K̃ = (k̃uv) is given by:

K̃ = c1QR(f (AĈ)) + c2QL(f (ĈA)) =
= c1QR(f (AĈ)) + c2QR(f (AĈ))T , (3.31)

where QR(·) (resp. QL(·)) is the right (resp. left) quotient associated with the
partition induced by supra-nodes. For this reason, we call K̃ the aggregate
f -communicability matrix.
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This suggest c1 = c2 = 1
2 as a good choice. It is also straightforward to see from

the previous results that the following also holds4:

Theorem 2 The f -centrality of a node calculated on the supra-walk matrix and
the f-centrality of the same node calculated on the sum-aggregate network are equal
when changing layer has no cost. The same result applies to the f -communicability
between two nodes.

4By induction, f (QR(AĈ)) = QL(f (ĈA)), that is, K̃ = f (W)



Chapter 4
Spectra

Important information on the topological properties of a graph can be extracted from
the eigenvalues of the associated adjacency, Laplacian, or any other type of graph
related matrix. Thus, like spectroscopy for condensed matter physics, graph spectra
are central in the study of the structural properties of a complex network.

An N × N adjacency matrix A is a real symmetric matrix. As such, has N real
eigenvalues {λi}, i = . . . , N , which we order as λ1 ≤ λ2 ≤ · · · ≤ λN . The set
of eigenvalues with corresponding eigenvectors is unique apart from a similarity
transformation, i.e., a relabeling of the nodes in the graph that obviously does not
alter the structure of the graph but merely expresses the eigenvectors in a different
base. Accordingly, A can be written as

A = X�XT (4.1)

where the N × N orthogonal matrix X contains, as columns, the eigenvectors
x1, x2, . . . , xN of A belonging to the real eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λN

and where the matrix � = diag(λi). The eigendecomposition (4.1) is the basic
relation that equates the topology (structural) domain of a network, represented
by the adjacency matrix, to the spectral domain of its graph, represented by the
orthogonal matrix X and the diagonal matrix of the eigenvalues �.

A core subject in network theory is the connection between structure and
dynamics, especially the way in which the structure affects critical phenomena. The
eigendecomposition (4.1) allows to explain this connection in terms of the spectra
of the adjacency matrix thus giving the basic relation that relates the topology of a
network to the critical properties of the dynamics occurring on it.

© The Author(s) 2018
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4.1 The Largest Eigenvalue of the Supra-Adjacency Matrix

Consider the adjacency matrix A of a graph. The Perron Frobenius Theorem for
nonnegative square matrices states that λN is simple and nonnegative, and that its
associated eigenvector is the only eigenvector of A with nonnegative components.
The largest eigenvalue λN is also called the spectral radius of the graph. The supra-
adjacency matrix Ā is real and symmetric. As such, Ā has N real eigenvalues {λ̄i},
which we order as λ̄1 ≤ λ̄2 ≤ · · · ≤ λ̄N . Since Ā is also nonnegative, we have that
the largest eigenvalue λ̄N is simple and nonnegative possessing the only eigenvector
of Ā with nonnegative components.

The largest eigenvalue of the adjacency matrix associated with a network has
emerged as a key quantity for the study of a variety of different dynamical processes
[55], as well as a variety of structural properties, as the entropy density per step of
the ensemble of walks in a network.

In order to study the effect of the multiplexity on the spectral radius of a multiplex
network, in the following we will interpret Ā as a perturbed version of A, C being
the perturbation. This choice is reasonable whenever

|| C ||<|| A ||, (4.2)

where || · || is some matrix metric.
Consider the largest eigenvalue λ of A. Since A is a block diagonal matrix, the

spectrum of A, σ(A), is

σ(A) =
⋃

α

σ (Aα), (4.3)

σ(Aα) being the spectrum of the layer-adjacency matrix Aα . So, the largest
eigenvalue λ of A is

λ = max
α

λα (4.4)

with λα being the largest eigenvalue of Aα . We will look for the largest eigenvalue
λ̄N ≡ λ̄ of Ā as

λ̄ = λ + �λ, (4.5)

where �λ is the perturbation to λ due to the coupling C. For this reason, the layer δ

for which λδ = λ is named the dominant layer. Consider a node-aligned multiplex
network. Let 1α be a vector of size m with all entries equal to 0 except for the δth
entry. If φδ is the eigenvector of Aδ associated with λδ , we have that

φ = φδ ⊗ 1α (4.6)

is the eigenvector associated with λ. Observe that φδ has dimension n, while 1α has
dimension m, where n is the number of nodes, yielding to a product of dimension
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N = n × m. In the case in which the multiplex is not node-aligned, we must
construct the vector φ with zeros on all positions, except on the position of the
leading eigenvector of the dominant layer.

�λ can be approximated as

�λ ≈ φT Cφ

φT φ
+ 1

λ

φT C2φ

φT φ
. (4.7)

Because of the structure of φ and C, the first term on the r.h.s. is zero, while only
the diagonal blocks of C2 take part in the product φT C2φ. The diagonal blocks of
C2 are diagonals and

(C2)ii =
∑

i′
Cii′Ci′i = ci . (4.8)

Thus, we have that the perturbation is

�λ ≈ z

λ
, (4.9)

where z the weighted mean of the coupling degree with the weight given by the
squares of the entries of the leading eigenvector of A:

z =
∑

i

ci

(φ)2
i

φT φ
, (4.10)

and it is called the effective multiplexity. It results that z = 0 in a single-layer
network and z = m − 1 in a node-aligned multiplex network. Summing up,
we have that the largest eigenvalue of the supra-adjacency matrix is equal to the
largest eigenvalue of the adjacency matrix of the dominant layer at a first order
approximation. As a consequence, for example, the critical point for an epidemic
outbreak in a multiplex network is settled by that of the dominant layer at first
order [18].

At second order, the deviation of λ̄ from λ depends on the effective multiplexity
and goes to zero with λ. See Figs. 4.1 and 4.2. Moreover, the approximation given
in Eq. (4.9) can fail when the largest eigenvalue is near degenerated. We have two
cases in which this can happen:

• the dominant layer is near degenerated,
• there is one layer (or more) with the largest eigenvalue near that of the dominant

layer.

The accuracy of the approximation is related to the formula

�λ ≈ φT Cφ +
∑

i

(
φT

i Cφ
)

λ − λi

, (4.11)
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where λi and φi are the nondominant eigenvalues and the associated eigenvectors.
In the first case it is evident that the second term on the r.h.s. will diverge, while in
the latter, because of the structure of C, φ, and φi , it is zero. In that case, we say that
the multiplex network is near degenerated and we call the layers with the largest
eigenvalues codominant layers.

When the multiplex network is near degenerated, the φ used in the approximation
of Eq. (4.9) has a different structure. Consider that we have md codominant layers
δi, i = 1, . . . , md . If φδi

is the eigenvector of Aδi associated with λδi
, we have that

φ =
md∑

i=1

φδi
⊗ 1δi

. (4.12)
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Note that the same comment on Eq. (4.6) also applies here. The term linear in C in
the approximation of Eq. (4.9) is no more zero. We have

zc = φT Cφ

φT φ
= 1

φT φ

∑

l,m:l �=m

φT
δl

C(l,m)φδm
, (4.13)

with C(l,m) being the off-diagonal block (l,m) of C, and we name zc the correlated
multiplexity. We can decompose zc in the contribution of each single node-layer pair

zci = 1

φT φ

∑

m:m�=l

∑

j

φδl i
Cijφδmj

. (4.14)

and we call zci the correlated multiplexity degree of node-layer i. By definition,
coupled node-layer pairs have the same correlated multiplexity degree. So, if we
have md codominant layers in the multiplex, we get

�λ ≈ zc + z

λ
= md

∑

i∈δ

zci +
∑

i∈δ zi

λ
. (4.15)

4.1.1 Statistics of Walks

Given a network with adjacency matrix A, the number of walks of length l is
given by

Nij (l) = (Al )ij =
∑

r

xrixrj λ
l
r (4.16)

where xri indicates the ith entry of the normalized eigenvector xr belonging to the
eigenvalue λr . Define the entropy Hij (l) of the ensemble of paths {πij (l)} of length
l between nodes i and j as

Hij (l) = ln Nij (l). (4.17)

For large walks l −→ ∞, it results

Hij (l) = ln λN + ln(xNixNj ) (4.18)

The leading term is independent of the positions of the endpoints. So, for large l,
the entropy production rate is

h = lim
l→∞

Hij (l)

l
= ln λN . (4.19)
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That is, h only depends on the largest eigenvalue of the adjacency matrix. Now,
consider walks on multiplex networks that treat in the same way inter- and intra-
layer steps, thus we have the supra-adjacency matrix as the multiplex walk matrix.
From the perturbative approximation above, we have that the entropy production
rate on a multiplex network is:

h̄ = ln λ̄N ∼ ln
(
λ + z

λ

)
(4.20)

That is, large walks on a multiplex network are dominated by walks on the dominant
layer plus a term due to the entropy production needed to reach the dominant layer
from nondominant ones.

4.2 Dimensionality Reduction and Spectral Properties

In this section, following [69], we relate the adjacency and Laplacian eigenvalues
of a multiplex network to the two quotient networks we have defined in Chap. 2. The
main theoretical result exploited is that the eigenvalues of a quotient interlace the
eigenvalues of its parent network. Let m < n and consider two sets of real numbers

μ1 ≤ · · · ≤ μm and λ1 ≤ . . . λn.

We say that the first set interlaces the second if

λi ≤ μi ≤ λi+(n−m), for i = 1, . . . , m. (4.21)

The key spectral result is that the adjacency eigenvalues of a quotient network
interlace the adjacency eigenvalues of the parent network. The same result applies
for Laplacian eigenvalues, if the Laplacian matrix of the quotient is defined
appropriately, i.e., as defined in Chap. 2.

4.2.1 Interlacing Eigenvalues

All the interlacing results we refer to are a consequence of the theorem below, which
in turn follows from the Courant-Fisher max-min theorem

Theorem ( [37, Thm. 2.1(i)]) Let A be a symmetric matrix of order n, and let U be
an n×m matrix such that UT U = I. Then the eigenvalues of UT AU interlace those
of A.

Observe that the matrix UT AU is symmetric, and hence it has real eigenvalues.
If U is the characteristic matrix of a subset α ⊂ {1, 2 . . . , n}, that is, U = (uij ) of
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size n× | α | and nonzero entries uiα = 1 if i ∈ α, then UT AU equals the principal
submatrix of A with respect to α. As UT U is the identity, we conclude from the
theorem above:

Corollary ( [37, Cor. 2.2]) Let B be a principal submatrix of A. Then the
eigenvalues of B interlace the eigenvalues of A.

On the other hand, if S is the characteristic matrix of the partition, then ST S = 


is a diagonal non-singular matrix, and hence U = S
−1/2 satisfies the hypothesis
of the theorem. We conclude that the eigenvalues of UT AU = 
−1/2ST AS
−172

interlace those of A. Using the Lemma 1, we conclude:

Corollary ( [10, Cor. 2.3(i)]) Let B be a quotient matrix of A with respect to some
partition. Then the eigenvalues of B interlace the eigenvalues of A.

4.2.2 Equitable Partitions

Equation (2.22) defines equitable partitions. This can be expressed in matrix form as

AS = SQ(A).

We call the matrix Q(A) a regular quotient if it is the quotient of an equitable
partition. If the quotient is regular, then the eigenvalues of Q(A) not only interlace
but are a subset of the eigenvalues of A. In fact, there is a lifting relating both sets
of eigenvalues, as we explain now.

If v, w are column vectors of size m and n, we say that Sv represents the vector
v lifted to A, and ST w the vector w projected to Q(A). The vector Sv has constant
coordinates on each Xi , while the vector ST w is created by adding the coordinates
on each Xi . The vector w is called orthogonal to the partition if ST w = 0, that
is, the sum of the coordinates over each Xi is zero. If the quotient is regular, the
spectrum of A decomposes into the spectrum of B lifted to A (i.e., eigenvectors
constant on each Xi), and the remaining spectrum is orthogonal to the partition (i.e.,
eigenvectors with coordinates adding to zero on each Xi):

Theorem Let B be the quotient matrix of A with respect to an equitable partition
with characteristic matrix S. Then the spectrum of B is a subset of the spectrum of
A. More precisely, (λ, v) is an eigenpair of B if and only if (λ, Sv) is an eigenpair
of A.

Moreover, there is an eigenbasis of A of the form {Sv1, . . . , Svm, w1, . . . , w(n−m)}
such that {v1, . . . , vm} is any eigenbasis of B, and ST wi = 0 for all i.

Proof The first part follows easily from the identity AS = SB (note that Sv �= 0
as Ker(S) = 0). For the second part, note that S is an isomorphism onto Im(S), as
it has trivial kernel, so {Sv1, . . . , Svm} is a basis of Im(S). It is easy to show that
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the orthogonal complement Im(S)⊥ equals Ker(ST ), hence we can complete the
linearly independent set of eigenvectors {Sv1, . . . , Svm} to an eigenbasis of Rn =
Im(S) + Im(S)⊥ �

4.2.3 Laplacian Eigenvalues

We want to show that the Laplacian of a quotient graph is the quotient of
the Laplacian matrix, as this will allow to extend the interlacing results to the
Laplacian eigenvalues. First, we need to clarify what we mean by the Laplacian
of a nonsymmetric matrix.

If A = (aij ) is a real symmetric (adjacency) matrix, define the node out-degrees
as

dout
i =

∑

j

aij (row sum). (4.22)

The out-degree Laplacian is the matrix

Lout = Dout − A (4.23)

where Dout is the diagonal matrix of the out-degrees. We define d in
i , Din, and the

in-degree Laplacian Lin analogously. Note that both Laplacian matrices ignore the
diagonal values of A. If A is the adjacency matrix of a graph, we say that the
Laplacian ignores self-loops. Consider the left and right quotients of A with respect
to a given partition. Observe that the row sums of Ql(A) are

d̄i = 1

ni

∑

k∈Vi

dk (4.24)

the average node degree in Vi .
Let D̄ be the diagonal matrix of the average node degrees. Then we define the

quotient Laplacian as the matrix

LQ = D̄ − Ql(A) (4.25)

that is, the out-degree Laplacian of the left quotient matrix. Alternatively, we could
have defined LQ as the in-degree Laplacian of the right quotient matrix, giving a
transpose matrix with the same eigenvalues. (Note that there is no obvious way of
interpreting the symmetric quotient Qs(L) as the Laplacian of a graph.) Now we
can prove that the Laplacian of the quotient is the quotient of the Laplacian, in the
following sense.

Theorem Let G be a graph with adjacency matrix A and Laplacian matrix L. Then:

Lout(Ql(A)) = Ql(L).

The analogous result holds for the right quotients and the in-degree Laplacian.
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Proof By definition:

Ql(L) = 
−1ST LS = 
−1ST (D − A)S = 
−1ST DS − 
−1ST AS = D̄ − A

The second statement follows by transposing the equation above. �
This theorem allows us to use the interlacing results of Sect. 4.2.1 for Laplacian

eigenvalues. We finish by studying equitable partitions in the context of Laplacian
matrices. We demonstrate that a partition being regular for the Laplacian matrix
is equivalent to the partition being almost regular for the adjacency matrix. In
particular, the spectral results of Sect. 4.2.2 will hold for almost regular quotients
and Laplacian eigenvalues.

Theorem Let G be a graph with adjacency matrix A and Laplacian matrix L. Then
a partition is equitable with respect to L if and only if it is almost equitable with
respect to A.

Proof By relabeling the nodes if necessary, we can assume the block decomposition

A =
⎛

⎜
⎝

A11 . . . A1m

...
. . .

...

Am1 . . . Amm

⎞

⎟
⎠ , (4.26)

where the ni × nj submatrix Aij represents the edges from Vi to Vj . The matrix L
has then a similar block decomposition into submatrices Lij . As L = D − A and D
is diagonal, we have Lij = −Aij for all i �= j . In particular, the row sums of Lij

are constant if and only if the row sums of Aij are constant, for all i �= j . On the
other hand, as the row sums in L are zero, the row sums in Lii equal the sum of the
row sums of the matrices Lij for j �= i, and the result follows. �

4.3 Network of Layers and Aggregate Network

Applying the spectral results we have already presented, we conclude that the
adjacency, respectively Laplacian, eigenvalues of the network of layers interlace the
adjacency, respectively Laplacian, eigenvalues of the multiplex network. Namely,
if μ1, . . . , μm are the (adjacency resp. Laplacian) eigenvalues of the network of
layers, then

λi ≤ μi ≤ λi+(N−m) for i = 1, . . . , m, (4.27)

where λ1, . . . , λN are the (adjacency resp. Laplacian) eigenvalues of the multiplex
network.
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The network of layers, ignoring weights and self-loops, simply represents
the layer connection configuration (Fig. 2.3). The connectivity of this reduced
representation, measured in terms of the eigenvalues, thus relates to the connectivity
of the entire multiplex network via the interlacing results.

Next, we turn to the question of when the layer partition is equitable. This
requires, in particular, that the intra-layer degrees are constant, that is, each layer
must be a dα-regular graph, a very strong condition unlikely to be satisfied in real-
world multiplex networks. Instead, we call a multilayer network regular if the layer
partition is almost equitable, that is, the inter-layer connections are independent of
the chosen vertices. This is a more natural condition, and it is equivalent to require
the multiplex being node-aligned.

If the multiplex network is regular, i.e., node aligned, then, in addition to the
interlacing, the Laplacian eigenvalues of the network of layers are a subset of the
Laplacian eigenvalues of the multiplex, and we can lift a Laplacian eigenbasis of
the quotient, as described in Sect. 4.2.3. This latter result has also been derived in
[73] without referring to the theory of quotient graphs.

Finally, using the spectral results, we conclude that the adjacency (respectively
Laplacian) eigenvalues of the aggregate network interlace the adjacency (respec-
tively Laplacian) eigenvalues of the multiplex. Namely, in a multiplex network with
N node-layer pairs and n nodes, the (adjacency resp. Laplacian) eigenvalues of the
aggregate network quotient μ1, . . . , μn satisfy

λi ≤ μi ≤ λi+(N−n) for i = 1, . . . , ñ, (4.28)

where λ1, . . . , λN are the (adjacency resp. Laplacian) eigenvalues of the multiplex
network. Observe that requiring the aggregate network to be regular, or almost
regular, is in this case very restrictive, as it would require that every pair of nodes
connects in the same uniform way on every layer, and thus it is not likely to occur
on real-world multiplex networks.

The results obtained in this section will be crucial in studying structural
transitions as we will show in the next chapter.1

4.4 Layer Subnetworks

Evidently, the layers of a multiplex form subnetworks, and it is natural to relate the
eigenvalues of each layer to the eigenvalues of the multiplex. The interlacing result
applies to the adjacency eigenvalues of an induced subnetwork, such as the layers,
and partial interlacing also holds for the Laplacian eigenvalues. More precisely,
if a layer-graph Gα has nα nodes and adjacency (resp. Laplacian) eigenvalues

1Although here we deal only with multiplex networks, the spectral theory of quotient graphs also
applies to the more general framework of multilayer networks.
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μ1, . . . , μα , and λ1, . . . , λN are the adjacency (resp. Laplacian) eigenvalues of the
whole multiplex network, then

λi ≤ μi ≤ λi+(N−nα) for i = 1, . . . , nα, resp. (4.29)

μi ≤ λi+(N−nα) for i = 1, . . . , nα. (4.30)

4.5 Discussion and Some Applications

From a physical point of view, the adjacency and Laplacian spectra of a network
encode information on structural properties of the system represented by the
network related to different dynamical processes occurring on top of it. We now
discuss some consequences and applications of the spectral results derived in the
previous sections. In the following, let us write λi(A) for the ith smallest eigenvalue
of a matrix A.

4.5.1 Adjacency Spectrum

Even if the study of dynamical processes on a multiplex network is out of the
scope of this book, we use some dynamical example to discuss the dimensionality
results presented in the previous section. The spectrum of the adjacency matrix
is directly related to different dynamical processes that take place on the system,
such as spreading processes, for which it has been shown that critical properties
are related to the inverse of the largest eigenvalue of this matrix. As an example,
consider a contact process on the multilayer network M whose linearized dynamics
is described by the equation

pi(t + 1) = β
∑

j

āijpj (t) − μpi(t), (4.31)

in which pi(t) is the probability of node i to be infected at time t , β is the infection
rate, μ is the recovery rate, and āij are the elements of the supra-adjacency matrix Ā.
In this model, each infected node contacts its neighbors with probability 1, and tries
to infect them. The contact between two instances of the same object in different
layers is modeled in the same way as the contact between any two other nodes.

The critical value of the disease rate for which the infection survives is given by

βc = μ

λN(Ā)
. (4.32)

From the interlacing result for the layer subnetworks we have that

λnα

(
Aα
) ≤ λN(Ā), (4.33)
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This means that the critical point for the multiplex network βc is bounded from
above by the corresponding critical points of the independent layers. This implies
that the multiplex network is more efficient as far as spreading processes are
concerned than the most efficient of its layers on its own. On the other hand, if
λm is the largest adjacency eigenvalue of the network of layers, then

λm ≤ λN(A), (4.34)

which means that the connections between layers also impose constraints to the
dynamics on the multiplex network. In particular, the critical point of the spreading
dynamics on the multiplex network is bounded from above by the corresponding
critical point of the network of layers. Interestingly, the existence of this bound
explains the existence of a mixed phase [27].

Consider now the same process (4.31), this time defined on the aggregate network

pu(t + 1) = β
∑

v

auvpv(t) − μpu(t). (4.35)

Here auv are the elements of Q(Ā), the adjacency matrix of the aggregate network.
The critical value is given by

β̃c = μ

λn(Q(Ā))
(4.36)

where n is the number of nodes in M (the size of the aggregate network). From the
interlacing result we have that

β̃c ≥ βc.

Therefore the spreading process on M is at least as effective as the same spreading
process on the aggregate network. It is important to note that Eqs. (4.31) and (4.35)
describe two rather different processes, that is, two different strategies that actors
can adopt in order to spread information across the multiplex network. In the former,
a node can infect any other node on any layer with a probability weighted by
the fraction of layers in which they are in contact, while in the latter, each supra-
node chooses at each time step with uniform probability a layer in which an instance
representing it is present and then contacts all its neighbors in that layer. Our results
show that the latter strategy is more effective than the former, as expressed by the
relation between the critical points.

4.5.2 Laplacian Spectrum

The Laplacian of a network L = (lij ) is the operator of the dynamical process
described by

ṗij (t) = −
∑

k

pik(t) lki (4.37)
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where pij (t) represents the transition probability of a particle from node i to node j

at time t . The second smallest eigenvalue of the Laplacian matrix sets the time scale
of the process. From the interlacing results applied to the Laplacian matrix we have
that for any quotient

λ2(L̄) ≤ λ2(Q(L̄)). (4.38)

That is, the relaxation time on the multiplex is at most the relaxation time on any
quotient, in particular the network of layers or the aggregate network. If we interpret
λ2 of the Laplacian of a network as algebraic connectivity [11], Eq. (4.38) means
that the algebraic connectivity of the multiplex network is always bounded from
above by the algebraic connectivity of any of its quotients.

On the other hand, the Laplacian of the aggregated network is the operator
corresponding to the dynamical process described by

ṗuv(t) =
∑

w

puw(t) awv − du puv(t) =
∑

w

puw(t) l̃wu (4.39)

where puv(t) is the transition probability of a particle from supra-node u to supra-
node v at time t , auw are the elements of the adjacency matrix of the aggregated
contact network, L̃ = (l̃ij ) is the Laplacian matrix of the aggregate contact network
(i.e., L̃ = Q(L̄)), and du = ∑

v auv is the strength or degree of a node in the
aggregate network). Note that if we define the overlapping degree [6] of a node as

ou =
∑

v

auv

then we have that

du = 1

κu

ou.

From the interlacing result for the Laplacian we have that

λ2(L̄) ≤ λ2(Q(L̄)). (4.40)

That is, the diffusion process on the aggregate network (Eq. 4.39) is faster than the
diffusion process on the entire multiplex network (Eq. 4.37). Note that in [73], in
a setting in which the multiplex is node-aligned, the authors obtained by means
of a perturbative analysis that λ2(L̄) ∼ λ2(Q(L̄)) when the diffusion parameter
between layers is large enough. In [63] this result is generalized (in a different
framework, since they are interested in structural properties of interdependent
networks) to all almost regular multilayer networks. In the framework of quotient
networks introduced in [69] and that we have presented here those results arise in
a very natural way. Besides, eigenvalue interlacing between multilayer and quotient
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eigenvalues holds for every possible inter-layer connection scheme. In the next
chapter, we will discuss the existence and location of an abrupt transition in the
structure of a multiplex network by capitalizing on the interlacing results for the
Laplacian. We finally note that, in the context of synchronization, the smallest
nonzero Laplacian eigenvalue λ2 is also related to the stability of a synchronized
state [2], and indeed the larger λ2 is, the more stable is the synchronized state.
Considering a multiplex network, the bound in (4.38) means that the synchronized
state of a system supported on the multiplex network is at most as stable as the
synchronized state on any of its quotients.

4.6 The Algebraic Connectivity

The algebraic connectivity of a graph G is the second-smallest eigenvalue of the
Laplacian matrix of G [83]. We naturally define the algebraic connectivity of a
multiplex network as the second-smallest eigenvalue of its supra-Laplacian matrix.
Let us call μ̄2 the second-smallest eigenvalue of the supra-Laplacian and μ̃

(a)
2 and

μ̃
(l)
2 the second-smallest eigenvalue of the aggregate and of the network of layers

Laplacian, respectively. Since we are considering node-aligned multiplex networks,
we have that m̃u

(l)
2 ≡ m, being m the number of layers. From the interlacing results

of the previous section, we know that

μ̄2 ≤ μ̃
(a)
2 (4.41)

μ̄2 ≤ m (4.42)

We also know from the inclusion relation that m is always an eigenvalue of the
supra-Laplacian, so, we can look for the condition under which μ̄2 = m holds. By
combining Eqs. (4.41) and (4.42), we arrive to the conclusion that

if m ≥ μ̃a2, then μ̄2 �= m.

On the other hand, we can approximate μ̄2 as

μ̄2 ∼ μ2 +�μ2, (4.43)

where μ2 is the second-smallest eigenvalue of L and

�μ2 =
∑

i<j

cij (xi − xj )
2, (4.44)

where x is the unity norm eigenvector associated with μ2 and xi its ith entry.
Because of the structure of C and x, it results

�μ2 = m − 1, (4.45)
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for a node-aligned multiplex network. Thus, since m is always an eigenvalue of L̄,
for that approximation to be correct, the following condition must hold

μ2 + m − 1 < m, (4.46)

from which we can conclude that

if μ2 < 1 then μ̄2 �= m.

In summary, we have that

if μ̃
(a)
2 < m or μ2 > 1 then μ̄2 �= m,

the converse not being true in general.
This result points to a mechanism which can trigger a structural transition of

a multiplex network that is different from the one exposed in [52, 63] (see next
chapter).



Chapter 5
Structural Organization and Transitions

Complex networks show nontraditional critical properties due to their extreme
compactness (small-world property) together with their complex organization [28].
The introduction of multilayer networks in general, and multiplex networks in
particular, as a more natural substrate for a plethora of phenomena, poses the central
theoretical question of whether critical phenomena will behave differently on such
networks with respect to traditional networks. So far theoretical studies have pointed
out that such differences in the critical behaviors indeed exist [60, 74]. In [63] and
in [62] it has been shown that a multiplex network can exist in different structural
phases, the transition among them being abrupt under some conditions.

In this chapter, we present how three different topological scales can be naturally
identified in multiplex networks: that of the individual layers, that of the network
of layers, and that of the aggregate network. The notion of quotient graph that
we have introduced in Chap. 2 gives the connection between those scales in terms
of the spectral properties of the parent multiplex network and of its aggregate
representation.

In the rest of this chapter, we will focus on the spectra of the supra-Laplacian in
order to show how the interplay between those scales affects the whole structural
organization of the multiplex network. The spectrum of the Laplacian is a natural
choice to address this problem since it reveals a number of structural properties.
In particular, eigengaps—gaps between two subsequent eigenvalues—are known
to unveil a number of structural and dynamical properties of the network related
to the presence of different topological scales on it, from communities at different
topological scales to synchronization patterns [3, 72]. Thus, the emerging of an
eigengap points to structural changes going on, which will result in qualitatively
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Fig. 5.1 Eigenvalue of a toy
multiplex with four nodes per
layers. Continuous lines are
the eigenvalues of the
multiplex networks; dashed
lines are the eigenvalues of
the aggregate network. Figure
from [17]
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different dynamical patterns as shown in [17], which we closely follow in
Sects. 5.1, 5.2, and 5.3. We will introduce a weight parameter p for the coupling.
This parameter allows to tune the relative strength of the coupling with respect to
intra-layer connectivity.1

The supra-Laplacian (2.14) with the weight parameter p reads as:

L̄ =
⊕

α

Lα + pLC, (5.1)

and in the special case of node-aligned multiplex networks it takes the simple form:

L̄ =
⊕

α

(
L(α) + p(m − 1)In

)
− pKm ⊗ In. (5.2)

Remember that, in this special case, the spectrum of the Laplacian of the network
of layers is a subset of the spectrum of the parent supra-Laplacian. In Fig. 5.1 the
full spectrum of a toy multiplex of four nodes and two layers (then eight node-
layer pairs) is shown. The first thing to note—as observed in [35] and [73]—is
that the spectrum splits into two groups: one made up by eigenvalues that stay
bounded while increasing p, and one group of eigenvalues that diverge when
increasing p. The whole characterization of the structural changes in a multiplex
network basically depends on that splitting, i.e., on the emerging of gaps in the
spectrum.

1The weight p may have a physical meaning, like the (inverse of) commuting time in a
transportation multiplex network; however, it can be always intended as a tuning parameter.
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5.1 Eigengap and Structural Transitions

The Laplacian spectrum of the network of layers is composed of just two eigenval-
ues: 0 with multiplicity 1, and mp with multiplicity (m−1). Because of the inclusion
relation between the coarse-grained and the parent spectra, mp will always be an
eigenvalue of the supra-Laplacian. It results that for low enough values of p, mp

will be the smallest nonzero eigenvalue of L̄. On the other hand, each eigenvalue μ̄i

of L̄, with i = 1 . . . n, will be bounded by the respective Laplacian eigenvalue μ̃
(a)
i

of the aggregate network because of the interlace.
It is evident that, by increasing p, at some value p = p∗, it will happen that

μ̄2 �= mp and that it will approach its bound μ̃
(a)
2 . For continuity, at p∗, μ̄3 = mp

must hold, since mp is always an eigenvalue of the supra-Laplacian. p = p∗ is the
point at which the structural transition described in [52, 63] occurs, as already noted
by Darabi Sahneh et al. [68]. Each eigenvalue up to μ̄n will follow the same pattern,
following the line μ̄i = mp and leaving it to approach its bound μ̃

(a)
i when it hits

the next eigenvalue μ̄i = mp (see Fig. 5.1). At the point p = p� at which μ̄n �= mp,
μ̄n+1 = mp must hold and it will hold forever, since μ̄n+1 is not bounded.

Following this reasoning, we realize that the supra-Laplacian spectrum for
p > p� can be divided into two groups: one of n bounded eigenvalues that
will approach the aggregate Laplacian eigenvalues as p increases, and one of
N − n = n(m − 1) eigenvalues diverging with p. Because of that, the system can
be characterized by an eigengap emerging at p�. Moreover, while the splitting of the
eigenvalues in those two groups is always present (because of the interlacing), the
crossing of the eigenvalues at p∗ and at p� (and between those points) only happens
when the multiplex is node-aligned, since the inclusion relation only holds in that
case.

In order to quantify an eigengap, we introduce the following metric:

gk = log(μ̄k+1) − log(μ̄k)

log(μ̄k+1)
(5.3)

and we will focus on gn(p), i.e., the gap emerging between the last bounded
eigenvalue and the first unbounded at p�.

By construction

gn(p
�) = 0. (5.4)

For p > p�, log(μ̄n+1) will diverge while log(μ̄n) will remain bounded by μ̃
(a)
n ,

so gn will approach 1. For p < p�, in general both μ̄n+1 and μ̄n will be in the
continuous part of the spectrum, so gn will be 0 in the large size limit. That is,

gn = 0, p ≤ p�

gn �= 0, p > p�. (5.5)
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Fig. 5.2 Eigengap between
the last bounded and the first
unbounded eigenvalue for a
multiplex network of two
Erdős-Rényi of 200 nodes
and < k >= 5. Dashed line is
the bound given in the text.
Figure from [17]
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This phenomenology is confirmed by numerical experiment (see Fig. 5.2), and it
describes a structural transition occurring at p�. In the case of a non-node-aligned
multiplex network, where p� is not defined since there is no crossing, gn(p) can be
used to define it operationally.

An upper bound for p� can be given in terms of the structural properties of the
layers. If ω

(α)
i is the strength of node u in layer α, its strength in the aggregate

network is ω̃i = 1
m

∑
α ω

(α)
i . Next define

ω̃ij = ω̃i + ω̃j ,∀i ∼ j (5.6)

where i ∼ j indicates a link between i and j in the aggregate network. We have
that [23]

μ̃(a)
n ≤maxi∼j {ω̃ij }, (5.7)

and we can give the following bound for p�

p� ≤ maxi∼j {ω̃ij }
m

, (5.8)

and

p� ≤
maxi∼j

{∑
α ωα

ij

}

m2 (5.9)

The exact value of p� can be derived following [68] to be

p� = 1

2
λn(Q) (5.10)

being, for the case of two layers, Q = L+ −L−L+†L−, L± = 1
2 (L1 ±L2), and A†

the Moore-Penrose pseudo-inverse of A.
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5.2 The Aggregate-Equivalent Multiplex and the Structural
Organization of a Multiplex Network

In order to characterize this transition, we want to compare a multiplex network M
with the coarse-grained networks associated with it. However, a direct comparison
is not possible, since those structures have different dimensionality. To overcome
this problem, in [17] an auxiliary structure that has the same properties of the
aggregate network and the network of layers, but also the same dimensionality of
M is defined: the Aggregate-Equivalent Multiplex (AEM). The AEM of a parent
multiplex network M is a multiplex network with the same number of layers of
M, each layer being identical to the aggregate network of M. Additionally, node-
layer pairs representing the same nodes are connected with a connection pattern
identical to the network of layers. Formally speaking, the AEM is given by the
Cartesian product between the aggregate network and the network of layers. Thus,
its adjacency matrix is given by

A = Im ⊗ Ã + pKm ⊗ In, (5.11)

and its Laplacian matrix is given by

L = Im ⊗ L̃a + pL̃l ⊗ In. (5.12)

Its Laplacian spectrum is completely determined in terms of the spectra of L̃a and
of the spectra of L̃l . In particular, we have

σ(L) = {μ̃a + μ̃l | μ̃a ∈ σ(L̃a), μ̃l ∈ σ(L̃l)}. (5.13)

In words, each eigenvalue of L is the sum of an eigenvalue of L̃a and an eigenvalue
of L̃l . We can note that since 0 is an eigenvalue of both coarse-grained Laplacians,
the spectra of both L̃a and L̃l are included in the spectrum of L̃a .

To compare the parent multiplex network with its AEM, we compute the quantum
relative entropies between the former and the latter. The quantum entropy (or Von-
Neumann entropy) of M being defined as

Sq(M) = Tr(ρ log ρ) (5.14)

where ρ = L̄
2E+N(m−1)p

, with E being the number of intra-layer links in M [61],
i.e., ρ is the supra-Laplacian normalized by the degree sum. Thus, the quantum
relative entropy of the multiplex network M with its associated AEM is defined as

Rq(M || AEM(M)) = Trρ(log ρ − log σ), (5.15)

with σ being the supra-Laplacian of the AEM normalized by its degree sum.
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Fig. 5.3 Relative entropy (×10) (top) and Quantum Entropy (bottom) for the same system of
Fig. 5.2. The vertical line indicates the exact transition point p�. Figure from [17]

Figure 5.3 shows the quantum relative entropy between the parent multiplex and
its AEM: it goes to 0 by increasing p, meaning that the parent multiplex will be
indistinguishable from the AEM. Finally, it is informative to look at the quantum
entropy of M. Sq(M) shows a clear peak after p∗ and before p� (see Fig. 5.3), i.e.,
in the region after the transition observed in [52, 63] and before that one we have
introduced here. By studying the sign of the derivative of Sq , it can be proven that
the quantum entropy must have a peak before p�.

5.3 Dynamical Consequences and Discussions

To gain intuition on the phenomenology, it is enlightening to look at it in terms
of diffusion dynamics. The large time scale is dominated by the bounded group
of eigenvalues for p ≥ p�. Those eigenvalues are close to that of the aggregate
network, meaning that each layer shows practically the same behavior of the
aggregate network. This is because the fast time scale is dominated by the diverging
group of eigenvalues that are close to those of the aggregate network plus those
of the network of layers. In summary, the network of layers determines how each
node-layer pair accommodates with its replica on a fast time scale, being always “at
equilibrium,” while the aggregate network determines how and on what time scale
the global equilibrium is attained. From that point of view, the “world” will look the
same from each layer and it will look like in the aggregate network. From a random
walk point of view, we can look at the average commute time c(i, j), i.e., the mean
time needed by a walker starting in i to hit node j for the first time and coming
back. It can be expressed in terms of the eigenvalue of L̄†, the pseudo-inverse of the
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supra-Laplacian. Since the eigenvalues of L̄† are the reciprocal of the eigenvalues
of L̄, the aggregate network mean commute time c̃(i, j) is a good approximation of
c(i, j) after p� [67]:

‖ c(i, j) − c̃(i, j) ‖≤ E
n(m − 1)

2p
. (5.16)

It is interesting to note that the eigenvalues of the aggregate network do not depend
on p.

Altogether, we have that before p∗ the system is structurally dominated by the
network of layers, whereas after p� it is structurally dominated by the aggregate
network. Between those two points the system is in an effective multiplex state, i.e.,
neither of the coarse-grained structures dominate. In this region, the VN-entropy—
a measure of structural complexity—shows a peak. Finally, the relative entropy
between the parent multiplex and its AEM varies smoothly with p, meaning that
the two transitions are smooth from a global point of view.

5.4 Structural Transition Triggered by Layer Degradation

It is of interest to study the robustness of a network under degradation, that is,
by random links removal (failures), deterministic links removal (attack), or the
lowering of links’ strength. Networks degradation models real-world processes like
failures in traffic networks [84], neurodegenerative diseases [71], and many others.

Among others, the algebraic connectivity is a good graph-theoretically based
measure of network robustness since it measures the extent to which it is difficult
to cut the network into independent components [39]; in fact, it is a lower bound
for both the edge connectivity and node connectivity of a graph, i.e., the minimal
number of edges and nodes that have to be removed to disconnect the graph. Besides
its structural relation to the network robustness, it is also a good measure from a
dynamical point of view. For example, the time needed to synchronize a network of
oscillators is related to it [2], as well as the time scale of a diffusion process. In this
sense, the algebraic connectivity represents the connection between the structural
and the dynamical robustness of a network.

The algebraic connectivity of a multiplex network follows two distinct regimes
during the process of layer degradation too. The system experiments an abrupt
structural transition as in the case of the transition experimented when varying the
coupling parameter p, due to the crossing of two eigenvalues. More interestingly,
unlike the structural transition observed when the coupling parameter varies, during
the layer degradation it stays constant for a finite fraction of links removed as well as
for a finite interval of variation of the intra-layer weights before it starts to decrease.
This also differentiates the behavior of a multiplex network from that of a single-
layer network.
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5.5 Continuous Layers Degradation

In this section, we focus on the continuous degradation of layers connectivity. In
order to model the process, we introduce a set of intra-layer weight parameters
{tα}, with tα being the weight of the links in layer α. Besides, we fix the coupling
parameter p at a given value p0 < p∗, such that the system is in the disconnected
phase, i.e., the algebraic connectivity is μ̄2 = mp0. The supra-Laplacian now reads

L̄ =
⊕

α

tαL(α) + p0LC. (5.17)

Without loss of generality, we set all the tα’s equal to 1 but one, tδ = t . In particular,
we chose the layer δ as the layer with the lowest algebraic connectivity μ

(δ)
2 and we

call it the Laplacian dominant layer (in assonance with the definition of the dominant
layer given in Chap. 4).

By construction, the algebraic connectivity for t = 1 is μ̄2 = mp0, while the
next eigenvalue can be approximated as [53]

μ̄3 ∼ tμ
(δ)
2 + (m − 1)p0. (5.18)

The eigenvalue μ̄3 will decrease with t and, for continuity, at a given point t∗ it will
hit the value mp0. Thus, we can conclude that the algebraic connectivity follows
two distinct regimes:

μ̄2 =
{

mp0, if t ≥ t∗

∼ tμ
(δ)
2 + (m − 1)p0, if t < t∗

. (5.19)

Actually, the r.h.s. of Eq. (5.18) is an upper bound for μ̄3 [75] and by equating it to
mp0 we get a lower bound for the point t∗ at which the algebraic connectivity enters
a distinct regime:

t∗ >
p0

μ
(δ)
2

(5.20)

As we can see in Fig. 5.4, the bound (5.20) is sharp for low values of p0, where
the approximation (5.18) is good. Besides, we can appreciate that the transition only
exits when p0 < p∗, while for larger values the algebraic connectivity is already in
the regime in which it smoothly decreases (this happens for values of p0 larger than
0.4 in the particular setting of Fig. 5.4). We can understand this behavior as well as
the mechanism that triggers the structure transition by calculating the exact value of
t∗ in a particular setting.



5.5 Continuous Layers Degradation 63

Intralayer weight

Fig. 5.4 Continuous degradation of the Laplacian dominant layer

5.5.1 Exact Value of t∗ for Identical Weights

Consider that all the intra-layer weight parameters tα are equal, i.e., tα = t, ∀α.
In this case, we can give the exact value of the transition point t∗ by reformulating
the eigenvalue problem for the supra-Laplacian in terms of a polynomial eigenvalue
problem, whose formulation will be discussed in detail in Chap. 6.

In general, a polynomial eigenvalue problem is formulated as an equation of the
form

Q(λ)x = 0 (5.21)

where Q is a polynomial matrix and the solutions are given by

det(Q(λ)) = 0 (5.22)

The eigenvalue problem for the supra-Laplacian of a multiplex of two layers is
given by

L̄x =
[

La pI
pI Lb

] [
xa

xb

]

= λ

[
xa

xb

]

= λx. (5.23)



64 5 Structural Organization and Transitions

From the previous expression we get the system of equations

Laxa − pIxb = λxa

Lbxb − pIxa = λxb, (5.24)

then, from the second equation we can isolate xa , obtaining

xa = − 1

p
(Lb − λI)xb. (5.25)

Plugging the previous expression for xa in the first of (5.24), we obtain

[
1

p
(La − λI)(Lb − λI) − pI

]

x2 = 0 (5.26)

in which we can recognize a quadratic eigenvalue problem

Q(λ) = Aλ2 + Bλ + C = 0 (5.27)

with

A = I

B = −(La + Lb + 2pI)

C = LaLb + p(La + Lb). (5.28)

Observe that such approach will be further explored in Chap. 6, where we will be
able to easily obtain an expression for the structural transition, p∗. For more see
Sect. 6.3.1 and Eq. (6.23). Complementary, if we now take into account the weights
ta = tb = t and fix the value of the coupling p0 = p, Eq. (5.29) reads

det(taLatbLb(taLa+ tbLb)
†−p0I) = det(tLaLb(La+Lb)

†−p0I) = 0, (5.29)

and it follows

t∗ = p0

λ2(LaLb(La + Lb)†)
= p0

p∗ . (5.30)

In other words, we want p0 to be the first nonzero eigenvalue of the matrix H(t) =
tLaLb(La + Lb)

†, i.e., we want the value t∗ of t for which

p0 = λ2(H(t∗)) = t∗λ2(LaLb(La + Lb)
†) (5.31)

from which we get Eq. (5.30).
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5.5.2 General Mechanism

In general, it is always possible to write an equation of the form

p0 = λ2(H({t∗α})) (5.32)

that implicitly defines the point {t∗α} of the structural transition, being this the point
that solves the parameter inverse eigenvalue problem (5.32). In other words, the
mechanism that triggers the structural transition is, as in the case of the transition in
p, an eigenvalue crossing that results in the fact that the actual value of the coupling
p is the first nonzero eigenvalue of the matrix H({t}). For the transition in p this is
obtained by directly varying it, i.e., it can be found by solving a direct eigenvalue
problem, while for the transition in t this is obtained by changing the values of
the intra-layer weights until p0 is the first nonzero eigenvalue of H({t}), i.e., it
can be found by solving a parameter inverse eigenvalue problem [15]. The case
of identical layers is the only one in which we can give an explicit equation for t∗
as in Eq. (5.30). However, the parameter inverse eigenvalue problem can be always
solved at least numerically.

In our model, the weights are constrained to be 0 < tα ≤ 1. This causes that there
exists a value of the coupling parameter p0 above which it is impossible to observe
the transition in t . In fact, if we consider the Eq. (5.30) for a value of p0 > p∗ we
have

t∗ = p0

p∗ > 1. (5.33)

In general, given a range of variation for the intra-layer weights, it always exists
a value pc of the coupling parameter above which it is impossible to observe the
transition in t . pc can be calculated by solving

p0 = λ2(H({t̄})) (5.34)

being t̄α the extremal values of tα in its range of variation. For the setting of Fig. 5.4,
in which we have two layers, one of which with fixed intra-layer weight equal to 1,
we have the dependency of pc on the extreme value of the intra-layer weight as
depicted in Fig. 5.5.

5.6 Links Failure and Attacks

In this section we focus on discrete layer degradation, that is, the discrete removal of
links in the multiplex network. As in the previous section, we fix one layer in which
the links will be removed, picking the one with the lower algebraic connectivity,
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which is the Laplacian dominant layer. If we take the layer δ as isolated, when
removing an edge e, its algebraic connectivity can be approximated by

μ
(δ−e)
2 ∼ μ

(δ)
2 − r2 (5.35)

where μ
(δ−e)
2 is the algebraic connectivity of the layer δ with the link e removed,

and r =
(
x

(δ)
2i − x

(δ)
2j

)
, where xi is the ith entry of the eigenvector x(δ)

2 associated

with μ
(δ)
2 .

As before, for a given p0 < p∗ the algebraic connectivity of the system is μ̄2 =
mp, while the next eigenvalue when a link e is removed can be approximated as

μ̄3 ∼ μ
(δ−e)
2 + (m − 1)p0. (5.36)

In general, when a set E of links is removed we have r =∑
ij

(
x

(δ)
2i − x

(δ)
2j

)
, where

the sum is over all the links in E [53]. Since Eq. (5.36) is an upper bound, as before,
we obtain a lower bound for the critical value of μ

(δ−E)
2 from which the removal of

an edge will cause a drop in the algebraic connectivity, i.e.,

μ
(δ−E)∗
2 > mp0. (5.37)

In this case, we have two different scenarios, the random removal of edges, which
we call failures, and the targeted removal of edges, which we call attack. Let us
analyze the latter scenario first. Looking at Eq. (5.36), we have two evident strategies
based on the entries of the eigenvector x

(δ)
2 . We can rank the links according to the

value of r associated with them and remove them in ascending or descending order.
The critical fraction of edges that has to be removed in order to cause a drop in the
algebraic connectivity is obviously larger in the second case, as can be observed in
Fig. 5.6.
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Fig. 5.6 Discrete layer degradation with descending (left panel) and ascending (right panel)
ordering of the links according to p

Edges removed Edges removed

Fig. 5.7 Discrete layer degradation with random removals of links (left panel). Standard deviation
(right panel)

In the case of failures, links are removed at random from the Laplacian-dominant
layer. We show this result in Fig. 5.7. Moreover, in Fig. 5.7 we can also appreciate
the variation of the standard deviation of the algebraic connectivity. When p0 is low
enough in order to have a structural transition, as expected, the standard deviation is
constantly zero till the critical fraction of edges removed is reached.

If we look to the Fiedler eigenvector, i.e., the eigenvector associated with the
algebraic connectivity, we can understand the mechanism that triggers the transition.

Without loss of generality, consider the case of a two-layer multiplex network.
In the disconnected phase, namely, when p0 = p, the Fiedler vector has the form
x̄2 = (1 . . . 1 | −1, . . . ,−1)T , i.e., all the nodes in the same layer have the same
entry of the Fiedler vector.

The structural impact on the algebraic connectivity of removing a link in a given
layer can be approximated as [53]

�μ̄2 =
∑

ij

(x̄2i − x̄2j ) = 0, (5.38)
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which is true till p0 < p∗, but the removing of a link has the side effect of
lowering p∗. Thus, there will be a point in the link removal process at which p0 is
no longer lower than the actual p∗, the Fiedler vector will have a different structure
and thus �μ̄ �= 0 causing a drop in the algebraic connectivity. Note that these
considerations are valid also for the continuous degradation model.

5.7 The Shannon Entropy of the Fiedler Vector

Motivated by the final considerations of the last section, we also study the Shannon
entropy of the Fiedler vector, defined as

S = −
∑

i

x̄2
2i log x̄2

2i , (5.39)

considering that the Fiedler vector has a unitary norm. Moreover, as can be observed
in Figs. 5.8 and 5.9, the entropy of the Fiedler vector starts at its maximum,
stays constant, and experiments a discontinuous jump in correspondence with the
transition. The entropy indicates the level of homogeneity of the entries of the
Fiedler vector. Obviously, it is maximal when all the entries are the same, i.e.,
before the transition, while after that it reflects the internal organization of the
multiplex network. The behavior is identical to the case of the transition in p [52],
indicating that the Shannon entropy of the Fiedler vector is a good indicator of the
structural transition.

5.7.1 Transition-Like Behavior for No Node-Aligned Multiplex
Networks

The structural transition, both in p and in t , is due to an eigenvalue crossing between
the always present eigenvalue mp0 and the next eigenvalue. However, mp0 is an
eigenvalue of the supra-Laplacian L̄ only in the case of node-aligned multiplex
networks, while for no node-aligned multiplex networks, mp0 is only a bound [69].
This means that for no node-aligned multiplex networks a true transition doesn’t
exist. Interesting enough, if we perform a layer degradation by links failure we
observe a similar behavior of the standard deviation as shown in Fig. 5.10.

In the initial regime, the variation is not 0 but its fluctuations are more or less
constant, while in the last regime the fluctuations follow the same behavior of the
true transition of the node-aligned case. Besides, we can observe a phase transition-
like behavior also in the case of continuous degradation, see Fig. 5.11 in which it is
shown the value of the algebraic connectivity.
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Fig. 5.8 Shannon entropy of the Fiedler vector under continuous layer degradation

Edges removed Edges removed

Fig. 5.9 Shannon entropy of the Fiedler vector under discrete layer degradation with descending
(left panel) and ascending (right panel) ordering of the links according to p

Finally, the same happens to the Shannon entropy of the Fiedler vector (Fig. 5.12)
except that now we cannot observe a jump. At variance with traditional single-
layer networks, in which removing links or lowering their weights will cause in
general a finite variation of the algebraic connectivity, for a multiplex network
in the disconnected phase the degradation of layers will not affect the algebraic
connectivity till a critical point is reached. Importantly, this is not the case for the
structural transition triggered by the degradation of the coupling between layers. In
this sense, multiplex networks are more resilient to damages and attacks to their
layer structures than an isolated layer is if they are in the disconnected phase.
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Edges removed

Fig. 5.10 Standard deviation of the algebraic connectivity under discrete layer degradation with
random removals in a no node-aligned multiplex networks

Intralayer weight

Fig. 5.11 Algebraic connectivity of a no node-aligned multiplex
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Intralayer weight

Fig. 5.12 Shannon entropy of the Fiedler vector under contentious layer degradation for a no
node-aligned multiplex

The results shown here are directly applicable also to regular interdependent
networks [44], since the transition is driven by an eigenvalue crossing that also
applies in this case [17, 69].



Chapter 6
Polynomial Eigenvalue Formulation

In the previous chapters, we have dealt with the matricial representation for
multiplex systems. Here, we focus on the matricial representation and explore
the block nature of such representation. As we will show in the following, this
allows us to derive interesting results based on an interpretation of the traditional
eigenvalue problem. More specifically, we will reduce the dimensionality of our
matrices, but increase the power of the characteristic polynomial, i.e., a polynomial
eigenvalue problem. Such an approach may sound counterintuitive at first glance,
but it allows us to relate the quadratic problem for a 2-Layer multiplex system with
the spectra of the aggregated network and derive bounds for the spectra among many
other interesting analytical insights. The main motivation for this approach can be
found in [33, 46, 77]. Finally, we must also mention that this formalism is still
under development. We believe it will allow us to derive new important results for
multilayer network in the future. In other words, it is also a new perspective for the
structural analysis of multilayer networks.

6.1 Definition of the Problem

Here we will focus our attention on 2-Layer node-aligned multiplex network
composed by undirected layer-graphs. In the following sections, we will relax a little
bit those assumptions, but this constraint will be useful for our first analysis of the
problem. In fact, we will define the problem for a general matrix M, in Sect. 6.1.1,
and then constraint it to multiplex networks in Sect. 6.1.2.
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6.1.1 Quadratic Eigenvalue Problem

In addition to the eigenvalue problem, one might also think of a higher order
matricial problem. Define a matrix polynomial of degree 2, also called λ-matrix
[33, 46, 77],

Q(λ) = Aλ2 + Bλ + C, (6.1)

the associated quadratic eigenvalue problem (QEP) is given by

det (Q(λ)) = 0. (6.2)

We emphasize that a quadratic eigenvalue problem is a special case of polynomial
eigenvalue problems [46], for an arbitrary matrix polynomial order in λ.

In addition to the eigenvalues, we have the right and left eigenvectors defined as

Q(λ)x = 0, (6.3)

yT Q(λ) = 0. (6.4)

Without loss of generality, we assume in the following that the eigenvectors are
unitary.

6.1.2 2-Layer Multiplex Networks

A general form of any matrix (adjacency, Laplacian or probability transition) of a
multilayer network composed by two layers is given by a block matrix. Thus, the
standard eigenvalue problem can be expressed as

[
M11 M12

M21 M22

] [
v1

v2

]

= λ

[
v1

v2

]

, (6.5)

where M12 = MT
21, since we assume undirected edges. Interpreting it as a system

of equations and isolating v1 on the first row, the dependence of the components of
the eigenvector is expressed as

v1 = −M−1
21 (M22 − λI)v2. (6.6)

Finally, inserting it on the second row we have
[
(M11 − λI)M−1

21 (M22 − λI) − M12

]
v2 = 0, (6.7)

which is a QEP, whose coefficient matrices are

A = M−1
12 , (6.8)
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B = −
(

M11M−1
12 + M−1

12 M22

)
, (6.9)

C = M11M−1
12 M22 − M12 (6.10)

In our context, exchanging M11 and M22 does not change the system, neither the
solutions. However, if the polynomial considering the first layer is Q(λ), then,
for the second one (relabeling the layer indices) it is Q(λ)T . In this way we
found a relation between the right and left eigenvectors and these two possible
configurations of our system. Formally, such observation implies x = v2 and
y = v1. Note, however, that if the right eigenvector x is normalized, then the
eigenvector of the standard eigenvalue problem, [y xT ]T , is not normalized. In
the following, we assume that x is unitary to simplify the equations. Although
in this chapter we focus on static networks where only the coupling matrices are
a function of a coupling parameter, all the presented formalism can be extended
to more general problems. Another example of application of this formalism was
shown in Sect. 5.5.1, where we analyzed the problem of layer weight degradation.

6.2 Spectral Analysis

Up to this point, we have defined our main mathematical tools, making as less
constraints as possible. Now we restrict ourselves on diagonal coupling matrices
and assume a linear function of the parameter p, M12 = pD, where D is a diagonal
invertible matrix (such constraint will be relaxed later). Then, defining the scalar
equation that describes each eigenvalue as the product of Q(λ) by its left and right
eigenvectors, we have

yT Q(λ)x = a(yT , x)λ2 + b(yT , x)λ + c(yT , x) = 0, (6.11)

where a(yT , x) = yT Ax, b(yT , x) = yT Bx, and c(yT , x) = yT Cx. Since this is a
scalar quadratic equation, its solution is given by

λ±(x) = −b(yT , x) ±√
�(yT , x)

2a(yT , x)
, (6.12)

where �(yT , x) = b(yT , x)2 − 4a(yT , x)c(yT , x). Note that for each pair of
right and left eigenvectors we have two possible equations, but just one of them
is an eigenvalue of Q(λ). Additionally, differentiating Eq. (6.11) by p we obtain
information on how the eigenvalues change as p changes. Formally, we have

∂yT Q(λ)x

∂p
= yT ∂Q(λ)

∂p
x + yT Q(λ)

dx

dp
+ dy

dp
Q(λ)x = 0, (6.13)
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where

∂Q(λ)

∂p
= 2λD−1 dλ

dp
+ dλ

dp
B + λ

∂B
∂p

+ ∂C
∂p

. (6.14)

Note that the eigenvalues and eigenvectors are also a function of p. Moreover,

observe that for non-crossing points the relations
dyT

dp
Q(λ)x = 0 and yT Q(λ)

dx

dp
=

0 hold, since the derivatives are bounded for non-crossing points. However, on the
crossings we have two eigenvectors associated with the same eigenvalue, which
imply two solutions of the derivatives. Then, isolating the derivative of λ we have

dλ

dp
=

yT

(

−λ
∂B
∂p

− ∂C
∂p

)

x

yT
(
2λD−1 + B

)
x

. (6.15)

As an application, such relation can be used to drive a system through different
regimes. For instance, considering the adjacency matrix, one can use this equation
in order to choose an edge or set of edges to be removed (or weighted) in order
to reduce the leading eigenvalue and consequently the critical point of spreading
processes, such as epidemic spreading. The same also applies to the Laplacian.
Obviously, the matrix under study depends on the process. Aside from that,
another application would be the design of a numerical method to follow the right
eigenvalues as a function of p.

6.2.1 Bounds

Aiming to find bounds to Eq. (6.12), we study the scalar polynomial defined by
xT Q(λ)x = 0, where x is an eigenvector (left or right), which guarantees that
the polynomial is equal to zero. In order to simplify the problem we multiply
Q(λ) by M12, obtaining a monic polynomial matrix. Then we must bound the
terms b(xT , x) and �(xT , x), which will allow us to bound both solutions. Those
terms can be bounded by the numerical range of the matrices in which they
are related. The numerical range [38] is formally defined for any matrix X as
F(X) = {

xT Xx : x ∈ C and xT x = 1
}
. Additionally, σ(X) ⊆ F(X), where σ(X)

is in the set of eigenvalues of X. Moreover, if X is an Hermitian matrix xT Xx is the
Rayleigh quotient [38] of X, which implies λ1(X) ≤ xT Xx ≤ λN(X). Finally,
to bound a non-Hermitian matrix we use the relation of the spectral norm and
the numerical range [38], given as 1

2 |||X|||2 ≤ r(X) ≤ |||X|||2, where r(X) is its
numerical radius, defined as r(X) = max‖x‖2=1

|x∗Xx| = max{|z| : z ∈ F(X)}.
Consider the term b(xT , x), which is bounded by

− |||B|||2 ≤ b(xT , x) ≤ |||B|||2, (6.16)
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however, in many cases B is an Hermitian matrix, allowing us to improve this
bound to

λmin(B) ≤ b(xT , x) ≤ λmax(B) (6.17)

More precisely, observe that B is often related to the aggregated network, thus
enlightening the connection between both scales.

Next, we evaluate �(xT , x) = (xT Bx)2 − 4xT Cx. Firstly, we can analyze the
term (xT Bx)2, by observing that: (a) min{μi} ≤ xT Bx ≤ max{μi}, (b) min{μ2

i } ≤
xB2x ≤ max{μ2

i }, and (c) min{|μi |}2 ≤ (xT Bx)2 ≤ max{|μi |}2, since min{μ2
i } =

min{|μi |}2, hence, from (b) and (c), bounding (xT Bx)2 is equivalent to bounding
xB2x. Secondly, we can factorize �(xT , x) = xT (B2 − 4C)x and defining the
matrix � = B2 − 4C, we can focus on the problem xT �x instead of the initial
definition of �(xT , x), since both have the same bounds. Besides, since in most of
the problems on networks we are dealing with symmetric matrices, we might also
impose that �(xT , x) ≥ 0 because the spectra is real. In summary we have

0 ≤ �(xT , x) ≤ |||�|||2. (6.18)

The bounds can be further improved when applied to the analysis of particular
matrices (adjacency, Laplacian, probability transition, . . . ), since their particularities
also impose constraints on the solutions and can be explored to improve those
results.

6.2.2 Comments on Symmetric Problems: HQEP

The matrix polynomial defined by the matrix coefficients presented in (6.8) are not
symmetric in most of the cases; however, a class of problems that arise naturally is
defined by M12 = pI. In this case the matrices A and B are Hermitian; however,
C is not. On the other hand, we can use the Toeplitz decomposition [38] in
order to analyze a simplified problem. Such decomposition states that any square
matrix can be uniquely written as the sum an Hermitian (X = X∗) and a skew
Hermitian matrix (X = −X∗) as X = 1

2 (X1 + X2
∗) + 1

2 (X1 − X2
∗). It allows us

to decompose pC = 1
2 (M11M22 + M22M11) + 1

2 (M11M22 − M22M11) + p2I.
In this way we can rewrite our QEP into two parts, one composed by Hermitian
matrices, which is called Hyperbolic Quadratic Eigenvalue Problem (HQEP) [77],
and a skew Hermitian matrix, that can be interpreted as a perturbation if the
layers are similar. The advantage of such an approach is that HQEP presents
interesting features, for instance the left and right eigenvalues coincide. The natural
consequence of the perturbation theory is that the matrix pC of the HQEP is
perturbed by 1

2 (M11M22 − M22M11) and such a matrix norm goes to zero as the
layers are more and more similar. From the Bauer and Fike theorem [38] we can
write a quality function for the approximation of the perturbed matrix C as
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∣
∣
∣λ − λ̂

∣
∣
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(M11M22 − M22M11)

∣
∣
∣
∣

∣
∣
∣
∣

∣
∣
∣
∣, (6.19)

where λ̂ is the eigenvalue of C = CH + CS, CH = U
U−1 and κ(·) is the condition
number with respect to the matrix norm |||·|||. Considering the spectral norm |||·|||2
we have κ(X) =

∣
∣
∣
σmax(X)
σmin(X)

∣
∣
∣. If κ(U) is near 1, small perturbations imply small

changes on the eigenvalues. On the other hand, large values of κ(U) suggest a poor
approximation. Observe that such an analysis concerns only the matrix C and not
the whole QEP; however, it can be an estimate of the quality of the approximation
and show that the general solution interpolates between a HQEP to a general QEP.

6.2.3 Limits for Sparse Inter-Layer Coupling

So far we assumed a node-aligned multiplex, whose coupling matrix M12 fulfill the
invertibility condition, which is a necessary condition to formally define the QEP
problem. However, we can use the limit of Dii = ε → 0 in order to obtain results for
the sparse coupling. Observe that Eq. (6.1) can be analyzed in two different steps,
first calculating the limit of decoupled nodes and next the remaining system. The
first limit is analyzed as follows. From (6.1) the absent edges are factorized as

p−1ε−1D̃(i)λ2−p−1ε−1
(

M11D̃(i)+D̃(i)M22

)
λ+p−1ε−1M11D̃(i)M22−pD = 0,

(6.20)
where D̃ = εD−1. Multiplying Eq. (6.20) by pε and using the following limit

lim
ε→0

[
D̃
]

jj
=
⎧
⎨

⎩

1 if
[
D−1

]
jj

∈ O
(

1
ε

)
,

0 otherwise.
(6.21)

we get

D̃λ2 −
(

M11D̃ + D̃M22

)
λ + M11D̃M22 = 0, (6.22)

where the term of order O (ε) in D vanishes in the limit ε → 0. The main trick of
this manipulation is to build a matrix, whose inverse does not diverge when ε tends
to zero. In such a matrix, all the elements associated with non-coupled nodes vanish,
allowing us to extract information only about part of the spectra.

Observe that D̃ = limε→0
[
εD−1

] = I if both layers are decoupled and the
polynomial equation can be factorized as (M11 − λI) (M22 − λI) = 0, whose
solutions are the union of the solution of the standard eigenvalue problem of each
layer. An important observation is that the number of nodes that are not connected
to the other layer is also the number of eigenvalues that do not change as a function
of p.

As mentioned before, Eq. (6.22) only presents the solution of the nodes that do
not have any counterpart on the other layer. In order to calculate the remaining
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solutions we have to redefine the original problem in terms of the Moore–Penrose
pseudoinverse, denoted by X†, for a matrix X. Denoting by D̄ = p−1D† we have
D̄jj = p−1D−1

jj if Djj �= 0 and D̄jj = 0 otherwise. Observe that the zeros of D̄jj

are ones in D̃jj .
For the sake of simplicity, in the following sections we assume that M12 is

invertible; however, the strategy mentioned above can be applied if it is not the case.
From the computational point of view, we can reduce the cost to calculate the whole
spectra as a function of a closed range of p by separating it into two components,
where a subset is constant and the remaining subset varies.

6.3 Applications

Our main formalism is now developed and we will show some applications on the
Laplacian and adjacency matrices in Sects. 6.3.1 and 6.3.2, respectively. In both
cases, we show bounds for the spectra and also properties of the derivatives of the
eigenvalues as a function of the coupling parameter p. Additionally, in the Laplacian
case we were able to discuss another way to calculate the structural transition [63],
however, avoiding the mathematical difficulties found in [68]. Finally, note that
those matrices are related to many dynamical processes, for instance, epidemic
spreading, for the adjacency matrix and diffusion and synchronization of coupled
oscillators in the case of a Laplacian.

6.3.1 Supra-Laplacian Matrix

The most general Laplacian matrix considering a diagonal coupling matrix is
M12 = −pD, where D is a diagonal matrix and Dii �= 0 (for a comment on
sparse coupling, see Sect. 6.2.3). The QEP of such a matrix is defined by A = D−1,
B = − (LaD−1 + D−1Lb + 2pI

)
and C = LaD−1Lb + p (La + Lb). The analysis

of this QEP is not trivial, since the matrices are not symmetric; however, the
comparison with the diagonal coupling can give us some insights about the behavior
of more general cases. For the sake of simplicity, let us consider the simplest case,
where D = I. Thus, we have a monic polynomial matrix, where B is the aggregated
network, which is semi-positive definite. Besides, C is a matrix that contains the
product of both layers and accounts for similarities between them.

6.3.1.1 Structural Transition

Firstly, we discuss the structural transition presented in [63] on the Laplacian
matrix. However, here we calculate the exact transition points using the QEP
formulation. Note that we can easily derive such transition points using our
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formalism. It is noteworthy that those transition points were also calculated
in [68] using two different methods: eigenvalue sensitivity analysis and a Shur’s
complement approach. Both derivations are quite complicated, contrasting with our
approach, where the solutions are given using simple arguments. Note, however,
that our approach yields a different expression if compared to the method presented
in [68], but both expressions lead to the same final result. We do not prove this
equivalence mathematically but just verified their equivalence numerically.

To begin with, we must recall that λ = 2p is an eigenvalue of the supra-Laplacian
and the crossing points are a consequence of this eigenvalue crossing the bounded
part of the supra-Laplacian spectra, producing the so-called structural transitions. In
this way, from our definition of QEP, we have that

det (Q(2p)) = det (La + Lb) det
(

LbLa (La + Lb)† − pI
)

, (6.23)

which have two possible solutions: (1) det (La + Lb) = 0, which is always
true, since the sum of two Laplacian matrices is also the Laplacian of the
aggregated network and also has determinant equal to zero and (2) the solution
of det

(
LbLa (La + Lb)† − pI

)
, which are the crossing points or eigenvalues of

multiplicity larger than one. Since it is also an eigenvalue problem in terms of
p, we have p∗ = λi

(
LbLa (La + Lb)†). There are N possible values of p that

solve (6.23), each one representing one crossing. Observe that it only crosses the
N lowest eigenvalues. The first crossing is trivial, at p = 0, and the second one
is the so-called structural transition [63], which impacts on dynamical processes.
As previously mentioned, the obtained expression is different from the previous one
presented in the literature, derived in [68]; however, both exhibit the same solutions
as we numerically observe.

6.3.1.2 Bounds

The QEP of the supra-Laplacian can be bounded considering the individual bounds
of B, which is semi-positive definite Hermitian matrix, leading to

2p ≤ −b(xT , x) ≤ 2p + λmax(La + Lb). (6.24)

Besides, the discriminant function is also bounded by

min
{
xT
(
(La − Lb)2 − 2p (La + Lb) + 4p2I

)
x
}
≤ �(xT , x)

�(xT , x) ≤ max
{
x
(
(La − Lb)2

)
+ 4p2I

}
, (6.25)

where the upper bound can be defined as a function of the spectral properties of
(La − Lb)2. On the other hand, regarding the lower bound, it can be improved
by realizing that the matrix � = (La − Lb)2 − 2p (La + Lb) + 4p2I, defined
in Sect. 6.2.1, is semi-positive definite for undirected networks, � � 0. Thus,
(La − Lb)2−2p (La + Lb)+4p2I � 0, hence (La − Lb)2+4p2I � 2p (La + Lb),
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implying that λi

(
(La − Lb)2 + 4p2I

) ≥ λi (2p (La + Lb)).1 From these proper-
ties, we can establish the lower bound as 4p2. Formally,

4p2 ≤ �(xT , x) ≤ λmax

(
(La − Lb)2

)
+ 4p2 (6.26)

The previous bounds imply that in the asymptotic analysis formalism we have
�(xT , x) ∈ �(p2). Moreover, observe that the lower and upper bounds converge to
each other as the layers are similar. Finally, combining the formerly obtained bounds
we have,

0 ≤ λ−(xT , x) ≤ 1
2λmax(La + Lb) (6.27)

and

2p ≤ λ+(xT , x) ≤ p + λmax(La+Lb)
2 +

√

λmax

(
(La−Lb)2

)
+4p2

2 . (6.28)

Interestingly, these bounds can be analyzed in terms of their asymptotic behavior
(approximation), where for a sufficiently large value of p they can be approxi-
mated to

0 ≤ λ−(xT , x) ≤ λmax(La + Lb)

2
, (6.29)

2p ≤ λ+(xT , x) ≤ 2p + λmax(La + Lb)

2
. (6.30)

Observe that from the asymptotic point of view we have λ−(x) ∈ �(1) and λ+(x) ∈
�(p). Additionally, we can establish a condition when such bounds can be adopted.

To round up this section, we present an example in Fig. 6.1, where we present
the evaluation of the eigenvalues as a function of the coupling parameter p of
a multiplex network composed by two Erdös-Renyi layers with n = 103 nodes,
the first layer having average degree 〈k〉 = 12, while for the second 〈k〉 = 16.
Furthermore, we also observe that as p → ∞ it also tends to the spectra of the
network of layers, as expected by the interlacing properties.

6.3.1.3 Spectral Properties as a Function of the Coupling p

In this section, we analyze the spectral behavior of the supra-Laplacian matrix as a
function of the coupling parameter. In other words, in this section, we explore and
contextualize the analysis performed in Sect. 6.2. As usual, multilayer matrices can
be understood as a function of the coupling parameter, p, allowing us to study their
structural behavior as a function of this parameter.

1In addition, let us recall that if M1 − M2 � 0, for semi-positive matrices M1 and M2, M1 � M2,
then λi(M1) ≥ λi(M2), where the eigenvalues are in descending order.
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Fig. 6.1 Evaluation of the
eigenvalues λ(L) as a
function of the coupling
parameter p of a multiplex
network composed by two
Erdös-Renyi layers with
n = 103 nodes and the first
layer have average degree
〈k〉 = 12, while the second
with 〈k〉 = 16. The
continuous lines are the upper
bounds, while the dashed
lines the lower bounds
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First of all, consider the simplest case, where D = I. In such a case we have
a monic polynomial matrix, where B is the aggregated network, which is semi-
positive definite. Besides, C is a matrix that contains the product of both layers and
accounts for similarities between them. Hence, (6.15) can be expressed as

dλ

dp
=

(
2λyT x − b̂(yT , x)

)

(
2(λ − p)yT x − b̂(yT , x)

) , (6.31)

where b̂(yT , x) = yT (La + Lb)x and yT x = cos(θ) is the cosine of the angle
between the left and the right eigenvectors of our QEP. Note that part of the spectra

has
dλ

dp
→ 0, while for the other part

dλ

dp
→ 2 as p increases, which can be proved

as follows. Firstly, suppose that λ is constant as a function of p, then
dλ

dp
→ 0

because the denominator grows as a function of p and the numerator is bounded as

supposed. Secondly, suppose that λ grows with pr , where r < 1. In this case
dλ

dp
→

0, by the same arguments as before, since the linear function of the denominator

dominates it. However, if r = 1 we have
dλ

dp
→ 2, since both grow linearly. Finally,

with pr , where r > 1, both the numerator and the denominator are dominated by pr ,

which implies that for large p the derivative
dλ

dp
→ 1. This is also a contradiction,

since it was supposed to be a linear function of p. In this way, we conclude that
the derivatives of λ, for large values of p, cannot grow faster than linearly and their
growth will be one of two values, 0 or 2. Those results are in agreement with the
previously obtained bounds. Additionally, as an example, in Fig. 6.1 we can also
observe such a behavior.

In addition to the identity coupling matrix, we also evaluate the sparse coupling
case, whose analytical counterpart was presented in Sect. 6.2.3. As predicted, each
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uncoupled node results in a pair of eigenvalues that does not depend on p. Due to
the nature of the Laplacian matrix, where just one eigenvalue varies with p, while
the other remains bounded, the set of bounded eigenvalues increases by one. For
example, if we have ñ uncoupled nodes, the bounded part have n + ñ eigenvalues,
while the “unbounded” part have n − ñ eigenvalues. Note that the upper bound
for the bounded part is not 1

2λmax(La + Lb) anymore. However, the general upper
bound for D = I seems to be also an upper bound for the sparse problem, as we
numerically verified in our case. The figures for these experiments are not shown
since they are visually similar to Fig. 6.1.

6.3.2 Supra-Adjacency Matrix

In addition to the supra-Laplacian case, in this section we extend our analysis
for the supra-adjacency matrix, whose general QEP is defined as A = D−1,
B = − (AaD−1 + D−1Ab

)
and C = AaD−1Ab −p2D. The analysis of such QEP is

not trivial since the matrices can be asymmetric; however, the comparison with the
diagonal coupling can help with the analysis of more general cases. For the sake of
simplicity, let us consider the simplest case, where D = I. In such a case, we have a
monic polynomial matrix, where B is the aggregated network. Besides, C is a matrix
that contains the product of both layers and accounts for similarities between them.
Summarizing, in this section, we follow a similar approach as previously done for
the supra-Laplacian case, finding bounds for the spectra and evaluating its behavior
as a function of the coupling parameter p.

6.3.2.1 Bounds

Regarding the D = I case, we can also find bounds for the spectral distribution of
the adjacency matrix. Beginning with B, we can bound it based on its eigenvalues as

λmin(Aa + Ab) ≤ −b(x) ≤ λmax(Aa + Ab). (6.32)

Similar to the case of the supra-Laplacian, for the discriminant we have

λmin

(
(Aa − Ab)2

)
≤ �(xT , x) ≤ λmax

(
(Aa − Ab)2

)
.

Next, combining these bounds, we can bound both solutions by

1

2

(

λmin(Aa + Ab) −
√

λmax
(
(Aa − Ab)2)+ 4p2

)

≤ λ−

≤ 1

2

(

λmax(Aa + Ab) −
√

λmax
(
(Aa − Ab)2)+ 4p2

)

. (6.33)
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and

1

2

(

λmin(Aa + Ab) +
√

λmax
(
(Aa − Ab)2)+ 4p2

)

≤ λ+

≤ 1

2

(

λmax(Aa + Ab) +
√

λmax
(
(Aa − Ab)2)+ 4p2

)

, (6.34)

which asymptotically converges (approximation) to

p ± λmin(Aa + Ab)

2
≤ λ±(x) ≤ p ± λmax(Aa + Ab)

2
. (6.35)

In other words, the spectral density of the adjacency matrix is bimodal and one
part of the eigenvalues grows linearly with p, while the other part decreases at the
same rate.

In Fig. 6.2 we show the previously obtained bounds for a range of values
of p. Interestingly, we observe that the obtained bounds seem to present a good
visual correspondence with the expected behavior of our spectral distribution.
Additionally, we also note that as p → ∞, it also tends to the spectra of the network
of layers, as expected by the interlacing properties.

6.3.2.2 Spectral Properties as a Function of the Coupling p

Aside from the bounds, we also intend to better understand the spectral behavior as
a function of p. In this section, we focus on the first derivative as a function of the
coupling. From Eq. (6.15) and following a similar analysis as previously done, the
first derivative is given by

Fig. 6.2 Evaluation of the
eigenvalues λ(A) as a
function of the coupling
parameter p of a multiplex
network composed by two
Erdös Renyi layers with
n = 103 nodes and the first
layer have average degree
〈k〉 = 12, while the second
with 〈k〉 = 16. The
continuous lines are the upper
bounds, while the dashed
lines the lower bounds
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dλ

dp
= 2pyT Dx
(
2λyT D−1x + b(yT , x)

) , (6.36)

where x and yT are the right and left eigenvectors associated with λ.
Focusing on D = I and using similar results as applied to the Laplacian case,

we can suppose that λ is a constant function of p or a function of pr with r < 1;

however, it would give us
dλ

dp
∼ p, which is a contradiction. Next, we can suppose

that it is a linear function of p, which implies
dλ

dp
→ ±1, depending on the sign of

the linear coefficient. Finally, supposing that it is a function of pr with r > 1 we

obtain that
dλ

dp
→ 0, since the denominator grows faster than the numerator, which

again is a contradiction. Therefore, we infer that the first derivative of λ can assume

only
dλ

dp
→ ±1.

Next, we evaluate the sparse coupling case, whose analytical study was presented
in Sect. 6.2.3. As predicted, each uncoupled node results in a pair of eigenvalues that
does not depend on p. Thus, if we have ñ uncoupled nodes, the central part of the
spectra will have 2ñ eigenvalues that do not change as a function of p and n − ñ

that grow linearly with p, while the other n− ñ eigenvalues decay with −p. This is
illustrated in Fig. 6.3. Interestingly, also note that the obtained bound for the D = I
case seems to perform as well as on the case of Fig. 6.2, suggesting that they are
also applicable in this context.
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Fig. 6.3 Evaluation of the eigenvalues λ(A) as a function of the coupling parameter p of a
multiplex network composed by two Erdös Renyi layers with n = 103 nodes and the first layer
have average degree 〈k〉 = 12, while the second with 〈k〉 = 16. The coupling matrix is sparse. The
continuous lines is the adapted upper bound, the dashed line is the adapted lower bound, and the
dotted line was obtained experimentally at the largest value of p and extended for reference



Chapter 7
Tensorial Representation

In the previous chapters, we presented and explored the matricial representation
of multiplex networks. Complementary to that formalism, in this chapter, we
introduce a formalism based on higher order tensors. In the case of node-aligned
multiplex networks, the two representations are completely equivalent, since the
supra-adjacency matrix is a particular flattening of the adjacency tensor. Tensors are
elegant mathematical objects that generalize the concepts of scalars, vectors, and
matrices. A tensorial representation provides a natural and concise framework for
modeling and solving multidimensional problems and is widely used in different
fields, from linear and multilinear algebra to physics. Here we will present the ten-
sorial projections, and next we will analyze the spectral properties of the adjacency
tensor, showing the mapping between the tensorial and the matricial representation.
Finally, we show an application of this notation to obtain a concise expression
for degree–degree correlation on multilayered systems in Sect. 7.4.1, allowing the
characterization of different levels of correlation. The original introduction to
the tensorial notation for multiplex networks is in [25]. We adopt the Einstein
summation convention, in order to have more compact equations: if two indices are
repeated, where one is a superscript and the other a subscript, then such operation
implies a summation. Aside from that, the result is a tensor whose rank lowers by 2.
For instance, Aα

βA
γ
α =∑

α Aα
βA

γ
α . We use Greek letters to indicate the components

of a tensor. In addition, we use a tilde (·̃) to denote the components related to the
layers, with dimension m, while the components without tilde have dimension n and
are related to the nodes.
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7.1 Tensorial Representation

A general multilayer network is represented as the fourth-order adjacency tensor
M ∈ R

n×n×m×m, which can represent several relations between nodes [25].
Formally we have

Mαδ̃
βγ̃ =

m∑

h̃,k̃=1

Cα
β (h̃k̃)Eδ̃

γ̃ (h̃k̃) =
m∑

h̃,k̃=1

n∑

i,j=1

wij (h̃k̃)Eαδ̃
βγ̃ (ij h̃k̃), (7.1)

where E
γ̃

δ̃
(h̃k̃) ∈ R

m×m and Eαδ̃
βγ̃

(ij h̃k̃) ∈ R
n×n×m×m indicates the tensor in its

respective canonical basis.
In addition to the tensor M ∈ R

n×n×m×m, we are usually interested in a weighted
tensor, in particular the case in which inter- and intra-layer edges have different
weights. Such a tensor is denoted as

Rαγ̃

βδ̃
(λ, η) = M

αη̃

βσ̃
Eσ̃

η̃ (γ̃ δ̃)δ
γ̃

δ̃
+ η

λ
M

αη̃

βσ̃
Eσ̃

η̃ (γ̃ δ̃)(U
γ̃

δ̃
− δ

γ̃

δ̃
) (7.2)

and we call it the supra-contact tensor, whose name comes from its definition in the
case of epidemic spreading [24]. Note that the intra-layer edges are weighted by
η, while the inter-layer edges are weighted by λ. Furthermore, since a scalar does
not change the spectral properties of our tensor—it just rescales the eigenvalues—
we divide it by λ, remaining with just one parameter, the so-called coupling
parameter, η

λ
.

7.2 Tensorial Projections

One of the advantages of the tensorial representation is the easiness with which one
can consider projections that allow to have very compact equations. In the context
of multilayer networks, those projections often have a physical meaning, allowing
to characterize different levels of the system. First of all, observe that we can extract
one layer by projecting the tensor Mαδ̃

βγ̃
to the canonical tensor E

γ̃

δ̃
(r̃ r̃). Formally,

from Ref. [25] we have

Mαδ̃
βγ̃ E

γ̃

δ̃
(r̃ r̃) = Cα

β (r̃ r̃) = Aα
β(r̃), (7.3)

where r̃ ∈ {1, 2, . . . , m} is the selected layer and Aα
β(r̃) is the adjacency matrix

(rank-2 tensor). Moreover, aiming at having more compact and clear equations we
define the all-one tensors uα ∈ R

n and Uβδ̃ ∈ R
n×m. Here, we restrict our analysis

to multilayer networks with diagonal couplings [44], of which mutliplex networks
are a subclass. Roughly speaking, each node can have at most one counterpart on
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the other layers. In addition, for simplicity, we focus on unweighted and undirected
connected networks in which there is a path from each node to all other nodes.

The network of layers characterizes the topology of the system in terms of the
mean connectivity between layers, see Chap. 2. Formally, in tensorial notation, we
have,

�
γ̃

δ̃
= M

αγ̃

βδ̃
Uβ

α , (7.4)

where �
γ̃

δ̃
∈ R

m×m. Note that such a network presents self-loops, which are
weighted by the number of edges in the layer. Additionally, since we assume that
the layers have the same number of nodes, the edges of the network of layers have
weights equal to the number of nodes n.

Another important reduction is the so-called projection [25]. Such network
aggregates all the information into one layer, including self-loops that stand for the
number of layers in which a node appears. Formally, we have

P α
β = Mαδ̃

βγ̃ U
γ̃

δ̃
, (7.5)

where P α
β ∈ R

n×n. Complementary, a version of the projection without self-edges
is called the overlay network and is given as the contraction over the layers [25],
i.e.

Oα
β = M

αγ̃

βγ̃
. (7.6)

Observe that the overlay network does not consider the contribution of the inter-
layer connections, whereas the projection does. As we will see later, comparisons
between the assortativity of those two different representations of the system reveal
the key role of such inter-links.

7.3 Spectral Analysis of R(λ, η)

A deep analysis of the spectral properties of the adjacency tensor R(λ, η) can
inform us about the structure of multilayer networks and, consequently, give
us information about dynamical processes occurring on top of such systems.
First of all, the generalization of the eigenvector problem to the eigentensor is
described in Sect. 7.3.1, allowing us to use some well-established linear algebra
tools. Additionally, in this section, we generalize the spectral results of interlacing,
obtained in [20, 69] and presented in Chap. 4, to the tensorial description adopted
here. Besides, we also make use of the inverse participation ratio, IPR(
), as a
measurement of eigenvalue localization [24, 34], a well-known tool to study the
eigenvectors, which also provides important insights for epidemic processes. As a
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convention, we assume that the eigenvalues are ordered as 
1 ≥ 
2 ≥ . . . ≥ 
nm

and the individual layer eigenvalues are denoted as 
l
i . Note that, in contrast to

Chap. 4, here we use a different eigenvalue order.

7.3.1 Eigenvalue Problem

The usual eigenvalue problem can be generalized to the case of a rank-4 tensor. In
the case of the supra-contact tensor, it reads

Rαγ̃

βδ̃
fαγ̃ (
) = 
fβδ̃(
), (7.7)

where 
 is an eigenvalue and fβδ̃(
) is the corresponding eigentensor. In addition,
we are assuming that the eigentensors form an orthonormal basis. Importantly, the
supra-contact matrix, R̄, in [18] can be understood as a flattening of the tensor
Rαγ̃

βδ̃
(λ, η). Consequently, all the results for R̄ also apply to the tensor R. As argued

in [25], that supra-adjacency matrix corresponds to unique unfolding of the fourth-
order tensor M yielding square matrices. Following this unique mapping we have
the correspondence of the eigensystems.

7.3.2 Inverse Participation Ratio

In addition to the eigenvalues, we can study the behavior of the eigenvectors in terms
of their localization properties, i.e., how the entries of a normalized eigenvector are
distributed. One way to study this phenomenon is using the inverse participation
ratio, which is also used in the context of epidemic spreading in [24, 34].
Mathematically, the inverse participation ratio is defined as

IPR(
) ≡
(
fβδ̃(
)

)4
Uβδ̃. (7.8)

In the limit of nm → ∞, if the IPR(
) is of order O(1), then the eigentensor
is localized and the components of fβδ̃(
) are of order O(1) only for a few
nodes. On the other hand, if IPR(
) → 0 then this state is delocalized and

the components of fβδ̃(
) ∼ O
(

1√
nm

)
. Additionally, another possible scenario

completely different from the traditional single layer one is possible if we consider
a layer-wise localization [24], i.e., localization on layers, instead of on a fraction of
nodes. In such a case, the IPR(
) will be of order O(1/n) in the localized phase,
whereas it will be of order O(1/nm) in the delocalized phase. A deeper analysis of
this scenario is presented in Sect. 7.3.5.5.
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7.3.3 Interlacing Properties

Invoking the unique mapping presented on the previous subsection and considering
the results of Sánchez-García et al. and Cozzo et al. [20, 69], we can use the
interlacing properties to relate the spectra of the multilayer network with the spectra
of the network of layers. First, we define the normalized network of layers (see
Sect. 7.2) in terms of the supra contact tensor as

�
γ̃

δ̃
(λ, η) = 1

n
Rαγ̃

βδ̃
(λ, η)Uβ

α , (7.9)

where we are implicitly assuming a multilayer network in which the layers have
the same number of nodes (the demonstration that the matrix used in [69] is an
unfolding of such a tensor is shown in Sect. 7.3.4 in order to have a more fluid text).
Additionally, let’s denote by μ1 ≥ μ2 ≥ . . . ≥ μm the ordered eigenvalues of
�

γ̃

δ̃
(λ, η). Following [69], the interlacing properties imply


nm−m+j ≤ μj ≤ 
j , (7.10)

for j = m, . . . , 1. As examples, Table 7.1 shows the spectrum of three simple
networks of layers that can be computed analytically: a line with two and three nodes
and a triangle. Figure 7.1 shows a schematic illustration of those three multilayer
networks.

Furthermore, using similar arguments we can also obtain results for the normal-
ized projection, formally given as

Pα
β = 1

m
Rαγ̃

βδ̃
(λ, η)U δ̃

γ̃ , (7.11)

Table 7.1 Structure and spectra of the normalized network of layers �
γ̃

δ̃
(λ, η)

Network �
γ̃

δ̃
(λ, η) Eigenvalues

Line with two nodes [
〈kl=1〉 η

λ
η
λ

〈kl=2〉

] 〈k〉 − η
λ

〈k〉 + η
λ

Line with three nodes ⎡

⎢
⎣

〈kl=1〉 η
λ

0
η
λ

〈kl=2〉 η
λ

0 η
λ

〈kl=3〉

⎤

⎥
⎦

〈k〉
〈k〉 − √

2 η
λ

〈k〉 + √
2 η

λ

Multiplex ⎡

⎢
⎣

〈kl=1〉 η
λ

η
λ

η
λ

〈kl=2〉 η
λ

η
λ

η
λ

〈kl=3〉

⎤

⎥
⎦

〈k〉 − η
λ

〈k〉 − η
λ

〈k〉 + 2 η
λ

Assuming that the average degree of each layer, 〈kl〉, is the same, i.e., 〈kl〉 = 〈k〉,∀l
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A B C

A

B

C

Fig. 7.1 Schematic illustration of the three multilayer networks cases considered as examples.
Top panels represent the original networks which give rise to three distinct configurations for the
networks of layers. See the text for more details

whose ordered eigenvalues, denoted by ν1 ≥ ν2 ≥ . . . ≥ νm, also interlace those of
the supra-contact tensor satisfying


nm−n+j ≤ νj ≤ 
j , (7.12)

for j = n, . . . , 1. Finally, the eigenvalues of the adjacency tensor of an extracted
layer also interlaces those of the parent multilayer networks, yielding


nm−n+j ≤ 
l
j ≤ 
j , (7.13)

for j = n, . . . , 1. These results show that the largest eigenvalue of the multilayer
adjacency tensor is always larger than or equal to all of the eigenvalues of the
individual isolated layers as well as that of the network of layers.

7.3.4 Proof of Eq. (7.9)

In this subsection we show the equivalence of the results presented in [20, 69],
presented here in Chap. 4, and Eq. (7.9). Consider the matricial representation of a
multilayer network, given by

Ā =
⊕

α

Aα + C =

⎡

⎢
⎢
⎢
⎣

A1 C12 · · · C1m

C21 A2 · · · C2m

...
...

. . .
...

Cm1 Cm2 · · · Am

⎤

⎥
⎥
⎥
⎦

(7.14)
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where Ā ∈ R
nm×nm, Aα ∈ R

n×n is the adjacency matrix of the layer α ∈
{1, 2, . . . m} and C is a coupling matrix (see Chap. 2). Since we assume multilayer
networks in which the layers have the same number of nodes we have Cαβ = I if
layers α and β are coupled. We assume a partition of such network, represented by
S ∈ R

nm×m, which is the characteristic matrix of such partition, where Sij = 1 if
i ∈ Vj and zero otherwise (Vj is the partition of the network of layers).

In order to use the results of Sánchez-García et al. and Cozzo et al. [20, 69] one
has to prove that the network of layers contact matrix R̃ is an unfolding of our tensor
�

γ̃

δ̃
(λ, η), with R̃ formally given by

R̃ = �−1ST ĀS, (7.15)

where � is a diagonal matrix with normalizing constants (for more, see Ref. [20,
69]). In words, the product ĀS is a summation over the blocks of the matrix Ā,
resulting in a matrix with the degree of each node. The subsequent left product with
ST imposes another summation, whose result is a matrix composed by the sum of
all elements of the blocks. Finally, the product by �−1 normalizes the result by 1

n
.

Formally we have,

ĀS =

⎡

⎢
⎢
⎢
⎣

k11 k12 · · · k1m

k21 k22 · · · k2m

...
...

. . .
...

km1 km2 · · · kmm,

⎤

⎥
⎥
⎥
⎦

(7.16)

where kij ∈ R
n×1 is a vector with the number of edges emanating from each node

on layer i to layer j and ĀS ∈ R
nm×m. Then,

ST ĀS =

⎡

⎢
⎢
⎢
⎣

∑
k11 ∑

k12 · · · ∑ k1m

∑
k21 ∑

k22 · · · ∑ k2m

...
...

. . .
...

∑
km1 ∑ km2 · · · ∑ kmm,

⎤

⎥
⎥
⎥
⎦

(7.17)

where
∑

kij ∈ R are scalars with the number of edges that connect a node on layer
i to a node on layer j . Finally, the product by �−1 introduces the average degree
instead of the summation, producing the same results as Eq. (7.9).

7.3.5 2-Layer Multiplex Case

In the next sections, we analyze the spectral properties of simple multilayer
networks varying the configuration of the layers.
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7.3.5.1 Eigenvalue Crossing

Let us analyze the spectra of a simple setup: multiplex networks composed by l

identical layers. Such class of networks provides insights about the spectral behavior
as a function of

( η
λ

)
. Although they are not very realistic a priori, there are situations

in which this representation is helpful: for instance, in the context of disease
contagion, one might think of a multi-strain disease in which each strain propagates
in a different layer allowing coinfection of the host population.

The supra contact tensor can be written as

Rαγ̃

βδ̃
(λ, η) = Aα

βδ
γ̃

δ̃
+ η

λ
δα
βK

γ̃

δ̃
, (7.18)

where Aα
β is the 2-rank layer adjacency tensor, Kδ̃

γ̃
is the adjacency tensor of the

network of layers, which is a complete graph on the multiplex case, and δα
β is

the Kronecker delta. Observe that in this case the supra-adjacency matrix is given
by a Kronecker product, see Chap. 2. In this way, the eigenvalue problem can be
written as

Rαγ̃

βδ̃
fαγ̃ = Aα

βδ
γ̃

δ̃
fαγ̃ + η

λ
δα
βK

γ̃

δ̃
fαγ̃ , (7.19)

where the sum of the eigenvalues of A, 
l
i , and K , μi , are also eigenvalues of

the adjacency tensor, hence Rαγ̃

βδ̃
fαγ̃ = (


l
i + η

λ
μj

)
fαγ̃ , i = 1, 2, . . . n and j =

1, 2, . . . m. Then,

(

l

i +
η

λ
μj

)
=
(

l

k +
η

λ
μs

)
. (7.20)

The eigenvalues of the complete graph on m nodes are μ1 = m−1, and μi = −1,

∀i > 1, yielding

η

λ
= 
l

k − 
l
i

m
, (7.21)

which imposes crossings on the eigenvalues of the adjacency tensor for identical
layers, since

( η
λ

)
is a continuous parameter.

7.3.5.2 Identical Layers

Consider a multiplex network made up of two layers with the same configuration.
Each layer of the multiplex is a network composed by n = 1000, 〈k〉 ≈ 6,

l = 14.34, with degree distribution P(k) ∼ k−2.7. Aside from the intra-edge
configuration, we also impose that inter-edges connect a node with its counterpart
on the other layer, i.e., every node has the same intra-layer degree on all layers. Such
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Fig. 7.2 Spectral properties
of the tensor R(λ, η) as a
function of the ratio η

λ
for a

multiplex with two layers
with the exact same degree
distribution and connected to
its counterpart on the other
layer. On the top panel we
present the inverse
participation ratio (IPR(
))
of the three larger
eigenvalues, while on bottom
panel we show the leading
eigenvalues. Every curve is
composed by 103 log spaced
points, in order to have
enough resolution

a constraint imposes a high correlation between the degree of nodes in different
layers, in fact, it is the maximal correlation possible given the degree distribution.

Figure 7.2 shows the behavior of the spectra of such a multiplex network as a
function of the parameter

( η
λ

)
. In the top panel, we represent the inverse participation

ratio associated with the first three eigenvalues, while on the bottom panel, we plot
the first ten eigenvalues. When the ratio η

λ
= 0 the eigenvalues have multiplicity

two, as can be seen on the left side of the bottom panel (approximately, since
the figure starts from 10−2). More importantly, those eigenvalues tend to behave
differently: one increases, while the other tends to decrease. This behavior leads
to an eigenvalues crossing. The inset of the bottom panel zooms out the region
where the crossing takes place. Note that the eigenvalues cross at the same value for
which the inverse participation ratio shows an abrupt change. Indeed, the jump in
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the IPR(
) has its roots in the interchange of the eigenvectors associated with each
of the eigenvalues that are crossing. Moreover, we stress that the abrupt change
observed for IPR(
) is always present in such scenarios, but it could be either from
the lower to the higher values or vice versa depending on the structure of the layers.

7.3.5.3 Similar Layers

In addition to the identical case, we have also considered a multiplex network
composed by two layers with the same degree distribution (i.e., the same degree
sequence), with P(k) ∼ k−2.7, but different random realizations of the configuration
model. Furthermore, the inter-edges follow the same rule as before, connecting
nodes with their counterparts on the other layer assuring that every node has the
same intra-degree on all layers. Each layer of the multiplex network is composed by
n = 1000 and 〈k〉 ≈ 6. Since each layer is a different realization of the configuration
model, both present a slightly different leading eigenvalue, the first 
1

1 = 15.21 and
the second 
2

1 = 14.34.
Figure 7.3 shows the spectral behavior of such a multiplex network in terms of

the largest eigenvalues, on the bottom panel, and the IPR(
), on the top panel. Here,
in addition to the global inverse participation ratio, we also present the contribution
of each layer to this measure. Such analysis is meaningless on the identical case
since the contribution is the same. As shown in the figure, we observe that for small
values of η

λ
, with respect to the first eigenvalue, the system is localized on the first

layer and delocalized on the second. On the other hand, the picture changes when we
focus on the second eigenvalue, as it is localized on the second layer, but delocalized
on the first one. For larger values of η

λ
, both layers contribute equally to IPR(
).

Analogously to the identical case, there is a change on IPR(
2), which seems to
be related to the changes on 
2, as one can see on the bottom panel and in the
inset. Note that for this case, there is no crossing, i.e., the eigenvalues avoid the
crossing—also referred to as near-crossing.

7.3.5.4 Different Layer

In this section, we focus on the case of two completely different layer structures,
with spaced leading eigenvalues. Consider a multiplex network made up of two
scale-free networks with γ ≈ 2.2 and γ ≈ 2.8. Both layers have 〈k〉 ≈ 8 and
n = 103 nodes on each layer and the leading eigenvalues are 
1

1 = 42.64 for the
first and 
2

1 = 21.29 for the second.
Figure 7.4 shows the spectral properties of the tensor R(λ, η) as a function of the

ratio η
λ

. In contrast to the identical layers, Sect. 7.3.5.2, and the case of statistically
equivalent layers, Sect. 7.3.5.3 (also see Figs. 7.2 and 7.3), where some eigenvalues
increase while others decrease, here all the observed eigenvalues always increase.
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Fig. 7.3 Spectral properties
of the tensor R(λ, η) as a
function of the ratio η

λ
for a

multiplex with two layers
with the same degree
distribution (different random
realizations of the
configuration model) and
connected to its counterpart
on the other layer. On the top
panel we present the inverse
participation ratio (IPR(
))
of the two larger eigenvalues
and the individual layer
contributions, while on
bottom panel we show the
leading eigenvalues. Every
curve is composed by 103 log
spaced points, in order to
have enough resolution

Moreover, we do not observe any crossing or near-crossing behavior. Regarding
IPR(
), the same pattern as for the case of similar multilayer configuration is
found: for small values of η

λ
and considering the first eigenvalue, the system appears

localized on the first layer and delocalized on the second, while for IPR(
2), it is
the contrary. For larger values of η

λ
, both layers contribute equally to the IPR(
).

Furthermore, the main difference we observe for the current setup with respect to
the two similar networks (see Fig. 7.3, presented in Sect. 7.3.5.3) is that now no
drastic change on the inverse participation ratio is found, as expected since there is
no near-crossing.
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Fig. 7.4 Spectral properties
of the tensor R(λ, η) as a
function of the ratio η

λ
for a

multiplex with two layers, the
first with γ ≈ 2.2, while the
second γ ≈ 2.8. Both have
〈k〉 ≈ 8. On the top panel we
present the inverse
participation ratio (IPR(
))
of the two larger eigenvalues
and the individual layer
contributions, while on
bottom panel we show the
leading eigenvalues. Every
curve is composed by 103 log
spaced points, in order to
have enough resolution

7.3.5.5 Layer-Wise Localization

One of the main results of de Arruda et al. [24] is the layer-wise localization
phenomena. As mentioned previously in Sect. 7.3.2, in such a case, the IPR(
)

will be of order O(1/n) in the localized phase, whereas it will be of order O(1/nm)

in the delocalized phase. This is because in the layer-wise localized phase the
components of the eigentensor are of order O(1/

√
n) for all the nodes in the

dominant layer and of order zero for nodes in other layers. Noting that, one easily
realizes that the correct finite-size scaling analysis to take in order to characterize
such a transition is m → ∞, i.e., the number of layers goes to infinity while the
number of nodes per layer stays constant. In fact, in this limit IPR(
) will vanish
on one side of the transition point while remaining finite on the other side. In this
way, we can observe localized states also in the case in which there is no possibility
for localization in each of the layers if isolated [24].
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Fig. 7.5 Diagram of the contribution of each layer to the IPR(
) for different values of
the spreading ratio η

λ
. The dashed line represents the case where both layers have the same

contribution, i.e., a line with slope one. On the inset we show the angle θ between the vector

composed by the contributions of each layer to the IPR(
), v = [
IPR(
1

1), IPR(
2
1)
]T

, and
the x-axis. The multiplex network used here is composed of two Erdös-Rényi networks, both
with n = 5 × 104, the first layer 〈k〉 = 16 ((
1

1)
−1 ≈ 0.0625), while the second 〈k〉 = 12

((
2
1)

−1 ≈ 0.0833)

Complementary, Fig. 7.5 shows the contribution of each layer to the IPR(
)

considering different values η
λ

. Calculations were performed over a multiplex
network composed by two Erdös-Rényi networks, both with n = 5 × 104, the first
layer 〈k〉 = 16, while the second 〈k〉 = 12. Observe that for lower values of η

λ
the

main contribution comes from one layer, configuring a layer-wise localized state and
consequently placed on one the x-axis of Fig. 7.5. Then, increasing the ratio η

λ
we

also increase the inverse participation ratio of the second layer, however decreasing
the inverse participation ratio of the first layer, implying that the points tend to be on
the diagonal line with slope one, where the contributions of both IPRs are the same.
Such observation is also confirmed by the angle, θ , between the vector composed by

the IPR contributions, v = [
IPR(
1

1), IPR(
2
1)
]T

, and the x-axis, where we observe
it changing from 0◦ to 45◦.

7.3.6 3-Layer Multilayer Case

Following the main ideas of the last sections, we explore the spectral properties in
multilayer networks with more than two layers. Specifically, we have carried out
numerical simulations for a 3-layer system. We generate multilayer networks using
three scale-free networks, with γ ≈ 2.3, γ ≈ 2.6, and γ ≈ 2.9, with 〈k〉 ≈ 8
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Fig. 7.6 Distribution of the eigenvalues. On the rows, from top to bottom, for the interconnected
networks of Lines 2.3+2.6+2.9, 2.3+2.9+2.6, 2.6+2.3+2.9, and the multiplex. On the columns,
from left to right, we varied the ratios η

λ
= 1, 10, 100, and 1000, respectively. All histograms were

built with 100 bins

and n = 103 nodes on each layer. Note that we have two possible topologies for
the network of layers: (1) a line graph and (2) a triangle (which is a node-aligned
multiplex). In its turn, the first can be arranged in three possible configurations by
changing the central layer. That is, we have four possible systems. Consequently, the
structure of the network of layers imposes itself more strongly on the eigenvalues of
the entire interconnected structure.

7.3.6.1 Spectral Distribution

As in [24], where the authors evaluated the spectral distribution as a function of the
coupling parameter, we present the same results in this section. Figure 7.6 shows
the spectrum of the four configurations of networks when varying the ratio η

λ
=

1, 10, 100, and 1000. Observe that we do not show the ratio η
λ
= 0 since it is just

the union of the individual layers’ spectrum. For η
λ

= 1, the four configurations
are very similar, especially the line graphs. In such case, the inter-layer edges are
treated in the same way as the intra-layer ones. In other words, they are ignored
and the network can be interpreted as a monoplex network. As the spreading ratio
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increases, the spectrum tends to be clustered near the values of the eigenvalues of
the network of layers. Such spectra was analytically calculated in Sect. 7.3.3 and
shown in Table 7.1 on the main text.

Regarding the triangle configuration, the clustering of the spectrum as η
λ

increases is even clear. Triangles present the lowest eigenvalue with multiplicity
two. On the extreme case of η

λ
" 1, see Fig. 7.6, we have 2/3 of the values near

the left extreme value while 1/3 is near the leading eigenvalue. On the other hand,
for the line configurations, the frequencies of the eigenvalues distribution is related
to the position of the central layer. However, in the limiting cases, such differences
are reduced. This pattern is naturally related to the increase of the spreading ratio:
When η

λ
increases so does the role of the inter-layer edges relative to the intra-layer

connections. Consequently, the structure of the network of layers imposes itself
more strongly on the eigenvalues of the entire interconnected structure. This comes
as a consequence of the interlacing theorems shown in Sect. 7.3.3 on the main text.

Our findings can be related to the structural transition shown in [63], where
the authors evaluated the supra-Laplacian matrix as a function of the inter-layer
weights. Their main result is an abrupt structural transition from a decoupled regime,
where the layers seem to be independent, to a coupled regime where the layers
behave as one single system. Here, we are interested in the supra-adjacency tensor;
however, we found a similar phenomenological behavior and a structural change of
the system as a function of the inter-layer weights, which in our case are determined
by a dynamical process.

7.3.6.2 Localization Analysis

Figures 7.7 and 7.8 show the IPR(
1). On the main panel we present the individual
contribution of each layer, while on the insets we have the total IPR(
1). On Fig. 7.7
on the top panel we have the line (2.3+ 2.9+ 2.6), whereas on the bottom panel we
have the multiplex network. Similarly, Fig. 7.8 shows the IPR(
1) of tensor R for
the lines (2.3 + 2.6 + 2.9) and (2.6 + 2.3 + 2.9) on (a) and (b), respectively.

As observed in [24], an interesting phenomenon can be observed comparing the
different configurations of the network of layers. The largest eigenvalue of the whole
system, 
1, has its associated eigenvector localized in the dominant layer, that is, in
the layer generated using γ = 2.3. Regarding the line configuration, depending on
the position of that layer in the whole system—i.e., central or peripheral layer—the
contribution of the nondominant layers to the IPR(
1) varies. In particular, when
the dominant layer corresponds to an extreme node of the network of layers, the
contribution of the other two layers will be ordered according to the distance to
the dominant one. Consequently, when the dominant layer is in the center of the
network of layers, the contributions of the nondominant ones are comparable.

Furthermore, for the first eigenvalue, which is usually enough to analyze the
localization as a first order approximation, we observe that the layer with the largest
eigenvalue dominates the dynamics. In addition, note the similarities between the
multiplex and the line configuration (2.6 + 2.3 + 2.6) (see also Fig. 7.8), where
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Fig. 7.7 Contribution of
each layer to the inverse
participation ratio for the first
eigenvalue of R(λ, η)

considering all three layer
configurations as a function
of the ratio η

λ
. On the inset we

show the behavior of
IPR(
1). Such eigenvalue is
related to the leading
eigenvalue of the layer
γ = 2.3 when η

λ
= 0. On (a)

we have the line
(2.3 + 2.9 + 2.6), while on
(b) the multiplex case

A

B

the nondominant layers behave similarly. This is because for small values of η
λ

, the
effect of the extra edge in the network of layers (closing the triangle) is of second
order and thus the similar behavior observed for the two configurations. As η

λ
grows,

the symmetry in the node-aligned multiplex dominates the eigenvector structure and
the contributions of all layers are comparable.

Finally, Fig. 7.9 shows the tenth larger eigenvalues of the 3-layer multiplex case.
The dashed lines represent the leading eigenvalue of each layer. Note that the leading
eigenvalue of the layer with P(k) ∼ k−2.9 is the seventh larger on the network
spectrum when η

λ
= 0. We observe that there are no crossings on the observed

eigenvalues, which is an expected result since the layers have different structures.
Furthermore, it is important to remark that all networks of layers evaluated also
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Fig. 7.8 Contribution of
each layer to the inverse
participation ratio for the first
eigenvalue of R(λ, η)

considering all three layer
configurations as a function
of the ratio η

λ
. On the inset we

show the behavior of
IPR(
1). Such eigenvalue is
related to the leading
eigenvalue of the layer
γ = 2.3 when η

λ
= 0. On (a)

we have the line
(2.3 + 2.6 + 2.9), while on
(b) the line (2.6 + 2.3 + 2.9)

A

B

show similar qualitative behaviors. The topology of the network of layers does
not lead to qualitative differences on the dependence of 
i on η

λ
for the first

ten eigenvalues. We also notice that although it is only an approximation, the
perturbation theory would be valid roughly up to η

λ
� 10.

It is worth mentioning that the results presented in this section are closely related
to an epidemic spreading, as shown in [24]. In such case, the spreading of a disease
through different layers can be related to the individual contributions of each layer
to the total IPR(
1). Additionally, in the context of disease spreading, the so-called
barrier effect was found, where the central layer act as a barrier for the spreading.
In this phenomenon the IPR(
1) plays a major role. We believe that we could
potentially find similar behaviors for other dynamical processes. Naturally, their
physical interpretation would depend on their particular context.
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Fig. 7.9 Evaluation of the 8 first eigenvalues of R(λ, η) for the multiplex configuration as a
function of the ratio η

λ
. It is noteworthy that such plot is visually equivalent for all the layer

topologies composed by three layers. The dashed lines represent the individual layer leading
eigenvalues

7.4 Degree–Degree Correlations in Multilayer Networks

Degree–degree correlations is a fundamental property of single-layer networks,
impacting the spreading of diseases, synchronization phenomena, and systems’
resilience [4, 55]. Additionally, it has been reported that different correlations arise
in different kinds of networks: social networks are in general assortative, meaning
that highly connected nodes tend to link with each other, whereas technological and
biological systems have disassortative structures, in which high degree nodes are
likely attached to low degree nodes [54].

For networks made up of more than one layer, only recently, Nicosia and
Latora [56] considered the correlation between the degrees in two different layers.
However, their methodology is only for node-aligned multiplex networks, which
are special cases of multilayer networks (see [44]). In fact, multiplex networks are
made up of n nodes that can be in one or more interacting layers. The links in each
layer represent a given mode of interaction between the set of nodes belonging to
that layer, whereas links connecting different layers stand for the different modes of
interaction between objects involved in [44].
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In this section, we study degree–degree correlations in multilayer systems and
propose a way to generalize previous assortativity metrics by considering the
tensorial formulation introduced in [25]. Our approach also covers a weighted
version of assortativity [47] and the case in which the assortativity is given by the
Spearman correlation coefficient, generalizing the definition in [48]. The study of a
real dataset corresponding to the airport transportation network shows a contrasting
behavior between the analyses of each layer independently and altogether, which
reinforces the need for such a generalization of the assortativity measure.

7.4.1 Assortativity in Multiplex Networks

Using the tensorial notation, presented in Sect. 7.1 and following Einstein’s sum-
mation convention, the assortativity coefficient (originally proposed in [54]) can be
written as

ρ(Wα
β ) =

M−1Wα
β QβQα−

[
1/2M−1

(
Wα

β Qαuβ+Wα
β Qβuα

)]2

M−1
(
Wα

β (Qα)2uβ+Wα
β (Qβ)2uα

)
−
[
1/2M−1

(
Wα

β Qαuβ+Wα
β Qβuα

)]2

(7.22)

where u is the 1-tensor, which is a tensor of rank 1 and has all elements equal to 1,
Wα

β is a second order tensor that summarizes the information that is being extracted

and M = Wα
β U

β
α is a normalization constant.

Let us explain in more detail all terms appearing in the expression of ρ(Wα
β ).

First, we define

Qα = Wα
β uβ, (7.23)

which is a 1-contravariant tensor and

Qβ = Wα
β uα (7.24)

which is a 1-covariant tensor. Moreover, the indices are related to the direction of the
relationships between nodes. Such a choice ensures a more general expression, cap-
turing degree correlations on nonsymmetric tensors and, consequently, in directed
and weighted networks.

Due to the multiplex nature of such systems, we obtain different types of
correlations, which can be uncovered by operating on the adjacency tensor. As
operations on the nodes we might cite the single layer extraction (Eq. (7.3)), the
projected network (Eq. (7.5)), and the overlay network (Eq. (7.6)). Complementary,
if we extract the network of layers (Eq. (7.4)), the correlation between different
layers can also be evaluated (see Sect. 7.2 and Ref. [25]). In other words, we define
the tensor W γ̃

δ̃
as one of the above-cited projections.
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Regarding the overlay and the projected networks, extracting degree–degree
correlations, nodes with similar degrees connected in the same or different lay-
ers contribute positively to the assortativity coefficient. On the other hand, the
connections between hubs and low degree nodes in the same or different layers
decrease the assortativity. Self-edges always increase the assortativity, which yields
different values of assortativity for the overlay and the projected networks. This
gives information on the nature of the coupling between different replicas of the
same object among different layers.

Complementary, if we extract the network of layers (Eq. (7.4), Sect. 7.2), the
correlation between different layers can also be evaluated. We use W γ̃

δ̃
= �

γ̃

δ̃
. It

is important to stress that the components of this adjacency tensor are not binary,
but weighted by the number of edges inter each layer. Moreover, also in this
case, the resulting tensor presents self-edges that encode the information about the
density of connections inside a single layer. Finally, we can consider only inter-layer
relationships over two different layers. Such information is extracted by projecting
the adjacency tensor on the canonical base as

Wα
β = Cα

β (r̃h̃) = Mαδ̃
βγ̃ E

γ̃

δ̃
(r̃h̃). (7.25)

Note that this is only applicable to multilayer networks and does not make sense in
multiplex networks, since in the latter case the coupling is diagonal.

Moreover, in some applications, it is interesting to calculate a pair-wise correla-
tion between a set of nodes, for instance, between couple of layers. Thus, we propose
a new operation, that we call selection, which is a projection over a selected set of
layers:

Wα
β (L) = Sα

β (L) = Mαδ̃
βγ̃ �

γ̃

δ̃
(L), (7.26)

where �
γ̃

δ̃
is a tensor used to select the set of layers we consider in the projection

(L). The components of the tensor are equal to unity when the layers δ̃ and γ̃

are selected, and zero otherwise. Note that by selecting all layers together we
recover the 1-tensor U

γ̃

δ̃
and consequently Eq. (7.5). Another special case is δ̃ = γ̃ ,

which yields Eq. (7.3), or the layer extraction. The tensor can also be generalized
to weight different layers. In this case, each element of �

γ̃

δ̃
contains the weight

of the relationship between two layers δ̃ and γ̃ . Such projection is similar to the
covariance matrix in statistics, which generalizes the concept of variance. The
covariance between two variables is quantified in each entry of the matrix and the
main diagonal has the variance of each variable. Thus, we can define a matrix that
generalizes the assortativity in a similar way as the covariance matrix generalizes
the concept of variance, i.e.

Sγ̃

δ̃
= ρ

(
Sα

β (L = {γ̃ , δ̃})
)

, (7.27)

which belongs to a R
L×L space. We call S the P-assortativity matrix.
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Also in this case, a similar operation for the overlay network can be considered,
yielding

Wα
β (L) = Zα

β(L) =
L∑

h̃∈L
Cα

β (h̃h̃), (7.28)

which can also be generalized in a similar way as Eqs. (7.26) and (7.27), resulting
in the matrix

Zγ̃

δ̃
= ρ

(
Zα

β(L = {γ̃ , δ̃})
)

. (7.29)

We call Z the O-assortativity matrix. A similar inter-layer correlation was also
proposed in [56], where the authors suggested measuring the degree correlation
between two different layers of the replica of the same object (or node). Fur-
thermore, they proposed three different ways: the Pearson correlation coefficient,
Spearman rank correlation, and the Kendall’s τ index. However, it is worth pointing
out that such an approach does not consider the intra-layer relationship because it is
only for node-aligned multiplex networks [44]. Here, we generalize such a measure
in terms of tensorial notation.

Finally, the assortativity coefficient can also be defined in terms of the Spearman
rank correlation [48], since the traditional definition of this coefficient based on
the Pearson correlation [54] can lead to incomplete results, as discussed in [48].
The generalization of assortativity coefficient allows to consider the Spearman rank
correlation coefficient by changing Eqs. (7.23) and (7.24). Specifically, instead of
considering the values of Qα and Qβ , one substitutes them by their respective
ranks.1 Such transformation is performed by using

Qα = rank(Wα
β uβ) (7.30)

and

Qβ = rank(Wα
β uα), (7.31)

where rank(Xi) is the rank of the tensor Xi .
We henceforth denote by ρP (Wα

β ) and ρS(Wα
β ) the Pearson and Spearman

correlation coefficients, respectively. Furthermore, we adopt (SP )
γ̃

δ̃
and (SS)

γ̃

δ̃
for

the pair-wise correlation matrices using the Pearson and Spearman correlation
coefficients, respectively. The same notation can be used for the matrices (ZP )

γ̃

δ̃

1One may not confuse rank in this context with the tensorial rank. Here it is the position in the
ordered set of values, whereas the rank of a tensor is the number of covariant and contravariant
indices.
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and (ZS)
γ̃

δ̃
. Monoplex assortativity, i.e., assortativity in single-layer networks [54],

is recovered by considering the adjacency matrix, Wα
β = Aα

β , and consequently
Qα and Qβ are analogous to in-degree and out-degree, respectively. Note that
Qα = Qβ for undirected networks. Moreover, M is equal to twice the number of
edges, recovering the equation introduced in [54], which also captures correlations
of weighted networks, as exposed in [47].

Each approach presented here gives a different descriptor of the multilayer
structure. For instance, the projected and overlay networks gather the information of
all layers into a single layer structure, aiming at describing the whole system using
single descriptors. Aside from those, we also provide a pair-wise descriptor which
gives another type of information. Besides, there is also the network of layers, which
possesses information about yet another level of the system. In this way, approach
gives a set of metrics that capture information about the whole multilayer structure.
However, it is worth mentioning that the interpretation and choices depend on the
application.

7.4.2 Application to Real Data

We analyze the airport transportation network [16], whose multilayer representation
was studied in [13]. The network comprises 450 airports and 37 companies, which
are mapped as nodes and layers, respectively. More specifically, in each layer, the
edges represent the directed flights operated by a given company and nodes, airports.
Figure 7.10 shows a representation of 12 layers of such multiplex network. The
inter-layer connections link the airports shared by pairs of different companies.
This approach gives us a multiplex network that is not a node-aligned multiplex
network since the latter considers a diagonal coupling between all nodes in all
layers. Note that the way proposed in [13] to create the aggregated monoplex
network is the union of all layers considering multiple edges as single ones. This
is in contrast to our approach, because we consider the projections and overlay

Fig. 7.10 Example of an airport transportation multiplex network. Each layer represents an airline,
in which each node represents an airport and the edges are flights between two airports. This
visualization was generated using MuxViz [26]



7.4 Degree–Degree Correlations in Multilayer Networks 109

Table 7.2 Structural properties of the airport transportation multiplex networks

Network N M 〈Qα〉 ρP (Wα
β ) ρS(Wα

β )

Network of layers (�α
β ) 37 30398.0 821.568 0.377 0.286

Overlay (Oα
β ) 450 7176.0 15.947 −0.050 −0.025

Projected network (P α
β ) 450 30398.0 67.551 0.795 0.560

networks as weighted networks, thus retaining the information of the number of
different connections between the same pair of airports.

Previous studies [13, 16] showed that the airport transportation network presents
the rich-club effect, which refers to the tendency of highly central nodes to be
connected among themselves. This is also captured by the assortativity as shown
in Table 7.2, where we verify that the projected network has positive assortativity
coefficients, agreeing with previous analyses. However, note that the projection has
a positive value of the assortativity, whereas the overlay has a negative one. Thus,
the assortativity of the projection indicates that many companies share hubs airport,
not that hubs connect between them. This apparent contradiction results from the
fact that the rich-club effect is masked out in the overlay setup by a large number of
peripheral nodes connecting to hubs.

The analysis of each layer separately (see Table 7.3) shows a different result,
where most of the layers are disassortative. The only exception is the Netjet layer,
which presents a positive coefficient for the rank correlation. Usually, the companies
focus their activities in one city or country, for example, Lufthansa in Germany
or Air France in France, and have flights to other airports where their activity is
lower. This leads to the disassortative behavior of each layer. Additionally, the
disassortative correlations found in single layers is more pronounced than that of the
overlay representation, which can be explained by noticing that hubs of a company
are peripheral (or secondary) airports for other companies, but when the layers are
collapsed they are also hubs in the overlay network and are connected.

Figures 7.11 and 7.12 show the pair-wise correlation between layers. Interest-
ingly, the latter is disassortative, in contrast to the results obtained for the projected
network, but of the same sign as those computed for the overlay representation
(see Table 7.2). Furthermore, our construction of the adjacency tensor leads to an
assortative network of layers, suggesting that bigger companies tend to share similar
airports. This analysis agrees with [13], where the authors argued that the main
airports are connected to each other via directed flights. In addition, considering the
Pearson correlations, the O-assortativity matrix presents lower values if compared
to the P-assortativity matrix due to the intra-layer contributions, as discussed before.
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Table 7.3 Structural properties of each layer of the airport transportation multiplex networks

Company N M 〈Qα〉 ρP (Cα
β ) ρS(Cα

β )

Lufthansa 106 488.0 4.604 −0.668 −0.473

Ryanair 128 1202.0 9.391 −0.321 −0.348

Easyjet 99 614.0 6.202 −0.428 −0.470

British Airways 65 132.0 2.031 −0.775 −0.754

Turkish Airlines 86 236.0 2.744 −0.697 −0.567

Air Berlin 75 368.0 4.907 −0.501 −0.434

Air France 59 138.0 2.339 −0.637 −0.661

Scandinavian Airlines 66 220.0 3.333 −0.681 −0.521

KLM 63 124.0 1.968 −1.000 −1.000

Alitalia 51 186.0 3.647 −0.572 −0.538

Swiss International Air Lines 48 120.0 2.500 −0.728 −0.618

Iberia 35 70.0 2.000 −0.900 −0.838

Norwegian Air Shuttle 52 174.0 3.346 −0.511 −0.523

Austrian Airlines 67 144.0 2.149 −0.823 −0.744

Flybe 43 198.0 4.605 −0.560 −0.489

Wizz Air 45 184.0 4.089 −0.350 −0.381

TAP Portugal 42 106.0 2.524 −0.779 −0.610

Brussels Airlines 44 86.0 1.955 −1.000 −1.000

Finnair 42 84.0 2.000 −0.915 −0.858

LOT Polish Airlines 44 110.0 2.500 −0.658 −0.598

Vueling Airlines 36 126.0 3.500 −0.438 −0.456

Air Nostrum 48 138.0 2.875 −0.571 −0.569

Air Lingus 45 116.0 2.578 −0.670 −0.625

Germanwings 44 134.0 3.045 −0.628 −0.482

Panagra Airways 45 116.0 2.578 −0.625 −0.593

Netjets 94 360.0 3.830 −0.106 0.107

Transavia Holland 40 114.0 2.850 −0.585 −0.535

Niki 36 74.0 2.056 −0.838 −0.784

SunExpress 38 134.0 3.526 −0.797 −0.542

Aegean Airlines 38 106.0 2.789 −0.583 −0.560

Czech Airlines 42 82.0 1.952 −1.000 −1.000

European Air Transport 53 146.0 2.755 −0.416 −0.423

Malev Hungarian Airlines 35 68.0 1.943 −1.000 −1.000

Air Baltic 45 90.0 2.000 −0.844 −0.812

Wideroe 45 180.0 4.000 −0.293 −0.311

TNT Airways 53 122.0 2.302 −0.415 −0.346

Olympic Air 37 86.0 2.324 −0.754 −0.662
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Fig. 7.11 Pair-wise assortativity coefficient using Spearman rank correlation, ρS(Sα
β). Observe

that the main diagonal presents the same coefficient considering the layer extraction operation,
ρS(Cα

β (r̃ r̃))



112 7 Tensorial Representation

Fig. 7.12 Pair-wise assortativity coefficient using Spearman rank correlation, ρS(Zα
β). Observe

that the main diagonal presents the same coefficient considering the layer extraction operation,
ρS(Cα

β (r̃ r̃))



Conclusions

As mentioned in the Introduction to this Springer Brief, the main goal of this text
is to further motivate research in the topic of multiplex/multilayer networks. By
presenting the main concepts of the multilayer framework, we hope that we have
provided the reader with a set of tools and concepts that will eventually allow
using the formalism and gaining a stronger formal basis. We believe that choosing
the matricial or the tensorial notation is a matter of taste and convenience. For
some problems, one might be easier or more natural than the other, since each one
emphasizes a different set of properties of our system. Additionally, knowing both
also allows the researcher to make use of their specific advantages.

We would also like to highlight some important and interesting research per-
spectives in this area. For instance, in Chap. 3, we formally defined a small set of
properties needed to properly define a structural metric. Based on these concepts, we
believe that many measures and metrics can be extended from monoplex networks
to multilayer ones. In doing that, we must be careful when interpreting the results
as well as when doing some approximations as both have been shown to depend on
the dynamics and the problem been tackled more often than not.

Regarding the spectral properties of multilayer systems, we also stress that the
richness of this kind of system is directly reflected on its spectra. In this Springer
Brief, we mainly used perturbation theory and interlacing properties of quotient
graphs in Chap. 4 and the new polynomial eigenvalue interpretation in Chap. 6. With
these tools, we were able to extract many structural and even dynamical insights for
processes occurring on top of multilayer networks. However, new analytical and
numerical tools and techniques are needed for the cases in which the multilayer
structure is more complex, which will surely allow exploring more realistic systems.

Finally, we also reiterate that this book has an introductory character, presenting
the main formalism that several authors have developed in the last few years. In this
sense, this text is not exhaustive as we have not presented alternative approaches.
Likewise, we have focused on formal and structural aspects of multilayer net-
works, leaving aside the already vast literature dealing with dynamical processes
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in multilayer systems. We however hope that the reader has grasped the basic
formalism and aspects of multilayer systems so as she/he can develop her/his own
research agenda in this fascinating area.



Symbols and Notation

Matricial Notation

• G(V,E): a graph, where V is a set of nodes and E is a set of edges
• (u, v) ∈ E with u, v ∈ V : and edge of a graph G(V,E); u and v are said to be

adjacent
• u ∼ v: adjacency relation
• M = (V , L, P,M): ordered quadruple representing a multiplex network
• L = {1, . . . , m}: layer set of a multiplex network; a layer α ∈ L is an index that

represents a particular type of interaction or relation
• | L |= m: the number of layers in a multiplex network
• GP = (V , L, P ), where P ⊆ V ×L: a binary relation that indicates which node

of a multiplex participates in which layers. GP = (V , L, P ) can be interpreted
as a (bipartite) graph where P is the edge set

• (u, α) ∈ P : an ordered tuple called node-layer pair; it is the representative of
node u in layer α

• P : the set of the node-layer pairs
• | Vβ |= nβ : the number of node-layer pairs in layer β

• node-aligned multiplex: a multiplex network in which each node u ∈ V has a
representative in each layer α ∈ L, i.e., P = V × L

• Gβ(Vβ,Eβ), where Vβ = {(u, α) ∈ P | α = β}: a layer-graph
• M = {Gα}α∈L: the set of all layer-graph
• GC(P,EC): the coupling graph in which there is an edge between two node-

layer pairs (u, α) and (v, β) if and only if u = v

• supra-nodes: the n =| P | disconnected components which formed GC . Each
component is formed by all the representatives of a node in different layers

• Gl = ⋃
α Gα: the intra-layer graph. The union of all the layer-graphs, i.e.,

Gl =⋃
α Gα

• GM = Gl ∪ GC : the supra-graph
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• l(u) = (u, α) ∈ P | α ∈ L: the set of node-layer pairs that correspond to the
same node u

• l−1(i): the unique node that corresponds to the node-layer pair i

• A(G): the adjacency matrix of the graph G(V,E)

• L(G): Laplacian matrix of the graph G(V,E)

• Kn : the adjacency matrix of a complete graph on n nodes
• A(α): layer adjacency matrix; the adjacency matrix of the layer-graph Gα

• L(α): layer-Laplacian, the Laplacian matrix of the layer-graph Gα

• P: participation matrix; the adjacency matrix of the participation graph GP

• C: the coupling matrix; the adjacency matrix of the coupling graph GC

• LC : the Laplacian of the coupling graph
• standard labeling: a labeling of the node-layer pairs such that the coupling matrix

results in a block matrix whose diagonal blocks are all zeros and such that the
same row and column in different layer adjacency matrices correspond to the
representative of the same node in different layers

• Ā: the supra-adjacency matrix; the adjacency matrix of the supra-graph GM.
Assuming the standard labeling Ā =⊕

α Aα + C
• A =⊕

Aα: intra-layer adjacency matrix; the adjacency matrix of the intra-layer
graph Gl

• L̄ = L(GM): the supra-Laplacian matrix; the Laplacian matrix of the supra-
graph GM. Assuming the standard labeling L̄ =⊕

α L(α) + LC

• Ki : the degree of a node-layer i; the number of node-layers connected to it by an
edge in GM

• eα =∑
β<α nβ : excess index of layer α

• ki(α): layer-degree of a node-layer i; the number of neighbors it has in Gα

• ci(α): the coupling degree of a node-layer i; the number of neighbors it has in GC

• Ĉ(β, γ ) = βI + γ C
• multiplex walk matrix: a matrix that encodes the permissible steps in a multiplex

network
• AĈ: multiplex walk matrix that encodes the steps in which after each intra-layer

step a walk can continue on the same layer
• ĈA: multiplex walk matrix that encodes the steps in which before each intra-layer

step a walk can continue on the same layer
• elementary cycle: a term that consists of products of the matrices A and C (i.e.,

there are no sums) after one expands the expression for a cycle (which is a
weighted sum of such terms)

• auxiliary supra-graph: the graph defined by a multiplex walk matrix when
interpreted as an adjacency matrix

• dimensionality reduction: an operation that aggregate the interaction pattern of
different layers

• aggregate network: the result of a dimensionality reduction of a multiplex
network

• quotient graph Q(G): a coarsening of a graph G with respect to a partition
{V1, V2, . . . , Vn}. It has one node per cluster Vi , and an edge from Vi to Vj

weighted by an average connectivity from Vi to Vj (see Sect. 2.3.1 for the
definitions of left, right, and symmetric quotient)
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• equitable partition: a partition of the node set of a graph such that the number
of edges (taking weights into account) from a node in Vi to any node in Vj is
independent of the chosen node in Vi

• regular quotient: the quotient graph associated with an equitable partition
• almost equitable partition: a partition for which the regularity condition is

satisfied for all i �= j (but not necessarily for i = j )
• almost regular quotient: the quotient associated with an almost equitable

partition
• 
 = diag{κ1, . . . , κn}: the multiplexity degree matrix
• Sn: the node partition characteristic matrix; siu = 1 if and only if the node-layer

i is a representative of node u

• Sl : the layer characteristic matrix; siα = 1 only if the node-layer i is in layer α

• Ã = 
−1ST
n ĀSn: the adjacency matrix of the aggregate network

• W̃ = Ã − diag(Ã): the adjacency matrix of the loop-less aggregate network
• W = ST

n ASn,: the adjacency matrix of the sum aggregate network
• Ãl : the adjacency matrix of the network of layers
• local clustering coefficient Cu: in an unweighted single-layer network it is the

number of triangles (i.e., triads) that include node u divided by the number of
connected triples with node u in the center

• global clustering coefficient: the ratio between the mean number of closed triple
and the mean number of open triples

• c∗,i = t∗,i
d∗,i : local clustering coefficient of the node-layer i

• C∗,u =
∑

i∈l(u) t∗,i∑
i∈l(u) d∗,i : local clustering coefficient of the node u

• C∗ =
∑

i t∗,i∑
i d∗,i : global clustering coefficient

• f -centrality of a node u in a single-layer network: defined as f (A)uu

• sub-graph centrality Gu of a node in a single layer network: is given by
exp(A))uu

• f -communicability between two distinct nodes u and v in a single-layer network:
defined as f (A)uv

• communicability matrix: G = exp(A)

• f -centrality of a node-layer pair i: ki = c1f (AĈ)ii + c2f (ĈA)ii , c1, c2 > 0
• f -communicability between two distinct node-layer pairs i and j : kij =

c1f (AĈ)ij + c2f (ĈA)ij , c1, c2 > 0
• supra-communicability matrix: K = c1f (AĈ) + c2f (AĈ)T

• aggregate f -communicability matrix:K̃ = c1QR(f (AĈ)) + c2QR(f (AĈ))T

• spectral radius: the largest eigenvalue of the adjacency matrix of a graph
• algebraic connectivity: the second-smallest eigenvalue of the Laplacian of a

graph
• dominant layer: the layer with the largest spectral radius in a multiplex network
• Laplacian dominant layer: the layer with the lowest algebraic connectivity in a

multiplex network
• effective multiplexity z: the weighted mean of the coupling degree with the weight

given by the squares of the entries of the leading eigenvector of A
• correlated multiplexity zc = φT Cφ

φT φ
, where φ is the eigenvector associated with

the largest eigenvalue of A



118 Symbols and Notation

• Aggregate-Equivalent Multiplex (AEM): the Cartesian product between the
aggregate network and the network of layers of a given multiplex network

• |||·||| is a matrix metric
• |||A|||2 is the spectral norm of the matrix A

Tensorial Notation

• M ∈ R
n×n×m×m: the fourth-order adjacency tensor of a multilayer network with

m layers and n nodes on each layer
• Rαγ̃

βδ̃
(λ, η): supra contact tensor

• Aα
β(r̃): the second order tensor for the layer r̃

• uα ∈ R
n: all one tensor

• Uβδ̃ ∈ R
n×m: all one tensor

• �
γ̃

δ̃
∈ R

m×m: network of layers

• P α
β ∈ R

n×n: projection or projected network
• Oα

β ∈ R
n×n: overlay network

• 
i : Eigenvalue i. Note that on the tensorial notation we ordered as 
1 ≥ 
2 ≥
. . . ≥ 
nm

• 
l
i : individual layer eigenvalue i associated with the layer l

• IPR(
): Inverse participation ratio of the eigentensor (also applies for an
eigenvector) associated with the eigenvalue 


• �
γ̃

δ̃
(λ, η): normalized network of layers

• Pα
β : normalized projection

• ρ(Wα
β ): Assortativity coefficient of the graph/projection represented by the

tensor Wα
β

• ρP (Wα
β ): the Pearson correlation coefficient of the graph/projection represented

by the tensor Wα
β

• ρS(Wα
β ): the Spearman correlation coefficients of the graph/projection repre-

sented by the tensor Wα
β

• Sγ̃

δ̃
∈ R

L×L: P-assortativity matrix

• Zγ̃

δ̃
∈ R

L×L: O-assortativity matrix
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