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Preface

The year 2009 was celebrated worldwide as Darwin year, 200 years after Charles
Darwin’s birth and 150 years after the appearance of his seminal book On the Origin
of Species. Countless contributions in both the scientific and popular media revived
the ongoing controversy between Darwinism and modern evolution theory on one
hand and creationism – devoid of any scientific basis – on the other. The discussions
were often polemic and varied in their degree of objectiveness. This inspired us to
suggest a comprehensive survey of recent achievements in understanding evolution
from a purely scientific point of view.

The contributions are from internationally known experts from various disci-
plines, writing about evolutionary theory from the perspective of their own fields,
ranging from mathematics, physics, and cosmology, to biochemistry and cell biol-
ogy. The concentration on natural sciences means that only some aspects of cultural
evolution are covered. Seemingly simple questions are posed, concerning the origin
of life, the origin of the universe, the concept of self-organization without the need
for external interference, the probability of life coming into existence “by chance”,
and the role of contingency as compared to necessity; but instead of simple and
premature answers being proposed, the questions are refined and specified until an
answer can be arrived at using tools from the natural sciences. Scientific challenges
correspond to reducing a complex problem by breaking it up into parts, finding
common underlying mechanisms in the plethora of phenomena, or reproducing evo-
lutionary processes in lab experiments or computer simulations; deeper insight and
involvement in these challenges usually go along with fascination, amazement, and,
finally, respect for the outcome of evolution in its full variety. We hope to contribute
to all these aspects with our compilation of progress in the theory of evolution.

The book is addressed to readers with a background in life sciences and interest
in mathematical modeling, or with a mathematical background in modeling and an
interest in biological applications.

We thank the authors for their contributions and are indebted to the staff of
Springer-Verlag for their support during the preparation of this book.

Bremen, Germany Hildegard Meyer-Ortmanns
Vienna, Austria Stefan Thurner
August 2010
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Chapter 1
Introduction

Hildegard Meyer-Ortmanns

Abstract This introductory section serves as a summary of overarching concepts,
universal features, recurrent puzzles, a common language, and striking parallels
between units of life, ranging from simple to complex organisms. We start with
a short chronology of evolution, since nowhere else in this book is the historical
path of evolution followed. An underlying common methodology of all articles here
is reductionism. The section on reductionism illustrates the great success of this
approach with examples from physics and biology, including also a hint on its abuse
when it is pushed to extremes. Guided by the success of reductionism, one may won-
der whether there is a universal theory of evolution. Such a universal theory does
not exist, but striving for universal laws makes sense when it is based on striking
similarities between seemingly very different realizations of systems whose dynam-
ics is governed by the very same mechanism. In this case recurrent behavior goes
beyond a superficial analogy. Again we illustrate the concept of universality with
examples from physics, but also indicate limitations in view of universal equations.
Beyond universal laws, universal principles of organization may be at work. One
such overarching principle is self-organization. In addition to its known successful
application in various disciplines such as physics, chemistry, and cell biology, it
leads to a challenge for future research on how far one can further stretch this
concept to explain all complex outcome of evolution as self-organized. Common
to the various examples of self-organization in later chapters is the emergence of a
complex structure out of less structured or even random initial conditions. The very
choice of initial conditions is often the art of the game. In the spirit of reductionism,
the initial conditions should involve as little structure as possible to let the complex
structure emerge from the very rules of evolutionary processes. This demand may
lead to “chicken and egg”-like dilemmas. Such dilemmas appear in many facets
in and outside natural science. They are intimately related to questions of origin, in
particular the origin of life. Questions of life’s origin go along with an estimate of the

H. Meyer-Ortmanns (B)
School of Engineering and Science, Jacobs University Bremen
D-28725 Bremen, Germany
e-mail: h.ortmanns@jacobs-university.de

H. Meyer-Ortmanns, S. Thurner (eds.), Principles of Evolution,
The Frontiers Collection, DOI 10.1007/978-3-642-18137-5_1,
C© Springer-Verlag Berlin Heidelberg 2011

1



2 H. Meyer-Ortmanns

date when first forms of life appeared. Therefore another evocative topic concerns
the very probability of life coming into existence in the course of evolution. This
relates to the tension between contingency and necessity, stochastic fluctuations and
deterministic rules. The question arises as to whether, if we were able to rewind the
tape of evolution and replay it again, contingency would lead to minor differences
or even changes in the gross features of the evolutionary outcome. Rewinding the
whole tape is science fiction, but rerunning short sequences of this tape is reality.
We collect a few such attempts from contemporary lab experiments under controlled
initial conditions or related computer simulations. Without mathematical modeling,
seemingly natural extrapolations lead to premature or even false conclusions on
the evolutionary potential. Therefore we disentangle the reduction of complexity
from misleading oversimplifications and conclude with an appeal for mathematical
modeling also in biology. Finally we summarize all chapters of this book to embed
their content in the context of this book.

1.1 A Short Chronology of Evolution

The contributions to this book refer to essentially three different epochs of the
universe: the very early state about 14 billion years ago, which was the time when
the conditions were fixed for the later structure formation of the universe; a second
epoch, about 4 billion years ago, after our planet had formed and early forms of
life were created, and a third epoch, when life organized in cells and societies as of
today. In view of these three periods we present a very coarse-grained view in the
following. The reason for the coarse-grained selection is that in the first and second
epochs we cannot follow the historical path, owing to lack of data. Most detailed
is the history of evolution from earlier to current life forms, because it is based on
the fossil record, but the fossil record gives no hint about pathways of chemical
evolution and the bridge to biological evolution [1]. Owing to lack of data from
the remote past, the historical route to life is very speculative and will remain so in
the future. Therefore in this book, no statements will be found on how life “really”
emerged, but only how it may have emerged, and what the possible pathway could
have been, and the proposed options are certainly not unique; they kindle controver-
sial discussions on the pros and cons of “genetic first” models, whose representatives
argue in favor of an RNA-world to start with, or “metabolism first” models, with
(auto)catalytic reaction networks first, or “compartment first” models, with a lipid
world as starting point. The partition into these three options for what came first
reflects the three necessary ingredients of a primitive cell: a molecular realization
of coding and storing information in the form of RNA and DNA, metabolism for
providing the fuel for the “machinery” to run, and compartmental structures with a
division mechanism needed for the heredity of information.

Going backwards in time from the prebiotic to the chemical world, governed by
the laws of chemistry and physics, and further back to the world governed merely
by the laws of physics due to its elementary constituents, we end up at the big bang,
about 14 billion years ago. “Big bang” stands for an extrapolated event prior to
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some finite time in the past when the universe originated from an extremely hot
and dense state of matter, as predicted by so-called Friedmann models (for a more
detailed discussion, refer to Chap. 7). One may be tempted to extrapolate classical
notions of space and time back to time “zero”, but such a naive extrapolation leads
to singularities in the formulas, the classical description becomes meaningless. In
standard chronologies one finds instead of “time zero” an extremely tiny number
assigned to the big bang, namely 10−44 s. What sense does it make to assign such an
incredibly small number to an event that initiated an evolution lasting over 14 billion
years? 10−44 s is the time light takes to travel a distance on the order of the Planck
length, which is ∼10−35 m. The Planck length in turn is defined in terms of three
fundamental constants of physics, the velocity of light (in vacuum) c, Newton’s
gravitational constant G, and the (reduced) Planck action constant �, according to
lP =

√
�G/c3. The mass that can be constructed in terms of these quantities by

dimensional arguments is mP = √�c/G ≈ 1019 GeV/c2 ≈ 10−8 kg. This number
sounds less exotic than the Planck length: it is not extremely large, orders of mag-
nitude (10−7) smaller than the mass of a bacterium (since we deal in this book with
bacteria in another context, the comparison is natural), neither is it extremely small,
it is 1019 times larger than the mass of a proton, and the energy required to create
such a particle out of the vacuum is far too high to be achieved in labs via particle
accelerators.

So the question remains why these fundamental constants and units matter at
all in view of the big bang. Backwards in time the universe got denser and hotter.
When it reached a density on the order of the Planck mass per Planck length, quan-
tum mechanical and gravitational effects became important at the same time. The
reason is the following: The Compton wavelength that can be uniquely assigned to
a particle is the length scale within which quantum properties become relevant. On
the other hand, also the Schwarzschild radius can be uniquely assigned to the same
particle: if the mass of this particle is confined to a sphere with a radius as small as
its Schwarzschild radius, it ends up as a black hole, and by then at the latest gravity
can no longer be ignored. So one may ask for which mass density both lengths are
(roughly) the same. Here it turns out that if the Planck mass is concentrated over
the tiny region with an extension on the order of the Planck length, both length
scales are almost the same, that is, the particle’s Compton wavelength is of the
same order as its Schwarzschild radius. (The restriction “of the same order” and
“almost the same” refers to prefactors on the order of one, while the Planck mass
and Planck length are known to high accuracy due to the corresponding accuracy for
the fundamental constants that are used for their very definition.) Now, if quantum
mechanical and gravitational effects play a role at the same time, which happens
(probably earlier, but certainly) no later than when the universe has reached the
Planck density, classical notions of space and time as used in Einstein’s general rela-
tivity become meaningless: a unified theory of quantum gravity is needed. Quantum
gravity, however, is one of the most challenging branches of theoretical physics and
one easily encounters paradoxes when it is applied to cosmology. To date there is no
proposal of a candidate that is convincing in all desired theoretical properties, but
proposals have been made, and we shall learn about one of them in Chap. 8.
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Let us return to the time that light takes to travel the Planck length, that is,
10−44 s. This number marks the smallest time scale to which an extrapolation of
the classical notion of time is meaningful. The big bang then summarizes events
outside (not to say “before”) the classical realm. Chapter 8 deals with this so-called
Planck epoch. For a certain proposal of quantum gravity it is demonstrated how the
very notion of time fades away on a formal level so that time becomes an emergent
quantity at later stages of the universe.

Less speculative than the description of the earliest epoch is the standard cos-
mological model, which is a so-called Friedmann model, specified for a certain
(single) set of parameters. It describes cosmic evolution from a few minutes after
the big bang until today (see Chap. 7). This model also predicts when thermal
radiation could freely propagate. That was possible when the universe was about
400,000 years old, and it then became transparent within about 40,000 years. This
thermal radiation is the famous cosmic microwave background (CMB), whose
tiny anisotropies are interpreted as an imprint of earlier density fluctuations in the
universe. As pointed out in Chap. 7, it is essentially Newtonian hydrodynamics that
governs the structure formation of the universe from that time on, once the CMB
data are appropriately implemented as initial conditions.

What happened between the big bang and the decoupling of the cosmic
microwave radiation falls in the realm of theoretical particle physics within the
framework of the Standard Model and its possible extensions (see, e.g., [2–4]).
Accordingly, the originally unified forces became separated into the four funda-
mental interactions of today: the strong, weak, electromagnetic, and gravitational
interactions; moreover, an inflationary expansion of the universe is thought to have
occurred, which amplified initial quantum fluctuations that finally led to structure
formation in the classical universe. More matter than antimatter remained. Nucle-
ons (protons and neutrons) were made out of the initially free quarks and gluons
(when the temperature had cooled down to the order of 1012 K, where K stands
for Kelvin). “Plasma”-time started when electromagnetism became the dominant
force and photons collided with electrons so often that the electrons could not bind
to atomic nuclei. However, when about 40,000 years later the universe had further
cooled down to ∼3,000 K, the radiation lost energy and the electrons now could be
captured by atomic nuclei. Atoms were formed while photons moved freely through
the universe as CMB radiation.

From then on gravity determined what happened on cosmic scales with the
cosmic gas: quasars and galaxies arose along with black holes in their centers.
Within the galaxies smaller clouds contracted to form stars, and within the stars
heavier elements than the primordial ones formed. Not finally, but in particular,
our blue planet formed from the accretion disc revolving around the sun. This was
about 4.6 billion years before the present time and about 9 billion years after the
big bang.

Formation of the earth is usually taken as the starting point of another chronol-
ogy, namely the chronology of life on earth [5]. Although life may have developed
(possibly in other forms) at other places in the universe as well, we do not know any
historical facts, so that a chronology would not make sense, but there is a relatively
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young field of research, called astrobiology, that studies possible forms of life under
very different and – from our point of view – very extreme conditions.

For the chronology of evolution of life on earth “time zero” is defined as “today”
and years are counted backwards from now. The first main epoch is the Hadean Eon,
which extends from 4.6 to 3.8 billion years ago, during which the first precursor
of life occurred, which we shall not discuss along a hypothetical historical path
but along a possible path. The second epoch, the Archean Eon, includes the split
between bacteria and archaea (about 3.5 billion years ago), and in particular the new
use of photosynthesis by cyanobacteria. During the Proterozoic Eon, 2.5–0.5 billion
years ago, eukaryotic cells appeared, sexual reproduction occurred, and first simple
and later more complex multicellular organisms developed. About 500 million years
ago the phyla of animals started. The Phanerozoic Eon extends from 542 million
years ago until today. Now the resolution of time proceeds in terms of the appear-
ances of sponges, worms, fish and proto-amphibians, land plants, insects, reptiles,
mammals, birds, flowers, and finally, about 200,000 years ago, Homo sapiens in a
form resembling us today. With respect to the phase of today, we discuss cells in
vivo (Chap. 9) and similarities in organization between cells, swarms, and societies
(Chaps. 13, 14, 15, and 16).

Usually chronologies of the evolution of life select major phenotypic changes,
such as a change in the natural habitat from sea to land, or the occurrence of new
phyla, moving along some milestones of the phylogenetic tree. The selection of
steps could be based on different criteria as well, such as the way in which informa-
tion is transmitted between generations. These criteria underlie the so-called major
transitions in evolution according to Maynard Smith and Szathmáry [6]. To these
belong the origin of chromosomes, the origin of eukaryotes, the origin of sex, the
origin of multicellular organisms, the origin of social groups such as ants, bees, and
termites, and – although only indicated by the authors – the development of natural
neural networks.

Finally we would like to point out the ambiguity in what is called a major event
or a sudden event in evolution. A drastic change over a short time period may be
an effect of the overall gross time scale, on which the event appears as almost
instantaneous. It may be also an artifact of current ignorance of the intermediate
mechanisms. What looks like a big and rather unlikely mutation may later turn out
to be a cascade of combined small-step changes.

1.2 Scientific Reductionism

Throughout this book we find reductionism in the methodology. Phenomena on a
given scale are explained in terms of interacting units on a smaller scale or a scale
on a lower level in a hierarchical system. This reductionism includes the occurrence
of emergent phenomena. (A typical example of an emergent phenomenon is the full
segregation say of black and white balls into two separated areas as result of local
migration rules, although the local rules would not suggest a complete separation.)
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Reductionism is a very successful concept in physics, particularly when it is
related to symmetries. The special-relativity principle of Poincaré, Einstein, and
Lorentz, for example, postulates that the laws of physics should be the same for all
observers who move with a constant velocity with respect to each other. Including
not only classical mechanics, but also electrodynamics and Maxwell’s equations,
this implies that transformations between such moving inertial systems (“attached”
to the observers) should leave the velocity of light invariant. This, in turn, restricts
the allowed transformations between different inertial systems to Lorentz transfor-
mations. And the implied postulate therefore reads that the laws of physics should
be covariant (form-invariant) under Lorentz transformations, resulting in strong con-
straints on the models that are compatible with this postulate. (An extension of this
postulate to reference systems that are accelerating with respect to each other led
Einstein to his construction of general relativity.)

Another most powerful principle with far-reaching consequences is that of local
gauge invariance, which goes back to Hermann Weyl at the beginning of the last
century [7]. According to this postulate, physical laws for the fundamental inter-
actions should be invariant under local gauge transformations. Without going into
more detail here of what this actually means, we can state that the implementation
of this postulate for different gauge groups led to the construction of the theories
of the four fundamental interactions (i.e., gauge theories of the strong, weak, elec-
tromagnetic, and gravitational forces) [8]. The strong and the electroweak gauge
theories together make up the so-called Standard Model, which is experimentally
confirmed to high accuracy. Remarkably, the construction of these gauge theories
from the postulate is almost unique. The degree of uniqueness can only be appreci-
ated by those who know about the zoo of elementary particles and the plethora of
experimental results on collisions between these particles, which become ordered,
understandable, and predictable in terms of these theories. All other forces, ranging
from van der Waals forces to intermolecular forces in biology, in principle derive
from the fundamental ones (in principle, not in practice).

Another success of reductionism is known from statistical mechanics, when
macroscopic observables such as the temperature or magnetization of a system are
expressed in terms of microscopic variables such as the kinetic energy or spin of its
atomic constituents. Such a mathematical representation provides not only a deeper
understanding, but also possible control of the system via its microscopic param-
eters; one should admit, however, that this is only possible for relatively simple
systems (as compared to living matter), and in general bridging the gap between
microscopic and macroscopic phenomena in terms of a mathematical derivation is
quite hard.

Because of parallels in current developments in systems biology, we mention
one further successful manifestation of reductionism: the renormalization group
approach [9, 10]. In contrast to the previously mentioned bridging of scales in one
step, the renormalization group is an iterative procedure. It aims at a derivation
from first principles along with a reduction of complexity: when appropriate new
variables are introduced, their interactions should be analytically derived on the new
scale upon integration of effects from the smaller scale (where the scale can refer to
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configuration or momentum space). The process is then iterated a number of times.
This concept is indeed very successful in explaining critical phenomena, and if the
new variables and the new interactions on the coarse scale are of the same type as
those on the fine scale, it corresponds to a special case (and is summarized under the
keyword of scale invariance); in general, variables and laws on the coarse scale may
be quite different from those on the fine scale. In the simplest realization, however,
the new variables may be chosen just as the normalized sums over a selected range
of the former variables whenever this normalized sum may be considered as repre-
sentative variable for the new scale. Similarly, if a whole chain of enzymes always
acts together in the same way, it seems to be justified to gather the collective action
of enzymes into one new effective enzyme variable. In general, however, the new
variables will be intricate functions of the old ones, and the new variables should
match the criterion that they should lead to simple interaction laws. It is already
quite hard to derive phenomena of nuclear physics in terms of quarks and gluons,
that is, in terms of the variables of the underlying theory of strong interactions, that is
quantum chromodynamics. To bridge larger gaps in scales in an analytic derivation
will be even harder.

Nowadays certain directions of systems biology proceed in a similar spirit, when
specific behavior of metabolic networks is traced back to the underlying level of
genes (see, e.g., [11]). Multiscale modeling of natural hierarchically organized mate-
rials such as bones aims at a similar form of reductionism: to explain malfunction
of bone on a macroscopic level (manifest in the form of diseases) in terms of failure
of signaling pathways on a cellular level; this opens the possibility of curing the
cause rather than the symptoms. Multiscale modeling again is an iterative procedure,
integrating features from scale to scale.

So far our examples from physics and systems biology argue in favor of reduc-
tionism when it leads to a deeper understanding, allows us to control systems via
a few essential parameters, or reduces the complexity. In the light of present and
future computer simulations one may wonder why one should choose an iterative
procedure such as the renormalization group approach or multiscale modeling at
all, why not choose the brute force method and simulate a little “nanomachine”
like a virus in terms of its atomic constituents to push the principle of reductionism
even further? This is actually what people do with success. More precisely, molec-
ular dynamics simulations of the complete satellite tobacco mosaic virus (STMV)
have been performed [12] with 1 million atoms over a time interval of 50 ns. The
virus consists of a capsid composed of 60 identical copies of a single protein, and
a 1, 058 kb RNA genome. It is modeled via 949 nucleotides out of the complete
genome, arranged into 30 double-stranded helical segments of 9 base pairs each. An
important outcome of these simulations was that the capsid is unstable when there is
no RNA inside, and the implications for assembly and infection mechanisms were
discussed. Results of this kind provide useful insights for identifying the relevant
input for a certain behavior. In common with all molecular dynamics simulations,
the endeavor of starting from the atomic decomposition of macromolecules and
simulating certain aspects of their evolution in time covers a short time window
out of the total time evolution. The feasible time window in the simulations should
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be long enough to follow the real kinetics of the process in question. For the time
window of 50 ns in the quoted numerical experiments of [12], advanced computer
algorithms were already needed along with parallel computing with sophisticated
communication between the processors running in parallel; otherwise, for example
on a typical laptop of today, the simulations would take decades of CPU-time.

For a moment let us be optimistic and extrapolate the power of future computers
so that the accessible time windows become larger and larger and the evolution of
macromolecules can be followed over longer and longer periods. What would be
missing in such an approach, even if it produces reliable results on the larger scale,
is some insight into how the results come about. What the computer simulations can
definitely never provide is an understanding in terms of new simple variables, since
emergent phenomena on a gross scale may require new (e.g., collective) variables
with new (effective) rules of interactions, in terms of which the laws on the larger
scale are simple and transparent again. In the framework of the renormalization
group, computers are not able to propose on their own the effective new variables
for the next iteration step. Simple laws and simple (collective) variables are essential
for what is called understanding. If reductionism is pushed to its extreme, the price
is a loss of transparency. A representation of DNA in its atomic constituents yields
constraints on its bending, coiling, and other physical properties, and is therefore
of use, but it does not reveal its emergent role as a carrier of information. Basic
laws from physics still provide useful constraints on the hardware of a cell, but
the “software” needs other disciplines like biochemistry and cell biology. Therefore
living systems need intrinsically an interdisciplinary approach. Reductionism in the
various disciplines is quite useful, but should not be overstretched, and such an
approach is followed throughout the articles of this book.

1.3 Universal Features, Universal Processes, and Striving
for Universal Laws

Again, let us start from the physics perspective. Here the universal features we
shall describe are not abstractions, or oversimplifications, or mere metaphors for
universality, but striking quantitative experimental facts: substances that are obvi-
ously very different, such as binary liquids and ferromagnets, show the same
critical exponents. Critical exponents characterize the behavior of these systems
close to a critical point. In a liquid–vapor transition, a critical point terminates
the liquid–vapor coexistence curve, in a binary mixture such as isobutyric acid
(2-methylpropanoic acid) plus water it marks the temperature at which phase separa-
tion can first take place as the temperature is lowered, and in a spin system it marks
the transition from a paramagnetic to a ferromagnetic state. Now, the remarkable
experimental observation is that these systems show common features in how they
approach the critical point. These features are characterized by critical exponents:
in particular, and common to these different systems, the typical length over which
units of the system are correlated diverges at the critical point according to some
inverse power of the distance from the critical point, and it is this power that is called
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the critical exponent of the correlation length. The correlation length then dominates
all other length scales of the system. The systems show collective behavior near the
transition, and the behavior depends only on a few generic characteristics, such as
the space dimension and the type of interaction (long- or short-ranged); microscopic
details do not affect the exponents. The collective behavior, parametrized in terms
of sets of critical exponents, is the same for various systems at the critical point,
and those systems which share identical sets of critical exponents are gathered into
so-called universality classes. Universality between liquid–gas and ferromagnetic
systems can be explained in terms of a transformation that maps one system into
the other. In general, universality can be understood in the framework of the renor-
malization group as formulated by Wilson [9] and Kadanoff [10]. No doubt, on the
atomic level isobutyric acid and water look quite different from an Ising ferromag-
net, but obviously these microscopic details are irrelevant in the region of the phase
transition, and the behavior can be explained in terms of a subset of variables, the
so-called relevant degrees of freedom.

In a similar spirit, in relation to the theory of evolution, one may search for
classes of population dynamics that lead to quantitatively the same critical behavior
of phase transitions in terms of bursts and extinctions of populations, which may be
independent of the concrete realization of the population’s individuals (as chemical
or animal species, for example).

Behind the shared universal behavior of members of the same universality class
are shared universal mechanisms, characterizing the transition from one phase of
the system to another. In common with the following notions of universality is the
feature that the universal behavior (here at critical phenomena) refers to selected
parameters (out of the critical region), subsets of variables (those termed as rel-
evant variables), and underlying processes (such as the emergence of long-range
correlations).

So let us next discuss universal processes, universal in the sense that they are
observed on different scales, some of them ranging from the microscopic scale
of elementary particles to macroscopic scales. To these belong creation and anni-
hilation or birth and death events, replication, mutation, competition, selection,
fragmentation, composition, recombination, diffusion, drift, and migration. All pro-
cesses can be specified in terms of rates, which are taken from experimental mea-
surements or postulated on the basis of a theoretical understanding of the involved
interactions. On the level of elementary particle physics the rates are determined
by the well understood fundamental interactions. They allow us to predict cross
sections at the large collider experiments. For chemical species the equations can be
cast in the form of chemical rate equations (see Chap. 2). If our variables stand for
normalized frequencies of individuals of a given population, we obtain equations
of population genetics, and depending on the rules of interactions, equations of
(evolutionary) game theory result, some of which are discussed in Chaps. 13 and 14.

For a moment let us assume that the above list of elementary processes is com-
plete, in the sense that we can decompose an arbitrary concatenation of evolutionary
processes on an arbitrary scale in terms of these elementary ones. Say, we consider
the evolution of a population of several species of bacteria, fluctuating in number
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owing to birth and death processes, undergoing mutations during replication, dif-
fusing and migrating on a plate, and interacting only with their nearest neighbors.
One may be tempted to jump to conclusions and wonder whether there is just one
corresponding universal “chemical” master equation, the master equation of the
theory of evolution, independent of the subset of processes being considered. The
answer is negative. The very form of the equation depends on the choice of included
processes. As pointed out in Chap. 13, there is a hierarchy also in the mathematical
complexity of description. In the context of population dynamics it can be summa-
rized as follows: As long as stochastic effects due to mutations in the species or
fluctuations in the population size can be neglected, the equations will take the form
of deterministic rate equations, for example in the form of (nonlinear) replicator
equations. When the included processes lead to fluctuations, in particular also in the
population size, the population size itself becomes a random variable, the equations
take the form of (chemical) master equations and no longer determine the size, but
only the probability of finding the population at a given time to have a certain size.
All this description holds as long as no spatial organization (that is, information on
who interacts with whom) and no diffusion or migration processes are taken into
account. This is obviously a special case of a generic situation. An inclusion of
the influence of mobility and connectivity, in addition to the effects of finite size
and noise of other origin, finally leads to equations that take the form of stochastic
partial differential equations. For further details we refer to Chap. 13. Currently, the
effect of spatio-temporal correlations on population dynamics is an active field of
research. Therefore, in general, an extension towards inclusion of further processes
on top of a given set is more than adding further components to a given set; it usually
leads to an interplay of the former set of reactions with the new set and therefore to
a rich spectrum of possible behavior that is reflected in an increasing complexity of
the mathematical description.

Still one may search for universal laws in the plethora of phenomena. What
we call universal laws in the context of the theory of evolution are characterized
by a set of equations that allow very different realizations in natural systems. An
example is the motif of three mutually repressing species. The interaction here is
mutual repression, species A represses B, B represses C , and C represses A: a
game that is played on many scales, ranging from the genetic level [13] to bacteria
[14] and human players of the rock–paper–scissors game. Common to the different
realizations are terms in the set of equations, which describe mutual repression,
and the mechanism of how various species can coexist and diversity be maintained.
Another motif of this kind that allows for many interpretations is the SIR model
for populations, whose individuals can be susceptible (S), infected (I), or recovered
(R) [15].

In summary, universal laws refer to recurrent features on different scales, pro-
viding the underlying mechanism in common. A universal “theory” that aims at
an explanation of complex behavior in all its facets in one theoretical framework
is neither realistic nor a topic of this book. (If we nevertheless use the notion of
“theory of evolution”, “theory” stands for a conglomerate of mathematical models
with varying degree of predictive power.)
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1.4 The Concept of Self-Organization

Self-organization is a key concept for explaining complex structures emerging out of
a less complex or an even random start on the basis of local rules. The local rules can
be coded in the form of differential equations. It has a long tradition in chemistry,
physics, and morphogenesis, and in the meantime has entered life sciences, includ-
ing the fundamental unit of life, the cell. The intimate relation of self-organization
to the science of evolution is the chance of explaining the emergence of complex
structures without the need for a creator, an architect, a designer who guides this
evolution from an elevated vantage point with a blueprint in his mind.

As a first example let us consider Turing patterns, named after Alan Turing,
who is known as a mathematician, logician, cryptanalyst, and computer scientist
but also studied the chemical basis of morphogenesis. He predicted oscillations in
chemical reactions, such as Belousov–Zhabotinsky reactions, as early as the 1950s
[16]. These patterns are neither random nor regular but complex in their structure.
Turing patterns in animal coats of zebras, cheetahs, jaguars, leopards, and snails
result from instabilities in the diffusion of morphogenetic chemicals in the animal’s
skin during the embryonic stage of development; for reviews see [17, 18]. Since the
proposed mechanism cannot be directly tested at the embryonic stage, a very differ-
ent set of experiments was performed, experiments with vibrating plates in which
the density fluctuations of the air were visualized by holographic interferometry.
Varying the shape and size of the plates enabled the patterns of visualized ampli-
tude fluctuations to be tuned between various patterns of spots and stripes, strongly
resembling patterns of animal coats [19]. What is the reason behind this amazing
possibility of mimicking and visualizing pattern formation? The answer lies in the
same mathematical structure of the associated differential equations. As indicated in
[19], the reaction–diffusion equations for two substances (which act as positive and
negative inhibitors, not further specified in their chemical composition, but finally
determining the melanin concentration on the skin) can be approximately mapped
to an equation that describes the amplitude fluctuations of a vibrating membrane,
here chosen as an elastic plate whose initial and boundary conditions can be easily
varied. So the experiments serve to analyze the important role of size and shape of
animal’s skin on pattern formation on this skin. In principle, therefore, a detailed
understanding of the mechanisms behind Turing patterns in animal coats is possible
(even if these patterns sometimes look like they are designed by talented artists if
we think of butterflies, for example).

As we shall see in Chap. 7, it is “just” the combination of physical laws of grav-
itation and hydrodynamics that is able to predict the formation of cosmic structures
such as galaxies in the universe if the initial conditions for the equations are chosen
compatible with the CMB data. So the structure is coded in the initial conditions
along with the dynamical laws of evolution. A hint to how the structure of the CMB
data itself might have arisen is given in Chap. 8.

From the predictive power of self-organization on cosmic scales and of pattern
formation in animal coats down to scales of daily life one may be tempted again
to jump to conclusions. Can ultimately all evolution, in particular the emergence of
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life, be understood as self-organized? Self-organized in the sense that we know the
laws and their mutual interplay and can thus reproduce or predict the very formation
of living entities from appropriately chosen initial conditions? In order to estimate
how far we are still off from answering this question, it is instructive to consider
the basic unit of life: a living cell. First of all it should be noticed that a single
cell (whether prokaryotic or eukaryotic) is a structure of much higher degree of
complexity than mass densities in the universe or pigment densities in the skin,
and the inherent hierarchical structure of the cell refers to a functional hierarchy,
which contains a subset of processes that are able to control other processes on a
different scale. Therefore it is very instructive to focus on self-organization within
a single cell (Chap. 9). In their contribution, Dehmelt and Bastiaens carefully dis-
tinguish between different organizational principles within a cell: apart from self-
organization there are “key-regulators” and “blueprints”, similarly to the distribution
of work between an architect, his blueprint of the final building, and the work-
ers who build the house accordingly. Key-regulators are steering units – without
key-regulators no performance would be possible – whereas steered units, larger
in number and less complex, may be more easily substituted when they fail so that
the performance goes on. Still, aster and spindle formation in the cell are meanwhile
understood as self-organized processes via microtubules and molecular motors [20],
but “who” constructed the molecular motors? If self-organization within the cell is
only one among other organizational principles, do we need architects and designers
in general in the same way as the cell needs key-regulators and blueprints, coded in
its DNA, to function well? Can a system produce its own key-regulator if the system
is not a society with its self-elected representative or ruler, but a precursor of a cell?
The answer is open.

A challenge for future research will certainly be to construct dynamical systems
in which spontaneous symmetry breaking or nonlinear interactions lead to the gen-
eration of a dynamical hierarchy, a hierarchy organized by the system itself and
leading to asymmetric relationships between steering and steered units. There is
some chance for such a description if we take self-organized dynamical hierarchy
of evolved turbulence in a viscous fluid as a metaphor of how it may occur. In an
abstract way let us summarize what is needed. If we describe a hierarchical system
as consisting of several “horizontal” levels, labeled along a “vertical” axis. It seems
to be quite generic that the different levels are characterized by different time scales
(accompanied by different interaction strengths) that are characteristic for the intrin-
sic dynamics on this level. So the time scales may be used as possible labels. The
interactions between units within the levels on one hand and between the levels on
the other hand are then quite different: the upper level will enter the dynamics on
the lower level as control parameters; their slow change may induce bifurcations or
phase transitions on the lower level, but there is no direct interaction with the fast
variables, so the slow dynamics will control the fast dynamics and not vice versa.
While the fast dynamics is able to adapt to slow changes of the control parameters,
the slow dynamics is not, it cannot resolve the short time scale, it merely sees the
average values of the fast variables. A reflection of this asymmetry may be found in
steering and steered processes: slow processes are able to steer fast ones, fast ones
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influence slow ones in a different way. The whole scenario of a dynamical hierarchy
is actually realized in a self-organized way via the Navier–Stokes equations, due to
nonlinear interactions of the fluid molecules. Note that our previous examples of
galaxy formation and aster and spindle formation in the cell are self-organized pro-
cesses within one level of the formerly mentioned type of hierarchy. (The functional
hierarchy should be distinguished from the hierarchy of spatial scales involved in
the structure formation of the universe.) What is missing for the cell is a set of
dynamical equations that predicts self-organization in the “vertical” direction, that
is, the emergence of key-regulators on top of the regulated units, in analogy to the
Navier–Stokes equations, which predict the formation of slowly moving and large
vortices that enslave the fast-moving and small vortices. The reader will find an
extensive discussion of dynamical hierarchies in the book by Mikhailov and Calen-
buhr [35] and a summary in Chap. 16.

1.5 Chicken-and-Egg Problems in Many Facets

No egg without a chicken and no chicken without an egg. How can we break up
this cycle and find out which was first (if one of them was first at all)? Obviously
the chicken-and-egg problem is intimately related to evolution, and in a metaphoric
sense it is a ubiquitous dilemma of the kind “Which came first if A cannot exist
without B and B cannot exist without A?” Although in this book we study such
dilemmas in a scientific context, it should be mentioned that even ancient philoso-
phers such as Aristotle, and Plutarch were aware of this puzzle in terms of bird-and-
egg or hen-and-egg problems and also recognized their generic nature, which finally
leads to the question of the origin of the universe. When time is considered as cyclic,
as in Buddhism, there is no “first”, and this may be a better way to bear the march of
time, but even if our universe ends up in what is called a big crunch and restarts with
a new big bang, this would not answer our question when we only want to focus on
the segment from A to B or, alternatively and not necessarily equivalently, from B
to A, in order to understand the intermediate evolutionary steps of this segment.

Not only in natural science and philosophy, but also in the social sciences,
chicken-and-egg dilemmas are very familiar, and here they can be related to vicious
circles. An advertisement for a job usually requires experience and experience
requires already having a job, or a place of residence requires employment and
employment requires a place of residence. The energy costs to break up these cycles
and overcome the barriers in practice act as selection criteria. Chicken-and-egg
dilemmas are also known in medical applications. In medical treatment of diseases
the “dilemma” occurs when symptoms can be the cause and consequence at the
same time, although there a successful treatment of the symptoms would fortunately
also remove the cause.

Back to chicken-and-egg problems in the scientific context. Well known
from mathematics and physics are differential or integral equations posed as
self-consistency problems. If the left hand side stands for the required solution, the
trouble occurs when the right hand side requires the very same solution as input.
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Here a way out may be an approximative ansatz inserted in the right hand side,
leading to an approximate solution on the left hand side. Iterating this procedure, the
difference between the succeeding approximative solutions may converge to zero,
so that the right solution can be self-consistently determined.

More generally, what is recurrent in scientific versions of the chicken-and-egg
problem is the struggle for how much information or structure should be encoded
in the initial conditions or, more generally, in the chosen initial state of the system,
and how much structure should come out as result of the dynamic laws that evolve
the initial to the final state. From the reductionist’s point of view, one would like to
put in as little structure as possible, so that the complexity of the final state is larger
than that of the initial one (whatever the complexity precisely refers to). In general,
the specification cannot be reduced to assigning initial values to a certain function
or a functional that evolves in time, in particular not if we deal with experimental
realizations. The very selection of what should evolve poses a problem and often is
the art of the game.

In the context of this book, the question of whether the prebiotic world was an
RNA-world, a “metabolism-first” world, or a lipid world (as mentioned in Sect. 1.1)
certainly comes closest to the chicken-and-egg problem in the literal sense. This is
an ongoing debate among experts. A fundamental distinction in biology is between
nucleic acids on the one hand, as carriers of information, and proteins on the other
hand, as generators of the phenotype. In living systems nowadays nucleic acids and
proteins mutually need each other. As division of labor the former store the heri-
table information and the latter read and express it. Once again: which came first?
Arguments in favor of RNA coming first can be found in [6]. RNA seems to be
able to bridge the gap between chemistry and biology. It can display also catalytic
activity [21], and can be made to evolve also new catalytic activities through molec-
ular Darwinian selection [22], but the question remains whether chemical evolution
itself could have produced replicative RNA, since the spontaneous generation of
RNA seems to be very problematic under prebiotic conditions [23]. Once it is there,
however, the game can go on.

One of the alternative approaches is a lipid world to start with. Lipids are
amphiphiles with a capacity to spontaneously self-organize into supramolecular
structures such as droplets, micelles, bilayers, and vesicles. Lipids are very likely
to occur. Later they can give rise to more complex biopolymers, and there seems to
be evidence that catalysis is not restricted to proteins and RNA, but also lipids can
evolve catalytic capacities and precursors of metabolism in the end. While in the
RNA world the first occurrence of RNA appears as a discontinuous event, since it is
quite unlikely to be produced under prebiotic conditions, here one seems to end up
at a discontinuity between catalytic lipid aggregates and biopolymer-based cellular
life that we observe nowadays [24]. An ansatz has been followed that information is
coded in the form of specific molecular compositions [25], but the question remains
how progress in evolution can be achieved without an alphabet-based coding system.
Was the lipid world scenario just the precursor of the RNA world? The final answer
is not yet known.

Two chapters, 11 and 12, deal with contemporary lab experiments that attempt
to imitate the step from the prebiotic to the biotic world via the production of proto-
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cells. In two different approaches, these chapters illustrate the struggle for the right
choice of initial ensemble or initial ingredients.

1.6 A Quick Look into the Nanoworld

Nanotechnology makes it possible to have a look into the nanoworld, it is the world
on the scale of nanometers (10−9 m), which is the typical diameter of constituents
of cells. Eukaryotic cells have a typical diameter of 10–100 μm (1μ = 10−6 m),
procaryotic cells a factor of ten less; they live in the “microworld”, but looking
at their constituents, we find the diameter of the DNA double helix or of ribo-
somes, the width of microtubules, or intermediate filaments to be on the order of
some nanometers. A detailed study of ongoing processes within the cell reveals
fascinating insights into cells as well structured, hierarchically organized, and well
functioning nano-factories. These factories are robust against many kind of attacks
from outside, stable in an ever-fluctuating environment, equipped with molecu-
lar machines with a remarkable degree of efficiency in transforming chemical to
mechanical energy, and endowed with an intracellular traffic system. Compared
to all these achievements, manmade copies are poor with respect to their degree
of efficiency and robustness. In intracellular traffic, some molecular motors trans-
port cargo to designated locations [26], others are involved in the transmission
of genetic information [28], some motors create tracks, others destroy them, they
also may change lanes along the microtubule network [26]. In theoretical modeling
and single-molecule experiments it is meanwhile possible to predict their average
velocity (a few base pairs per second, see, e.g., [27]), the stall force [28–30], and
many other single-motor properties [31]. The experimentally measured stall force
for motors such as kinesin and myosin is on the order of a few piconewtons ((pN),
that is 10−12 N) [29]. Traffic jams or failure of the traffic regulation may lead to
diseases. Alzheimer’s disease is nowadays explained in terms of malfunction of the
intracellular traffic [26].

So we find a high level of organization already in the nanoworld with many
parallels to organization in societies. It is natural to compare production logistics
in companies with biologistics in cellular networks. Therefore parallels in cells and
societies are at hand (see Chap. 16). It is certainly a great challenge for the future
to search for mechanisms of how the hierarchical organization of cells as factories
could ever have evolved (merely on the basis of dynamical laws, that is, in a self-
organized way).

1.7 Playing the Tape Again

Let us assume we could rewind the tape of evolution in its whole breadth, rewind it
a million years, a billion years, 14 billion years back to the beginning of the universe
and press the button to rerun evolution, to allow free play afterwards. Would galactic
structures form again, providing conditions for a blue planet, would life unfold in
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the same way, ending up with Homo sapiens as the pride of creation in roughly the
same amount of time? In its full breadth such an experiment is science fiction, but as
we shall see, it is not fictitious to rerun small sequences of the tape today to achieve
some partial answers.

Let us start with a “sequence” that in real evolution was played shortly after the
big bang, when the universe had cooled down to a temperature of ∼1012 K and the
hot plasma of free quarks and gluons transformed into the phase in which quarks
and gluons were confined into mesons and hadrons once and for all, in particular
into protons and neutrons, constituents of matter’s nuclei today. Recently (end of
March 2010) the relaunch of the Large Hadron Collider (LHC) experiments at the
nuclear research center CERN in Geneva featured in the top daily news with the
comment that researchers had succeeded in mimicking the big bang. What is so
exciting about these experiments? When protons (more generally heavy ions) are
smashed together in the large colliders, for a very short instant of time (on the order
of some 10−23 s) and in a very tiny region of space (on the order of some 10−13 m)
the energy densities created are so high that even the strongly bound nuclei melt
into their basic constituents; the quarks and gluons are then no longer confined and
the resulting state resembles the exotic state of matter present during an early phase
of the universe. (In the experiments at CERN protons were smashed head on at
an energy of 7 TeV (1 TeV = 1012 eV).) Details of the transformation back into
the confinement phase are certainly different under lab conditions, compared to the
conditions in a slowly cooling early universe, but alone the production of this exotic
state at extreme energy densities is exciting enough not only for experts in particle
physics.

The next sequence on the tape we want to consider is dated about 4 billion years
ago, at the transition from the prebiotic phase to the origin of life. For some of us
an old dream, for others a nightmare: if man were able to create man from scratch
(if scratch stands for nonliving ingredients) and it is up to man to design man. In
more realistic terms we refer to artificial life and the current attempts to construct
precursors of cells, or even more realistic, certain functioning compartments of pro-
tocells out of nonliving components (see Chaps. 11 and 12). Drawbacks and suc-
cesses in these attempts certainly improve our understanding of what mechanisms
are essential for making a cell alive, and as a byproduct, such studies can lead to
applications in medical treatment of diseases, based on an understanding in terms
of microbiology and biochemistry. Artificial life is probably the most ambitious
attempt to rerun some part of evolution.

The third sequence on the tape that we select could have started a little later,
about 3.5 billion years ago, with populations of Escherichia coli bacteria. Over
two decades recently (1988–2008) a remarkable experiment [32] was run in which
generations of generations (altogether some 10,000 generations) of E. coli bacteria
were grown under well controlled initial conditions in vitro in a certain nutrition
background. The experiment should shed some light on a basic puzzle that is at
the core of evolution: the tension between contingency and necessity. The results
point out the importance of historical contingency for the evolution of key innova-
tions. In these experiments a key innovation amounts to the capacity of E. coli to
exploit citrate for nutrition in a glucose-limited medium that also contains citrate,
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but “normally” would not be used by E. coli. The key innovation happened in one
population after 31,500 generations, and, as an innovation, it led to an increase in
population size and diversity. Explanations are available according to which this
innovation was caused by one big mutation, or alternatively, by an accumulation of
small effects along a certain historical path. How sensitive are innovations to the
prior history of an evolving population? Representatives of opposite viewpoints are
Stephen Jay Gould [33] and Simon Conway Morris [34]. According to Gould, each
change on an evolutionary path has some causal relation to the circumstances in
which it arose, but outcomes must eventually depend on the history, that is, on the
long chains of antecedent states. Therefore rerunning the tape would lead to a world
quite different from ours. According to Conway Morris, “the evolutionary routes are
many, but the destinations are limited” [34], so that gross features after rerunning
the tape would be same, while inherent contingency would be confined to minor
details in which the re-created world would differ from ours.

Related to the puzzle on contingency and necessity is the tension and linkage
between stochastic and deterministic processes, which is currently in the main focus
of research on dynamical systems in biological applications. It is a major puzzle
how the robust and reliable functioning of systems such as the networks of genes
or cells is possible in spite of the inherent and unavoidably fluctuating background,
with fluctuations of different origin and on different scales. It would be surprising if
nature did not exploit the various forms of “noise”, as it is omnipresent and allows
a number of possible distinct effects. Noise as disturbing background to signals or
a source of destabilization are our usual negative thoughts, but this is just one side.
Counterintuitive effects have been demonstrated in which noise increases the order
of the system, induces transitions to qualitatively new states, or leads to regular
propagation of signals in excitable media such as neural networks. For the impact of
noise on stationary states in populations such as those of E. coli we refer to Chap. 13,
where noise stands for stochastic reactions and fluctuations in the finite population
size. In the E. coli experiments of [32], “noise” is realized in the form of mutations,
and the interest is in the linkage between the deterministic part of evolution and the
stochastic element of mutations. There the emphasis is on the kind of mutation. Was
it one big mutation or an accumulation of small effects, after a small fluctuation at
the beginning of a chain of events? In this book, the fundamental role of noise for
evolution in relation to the evolution speed and to robustness against mutations is
addressed by Kunihiko Kaneko in Chap. 10. Here “noise” stands for genotypic and
phenotypic fluctuations, where the phenotypic fluctuations may have two origins: at
the genetic and the epigenetic level.

1.8 There is More than Intuition

It is very easy to generate extremely small numbers for the probabilities of creating
complex behavior out of a random, well-stirred soup, whatever complexity refers
to. The small probabilities correspond to astronomically long times to produce the
complex behavior, and these times easily exceed the age of the universe. Attempts
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at explaining the origin of life often have to face the prejudice that life is too com-
plex to be ever produced by reproducible mechanisms in a finite time. On the other
hand, rules, dynamical laws, and mechanisms are known that create ordered or even
complex structures out of a random start, see Chap. 5. A mere guess is certainly not
sufficient to decide how realistic proposed explanations for the origin of life are.

In general it is impossible to predict by mere intuition how many small effects
accumulate in the course of time. One may think about large sums of small terms
that individually approach zero the later the term appears in the sum. What is the
value of the sum in the limit of infinitely many terms? From first courses in calculus
one knows that the sum diverges if the terms decay to zero only according to 1/n for
n → ∞, but converges to a finite value for faster decay such as ∝ 1/n2. Intuition
does not tell us the solution.

Evolution is in particular a history of bursts and extinctions of populations of
species of all kinds. A sudden rise or decrease in the number of species or their
diversity amounts to a phase transition (see also Chap. 4). Phase transitions are ubiq-
uitous in nature. Some of these transitions happen suddenly and are accompanied
by dramatic changes; they come as a surprise to those who rely on naive continuous
extrapolations of ongoing small changes. Other transitions proceed more smoothly,
but show what are called critical phenomena, in which small perturbations spread
over large scales due to long-range correlations in the transition region. Transitions
such as extinctions of populations or other catastrophes are rare events, but how rare
they are, so rare that they never occur or that they do occur if we wait long enough,
is a matter of quantitative estimate. Similar considerations apply to rare mutations.

Another caveat are linear extrapolations in systems with intrinsically nonlinear
dynamics. The rich dynamical behavior of evolved turbulence of a viscous fluid,
including its dynamical hierarchies, would never be intuitively expected from the
uniform interaction of fluid elements. In all these cases mathematical modeling is
the only means to predict the final outcome of how a large number of individu-
ally small or locally linear effects sum up. The contribution of Schuster in Chap. 2
contains an appeal to extend the successful mathematical modeling of physics and
chemistry to biology.

1.9 Reduction of Complexity

There is no doubt, life is complex and so are living systems, and even nonliving
ones may exhibit a high degree of complexity, whatever definition of complexity is
used: structural (as for patterns that are neither random nor regular), functional (as
in biological systems), algebraic (as in mathematics), or algorithmic (as in computer
science). Still, there is a chance to reduce complexity whenever processes decouple
and are well separated on different scales in space and time. From the viewpoint of
long time scales, processes running on time scales that are several orders of magni-
tude smaller average out like fluctuations. On the coarse-grained scale they may be
dropped, although zooming into the short time scale may uncover a rich dynamics.
Similarly, one may neglect the compositional substructure of objects from the per-
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spective of a very coarse scale in space. It is then a matter of convenience to describe
these objects as “elementary” with effective degrees of freedom on the larger scale.
Even the partition into disciplines such as subnuclear, nuclear, atomic, and molecu-
lar physics is just a reflection of the possible decoupling of phenomena on different
scales. Collective behavior (as observed in large populations of oscillatory units in
synchrony, or chains of always co-acting enzymes) may also lead to a reduction of
complexity; a collective variable is then sufficient to describe the large ensemble
when it behaves as one unit. Therefore the reduction of complexity – whenever it
is possible – should not be mixed up with the arrogance of simplicity, which is a
common prejudice against mathematical modeling.

1.10 How This Book Is Organized

1.10.1 Background

The background to this book is a summer school on Steps in Evolution: Perspec-
tives from Physics, Biochemistry and Cell Biology 150 Years after Darwin that
we organized at the occasion of the Darwin year 2009 on the campus of Jacobs
University in Bremen. Participants with a background in life sciences and an inter-
est in mathematical modeling, as well as from mathematics, physics, and chemistry
with an interest in biological applications, enjoyed a school with stimulating lectures
which provided the basis for the contributions to this book. Worldwide the ongoing
controversial discussion about Darwinism and the modern theory of evolution was
revived in many contributions in the media with different degrees of objectiveness.
Therefore we found a collection of articles based on these lectures on progress in the
theory of evolution a valuable contribution to this revived interest. The articles are
at the cutting edge of different disciplines. We have restricted our viewpoint to the
natural sciences, since the progress in the understanding of evolution that has been
achieved there is already so rich and versatile that an extension to social sciences
is beyond the scope of a single book. Therefore achievements in the cultural evo-
lution of man are only touched on, for example, linguistics (Chap. 3), game theory
(Chap. 14), and amazing parallels of organizational structures between natural and
social systems (Chaps. 15 and 16).

1.10.2 Rationale

Controversial discussions on Darwinism versus creationism are accompanied by
strong emotions, and the scientific approach to the theory of evolution has to face
prejudices of the kind that its reductionism demystifies nature, that it is the arrogance
of simplicity of scientists to oversimplify the description of nature, ending up with a
claim to explain “the world as a whole”. Moreover, an attempt to create artificial life
is interpreted as hubris, as lack of respect for nature and its creatures. Sometimes
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such criticism is based upon ignorance of the real statements, achievements, and
goals of research, or upon naive extrapolations of seemingly obvious facts.

As a contribution to the ongoing discussion, the main messages of our book may
be summarized as follows. All contributions follow some kind of scientific reduc-
tionism in order to go beyond the superficial level of a mere description. Deriving a
theory is more than fitting data. They try to explain features on a given level in terms
of more basic features underlying a set of common observations, but nowhere is the
reductionistic viewpoint pushed to its extreme, extreme in the pretense to explain
phenomena of life science in terms of elementary particle physics. Apart from the
fact that such an endeavor is unrealistic, it is not even desirable whenever trans-
parency gets lost. Instead, the field of evolution theory intrinsically requires interdis-
ciplinary collaborations from the various fields of natural science, from mathematics
and computer science to wet experiments in physics, chemistry, and biology, since
the emerging features of a derivation from one discipline may require notions from
the other discipline at the next level of description.

The contributions amount to an appeal for mathematical modeling, since more
than intuition is needed for an appropriate understanding. Common folklore is often
based on naive extrapolations and shortcuts when they refer to the final accumula-
tion of a sequence of ongoing events. Here a reliable prediction should be based on
a mathematical description. Shortcuts in a line of arguments may lead to statements
about the extremely low probability of man coming into existence, so that the occur-
rence of life needs the action of an external creator, but why such a line of argument
amounts to a shortcut is pointed out in Chaps. 5 and 6.

In contrast to the common belief held by skeptics of the scientific approach,
a deeper understanding, a reduction of complexity, or a break-up of chicken-and-
egg dilemmas are usually accompanied by fascination and amazement. Amazement
results, for example, from a deeper insight into the sophisticated, well-functioning,
highly flexible, and very robust performance of processes in things alive. Any infor-
mation scientist who knows the struggle to program robots to perform a certain task
will certainly appreciate the performance of the well-controlled movement of flies
in spite of their tiny brains, the coordinated motion of a school of fish or flock of
birds and their unerring ability to locate prey. Neuroscientists involved in optimizing
the performance of artificial neural networks will not hold the progress in learning
of a 3-year-old in lower esteem than someone who considers the growing up of a
child an automatic process.

In contrast to other books on evolution, the selection of topics here is more
diverse. Topics such as cosmology, population genetics, game theory, and artificial
life, touched on in this book, easily each deserve a book of their own, staying within
the frame of one discipline. A detailed understanding of all the results presented
in this book and related to the theory of evolution would require an education
ranging in the extreme case from mathematical physics and quantum field theory
to experimental biochemistry and biophysics. Therefore the indicated technicalities
will not be understandable in full detail to experts from other fields of research, no
doubt about that. Still, it may be inspiring to the non-experts to see a similar kind of
struggle occurring in a different discipline. In most parts of the book, when dealing
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with basic principles of evolution, population genetics, and game theory, parallels in
questions and their analysis are evident. It is just one of the main aims to point out
the common concepts such as self-organization, the many facets of chicken-and-egg
problems, universal processes, and universal laws (but definitely not the universal
theory of “everything” (including life)).

Along with universality aspects there is obviously a need for a common language
to describe such different objects as molecules, bacteria, agents, or words with one
and the same type of variable. The chapters on game theory and population dynam-
ics may convince the skeptical reader that such a language is possible. When only
the initial abundances of species matter and it is otherwise the rules of the game
that determine the final fate of being a winner or loser, the realization of the species
as a bacterium or human agent becomes irrelevant and can be dropped from the
description. The existence of such a common theoretical framework gives a hint to
why it is neither hopeless, nor predestined to a superficial level, to put such versatile
aspects of evolution together in one book.

In relation to the theory of evolution it is quite easy to ask questions that are
simple, evocative, and touching at the same time: What is the fate of the universe?
What is life, how did it start on earth, what defines its very beginning and its very end
on the individual level? Is Darwin right after all? Simple questions induce cascades
of further questions. Since we do not know any simple answers, the reader will find
answers to more specific questions, so specifically posed that they allow an answer
from the perspective of the natural sciences.

This book should leave an overall impression that the theory of evolution itself
is open to further evolution with ongoing challenges in various disciplines. No end
is in sight for possibilities of replaying sequences of the tape in new rounds of this
never boring game; we are certain of this.

1.10.3 About the Articles

The articles are organized in four parts: Principles of Evolution deals with models on
basic processes such as replication, mutation, and selection; the second part From
Random to Complex Structures: The Concept of Self-Organization for Galaxies,
Asters, and Spindles is about one of the main overarching approaches to explaining
the occurrence of complex structures from a random start; the third part is devoted
to the basic units of life, more precisely to Protocells In Silico and In Vitro, to then
conclude with intimate parallels ranging From Cells to Societies in a fourth part. The
following extended summaries of the articles mainly serve to embed their content in
the wider context of the book.

Part I: Principles of Evolution

P. Schuster (“Physical Principles of Evolution”) Throughout the book the notions
of population, species, evolution, mutation, selection, and fitness are frequently
used, in various contexts and with various meanings. So the reader may wonder
whether precise definitions in mathematical terms are available, or whether the
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notions mainly serve as metaphors for generic processes to which one inevitably
assigns a vague meaning. Therefore in the first section Peter Schuster introduces
the basic notions of the theory of evolution for the simplest available systems, such
as evolvable molecules in cell-free assays. He presents precise definitions in math-
ematical terms with an emphasis on the need for and use of such a mathemati-
cal approach to the theory of evolution. Schuster’s first section reviews historical
aspects, starting with Darwin’s notions of multiplication, variation, and selection,
and next describing the dawning of mathematical modeling in biology. Along with
progress on the theoretical side, new experimental techniques arose in the second
half of the last century, such as high-throughput measurements, which led to a large
amount of data that needs to be structured and understood by means of theoretical
models. Nowadays it is systems biology that ideally should bridge the gap between
a reductionistic and a holistic view.

The second section deals with the selection equation and its precursors, in par-
ticular the Verhulst equation, which describes exponential growth combined with
limited resources. For the selection equation it is proven that the term with the
largest assigned fitness value (highest reproduction rate) dominates all other species
at sufficiently long times, so that selection in Darwin’s sense is realized. In general,
evolution is addressed to mutations in the genotype, while selection acts on the
phenotype. Accordingly, Schuster explains next what evolution in genotype space
means. Evolutionary dynamics is described as change of the population vector,
whose components are the numbers of individuals for the different species as a
function of time. The time dependence is determined by deterministic differential
equations or stochastic equations, to be considered later. The genotypes are DNA
and RNA sequences and the genotype space is therefore the space of all polynu-
cleotide sequences. As a space in the mathematical sense, it can be endowed with
a metric based, for example, on the Hamming distance. Related notions such as
the consensus sequences of populations and a formal space for recombinations are
introduced as well. As mentioned in several chapters throughout this book, the final
aim is to relate features of phenotype space to evolutionary dynamics in genotype
space. In general the mapping between genotype and phenotype is rather complex,
but Schuster considers a case in which genotypes unfold unambiguously into a
unique phenotype. He considers a genotype space at constant sequence length l over
four and two letter alphabets. A concrete example is provided by in vitro evolution
of RNA.

Schuster’s contribution is on physical principles of evolution, and it is molecular
physics that provides the tools for modeling the folding of molecules into structures.
One tool is the concept of conformation space, in which a free energy is assigned
to each conformation of a molecule by means of a potential energy function. Fur-
thermore the conformation space concept enables us to talk about landscapes for
the evolution of RNA molecules. Structure predictions then search for the most sta-
ble structures or, equivalently, for the global minimum of this landscape. Chemical
kinetics of evolution is then first described by a deterministic equation for the evo-
lution of a population; now, in addition to replication and selection, also mutation
is included in the dynamics. The deterministic description applies whenever the
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population size N is large, mutation rates high enough, and other stochastic effects
negligible. The focus here is on the time evolution of the (quasi)species as a func-
tion of the mutation rate. There exists a critical mutation rate at which replication
errors accumulate, ending up in random replication and a uniform distribution of
species. Above this threshold, populations migrate, evolution is no longer possible,
and fitness differences in the fitness become irrelevant.

Experiments on sequence–structure mappings indicate that many genotypes lead
to the same phenotype and identical fitness values. What replaces natural selection
in this case? The answer is random selection as in the neutral theory of evolution, but
only for sufficiently distant (master) sequences. In principle, evolution is a stochas-
tic process, and fluctuations in the reaction rates and in the population size are
not always negligible (see also Chap. 13). The deterministic population variables
are then replaced by their corresponding probabilities, and the probabilities obey a
chemical master equation. In the proposal of this equation, it is not enough to add a
term that just compensates for the population growth, a detailed model is required.
One of these models based on a real experimental device is the so-called flow reac-
tor, which Schuster describes for the evolution of RNA molecules. In order to eval-
uate the impact of stochastic evolution on the phenotype, the sequence–structure
map has to be an integral part of the computational model in order to determine
the landscape of phenotypes and their properties on the fly. Two procedures were
carried out in the simulations reported by Schuster: the optimization of properties
such as replication rates on a conformation landscape, and a search for a specific
target structure in shape space. According to the results and common to both pro-
cedures, the progress in evolution proceeds stepwise rather than continuously, and
short adaptive phases are interrupted by long quasi-stationary epochs. Moreover,
and interestingly, different computer simulations with identical initial conditions
lead to different structures with similar values for the optimized rate parameters,
giving rise to contingency in evolution. Here Schuster refers to the recent experi-
ments with E. coli of [32] that we discussed also in Sect. 1.7: these experiments can
be understood in terms of random searches on a neutral network. Only one of the
twelve bacteria colonies happened to come close to a position in sequence space
from where a small mutation was enough to lead to a big innovation in the end. The
reader may compare the in vitro experiments of [32] with the theoretical modeling
reported by Schuster.

Naively one may expect that higher mutation rates accelerate evolution and the
related optimization process, without limitation. Unreflected extrapolation is again
misleading. Schuster refers to simulations that demonstrate the existence of a thresh-
old: optimization of evolution becomes more efficient with increasing error rate in
the replication only until a threshold value is reached. Above this threshold opti-
mization breaks down. How sharp the threshold is depends on the fitness landscape.

Schuster finally addresses the origin of complexity in evolution: It is not evolu-
tionary dynamics itself that is complex (this is in agreement with results of Chap. 6,
where it is the “rules” that are simple and lead to complex structures). The rea-
son for complexity here is the genotype-to-phenotype map and the influence of the
environment.



24 H. Meyer-Ortmanns

R. Blythe (“The Interplay of Replication, Variation and Selection in the Dynamics
of Evolving Populations”) Richard Blythe focuses on two basic questions that are
also of central importance for the theory of evolution in general. The first concerns
the existence of a single framework for the description of evolution in applications
as different as genetics, ecology, and linguistics. More precisely, without such a
framework, the description would amount to a collection of superficial analogies
between processes of molecules (genetics), species (ecology), and languages (lin-
guistics). The second question refers to the concept of selection and what the object
of selection really is. Blythe summarizes a formulation of evolutionary dynamics
due to Hull (see his chapter) and its utility for its interpretation. As it turns out, there
is a level of abstraction, expressed in terms of mathematical models, that allows
a unified description of evolutionary processes and provides a deeper understand-
ing of what the essential mechanisms are, which sometimes are hidden behind the
superficial appearances. Blythe characterizes evolution as a theory of change via
replication. What replicated DNA is in genetics, are reproduced species in ecology
and intangible behavior in culture in linguistics. During replication variation occurs
via mutation or recombination. Some of these variations may lead to some organ-
isms being more successful than others (in the sense of having more offspring),
this in turn affects the relative frequencies of different genotypes in a population;
this process defines “selection”. As indicated in our introduction, simple questions
may induce cascades of further questions. Here the question of whether selection
is all that determines evolution is such an example. The immediately induced ques-
tion relates to what the units of selection are, for example, where it takes place, at
the level of the genotype, or the level of the phenotype (as usually assumed), or
even at the level of groups or species. Hull’s abstract formulation was motivated by
this debate. Blythe illustrates Hull’s analysis with molecular evolution, community
ecology, and language change.

For the mathematical analysis of selection he discusses the Price equation. The
Price equation allows one to distinguish between the selective component of a
change and the component due to the generation of variation in the replication pro-
cess. More precisely it determines the variation of the mean of some quantitative
character (called trait) after one generation of reproduction, assuming we know all
the offspring numbers and the changes in the trait of each of the individual off-
spring. Its familiar applications are kin and group selection. Blythe demonstrates
that “survival of the fittest” is only part of the whole prediction of the Price equation.
In reality, offspring numbers and changes in the trait are random numbers, since
reproduction and mutations (here in the general sense) are stochastic processes.
Already these fluctuations may cause effects that are misinterpreted as selection.
Since so many emotional debates are concerned with selection, it is quite important
to disentangle from a single evolutionary process a systematic effect of selection
from purely random effects. What is an appropriate standard for comparison? The
answer is given in terms of genetic drift, which describes the outcome of neutral
demographic fluctuations. These are fluctuations due to stochastic birth and death
processes, for which all replicator types have the same number of offspring. There-
fore it is essential to first analyze the statistics of neutral population dynamics. How
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to do this is explained in Blythe’s sections on the fixation probability, the mean
fixation time, the experimental observation of genetic drift, and the effect of immi-
gration and mutation in neutral models. (Immigration and mutation are responsible
for maintaining variability in a population of finite size with faithful replication.)
When it comes to nonrecurrent immigration (where every immigration event intro-
duces a new replicator type to the population), one formulation (different from a
master-equation approach) turns out to be more convenient. This is a backwards-
time dynamics that evolves from observations about the diversity of a present-day
population backwards to an unknown initial condition. This so-called ancestral for-
mulation of neutral evolution finally leads to testable hypotheses in favor or against
neutral evolution. Neutral models therefore provide the null models in a quantitative
analysis of evolution. A detailed analysis of the omnipresent fluctuations from var-
ious stochastic sources is essential. Moreover, once the target of selection is known
(which is a nontrivial issue as we learn in this chapter), the results of evolutionary
processes can be predicted.

We would like to emphasize that Blythe’s contribution includes aspects of cul-
tural evolution, in particular mathematical models for language change. Evolution
of languages certainly amounts to a major transition in communicative abilities and
in evolution as a whole. It is intimately related to another simple question: “what
does it mean to be human?”, as Blythe concludes his chapter.

S. Thurner (“A Simple General Model of Evolutionary Dynamics”) Stefan Thurner’s
concept of evolution is not restricted to the genetic level, but is intended to apply to
biological evolution, technical and industrial innovation, economics, finance, socio-
dynamics, opinion formation and ecological dynamics. Inspired by observed univer-
sality classes in statistical physics (see Sect. 1.3), the aim is to derive universal sys-
temic properties of populations such as their proneness to collapse or their potential
for diversification. As is shown, phases of relative stability in terms of diversity are
followed by phases of pronounced restructuring, phases with high and low diver-
sity are separated by sharp transitions, and statistical characteristics of respective
time series turn out to be common to various systems. The variety of applications
becomes comprehensible by noting that the N -dimensional time-dependent vector
with binary entities 0 or 1 merely denotes the presence or absence of elements,
which represent species, goods, “things”, according to Thurner. Furthermore the
recombination and production of new elements is specified in terms of a production
table stating that a production of element k from i and j is possible (1) or not
(0). As typical processes for evolution, the dynamics should account for selection,
competition, and destruction. All allowed destructive combinations of elements are
fixed in another table with binary components. The dynamics is then formulated in
terms of an update rule for the vector of elements: if there exist more production
than destruction processes associated with a particular element, it gets produced,
otherwise not, or it gets destroyed if it already exists. Whether a certain produc-
tion is actually active depends on the availability of the corresponding elements.
This leads to the notion of an active production network that captures the set of
active production processes at a given time. To furthermore account for spontaneous
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appearance or disappearance of elements, existing elements are spontaneously anni-
hilated and nonexisting ones created with a certain probability. In the associated
tables it remains to fix the topology of the productions and destructions which are
allowed in principle, as the table entries refer to (im)possible productions of k from
i and j . Thurner chooses these tables with randomly distributed entries of 0 or 1.
The tables are therefore fixed by the number of constructive and destructive rule
densities. As in other examples of evolutionary dynamics in this book, the rules are
quite simple, and the evolving elements here have just a single degree of freedom
(being there or not being there). Numerical simulations of this model show then
two phases, characterized by an almost constant set of existing elements, and a
phase of massive restructuring. Along with that, plateaus of constant product diver-
sity are separated by restructuring periods with large fluctuations. The diversity is
measured as a normalized sum over all present elements at time t . Obviously, the
duration of the plateau and restructuring period depends on the “innovation” rate,
here meaning the newly created or deleted elements per time (in contrast to more
specifically defined innovations by Jain and Krishna in Chap. 5). The degree of
diversity depends on the densities of destructive and constructive rules. Thurner
lists a number of model variations that have marginally no effect on the results.
The model allows also an analytical approach. Its stochastic generalization can be
solved within a mean-field approximation. Special cases of the diversity dynamics
amount to projections on macroeconomic instruments, chemical reaction networks,
and lifetime distribution of species. According to Thurner, model predictions and
corresponding data from experiments share in all three cases gross features, such as
power-law behavior in certain distributions. Thurner emphasizes that fitness in this
diversity dynamics is an emergent feature rather than an a priori assigned property
of evolving bitstrings.

S. Jain and S. Krishna (“Can We Recognize an Innovation? Perspective from an
Evolving Network Mode”) Jain and Krishna consider special events of evolution
that often have a long-lasting impact on the subsequent history: innovations. Inno-
vations are easily identified in retrospect. Usually they stand for progress in evolving
societies and evolution of life. Is it possible to identify innovations as they emerge?
The authors give the answer in structural changes of graphs that represent the inter-
acting system of species. The framework is a dynamical network, consisting of one
kind of nodes, one kind of links, and one kind of variables. The variables, assigned
to the nodes, are relative population concentrations. The network is dynamic in two
respects: one concerns the dynamics assigned to the node variables, the other the
dynamics of rewiring the links so that the network topology becomes a dynam-
ical quantity as well. The combined dynamics includes two essential ingredients
of evolutionary dynamics: growth and selection, selection according to success, and
lowest success means lowest population concentration; the corresponding node with
the lowest concentration gets eliminated from time to time and replaced by a new
node according to certain rules. Since it is only the relative concentration of species
that enters the description, the nodes may represent a species in an ecosystem, a
substrate in a metabolic network or an agent in a society, depending on how realistic
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the description of the assigned interactions with other nodes is. Jain and Krishna
motivate their dynamics with a metaphor: A pond in the prebiotic world, full of
chemical species, gets flooded from time to time by a river or the sea. The flooding
drives some species out of the pond and new species in. Between the flooding the
species grow. Remarkably, this combined dynamics, although again simple, is rich
enough to produce a dense graphical structure of connected species out of random
connectivity at the start. All that happens in a short time during a rapid growth
phase. After the initial growth phase, the population fluctuates between a densely
connected set of grown species and a state of being extinct, afterwards to grow
again from scratch. These transitions in the evolution of populations can be traced
back to the (first) occurrence of certain graphical structures (so-called autocatalytic
sets). Moreover, innovations can be characterized “on the fly” in terms of irreducible
subgraphs, generated by an incoming node, and changing core and periphery struc-
tures due to the newcomers; the authors classify and analyze the set of all relevant
changes in detail. The changing graphical structure is responsible for the involved
change of the dynamical performance and therefore provides a suitable criterion
for recognizing events as innovations. One of the interesting lessons drawn by the
authors from this modeling is the ambivalent impact of innovations: what leads first
to the innovation’s success (e.g., the burst of growth in populations of species), later
leads to its destruction (e.g., the extinction of these species). Although originally
inspired by the metaphor of a prebiotic pond, the mechanisms for innovations may
be quite similar in social and economic systems.

Part II: From Random to Complex Structures: The Concept of Self-Organization
for Galaxies, Asters and Spindles

G.M. Schütz (“How Stochastic Dynamics Far from Equilibrium Can Create Non-
random Patterns”) Do you want to know the probability that “a monkey who wildly
hacks symbols into a computer accidentally types 64 characters out of a poem of
Shakespeare”? Gunter Schütz calculates this number to be 2−384. The probability is
the same as generating a DNA sequence of 192 letters, or a periodically alternating
sequence 010101 . . . of binary numbers of length 384. What this small number for
the probability actually means is illustrated with a Gedankenexperiment, designed to
be most efficient and extremely fast, but truly random. To be successful at least once
in 2373 attempts, performed over the age of the earth, that is over roughly 10 billion
years, the probability is still not more than 10−4. As mentioned in Sect. 1.10.2, these
small probabilities are often taken as an argument against any scientific explanation
that life could have come into existence and in favor of the need of external inter-
ference. Why arguments based on these extremely small probabilities fail and intu-
ition is misleading is illustrated by Schütz with predictions based on “paper, pencil,
and PC”, that is, on analytical calculations, combined with stochastic processes that
make use of a random number generator. In these studies, complex structures such
as Shakespeare’s poem or the DNA sequence will be represented by the alternating
binary sequence, and the wildly hacking monkey (which is equivalent to tossing
an unbiased coin or throwing symmetric dice) will be replaced by a totally asym-
metric simple exclusion process (TASEP). The TASEP is a prototype of models
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that describe out-of-equilibrium physics. Imagine a ring with a discrete number of
sites, and a given number of particles, such that at most one particle can occupy
a site. Each particle tries to jump to its right neighboring site after an exponen-
tially distributed random time interval. It is only allowed to perform the jump if the
neighboring site is empty, otherwise it does not jump. The binary numbers therefore
correspond to possible occupation numbers of these sites, being either 0 or 1. This
sounds like a simple rule, but the process allows a rich dynamical behavior, various
applications, and rigorous mathematical predictions. Schütz considers the TASEP in
four versions. Common to them is the so-called driven dynamics, which maintains
an out-of-equilibrium steady state and short-range interactions, but two of them are
stochastic and two are deterministic versions. Here we only mention two of the
results, the most counterintuitive ones. Firstly, the random dynamics (specified in
Schütz’s contribution) generates an ordered state out of a disordered start within a
time that scales only proportional to the size of the system, not exponentially to its
size, and secondly, starting from an ordered state, the random dynamics preserves
this order. Together with results for the other versions of the model, one is led to
the following conclusions: In contrast to what one would like to do, one cannot
conclude from the emergence of ordered or disordered patterns that the underlying
dynamics is deterministic or stochastic. (In the light of these results it becomes
less surprising that a basic and intricate task in population dynamics is to correctly
interpret fluctuations in the data and to uncover hidden rules of selection if they
were really at work during the generation of patterns, see Chap. 3.) Moreover, it is
true that throwing symmetric dice or tossing an unbiased coin would never create
complex structures (“never” means that it would take astronomically long times);
tossing biased coins, however, say in the form of the TASEP, it becomes possible to
create complex structures relatively fast owing to the hidden rules in this process. If
it is not the TASEP as discussed in Schütz’s contribution, but a combination of rules
or laws from physics and chemistry that govern the (partially stochastic, partially
deterministic) processes of nature, one may find it less incomprehensible that even
complex structures such as life have emerged.

Referring to the ongoing debate of Darwinism versus Creationism, we would like
to quote Schütz from his contribution: “Evolution is not the right place to find God”.

M. Bartelmann (“Structure Formation in the Universe”) Structure formation in the
universe can be understood as a self-organized process in the framework of the cos-
mological standard model. In the first part of his contribution, Matthias Bartelmann
summarizes the empirical and theoretical foundations of this model. The model is
meanwhile well established and based on Einstein’s field equations. Einstein’s field
equations are nonlinear and therefore not solvable in full generality. Thus, their
solutions are usually constructed on the basis of simplifying symmetry assumptions.
It is then the assumption of spatial isotropy and homogeneity that leads to the class
of Friedmann solutions and the Friedmann model of the universe. It is argued in
what sense the universe may be considered as being isotropic, although a quick
look at the sky reveals an anisotropic distribution of stars. Once the symmetries are
implemented in Einstein’s equations it is only an equation of state that is missing.
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The equation of state relates the pressure to the density of matter, and depends on
the very type of matter. The combined set of equations constitutes the class of
Friedmann models. Based on the observation that the universe is expanding, the
Friedmann model predicts a finite age of our universe and an inevitable big bang
prior to some finite time.

In view of experimental imprints of the universe’s early evolution, Bartelmann
explains the origin of the cosmic microwave background (CMB) radiation, nowa-
days one of the most important sources of data from the early phase, well after the
entire universe acted as a big fusion reactor and hydrogen was converted via deu-
terium to helium-4. Thermal radiation should be left over from this time. When the
universe was about 400,000 years old, it became transparent to this radiation, which
from that time on could freely propagate through the universe. The radiation was
predicted and experimentally confirmed to have a blackbody spectrum, correspond-
ing nowadays to a temperature of 2.726 K. Resolving the CMB with differential
microwave radiometers, the expected amplitude fluctuations of the temperature were
not confirmed, leading Jim Peebles to the proposal of dark matter (in contrast to our
familiar ordinary baryonic matter). After all, dark matter makes up the majority of
matter and acts as the dominant source in an equation that describes the structure
formation (see below).

As a summary of Bartelmann’s first part, and as a great success of the reductionis-
tic approach, the cosmological standard model is compatible with data that probe the
physical state of the universe at several instances, ranging from a few minutes after
the big bang until today, 14 billion years later. While the entering model assumptions
may appear speculative to nonexperts in the field, the great success of experimental
verification seems to justify them.

Bartelmann’s second section on structure formation deals with self-organization.
While Turing patterns are coded in differential equations for reaction–diffusion
mechanisms, structure formation of the (dark) matter density (more precisely its
contrast with respect to the background density) is included in an equation combined
from the continuity equation for mass conservation, Euler’s equation for momentum
conservation and the Poisson equation for Newtonian gravity. Bartelmann argues
why Newtonian hydrodynamics is a justified approximation (not even Einstein’s
equations are needed to explain structure formation). In the following sections lin-
ear and nonlinear structure evolution are discussed, where the linear equation in the
density contrast holds only for small fluctuations about the average background. As
it turns out, structures such as galaxies, galaxy clusters, and even larger structures
can only have arisen if dark matter is the dominant contribution to matter. It is further
argued in which sense dark matter should be cold and how the statistics of cold dark
matter fluctuations can be predicted. If the primordial matter density fluctuations
were Gaussian, the statistics of a Gaussian random field then predict filamentary
structures that must form before they fragment into smaller objects. These filamen-
tary structures are actually observed in large-scale galaxy surveys. An upper limit
to the mass of an object can be derived for stars to form at all.

In a last section, Bartelmann presents arguments in favor of an inflationary phase
in the early universe. One argument is the almost perfect isotropy of the CMB,
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the other concerns an explanation of the origin of structure in the CMB. (Here we
see the recurring question about the appropriate initial conditions and their origin.)
Luckily, the hypothesis of inflation leads to a testable prediction on the scaling of
the power spectrum of the density fluctuations with the wave number, and the pre-
diction is in agreement with measurements. The assumed vacuum fluctuations that
are thought to have been amplified during inflation fall in the quantum epoch with
quantum cosmology as an appropriate framework; only after the quantum epoch
does classical cosmology become the appropriate theoretical framework, which is
the topic of Bartelmann’s chapter.

C. Kiefer (“The Need for Quantum Cosmology”) In Sect. 1.1 on the chronology
of evolution we argued already the need to unify quantum mechanics with grav-
itational theory to give quantum gravity, since the classical notions of space and
time lose their meaning from a certain mass density on. Although to date no unique
candidate for quantum gravity exists, and indeed no candidate that satisfies all the
requirements of such a theory, it makes sense to discuss such candidates in order to
see which questions they are able to answer and which not.

One candidate is quantum geometrodynamics, which is introduced by C. Kiefer
in Chap. 8. As the Schrödinger equation is representative for nonrelativistic quan-
tum mechanics, the Wheeler–DeWitt equation is the basic equation of quantum
geometrodynamics. Although the Schrödinger equation is neither relativistic nor
a field-theoretic equation, it makes sense to discuss quantum mechanics in this
approximation. Similarly, as Kiefer argues, it is sensible to answer some questions
of quantum cosmology from the Wheeler–DeWitt equation. This equation describes
the evolution of a scalar field as the simplest representative of all kinds of matter,
but what is most remarkable about this equation is the replacement for “time”. Time,
which plays the role of an external parameter in quantum mechanics and a dynami-
cal parameter in general relativity, is replaced by a scale parameter called “intrinsic
time”. Our familiar notion of time fades away and becomes an induced, emerg-
ing concept. The implications are far reaching and concern an appropriate choice
of initial and boundary conditions, which differ from familiar choices in quantum
mechanics and general relativity. Kiefer discusses two choices for the boundary
conditions, so-called “no-boundary” and “tunneling” proposals. Along with the for-
mal obstacles comes intrinsic trouble with the very interpretation of the equation.
It belongs to the basic mode of our understanding to describe phenomena in space
and time, where space and time provide the background for the observer’s descrip-
tion. This splitting into the observer’s background and the observed phenomena is
lacking without an external time parameter, and therefore the very interpretation
of the wave function as a solution of the Wheeler–DeWitt equation remains open.
The bridge between quantum and classical cosmology is provided by a semiclassi-
cal approximation of the Wheeler–DeWitt equation. According to Kiefer, classical
geometry emerges from quantum gravity via decoherence. (After all, we are now
living in a world that allows classical notions of space and time, so there is a need
for explaining their emergence.)

Another provoking and fundamental question concerns the omnipresent arrow
of time. It is not only inherent in aging of all living beings. Some classes of
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phenomena are also not invariant under time reversal, so that a direction is distin-
guished, and it is natural to trace back the master arrow of time to cosmology. Again,
remarkably, the Wheeler–DeWitt equation is fundamentally asymmetric with
respect to the intrinsic scale parameter, as Kiefer explains. Coming from physics,
one would like to relate the arrow of time to an increase of entropy, as one is used to
from classical physics. Although there is no general expression for the entropy of the
gravitational field, Kiefer summarizes that it is possible to define an entanglement
entropy, which increases with increasing scale parameter of the Wheeler–DeWitt
equation. In the semiclassical limit, “our” extrinsic time can be constructed in terms
of the scale parameter, leading to an increase of entanglement entropy also with
our classical notion of time and defining its arrow. With a few lines in the end of
Chap. 8, Kiefer indicates the connection of quantum cosmology to structure forma-
tion in the universe as described by Bartelmann, more precisely to the origin of the
inhomogeneities in the CMB data, which are the seeds for the structures that appear
later.

As shown in Chap. 8, there is definitely a need to construct quantum gravity.
Unavoidably, however, when it comes to the very beginning, available theories
become speculative to a certain degree, and along with the notion of time the inter-
pretation of the equations becomes blurred.

L. Dehmelt and P. Bastiaens (“Self-Organization in Cells”) Although reporting on
cells in vivo, the authors use a notion of self-organization that is compatible with
its use in physics and chemistry. Self-organization is a process in which a pattern
at the global level emerges merely from many dynamic interactions of units on the
local level, and the interaction rules are followed on the basis of local information
within the cell. Within the cell, the authors distinguish self-organization from other
organizational principles such as “master regulators” and “templates, blueprints, or
recipes”. Master regulators, often controlled by global feedback, steer other sub-
ordinated units. Examples of such regulators are growth factors, their receptors,
and immediate signal mediators as they relay signals to many target regulators.
However, as outlined later in Dehmelt and Bastiaens’s chapter, many cellular reg-
ulators do not follow a hardcoded recipe for performing a certain process . They
do not have a blueprint as an architect would have. Templates, on the other hand,
are typically coded in DNA, where the information is stored in the base sequence
and used to generate mRNA. Self-organization is also seen in contrast to self-
assembly, in which building blocks are combined into a larger stable nondynamic
structure.

Three forms of self-organization are distinguished by the authors: (a) dynamic
activity gradients based on feedback systems, such as calcium waves (based on
similar reaction–diffusion mechanisms as wave patterns in sand dunes); (b) directed
transport and growth systems with feedback regulation (an example here is neurite
outgrowth and the process is seen in analogy to the building process in termite
colonies); (c) dynamic structures, which are formed by complex force feedback
interactions such as the mitotic spindles (they are seen in analogy to convection
patterns in Bénard cells). These three cases are illustrated with a number of further
examples and discussed in detail in the following sections. Here we want to mention
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one particular distinction made by the authors, which refers to how self-organization
actually proceeds. The more familiar way is the situation in which the local units
directly interact, and this interaction leads to patterns on the global scale. The less
familiar may be “stigmergy” which plays a role in directional morphogenetic growth
or transport processes together with feedback regulation. Stigmergy is the organiza-
tion of a building process based on the work in progress, as used in termite nest
building or wall and chamber building by ants. The main point here is that the
interaction of the local units is indirect via the work in progress, for example via
positive feedback between fluctuating entities and a developing structure.

Moving next to structures of higher complexity within the cell, emerging struc-
tures are discussed that arise at least partially by means of self-organization of
microtubules and associated motors. To these belong aster and spindle formation.
Finally, Dehmelt and Bastiaens describe mechanisms of self-organization that are at
work in actin-rich structures such as lamellipodia. The lamellipodia are an example
of a dense branching network that is constantly rebuilt during treadmilling. The
model for this process shows the basic ingredients of evolution: inheritance, muta-
tion, and selection, as the authors outline. Their outlook summarizes challenges
for future research. Let us mention one typical challenge and consider the Golgi
apparatus as example of a cellular compartment. A typical open question is whether
Golgi fragments are essential templates, required for the formation of the Golgi
body, or whether the Golgi apparatus can be formed de novo, that is, in the absence
of Golgi-derived vesicles. Stated differently: does this sophisticated inner-cellular
module emerge solely via self-organizing mechanisms, or is at least some structural
information hardcoded in preexisting templates?

Part III: Protocells In Silico and In Vitro

K. Kaneko (“Approach of Complex-Systems Biology to Reproduction and Evolu-
tion”) Let us recall that one candidate in the discussion of “which came first” in
the prebiotic world was “metabolism-first models” (Sect. 1.1), where metabolism
is described in terms of catalytic reaction networks. In the first part of his contri-
bution, Kaneko discusses three types of catalytic reaction networks as an attempt
to bridge the gap between chemistry and biology, where biology is represented
by a reproducing cell. The approach is again in the spirit of reductionism. All
properties that are assumed to be irrelevant for an observed qualitative behavior
are stripped off so that the models for the protocells do not even intend to be
realistic, or to imitate cellular functions. The cell state is just characterized by
the number of chemical species. These numbers change through mutual reactions,
and the reaction dynamics is described as a catalytic reaction network. In its sim-
plest version, reversible two-body reactions between catalysts are assumed, and the
dynamics satisfies detailed balance. Within this model, Kaneko studies the ques-
tion of how an out-of-equilibrium state can be maintained over a long period by
the network itself. A cell in chemical and thermodynamical equilibrium would be
dead; the out-of-equilibrium condition is considered as a necessary ingredient for
life. According to Kaneko, it is possible to understand the basic mechanisms for
a slow or even prevented relaxation to equilibrium as due to a negative correlation
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between an excess chemical and its catalyst. In a second version of the catalytic reac-
tion networks, catalysis may proceed through several steps, leading to higher order
catalysis. Resource chemicals can be transformed into others, and a cell can grow.
In this framework, Kaneko analyzes the consistency between cell reproduction and
molecule replication. Under certain conditions the cell maintains the composition of
chemicals during reproduction when the speed of growth is optimized. Cell-to-cell
fluctuations in the chemical composition show a log-normal distribution. The third
type of catalytic reaction network, in addition to the former properties, consists of
replicating units. Positive feedback is implemented as an autocatalytic process to
synthesize each molecule species and to consider replication reactions. The result-
ing network is a replication reaction network, which is then used to study a possible
origin of genetic information as a result of so-called minority control.

In the second part, Kaneko focuses on the relation between fluctuations and
robustness during evolution. Fluctuations occur on the genetic and epigenetic level,
accordingly one should distinguish the corresponding robustness with respect to
fluctuations. In particular the effect of phenotypic fluctuations on evolution is con-
sidered, where the phenotypic fluctuations are of isogenic origin. So they cannot be
due to corresponding fluctuations on the genetic level, but only due to epigenetic
effects (change in the environment or developmental processes). Although these
fluctuations may be naively assumed not to be inheritable, the result is that they
do influence the speed of evolution. The claim is a positive correlation between
the evolution speed and isogenic phenotypic fluctuations. The relation is called the
fluctuation response relationship, inspired by fluctuation–dissipation theorems of
physics. On the other hand, another theorem has been proposed which states that
the evolution speed is proportional to the variance of phenotypic fluctuations due to
genetic variations. Both relationships are therefore only consistent if the two vari-
ances are proportional to each other. This is analyzed in a model with developmental
dynamics of a phenotype. A positive effect of sufficiently high phenotypic noise may
be higher robustness with respect to mutations. In the last section, Kaneko presents
a phenomenological model (i.e., not derived from first principles), to explain the
observed relations between isogenic phenotypic and genetic variances.

Needless to say, the mapping between genotype and phenotype is rather complex
in general. In summary of the second part, Kaneko’s focus is on supposed relations
between the associated fluctuations at the two levels.

H. Fellermann (“Wet Artificial Life: The Construction of Artificial Living Sys-
tems”) The reader may wonder whether first forms of artificial life have been created
or not, after all. According to Fellermann, the answer may be “almost”. The ques-
tion is about cell-like chemical systems that are able to self-replicate and evolve. To
recall from our introduction, a cell needs three basic ingredients: inheritable infor-
mation, a container, and metabolism. To date, there are no cell-free “naked” replica-
tors, but the whole container-metabolism-information system replicates itself. In the
first section of Chap. 11, these three ingredients are explained in more detail. For
example, what are the basic processes that are required for replication of biopoly-
mers without the assistance of enzymes? Candidates for protocells are lipids of



34 H. Meyer-Ortmanns

which one part is solvable in water and another in oil. Lipids are able to self-
assemble into supramolecular structures and provide the name for the lipid world
that we mentioned in Sect. 1.5 in connection with the puzzle “which came first in the
prebiotic world?”. As Fellermann outlines, here the currently discussed candidates
for containers are much simpler in their composition than in real cells, where the
cellular membrane contains both lipids and proteins. An example of such a simpler
candidate is the vesicle used by the group of Schwille, as discussed in detail in
Chap. 12.

Protocell metabolism refers to a network of chemical reactions that allows a pro-
tocell to produce its own building blocks (container, information coding unit, and
the maintenance of a(n) (auto)catalytic network) from the provided nutrients and
energy. Here it turned out to be a big challenge to design protocellular metabolism
from scratch that leads to autocatalytic closure. In a following section, Fellermann
gives a comprehensive review of bottom-up approaches to artificial cells, from his-
torical to current approaches, before he focuses on the “minimal protocell of Ras-
mussen and coworkers”. The functional molecules for information and metabolism
are placed at the exterior interface of a lipid container and not inside the vesi-
cle. The information-containing component affects metabolism via electrochemical
properties and not via enzymes. The whole life cycle of the envisioned protocell
is explained in detail. The experiments are accompanied by theoretical investiga-
tions and in silico simulations, to test for alternatives in the design and interpret
experimental results against the background of knowledge of soft-matter physics
and minimal replicator systems. The simulations are done in the framework of dissi-
pative particle dynamics (DPD), based on Navier–Stokes equations under inclusion
of thermal fluctuations. This way one can capture thermodynamic and hydrody-
namic features of the system, which from the theoretical point of view is described
as a complex fluid such as an oil–water mixture. DPD describes the system on a
mesoscopic level (in contrast to the microscopic level of molecular dynamics sim-
ulations that we mentioned in Sect. 1.2). Accordingly, the evolution of the system
can be followed over a longer time period than is typical in molecular dynamics
simulations. In the DPD framework it is of the order of microseconds. According to
Fellermann, in silico it is possible to show that each individual step of the protocell
life cycle is feasible, but also some obstacles have to be overcome when the steps
are combined.

Obviously, a complex chemical reaction network is needed to couple the three
basic ingredients of the minimal protocell. How this is achieved is explained in
some detail in the following section. (Here it is certainly not sufficient to stay on
a single level with one kind of variable and use a description with binary numbers
for Boolean functions.) Also part of the answer to why evolution prefers cellular
organisms over naked replicators will be found. The reader may notice that what is
easily claimed as basic ingredients are by far not unique, as a comparison between
different designs of protocells reveals. Certainly, the mapping between chemical
information and metabolic regulation is rather complex, so it should not come as a
surprise if with increasing complexity also the evolutionary potential of the various
designs differs. As reviewed by Fellermann, it ranges from mere adaptation (towards
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the most effective catalyst) to what John von Neumann termed “universal construc-
tion”, or from limited to rich variability in the phenotype. Division of labor, as in
storing information (in the genome) physically well separated from its action (in the
proteome), appears to be an essential step towards a rich evolutionary potential.

(Here we would like to point out an analogy from variational calculus in mathe-
matics. Say we want to search for the optimal solution of a given variational prob-
lem, posed as a combination of different tasks at the same time. We can search for
the best solution in more or less restricted solution spaces. Imagine we search for the
best solution of the combined problem in only a subspace of functions in which the
optimal solution for a single task lies. The restriction to a certain subspace constrains
the quality of the approximative solution that is supposed to approximate the true
solution in full space; this is obvious. Division of labor inside cells seems to have
led to a considerably increased “solution space” that evolution could explore to find
a solution that optimizes several different tasks at the same time.)

Fellermann’s hints on the varying evolutionary potential of different artificially
produced protocells are certainly at the center of interest in the theory of evolution.
To date, it does not appear that artificial protocells will ever seriously rival our cells
(in vivo) in evolutionary potential.

P. Schwille (“Towards a Minimal System for Cell Division”) Petra Schwille dis-
tinguishes two concepts of synthetic biology. The first is microbial engineering,
which combines biological units of “hardware” and “software” in some analogy
to electrical engineering and is triggered by the progress in nanotechnology. One
typical goal is the functional integration of large protein machines to achieve tasks
related to environmental or medical applications. The second concept aims at a
better understanding of cellular systems from the biophysical point of view, fol-
lowing the bottom-up approach as in Chap. 11. Striving for the artificial cell is here
specified as “engineering a specific functionality by employing a set of biological
devices, for example, proteins”. The aim is not to reproduce complex objects such
as the cells of today, but to consider simpler systems in order to concentrate on
the basic underlying mechanisms. Here the focus is on minimal systems that allow
the study of cell division, one of the most important transformations in biological
systems. Molecular modules are listed that will be needed for the construction of
a minimal divisome machinery that allows a controlled division of biomolecular
compartments. Schwille and her coworkers concentrate on a special vesicle, the
giant unilamellar vesicle (GUV). After generating the vesicles, the next step is to
include factors in this system that induce division of the cell-like compartments in a
controlled way and to combine the compartments with information units that should
be reproduced during division. After adding mechanical stability via creation of an
artificial cytoskeleton, the next goal is to define a division site, that is, to tell the
vesicle not only to divide, but to divide into equal halves. Here the idea is to use
two division mechanisms known from E. coli bacteria and to reconstitute bacterial
divisome machineries in vesicles. One of these mechanisms is provided by the Min
system, which we mention here explicitly since it is a classical energy-consuming
self-organized system that leads to dynamic pattern formation. Schwille’s group
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has observed traveling wave patterns on two-dimensional open planes. So the next
step is to study the behavior of Min waves when the membrane surface is closed.
(Here we remark that the influence of the geometry on the propagation of waves
in excitable media is an important topic in theoretical modeling as well.) The con-
struction of artificial cellular modules with defined properties, such as division at a
given site, may also improve the understanding of possible precursors of our cells
of today, that is, of possible forms of life in an early stage of evolution. In addition,
synthetic biology of minimal systems can ultimately lead to experimental tests of
quantitative predictions from the theoretical side, such as nonlinear or statistical
theoretical physics.

Part IV: From Cells to Societies

E. Frey and T. Reichenbach (“Bacterial Games”) Frey and Reichenbach’s contri-
bution is about evolutionary game theory. The players of the games are microbial
systems, in particular bacteria. Bacteria assemble into large communities such as
biofilms, they compete for nutrients, they cooperate by providing public goods
needed for the maintenance of their group, and they communicate via secretion and
deletion of certain substances. They even show coordinated behavior, like social
groups. All these features make it natural to describe their action in terms of game
theory. Although interacting bacteria may show nice forms of self-organized pattern
formation, this is not the main aspect in this chapter. Instead, one would like to
determine the games’ losers and winners and the time it takes until a certain species
goes extinct. Moreover, at the core of evolution and ecology are two questions: the
first is about the origin of cooperation – the phenomenon of cooperation provides
a puzzle that may be summarized in the form of the prisoner’s dilemma (see also
Chap. 14) – and the second one concerns the origin and maintenance of biodiver-
sity. Naively one may expect that after some transient time always the strongest
species will win and dominate all others in the end, so that the only task would
be to determine the strongest and calculate the time when it will win the struggle
for survival. Instead, a look at nature immediately shows a plethora of coexisting
organisms. A more focused look at a Petri dish with three strains of E. coli bacteria
also reveals their possible coexistence, as the authors report, while only one strain
survives if the bacteria are put into a flask with additional stirring. Therefore, spa-
tial organization seems to be essential for the maintenance of biodiversity. Another
aspect, often neglected in a first approach, is the inherent and ubiquitous stochastic-
ity of processes in various ways. The authors distinguish between phenotypic noise
(which itself is of different origin (see also Chap. 10)), interaction noise (leading to
different numbers of interacting species), and external noise (from fluctuations in
the environment). It is the role of the interaction noise that is further considered in
this contribution.

Implementing this noise in a master equation approach, one can calculate only
the probability of finding a certain system size at a certain time, rather than the size
itself (as in a deterministic approach). Within the same approach it is also possible
to predict the extinction time of a species as a function of the system size. As the
authors show, this allows coexistence stability to be classified, and in particular to
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distinguish neutral from selection-dominated evolution in this context. (In general,
it is a nontrivial task, as we mentioned in connection with Chap. 3.) Finally, the
mobility of bacteria should be taken into account. Mobility acts as a mechanism that
competes with localized spatial interactions; it effectively acts as a stirring mecha-
nism. The authors give an example of a sharp mobility threshold, such that diversity
is maintained below this threshold but destroyed above it.

As already summarized in Sect. 1.3, Frey and Reichenbach point out the increas-
ing complexity of the set of equations that is needed when more and more possible
processes are taken into account: beyond the direct interaction processes, also those
that are due to finite and fluctuating population size, spatially arranged interactions,
diffusing or migrating species. Correspondingly, the equations range from ordinary
differential equations (with linear or nonlinear interactions) to master equations for
stochastic processes to stochastic partial differential equations. Therefore, from the
methodological point of view, tools from nonlinear dynamics and nonequilibrium
statistical physics are required.

Finally, one may wonder whether bacteria play similar games to “us” (humans).
According to the examples of Frey and Reichenbach, they play a public-goods game,
a snowdrift game, and cyclic three-strategy games. The last can be realized within
the cyclic Lotka–Volterra model as the “rock–paper–scissors” game. This game is
played on many scales, from genes to bacteria to a hand game between two or more
human players. So it appears to be a universal motif for players’ cyclic competition.

K. Sigmund and C. Hilbe (“Darwin and the Evolution of Human Cooperation”) Sig-
mund and Hilbe give a comprehensive overview of game theory for games played
by humans. In contrast to their biological counterparts such as bacteria, humans are
assumed to follow rational strategies, based on rational decisions. The framework of
game theory was originally developed for analyzing rational behavior in the context
of economics. The games can be played between two or more players who follow
a certain strategy that is thought to optimize their payoff. Payoff now replaces the
concept of fitness in evolutionary game theory. The payoff is characterized in terms
of a payoff matrix. For two players, the columns label the strategies of the first
player, and the rows label the strategies of the second player, the matrix entries stand
for the payoff. Strategies may be based on the anticipated gain or loss, on imitation,
or background information. Players can also change their strategies during a game
and retain some memory of experiences in the past.

In relation to evolution, the occurrence of animal and human societies is consid-
ered as one of the major transitions (see Sect. 1.1). In particular the evolution of
cooperation as a frequent form of organization in societies is regarded as a central
puzzle. From the viewpoint of an individual player, it is always better to defect.
The better outcome for the society as a whole is, however, mutual cooperation. The
conflict between the common interest and the selfish interest is usually expressed
as the prisoner’s dilemma. Sigmund and Hilbe explain two approaches to analyzing
the phenomenon of cooperation. The first corresponds to the “selfish gene” view,
realized in the theory of kin selection (for which the degree of relatedness can be
made more precise), but kin selection cannot be the only reason for cooperation.
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The second reason is of economic nature. It is formulated in the theory of reciprocal
altruism, which may be sketched by the phrase “to give and to receive”; if benefit
is larger than cost, one cooperates. The simplest strategy to reciprocate good with
good and bad with bad in repeated games goes under the name “tit for tat”. The
direct reciprocity may be extended to an indirect one. In all these cases the goal is
to determine the “winner”, if there is a single one (winner in the sense of a subset of
the total population that follows the most successful strategy); otherwise, if there is
no single winner, the goal is to determine the conditions under which players with
different strategies may coexist in a stable way. The authors also discuss models for
competition of moral systems. A simple moral system is called SCORING, where
it is always considered as bad to refuse to help, independently of whether the help
is refused to a good or a bad player. According to Sigmund and Hilbe, the evolution
of moral faculties, human language, and social intelligence was driven by indirect
reciprocity. Conceptually more demanding are games with more than two players.
An example here is the public goods game, another expression of a social dilemma
with competition between individual and group benefit. In the last part the authors
refer to the long controversy between individual selection and group selection, quot-
ing also Darwin and his (often opposed and criticized) emphasis of the importance
of group survival.

The contribution contains a number of citations from the original literature, in
particular from Darwin’s On the Origin of Species. This is certainly appreciated in a
book that deals so much with implications of Darwin’s insights and ideas and their
later influence on the science of evolution.

B. Kahng, D. Lee, and P. Kim (“Similarities Between Biological and Social Net-
works in Their Structural Organization”) Kahng and coworkers’ contribution is from
current research on dynamical networks. Networks stand for graphs of nodes, con-
nected via links with an assigned meaning. Here they represent data sets from three
different databanks, two from biology, one from social science. In the first exam-
ple, the phylogenetic tree, the nodes represent organisms of the GenBank database,
which are connected via a link if the organisms are connected in a taxonomic tree.
In the second example, nodes stand for proteins; they are connected via a link if
the proteins physically interact with each other. Finally, in the coauthorship network
two nodes are connected if the corresponding authors have a paper in common.
These rules for connecting nodes generate graphical representations of the datasets.
The authors now identify a specific graphical structure in common to these three
graphs of very different origin, that is the structure of a critical scale-free branching
tree. The definition of this characteristic is explained in Chap. 15. In general, the
possible underlying mechanisms that may have generated a given graphical structure
of a dataset are far from unique. (There is more than the mechanism of preferential
attachment that leads to a graph with a scale-free degree distribution.) If, however,
the graphical structure is very specific, such as that of a scale-free critical branch-
ing tree, one may be tempted to conclude that also similar mechanisms have been
at work when the datasets evolved (although the time scales for their generation
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are quite different in the three considered cases). The similar mechanisms here are
called the “self-organized burst manner” by the authors.

A.S. Mikhailov (“From Swarms to Societies”) In several chapters (7, 9, 13) preced-
ing this contribution by A.S. Mikhailov, the concept of self-organization is illus-
trated with examples from physics and biology; often it is realized in reaction–
diffusion systems with local interactions and diffusive flow. Such processes occur
in fluids, but also in single cells and cell populations. Mikhailov poses the question
whether similar mechanisms of self-organization are sufficient for describing social
systems. Distinct from passively diffusing particles in a reaction–diffusion system,
groups of actively moving units are called “swarms”, examples being schools of
fish, flocks of birds, and the like. Swarms show some kind of collective behavior
that looks intelligent, for example, in their reaction to a predator attack, and the
behavior of human drivers in highway traffic appears on the same level of com-
plexity as bacteria in biofluids. What makes, however, a clear difference between
simple biological organisms and members of a society is the internal complex-
ity. Agents can organize themselves in space, but on top of their coordinates in
space and time they exhibit a rich complexity in “internal” space. Internal space
may represent the inside of a cell with all its molecular components and func-
tions, or the social activities of a human agent. While interactions between particles
are expressed in terms of (locally acting) physical forces, interactions in internal
space are mediated via “communication”, and, as Mikhailov points out, this com-
munication is in general nonlocal in internal space. That makes a big difference in
view of the implications and for the description. (Most sophisticated are obviously
the communication tools of humans: their language and telecommunication. To a
large extent these tools make them independent of their actual location in space
and time.)

An important form of cooperation in all kind of societies is synchronization,
synchronization of their individual oscillation, active motion, or any other kind of
response. More generally one observes the development of coherence. In particular
coherence can refer to internal space. If these forms of cooperation refer not to the
whole population, but just to some part of it, it is called “dynamical clustering”. In
dynamical clustering, structures grow around emerging seeds of coherently operat-
ing groups, and their evolution depends on the intensity of interactions. According
to Mikhailov, these phenomena may be considered as a paradigm of primary social
self-organization.

In a section on hierarchies, Mikhailov stresses their important role in complex
systems. If complex systems are hierarchically structured, their complexity can be
reduced. Usually, a certain level of a hierarchical organization can be characterized
by the time scale of direct interactions between the units at this level, and so far,
self-organization mostly refers to these interactions at a fixed level, see Sect. 1.4.
In contrast, interactions between units from different hierarchy levels are only indi-
rectly possible. The overall system may then be decomposed into different levels,
on each of which simple laws are sufficient to describe the dynamics. Therefore
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there is not only in physical and biological systems a way to reduce complexity, but
also in social systems, in spite of all their facets and multitude of internal degrees of
freedom.

Dynamical systems with various types of spatial interactions (all-to-all, only with
nearest neighbors, with a random subset of all other units) leads to the concept of
dynamical networks, on which coherent network activity up to network turbulence
may be studied. To preserve a certain degree of coherent behavior, it needs feedback
and control mechanisms, which may be more or less “democratic”.

Mikhailov concludes with a short section on social evolution. Social evolution
proceeds via the cultural transfer of innovations from generation to generation
(here generations of populations in a society rather than generations of genes as
in biology). “Balancing at the edge of chaos” is often thought to ensure optimal
performance of dynamical systems, which allows different organizational forms
ranging from totally ordered to completely chaotic states. Mikhailov suggests this
mode as an optimal control strategy for societies, providing a prospect of open prob-
lems at the end.
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Chapter 2
Physical Principles of Evolution

Peter Schuster

Abstract Theoretical biology is incomplete without a comprehensive theory of evo-
lution, since evolution is at the core of biological thought. Evolution is visualized
as a migration process in genotype or sequence space that is either an adaptive walk
driven by some fitness gradient or a random walk in the absence of (sufficiently
large) fitness differences. The Darwinian concept of natural selection consisting
in the interplay of variation and selection is based on a dichotomy: All varia-
tions occur on genotypes whereas selection operates on phenotypes, and relations
between genotypes and phenotypes, as encapsulated in a mapping from genotype
space into phenotype space, are central to an understanding of evolution. Fitness
is conceived as a function of the phenotype, represented by a second mapping
from phenotype space into nonnegative real numbers. In the biology of organisms,
genotype–phenotype maps are enormously complex and relevant information on
them is exceedingly scarce. The situation is better in the case of viruses but so far
only one example of a genotype–phenotype map, the mapping of RNA sequences
into RNA secondary structures, has been investigated in sufficient detail. It pro-
vides direct information on RNA selection in vitro and test-tube evolution, and it
is a basis for testing in silico evolution on a realistic fitness landscape. Most of the
modeling efforts in theoretical and mathematical biology today are done by means
of differential equations but stochastic effects are of undeniably great importance
for evolution. Population sizes are much smaller than the numbers of genotypes
constituting sequence space. Every mutant, after all, has to begin with a single copy.
Evolution can be modeled by a chemical master equation, which (in principle) can
be approximated by a stochastic differential equation. In addition, simulation tools
are available that compute trajectories for master equations. The accessible popula-
tion sizes in the range of 107 ≤ N ≤ 108 molecules are commonly too small for
problems in chemistry but sufficient for biology.
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2.1 Mathematics and Biology

The beginning of modern science in the sixteenth century was initiated by
the extremely fruitful marriage between physics and mathematics. Nobody has
expressed the close relation between mathematics and physics more clearly than
Galileo Galilei in his famous statement [1]: Philosophy (science) is written in this
grand book, the universe, . . . . It is written in the language of mathematics, and its
characters are triangles, circles and other geometric features . . . . Indeed, physics
and mathematics have cross-fertilized each other from the beginnings of modern
science until the present day. Theoretical physics and mathematical physics are
highly respected disciplines and no physics journal will accept empirical obser-
vations without an attempt to bring it into a context that allows for quantification
and interpretation by theory. General concepts and successful abstractions have a
high reputation in physics and the reductionists’ program1 is the accepted scien-
tific approach towards complex systems. This view is common in almost all sub-
disciplines of contemporary physics and, in essence, is shared with chemistry and
molecular biology.

Conventional biology, in this context, is very different: Great works of biology,
such as Charles Darwin’s Origin of Species [2] or, in recent years, Ernst Mayr’s
Growth of Biological Thought [3], do not contain a single mathematical expression;
theoretical and mathematical biology had and still have a bad reputation among
macroscopic biologists; special cases are preferred over generalizations, which are
looked upon with scepticism; and holistic views are commonly more appreciated
than reductionists’ explanations, whether or not they are in a position to provide
insight into problems. A famous and unique exception among others is Charles
Darwin’s theory of natural selection by reproduction and variation in finite popula-
tions. Although not cast in mathematical equations, the theory is based on a general
concept whose plausibility is erected upon a wealth of collected and carefully inter-
preted empirical observations. Darwin’s strategy has something in common with
the conventional mathematical approach based on observation, abstraction, conjec-
ture, and proof: On different islands of the Galapagos archipelago Darwin observed
similar-looking species in different habitats and concluded correctly that these dif-
ferent species are closely related and owe their existence to histories of adaptation
to different environments on the individual islands. The occurrence of adaptations
has been attributed to natural selection as a common mechanism through abstraction
from specific cases. Darwin’s conjecture combines three facts known in his time:

1 The reductionist program, also called methodological reductionism, aims at an exploration of
complex objects through breaking them up into modular, preferentially molecular parts and study-
ing the parts in isolation before reassembling the object. Emergent properties are assumed to be
describable in terms of the phenomena from and the processes by which they emerge. The reduc-
tionist program is different from ontological reductionism, which denies the idea of ontological
emergence by the claim that emergence is merely a result of the system’s description and does not
exist on a fundamental level.
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1. Multiplication: All organisms multiply by cell division, (parthenogenesis or
sexual reproduction), multiplication is accompanied by inheritance – “progeny
resembles parents”, and under the condition of unlimited resources multiplication
results in exponential growth of population size.

2. Variation: All natural populations show variance in phenotypic properties, either
continuously varying features, such as body size, or discontinuously varying fea-
tures, such as the number of limbs, the number of digits, color of flowers, skin
patterns, or seed shapes, and it is straightforward to relate variation to inheri-
tance.2

3. Selection: Exponential growth results in overpopulation of habitats,3 only a small
fraction of offspring can survive and have progeny of their own, and this stringent
competition prevents less efficient variants from reproduction.

Taking together these three items and introducing the notion of fitness for the num-
ber of offspring that reach the age of fertility, the conjecture could be formulated in
the following way:

Natural selection: In nonhomogeneous populations the frequencies of variants with fitness
values below the population average will decrease, while those with fitness values above
average will increase and consequently the population average itself will increase until it
reaches the maximum value corresponding to a homogeneous population of the best adapted
or fittest variant.

Darwin’s Origin of Species is an overwhelming collection of observations from
nature, from animal breeders, and from nursery gardens that provide strong evidence
for the correctness of Darwin’s conjecture. This enormous collection in a way is the
empirical substitute for a mathematical proof.

Although Gregor Mendel analyzed his experiments on inheritance in peas by
mathematical statistics and found thereby the explanatory regularities, mathematics
did not become popular in biology. On the contrary, Mendel’s work was largely
ignored by the biological community for more than 30 years. Then Mendel was
rediscovered and genetics became an important discipline of biology. Population
genetics was founded by the three scholars Ronald Fisher [4], J.B.S. Haldane, [5]
and Sewall Wright [6]. In the 1930s they succeeded in uniting Mendelian genetics
and Darwin’s natural selection, and to cast evolution in a rigorous mathematical
frame, but conventional geneticists and evolutionary biologists continued to fight
until the completion of the synthetic theory almost 20 years later [3].

Modeling in biology became an important tool for understanding complex
dynamical phenomena. Representative for many other approaches we mention here

2 Gregor Mendel was the first to investigate such relations experimentally [7–9] and discovered
the transmittance of properties in discrete packages from the parents to offspring. His research
objects were the pea (Pisum) from where he derived his rules of inheritance and the hawkweed
(Hieracium), which was rather confusing for him, because it is apomictic, i.e., it reproduces asexu-
ally. Charles Darwin, on the other hand, had a mechanism of inheritance in mind that was entirely
wrong. It was based on the idea of blending of the parents’ properties.
3 According to his own records Charles Darwin was influenced strongly by Robert Malthus and
his demographic theory [10].
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only three: (i) Modeling of coevolution in a predator–prey system was introduced
by Alfred Lotka [11] and Vito Volterra [12] by means of differential equations that
were borrowed from chemical kinetics. In a way, they were the pioneers of theo-
retical ecology, which was developed by the brothers Howard and Eugene Odum
[13] and became a respectable field of applied mathematics later [14]. (ii) A model
for pattern formation based on the reaction–diffusion (partial differential) equation
with a special chemical mechanism was suggested and analyzed by Alan Turing
[15]. Twenty years later the Turing model was applied to biological morphogen-
esis [16, 17] and provided explanations for patterns formed during development
[18, 19]. (iii) Based on experimental studies of nerve pulse propagation in the squid
giant axon, Alan Hodgkin and Andrew Huxley formulated a mathematical model
for nerve excitation and pulse propagation [20] that became the standard model
for single nerve dynamics in neurobiology. They were both awarded the Nobel
Prize in Medicine in 1963. A second breakthrough in understanding neutral systems
came from modeling networks of neurons. John Hopfield conceived an exceedingly
simple model of neurons in networks [21] that initiated a whole new area of sci-
entific computing: computation with neutral networks, in particular modeling and
optimization of complex systems. Despite these undeniable and apparent successes,
the skepticism of biologists with respect to theory and mathematics nevertheless
continued for almost the entire remainder of the twentieth century.

The advent of molecular biology in the 1950s brought biology closer to chemistry
and physics, and changed the general understanding of nature in a dramatic way
[22]. Inheritance received a profound basis in molecular genetics and reconstruc-
tion of phylogenies became possible through comparison of biopolymer sequences
from present-day organisms. Structures of biomolecules at atomic resolution were
determined by refined techniques from physical chemistry and they provided deep
insights into biomolecular functions. Spectroscopic techniques, in particular nuclear
magnetic resonance, require a solid background in mathematics and physics for con-
ceiving and analyzing conclusive experiments. A novel era of biology was initiated
in the 1970s when the highly efficient new methods for DNA sequencing developed
by Walter Gilbert and Frederick Sanger became available [23, 24]. Sequencing
whole genomes became technically within reach and financially affordable. The
first two complete bacterial genomes were published in 1995 [25] and the following
years saw a true explosion of sequencing data. High-throughput techniques using
chip technology for genome-wide analysis of translation and transcription prod-
ucts known as proteomics and transcriptomics followed, and an amount of data
was created that had never been seen before. In this context it is worth citing the
Nobel laureate Sydney Brenner, [26] who made the following statement in 2002 to
characterize the situation in molecular biology:

I was taught in the pre-genomic era to be a hunter. I learnt how to identify the wild beasts
and how to go out, hunt them down and kill them. We are now, however, being urged to
be gatherers. To collect everything lying about and put it into storehouses. Someday, it is
assumed someone will come and sort through the storehouses, discard the junk and keep
the rare finds. The only difficulty is how to recognize them.
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Who else but a theorist should this “someone” be? The current development seems
to indicate that “someday” is not too far away. The flood of data and the urgent need
for a comprehensive theory have driven back the biologists’ aversion to computer
science and mathematics. Modern genetics and genome analysis without bioinfor-
matics are unthinkable, and understanding network dynamics without mathematics
and computer modeling is impossible.

The new discipline of systems biology has the ambitious goal to find holistic
descriptions for cells and organisms without giving up the roots in chemistry and
physics. Although still in its infancy and falling into one trap after another, modeling
in systems biology is progressing slowly towards larger and more detailed models
for regulatory modules in cell biology. New techniques are being developed and
applied. Examples are flux-balance analysis [27] and application of inverse methods
[28], whereby the primary challenge is up-scaling to larger systems such as whole
organisms. Recent advances in experimental evolution allow for an extension of
detailed models to questions of evolution, which is of central importance in biology,
as Theodosius Dobzhansky encapsulated in his famous sentence: “Nothing in biol-
ogy makes sense except in the light of evolution” [29]. From a conceptional point
of view, theoretical biology is in a better position than theoretical physics, where
attempts at unification of two fundamental theories, quantum mechanics and rela-
tivity theory, have not been successful so far. Biology has one comprehensive theory,
the theory of evolution, and present-day molecular biology is building the bridge to
chemistry and physics. Lacking are a proper language and efficient techniques to
handle the enormous complexity and to build proper models.

2.2 Darwin’s Theory in Mathematical Language

If Charles Darwin had been a mathematician, how might he have formulated his
theory of natural selection? Application of mathematics to problems in biology has
a long history. The first example that is relevant to evolution dates back to medieval
times. In the famous Liber Abaci written in the year 1202 by Leonardo Pisano, also
known as Fibonacci (filius Bonacci), we find a counting example of the numbers of
pairs of rabbits in subsequent time spans. Every adult pair is assumed to give birth
to another pair, newborn rabbits have to wait one time interval before they become
fertile adults. Starting from a single couple yields the following series:

(0) 1 1 2 3 5 8 13 21 34 55 89 . . . .

Every number is the sum of its two precursors and the Fibonacci series is defined by
the recursion

Fi+1 = Fi + Fi−1 with F0 = 0 and F1 = 1 . (2.1)

It is straightforward to show that the Fibonacci series can be approximated well
by exponential functions as upper and lower limits (Fig. 2.1). The exponential
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Fig. 2.1 Fibonacci series, exponential functions, and limited resources. The Fibonacci series
(black; upper plot) is embedded between two exponential functions in the range 0 < i ≤ 10:
nupper(t) = exp

(
0.4453(t − 1)

)
(red) and nlower(t) = exp

(
0.5009(t − 2)

)
(blue), where the time

t is the continuous equivalent to the discrete (generation) index i . The lower plot compares the
exponential function, y(t) = y0 exp(r t) for unlimited growth (red; y0 = 0.02, r = 0.1) with the
normalized solution of the Verhulst equation (x(t), black; x0 = 0.02, r = 0.1, and C = 1 by
definition)

function, however, was not known before the middle of the eighteenth century;
it was introduced in the fundamental work of the Swiss mathematician Leonhard
Euler [30]. Robert Malthus – although he lived 50 years later – still used a geo-
metric progression, 2, 4, 8, 16, . . . , for the unlimited growth of populations [10].
The consequences of unlimited growth for demography are disastrous and, as said,
Malthus’s work was influential on Darwin’s thoughts.

A contemporary of Charles Darwin, the mathematician Pierre-François Verhulst
[31], formulated a model based on differential equations combining exponential
growth and limited resources (Fig. 2.1):

d N

dt
= Ṅ = r N

(
1− N

C

)
(2.2)
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with N (t) describing the number of individuals at time t , r being the Malthusian
parameter, and C the carrying capacity of the ecosystem. Equation (2.2) consists of
two terms: (i) the exponential growth term, r N , and (ii) the constraint to finite popu-
lation size expressed by the term −r N 2/C . In other words, the ecosystem can only
support N = C individuals and limt→∞ N (t) = C . The solution of the differential
equation (2.2) is of the form

N (t) = N0 C

N0 + (C − N0) exp(−r t)
. (2.3)

Here N0 = N (0) is the initial number of individuals. It is straightforward to nor-
malize the variable to the carrying capacity, x(t) = N (t)/C , yielding

x(t) = x0

x0 + (1− x0) exp(−r t)
(2.3′)

with x0 = N0/C . It will turn out to be useful to write the term representing the
constraint in the form N φ(t)/C = x φ(t). Then we obtain for the Verhulst equation

dx

dt
= ẋ = x

(
r − φ(t)

)
with φ(t) = x r (2.2′)

being the (mean) reproduction rate of the population.
Finally, we generalize to the evolution of n species or variants4 in the popu-

lation Ξ = {X1, X2, . . . , Xn}. The numbers of individuals are now denoted by
[Xi ] = Ni with

∑n
i=1 Ni = N and the normalized variables xi = Ni/N with∑n

i=1 xi = 1. Each variant has its individual Malthus parameter or fitness value
fi , and for the selection constraint leading to constant population size we find now
φ(t) = ∑n

i=1 xi fi , which is the mean reproduction rate of the entire population.
The selection constraint φ(t) can be used for modeling much more general situations
than constant population size by means of the mean reproduction rate. As we shall
see in Sect. 2.5, the proof for the occurrence of selection can be extended to very
general selection constraints φ(t) as long as the population size does not become
zero, N > 0.

The kinetic differential equation in the multispecies case, denoted as the selection
equation,

ẋ j = x j

(
f j − x j

n∑

i=1

xi fi

)
= x j

(
f j − x j φ(t)

)
, j = 1, 2, . . . , n , (2.4)

can be solved exactly by the integrating factors transform ([32], pp. 322ff.)

4 In this chapter we shall not consider sexual reproduction or other forms of recombination. In
asexual reproduction a strict distinction between variants and species is neither required nor possi-
ble. We shall briefly come back to the problem of bacterial or viral species in Sect. 2.7.
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z j (t) = x j (t) · exp

(∫ t

0
φ(τ)dτ

)
. (2.5)

Insertion into (2.4) yields

ż j = f j z j and z j (t) = z j (0) · exp( f j t) ,

x j (t) = x j (0) · exp( f j t) · exp

(
−

∫ t

0
φ(τ)dτ

)
with

exp

(∫ t

0
φ(τ)dτ

)
=

n∑

i=1

xi (0) · exp( fi t) ,

where we have used z j (0) = x j (0) and the condition
∑n

i=1 xi = 1. The solution
finally is of the form

x j (t) = x j (0) · exp( f j t)∑n
i=1 xi (0) · exp( fi t)

; j = 1, 2, . . . , n . (2.6)

The interpretation is straightforward. The term with the largest fitness value, fm =
max{ f1, f2, . . . , fn}, dominates the sum in the denominator after sufficiently long
time5:

n∑

i=1

xi (0) · exp( fi t) → xm(0) · exp( fmt) for large t and xm(t) → 1 .

Optimization in the sense of Charles Darwin’s principle of selection of the fittest
variant, Xm , takes place.

The occurrence of selection in (2.4) can be verified also without knowing the
solution (2.6). For this goal we consider the time dependence of the constraint φ,
which is given by

dφ

dt
=

n∑

i=1

fi ẋi =
n∑

i=1

fi
(

fi xi − xi

n∑

j=1

f j x j
) =

=
n∑

i=1

f 2
i xi −

n∑

i=1

fi xi

n∑

j=1

f j x j =

= f 2 − (
f
)2 = var{ f } ≥ 0 . (2.7)

Since a variance is always nonnegative, (2.7) implies that φ(t) is a nondecreas-
ing function of time. The value var{ f } = 0 implies a (local) maximum of φ and

5 We assume here that the largest fitness value fm is non-degenerate, i.e., there is no second species
having the same (largest) fitness value. In Sect. 2.5 we shall drop this restriction.
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hence, φ is optimized during selection. Zero variance is tantamount to a homoge-
neous population containing only one variant. Since φ is at a maximum, this is the
fittest variant Xm .

2.3 Evolution in Genotype Space

Evolution can be visualized as a process in an abstract genotype or sequence space,
Q. At constant chain lengths � of polynucleotides the sequence space is specified
as QA

� , where A is the alphabet, for example A = {0,1} or A = {G,C} is the
binary alphabet and A = {A,U,G,C} the natural nucleotide alphabet. The gains
of such a comprehensive view of genotypes are generality and the framework for
reduction to the essential features; the shortcomings, obviously, are lack of detail.
Building a model for evolution upon a space that fulfills all requirements required
for the molecular view of biology and which may, eventually, bridge microscopic
and macroscopic views, is precisely what we are aiming for here. The genotypes
are DNA or RNA sequences and the proper genotype space is sequence space. The
concept of a static sequence space [33, 34] was invented in the early 1970s in order
to bring some ordering criteria into the enormous diversity of possible biopolymer
sequences. Sequence space QA

� , as long we are only dealing with reproduction and
mutation, is a metric space with the Hamming distance6 serving as the most useful
metric for all practical purposes. Every possible sequence is a point in the discrete
sequence space and in order to illustrate the space by a graph, sequences are rep-
resented by nodes and all pairs of sequences with Hamming distance one by edges
(Fig. 2.2 shows a space of binary sequences as an example. Binary sequence spaces
are hypercubes of dimension �, � being the length of the sequences).

Two properties of sequence spaces are important: (i) All nodes in a sequence
space are equivalent in the sense that every sequence has the same number of nearest
neighbors with Hamming distance dH = 1, next nearest neighbors with Hamming
distance dH = 2, and so on, which are grouped properly in mutant classes. (ii) All
nodes of a sequence space are at the boundary of the space or, in other words, there is
no interior. Both features are visualized easily by means of hypercubes7: All points
are positioned at equal distances from the origin of the (Cartesian) coordinate sys-
tem. What makes sequence spaces difficult to handle are neither internal structures

6 The Hamming distance dH(Xi , X j ) [35] counts the number of positions at which two aligned
sequences Xi and X j differ. It fulfills the four criteria for a metric in sequence space:
(i) dH(Xi , X j ) ≥ 0 (nonnegativity), (ii) dH(Xi , X j i) = 0 if and only if Xi = X j (identity of
indiscernibles), (iii) dH(Xi , X j ) = dH(Xi , X j ) (symmetry), and (iv) dH(Xi , X j ) ≤ dH(Xi , Xk)+
dH(Xi , Xk) (triangle inequality). For sequences of equal chain length �, end-to-end alignment is
the most straightforward alignment, although it may miss close relatedness that is a consequence
of deletions and insertions, which are mutations that alter sequence length.
7 An �-dimensional hypercube in the Cartesian space of dimension � is the analogue of a (three-
dimensional) cube. The �-dimensional hypercube is constructed by drawing 2� (hyper)planes of
dimension (� − 1) perpendicular to the coordinate axes at the positions ±a. The corners of the
hypercubes are the 2� points where � planes cross.
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Fig. 2.2 Sequence space of binary sequences of chain length � = 5. The sequence space Q{0,1}5
comprises 32 sequences. Each sequence is represented by a point. The numbers in the yellow
balls are the decimal equivalents of the binary sequences and can be interpreted as sequences of
two nucleotides, “0”≡ “C” and “1”≡ “G”. Examples are 0≡ 00000≡CCCCC, 14≡ 01110≡
CGGGC or 29≡ 11101≡GGGCG. All positions of a (binary) sequence space are equivalent
in the sense that each sequence has � nearest neighbors, �(� − 1)/2 next nearest neighbors, etc.
Accordingly, sequences are properly grouped in mutant classes around the reference sequence,
here 0

nor construction principles but the hyper-astronomically large numbers of points:
|QA

� | = κ� for sequences of length � over an alphabet of size κ with κ = |A|.
The population Ξ = {X1, X2, . . . , Xn} is represented by a vector with the

numbers of species as elements N = (N1, N2, . . . , Nn), the population size is the
L1-norm:

N = ‖N‖1 =
n∑

i=1

|Ni | =
n∑

i=1

Ni ,

where absolute values are dispensable since particle numbers are real and non-
negative by definition. Normalization of the variables yields x = N/‖N‖ or
xi = Ni/N and

∑n
i=1 xi = 1, respectively. A population is thus represented by

an L1-normalized vector x and the population size N . An important property of a
population is its consensus sequence, X̄ , consisting of a nucleotide distribution at
each position of the sequence. This consensus sequence can be visualized as the
center of the population in sequence space.

A sequence is conventionally understood as a string of � symbols chosen from
some predefined alphabet with κ letters, which can be written as
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X j =
(

b( j)
1 , b( j)

2 , . . . , b( j)
�

)
with b( j)

i ∈ A = {α1, . . . , ακ } .

The natural nucleotide alphabet contains four letters: A = {A,U,G,C}, but RNA
molecules with catalytic functions have been derived also from three- and two-letter
alphabets [36, 37]. For the forthcoming considerations it is straightforward to adopt
slightly different definitions: A sequence X j results from the multiplication of the
alphabet vector α = (α1, . . . , ακ) with a κ × � matrix X j having only 0 and 1 as
entries:

X j = α · X j = α ·
(
β
( j)
1 ,β

( j)
2 , . . . ,β

( j)
�

)
with

β
( j)
i ∈

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

⎛

⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1
0
...

0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

⎛

⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0
1
...

0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, . . . ,

⎛

⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0
0
...

1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

.

(2.8)

In other words, the individual nucleotides in the sequence X j are replaced by prod-

ucts of two vectors, b( j)
i = α · β( j)

i .

With the definition (2.8) it is straightforward to compute the consensus sequence
of a population Ξ k :

Ξ k = α ·
n∑

j=1

x (k)j X j , (2.9)

and the distribution of nucleotides at position “i” is given by

b(k)i = α ·
n∑

j=1

x (k)j β
( j)
i . (2.9′)

It is important to note the difference between b( j)
i and b(k)i : The former refers to

the nucleotide at position “i” in a given sequence whereas the latter describes the
nucleotide distribution at position “i” in the population. If one nucleotide is dom-
inant at all positions, the distribution can be collapsed to a single sequence, the
consensus sequence.

The internal structure of every sequence space QA
� is induced by point mutation

and this is essential for inheritance because it creates a hierarchy in the accessability
of genotypes. Suppose we have a probability p of making one error in the reproduc-
tion of a sequence then, provided mutation at different positions is assumed to be
independent, the probability of making two errors is p2, of making three errors is
p3, etc. Inheritance requires sufficient accuracy of reproduction – otherwise children
would not resemble their parents – and this implies p has to be sufficiently small.
Then, p2 is smaller and the power series p dH decreases further with increasing
distance from the reference sequence. This ordering of sequences according to a
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probability criterion that is intimately related to the Hamming metric (Sect. 2.5). As
a matter of fact, mutation is indeed a fairly rare event in evolution and populations
are commonly dominated by a well-defined single consensus sequence since sin-
gle nucleotide exchanges that occur at many different positions do not contribute
significantly to the average.

Evolutionary dynamics is understood as change of the population vectors in
time: N(t) or x(t). This change can be modeled by means of differential equations
(Sect. 2.5) or stochastic processes (Sect. 2.6). A practical problem concerns the rep-
resentation of genotype space. Complete sequence space, QA

� has the advantage of
covering all possible genotypes but its extension is huge and, since the numbers of
possible genotypes exceed even the largest populations by far, we are confronted
with the problem that most degrees of freedom are empty and very likely will never
be populated during the evolutionary process described. Alternatively the descrip-
tion could be restricted to those genotypes that are actually present in the population
and that constitute the population support Φ(t), which is defined by

Φ(t)
.= {X j |N j (t) ≥ 1} . (2.10)

The obvious advantage is a drastic reduction in the degrees of freedom to a tractable
size but one has to pay a price for this simplification: The population support is time
dependent and changes whenever a new genotype is produced by mutation or an
existing one goes extinct [38]. Depending on population size, population dynamics
on the support can either be described by differential equations or modeled as a
stochastic process. Support dynamics, on the other hand, are intrinsically stochastic
since every mutant starts from a single copy.

Finally, it is important to mention that recombination without mutation can be
modeled successfully as a process in an abstract recombination space [39–41] and
plays a major role in the theory of genetic algorithms [42, 43]. A great challenge
for theorists is the development of a genotype space for both mutation and recom-
bination. Similarly, convenient sequence spaces for genotypes with variable chain
lengths are not at hand.

2.4 Modeling Genotype–Phenotype Mappings

The unfolding of genotypes to yield phenotypes is studied in developmental biology
and provides the key to understanding evolution and, in particular, the origin of
species. For a long time it has been common knowledge that the same genotype can
develop into different phenotypes, depending on differences in the environmental
conditions and epigenetic effects.8 Current molecular biology provides explanations
for several epigenetic observations and reveals mechanisms for the inheritance of

8 Epigenetics was originally used as a term subsuming phenomena that could not be explained by
conventional genetics.
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properties that are not encoded by the DNA of the individual. Genetics is still shap-
ing the phenotypes – otherwise progeny would not resemble parents – but epigenet-
ics and environmental influences provide additional effects that are indispensable
for understanding and modeling the relations between genotypes and phenotypes.
Here we shall adopt the conventional strategy of physicists and consider simple
cases in which the genotypes unfolds unambiguously into a unique phenotype. This
condition is fulfilled, for example, in evolution in vitro when biopolymer sequences
form (the uniquely defined) minimum free energy structures as phenotypes. Bacteria
in constant environments provide other cases of simple genotype–phenotype map-
pings (the long-term experiments of Richard Lenski [44–46] may serve as examples;
see Sect. 2.6). Under this simplifying assumption genotype–phenotype relations can
be modeled as mappings from an abstract genotype space into a space of pheno-
types or shapes. A counter example in a simple system is provided by biopoly-
mers with metastable suboptimal conformations, which can serve as models where
a single genotype – a sequence – can give rise to several phenotypes – molecular
structures [47].

Since only point mutations will be considered here, the choice of an appropriate
genotype space is straightforward. It is the sequence space QA

� with the Hamming
distance dH as metric. The phenotype space or shape space S� is the space of all
phenotypes formed by all genotypes of chain length �. Although the definition
of a physically or biologically meaningful distance between phenotypes is not at
all straightforward, some kind of metric can always be found. Accordingly the
genotype–phenotype mapping ψ can be characterized by

ψ : {Q(A)
� ; dH(Xi , X j )

} mfe===⇒ {S�; dS(Si , S j )} or Sk = ψ(Xk) . (2.11)

where mfe indicates minimum free energy. The map ψ need not be invertible. In
other words, several genotypes can be mapped onto the same phenotype when we
are dealing with a case of neutrality.

An example of a genotype–phenotype mapping that can be handled straight-
forwardly by analytical tools is provided by in vitro evolution of RNA molecules
[48–50]. RNA molecules are transferred to a solution containing activated
monomers as well as a virus-specific RNA replicase. The material consumed by
the replication reaction is replenished by serial transfer of a small sample into fresh
solution. The replicating ensemble of RNA molecules optimizes the mean RNA
replication rate of the population in the sense of Darwinian evolution [see (2.6)].
The interpretation of RNA evolution in vitro identifies the RNA sequence with
the genotype. The RNA structure, the phenotype, is responsible for binding to the
enzyme and for the progress of reproduction, since the structure of the template
molecules has to open in order to allow replication [51–53]. In the case of RNA
aptamer selection9 the binding affinity is a function of molecular structure, and

9 An aptamer is a molecule that binds to a predefined target molecule. Aptamers are commonly
produced by an evolutionary selection process [57].
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sequence–structure mapping is an excellent model for the relation between genotype
and phenotype.

RNA sequences fold spontaneously into secondary structures consisting of
double-helical stacks and single-stranded stretches. Within a stack, nucleotides form
base pairs that are elements of a pairing logic B, which consists of six allowed
base pairs in the case of RNA structures: B = {AU,UA,GC,CG,GU,UG}. Fur-
ther structure formation, very often initiated by the addition of two-valent cations,
mostly Mg2+, folds secondary structure into three-dimensional structures by means
of sequence specific tertiary interactions of nucleotide bases called motifs [54, 55].
Secondary structures have the advantage of computational and conceptional sim-
plicity, allowing the application of combinatorics to global analysis of sequence–
structure mappings [47, 56]. A conventional RNA secondary structure consists
exclusively of base pairs and unpaired nucleotides and can be represented in a
formal three-letter alphabet with the symbols ‘·’, ‘(‘,’)’ for unpaired nucleotides,
downstream-bound, and upstream-bound nucleotides, respectively (Fig. 2.3). A

Fig. 2.3 Symbolic notation of RNA secondary structures. RNA molecules have two chemically
different ends, the 5′- and the 3′-end. A general convention determines that all strings correspond-
ing to RNA molecules (sequences, symbolic notation, etc.) start from the 5′-end and have the
3′-end at the right-hand side (rhs). The symbolic notation is equivalent to graphical representation
of secondary structures. Base pairs are denoted by parentheses, where the opening parenthesis
corresponds to the nucleotide closer to the 5′-end and the closing parenthesis to the nucleotide
closer to the 3′-end of the sequence. In the figure we compare the symbolic notation with the
conventional graphical representations for two structures formed by the same sequence
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straightforward way to annotate pairs in structures is given by the base pair count
Si = [γ (i)1 , . . . , γ

(i)
� ], which we illustrate here by means of the lower (blue) structure

in the figure as an example10:

Si = [1,2,3,4,5,6,0,0,0,0,6,5,4,3,2,1,0,7,8,9,10,11,12,0,0,0,0,12,11,10,9,8,7,0,0,0,0]

Consecutive numbers are assigned to first nucleotides of base pairs corresponding
to an opening parenthesis in the sequence, in which they appear in the structure,
and the same number is assigned to the corresponding closing parenthesis lying
downstream. Unpaired nucleotides are denoted by ‘0’. In total the structure contains
np base pairs and ns single nucleotides with 2np + ns = �.

Molecular physics provides an excellent tool for modeling folding of molecules
into structures, the concept of conformation space: A free energy is assigned to
or calculated for each conformation of the molecule. Commonly, the variables of
conformation space are continuous, bond lengths, valence angles or torsion angles
may serve as examples. The free energy (hyper)surface or free energy landscape of a
molecule presents the free energy as a function of the conformational variables. The
mfe structure corresponds to the global minimum of the landscape, metastable states
to local minima. In the case of RNA secondary structures conformation space and
shape space are identical, and they are discrete spaces, since a nucleotide is either
paired or unpaired. Whether a given conformation, a given base pairing pattern, is a
local minimum or not depends also on the set of allowed moves in shape space S.
The move set defines the distance between structures, the metric dS(Si , S j ) in (2.11).
An appropriate move set for RNA secondary structures comprises three moves: (i)
base pair closure, (ii) base pair opening, and (iii) base pair shift [47, 62]. The first
two moves need no further explanation; the shift move combines base pair opening
and base pair formation with neighboring unpaired nucleotides. This set of three
moves corresponds to a metric dS(Si , S j ), which is the Hamming distance between
the symbolic notations of the two structures Si and S j .

Conventional structure prediction deals with single structures derived from sin-
gle sequence inputs. Structure formation depends on external conditions such as
temperature, pH value, ionic strength, and the nature of the counter-ions; in order
to obtain a unique solution these conditions have to be specified. Commonly the
search is for the most stable structure, the mfe structure, which corresponds to the
global minimum of the conformational free energy landscape of the RNA molecule.
In Fig. 2.4 the mfe structure S0 = ψ(X) is a single long hairpin shown (in red)
at the lhs of the picture. A sequence that forms a stable mfe structure S0 (free

10 The base pair count is another equivalent representation of RNA secondary structures. In the
case of conventional secondary structures, the symbolic notation is converted into the base pair
count by an exceedingly simple algorithm: Starting with zero at the 5′-end and proceeding from
left to right a positive integer counting the number of open parenthesis is assigned to every position
along the sequence. The base pair count is not only more convenient for base pair assignments but
also more general. It is, for example, applicable to RNA structures with pseudoknots.
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Fig. 2.4 Secondary structures of ribonucleic acid molecules (RNAs). Conventional RNA folding
algorithms compute the mfe structure for a given sequence [58, 59]. Hairpin formation is shown
as an example on the lhs of the figure. In addition, the sequence can fold also into a large number
of suboptimal conformations (diagram in the middle of the figure), which are readily computed by
efficient computer programs [60, 61]. If a suboptimal structure is separated from the mfe structure
by a sufficiently high activation barrier, the structure is metastable. The metastable structure in the
example shown here is a double hairpin (rhs of the figure). The activation energy of more than
20 kcal/mol does not allow interconversion of the two structures at room temperature. (For the
calculation of kinetic structures see, for example, [62, 63])

energy of folding11: 	Gfold(S0) < 0) commonly forms almost always a set of
suboptimal conformations {S1, S2, . . . , Sm} with higher free energies of formation,
	Gfold(Si ) > 	Gfold(S0) for i �= 0. In Fig. 2.4 (middle) the ten lowest subop-
timal structures are listed; together with S0 they represent the 11 lowest states of
the spectrum of structures associated with the sequence X . Low-lying suboptimal
conformations may influence the molecular properties, in particular when confor-
mational changes are involved. The Boltzmann-weighted contributions of all sub-
optimal structures at temperature T are readily calculated by means of the partition
function of RNA secondary structures [59, 64]. Instead of base pairs the analysis of
the partition function yields base pairing probabilities that tell how likely it is to find
two specific nucleotides forming a base pair in the ensemble of structures at thermal
equilibrium.

Although folding RNA sequences into secondary structures is, presumably, the
simplest conceivable case of a genotype–phenotype map, it is at the same time an
example of the origin of complexity at the molecular level. The base pairing inter-
action is essentially nonlocal since a nucleotide can pair with another nucleotide
from almost any position of the sequence.12 The strongest stabilizing contributions

11 The free energy of folding is the difference in free energy between the structure Si and the
unfolded (open) chain O: 	Gfold(Si ) = G(Si )− G(O).
12 Pairing with nearest neighbors is excluded for geometrical reasons. In other words, base pairs
of two adjacent nucleotides have such a high positive free energy of formation that they are never
observed.
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to the free energy of structure formation come from neighboring base pairs and are
therefore local. The combination of local and nonlocal effects is one of the most
common sources of complex relations in mappings.

The relation of an RNA sequence and its suboptimal structures is sketched in
Fig. 2.5 (lower part). A single sequence X gives rise to a whole set of structures
spread all over shape space. In principle, all structures that are compatible with
the sequence appear in the spectrum of suboptimals but only a subset is stable in the
sense that the structure Si (i = 1, . . .) corresponds to a local minimum of the confor-
mational energy surface and the free energy of folding is negative (	Gfold(Si ) < 0).
Using the base pair count, the set of all structures that are compatible with the
sequence Xh can be defined straightforwardly:

Si ∈ C(Xh) iff {γ (i)j = γ (i)k �⇒ b(h)j b(h)k ∈ B ∀ γ j �= 0, j = 1, . . . , �} (2.12)

Sequence space Structure space

Neutral network

Sequence space Structure space

Stable (sub)optimal structures

Fig. 2.5 Mappings from sequence space onto shape space and back. The upper part of the figure
sketchows schematically a mapping from sequence space onto structure or shape space. (Both
sequence space and shape space are high-dimensional. The two-dimensional representation is used
for the purpose of illustration only.) One structure is uniquely assigned to each sequence. The
drawing shows the case of a mapping that is many-to-one and noninvertible: Many sequences
fold into the same secondary structure and build a neutral network. The lower part of the figure
illustrates the set of stable (sub)optimal structures that are formed by a single sequence. The mfe
structure is indicated by a larger circle
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In other words, a structure Si is compatible with a sequence Xh if, and only if, two
nucleotides that can form a base pair appear in the sequence at all pairs of positions
that are joined by a base pair in the structure. For an arbitrary sequence the number
of compatible structures is extremely large but the majority of them have either
positive free energies of folding (	Gfold(Si ) > 0) and/or represent saddle points
rather than local minima of the conformational energy surface. Figure 2.5 indicates
the relation between an RNA sequence, its mfe structure, and its stable suboptimal
conformations.

Studies of mfe structures or suboptimal structures refer to a certain set of con-
ditions – for example, temperature T , pH, ionic strength – but time is missing
because free energy differences (	G) or partition functions are equilibrium prop-
erties. The structures that are determined and investigated experimentally, however,
refer always to some time window – we are not dealing with equilibrium ensem-
bles but with metastable states. The finite time structures of RNA are obtained by
kinetic folding (see, e.g., [62, 63]). The RNA example shown in Fig. 2.4 represents
the case of a bistable molecule: The most stable suboptimal structure S1, a double
hairpin conformation (blue), is the most stable representative of a whole family of
double hairpin structures forming a broad basin of the free energy landscape of the
molecule. This basin is separated from the basin of the single hairpin structure S0
by a high energy barrier of about 20 kcal/mol and this implies that practically no
interconversion of the two structures will take place at room temperature. We are
dealing with an RNA molecule with one stable and one metastable conformation, a
so-called RNA switch. RNA switches are frequent regulatory elements in prokary-
otic regulation of translation [65].

2.5 Chemical Kinetics of Evolution

Provided population sizes N are sufficiently large, mutation rates are high enough,
and stochastic effects are reduced by statistical compensation, evolution can be
described properly by means of differential equations. In essence, we proceed as
described in Sect. 2.2 and find for replication and mutation as an extension of the
selection equation (2.4)

dx j

dt
=

n∑

i=1

Q ji fi xi − φ(t) x j , j = 1, . . . , n with φ(t) =
n∑

i=1

fi xi

or
dx
dt
=

(
Q · F − φ(t)

)
x =

(
W − φ(t)

)
x ,

(2.13)

where x is an n-dimensional column vector and Q and F are n × n matrices. The
matrix Q contains the mutation probabilities Q ji , referring to the production of X j

as an error copy of template Xi , and F is a diagonal matrix whose elements are the
replication rate parameters or fitness values fi .
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Solutions of the mutation-selection equation (2.13) can be obtained in two steps:
(i) integrating factor transformation allows the nonlinear term φ(t) to be eliminated
and (ii) the remaining linear equation is solved in terms of an eigenvalue problem
[66–69]:

x j (t) =
∑n

k=1 b jk
∑n

i=1 hki xi (0) exp(λk t)
∑n

l=1
∑n

k=1 blk
∑n

i=1 hki xi (0) exp(λk t)
, j = 1, . . . , n . (2.14)

The new quantities in this equation, b jk and hkj , are the elements of two transfor-
mation matrices:

B = {b jk; j = 1, . . . , n; k = 1, . . . , n} and

B−1 = {hkj ; k = 1, . . . , n; j = 1, . . . , n}.

The columns of B and the rows of B−1 represent the right-hand and left-hand eigen-
vectors of the matrix W = Q · F with B−1 · WB = � being a diagonal matrix
containing the eigenvalues of W. The elements of the matrix W are nonnegative by
definition since they are the product of a fitness value or replication rate parameter
fi and a mutation probability Q ji , which are both nonnegative. If, in addition, W is a
nonnegative primitive matrix13 – implying that every sequence can be reached from
every sequence by a finite chain of consecutive mutations – the conditions for the
validity of the Perron–Frobenius theorem [70] are fulfilled. Two (out of six) proper-
ties of the eigenvalues and eigenvectors of W are important for replication-mutation
dynamics:

(i). The largest eigenvalue λ1 is nondegenerate, λ1 > λ2 ≥ λ3 ≥ . . . ≥ λn , and
(ii). the unique eigenvector belonging to λ1 denoted by ξ1 has only positive ele-

ments, ξ (1)j > 0∀ j = 1, . . . , n.

After sufficiently long time the population converges to the largest eigenvector ξ1,
which is therefore the stationary state of (2.13). Since ξ1 represents the genetic
reservoir of an asexually replicating species it is called the quasispecies [68]. A qua-
sispecies commonly consists of a fittest genotype, the master sequence, and a mutant
distribution surrounding the master sequence in sequence space. Although the solu-
tion of the mutation-selection equation is straightforward, the experimental proof of
the existence of a stationary mutant distribution and its analysis are quite involved
[71]. The work has been conducted with relatively short RNA molecules (chain
length: � = 87). Genotypic heterogeneity in virus populations was first detected in
the 1970s [72]. Later, the existence of quasispecies in nature was demonstrated for
virus populations (For an overview and a collection of reviews see [73, 74]). Since it

13 A square nonnegative matrix W = {wi j ; i, j = 1, . . . , n; wi j ≥ 0} is called primitive if there
exists a positive integer m such that Wm is strictly positive: Wm > 0, which implies Wm =
{w(m)i j ; i, j = 1, . . . , n;w(m)i j > 0}.
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is very hard, if not impossible, to prove that a natural population is in a steady state,
the notion virus quasispecies was coined for virus populations observed in vitro and
in vivo.

In order to explore quasispecies as a function of the mutation rate p, a crude or
zeroth-order approximation consisting of neglect of backward mutations has been
adopted [33]. The differential equation for the master sequence is then of the form

dx (0)m

dt
= Qmm fm x (0)m − x (0)m φ(t) = x (0)m

(
Qmm fm − f̄−m − x (0)m ( fm − f̄−m)

)
,

with f̄−m =
(∑n

j=1, j �=m f j x j
)
/(1 − xm). We apply the uniform error approxima-

tion and assume that the mutation rate per nucleotide and replication event, p, is
independent of the nature of the nucleotide (A, U, G or C) and the position along
the sequence. We find for the elements of the mutation matrix Q

Q j j = (1− p)� and Q ji = (1− p)�
(

p

1− p

)dH(Xi ,X j )

, (2.15)

and obtain for the stationary concentration of the master sequence

x̄ (0)m = Qmm − σ−1
m

1− σ−1
m

= 1

σm − 1

(
σm (1− p)� − 1

)
,

where σm = fm/ f̄−m > 1 is the superiority of the master sequence and f̄−m is
defined by

f̄−m = 1

1− xm

n∑

i=1,i �=m

xi fi .

In this zeroth-order approximation the stationary concentration x̄ (0)m (p) vanishes at
the critical value (Fig. 2.6)

p cr ≈ 1 − (σm)
−1/� . (2.16)

Needless to say, zero concentration of the master sequence is an artifact of the
approximation, because the exact concentration of the master sequence cannot van-
ish by the Perron–Frobenius theorem as long as the population size is nonzero. In
order to find out what really happens at the critical mutation rate p cr computer
solutions of the complete equation (2.13) were calculated for the single peak fit-
ness landscape.14 These calculations [75] show a sharp transition from the ordered
quasispecies to the uniform distribution, x̄ j = κ−� ∀ j = 1, . . . , κ�. At the critical

14 The single peak fitness landscape is a kind of mean field approximation: A fitness value fm
is assigned to the master sequence, whereas all other variants have the same fitness f0. For this
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Fig. 2.6 The error threshold in RNA replication. The stationary frequency of the master sequence
Xm is shown as a function of the mutation rate p. In the zeroth-order approximation neglecting
mutational backflow the function x̄ (0)m (p) is almost linear in the particular example shown here. In
the inset the zeroth-order approximation (black) is shown together with the exact function (red) and
an approximation applying the uniform distribution to the mutational cloud (x̄ j = (1− x̄m)/(n−1)
∀ j �= m; blue), which is exact at the mutation rate p = 0.5 for binary sequences. The error rate
p has two natural limitations: (i) the physical accuracy limit of the replication process provides
a lower bound for the mutation rate and (ii) the error threshold defines a minimum accuracy of
replication that is required to sustain inheritance and sets an upper bound for the mutation rate.
Parameters used in the calculations: binary sequences, � = 6, σ = 1.4131

mutation rate p cr, replication errors accumulate and (independently of initial con-
ditions) all sequences are present at the same frequency in the long-time limit, as is
reflected by the uniform distribution. The uniform distribution is the exact solution
of the eigenvalue problem at equal probabilities for all nucleotide incorporations
(A→A, A→U, A→G, and A→C) occurring at p̃ = κ−1. The interesting aspect of
the error threshold phenomenon consists in the fact that the quasispecies approaches
the uniform distribution at a critical mutation rate p cr that is far below the random
mutation value p̃. As a matter of fact, the appearance of an error threshold and its
shape depend on details of the fitness landscape [76, pp. 51–60]. Some landscapes
show no error threshold at all but a smooth transition to the uniform distribution
[77]. More realistic fitness landscapes with a distribution of fitness values reveal a
much more complex situation: For constant superiority the value of p cr becomes

particular landscape the position x̄ (0)m = 0 calculated within the zeroth-order approximation almost
coincides with the position of the critical change in the population structure (Fig. 2.7).
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Fig. 2.7 The error threshold on single peak fitness landscapes. The upper part of the figure shows
the quasispecies as a function of the mutation rate p. The variables ȳk(p) (k = 0, 1, . . . , �) repre-
sent the total concentrations of all sequences with Hamming distance dH = k: ȳ0 = x̄m (black) is

the concentration of the master sequence, ȳ1 = ∑n
i=1,dH(Xi ,Xm )=1 x̄i (red) is the concentration of

the one-error class, ȳ2 =∑n
i=1,dH(Xi ,Xm )=2 x̄i (yellow) that of the two-error class and, accordingly,

we have ȳk = ∑n
i=1,dH(Xi ,Xm )=k x̄i for the k-error class. The lower part shows an enlargement.

The position of the error threshold computed from the zeroth-order approximation (2.16) is shown
as by a dotted line (gray). Choice of parameters: κ = 2, � = 100, fm = 10, f0 = 1 and hence
σm = 10 and pcr = 0.02276

smaller with increasing variance of fitness values. The error threshold phenomenon
can be split into three different observations that coincide on the single peak land-
scape: (i) vanishing of the master sequence xm , (ii) phase-transition-like behavior,
and (iii) transition to the uniform distribution. On suitable model landscapes the
three observations do not coincide and thus can be separated [78, 79].

How do populations behave at mutation rates above the error threshold? In real-
ity a uniform distribution of variants as required for the stationary state cannot be
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realized. In RNA selection experiments population sizes hardly exceed 1015

molecules, the smallest aptamers have chain lengths of � = 27 nucleotides [80] and
this implies 427 ≈ 18 × 1015 different sequences. Even in this most favorable case
we are dealing with more sequences than molecules in the population: a uniform
distribution cannot exist. Although the origin of the lack of selective power is com-
pletely different – high mutation rates wiping out the differences in fitness values
versus fitness differences being zero or too small for selection – the scenarios most
likely to occur are migrating populations similar to evolution on a flat landscape
[81]. Bernard Derrida and Luca Peliti find that the populations break up into clones,
which migrate into different directions in sequence space. Migrating populations are
unable to conserve a genotype over generations, and unless a large degree of neu-
trality allows a phenotype to be maintained despite changing genotypes, evolution
becomes impossible because inheritance breaks down.

Because of high selection pressure resulting from the hosts’ defense systems,
virus populations operate at mutation rates as high as possible in order to allow fast
evolution, and this is just below the error threshold [82]. Increasing the mutation
rate should drive the virus population beyond threshold, where sufficiently accurate
replication is no longer possible. Therefore virus populations are doomed to die
out at mutation rates above threshold, and this suggested a novel antiviral strategy
that has led to the development of new drugs [83]. A more recent discussion of the
error threshold phenomenon tries to separate the error accumulation phenomenon
from mutation-caused fitness effects leading to virus extinction, known as lethal
mutagenesis [84, 85]. In fact lethal mutagenesis describes the error threshold phe-
nomenon for variable population size N as required for lim N → 0, but an analysis
of population dynamics without and with stochastic effects at the onset of migration
of populations is still lacking. In addition, more detailed kinetic studies on repli-
cation in vitro near the error threshold are required before the mechanism of virus
extinction at high mutation rates can be understood.

Sequence–structure mappings of nucleic acid molecules (Sect. 2.4) and proteins
provide ample evidence for neutrality in the sense that many genotypes give rise to
the same phenotype and identical or almost identical fitness values that cannot be
discriminated by natural selection. The possible occurrence of neutral variants was
even discussed by Charles Darwin [2, chapter iv]. Based on the results of the first
sequence data from molecular biology, Motoo Kimura formulated his neutral theory
of evolution [86, 87]. In the absence of fitness differences between variants, random
selection occurs because of stochastic enhancement through autocatalytic processes:
more frequent variants are more likely to be replicated than less frequent ones. Ulti-
mately a single genotype becomes fixated in the population. The average time of
replacement for a dominant genotype is the reciprocal mutation rate, ν−1 = (�p)−1,
which, interestingly, is independent of the population size. Are Kimura’s results
valid also for large population sizes and high mutation rates, as they occur, for
example, with viruses? Mathematical analysis [88] together with recent computer
studies [78] yields the answer: Random selection in the sense of Kimura occurs
only for sufficiently distant (master) sequences. In full agreement with the exact
result in the limit p → 0 we find that two fittest sequences of Hamming distance
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dH = 1, two nearest neighbors in sequence space, are selected as a strongly coupled
pair with equal frequency of the two members. Numerical results demonstrate that
this strong coupling occurs not only for small mutation rates but extends over the
whole range of p values from p = 0 to the error threshold p = pcr. For clusters of
more than two sequences with dH = 1, the frequencies of the individual members
of the cluster are given by the components of the largest eigenvector of the adja-
cency matrix. Pairs of fittest sequences with Hamming distance dH = 2, i.e., two
next-nearest neighbors with two sequences in between, are also selected together
but the ratio of the two frequencies is different from one. Again coupling extends
from zero mutation rates to the error threshold. Strong coupling of fittest sequences
manifests itself in virology as systematic deviations from consensus sequences of
populations, as indeed observed in nature. For two fittest sequences with dH ≥ 3
random selection chooses arbitrarily one of the two and eliminates the other one, as
predicted by the neutral theory.

The function φ(t) was introduced as the mean fitness of a population in order
to allow straightforward normalization of the population variables. A more general
interpretation considers φ(t) as a flux out of the system. Then the equation describ-
ing evolution of the column vector of particle numbers N = (N1, . . . , Nn) is of the
form [89]

d N j

dt
= Fj (N) − N j

C(t)
φ(t) , i = 1, . . . , n ,

where Fj (N) is the function of unconstrained reproduction. An example is provided
by (2.13): Fj (N) = ∑n

i=1 Q ji fi Ni . Explicit insertion of the total concentration
C(t) =∑n

i=1 Ni (t) yields

φ(t) =
n∑

i=1

Fi (N) − dC

dt
or C(t) = C0 +

∫ t

0

(
n∑

i=1

Fi (N)− φ(τ)
)

dτ .

Either C(t) or φ(t) can be chosen freely; the second function is then determined by
the equation given above. For normalized variables we find

dx j

dt
= 1

C(t)

(

Fj (N) − x j

n∑

i=1

Fj (N)

)

.

For a large number of examples and for most cases important in evolution, the func-
tions Fj (N) are homogeneous functions in N . For homogeneity of degree γ we
have Fj (N) = Fj (C · N) = Cγ Fj (x) and find

dx j

dt
= Cγ−1

(

Fj (x) − x j

n∑

i=1

Fj (x)

)

, j = 1, . . . , n . (2.17)
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Two conclusions can be drawn from this equation: (i) For γ = 1, e.g., the selec-
tion equation (2.4) or the replication-mutation equation (2.13), the dependence on
the total concentration C vanishes and the solution curves in normalized variables
x j (t) are the same in stationary (C = const) and nonstationary systems as long as
C(t) remains finite and does not vanish, and (ii) if γ �= 1 the long-term behavior
determined by ẋ = 0 is identical for stationary and nonstationary systems unless the
population dies out C(t)→ 0 or explodes C(t)→∞.

2.6 Evolution as a Stochastic Process

Stochastic phenomena are essential for evolution – each mutant after all starts
out from a single copy – and a large number of studies have been conducted on
stochastic effects in population genetics [90]. Not so much work, however, has been
devoted so far to the development of a general stochastic theory of molecular evo-
lution. We mention two examples representative for others [91, 92]. In the latter
case the reaction network for replication and mutation was analyzed as a multi-type
branching process and it was proven that the stochastic process converges to the
deterministic equation (2.13) in the limit of large populations. What is still lacking
is a comprehensive treatment, for example by means of chemical master equations
[93]. Then the deterministic population variables x j (t) are replaced by stochastic
variables X j (t) and the corresponding probabilities

P( j)
k (t) = Prob{X j = k} , k = 0, 1, . . . , N ; j = 1, . . . , n . (2.18)

The chemical master equation translates a mechanism into a set of differential equa-
tions for the probabilities. The pendant of (2.13), for example, is the master equation

d P( j)
k

dt
=

(
n∑

i=1

Q ji fi

n∑

s=1

s P(i)s

)

P( j)
k−1 − φ(t) P( j)

k

−
(

n∑

i=1

Q ji fi

n∑

s=1

s P(i)s

)

P( j)
k + φ(t) P( j)

k+1 .

(2.19)

The only quantity that has to be specified further in this equation is the flux term
φ(t). For the stochastic description it is not sufficient to have a term that just com-
pensates the increase in population size due to replication, a detailed model of the
process is required. Examples are (i) the Moran process [94–96] with strictly con-
stant population size and (ii) the flow reactor (continuous stirred tank reactor, CSTR)
with a population size fluctuating within the limits of a

√
N law [97, 98].15 The

15 All thermodynamically admissible processes obey a so-called
√

N law: For a mean population
size of N the actual population size fluctuates with a standard deviation proportional to

√
N .
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Moran process assumes that for every newborn molecule one molecule is instanta-
neously eliminated. Strong coupling of otherwise completely independent processes
has the advantage of mathematical simplicity but it lacks a physical background. The
flow reactor, on the other hand, is harder to treat in the mathematical analysis but it
is based on solid physical grounds and can be easily implemented experimentally.
In computer simulation both models require comparable efforts and for molecular
systems preference is given therefore to the flow reactor.

For evolution of RNA molecules through replication and mutation in the flow
reactor, the following reaction mechanism has been implemented:

∗
a0 r
−−−−→ A ,

A + Xi

Q ji fi−−−−→ Xi + X j ; i, j = 1, . . . , n ,

A
r

−−−−→ ∅ , and

X j

r−−−−→ ∅ ; j = 1, . . . , n .

(2.20)

Stock solution flows into the reactor with a flow rate r and it feeds the reactor with
the material required for polynucleotide synthesis – schematically denoted by A and
consisting, for example, of activated nucleotides, ATP, UTP, GTP, and CTP, as
well as a replicating enzyme – into the system. The concentration of A in the stock
solution is denoted by a0. The molecules X j are produced by the second reaction
either by correct copying or by mutation. The third and fourth reactions describe
the outflux of material and compensate the increase in volume caused by the influx
of stock solution. The reactor is assumed to be perfectly mixed at every instant
(CSTR). For a targeted search the stochastic process in the reactor is constructed to
have two absorbing states (Fig. 2.8): (i) extinction – all RNA molecules are diluted
out of the reaction vessel – and (ii) survival – the predefined target structure has
been produced in the reactor. The population size determines the outcome of the
computer experiment: Below population sizes of N = 13 the reaction in the CSTR
almost certainly goes extinct, but it reaches the target with a probability close to
one for N > 20. The probability of extinction is very small for sufficiently large
populations, and for population sizes N ≥ 1, 000, as reported here, extinction has
been never observed.

In order to simulate the interplay between mutation acting on the RNA sequence
and selection operating on RNA structures, the sequence–structure map has to be
turned into an integral part of the model [97–99]. The simulation tool starts from
a population of RNA molecules and simulates chemical reactions corresponding to
replication and mutation in a CSTR according to (2.20) by using Gillespie’s algo-
rithm [100–102]. Molecules replicate in the reactor and produce both correct copies
and mutants, the materials to be consumed are supplied by the continuous influx
of stock solution into the reactor, and excess volume is removed by means of the
outflux of reactor solution. Two kinds of computer experiments were performed:
Optimizations of properties on a landscape derived from the sequence–structure
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Fig. 2.8 Survival in the flow reactor. Replication and mutation in the flow reactor are implemented
according to the mechanism (2.20). The stochastic process has two absorbing states: (i) extinction,
X j = 0∀ j = 1, . . . , n, and (ii) a predefined target state – here the structure of tRNAphe. A rather
sharp transition in the long-time behavior of the population is shown in the lower plot: populations
of natural sequences (AUGC) switch from almost certain extinction to almost certain survival in
the range 13 ≤ N ≤ 18 and for binary sequences (GC) the transition is even sharper but requires
slightly larger population sizes
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map and targeted searches in shape space where the target is some predefined
structure.

Early simulations optimizing replication rates in populations of binary GC-
sequences yielded two general results:

(i) The progress in evolution is stepwise rather than continuous, as short adaptive
phases are interrupted by long quasi-stationary epochs [97, 98].

(ii) Different computer runs with identical initial conditions16

resulted in different structures with similar values of the optimized rate parameters.
Despite identical initial conditions, the populations migrated in different – almost
orthogonal – directions in sequence space and gave rise thereby to contingency in
evolution [98].

In targeted search problems the replication rate of a sequence Xk , representing
its fitness fk , is chosen to be a function of the Hamming distance17 between the
structure formed by the sequence, Sk = f (Xk), and the target structure, ST,

fk(Sk, ST) = 1

α + dH(Sk, ST)/�
, (2.21)

which increases when Sk approaches the target (α is an empirically adjustable
parameter that is commonly chosen to be 0.1). A trajectory is completed when the
population reaches a sequence that folds into the target structure – appearance of the
target structure in the population is defined as an absorbing state of the stochastic
process. A typical trajectory is shown in Fig. 2.9. In this simulation a homogeneous
population consisting of N molecules with the same random sequence and structure
is chosen as the initial condition. The target structure is the well-known secondary
structure of phenylalanyl-transfer RNA (tRNAphe). The mean distance to target
of the population decreases in steps until the target is reached [99, 103, 104] and
again the approach to the target is stepwise rather than continuous: Short adap-
tive phases are interrupted by long quasi-stationary epochs. In order to reconstruct
optimization dynamics, a time-ordered series of structures is determined that leads
from an initial structure SI to the target structure ST. This series, called the relay
series, is a uniquely defined and uninterrupted sequence of shapes. It is retrieved
through backtracking, that is, in the opposite direction, from the final structure to
the initial shape. The procedure starts by highlighting the final structure and traces
it back during its uninterrupted presence in the flow reactor until the time of its first
appearance. At this point we search for the parent shape from which it descended
by mutation. Now we record the time and structure, highlight the parent shape,
and repeat the procedure. Recording further backwards yields a series of shapes

16 Identical means here that everything in the computer runs was the same except the seeds for the
random number generators and this implies different series of random events.
17 The distance between two structures is defined here as the Hamming distance between the two
symbolic notations of the structures.
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Fig. 2.9 A trajectory of evolutionary optimization. The topmost plot presents the mean distance to
the target structure of a population of 1,000 molecules, the plot in the middle shows the width of
the population in Hamming distance between sequences, and the plot at the bottom is a measure of
the velocity with which the center of the population migrates through sequence space. Diffusion
on neutral networks causes spreading on the population in the sense of neutral evolution [105]).
A remarkable synchronization is observed: At the end of each quasi-stationary plateau a new
adaptive phase in the approach towards the target is initiated, which is accompanied by a drastic
reduction in the population width and a jump in the population center. (The top of the peak at the
end of the second long plateau is marked by an arrow.) A mutation rate of p = 0.001 was chosen,
the replication rate parameter is defined in (2.21), and initial and target structures are shown in
Table 2.1

and times of first appearance that ultimately ends in the initial population.18 Use of
the relay series and its theoretical background allows classification of transitions
[99, 103, 106]. Inspection of the relay series together with the sequence record
on the quasi-stationary plateaus provides strong hints for the distinction of two
scenarios:

18 It is important to stress two facts about relay series: (i) The same shape may appear two or more
times in a given relay series series. Then, it was extinct between two consecutive appearances.
(ii) A relay series is not a genealogy, which is the full recording of parent–offspring relations in a
time-ordered series of genotypes.
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(i) The structure is constant and we observe neutral evolution in the sense of
Kimura’s theory of neutral evolution [87]. In particular, the numbers of neutral
mutations accumulated are proportional to the number of replications in the
population, and the evolution of the population can be understood as a diffusion
process on the corresponding neutral network [105].

(ii) The process during the quasi-stationary epoch involves several closely related
structures with identical replication rates and the relay series reveals a kind of
random walk in the space of these neutral structures.

The diffusion of the population on the neutral network is illustrated by the plot
in the middle of Fig. 2.9, which shows the width of the population as a function of
time [104]. The population width increases during the quasi-stationary epoch and
sharpens almost instantaneously after a sequence has been created by mutation that
allows the start of a new adaptive phase in the optimization process. The scenario
at the end of the plateau corresponds to a bottleneck of evolution. The lower part
of the figure shows a plot of the migration rate or drift of the population center and
confirms this interpretation: Migration of the population center is almost always
very slow unless the center “jumps” from one point in sequence space to a possi-
bly distant point where the molecule initiating the new adaptive phase is located.
A closer look at the three curves in Fig. 2.9 reveals coincidence of three events:
(i) collapse-like narrowing of the population spread, (ii) jump-like migration of the
population center, and (iii) beginning of a new adaptive phase.

It is worth mentioning that the optimization behavior observed in a long-term
evolution experiment with Escherichia coli [46] can be readily interpreted in terms
of random searches on a neutral network. Starting with twelve colonies in 1988,
Lenski and his coworkers observed, after 31,500 generation or 20 years, a great
adaptive innovation in one colony [45]: This colony developed a kind of membrane
channel that allows uptake of citrate, which is used as a buffer in the medium. The
colony thus conquered a new resource that led to a substantial increase in colony
growth. The mutation providing citrate import into the cell is reproducible when
earlier isolates of this particular colony are used for a restart of the evolutionary
process. Apparently this particular colony has traveled through sequence space to a
position from where the adaptive mutation allowing citrate uptake is within reach.
None of the other eleven colonies gave rise to mutations with a similar function.
The experiment is a nice demonstration of contingency in evolution: The conquest
of the citrate resource does not happen through a single highly improbable mutation
but by means of a mutation with standard probability from a particular region of
sequence space where the population had traveled in one case out of twelve – history
matters, or to repeat Theodosius Dobzhansky’s famous quote: “Nothing makes sense
in biology except in the light of evolution” [29].

Table 2.1 collects some numerical data sampled from evolutionary trajectories of
simulations repeated under identical conditions. Individual trajectories show enor-
mous scatter in the time or the number of replications required to reach the tar-
get. The mean values and the standard deviations were obtained from statistics of
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Table 2.1 Statistics of the optimization trajectories. The table shows the results of sampled evo-
lutionary trajectories leading from a random initial structure SI to the structure of tRNAphe, ST as
the target.a Simulations were performed with an algorithm introduced by Gillespie [100–102]. The
time unit is here undefined. A mutation rate of p = 0.001 per site and replication was used. The
mean and standard deviation were calculated under the assumption of a log-normal distribution
that fits well the data of the simulations

Population Number of Real time from Number of replications
size runs start to target [107]

Alphabet N nR Mean value σ Mean value σ

AUGC 1,000 120 900 +1,380–542 1.2 +3.1–0.9
2,000 120 530 +880–330 1.4 +3.6–1.0
3,000 1,199 400 +670–250 1.6 +4.4–1.2

10,000 120 190 +230–100 2.3 +5.3–1.6
30,000 63 110 +97–52 3.6 +6.7–2.3

100,000 18 62 +50–28 – –

GC 1,000 46 5,160 +15,700–3,890 – –
3,000 278 1,910 +5,180–1,460 7.4 +35.8–6.1

10,000 40 560 +1,620–420 – –

aThe structures SI and ST used in the optimization were:

SI: ((.(((((((((((((............(((....)))......)))))).))))))).))...(((......)))
ST: ((((((...((((........)))).(((((.......))))).....(((((.......))))).))))))....

trajectories under the assumption of log-normal distributions. Despite the scatter
three features are unambiguously detectable:

(i) The search in GC sequence space takes about five time as long as the corre-
sponding process in AUGC sequence space, in agreement with the difference
in neutral network structure.

(ii) The time to target decreases with increasing population size.
(iii) The number of replications required to reach target increases with population

size.

Combination of the results (ii) and (iii) allows a clear conclusion concerning time
and material requirements of the optimization process: Fast optimization requires
large populations whereas economic use of material suggests working with small
population sizes just sufficient to avoid extinction.

A study of parameter dependence of RNA evolution was reported in a recent
simulation [107]. Increase in mutation rate leads to an error threshold phenomenon
that is closely related to one observed with quasispecies on a single-peak landscape
as described above [69, 75]. Evolutionary optimization becomes more efficient19

with increasing error rate until the error threshold is reached. Further increase in

19 Efficiency of evolutionary optimization is measured by average and best fitness values obtained
in populations after a predefined number of generations.
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error rates leads to a breakdown of the optimization process. As expected the distri-
bution of replication rates or fitness values fk in sequence space is highly relevant
too: Steep decrease of fitness with the distance to the master structure represented
by the target, which has the highest fitness value, leads to sharp threshold behavior,
as observed on single-peak landscapes, whereas flat landscapes show a broad maxi-
mum of optimization efficiency without an indication of threshold-like behavior.

2.7 Concluding Remarks

Biology developed differently from physics because it refrained from using math-
ematics as a tool to analyze and unfold theoretical concepts. Application of math-
ematics enforces clear definitions and reduction of observations to problems that
can be managed. Over the years physics became the science of abstractions and
generalizations, biology the science of encyclopedias of special cases with all their
beauties and peculiarities. Among others there is one great exception to the rule:
Charles Darwin presented a grand generalization derived from a wealth of personal
and reported observations together with knowledge from economics concerning
population dynamics. In the second half of the twentieth century the appearance
of molecular biology on the stage changed the situation entirely. A bridge was built
from physics and chemistry to biology, and mathematical models from biochemical
kinetics or population genetics became presentable in biology. Nevertheless, the
vast majority of biologists still smiled at the works of theorists. By the end of the
twentieth century molecular genetics had created such a wealth of data that almost
everybody feels nowadays that progress cannot be made without a comprehensive
theoretical foundation and a rich box of suitable computational tools. Nothing like
this is at hand but indications for attempts in the right direction are already visible.
Biology is going to enter the grand union of science that started with physics and
chemistry and is progressing fast. Molecular biology started out with biomolecules
in isolation and deals now with cells, organs, and organisms. Hopefully, this spec-
tacular success will end the so-far fruitless reductionism versus holism debate.

Insight into the mechanisms of evolution reduced to the simplest conceivable sys-
tems was provided here. These systems deal with evolvable molecules in cell-free
assays and are accessible by rigorous mathematical analysis and physical experi-
mentation. An extension to asexual species, in particular viruses and bacteria, is
within reach. The molecular approach provides a simple explanation of why we have
species for these organisms despite the fact that there is neither restricted recombi-
nation nor reproductive isolation. The sequence spaces are so large that populations,
colonies, or clones can migrate for the age of the universe without coming close to
another asexual species. We can give an answer to the question of the origin of
complexity: Complexity in evolution results primarily from genotype–phenotype
relations and from the influences of the environment. Evolutionary dynamics may
be complicated in some cases but it is not complex at all. This has been reflected
already by the sequence–structure map of our toy example. Conformation spaces
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depending on the internal folding kinetics as well as on environmental conditions
and compatible sets are metaphors for more complex features in evolution proper.

Stochasticity is still an unsolved problem in molecular evolution. The mathe-
matics of stochastic processes encounters difficulties in handling the equations of
evolution in detail. A comprehensive stochastic theory is still not available and the
simulations lack more systematic approaches since computer simulations of chem-
ical kinetics of evolution are at an early stage too. Another fundamental problem
concerns the spatial dimensions: Almost all treatments assume spatial homogeneity
but we have evidence of the solid-particle-like structure of the chemical factories of
the cell. In the future, any comprehensive theory of the cell will have to deal with
these structurally rich supramolecular structures too.
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Chapter 3
The Interplay of Replication, Variation
and Selection in the Dynamics of Evolving
Populations

Richard A. Blythe

Abstract Evolution is a process by which change occurs through replication. Vari-
ation can be introduced into a population during the replication process. Some of
the resulting variants may be replicated more rapidly than others, and so the char-
acteristics of the population – and individuals within it – change over time. These
processes can be recognised most obviously in genetics and ecology; but they also
arise in the context of cultural change. We discuss two key questions that are crucial
to the development of evolutionary theory. First, we consider how different appli-
cation domains may be usefully placed within a single framework; and second, we
ask how one can distinguish directed, deterministic change from changes that occur
purely because of the stochastic nature of the underlying replication process.

Evolution is a theory of change by replication. When an organism reproduces,
molecules of DNA are replicated and inherited by the offspring. The replicated DNA
may be identical to that carried by the parent, or it may differ, for example, through
mutation or recombination. Such differences at the molecular level (genotype) may
in turn lead to variation in the macroscopic properties (phenotype) of the offspring
(although such variation may also be due to other sources). Some of this variation
may lead to some organisms being more successful (having more offspring) than
others, which in turn leads to changes in the relative frequencies of different geno-
types in a population, a process known as selection.

Molecular evolution is not the only process of change that results from a combi-
nation of replication, variation and selection. At a higher level, one can think of the
population dynamics within an ecosystem of competing species as an evolutionary
process, where selection might be more fruitfully thought of – at least in terms
of modelling the dynamical process – as acting at the level of species rather than
individual genes. Systems of learned human behaviour, such as language, the use of
technologies or beliefs – collectively known as culture – also change over time by
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means of a replication process. Here, it is intangible behaviour, rather than tangible
molecules, that is replicated; nevertheless, differences in the behaviour may occur
when the behaviour is replicated, and some of these differences may propagate
more successfully than others, and so one has variation and selection in cultural
evolution too.

That processes of biological and cultural evolution may be somewhat similar is
not a new idea. Indeed, in his famous books On the Origin of Species [1] and The
Descent of Man [2], Darwin used human language as an analogy to support his case
that species should not be viewed as fixed categories, but as a dynamic classification
where one species is defined in terms of its genealogical relationships with other
species. For example, he wrote

It may be worth while to illustrate this view of classification, by taking the case of languages.
If we possessed a perfect pedigree of mankind, a genealogical arrangement of the races of
man would afford the best classification of the various languages now spoken throughout
the world; and if all extinct languages, and all intermediate and slowly changing dialects,
had to be included, such an arrangement would, I think, be the only possible one. [1, p. 422]

Indeed, he identified further similarities between evolution in a biological and cul-
tural (linguistic) setting:

The formation of different languages and of different species, and the proofs that both
have been developed through a gradual process, are curiously parallel. But we can trace
the formation of many words further back than that of species, for we can perceive how
they actually arose from the imitation of various sounds, as in alliterative poetry. We find
in distinct languages striking homologies due to the community of descent, and analogies
due to a similar process of formation. The manner in which certain letters or sounds change
when others change is very like correlated growth. We have in both cases the reduplica-
tion of parts, the effects of long-continued use, and so forth. . . . Dominant languages and
dialects spread widely, and lead to the gradual extinction of other tongues. A language, like
a species, when once extinct, never, as Sir C. Lyell remarks, reappears. [2, pp. 59–60].

Of course, in the 150 years since Darwin proposed his theory of evolution, much
has been learned about the mechanics of the molecular processes that underpin bio-
logical evolution. At this level, biological and cultural evolution are rather dissim-
ilar: the specifics of molecular processes such as meiosis have no analogue in the
cultural evolutionary dynamics of language change, for example. However, there
are recurrent questions that arise in different evolutionary contexts that are perhaps
more easily recognised once one has found a common language to describe them all.

One such question relates to what the units of selection are: a topic that was
at the centre of a long debate in biology (e.g., whether selection is best construed
as taking place at the level of the genotype, phenotype or even some higher level
such as groups or species [3]). In Sect. 3.1 below, we summarise a formulation of
evolutionary dynamics due to Hull [4] that was in part motivated by this debate.
Its utility for us is that it lays bare the essential components of an evolutionary
dynamics, and allows one to recognise where superficially dissimilar processes are
identical, and where they differ in a fundamental way.

Another recurrent question is of a more empirical nature, namely, accounting for
a given evolutionary change in terms of selection, variation, stochasticity in birth
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and death, or some combination thereof. As we will discuss in Sect. 3.2, the Price
equation [5] provides a rather simple, but general, means to distinguish changes
due to selection from changes due to variation in replication. However, this leaves
open the question of how much change is due to random effects alone. Theories of
evolutionary change in the absence of selection are collectively referred to as neutral
theories, have a long history in genetics [6], and have recently risen in prominence as
null models for change in ecology [7, 8] and linguistics [9, 10]. It is rather important
to establish the basic properties of neutral evolution, so that one can test for depar-
ture from a purely neutral theory. We therefore devote a large part of this chapter
to discussing the predictions of neutral theory, and examining a few cases in which
it has been shown to account for (or fail to account for) empirical data. As we will
see, very similar mathematical models arise in different evolutionary contexts, but
can lead to subtly different interpretations of the role that selection plays in these
different contexts and what it means for evolution to be neutral.

Our aim in this chapter is to introduce some of the basic mathematical models
of evolutionary dynamics and to point out some of their most important properties
from the point of view of applications in genetics, ecology and cultural evolution.
Readers who are interested in more comprehensive discussions of these mathemat-
ical models in their various formulations are encouraged to consult the excellent
textbooks by Crow and Kimura [11], Ewens [12], Barton et al. [13] and Wakeley
[14]. Readers with a background in physics may also find the reviews by Peliti [15],
Baake and Gabriel [16], Drossel [17] and myself and McKane [18] useful.

3.1 Hull’s General Analysis of Selection

The debate about the level at which selection may be recognised as operating is
exemplified by an observation that troubled Darwin, who noted that neuter insects,
whose traits, by definition, could not be inherited by future generations, could
nonetheless display apparently selective adaptations [1, pp. 236–242]. Hull’s gen-
eral analysis of selection [4] was motivated in part to articulate more clearly the
nature of this debate. His insight was to identify the key actors and processes through
the role they play in the selection process itself. It is these general definitions that
allow a precise formulation of nongenetic evolutionary processes such as the devel-
opment of scientific theory [4] and language change [19].

Hull defines four key concepts, which we quote verbatim here [4, p. 408]:

• replicator – an entity that passes on its structure largely intact in successive repli-
cations.

• interactor – an entity that interacts as a cohesive whole with its environment in
such a way that this interaction causes replication to be differential.

• selection – a process in which the differential extinction and proliferation of inter-
actors cause the differential perpetuation of the relevant replicators.

• lineage – an entity that persists indefinitely through time either in the same or in
an altered state as a result of replication.
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This precise, formal definition requires some unpacking. The first main point is
that the replicator and interactor need not be the same entity – that is, the different
roles played in the selection process can be played by different actors. The sec-
ond, and this is strongly emphasised by Hull [4, p. 404], is that selection is causal
in a very specific way. It is the interaction of the interactor with its environment
that causes different replicators to be replicated at different rates. Implicit in the
term relevant replicators is that survivability in a given environment is heritable.
Only when this causal link is in place can a change in the frequencies of different
replicators be regarded as adaptive. Finally, we note two more minor details: the
phrase largely intact indicates the place at which variation can be introduced into
the process through the creation of new replicator types; and whilst replicators and
interactors are transient objects, lineages persist through time and are the means by
which replicators can be related to one another. This notion of lineage formalises
Darwin’s view of species classification.

3.1.1 Instances of Hull’s General Analysis of Selection

In order to elucidate this generalised analysis of selection we shall discuss three
concrete instances of it.

3.1.1.1 Molecular Evolution

The most straightforward application of the general analysis of selection is to the
asexually reproducing organisms (such as certain fungi, yeasts and plants). If we
ignore the complications that arise from horizontal gene transfer [20], then the struc-
ture that is replicated largely intact is the organism’s DNA. Changes in this structure
may occur due to mutation. The most likely candidate for the interactor is the organ-
ism – differences in the phenotype and interaction with the environment will affect
the reproductive success of different individuals. Those differences which are due to
genetic variation will lead to an adaptation. A lineage can be drawn by considering
the repeated replication of the DNA. The organism is not the only possible choice
for the interactor: it could extend to include groups of organisms.

3.1.1.2 Community Ecology

In contrast to genetics, ecology focuses more strongly on interactions between dif-
ferent species, and the particular qualities of a species that cause it to survive, or
fail, in an ecosystem comprising many different species and possibly also abiotic
factors. Ecologists often talk in terms of niches, the range of viable conditions under
which the species can survive (see, e.g., [21]). Community ecologists are typically
interested in the structure of and diversity within an ecosystem, for example, the
distribution of species abundances or the number of species one expects to find in a
given area. Although the underlying evolutionary mechanism is genetic, the primary



3 Replication, Variation and Selection in Evolving Populations 85

consideration is whether two individuals are of the same species or not. Therefore,
one way to model the evolution of an ecosystem is to identify both replicators and
interactors as individuals of a species.

There is, however, a subtle distinction between replicator and interactor in terms
of identity. Two replicators are identical if they are individuals of the same species.
However, interactors may be distinguishable: they may exhibit individual differ-
ences (due to different life histories, for example) that can influence the survival
of the species as a whole. However, these differences are (at least in this formu-
lation) assumed not to be heritable, and so selection in this model takes place
at the species level through the interactions of its individuals with those of other
species.

In the generalised formulation, variation enters through the creation of new repli-
cator types. In an ecological setting, this may occur through speciation, or through
immigration from a pool external to the local community (this pool is sometimes
called the metacommunity). Either way, the result is the same: an individual of a
new species enters the community. In this model, lineages can be drawn connecting
parent individuals to their offspring.

This is not the only way to define replicator and interactor in an ecological set-
ting. For example, one can extend the interactor to include the species as a whole,
or indeed multiple species fulfilling a common ecological function. However, the
replicator is by definition restricted to those components of the interactions that are
heritable, and are therefore most likely to be individuals.

3.1.1.3 Language Change

Croft [19] explicitly defines an evolutionary linguistic theory within Hull’s scheme.
Here, the replicators are tokens of linguistic structure, for example, vowel sounds,
words or constructions like “the Xer the Y er”, where X and Y may be filled by
many components to realise phrases like “the shorter the better”. It is this type of
structure that is replicated when humans speak. The analogue of the gene, called
the lingueme by Croft [19], may exist in multiple variants when there is more than
one way of saying the same thing (e.g., two different ways of pronouncing the same
vowel in a set of words).

Hull’s original analysis of selection, above, mandates that proliferation and
extinction of the interactors is a central mechanism causing differential replication
of the replicators. In order to place language change directly in Hull’s framework,
a rather subtle definition of the interactor is needed: Croft [19] identifies this as the
speaker combined with her knowledge of the language (the grammar), taken as a
transient object. Then, the picture would be one of grammars that favour certain
variants proliferating or going extinct as speakers interact with one another in dif-
ferent social and linguistic contexts. In turn, this would lead to certain replicators
being replicated more frequently than others in the manner that Hull has in mind.

It is, however, more natural to think of the speaker as an interactor whose life
cycle corresponds with that of the speaker (i.e., it comes into being when the speaker
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is born, and dies with the speaker). Within Hull’s framework, a language may only
change as children acquire grammars that differ in structure to those of their parents.
Such models have indeed been widely studied: see e.g., [22, 23]. However, Croft
[19] rejects these in favour of a ‘usage-based’ model [24] that is based on the obser-
vation that speakers closely track the frequencies with which speakers use linguistic
variants throughout their lives [25, 26]. In order to identify a speaker as an interactor,
it is necessary to remove from Hull’s definition of selection the requirement that the
population dynamics of the replicators is a consequence of birth and death of the
interactors. Croft has suggested (see, e.g., [27, p. 94]) an alternative definition which
can be formulated as follows:

• selection – the process by which an interactor’s interaction with its environment
causes the differential replication of the relevant replicators.

This new definition opens the door for a range of processes, such as speakers pro-
ducing variants to flatter or impress the listener, or to identify themselves with a
particular social group, to be considered as selection mechanisms independently of
the life cycle of the interactor. The key point here is that whilst certain aspects of
the relationship between interactor and replicator are completely different in this
formulation of language change as an evolutionary dynamics – in particular, the
replicators are not “embedded” within the interactors as DNA is within individuals
of a species – the components that are key to the process being an evolutionary pro-
cess are present. That is, there is a structure that is replicated (linguistic behaviour),
and that replication is differential as a consequence of an interactor’s interaction
with the environment (here, other speakers and their linguistic behaviour, which is
governed by their grammars).

3.2 A Mathematical Analysis of Selection: The Price Equation

In 1970, Price [5] (see also [28]) attempted a general formulation of selection that
abstracted away from the specific genetic mechanisms of inheritance that are usually
emphasised by population geneticists, and is therefore of interest in our examination
of evolutionary dynamics in different contexts. It is an equation for the change in
the mean value of some quantitative character (trait) after one generation of repro-
duction. This trait may be discrete, like eye colour, or continuous, like height. As
Price remarks “it holds for any sort of dominance or epistasis, sexual or asexual
reproduction, for random or nonrandom mating, for diploid, haploid or polyploid
species and even for imaginary species with more than two sexes” [5, p. 520]. The
equation was used to understand such effects as kin and group selection, that is,
selection that apparently takes place at a level other than the gene. Recall that
such possibilities motivated Hull’s formal distinction between the replicator and the
interactor.
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3.2.1 Derivation of the Price Equation

The key feature of the Price equation is that evolutionary changes are expressed
purely in terms of properties of replicators within a parent population. To this
end, let us define this parent population: it contains N replicators, labelled i =
1, 2, . . . , N , and the value of the trait of interest associated with replicator i is
denoted zi . When the next generation of offspring is created, one can in principle
count the number of offspring each replicator i has: call this number wi . A specific
offspring of replicator i , labelled j = 1, 2, . . . , wi , inherits the trait zi , subject to
a change δzi,j , which may be due to mutation, recombination, or any other process
that can cause altered replication. Note that the interactor enters here implicitly: it
may in principle affect both wi and δzi,j .

We are interested in the difference in the mean value of the trait when aver-
aged over the parent and offspring generations. Introducing the overbar to denote an
average over the individuals in the population, unprimed variables to represent the
parent population, and primed variables to represent the offspring population, we
may write this change as

δz̄ = z̄′ − z̄ = 1

N ′
N∑

i=1

wi∑

j=1

(zi + δzi,j )− 1

N

N∑

i=1

zi . (3.1)

Our aim is to rewrite the right-hand side purely in terms of properties of the parent
population (i.e., unprimed variables). First of all, we note that N ′ = N w̄, where w̄
is the mean number of offspring, averaged over each of the parents. Then,

z̄′ − z̄ = 1

N

N∑

i=1

(wi

w̄
− 1

)
zi + 1

N w̄

N∑

i=1

wi∑

j=1

δzi,j . (3.2)

The first term on the right-hand side has the form of a covariance (or correlation
function):

Cov(x, y) = (x − x̄)(y − ȳ) = xy − x̄ ȳ , (3.3)

in which x and y are two random variables. Now, the mean of wi/w̄ when averaged
over individuals i is just unity, and hence

1

N

N∑

i=1

(wi

w̄
− 1

)
zi = wz

w̄
− 1× z̄ = Cov

(w
w̄
, z

)
. (3.4)

The second term on the right-hand side of (3.2) may also be written in a slightly
more compact form if we introduce for each parent i the mean change in the trait
value δzi averaged over its offspring, i.e.,
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δzi = 1

wi

wi∑

j=1

δzi,j . (3.5)

Then,

1

N w̄

N∑

i=1

wi∑

j=1

δzi,j = 1

N

N∑

i=1

wi

w̄
δzi = wδz

w̄
. (3.6)

Hence, (3.2) can be written in compact form as

δz̄ = Cov
(w
w̄
, z

)
+ wδz

w̄
, (3.7)

which is the Price equation [5].
The two terms that appear on the right-hand side of the Price equation (3.7)

can be ascribed to selection and variation in transmission, respectively. One sees
this by noting that if all replicators have the same number of offspring, the first
term vanishes by definition; whereas if all replicators are replicated faithfully, all
δzi,j = 0, and the second term vanishes. The fact that the selection term can be
written as a covariance demonstrates that if any deviation of the trait z away from
the mean (up or down) is correlated with a higher rate of reproduction, the mean
will shift in that direction.

An interesting feature of the Price equation that is seldom commented upon is
that all the quantities appearing on its right-hand side are given by the actual num-
bers of offspring and changes that occur on going from one generation to the next.
In principle, one could examine two generations of individuals and, by counting
the number of offspring and measuring the changes in trait values, determine the
contributions to the change in z̄ due to selection and variation. In a finite popula-
tion, however, one may infer a spurious selective component to the dynamics due to
fluctuations in the number of offspring that a replicator has. We will discuss these
fluctuations and the changes one would expect from them in Sect. 3.3 onwards. In
the meantime, we explore a couple of applications of the Price equation.

3.2.2 Applications of the Price Equation

3.2.2.1 Survival of the Fittest

If we suppose that the number of offspring that an individual has is a trait that
is inherited by offspring without variation, then we can ask how the fitness of the
population, defined as the mean number of offspring, changes over time. Putting
z = w into (3.7), we find
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δw̄ = Var(w)

w̄
, (3.8)

i.e., the variance of the offspring numbers (normalised by the mean). Since offspring
numbers and variances are both nonnegative, this expression implies that – in the
absence of variation – the fitness of the population will always increase (or remain
constant). How is this achieved? Individuals that have a large number of offspring
will contribute far larger numbers of individuals to later generations than those that
have a small number of offsping. The numbers of the latter species relative to the
former thus decreases, and the more poorly reproducing species will be eliminated.
This is survival of the fittest, mathematically expressed.

Equation (3.8) has been called the Fundamental Theorem of Natural Selection,
since it shows that the fitness of a population is bound to increase, and was intro-
duced by Fisher in 1930 [29]. However, this theorem was misunderstood due to its
giving only part of the contribution to changes in fitness: as can be seen from the
full Price equation (3.7), the second term could counteract the first, and even drive
the mean fitness of the population down if δwi, j can be negative.

3.2.2.2 Replicators, Interactors and Kin Selection

The theory of kin selection [30] provides a nice illustration of the relationship
between replicator and interactor, and the way that properties of the latter may
influence the dynamics of the former. Kin selection is one of the available expla-
nations for the existence of altruism [3], defined in this context as an act performed
by an interactor that leads to a reduction in the number of offspring it has (or, more
precisely, offspring of the associated replicators), but causes another interactor in the
population to have a larger number of offspring. The Price equation (3.7) allows one
to understand the circumstances under which a gene that prompts a small number
of individuals to perform the altruistic act may increase in frequency within the
population. As we will see, such an increase can be inhibited or reversed by the
presence of individuals who reap the benefit without paying the cost.

The starting point is a population of replicators, each of which leaves a single off-
spring in the following generation (i.e., wi = 1). With each replicator we associate
an indicator τi , which equals 1 if replicator i is an instance of the altruistic gene,
and 0 otherwise. The interactor associated with replicator i performs gi altruistic
acts, each of which causes its offspring number to decrease by a cost c. Meanwhile,
replicator i is the recipient of ri such acts, each leading to an increase in the offspring
number by the benefit b. Therefore, the number of offspring a replicator has in the
following generation is

wi = 1+ bri − cgi . (3.9)

Notice that this relationship expresses the causal relation between proliferation and
extinction of interactors (mediated by the quantities ri and gi ) and the differential
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perpetuation of the replicators (given by wi ) emphasised in Hull’s analysis of selec-
tion (Sect. 3.1).

The frequency of altruistic genes in the population is f = τ̄ . Assuming that
replication is faithful (i.e., genes do not mutate on replication), we can use the Price
equation (3.7) to ascertain that

δ f = b Cov(r, τ )− c Cov(g, τ )

1+ br̄ − cḡ
. (3.10)

Offspring numbers are by definition nonnegative, so the denominator of the previ-
ous expression must also be nonnegative (in practice, this constrains the allowed
combinations of ri and gi ). Therefore, the altruistic gene grows in frequency only if
the numerator of the previous expression is positive, i.e., when

Cov(r, τ )

Cov(g, τ )
b > c , (3.11)

which is a version of Hamilton’s rule for kin selection [30].
By definition, performing the altruistic act is positively correlated with carrying

the altruistic gene, so the covariance in the denominator of the previous expression
is positive. The cost c and benefit b are also positive quantities. On the other hand,
Cov(r, τ ) can be positive or negative: it is positive if the recipient of an altruistic
act is more likely to carry the altruistic gene than a randomly selected individual,
and negative if the recipients are less likely than average to be altruists. If altruism
is to be successful, a necessary requirement is that the beneficiaries of altruistic acts
are also altruists. In particular, if there is no correlation between the recipient of an
altruistic act, and that recipient being an altruist, the frequency of the altruistic gene
will not grow (except, possibly, through stochastic fluctuations – see next section).
Handing out benefits at random is not a viable long-term strategy.

It can also be shown that Cov(r, τ ) ≤ Cov(g, τ ) because recipients of the altruis-
tic act need not themselves be altruists, whereas the benefactors always are. There-
fore, the benefit b received must always be larger than the cost c by a factor that
depends on how good the altruists are at targeting the benefit at other altruists. The
better they are at this, the smaller the benefit they need to confer per unit cost in
order for a rare altruistic gene to grow in frequency.

The example that is often used to illustrate Hamilton’s rule (see, e.g., [31]) is
based on a population of diploid, sexually reproducing interactors in which the altru-
istic gene has a very low frequency, f ≈ 0. Recipients of the altruistic act are chosen
exclusively from kin (brothers or sisters) of the benefactor. If the altruistic gene is
present at a low frequency in the population, then, with high probability, exactly
one of each altruist’s parents carries exactly one altruistic gene. If each individual
acquires one of the two genes carried by each parent, with each gene chosen at
random, the probability that a kin of an altruist is also an altruist is 1

2 . When N is
large, averages over the population will be close to their expectation values, and so
one will find
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rτ = 1

N

∑

i

riτi = 1

2N

∑

i

giτi = 1

2
gτ (3.12)

since the probability that any recipient is an altruist is half the probability that the
corresponding benefactor is an altruist. Therefore the condition for growth of a rare
altruistic gene becomes

1
2 gτ − f ḡ

gτ − f ḡ
b > c . (3.13)

Now, as f → 0, gτ and ḡ are both proportional to the gene frequency f , and so for
vanishingly small gene frequency the condition for its growth becomes

1

2
b > c . (3.14)

That is, the altruistic gene will propagate if the benefit received exceeds twice the
cost. More generally, one needs rb > c, where r is the probability that the recip-
ient of the altruistic act carries the altruistic gene, given the benefactor’s strategy
for choosing recipients. The reason kin selection can promote altruism is that kin
are more likely to be genetically similar than randomly chosen members of the
population.

If the mechanism for choosing beneficiaries of an altruistic act is not a very reli-
able indicator of their carrying the altruistic gene, Hamilton’s rule (3.11) shows that
the benefit conferred must be increased to compensate. We remark, however, that
the overall rate of growth of the altruistic gene for ‘strategies’ that lie along the line
bCov(r, τ ) = const is smaller for strategies that entail conferring large benefits on
nearly randomly chosen individuals from the population than those that confer a
small benefit on individuals likely to be altruists. As we will see in the next section,
replicators with a small growth rate are more likely to be eliminated by random
fluctuations before they can become established.

3.3 Neutral Demographic Fluctuations: Genetic Drift

In the previous section we saw that the Price equation (3.7) allows us to work out
the change in the population average of some trait z in one generation, assuming
we know all the offspring numbers wi , and the changes in the trait δzi,j of each
of individual i’s offspring. In practice, the process of reproduction is stochastic –
that is, the offspring numbers wi (and potentially also the changes δzi,j ) are random
variables. The probabilistic changes in replicator frequencies due to stochasticity in
the birth and death dynamics are sometimes referred to as demographic fluctuations.

As we previously observed, these fluctuations may cause us to infer erroneous
selective effects where in fact there is no systematic contribution to an interac-
tor’s survival coming from variation in the underlying replicators. If one were able
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to average the first term in (3.7) over multiple realisations of the dynamics, one
would indeed find that such random fluctuations would cancel. A model in which
all replicator types have the same offspring numbers is called neutral; in genetics
the fluctuations that arise are referred to as genetic drift.

Since we will not in general be able to perform multiple realisations of a pop-
ulation dynamics process, it is important to be able to disentangle systematic and
purely random effects from a single realisation of the process. To do this, one needs
to know something about the statistics of the purely neutral population dynamics,
which is the subject of this and the following two sections. We do not attempt a
detailed survey of the huge literature on genetic drift and its applications here;
rather, we will highlight a few key points with reference to specific models and
applications.

3.3.1 Models of Purely Neutral Evolution

There are two simple, illustrative concrete models of this neutral evolution that are
widely used in genetics. The oldest is the Wright–Fisher model [29, 32], which
comprises discrete generations of N replicators, a number that stays constant over
time. Since different replicator types have by definition no effect on the survival
of any associated interactors in this model, we do not need to make any explicit
reference to the latter and indeed one could use the terms interchangeably.

The next generation is formed from the current generation by repeating the fol-
lowing steps N times: (i) a parent replicator is randomly chosen from the current
generation; (ii) it is replicated, to create an offspring; (iii) the parent is returned to the
current generation; (iv) the offspring is deposited in the next generation. Although
all replicators have the same distribution of offspring numbers in this model, there
is a competitive element in that only N replicators can be accommodated in each
generation – perhaps because the resources available become exhausted if the pop-
ulation grossly exceeds N . This competition is the origin of fluctuations in the fre-
quencies of different replicator types. As we will see, the effect of this competition
is that (without any mutation), all but one of the replicator types will eventually go
extinct.

To examine these fluctuations and their consequences, it is conventional to con-
sider a population with two replicator types. We will also couch our discussion
not in terms of the Wright–Fisher model, but a more recent and mathematically
convenient model due to Moran [33] that has very similar dynamics. The difference
is that this model has overlapping generations. In step (iv) above, the offspring is
also placed into the “current” generation, displacing one of the replicators already
present, chosen at random. The displaced individual may be the same as that chosen
as the parent. In the Moran model, time is usually measured in terms of the number
of individual sampling events, i.e., iterations of steps (i)–(iv). Then, roughly speak-
ing, N sampling events in the Moran model correspond to one generation of the
Wright–Fisher model (actually, the time scales of the two models are related by a
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factor N/2 [12, 18]). The results we obtain for Moran-type models here will often
also apply to the Wright–Fisher model under suitable rescaling of time.

Mathematically, the Moran model can be formalised as a Markov chain in which
there are N +1 states. We can label these states with the integer n = 0, 1, 2, . . . , N ,
which counts the number of replicators of a specified type which we shall label
A. This number changes if the parent and offspring chosen in a given step of the
dynamics are of different types. It increases by one if the parent is of type A (this
event occurs with probability n

N ) and the displaced replicator is not (probability
1 − n

N ). Thus the total probability that n → n + 1 is n
N (1 − n

N ). Likewise, n
decreases by one if the types of parent and offspring are exchanged, an event that
occurs with the same overall probability. Hence, we can write down the transition
probabilities for this model:

P(n→ m) =

⎧
⎪⎨

⎪⎩

n
N (1− n

N ) m = n ± 1

1− 2 n
N (1− n

N ) m = n

0 otherwise

(3.15)

where 0 ≤ n,m ≤ N . In the language of Markov chains [34], the states 0 < n < N
are transient, which means that once left, there is some probability that they are
never returned to. In turn, this means that as the number of time steps t → ∞, the
probability of being in one of these transient states vanishes. Therefore, as t →∞,
one has either n = 0 or n = N . In words, replicators of type A have either gone
extinct, or taken over the whole population. In genetics, this latter state of affairs
is called fixation. Therefore, we see explicitly that undirected demographic fluc-
tuations can cause the proliferation of a replicator. One reason why this does not
count as selection in Hull’s definition (Sect. 3.1) is that the fact that one replicator
had more offspring than another in one generation does not cause it to have more
offspring than another in subsequent generations. That is, a parent’s actual offspring
numberwi is not inherited by its offspring. If anything is inherited, it is the statistical
distribution of offspring number, which is common to all replicators.

3.3.2 Fixation Probability

From (3.15), we see explicitly that if we average over all realisations of the demo-
graphic fluctuations (an averaging we will denote with angle brackets in the follow-
ing), the mean number of replicators of a given type, 〈n〉, remains unchanged over
time. If n(t) = n with probability one, then

〈n(t + 1)〉 =
∑

m

m P(n→ m) (3.16)

= (n + 1)x(1− x)+ n [1− 2x(1− x)]+ (n − 1)x(1− x) (3.17)

= n(t) , (3.18)
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where x = n/N . Averaging over any distribution of n(t), we find, 〈n(t + 1)〉 =
〈n(t)〉, i.e., that the mean number of replicators of type A (and hence any type) is
conserved, as claimed. Above, we argued that as t → ∞, n(t) = N or 0. Denote
the probability of the former event as φ. Then, we have that

lim
t→∞〈n(t)〉 = φ × N + (1− φ)× 0 = φN (3.19)

Since 〈n(t)〉 = const, we have that the fixation probability φ is given by

φ = 〈n(0)〉
N

(3.20)

for any initial condition. The fact that the fixation probability of a replicator type
is proportional to its initial frequency in the population (or the expectation value
thereof, if the initial condition is a distribution) is one of the basic properties of
genetic drift.

3.3.3 Mean Fixation Time

Another important basic property of genetic drift is the mean time T (n) until repli-
cator type A, represented n times in the initial population, goes extinct or to fixation,
averaged over all possible realisations of the dynamics. This can also be worked out
straightforwardly. The key point to realise is that the mean number of time steps to
fixation or extinction from time t = 0 is, if 0 < n < N , equal to one plus the mean
number of time steps from time t = 1, averaged over the distribution of states at
time t = 1. As an equation,

T (n) = 1+ x(1− x)T (n+1)+ x(1− x)T (n−1)+ [1− 2x(1− x)] T (n) , (3.21)

where again x = n/N . It is useful make a change of variable to x everywhere, i.e.,
by putting T (n) = T̃ (x), and expand in a Taylor series

T (n ± 1) = T̃ (x)± 1

N
T̃ ′(x)+ 1

2N 2
T̃ ′′(x)+ · · · . (3.22)

Substituting into (3.22), and truncating at second order, we find

− 1 = 1

N 2
x(1− x)T̃ ′′(x) . (3.23)

This equation can be solved once appropriate boundary conditions have been
imposed. We are interested in the mean time until only one of the two replicator
types remains, but are not interested in which one it is. For this question, the appro-
priate boundary condition is T̃ (0) = T̃ (1) = 0, since the mean time to reach one of



3 Replication, Variation and Selection in Evolving Populations 95

the two absorbing states (extinction or fixation) from n = 0 or n = N is zero. The
solution (3.23) with these boundary conditions, first noted in the context of genetic
drift by Kimura and Ohta [35], is

T̃ (x) = −N 2 [x ln x + (1− x) ln(1− x)] . (3.24)

This equation is valid when N is large. The key thing to notice is that when the
initial number of both replicator types is of order N (as opposed to order 1), the
mean time to fixation of one of them is of order N 2 updates. Since the time scales of
the Wright–Fisher and Moran models differ by a factor of N , in the former model
the mean number of generations until one of the types goes to fixation is of order
N , rather than order N 2.

3.3.4 Experimental Observation of Genetic Drift: Effective
Population Size

The population size N plays an important part in the analysis of genetic drift. This
should not be too surprising given that this is the only parameter in the Wright–
Fisher and Moran models. It is intuitively clear that if N is small, the probability
that one of the two types is never replicated in some sequence of sampling events is
much higher than if N is large, and hence that its extinction or proliferation through
purely stochastic effects alone is likely to occur more rapidly. Indeed, in genetics,
the strength of demographic fluctuations is typically quantified in terms of size of the
Wright–Fisher population that would show the fluctuations of the same magnitude.
This size is referred to as an effective population size for the system. In actual fact,
a range of different effective population sizes can be defined [36, 37]; however, the
key point is that the effective size may differ from the actual size.

This has been observed in an experimental realisation of genetic drift, conducted
with small, artificially manipulated populations of Drosophila melanogaster [38].
The Wright–Fisher dynamics were imposed by allowing the organisms to reproduce,
and then sampling a fixed number of offspring organisms at random, and using these
as the parents for the next generation. The Wright–Fisher model predicts that if
there are n copies of an allele in the parent generation, the number in the offspring
generation, m, should be distributed as a binomial

P(m|n) =
(

N

m

)( n

N

)m (
1− n

N

)N−m
. (3.25)

In particular, the variance of the allele frequency y = m/N in the offspring gen-
eration is x(1 − x)/N , where x = n/N is the corresponding frequency in the
parent generation. By running multiple replicates of this artificial evolution exper-
iment, one can measure this variance experimentally, and the predicted parabolic
dependence on x was indeed observed: see Fig. 3.1, which shows data tabulated in
[38]. However, the amplitude of the parabola was not given by 1/N with N equal
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Fig. 3.1 Variance in the frequency of the replicator type A in the offspring generation as a function
of its frequency in the parent generation as recorded for an experimental Drosophila population of
32 replicators. Points are plotted from data tabulated for Series I in [38]; the curve is a fit to
x(1− x)/N with N an adjustable parameter approximately equal to 18

to the actual population size, but rather by a smaller, effective population size (a
value of approximately 18 rather than 32). As we will see in Sect. 3.5, population
subdivision – that is, situations in which parents are not sampled uniformly from
the population, but are divided into subpopulations – generically has the effect of
reducing the effective population size, a fact that could explain this experimental
observation.

3.4 Immigration and Mutation in Neutral Models

Replication is only one of the processes involved in evolutionary dynamics: even in
the absence of selection, changes can occur through mutation – a change in repli-
cator type in the replication process – or immigration, the appearance of replicators
from outside the immediate population. As we have seen above, when replication
is faithful and the population is of finite size and closed to immigration, variabil-
ity will always be lost after a sufficiently long time. Immigration and mutation are
two processes that can reverse this effect, and allow steady states in which multiple
replicator types can coexist.

From the point of view of simple models, immigration and mutation are equiva-
lent processes. This is most simply understood if each new mutant or immigrant is
of a different type to any that has been seen before. Then, whether by immigration
or mutation, there is some probability at each time step of a new type appearing.
We will refer to this type of mutation or immigration generically as nonrecurrent
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immigration. On the other hand, if mutation or immigration results in additional
replicators of a fixed set of existing types, we call this recurrent immigration.

A neutral model with immigration has recently become prominent in commu-
nity ecology [7, 8]. This model is controversial because typically it is assumed that
species diversity is a consequence of selection rather than demographic fluctuations
alone (see e.g. [39, 40] for prominent critiques). In particular, a common view is that
a community can be represented as a set of ecological niches (essentially, a viable
strategy for survival given the other species and the environment that is present),
and that the fittest species occupying a niche will drive out all competitors in that
niche through selection (as per the predictions of the Price equation). The neutral
model, by contrast, does not make reference to multiple niches, and that as species
compete for fixed resources within a single community, none is a priori fitter than
any other.

The simplest version of this model has a single community of N individuals,
a number that remains fixed over time (as in the Wright–Fisher and Moran mod-
els). In each time step, a parent replicator (individual of a species) is selected, and
its offspring displaces a randomly chosen replicator, as in the Moran model. The
difference with the Moran model is that there is a probability ν that the parent is
not sampled from within the local community (the population of N replicators), but
from the wider metacommunity. If ν is nonzero, ultimately one reaches a steady
state in which multiple species coexist. Of particular interest is the abundance of
different replicator types (species) in this steady state.

The mathematical analysis is different depending on whether immigration is
recurrent or nonrecurrent – and different in interesting ways, so we shall examine
both cases in more detail. Operationally, recurrent immigration can be realised by
having a neutral metacommunity of very large size, so that on the time scales in
which the population changes in the local community, the frequency of replicator
type A remains fixed at some value x̄ . We will assume the existence of one other
replicator type, whose frequency is 1− x̄ , so ultimately a steady state will be reached
in which the two types coexist. On the other hand, when immigration is nonrecur-
rent, and every immigrant is of a new type, there will be a constant turnover of
new species. Nevertheless, a type of steady state is reached in which the distribution
of species abundances becomes time-independent, even though species labels keep
changing.

3.4.1 Recurrent Immigration

Like the basic Moran model discussed in Sect. 3.3, its extension to include immi-
gration can be handled within a Markov chain formulation. Our task is to work out
how n, the number of replicators of type A, may change in one time step, given
that the frequency of A in the metacommunity is x̄ . As before, n increases by one
if the parent is of type A (probability n

N ), the displaced replicator is not (probability
1 − n

N ), and that the update that takes place in the time step is replication (prob-
ability 1 − ν). Alternatively, n may increase by one through an immigration event
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(probability ν), if the immigrant is of type A (probability x̄) and the displaced repli-
cator is not (probability 1 − n

N ). Putting these probabilities together, and following
the same logic for events that lead to n decreasing by one, we find the transition
probabilities for this model are

P(n→ m)=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(
1− n

N

) [
ν x̄ + (1− ν) n

N

]
m = n + 1

n
N

[
ν(1− x̄)+ (1− ν) (1− n

N

)]
m = n − 1

1− 2(1− ν) n
N

(
1− n

N

)+ ν [ n
N (1− x̄)+ (

1− n
N

)
x̄
]

m = n

0 otherwise
(3.26)

where again 0 ≤ n,m ≤ N . The probability P(n, t) that there are n replicators of
type A at time t evolves via the master equation

P(n, t + 1) = P(n − 1, t)P(n − 1→ n)+ P(n, t)P(n→ n)

+P(n + 1, t)P(n + 1→ n) . (3.27)

It is possible to solve for the steady state of this discrete-time master equation
exactly (see, e.g., [41]). A simpler approach, however, is to take the limit of large
community size N , and regard the frequency x = n/N as a continuous variable,
analogous to our treatment of Eq. (3.22) for the mean time to fixation in the Moran
model (ν = 0). Putting P̃(x, t) = P(N x, t), and expanding in powers of 1/N , we
find

P(n ± 1) = P̃(x, t)± 1

N

∂ P̃(x, t)

∂x
+ 1

2N 2

∂2 P̃(x, t)

∂x2
+ · · · (3.28)

P(n − 1→ n) = (1− ν)x(1− x)+ ν x̄(1− x)

+ 1

N
[ν x̄ + (1− ν)(2x − 1)]− 1

N 2
(1− ν) (3.29)

P(n + 1→ n) = (1− ν)x(1− x)+ νx(1− x̄)

+ 1

N
[ν(1− x̄)+ (1− ν)(1− 2x)]− 1

N 2
(1− ν). (3.30)

Substituting into (3.27), and keeping only terms up to order 1/N 2, we find

P̃(x, t + 1)− P̃(x, t) = ν

N

[
(x − x̄)P̃ ′(x, t)+ P̃(x, t)

]

+ 1

N 2

[
x(1− x)P̃ ′′(x, t)+ 2(1− 2x)P̃ ′(x, t)− 2P̃(x, t)

]

+ ν

2N 2

[
(x̄(1− x)+ x(1− x̄)− 2x(1− x)) P̃ ′′(x, t)

+
(

2x − x̄ − 1

2

)
P̃ ′(x, t)+ P̃(x, t)

]
(3.31)
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where a prime denotes differentiation with respect to the frequency x . This expres-
sion can be written more compactly as

P̃(x, t + 1)− P̃(x, t) = ν

N

[
(x − x̄)P̃(x, t)

]′ + 1

N 2

[
x(1− x)P̃(x, t)

]′′

+ ν

2N 2

[
{x̄(1− x)+ x(1− x̄)− 2x(1− x)} P̃(x, t)

]′′

+O(1/N 3) . (3.32)

This equation tells us something very important about evolutionary dynamical
processes that have both a systematic component (here, the migration/mutation pro-
cess) and demographic fluctuations. The leading ν-dependent term (which charac-
terises the systematic component) is of order 1/N , while the leading ν-independent
term (which characterises the random fluctuations that are present even when ν = 0)
is of order 1/N 2. If we rescale time linearly with population size, i.e., put τ = t/N ,
in the limit N →∞ we obtain the purely deterministic equation

∂

∂τ
P̃(x, τ ) = ν ∂

∂x
(x − x̄)P̃(x, τ ) . (3.33)

If initially a fraction x0 of the replicators have a given type, their number after time
t is given by

x(t) = x̄ + (x0 − x̄)e−νt , (3.34)

where x̄ is the corresponding frequency in the metacommunity. That is, the popula-
tion abundance in the local community simply approaches that of the metacommu-
nity. Demographic fluctuations are completely irrelevant in this regime.

There is, however, a limit in which there is a balance between the immigration
process (which tends to pull the relative abundance of different types towards that of
the metacommunity) and the stochastic reproduction process (which, as we saw in
the previous section, tends to eliminate diversity). This occurs if ν itself is of order
1/N . Then, under a different rescaling of time, τ = t/N 2, we find that as N →∞
Eq. (3.32) approaches

∂

∂τ
P̃(x, τ ) = θ ∂

∂x
(x − x̄)P̃(x, τ )+ ∂2

∂x2
x(1− x)P̃(x, t) , (3.35)

where the parameter θ is defined as

θ = lim
N→∞ Nν . (3.36)

This statement is a purely mathematical one. In practice, one interprets it as meaning
that if the immigration rate ν multiplied by the population size N is of order 1, then
both deterministic and stochastic effects are important. If it is much less than one,
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the evolution will be dominated by drift (demographic fluctuations) and if it is much
larger than one, the evolution will be near-deterministic in character. This kind of
thinking applies to other processes. Recall that at the end of Sect. 3.2 we discussed
the rate of growth of a rare altruistic gene. If this rate δ f is of order 1/N , then
stochastic effects may bring the gene to extinction, even though on average it would
tend to increase.

The full time-dependent solution for the probability distribution P̃(x, τ ) gov-
erned by (3.35) is known (see, e.g., [11]). Here we shall mention only the steady-
state solution: one can verify that the function

P̃(x) ∝ xθ x̄−1(1− x)θ(1−x̄)−1 (3.37)

has zero time derivative if inserted in (3.35), a solution that has been known since
the earliest studies of genetic drift [32]. For any value of θ > 0, the mean of this
distribution is x̄ . However, the distribution of x can take different shapes as the
parameter θ is varied. If θ is small, then the distribution has peaks near x = 0 and
x = 1 – that is, at any given time, one of the replicator types is likely to be very
abundant and the other rather rare, as shown in the leftmost plot of Fig. 3.2. In order
to realise such a distribution, one must see over time transitions between each of the
two types being in the majority. As θ is increased, one sees distributions that vanish
at x = 0 and x = 1 and become strongly peaked around x̄ , as shown by Fig. 3.2.
These distributions are consistent with our characterisation of small θ defining a
fluctuation-dominated regime, and large θ an immigration-dominated regime.

3.4.2 Nonrecurrent Immigration

We now turn to the case where every immigration event introduces a new replicator
type to the population. This is rather tricky to handle within the master-equation-

Fig. 3.2 Stationary probability distribution of the A replicator frequency x with recurrent migra-
tion of both replicator types. The mean frequency of A in the external metacommunity is x̄ = 0.3.
The three plots show different immigration strengths θ : from left to right, θ = 0.5, 2.5 and 5.0



3 Replication, Variation and Selection in Evolving Populations 101

based approach that we have discussed so far, since one has birth and death of type
labels, as well as replicators of a given type. A more tractable approach is obtained
through an equivalent formalism where we consider the ancestry of a population
going backward in time, rather than the descendants from some initial condition.
Although notions of ancestry have long been used by geneticists to facilitate calcu-
lations, it was only relatively recently [42] that the backwards-time dynamics was
formalised mathematically (see [43] for further discussion). A good overview of
this approach can be found in various textbooks, see e.g., [12, 14, 44]. One of its
most important features is its direct relevance to empirical applications: in genet-
ics or ecology, one typically has observations about the diversity of a present-day
population, but no knowledge of the initial condition. It is this empirical measure of
diversity that can be tested against predictions from neutral theories.

3.4.2.1 Ancestral Formulation of Neutral Evolution

To understand this formalism, let us first consider the case where we have a sample
of two replicators, and no immigration processes. We can construct lineages by con-
sidering the probability that, going back one time step, both replicators are distinct,
or are copies of the same parent replicator. In the latter case, the lineages coalesce,
reflecting the shared parentage of the two intervals. One may therefore represent the
ancestry of the population in terms of a genealogy, a tree that shows the coalescence
of lineages as common ancestors are found. An example is shown in Fig. 3.3 for a
realisation of the dynamics within the Moran model.

At any given time step in the Moran model, coalescence of the two replicators in
our sample occurs if it happens to include both the parent replicator that was selected
for replication, and its offspring that was created. Since both were chosen from the
population with replacement, the probability that our sample contains the parent
individual is 2/N ; then, the probability that the other replicator is the offspring is
1/N . Hence, this pair coalesces with probability 2/N 2 per generation.

tim
e

Fig. 3.3 Ancestry of a sample of present-day replicators (shown dark shaded). As we go back
one step in time, a parent and offspring were chosen from the population, shown shaded and
open respectively. If the offspring individual happens to coincide with any of the ancestors of the
present-day sample, its lineage coalesces or moves over to the parent, depending on whether the
parent was also an ancestor of the sample or not
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In a sample containing n replicators, there are
(n

2

)
pairs that may coalesce in one

time step. Therefore, the transition probability for a sample of n distinct replicators
to contact to a sample of n− 1 distinct replicators when going back one time step is

Q(n→ n − 1) =
(

n

2

)
2

N 2
= n(n − 1)

N 2
. (3.38)

As we look backwards in time, the distribution of the length of time spent in an
a state with n ancestors can be worked out fairly straightforwardly. Once the state
has been entered, it is exited with probability qn = Q(n → n − 1) per time step.
Otherwise, we remain in this state. Hence, we spend exactly t time steps in state n
with probability

R(t) = (1− qn)
t−1qn (3.39)

where t ≥ 1 (because we always spend at least one time step in any given state).
The mean time spent in state n is then

t̄n =
∞∑

t=1

R(t)t = qn

∞∑

t=0

t (1−qn)
t−1 = −qn

d

dqn

∞∑

t=0

(1−qn)
t = −qn

d

dqn

1

qn
= 1

qn
.

(3.40)

If we start with a sample of m replicators, then going back in time, we go through
the states n = m,m−1,m−2, · · · , 2, 1, i.e., until a single common ancestor of the
entire population is found. The mean time to reach this common ancestor is obtained
by summing up the mean time spent in each of the states n = 2, 3, . . . ,m. This is

T̄m =
m∑

n=2

N 2

n(n − 1)
= N 2

m∑

n=2

[
1

n − 1
− 1

n

]
= N 2

[
1− 1

m

]
. (3.41)

We see once again the characteristic scaling of all time scales with the square of the
population size within the Moran model. It is also interesting to note that the mean
time for the last two remaining ancestors to coalesce is half the mean age of the
most recent common ancestor of the entire population.

3.4.2.2 Adding Mutation: The Infinite Alleles Model

The beauty of the coalescence-based approach is that additional processes, such as
migration or mutation, can be superimposed onto the genealogical trees, and their
statistics analysed. As promised, we will focus on the case where immigration into
the local community (going forwards in time) brings with it a completely new repli-
cator type (species). Recall that this happened with probability ν, and displaced a
randomly chosen replicator in the population.

We noted earlier that immigration and mutation processes are equivalent, in that
both lead to the creation of new types. In the following, it will be most useful to think
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in terms of mutations (rather than migrations), since then one can think of the new
replicator as being the offspring of an existing one in the population, even though
its type is different. This model of mutation is called the infinite alleles model in the
population genetics literature [12], because the possible number of alleles (replicator
types) is infinite.

Within this model, we now have, going backwards in time, that a given pair of
lineages coalesces with probability 2(1 − ν)/N 2 (as before, but incorporating the
factor 1 − ν to take into account the additional mutation process). Meanwhile, any
one lineage acquires a mutation with probability ν/N per time step. One can think
of the mutations “decorating” the genealogies, as shown in Fig. 3.4.

We are now interested in the number of ancestors at a given time in history
whose types are represented in the present-day sample. Let us call these contributing
ancestors. The requirement for this is that no mutations occur on any of the branches
connecting a contributing ancestor to the present-day population. Looking backward
in time, we can identify the contributing ancestors by terminating the genealogies
whenever a mutation event occurs, i.e., by deleting the dotted lines in Fig. 3.4. From
the figure, one can see that each event – coalescence or mutation – has the effect of
reducing the number of contributing ancestors by one. When n contributing ances-
tors are present, the rates of the coalescence and mutation processes are

Qcoal(n→ n − 1) = (1− ν)n(n − 1)

N 2
(3.42)

Qmut(n→ n − 1) = ν n

N
. (3.43)

We notice that mutation, by occurring at a rate of order 1/N , is a much faster
process than coalescence – this corresponds with our observations about the char-
acteristic time scales of systematic and random processes in evolutionary dynamics.
As previously, these processes occur on the same time scale if Nν = θ is of order 1.
Making this substitution, we find that the total probability of an event that reduces
the number of contributing ancestors by one is

tim
e

Fig. 3.4 An alternative realisation of the Moran process when mutation is allowed. Instead of a
parent–offspring pair being chosen at a given time step, there is a probability ν that an individual
mutated. If this happens to coincide with one of the lineages in the sample, it acquires a mutation,
denoted by a star in the figure. The dotted line indicates that the type of the replicator attached to
the lineage does not contribute to the present-day sample
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Q(n→ n− 1) = Qcoal(n→ n− 1)+ Qmut(n→ n− 1) = n(n − 1+ θ)
N 2

(3.44)

if we ignore terms of order 1/N 3, as previously. We may now ask for the mean age
of the oldest ancestor contributing to the present-day sample. This is obtained, as
before, by summing 1/Q(n → n − 1) over n = 2 to m, the size of the present-day
sample:

T̄m = N 2
m∑

n=2

1

n(n − 1+ θ) . (3.45)

Unfortunately, this expression does not have a convenient closed form. However, it
can be readily computed and plotted. The behaviour of T̄m/N 2 as a function of m
for three different values of θ is shown in Fig. 3.5.

Other useful expressions can be found once we know the probability that, at any
given time in the past, the next event (looking backward in time) is a mutation. Since
both processes, coalescence and mutation, take place with a constant probability per
unit time when n is constant, the probability M(n) that n → n − 1 via a mutation,
rather than a coalescence, is given by

M(n) = Qmut(n→ n − 1)

Qcoal(n→ n − 1)+ Qmut(n→ n − 1)
= θ

n − 1+ θ (3.46)

Fig. 3.5 The age of the oldest ancestor, T̄m/N 2, as a function of the sample size m for, from top to
bottom, θ = 0.5, 2.5 and 5.0
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in the limit N → ∞ where (3.36) holds. Now, given a sample of size m, the
mean number of replicator types k we may expect to see is equal to the mean
number of mutation events that occurs in the history as n descends from m to 0.
That is,

k̄ =
m∑

n=1

[M(n)× 1+ (1− M(n))× 0] =
m∑

n=1

θ

θ + n − 1
. (3.47)

Again, this expression has no convenient closed form, but again, it can be readily
computed and plotted – see Fig. 3.6. One can also see that for large m the summand
behaves as 1/m, and hence S grows roughly logarithmically with the sample size.
That is, asymptotically, one needs to roughly treble the sample size to see a new
species.

It is possible to go even further and obtain the probability that, given a sample
of size m, it contains m1 replicators of one type, m2 of a second, m3 of a third, and
so on. There are three parts to this computation. The first is to construct a standard
ordering of the replicators that make up the sample. The second is to figure out how
many of all possible replicator orderings are equivalent to the standard ordering,
given that we know only that there are mi replicators of type i . The third part is, for
a given standard ordering, to work out the probability that the ancestral coalescence
and mutation events give rise to a sample with the desired abundances of replicator
types.

We construct the standard ordering of replicators in the following way. First, we
group them together by type, and then order the groups by the number of replicators

Fig. 3.6 The mean number of replicator types, k̄, as a function of the sample size m for, from
bottom to top, θ = 0.5, 2.5 and 5.0
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they contain (largest first). Within each group, we order the replicators by their age
(oldest first). To do this, we need to define an age ordering within a pair of lineages
at a point of coalescence. This we achieve by saying that the offspring lineage ends
at the time of coalescence, and the parent lineage continues. Within each group,
there is one lineage that does not coalesce with any of the others in that group: this
ancestor was created by a mutation (immigration) event. We define the age of a
replicator through the length of the lineage that it is attached to. Figure 3.7 shows a
standard ordering for one realisation of the Moran model dynamics.

How many distinct orderings are there when we consider all possible realisa-
tions? The replicators within the groups are indistinguishable (their age is not known
to us), so there are

m!
m1!m2! · · ·mk ! (3.48)

distinct age orderings of the replicators, where k is the total number of types. Now,
groups of different sizes can be distinguished; but groups of the same size cannot.
Therefore, if there are bi groups of size i , this combinatorial factor must be further
reduced by a factor bi ! for each group size i . If there are r different group sizes, we
thus have that the total number of replicator orderings that can be distinguished by
their group sizes is

m!
m1!m2! · · ·mk !

1

b1!b2! · · · br ! . (3.49)

Finally, we need to identify the probability of the standard ordering with specified
mi . To work this out, we consider the construction of a tree, from top to bottom (i.e.,
in decreasing age of the events), by adding either mutation or coalescence events,
and multiplying together the probability of each. The probability that the j th event
(counting from the top) is a mutation is θ/(θ+ j−1); hence the probability that it is
a coalescence is 1/(θ+ j−1). If there are k types, there are by definition k mutation

tim
e
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1 12 2334 455

Fig. 3.7 Standard ordering of the replicators in the sample. First, we can order them by the age at
which they coalesced with a parent or mutated (whichever happened most recently). The numerals
show the age order of the replicators, from youngest (1) to oldest (5). Then, we can order groups
of replicators with a common ancestor by their size, largest first
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events, and no matter how these are interleaved with the m − k coalescence events,
the probability of a particular ancestry within a standard ordering is

θk

θ(θ + 1) · · · (θ + m − 1)
. (3.50)

Within a standard ordering, though, multiple ancestries are possible. When the nth
replicator is added to a group (going from top to bottom down the tree), there are
n − 1 parents to choose from to attach the offspring to. Each choice generates a
topologically distinct tree. Hence the total probability of obtaining k groups with
m1,m2, . . .mk replicators within each is

(m1 − 1)!(m2 − 2)! · · · (mk − 1)! θk

θ(θ + 1) · · · (θ + m − 1)
. (3.51)

Multiplying this now by the number of distinct replicator orderings (3.49) we finally
obtain the probability of seeing a sample with a particular distribution of group sizes
within it as

S(m1,m2, . . . ,mk |m) = m!
m1m2 · · ·mk

1

b1!b2! · · · br !
θk

θ(θ + 1) · · · (θ + m − 1)
,

(3.52)
where we recall that bi is the number of groups of size i . It is possible to write
this formula purely in terms of the bi and m by noting that k = ∑

i bi , and that
each group size i appears bi times in the denominator of the first term in the above
product. That is, one can write

S(b1, . . . , br |m) = m!
θ(θ + 1) · · · (θ + m − 1)

r∏

i=1

1

bi !
(
θ

i

)bi

. (3.53)

This expression is known as the Ewens sampling formula, as it was first writ-
ten down by Ewens [45]. Shortly afterwards, it was proved by Karlin and
McGregor [46].

An important feature of the Ewens sampling formula (3.53) is that the
θ -dependent part itself depends on the sample size m and the number of types k,
but not the abundances of each type. This in turn implies that if one is attempting to
infer θ from a sample, no additional information about its value is provided by these
abundances than is available from m and k alone. This statement can be made pre-
cise through information theory [47], but can be understood intuitively as follows.
Suppose that the distribution of abundances conditioned on m and k did depend on
θ . For example, a small value of θ could imply that group sizes tend to be small or
large, but not intermediate; whereas a large value of θ could imply the opposite for
the same m and k. Then, if one observed small and large groups, the inferred value
of θ would be biased towards small values. If there is no dependence of the group
sizes on θ for given m and k, as here, then no such biasing takes place. It turns out
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[12] that the maximum likelihood estimate of θ is given by solving (3.47) for θ with
the observed number of types k appearing on the left-hand side.

That fact that the distribution of group sizes is θ -independent can also be used to
design tests for neutral evolution in the presence of immigration of new types at a
constant rate θ without needing to know the value of θ . This is achieved by defining a
test statistic that is some combination of the bi , and computing its distribution, given
m and k, from (3.53). If the probability that the test statistic exceeds its observed
value is less than some threshold (e.g., 1% or 5%), one has evidence against the
neutral model. The choice of test statistic has some influence on the power of this
technique, a discussion we defer to [12].

3.4.3 Applications in Ecology and Cultural Evolution

Variants of the simple model described above have been applied in the context of
community ecology and cultural evolution. Hubbell [7] has discussed an ecological
model in which a local community is in contact with a metacommunity that is of
large (but finite) size. The local community receives immigrants from the meta-
community, as above, but speciation occurs within the metacommunity alone. This
implies a species turnover, as before, but also that multiple individuals of the same
species may migrate into the local community (as opposed to each arrival being of
a new species).

Using this model, one can compute such properties as the species area relation
(expected number of replicator types as a function of the community size), or the
species abundance distribution (the number of individuals of each species, when
ranked from most to least abundant). Initially these were obtained with computer
simulation, and – by varying the speciation and immigration rates – one can obtain
reasonable agreement with empirical data (see, e.g., [48, 49] for examples). Subse-
quently, these functions have been calculated analytically [41, 50], which obviates
the need for repeating simulations with different parameter combinations.

More recently, the analogue of the sampling formula (3.53) has been obtained
for this model by Etienne [51], and was used to show that this model provides a
better fit to empirical data than the version considered above. The availability of this
sampling formula also opens the door to obtaining maximum-likelihood estimates
of the model parameters, which is a possibly stronger test of the neutral theory than
fitting distributions. Certainly, one can compare the distributions obtained with the
maximum-likelihood values of the parameters, and check that these two methods of
analysing the data are consistent. Moreover, one can compare (as was done in [51])
the inferred value of a parameter, for example the immigration rate, with empirical
measurements of related quantities. These successful applications of neutral models
to ecological data remain however controversial [39, 40]. In part this is because
some of the distributions obtained from the neutral theory differ from other can-
didate distributions to a sufficiently small degree that they are hard to distinguish
empirically [50]. The development of more refined statistical tests may be one way
to resolve this controversy.
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Meanwhile, the simple model described in the previous section (albeit in a
Wright–Fisher discrete generation formulation) has been applied to the cultural
evolutionary process of baby naming. The idea here is that replicators are names for
babies, and that a new baby is given a name that is sampled from an existing pool
of N named individuals; or a new name is invented with a probability ν. Again,
this model has been shown to fit certain empirical properties and distributions of
baby names in the US rather well [52]. It has also very recently been shown that
these dynamics are what one would expect from a model in which agents attempt
to employ a Bayesian inference algorithm to estimate the frequency of a replicator
within some population through contact with a limited sample [53]. A parameter in
this inference model that corresponds to the degree of variability agents expect to
see in this distribution turns out to fix the value of θ . This looks to be a promis-
ing approach to better understanding the role of fluctuations in culturally evolving
systems.

3.5 Population Subdivision

We now return to a point that came up in our discussion of pure drift in Sect. 3.3,
namely that the scale of the fluctuations may be given by the reciprocal of a popu-
lation size that differs from the actual number of replicators in the system. One way
that this can occur is if there is population subdivision – that is, if offspring of a
given replicator can displace individuals only in a restricted part of the population,
for example, within a certain geographical distance of the parent. This effect has
been discussed extensively in the literature, see e.g., [18, 37, 54]. We present only a
simple demonstration here.

Let us consider a population that is subdivided into L subpopulations. For brevity,
we will call these islands – one also sees the word demes in the population genetics
literature. Island i hosts a population of a size Ni which remains fixed over time
but may vary from island to island. We now define the dynamics as follows: in
each time step, we select the island i that will receive the offspring replicator with
probability i . A parent is randomly chosen from an island j with probability μi j .
Then the parent is replicated, and displaces a randomly chosen individual in the
target island i . Since a parent must come from somewhere, the probabilities μi j

satisfy the sum rule μi i = 1−∑
j �=i μi j .

One way to estimate the effective population size is to work out the correspond-
ing dynamics of the backward-time lineages. Let us first ask for the probability that
two lineages on the same island i coalesce in a single time step. Both parent and
offspring must have been chosen from island i ; this event occurs with probability
fiμi i . Then, as before, a randomly chosen pair of lineages will comprise parent and
offspring with probability 2/N 2

i . Therefore the probability of coalescence of a pair
of lineages sampled from island i is

ci = 2 fiμi i

N 2
i

. (3.54)
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Now we ask for the probability mi j that a lineage sampled from island i is a newly
arrived immigrant from island j . The probability that in a replication event the par-
ent is in j and the offspring in i is fiμi j ; then the probability that the offspring is
the individual in our sample is 1/Ni . Hence

mi j = fiμi j

Ni
. (3.55)

Again we see that these expressions are of the same order in 1/Ni if the between-
island migration probabilities are μi j

∑
1/Ni for i �= j . It is thus conventional to

define rescaled migration probabilities

θi j = lim
Ni→∞

Niμi j (3.56)

analogous to (3.36). Then, to leading order in 1/Ni , we have

ci = 2 fi

N 2
i

(3.57)

mi j = fiθi j

N 2
i

. (3.58)

There is a small probability that a lineage on island i coalesces with a lineage on
some other island j in one time step. However, within this scaling, this probability
vanishes faster than any ci or mi j as Ni → ∞. One can therefore picture this
backward-time coalescence dynamics in terms of lineages that “hop” from island
i to island j with probability mi j per unit time, and coalescence between pairs of
lineages on the same island happening with probability ci per unit time.

Eventually, as in the regular coalescence process, only one lineage – the com-
mon ancestor of the population – remains. Furthermore, the probability Qi that
the lineage is found on island i will become time independent. This steady-state
distribution is given formally by the solution of the set of linear equations

∑

j �=i

[
Qi mi j − Q j m ji

] = 0 , (3.59)

subject to the constraint
∑

i Qi = 1. These island weights Qi turn out to be a central
quantities in the analysis of neutral evolution in subdivided populations.

For example, if we go far forward in time, all replicators will eventually have
the same type, and furthermore share a single common ancestor. Looking again
backward in time, we find that this common ancestor has a probability Qi of having
been on island i at time t = 0. If, initially, a fraction xi of replicators on island i are
of a given type (A), the probability φ that A becomes fixed in the population is

φ =
L∑

i=1

Qi xi . (3.60)



3 Replication, Variation and Selection in Evolving Populations 111

What is interesting here is that the network of migration pathways can lead to Qi

being very much larger for some islands than others: a specific example will be
given below. Thus, if the initial location of a replicator type is correlated with these
high-weight islands, this type has a much larger chance of taking over the population
than others, and one may potentially view this as a kind of selection. We will return
to this point below.

The island weights Qi also enter into an estimate for an effective population
size that is valid when migration is a very fast process relative to coalescence (that
is, when the θi j parameters are much larger than one). We anticipate then that if
n lineages remain, the location of each one will be independent and be distributed
according to Qi . Thus, the probability that there are ni lineages on island i will be
given by the multinomial distribution

P(n1, n2, . . . , nL) = n!
n1!n2! · · · nL !Q

n1
1 Qn2

2 · · · QnL
L . (3.61)

We may then determine the mean coalescence rate within this state:

c̄ =
∑

{n1,...,nL }
P(n1, n2, . . . , nL)

∑

i

(
ni

2

)
ci (3.62)

=
∑

i

∑

ni

(
n

ni

)
Qni

i (1− Qi )
n−ni

(
ni

2

)
ci (3.63)

=
(

n

2

)∑

i

Q2
i ci . (3.64)

In an undivided population of size Ne, the coalescence rate per pair is 2/N 2
e . By

setting this equal to the mean coalescence rate in this subdivided population, we
arrive at an expression for its effective size Ne:

1

N 2
e
= c̄

n(n − 1)
=

∑

i

Q2
i fi

N 2
i

. (3.65)

A similar result was obtained using more rigorous methods for the Wright–Fisher
model in the strong migration limit in [55].

It is worthwhile to identify the smallest and largest effective population sizes that
are possible in the limit of strong migration. Unsurprisingly, the smallest effective
population size is obtained if only the smallest island participates in the population
dynamics. Then Ne = N j , where j labels the smallest island. More interesting is
the opposite limit, in which the largest effective population size is obtained. This
can be found by asking for an extremum of (3.65) subject to the constraint that∑

i Qi = ∑
i fi = 1 (e.g., using the method of Lagrange multipliers [56]). One

finds that the largest effective population size arises if Qi = fi = Ni/N , where
N is the total population size, N = ∑

i Ni . One way that this can be achieved is
if parent and offspring islands are each chosen with a probability proportional to
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the size of the island (although the offspring need not be drawn from the entire
population). Then, the effective population size equals that of the total population
N , which is the case for any model where Qi = fi = Ni/N , not just that described
here. Therefore we have that

min
i
{Ni } ≤ Ne ≤

∑

i

Ni , (3.66)

i.e., that when migration is very rapid, the effective population size lies somewhere
between that of the smallest island and the total population.

When the time scales of migration and coalescence are more similar, there is
no known general expression for the effective population size, although various
approximate formulæ have been proposed [37, 54, 57]. One difficulty that arises
is that the coalescence rate may not be constant over time when migration is slow,
and hence the usefulness of a single parameter in characterising the entire history of
a sample may be limited [58].

3.5.1 Voter-Type Models on Heterogeneous Networks

Recently, there have been a number of studies in the physics literature of a specific
type of migration dynamics represented by the voter model defined on heteroge-
neous network structures, that is, where the parameters Qi , fi or Ni differ wildly
between islands. Many of these studies have recently been discussed in a compre-
hensive review of statistical physical models of social dynamics [59, Sect. B3]. They
demonstrate in particular that the migration structure can lead to an effective popu-
lation size that differs considerably from its actual size. In the voter model proper,
each island contains one individual. The dynamics are that an island i is chosen at
random, and then an individual occupying a randomly chosen neighbour of island i
on the network is replicated, with the offspring displacing the existing resident of
island i .

We can use the above analysis to examine a version of this model in which the
number of individuals per island is large, rather than equal to one. For simplicity, we
will take all L islands to be of equal size, Ni = N/L . As in the voter model, we will
choose the target island for each replication event uniformly, fi = 1/L . If island i
can receive immigrants from ki neighbouring islands, we have that the immigration
probability μi j is proportional to 1/ki .

A special feature of this model is that the terms in (3.59) cancel term-by-term
(technically, the migration process satisfies detailed balance, as can be shown by
applying a Kolmogorov criterion [60]). That is,

Qiμi j = Q jμ j i (3.67)

after cancelling common factors. Using the fact that μi j ∝ 1/ki , we find that the
normalised stationary distribution of the common ancestor for this model is
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Qi = ki

Lk̄
, (3.68)

where k̄ is the mean number of neighbours per island. Substituting into (3.65) we
find that for this model, the effective population size is given by

N 2
e =

N 2k̄2

k2
. (3.69)

Having determined the effective population size, we can now use it in expressions
obtained for the Moran model without population subdivision to estimate properties
of interest. For example, from (3.24) we have that the mean time until a variant goes
extinct or takes over the whole population scales as the square of the (effective)
population size. That is, we have

T sub

T
∼ k̄2

k2
(3.70)

where T sub and T are the characteristic time scales of the subdivided and undivided
populations respectively.

The implications of this expression can be understood if we write it in a slightly
different form

Tsub

T
∼ 1

1+ Var(k/k̄)
. (3.71)

If all islands have similar connectivity, the variance in k relative to its mean is
small, and hence the characteristic time scales due to demographic fluctuations in
the subdivided population are basically the same as in the undivided population. On
the other hand, if some islands receive immigrants from many sources, but others
are poorly connected, the variance in k may be large, and the time scale on which
one variant takes over the whole population is dramatically reduced.

A simple example that illustrates the effects of heterogeneity is the “star” net-
work, which has a single central island that is connected to all the others whereas
these peripheral islands are connected only to the central island, as shown in Fig. 3.8.
Thus k = 1 for L−1 peripheral islands, and k = L−1 for the single central island,
and one has

k̄ = 2− 1

L
and k2 = L − 1 (3.72)
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Fig. 3.8 The “star” network structure, where peripheral islands are connected only to a single
central islands. Migration can take place in both directions along any given pathway

and hence

T sub

T
∼ 4

L
(3.73)

as L → ∞. That is, the characteristic time scale increases asymptotically linearly,
rather than quadratically, with the number of islands in this case.

Notice that because Qi ∝ ki in this model, a replicator type that is created (e.g.,
by mutation) on the central island is L − 1 times as likely to go to fixation as a
replicator type created elsewhere. This is an extreme example of the phenomenon
noted above, that different replicators have different chances of survival depending
on where they are created, despite the fact that the population dynamics of each
replicator type is identical. This is a systematic effect: the first term in the Price
equation (3.7) would be nonzero for these replicator frequencies, suggesting that this
effect could be regarded as a form of selection. However, this selective advantage
is not transmitted by replication of the replicators: if a replicator on the central
island leaves an offspring on one of the other islands, the expected mean number of
offspring decreases. Therefore it does not satisfy Hull’s definition of selection (see
Sect. 3.1).

Some clarity is attained if we return to the distinction between Fisher’s funda-
mental theorem of natural selection (3.8) and the full Price equation (3.7) with the
trait zi = wi , the expected number of offspring. Looking at Fisher’s fundamental
theorem, we would conclude from the fact that there is a variance in the offspring
numbers, the mean fitness of the population must increase. However, we know that
it does not, since the distribution of offspring numbers remains constant from one
generation to the next. This apparent increase is exactly counterbalanced by the
second term in the Price equation (3.7), which takes into account the change in
expected offspring number that occurs as offspring are born onto a different island
from their parents. Systematic changes in replicator frequency due to this mech-
anism have a different character to conventional natural selection of replicators,
a fact that was recognised in an application of this type of model to the cultural
evolutionary process of language change [61].
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3.5.2 Application to Theories for Language Change

In [9], Baxter et al. introduced a formal mathematical model for language change
that was based on Croft’s evolutionary theory [19]. It was set up as an agent-based
model in which tokens of linguistic utterances are replicated, and exposure of speak-
ers to these replicators affects their experience of language and knowledge of the
way in which it is used (a term referred to as grammar in [9, 19]. As discussed in
Sect. 3.1, in this picture, speakers and their grammars are identified as the interac-
tors. An interesting point here is that the mathematical model, which was defined
purely in terms of linguistic interactions between agents, turns out to be equivalent
to neutral evolution in a subdivided population, in which the interactors turn out to
be equivalent to the islands central to the previous discussion.

In this model, the migration rates μi j derive from two factors, the frequency with
which two speakers interact, and the importance that agent i as a listener ascribes
to agent j’s utterances. The first of these factors is necessarily symmetric: when
agent i meets agent j then agent j also meets agent i . However, the importance
weights can be either symmetric or asymmetric. When they are symmetric, it is
found that the effective population size for this model (to be interpreted as an
effective population size of the replicators) is independent of the network structure
connecting agents [57, 61]: this provides another example where the island (inter-
actor) weights Qi are all equal. Asymmetric speaker importance weights admit the
possibility of unequal interactor weights Qi . The corresponding dominance that
individual interactors with high weights Qi have on the linguistic behaviour of the
wider community of the type described at the end of the last section has its origins
in certain agents being preferentially listened to over others. It is perhaps legitimate
to consider this act as a form of selection, acting at the level of interactors: Baxter
et al. therefore call this form of selection weighted interactor selection to distinguish
it from a selection process operating on replicators in the manner prescribed by
Hull. They also introduced a term neutral interactor selection to handle the case
where interaction frequencies vary between speakers, but importance weights are
symmetric.

More usefully, this distinction between different types of selection processes
directly relates to specific theories for language change, a connection discussed
in [57, 61]. It was argued that theories implying purely neutral evolution or neu-
tral interactor selection were not compatible with data for new-dialect formation
[62, 63]. The essential problem is that the effective population size implied by
these theories is so large that the resulting fixation time implied by (3.24) vastly
exceeds what was actually observed. These conclusions do however rely on the
appropriateness of the underlying model [9] and in particular the implicit assump-
tions that were made about psychology and human linguistic behaviour. Perhaps
again, as with other applications of neutral theory to cultural evolution (such as
[52]), there is a need to develop more sophisticated statistical methods, such as
those based on the Ewens sampling formula (3.53) and its extensions to Hubbell’s
neutral theory of community ecology [51]. Again, the formal connections between
specific models of induction and learning and neutral evolutionary dynamics [53]
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provide one possibility to illuminate the psychological basis of a neutral evolution-
ary dynamics as a null model for cultural change.

3.6 Summary and Outlook

In this chapter we have taken a broad-brush look at evolutionary dynamics in the
contexts of genetics, community ecology and culture. As we pointed out in the
introduction, change by replication has been advocated as a generic mechanism for
explaining the dynamics of and diversity within populations of different kinds since
the earliest days of the theory.

The central question that arises whenever evolution is operating is: what, if any-
thing, is selection selecting for? Contributions to the understanding of this question
have come from both philosophical considerations and the application of mathemat-
ical models, both as a conceptual tool to determine what evolution logically allows
and as a means to analyse specific empirical data sets. As illustrative examples, we
have discussed the utility of Hull’s general analysis of selection and the notions of
the interactor and replicator as a means to identify where the key components of
evolution – replication, variation and selection – are operating in different contexts
(Sect. 3.1).

In particular, we have shown how the Price equation (3.7) allows one to distin-
guish between the selective component of a change, and the component due to the
generation of variation in the replication process. It also allows one to recognise
the effect of selection on the interactor and how this may cause different replicator
types to propagate or go extinct, as we saw through the specific example of kin
selection. However, there still remains the possibility that any given change could
have been due to fluctuations alone – survival of the luckiest, rather than survival of
the fittest. A detailed understanding of these fluctuations, such as that expressed by
the Ewens sampling formula (3.53), is pivotal in deciding whether this is the case.
As such, neutral theories – which have been advocated separately for genetics [6],
ecology [7] and cultural change [52] – serve as null models in quantitative analyses
of evolution.

Being able to identify the target of selection is important in making predictions
about evolving systems. For example, in the cultural context of language, we have
recently argued that vital information about the nature of the cognitive processes
that are involved in language could be revealed by analysing historical data about
language change as a stochastic, evolutionary dynamics [10]. In turn, this may shed
light on another important evolutionary question: namely why (apparently) only
humans have yet evolved the spectacular communicative abilities afforded by lan-
guage [64]. Thus the continued development of both conceptual and mathematical
models, properly integrated with empirical data, has the potential to unravel scien-
tific mysteries, among them what it means to be human.
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Chapter 4
A Simple General Model of Evolutionary
Dynamics

Stefan Thurner

Abstract Evolution is a process in which some variations that emerge within a
population (of, e.g., biological species or industrial goods) get selected, survive, and
proliferate, whereas others vanish. Survival probability, proliferation, or production
rates are associated with the “fitness” of a particular variation. We argue that the
notion of fitness is an a posteriori concept in the sense that one can assign higher
fitness to species or goods that survive but one can generally not derive or predict
fitness per se. Whereas proliferation rates can be measured, fitness landscapes, that
is, the inter-dependence of proliferation rates, cannot. For this reason we think that
in a physical theory of evolution such notions should be avoided. Here we review
a recent quantitative formulation of evolutionary dynamics that provides a frame-
work for the co-evolution of species and their fitness landscapes (Thurner et al.,
2010, Physica A 389, 747; Thurner et al., 2010, New J. Phys. 12, 075029; Klimek
et al., 2009, Phys. Rev. E 82, 011901 (2010). The corresponding model leads to a
generic evolutionary dynamics characterized by phases of relative stability in terms
of diversity, followed by phases of massive restructuring. These dynamical modes
can be interpreted as punctuated equilibria in biology, or Schumpeterian business
cycles (Schumpeter, 1939, Business Cycles, McGraw-Hill, London) in economics.
We show that phase transitions that separate phases of high and low diversity can
be approximated surprisingly well by mean-field methods. We demonstrate that the
mathematical framework is suited to understand systemic properties of evolutionary
systems, such as their proneness to collapse, or their potential for diversification.
The framework suggests that evolutionary processes are naturally linked to self-
organized criticality and to properties of production matrices, such as their eigen-
value spectra. Even though the model is phrased in general terms it is also practical
in the sense that it’s predictions can be used to understand a series of experimental
data ranging from the fossil record to macroeconomic indices.
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4.1 Introduction

Evolutionary dynamics is at the core of countless biological, chemical, technical,
social, and economic systems. An evolutionary description of dynamical systems
describes the appearance of new elements within the system together with their
interactions with already existing elements. These interactions often influence the
rates of production (reproduction), not only of the new elements but also of those
which are already present. Reproduction rates in biology are related to biological
offspring; in economic systems they correspond to production rates of goods and
services. In biology the set of all reproduction rates is often associated with fitness;
in economics production rates correspond to utility or competitive advantage. Any
element, a biological species or an industrial good, whose (re)production rate falls
below a critical value, will vanish over time. This again can lead to a re-adjustment
of (re)production rates of existing elements. The key aspect of evolutionary systems
is that the set of existing elements and their corresponding reproduction rates (fitness
landscapes) co-evolve. A mathematical formulation of dynamical systems where
sets of elements co-evolve together with their (re)production rates is accompanied
with tremendous difficulties. Even if the dynamics of abundance of elements could
be exactly described – e.g., with differential equations – the boundary conditions of
the systems could not be fixed and the equations cannot be solved. Boundary con-
ditions of evolutionary systems constantly change as they evolve; they are coupled
to the dynamics of the system itself. These systems are therefore hardly accessible
with traditional mathematical methods.

In the present understanding of evolution the concept of fitness has been of cen-
tral importance. Usually the relative abundance of species (with respect to other
species) is described by replicator equations (first-order differential equations) and
variants such as Lotka–Volterra equations [1–3]. Their mutual influence is quanti-
fied by a rate specifying how the abundance of one species changes when in contact
with another. In biology this rate is called Malthusian fitness, in chemistry it is
the reaction rate, and in economics it is related to production functions. Similarly,
proliferation rates can be introduced for technological, financial, or even historical
contexts. In the following we refer to all of them as fitness.

The fitness of an element within an evolutionary system is a function that gen-
erally depends on a large number of parameters, quantifying the reproductive state
of the element and the states of its entire environment. Environment can mean the
abundance of other elements or species [4] or the ecosystem [5]. Owing to the high
dimensionality of parameter space, one talks about fitness landscapes (utility func-
tions in economics), which are obviously hard – generally even impossible – to
measure. The dependence of proliferation rates on all possibly relevant environ-
mental conditions and parameters is beyond experimental control and the concept
of fitness encounters severe limits of predictive applicability. This is particularly
true when systems become large, which is often the case for biological or eco-
nomic systems [6]. In general neither the set of species or environmental factors nor
the corresponding inter-species and environmental interactions will be known with
sufficient resolution. Random events may change the course of a system in unpre-
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dictable ways. For example, although the mutation rate of some particular virus may
be known extremely well, some mutant could be harmless while another might wipe
out entire species that had so far proliferated well. This lack of predictability means
that (reproductive) fitness has to be viewed as an a posteriori concept, meaning that
proliferation rates can be used to characterize fitness relative to other species only
once these rates have been measured. Because of their co-evolving nature mentioned
above, these rates can in general not be extrapolated into the future. It is not fruitful
to predict future fitness of species from their present fitness. Instead, one has to
understand how species and their fitness landscapes co-construct each other, how
they co-evolve.

Similarly, the concept of niches, for example in ecologies or markets, is an a
posteriori concept. It can in general not be prestated or deduced which proliferation
rates of specific species will result from a set of conditions found in some spatially
limited region. Niches – i.e., spaces where some species (goods) reproduce (sell)
well – can in general not be foreseen, but are only identified once they have been
occupied. Consequently, a physical, fully causal, and useful description of evolution
has to consider abandoning the concept of fitness as the central concept and to look
for alternatives that operate with the information actually available at a given time.

Of course it cannot be the aim of a theory of evolution to predict future popula-
tions in detail. This would be as nonsensical as to predict trajectories of gas particles
in statistical physics. However, what should be possible to predict and understand
within a sensible theory of evolution is a series of systemic facts of evolutionary
systems, such as their characteristic time-series behavior, their punctuated equilib-
ria, rates of crashes and booms, and their dependence of diversity on interaction
patterns. To make progress in understanding the phenomenology of evolution, that
is, in identifying principles that guide evolutionary dynamics, in recent decades a
series of quantitative models have been suggested.

Inspired by special cases of Lotka–Volterra replicators, researchers have pro-
posed important concepts, such as the hypercycle [7], replicator dynamics [8],
molecular quasispecies [9], the Turing gas [10], and autocatalytic networks; for an
overview see, for example, [11, 12] and references therein. A nonlinear version of
autocatalytic networks has been studied in [13]. Nonlinear autocatalytic networks
have been shown to be closely related to bit-string formulations and random gram-
mars [12, 14]. Here species are represented as bit-strings with randomly assigned
fitness values. More recently it has been noticed that nonlinear autocatalytic systems
have a phase structure equivalent to thermodynamical systems (van der Waals gas)
[15]. One phase corresponds to a highly populated, diverse phase, whereas the other
is characterized by limited levels of diversification. In [16] a similar transition was
explored for a destructive dynamics. A series of more specific evolutionary models
have been presented recently [17–24]. In these publications explicit assumptions
were made about several key elements: how new species come into being, how they
interact, and under which conditions they vanish. Each of these models focuses on
particular aspects of evolution. For example, Arthur [17] focuses on technologi-
cal evolution with integrated circuits as species, whose fitness is examined by how
well they execute certain pre-specified computational tasks. Jain and Krishna [18]
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consider ecological systems and demonstrate nicely the interplay between interac-
tion topology and abundance of species. In most of these models detailed assump-
tions about the mechanisms involved were made. In Jain and Krishna’s model, for
example, species are actively removed and added to the system and innovations are
externally enforced, not endogenously produced. In [17] the output of randomly
assembled circuits is compared to a pre-specified list of desired computational tasks
(such as bitwise addition). Although these assumptions are most reasonable within
their specific contexts, it is relatively hard to identify those features which are uni-
versally valid across different evolutionary contexts, for example biological evolu-
tion, technical and industrial innovation [25, 26], economics [27], finance, socio-
dynamics and opinion formation [28–30], ecological dynamics (e.g., food-webs
[31]), and maybe even history. To arrive at a general evolutionary description with
as few ad hoc specifications as possible, a minimum set of general principles must
be identified that are abstract enough to be applicable in the various evolutionary
contexts and which – at the same time – must be specific enough to make useful
quantitative and falsifiable predictions about systemic properties of evolutionary
systems.

Motivated by statistical physics, we believe that it should be possible to formulate
evolutionary dynamical systems by focusing on microscopic interactions of agents
(determining (re)production rates on a microscale) and then to derive macroscopic –
systemic – properties and laws. If successful, the macroscopic properties are deter-
mined by a few manageable parameters only. Further, there is room for hope that
a variety of different specific microscopic interaction mechanisms may lead to the
same class of macroscopic properties. In physics this led to the concept of universal-
ity classes. Here systems may differ in their microscopic details of interaction but
nevertheless show the same physical properties on an aggregated level. Naturally,
any physical model for evolution must include the basic dynamic elements of evo-
lution; in evolutionary biology these are called replication, competition, mutation,
and recombination. These names have their counterparts in other disciplines.

In the following we review a model in the above spirit [32–34] that is able to
endogenously explain several systemic facts about evolutionary dynamics – such
as intrinsic booms of diversity and large extinction events punctuated equilibria, as
well as a series of statistical characteristics of evolutionary time series. In particular,
many of these time series are characterized by power laws (for a financial context
see, e.g., [21, 35]) and exhibit nontrivial correlations, see Fig. 4.1.

In Sect. 4.2 we present the generic version of the model and in Sect. 4.3 discuss its
resulting dynamics. In Sect. 4.4 we sketch several ways to make the model more spe-
cific and realistic. Sect. 4.5 offers an understanding of diversity dynamics in terms
of self-organized critical systems or in terms of a dynamical system driven by its
largest eigenvalues. In Sect. 4.6 we formulate the model as a variational principle,
which links evolutionary processes to the powerful physical concept that dynamics
results as a consequence of minimization of properly chosen quantities. A stochastic
variant of the model is easily solved within the mean-field approximation. To test
the range of validity of the approximation we compare its results with those from
numerical simulations. Finally, in Sect. 4.7 we demonstrate that model predictions
allow us to understand several empirical facts of evolutionary time series.
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Fig. 4.1 Several evolutionary time series from economics to biodiversity. a GDP of the UK starting
1950 [36]. b Percentage increase of GDP from (a). c Histogram for (b); a least squares fit to a
power law yields a slope of ≈ −2.8. For other countries [37] we found the slopes: ESP −3.5,
FIN −3.1, FRA −2.3, NLD −2.2, and SWE −3.3, and for the US [38] −3.3. d–f Number of
business failures in the conterminous United States from 1870 onward, data from [38]. e Annual
percentage change for (d); f histogram for (e): power-law exponent ≈ −1.8. g Total number of
patents issued on inventions in the United States from 1790 to 2007, data from [38]. h Annual
percentage increase of patents, starting 1800. i Histogram of absolute values of (h): power-law
exponent ≈ −2.3. j Biodiversity over time [39]. k Percentage change in biodiversity. l Histogram
of absolute values of (k): power-law exponent ≈ −2.1

4.2 A General Model for Evolution Dynamics

New things such as species, goods and services, ideas, or new chemical compounds
often come into being as (re)combinations or substitutions of existing things. Water
is the combination of hydrogen and oxygen, the iPod is a combination of electrical
parts, Wikipedia is a combination of the internet and the concept of an encyclopedia,
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and a mutation emerges through a combination of some DNA and a γ -ray. New
species, goods, compounds, etc. “act on the world” in three ways: (i) they can be
used to produce yet other new things (think of, e.g., modular components), (ii) they
can have a negative effect on existing things by suppressing (or outperforming) their
(re)production, or (iii) they have no effect at all. In the following we refer to species,
goods, compounds etc. generically as “elements”.

4.2.1 A Notion for Species, Goods, Things, or Elements

In the following simple model all possibly thinkable elements (things) are compo-
nents of a time-dependent N -dimensional vector σ (t) ≡ (σ1(t), · · · σN (t)). N can
be very large, even infinite. For simplicity the components of this state vector are
binary. σi (t) = 1 means that element i is present (it exists) at time t ; σk(t) = 0,
means element k does not exist at t , either because it has not been assembled or cre-
ated yet, or it has been eliminated.1 New elements come into being through combi-
nations of already existing elements or “components”. An innovation – the creation
or production of a new element i – can only happen if all necessary components
(e.g., parts) are simultaneously available (exist). If the combination of elements j
and k is a way to produce i , both j and k must exist in the system. Technically,
σ (t) can be seen as the availability status: if σi (t) = 1, element i is accessible for
production of future new elements, or can it be used for the destruction of existing
ones. Similarly, if σi (t) = 0, element i is not accessible for production of future new
elements, neither can it be used for the destruction of existing ones. The product
diversity of the system is defined as D(t) = 1

N

∑N
i=1 σi (t).

4.2.2 Recombination and Production of New Elements

Whether an element k can be produced from components i and j is encoded in a
so-called production table, α+i jk . If it is possible to produce k from i and j (i.e.,

α+i jk > 0), we call this a production. An entry in the production table is in principle
a real number and quantifies the rate at which an element is produced from its
components, substrates, etc. Again, for simplicity an entry in α+i jk is assumed to

be binary, 0 or 1. If elements i and j can produce k, α+i jk = 1, elements i and j
are called the productive set of k. If it is (physically, chemically, or biologically)
impossible to produce k from i and j , then α+i jk = 0. In this notation, a production
process is written

σk(t + 1) = α+i jkσi (t)σ j (t) , (4.1)

1 In a more general setting the state vector 0 < σi (t) < 1 could represent the relative abundance
of species i with respect to the abundances of the others.
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Fig. 4.2 a Illustration of a (re)combination or production process. Elements i and j reside in
a productive set. There exists a production rule α+i jk = 1. Thus product k becomes produced in
the next time step. This active production is represented as a full square and indexed by i (bold-
face indices indicate productions). b Same as (a) for a destruction process. Products i ′ and j ′
replace k′ via the destruction rule α−i ′ j ′k′ = 1. c Examples of nonactive productions (in total 6
are possible). Nonactive productions are symbolized as open squares. d Definition of a link in the
active production network: if an element – produced by a production i – is part of the productive
set of another active production j, production j gets a directed link from production i. From [33]

regardless of whether σk(t) = 0 or 1. If a production is actually producing k, (i.e., if
simultaneously σi (t) = σ j (t) = σk(t) = α+i jk = 1), we call it an active production,
see Fig. 4.2a.

Note that the production table α+i jk exists whether it is known or accessible to
mankind or not. For example the laws of chemical reactions exist whether one
knows them or not. In general the details of the production table will not be known.
Further, a particular element can often be produced through more than one produc-
tion. In our (binary) notation the number of ways to produce element k at time t
simply becomes N prod

k (t) =∑
i j α
+
i jkσi (t)σ j (t).

4.2.3 Selection, Competition, Destruction

If a new element serves a function, a purpose, or a need that hitherto has been
satisfied by another element, the new and the old elements are in competition. The
element that can be produced in a more efficient way, that is more robust, etc.,
will sooner or later dominate the other (through a larger (re)production rate) and
possibly drive it out of the system. We incorporate this competition mechanism into
the model by allowing that a combination of two existing elements can lead to a
destructive influence on another element. The combination of elements i ′ and j ′
produces an element l which then drives product k′ out of a niche or the market. We
say: the combination of i ′ and j ′ has a destructive influence on k′. We capture all
possible destructive combinations in a destruction rule table α−i ′ j ′k′ , see Fig. 4.2b.
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If we have α−i ′ j ′k′ = 1, elements i ′ and j ′ replace element k′. We call {i ′, j ′} the
destructive set for k′. Note that in this way we do not have to explicitly produce the
actually competing element l. In the absence of a destruction process, α−i ′ j ′k′ = 0.
As before, an active destruction happens only if all elements are actually present at
a point in time σi ′(t) = σ j ′(t) = σk′(t) = α−i ′ j ′k′ = 1. The elementary dynamical
update for a destructive process reads (for an element that is present at time t , i.e.,
σk(t) = 1),

σk(t + 1) = 1− α−i jkσi (t)σ j (t) . (4.2)

In general, at any given time, element k can be in competition with more than one
potential substitute – in our notation – by exactly N destr

k (t) = ∑
i j α
−
i jkσi (t)σ j (t)

destructive sets.
Imagine the N thinkable elements represented by circles in a plane, see Fig. 4.3a.

If they exist they are plotted as full circles, if they are not produced, they are open
circles. All existing elements have at least one productive set (pair of two existing
circles); at time t there exist N prod

i (t) such sets. Many circles will in the same way
assemble to form destructive sets, the exact number for node i being N destr

i (t). Now,
draw a circle around each productive and destructive set and connect each set with
the element it is producing/destroying. The graph that is produced in this way is
seen in Fig. 4.3a. In general every element will be connected to several productive
and destructive sets.

Given this notation for states σ and constructive/destructive interactions
(α+, α−), one now has to specify a dynamics for the system. There are many ways
to do so; the details of the implementation depend on the system studied. As one
possible (generic) example here we specify the following: if there exist more pro-
duction processes associated with a particular element than there exist destructive

Fig. 4.3 Comparison between static production rules α+ (a) and active production networks A(t)
(c). Production rules are all possible combinations to produce all thinkable species in a biological
system, compounds in a chemical system, or goods in an economic system. They correspond to
all nonzero entries in α+. In (b) the actual state of the system σ (t) (which elements exist) is
superimposed on α+. Representing (b) not in terms of elements but in terms of productions (recom-
binations), we arrive at the active production or recombination network (c), using the definition for
links in Fig. 4.2d. The same can be done for the active destruction networks. From [33]



4 A Simple General Model of Evolutionary Dynamics 127

processes acting on it, the element will be produced. Inversely, if there are more
destructive than productive sets associated with an element, it will not be produced,
or it will be destroyed if it already exists. If the number of productive and destructive
sets for i are the same, the state of i will not change, i.e., σi (t + 1) = σi (t). More
quantitatively this reads

if N prod
i (t) > N destr

i (t)→ σi (t + 1) = 1 ,

if N prod
i (t) < N destr

i (t)→ σi (t + 1) = 0 ,

if N prod
i (t) = N destr

i (t)→ σi (t + 1) = σi (t) . (4.3)

Note that a production or destruction is only active if both goods in its production or
destruction set are currently available. Thus changes in the availability status of an
element possibly induce changes in the status of the active production or destruction
network. We discuss several alternatives to this dynamics in Sect. 4.4.

4.2.4 The Active Production or Recombination Network

It is essential to distinguish the production rules encoded as tensors α± and the
active production networks A(t) (matrices). α± is a collection of static rules of
all potential ways to produce all thinkable elements. These rules exist regardless
of whether elements exist. The production network A(t) captures the set of actual
active (!) productions taking place at any given time t . It maps the state of the evo-
lutionary system σ (t) (existing elements) with its rules α+ onto the set of active
productions. The production network can be constructed in the following way: A
production is defined as a pair (i, j) that produces an element k, and is nothing
but a nonzero entry in α+. There are Nr+ productions in the system, where r+ is
the (average) number of productions per element. Nonexisting elements are open
circles; the symbol used for a production is a square. A production is called an
active production if the production set and the produced element (node) all exist
(σi (t) = σ j (t) = σk(t) = 1). An active production is shown in Fig. 4.2a symbolized
as a filled square. In (c) we show some examples of nonactive productions (open
square). We label active productions by boldface indices, i ∈ {1, . . . Nr+}. These
constitute the nodes of the active production network. A directed link from active
production node i to node j is defined if the node produced by production i is in
the productive set of production j , see Fig. 4.2d. It is then seen as an entry in an
adjacency matrix and denoted as Ai j = 1. This definition is illustrated in Fig. 4.2c.
For an example of how to construct the active production network A(t) from σ (t)
and α+, see Fig. 4.3. In Fig. 4.3a we show a section of the static α+, in (b) we
superimpose the knowledge of which of these nodes actually exist at time t . In (c)
all productions are shown as squares (active ones full, nonactive ones empty). The
links between the active productions constitute the active production (or recombina-
tion) network. In this way we map the production rule tensor α+ onto a production
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(adjacency) matrix A(t). It is defined on the space of all productions and links two
active productions if one production produces an element that serves as an input
for the other production. The active destruction network is obtained in the same
way. Active production networks can be viewed as representations of a multitude of
evolutionary systems such as evolving ecologies (e.g., food webs) in biology [31],
or as time-varying Leontief input–output matrices in economics [40].

To detect dominant links in the active production network, we introduce the fol-
lowing thresholding method: remove all links from the active production network
which exist less than a pre-specified percentage of times h within a moving time
window of length T . For example, if h = 95 and T = 100, the network at time
t , A(t), only contains links that have existed more than 95 times within the time
window [t − T, t].

4.2.5 Spontaneous Creations, Innovations, Ideas, and Disasters

From time to time spontaneous ideas, inventions or mutations take place without the
explicit need of the production network. Also from time to time elements disappear
from the system, for example through exogenous events. To model these events
we introduce a probability p with which a given existing element is spontaneously
annihilated, or a nonexisting element is spontaneously invented. This stochastic
component plays the role of a driving force.

4.2.6 Formal Summary of the Model

Let N be arbitrarily large, then the “phase space” of the system is given by

Γ ≡ {0, 1}N = {σ | σi ∈ {0, 1}, 1 ≤ i ≤ N } . (4.4)

Further, define the quadratic forms

Δi (σ ) ≡
N∑

j,k

αi jkσ jσk , (1 ≤ i ≤ N ) , (4.5)

where the coefficients αi jk take the values 0 and ±1. Here αi jk ≡ α+i jk − α−i jk . Both
α+ and α− take values from {0, 1}. Select a positive value p ≤ 1. The dynamical
update is then given by the map F : Γ → Γ via the difference equation

σ (t + 1) = F(σ (t)) , (4.6)

where the map is of the form F = Ψ ◦ Φ, with Ψ a deterministic part and Φ the
stochastic part, which are defined as follows:

Φ(σ ) ≡ x = (x1, · · · , xN ) , (4.7)
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where for all i , xi = 1(0) when Δi (σ ) > 0(< 0), and xi = σi , when Δi (σ ) = 0.
The stochastic part is given by

Ψ ≡ x = (x1, · · · , xN ) , (4.8)

where xi = 1−σi with probability p, and xi = σi with probability 1− p. This setup
can be used as a starting point to compute several model properties analytically, see
Sect. 4.6.

4.2.7 An Evolutionary Algorithm

The above model can be implemented in the following simple algorithm. Consider
being at time step t ; the update to t + 1 happens in three steps:

• Pick an element i at random (random sequential update).
• Sum all productive and destructive influences on i , i.e., computeΔi (t) from (4.5).

If Δi (t) > (<)0→ σi (t + 1) = 1(0). For Δi (t) = 0 do not change, σi (t + 1) =
σi (t).

• With probability p switch the state of σi (t + 1), i.e., if σi (t + 1) = 1(0) set it to
σi (t + 1) = 0(1).

• Pick next element until all elements have been updated once, then go to next time
step.

As initial conditions (at t = 0) we chose a fraction of randomly chosen initial
elements to exist; typically we set D(0) ∼ 0.05–0.2.

4.2.8 Random Interactions

In principle it is possible to empirically assess production or destruction networks
in the real world (ecologies, economies, etc.), however, in practice this is unrealistic
and would involve tremendous effort. For a systemic understanding of characteris-
tics of evolutionary dynamics a detailed knowledge of these networks might, how-
ever, not be necessary – a statistical characterization of these networks will already
provide some understanding of important key facts. The simplest implementation
of a production/destruction network is to use random networks, i.e., to model α±
as random tensors. These tensors can then be described by a single number r+
and r−, which are the constructive/destructive rule densities. In other words, the

probability that any given entry in α+ equals 1 is P(α+i jk = 1) = r+
(N

2

)−1
, or –

equivalently – each product has on average r± incoming productive/destructive links
from productive/destructive sets. Further, which elements form which productive
sets is also randomly assigned, i.e., the probability that a given product belongs to a
given productive/destructive set is 2r±/N (for r± � N ).

Real production networks may be highly structured and the assumption that pro-
duction networks are purely random is unrealistic to some degree. For this reason
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Table 4.1 Summary of model parameters

Variable
σi (t) State of element i . exists / does not exist Dynamic
D(t) Diversity at time t Dynamic
A(t) Active production network Dynamic

Parameter

α± Productive/destructive interaction topology Fixed
r± Rule densities Fixed
p Spontaneous-innovation parameter Fixed

we look at the effect of network topology by using alternative topologies such as
scale-free versions of production/destruction tables in Sect. 4.4. Note that α± is
fixed in time throughout the simulation. The model parameters and variables are
listed in Table 4.1.

4.3 Predictions of the Model

The model can be easily implemented in a computer simulation. Figure 4.4 shows
the trajectories of 100 elements. Time progresses from left to right. Each column
shows the state of each of the elements i = 1, . . . , N at any given time. If i
exists at t , σi (t) = 1 it is represented as a white cell; a black cell at position
(i, t) indicates σi (t) = 0. It is immediately visible that there exist two distinct
dynamical modes in the system, a quasi-stationary phase, where the set of existing
elements practically does not change over time, and a phase of massive restructur-
ing. To extract the time series of diversity D(t) we sum the number of all white
cells within one column at time t and divide by N (Fig. 4.4b). Again it is seen
that the plateaus of constant product diversity (punctuated equilibria) are separated
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Fig. 4.4 a Individual trajectories of elements (existing, white; nonexisting, black) for the param-
eter setting r+ = 10, r− = 15, p = 2 × 10−4, N = 102 and an initial diversity of 20 ran-
domly chosen elements. b Diversity D(t) from the simulation in (a), which shows a punctuated
equilibrium pattern. The system jumps between phases of relatively few changes – the plateaus –
and chaotic restructuring phases. The length of the chaotic phases is distributed as a power law,
which is identical with the fluctuation lifetime distributions shown in Fig. 4.6. c Histogram over
the percentage-increments of diversity. The line is a Gaussian distribution with the same mean and
variance
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by restructuring periods, characterized by large fluctuations of the products. Note
that depending on parameter settings, stationary diversity levels may differ by up
to 50%. These fluctuations are strongly non-Gaussian, as can be inferred from
Fig. 4.4c, where the histogram of the percentage changes in the diversity time series,
	D(t) ≡ (D(t)−D(t−1))/D(t−1), is shown. If the extreme tails of the histogram
are fitted to power laws the resulting exponents are in the range of those observed in
Fig. 4.1 (not shown). For the chosen parameter setting the dynamics of the system
does not reach a frozen state; stationary phases and chaotic ones continue to follow
each other.

However, the dynamic changes with altering the “innovative rate” p, see Fig. 4.5.
For a rate of p = 0.01 (i.e., in a system of N = 100 there is about one sponta-
neous innovation or destruction per time step), we observe extended restructuring
processes, almost never leading to plateaus (a,b). For p = 10−4 (one spontaneous
innovation/destruction every 100 time steps), the situation is as described above,
(c,d). When p gets too small (p � N−2), the system is eventually not driven from
a stationary state and freezes (e,f). In the next section we discuss alternatives to
the driving process, where innovation rates p are replaced by, for example, species
lifetimes or alternative competition/selection mechanisms. These alternatives also
drive the system dynamically away from frozen states.
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Fig. 4.5 Time series of diversity (left) and element trajectories (right) for various values of p.
For high innovation/mutation/spontaneity rates the system does not settle into plateaus, p = 0.01
(a,b); for intermediate levels p = 10−4 plateaus form (c,d), and for low levels p = 10−6 the
system freezes (e,f)
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Under which topological circumstances is the generic dynamics maintained for
a fixed p in the range of 103–105? If there are too many destructive influences
compared to constructive ones (r+ � r−), the system will evolve toward a state of
low diversity in which innovations are mostly suppressed. If there are many more
constructive than destructive interactions (r− � r+), that is, comparably little com-
petition, the system is expected to saturate in a highly diverse state. Between these
two extreme cases we find sustained dynamics as described above. This regime is
indeed very broad, no fine-tuning of r+ and r− is needed.

Elements tend to populate locations in element space that are locally character-
ized by high densities of productive rules and low densities of destructive influences.
If the system remains in such a basin of attraction this results in diversity plateaus.
Perturbations can force the population of elements out from these basins and a phase
of restructuring can follow until another basin of attraction is found.

4.4 Model Variants

A central result of the model is that it endogenously produces fluctuations in the
population of elements which resemble punctuated equilibria. The power-law expo-
nents obtained for various statistics are in the range of experimentally observed
fluctuations in evolutionary processes. Further, the existence of two phases (one
characterized by relatively moderate change, the other by massive restructuring) is
a feature commonly observed in natural and man-made evolutionary systems.

However, it is important to show that these characteristics are independent of
the particular implementation of the recombination process, the competition pro-
cess, and the implementation of the spontaneous creation and annihilation events.
In [33] we have shown that for a series of model variants the generic properties
remain intact, which suggests the existence of a certain degree of universality of the
model. In particular we have shown that the effect of topology of the production
and destruction rule tables α± on the dynamics is surprisingly moderate. Scale-
free network topologies proved to stabilize the system to a certain degree, meaning
that for increasing exponent in the topological power laws, lifetimes of the plateaus
increase. The implementation of more realistic competition mechanisms (inspired,
e.g., by economic processes) practically does not alter the dynamics, neither does
the generalization to larger productive and/or destructive sets, see [34]. We checked
the influences of an asymmetry and modular structure in production and destruction
rule tables and again found only marginal influence on the generic dynamics of
the model. We have shown that the driving force introduced through spontaneous
creations (parameter p) can be replaced by completely different mechanisms, for
example, by a finite lifetime of elements. A decay rate of elements then acts as
a stochastic driving force, keeping the system from frozen states, that is, even for
p = 0 the system does not freeze. An important generalization of the recombi-
nation mechanism is that an element that can be produced will not necessarily be
produced. To incorporate this we say that if an element can be produced, it will
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actually be produced with a probability q. This means that if an element should be
produced or destroyed according to (4.3), this happens only with probability q. This
variant is formally almost exactly the same as driving the system with the innovation
parameter p; the two scenarios differ only marginally. Finally, we verified that the
qualitative behavior of the model does not change if we employ a parallel update or
a sequential update in deterministic order. The only impact of these changes is that
for parallel updating the system needs longer to reach frozen states.

4.5 Understanding Evolutionary Dynamics

In the way the model is set up there are two ways of understanding evolutionary
processes. First, a direct correspondence to self-organized critical (SOC) sandpile
models is apparent; second, the diversity dynamics of evolutionary systems can be
understood on the basis of the eigenvalues of the active production networks.

4.5.1 Evolutionary Dynamics as a Self-Organized Critical System

To see the similarities to self-organized critical systems [41] we proceed in the fol-
lowing way: Set p = 0 and let the system reach a frozen state, which we define as
one or fewer changes in the state vector σ occurring over five iterations. We then
flip the state of one randomly chosen component σi . This perturbation may or may
not trigger successive updates in diversity. In Fig. 4.6a the cluster-size (total number
of elements that get updated as a consequence of this perturbation) distribution is
shown. The observed power laws reflect typical features of self-organized criticality:
one spontaneous event may trigger an avalanche of restructuring in the system; the
observed power laws demonstrate that large events of macroscopic size are by no
means rare events. We show the distribution of fluctuation-lifetimes in Fig. 4.6b, that
is, the number of iterations that the system needs to arrive at a new frozen state after
the perturbation. The distribution of lifetimes also follows a power law, which again
points to the existence of self-organized criticality in the sense of [41].

4.5.2 Eigenvalues and Keystone Productions

Given the model setup it is an obvious step to analyze the topology of the (time-
varying) active production networks to clarify how active production topology is
related to the characteristics of the dynamical system. We compute the maximum
real eigenvalue (EV) of the active production network A(t). In Fig. 4.7a, we show
the system diversity versus the maximum real eigenvalue of the adjacency matrix
A(t) associated with the active production network. The latter has been constructed
as described in Sect. 4.2.4 without using thresholding, that is, h = 1 and T = 1.
There is a high correlation of about ρ ∼ 0.85; the observed slope is ∼ 16.
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Fig. 4.6 Cluster-size distribution (a) and fluctuation-lifetime distribution (b) of a system of size
N = 1, 000 for different rule densities r+ and r−. The slopes for power-law fits for r+ = r− = 4
are k1 = −2.3 for the sizes, and k1 = −2.6 for fluctuation durations, while for r+ = 10 and
r− = 6, we get k2 = −1.8 for sizes, and k2 = −2.5 for the lifetimes. Given that these param-
eter settings correspond to highly different scenarios, the similarity of the power-law exponents
indicates some degree of robustness. From [33]

For the chaotic phases (see Fig. 4.4) the maximal eigenvalue is mostly zero,
which indicates that the active production networks is a directed acyclic graph.
When a maximal eigenvalue of one is found, this indicates the existence of one
or more simple cycles [42]. On the plateaus of diversity we typically find values
larger than one, which is a sign of a larger number of interconnected cycles in A.
In this sense the plateaus are characterized by a relatively long-lasting high level of
“cooperation”, whereas in the chaotic phase cooperation between cyclically driven
production paths is absent. This is the topological manifestation of a collective
“organization” that emerges from the model. Note that these structures form from a
purely random setup in α±, the update, and the initial conditions.
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Fig. 4.7 a At each time step we construct the active production network A(t) for the run of
Fig. 4.4, with h = 1 and T = 1. Its maximal eigenvalue is plotted vs. the system’s diversity at that
time t . Every point represents one time point. b Trajectory of the maximum EV when computed
with thresholding using T = 20, h = 0.95 for the same run shown in Fig. 4.4. From [33]
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The situation is very similar to what was found in a model of biological evolution
by Jain and Krishna [18]. Unlike the dynamics of the active production/destruction
network A, in their model, Jain and Krishna update their interaction matrix through
an explicit selection mechanism. They could directly relate the topology of their
dynamical interaction matrix to the diversity of the system. In particular they showed
that highly populated phases in the system are associated with autocatalytic cycles
and the presence of keystone species, that is, species building up these cycles. A
drastic increase in diversity is associated with the spontaneous formation of such
cycles, while the decline of species diversity is triggered by breaking a cycle. Even
though we do not have such an explicit selection mechanism in the present model,
the relation between topological structure of A and the state of the dynamical system
seems to be the same as in [18]. Note that in our framework the nodes are active
productions and not species (or elements) as in their approach. To explicitly see the
relation between eigenvalues, cycles, and product diversity we show the trajectory
of the maximum eigenvalue of A together with snapshots of the active production
networks along the trajectory in Fig. 4.8.
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Fig. 4.8 Onset and breakdown of massive diversification. Trajectory of the maximum eigenvalue
of A, for T = 50 and h = 0.8. The eigenvalue starts at around 1 builds up to about 2.1, then drops
to 1 again. The active production networks along this trajectory are shown. At first the network
contains simple cycles (maximal eigenvalue equals one). At each time step we show “keystone”
productions as red nodes. A keystone production is defined as a node that – if removed from A(t)
– results in a reduction of the maximum eigenvalue of more than 10% (when compared to the
maximum eigenvalue of initial A). Typically keystone nodes are components of cycles. Active
productions are represented as blue squares. Note, active destruction graphs can be constructed in
the same way but will always be much sparser than active production networks. From [33]
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4.6 Toward a Unified Mathematical Framework

In the following we sketch how an analytical treatment of the proposed model can
be achieved through methodology from spin systems in physics. With the formal-
ism proposed in [34] we are able to obtain mean-field results that can be shown to
provide a good approximation for understanding the phase diagram of evolutionary
systems.

As before imagine that at each time each element i experiences one of three
scenarios, (i) creation σi (t) = 0 → σi (t + 1) = 1, (ii) annihilation σi (t) = 1 →
σi (t+1) = 0, or (iii) nothing σi (t) = σi (t+1). Suppose the existence of a function
fi (σ (t)) : {0, 1}N → R, which indicates which of the transitions (i–iii) takes place.
Let fi (σ (t)) indicate the following:

(i) fi (σ (t)) > 0⇒ σi (t + 1) = 1 ,

(ii) fi (σ (t)) < 0⇒ σi (t + 1) = 0 ,

(iii) fi (σ (t)) = 0⇒ σi (t + 1) = σi (t) . (4.9)

For (i) or (ii) a transition occurs if σi (t) = 0 or 1, respectively. That is, if
fi (σ (t)) ≥ 0 the system evolves according to

σi (t + 1) = σi (t)+	σi (t) with 	σi (t) = sgn
[
(1− σi (t)) fi (σ (t))

]
.

(4.10)

	σi (t) can only be nonzero if σi (t) = 0 and fi (σ (t)) > 0. Similarly, for
fi (σ (t)) ≤ 0, 	σi (t) = sgn

[−σi (t) fi (σ (t))
]
. Let us define the ramp function

R(x) by R(x) ≡ x iff x ≥ 0 and R(x) ≡ 0 iff x < 0. Using these definitions we
can map the indicator function fi , Eq. (4.9), onto the update equation

σi (t + 1) = σi (t)+	σi (t) ,

	σi (t) = sgn
[
(1− σi (t))R( fi (σ (t)))− σi (t)R(− fi (σ (t)))

]
. (4.11)

4.6.1 Variational Principle for Deterministic Diversity Dynamics

We next introduce a distance measure to quantify the number of state changes in
the system. Consider a displacement of σi (t), σ ′i (t) = σi (t) + δσi (t). A quadratic
distance measure is given by

Ki (σ
′
i (t), σi (t)) ≡ μ

2

[
σ ′i (t)− σi (t)

]2
, (4.12)

with μ > 0. Note the similarity to kinetic energy in classical mechanics. Analo-
gously a potential Vi is defined by

Vi (σ
′
i (t), σ (t)) ≡

∣∣(1− σ ′i (t))R( fi (σ (t)))− σ ′i (t)R(− fi (σ (t)))
∣∣ , (4.13)
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which counts the number of possible interactions for the displaced state σ ′i (t).
Depending on σ ′i (t), (4.13) will reduce to Vi (σ

′
i (t), σ (t)) = |R(± fi (σ (t)))|.

Finally, we define the balance function,

Bi ≡ Ki + Vi . (4.14)

While Ki measures the actual activity in the system – it counts all state changes –
the potential Vi counts the potential activity in the newly obtained states. Bi con-
tains the full dynamical information of (4.9), which can now be expressed through a
variational principle. Given σ (t), the solution σi (t + 1) of (4.11) is identical to the
value of σ ′i (t) for which Bi assumes its minimum, that is,

σi (t + 1) = argmin
σ ′i (t)

[
Bi

(
σ ′i (t), σ (t)

)]
, (4.15)

with argmin
x

[
f (x)

]
denoting the value of x for which f (x) takes its minimum. This

is proved in [34].
There exists a natural stochastic generalization of this diversity dynamics. In

(4.11) a state transition σi (t) → σi (t + 1) is determined by 	σi (t) ∈ {−1, 0, 1}.
For the stochastic case we specify transition probabilities for this transition. From
the variational principle (4.15), it follows that (4.11) always minimizes the balance
function Bi . In the stochastic variant we assume that the lower Bi , the higher the
probability of finding the system in the respective configuration σi (t). In analogy to
spin systems this probability is assumed to be a Boltzmann factor

p(σi (t)) ∝ e−βBi (σ (t)) , (4.16)

with β ≡ 1/T the inverse temperature. To obtain transition probabilities we demand
detailed balance

p(σi (t)→ σ̂i (t))

p(σ̂i (t)→ σi (t))
= p(σ̂i (t))

p(σi (t))
= e−β(B̂i−Bi ) , (4.17)

with B̂i ≡ Bi (σ̂i (t), σ (t) j �=i ). There are several ways to specify a transition prob-
ability such that (4.17) is satisfied. Here we use so-called Metropolis transition
probabilities p(σi (t) → σ̂i (t)) = 1 if B̂i − Bi < 0 and p(σi (t) → σ̂i (t)) =
exp[−β(B̂i − Bi )] otherwise. The stochastic diversity dynamics is fully specified
by setting σi (t + 1) = σ̂i (t).

4.6.2 Mean-Field Approximation

Denote the expectation value of σi (t) by qi (t) = 〈σi (t)〉 and assume that the
probability distribution factorizes, p(σ (t)) = ∏

i pi (σi (t)), with pi (σi (t)) =
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(1− qi (t))δσi (t),0+ qi (t)δσi (t),1. Note that this is a strong assumption. In this mean-
field approximation the Boltzmann–Gibbs entropy s for element i is

s(σi (t)) = −〈ln pi (σi (t))〉 ≡ s(qi (t)) ,

s(qi (t)) = −
(
1− qi (t)

)
ln(1− qi (t))− qi (t) ln qi (t) . (4.18)

The “free energy” functional φ(σi (t)) for the system becomes

φ(qi (t)) = 〈Bi 〉p(σ (t)) − s(qi (t))

β
. (4.19)

The asymptotic state of species i , qi (t →∞) ≡ qi , is then given by a minimum in
free energy. The necessary condition for this, ∂φ(qi )/∂qi = 0, is

∂〈Bi 〉
∂qi
+ 1

β
ln

(
qi

1− qi

)
= 0 ,

and

qi = 1

2

{
tanh

[
−β

2

∂〈Bi 〉
∂qi

]
+ 1

}
. (4.20)

The self-consistent solution of (4.20) yields the asymptotic configuration.
Let us now calculate 〈Bi 〉 for the stochastic scenario for random interaction

topologies specified by rule densities r± and constructive/destructive set sizes n±.
This means that to produce (destroy) an element, n+ (n−) elements are necessary.2

We start with an expression for the probability, such that fi (σ (t)) is positive (nega-
tive), p±. Define p(k, r+) as the probability that there are exactly k active construc-

tive interactions, that is, p(k, r+) ≡ (r+
k

)
qn+k(1− qn+)r

+−k . Analogously, q(l, r−)
is the probability that exactly l out of r− destructive interactions are active. Then

p+ =
r+∑

k=1

p(k, r+)
min(k−1,r−)∑

l=0

q(l, r−) ,

p− =
r−∑

l=1

q(l, r−)
min(l−1,r+)∑

k=0

p(k, r+) . (4.21)

The average distance follows to be

〈Ki 〉p(σ ) = 1

2

(
(1− qi )p

+ + qi p−
)2

, (4.22)

2 For nonuniform productive/destructive set sizes in the system a power-set notation, as suggested
in [34], might be practical.
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and, abbreviating fi (σ (t)) ≡ fi , the potential is

〈Vi 〉p(σ ) = |(1− qi ) R( fi )− qi R(− fi )| . (4.23)

Taking the derivative with respect to qi , we find the mean-field result

∂〈Bi 〉
∂qi

= −r+qn+ + r−qn− − [
(1− q)p+ + qp−

]
(p+ − p−) , (4.24)

with the self-consistent solution for q to be found through

q = 1

2

{
tanh

[
β

2

(
r+qn+ − r−qn− + [

(1− q)p+ + qp−
]
(p+ − p−)

)]
+ 1

}
.

(4.25)

We compare the corresponding mean-field prediction to results of a Metropolis sim-
ulation of the asymptotic abundances in Fig. 4.9. These results are in close relation
to the special cases reported in [15, 16].
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Fig. 4.9 Asymptotic diversity q as a function of inverse temperature β for the mean-field approach
(lines) and Metropolis simulations (symbols) of the stochastic dynamics for productive set sizes of
n+ = 1, 2, 3. The rule densities were r+ = 3 and r− = 1; the destructive set size was n− = 2

4.7 Applicability to Specific Evolutionary Systems

In this last section we demonstrate in three examples that the presented general
model can be easily specified to be applicable to data obtained from actual evolu-
tionary systems.
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4.7.1 Macroeconomic Instruments

If one models the diversity dynamics of an economy the number of active
productions is a measure of the total productive output of an economy. The statistics
of the model time series can be compared to the real-world equivalent, the gross
domestic product (GDP) [33]. A production/destruction is active iff σi (t) = σ j (t) =
α±i jk = 1 (for production/destruction set sizes of n± = 2). In Fig. 4.10a we show
a comparison of the actual distribution of percentage increments of the GDP of
the UK and the number of active productions from the stochastic model for two
different parameter settings. In one setting β = 15, r± = 5, and n± = 2 are used;
the other has a denser interaction topology, β = 15, r+ = 8, r− = 12, n± = 2.
Both model and real-world GDP time series produce fat-tailed distributions, with
power exponents in the range between −2 and −4. Exponents within this range are
not only found in the GDP time series of other industrialized countries but also for
a wide range of model parameters, see for example [33].

4.7.2 Chemical Reaction Networks

The presented stochastic model system can be interpreted as a chemical reaction
network. In this case (sets of) chemical compounds i, j are catalyzing or degrading
compound k. There are N (r++r−) possible reactions. A reaction is active if α±i jk =
1, σi (t) = 1 and σ j (t) = 1. A reaction rate is defined as the frequency with which
a certain reaction is active. Model predictions are compared to reaction rates in the
metabolic network of E. coli [43] in Fig. 4.10b. Distributions of reaction rates in
both the model and the living organism are fat-tailed. Least-squares fits to model
power laws yield exponents in the range of −1 to −3, depending on parameters.
This compares well to the value of ∼ −1 found for E. coli.

4.7.3 Lifetime Distributions of Species

In a macro-ecological setting one can compare the distribution of lifetimes of
species from the model with the distribution of species lifetimes in the fossil record
[44]. The lifetime of a given model species is the number of iterations for which
it exists without interruption. The comparison is shown in Fig. 4.10c. Once more
one finds power laws in the model with exponents between −2 and −4, depending
on parameters. This matches well with paleontologic data, which suggest slopes
between −2 and −3. Note that there is a strong dependence on the values used for
the fit [21]. We work with an intermediate choice in Fig. 4.10c.
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4.8 Conclusions

We have presented a simple model for dynamical systems undergoing evolution that
was presented in detail in [32–34]. We have explicitly taken into account that the
existence or absence of species or elements in a system can strongly influence the
rate of production or reproduction of existing elements. In other words, the proposed
model fully captures the concept of a dynamically co-evolving fitness landscape.

The basic components of the model are a large – even infinite – space of goods,
species, chemical compounds, etc. The abundances of these elements are captured
in a state vector σ(t). These elements can be combined to produce new elements,
which, first, contribute to diversity, and second, might have a negative impact on
the production rates of others. The possibilities of all combinations of elements
are encoded in a rule table (tensor α), which is time invariant and exists whether
elements exist or not. The overlap of this rule table with the actual state of the
system σ (t) determines which elements will be produced and/or eliminated in the
near future. These productions or destructions can be captured in the active pro-
duction matrices A(t), which vary over time and capture the state of creative and
destructive activities in the system. Regardless of the details of the implementation
of the actual production, competition, and update mechanisms, the model generi-
cally leads to a dynamics that is characterized by phases of relative stability in terms
of diversity, followed by phases of massive restructuring. These dynamical modes
can be interpreted as punctuated equilibria in biology, or Schumpeterian business
cycles in economics. The presented framework suggests that systemic properties
of evolutionary systems, such as their proneness to collapse or their potential for
diversification, can be understood in terms of self-organized critical systems. Fur-
ther we show that the actual active production networks A (which in principle can
be observed) determine the diversity of the system. In particular the importance of
cyclic structures in the active production networks is demonstrated. These structures
are related to the maximum eigenvalues of A.

We propose a mathematical framework that is inspired by statistical mechan-
ics and express evolutionary system dynamics through a variational principle. This
approach allows the phase diagram of evolution systems to be studied systemati-
cally, which was initially explored in [15, 16]. Within this framework mean-field
approximations are easily obtained, which can be compared to Monte Carlo simu-
lations of the model. We find surprisingly good overlap. Even though the model is
phrased in general terms it is shown how it can be made rather specific such that its
predictions can be used to understand series of experimental data ranging from the
fossil record to macroeconomic instruments. We find that the model of constructive
and destructive interactions reproduces stylized facts of man-made (economies) and
natural evolutionary systems (metabolic networks, macro-ecology) across several
orders of magnitude.

To some extent the presented model can be seen as a generalization of a series
of previously introduced models, which are contained as special cases. A particular
case of the mean-field approach (when destruction is off, α− = 0 for all entries) is
identical to the random catalytic networks studied in [15]. As discussed in [33], fi in
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our stochastic model plays an identical role to that of the randomly assigned fitness
values in the Bak–Sneppen model [19]. To recover the N K model [14] as a special
case of our model, associate each species with a bit-string, and assign a random fit-
ness value to it. However, fitness in our framework emerges as a topological property
of the entire system plus the set of existing species, whereas in N K models fitness
is basically a mapping of random numbers to bit-strings. In contrast to our (highly)
nonlinear model, in the model of Solé and Manrubia [20] only linear interactions
are allowed and new species are created not through endogenous recombinations,
but by an explicit mutation mechanism.

Finally, we mention that our model systematically expands on the idea that the
concept of fitness is an a posteriori concept. Fitness in the traditional sense can
of course be reconstructed for every time step in our model. It is nothing but the
co-evolving network of rates of the actually active (productive) processes at a given
time, see [33]. It becomes clear that fitness cannot be used as a concept with much
predictive power, even if a hypothetical computational entity, “Darwin’s Demon”
[34], knowing all mutual influences of all species at any given time, existed.

Acknowledgments I am most grateful to Rudolf Hanel and Peter Klimek, with whom I have had
the great pleasure of working on the topic over the past years.
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Chapter 5
Can We Recognize an Innovation? Perspective
from an Evolving Network Model

Sanjay Jain and Sandeep Krishna

Abstract “Innovations” are central to the evolution of societies and the evolution
of life. But what constitutes an innovation? We can often agree after the event, when
its consequences and impact over a long term are known, whether something was
an innovation, and whether it was a “big” innovation or a “minor” one. But can
we recognize an innovation “on the fly” as it appears? Successful entrepreneurs
often can. Is it possible to formalize that intuition? We discuss this question in the
setting of a mathematical model of evolving networks. The model exhibits self-
organization, growth, stasis, and collapse of a complex system with many interact-
ing components, reminiscent of real-world phenomena. A notion of “innovation” is
formulated in terms of graph-theoretic constructs and other dynamical variables of
the model. A new node in the graph gives rise to an innovation, provided it links
up “appropriately” with existing nodes; in this view innovation necessarily depends
upon the existing context. We show that innovations, as defined by us, play a major
role in the birth, growth, and destruction of organizational structures. Furthermore,
innovations can be categorized in terms of their graph-theoretic structure as they
appear. Different structural classes of innovation have potentially different quali-
tative consequences for the future evolution of the system, some minor and some
major. Possible general lessons from this specific model are briefly discussed.

5.1 Introduction

In everyday language, the noun innovation stands for something new that brings
about a change; it has a positive connotation. Innovations occur in all branches of
human activity – in the world of ideas, in social organization, in technology. Inno-
vations may arise by conscious and purposeful activity, or serendipitously; in either
case, innovations by humans are a consequence of cognitive processes. However,
the word innovation does not always refer to a product of cognitive activity. In
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biology, we say, for example, that photosynthesis, multicellularity, and the eye were
evolutionary innovations. These were products not of any cognitive activity, but
of biological evolution. It nevertheless seems fair to regard them as innovations;
these novelties certainly transformed the way organisms made a living. The notion
of innovation seems to presuppose a context provided by a complex evolutionary
dynamics; for example, in everyday language the formation of the earth, or even the
first star, is not normally referred to as an innovation.

Innovations are a crucial driving force in chemical, biological and social systems,
and it is useful to have an analytical framework to describe them. This subject has
a long history in the social sciences (see, e.g., [1, 2]). Here we adopt a somewhat
different approach. We give a mathematical example of a complex system that seems
to be rich enough to exhibit what one might intuitively call innovation, and yet
simple enough for the notion of innovation to be mathematically defined and its
consequences analytically studied. The virtue of such a stylized example is that it
might stimulate further discussion about innovation, and possibly help clarify the
notion in more realistic situations.

Innovations can have “constructive” and “destructive” consequences at the same
time. The advent of the automobile (widely regarded as a positive development) was
certainly traumatic for the horse-drawn carriage industry and several other industries
that depended upon it. When aerobic organisms appeared on the earth, their more
efficient energy metabolism similarly caused a large extinction of several anaerobic
species [3]. The latter example has a double irony. Over the first 2 billion years of life
on earth, there was not much oxygen in the earth’s environment. Anaerobic creatures
(which did not use free oxygen for their metabolism) survived, adapted, innovated
new mechanisms (e.g., photosynthesis) in this environment, and spread all over the
earth. Oxygen in the earth’s environment was largely a by-product of photosynthetic
anaerobic life, a consequence of anaerobic life’s “success”. However, once oxygen
was present in the environment in a substantial quantity, it set the stage for another
innovation, the emergence of aerobic organisms which used this oxygen. Because
of their greater metabolic efficiency, the aerobic organisms out-competed and dec-
imated the anaerobic ones. In a very real sense, therefore, anaerobic organisms
were victims of their own success. Innovation has this dynamic relationship with
“context”: what constitutes “successful” innovation depends upon the context, and
successful innovation then alters the context. Our mathematical example exhibits
this dynamic and explicitly illustrates the two-faced nature of innovation. We show
that the ups and downs of our evolutionary system as a whole are also crucially
related to innovation.

5.2 A Framework for Modeling Innovation: Graph Theory
and Dynamical Systems

Systems characterized by complex networks are often represented in terms of a
graph consisting of nodes and links. The nodes represent the basic components of
the system, and links between them their mutual interactions. A graph representation
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is quite flexible and can represent a large variety of situations [4]. For a society,
nodes can represent various agents, such as individuals, firms, and institutions, as
well as goods and processes. Links between nodes can represent various kinds of
interactions, such as kinship or communication links between individuals, inclusion
links (e.g., a directed link from a node representing an individual to a node rep-
resenting a firm implying that the individual is a member of the firm), production
links (from a firm to a good that it produces), links that specify the technological
web (for every process node, incoming links from all the goods it needs as input and
outgoing links to every good it produces), etc. In an ecological setting, nodes can
represent biological species, and links their predator–prey or other interactions. In
cellular biology, nodes might represent molecules such as metabolites and proteins
as well as genes, and links their biochemical interactions.

A graph representation is useful for describing several kinds of innovation. Often,
an innovation is a new good, process, firm, or institution. This is easily represented
by inserting a new node in the graph, together with its links to existing nodes. Of
course, not every such insertion can be called an innovation; other conditions have
to be imposed. The existing structure of the graph provides one aspect of the “con-
text” in which a prospective innovation is to be judged, reflecting its “location” or
relationship with other entities. In this formulation it is clear that innovations such
as the ones mentioned above are necessarily a change in the graph structure. Thus
a useful modeling framework for innovations is one where graphs are not static but
change with time. In real systems graphs are always evolving: new nodes and links
constantly appear, and old ones often disappear as individuals, firms, and institutions
die; goods lose their utility; species become extinct; or any of these nodes lose some
of their former interactions. It is in such a scenario that certain kinds of structures
and events appear that earn the nomenclature “innovation”. We will be interested
in a model where a graph evolves by the deletion of nodes and links as well as the
insertion of new ones. Insertions will occasionally give rise to innovations. We will
show that innovations fall in different categories that can be distinguished from each
other by analyzing the instantaneous change in the graph structure caused by the
insertion, locally as well as globally. We will argue that these different “structural”
categories have different “dynamical” consequences for the “well-being” of other
nodes and the evolution of the system as a whole in the short as well as long run.

In addition to an evolving graph, another ingredient seems to be required for
modeling innovation in the present approach: a graph dependent dynamics of some
variables associated with nodes or links. In a society, for example, there are flows of
information, goods and money between individuals that depend upon their mutual
linkages, which affect node attributes such as individual wealth, power, etc. The
structure of an ecological food web affects the populations of its species. Thus,
a change in the underlying graph structure has a direct impact on its “node vari-
ables”. Deciding whether a particular graph change constitutes an innovation must
necessarily involve an evaluation of how variables such as individual wealth and
populations are affected by it. Changes in these variables in turn trigger further
changes in the graph itself, sometimes leading to a cascade of changes in the graph
and other variables. For example, the decline in wealth of a firm (node variable) may
cause it to collapse; the removal of the corresponding node from the market (graph
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change) may cause a cascade of collapses. The invention of a new product (a new
node in the graph) that causes the wealth of the firm inventing it to rise (change in
a node variable) may be emulated by other firms, causing new linkages and further
new products.

In order to “recognize an innovation on the fly” it thus seems reasonable to have a
framework that has (a) a graph or graphs representing the network of interactions of
the components of the system, (b) the possibility of graph evolution (the appearance
and disappearance of nodes and links) and (c) a graph-dependent dynamics of node
or link variables that in turn has a feedback upon the graph evolution. The example
discussed below has these features. They are implemented in a simple framework
that has only one type of node, one type of link, and only one type of node variable.

5.3 Definition of the Model System

The example is a mathematical model [5] motivated by the origin of life prob-
lem, in particular, the question of how complex molecular organizations could
have emerged through prebiotic chemical evolution [6–10]. There are s interacting
molecular species in a “prebiotic pond”, labeled by i ∈ S ≡ {1, 2, . . . , s}. Their
interactions are represented by the links of a directed graph, of which these species
are nodes. The graph is defined by its s × s adjacency matrix C = (ci j ), with
ci j = 1 if there exists a link from node j to node i (chemically that means that
species j is a catalyst for the production of species i), and ci j = 0 otherwise. cii is
assumed zero for all i : no species in the pond is self-replicating. Initially the graph
is chosen randomly, each ci j for i �= j is chosen to be unity with a small probability
p and zero with probability 1 − p. p represents the “catalytic probability” that a
given molecular species will catalyze the production of another randomly chosen
one [11].

The pond sits by the side of a large body of water such as a sea or river, and
periodically experiences tides or floods, which can flush out molecular species from
the pond and bring in new ones, changing the network. We use a simple graph update
rule in which exactly one node is removed from the graph (along with all its links)
and one new node is added, whose links with the remaining s − 1 nodes are chosen
randomly with the same probability p. We adopt the rule that the species with the
least relative population (or, if several species share the least relative population, one
of them chosen randomly) is removed. This is where selection enters the model:
species with smaller populations are punished. This is an example of “extremal”
selection [10] in that the least populated species is removed; the results of the model
are robust to relaxing the extremality assumption [12, 13].

In order to determine which node will have the least population, we specify a
population dynamics that depends upon the network. The dynamics of the relative
populations, xi (0 ≤ xi ≤ 1,

∑s
i=1 xi = 1), is given by

ẋi =
s∑

j=1

ci j x j − xi

s∑

k=1

s∑

j=1

ck j x j . (5.1)
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This is a set of rate equations for catalyzed chemical reactions in a well stirred
chemical reactor.1 They implement the approximate fact that under certain simpli-
fying assumptions a catalyst causes the population of whatever it catalyzes to grow
at a rate proportional to its own (i.e., the catalyst’s) population [5, 14]. Between
successive tides or floods the set of species and hence the graph remains unchanged,
and the model assumes that each xi reaches its attractor configuration Xi under (5.1)
before the next graph update. The species with the least Xi is removed at the next
graph update.

Starting from the initial random graph and random initial populations, the rel-
ative populations are evolved according to (5.1) until they reach the attractor X,
and then the graph is updated according to the above rules. The new incoming
species is given a fixed relative population x0; all xi are perturbed about their exist-
ing values (and rescaled to restore normalization). This process is iterated several
times. Note that the model has two inbuilt time scales, the population dynam-
ics relaxes on a fast time scale, and graph evolution on a slow time scale. The
above model may be regarded as an evolutionary model in nonequilibrium statistical
mechanics.

5.4 Time Evolution of the System

A sample run is depicted in Figs. 5.1 and 5.2. For concreteness, we will discuss this
run in detail, describing the important events, processes, and the graph structures
that arise, with an emphasis on the role of innovation. The same qualitative behav-
ior is observed in hundreds of runs with the various parameter values. Quantitative
estimates of average time scales, etc., as a function of the parameters s and p are
discussed in [5, 14] and Appendix A. The robustness of the behavior to various
changes of the model are discussed in [12, 13].

Broadly, Figs. 5.1 and 5.2 exhibit the following features: Initially, the graph
is sparse and random (see Fig. 5.2a–d), and remains so until an autocatalytic set
(ACS), defined below, arises by pure chance. On average the ACS arrives on a
time scale 1/(p2s) in units of graph update time2; in the exhibited run it arrives at
n = 2854 (Fig. 5.2e). In this initial regime, called the “random phase”, the number
of populated species, s1, remains small. The appearance of the ACS transforms the
population and network dynamics. The network self-organizes, its density of links
increases (Fig. 5.1a), and the ACS expands (Fig. 5.2e–n) until it spans the entire
network (as evidenced by s1 becoming equal to s, at n = 3880, Figs. 5.1b and 5.2n).
The ACS grows across the graph exponentially fast, on a time scale 1/p [5]. This
growth is punctuated by occasional drops (e.g., Fig. 5.1b at n = 3387, see also

1 See Derivation of Equation (5.1) in Appendix A.
2 See Time Scale for Appearance and Growth of the Dominant ACS in Appendix A.
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Fig. 5.1 A run with parameter values s = 100 and p = 0.0025. The x-axis shows time, n (=
number of graph updates). a Number of links in the graph as a function of time. b Continuous line:
s1, the number of populated species in the attractor (= the number of nonzero components of Xi )
as a function of time. Dotted line: λ1, the largest eigenvalue of C as a function of time. (The λ1
values shown are 100 times the actual λ1 values)
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Fig. 5.2 The structure of the evolving graph at various time instants for the run depicted in Fig. 5.1.
Examples of several kinds of innovation and their consequences for the evolution of the system
are shown (see text for details). Nodes with Xi = 0 are shown in white; according to the evolution
rules all white nodes in a graph are equally likely to be picked for replacement at the next graph
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(h) n = 3386

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27
28

29

30

31

32
33

3435
36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56
57 58

59

60

61

62

63

64

65

66

67

68

69
70

71

72
73

74
75

76 77

78

79

80

81

82

83

84

85

86

87

88

89
90

91

92
93

94

95

96

97

98
99

100

(k) n = 3403

1

2

3

4

5
6

7

8

9

10

11

12

13
14

15

16

17

18
19

20

21

22

23

24

25

26

27

28

29
30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47
48

49

50
51

52

53

54

55

56

57

58

59

60
61

62

6364

65

66 67
68

69

70

71 72

73

74

75

76

77

78

79

80

81

82 83

84

85

86

87

88

89

90

91

92

93

94

95

96

9798

99

100

(l) n = 3488

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17 18

19

20

21

22

23

24

25

26

27
28

29

30

31

32
33

343536

37

38

39

40

41

42

43

44

45

46

47 48

49

50
51

52

53 54

55

56
57 58

59

60

61

62

63

64

65

66

67

68

6970

71

7273

74 75

76
77

78

79

80

81

82

8384

85

86
87

88

89
90

91

92
93

94

95

96

97

98
99

100

(i) n = 3387

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27
28

29

30

31

32
33

3435
36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56
57 58

59

60

61

62

63

64

65

66

67

68

69
70

71

72
73

74
75

76 77

78

79

80

81

82

83

84

85

86

87

88

89
90

91

92
93

94

95

96

97

98
99

100

(j) n = 3402

Fig. 5.2 (continued) update. Black and gray nodes have Xi > 0. Thus the number of black and gray
nodes in a graph equals s1, plotted in Fig. 5.1b. Black nodes correspond to the core of the dominant
ACS and gray nodes to its periphery. Only mutual links between the nodes are of significance, not
their spatial location, which is arranged for visual convenience. The graphs are drawn using LEDA
[15]
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Fig. 5.2 (continued)
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Fig. 5.2 (continued)

Fig. 5.2h, i). The period between the appearance of a small ACS and its eventual
spanning of the entire graph is called the growth phase. After spanning, a new
effective dynamics arises, which can cause the previously robust ACS to become
fragile, resulting in crashes (the first major one is at n = 5041), in which s1 as well
as the number of links drops drastically. The system experiences repeated rounds of
crashes and recoveries (Fig. 5.2o–u, see [12, 16] for a longer time scale). The period
after a growth phase and up to a major crash (more precisely, a major crash that is
a core-shift, defined below) is called the organized phase. After a crash, the system
ends up in the growth phase if an ACS still exists in the graph (as at n = 5042,
Fig. 5.2r) or the random phase if it does not (as at n = 8233, Fig. 5.2t). Below we
argue that most of the crucial events in the evolution of the system, including its
self-organization and collapse, are caused by “innovation”.
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5.5 Innovation

The word “innovation” certainly connotes something new. In the present model,
at each graph update a new structure enters the graph: the new node and its links
with existing nodes. However, not every new thing qualifies as an innovation. In
order for a novelty to bring about some change, it should confer some measure of at
least temporary “success” to the new node. (A mutation must endow the organism
in which it appears with some extra fitness, and a new product must have some
sale, in order to qualify as an innovation.) In the present model, after a new node
appears, the population dynamics takes the system to a new attractor of (5.1), which
depends upon the mutual interactions of all the nodes. In the new attractor this node
(denoted k) may go extinct, Xk = 0, or may be populated, Xk > 0. The only
possible criterion of individual “success” in the present model is population. Thus
we require the following minimal performance criterion for a new node k to give
rise to an innovation: Xk should be greater than zero in the attractor that follows
after that particular graph update. That is, the node should “survive” at least until
the next graph update.

This is obviously a minimal requirement, a necessary condition, and one can
argue that we should require of an innovation more than just this “minimal perfor-
mance”. A new node that brings about an innovation ought to transform the system
or its future evolution in a more dramatic way than merely surviving until the next
graph update. Note, however, that this minimal performance criterion nevertheless
eliminates from consideration a large amount of novelty that is even less conse-
quential. Out of the 9,999 new nodes that arise in the run of Fig. 5.1, as many as
8,929 have Xk = 0 in the next population attractor; only 1,070 have Xk > 0.
Furthermore, the set of events with Xk > 0 can be systematically classified in the
present model using a graph-theoretic description. Below we describe an exhaustive
list of six categories of such events, each with a different level of impact on the
system (see Fig. 5.3, discussed in detail below). One of these categories consists of
nodes that disappear after a few graph updates leaving no subsequent trace on the
system. Another category consists of nodes that have only an incremental impact.
The remaining four categories cause (or can potentially cause) more drastic changes
in the structure of the system, its population dynamics, and its future evolution.

In view of this classification it is possible to exclude one or more of these cat-
egories from the definition of innovation and keep only the more “consequential”
ones. However, we have chosen to be more inclusive and will regard all the above
categories of events as innovations. In other words we will regard the above “min-
imal” performance criterion as a “sufficient” one for innovation. Thus we will call
the introduction of a new node k and the graph structure so formed an innovation
if Xk > 0 in the population attractor that immediately follows the event, i.e., if the
node “survives” at least until the next graph update. This definition then includes
both “small” and “big” innovations that can be recognized based on their graph-
theoretic structure upon appearance.

As will be seen below, it turns out that a new node generates an innovation only if
it links “appropriately” to “suitable” structures in the existing graph. Thus the above
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Fig. 5.3 A hierarchy of innovations. Each node in this binary tree represents a class of node
addition events. Each class has a name; the small box contains the mathematical definition of
the class. All classes of events except the leaves of the tree are subdivided into two exhaustive and
mutually exclusive subclasses represented by the two branches emanating downwards from the
class. The number of events in each class pertains to the run of Fig. 5.1 with a total of 9,999 graph
updates, between n = 1 (the initial graph) and n = 10, 000. In that run, out of 9,999 node addition
events, most (8,929 events) are not innovations. The rest (1,070 events), which are innovations, are
classified according to their graph-theoretic structure. The classification is general; it is valid for
all runs. Xk is the relative population of the new node in the attractor of (5.1). N stands for the new
irreducible subgraph, if any, created by the new node. If the new node causes a new irreducible
subgraph to be created, N is the maximal irreducible subgraph that includes the new node. If not,
N = ∅ (where ∅ stands for the empty set). Qi is the core of the graph just before the addition
of the node and Q f the core just after the addition of the node. The six leaves of the innovation
subtree are numbered (below the corresponding box) according to the subsection in which they
are discussed in the main text. The graph-theoretic classes A, B, A1, B1, etc., are described in
section 5.7 and Appendix B

definition makes the notion of innovation “context dependent”. It also captures the
idea that an innovation rests on new linkages between structures.

5.6 Six Categories of Innovation

5.6.1 A Short-Lived Innovation: Uncaring and Unviable Winners

There are situations where a node, say an agent in society or a species in an ecosys-
tem, acquires the ability to live parasitically off another, without giving the system
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anything substantive in return. The parasite gains as long as the host survives, but
often this situation doesn’t last very long. The host dies, and eventually so does
the parasite that is dependent on it. It is debatable whether the acquiring of such a
parasitic ability should be termed an innovation, but from the local vantage point of
the parasite, while the going is still good, it might seem like one.

Figure 5.2b, c show an example of an innovation of such a type that appears
in the random phase of the model. Node 25 is the node that is replaced at n = 78
(see Fig. 5.2b, where node 25 is colored white, implying that X25 = 0 at n = 78.)
The new node that replaces it (also numbered 25 in Fig. 5.2c) receives a link from
node 23, thus putting it at the end of a chain of length 2 at n = 79. This is an
innovation according to the above definition, for, in the attractor configuration cor-
responding to the graph of Fig. 5.2c, node 25 has a nonzero relative population;
X25 > 0. This is because for any graph that does not contain a closed cycle, one
can show that the attractor X of (5.1), for generic initial conditions, has the property
that only those Xi are nonzero whose nodes i are the endpoints of the longest chains
in the graph.3 The Xi for all other nodes is zero [17]. Since the longest chains in
Fig. 5.2c are of length 2, node 25 is populated. (This explains why a node is gray
or white in Fig. 5.2a–d.) Note that node 25 in Fig. 5.2c has become a parasite of
node 23 in the sense that there is a link from 23 to 25 but none from 25 to any other
node. This means that node 25 receives catalytic support for its own production from
node 23, but does not give support to any other node in the system.

However, this innovation does not last long. Nodes 20 and 23, on which the well
being of node 25 depends, are unprotected. Since they have the least possible value
of Xi , namely, zero, they can be eliminated at subsequent graph updates, and their
replacements in general do not feed into node 25. Sooner or later selection picks
23 for replacement, and then 25 also gets depopulated. By n = 2853 (Fig. 5.2d),
node 25 and all others that were populated at n = 79 have joined the ranks of the
unpopulated. Node 25 (and others of its ilk) are doomed because they are “uncaring
winners”: they do not feed into (i.e., do not catalyze) the nodes upon which their
well being depends. That is why when there are no closed cycles, all structures are
transitory; the graph remains random. Of the 1,070 innovations, 115 were of this
type.

5.6.2 Birth of an Organization: Cooperation Begets Stability

At n = 2853 node 90 is an unpopulated node (Fig. 5.2d). It is eliminated at n =
2854 and the new node 90 forms a two-cycle with node 26 (Fig. 5.2e). This is the
first time (and the only time in this run) an innovation forms a closed cycle in a graph
that previously had no cycles. A closed cycle between two nodes is the simplest
cooperative graph theoretical structure possible. Nodes 26 and 90 help each other’s
population grow; together they form a self-replicating system. Their populations

3 See The Attractor of Equation 5.1 in Appendix A.
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grow much faster than other nodes in the graph; it turns out that in the attractor for
this graph only nodes 26 and 90 are populated, with all other nodes having Xi = 0
([17, 18]; see also Appendix A). Because node 90 is populated in the new attractor
this constitutes an innovation. However, unlike the previous innovations, this one
has a greater staying power, because nodes 26 and 90 do well collectively. At the
next graph update both nodes 26 and 90 will be immune to removal since one of
the other nodes with zero Xi will be removed. Notice that nodes 26 and 90 do not
depend on nodes that are part of the least fit set (those with the least value of Xi ).
The cycle has all the catalysts it needs for for the survival of each of its constituents.
This property is true not just for cyclic subgraphs but for a more general cooperative
structure, the autocatalytic set (ACS).

An ACS is a set of species that contains a catalyst for each species in the set
[11, 19, 20]. In the context of the present model we can define an ACS to be a
subgraph such that each of its nodes has at least one incoming link from a node
of the same subgraph. While ACSs need not be cycles, they must contain at least
one cycle. If the graph has (one or more) ACSs, one can show that the set of pop-
ulated nodes (Xi > 0) must be an ACS, which we call the dominant ACS4 [5, 17].
(In Fig. 5.2e–s, the subgraph of the gray and black nodes is the dominant ACS.)
Therefore none of the nodes of the dominant ACS can be hit in the next graph update
as long as there is any node outside it. In other words, the collective well-being of
all the constituents of the dominant ACS, ensured by cooperation inherent within its
structure, is responsible for the ACS’s relative robustness and hence longevity.

In societies, this kind of event is akin to the birth of an organization wherein
two or more agents improve upon their performance by entering into an explicit
cooperation. A booming new township or industrial district perhaps can be analysed
in terms of a closure of certain feedback loops. In prehistory, the appearance of
tools that could be used to improve other tools may be regarded as events of this
kind which probably unleashed a lot of artifact building. On the prebiotic earth one
can speculate that the appearance of a small ACS might have triggered processes
that eventually led to the emergence of life [14].

If there is no ACS in the graph then the largest eigenvalue of the adjacency matrix
of the graph, λ1 is zero. If there is an ACS then λ1 ≥ 15 [5, 17]. In Fig. 5.1b, λ1
jumped from zero to one when the first ACS was created at n = 2854.

5.6.3 Expansion of the Organization at Its Periphery: Incremental
Innovations

Consider Fig. 5.2f, g. Node 3, which is unpopulated at n = 3021, gets an incoming
link from node 90 and an outgoing link to node 25 at n = 3022, which results in
three nodes adding onto the dominant ACS. Node 3 is populated in the new attractor

4 See Dominant ACS of a Graph in Appendix A.
5 See Graph-Theoretic Properties of ACSs in Appendix A.
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and hence this is an innovation. This innovation has expanded the periphery of the
organization, defined below.

Every dominant ACS is a union of one or more simple ACSs, each of which have
a substructure consisting of a core and periphery. For example, the dominant ACS in
Fig. 5.1g has one simple ACS and in Fig. 5.1k it has two. For every simple ACS there
exists a maximal subgraph, called the core of that ACS, from each of whose nodes
there is a directed path to every node of that ACS. The rest of that ACS is termed
its periphery. In Fig. 5.2e–s, the core is colored black, and the periphery gray. Thus
in Fig. 5.2g, the two-cycle of nodes 26 and 90 is the core of the dominant ACS,
and the chain of nodes 3, 25 and 18 along with the incoming link to node 3 from
26 constitutes its periphery. The core of a simple ACS is necessarily an irreducible
subgraph. An irreducible subgraph is one that contains a directed path from each of
its nodes to every other of its nodes [21]. When the dominant ACS consists of more
than one simple ACS, its core is the union of their cores, and its periphery the union
of their peripheries. Note that the periphery nodes by definition do not feed back
into the core; in this sense they are parasites that draw sustenance from the core.
The core, by virtue of its irreducible property (positive feedback loops within its
structure, or cooperativity), is self-sustaining, and also supports the periphery. The
λ1 of the ACS is determined solely by the structure of its core [12, 16].

The innovation at n = 3022, one of 907 such innovations in this run, is an “incre-
mental” one in the sense that it does not change the core (and hence does not change
λ1). However, such incremental innovations set the stage for major transformations
later on. The ability of a core to tolerate parasites can be a boon or a bane, as we
will see below.

5.6.4 Growth of the Core of the Organization: Parasites Become
Symbionts

Another kind of innovation that occurs in the growth phase is illustrated in Fig. 5.2l,
m. In Fig. 5.2l, the dominant ACS has two disjoint components. One component,
consisting of nodes 41 and 98, is just a two-cycle without any periphery. The other
component has a two-cycle (nodes 26 and 90) as its core that supports a large periph-
ery. Node 39 in Fig. 5.2l is eliminated at n = 3489. The new node 39 (Fig. 5.2m)
gets an incoming link from the periphery of the larger component of the dominant
ACS and an outgoing link to the core of the same ACS. This results in expansion
of the core, with several nodes getting added to it at once and λ1 increasing. This
example illustrates two distinct processes:

i. This innovation co-opts a portion of the parasitic periphery into the core. This
strengthens cooperation: 26 contributes to the well-being of 90 (and hence to its
own well-being) along two paths in Fig. 5.2m instead of only one in Fig. 5.2l.
This is reflected in the increase of λ1; λ1 = 1.15 and 1 for Fig. 5.2m, l,
respectively. The larger the periphery, the greater the probability of such core-
enhancing innovations. This innovation is an example of how tolerance and
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support of a parasitic periphery pays off for the ACS. Part of the parasitic periph-
ery turns symbiont. Note that this innovation builds upon the structure generated
by previous incremental innovations. In Fig. 5.1b each rise in λ1 indicates an
enlargement of the core [12, 16]. There are 40 such events in this run. As a result
of a series of such innovations that add to the core and periphery, the dominant
ACS eventually grows to span the entire graph at n = 3880, Fig. 5.2n, and the
system enters the organized phase.

ii. This example also highlights the competition between different ACSs. The two-
cycle of nodes 41 and 98 was populated in Fig. 5.2l, but is unpopulated in
Fig. 5.2m. Since the core of the other ACS becomes stronger than this two-cycle,
the latter is driven out of business.

5.6.5 Core-Shift 1: Takeover by a New Competitor

Interestingly, the same cycle of nodes 41 and 98 that is driven out of business at
n = 3489 had earlier (when it first arose at n = 3387) driven the two-cycle of nodes
26 and 90 out of business. Up to n = 3, 386 (Fig. 5.2h), the latter two-cycle was
the only cycle in the graph. At n = 3, 387 node 41 was replaced and formed a new
two-cycle with node 98 (Fig. 5.2i). Note that at n = 3, 387 only the new two-cycle
is populated; all the nodes of the ACS that was dominant at the previous time step
(including its core) are unpopulated. We call such an event, where there is no overlap
between the old and the new cores, a core shift (a precise definition is given in [16]).
This innovation is an example of how a new competitor takes over.

Why does the new two-cycle drive the old one to extinction? The reason is that
the new two-cycle is downstream of the old one (node 41 has also acquired an
incoming link from node 39; thus there exists a directed path from the old cycle
to the new one, but none from the new to the old). Both two-cycles have the same
intrinsic strength, but the new two-cycle does better than the old because it draws
sustenance from the latter without feeding back. In general if the graph contains
two nonoverlapping irreducible subgraphs A and B, let λ1(A) and λ1(B) be the
largest eigenvalues of the submatrices corresponding to A and B. If λ1(A) > λ1(B),
then A wins (i.e., in the attractor of (5.1), nodes of A and all nodes downstream
of A are populated), and nodes of B are populated if B is downstream of A and
unpopulated otherwise. When λ1(A) = λ1(B), then if A and B are disconnected,
both are populated, and if one of them is downstream of the other, it wins and
the other is unpopulated [12, 16]. At n = 3387 the latter situation applies (the
λ1 of both cycles is 1, but one is downstream of the other; the downstream cycle
wins at the expense of the upstream one). Examples of new competitors taking
over because their λ1 is higher than that of the existing ACS are also seen in the
model.

In the displayed run, two core-shifts of this kind occurred. The first was at
n = 3387, which has been discussed above. One more occurred at n = 6062, which
was of an identical type with a new downstream two-cycle driving the old two-cycle
to extinction. Both these events resulted in a sharp drop in s1 (Fig. 5.1b). A core-
shifting innovation is a traumatic event for the old core and its periphery. This is
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reminiscent of the demise of the horse-drawn carriage industry upon the appearance
of the automobile, or the decimation of anaerobic species upon the advent of aerobic
ones.

At n = 3403 (Fig. 5.2k) an interesting event (that is not an innovation) happens.
Node 38 is hit and the new node 38 has no incoming link. This cuts the connection
that existed earlier (see Fig. 5.2j) between the cycle 98–41 and the cycle 26–90. The
graph now has two disjoint ACSs with the same λ1 (see Fig. 5.2k). As mentioned
above, in such a situation both ACSs coexist; the cycle 26–90 and all nodes depen-
dent on it once again become populated. Thus the old core has staged a “come-back”
at n = 3402, leveling with its competitor. As we saw in the previous subsection, at
n = 3489 the descendant of this organization strengthens its core and in fact drives
its competitor out of business (this time permanently).

It is interesting that node 38, though unpopulated, still plays an important role
in deciding the structure of the dominant ACS. It is purely a matter of chance that
the core of the old ACS, the cycle 26–90, did not get hit before node 38. (All nodes
with Xi = 0 have an equal probability of being replaced in the model.) If it had
been destroyed between n = 3387 and 3402, then nothing interesting would have
happened when node 38 was removed at n = 3403. In that case the new competitor
would have won. Examples of that are also seen in the runs. In either case an ACS
survives and expands until it spans the entire graph. It is worth noting that, while
overall behavior like the growth of ACSs (including their average time scale of
growth) is predictable, the details are shaped by historical accidents.

5.6.6 Core-Shift 2: Takeover by a Dormant Innovation

A different kind of innovation occurs at n = 4696. At the previous time step, node
36 is the least populated node (Fig. 5.2o). The new node 36 forms a two-cycle with
node 74 (Fig. 5.2p). This two-cycle remains part of the periphery since it does not
feed back into the core; this is an incremental innovation at this time since it does
not enhance λ1. However, because it generates a structure that is intrinsically self-
sustaining (a two-cycle), this innocuous innovation is capable of having a dramatic
impact in the future.

At n = 5041, Fig. 5.2q, the core has shrunk to five nodes (the reasons for this
decline are briefly discussed later). The 36–74 cycle survives in the periphery of the
ACS. Now it happens that node 85 is one of those with the least Xi and gets picked
for removal at n = 5042. Thus of the old core only the two-cycle 26–90 is left. But
this is now upstream from another two-cycle 74–36 (see Fig. 5.2r). This is the same
kind of structure as discussed above, with one cycle downstream from another. The
downstream cycle and its periphery wins; the upstream cycle and all other nodes
downstream from it except nodes 36, 74, and 11 are driven to extinction. This event
is also a core-shift and is accompanied by a huge crash in the s1 value (see Fig. 5.1b).
This kind of an event is what we call a “takeover by a dormant innovation” [12]. The
innovation 36–74 occurred at n = 4696. It lay dormant until n = 5042 when the
old core had become sufficiently weakened that this dormant innovation could take
over as the new core.
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In this run 5 of the 1,070 innovations were dormant innovations. Of them only
the one at n = 4696 later caused a core-shift of the type discussed above. The others
remained as incremental innovations.

At n = 8233 a complete crash occurs. The core is a simple three-cycle (Fig. 5.2s)
at n = 8232 and node 50 is hit, completely destroying the ACS. λ1 drops to zero
accompanied by a large crash in s1. Within O(s) time steps most nodes are hit
and replaced and the graph has become random like the initial graph. The resem-
blance between the initial graph at n = 1 (Fig. 5.2a) and the graph at n = 10, 000
(Fig. 5.2u) is evident. This event is not an innovation but rather the elimination of a
keystone species [12].

5.7 Recognizing Innovations: A Structural Classification

The six categories of innovations discussed above occur in all the runs of the model
and their qualitative effects are the same as described above. The above description
was broadly chronological. We now describe these innovations structurally. Such a
description allows each type of innovation to be recognized the moment it appears;
one does not have to wait for its consequences to be played out. The structural
recognition in fact allows us to predict qualitatively the kinds of impact it can have
on the system. A mathematical classification of innovations is given in Appendix B;
the description here is a plain-English account of that (with some loss of precision).

As is evident from the discussion above, positive feedback loops or cooperative
structures in the graph crucially affect the dynamics. The character of an innova-
tion will also depend upon its relationship with previously existing feedback loops
and the new feedback loops it creates, if any. Structurally an irreducible subgraph
captures the notion of feedback in a directed graph. By definition, since there exists
a directed path (in both directions) between every pair of nodes belonging to an
irreducible subgraph, each node exerts an influence on the other (albeit possibly
through other intermediaries).

Thus the first major classification depends on whether the new node creates a
new cycle and hence a new irreducible subgraph. One way of determining whether
it does so is to identify the nodes downstream of the new node (namely those to
which there is a directed path from this node) and those that are upstream (from
which there is a directed path to this node). If the intersection of these two sets is
empty the new node has not created any new irreducible subgraph, otherwise it has.

A. Innovations in which the new node does not create any new cycles and hence
no new irreducible subgraph is created. These innovations will have a relatively
minor impact on the system. There are two subclasses here, which depend upon
the context: whether an irreducible subgraph already exists somewhere else in
the graph or not.

A1. Before the innovation, the graph does not contain an irreducible sub-
graph. Then the innovation is a shortlived one discussed in Sect. 5.6.1
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(Fig. 5.2b, c). There is no ACS before or after the innovation. The largest
eigenvalue λ1 of the adjacency matrix of the graph being zero both before
and after such an innovation is a necessary and sufficient condition for it
to be in this class. Such an innovation is doomed to die when the first ACS
arises in the graph for the reasons discussed in the previous section.

A2. Before the innovation an irreducible subgraph already exists in the graph.
One can show that such an innovation simply adds to the periphery of the
existing dominant ACS, leaving the core unchanged. Here the new node
gets a nonzero Xk because it receives an incoming link from one of the
nodes of the existing dominant ACS; it has effectively latched on to the lat-
ter like a parasite. This is an incremental innovation (Sect. 5.6.3, Fig. 5.2f,
g). It has a relatively minor impact on the system at the time it appears.
Since it does not modify the core, the ratios of the Xi values of the core
nodes remain unchanged. However, it does eat up some resources (since
Xk > 0) and causes an overall decline in the Xi values of the core nodes.
λ1 is nonzero and does not change in such an innovation.

B. Innovations that do create some new cycle. Thus a new irreducible subgraph
gets generated. Because these innovations create new feedback loops, they have
a potentially greater impact. Their classification depends upon whether or not
they modify the core and the extent of the modification caused; this is directly
correlated with their immediate impact.

B1. The new cycles do not modify the existing core. If the new irreducible sub-
graph is disjoint from the existing core and its intrinsic λ1 is less than that
of the core, then the new irreducible subgraph will not modify the existing
core but will become part of the periphery. Like incremental innovations,
such innovations cause an overall decline in the Xi values of the core nodes
but do not disturb their ratios and the value of λ1. However, they differ
from incremental innovations in that the new irreducible subgraph has self-
sustaining capabilities. Thus in the event of a later weakening of the core
(through elimination of some core nodes), these innovations have the poten-
tial to cause a core-shift, wherein the irreducible graph generated in the
innovation becomes the new core. At that point it would typically cause a
major crash in the number of populated species, as the old core and all its
periphery that is not supported by the new core would become depopulated.
Such innovations are the dormant innovations (Sect. 5.6.6, Fig. 5.2o, p).
Note that not all dormant innovations cause core-shifts. Most in fact play
the same role as incremental innovations.

B2. Innovations modify the existing core. If the new node is part of the new core,
the core has been modified. The classification of such innovations depends
on the kind of core that exists before and the nature of the modification.

B21. The existing core is nonempty, i.e., an ACS already exists before the
innovation in question arrives.
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B211. The innovation strengthens the existing core. In this case the
new node receives an incoming link from the existing dominant
ACS and has an outgoing link to the existing core. The existing
core nodes get additional positive feedback, and λ1 increases.
Such an event can cause some members of the parasitic periph-
ery to be co-opted into the core. These are the core-enhancing
innovations discussed in Sect. 5.6.4 (Fig. 5.2l, m).

B212. The new irreducible subgraph is disjoint from the existing core
and “stronger” than it. “Stronger” means that the intrinsic λ1
of the new irreducible graph is greater than or equal to the λ1
of the existing core, and in the case of equality it is down-
stream from the existing core. Then it will destabilize the exist-
ing core and become the new core itself, causing a core-shift.
The takeovers by new competitors, discussed in Sect. 5.6.5
(Fig. 5.2h, i) belong to this class.

B22. The existing core is empty, i.e., no ACS exists before the arrival of
this innovation. Then the new irreducible graph is the core of the new
ACS that is created at this time. This event is the beginning of a self-
organizing phase of the system. This is the birth of an organization
discussed in Sect. 5.6.2 (Fig. 5.2d, e). This is easily recognized graph
theoretically as λ1 jumps from zero to a positive value.

Note that the ‘recognition’ of the class of an innovation is contingent upon know-
ing graph-theoretic features like the core, periphery, λ1, and being able to determine
the irreducible graph created by the innovation. The above rules are an analytic clas-
sification of all innovations in the model, irrespective of values of the parameters p
and s. Note, however, that their relative frequencies depend upon the parameters. In
particular, note that innovations of class A require the new node to have at least one
link (an incoming one) and class B require at least two links (an incoming and an
outgoing one). Thus as the connection probability p declines, for fixed s, the latter
innovations (the more consequential ones) become less likely.

5.8 Some Possible General Lessons

In this model, due to the simplicity of the population dynamics, it is possible to make
an analytic connection between the graph structure produced by various innovations
and their subsequent effect on the short- and long-term dynamics of the system. In
addition, we are able to completely enumerate the different types of innovations and
classify them purely on the basis of their graph structure. Identifying innovations
and understanding their effects is much more complicated in real-world processes
in both biological and social systems. Nevertheless, the close parallel between the
qualitative categories of innovation we find in our model and real-world examples
means that there may be some lessons to be learnt from this simple mathematical
model.
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One broad conclusion is that in order to guess what might be an innovation, we
need an understanding of how the patterns of connectivity influence system dynam-
ics and vice versa. The inventor of a new product or a venture capitalist asks: what
inputs will be needed, and whose needs will the product connect to? Given these
potential linkages in the context of other existing nodes and links, what flows will
actually be generated along the new links? How will these new flows impact the
generation of other new nodes and links and the death of existing ones and how that
will feed back into the flows again? The detailed rules of this dynamics are system
dependent, but presumably successful entrepreneurs have an intuitive understanding
of this very dynamics.

In our model, as in real processes, there are innovations that have an immediate
impact on the dynamics of the system (e.g., the creation of the first ACS and core-
shifting innovations) and ones that have little or no immediate impact. Innovation
in real processes analogous to the former are probably easier to identify because
they cause the dynamics of the system to immediately change dramatically (in this
model, triggering a new round of self-organized growth around a new ACS). Of the
latter, the most interesting innovations are the ones that eventually do have a large
impact on the dynamics: the dormant innovations. In this model dormant innova-
tions sometimes lead to a dramatic change in the dynamics of the system at a later
time. This suggests that in real-world processes too it might be important, when
observing a sudden change in the dynamics, to examine innovations that occurred
much before the change. Of course, in the model and in real processes, there are
innovations that have nothing to do with any later change in the dynamics. In real
processes it would be very difficult to distinguish such innovations from dormant
innovations, which do cause a significant impact on the dynamics. The key feature
distinguishing a dormant innovation from incremental innovations in this model is
that a dormant innovation creates an irreducible structure that can later become the
core of the graph.

This suggests that in real-world processes it might be useful to find an analogy of
the core and periphery of the system and then focus on innovations or processes that
alter the core or create structures that could become the core. In the present model,
it is possible to define the core in a purely graph-theoretic manner. In real systems
it might be necessary to define the core in terms of the dynamics. One possible
generalization is based on the observation that removal of a core node causes the
population growth rate to reduce (due to the reduction of λ1) while the removal of
a periphery node leaves λ1 unchanged. This could be used as an algorithmic way of
identifying core nodes or species in more complex mathematical models, or in real
systems where such testing is possible.

5.9 Discussion

As in real systems, the model involves an interplay between the force of selec-
tion that weeds out underperforming nodes, the influx of novelty that brings in new
nodes and links, and an internal (population) dynamics that depends upon the mutual
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interactions. In an environment of nonautocatalytic structures, a small ACS is very
successful and drives the other nodes to the status of “have-nots” (Xi = 0). The
latter are eliminated one by one, and if their replacements “latch on” to the ACS,
they survive, else they suffer the same fate. The ACS “succeeds” spectacularly:
eventually all the nodes join it. But this sets the stage for enhanced internal compe-
tition between the members of the ACS. Before the ACS spanned the graph, only
have-nots, nodes outside the dominant ACS, were eliminated. After spanning the
eliminated node must be one of the “haves”, a member of the ACS (whichever has
the least Xi ). This internal competition weakens the core and enhances the proba-
bility of collapse due to core-transforming innovations or elimination of keystone
species. Thus the ACS’s very success creates the circumstances that bring about its
destruction.6 Both its success and a good part of its destruction are due to innova-
tions (see also [12]).

It is of course true that we can describe the behavior of the system in terms
of attractors of the dynamics as a function of the graph without recourse to the
word “innovation”. The advantage in introducing the notion of innovation as defined
above is that it captures a useful property of the dynamics in terms of which many
features can be readily described. Further, we hope that the examples discussed
above make out a reasonable case that this notion of innovation is sufficiently close
(as close as is possible in an idealized model such as this) to the real thing to help
in discussions of the latter.

In the present model, the links of the new node are chosen randomly from a
fixed probability distribution. This might be appropriate for the prebiotic chemical
scenario for which the model was constructed, but is less appropriate for biological
systems and even less for social systems. While there is always some stochasticity,
in these systems the generation of novelty is conditioned by the existing context,
and in social systems also by the intentionality of the actors. Thus the ensemble of
choices from which the novelty is drawn also evolves with the system. This feedback
from the recent history of system states to the ensemble of system perturbations,
though not implemented in the present version of the model, certainly deserves
future investigation.

Appendix A: Definitions and Proofs

In this Appendix we collect some useful facts about the model. These and other
properties can be found in [5, 13, 17, 18].

Derivation of Equation (5.1)

Let i ∈ {1, . . . , s} denote a chemical (or molecular) species in a well-stirred chemi-
cal reactor. Molecules can react with one another in various ways; we focus on only

6 For related discussion of discontinuous transitions in other systems, see [22–24].
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one aspect of their interactions: catalysis. The catalytic interactions can be described
by a directed graph with s nodes. The nodes represent the s species and the existence
of a link from node j to node i means that species j is a catalyst for the production
of species i . In terms of the adjacency matrix, C = (ci j ) of this graph, ci j is set to
unity if j is a catalyst of i and is set to zero otherwise. The operational meaning of
catalysis is as follows:

Each species i will have an associated nonnegative population yi in the reactor
that changes with time. Let species j catalyze the ligation of reactants A and B to

form the species i , A + B
j→ i . Assuming that the rate of this catalyzed reaction

is given by the Michaelis–Menten theory of enzyme catalysis, ẏi = Vmaxab
y j

KM+y j

[25], where a, b are the reactant concentrations, and Vmax and KM are constants
that characterize the reaction. If the Michaelis constant KM is very large this can be
approximated as ẏi ∝ y j ab. Combining the rates of the spontaneous and catalyzed
reactions and also putting in a dilution flux φ, the rate of growth of species i is
given by ẏi = k(1+ νy j )ab− φyi , where k is the rate constant for the spontaneous
reaction, and ν is the catalytic efficiency. Assuming the catalyzed reaction is much
faster than the spontaneous reaction, and that the concentrations of the reactants are
nonzero and fixed, the rate equation becomes ẏi = K y j−φyi , where K is a constant.
In general because species i can have multiple catalysts, ẏi = ∑s

j=1 Ki j y j − φyi ,
with Ki j ∼ ci j . We make the further idealization Ki j = ci j , giving

ẏi =
s∑

j=1

ci j y j − φyi . (5.2)

The relative population of species i is by definition xi ≡ yi/
∑s

j=1 y j . As 0 ≤
xi ≤ 1,

∑s
i=1 xi = 1, x ≡ (x1, . . . , xs)

T ∈ J . Taking the time derivative of xi and
using (5.2) it is easy to see that ẋi is given by (5.1). Note that the φ term, present in
(5.2), cancels out and is absent in (5.1).

The Attractor of Equation (5.1)

A graph described by an adjacency matrix C has an eigenvalue λ1(C) that is a real,
non-negative number that is greater than or equal to the modulus of all other eigen-
values. This follows from the Perron–Frobenius theorem [21] and this eigenvalue is
called the Perron–Frobenius eigenvalue of C .
The attractor X of (5.1) is an eigenvector of C with eigenvalue λ1(C).
Since (5.1) does not depend on φ, we can set φ = 0 in (5.2) without loss of gener-
ality for studying the attractors of (5.1). For fixed C the general solution of (5.2) is
y(t) = eCt y(0), where y denotes the s-dimensional column vector of populations. It
is evident that if yλ ≡ (yλ1 , . . . , yλs ) viewed as a column vector is a right eigenvector
of C with eigenvalue λ, then xλ ≡ yλ/

∑s
i yλi is a fixed point of (5.1). Let λ1 denote

the eigenvalue of C that has the largest real part; it is clear that xλ1 is an attractor of
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(5.1). By the theorem of Perron–Frobenius for nonnegative matrices [21], λ1 is real
and ≥ 0 and there exists an eigenvector xλ1 with xi ≥ 0. If λ1 is nondegenerate, xλ1

is the unique asymptotically stable attractor of (5.1), xλ1 = (X1, . . . , Xs).

The Attractor of Equation (5.1) When There Are No Cycles

For any graph with no cycles, in the attractor only the nodes at the ends of the
longest paths are nonzero. All other nodes are zero.
Consider a graph consisting only of a linear chain of r + 1 nodes, with r links,
pointing from node 1 to node 2, node 2 to node 3, etc. Node 1 (to which there is
no incoming link) has a constant population y1 because the right-hand side (rhs)
of (5.2) vanishes for i = 1 (taking φ = 0). For node 2, we get ẏ2 = y1, hence
y2(t) = y2(0)+ y1t ∼ t for large t . Similarly, it can be seen that yk grows as tk−1.
In general, it is clear that for a graph with no cycles, yi ∼ tr for large t (when
φ = 0), where r is the length of the longest path terminating at node i . Thus, nodes
with the largest r dominate for sufficiently large t . Because the dynamics (5.1) does
not depend upon the choice of φ, Xi = 0 for all i except the nodes at which the
longest paths in the graph terminate.

Graph-Theoretic Properties of ACSs

i. An ACS must contain a closed walk.
ii. If a graph, C, has no closed walk then λ1(C) = 0.

iii. If a graph, C, has a closed walk then λ1(C) ≥ 1.
Consequently:

iv. If a graph C has no ACS then λ1(C) = 0.
v. If a graph C has an ACS then λ1(C) ≥ 1.

i. Let A be the adjacency matrix of a graph that is an ACS. Then by definition,
every row of A has at least one nonzero entry. Construct A′ by removing, from
each row of A, all nonzero entries except one that can be chosen arbitrarily. Thus
A′ has exactly one nonzero entry in each row. Clearly the column vector x =
(1, 1, . . . , 1)T is an eigenvector of A′ with eigenvalue 1 and hence λ1(A′) ≥ 1.
Proposition iii therefore implies that A′ contains a closed walk. Because the
construction of A′ from A involved only removal of some links, it follows that
A must also contain a closed walk.

ii. If a graph has no closed walk then all walks are of finite length. Let the length
of the longest walk of the graph be denoted r . If C is the adjacency matrix of a
graph then (Ck)i j equals the number of distinct walks of length k from node j
to node i . Clearly Cm = 0 for m > r . Therefore all eigenvalues of Cm are
zero. If λi are the eigenvalues of C then λk

i are the eigenvalues of Ck . Hence,
all eigenvalues of C are zero, which implies λ1 = 0. This proof was supplied by
V. S. Borkar.
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iii. If a graph has a closed walk then there is some node i that has at least one
closed walk to itself, i.e., (Ck)i i ≥ 1, for infinitely many values of k. Because
the trace of a matrix equals the sum of the eigenvalues of the matrix, we have∑s

i=1(C
k)i i =∑s

i=1 λ
k
i , where λi are the eigenvalues of C . Thus,

∑s
i=1 λ

k
i ≥ 1,

for infinitely many values of k. This is only possible if one of the eigenvalues λi

has a modulus ≥ 1. By the Perron–Frobenius theorem, λ1 is the eigenvalue with
the largest modulus, hence λ1 ≥ 1. This proof was supplied by R. Hariharan.

iv. and (v) follow from the above.

Dominant ACS of a Graph

If a graph has (one or more) ACSs, i.e., λ1 ≥ 1, then the subgraph corresponding to
the set of nodes i for which Xi > 0 is an ACS.
Renumber the nodes of the graph so that xi > 0 only for i = 1, . . . , k. Let C
be the adjacency matrix of this graph. Since X is an eigenvector of the matrix C ,
with eigenvalue λ1, we have

∑s
j=1 ci j X j = λ1 Xi ⇒ ∑k

j=1 ci j X j = λ1 Xi . Since
Xi > 0 only for i = 1, . . . , k it follows that for each i ∈ {1, . . . , k} there exists a j
such that ci j > 0. Hence the k× k submatrix C ′ ≡ (ci j ), i, j = 1, . . . , k has at least
one nonzero entry in each row. Thus each node of the subgraph corresponding to this
submatrix has an incoming link from one of the other nodes in the subgraph. Hence
the subgraph is an ACS. We call this subgraph the dominant ACS of the graph.

Time Scales for Appearance and Growth of the Dominant ACS

The probability for an ACS to be formed at some graph update in a graph that
has no cycles can be closely approximated by the probability of a two-cycle (the
simplest ACS with one-cycles being disallowed) forming by chance, which is p2s
(the probability that in the row and column corresponding to the replaced node in
C any matrix element and its transpose are both assigned unity). Thus, the “aver-
age time of appearance” of an ACS is τa = 1/p2s, and the distribution of times
of appearance is P(na) = p2s(1 − p2s)na−1. This approximation is better for
small p.

Assuming that the possibility of a new node forming a second ACS is rare enough
to neglect, and that the dominant ACS grows by adding a single node at a time, one
can estimate the time required for it to span the entire graph. Let the dominant
ACS consist of s1(n) nodes at time n. The probability that the new node gets an
incoming link from the dominant ACS and hence joins it is ps1. Thus in 	n graph
updates, the dominant ACS will grow, on average, by 	s1 = ps1	n nodes. There-
fore s1(n) = s1(na)exp((n−na)/τg), where τg = 1/p, na is the time of appearance
of the first ACS and s1(na) is the size of the first ACS. Thus s1 is expected to grow
exponentially with a characteristic timescale τg = 1/p. The time taken from the
appearance of the ACS to its spanning is τg ln(s/s1(na)).
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Appendix B: Graph-Theoretic Classification of Innovations

In the main text we defined an innovation to be the new structure created by the
addition of a new node, when the new node has a nonzero population in the new
attractor. Here, we present a graph-theoretic hierarchical classification of innova-
tions (see Fig. 5.3). At the bottom of this hierarchy we recover the six categories of
innovations described in the main text.

Some notation follow: We need to distinguish between two graphs, one just
before the new node is inserted, and one just after. We denote them by Ci and Cf

respectively, and their cores by Qi and Qf . Note that a graph update event consists
of two parts – the deletion of a node and the addition of one. Ci is the graph after the
node is deleted and before the new node is inserted. The graph before the deletion
will be denoted C0; Q0 will denote its core7. If a graph has no ACS, its core is the
null set.

The links of the new node may be such that new cycles arise in the graph (that
were absent in Ci but are present in Cf). In this case the new node is part of a
new irreducible subgraph that has arisen in the graph. N will denote the maximal
irreducible subgraph which includes the new node. If the new node does not create
new cycles, N = ∅. If N �= ∅, then N will either be disjoint from Qf or will
include Qf (it cannot partially overlap with Qf because of its maximal character).
The structure of N and its relationship with the core before and after the addition
determines the nature of the innovation. With this notation all innovations can be
grouped into two classes:

A. Innovations that do not create new cycles, N = ∅. This implies Qf = Qi
because no new irreducible structure has appeared and therefore the core of
the graph, if it exists, is unchanged.

B. Innovations that do create new cycles, N �= ∅. This implies Qf �= ∅ because if
a new irreducible structure is created then the new graph has at least one ACS
and therefore a nonempty core.

Class A can be further decomposed into two classes:

A1. Qi = Qf = ∅. In other words, the graph has no cycles both before and after the
innovation. This corresponds to shortlived innovations discussed in Sect. 5.6.1
(Fig. 5.2b, c).

A2. Qi = Qf �= ∅. In other words, the graph had an ACS before the innovation,
and its core was not modified by the innovation. This corresponds to incre-
mental innovations discussed in Sect. 5.6.3 (Fig. 5.2f, g).

7 Most of the time the deleted node (being the one with the least relative population) is outside the
dominant ACS of C0 or in its periphery. Thus, in most cases the core is unchanged by the deletion:
Qi = Q0. However, sometimes the deleted node belongs to Q0. In that case Qi �= Q0. In most
such cases, Qi is a proper subset of Q0. In very few (but important) cases, Qi ∩ Q0 = ∅ (the null
set). In these latter cases, the deleted node is a keystone node [16]; its removal results in a “core
shift”.
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Class B of innovations can also be divided into two subclasses:

B1. N �= Qf. If the new irreducible structure is not the core of the new graph, then
N must be disjoint from Qf. This can only be the case if the old core has not
been modified by the innovation. Therefore N �= Qf necessarily implies that
Qf = Qi. This corresponds to dormant innovations discussed in Sect. 5.6.6
(Fig. 5.2o, p).

B2. N = Qf, i.e., the innovation becomes the new core after the graph update.
This is the situation where the core is transformed due to the innovation. The
“core-transforming theorem” [12, 13, 18] states that an innovation of type B2
occurs whenever either of the following conditions are true:

(a) λ1(N ) > λ1(Qi) or
(b) λ1(N ) = λ1(Qi) and N is downstream of Qi.

Class B2 can be subdivided as follows:

B21. Qi �= ∅, i.e., the graph contained an ACS before the innovation. In this case
an existing core is modified by the innovation.

B22. Qi = ∅, i.e., the graph had no ACS before the innovation. Thus, this kind
of innovation creates an ACS in the graph. It corresponds to the birth of a
organization discussed in Sect. 5.6.2 (Fig. 5.2d, e).

Finally, class B21 can be subdivided:

B211. Qi ⊂ Qf. When the new core contains the old core as a subset we get
an innovation that causes the growth of the core, discussed in Sect. 5.6.4
(Fig. 5.2l, m).

B212. Qi and Qf are disjoint (note that it is not possible for Qi and Qf to partially
overlap, else they would form one big irreducible set which would then be
the core of the new graph and Qi would be a subset of Qf). This is an inno-
vation where a core-shift is caused due to a takeover by a new competitor,
discussed in Sect. 5.6.5 (Fig. 5.2h, i).

Note that each branching above is into mutually exclusive and exhaustive classes.
This classification is completely general and applicable to all runs of the system.
Figure 5.3 shows the hierarchy obtained using this classification.

Acknowledgments S.J. thanks John Padgett for discussions.
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Part II
From Random to Complex Structures:

The Concept of Self-Organization for
Galaxies, Asters, and Spindles



Chapter 6
How Stochastic Dynamics Far from Equilibrium
Can Create Nonrandom Patterns

Gunter M. Schütz

Abstract We describe several models for interacting particle systems far from
thermal equilibrium and show that for both deterministic and stochastic dynamics
ordered patterns decay or emerge. For these models we demonstrate in detail how
random processes are capable of generating patterns with high complexity (defined
by the Shannon information) in a short period of time.

6.1 Some Very Small Numbers

One of the big miracles of evolution is the emergence of highly complex, func-
tional structures. To be astounded one does not need to consider the complexity of
human beings or not even that of bacteria. It suffices to study the blueprint for the
functionality of a cell, the DNA, to start wondering how this could have evolved
in the course of time, just by the action of purposeless chemical processes. In fact,
there are a large number of people who wonder so much that they cannot imagine
that such an evolution could have taken place without the purposeful action of a
supreme “engineer”, usually identified with some notion of divine action. Evolution
is a theme where even today Science and Religion meet.

While “meeting” of religion (of any persuasion) and science may turn into a very
enlightening encounter for scientists and theologians alike, an unhealthy entangle-
ment of the two has taken place in the last decade, known under the label “Intelligent
Design” (ID). This term refers to a movement, prominent in the US, but existent
worldwide, that claims to be able to provide hard scientific evidence for purposeful
intervention of some supreme being in the process of evolution. One of the tenets of
their belief is the allegedly negligibly small probability that an information-carrying
structure such as DNA could have evolved by natural processes that are within the
scope of science as we know it.
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It will transpire from the discussion below that this belief originates in a profound
misunderstanding of the relation between random processes and the significance
of Shannon information. However, one does not need to be an ID protagonist to
be surprised what processes that are entirely random (in the sense of being unpre-
dictable by any law of nature) can achieve. Not only biological evolution, but also
simpler pattern formation processes in nature intrigue because they are often driven
by processes where randomness plays an important part. How can that be?

To sharpen the question, we consider a well-known problem, viz. the probability
that a monkey who wildly hacks symbols into a computer would in this way acci-
dentally type a complete poem by Shakespeare. Will it ever happen, if we give the
monkey enough time (say, the age of the earth)? Maybe not, so let us be a bit more
modest and hope only for the first two lines of the short piece

True, I talk of dreams,
Which are the children of an idle brain,
Begot of nothing but vain fantasy.

from Romeo and Juliet, Act 1, Scene 4. The first two lines have 64 characters,
including commas and spaces. If we assume, for argument’s sake, that the computer
keyboard has 64 keys, and we let the monkey type 64 characters, then the probability
that he would recreate Shakespeare’s beautiful lines (ignoring capitals) is

p = (1/64)64 = 2−384 .

To put this result into a language more appropriate for dealing with texts we use
the Shannon definition of information

I = − log2 p . (6.1)

Based on the hypothetical 64-character set of the keyboard, which corresponds to
6 bit encoding of an individual character, the information content of the Shakespeare
text is then 6 × 64 = 384 bit, corresponding to the probability we just computed.
Generally, the magnitude of the Shannon information of a structure may be taken
as a measure of its complexity. A given word of, say, just four letters can easily
be generated by the action of a monkey. It has low complexity. A long sentence
with a high information content is much more complex. Monkeys are not capable
of generating them.

Therefore, if we see a poem by Shakespeare on a computer screen and ask our-
selves how it got there, we are led to conclude that it got there by a sequence of
deterministic events: From a data file (or other data storage device) to the screen, by
some other deterministic process to the storage device, and so on. There is no prob-
lem with understanding deterministic transmission of complex information via dif-
ferent one-to-one encoding schemes. Ultimately, however, if we follow the flow of
such deterministic events backwards, we are faced with the question: Where did the
information originally come from? From deterministic processes in Shakespeare’s
brain? If this is the right answer, we can in principle follow these processes further
back in time until we reach the Big Bang! This formal reasoning, which does not
look into the details, is evidently not a meaningful procedure of scientific inquiry
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into the origin of complex information, not least because at some stage quantum
mechanical randomness will enter into the deterministic flow and then we are back
to the problem of small probabilities.

The probability p computed above is evidently a pretty small number, but to
appreciate how small it really is, and that it is a real problem within the framework
of the formal arguments presented so far, let us consider the following. According to
various sources in the internet, the total number of baryons in the known universe is
somewhere around 1080 (this may be wrong, but for the following arguments it does
not matter if we are off by a few or even many orders of magnitude). On the other
hand, the age of the earth is approximately 1017 s. Let us now assume that instead of
a monkey, each baryon in the universe somehow triggers the creation of a complete
random string of 64 characters on our computer keyboard whenever it somehow
changes its quantum state. Let this happen every femtosecond (10−15 s). Then the
total number of attempts to recreate Shakespeare’s two lines by this random process
would be

1017 × 1015 × 1080 = 10112 ≈ 2373 .

Very roughly speaking we can identify this number with all baryonic processes that
have ever taken place on the femtosecond scale in the observable universe since the
formation of the earth.

Now we can compute the probability that all baryons in the known universe that
have been trying to generate this text with a frequency of 1015 per second since the
formation of the earth some 10 billion years ago have been successful at least once.
Since the probability of obtaining the Shakespeare text in one attempt is 2−384, the
probability ps of successfully creating this text at least once after 2373 attempts is

ps = 1−
(

1− 2−384
)2373

≈ 5× 10−4 . (6.2)

In other words, the probability of successfully recreating the lines by Shakespeare
(and only the first two) through all baryonic processes – fantastically quick pro-
cesses – that have ever taken place in the universe since the formation of the earth
is only about 5 × 10−4! This example should give us some idea how unlikely the
random generation of even a short specified text of just 384 bits is.

It is trivial to translate this into the probability that our 1080 fantastically fast
baryonic random text generators would generate a specific string of DNA. There
are four letters in a DNA “text”, so each letter represents a 2-bit piece of infor-
mation. Hence the probability of generating a given, fairly short DNA sequence of
only 3 × 64 = 192 letters is equal to that of generating the Shakespeare text with
64 characters, it has the same Shannon information of 384 bits. Therefore the prob-
ability that all baryonic process in the universe could have caused the creation a
specific DNA string of that length during the existence of the earth in this random
fashion is only about 5× 10−4. Of course, the interpretation of the total number of
baryonic processes should not be taken too literally, since one can hardly claim that
any sort of change of the quantum state of a baryon would happen every 10−15 s.
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Nevertheless, this interpretation provides a rough idea of how vastly we are exag-
gerating the chance of generating a very short DNA text in the monkey fashion.
Chemical processes that generate DNA texts occur definitely with much smaller
frequencies and with many orders of magnitude less chemical agents than baryons
in the universe. Therefore the number of all chemical processes that have taken place
on the earth (or even in the observable universe) is smaller by many orders of magni-
tude than 2373. Then the number of potentially useful chemical processes, involving
the right chemicals for DNA, is again smaller by many orders of magnitude, leading
to a ridiculously small probability of success ps .

A final, still simpler example: What is the probability of generating a given binary
string, say, the alternating pattern 010101010 . . . 0101 of length L = 384? The
Shannon information is again 384 bits and again we obtain the same probability
estimates as for the Shakespeare text and the DNA string. The probability that a
monkey would type the two lines of Shakespeare is the same as if the monkey (or
anyone else) would toss a coin and obtain a sequence 010101 . . . of length 384. Cor-
respondingly, the probability that all baryons in the universe would have triggered
the generation of this pattern during the lifetime of the earth has only probability
0.0005. In terms of probability considerations for a random process as described
above, all three problems, the Shakespeare text of 64 characters, the DNA strand of
length 192, and the binary string of length 384, are all equivalent problems since
they have the same Shannon information content.

If indeed that were the full story about pattern formation through random events
then we would be forced to conclude that such simple sequences, let alone the much
more complex real DNA sequence of a human, could never have been generated by
chance. To believe that an event with a probability as small as 2−384 would actually
have occurred is highly irrational.

However, this is of course not the story of how evolution has happened. The
underlying assumption behind all the small numbers presented above is that all
possible outcomes of the random process occur with the same probability and that
consecutive attempts are not correlated. This assumption is true for coin tossing,
and may also be approximately true for the monkey. Thermodynamically speaking
this equiprobability assumption describes an infinite temperature scenario where
thermal fluctuations lead to a situation in which the Boltzmann weights of all
microstates are equal. However, this certainly does not apply to the far-from-
equilibrium process of generating a DNA molecule.

How in the course of evolution the first complex self-replicating “being” arose
and how DNA-based replication came about is an entirely open problem and not
the topic of these notes. Here we want to show that ordered structures can arise far
from equilibrum out of random processes, despite the small probabilities derived
above. Moreover, we want to demonstrate that whether dynamics are deterministic
or random has in general no bearing on the question of the origin of complex pat-
terns. The basic character of the process, deterministic or random, does not allow for
any generally valid prediction of whether ordered structures could emerge or would
disappear under such dynamics. For simplicity we focus our attention on a binary
string 010101 . . . 01 of length L .
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6.2 Some Models for Nonequilibrium Dynamics

All that we discussed above has long been known, but we want to elaborate on
these issues in the context of a nonequilibrium lattice model that has been the
subject of intense study in the last two decades. This process, called the totally
asymmetric simple exclusion process (TASEP), shows very rich dynamical behav-
ior and is tractable by rigorous mathematical methods [1]. Hence our understanding
of nonequilibrium phenomena that we can derive from this process and some of
its variants does not have the status of plausible conjecture (with possibly subtle
pitfalls), but can be phrased in rigorous mathematical theorems [2, 3]. This model
exhibits generic nonequilibrium behavior encountered in real systems. Often it is
called the Ising model of nonequilibrium physics. This model has many applica-
tions, ranging from describing the kinetics of protein synthesis [4] to modeling the
formation of traffic jams on motorways [5]. In the remainder of this section we
define this model and some of its variants. To avoid trivial ambiguities we shall
consider only lattices with an even number of sites.

6.2.1 Model 1: The Totally Asymmetric Simple Exclusion Process

The TASEP in its standard form is a continuous-time Markov process that models
the dynamics of an interacting particle system with short-range interactions, driven
by some random noise. Here comes an informal, but rigorous definition of the one-
dimensional version of this process: Consider a periodic lattice of L lattice sites.
Each lattice site i (defined modulo L) may be either empty or occupied by at most
one particle. Each particle attempts to jump to its right (clockwise) neighboring site
after an exponentially distributed random time of mean τ = 1/w. All jump attempts
occur independently. If the target site is empty, the jump is executed, i.e., a particle
on site i moves to i + 1. If the target site is occupied, the jump attempt is rejected.

This is the complete definition of the process. The microstates of this sys-
tem, which we shall often refer to as configurations, denoted by the vector
η = (η1, η2, . . . , ηL), are completely characterized by the set of occupation num-
bers ηi , which may take values 0 or 1. Therefore the phase space of the system,
defined by the set of microstates {0, 1}L , has dimension 2L . For a specified particle
number N , the number of microstates is

C(L , N ) =
(

L

N

)
. (6.3)

The dynamics described above may be encoded in transition rates wη′,η for a
transition from configuration η to η′. All these transition rates are equal to either
zero or w.

To get a feeling for the physics that this process models, we make a few
observations:
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(i) We have a pure jump dynamics. Hence this process describes a many-body
system with conserved total particle number.

(ii) The exclusion principle, which forbids multiple occupancy of a lattice site,
corresponds to a hard-core repulsion between these particles. Hence we have
an interacting particle system with short-range interactions. Under equilibrium
conditions (no hopping bias) the equilibrium distribution would be the usual
Gibbs measure with a repulsive δ-function interaction. On a lattice (where this
interaction is represented by a Kronecker δ-function with infinite interaction
energy) this means that the equilibrium distribution P∗(η) of a microstate η in
the grand canonical ensemble reduces to a factorized distribution (see below).

(iii) For N = 1 this single particle performs a directed random walk. The same is
true for a single particle in the many-body case, as long as this particle does
not encounter another particle ahead. It is known that on large scales a directed
random walk converges to Brownian motion with a constant drift. So on large
scales an isolated particle in the TASEP models Brownian motion under the
influence of a constant driving force. Notice, however, that because of periodic
boundary conditions this constant driving force cannot be derived from a linear
potential. Hence there is no Hamiltonian for this system. The particle will move
forever with constant mean velocity around the ring. The latter will be true also
for all particles in the many-body case. Therefore a current will be flowing,
which keeps the system out of equilibrium at all times.

Notice that the notion of equilibrium is defined in the sense of invariance under time
reversal, which in this stochastic setting means the condition of detailed balance

P∗(η)wη′,η = P∗(η′)wη,η′ . (6.4)

The presence of the steady-state current indicates the breaking of time-reversal
invariance, as time reversal would change the direction of the current. Hence any
current-carrying system is out of equilibrium.1

The TASEP has finite phase space and it is easy to prove that for any fixed particle
number the dynamics is ergodic. Hence there exists a unique stationary distribution
that is the analogue of the Gibbs distribution in equilibrium systems. The general
problem with nonequilibrium systems is the absence of a Hamiltonian that would
provide the energy E(η) of a microstate. Therefore there are no Boltzmann weights
exp(−βE) for microstates and consequently no knowledge in general about the
form of the stationary distribution. It is this fact, always true, that explains why

1 To avoid confusion we note that in systems with many internal degrees of freedom or large
separation of intrinsic time scales some degrees of freedom may be in thermal equilibrium while
others are not. For example, the water that flows out of a faucet has a current and hence is in
a nonequilibrium state while it is flowing. Nevertheless this water may have a well-defined tem-
perature, in equilibrium with its environment if the environment has the same temperature. The
water that is then collected in the sink under the faucet would be in full equilibrium (after internal
turbulence has relaxed).
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there is no such thing as a generally valid thermodynamic theory of nonequilibrium
systems, analogous to the usual equilibrium thermodynamics that is generally valid
for all additive particle systems (i.e., systems with short-range interactions).

In the case of the TASEP, however, we are lucky. It is possible to obtain the exact
stationary distribution by various approaches, which are not of interest here. It turns
out that the stationary nonequilibrium distribution is the same product measure that
describes the Gibbs distribution of the equilibrium version of this process (similar
dynamics, but symmetric hopping rates in both directions on the lattice). Therefore,
in a grand canonical ensemble with fugacity

z = ρ

1− ρ
the stationary distribution of a configuration η is given by

P∗gcan(η) =
L∏

i=1

((1− ρ)(1− ηi )+ ρηi ) = ρN (1− ρ)L−N , (6.5)

where N is the number of particles in the configuration η and ρ is the particle density
of this grand canonical ensemble with fugacity z. Notice that the stationary proba-
bility (6.5) depends on the configuration η only through the total particle number.
Therefore, in the canonical ensemble with fixed particle number N the stationary
distribution is uniform and given by the inverse of the number of configurations

P∗can(η) =
1

C(L , N )
= N !(L − N )!

L! . (6.6)

6.2.2 Model 2: The TASEP with Random Sequential Update

Even though most quantities of interest can be computed for the TASEP by exact
analytical methods, it is still important to perform numerical simulations of this
process. However, the continuous-time TASEP defined above cannot – strictly
speaking – be simulated on a computer for two reasons: (i) Time on a computer
is by necessity discrete since any number is represented by a finite set of binary
numbers. (ii) There is no such thing as randomness in a computer (even if with
certain applications and operating systems one sometimes has the feeling that
there is).

To approximate the dynamics of the TASEP on a computer one considers the
so-called random sequential update, which works as follows: One stores a config-
uration η(t), which represents the state of the system at time time t . Here t is a
discrete integer. In one update time step one performs the following operations:
(i) One picks uniformly a “random number” i from the set 1, . . . , L . Then one
checks whether ηi (t) = 1 and ηi+1(t) = 0. If this is the case, the configuration
η(t) is updated corresponding to a particle jump from i to i + 1. Otherwise nothing
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happens. The time variable t remains unchanged after this elementary jump attempt.
(ii) This operation is repeated L times. (iii) The time variable t is incremented by
one unit. Then the steps (i)–(iii) are repeated. This algorithm produces one particular
realization (history) of the process.

Notice not only the discreteness of time, but also the absence of any random-
ness. This is because a computer cannot generate genuine random numbers. Each
“random number” is computed according to some deterministic algorithm, starting
from a seed that one fixes and which is part of the computer code that generates
these dynamics. Therefore, if one starts from the same seed and the same initial
configuration, the computer will each time generate the same history.

We remark that if, on the other hand, one could pick a site i genuinely at random,
then the discrete-time nature of this process would not matter very much. The sta-
tionary distribution would be same uniform distribution (6.7) as for the continuous-
time TASEP. For large L even the dynamics would very closely follow that of the
continuous-time TASEP.

6.2.3 Model 3: TASEP with Sublattice Parallel Update

Here we describe another discrete-time update that is purely deterministic. Instead
of choosing a site L times at random and performing a jump when it is possible,
we define the dynamics in a single time step as follows: (i) We divide the lattice
into neighboring pairs (2, 3), (4, 5) . . . (L , 1). In each pair we execute a jump to
the right if it is possible, i.e., if and only if η2k(t) = 1 and η2k+1(t) = 0. Any other
configuration of neighboring pairs remains unchanged. Time is not incremented.
(ii) We divide the lattice into pairs (1, 2), (3, 4), . . . , (L−1, L) and perform jumps
to the right in all pairs where it is possible. (iii) Time is incremented by one unit.
Then steps (i)–(iii) are repeated for the next full time step.

We note that this process is a limiting case of a similar discrete-time stochastic
dynamics in which jumps are executed with a probability p whenever possible. The
case p = 1 is then the deterministic limit defined above. The stochastic case can be
approximated on a computer by choosing for each pair of sites a (pseudo)random
number ξi uniformly in [0, 1]. If ξi ≤ p the jump is executed (if allowed). When p
is small (of order 1/L) and L is large, then L discrete steps of the sublattice parallel
update are not much different from one time step in random sequential update.

6.2.4 Model 4: TASEP with Next-Nearest-Neighbor Interaction

We return to genuinely stochastic dynamics. We define jump rules as in the TASEP
defined above, but with the extra constraint that a jump attempt from site i to site
i + 1 is forbidden if also the next-nearest-neighbor site i + 2 is occupied. This mod-
els a repulsive interaction that is still short ranged but extends over more than just
one lattice site. One can picture this as follows: Particles on nearest neighbor sites
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have a very high energy due to a repulsive potential. Therefore, pairs of particles
tend to separate.

We remark that the difference from the usual TASEP is minute in the sense that
both models describe driven random walks, with only a very small change in the
range of the repulsive interaction.

6.2.5 Emergence of Order and Relaxation to Disorder

We have introduced four variants of asymmetric exclusion processes that have in
common driven dynamics that maintains a nonequilibrium steady state and short-
ranged interactions. Two of the processes are genuinely stochastic, the other two
deterministic. The stochastic cases (1) and (4) could be experimentally realized, for
example by taking little balls as particles and a set of boxes as the lattice. The jump
events could be triggered by a radioactive signal, which we know is truly random,
uncorrelated, and yields an exponential jump time distribution. We wish to stress
that under such an experimental realization, the TASEP and its variant (4) would
not just be a mathematical model but would describe a genuine natural process,
subject to the usual laws of nature that govern all other physical phenomena. Of
course, also the deterministic processes can be realized as natural physical systems,
obeying the laws of physics.

We wish to address the question whether the general features of these processes
(nonequilibrium, short-ranged interaction, stochastic versus deterministic) allow us
to make any prediction about the corresponding qualitative nature of the dynamics.
In particular, we wish to investigate whether these processes are capable of gener-
ating ordered patterns with an information content equal to that of the Shakespeare
text in a reasonable length of time. Conversely, given such a pattern as the initial
configuration, we shall also investigate whether it persists or whether a disordered
state with a random pattern arises in the course of time.

To this end, we consider for each model a half-filled lattice (N = L/2) of
L = 384 sites. As the initial configuration we study two cases: (a) the ordered state
010101 . . . 01 and (b) a random initial configuration that can be generated by coin
tossing of L coins, conditioned on yielding heads and tails each exactly L/2 = 192
times. Notice that this coin tossing could in principle generate the ordered alter-
nating initial state, but the probability that this happens is exactly the tiny number
computed in the introduction. Hence it will not happen, even if we try for many
ages of the universe. These two initial configurations have a natural interpretation
in more general terms. The ordered state is imposed by design (the intention of
the author of this chapter). The disordered state may be interpreted as resulting
from some highly noisy dynamics (coin tossing), which after a strong change in the
environment of the system (stopping coin tossing) turns into more gently hopping
dynamics. So case (a) may be attributed to deliberate, purposeful intervention, while
case (b) corresponds to some change in the environment of the particle system. We
discuss each model separately.
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Model 1

(a) Ordered Initial State: The state will change with each jump. The relaxation time
to reach stationarity is known to be on the order of L3/2τ ≈ 7, 500τ . Hence
after this relatively short time the system will have “forgotten” its ordered ini-
tial state and take some random configuration that is drawn from the stationary
distribution (6.7). The stationary probability of the ordered alternating configu-
ration equals

P∗(0101 . . . 01) = 192!2
384! ≈ 5.52−384 , (6.7)

which is essentially as small (except for the factor of 5.5) as the probability of
obtaining this configuration through coin tossing. Therefore it will not happen,
even if we let the process run for many times the age of the universe. In other
words, the ordered pattern disappears quickly under these random dynamics
and will never reemerge again.

(b) Disordered Initial State: Since the system is ergodic, the same as for the
ordered initial state will be true for any initial configuration. The ordered pattern
01010 . . . 01 will never be generated in the TASEP with 384 sites.

Model 2

This model is deterministic and we cannot straightforwardly speak about ergodicity.
In fact, since the pseudorandom number generator of the computer is deterministic,
each random number will reappear in a deterministic cyclic fashion. Therefore also
all configurations of the particle system will reappear in a deterministic cyclic fash-
ion, including the ordered state 010101 . . . . This is the analogue of the Poincaré
cycle in Newtonian dynamics. The length of this cycle depends on the quality of
the pseudorandom number generator: the longer the cycle, the better the genera-
tor. Notice, however, that each time a pseudorandom number reappears, it will do
so with a different configuration of the particle system. Hence the length of the
“Poincaré” cycle of this process may be estimated to be the cycle time of the pseu-
dorandom number generator times the number of microstates (which is the inverse
of (6.7)). Hence this cycle length is a more-than-astronomic number that plays no
role for any practical consideration.

For any reasonable amount of time the system will behave essentially like the
stochastic TASEP. With a good pseudorandom number generator it would not be
possible to tell from the data alone whether the underlying dynamics is genuinely
random or not. Therefore, just from simulation measurements, the scenario concern-
ing the evolution of ordered or disordered initial states would be indistinguishable.
The ordered state would quickly disappear and never be observed again, even though
the underlying dynamics are deterministic.
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Model 3

(a) Ordered Initial State: It follows directly from the definition of the dynamics that
the ordered initial state will not decay: In the first half-step of one full step the
configuration 0101 . . . 01 is shifted to 1010 . . . 10 and then becomes after one
complete time step again 0101 . . . 01. This deterministic dynamics preserves
the ordered initial pattern, much like a computer preserves the information of
a Shakespeare poem on its way from the data storage device to the computer
screen.

(b) Disordered Initial State: This is more interesting. One might imagine that
this deterministic dynamics would also preserve the disorder (as the computer
would preserve the disorder of a random sequence from storage to screen). This
is, however, not the case. It is not difficult to see that after a certain number of
time steps (of order L) every initial state will evolve into the ordered pattern
0101 . . . 01. This follows from the fact that the ordered state is the unique sta-
tionary state. Hence this is an example where deterministic dynamics generate
order out of disorder. The deterministic mapping of the TASEP with sublattice
parallel update is not one-to-one.

Model 4

(a) Ordered Initial State: We can almost repeat the discussion of the previous
model, even though the dynamics is genuinely random. It follows directly from
the definition of the dynamics that the ordered initial state 0101 . . . 01 will not
decay. It is a “frozen” state that is stable under the stochastic dynamics. The
same is true for the ordered configuration 1010 . . . 10.

(b) Disordered Initial State: Now one might imagine that the random dynamics
would at least preserve the disorder of the initial configuration. Also this guess
is wrong. After a not very large number of steps the system will reach one of
the ordered states 0101 . . . 01 or 1010 . . . 10. Which one depends on the random
history and (probabilistically) on the initial configuration. In any case, however,
these genuinely random dynamics generate an ordered state out of disorder after
a short period of time (of the order of the system size), just like the deterministic
dynamics of model 3 does.

6.3 Some Conclusions

Model 1, the TASEP, behaves as naive intuition would suggest. Order disappears
under random dynamics, essentially forever, if sufficiently complex. Likewise, no
ordered structure emerges from randomness. Model 2 has the same features, but
offers a surprise in the sense that the dynamics is deterministic. The surprise comes
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from the formal argument that the deterministic dynamics of the computer are
reversible and hence any state that arises during the evolution can be traced back
to the initial state. This implies that there is no loss or gain of complexity during
the evolution. Notice, however, that this general argument, while formally correct,
has no meaningful application to this practical situation, since it does not take into
account the length of the Poincaré cycle for this process. For any finite observation
time, the process behaves as if it were random, i.e., given only observation data, we
would not be able to distinguish whether these data come from model 1 or model 2,
if a good pseudorandom number generator is used and the data set is finite. So one
could speculate about conservation of the information contained in the initial state,
but would not be able to decide on this matter based on empirical data (which in
physics is the only thing we have to base decisions on).

Model 3 behaves as naive intuition would predict for the ordered initial state.
The deterministic dynamics preserves the order. This happens in a different way
than in model 2 in the sense that this preservation is actually observable in finite
time, not only after collecting either (practically) infinitely many data or waiting for
several ages of the universe. However, this model surprises naive intuition in the
sense that is creates order out of an entirely disordered state, again in finite time
(and, in fact, in a fairly short time on the order of a few hundred units of a single
time step). Model 4 behaves contrary to naive expectation for both initial scenarios.
Even though the dynamics is entirely stochastic, order is not only preserved, but
even generated out of disordered initial states after a (short) finite length of time.

Again we find that from an empirical viewpoint (and this is the only one we have
for sufficiently complex real systems) one cannot generally distinguish whether the
underlying dynamics that generate observed data are random or deterministic. More
importantly we conclude that whether dynamics are deterministic or stochastic is not
a criterion for whether ordered patterns disappear or emerge. We see that random
processes can generate order with the same Shannon information as Shakespeare
lines. This observation can be easily extended to larger L (and hence longer texts),
since the times required to generate these strings grows only with a power law in L .
Hence very long texts with very high Shannon information can be created through
random processes in a short time. The basic issue where unguided intuition goes
wrong is the interpretation of the Shannon information in terms of probabilities.
The Shannon information is based on the probability generated by coin tossing,
while in general random processes may generate the same patterns with much higher
probability.

To understand this, it is instructive to approximate the exponential waiting time
distribution by a geometric waiting time distribution as follows: Instead of waiting
for a radioactive decay to trigger a jump attempt in the exclusion process, we could
throw coins or dice and trigger a jump event as soon as heads (or a six in the case
of dice) shows. Also under these dynamics the general observations made above
for models 1 and 4 would apply. However, in the case of model 4, that means that
we have constructed a random coin-tossing process (or dice-throwing) that leads
to a pattern with the same Shannon information as a Shakespeare poem after only
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a few thousand (or perhaps million) tosses, as opposed to the zillions computed
above. This is possible because the exclusion dynamics of model 4 direct these
random events into the 010101 . . . pattern. It is the combination of uncorrelated,
equiprobable events (which alone cannot generate complex patterns) and simple
rules (“laws of nature”) that deceives unguided intuition. The rules that govern the
possible motions of the system as a whole shape unstructured randomness into com-
plex patterns.

Let us return to the beginning of this chapter: At present we are witnessing
in the scientific and religious public a severe but pointless struggle between one
segment of society that believes that explaining the presence of complexity requires
the action of some intelligent designer, and another segment, represented by apostles
of new atheism, who believe, with similar religious fervor, that scientific progress
precludes an intellectually tenable faith in God. The intensity of this controversy,
well characterized in a recent book by Michael Ruse [6], demands an evaluation of
our discussion against this background. The fundamental insights in the interplay of
randomness and rules that we can derive from considering simple generic models
have shown that no supreme engineer is required to clarify basic principles of the
emergence of ordered patterns from unpredictable and unguided random processes.
Evolution is not the right place to find God.

On the other hand, our considerations should not obscure the fact that it remains
legitimate to speak of pattern formation phenomena and more generally of evolution
as a “miracle”: With mathematical models (which we employ in all fields of physics)
we can only describe what nature does, not explain why the natural processes act in
the way they do (and not differently), and we cannot say what keeps natural “laws”
(a strange metaphor for empirical regularities) going and going. Metaphysical ques-
tions like these leave room for awe and for religion. Declaring such questions for
irrelevant is no less religious than religion itself.

This fundamental openness, that scientific inquiry leads us to by its very nature,
marks one of the realms where religion and science can have a fruitful encounter.
However, anyone getting into this is well-advised to listen to what no one less than
the great biblical prophet Isaiah said more than 2,000 years ago. In a long passage he
speaks about God the Creator and comes to the conclusion “Truly you are a hidden
God” (Isaiah 45:15). Sounds almost as if he knew how science works.
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Chapter 7
Structure Formation in the Universe

Matthias Bartelmann

Abstract Two simple symmetry assumptions combined with general relativity lead
to the class of Friedmann cosmological models on which the standard model for
the structure and the evolution of the Universe is built. Within this model, dark
matter dominates structures on the scales of galaxies and larger, and dark energy
has dominated the expansion of the Universe since about half its present age. This
chapter summarizes how cosmic structures could have developed under these cir-
cumstances and what they are characterized by. As to the origin of cosmic structures,
the scenario of an early inflationary phase suggests that they arose from vacuum
fluctuations of a primordial quantum field.

7.1 The Framework

7.1.1 Concepts

The standard model of cosmology [1], which has emerged over the past decade or
so, rests on Einstein’s theory of general relativity. Gravity is the only one of the
four fundamental forces that is relevant for the evolution of the Universe as a whole.
The strong and the weak interactions are confined to interactions between elemen-
tary particles. The electromagnetic interaction, although in principle long-ranged, is
restricted in practice by shielding of unlike charges. Gravity alone dominates on the
largest scales, and general relativity is the accepted theory of gravity.

General relativity introduces the space-time metric as a dynamical field whose
evolution is controlled by Einstein’s field equations. These equations couple the
geometry of space-time with its matter-energy content. Since the flow of the matter
depends on geometry itself, these equations are necessarily nonlinear. Unlike in
electrodynamics, which is a linear field theory, no general scheme can be given
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for solving Einstein’s equations. Solutions are typically constructed starting from
symmetry assumptions simplifying the admissible form of the metric.

Two such symmetry assumptions were made by the Russian mathematician
Alexander Friedmann soon after Einstein had published the final form of his field
equations [2]. Purely for mathematical simplicity, he constructed solutions that were
homogeneous and isotropic. Every (freely falling) observer in a universe described
by such a solution would observe the same physical properties of the Universe inde-
pendent of the direction of observation, and this would hold for all observers alike.
Under this apparently vast simplification, Friedmann derived the class of cosmolog-
ical models named after him.

Clearly, these models can depend on time only, not on space any more because
of homogeneity. Their spatial sections are either flat or Euclidean, positively or neg-
atively curved, and expand or shrink with time as given by a dimensionless scale
factor a(t). Any two freely falling particles would increase their separation in pro-
portion to a(t). Einstein’s field equations then reduce to two ordinary differential
equations for the scale factor, which can be written in the form

(
ȧ

a

)2

= 8πG

3
ρ + Λc2

3
− kc2

a2
,

0 = d(ρc2a3)+ Pd(a3) . (7.1)

The first equation, often called Friedmann’s equation, describes how the scale factor
a(t) changes with time in a universe that has energy density ρc2, cosmological
constant Λ, and spatial curvature k. If space is flat, k = 0. The density ρ is the
sum of all densities contributing, i.e., all forms of matter and radiation. The nature
of the cosmological constant is unclear. Einstein introduced it to allow static uni-
verses in which ȧ = 0. From the point of view of a classical field theory, it has to
appear unless empirically ruled out. The consistent interpretation of the cosmologi-
cal observations requires it to be there.

The second equation is the first law of thermodynamics. The first term on the
right-hand side is the change in internal energy in a volume expanding or shrink-
ing as given by the scale factor, while the second term is the work done by the
pressure P .

These equations need to be complemented by an equation of state relating the
pressure P to the density ρ. Different types of matter or energy are characterized by
their different equations of state. Ordinary, cold matter has P = 0, ultrarelativistic
matter such as radiation has P = ρc2/3. If the cosmological constant is seen as a
contribution to energy, it has P = −ρc2.

7.1.2 Isotropy on Average

The Friedmann models are thus a simple class of cosmological models derived
from general relativity based on two far-reaching symmetry assumptions. They are
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characterized by a few parameters, namely the densities of all constituents of matter
and radiation, the cosmological constant, the equation of state parameter(s), and the
initial condition set by the cosmic expansion rate ȧ/a at any given time, usually
today. Can they have anything to do with our physical reality? Several questions
arise:

• Can their symmetry assumptions be experimentally justified?
• Can cosmological findings be accommodated in their framework?
• How must their parameters be chosen?
• Which conclusions follow from them?

At first sight, it appears hopeless to justify the isotropy of the Universe surround-
ing us. Clearly, the sky looks different in different directions. Even on large scales,
there are pronounced structures in the distribution of galaxies. They can be as large
as some ten megaparsecs1 and thus more than a thousand times larger than individ-
ual galaxies. The only possible justification for the assumption of isotropy is that the
observable Universe is large enough to contain very many even of such structures.
Its scale is characterized by the Hubble radius, which is more than 4,000 Mpc. It
is thus possible to average over cosmic structures on scales that are much larger
than the structures themselves and yet much smaller than the scale of the observable
Universe. In this averaged sense, the matter distribution in the Universe does indeed
approach isotropy. The most convincing evidence of isotropy, however, is provided
by the temperature fluctuations in the Cosmic Microwave Background (CMB). They
reach about ten parts per million compared to the average CMB temperature. Given
the rich variety of structures in the present Universe, the CMB is phantastically
isotropic.

Once we can accept the assumption of isotropy, the assumption of homogeneity
does not seem problematic any more. Since the Copernican Revolution, we have
become used to the concept that our position in the Universe is by no means pre-
ferred to any other. If we observe isotropy, any observer should see the Universe as
isotropic as well. A space, however, that is isotropic about all of its points, is also
homogeneous.

7.1.3 The Cosmic Expansion

It was found in the 1920s that the Universe expands. The American astronomer
Vesto Slipher realized by spectral analysis that absorption lines in galaxy spec-
tra typically appear redshifted, signaling that the galaxies are moving away from
us [3]. Using the then largest telescope in the world, Edwin Hubble showed that
this recession velocity grows with the distance to the galaxies, which is exactly
the behavior expected from an expanding Friedmann model [4]. Every observer in
such a universe should see nearby objects moving away with a velocity linearly

1 A megaparsec (Mpc) is an astronomical unit of length. 1 Mpc = 106 pc = 3.1× 1024 cm.
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proportional to their distance. The facts that Hubble found this proportionality only
by leaving out dubious data points and that his proportionality constant came out
much larger than we know it today should not concern us here. The systematic
recession of the galaxies shows that the Universe is not static, and the scaling of the
local recession velocities with distance agrees with the expansion behavior expected
in a Friedmann model.

If the Universe is expanding today, it is natural to assume that it kept growing
with time and should thus be considered ever smaller the further we go back in time.
This is not necessarily true. In certain regions of parameter space, Friedmann models
exist that are expanding today but stalled or shrunk in the past. Nonetheless, a few
simple observations show that if we live in a Friedmann universe at all, it cannot be
of this type and must have grown with finite expansion velocity throughout its entire
history. Going back in cosmic evolution, we must thus find a time before which the
entire observable Universe must have been as small as quantum scales. At the latest
when this point is reached, we lose all confidence in our physical description of the
Universe, because then general relativity should be replaced by a quantum theory of
gravity, which we do not yet have. We thus assume that prior to some finite time in
the past, the Universe originated from a very hot and dense state, which we call the
Big Bang. For our purposes, the main result of this discussion is that, if the Universe
can be described by Friedmann models, it must have a finite age, and a Big Bang
was inevitable.

7.1.4 Origin of the Light Elements and the Cosmic
Microwave Background

These are already remarkable conclusions that lead to testable predictions. If the
Universe was smaller in the past, it must have been hotter. We have seen that the
first law of thermodynamics also holds in a Friedmann universe, and it implies that
the temperature of matter and radiation increases as the available volume shrinks.
Thus, there must have been a time in the past when the entire observable Universe
was as hot as the interiors of stars are now, where hydrogen and other light elements
are fused to form more massive nuclei [5].

That the entire Universe must have acted as a fusion reactor is also supported by
the observation that approximately 25% of the ordinary, baryonic2 matter consists
of helium-4 rather than hydrogen. Although stars produce most of their energy by
hydrogen fusion, their helium-4 production would by no means suffice to explain
the amount of helium-4 observed in the Universe.

The amount of helium-4 in the Universe led Gamow, Alpher, and Herman to the
prediction in the 1940s that the Universe must have gone through an early phase
hot enough to fuse hydrogen to helium, and that there should be thermal radiation

2 Particles participating in the strong interaction are called hadrons. Baryons are hadrons composed
of three quarks, such as protons and neutrons.
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left over from this time [6, 7]. Realizing that the fusion of helium-4 must have gone
through the bottleneck of deuterium fusion first, and that this fusion step must have
proceeded just right for part but not all of the hydrogen to be converted to helium-4,
they concluded that this thermal relic radiation should by now have cooled to
between 1 and 5 K, and thus have shifted to the regime of microwaves. Not only the
existence of the CMB but also its temperature could be predicted from the observed
amount of helium.

From the expansion rate of the Universe, its present temperature, and the cross
sections for nuclear fusion, it is straightforward to calculate that the fusion of hydro-
gen to deuterium, helium, and other light elements must have happened when the
Universe was approximately 150 s old and stopped soon thereafter when it became
too cold.

Initially, this thermal radiation could not freely propagate because it kept scatter-
ing off the charged particles around, the electrons and the nuclei. As the Universe
expanded and cooled, electrons and nuclei could finally combine to form neutral
atoms. The number of charged particles and thus of scatterers dropped drastically,
setting the thermal radiation free. Again, it is quite straightforward within the class
of Friedmann models to calculate when this recombination process occurred and
how long it lasted. The Universe was a little less than 400,000 years old when it
became transparent within approximately 40,000 years.

The CMB was serendipitously discovered in 1965 by a measurement at a fre-
quency of 4,080 MHz, or 7.4 cm wavelength [8]. This signal was immediately
interpreted as being due to the CMB [9], but only the spectrometer on board the
COBE satellite could firmly establish in 1992 that this radiation does indeed have
the Planck, or blackbody, spectrum. In fact, the electromagnetic spectrum of the
CMB is still the best-measured Planck curve ever. It reveals that the CMB has by
now cooled down to 2.726 K [10].

7.1.5 Structures in the Cosmic Microwave Background

With its Differential Microwave Radiometer, the COBE satellite also detected the
long-sought temperature fluctuations in the CMB [11] (see Fig. 7.1). Although we
have started from the assumption of a perfectly isotropic universe, pronounced struc-
tures evidently exist. The most natural assumption is that they grew by gravitational
instability from tiny seed fluctuations produced by some process in the very early
Universe. But then, the imprint of these seed fluctuations should be visible as tem-
perature fluctuations in the CMB. The expected amplitude of these fluctuations is
easily calculated. It was predicted at a level of one part in a thousand, i.e., in the
millikelvin regime [12, 13].

However, it was not found there even long after the experiments had reached
sufficient sensitivity. A possible explanation, which turned out to be extremely fruit-
ful, was proposed by Peebles [14]. He speculated that the imprint of later cosmic
structures on the CMB could be much below the hitherto expected level if cosmic
structures were not predominantly composed of ordinary, baryonic matter, but of
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Fig. 7.1 These projected full-sky maps are the icons of modern cosmology. They show the tem-
perature fluctuations in the CMB as observed by the COBE (top) and WMAP satellites (bottom).
COBE had an angular resolution of 7◦, WMAP has one of 15′. The statistics of these fluctua-
tions, as quantified by their power spectra, contain an enormous amount of precise cosmological
information. (Courtesy of the WMAP team)

an unknown form of dark matter not participating in the electromagnetic interac-
tion. Then, cosmic structure formation could have proceeded well before the release
of the CMB at the recombination time without having left more than microkelvin
fluctuations in the CMB temperature. The detection of fluctuations at this level by
COBE in 1992 was a relief and a sensation for cosmology.

Now the CMB temperature fluctuations are much better known. While COBE
had an angular resolution of 7◦, two satellites are currently being operated with
much improved sensitivity and with a resolution down to a few arc minutes. One of
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them, the WMAP satellite, was launched in the summer of 2001, the other, Planck,
started observing in the summer of 2009. While WMAP has already refined the
cosmological model to an enormous degree (see Fig. 7.1), Planck is expected to
drive the precision of the CMB observations considerably further.

Observations of temperature and polarization fluctuations in the CMB are so
important for cosmology because they reveal a huge amount of information. Three
primary physical effects have contributed to producing these fluctuations. On the
largest scales, fluctuations of the gravitational potential were imprinted on the
energy density of the radiation. On intermediate scales, gravity and pressure drove
oscillations in the mixture of baryons, photons, and dark matter, which resemble
sound waves and are thus called acoustic oscillations. On scales of a few arc min-
utes, the fluctuations are exponentially damped mainly by photon diffusion. These
three effects are well understood and allow a firm prediction of how fluctuations in
the CMB should be structured.

They can be quantified by a power spectrum, which is a function showing the
(squared) fluctuation amplitude found in the CMB temperature as a function of
angular scale (Fig. 7.2). According to the three physical effects shaping the CMB
fluctuations, the power spectrum has three distinct parts: a featureless part corre-
sponding to the potential fluctuations at large scales, the exponentially damped tail

Fig. 7.2 Left: The height of the Earth’s surface above sea level (top left), decomposed into spherical
harmonic functions of decreasing scale. From top to bottom, the left and right columns show the
modes with l = 1, 2, 3 and l = 4, 5, 6, respectively. The map at the bottom right shows the
structures with l ≤ 7. Right: Power spectra of the CMB temperature fluctuations (top) and of the
cross-correlation between temperature and linear polarization (bottom). The continuous lines are
the theoretical fits to the data points measured by the WMAP satellite. They illustrate the wealth
of information in the CMB and show an astounding agreement between the measurements and the
theoretical expectation. (Left panel: data taken from the ETOPO-5 project; right panel: courtesy of
the WMAP team)
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towards small scales, and a sequence of pronounced maxima and minima caused by
the acoustic oscillations.

It is a most remarkable success of the Friedmann cosmological models that they
provide a framework in which the CMB power spectrum can be quantitatively
predicted and related to their parameters, i.e., the densities of its constituents, the
cosmological constant, and the spatial curvature. By fitting the predicted to the
measured power spectrum, many of these parameters can be accurately determined.
This process leaves narrow islands in parameter space to those Friedmann models
which are compatible with the data and thus constrains them very tightly.

7.1.6 Cosmic Consistency

We owe much of our knowledge of the Universe to the CMB observations. Yet they
leave some of the parameters of a Friedmann model poorly constrained because their
effect can be compensated by other parameters. Such parameter degeneracies can
be broken if the CMB observations are combined with other types of cosmological
data. Most notable are the inference of the late cosmic expansion rate through a
special class of stellar explosions, the so-called type-Ia supernovae; the constraint
on the cosmic matter density from the preferred scale imprinted on the galaxy distri-
bution; and the measurement of the amplitude of matter fluctuations by gravitational
light deflection (Fig. 7.3).

Taken together, these observations define the highly remarkable cosmological
standard model, which is based on the class of Friedmann models. Virtually all

Fig. 7.3 The two panels to the left show a cut through the multidimensional cosmological param-
eter space together with the contours of the likelihood of different cosmological data sets. The two
parameters taken as an example here are the cosmological constant on the abscissa and the spatial
curvature on the ordinate. Areas coulored light blue are allowed by the CMB data taken by WMAP;
tighter contours take information from type-Ia supernovae (SN), the spatial galaxy distribution
(BAO), and measurements of the Hubble constant (HST) into account. The diagrams illustrate
the consistency of these different and independent data sets and the precision of the combined
parameter constraints. The panel to the right shows the composition of the Universe today (top)
and when the CMB was released (bottom). (Left panels: from [15]; right panel: courtesy of the
WMAP team)
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cosmological observations turn out to fit smoothly into a single Friedmann model.
This is a highly astounding fact, firstly because of the simplicity of the symmetry
assumptions on which these models are founded. They do seem to allow a consistent
physical model for our Universe. Secondly, the data on which the cosmological
standard model are based probe the physical state of the Universe at times between
a few minutes after the Big Bang until now, when the Universe is almost 14 billion
years old. One standard model, i.e., a Friedmann model specified by a single set of
parameters, is evidently capable of accommodating essentially all types of cosmo-
logical information taken at several instances over nearly 14 billion years.

7.2 Structure Formation in the Universe

7.2.1 Concepts and Assumptions

In the framework of the cosmological standard model, we find ourselves living in
a Universe whose matter content is dominated by some form of dark matter, which
is presumably composed of weakly interacting, massive elementary particles. They
cannot participate in the electromagnetic interaction because otherwise they would
leave a pronounced and unobserved imprint on the CMB. Ordinary, baryonic matter
as we know it only forms a small contribution to the matter budget of the Universe.
Even more puzzling is that today the energy content of the Universe seems to be
dominated not by matter but by the cosmological constant or something that behaves
similarly. Since we do not know what this form of energy could be contributed by,
we call it dark energy.

Specifically, the Universe today contains 23% dark matter, 4.6% baryonic matter,
and 72% dark energy (Fig. 7.3). Going from now into the past, the dark energy
changes its density very little or not at all. The density of nonrelativistic matter
increases with a−3 just because of volume compression, while the relativistic mat-
ter density grows as a−4. Thus, the relative contributions of the various constituents
of the cosmic fluid vary with time. When the CMB was released, dark matter con-
tributed 63%, baryonic matter 12%, dark energy was unimportant, the CMB photons
themselves provided 15% and neutrinos 10% of the energy density [15–17].

We are thus faced with the question of how the weak structures seen in the tem-
perature of the CMB may have developed into the pronounced cosmic structures
we see in the Universe today on a broad variety of scales, such as galaxies, galaxy
clusters, and the even larger, filamentary structures traced by the galaxy distribution.

It turns out that the essential physical process of structure formation can be
described by Newtonian hydrodynamics. This may seem surprising. Firstly, hydro-
dynamics is an approximation of the collective motion of particles in a system whose
mean free path is very much smaller than all other scales appearing in the system.
If the majority of matter in the Universe is composed of weakly interacting, dark-
matter particles, their mean free path is expected to be enormous. Yet hydrodynam-
ics is a valid approximation even in this context because any volume of interesting
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size contains so many particles that they can be described as a continuous fluid mov-
ing under the influence of the gravitational potential. Dark matter is approximated
as pressureless because of the weak interaction of its particles.

For similar reasons, it suffices to express the gravitational interaction by
Newtonian gravity. Compared to general relativity, this means in particular that the
curvature of space-time is neglected and that the gravitational force is approximated
as propagating instantaneously rather than at a finite speed. Both approximations
are usually legitimate in the late Universe because the structures considered are
typically much smaller than the curvature scale of the spatial sections and the prop-
agation times for the gravitational force are much smaller than the evolutionary time
scales of the structures.

Under these approximations, the equations governing the evolution of the dark-
matter density are the continuity equation formulating mass conservation, the Euler
equation expressing momentum conservation, and the Poisson equation, which is
the gravitational field equation of Newtonian physics. These equations can be com-
bined to obtain a single, second-order, ordinary differential equation for the density
contrast δ,

δ̈ + 2H δ̇ − 4πGρ̄δ = 4πGρ̄δ2 + 1

a2
∇δ ·∇Φ + 1

a2
∂i∂ j

[
(1+ δ)ui u j

]
. (7.2)

where H is the Hubble function and G the gravitational constant. The density con-
trast is the relative fluctuation of the density ρ around the mean density ρ̄, hence
δ = (ρ− ρ̄)/ρ̄. The gravitational potentialΦ provides the gravitational force−∇Φ,
and the matter moves with the velocity u with respect to the mean Hubble expansion
of the Universe.

7.2.2 Linear Structure Growth

Evidently, all terms on the right-hand side of (7.2) are nonlinear in the deviations
from the mean cosmological background, defined by ρ = ρ̄, thus δ = 0, and u = 0.
As long as the density fluctuations remain small, δ � 1, the right-hand side can thus
be set to zero. The resulting equation,

δ̈ + 2H δ̇ − 4πGρ̄δ = 0 , (7.3)

then describes linear structure evolution. This equation has two linearly independent
solutions, one decaying and one growing with time. In the context of structure for-
mation, only the growing solution is of interest. The equation itself is independent
of the size of the structure considered, thus its solution quantifies linear structure
growth on all scales. It is called the growth factor, commonly written D+. In a crude
but sufficient approximation, D+ grows like the scale factor, D+ ∝ a. As long as
structures evolve linearly, their amplitude grows approximately like the Universe
itself.
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This immediately allows an interesting insight. We have seen that the fluctua-
tion level in the CMB temperature is of order 10−5. These temperature fluctuations
reflect fluctuations in the radiation density that are four times as large, but still of
order 10−5. It is natural to assume that fluctuations in the radiation density traced
fluctuations in the matter density. When the CMB was released, the Universe was
about a thousand times smaller than today. Since then, structures can thus only have
grown by a factor of∼103. Today, they should reach a relative amplitude near 10−2.
Pronounced cosmic structures such as galaxies, galaxy clusters, and even larger-
scale structures should therefore not exist.

How can the low temperature fluctuation level in the CMB be reconciled with
the existence of highly nonlinear structures today? As mentioned above, Peebles
[14] was the first to suggest that this could be achieved if cosmic structures were
dominated not by ordinary matter, but by a form of hypothetic dark matter that
cannot interact with light. Given that, structures in the matter distribution could have
started growing way before the CMB was released, without leaving direct imprints
in the CMB temperature fluctuations. Thus, the slow linear structure growth and the
low amplitude of the CMB temperature fluctuations suggest that cosmic structures
are composed mainly of dark matter rather than ordinary matter.

7.2.3 Cold Dark Matter

Under this condition, structure formation can be understood as starting from ini-
tial conditions reflected by the CMB temperature fluctuations and proceeding via
gravitational collapse. As we have seen, this scenario requires dark matter. Its only
property that we know of now is that it must not participate in the electromagnetic
interaction. It could be composed of suitably massive, weakly interacting elemen-
tary particles. If so, another constraint on the nature of dark matter comes from the
observation that galaxies and smaller-scale structures must have formed very early
in the cosmic history, after just 1 or two billion years. This would be impossible if
the hypothetic dark-matter particles were moving with high velocity, because then
deep potential wells would be necessary to keep them bound, and such potential
wells could only have been provided by large objects. Thus, the early formation of
relatively small-scale objects implies that if dark matter consists of weakly inter-
acting particles, they must at least be slow compared to the speed of light. If they
originated under thermal-equilibrium conditions in the (very) early Universe, they
must then be massive. The most economic assumption under these requirements is
that the dark-matter particles move with velocities that can for all relevant purposes
be set to zero. For this reason, such dark matter has been called cold.

Interestingly, the statistics of matter fluctuations composed of cold dark matter
(CDM) can be accurately predicted based on a single further assumption, which
has to do with the so-called horizon scale of the Universe. Since at any time the
Universe has a finite age, there is a maximum distance that light can have traveled,
which is called a horizon. Thus, at any given time, the horizon encompasses all
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particles that may have communicated with each other and thus have arranged for
similar physical conditions. The horizon grows with time, i.e., it encloses increas-
ingly larger scales, even though the Universe is expanding. A cosmic structure of
a given scale will thus be larger than the horizon at very early times and smaller
at sufficiently later times. There will thus be a time when the horizon has grown
to the scale of the perturbation, at which point the perturbation is said to enter the
horizon.

Again, it seems natural to assume that the mass contained in density fluctuations
should be independent of the times when these fluctuations enter the horizon. Other-
wise, it would either grow or shrink with time. If it grew, there would be time in the
future when the observable Universe would collapse; if it shrank, this should have
happened already in the past. Thus, the amplitudes of density fluctuations should be
related to their scales in such a way that the mass entering the horizon in the form
of these fluctuations was independent of time. This leads to the conclusion that the
variance of the fluctuation amplitude, the so-called power spectrum, should decrease
as λ−1 with the scale of the perturbation, or increase with its Fourier wave number
k as k = 2πλ−1 [18, 19].

Although the radiation density is today much smaller than any other density con-
tribution, radiation becomes more and more important when going back in time.
As the Universe shrinks, the density of ordinary (nonrelativistic) particles increases
in indirect proportion to the volume: when the Universe had half its present size,
the nonrelativistic matter density was eight times that today. Relativistic particles,
however, such as photons, were redshifted and lost energy while the Universe was
expanding. Going back in time, their density thus increases with one more power of
the scale factor than the density of ordinary matter: when the scale factor had half
its present value, the density of relativistic particles was 16 times that today. Thus,
at some moment in the past, the radiation density was as high as that of ordinary
matter, and there was a radiation-dominated epoch before.

Structures that entered the horizon during this radiation-dominated epoch could
not continue growing because their collapse was slower than the expansion driven
by the radiation. Structures large enough to have entered the horizon only after the
end of the radiation-dominated epoch could continue growing without interruption.
The smaller the structures are, the earlier they entered the horizon and the more they
were suppressed. This allows the conclusion that, in the limit of λ→ 0 or k →∞,
the power spectrum should asymptotically fall off as k−3.

If CDM is assumed, the power spectrum thus has a well-predictable shape: It
should rise ∝ k for small k and fall as k−3 for large k. The maximum in between
is set by the size of the horizon at the time when the radiation-dominated epoch
ended. Since the radiation density today is known from the temperature of the CMB,
measuring the peak scale of the power spectrum returns information on the mat-
ter density. Only within the last few years have galaxy surveys grown beyond the
peak scale (Fig. 7.4). They now provide additional constraints on the matter density,
which are consistent with all the others.

Measurements of the power spectrum are now possible on a vast range of scales.
On the smallest scales, it is constrained by absorption lines originating in cool
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Fig. 7.4 Left: The galaxy distribution in the local Universe as measured by the 2-degree Field
Galaxy Redshift Survey (2dFGRS). Right: Image illustrating the dark-matter distribution at the
present time produced by the Millennium Simulation of cosmic structure formation [20]. The mea-
sured galaxy distribution exhibits filamentary structures reproduced in the simulation. On smaller
scales, dark matter clumps into so-called halos with a standard, but fundamentally unexplained
radial density profile and abundant substructure. (Left panel: courtesy of the 2dFGRS team; right
panel: courtesy of Volker Springel and the Virgo Consortium)

hydrogen gas clouds. Galaxies, galaxy clusters, gravitational lensing, and the CMB
fix the power spectrum in a range of scales covering several orders of magnitude.
The remarkable result is that the measured power spectrum so far agrees very well
with the theoretical expectation in CDM, even though that was based on two very
simple assumptions only. The CDM paradigm implies that structure formation in
the Universe began with the smallest and proceeded to the largest structures. This is
called the bottom-up scenario.

Owing to the central limit theorem, it is most plausible that the primordial
fluctuations in the matter density were Gaussian, i.e., their probability distribution
can be described by a Gaussian normal curve. The statistics of a Gaussian ran-
dom field then predict that isotropic, spherical collapse is impossible, but sheet-
like or filamentary structures must have formed first, which could later fragment
into individual, smaller objects [21, 22]. It is thus a firm prediction of structure
formation in a Gaussian random field of density fluctuations that sheets and fil-
aments form, just like those that are observed in the large-scale galaxy surveys
(Fig. 7.4).
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7.2.4 Nonlinear Structure Growth

Linear structure growth is applicable until the density contrast δ reaches approx-
imately unity. The nonlinear evolution is complicated, but some aspects of it can
remarkably be predicted analytically. Again starting from the assumption that the
density fluctuations originally form a Gaussian random field, and drawing analogies
between the linear and nonlinear collapse of a homogeneous sphere or ellipsoid, it is
possible to predict not only the distribution of cosmological objects with mass, the
so-called mass function, but also their correlations, i.e., the deviation of their spatial
distribution from random. Considerable progress has also been made in analytic
techniques working in the regime of mild nonlinearity based on higher-order pertur-
bation theory. Detailed predictions and comparisons with observations of nonlinear
structures, however, generally require numerical simulations.

Among a huge body of results obtained with increasingly sophisticated and
extensive numerical simulations, one of the most important and puzzling is that
gravitationally bound, nonlinear structures develop a universal density profile that
asymptotically falls off as r−3 far away from their centers and flattens towards r−1

in their cores [23]. This is particularly remarkable because it is well known that self-
gravitating systems have negative heat capacity because of the virial theorem, which
implies that they do not have an equilibrium state. What causes the phenomenon that
they approach a universal density profile and thus a long-lived transient state, and
what defines their properties during this state, is fundamentally unknown.

Only massive nonlinear structures outside their core regions remain dominated
by dark matter. The baryonic gas, which can dissipate energy and angular momen-
tum in contrast to the dark matter, tends to shape structures small and dense enough
for their cooling and hydrodynamic time scales to be sufficiently short compared to

Fig. 7.5 On sufficiently small scales, baryons dominate over dark matter, as in this spiral galaxy,
Messier 101. By their electromagnetic interaction, they can cool and thus dissipate energy and
angular momentum and give rise to the rich phenomenology of hydrodynamic phenomena. (Hubble
Space Telescope Archive, News Release STScI-2006-10)
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the cosmic time. This is the case in galaxies (see Fig. 7.5 for a beautiful example),
where complicated baryonic physics leads to star formation, and in some cores of
galaxy clusters. Interestingly, there is an upper limit to the mass of an object in which
stars can form. It is set by the atomic and molecular physics mainly of hydrogen and
helium. In larger objects, the gas is too hot to cool efficiently. In galaxy clusters, for
example, it remains hot and is visible in the X-ray regime.

7.2.5 The Origin of Structures

So far, we have described the evolution of comic structures from initial conditions
defined mainly by the CMB. The question of where initial structures may have
originated from has been left unanswered. Modern cosmology has a breathtaking
suggestion for an explanation that is closely related to the concept of cosmological
inflation.

It is essentially impossible to understand the appearance of the observable Uni-
verse without assuming that there was a phase during its very early evolution in
which it was exponentially expanding. Such a phase is called cosmological infla-
tion. Simple observational evidence such as the near-isotropy of the CMB requires
a mechanism that may have established causal contact between any two points in
the visible Universe that could otherwise never have communicated their physical
conditions. The existence of a horizon, essentially caused by the finite age of the
Universe, defines causally separated sections of the Universe which could never
have reached thermal equilibrium and thus a common temperature unless inflation
provided a physical mechanism for securing causal contact within the entire observ-
able Universe.

At the same time, inflation provides a natural scenario for the origin of structures
[24, 25]. Inevitable quantum fluctuations in the very early Universe would have been
exponentially stretched by inflation, thus stabilized and magnified to cosmological
scales. This inflationary scenario has testable predictions that are so far consistent
with observations. First of all, in its simplest forms, it predicts that density fluctua-
tions should be Gaussian, against which there is no convincing evidence. Second, it
predicts a power spectrum of the density fluctuations that is on large scales almost,
but not quite, proportional to the wave number k, but rather to kn with n ≈ 0.95.
The temperature fluctuations in the CMB show exactly that.

Thus, we need inflation for a consistent cosmological model, and inflation pro-
vides a physical mechanism not for the evolution but for the origin of cosmic struc-
tures. There is no direct evidence yet for inflation to have happened. However, the
indirect evidence supporting it leaves us with the idea that cosmic structures seem
to have originated from vacuum fluctuations in the very early Universe.
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Chapter 8
The Need for Quantum Cosmology

Claus Kiefer

Abstract In this contribution I argue that cosmology is incomplete without the
implementation of quantum theory. The reasons are twofold. First, the beginning
(and possibly the end) of the cosmic evolution cannot be described by general rel-
ativity. Second, the extreme sensitivity of quantum systems to their environment
demands that the Universe as a whole must be described by quantum theory. I give
an introduction to quantum gravity and explain how this is applied to cosmology. I
discuss the role of boundary conditions and the semiclassical limit. Finally I explain
how the arrow of time and structure formation can be obtained from quantum cos-
mology.

8.1 Introduction

Quantum cosmology is the application of quantum theory to the Universe as a
whole. It may seem surprising at first glance that this is needed. Is it not sufficient
to consider the standard picture of cosmology describing the Universe as expanding
from a dense hot phase in the past to its present state with galaxies and clusters
of galaxies (see Chap. 7)? The answer is negative for two reasons. First, general
relativity is incomplete in that it predicts the occurrence of singularities in a wide
range of situations. This concerns the origin of the Universe (“Big Bang”) but also
potentially its final fate; modern models using dark energy as an explanation for the
current acceleration of the Universe can predict singularities in the future. Therefore,
a more general theory is needed in order to encompass these situations. The general
belief is that this theory is a quantum theory of gravity, for it was, after all, quantum
mechanics that rescued the atom from the singularities of classical electrodynamics.

The second reason derives from a general feature of quantum theory. Except in
microscopic cases, most quantum systems are not isolated. They interact with their
natural environment, as a result of which a globally entangled state ensues, which
includes the variables of the system and the environment. For macroscopic systems,
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this entanglement leads to the emergence of classical properties for the system – a
process called decoherence [1]. Since the environment of a system is again coupled
to its environment, the only truly closed quantum system is the Universe as a whole.
One arrives in this way at the notion of a “wave function of the Universe”. Since
gravity is the dominating interaction at cosmic scales, quantum cosmology must be
based on a theory of quantum gravity [2].

Quantum cosmology is mathematically as well as conceptually demanding. Here
is a list of the main questions that such a theory is supposed to answer:

• How does one properly impose boundary conditions in quantum cosmology?
• Is the classical singularity really being avoided?
• Will there be a genuine quantum phase in the future?
• How does the appearance of our classical universe follow from quantum

cosmology?
• Can the arrow of time be understood from quantum cosmology?
• How does the origin of structure proceed?
• Is there a high probability for an inflationary phase (a phase where the Universe

is accelerating at a very early stage)? Can inflation itself be understood from
quantum cosmology?

• Can quantum cosmological results be justified from full quantum gravity?
• Which consequences can be drawn from quantum cosmology for the measure-

ment problem in quantum theory and for the field of quantum information?
• Can quantum cosmology be experimentally tested?

In the following, I shall start by giving motivations for constructing a quantum
theory of gravity. The main obstacles on the path to its construction are men-
tioned and one framework – quantum geometrodynamics – is presented. This is
then applied to cosmology, where particular emphasis is put on the new concept
of time as well as the central issue of boundary conditions. The two final sections
are devoted to the semiclassical limit, that is, the bridge of quantum cosmology to
classical cosmology, and the recovery of the arrow of time in the Universe as well
as structure formation. In my presentation I shall rely on my earlier presentations in
[2–5], where more details and references to original work can be found.

8.2 Quantum Gravity

In the first section I have argued that the Universe as a whole must be described by
quantum theory. This is the field of quantum cosmology. Since it is the gravitational
interaction that dominates at cosmic scales, we face the problem of quantum gravity,
that is, the problem of requiring a consistent quantum theory of gravity. Such a
theory is not yet available, although various approaches exist [2]. Independent of
these particular approaches, one can put forward various arguments in support of
the quantization of gravity.
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• Singularity theorems of general relativity: Under very general conditions, the
occurrence of a singularity, and therefore the breakdown of the theory, is unavoid-
able. A more fundamental theory is therefore needed to overcome these short-
comings, and the general expectation is that this fundamental theory is a quantum
theory of gravity.

• Initial conditions in cosmology: This is related to the singularity theorems, since
they predict the existence of a “big bang” where the known laws of physics break
down. To fully understand the evolution of our Universe, its initial state must be
amenable to a physical description.

• Unification: Apart from general relativity, all known fundamental theories are
quantum theories. It would thus seem awkward if gravity, which couples to all
other fields, should remain the only classical entity in a fundamental description.

• Gravity as a regulator: Many models indicate that the consistent inclusion of
gravity in a quantum framework automatically eliminates the divergences that
plague ordinary quantum field theory.

• Problem of time: In ordinary quantum theory, the presence of an external time
parameter t is crucial for the interpretation of the theory: “Measurements” take
place at a certain time, matrix elements are evaluated at fixed times, and the norm
of the wave function is conserved in time. In general relativity, on the other hand,
time as part of space-time is a dynamical quantity. Both concepts of time must
therefore be modified at a fundamental level. This will be discussed in some detail
below.

Concerning currently discussed approaches to quantum gravity, one can mainly
distinguish between the direct quantization of Einstein’s theory of general relativity
and string theory (or M-theory). The latter is more ambitious in the sense that it aims
at a unification of all interactions within a single quantum framework. Quantum
general relativity, on the other hand, attempts to construct a consistent, nonpertur-
bative, quantum theory of the gravitational field on its own. This is done through the
application of standard quantization rules to the general theory of relativity.

The fundamental length scales that are connected with these theories are the
Planck length, lP =

√
G�/c3, or the string length, ls. It is generally assumed that

the string length is somewhat larger than the Planck length. Although not fully
established in quantitative detail, quantum general relativity should follow from
superstring theory for scales l � ls > lP. Can one, in spite of this uncertainty
about the fundamental theory, say something reliable about quantum gravity without
knowing the exact theory? In [6] I have made the point that this is indeed possi-
ble. The situation is analogous to the role of the quantum-mechanical Schrödinger
equation. Although this equation is not fundamental (it is nonrelativistic, it is not
field-theoretic), important insights can be drawn from it. For example, in the case
of the hydrogen atom, one has to impose boundary conditions for the wave function
at the origin r → 0, that is, at the center of the atom. This is certainly not a region
where one would expect nonrelativistic quantum mechanics to be exactly valid, but
its consequences, in particular the resulting spectrum, are empirically correct to an
excellent approximation.
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Erwin Schrödinger found his equation by “guessing” a wave equation from
which the Hamilton–Jacobi equation of classical mechanics can be recovered in the
limit of small wavelengths, analogously to the limit of geometric optics from wave
optics. The same approach can be applied to general relativity. One can start from
the Hamilton–Jacobi version of Einstein’s equations and “guess” a wave equation
from which they can be recovered in the classical limit. The only assumption that
is required is the universal validity of quantum theory, that is, its linear structure.
For this step it is not yet necessary to impose a Hilbert-space structure (a linear
space with a scalar product). Such a structure is employed in quantum mechanics
because of the probability interpretation, for which one needs a scalar product and its
conservation in time (unitarity). The status of this interpretation in quantum gravity
remains open.

The result of this approach is quantum geometrodynamics. Its central equation
is the Wheeler–DeWitt equation, first discussed by Bryce DeWitt and John Wheeler
in the 1960s. In a short notation, it is of the form

ĤΨ = 0 , (8.1)

where Ĥ denotes the full Hamiltonian for both the gravitational field (here described
by the three-metric) and all nongravitational fields. For the detailed structure of
this equation I refer, for example, to the classic paper by DeWitt [7] or the general
review in [2]. Two properties are especially important for our purpose here. First,
this equation does not contain any classical time parameter t . The reason is that
space-time as such has disappeared in the same way as particle trajectories have
disappeared in quantum mechanics; here, only space (the three-geometry) remains.
Second, inspection of Ĥ exhibits the local hyperbolic structure of the Hamiltonian,
that is, the Wheeler–DeWitt equation possesses locally the structure of a Klein–
Gordon equation (that is, a wave equation). In the vicinity of Friedmann universes,
this hyperbolic structure is not only locally present, but also globally. One can thus
define a new time variable that exists only intrinsically and that can be constructed
from the three-metric (and nongravitational fields) itself. It is this absence of exter-
nal time that could render the probability interpretation and the ensuing Hilbert-
space structure obsolete in quantum gravity, for no conservation of probability may
be needed.1

Independent of the exact theory, one can thus sensibly assume that quantum
geometrodynamics should be a reasonable approximation at appropriate scales. This
will be the framework on which the following discussion is based.

1 The situation is different for an isolated quantum gravitational system such as a black hole; there,
the semiclassical time of the rest of the Universe enters the description [8].
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8.3 Quantum Cosmology

Cosmology can only be dealt with if one makes simplifying assumptions. Since the
Universe looks approximately homogeneous and isotropic on large scales, one can
impose this assumption on the metric of space-time. As a result, one obtains the
Friedmann–Lemaître models usually employed. For historic reasons, such models
are also called “minisuperspace models”.

As we are aiming at a quantum theory, instead of an effective description of the
cosmological fluid in terms of its energy density and pressure, we use a fundamental
Lagrangian, namely that of a scalar field. The scalar field φ thus serves as a surrogate
for the matter content of the universe. Our fundamental equation is then given by
(see e.g. [2] or the Appendix of [4] for a derivation)

ĤΨ =
(

2πG�
2

3

∂2

∂α2
− �

2

2

∂2

∂φ2

+ e6α
(

V (φ)+ �

8πG

)
− 3e4α k

8πG

)
Ψ (α, φ) = 0 , (8.2)

with cosmological constant Λ and curvature index k = ±1, 0. The variable α =
ln a, where a stands for the scale factor, is introduced to obtain a convenient form
of the equation.

The general structure of the Wheeler–DeWitt equation concerning the concept of
time produces a peculiar notion of determinism at the level of quantum cosmology.
Despite the absence of an external time parameter, the equation is of hyperbolic
form thus suggesting that one use the 3-volume v or α = 1

3 ln v as an intrinsic
time parameter. The term “intrinsic time parameter” denotes an evolution parameter
of the equation, generally unrelated to any physical notion of time (which at the
quantum level is anyway lost, as mentioned above). Exchanging the classical dif-
ferential equations in time for a timeless differential equation hyperbolic in α alters
the determinism of the theory. This, of course, changes the way in which boundary
conditions can be imposed. Wave packets do not evolve with respect to Friedmann
time but with respect to intrinsic time. This turns our notion of determinism on its
head.

This is illustrated by the following example. Simplify the universe model with
the two degrees of freedom a (scale factor) and φ (scalar field) underlying (8.2)
by the assumption Λ = 0. Take, moreover, the scalar field to be massless and the
universe to be closed, k = 1. This model has a classical solution evolving from big
bang to big crunch. The trajectories in configuration space are depicted in Fig. 8.1,
where the arrow along the trajectory signifies increasing Friedmann time.

Classically, one imposes initial conditions at t = t0, corresponding to the left
intersection of the trajectory with the φ-axis. These initial conditions determine the
evolution of a and φ into the big-crunch singularity. Not so in quantum cosmology.
Here, initial conditions have to be imposed at a = 0. If the wave packet is to follow
the classical trajectory, one has to impose two wave packets, one at each intersection
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φ

give e. g. here 
initial conditions

φ

give initial conditions 
on a = constant

Fig. 8.1 The classical and the quantum theory of gravity exhibit drastically different notions of
determinism. The scalar field φ is shown on the horizontal axis, while the scale factor a of the
universe is shown on the vertical axis

point of the classical trajectory with the a = 0 line. Wave packets are evolved from
both the classical big-bang and big-crunch singularities in the direction of increasing
a; big bang and big crunch are intrinsically indistinguishable.

Given this new concept of time in quantum cosmology, one of the most important
and nontrivial issues is to understand how boundary conditions are appropriately
imposed.

8.4 Boundary Conditions

Implementing boundary conditions in quantum cosmology differs from the situa-
tion in both general relativity and ordinary quantum mechanics. In the following
we shall briefly review two of the most widely discussed boundary conditions: the
“no-boundary proposal” and the “tunneling proposal” [2].

8.4.1 No-Boundary Proposal

Also called the “Hartle–Hawking proposal” [9], the no-boundary proposal is basi-
cally of a topological nature. It is based on the Euclidean path integral representation
for the wave function,

Ψ [hab] =
∫

Dgμν(x) e−S[gμν(x)]/� , (8.3)

in which S is the classical action of general relativity and Dgμν(x) stands for the
integration measure – a sum over all four-geometries. (In general, one also sums
over matter fields.) “Euclidean” means that the time variable is assumed to be imag-
inary (“imaginary time”).

Since the full path integral cannot be evaluated exactly, one usually resorts to
a saddle-point approximation in which only the dominating classical solutions are
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taken into account to evaluate S. The proposal, then, consists of two parts. First,
it is assumed that the Euclidean form of the path integral is fundamental, and that
the Lorentzian structure of the world only emerges in situations where the saddle
point is complex. Second, it is assumed that one integrates over metrics with one
boundary only (the boundary corresponding to the present universe), so that no
“initial” boundary is present; this is the origin of the term “no-boundary proposal”.
The absence of an initial boundary is implemented through appropriate regularity
conditions. In the simplest situation, one finds the dominating geometry depicted
in Fig. 8.2, which is often called the “Hartle–Hawking instanton”, but which was
already introduced by Vilenkin [10]: the dominating contribution at small radii is
(half of the) Euclidean four-sphere S4, whereas for bigger radii it is (part of) de Sit-
ter space, which is the analytic continuation of S4. Both geometries are matched at
a three-geometry with vanishing extrinsic curvature. The Lorentzian nature of our
universe would thus only be an “emergent” phenomenon: standard time t emerges
only during the “transition” from the Euclidean regime (with its imaginary time) to
the Lorentzian regime.

From the no-boundary proposal one can find for the above model with the mas-
sive scalar field (and vanishing Λ) the following wave function in the Lorentzian
regime:

ψNB ∝
(

a2V (φ)− 1
)−1/4

exp

(
1

3V (φ)

)
cos

(
(a2V (φ)− 1)3/2

3V (φ)
− π

4

)
. (8.4)

In more general situations, one has to look for integration contours in the space
of complex metrics that render the integral convergent. In concrete models, one
can then find a class of wave functions that is a subclass of the solutions to the
Wheeler–DeWitt equation. In this sense, the boundary condition picks out particular
solutions. Unfortunately, the original hope that only one definite solution remains
cannot be fulfilled.

t

Time

Time

τ = 0τ
Imaginary

Fig. 8.2 “Hartle–Hawking instanton”: the dominating contribution to the Euclidean path integral
is assumed to be half of a four-sphere attached to a part of de Sitter space. Obviously, this is a
singularity-free four-geometry. This instanton demonstrates clearly the no-boundary proposal in
that there is no boundary at τ = 0
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8.4.2 Tunneling Proposal

The tunneling proposal emerged from the work by Alexander Vilenkin and others,
see [10–12] and references therein. It is most easily formulated in minisuperspace.
In analogy with, for example, the process of α-decay in quantum mechanics, it is
proposed that the wave function consists solely of outgoing modes. More generally,
it states that it consists solely of outgoing modes at singular boundaries of super-
space (except the boundaries corresponding to vanishing three-geometry). In the
minisuperspace example above, this is the region of infinite a or φ. What does “out-
going” mean? The answer is clear in quantum mechanics, since there one has a refer-
ence phase∝ exp(−iωt). An outgoing plane wave would then have a wave function
∝ exp(ikx). But since there is no external time t in quantum cosmology, one has to
define what “outgoing” actually means. Independent of this reservation, the tunnel-
ing proposal picks out particular solutions from the Wheeler–DeWitt equation. The
interesting fact is that these solutions usually differ from the solutions picked out
by the no-boundary proposal: whereas the latter yields real solutions, the solutions
from the tunneling proposal are complex; the real exponential prefactor differs in
the sign of the exponent. Explicitly, one gets in the above model the following wave
function:

ψT ∝ (a2V (φ)− 1)−1/4 exp

(
− 1

3V (φ)

)
exp

(
− i

3V (φ)
(a2V (φ)− 1)3/2

)
.

(8.5)

Comparing this with (8.4), one recognizes that the tunneling proposal leads to a
wave function different from the no-boundary condition. Consequences of this dif-
ference arise, for example, if one asks for the probability of an inflationary phase
to occur in the early universe: whereas the tunneling proposal seems to favor the
occurrence of such a phase, the no-boundary proposal seems to disfavor it. No
final word on this issue has, however, been spoken. It is interesting that the tun-
neling proposal allows the possibility that the Standard-Model Higgs field can play
the role of the inflaton if a nonminimal coupling of the Higgs field to gravity is
invoked [12].

8.5 Inclusion of Inhomogeneities and the Semiclassical Picture

Realistic models require the inclusion of further degrees of freedom; after all, our
Universe is not homogeneous. This is usually done by adding a large number of
multipoles describing density perturbations and small gravitational waves [2, 13].
One can then derive an approximate Schrödinger equation for these multipoles, in
which the time parameter t is defined through the minisuperspace variables (for
example, a and φ). The derivation is performed by a Born–Oppenheimer type of
approximation scheme. The result is that the total state (a solution of the Wheeler–
DeWitt equation) is of the form

Ψ ≈ exp(iS0[hab]/�) ψ[hab, {xn}] , (8.6)
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where hab is here the three-metric, S0 is a function of the three-metric only, and {xn}
stands for the inhomogeneities (“multipoles”). In short, one has that

• S0 obeys the Hamilton–Jacobi equation for the gravitational field and thereby
defines a classical space-time that is a solution to Einstein’s equations (this order
is formally similar to the recovery of geometrical optics from wave optics via the
eikonal equation).

• ψ obeys an approximate (functional) Schrödinger equation,

i� ∇ S0 ∇ψ︸ ︷︷ ︸

≡∂ψ
∂t

≈ Hm ψ , (8.7)

where Hm denotes the Hamiltonian for the multipole degrees of freedom. The
∇-operator on the left-hand side of (8.7) is a shorthand notation for derivatives
with respect to the minisuperspace variables (here: a and φ). Semiclassical time t
is thus defined in this limit from dynamical variables, and is not prescribed from
the outside.

• The next order of the Born–Oppenheimer scheme yields quantum gravitational
correction terms proportional to G [2, 14]. The presence of such terms may in
principle lead to observable effects, for example, in the anisotropy spectrum of
the cosmic microwave background radiation.

The Born–Oppenheimer expansion scheme distinguishes a state of the form (8.6)
from its complex conjugate. In fact, in a generic situation where the total state is
real, being for example a superposition of (8.6) with its complex conjugate, both
states will decohere from each other, that is, they will become dynamically inde-
pendent [1]. This is a type of symmetry breaking, in analogy to the occurrence of
parity violating states in chiral molecules. It is through this mechanism that the i
in the Schrödinger equation emerges. Quite generally one can show how a classical
geometry emerges from quantum gravity in the sense of decoherence [1]: irrelevant
degrees of freedom (such as density perturbations or small gravitational waves)
interact with the relevant ones (such as the scale factor or the relevant part of the
density perturbations), which leads to quantum entanglement. Integrating out the
irrelevant variables (which are contained in the above multipoles {xn}) produces a
density matrix for the relevant variables, in which nondiagonal (interference) terms
become small. One can show that the universe assumes classical properties at the
onset of inflation [1, 2].

The recovery of the Schrödinger equation (8.7) raises an interesting issue. It is
well known that the notion of Hilbert space is connected with the conservation of
probability (unitarity) and thus with the presence of an external time (with respect to
which the probability is conserved). The question then arises whether the concept of
a Hilbert space is still required in the full theory where no external time is present.
It could be that this concept makes sense only at the semiclassical level where (8.7)
holds.
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Of course, the last word on quantum cosmology has not been spoken as long
as we have no consensus on the interpretation of the wave function. What makes
this issue so troublesome is the missing link of a wave function of the Universe
to measurement. As remarked above, in standard quantum theory the Hilbert-space
structure is needed for the probability interpretation. Expectation values are inter-
preted as possible outcomes of measurements with probability depending on the
state the measured system is in. This interpretation entails the normalizability
requirement for the wave function. Moreover, probabilities have to be conserved in
time.

The problem is that we have no measurement crutch in quantum cosmology. This
is a problem that persists also in the full theory and is a consequence of background
independence. Only in a background of space and time can we make observations.
An expectation value formulated in a theory deprived of that background is deprived
of its interpretation (and justification) through measurement.

A background-independent quantum theory may thus be freed from a physical
Hilbert space structure. It should keep linearity, since the superposition principle is
not linked to observation, but it should dismiss the inner product as it is not clear
how to endow it with a meaning in a timeless context. A Hilbert-space structure
may, however, be needed at an effective level for quantum gravitational systems
embedded in a semiclassical universe; a typical situation is a quantum black hole
[8]. Owing to the linear structure of quantum gravity, the total quantum state is
a superposition of many macroscopic branches even in the semiclassical situation,
each branch containing a corresponding version of the observer (the various versions
of the observer usually do not know of each other due to decoherence). This is
often referred to as the “many-worlds (or Everett) interpretation of quantum theory”,
although only one quantum world (described by the full Ψ ) exists [1].

We saw here that classical structures such as time arise only under certain condi-
tions. It is in these regimes that we expect a physical Hilbert-space structure. Only
here can we make connection with measurements.

8.6 Arrow of Time and Structure Formation

Although most fundamental laws are invariant under time reversal, there are several
classes of phenomena in nature that exhibit an arrow of time [15]. It is generally
expected that there is an underlying master arrow of time behind these phenomena,
and that this master arrow can be found in cosmology. If there existed a special initial
condition of low entropy, statistical arguments could be invoked to demonstrate that
the entropy of the universe will increase with increasing size.

There are several subtle issues connected with this problem. First, a general
expression for the entropy of the gravitational field is not yet known; the only excep-
tion is the black-hole entropy, which is given by the expression

SBH = kBc3 A

4G�
= kB

A

4l2
P

, (8.8)
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Big Bang

Big Crunch

black
holes

Hawking radiation

Fig. 8.3 The classical situation for a recollapsing universe: the big crunch is fundamentally differ-
ent from the big bang because the big bang is very smooth (low entropy) whereas the big crunch is
very inhomogeneous (high entropy). Adapted from [15]

where A is the surface area of the event horizon, lP is again the Planck length and
kB denotes Boltzmann’s constant. According to this formula, the most likely state
for our universe would result if all matter assembled into a gigantic black hole;
this would maximize (8.8). More generally, Roger Penrose has suggested using the
Weyl tensor as a measure of gravitational entropy [15]. The cosmological situation is
depicted in Fig. 8.3, which expresses the very special nature of the big bang (small
Weyl tensor) and the generic nature of a big crunch (large Weyl tensor). Entropy
would thus increase from big bang to big crunch.

Second, since these boundary conditions apply in the very early (or very late)
universe, the problem has to be treated within quantum gravity. But as we have
seen, there is no external time in quantum gravity – so what does the notion “arrow
of time” mean?

We shall address this issue in quantum geometrodynamics, but the situation
should not be very different in loop quantum cosmology or string cosmology. An
important observation is that the Wheeler–DeWitt equation exhibits a fundamental
asymmetry with respect to the “intrinsic time” defined by the sign of the kinetic
term. Very schematically, one can write this equation as

H Ψ =
⎛

⎝ ∂2

∂α2
+

∑

i

⎡

⎣− ∂2

∂x2
i

+ Vi (α, xi )︸ ︷︷ ︸
→0 for α→−∞

⎤

⎦

⎞

⎠ Ψ = 0 , (8.9)

where again α = ln a, and the {xi } again denote inhomogeneous degrees of free-
dom describing perturbations of the Friedmann universe (see above); Vi (α, xi ) are
the potentials of the inhomogeneities. The important property of the equation is
that the potential becomes small for α → −∞ (where the classical singularities
would occur), but complicated for increasing α; the Wheeler–DeWitt equation thus
possesses an asymmetry with respect to “intrinsic time” α. One can in particular
impose the simple boundary condition

Ψ
α→−∞−→ ψ0(α)

∏

i

ψi (xi ) , (8.10)
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which would mean that the degrees of freedom are initially not entangled. Defining
an entropy as the entanglement entropy between relevant degrees of freedom (such
as α) and irrelevant degrees of freedom (such as most of the {xi }), this entropy van-
ishes initially but increases with increasing α because entanglement increases due to
the presence of the potential. In the semiclassical limit where t is constructed from
α (and other degrees of freedom), see (8.7), entropy increases with increasing t .
This then defines the direction of time and would be the origin of the observed
irreversibility in the world. The expansion of the universe would then be a tautology.
Due to the increasing entanglement, the universe rapidly assumes classical proper-
ties for the relevant degrees of freedom due to decoherence [1, 2]. Decoherence is
here calculated by integrating out the {xi } in order to arrive at a reduced density
matrix for α.

This process has interesting consequences for a classically recollapsing universe
[15, 16]. Since big bang and big crunch correspond to the same region in configu-
ration space (α → −∞), an initial condition for α → −∞ would encompass both
regions, see Fig. 8.1. This would mean that the above initial condition would always
correlate increasing size of the universe with increasing entropy: the arrow of time
would formally reverse at the classical turning point. Big bang and big crunch would
be identical regions in configuration space. The resulting time-symmetric picture
is depicted in Fig. 8.4, which has to be contrasted with Fig. 8.3. As it turns out,
however, a reversal cannot be observed because the universe would enter a quantum
phase [16]. Further consequences concern black holes in such a universe because no
horizon and no singularity would ever form.

These considerations are certainly speculative. They demonstrate, however, that
interesting consequences would result in quantum cosmology if the underlying
equations were taken seriously. Quantum cosmology could yield a complete and
consistent picture of the Universe.

Once the background (described by the scale factor and some other relevant
variables) has assumed classical properties, the stage is set for the quantum-to-
classical transition of the primordial fluctuations, which serve as the seeds for
structure formation (galaxies and clusters of galaxies). This is thought to happen in

black holes

Radius zero

Radius zero

Hawking radiation

Hawking radiation
maximal extension

Fig. 8.4 The quantum situation for a “recollapsing universe”: big crunch and big bang correspond
to the same region in configuration space. Adapted from [15]
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the inflationary stage of the early Universe. The interaction with further irrelevant
degrees of freedom (such as modes with short wavelengths) produces a classical
behavior for the field amplitudes of these fluctuations [17]. These then manifest
themselves in the form of classical stochastic fluctuations that leave their imprint in
the anisotropy spectrum of the cosmic microwave background radiation. After the
effective quantum-to-classical transition, the scenario proceeds as in the standard
picture of cosmology described, for example, in Chap. 7.
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Chapter 9
Self-Organization in Cells

Leif Dehmelt and Philippe Bastiaens

Abstract Cells are dynamic, adaptable systems that operate far from thermody-
namic equilibrium. Their function and structure is derived from complex biological
mechanisms, which are based on several distinct organizational principles. On the
one hand, master regulators, preformed templates or recipes can guide cellular struc-
ture and function. On the other hand, local interactions between fluctuating agents
and growing work-in-progress can lead to de novo emergence of structures via
self-organization. Here we discuss how these distinct principles are used in cellular
organization. We highlight several examples of cellular self-organization, includ-
ing intracellular gradient formation, growth based on stigmergy and force mediated
feedbacks in spindle formation and contrast these to template-based mechanisms
such as self-assembly. We conclude that an intimate interplay between distinct orga-
nizational principles, including template-based mechanisms and self-organization,
forms the basis of cellular structure and function.

9.1 The Origin of Cellular Organization

In contrast to man-made structures, which are usually static and built for a specific
purpose, cells are highly dynamic and able to adapt to varying external conditions.
Upon external stimulation, many cell systems are capable of differentiating into
specialized cell types to alter their behavior, function, or purpose. Such inherent
plasticity of structure and function is characteristic of living organisms.

It can be helpful to rationalize the dynamic, adaptable building principles of
cells in the context of their origin: evolution. Owing to natural selection, biolog-
ical systems that are studied today are the result of a complex optimization pro-
cess. Adaptability and dynamic properties that allowed continuous and/or stepwise
progress are likely key factors for a successful evolvable species. However, other
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Fig. 9.1 Organizational principles in cells. Simple signal transduction from a “leader entity” to
subordinate entities is not considered to be related to self-organization. Likewise, organization
based on information stored in templates, blueprints, or recipes, such as the base sequence in DNA,
is also not related to self-organization. In contrast, self-organized processes display global pattern
formation, based on dynamic interplay and teamwork of lower-order system components, such as
in the depicted formation of ordered filament structures via sliding through molecular motors

features, such as robustness, will also play important roles. As discussed below,
self-organization provides mechanisms by which dynamic biological structures can
be generated that are both adaptable and robust. However, biological mechanisms
often do not exclusively implement self-organization, but rather contain modules
or mixtures that implement different organizational concepts (Fig. 9.1). In the fol-
lowing sections, we will explore distinct organizational principles through which
cellular structure and function can be generated to solve biological problems.

9.2 Self-Organization and Other Organizational Principles
in Cells

In a self-organized process, several entities can interact with each other, and team
up to produce a behavior of the group as a whole. In such systems, the organizing
entity is not imposed from outside, but rather internal to the system itself. In a sim-
ple definition, self-organization is a process in which a pattern at the global level
emerges solely from numerous dynamic interactions among the lower-level compo-
nents of the system. Moreover, the rules specifying interactions among the system’s
components are executed using local information, without reference to the global
pattern [1]. The dynamic interactions between the lower-level components usually
include both attraction and repulsion, as well as positive and negative feedbacks.

The emergence of a pattern is basically an increase in complexity or information
in the self-organized system. According to the basic principles of thermodynamics,
this is only possible in open, dissipative systems, which operate far from equilib-
rium. For most biological systems, this means that energy needs to be supplied,
for example in the form of adenosine triphosphate (ATP), to produce and maintain
the emerging pattern. In such systems, local interactions among the system compo-
nents can change the internal organization of the system without being guided by
an outside source. Moreover, the global behavior of the collective system often can
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display patterns that are not easily understood in a direct intuitive manner simply
based on the knowledge of the underlying rules and behaviors of the interacting
entities. Such unexpected, complex global patterns and behaviors are often referred
to as “emergent properties”.

Before a global pattern emerges, self-organized systems usually start with a phase
of exploration, which is characterized by random fluctuations of the lower-level
system components. These fluctuations allow a dynamic phase of trial-and-error, in
which the system can make a transition from a state of high entropy and low infor-
mation content towards the emergence of a global pattern with lower entropy and
higher information content. In a self-organized system, this phase of trial-and-error
is based on local interactions between the lower-level system components. After the
emergence of the pattern, the phase of trial-and-error can continue to maintain the
emerged pattern. Such patterns can therefore be reconstructed continuously and can
thereby adapt themselves to changing external conditions.

Other organizational principles that are not considered to be self-organized
include:

1. a “leader entity” or “master regulator”, which can take command and dictate a
specific behavior on subordinate entities, and

2. a template, blueprint, or a recipe, which is used to reproduce a specific cellular
process based on hardcoded information.

These two alternative organizational principles are typical for man-made struc-
tures, such as buildings, which are constructed by a hierarchically organized roster
of leaders and workers. Ultimately, the workers follow instructions based on a tem-
plate or blueprint of the building via execution of pre-determined recipes. In such
systems, the organization is imposed from an external source (leaders, blueprints),
and not from within the system (composed of the workers and their actual work).
Such externally imposed organizational principles are also used in many cellular
processes: some master regulators, such as growth factors, their receptors, and
immediate signal mediators, can be understood as “leaders” in the context of an
isolated cellular process, as they relay signals to many target regulators. Such mas-
ter regulators are often controlled by global feedbacks that regulate their overall
activity.

A typical example of a cellular template is the genomic DNA. The information
stored in the base sequence of the genomic DNA is used to generate a complemen-
tary sequence of messenger RNA, which is then decoded to generate a protein. In
that way, the genomic DNA can be understood as a recipe for generating a protein,
based on a fixed sequence of events – hardcoded as base triplets, which are translated
by a fixed sequence of biomolecular steps. In principle, any component that contains
interpretable spatial or temporal information can be regarded as a template for this
information.

Self-organization should not be confused with simpler mechanisms of self-
assembly, in which preexisting building blocks are combined into a stable non-
dynamic structure, such as a crystal formed from interacting molecules, or the
two- and three-dimensional structures formed by DNA origami [2]. Such self-
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assembled structures are rather formed by a template-based process. In contrast to
self-organized dynamic and adaptable structures, which can be continuously rebuilt
by dynamic trial-and-error processes including both repulsive and attractive inter-
actions, self-assembled structures are usually produced by static attractive interac-
tions, which approach thermodynamic equilibrium during the pattern-forming pro-
cess. Furthermore, the information contained in complex self-assembled structures,
such as the complex shapes of DNA origami, do not emerge from teamwork among
lower-level components, but are instead derived from hardcoded blueprint or recipe
types of information. In the example of DNA origami, this information is stored in
the DNA sequences of the individual building blocks.

Typical examples of self-organized systems (Fig. 9.2) include (a) dynamic feed-
back systems, which lead to the formation of wave patterns in sand dunes [4],
(b) building principles, which depend on feedback interactions and reference to the
building in progress, such as building of termite colonies [5], (c) stable, dynamic
structures, which arise from complex force interactions, such as convection in
Bénard-cells [6]. In cells, self-organized systems that are similar in concept to these
large-scale systems are found at much smaller length scales. Examples of such cel-
lular systems that are related to the examples above include (a) dynamic activity
gradients based on feedback systems, such as Ca2+ signal waves [7], (b) directional
transport and growth systems that display feedback regulation, such as neurite out-
growth [8, 9], and (c) dynamic structures that are formed by complex force feedback
interactions, such as the mitotic spindle [10]. These types of systems are described
in further detail in the following sections. See also Table 9.1.

Fig. 9.2 Examples of self-organized systems in cells and related macroscopic self-
organized systems. (Image sources: sand ripples: c© iStockphoto.com/pixonaut; termite colony:
c© iStockphoto.com/AAndromeda; termites (inset termite colony): c© iStockphoto.com/jeridu;

human brain: c© iStockphoto.com/Henrik5000; Bénard convection cells: M.G. Velarde, Univer-
sidad Complutense Madrid; calcium waves: Reprinted from [3], with permission from Elsevier;
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9.3 Emergence of Spatio-Temporal Gradients via Dynamic
Feedback Systems

Many cellular functions need to be regulated in a spatio-temporal manner. Such
regulation is often accomplished by gradients of protein activities [11]. These gradi-
ents are formed by a reaction–diffusion mechanism: a localized protein can activate
a signal molecule, which then diffuses away from the site of activation. Subsequent
deactivation of the signal molecule, for example by a uniformly distributed inhibitor,
can lead to the formation of a stable gradient. In its basic form, such a reaction–
diffusion mechanism does not display the hallmarks of self-organization, and the
complexity of the emerging pattern is limited and closely resembles the pattern of
the localized activator. However, if the components of reaction–diffusion processes
are embedded in positive-feedback loops, more complex spatio-temporal patterns
can emerge.

A classic example of such a reaction–diffusion-based self-organization process
in cells is the formation of calcium waves [7, 12] (Fig. 9.3). Calcium is an impor-
tant biological signal and changes in its intracellular concentration plays a role in
many biological processes, such as cell contraction, propagation of nerve impulses
and cell fate decisions [13]. The bulk of calcium in cells is not present in the
cytosol, but instead concentrated in cellular compartments, such as the endoplas-
mic reticulum. In fact, the intracellular concentration of calcium is much lower

Fig. 9.3 Calcium wave propagation in cells. The conductivity of calcium channels in the endo-
plasmic reticulum (ER) is stimulated by intermediate cytosolic calcium concentration. Therefore,
calcium conductance is autocatalytic at low to medium calcium concentrations and can be excited
by local calcium increases. At higher concentrations, calcium conductance is again reduced and
the the calcium channel can enter a refractory period. These features allow formation of calcium
waves, which travel through the cell. (Image of calcium waves reprinted from [3], with permission
from Elsevier)
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(ca. 100 nM) than either the extracellular level (1–3 mM) and the level in the
endoplasmic reticulum (ca. 500 µM). This steep gradient is maintained by ATPases,
which consume energy in the form of ATP to transport calcium into the endoplasmic
reticulum [14].

A suitable extracellular stimulation, such as activation of G protein-coupled
receptors (GPCRs) or receptor tyrosine kinases, can lead to release of a second mes-
senger, the signal molecule IP3, which will activate a calcium channel on the endo-
plasmic reticulum, leading to release of calcium into the cytosol [13]. Interestingly,
the opening probability of these calcium channels has a bell-shaped dependence
on the cytosolic calcium levels themselves [15]. Thus, with increasing calcium
release, they conduct even more calcium. This local property of the calcium chan-
nels represents a positive feedback mechanism, which can lead to self-amplification
of an initially weak calcium signal. Owing to the bell-shaped calcium dependence,
the amplification process is limited, and the channel conductance is again reduced
at high calcium concentrations. After experiencing local high calcium concentra-
tions, the channels enter a refractive state, in which they do not conduct calcium
efficiently – even at previously optimal calcium concentrations.

In the geometric arrangement of calcium channels in the endoplasmic reticulum,
which occupies a large portion of the cytosol, this self-amplifying and self-limiting
mechanism can lead to the formation of waves of calcium release throughout the
whole cytosol. Such waves can move through cells via a fire–diffuse–fire mech-
anism, which lends both directionality and robustness to the signal propagation
[16]. Due to the high sensitivity in the positive feedback mechanisms of calcium
release from the endoplasmic reticulum, the information transfer follows a wave
propagation mechanism, which is faster than information transfer via diffusion on
the scale of cells [17]. Typically, the speed of information transfer in wave propa-
gation is constant, in contrast to diffusion, where it is inversely proportional to the
square root of time.

The phenomenon of calcium wave propagation exhibits all the hallmarks of self-
organized systems: It is a process in which a pattern at the global level, the calcium
wave, emerges solely from numerous dynamic interactions among lower-level com-
ponents, the calcium channels. These channels are operating on rules using only
local information, the local calcium concentration, without reference to the global
pattern, the calcium wave. This increase in complexity and information in the system
is made possible via energy consumption through ATPases, which maintain steep
gradients of calcium between the cytosol and endoplasmic reticulum.

The formation of calcium waves is a special case of a reaction-diffusion mecha-
nism, which can lead to the emergence of higher order patterns – in this case to prop-
agating wave fronts. Here, the reaction is the opening of the calcium channel, which
produces a diffusing reactant – the calcium itself. Other examples of pattern for-
mation by self-organization in reaction-diffusion processes include Turing patterns,
which are formed in systems exhibiting short-range activation, long-range inhibi-
tion, and positive-feedback regulation [18]. Such systems can lead to the emergence
of stable spatial patterns, which are thought to play a role in body segmentation
processes during animal development.
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Self-organization also plays an important role in cell polarization. Here, a cell’s
“front” and “back”, with distinct morphologies and biological function, emerges
during directional cell migration. A simple model for cell polarization, the so-called
local excitation and global inhibition (LEGI) model, can account for one aspect
of directed cell motility: the amplification of an external, shallow gradient into an
intracellular gradient of a signal molecule (Fig. 9.4a) [19]. In this model, an external
signal activates both an activator A and an inhibitor I for the substrate R. If the
diffusion of the activator A is much slower than the diffusion of inhibitor I, then
an intracellular gradient is formed inside the cells, which mimics the extracellular
gradient. If the external gradient is changed in direction, the intracellular gradient
follows that change in LEGI-type models. Such simple models of cell polarization
therefore mainly mimic the behavior of the template gradient and thus the intracel-
lular pattern does not exhibit a gain in complexity.

However, many cells also show a persistent polarization that is fairly insensitive
to changes in the external signals, once the cell has become polarized. Such persis-
tence after cell polarization can be observed in Turing-type models [20] (Fig. 9.4b).
The main difference between the LEGI and Turing models is the addition of positive
feedback regulation of the activator A on itself, which assures the maintenance of an
initially formed intracellular gradient, even in the absence of external stimulation.
New approaches, such as wave-pinning [21] can account for a mixture of persis-
tence and plasticity, which is observed in many types of motile cells. In contrast

Fig. 9.4 Comparison of models for cell polarization. An extracellular signal – either in the form
of a gradient or a small localized elevation – activates both an intracellular activator and an intra-
cellular inhibitor. The inhibitor diffuses much faster than the activator. In the simpler LEGI-type
model (a), this extracellular stimulation is mimicked inside the cells. If the extracellular gradient
is removed, the intracellular gradient disappears. In the more complex Turing-type model (b),
self-amplification of the activator is introduced. Under permissive model parameters, a previously
initiated gradient is maintained, even after the extracellular signal gradient is removed
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to Turing-type models, in which a stable intracellular gradient is formed by growth
of small local perturbations, an adaptable gradient is formed in the wave-pinning
model by propagation of a wave, which slows down until it comes to a halt.

9.4 Stigmergy and Feedback Regulation in Directional
Morphogenetic Growth or Transport Processes

The intracellular patterns and gradients formed by reaction–diffusion mechanisms
discussed above play important roles in many biological processes, such as intracel-
lular signal transduction, cell fate decisions, and cell polarization. The initial phase
in the formation of such gradients involves an exploratory phase, in which individual
lower-level components sample their environment by means of diffusion. On the
molecular level, the diffusing components perform a random walk, in any direc-
tion except for physical barriers, such as intracellular organelles or the cell border.
However, in cells, this random walk can be biased or steered into more directional
movements via the cytoskeleton. This directionality can either derive from direc-
tional, asymmetric growth processes or from motor-based transport along direc-
tional cytoskeletal tracks, or from a combination of the two. The resulting growth
processes often involve a specific form of self-organization, called stigmergy.

The term stigmergy was introduced by Grassé to describe mechanisms in ter-
mite nest building [5]. The basic principle underlying stigmergy is the organiza-
tion of a building process based on the work in progress, which provides marks
(stigmata) for further work (ergon). Classical examples of stigmergy include wall
[22] or chamber [5] building by ants. In contrast to other self-organizing pro-
cesses, the low-level system components do not team up with each other directly.
Rather, they interact and communicate indirectly by altering the work in progress,
which serves both as the goal to be built and as a working memory during its
building process. Furthermore, the work in progress is often an integral part of
a positive feedback loop, which can promote the emergence of complex growth
patterns.

One example of a positive feedback mechanism that involves a growing “work-
in-progress” has been proposed for the axonal growth cone turning towards a shal-
low gradient of the neurotransmitter GABA (γ -aminobutyric acid) [9] (Fig. 9.5a).
In the proposed mechanism, such a gradient first induces an asymmetric calcium
response on initially symmetrically distributed GABA receptors. The asymmetric
calcium release then leads to asymmetric growth of microtubules, which in turn lead
to asymmetric transport and redistribution of GABA receptors. The positive feed-
back loop is closed by a resulting increase in asymmetry of the calcium response.
In this mechanism, the work in progress – the growth of microtubules – is a key
factor in the spatial organization of a positive feedback mechanism and it provides a
memory of the system on which the feedback can be propagated. At the same time,
this work in progress also gives rise to the emerging biological effect: The steering
of the growth cone towards a shallow gradient of the GABA neurotransmitter.
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C

A B

Fig. 9.5 Cell polarization via growth processes related to stigmergy. a Positive feedback between
microtubules and calcium release in growth cone steering. Local calcium release enhances
microtubule stability and preferred microtubule growth towards regions of higher calcium concen-
tration. Transport of additional calcium-conducting receptors via these microtubules amplifies the
calcium release. b Positive feedback between Rac activity and microtubule growth in cell motility.
Growing microtubules activate the small GTPase Rac, which in turn deactivates the microtubule
growth inhibitor stathmin. Local inhibition of stathmin leads to increased microtubule stability
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Similar positive feedback mechanisms have been proposed in directional cell
migration [23] (Fig. 9.5b). In that model, activation of a signal transducer, the
small GTPase Rac1, via microtubule polymerization can lead to the inhibition of
a microtubule growth inhibitor called stathmin. This can in turn lead to increased
microtubule growth and increased Rac activation. Again, the work in progress is
the microtubule growth, which provides both a key node in the positive feedback
and a memory of the current system state towards the emergence of directional cell
motility. It is not entirely clear how growing microtubules can activate Rac, and
both a directional transport mechanism via molecular motors, or targeting of signal
molecules via specialized complexes concentrated at growing microtubule tips, the
so-called “plus-tips”, might play a role in activating Rac.

While the previous examples highlight the formation of self-organized signal
gradients based on directional transport mechanisms or directional growth mech-
anisms, positive feedback from a work in progress can also arise by means of
mechanical forces generated inside cells. One such example can be directly visual-
ized in a model experiment for neurite outgrowth [8]. If COS7 cells are treated with
the microtubule-disrupting drug nocodazole and simultaneously transfected with a
neuronal-microtubule-stabilizing protein called MAP2C, small motile microtubule
fragments are generated following drug washout (Fig. 9.5c). These microtubule
fragments move directionally through cells by means of the microtubule motor
dynein. As microtubules reach the cell periphery, they slide along the membrane
until they get caught in small membrane protrusions. Once immobilized in such
small protrusions, the microtubules can push the plasma membrane further, enhanc-
ing the protrusion. A larger protrusion is able to catch more pushing microtubules,
thus further enhancing the protrusion. Here, the work in progress is the growing
protrusion, which is amplified by a positive feedback involving the accumulation
of microtubule fragments and their ability to enhance the cell protrusion. Simi-
lar mechanisms involving local accumulation and amplification of pushing micro-
tubules might be involved in the initiation of neurites.

Cellular systems that involve stigmergy are likely embedded in multiple levels of
feedback regulation. For example, the overall regulation of cell shape likely involves
growth mechanisms involving positive feedback loops that can give rise to focused
patterns such as cell polarization or neurite formation. On the other hand, negative
feedback loops or limiting factors will regulate the extent of such focused growth
processes [24] and will keep the overall cell structure in a steady state.

�
Fig. 9.5 (continued) and increased, localized microtubule growth. c Transport-mediated polarity
sorting and geometry-mediated protrusion amplification in a cellular microtubule reorganization
assay. Microtubule fragments of random orientation regrow in cells after nocodazole washout in
the presence of the neuronal microtubule stabilizer MAP2c. Directional transport of microtubule
fragments orients microtubule fragments with their plus-ends towards the cell periphery. In a
self-amplifying manner, small perturbations induced by pushing microtubules induce a convex
disturbance of the cell periphery, which can collect more microtubule fragments to induce a larger
protrusion
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9.5 Emergence of Complex Structures via Self-Organization
of Microtubules and Associated Motors

The previous examples of intracellular self-organized systems are composed of a
relatively small number of component types, which interact to build comparably
simple higher-order structures such as waves, gradients, or foci. However, many
cellular structures, such as the lamellipodium in motile cells or the mitotic spin-
dle, display much higher levels of complexity. Detailed mechanisms of how these
structures emerge are still lacking, however, many of the underlying organizational
principles have been uncovered. A key factor in the generation of these complex
structures involves an intimate interplay between growing cytoskeletal filaments,
their regulators, and mechanical forces generated by the growing filaments them-
selves, by associated motor proteins, or both. In addition to mechanisms based on
self-organization, other means of organization are usually also used in building such
complex structures. Deciphering which aspects of a generated structure emerge from
self-organization and which from a template-based mechanism is not always easy
owing to functional overlap and redundancies.

Early experiments to elucidate the organizational principles of spindle forma-
tion made use of mitotic Xenopus egg extracts, which contain many components
necessary to build a mitotic spindle [25]. Interestingly, these extracts lack certain
template structures, such as centrosomes, which usually form the spindle poles, and
centromeric DNA, which forms anchor points for spindle microtubules – so called
kinetochores – in the condensed chromatin at the spindle metaphase plate (Fig. 9.6).
In one model, the spindle arises via a search-and-capture mechanism on the basis of
two templates: the centrosomes, from which microtubules grow in all directions,
and the kinetochores on the chromatin, which capture microtubule ends [26].
Indeed, if centrosomes and chromatin are added to Xenopus extracts, spindles are
formed, as predicted by the search-and-capture model [27]. In a way, the search-and-
capture model represents an exploratory phase – a period of trial-and-error – and the
dynamic properties of microtubules, which undergo repeated growth and shrinkage
phases, are capable of exploring a wide area of state space, which then converges
to a defined emerging pattern – the mitotic spindle. As expected in a self-organized
system, the global pattern is formed only by local interactions without reference to
the global structure. Interestingly, the chromatin also serves an additional role in
guiding microtubule exploration towards the emerging spindle structure by generat-
ing a gradient of microtubule stabilization [11]. This additional level of microtubule
steering is necessary for efficient search-and-capture-based spindle formation [28].
While this process indeed displays the hallmarks of self-organization, it is neverthe-
less clear that several spatial templates exist in the search-and-capture model, which
provide important spatial cues and restrictions in the exploratory phase. However,
spindles are also formed in the absence of centrosomes in meiosis. Furthermore,
in the absence of both centrosomes and kinetochores, the addition of beads that
were coated with DNA lacking centromeric sequences, and therefore lacking kine-
tochores, is sufficient to induce the formation of a spindle [25].
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Fig. 9.6 Template-based aspects of spindle assembly and self-organization of artificial spindle-like
structures. Nucleation: In mitotic Xenopus egg extracts [25], DNA-coated beads bind the protein
RCC1, which can locally activate the signal protein Ran. This signal protein can promote micro-
tubule nucleation and stabilization indirectly by releasing the protein TPX2 from inhibition by
importin. Via partially autocatalytic reaction–diffusion mechanisms, these proteins form an activ-
ity gradient, which leads to microtubule growth around DNA-coated beads. Coalescence: Subse-
quently, microtubules form a tight bundle around the DNA-coated beads, which is held together
by multivalent microtubule motors. Bead-associated plus-end-directed motor activities are able
to push microtubules in an orientation-dependent manner to sort microtubule polarity. Bipolarity:
Finally, microtubules form foci at their poles by means of microtubule reorientation through forces
generated by minus-end-directed motor complexes

The underlying mechanism of this reconstituted spindle formation is complex
and involves several aspects of apparent self-organization. First, microtubules are
nucleated in the vicinity of DNA-coated beads. Then microtubules form a bundled
structure, which finally rearranges into a spindle with two focused poles arranged
around the DNA-coated beads at the center of the structure [25]. The microtubule
nucleation step is induced by a reaction–diffusion mechanism involving recruitment
of protein activities to the DNA-coated beads [29]. The Xenopus extract contains a
signaling molecule, called Ran, which can exist in an active, guanosine triphosphate



232 L. Dehmelt and P. Bastiaens

(GTP)-bound state and an inactive, guanosine diphosphate (GDP)-bound state. A
Ran activator, called RCC1, is also present in the extract. This activator has a high
affinity to DNA and it thus binds to the DNA-coated bead, leading to localized Ran
activation in its vicinity. Active Ran is only present in the direct vicinity of the bead,
as diffused Ran can be deactivated by a soluble, evenly distributed Ran deactivat-
ing protein called RanGAP. A potential positive feedback loop, by which active
Ran can activate its own activator RCC1, might contribute to gradient formation
[11]. Active Ran can release a microtubule stabilizer and nucleator, called TPX2,
which induces the microtubule growth around DNA-coated beads [29]. Recent work
suggests that the detailed shape of the Ran gradient is critical for the formation of
artificial spindles, and that a more complex reaction–diffusion mechanism involving
additional components appears to be critical for generating the exact shape of the
gradient [30]. Additional microtubule regulators, such as the microtubule depoly-
merizing factor stathmin, are also regulated by signal gradients forming around
chromatin [31].

The microtubules generated by these activities are disorganized at first, but then
are reoriented into a more ordered array. This reorientation is thought to be orches-
trated by microtubule motor activities [10]. The basic organizing principle, how
force-generating motor proteins can rearrange dynamically growing filaments, was
studied by in vitro reconstitution experiments in a simple model system: In an
attempt to simulate mechanisms related to spindle pole focusing, dynamically grow-
ing, unordered microtubules were mixed with an artificial dimeric kinesin motor
complex capable of moving directionally on two microtubules simultaneously [32]
(see also Fig. 9.1). The dynamic interaction of microtubules with such motor com-
plexes led to the formation of asters and vortices, which emerged in the absence of
external guidance or templates. It is thought that asters emerge via focusing of the
microtubule ends through forces generated by motors moving on two microtubules
simultaneously towards the generated focus center (Fig. 9.6). Computer simulations
of this process support this idea [33]. Studies on meiosis in oocytes suggest that
similar mechanisms are used in cells if centrosomes are not present [34].

The emergence of such asters is a result of a dynamic force-generating mecha-
nism that directly shifts the asymmetrical microtubules with respect to each other
[32]. The system starts with an exploratory phase of random fluctuations, based
on motor-based shifting of initially randomly oriented microtubules. The pattern
of nonrandomly oriented and spatially organized microtubule asters emerges from
the random fluctuations based on local rules, which affect motor-crosslinked micro-
tubules differently depending on their crosslink angle. Through a series of trial-
and-error events, which are characterized by large-scale microtubule movements,
the regularly spaced microtubule asters emerge based on local interaction rules:
If microtubules overlap, the directional motors lead to “attraction” of one type of
microtubule end (in the study by Nedelec et al., the plus-ends), whereas the other
type of end is repelled from each other (the minus-end). The attraction of plus-ends
and repulsion of minus-ends leads to the growth of plus-end-centered foci, which
leads to continuously more efficient plus-end focusing by a positive feedback mech-
anism similar to classical clustering. The attraction and repulsion is only effective
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while filaments overlap. Therefore, the system approaches a more stable structural
configuration, a regular arrangement of foci, which is characterized by minimal
microtubule overlap. The ordered microtubule arrangement is protected against ran-
domization by Brownian fluctuations by ongoing dynamic force-generating interac-
tions with crosslinking microtubule motors.

In the ensemble as a whole, asters emerge without the need for a template,
purely based on the local interactions of microtubule motors and microtubules. The
development of the aster itself can again be interpreted as a form of stigmergy. The
lower-level components, the microtubule motors, do not team up by communicating
or interacting directly with each other, but rather cooperate via the work in progress,
the emerging aster, which also serves as a working memory of the system’s current
state.

The emergence of an individual aster through self-organized interactions between
growing microtubule filaments recapitulates one aspect of the self-organization of
the mitotic spindle. However, the bipolar organization of a mitotic spindle is more
complex than a single aster. Computer simulations using a variety of different types
of components and systematic analysis of parameter space were used to get a first
idea of how a bipolar spindle could form from asters [35]. In these simulations,
motor complexes were analyzed for their ability to influence a pair of microtubule
asters. If only a single type of motor was included in a complex, these asters either
converged via attraction or separated via repulsion. However, if two types of motors
with opposite movement directionalities were combined in a complex, a stable but
nevertheless dynamic interaction between two asters could be observed. By ana-
lyzing such simulations, it became clear that a balance of competing forces in the
overlapping region is necessary for the emergence of this behavior. Moreover, the
extent of interaction and overlap between the asters was regulated by feedback inter-
actions, which were based on the extent of overlap between parallel and antiparallel
microtubule overlaps in the resulting bipolar spindle structure.

While these simulations did not attempt to recapitulate a realistic set of compo-
nents – the types of motor complexes used in these simulations do not have an obvi-
ous real-world counterpart – they were able to provide insight into organizational
principles that are sufficient to generate a stable bipolar spindle-like structure.

9.6 Emergence of Dynamic Structures in Actin Filament
Treadmill Systems

The emergence of actin-rich structures was also proposed to originate from self-
organization mechanisms. One of these structures is the lamellipodium. This struc-
ture is composed of a branched network of treadmilling actin filaments, which poly-
merize at the peripheral border of the cell and depolymerize towards the center
of the cell [36]. In general, treadmilling is thought to arise from the asymmetry of
actin filaments, which tend to polymerize at their plus-end and depolymerize at their
minus-ends. This asymmetry in polymerization kinetics is due to different kinetic
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association/dissociation rates for monomers at the filaments ends and coupled to the
intrinsic hydrolysis of polymer-bound actin-ATP to actin-ADP. In cells, additional
factors that stimulate regionally controlled nucleation, elongation, and depolymer-
ization also play an important role [36].

A computational model for such treadmilling filaments, which contains only a
few components – filaments and filament nucleators, which are transported direc-
tionally on the filament itself towards one filament end – shows aspects of self-
organization [37]. Computational simulations of this simple system reveal sta-
ble solutions that are characterized by moving, crescent-shaped filament densities,
which accumulate nucleators at their leading edge. This behavior is reminiscent of
motile keratocyte fragments, which can migrate autonomously (Fig. 9.7) [38]. Such
fragments display a similar shape and might be propelled by a related actin poly-
merization and treadmilling mechanism. In contrast to the example of the formation
of the mitotic spindle, in which crosslinked motors produce forces that can directly
shift filaments with respect to each other, a major component of the force generated
by the lamelipodium is derived from the polymerization of the actin filaments them-
selves by an elastic Brownian ratchet mechanism [39]. Again, this system displays
aspects of stigmergy, as the polymer array serves as a work in progress, to which
additional subunits are added. It also serves as a source of positive feedback by
mediating the transport of actin nucleators to the filament tip to initiate additional
filaments.

Evidence that actin can indeed self-organize also in cells is provided by a sim-
plified cellular assay, in which actin repolymerization is observed after washout of
the actin-sequestering drug latrunculin [40]. In these experiments, waves of actin
polymerization were observed, which propagate through the cell. Inhibition of the
classical upstream activators of actin polymerization did not interfere with wave pro-
gression, suggesting that these waves were self-sustaining and that polymerization
and depolymerization were somehow coupled within waves.

In lamellipodia, individual actin filaments form a dense, branching network,
which is constantly rebuilt during treadmilling. Many of these branches arise from
the activity of an actin nucleator called ARP2/3. This nucleator forms new fil-

Fig. 9.7 Self-organization of treadmilling filaments. Modeling of directional transport of a filament
nucleator towards the growing end of a treadmilling filament is sufficient to generate solutions
containing stable, treadmilling actin structures, which resemble the machinery of motile cells
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aments from existing filaments in a defined, 70◦ branching angle. The forma-
tion of the higher-order structure of this branched actin network in the lamel-
lipodium has been suggested to arise from a self-organization mechanism related
to evolution [41, 42]. In this model, newly formed actin branches obtain orienta-
tion information from the previously formed filaments on which they are nucle-
ated. This orientation information is modulated by fluctuations, and the result-
ing orientation is selected for its fitness to survive in the dynamic lamellipodium
structure.

Thus, this model includes all the basic features of an evolutionary system:
(a) inheritance in the form of orientation information transfer from mother fila-
ment to daughter filament, (b) mutation in the form of fluctuations in branching
angle, and (c) selection on the basis of filament survival in the lamellipodium
structure, which is dependent on the incident angle of the filaments towards the
plasma membrane at the leading edge. Ultimately, such an evolutionary system
can self-organize into a dynamic filament array, displaying structural features sim-
ilar to the branched actin network seen in lamellipodia. The organizing princi-
ple of such a system is different from the previously discussed systems. Similar
to systems organized via stigmergy, the resulting structure does not emerge from
direct, dynamic repulsive and attractive interactions of the system components, but
instead uses the work in progress, the filament network, as a means for indirect
interactions. This work in progress also serves as a memory of the current system
state. However, in contrast to the previous systems based on stigmergy, the work
in progress does not function as a local amplifier in a positive feedback loop but
in a more subtle optimization process, which tunes the most efficient geometry
for the orientation of dynamic filaments similar to the natural selection process in
evolution.

9.7 Limits of Self-Organization in Cells

As discussed in the previous examples, self-organization appears to play an
important role in many biological processes. However, self-organization is certainly
not the only organizing principle in cells, and most structures that display features
of self-organization are also controlled by additional mechanisms. For example, the
emergence of a mitotic spindle around a DNA-coated bead in a Xenopus extract as
discussed above is not a pure process of self-organization, as a spatial template –
the DNA-coated bead – is necessary to form the structure. In this case, however,
the spatial template is very simple and does not contain all the information to build
the spindle. It nevertheless contains some information: for example, the chromatin
dimensions and most likely therefore also the resulting size of the gradient are
related to the overall size of the emerging spindle [43]. In that respect, the organizing
principle of the spindle around the DNA-based template bears a remarkable resem-
blance to the organization of wall building in ant colonies, in which either the colony
size (mostly via mechanical stimuli) can act as a template for wall building [22], or



236 L. Dehmelt and P. Bastiaens

else queen-specific pheromone release [44], which attracts workers and guides their
behavior to deposit pebbles, can act as a template to guide the building of a chamber
that can dynamically adapt to the queen’s body size.

The opposite of self-organization, the action of a well-informed leader, in the
form of a master regulator that receives input from various signaling pathways, is
often found at the onset of many biological processes. For example, the cyclin sys-
tem receives information about the current state of the cell, and whether it should
proceed to mitosis [45]. For the mitotic machinery, the relevant cyclin can be con-
sidered a master regulator, and thus would play the role of a well-informed leader.
However, as discussed above, while some limited types of templates do exist in the
cell, such well-informed leaders usually do not themselves possess a recipe for per-
forming a biological process or a blueprint for building a structure. The capabilities
of master regulators are therefore very limited in terms of specifying a complex
structure or behavior.

Some simple structures such as kinetochores or centrosomes might arise from
nondynamic, crystallization-like aggregation or self-assembly mechanisms. The
information for such self-assembly mechanisms is mainly stored in two ways: either
as a blueprint in the DNA, indirectly encoding the interactions between the individ-
ual complex partners, or in pre-existing templates, which are inherited from the
previous cell division. It is unclear for many cellular organelles to which extent they
are built based on hardcoded blueprints, pre-existing templates, or self-organization
mechanisms.

In a simple view, centrosomes might be self-assembled through biochemical
interactions encoded ultimately in DNA blueprints. However, centrosomes usually
form around two halves of an inherited pair of centrioles [46], which are therefore
a pre-existing, inherited template. Are cells capable of de novo construction of a
centriole pair? Or does the inherited half of the pair contain required epigenetic
template information, which is not inherited via the genetic code? In the case of
centrioles, this questions is easily answered, as centrioles can also assemble de
novo during normal development [47] or after laser ablation [48]. In the case of the
Golgi apparatus, it is less clear if this organelle can form de novo. In mammalian
cells, the Golgi apparatus forms an elaborate structure that is dependent on specific
matrix proteins, dynamic membrane fusion events, and motor-based interactions
with microtubules [49]. If the microtubles are removed by pharmacological inter-
vention or reorganized during mitosis, the Golgi apparatus fragments into a less
structured, vesicular form. Its characteristic structure is rebuilt after microtubules
resume their normal interphase configuration. Thus, the Golgi structure can be inter-
preted as an emerging pattern of a dynamic self-organization process. However, the
Golgi apparatus never disappears completely and the vesicles of the fragmented
organelle still retain specific properties in membrane and protein composition. Are
Golgi fragments essential templates required for the formation of this organelle, or
could the Golgi apparatus be formed de novo in the complete absence of Golgi-
derived vesicles?

Similar questions could be raised for many other cellular compartments. Do
mammalian cells possess all the biological features to generate these compartments
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de novo, or was this capability lost during evolution? These questions are not yet
clearly answered in the case of the Golgi apparatus [49]. The genome of mammalian
cells contains the blueprint for either making or importing all the Golgi compo-
nents, however, as the Golgi apparatus is also an integral part of the cell’s metabolic
machinery, its complete loss might be too disrupting for the cells to rebuild it. Thus,
Golgi-dependent metabolic or signaling pathways might be necessary to produce
critical Golgi components. Even if all Golgi components were available to the cell,
it is unclear whether they would self-assemble into a functional Golgi apparatus,
or if Golgi-derived vesicles are necessary as a seed, or a template. In yeast, it has
been suggested that structures identified by markers for the Golgi apparatus and
its precursor, the transitional ER sites, can indeed form de novo. However, it was
unclear whether this de novo formation required template structures, which were
not visualized by these markers [50].

From the overall discussion in this chapter, it becomes clear that most higher-
order structures in cells form through a mixture of many organizational mecha-
nisms. In particular, larger-scale, adaptable, dynamic structures, such as the overall
morphological shape of the cell, require not only template-based and blueprint-
type information to build and maintain themselves and to adapt their shape. Such
dynamic structures typically also use mechanisms related to self-organization, in
which the individual system components dynamically interact with each other, or
their work in progress. Many of the studies mentioned here incorporate a combina-
tion of detailed microscopic analysis, mathematical modeling, and in vitro recon-
stitution of biological systems. This combination of approaches is best suited to
fully understand the underlying principles of the often unexpected and not intuitive
emerging properties of self-organized systems in cells, as it incorporates a detailed
description of the system (microscopic analysis), its theoretical foundation (math-
ematical modeling), and an experimental proof (in vitro reconstitution). Further-
more, reconstitution and simulation of subcellular systems allows a precise delin-
eation of the mixture of organizational principles used to build and maintain their
characteristic structures and dynamic behaviors.
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Chapter 10
Approach of Complex-Systems Biology
to Reproduction and Evolution

Kunihiko Kaneko

Abstract Two basic issues in biology – the origin of life and evolution of pheno-
types – are discussed on the basis of statistical physics and dynamical systems. In
section “A Bridge Between Catalytic Reaction Networks and Reproducing Cells”,
we survey recent developments in the origin of reproducing cells from an ensemble
of catalytic reactions. After surveying several models of catalytic reaction networks
briefly, we provide possible answers to the following three questions: (1) How are
nonequilibrium states sustained in catalytic reaction dynamics? (2) How is recursive
production of a cell maintaining composition of a variety of chemicals possible?
(3) How does a specific molecule species carry information for heredity? In section
“Evolution”, general relationships between plasticity, robustness, and evolvability
are presented in terms of phenotypic fluctuations. First, proportionality between
evolution speed, phenotypic plasticity, and isogenic phenotypic fluctuation is pro-
posed by extending the fluctuation–response relationship in physics. We then derive
a general proportionality relationship between the phenotypic fluctuations of epi-
genetic and genetic origin: the former is the variance of phenotype due to noise in
the developmental process, and the latter due to genetic mutation. The relationship
also suggests a link between robustness to noise and to mutation. These relation-
ships are confirmed in models of gene expression dynamics, as well as in laboratory
experiments, and then are explained by a theory based on an evolutionary stability
hypothesis For both sections “A Bridge Between Catalytic Reaction Networks and
Reproducing Cells” and “Evolution”, consistency between two levels of hierarchy
(i.e., molecular and cellular, or genetic and phenotypic levels) is stressed as a prin-
ciple for complex-systems biology.
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10.1 A Bridge Between Catalytic Reaction Networks
and Reproducing Cells

10.1.1 Catalytic Reaction Network for a Protocell

To understand what life is, we need to determine the universal features that all life
systems have to satisfy at a minimum, irrespective of detailed biological processes.
In the study of complex-systems biology, we aim to extract universal features that
all biological systems have to satisfy [1]. In particular, we have formulated general
laws for reproduction, adaptation, development, and differentiation.

Present-day organisms, however, include detailed, elaborated processes that have
been captured throughout the history of evolution. For our purpose of extracting
universal logic, it is desirable to study a system that is as simple as possible. Accord-
ingly, we have proposed an approach called constructive biology, in which we set
up experimental and theoretical models that possess a certain basic property of life
and try to understand the conditions required to possess such a property [2, 3].

One of the most important steps in constructive biology is the construction of
reproducing cells. However, despite considerable efforts and developments toward
the experimental construction of artificial cells that reproduce themselves, there
remain several difficulties [4–8]. We need to bridge the gap between “simple cat-
alytic reaction networks” and reproducing cells.

Let us begin with a simple argument for a biochemical process that a cell that
grows must satisfy at a minimum. In a cell, there exist a large variety of chemicals
that catalyze each other and form a complex network. These molecules are spatially
arranged in a cell, and for some problems the spatial arrangement is very important,
whereas for others simply the knowledge of the composition of the chemicals in a
cell is sufficient to determine the state of a cell. As a starting point, we disregard the
spatial structure within a cell and consider only the composition of the chemicals
in a cell. If there are k chemical species in a cell, the cell state is characterized
by the number of molecules of each species as N1, N2, . . . , Nk . These molecules
change their number by reactions between each other. Because most reactions are
catalyzed by some other molecules, the reaction dynamics consist of a catalytic
reaction network [1, 9–13].

As our constructive biology is aimed at neither making a complicated, realistic
model for a cell nor imitating specific cellular functions, we set up a minimal model
with a reaction network. Now, there exist several levels for the modeling, depending
on the question we wish to address [11].

1. Type I model: Assuming that reactions for some molecules are fast, they can be
adiabatically eliminated. Now, most biochemical reactions are catalyzed by some
other chemicals. These catalysts are also synthesized as a result of intracellular
reactions. A simple model for this situation is the following reversible, two-body
reaction among catalysts Xi (i = 1, 2, . . . , k = total species)

Xi + X j (+S)←→ Xm + X j (+S′) ,
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where X j is a catalyst and the ratio between backward and forward reactions is
chosen so that the detailed balance condition is satisfied.

2. Type II model: Under the flow of some chemicals into a cell, most slow reactions
progress almost unidirectionally, where fast reversible reactions are regarded to
be already balanced. For example, a simple two-body catalytic reaction is con-
sidered:

Xi + X j (+S)→ Xm + X j (+S′) ,

where X j catalyzes the reaction. If the catalysis progresses through several steps,
this process is replaced by

Xi + m X j + (S)→ X� + m X j (+S′) ,

leading to higher-order catalysis. For a cell to grow, some resource chemicals
must be supplied through a membrane. Through the above catalytic reaction
network, the resource chemicals are transformed to others, and as a result, a
cell grows. Indeed, this class of model is adopted to study the condition for cell
growth and clarify universal statistics for such cells.

3. Type III model (network consisting of replicating units, e.g., hypercycle [9]):
For a cell to grow effectively, there should exist some positive feedback process
to amplify the number of molecule species. Such a positive feedback process
leads to an autocatalytic process to synthesize each molecule species. During the
reproduction of a cell, all species are somehow synthesized. Then it would be
possible to consider a replication reaction. For example, there exists a reaction
S+X+Y → X ′+Y : S′+X ′ → 2X . Then, as a total, S+S′+X+Y → 2X+Y .
Assuming that the resources S and S′ are constantly supplied, we can consider
the replication reaction X + Y → 2X + Y catalyzed by Y . At this level, we can
consider a unit of a replicator and consider a replication reaction network. This
model was first discussed as the hypercycle by Eigen and Schuster [9]. By choos-
ing each model level, we address the “basic” questions to be discussed below.
Through such a study, one can obtain insight into how to bridge the gap between
only a set of chemical reactions and a reproducing cell; this should also help to
construct an artificial protocell. In addition, it is interesting to check whether the
universal properties discovered in a simple protocell model are preserved in the
present cell.

10.1.2 Long-Term Sustainment of Nonequilibrium State

A cell consists of a network of catalytic reactions. This reaction process progresses
at a nonequilibrium condition, and indeed, it is occasionally considered that the
(dissipative) structure that appears far from equilibrium is a prerequisite for a bio-
logical system [14] However, in a cell, such a nonequilibrium condition is sustained
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by itself. Then, how is the system prevented from falling into equilibrium while
maintaining catalytic activity? We address this question here.

Most theoretical models assume that chemical reactions are set at a nonequilib-
rium condition, whereas a biological cell has to sustain the nonequilibrium condition
by itself. Can such a nonequilibrium condition be sustained even once a transient
dissipative structure is formed? This question is answered in the affirmative for a
class of catalytic reaction network systems [15]. The core mechanism for this is
a negative correlation between the abundances of resource chemicals and the cat-
alysts. Assume that the concentration of resources exhibits a spatially inhomoge-
neous pattern, and that of the catalyst exhibits an anticorrelated pattern. In this case,
in a region with abundant resource chemicals, the abundance of catalysts necessary
for the reaction to consume the resource is suppressed, whereas in a region with less
resource chemicals, it is obvious that no more consumption of resources occurs.
Hence, the consumption of a resource is suppressed over the entire space, and there-
fore the relaxation to equilibrium is hindered and a structure at the nonequilibrium
condition is sustained for longer.

Next, let us consider a catalytic reaction network in which each chemical species
is assigned an energy, and the rate for each reaction is determined by the energy
difference to satisfy the detailed condition. In a closed thermodynamic system
consisting of chemical reactions, equilibrium is ultimately attained after a certain
relaxation time. The relaxation process is exponential with the time scale given by
the reaction kinetic coefficients, as long as we start from an initial state close to
equilibrium. This is also true for any initial condition for linear reaction kinetics,
that is, reactions without catalysts or catalytic reactions with fixed concentrations
of catalysts. In contrast, the reaction kinetics whose catalysts are synthesized by
themselves involve nonlinear terms, because the rate of such catalytic reaction is
given by the product of the concentrations of the substrate and the catalyst. In such
catalytic reaction networks, we have recently found a mechanism to slow down the
relaxation to equilibrium, even in a well-mixed condition assuring spatially homo-
geneous concentrations.

We consider a type I model as in Sect. 10.1.1, and assign energy Ei to each
molecule [16]. The ratio of the forward and backward reactions is given by
exp(−β(E j − Ei )) to satisfy the detailed balance condition, where β is the inverse
temperature 1/kT . Now, let ε be the variance of energy of each chemical. When
the temperature of the system is sufficiently lower than ε (i.e., βε > 1), overall
log t relaxation appears. The deviation from the equilibrium decreases with log t ,
whereas several plateaus appear successively through the course of relaxation. We
have studied a variety of reaction networks to confirm that these two characteristics
are universal. How many and which type of plateaus appear depend on the network
and initial conditions; however, the existence of several plateaus itself is universal.

Thus, we have revealed a general mechanism for the emergence of plateaus. The
plateaus are not metastable states in the energy landscape; rather, they are a result
of kinetic constraints due to a reaction bottleneck, originating in the formation of
local-equilibrium clusters and suppression of equilibration by the negative correla-
tion between an excess chemical and its catalyst. The existence of such negative
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correlation depends both on the initial concentrations of chemicals and on the net-
work structures; however, even in randomly chosen networks, there exist several sets
of chemicals that satisfy the negative correlation, as long as the number of species
is not small (say larger than five). The prediction of each plateau is possible by
detecting such negative correlation, whereas a systematic procedure to extract the
same has to be developed in the future.

In biochemical reaction processes, the energy variance is rather large, and there-
fore the above slow-relaxation is observed even if the temperature is not so low.
Hence, the slow speed of relaxation to equilibrium is a rather common feature of
catalytic reaction networks.

Of course, for the origin of life, initially at least, some nonequilibrium condition
has to be supplied externally. Indeed, it is natural that there exists some nonequi-
librium condition in nature, as, for example, is provided by a thermal vent. Then,
a nonequilibrium condition supplied exogenously is embedded into the internal
dynamics so that the relaxation is hindered and the activity is maintained endoge-
nously.

Furthermore, we may expect mutual reinforcement between the sustainment of
nonequilibrium conditions, spatial structure with compartmentalization, and repro-
duction. By taking advantage of nonequilibrium reaction processes, a structure is
organized in network and in space, as was also discussed in the case of a dissipative
structure. Then, spatial compartmentalization is possible. With such a compartmen-
talized structure, reproduction in molecules is possible. Such a reproduction process
naturally enhances the spatial inhomogeneity in chemical compositions. This inho-
mogeneity further suppresses the relaxation to equilibrium.

This hindrance of relaxation to equilibrium is important for the origin of life; in
addition, it will be relevant to understanding slow processes in present cells. For
example, a plant seed, even though it is almost closed with regard to energetic and
maternal flow, is “alive” over a large time span without falling into an equilibrium
state. In dormant states that are ubiquitous in bacteria, intracellular processes almost
stop but activity restarts when they are put under an appropriate culture condition.

10.1.3 Consistency Between Cell Reproduction and Molecule
Replication

The second question concerns the consistency of cell reproduction and molecule
replication [10, 13, 17]. For a cell to continue reproduction, at least catalytic activity
should be preserved. Furthermore, at least a set of chemicals has to be synthesized.
At a primitive stage of the cell, this reproduction need not be precise, and in fact
is probably rather loose. The composition of chemicals is not fixed, but it exhibits
some degree of similarity between generations (“recursive production”).

The reproduction of a cell involves numerous reactions for membrane synthesis,
and metabolic and genetic processes, as noted by Ganti in the Chemton model [18].
All components have to be replicated for cell reproduction. At the very least, a
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membrane that partly separates a cell from the outside has to be synthesized, and
this process must maintain some degree of synchronization with the replication of
other intracellular chemicals. How is such recursive production maintained while
preserving chemical diversity? In other words, the question of consistency between
cell reproduction and molecule replication is raised.

To answer this question, Furusawa and I [19] studied a cell model consisting
of catalytic reaction networks of the type II model in Sect. 10.1.1. By the intracel-
lular catalytic reaction networks, resource chemicals that are transported from the
outside are transformed into other chemical species (see Fig. 10.1 for a schematic
representation). Chemicals are successively transformed by means of these catalytic
reactions starting from nutrients. When the number of total (or specific) molecule
species increases beyond some threshold, the cell is assumed to divide into two. We
have studied a variety of models within this class, with different types of networks,
reaction kinetics, and transport processes of resources.

We have discovered that when a certain condition is satisfied, the cell continues
reproduction, approximately maintaining the compositions of chemicals at which
the growth speed of the cell is optimized. The reproduction of a cell with diversity
in chemicals is generally possible, even in this simple setup with mutual catalytic
reactions. Therefore, we investigated the statistical characteristics of such cells.

First, we found universal statistics of the abundance of chemicals, for a cell that
maintains reproduction and chemical compositions. We measured the rank-ordered
number distributions of chemical species by plotting the number of molecules ni as
a function of their rank determined by ni . The distribution exhibits a power law with
an exponent of −1. In our model, this power law of gene expression is maintained

Fig. 10.1 Schematic representation of a reproducing cell with internal catalytic chemical reaction
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by a hierarchical organization of catalytic reactions. Major chemical species are
synthesized and catalyzed by chemicals with slightly smaller abundances. The latter
chemicals are synthesized by chemicals with much less abundance, and so forth.
This hierarchy of catalytic reactions continues until it reaches the chemical species
with minority in number. This power law is confirmed universally for a variety of
cell models.

Furthermore, this power law was also confirmed by measuring the abundances
of a large variety of mRNAs, over more than a hundred cell types, using microarray
analysis [19–21]. Hence, the statistical law as a result of the recursive production of
a protocell is also valid in present cells.

Second, we studied the cell-to-cell fluctuations of chemical compositions.
Because the chemical reaction process is stochastic, the number of each type of
molecule differs between cells. We then studied the distribution of each molecule
number ni , sampled over cells, and found that the number distribution is fitted rea-
sonably well by the log-normal distribution, that is,

P(ni ) ≈ 1

ni
exp

(

− (log ni − log ni )
2

2σ

)

, (10.1)

where log ni indicates the average of log ni over cells [22]. This implies that the
distribution has a rather long tail on the side of larger numbers. This log-normal
distribution holds for the abundances of all chemicals that are reproduced within a
cell. In general, when successive catalytic reactions for recursive production exist
in a biochemical reaction network, fluctuations are multiplied successively through
the catalytic reaction cascade. Then, by taking the logarithms of concentrations,
these successive multiplications are transformed into successive additions, and the
problem is reduced to the addition of random noise. According to the central limit
theorem, the distribution of log ni is expected to approach the Gaussian distribution.
Hence, the log-normal distribution of ni is derived. This log-normal distribution is
also experimentally confirmed for present-day cells (e.g., for bacteria) [22, 23].

Note that the power law in abundances and log-normal distribution are a conse-
quence of the reproduction of a cell. Both the laws studied here are universal and a
result of “consistency between replication of molecules and reproduction of a cell.”
In fact, when recursive production does not occur, some deviation from these two
laws is observed.

10.1.4 Minority Control: Origin of Genetic Information

The third question we address is rather naive. In present-day cells, we have
molecules (DNA) that carry “genetic information” separated from a metabolic reac-
tion: is such a separation a necessary course for a system with reproduction and
evolvability? In a reproducing reaction network system consisting of a variety of
molecule types, do some molecules carry the role for heredity, even if we do not
assume DNA or RNA? If so, what properties must such molecules satisfy? To
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answer the question of the origin of genetic information, we have recently proposed
the following hypothesis [24]: In a reproducing system consisting of mutually
catalytic molecules, molecule species that in a minority play the role of heredity
carriers, in the sense that they are preserved well and control the behavior of this
protocell relatively strongly.

As a first step toward the investigation of the origin of genetic information, we
study how some molecule species are preserved over cell generations and play an
important role in controlling the growth of a cell. We consider a model of replicating
molecules, that is, the type III model of Sect. 10.1.1, and encapsulate it into a pro-
tocell (see Fig. 10.2). For simplicity we consider two types of mutually catalyzing
molecule species (X and Y ), each of which has catalytically active and inactive
types. Here, most types are inactive, and only a specific pair of active types of X
and Y mutually support the synthesis of the other. In other words, inactive types
are synthesized by the active type of the other species, but they do not contribute
to the others’ synthesis. In this sense, they are parasites in the replication system.
Indeed, most mutant molecules are such parasites, and the removal of such parasitic
molecules is an important question in the origin of life [9]. Now, one of the species
Y is assumed to have a much slower synthesis speed than X . As long as active
molecules exist, molecule numbers within the protocell increase, and we assume
that at a certain number, it divides into two.

Fig. 10.2 Schematic representation of a reproducing cell with mutually catalytic hypercycle
system
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Thus, through this growth–division process, the fraction of Y species is much
lower than X . As the inactive types are more common, the protocell is expected
to reach a state in which there exist no active Y molecules. Indeed, from the con-
tinuous rate equation, such a solution is expected. However, when there exist no
active Y molecules, X molecules are no longer synthesized, and finally, active X
molecules become extinct, so that the reproduction of the protocell would stop. In
contrast, through stochastic simulation of the present model, the protocell comes
to and remains at a state in which only a few active Y and almost no inactive Y
molecules exist. Such cells can continue the growth–division process. Probabilisti-
cally, such a state is very rare; however, when the number of molecules is small, it
can appear due to fluctuation. Once it appears, it is selected, because such a state can
continue to grow. Hence, a rare state with a few active Y molecules and no inactive
ones is preserved over many divisions of protocells (i.e., a rare initial condition
is selected and frozen). Furthermore, these few active Y molecules are shown to
control (relatively strongly) the behavior of the protocell, because a slight change in
such molecules strongly influences the replication of other molecules. The minority
molecule species now acts as a heredity carrier because of the relatively discrete
nature of its population, in comparison with the majority species, which behaves
statistically in accordance with the law of large numbers. Hence, the kinetic origin
of genetic information is demonstrated [1, 24].

Note that we assumed compartmentalization, that is, chemicals are encapsulated
into a membrane that itself grows and divides as in the model of Sect. 10.1.3. The
importance of compartmentalization to remove parasitic (inactive) molecules has
been discussed for the last few decades [25–29]. Here, a minority of some molecules
(whose number can go to zero frequently) is also essential for the removal of the
parasitic molecules.

Thus far, we have shown the origin of “minimal” genetic information, that is,
one-bit information to distinguish between the existence and nonexistence of an
active Y molecule. Minority control, however, provides a basis for genetic infor-
mation with more bits. First, the minority-controlled state gives rise to a selection
pressure for mechanisms that ensure the transmission of the minority molecule.
Because the active (“minority”) Y molecule is transmitted faithfully, more chem-
icals will be synthesized with this minority molecule. Then, life-critical information
is packaged into this minority molecule. Once the minority control mechanism is
in place, the minority molecule becomes the ideal storage device for information to
be transmitted across generations, thus giving rise to “genetic information” in the
current sense.

An important consequence of this minority control is evolvability (see also [30]).
Because only a few molecules of the Y species exist in the minority-controlled state,
a structural change to them strongly influences the overall catalytic activity of the
protocell. On the other hand, a change to X molecules has a weaker influence, on
average, because the variation of the average catalytic activity caused by such a
change is smaller, as can be deduced from the law of large numbers. Hence, the
minority-controlled state is important for a protocell to realize evolvability [24, 31].
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10.2 Evolution

10.2.1 Fluctuations and Robustness

One consequence of the previous section is that fluctuations in the protein number
in a cell are indeed rather large, as is highlighted by the log-normal distribution
of the protein abundances. Recently, the distributions of protein abundances over
isogenic individual cells have been measured using fluorescent proteins. The fluo-
rescence level that gives an estimate of the protein concentration is measured either
by flow cytometry or single-cell microscopy [32–35]. Note that in the model, the
network and parameters are identical over cells, and in the experiment, isogenic
bacteria are used. Nonetheless, there exist large phenotypic fluctuations, that is, the
concentration of molecules exhibits a rather large variance over isogenic cells. Here,
we discuss the relevance of such fluctuations to evolution, in relation to genotype–
phenotype mapping.

Often, stochasticity in gene expression is thought to be an obstacle in tuning
a system to achieve and maintain a state with higher functions. If the phenotype
concerns the fitness, that is, crucially influences the survivability, a very large vari-
ability in it must be harmful. A phenotype that is concerned with fitness is expected
to suppress such fluctuations. Indeed, the question most often asked is how some
biological functions are robust to phenotypic noise.

In contrast, considering that relatively large phenotypic noise is preserved
through the history of evolution, it should be important to also pursue the posi-
tive effects of phenotypic noise on biological functions. Indeed, the positive role
of fluctuations on adaptation [36, 37] and development has been discussed earlier.
In particular, in isologous diversification theory, the differentiation of cell states
triggered by noise leads to noise-tolerant developmental processes [1, 38]. Then,
does the noise in gene expression dynamics play some role in evolution? Does the
degree of phenotypic fluctuations induced by noise change through evolution?

Robustness is strongly related to fluctuation. Robustness is defined as the insen-
sitivity of a system to changes to it [39–43]. In any biological system, these changes
have two distinct origins: genetic and epigenetic. The former concerns structural
robustness of the phenotype, that is, rigidity of the phenotype with respect to genetic
changes produced by mutations. On the other hand, the latter concerns robustness
with respect to the stochasticity that can arise in an environment or during the
developmental process, which includes fluctuations in initial states and stochasticity
occurring during developmental dynamics or in the external environment.

These two types of robustness can be discussed in terms of phenotypic fluctu-
ations. First, developmental robustness is represented by the degree of phenotype
change as a result of a developmental process that generally involves noise, as
mentioned previously. Accordingly, the phenotype as well as the fitness of isogenic
individuals is distributed. Here, let us denote the variance of phenotypes of iso-
genic organisms as Vip. When the phenotype is robust to noise, this phenotype is
not changed so much by noise, and therefore the distribution is sharper. Hence, the
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(inverse of the) variance of isogenic phenotypic distribution, Vip, gives an index for
robustness with respect to noise in developmental dynamics [43, 44].

Genetic robustness is also measured in terms of fluctuations. Owing to muta-
tion in genes, the phenotype (fitness) is distributed. Because even the phenotype
of isogenic individuals is distributed, the variance of phenotype distribution of a
heterogenic population includes both the contribution from phenotypic fluctuations
in isogenic individuals and that due to genetic variation. To distinguish the two, first
the average phenotype over isogenic individuals is measured and then the variance
of this average phenotype over a heterogenic population is computed. Thus, this
variance is due only to genetic heterogeneity. This variance is denoted by Vg. Then
the robustness to mutation is estimated by this variance. If Vg is smaller, genetic
change influences the phenotype negligibly, implying larger genetic (or mutational)
robustness.

10.2.2 Evolutionary Fluctuation–Response Relationship

One might still suspect that isogenic phenotype fluctuations Vip are not related to
evolution, because phenotypic change without genetic change is not transferred to
the next generation. However, the variance, a degree of fluctuation itself, can be
determined by the gene, and accordingly it is inheritable [45]. Hence, there may
exist a relationship between isogenic phenotypic fluctuation and evolution.

To verify this possibility, we carried out a selection experiment to increase the
fluorescence in bacteria and investigated the possible relationship between the evo-
lution speed and the isogenic phenotypic fluctuation [46]. First, by attaching a ran-
dom sequence to the N terminus of a wild-type green fluorescent protein (GFP)
gene, a protein with low fluorescence was obtained. The gene for this protein was
introduced into E. coli as the initial generation for the evolution. By applying ran-
dom mutagenesis only to the attached fragment in the gene, a mutant pool with a
diversity of cells was prepared. Then, cells with the highest fluorescence intensity
were selected for the next generation. With this procedure, the (average) fluores-
cence level of the selected cells increases in successive generations. The evolution
speed at each generation was computed as the difference between the fluorescence
levels of the two generations. The isogenic phenotypic variance was computed from
the distribution of clone cells of the selected bacteria, measured with the help of flow
cytometry for the fluorescence of cells. The data suggest that the evolution speed is
proportional to, or at least positively correlated with, the variance of the isogenic
phenotypic fluctuation.

To confirm this relationship between the evolution speed and isogenic phenotypic
fluctuation quantitatively, we also numerically studied a model for reproducing cells
consisting of the catalytic reaction networks mentioned in Sect. 10.1.3. Here, the
reaction networks of mutant cells were slightly altered from the network of their
mother cells. Among the mutants, those networks with a higher concentration of a
given, specific chemical component were selected for the next generation. Again,
the evolution speed was computed by the increase in the concentration at each
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generation and the fluctuation by the variance of the concentration over identical
networks [44].

The origin of proportionality between the isogenic phenotypic fluctuation and
genetic evolution has been discussed in light of the fluctuation–response relationship
in statistical physics [47, 48]. Here, we refer to a measurable phenotype quantity
(e.g., logarithm of the concentration of a protein) as a “variable” x of the system,
whereas we assume the existence of a “parameter“ a that controls the change in the
variable x . In the present context, this parameter is an index of change in genes that
governs the corresponding phenotype variable.

Consider the change in the parameter value a → a + 	a. Then the proposed
fluctuation–response relationship [1, 46] is given by

〈x〉a+	a − 〈x〉a
	a

∝ 〈(δx)2〉 , (10.2)

where 〈x〉a and 〈(δx)2〉 = 〈(x − 〈x〉)2〉 are the average and variance of the variable
x for a given parameter value a, respectively. The above relationship is derived by
assuming that the distribution P(x; a) is approximately Gaussian and that the effect
of the change in a on the distribution is represented by a bilinear coupling between
x and a.

Note, however, that the argument based on the distribution P(x; a) is not a first-
principles derivation of the evolutionary fluctuation–response relationship. Rather,
it is a phenomenological description. Here, the description by P(x; a) itself is
an assumption: for example, whether genotype change is represented by a scalar
parameter a is an assumption. A perturbative approach to obtaining the above rela-
tionship is based on the assumption that the change in a as well as the response to
x is small. Nonetheless, it is interesting to note that both the laboratory experiment
and in silico evolution support the relationship.

10.2.3 Relationship Between Fluctuations by Noise
and by Mutation

The above-mentioned evolutionary fluctuation–response relationship gives rise to
another question. There is an established relationship between the evolutionary
speed and the phenotypic fluctuation, namely, the so-called fundamental theorem
of natural selection proposed by Fisher [49], which states that the evolution speed
is proportional to Vg, the variance of phenotypic fluctuation due to genetic varia-
tion. As mentioned, it is given by the variance of the average phenotype for each
genotype over a heterogenic population. In contrast, the evolutionary fluctuation–
response relationship proposed above concerns the phenotypic fluctuation of iso-
genic individuals, Vip. Hence, the evolutionary fluctuation–response relationship
and the relationship concerning Vg from Fisher’s theorem are not identical.

If Vip and Vg are proportional through an evolutionary course, the two relation-
ships are consistent. Such proportionality, however, is not self-evident, as Vip is
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related to variation resulting from developmental noise and Vg is due to the variation
resulting from mutation. The relationship between the two, if it exists, should be a
result of a constraint on genotype–phenotype mapping achieved through evolution.

Hence, it is important to study the evolution of robustness and phenotypic fluc-
tuations by using a model with the “developmental” dynamics of a phenotype. To
introduce such a dynamical-systems model, one requires the following structure for
development and evolution.

i. There is a population of organisms under a distribution of genotypes.
ii. A phenotype is determined by the genotype through “developmental” dynamics.

This dynamics is not simple and involves many degrees of freedom. As already
mentioned, it generally includes some noise, so that the phenotype (such as the
abundance of some protein) from isogenic cells (organisms) fluctuates.

iii. The fitness for selection, that is, the number of offspring, is given by some
phenotype.

iv. The genotypes change slightly by mutation, and with the selection process
according to the fitness, the distribution of genotypes for the next generation
may be altered.

We have simulated two models to satisfy the above postulates, by adopting a
genetic algorithm for (i), (iii), and (iv). Here, it is important that the phenotype is
determined only after (complex) “developmental” dynamics (ii), which are stochas-
tic due to the noise therein.

In the first example, we again adopted the protocell model with a catalytic reac-
tion network, as described in Sect. 10.1.3, by selecting cells that have a higher con-
centration of a specific chemical [44]. As another example, we studied gene expres-
sion dynamics that are governed by regulatory networks [43]. The developmental
process (ii) is given by this gene expression dynamics under noise with amplitude σ .
It shapes the final gene expression profile that determines the evolutionary fitness.
The mutation at each generation alters the network slightly. Among the mutated
networks, we select those with higher fitness values.

Results from several evolutionary simulations are summarized as follows (see
Fig. 10.3):

1. There is a certain threshold noise level σc beyond which the evolution of robust-
ness progresses, so that both Vg and Vip decrease. Here, most of the individuals
take the highest fitness value. In contrast, for a lower level of noise σ < σc,
mutants that have very low fitness values always remain. There exist many indi-
viduals taking the highest fitness value, whereas the fraction of individuals with
much lower fitness values does not decrease.

2. Around the threshold noise level, Vg approaches Vip and at σ < σc, Vg ∼ Vip
holds, whereas for σ > σc, Vip > Vg is satisfied. For robust evolution to progress,
this inequality is satisfied.

3. When the noise is larger than this threshold, Vg ∝ Vip holds (see Fig. 10.3)
through the course of evolution after a few generations.
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Fig. 10.3 An example of the evolution process of Vg and Vip, computed using the gene regulation
network model (see [43]). Each point is the variance at each generation up to 200 generations, with
a gradual change in the density. circles give the result of a lower noise case, and squares that of a
higher noise case, where the variances decrease in successive generations

Why does the system not maintain the highest fitness state under a small phe-
notypic noise level with σ < σc? Indeed, the dynamics of the top-fitness networks
that evolved under such low noise levels have dynamics distinguishable from those
that evolved under high noise levels. It was found that for networks evolved under
σ > σc, a large portion of the initial conditions reach attractors that give the highest
fitness values, whereas for those evolved under σ < σc, only a tiny fraction (that is,
in the vicinity of all-off states) reached such attractors.

When the time course of gene expression dynamics to reach its final pattern
(attractor) is represented as a motion falling along a potential valley, our results
suggest that the potential landscape for development becomes smoother and sim-
pler through evolution and loses its ruggedness after a few dozen generations, for
σ > σc. In this case, the “developmental” dynamics gives a global, smooth attraction
to the target (see Fig. 10.3). In fact, such a type of developmental dynamics with
global attraction is known to be ubiquitous in protein-folding dynamics [50, 51],
gene expression dynamics [52], and so on. On the other hand, the landscape evolved
at σ < σc is rugged. Except for the vicinity of the given initial conditions, the
expression dynamics do not reach the target pattern.

Now consider mutation to a network to slightly alter the gene regulatory network.
This introduces slight alterations in gene expression dynamics. In a smooth land-
scape with a global basin of attraction, such a perturbation in dynamics only slightly
changes the final expression pattern (attractor). In contrast, under dynamics with a
rugged developmental landscape, a slight change easily destroys the attraction to the
target attractor. Then, low-fitness mutants appear. This explains why the network
evolved at a low noise level is not robust to mutation. In other words, evolution to
eliminate ruggedness in developmental potential is possible only for a sufficiently
high noise level.
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10.2.4 Phenomenological Distribution Theory

To understand the observed relationship between Vip and Vg, we have formulated
a phenomenological theory (see Fig. 10.2) [44, 53]. Recall that the phenotype is
originally given as a function of a gene; therefore we consider the conditional dis-
tribution function P(x; a). However, the genotype distribution is influenced by the
phenotype through the selection process, as the fitness for selection is a function of
the phenotype. Now consider a gradual evolutionary process (see Fig. 10.4). Then,
it should be possible to assume that some “quasi-static” distribution on the genotype
and phenotype is obtained as a result of the feedback process from the phenotype to
the genotype. Considering this point, we hypothesize that there exists a two-variable
distribution P(x, a) for both the phenotype x and the genotype a.

By using this distribution, Vip, the variance of x of the distribution for given a can
be written as Vip(a) =

∫
(x−x(a))2 P(x, a)dx , where x(a) is the average phenotype

of a clonal population sharing the genotype a, namely x(a) = ∫
P(x, a)xdx . Vg is

defined as the variance of the average x(a) over genetically heterogeneous individ-
uals and is given by Vg =

∫
(x(a)− 〈x〉)2 p(a)da, where p(a) is the distribution of

genotype a and 〈x〉 is the average of x(a) over all genotypes.
Assuming a Gaussian distribution again, we write the distribution P(x, a) as

P(x, a) = N̂ exp

(
− (x − X0)

2

2α(a)
+ C(x − X0)(a − a0)− 1

2μ
(a − a0)

2
)
,

(10.3)
with N̂ as a normalization constant. The Gaussian distribution

exp

(
− 1

2μ
(a − a0)

2
)

represents the distribution of genotypes around a = a0, whose variance is (in a
suitable unit) the mutation rate μ. The coupling term C(x − X0)(a− a0) represents
the change in the phenotype x with the change in genotype a. Recalling that the
above distribution (10.3) can be rewritten as

Genotype a

Phenotype x
Selection

P(x,a)
Mutation

Developmental Process

P(a)

Fig. 10.4 Schematic representation of evolutionary processes with genotype and phenotype distri-
butions
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P(x, a) = N̂ exp

(
− (x − X0 − C(a − a0)α(a))2

2α(a)
+

(
C2α(a)

2
− 1

2μ

)
(a − a0)

2
)
,

(10.4)
the average phenotype value for the given genotype a satisfies

xa ≡
∫

x P(x, a)dx = X0 + C(a − a0)α(a) . (10.5)

Now we postulate evolutionary stability, that is, at each stage of the evolution-
ary course, the distribution has a single peak in (x, a) space. This assumption is
rather natural for evolution to progress robustly and gradually: the selection of a
phenotype with larger x to increase the phenotype value works if the distribution is
concentrated. On the other hand, if the distribution is flattened, the selection cannot
increase the average value of the phenotype x . Here, this stability condition leads to
αC2

2 − 1
2μ ≤ 0, that is,

μ ≤ 1

αC2
≡ μmax . (10.6)

This implies that the mutation rate has an upper bound μmax beyond which the
distribution does not have a peak in the genotype–phenotype space. In the above
form, the distribution becomes flat at μ = μmax, so that mutants with low fitness
rate appear; this scenario was termed error catastrophe by Eigen [9].

We recall the definition of Vg, (Cα)2〈(δa)2〉. Hence, we obtain

Vg = μC2α2

1− μC2α
= α μ/μmax

1− μ/μmax
. (10.7)

If the mutation rate μ is sufficiently small to satisfy μ� μmax, we obtain

Vg ∼ μ

μmax
Vip , (10.8)

recalling that Vip(a) = α(a). Thus we obtain proportionality between Vip and Vg
(see also [53] for the case without assuming μ� μmax).

Here, we note that the above equations are not derived from first principles. We
first assumed the existence of two-variable distributions in the genotype and pheno-
type P(x, a). As genetic change is not given simply by the change in a continuous
parameter, it is not a trivial assumption. (For example, the genetic change in our
models is given by the addition or deletion of paths in the network, and if expressed
as a continuous variable, is not self-evident.) Second, the stability assumption assur-
ing a single peak is expected to be valid for gradual evolution. Third, to adopt (10.3),
the existence of error catastrophe (to produce mutants with very low fitness values
at a large mutation rate) is implicitly assumed.
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We note also that the proportionality is observed only after some generations
in simulations, when evolution progresses steadily. This might correspond to the
assumption for the quasi-static evolution of P(x, a).

10.2.5 Discussion

Evolvability may depend on the species. Some species, called living fossils, preserve
their phenotype over many more generations than others. An origin of such differ-
ences in evolvability could be provided by the degree of rigidness in the develop-
mental process. If the phenotype generated by a developmental process is rigid, then
the phenotypic fluctuation as well as phenotypic plasticity against environmental
change is smaller. The evolutionary fluctuation–response relationship, that is, Vip ∝
evolution speed, can provide a quantitative expression for such an impression.

As mentioned, robustness is tightly correlated with the fluctuations. The devel-
opmental robustness to noise is characterized by the inverse of Vip, whereas the
mutational robustness is characterized by the inverse of Vg. We have found that
the two variances decrease in proportion through the course of evolution under a
fixed fitness condition, if there exists a certain level of noise in the development.
Robustness evolves, as discussed by Schmalhausen’s stabilizing selection [54] and
Waddington’s canalization [55]. On the other hand, the proportionality between the
two variances implies correlation between the developmental and the mutational
robustness. Note that this evolution of robustness is possible only under a sufficient
level of noise during development. Robustness to noise during development induces
robustness to mutation.

Waddington proposed genetic assimilation, in which phenotypic change due to
environmental change is later embedded into genes [55] (see also [56–58]). The
proportionality among phenotypic plasticity, Vip, and Vg is regarded as a quantitative
expression of such genetic assimilation, at the level of fluctuations.

Note that the existence of the phenotype–genotype distribution P(x, a) is based
on the mutual relationship between the phenotype and the genotype. The geno-
type determines (probabilistically) the phenotype through developmental dynamics,
whereas the phenotype restricts the genotype through a mutation–selection pro-
cess. For a robust evolutionary process to progress, the consistency between the
phenotype and the genotype levels is shaped, which is the origin of the distribu-
tion P(phenotype, genotype) assumptions, and the general relationships proposed
here.

In the discussion based on the evolutionary stability of P(x, a), we need to con-
sider such a “consistency” [59] principle. We hope that the quantitative formulation
of Waddington’s ideas on the basis of Einstein’s thoughts will provide a coherent
understanding of the evolution–development relationship.
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Chapter 11
Wet Artificial Life: The Construction
of Artificial Living Systems

Harold Fellermann

Abstract The creation of artificial cell-like entities – chemical systems that are able
to self-replicate and evolve – requires the integration of containers, metabolism, and
information. In this chapter, we present possible candidates for these subsystems
and the experimental achievements made toward their replication. The discussion
focuses on several suggested designs to create artificial cells from nonliving material
that are currently being pursued both experimentally and theoretically in several
laboratories around the world. One particular approach toward wet artificial life is
presented in detail. Finally, the evolutionary advantage of cellular aggregates over
naked replicator systems and the evolutionary potential of the various approaches
are discussed. The enormous progress toward man-made artificial cells nourishes
the hope that wet artificial life might be achieved within the next several years.

11.1 Introduction

The possible creation of life has fascinated mankind throughout history. The ques-
tions “what is life?” and “where do we come from?” have driven intellectual curios-
ity for centuries. In fact, attempts to create artificial life-like entities can be followed
back to the very roots of modern science [1]. Whereas historic attempts to create life
were limited to just mimicking the phenomenological behavior of living organisms
(such as growth or motion), the depth of understanding gained in the life sciences
over recent decades now gives rise to endeavors to truly capture living organisms in
their functional organization.

As we speak about the creation of artificial living systems, it seems mandatory to
give a definition of what we mean by “life”. Unfortunately, however, the concept has
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turned out to be notoriously difficult to define, and the search for a satisfying defi-
nition is still ongoing. Nevertheless, most of the suggested definitions agree that –
in order to be called alive – an entity must first be able to self-replicate, that is,
to produce a sufficiently similar copy of itself, and second, it must be subject to
mutation and selection in order to undergo evolution.

The elementary unit of all modern life is the cell, which couples a container,
a metabolism, and inheritable information into an integrated system able to repli-
cate and evolve. The emergence of these first cells was thus a major transition in
prebiotic evolution: if there ever was a period in prebiotic history that was domi-
nated by naked molecular replicators – for example self-replicating RNA or DNA
strands – then there must have been an evolutionary advantage in incorporating these
replicators into a body – an advantage that was significant enough to outweigh the
additional complexity needed to replicate not only the RNA/DNA but the whole
container–metabolism–information system. The predominance of cellular life and
the complete absence of cell-free molecular replicators today might even suggest
that there was never a period of naked replicators but that life started immediately
from the interactions of container, information, and metabolic molecules.

Therefore, the experimental approaches to creating artificial life discussed in this
chapter concern the creation of cell-like entities, commonly referred to as “pro-
tocells”. In general, there are two possible routes toward such building blocks of
artificial life: on the one hand, top-down approaches start from the simplest forms
of contemporary natural life and attempt to strip away everything that is not vital
for the survival and replication of the original biological cells. The most popular of
these top-down approaches is the work by Venter and Smith on the artificial bac-
terium Mycoplasma laboratorium, an organism with merely about 200 genes [2].
Bottom-up approaches, on the other hand, start with the building blocks of life –
such as container and information molecules – and try to combine them in ways
that support the emergence of cell-like entities from scratch. Bottom-up approaches
differ in the way in which they use biochemical molecules and range from the most
puristic endeavors that employ only nonbiological molecules to those that make use
of ever more biological ingredients, eventually using extracts of natural cells.

The research community that is engaged in the creation of artificial life is truly
interdisciplinary and relates to the origin-of-life and astrobiology community con-
cerned with the history of “life as we know it”, the computational artificial life
community, which is concerned with more general organizing principles of “life as
it might be”, as well as the more modern research communities of synthetic biology
(“life as we employ it”) and systems chemistry (“life as we create it”). To actually
achieve the creation of artificial life, the research draws from areas as diverse as
physics, synthetic chemistry, physical chemistry, biochemistry, applied mathemat-
ics, computer science, and the science of complex systems.

In this chapter, we present in some detail the building blocks of artifi-
cial protocells (Sect. 11.2), namely chemical information, protocell containers,
and metabolisms. In Sect. 11.3, we introduce several historic and contemporary
approaches toward artificial cells, thereby focusing on approaches that can be iden-
tified as being bottom-up. In Sect. 11.4, we highlight one particular approach – the
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minimal protocell of Rasmussen and coworkers. Finally, in Sect. 11.5, we discuss
the evolutionary potential of protocells compared to naked replicators and to mod-
ern biological cells. Unfortunately, the available space is not sufficient to properly
attribute the enormous experimental efforts needed to create artificial cells, which
underlie all the presented results. The reader is referred to the original literature.

11.2 Bits and Pieces

Before we present several bottom-up approaches toward wet artificial life, we set the
stage by introducing the information, container, and metabolism subsystems that an
artificial organism has to integrate.

11.2.1 Chemical Information

Information refers to any configuration of a system that (i) can be communicated
from one system to another and (ii) has an impact on the properties, dynamics, or
behavior of the said system. In the context of prebiotic, biological, and artificial life,
communication is realized via inheritance of system properties from an ancestor
to its offspring, which is achieved via copying, that is, replication of the informa-
tion carrier. Naturally, the communicated (inherited) information is subject to noise
(mutations), which opens the door for evolution to select favorable from unfavorable
instances.

In biological systems, information is primarily stored in DNA (deoxyribonucleic
acid), where it affects the behavior of the cell via protein synthesis and subsequent
metabolic regulation. DNA and its cousin RNA (ribonucleic acid) are linear hetero-
geneous polymers of pairwise complementary nucleotides that are able to align with
each other by specific and energetically weak Watson–Crick binding. This structure
immediately suggests the replication mechanism that is found in all contemporary
cells [3]. Nevertheless, even in the most simple prokaryotes, biological DNA repli-
cation is controlled by enzymes at almost every step. A significantly less com-
plex, nonenzymatic replication mechanism – possibly based on external factors –
must have preceded contemporary replication [4]. Likewise, in a purely bottom-up
approach to wet artificial life, it is desirable to employ a nonenzymatic replication
mechanism.

Basically, the replication of biopolymers requires the processes of hybridization,
ligation, and melting. Hybridization is the alignment of complementary nucleotides
or oligomers along a template strand. Ligation is the forming of covalent bonds
between the aligned nucleotides. Finally, melting separates the double strand into
the original and its complementary copy. The melting temperature increases with
strand length and fraction of C-G pairs. As the ligation reaction is energetically
uphill, monomers or oligomers need to be activated in order to ligate spontaneously.

Nonenzymatic template-directed RNA polymerization of elementary activated
nucleotides (monomers) shows little yield in aqueous solution. Template-directed
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Fig. 11.1 Left: Basic template-directed replication: an RNA or DNA strand T serves as a template.
Complementary shorter strands A and B hybridize with the template and form the double strand
M. The double strand configuration fixates A and B in a vicinity that promotes their chemical
ligation. Once the resulting double strand complex D separates, a new copy of the template T is
formed. (K1 and K2 are the dehybridization/hybridization equilibria for oligomers and template.)
Right: Parabolic versus exponential growth

replication from shorter activated oligomers, on the other hand, can be achieved with
high yields for both RNA and DNA [5, 6]. The shortest DNA strand that has been
experimentally replicated in the absence of enzymes is a hexamer with complemen-
tary trimers [7]. The basic mechanism of this minimal replicator is schematically
shown in Fig. 11.1.

Each cycle of the template-directed replication reaction doubles the number of
templates present in solution. From this, one might expect that the replicator tem-
plates grow exponentially in time. However, von Kiedrowski and coworkers have
demonstrated that the template species grows more slowly than exponential, and
instead follows a parabolic growth law (d[T ]/dt ∝ √[T ]) [8]. The reason for this
counter-intuitive behavior is so-called product inhibition: as the hybridization ten-
dency of complementary strands increases with the length of the strands, it is more
likely for two template strands T to form a double strand configuration D than it is
for one template T and two oligomers A and B to form the complex M. Thus, for a
temperature regime in which the formation of M is possible, most of the template
strands will be in the configuration D, where they are inaccessible for the reactants
A and B. In other words, the very product of the reaction (T) inhibits its catalyst
(also T), thereby reducing the reaction rate.

Interestingly, competition between replicator species that obey such a parabolic
growth law are expected to support coexistence of all species, rather than the sur-
vival of only the fittest (fastest replicating) species [9]. This, in turn, prevents true
Darwinian evolution, which is essentially based on survival of the fittest (and only
the fittest). We can conclude that naked replicators based on complementary RNA or
DNA strands do not suffice to support Darwinian evolution. Toward the end of this
chapter, we will show how the incorporation of information polymers into replicat-
ing containers can recover exponential growth. Before that, however, we will discuss
the general properties of protocellular containers and metabolisms and introduce
current approaches to their realization.



11 Wet Artificial Life 265

11.2.2 Protocell Containers

By introducing containers, we advance from well-mixed homogeneous solutions of
(possibly self-replicating) molecular species toward spatially organized chemical
aggregates. By embodying the cell, containers introduce a separation of the system
from its environment, which allows us to recognize the embodied cell as a specific,
spatially confined entity.

These rather general statements immediately imply functionalities that protocell
containers must provide: they must be spatially confined structures that are stable
enough to maintain the integrity/identity of the cell over time, while being dynamic
enough to allow for replication of the entire aggregate (container plus contents).
Containers must impose a diffusion barrier to contain functional molecules of the
protocell in its interior, while simultaneously being permeable to nutrient molecules
and waste.

Premier molecules of biological containers (such as cells and organelles) are
lipids. Lipids are a class of chemical components that comprise many different
molecular species. Their unifying feature is their amphiphilic character: a lipid
molecule is composed of two parts, one being soluble in water (hydrophilic), the
other one being soluble in oil (lipophilic or hydrophobic). In aqueous solution, lipid
molecules self-assemble into supramolecular aggregates (see Fig. 11.2) in which the
hydrophobic part of the molecules is shielded from the aqueous environment.

micelles

N  < 1s

vesicles

N   = 1s

reverse
micelles

N   > 1s

Fig. 11.2 Typical amphiphile aggregates: micelles (left), vesicles (center), and reverse micelles
(right). The top row depicts the respective phase diagrams, consisting of water (white), hydropho-
bic molecules, and hydrophobic sections of amphiphilic molecules (light gray), and hydrophilic
sections of amphiphiles (dark gray). The center row shows the detailed molecular arrangement,
and the bottom row shows the geometry of amphiphiles that support each structure formation. The
molecular geometry can be roughly described by the molecular packing parameter NS = V/A0l,
which relates the molecular volume V , tail length l and effective surface area A0
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The membranes of contemporary cells exhibit a complex composition of lipids
and proteins, which is adapted to the specific environment and function of the cell.
Contemporary protocell designs, in contrast, are based on much simpler surfactant
compositions and hardly ever employ proteins [10–12]. In particular, phospholipids,
fatty acids, and amphiphilic alcohols are well known to form supramolecular struc-
tures by spontaneous self-assembly in aqueous solution – micelles and vesicles are
their most prominent examples. The phase diagram of these aggregates is subject
to a variety of molecular and systemic parameters: whether an amphiphile solu-
tion forms micelles, vesicles, or other (less prominent or less defined) structures
is influenced by the length and possible branching of the hydrocarbon chain, the
characteristics of its head group, its pK value, pH, temperature, and other systemic
parameters. Ternary mixtures of oil, surfactant, and water exhibit an even richer
phase behavior. Notably, fatty acid surfactants can stabilize otherwise unstable oil–
water emulsions, giving rise to surfactant-coated oil droplets known as microemul-
sion compartments. Unfortunately, the subject of soft condensed matter systems is
too broad to allow for a concise overview. The reader is referred to the standard
literature. In the context of protocell research, micelles [13], reverse micelles [14],
surfactant-coated oil droplets [15], and, prominently, vesicles [11, 16] have been
suggested as container candidates for protocells.

Division of vesicles requires bending of the bilayer membrane to form a bud
small enough for lipids of the adjacent bilayer sheets to rearrange. For phospho-
lipid (and likely also fatty acid) membranes, the bending energy of the membrane
imposes an energy barrier that is unlikely overcome by thermal motion. For this
reason, the division of contemporary cells is orchestrated by the complex machinery
of the cytoskeleton, which itself is subject to the proteomics of the cell cycle [3].
In order to avoid this complexity, most protocell designs rely on partially external
means of vesicle division. See Chap. 12 of this book for an approach to vesicle
division that employs a minimum number of enzymes.

Vesicles can be forced to divide via external work, for example by pressing vesi-
cle solutions through a microfilter. It has been demonstrated that such extrusion
can force vesicles to divide without significant rapture of the membrane, which
would lead to leakage of encapsulated material [17]. Alternatively, budding off of
small vesicles from a giant “mother” vesicle has been employed as a mechanism for
vesicular division. Budding can be enforced for example by (i) mechanical energy,
(ii) osmotically changing the surface-to-volume ratio of the vesicle, (iii) selectively
increasing the area of the outer bilayer leaflet through a temperature difference
between the internal and external solution, or (iv) an asymmetry in the density
of inner and outer membrane leaflets [17]. Budding can further be supported by
the boundaries of domain-forming lipid compositions [18]. Theoretical studies have
suggested additional means of induced vesicle division based on adhesive nanopar-
ticles [19] or heterogeneous osmotic pressure [20, 21].

For micelles and reverse micelles, an autonomous replication process has been
suggested in the literature [13, 14, 22]. Bachmann et al. first reported self-replication
of reverse micelles that hosts a catalyst for a metabolic reaction that constitutes an
autonomous growth and division cycle: a hydrophobic ester is added to the organic
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solvent of the system and serves as a nutrient for the single metabolic reaction of
cleaving the ester bond by hydrolysis. Reaction products are fatty acids and alco-
hols – which are essentially the surfactants of the ternary system. Ester cleavage is
enhanced by a hydrophilic catalyst, which will reside in the aqueous interior of the
reverse micelle. The setup guarantees that the metabolic turnover of nutrients occurs
at the micellar interface.

The supposed replication process in these systems is best described for the orig-
inal setup: surfactants that are newly produced by ester hydrolysis arrange at the
lipid–water interface of the reverse micelles as a result of their amphiphilic prop-
erties. During the course of the reaction, this leads to a change in the surface-to-
volume ratio of these aggregates, as the water is entrapped in the interior of the
reverse micelles. It is thought that this induces an elongation of the structure up to a
point where thermal fluctuation suffices to divide the aggregate in two.

11.2.3 Protocell Metabolisms

In the context of artificial life, a metabolism is any network of chemical reactions
that allows a protocell to produce its building blocks from provided nutrients and
energy. As any chemical reaction, metabolic processes must be designed energeti-
cally downhill (exergonic) or, if uphill, must be coupled to downhill reactions such
that the net free energy change in the system is negative and products are formed
with high yield.

One way to achieve this is to provide energy-rich precursors as nutrients that
are broken down in the course of metabolic reactions (catabolism). An example is
activated derivatives of nucleotides instead of plain nucleotides. This changes the
equilibrium constant of a polymerization/ligation reaction toward the product side.

Another way is to exploit external free energy sources such as sunlight or elec-
trochemical gradients to build up energy-rich chemicals (anabolism). The build-
up of energy-rich components is significantly more difficult than their breakdown,
which is why most protocell design pursued today relies on energy-rich precursors.
Biological life is able to produce energy-rich chemicals such as adenosine triphos-
phate (ATP) in order to store energy for later use, which accounts for the autonomy
of the living organism. None of the protocell designs we have today comes close to
such functionality.

For a truly replicating protocell, the metabolism must not only produce all build-
ing blocks of the container and information subsystems, but also provide its own
building blocks, that is, the reaction network must be autocatalytic. Autocatalytic
closure – the appearance of catalytic cycles – has been shown to arise sponta-
neously in random catalytic networks once a threshold connectivity of the network is
reached [23–25]. While these studies are particularly interesting within the context
of origins-of-life research, they give little or no advice for the purposeful design of
a protocellular metabolism from scratch. More closely related to experimental work
is the observation that the citric acid cycle – the hub of biological reaction networks
and also known as the Krebs cycle – can be made into an autocatalytic reaction
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network when run in its reductive (reverse) direction [26]. Experimental work on
this system, for example its encapsulation into vesicles, is still to come.

11.3 Bottom-Up Approaches to Artificial Cells

Pioneering attempts to conceptually understand living organisms from the general
perspective of systems theory date back to the early 1970s, when Maturana and
Varela introduced the concept of autopoiesis [27, 28]. An autopoietic system is
a spatially confined network of production processes of components that contin-
uously regenerate and realize the network that produces them. This perception of
life prescinds the self-generative power of living systems from its actual chemical
materialization, and thus provides a framework in which it is possible to sketch out
nonbiological living systems.

In order to construct a self-replicating protocell, container, metabolism, and
information have to be arranged into a functionally coupled system with at least the
following interactions: the information component has to influence the metabolic
activity of the system in one way or another; the metabolism has to provide build-
ing blocks for all subsystems; the replication rates of the subsystems have to be
synchronized in order for the entire aggregate to self-replicate.

In 1971, Gánti designed the first such integrated system, which he referred to
as the chemoton (short for “chemical automaton”) [29]. In its current conception,
a replicable biopolymer resides in a lipid container (vesicle), where it replicates by
consuming monomer material produced by an autocatalytic metabolism that also
produces membrane material. The chemoton employs five metabolic reagents that
constitute an autocatalytic cycle, one metabolic precursor for membrane molecules
and one for monomers of the genetic systems. With additional nutrients and waste
components, the chemoton adds up to 12 components that interact through ten
chemical reactions. The subsystems are stoichiometrically coupled. In particular, the
metabolic production of genetic, metabolic, and container building blocks are con-
trolled by a differential feedback mechanism that maintains a synchronized growth
of the entire system. Mass reaction kinetic studies indicate that the chemoton indeed
reproduces [30] but the models assume that, for example, template replication and
container division can be achieved without complications. To the best of our knowl-
edge, little experimental work has been done on the chemical realization of the
chemoton.

The last decade has seen several proposals for the experimental bottom-up real-
ization of artificial cells and cell-like entities. We illustrate this variety with three
proposed integrated designs that differ significantly in their complexity and in the
way they treat container, metabolism, and chemical information: the protocells sug-
gested and currently experimentally pursued by the groups of Rasmussen et al.,
Szostak et al., and Luisi et al. (see Fig. 11.3). (For a concise review of the field of
protocell research, see [31])

The minimal protocell design of Rasmussen et al. is arguably the simplest pro-
posal for self-replicating, evolving matter to date. The model gains its simplicity



11 Wet Artificial Life 269

pL L

hν

E E*

pM M XNA

pL L

MRNA
*

RNA

RNA lipid

ligase

pM
P

M
P

P

RNApM M RNA RNA

pM DNA M DNA DNA

ATP ADP*

PURE System

pL L

A A
A

(a) (b) (c)

Fig. 11.3 Currently experimentally pursued bottom-up wet artificial life designs in the schematic
language of Rasmussen et al. [32]. a The minimal protocell of Rasmussen et al. [33] envisions a
catalytic coupling between information and metabolism, b Szostak et al.’s (2001) protocell fea-
tures ribozymatic information molecules, and c Luisi et al.’s (2006) semiartificial cell employs a
protein kit for the regulation of metabolic activities. Here, L and A denote lipid molecules and the
entire aggregate, M and I denote information monomers and templates, and E denotes metabolic
molecules. Black arrows depict chemical reactions, red arrows self-assembly processes, and dotted
blue arrows catalysis. c©MIT Press 2009

through several “unorthodox” simplifications that will be presented in depth in
Sect. 11.4. Drawing on simplicity is not a shortcoming but a declared goal of
the design, which focuses on the transition from nonliving to living matter “from
scratch”, that is, from only molecules of nonbiological origin.

Szostak et al. base their protocell on RNA sequences that exhibit catalytic activ-
ity – so-called ribozymes [34]. Ribozymes are single-stranded RNA strands with the
ability to fold into complex three-dimensional structures that exhibit catalytic activ-
ities similar to proteins (hence the name ribozyme following the word “enzyme”).
The design of Szostak et al. envisions employing two ribozymes encapsulated in
semipermeable vesicles: one ribozyme catalyzes the metabolic turnover of lipid
precursors into functional lipids to allow for growth of the protocell container,
while the second ribozyme supposedly catalyzes the template-directed replication of
RNA from shorter oligomers or monomers and should thus allow for the replication
of both ribozymes. The hypothetical design is backed up by research on ribozy-
matic ligases and polymerases [35, 36]. In Szostak et al’s protocell, the container
membrane has to be permeable to lipid precursors and RNA oligomers while being
impermeable to the ribozymes themselves – a property that has been shown experi-
mentally by Mansy et al. [37].

Where the above bottom-up approaches employ only ingredients of nonbiolog-
ical origin, the protocell design of Luisi et al. hinges on components of biological
origin, and can therefore be regarded as a semiartificial cell. The approach employs
significantly more components and more closely resembles life as we know it today:
the team envisions encapsulating the minimal biological proteins necessary for DNA
replication, transcription, translation, and protein synthesis into a vesicle. This pro-
tein set – characteristically referred to as the PURE system – would thus be able
to reproduce itself from nucleotides, amino acids, lipid precursors, ATP and other
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Table 11.1 Recent experimental achievements in encapsulated DNA/RNA replication and protein
synthesis in vesicles. Asterisks indicate experiments that employ cell extract

Year Achievement Fig. 11.4 Refs.

1994 Template-free enzymatic RNA polymerization (a) [39]
1995 Enzymatic RNA replication [40]
1995 Enzymatic polymerase chain reaction [41]
2001 Transcription and translation * (c) [42]
2002 Enzymatic transcription (b) [16]
2004 Protein expression * (d) [43]
2004 Cascading genetic network transcription * (e) [44]

biomolecules [38]. Although this design is arguably the most complex approach
in terms of number of molecular components, the research benefits from the fast
accumulation of knowledge in the fields of molecular and synthetic biology. Some
recent milestones of vesicle-encapsulated DNA-replication and protein synthesis
that use either enzymes or cell extract are summarized in Table 11.1.

Fig. 11.4 Several experimental milestones of encapsulated DNA replication and protein expression
in vesicles. Schematics are based one the graphical language of Rasmussen et al. [32]. See Fig. 11.3
for the interpretation of the diagrams. c© MIT Press 2009. a Chakrabarti et al. [39], b Monnard
and Deamer [16], c Yu et al. [42], d Noireaux and Libchaber [43], e Ishikawa et al. [44]
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With the complexity of Luisi’s envisioned semiartificial cell, the bottom-up
approach stretches toward the top-down research on minimal cells that trims down
natural genomes in the quest for the minimal gene set needed for self-replication.
However, while the two research communities meet conceptually, they are still sep-
arated by at least one order of magnitude (expressed in terms of the total number of
genes). Schematics of these achievements are shown in Fig. 11.4.

11.4 The Minimal Protocell

In this section, we detail the design and current work on the minimal protocell by
Rasmussen et al. [33]. This work is currently being pursued in a combined exper-
imental and theoretical approach at the University of Southern Denmark and the
Los Alamos National Laboratory, USA. Theoretical investigations and computer
simulations constitute a major part of the protocell assembly project, where they are
mostly used (i) to explore design alternatives, (ii) to interpret experimental results,
and (iii) to relate them to well-developed theories of, for example, soft condensed
matter or minimal replicator systems.

11.4.1 Design Principles

The minimal protocell features three major simplifications to reduce the number
and complexity of needed components. First, the minimal protocell design places
the functional molecules for information and metabolism at the exterior interface of
a lipid container, rather than encapsulating them in the interior volume of a vesicle.
Second, rather than encoding enzymes, the information component of the minimal
protocell directly affects the metabolism via its electrochemical properties. Third, a
unique reaction mechanism is designed to produce all building blocks from appro-
priate precursors.

Contemporary life and most artificial protocell designs encapsulate their
metabolic and information components in the interior of a vesicular container. In
contrast, our minimal protocell takes a radically different approach by placing the
functional molecules at the exterior interface of a lipid container. In order to achieve
this, the molecules are decorated with hydrocarbon chains that give them the prop-
erties of an amphiphile.

Attachment instead of encapsulation allows not only vesicles but also a variety of
other container candidates to be considered, namely oil-in-water emulsion compart-
ments (surfactant-coated oil droplets), water-in-oil emulsions, and reverse micelles.
In addition, resource and waste molecules do not need to pass a membranous barrier
but can freely diffuse toward and away from the interface. This nullifies the need
for pore proteins or other sophisticated regulation mechanisms for substrate uptake
and disposal. Because the exterior interface is a free-energy sink for the functional
molecules, the simple “sticky gum” design can spontaneously self-assemble in
solution.
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11.4.2 Building Blocks

Our protocell design is based on three molecular species to realize the three subsys-
tems container, metabolism, and information, plus three molecular species that act
as nutrients (some of them are shown in Fig. 11.5). The container of the protocell is
formed by fatty acids (a simple single-chained surfactant), the metabolism is carried
out by ruthenium bipyridine (a commercial pigment), and the inheritable informa-
tion is represented in a short nucleic acid strand, most likely DNA. Nucleic and fatty
acid esters (namely picolyl esters) are nutrients of the metabolism. The metabolism
also consumes a hydrogen donor, which can be regarded as a third nutrient. The
detailed metabolic reaction mechanism will be presented in Sect. 11.4.4.

decanoate picolyl ester
(nutrient)

decanoic acid
(container molecule)

guanine
8−oxo−guanine

(information molecule)(metabolic molecule)
Ru(II)bpy3picolinium

(waste)

+

+
−

Fig. 11.5 Components of the minimal protocell. The container of the protocell is formed by
decanoic acid and decanoate picolyl ester. Ruthenium(II) bipyridine drives the metabolic turnover
of nutrients into functional building blocks. The inheritable information of the protocell is real-
ized in DNA, where 8-oxo-guanine, a derivative of the natural nucleobase guanine, is the main
component

11.4.3 Life Cycle of the Protocell

The life cycle of the envisioned protocell is schematically shown in Fig. 11.6, here
for a microemulsion container and the photosensitizer covalently bound to the
information polymer. The life cycle starts with the spontaneous self-assembly of a
microemulsion compartment in aqueous solution – that is, a fatty acid ester droplet
(yellow) that is coated by fatty acid surfactants (green). The informational poly-
mer (black and white circles) and photosensitizer (red circle) attach to the water–
lipid interface due to their amphiphilic properties (a). Nucleotide double strands
are melted on the container surface (b) to allow for the hybridization of piecewise
complementary oligomers after the system is cooled below the melting temperature
again (c). Exposing the system to light drives the metabolic turnover of fatty acid
ester molecules into functional fatty acids, and likewise the ligation reaction of the
information oligomers (d). Finally, due to the ongoing activity of the metabolism,
the container is envisioned to spontaneously divide into daughter aggregates, each
one equipped with a copy of the necessary components (e). Feeding new nutrients
to the system completes the life cycle of the minimal protocell.
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Feed lipid
precursors

Feed
oligomers

Condense

Light−driven
metabolic growthdivision

Melt
biopolymer

Self−assembly

(a) (b)

(c)

(d)

(e)

Fig. 11.6 Life cycle of the minimal protocell (in this case based on a surfactant-coated oil droplet
container). a Spontaneous self-assembly of the protocells from its components in aqueous solution.
Melting (b) and condensation (c) of information polymers initiates the replication of information.
d A light-driven metabolism transforms nutrients into new surfactants and forms covalent bonds
between the supplied information precursors. e The metabolic turnover induces autonomous divi-
sion and leads to two copies of the original aggregate

In the above setup, the container, information molecule, and metabolism are cou-
pled in various ways. Obviously, both the replication of the container and replication
of the genome depend on a functioning metabolism, as the latter provides building
blocks for aggregate growth and reproduction. In addition to that, the container also
has a catalytic influence on the replication of both the metabolic elements and the
genome by co-localizing precursors, photosensitizers, and nucleic acids. Finally, the
nucleic acid catalyzes the metabolism, as will be discussed in the next section.

In order to check the performance of the entire envisioned system and the cou-
pling of its components, we have performed spatially resolved, physically grounded
simulations in an extended dissipative particle dynamics (DPD) framework
[45–47]. DPD is a particle-based mesoscopic simulation method that employs
Newton’s laws of motion to determine the trajectory of so-called “beads”, which
represent either individual molecules or volume elements of bulk fluids. Essentially,
DPD is a Lagrangian solver of the Navier–Stokes equation that incorporates thermal
fluctuations – as such the method can capture the thermodynamic and hydrodynamic
properties of complex fluids, oil–water and ternary emulsions being two of them. In
contrast to detailed atomistic molecular dynamics simulations, DPD allows system
trajectories up to the range of microseconds to be computed on a desktop computer.

We have successfully used the DPD framework to model every step in the life
cycle of the protocell, including its self-assembly, nutrient feeding, hybridization,
and ligation of a single surface-attached nucleotide strand, as well as a spontaneous
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a)

b)

c)

d)

Fig. 11.7 Critical steps in the life cycle of the minimal protocell. From top to bottom: a spon-
taneous self-assembly in aqueous solution; b precursor feeding, turnover, and induced container
replication; c interface-associated information replication; and d replication of the entire aggre-
gate [46]

division process of the microemulsion compartment (see Fig. 11.7) similar to the
experimental setup of Bachman et al. In general, we were able to confirm the viabil-
ity of every step in the envisioned life cycle or suggest design alternatives. It should
be pointed out, however, that the main obstacle to completing a full life cycle in one
integrated simulation is the successful replication of information polymers, once
more than one copy of the information molecule is present on the container surface.
As has been discussed in Sect. 11.2.1, the templates have a significantly stronger
tendency to bind to each other than to the complementary oligomers. Naturally,
these findings are on a systemic level – simulation results must not be taken as
predictive and are constantly compared to the results of our experimental work.

11.4.4 The Metabolism of the Protocell

At the heart of the minimal protocell design lies a complex chemical reaction
that couples the three subsystems of container, metabolism, and information.
The overall reaction is a catabolic breakdown of energy-rich precursors, where the
net products are lipid molecules L (fatty acids) and DNA oligomers that, in a second
step, undergo template-directed ligation. In the current design of the protocell, the
photosensitizer must be provided as a nutrient and does not undergo any metabolic
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net transformation. Although the overall reaction is catabolic, one step in the reac-
tion mechanism requires the intake of energy (namely light energy).

The net reactants are picolyl esters of the respective acids, which are cleaved
into radicals with the aid of an electron. The electron is eventually donated by a
hydrogen source, but the electron transfer occurs over two cycles of coupled redox
reactions. The downstream cycle employs a photoreaction where the photosensitizer
ruthenium(II) trisbipyridine gets excited by visible light – turning it into an electron
acceptor for an appropriate reductant. The excited electron – which cannot jump
back into its ground state once an electron has been received – now participates
in the ester cleavage. The upstream cycle couples the metabolic production to the
information stored in the DNA biopolymer: a derivative of the biological nucleotide
guanine (8-oxo-guanine) has the correct redox potential to donate an electron to
the ruthenium complex in its excited state. This nucleobase is eventually restored
by accepting an electron from the hydrogen source – which completes the second
redox cycle.

Several undesired side reactions occur in this system:

i. Fluorescence of the ruthenium complex leads back to the ground state – only
one of n photons is actually used to drive precursor fragmentation.

ii. Hydrolysis of the ester produces fatty and nucleic acids without participation of
the complex reaction.

iii. The photocatalyst slowly degrades and reduces the overall system performance.

Figure 11.8 shows an experimental confirmation of the above mechanism: the
graphs show the production of fatty acids from fatty acid esters in the presence
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Fig. 11.8 Left: Experimental measurements and fitted reaction kinetics models of the production
of fatty acid in the presence of guanine (+ signs and 8-oxo-guanine (x signs). The initial rate of the
reaction changes by a factor of more than 25 depending on the presence of absence of oxo-guanine.
See text for details. Right: Micrographs of the reaction. The upper four panels show the conversion
in the case of 8-oxo-guanine at times 0, 6, 8, and 24 h. The lower two panels show the absence of
conversion in the case of guanine after 0 and 24 h. The visible spot is phase-separated precursor that
has not been converted into vesicles. Bars correspond to 10 µ m. c© American Chemical Society
2009
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of the ruthenium complex and either (I) guanine or (II) oxo-guanine [48]. The
graph further shows fits to a pseudo-first-order reaction pL −→ L, which assumes
that the electron relay system is a catalyst with kinetics on a faster time scale. In
the absence of oxo-guanine (+ signs and solid line), the entire lipid production
is due to background hydrolysis (which proceeds with an estimated initial rate of
6.7 × 10−8 Ms−1). In the presence of oxo-guanine (x signs and dashed line), the
total turnover initially proceeds more than 25 times faster. After about 1.6 h, how-
ever, the turnover rate decreases by a factor of about five, which might be caused
by the appearance of vesicles in the solution. We are currently comparing these
experiments to a model of the reaction mechanism. Qualitative analysis of a similar
reaction system exposed different kinetic regimes, where only some of them are
susceptible to evolution [49].

11.4.5 Toward Inheritable Information and Darwinian Evolution

The design of the minimal protocell envisions incorporating metabolically active
nucleotides such as 8-oxo-guanine into short DNA strands (5–20 bases in length)
and providing complementary oligomers to replicate the information content as
described in Sect. 11.2.1. To run the ligation energetically downhill, one of the two
oligomers is activated, whereas the other is decorated with a protection group to
prevent uncontrolled ligation. This protection group is identical to the one used in
the lipid metabolism (picolyl ester), which should allow the replication of infor-
mation to be controlled with the light-driven reaction system described above. Our
hypothesis is that the catalytic activity of oxo-guanine will depend on the nucleotide
sequence that the electron has to travel to reach the photosensitizer [50].

The wire properties of DNA are not the only place where variation, and hence
selection, enters. In the DPD model presented above, we can observe that the ten-
dency of nucleotides to form stable hybridization complexes critically depends on
their base sequence. This constitutes an additional fitness function that arises solely
from the geometry of the molecular interactions. Similar results are known from
experimental studies of nonenzymatic template replication [51, 52].

Wet-lab experiments on this replicator system are currently in preparation. In
parallel, we are developing a mass reaction kinetics model of the replicator system.
Unsurprisingly, the theoretical analysis of this replicator system predicts the same
issue of product inhibition as the unprotected systems described in Sect. 11.2.1. In
order to overcome product inhibition, the local template concentration has to be
kept constant. One way to achieve this has been suggested by von Kiedrowski:
In the “SPREAD” (surface-promoted replication and exponential amplification of
DNA) approach, template molecules are attached to a matrix. The resulting spatial
separation prevents the templates from interacting and inhibiting each other [53],
leaving all strands available for interaction with oligomers.

Rasmussen and coworkers [54, 55] derive, by means of mass reaction kinetics,
that a mechanism similar to SPREAD naturally occurs in the design of the mini-
mal protocell: as the information molecules are attached to the container surface by
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hydrophobic anchors, division of the protocell container prevents templates from
inhibiting each other. In particular, they show that the growth rates of container and
information molecules synchronize in the minimal protocell design, thus keeping
the local concentration of templates per aggregate constant. This result has since
been generalized and shown to hold under very modest conditions, as long as the
production rate of container molecules is proportional to the concentration of infor-
mation templates [56].

Returning to the question posed in the introduction, we can now state that one
reason for the predominance of cellular organisms over naked replicators might be
found in the enhanced replication abilities of integrated information–metabolism–
container systems that are able to actively overcome the limitation of product inhi-
bition and reconstitute exponential growth (thereby overthrowing any competing
naked replicators).

11.5 The Evolutionary Potential of Protocells

The presented designs differ significantly in the way they use inheritable chemical
information in order to control the metabolism of the aggregate (Table 11.2). The
minimal protocell exploits the redox potential of nucleobases and the wire property
of biopolymers to regulate the turnover rate of a specific metabolic reaction. The
ribozymatic protocell of Szostak et al. utilizes the property of RNA to form ternary
structures and their possible catalytic activities. Finally, the semiartificial cell of
Luisi et al. is based on the very transcription/translation mechanism and subsequent
enzymatic regulation that is characteristic of biological life today. With the grow-
ing complexity of this mapping from chemical information to metabolic regulation
comes an increase in flexibility that is likely to determine the evolutionary poten-
tial of each design. Hypothetically assuming that we had experimentally achieved
the above designs and were able to replicate and select protocell populations over
hundreds or thousands of life cycles, what evolutionary outcome could we hope to
observe?

Table 11.2 Feature comparison of the presented protocell designs in order of their complexity

Metabolism Division Information Evolvability

Minimal protocell
(Rasmussen et al.)

Mainly catabolic Autonomous or
externally
driven

Redox-
catalytic

Adaptation

Ribozyme cell
(Szostak et al.)

Anabolic from
activated
precursors

Externally
driven

Ribozymatic Limited
construction

Semi-artificial cell
(Luisi et al.)

Anabolic from
activated
precursors

Autonomous or
externally
driven

Encoding Universal
construction

Modern cell Autocatalytic
ana- and
catabolism

Autonomous,
enzymatic

Encoding Universal
construction
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If the information carrier participates directly in one particular metabolic reac-
tion – as in the case of the minimal protocell – “phenotypic” variability is limited
to the rate of that particular reaction. Consequently, evolution is limited to adapta-
tion toward an optimum, for example toward the most effective catalyst. One could
imagine adding different photosystems to Rasmussen et al.’s design, such that adap-
tation becomes multidimensional, but we would still not expect the evolution of this
system to generate genuine novelty.

In the ribozymatic protocell, the information carrier also participates directly in
the metabolism. However, as ribozymes can fold into versatile shapes with a high
possible catalytic specificity, the evolutionary potential appears greater, as informa-
tion molecules can presumably evolve to promote unforeseen metabolic reaction
types, thereby introducing a source for novelty to emerge. When metabolic regula-
tion is based on enzymes – as in the semiartificial protocell – the class of accessible
reactions is again expected to increase.

The main difficulty of a ribozymatic information system is that a single molecular
species (RNA) needs to perform well both as an information carrier system and as
an actuator. This in turn limits the evolutionary potential to only those actuators that
can also perform well as templates in the replication process. With the introduction
of encoding information in the semiartificial cell as well as in all modern life, the
storage of information (genome) is physically separated from its action (proteome).
In this way, the ability of the information carrier to replicate becomes independent
of the information that it actually stores.
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Goranovič, James Boncella, Hans-Joachim Ziock, the members of the FLint Center for Fundamen-
tal Living Technology, and the Protocell Assembly team of the Los Alamos National Laboratory
for useful discussions.

References

1. M. Hanczyc, in Protocells: Bridging Nonliving and Living Matter, ed. by S. Rasmussen,
M. Bedau, L. Chen, D. Deamer, D. Krakauer, N. Packard, P. Stadler (MIT Press, Cambridge,
MA, 2008), pp. 3–18

2. J.I. Glass, N. Assad-Garcia, N. Alperovich, S. Yooseph, M.R. Lewis, M. Maruf, C.A.
Hutchison III, H.O. Smith, J.C. Venter, Proc. Natl. Acad. Sci. USA 103(2), 425 (2006)

3. B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Watson, Molecular Biology of the
Cell (Garland Science, New York, NY, 2002)

4. P.A. Monnard, in Prebiotic Evolution and Astrobiology, ed. by J.T.F. Wong, A. Lazcano
(Landes Bioscience, Austin, TX, 2008)

5. D. Sievers, G. von Kiedrowski, Nature 369, 221 (1994)
6. B.G. Bag, G. von Kiedrowski, Pure Appl. Chem. 68(11), 2145 (1996)
7. G. von Kiedrowski, Angew. Chem. Int. Ed. 25(10), 932 (1986)
8. G. von Kiedrowski, B. Wlotzka, J. Helbing, M. Matzen, S. Jordan, Angew. Chem. Int. Ed.

30(4), 423 (1991)
9. I. Scheuring, E. Száthmary, J. Theor. Biol. 212, 99 (2001)

10. P.L. Luisi, P. Waldea, T. Oberholzer, Curr. Opin. Colloid Interface Sci. 4(1), 33 (1999)



11 Wet Artificial Life 279

11. D. Deamer, J.P. Dworkin, S.A. Sandford, M.P. Bernstein, L.J. Allamandola, Astrobiology 2(4)
(2002)

12. S.S. Mansy, Int. J. Mol. Sci. 10, 835 (2009)
13. P.A. Bachmann, P.L. Luisi, J. Lang, J. Am. Chem. Soc. 113, 8204 (1991)
14. P.A. Bachmann, P. Walde, P.L. Luisi, J. Lang, J. Am. Chem. Soc. 112, 8200 (1990)
15. K. Suzuki, T. Ikegami, Artif. Life 15(1), 59 (2009)
16. P.A. Monnard, D. Deamer, Anatom. Record 268, 196 (2002)
17. M. Hanczyc, J.W. Szostak, Curr. Opin. Chem. Biol. 8, 660 (2004)
18. T. Baumgart, S.T. Hess, W.W. Webb, Nature 425, 821 (2003)
19. H. Noguchi, M. Takasu, Biophys. J. 83, 299 (2002)
20. J. Macía, R.V. Solé, J. Theor. Biol. 245(3), 400 (2007)
21. R.V. Solé, J. Macía, H. Fellermann, A. Munteanu, J. Sardanyés, S. Valverde, in Protocells:

Bridging Nonliving and Living Matter, ed. by S. Rasmussen, M. Bedau, L. Chen, D. Deamer,
D. Krakauer, N. Packard, P. Stadler (MIT Press, Cambridge, MA, 2008), pp. 213–231

22. P.A. Bachmann, P.L. Luisi, J. Lang, Nature 357, 57 (1992)
23. S.A. Kauffman, J. Theor. Biol. 119, 1 (1986)
24. J. Farmer, S. Kauffman, N. Packard, Physica D 22, 50 (1986)
25. R.J. Bagley, J.D. Farmer, in Artificial Life II, ed. by C.G. Langton, C. Taylor, J.D. Farmer,

S. Rasmussen (Addison-Wesley, Reading, MA, 1991), pp. 93–140
26. E. Smith, H. Morowitz, Proc. Natl. Acad. Sci. USA 101(36), 13 168 (2004)
27. H.R. Maturana, F.J. Varela, Autopoiesis and Cognition: The Realization of the Living (Reidel,

Dordrecht, 1980)
28. P.L. Luisi, Naturwissenschaften 90, 49 (2003)
29. T. Gánti, The Principles of Life (Oxford University Press, Oxford, 2003)
30. A. Munteanu, R.V. Solé, J. Theor. Biol. 240(3), 434 (2006)
31. S. Rasmussen, M. Bedau, L. Chen, D. Deamer, D. Krakauer, N. Packard, P. Stadler (eds.),

Protocells: Bridging Nonliving and Living Matter (MIT Press, Cambridge, MA, 2008)
32. S. Rasmussen, M. Bedau, J. McCaskill, N. Packard, in Protocells: Bridging Nonliving and

Living Matter, ed. by S. Rasmussen, M. Bedau, L. Chen, D. Deamer, D. Krakauer, N. Packard,
P. Stadler (MIT Press, Cambridge, MA, 2008), pp. 71–100

33. S. Rasmussen, L. Chen, M. Nilsson, S. Abe, Artif. Life 9, 269 (2003)
34. W. Szostak, D.P. Bartel, P.L. Luisi, Synthesizing life. Nature 409, 387–390 (2001)
35. J.A. Doudna, J.W. Szostak, Nature 339, 519 (1989)
36. D.P. Bartel, P.J. Unrau, Trends Cell Biol. 9, M9 (1999)
37. S.S. Mansy, J.P. Schrum, M. Krishnamurthy, S. Tobé, D.A. Treco, J.W. Szostak, Nature 454,

122 (2008)
38. P.L. Luisi, F. Ferri, and P. Stano. Approaches to semi-synthetic minimal cells: a review. Natur-

wissenschaften, 93, 1–13 (2006)
39. A.C. Chakrabarti, R.R. Breaker, G.F. Joyce, D.W. Deamer, J. Mol. Evol. 39, 555 (1994)
40. T. Oberholzer, R. Wick, P.L. Luisi, C.K. Biebricher, Biochem. Biophys. Res. Commun. 207(1),

250 (1995)
41. T. Oberholzer, M. Albrizio, P.L. Luisi, Chem. Biol. 2(10), 677 (1995)
42. W. Yu, K. Sato, M. Wakabayashi, T. Nakaishi, E.P. Ko-Mitamura, Y. Shima, I. Urabe, T. Yomo,

J. Biosci. Bioeng. 92, 590 (2001)
43. V. Noireaux, A. Libchaber, Proc. Natl. Acad. Sci. USA 101(51), 17669 (2004)
44. K. Ishikawa, K. Sato, Y. Shima, I. Urabe, T. Yomo, FEBS Lett. 576, 387 (2004)
45. H. Fellermann, R. Solé, Philos. Trans. R. Soc. Lond. B 362(1486), 1803 (2007)
46. H. Fellermann, S. Rasmussen, H.J. Ziock, R. Solé, Artif. Life 13(4), 319 (2007)
47. H. Fellermann, Physically embedded minimal self-replicating systems – studies by simulation.

Ph.D. thesis, University of Osnabrück (2009)
48. M. DeClue, P.A. Monnard, J. Bailey, S. Maurer, G. Colins, H.J. Ziock, S. Rasmussen,

J. Boncella, J. Am. Chem. Soc. 131, 931 (2009)
49. C. Knutson, G. Benkö, T. Rocheleau, F. Mouffouk, J. Maselko, A. Shreve, L. Chen,

S. Rasmussen, Artif. Life 14(2), 189 (2008)



280 H. Fellermann

50. Y.A. Berlin, A.L. Burin, M.A. Ratner, Superlattices Microstruct. 28(4), 241 (2000)
51. G.F. Joyce, Orig. Life Evol. Biosph. 14, 613 (1984)
52. O.L. Acevedo, L.E. Orgel, J. Mol. Biol. 197(2), 187 (1987)
53. A. Luther, R. Brandsch, G. von Kiedrowski, Nature 396, 245 (1998)
54. T. Rocheleau, S. Rasmussen, P.E. Nielson, M.N. Jacobi, H. Ziock, Philos. Trans. R. Soc. Lond.

B 362, 1841 (2007)
55. A. Munteanu, C.S.O. Attolini, S. Rasmussen, H. Ziock, R.V. Solé, Philos. Trans. R. Soc. Lond.

B 362, 1847 (2007)
56. R. Serra, T. Carletti, Artif. Life 13(2), 123 (2007)



Chapter 12
Towards a Minimal System for Cell Division

Petra Schwille

Abstract We have entered the “omics” era of the life sciences, meaning that our
general knowledge about biological systems has become vast, complex, and almost
impossible to fully comprehend. Consequently, the challenge for quantitative biol-
ogy and biophysics is to identify appropriate procedures and protocols that allow
the researcher to strip down the complexity of a biological system to a level that can
be reliably modeled but still retains the essential features of its “real” counterpart.
The virtue of physics has always been the reductionist approach, which allowed
scientists to identify the underlying basic principles of seemingly complex phenom-
ena, and subject them to rigorous mathematical treatment. Biological systems are
obviously among the most complex phenomena we can think of, and it is fair to
state that our rapidly increasing knowledge does not make it easier to identify a
small set of fundamental principles of the big concept of “life” that can be defined
and quantitatively understood. Nevertheless, it is becoming evident that only by tight
cooperation and interdisciplinary exchange between the life sciences and quantita-
tive sciences, and by applying intelligent reductionist approaches also to biology,
will we be able to meet the intellectual challenges of the twenty-first century. These
include not only the collection and proper categorization of the data, but also their
true understanding and harnessing such that we can solve important practical prob-
lems imposed by medicine or the worldwide need for new energy sources. Many of
these approaches are reflected by the modern buzz word “synthetic biology”, there-
fore I briefly discuss this term in the first section. Further, I outline some endeavors
of our and other groups to model minimal biological systems, with particular focus
on the possibility of generating a minimal system for cell division.
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12.1 Two Concepts of Synthetic Biology

The first major representation of synthetic biology, which still prevails and domi-
nates the field, is that of microbial engineering. The idea is to identify genetically
encoded, well-characterized functional elements that could be used as a tool-box
quite analogously to electronic systems, with bacteria as a chassis, on which assem-
bly and systems engineering can be performed. In other words, bacteria with new
medically or environmentally interesting properties are generated by combining
known genetic features in their genome like a switching circuit. The concept very
much relies on digital logic, and has the shortcoming that, of course, not all of these
functional elements coming from differently evolved organisms are biologically
compatible with each other. Nevertheless, the large growing community, particularly
in the US, and the large selection of biological “hardware” and “software” units that
are already available display the attractiveness and promise of this approach.

Another driving force behind synthetic biology is the emergence of nanotechnol-
ogy, in particular the biologically oriented and inspired community among nano-
technologists. Biological building blocks such as proteins and nucleic acids can be
considered as molecular machines with complex functionality, already adapted to
nanoscopic scales and systems. This renders it plausible to devise bio-tech hybrid
devices that display functional features of the biological systems but can be con-
trolled externally by physical parameters such as nanoscopic technical switches.
The most prominent among the already successfully employed bio-nano hybrid sys-
tems are three-dimensional (3D) nanostructures using single-stranded and double-
stranded DNA building blocks. But the real promise lies in the functional integration
of large protein machineries that can also accomplish complex tasks such as energy
production, waste degradation, pathogen defense, or damage repair outside and
inside living organisms. Consequently, the pathway provided by nanotechnology
and materials science towards synthetic biology involves not only the functional
reconstitution of biological units and circuits in technological environments but also
the design of interfaces that can actually be controlled by nonbiological cues.

The second representation of synthetic biology is the more biophysical one,
namely the striving for a better understanding of biological, particularly cellular
systems, by a so-called “bottom-up biology”. Physicist Richard Feynman once for-
mulated the famous phrase “What I cannot create, I do not understand”. In a strict
sense, following this quote, we would only fully understand a biological system
if we were able to make it from scratch. Besides ethical implications that I will
not be able to address here, it appears to be a rather hopeless enterprise to make a
“modern” cell, let alone a whole organism, in all its complexity. On the other hand,
life has arisen from a presumably much simpler subsystem containing unknown
and probably no longer existing key molecules. The success of several functional
in vitro assays for biological subsystems, functioning in environments of dramati-
cally reduced complexity, suggests that it is indeed possible to reconstitute essential
features and distinct modules of the cell from small and physically controllable sets
of molecules, and by doing this learn more about the fundamental physical and
chemical laws which nature builds the phenomenon of life on. It is this concept of
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synthetic biology, summarized in the vision of a minimal cell, that I will further
discuss with respect to its biophysical implications.

12.2 The Concept of a Minimal Cell

There are many motivations for the development of minimal cellular systems, or –
to give them a more provocative name – artificial cells. One obvious motivation is
to find possible models of how primordial cells could have developed to become the
first major organizational units of life, compartmenting biological information, and
thus forming the first true individuals set apart from their environment – from then
on being subject to the mechanisms of Darwinian evolution. Another motivation is a
more technical one, with biomedical implications: if we manage to create functional
models of cells, we may in the future be able to replace the real ones that fail or
somehow misbehave in our organisms. This would be a completely novel approach
to what is presently aimed at and partly achieved by stem cell technology – but
with fewer, or at least different, ethical implications. The third, and certainly in
the short term most relevant, motivation is the striving for better quantitative anal-
ysis and modeling of biological systems – as the quantitative researcher is often
frustrated when working with native cells under physiological conditions. Hence,
minimal systems of cellular modules have in recent decades helped tremendously to
elucidate underlying physical and chemical laws that govern complex phenomena of
living matter. In vitro models of the cellular cytoskeleton, along with reconstituted
motors, have triggered remarkable studies that led to the recognition of mecha-
nisms of dynamic instability, and resolved the step size of single motor proteins per
adenosine triphosphate (ATP) hydrolysis. In vitro models of cellular membranes,
on the other hand, have helped to reveal the hypothesized biological functionality
of lipid domains, or rafts, in membrane protein recruitment and signaling. With
increasing knowledge and identification of proteins that transform cellular mem-
branes, morphology and shape changes that are key to cellular metabolism can be
mimicked, and the outsourcing of functionality into organelles can be better under-
stood by revealing and reconstituting the proteome machinery required for organelle
assembly and maintenance.

In short, dissecting the cellular interaction network module by module, although
it does not give us a complete view of the full system, will at least help us in under-
standing the principles that might have been assembled and combined in ancient
forms of living systems. In fact, by admiring the immense entanglement of cellular
networks, with their stunning complexity that raises very little hope for understand-
ing the full system, we have to admit that cells as we know them today do not tell us
much about the first physical principles and (bio-)chemical modules that governed
their evolution. Among the most remarkable features in modern cells and organisms
is not only the general processing and inheriting of genetic information, but also
the possibility of adapting to environmental conditions, and the robustness of the
biochemical machinery with respect to external and internal disturbances. It is thus
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well conceivable that nature’s solution to a specific biological problem, for example,
cell division or generally the budding or fusion of vesicles from and to membranes,
is not the most straightforward in terms of underlying physical mechanisms, and
could be realized in simpler systems with fewer molecular players. This is partic-
ularly important to bear in mind when considering the possibility of generating an
artificial cell, or, more modestly, engineering a specific functionality by employing
a set of biological devices, for example, proteins.

12.3 Minimal Systems for Cell Division: An Attempt

One of the most fundamental transformations of biological systems, and key to
the understanding of the origin of life, is cell division, that is, the controlled split-
ting of a compartment carrying biological information into two daughter compart-
ments. What this compartment was like in early life forms is unknown, although the
assumption that it was made up of amphiphilic molecules similar to membrane lipids
is quite appealing, due to the large tendency of these molecules to self-organize in
aqueous systems into complex structures. So let us assume for the moment that a
cell could have evolved from lipid vesicles filled with genetic material. How could
the controlled splitting of the vesicles be realized? It is known that many physical
factors govern the stability of vesicles, such as surface tension and elasticity of the
membrane, as well as the osmotic balance between the inside and the outside. If
any of these factors are modified owing to environmental or internal dynamics, for
example, ion exchange or accumulation of charged molecules, or the modification
of lipids forming the membrane, the vesicle will become unstable and at some
point break up into two or more smaller units. This will, however, not guarantee
a remotely homogeneous size distribution of the daughter vesicles. Therefore, it is
more interesting to speculate about how to better control the shape transformation
of a membrane vesicle. Ideally, division into two equally sized units upon a defined
cue or switch would have to be achieved. From cell biology, numerous proteins are
known that can contribute to such a controlled splitting, most of them somehow
related to cytoskeletal elements, because the force to transform membranes is often
exerted by molecular motors. Although much is known today about the relationship
between motor activity, filament dynamics, and shape changes in cytokinesis, the
process of cell division as a whole, particularly in eukaryotic systems, has evolved
to a degree of complexity that makes it quite impossible to relate back to possible
primordial mechanisms of compartment splitting.

In a nave attempt to find a minimal divisome machinery for the inducible, con-
trolled division of biomolecular compartments, the following set of molecular mod-
ules seems to be promising: (1) a membrane vesicle made of lipids, (2) membrane
proteins serving as an anchoring machinery for force-inducing molecules, (3) a fil-
amentous system to provide a minimum of stability against bursting, and to ensure
points of action to apply the forces for membrane transformation, (4) a mechanism
to identify the actual division site, (5) force-inducing molecules, and (6) energy to
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power the system. The beauty of having ATP as an energy source is that it easily
facilitates bistable switches, and thus switchable systems, before and after ATP
hydrolysis. Can we now build a system as described, as a potential solution for a
minimal, controllable, division machinery for lipid vesicles? The first requirement
is to generate vesicles, the second to reconstitute proteins into their membranes, and
the third to anchor filaments to the vesicle surface. All of these steps have so far
successfully been employed in giant vesicle systems, as will be outlined below.

12.3.1 Step One: Modeling Membrane Morphogenesis – Nature‘s
Solution to Compartmentation

Although they certainly do not represent the only possible solutions for efficient
compartmentation of biological material, membrane vesicles belong to the most
intriguing systems to confine aqueous environments. This is mainly due to the
wealth of possible shapes and structures that amphiphilic molecules such as lipids
can assume in the presence of water, and the simple transformability of their 3D
figures. Giant unilamellar vesicles (GUVs), for example, among the most attrac-
tive lipid structures owing to their size, have been studied by membrane and lipid
researchers for more than two decades. With comfortable dimensions between sin-
gle and hundreds of micrometers that are easily accessible to optical imaging and
manipulation techniques, they have proven ideal model systems to study mem-
brane morphology and mechanical parameters, such as surface tension, elasticity,
and local curvature, relevant to membrane structure and transformations. More-
over, if a selection of different lipid species is chosen, they can be structured two-
dimensionally by forming distinct domains, or membrane phases, on their surface.
Of particular importance for cell biological research are GUV systems consisting
of a ternary mixture of phosphatidylcholine (PC), sphingomyelin, and cholesterol
(Fig. 12.1). It can be demonstrated that, dependent on their exact composition, these
ternary mixtures exhibit defined domains of different lipid order or fluidity, which
can easily be imaged by confocal or wide-field imaging, using fluorescent markers
that bind preferentially to a certain lipid environment. The most prominent rep-
resentations of phases in membranes are the so-called fluid (or liquid disordered)
phase, characterized by a relatively low order in the tail region, with correspond-
ingly high lateral mobility of the lipids; the gel phase, displaying high order in the
tail region and low mobility of the lipids; and an intermediate phase, the so-called
liquid-ordered phase, where relatively high lipid mobility can be observed, in spite
of a rather strong local lipid order [1].

Since the development of the raft hypothesis [2] in cell biology, there has also
been rising interest from the biological community in better understanding the rel-
evance of local lipid order for the lateral sorting and induction of functionality of
membrane proteins. It is now widely accepted that the quantitative representation
and local order of specific lipids in membranes of various organelles, in tight con-
cert with the respective proteins inserted or attached to them, contributes to their
functionality. In this respect, the above-mentioned liquid-ordered phase is presently



286 P. Schwille

Fig. 12.1 a Phase-separating GUV, liquid-ordered (red) and liquid-disordered domains (green)
[1]. b Budding of a liquid-ordered (green) domain away from the GUV surface [3]. c GUVs with
active ion channels, pumping Ca2+ into the lumen of the vesicle. d GUVs with filaments tightly
anchored to the surface (c and d: [4])

supposed to be the most likely organizational form of lipids in these functionally
important membrane segments, termed lipid rafts. Since the exact relationships are
often too complex and the structural features such as rafts in live cells too small
to be resolved quantitatively, minimal systems with reduced complexity, such as
GUVs, have paved the way to a more fundamental understanding of lipid–lipid and
lipid–protein interactions of physiological importance.

The question for our minimal cell approach is now whether the GUV model sys-
tem can be worked into a more elaborate model of biomolecular self-organization.
The next obvious step would be to include factors that are able to controllably
induce transformations, such as division, of these cell-like compartments, and to
then combine the transformable compartments with information units that could be
reproduced during division.

As the simplest solution to membrane transformations, vesicle shapes can be
easily modified through variations of the physical parameters that control shape
and size. There have been numerous reports about the splitting of vesicles [5], for
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example their breakup into two or more daughter vesicles. They can be split if lipid
mass is constantly added, thereby destabilizing the surface [6], or if osmotic pres-
sure is increased, potentially also through reactions of encapsulated material, as
beautifully demonstrated by the Szostak group [7] with replicating RNA molecules.
In our own work, we demonstrated that splitting of phase-separating vesicles can
occur along the phase boundaries of liquid-ordered and liquid-disordered membrane
domains, if the salt concentration outside the vesicle is slightly altered with respect
to that inside [3]. Figure 12.1b shows the budding of the liquid-ordered domain
away from the larger part of the vesicle, which is in the liquid-disordered state. The
mechanism behind this process is the larger increase of the line tension along the
domain boundary with respect to the increase of surface tension, which acts against
a budding transition. Although this kind of vesicle transformation or splitting is
not very attractive in terms of creating a minimal self-replicating system, due to its
very poor local controllability, the presence of local 2D structures or faults within
the membrane, as in this case of a phase-separating vesicle, may well promote or
recruit the activity of membrane-transforming proteins.

In cells, membranes are constantly being transformed into spatial structures such
as lobes, cristae, stacks, tubes, and vesicles. Prominent membrane transformations
involve the uptake and release of molecules, their packaging and transport from and
to distinct sites, the transformation of whole organelles, and, finally, the large-scale
restructuring of the cell membrane during cell division. All of these transformations
are tightly regulated and catalyzed by specific protein machineries, presumably trig-
gered through a sophisticated interplay between the local lipid environment and
the specifically adapted protein structure and function [8]. Although force-inducing
motor proteins, as mentioned above, are often involved in large-scale membrane
transformations, most of the intracellular membrane traffic, for example between
the Golgi network and the endoplasmic reticulum, actually relies on the recruitment
of cytosolic protein machineries, called “coats”, prone to cooperatively form higher
order structures, thus inducing buds with specific membrane curvature, which can
then be easily transformed into 3D structures such as tubes or vesicles. In recent
years, evidence has accumulated that this recruitment of these cytoplasmic coats
occurs predominantly at specific sites, for example with already existing curvatures
through lipid asymmetry, or on domains with higher membrane fluidity. Here, in
vitro reconstitution of this machinery onto GUVs, especially with domains, is a
valuable tool for better understanding and characterizing the physical parameters
governing coat protein recruitment and the subsequent membrane transformation
under defined conditions [9]. Another way to induce membrane transformations by
soluble factors is to involve enzymes that modify the lipid structure, for example, by
removing or changing the head groups of the membrane lipids. The relevance of the
local lipid environment in membrane deformations and budding was highlighted in a
recent study that compared the transformation of GUV membranes upon activity of
sphingomyelinase with the creation of intraluminal vesicles of multivesicular endo-
somes [10]. On the GUVs, conversion of sphingomyelin into ceramide, by removing
the large characteristic head group, resulted in the spontaneous, protein-free budding
of small vesicles away from the GUV membrane. In the cells, it was found that cargo
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is segregated into distinct subdomains on the endosomal membrane, and that the
transfer of exosome-associated domains into the lumen of the endosome required
the sphingolipid ceramide. Purified exosomes were enriched in ceramide, and the
release of exosomes was reduced after the inhibition of neutral sphingomyelinases.

The probably most sophisticated and best-controlled system of membrane trans-
formation, characteristic of higher, eukaryotic, cells, is the deformation by motor
protein activity through filaments that are anchored to the membrane. Filaments
of the cytoskeleton on one hand stabilize the cell and thus allow it to grow to
larger sizes to accommodate more complex biological functions. On the other hand,
through their defined attachment sites, they allow for a better definition of where
exactly the deformations can occur. Membrane transformation through motor activ-
ity, requiring energy input in the form of ATP, can also be studied in cell-free GUV
model systems. In vitro experiments with reconstituted filaments and purified pro-
teins or cell extracts has shown that motor proteins, moving along actin or micro-
tubules, exert forces on the membranes to which they are attached. One very nice
example is the pulling of membrane tubes by motor proteins from free-standing
GUV membranes, by attaching purified kinesin-1 motors to the membranes via
micrometer-sized beads. Using the beads, the involved forces could in these geome-
tries be measured directly with optical tweezers [11]. These experiments were, how-
ever, performed with filaments and motors acting on the outside of vesicles and
could thus not be easily developed into a vesicle division system. The question is
thus whether it would be possible to somehow attach the filaments to the membrane
inside of the giant vesicles. This will be discussed in the next section.

12.3.2 Step Two: Adding Mechanical Stability – Creation
of an Artificial Cortex/Cytoskeleton

In cells, the interplay between filaments anchored to membranes and active motor
proteins, which induce the required forces to transform these membranes, tightly
regulates the division and opens up the control of these processes by providing
interfaces for other proteins or protein machineries that activate and deactivate the
actual division process. A general requirement to couple the activity of cytoskeletal
motors to model membranes is the establishment of a proper interface, that is, the
reconstitution of a cytoskeleton- or cortex-like structure on the membrane, through
stationary or transient anchors. Although minimal systems based on filaments and
molecular motors have been extensively studied over the past decades, involving
many beautiful in vitro assays, mainly on microtubule–kinesin systems as men-
tioned above, the linkage of these systems to membranes has so far not been studied
in detail.

Actin, presumably one of the major constitutents of cellular cortices, was poly-
merized within GUVs quite early on, but without stable attachment between the
membrane and the filaments [12]. There are many actin-based superstructures inter-
acting with the plasma membrane at different cellular locations, such as the highly
branched, polymerizing actin network at the leading edge of migratory cells, stress



12 Towards a Minimal System for Cell Division 289

fibers that are attached to sites of adhesion, long actin filaments in filopodia, and
actin-rich structures found at invaginations in endocytic and phagocytic structures.
Nucleation of actin networks is spatially and temporally coordinated by a complex
interplay of several proteins: small GTPases (hydrolase enzymes that can bind and
hydrolyze guanosine triphosphate, GTP) in concert with lipid second messengers
such as phosphatidylinisitol 4,5-biphosphate (PIP2). By in vitro reconstitution on
GUVs containing PIP2 using purified components, the minimal requirements of
actin-based motility were elucidated. It was found that in addition to actin, an acti-
vated Arp2/3 (actin related protein 2 and 3) complex for enhanced nucleation, actin
depolymerizing factors, capping proteins, and ATP were required to reconstitute
sustained motility [13]. Specifically for this anchoring system, PIP2, in collabo-
ration with the small GTPase Cdc42, binds N-WASP (neuronal Wiskott–Aldrich
syndrom protein) and triggers a conformational change that allows binding to and
activation of the Arp2/3 complex, which in turn nucleates the formation of a
branched actin network. In a recent approach to anchoring an actin network to the
outer surface of GUVs, Liu and Fletcher [14] used this combination of N-WASP
bound to PIP2 and activated Arp2/3 to polymerize actin. On phase-separated vesi-
cles, N-WASP, Arp2/3, and actin only formed networks on tetramethyl rhodamine
(TMR)-PIP2 enriched domains. In analyzing the domain melting temperature, it
was found that the actin network on the surface of the membrane can lead to the
induction of new domains, and the stabilization of existing domains. Furthermore,
the actin network seems to spatially bias the location of domain formation after the
temperature is cycled above and below the melting temperature. This work nicely
illustrates how a dynamic actin cytoskeleton can organize the cellular membrane,
not only by restricting lipid and protein diffusion, but also by actively organizing
membrane domains. Recently, an elegant protocol based on reverse emulsions was
released, allowing actin polymerization to nucleate and assemble at the inner mem-
brane of a GUV [15].

A completely different approach to tightly anchoring cytoskeletal elements to
GUV membranes was chosen by our group [4]. Using porcine total brain lipid
extracts rather than synthetic lipids, static linkage of actin filaments through the
ankyrin/spectrin machinery bound to functional ion channels in the GUV mem-
brane was accomplished (Fig. 12.1d). The use of membrane fractions maintains the
complex lipid composition found in a native brain membrane state, in addition to
containing the necessary integral membrane proteins, such as ion channels, for
anchoring the cytoskeleton. As attachment machinery, we isolated spectrin and
ankyrin, added them to the GUVs and thereby anchored the actin filaments to the
inner walls of the porcine GUVs. In this way, assembling a quaternary-protein sys-
tem to the membrane surface, our work demonstrated the ability to use GUVs as
a model “cell-like” compartment, in which multiprotein systems can be reconsti-
tuted and examined in the presence of complex lipid mixtures. On the other hand,
this assay may signify a critical step towards achieving the requirements for actin-
induced division of a minimal cell system. The GUVs containing actin filaments
could be visualized either with the lipid dye DiD-C18, or by immunostaining with
specific antibodies, targeting proteins known to be integral to brain membranes.
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We were able to show that in addition to their functionality as membrane
anchoring sites, the activity of the channels was preserved in these model systems
(Fig. 12.1c). GUVs were prepared in the presence of ATP and Calcium Green, a
sensitive calcium probe that becomes more fluorescent in the presence of Ca2+,
such that ATP and calcium ended up inside the GUVs. Then the GUVs were washed
extensively with buffer to remove the Calcium Green on the outside. Upon addition
of 5 mM CaCl2 and 1 mM ATP, the interior of the GUVs became bright fluorescent
green, while GUVs grown and washed in the absence of ATP remained at a nearly
nondetectable fluorescence level.

To add the filaments to the inside of GUVs, they were grown by electroswelling
in the presence of purified actin treated with phalloidine-Alexa 488 to fluorescently
label the filaments. Then the GUVs were washed extensively with buffer, in order to
remove the majority of the actin filaments on the outside of the GUVs. The result-
ing GUVs contained actin filaments dispersed throughout their interior (Fig. 12.1d).
When GUVs were prepared from highly enriched protein fractions containing spec-
trin and ankyrin, the filaments within the GUVs were no longer dispersed, but dis-
played dense packing near the walls of the GUVs. In the majority of cases, the
filaments were anchored to the interior wall of the GUV. After essential controls
with total brain lipid extracts not including the ion channels, these results indi-
cated the first reconstitution of stably anchored cytoskeleton to the interior walls of
GUVs via the spectrin–ankyrin proteins, which bind to functional transmembrane
ion channels (such as Na/K ATPase). The spectrin-based membrane skeleton is a
network of cytoplasmic structural proteins, first investigated in erythrocytes, that
underlies regions of the plasma membrane in diverse cells and tissues. Within this
complex architecture, spectrin is thought to connect certain membrane proteins at
the cell surface with actin and microtubules in the cytoplasm, and thereby affect the
topography and dynamic behavior of these proteins.

12.3.3 Step Three: How Should the Division Site Be Defined?
Pattern Formation and Self-Organization in Minimal
Systems

Having achieved a system composed of membrane and filaments, we still have to
solve one of the biggest problems in the quest to reconstitute cell division, namely
to achieve a controlled division at a defined site. In other words: how do we tell the
vesicle where to split, or better: how to split into two equal halves? Clearly, such
a controlled division using a protein-based divisome machinery is one of the most
spectacular visions when it comes to converting GUV into minimal cells. Since the
simplest divisomes that we know of are the prokaryotic ones, avoiding the double
task of nuclear division and cytokinesis, it makes sense to speculate about recon-
stituting bacterial divisomes in vesicles. One particularly well-studied system is the
divisome of E. coli bacteria, based around a contractile ring, called the Z ring. This
division ring is formed by a set of at least ten proteins that assemble at mid-cell
to drive cytokinesis [16]. Initially three proteins, FtsZ, FtsA, and ZipA assemble
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together, forming a proto-ring, to which the other components are added. To ensure
the correct assembly of this ring at mid-cell, and thus to solve the task of controlled
splitting into two equal halves mentioned above, two main positioning mechanisms
are required: the Min system and nucleoid occlusion, which select the constriction
site [17].

The Min is probably the best characterized divisome subsystem in quantitative
terms. It consists of MinC, D, and E proteins, which oscillate repeatedly from one
pole of the cell to the opposite pole [18]. MinC inhibits FtsZ polymerization and
thereby presumably prevents the ring from forming away from the cell center. MinD,
a membrane-bound ATPase, activates MinC’s inhibitory activity and directs it to the
membrane, while MinE activates MinD’s ATPase to drive the oscillation. Their com-
bined action results in FtsZ assembly into a ring at mid-cell, where the local time-
averaged concentration of MinC inhibitor is lowest. The other spatial regulatory
system, nucleoid occlusion, is an additional mechanism to avoid septation at places
occupied by the bacterial nucleoid (bulk chromosomal DNA), and therefore acts as
a fail-safe system. The relationship between MinD and MinE can be considered a
classical energy-consuming self-organized system as already suggested by Turing
in 1952 [19], where energy is consumed by the ATPase MinD. When bound to ATP,
MinD dimerizes and exposes its membrane targeting sequence (MTS), attaching
the previously soluble protein to the inner bacterial membrane. MinE then binds to
membrane-bound MinD, stimulating the ATP turnover. Subsequently, both proteins
detach from the membrane and become soluble again. The dynamic pattern forma-
tion is ascribed to dynamical instability driven by the hydrolysis of ATP [20, 21].

The beauty of the Min system is that its self-organization behavior, leading to the
definition of a preferred division site in the bacterial cell, can be easily reconstituted
in minimal membrane-protein systems. This was shown by our group using puri-
fied and fluorescently-labelled MinD and MinE, and supported membranes made
of E. coli lipids PE, PG, and cardiolipin [22]. Naturally, the presence of 2D open
planes, rather than closed compartments such as cells, prevents the formation of
oscillations because of the lack of turning points. Instead, upon addition of ATP,
impressive traveling wave patterns on the membrane could be observed (Fig. 12.2a),
MinE following MinD at the trailing edge of the wave, and the relationship between
wavelength, propagation speed, and diffusional mobility of the proteins in solution
being consistent with the oscillations in the cellular setting.

With the reconstitution of the self-organizing Min system in vitro, an important
step towards the controlled splitting of membrane compartments has been made.
Although the reconstituted Min assay does not yet involve any filaments or other
handles to exert forces to the membrane, they provide the unique feature of creating
spatiotemporal patterns that can later be used to identify the division site. The next
logical steps towards the assembly of a divisome machinery into vesicles are now
(1) to observe how the Min waves react to the closing of the membrane surface,
by injecting the reaction-diffusion system to vesicles, (2) to find a similar minimal
system solution for in vitro assembly of the Z ring as the key element for division,
and (3) to find a way of actually constricting the Z ring. These are the topics of
ongoing work in our laboratory. As a first promising attempt towards ring assembly
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Fig. 12.2 a Spiral waves, formed by the self-organization of reconstituted and fluorescently
labeled MinD/MinE on planar membranes made of E. coli lipids [22]. b FtsZ filaments with mem-
brane binding domain and labeled by yellow fluorescent protein, reconstituted on a GUV surface
(S. Chiantia and S. Arumugam, unpublished work)

in cell-free systems, the attachment of FtsZ filaments to GUV surfaces was realized
with a mutant of FtsZ that exhibits a membrane-targeting sequence (Osawa et al.
2008), avoiding the complete FtsA/ZipA membrane anchoring machinery in order
to attach the protein to the GUV surface (Fig. 12.2b). Owing to the absence of MinC
gradients, the filaments are still isotropically attached to the surface. Nevertheless,
the image shows a minimal realization of a prokaryotic filament network on a mem-
brane vesicle, and thus a potentially very interesting study object for a better under-
standing of the mutual relationship between membranes and membrane-deforming
protein machineries.

12.4 Outlook

In this chapter, I have discussed the possibility of creating a bottom-up system for
cell division, realized within giant unilamellar membrane vesicles. This is set in
the context of synthetic biology, as one implementation of minimal cellular sys-
tems, which could become extremely valuable for quantitative biosciences such as
biophysics. Although we are still far from constructing an artificial cell bottom-up,
the realization of artificial cellular modules with defined properties, and achieving
specific tasks characteristic to living systems, becomes plausible. Without doubt,
these minimal in vitro systems are presently among the most appealing assays to
complement cellular work for a better dissection of complex protein networks, and
may also help in identifying appropriate models for early stages in the evolution of
cells as we know them today. As shown in the last section, minimal systems can
also allow us to reconstitute essential patterns of biological self-organization, which
may otherwise be hidden behind the complexity of living cells and organisms, to
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make them accessible to rigorous mathematical modeling. In this way, we hope also
to assemble in the future minimal biological systems to mimic processes such as
pattern formation or differentiation in developing tissue, which have been subject
to physical modeling for decades without the possibility of testing these models
in controllable experimental settings. In other words, synthetic biology of minimal
systems opens up exciting future perspectives not only for the principle, but also for
the quantitative understanding of living systems by modern biological physics.
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Part IV
From Cells to Societies



Chapter 13
Bacterial Games

Erwin Frey and Tobias Reichenbach

Abstract Microbial laboratory communities have become model systems for study-
ing the complex interplay between nonlinear dynamics of evolutionary selection
forces, stochastic fluctuations arising from the probabilistic nature of interactions,
and spatial organization. Major research goals are to identify and understand mech-
anisms that ensure viability of microbial colonies by allowing for species diversity,
cooperative behavior and other kinds of “social” behavior. A synthesis of evolution-
ary game theory, nonlinear dynamics, and the theory of stochastic processes pro-
vides the mathematical tools and conceptual framework for a deeper understanding
of these ecological systems. We give an introduction to the modern formulation
of these theories and illustrate their effectiveness, focusing on selected examples of
microbial systems. Intrinsic fluctuations, stemming from the discreteness of individ-
uals, are ubiquitous, and can have important impact on the stability of ecosystems. In
the absence of speciation, extinction of species is unavoidable, may, however, take
very long times. We provide a general concept for defining survival and extinction
on ecological time scales. Spatial degrees of freedom come with a certain mobil-
ity of individuals. When the latter is sufficiently high, bacterial community struc-
tures can be understood through mapping individual-based models, in a continuum
approach, onto stochastic partial differential equations. These allow progress using
methods of nonlinear dynamics such as bifurcation analysis and invariant manifolds.
We conclude with a perspective on the current challenges in quantifying bacterial
pattern formation, and how this might have an impact on fundamental research in
nonequilibrium physics.
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13.1 Introduction

Microbial systems are complex assemblies of large numbers of individuals, interact-
ing competitively under multifaceted environmental conditions. Bacteria often grow
in complex, dynamical communities, pervading the earth’s ecological systems, from
hot springs to rivers and the human body [1]. As an example, in the latter case, they
can cause a number of infectious diseases, such as lung infection by Pseudomonas
aeruginosa. Bacterial communities, quite generically, form biofilms [1, 2], that is,
they arrange into a quasi-multicellular entity with strong interactions. These inter-
actions include competition for nutrients, cooperation by providing various kinds of
public goods essential for the formation and maintenance of the biofilm [3], com-
munication through the secretion and detection of extracellular substances [4, 5],
chemical warfare [6], and, finally, physical forces. The ensuing complexity of bac-
terial communities has conveyed the idea that they constitute “social groups”, where
the coordinated action of individuals leads to various kinds of system-level function-
alities [7].

Since additionally microbial interactions can be manipulated in a multitude of
ways, many researchers have turned to microbes as the organisms of choice to
explore fundamental problems in ecology and evolutionary dynamics [6, 8, 9].
Much effort is currently being devoted to qualitative and quantitative understanding
of basic mechanisms that maintain the diversity of microbial populations. Hereby,
within exemplary models, the formation of dynamic spatial patterns has been identi-
fied as a key promoter [10–13]. In particular, the crucial influence of self-organized
patterns on biodiversity has been demonstrated in recent experimental studies [6]
employing three bacterial strains that display cyclic competition. The latter is
metaphorically described by the game “rock–paper–scissors”, where rock blunts
scissors, scissors cut paper, and paper wraps rock in turn. For the three bacterial
strains, and for low microbes motility, cyclic dominance leads to the stable coex-
istence of all three strains through self-formation of spatial patterns. In contrast,
stirring the system, as can also result from high motilities of the individuals, destroys
the spatial structures, which results in the takeover of one subpopulation and the
extinction of the others after a short transition. There is also an ongoing debate
in sociobiology about how cooperation within a population emerges in the first
place and how it is maintained in the long run. Microbial communities again serve
as versatile model systems for exploring these questions [8, 9]. In those systems,
cooperators are producers of a common good, usually a metabolically expensive bio-
chemical product. Hence a successfully cooperating collective of microbes perma-
nently runs the risk of being undermined by nonproducing strains (“cheaters”), who
save themselves the metabolically costly production for biofilm formation [3, 14].
As partial resolutions to this puzzling dilemma, recent studies emphasize nonlinear
benefits [8] and population bottlenecks in permanently regrouping populations [9].

This chapter is intended as an introduction to some of the theoretical concepts
that are useful in deepening our understanding of these systems. We will start with
an introduction to the language of game theory and after a short discussion of
“strategic games” quickly move to “evolutionary game theory”. The latter is the nat-
ural framework for the evolutionary dynamics of populations consisting of multiple
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interacting species, where the success of a given individual depends on the behavior
of the surrounding ones. It is most naturally formulated in the language of nonlin-
ear dynamics, where the game theory terms “Nash equilibrium” or “evolutionary
stable strategy” map onto “fixed points” of ordinary nonlinear differential equa-
tions. Illustrations of these concepts are given in terms of two-strategy games and
the cyclic Lotka–Volterra model, also known as the “rock–paper–scissors” game.
Before embarking on the theoretical analysis of the role of stochasticity and space
we give, in the short Sect. 13.3, some examples of game-theoretical problems in
biology, mainly taken from the field of microbiology.

A deterministic description of populations of interacting individuals in terms of
nonlinear differential equations lacks some important features of actual ecological
systems. The molecular processes underlying the interaction between individuals
are often inherently stochastic and the number of individuals is always discrete. As
a consequence, there are random fluctuations in the composition of the population,
which can have an important impact on the stability of ecosystems. In the absence of
speciation, extinction of species is unavoidable, may, however, take very long times.
Sect. 13.4 starts with some elementary, but very important, notes on extinction times,
culminating in a general concept for defining survival and extinction on ecological
time scales. These ideas are then illustrated for the “rock-scissors-paper” game.

Cyclic competition of species, as metaphorically described by the children’s
game “rock–paper–scissors”, is an intriguing motif of species interactions. Labo-
ratory experiments on populations consisting of different bacterial strains of E. coli
have shown that bacteria can coexist if a low mobility enables the segregation of
the different strains and thereby the formation of patterns [6]. In Sect. 13.5 we
analyze the impact of stochasticity as well as individuals’ mobility on the stability
of diversity as well as the emerging patterns. Within a spatially extended version
of the May–Leonard model [15] we demonstrate the existence of a sharp mobil-
ity threshold [13], such that diversity is maintained below, but jeopardized above
that value. Computer simulations of the ensuing stochastic cellular automaton show
that entangled rotating spiral waves accompany biodiversity. In our final section
we conclude with a perspective on the current challenges in quantifying bacterial
pattern formation and how this might also have an impact on fundamental research
in nonequilibrium physics.

13.2 The Language of Game Theory

13.2.1 Strategic Games and Social Dilemmas

Classical game theory [16] describes the behavior of rational players. It attempts
to mathematically capture behavior in strategic situations, in which an individual’s
success in making choices depends on the choices of others. A classical example
of a strategic game is the prisoner’s dilemma. It can be formulated as a kind of a
public good game, where a cooperator provides a benefit b to another individual,
at a cost c to itself (with b − c > 0). In contrast, a defector refuses to provide any



300 E. Frey and T. Reichenbach

benefit and hence does not pay any costs. For the selfish individual, irrespective
of whether the partner cooperates or defects, defection is favorable, as it avoids the
cost of cooperation, exploits cooperators, and ensures not being exploited. However,
if all individuals act rationally and defect, everybody is, with a gain of 0, worse
off compared to universal cooperation, where a net gain of b − c > 0 would be
achieved. This unfavorable outcome of the game, where both play “defect”, is called
Nash equilibrium [17]. The prisoner’s dilemma therefore describes, in its most basic
form, the fundamental problem of establishing cooperation. It is summarized in the
following payoff matrix (for the column player):

P Cooperator (C) Defector (D)
C b − c −c
D b 0

(13.1)

This scheme can be generalized to include other basic types of social dilem-
mas [18, 19]. Namely, two cooperators that meet are both rewarded a payoff R,
while two defectors obtain a punishment P . When a defector encounters a cooper-
ator, the first exploits the second, gaining the temptation T , while the cooperator
only gets the sucker’s payoff S. Social dilemmas occur when R > P , such that
cooperation is favorable in principle, while temptation to defect is large: T > S,
T > P . These interactions may be summarized by the payoff matrix

P Cooperator (C) Defector (D)
C R S
D T P

(13.2)

Variation of the parameters T , P , R, and S yields four distinct types of games. The
prisoner’s dilemma arises if the temptation T to defect is larger than the reward R,
and if the punishment P is larger than the sucker’s payoff S. As we have already
seen above, in this case, defection is the best strategy for the selfish player. Within
the three other types of games, defectors are not always better off. For the snowdrift
game the temptation T is still higher than the reward R but the sucker’s payoff S
is larger than the punishment P . Therefore, now actually cooperation is favorable
when meeting a defector, but defection pays off when encountering a cooperator,
and a rational strategy consists of a mixture of cooperation and defection. The
snowdrift game derives its name from the potentially cooperative interaction present
when two drivers are trapped behind a large pile of snow, and each driver must
decide whether to clear a path. Obviously, then the optimal strategy is the opposite
of the opponent’s (cooperate when your opponent defects and defect when your
opponent cooperates). Another scenario is the coordination game, where mutual
agreement is preferred: either all individuals cooperate or defect as the reward R is
higher than the temptation T and the punishment P is higher than sucker’s payoff
S. Lastly, the scenario of by-product mutualism (also called harmony) yields coop-
erators fully dominating defectors since the reward R is higher than the temptation
T and the sucker’s payoff S is higher than the punishment P .
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13.2.2 Evolutionary Game Theory

Strategic games are thought to be a useful framework in economic and social set-
tings. In order to analyze the behavior of biological systems, the concept of ratio-
nality is not meaningful. Evolutionary game theory (EGT), as developed mainly by
Maynard Smith and Price [20, 21], does not rely on rationality assumptions but on
the idea that evolutionary forces such as natural selection and mutation are the driv-
ing forces of change. The interpretation of game models in biology is fundamentally
different from strategic games in economics or social sciences. In biology, strate-
gies are considered to be inherited programs that control the individual’s behavior.
Typically one looks at a population composed of individuals with different strate-
gies who interact generation after generation in game situations of the same type.
The interactions may be described by deterministic rules or stochastic processes,
depending on the particular system under study. The ensuing dynamic process can
then be viewed as an iterative (nonlinear) map or a stochastic process (with either
discrete or continuous time). This naturally puts evolutionary game theory in the
context of nonlinear dynamics and the theory of stochastic processes. We will see
later on how a synthesis of the two approaches helps us to understand the emergence
of complex spatio-temporal dynamics.

In this section, we focus on a deterministic description of well-mixed popu-
lations. The term “well-mixed” signifies systems where the individual’s mobility
(or diffusion) is so large that one may neglect any spatial degrees of freedom and
assume that every individual is interacting with everyone at the same time. This is
a mean-field picture, where interactions are given in terms of the average number
of individuals playing a particular strategy. Frequently, this situation is visualized
as an “urn model”, where two individuals from a population are randomly selected
to play with each other according to some specified game-theoretical scheme. The
term “deterministic” means that we are seeking a description of populations where
the number of individuals Ni (t) playing a particular strategy Ai is macroscopically
large such that stochastic effects can be neglected.

13.2.2.1 Pairwise Reactions and Rate Equations

In the simplest setup the interaction between individuals playing different strategies
can be represented as a reaction process characterized by a set of rate constants. For
example, consider a game where three strategies {A, B,C} cyclically dominate each
other, as in the “rock–paper–scissors” game: A invades B, B outperforms C , and C
in turn dominates over A, schematically drawn in Fig. 13.1.

BC

A

Fig. 13.1 Illustration of cyclic dominance of three states A, B, and C : A invades B, B outperforms
C , and C in turn dominates over A
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Fig. 13.2 The urn model describes the evolution of well-mixed finite populations. Here, as an
example, we show three species as yellow (A), red (B), and blue (C) spheres. At each time step,
two randomly selected individuals are chosen (indicated by arrows in the left picture) and interact
with each other according to the rules of the game, resulting in an updated composition of the
population (right picture)

In an evolutionary setting, the game may be played according to an urn model
as illustrated in Fig. 13.2: at a given time t two individuals from a population with
constant size N are randomly selected to play with each other (react) according to
the reaction scheme

A + B
kA−→ A + A ,

B + C
kB−→ B + B , (13.3)

C + A
kC−→ C + C ,

where ki are rate constants, that is, probabilities per unit time. This interaction
scheme is termed a cyclic Lotka–Volterra model.1 It is equivalent to a set of chemical
reactions, and in the deterministic limit of a well-mixed population one obtains rate
equations for the frequencies (a, b, c) = (NA, NB, NC )/N :

∂t a = a(kAb − kC c) ,

∂t b = b(kBc − kAa) , (13.4)

∂t c = c(kC a − kBb) .

Here the right-hand sides give the balance of “gain” and “loss” processes. The phase
space of the model is the simplex S3, where the species’ densities are constrained by
a+b+c = 1. There is a constant of motion for the rate equations (13.5), namely the
quantity ρ := akB bkC ckA does not evolve in time [24]. As a consequence, the phase
portrait of the dynamics, shown in Fig. 13.3, yields neutrally stable cycles with fixed
ρ around the reactive fixed point F . This implies that the deterministic dynamics is
oscillatory with the amplitude and frequency determined by the initial composition
of the population.

1 The two-species Lotka–Volterra equations describe a predator–prey system where the per capita
growth rate of the prey decreases linearly with the number of predators present. In the absence of
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Fig. 13.3 The three-species simplex for reaction rates kA = 0.2, kB = 0.4, kC = 0.4. Since
there is a conserved quantity, the rate equations predict cyclic orbits of constant ρ = akB bkC ckA ;
F signifies the neutrally stable reactive fixed point

13.2.2.2 The Concept of Fitness and Replicator Equations

Another line of thought to define an evolutionary dynamics, often taken in the math-
ematical literature of evolutionary game theory [21, 24], introduces the concept of
fitness and then assumes that the per capita growth rate of a strategy Ai is given by
the surplus in its fitness with respect to the average fitness of the population. We will
illustrate this reasoning for two-strategy games with a payoff matrix given by (13.2).
Let NA and NB be the number of individuals playing strategy A (cooperator) and
B (defector), respectively, in a population of size N = NA + NB . Then the relative
abundances of strategies A and B are given by

a = NA

N
, b = NB

N
= (1− a) . (13.5)

The “fitness” of a particular strategy A or B is defined as a constant background
fitness, set to 1, plus the average payoff obtained from playing the game:

f A(a) := 1+Ra + S(1− a) , (13.6)

fB(a) := 1+ T a + P(1− a) . (13.7)

In order to mimic an evolutionary process one is seeking a dynamics which guar-
antees that individuals using strategies with a fitness larger than the average fitness
increase while those using strategies with a fitness below average decline in number.
This is, for example, achieved by choosing the per capita growth rate, ∂t a/a, of
individuals playing strategy A proportional to their surplus in fitness with respect to
the average fitness of the population:

f̄ (a) := a f A(a)+ (1− a) fB(a) . (13.8)

prey, predators die, but there is a positive contribution to their growth which increases linearly with
the amount of prey present [22, 23].
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The ensuing ordinary differential equation is known as the standard replicator equa-
tion [21, 24]

∂t a =
[

f A(a)− f̄ (a)
]

a . (13.9)

Lacking a detailed knowledge of the actual “interactions” of individuals in a popula-
tion, there is, of course, plenty of freedom in how to write down a differential equa-
tion describing the evolutionary dynamics of a population. Indeed, there is another
set of equations frequently used in EGT, called adjusted replicator equations, which
reads

∂t a = f A(a)− f̄ (a)

f̄ (a)
a . (13.10)

The correct form to be used in an actual biological setting may be neither of these
standard formulations. Typically, some knowledge about the molecular mechanisms
is needed to formulate a realistic dynamics. As we will learn in Sect. 13.3, the func-
tional form of the payoff depends on the microbes’ metabolism and is, in general, a
nonlinear function of the relative abundances of the various strains in the population.

One may also criticise the assumption of constant population size made in evo-
lutionary game theory. The internal evolution of different traits and the dynamics
of the species population size are in fact not independent [25]. Species typically
coevolve with other species in a changing environment and a separate description
of both evolutionary and population dynamics is in general not justified. In partic-
ular, not only does a species’ population dynamics affect the evolution within each
species, as considered for example by models of density-dependent selection [26],
but population dynamics is also biased by the internal evolution of different traits.
One visual example of this coupling is provided by biofilms, which permanently
grow and shrink. In these microbial structures diverse strains live, interact, and
outcompete each other while simultaneously affecting the population size [14]. A
proper combined description of the total temporal development should therefore
be solely based on isolated birth and death events, as recently suggested by Mel-
binger et al. [27]. Such an approach offers also a more biological interpretation
of evolutionary dynamics than common formulations such as the Fisher–Wright or
Moran process [28–31]: fitter individuals prevail due to higher birth rates and not by
winning a tooth-and-claw struggle where the birth of one individual directly results
in the death of another.

13.2.3 Nonlinear Dynamics of Two-Player Games

This section is intended to give a concise introduction to elementary concepts of
nonlinear dynamics [32]. We illustrate those for the evolutionary dynamics of two-
player games characterized in terms of the payoff matrix (13.2) and the ensuing
replicator dynamics
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∂t a = a( f A − f̄ ) = a(1− a)( f A − fB) . (13.11)

This equation has a simple interpretation: the first factor, a(1−a), is the probability
of A and B meeting and the second factor, f A − fB , is the fitness advantage of A
over B. Inserting the explicit expressions for the fitness values one finds

∂t a = a(1− a)
[
μA(1− a)− μBa

] =: F(a) , (13.12)

where μA is the relative benefit of A playing against B and μB is the relative benefit
of B playing against A:

μA := S − P , μB := T −R . (13.13)

Equation (13.12) is a one-dimensional nonlinear first-oder differential equation
for the fraction a of players A in the population, whose dynamics is most easily
analyzed graphically. The sign of F(a) determines the increase or decrease of the
dynamic variable a; see the right half of Fig. 13.4. The intersections of F(a) with
the a-axis (zeros) are fixed points, a∗. Generically, these intersections have a finite
slope F ′(a∗) �= 0; a negative slope indicates a stable fixed point and a positive
slope, an unstable fixed point. Depending on some control parameters, here μA and
μB , the first or higher order derivatives of F at the fixed points may vanish. These
special parameter values mark “threshold values” for changes in the flow behavior
(bifurcations) of the nonlinear dynamics. We may now classify two-player games as
illustrated in Fig. 13.4.

For the prisoner’s dilemma μA = −c < 0 and μB = c > 0 and hence players
with strategy B (defectors) are always better off (compare the payoff matrix). Both
players playing strategy B is a Nash equilibrium. In terms of the replicator equations
this situation corresponds to F(a) < 0 for a �= 0 and F(a) = 0 at a = 0, 1,
such that a∗ = 0 is the only stable fixed point. Hence the term “Nash equilibrium”

Prisoner’s Dilemma

Coordination Game

Snowdrift Game

Harmony

µB

µA

F(a)

10 a

Fig. 13.4 Classification of two-player games. Left: The black arrows in the control parameter plane
(μA, μB) indicate the flow behavior of the four different types of two-player games. Right: Graph-
ically the solution of a one-dimensional nonlinear dynamics equation, ∂t a = F(a), is simply read
off from the signs of the function F(a); illustration for the snowdrift game
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translates into the “stable fixed point” of the replicator dynamics (nonlinear
dynamics).

For the snowdrift game both μA > 0 and μB > 0, such that F(a) can change
sign for a ∈ [0, 1]. In fact, a∗int = μA/(μA + μB) is a stable fixed point while
a∗ = 0, 1 are unstable fixed points; see the right panel of Fig. 13.4. Inspection of
the payoff matrix tells us that it is always better to play the opposite strategy to your
opponent. Hence there is no Nash equilibrium in terms of pure strategies A or B.
This corresponds to the fact that the boundary fixed points a∗ = 0, 1 are unstable.
There is, however, a Nash equilibrium with a mixed strategy, where a rational player
would play strategy A with probability pA = μA/(μA + μB) and strategy B with
probability pB = 1− pA. Hence, again, the term “Nash equilibrium” translates into
the “stable fixed point” of the replicator dynamics (nonlinear dynamics).

For the coordination game, there is also an interior fixed point at a∗int =
μA/(μA + μB), but now it is unstable, while the fixed points at the boundaries
a∗ = 0, 1 are stable. Hence we have bistability: for initial values a < a∗int the flow
is towards a = 0 whereas it is towards a = 1 otherwise. In the terminology of
strategic games there are two Nash equilibria. The game harmony corresponds to
the prisoner’s dilemma with the roles of A and B interchanged.

13.3 Games in Microbial Metapopulations

Two of the most fundamental questions that challenge our understanding of evo-
lution and ecology are the origin of cooperation [4, 5, 8, 9, 33–36] and biodiver-
sity [6, 7, 37–39]. Both are ubiquitous phenomena yet conspicuously difficult to
explain since the fitness of an individual or the whole community depends in an
intricate way on a plethora of factors, such as spatial distribution and mobility of
individuals, secretion and detection of signaling molecules, toxin secretion leading
to inter-strain competition and changes in environmental conditions. It is fair to say
that we are still a long way from a full understanding, but the versatility of microbial
communities makes their study a worthwhile endeavor with exciting discoveries still
ahead of us.

13.3.1 Cooperation

Understanding the conditions that promote the emergence and maintenance of coop-
eration is a classic problem in evolutionary biology [21, 40, 41]. It can be stated in
the language of the prisoner’s dilemma. By providing a public good, cooperative
behavior would be beneficial for all individuals in the whole population. However,
since cooperation is costly, the population is at risk from invasion by “selfish” indi-
viduals (cheaters), who save the cost of cooperation but can still obtain the ben-
efit of cooperation from others. In evolutionary theory many principles have been
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proposed to overcome this dilemma of cooperation: repeated interaction [35, 40],
punishment [35, 42], or kin discrimination [14, 43]. All of these principles share
one fundamental feature: they are based on some kind of selection mechanism. Sim-
ilar to the old debate between “selectionists” and “neutralists” in evolutionary the-
ory [44], there is an alternative. Owing to random fluctuations, a population initially
composed of both cooperators and defectors may (with some probability) become
fixed in a state of cooperators only [45].

There have been an increasing number of experiments using microorganisms
trying to shed new light on the problem of cooperation [8, 9, 33, 34]. Here, we
will briefly discuss a recent experiment on “cheating in yeast” [8]. Budding yeast
prefers to use the monosaccharides glucose and fructose as carbon sources. If it
has to grow on sucrose instead, the disaccharide must first be hydrolyzed by the
enzyme invertase. Since a fraction of approximately 1 − ε = 99% of the produced
monosaccharides diffuses away and is shared with neighboring cells, it constitutes a
public good available to the whole microbial community. This makes the population
susceptible to invasion by mutant strains that save the metabolic cost of producing
invertase. One is now tempted to conclude from what we have discussed in the
previous sections that yeast is playing the prisoner’s dilemma game. The cheater
strains should take over the population and the wild-type strain should become
extinct. But, this is not the case. Gore and collaborators [8] show that the dynamics
is rather described as a snowdrift game, in which cheating can be profitable but is not
necessarily the best strategy if others are cheating too. The explanation given is that
the growth rate as a function of glucose is highly concave and, as a consequence,
the fitness function is nonlinear in the payoffs2

fC (x) :=
[
ε + x(1− ε)]α − c , (13.14)

fD(a) :=
[
x(1− ε)]α , (13.15)

with α ≈ 0.15 determined experimentally. The ensuing phase diagram Fig. 13.5 as a
function of capture efficiency ε and metabolic cost c shows an altered intermediate
regime with a bistable phase portrait, that is, the hallmark of a snowdrift game as
discussed in the previous section. This explains the experimental observations. The
lesson to be learned from this investigation is that defining a payoff function is not
a trivial matter, and a naive replicator dynamics fails to describe biological reality.
It is, in general, necessary to take a detailed look at the nature of the biochemical
processes responsible for the growth rates of the competing microbes.

2 Note that ε is the fraction of carbon source kept by cooperators solely for themselves and x(1−ε)
is the amount of carbon source shared with the whole community. Hence, the linear growth rates
of cooperators and defectors would be ε + x(1− ε)− c and x(1− ε), respectively, where c is the
metabolic cost for invertase production.
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Fig. 13.5 Game theory models of cooperation in sucrose metabolism of yeast. a Phase diagram
resulting from fitness functions fC and fD linear in the payoffs. This model leads to fixation of
cooperators (x = 1) at low cost and/or high efficiency of capture (ε > c, implying that the game is
mutually beneficial (MB)) but fixation of defectors (x = 0) for high cost and/or low efficiency of
capture (ε < c, implying that the game is the prisoner’s dilemma (PD)). b A model of cooperation
with experimentally measured concave benefits yields a central region of parameter space that is a
snowdrift game (SG), thus explaining the coexistence that is observed experimentally (α = 0.15).
Adapted from [8]

13.3.2 Pattern Formation

Investigations of microbial pattern formation have often focused on one
bacterial strain [46–48]. In this respect, it has been found that bacterial colonies on
substrates with a high nutrient level and intermediate agar concentrations,
representing “friendly” conditions, grow in simple compact patterns [49]. When
instead the level of nutrient is lowered, when the surface on which bacteria grow
possesses heterogeneities, or when the bacteria are exposed to antibiotics, complex,
fractal patterns are observed [46, 50, 51]. Other factors that affect the self-organizing
patterns include motility [52], the kind of bacterial movement, for example, swim-
ming [53], swarming, or gliding [54, 55], as well as chemotaxis and external het-
erogeneities [56]. Another line of research has investigated patterns of multiple co-
evolving bacterial strains. As an example, recent studies looked at growth patterns
of two functionally equivalent strains of Escherichia coli and showed that, due to
fluctuations alone, they segregate into well-defined, sector like regions [47, 57].

13.3.3 The Escherichia coli Col E2 System

Several colibacteria such as Escherichia coli are able to produce and secrete specific
toxins called colicins that inhibit growth of other bacteria. Kerr and coworkers [6]
have studied three strains of E. coli, one of which is able to produce the toxin Col E2
that acts as a DNA endonuclease. This poison-producing strain (C) kills a sensitive
strain (S), which outgrows the third, resistant one (R), as resistance bears certain
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Fig. 13.6 The three strains of the E. coli Col E2 system evolve into spatial patterns on a Petri
dish. The competition of the three strains is cyclic (of “rock–paper–scissors” type) and therefore
nonequilibrium in nature, leading to dynamic patterns. The pictures have been modified from [6]

costs. The resistant bacteria grow faster than the poisonous ones, as the latter are
resistant and produce poison, which is yet an extra cost. Consequently, the three
strains of E. coli display cyclic competition, similar to the children’s game “rock–
paper–scissors”.

When placed on a Petri dish, all three strains coexist, arranging in time-dependent
spatial clusters dominated by one strain. In Fig. 13.6, snapshots of these pat-
terns monitored over several days are shown. Sharp boundaries between different
domains emerge, and all three strains coevolve at comparable densities. The patterns
are dynamic: Owing to the nonequilibrium character of the species’ interactions,
clusters dominated by one bacterial strain cyclically invade each other, resulting in
an endless hunt of the three species on the Petri dish. The situation changes consid-
erably when the bacteria are placed in a flask with additional stirring. Then, only the
resistant strain survives, the two others dying out after a short transient time.

These laboratory experiments thus provide intriguing experimental evidence for
the importance of spatial patterns for the maintenance of biodiversity. In this respect,
many further questions regarding the spatio-temporal interactions of competing
organisms under different environmental conditions lie ahead. Spontaneous muta-
genesis of single cells can lead to enhanced fitness under specific environmental
conditions or due to interactions with other species. Moreover, interactions with
other species may allow unfit, but potentially pathogenic bacteria to colonize certain
tissues. Additionally, high concentrations of harmless bacteria may help pathogenic
ones to nest on tissues exposed to extremely unfriendly conditions. Information
about bacterial pattern formation arising from bacterial interaction may therefore
allow mechanisms to avoid pathogenic infection to be developed.
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13.4 Stochastic Dynamics in Well-Mixed Populations

The machinery of biological cells consists of networks of molecules interacting
with each other in a highly complex manner. Many of these interactions can be
described as chemical reactions, where the intricate processes that occur during the
encounter of two molecules are reduced to reaction rates, that is, probabilities per
unit time. This notion of stochasticity carries over to the scale of microbes in a
manifold of ways. There is phenotypic noise . Owing to fluctuations in transcription
and translation, phenotypes vary even in the absence of genetic differences between
individuals and despite constant environmental conditions [58, 59]. In addition, phe-
notypic variability may arise due to various external factors such as cell density,
nutrient availability, and other stress conditions. A general discussion of phenotypic
variability in bacteria may be found in recent reviews [60–63]. There is interaction
noise. Interactions between individuals in a given population, as well as cell division
and cell death, occur at random points in time (following some probability distri-
bution) and lead to discrete steps in the numbers of the different species. Then, as
noted long ago by Delbrück [64], a deterministic description, as discussed in the
previous section, breaks down for small copy numbers. Finally, there is external
noise due to spatial heterogeneities or temporal fluctuations in the environment. In
this section we will focus on interaction noise, whose role for extinction processes
in ecology has recently been recognized to be very important, especially when the
deterministic dynamics exhibits neutral stability [65–67] or weak stability [45, 68].
After a brief and elementary discussion of extinction times we will introduce a
general concept for defining survival and extinction on ecological time scales. The
concept of extinction will be illustrated for the stochastic dynamics of the cyclic
Lotka–Volterra model [66].

13.4.1 Extinction Times and Classification of Coexistence Stability

For a deterministic system, given an initial condition, the outcome of the evolution-
ary dynamics is certain. However, processes encountered in biological systems are
often stochastic. For example, consider the degradation of a protein or the death of
an individual bacterium in a population. To a good approximation it can be described
as a stochastic event that occurs with a probability per unit time (rate) λ, known as
a stochastic linear death process. Then the population size N (t) at time t becomes
a random variable, and its time evolution becomes a set of integers {Nα} changing
from Nα to Nα − 1 at particular times tα; this is also called a realization of the
stochastic process. Now it is no longer meaningful to ask for the time evolution of
a particular population, as one would do in a deterministic description in terms of a
rate equation, ∂t N = −λN . Instead one studies the time evolution of an ensemble
of systems or tries to understand the distribution of times {tα}. A central quantity in
this endeavor is the probability P(N , t) of finding a population of size N given that
at some time t = 0 there was some initial ensemble of populations. Assuming that
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the stochastic process is Markovian, its dynamics is given by the following master
equation:

∂t P(N , t) = λ(N + 1)P(N + 1, t)− λN P(N , t) . (13.16)

A master equation is a “balance equation” for probabilities. The right-hand side
simply states that there is an increase in P(N , t) if in a population of size N + 1 an
individual dies with rate λ, and a decrease in P(N , t) if in a population of size N
an individual dies with rate λ. Master equations can be analyzed by standard tools
from the theory of stochastic processes [69, 70].

A quantity of central interest is the average extinction time T , that is, the expected
time for the population to reach the state N = 0. This state is also called an absorb-
ing state since (for the linear death process considered here) there are processes
leading into but not out of this state. The expected extinction time T can be obtained
using rather elementary concepts from probability theory. Consider the probability
Q(t) that a given individual is still alive at time t conditioned on that it was alive at
some initial time t = 0. Since an individual will be alive at time t+dt if it was alive
at time t and did not die within the time interval [t, t + dt] we immediately obtain
the identity

Q(t + dt) = Q(t)(1− λt) with Q(0) = 1 . (13.17)

The ensuing differential equation (in the limit dt → 0), Q̇ = −λQ is solved by
Q(t) = e−λt . This identifies τ = 1/λ as the expected waiting time for a particular
individual to die. We conclude that the waiting times for the population to change by
one individual is distributed exponentially and its expected value is τN = τ/N for a
population of size N ; note that each individual in a population has the same chance
of dying. Hence we can write for the expected extinction time for a population with
initial size N0

T = τN0 + τN0−1 + · · · + τ1 =
N0∑

N=1

τ

N
≈ τ

∫ N0

1

1

N
d N = τ ln N0 . (13.18)

We have learned that for a system with a “drift” towards the absorbing boundary
of the state space the expected time to reach this boundary scales, quite generi-
cally, logarithmically in the initial population size, T ∼ ln N0. Note that within
a deterministic description, Ṅ = −λN , the population size would exponentially
decay to zero but never reach it, N (t) = N0e−t/τ . This is, of course, flawed in two
ways. First, the process is not deterministic and, second, the population size is not
a real number. Both features are essential to understand the actual dynamics of a
population at low copy numbers of individuals.

Now we would like to contrast the linear death process with a “neutral process”,
where death and birth events balance each other, that is, where the birth rate μ
exactly equals the death rate λ. In a deterministic description one would write

∂t N (t) = −(λ− μ)N (t) = 0 (13.19)
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and conclude that the population size remains constant at its initial value. In a
stochastic description, one starts from the master equation

∂t P(N , t) = λ(N+1)P(N+1, t)+λ(N−1)P(N−1, t)−2λN P(N , t) . (13.20)

Though this could be solved exactly using generating functions it is instructive to
derive an approximation valid in the limit of a large population size, that is, N � 1.
This is most easily done by simply performing a second-order Taylor expansion
without worrying too much about the mathematical validity of such an expansion.
With

(N ± 1)P(N ± 1, t) ≈ N P(N , t)± ∂N
[
N P(N , t)

]+ 1

2
∂2

N

[
N P(N , t)

]

one obtains
∂t P(N , t) = λ∂2

N

[
N P(N , t)

]
. (13.21)

Measuring the population size in units of the initial population size at time t = 0
and defining x = N/N0, this becomes

∂t P(x, t) = D∂2
x

[
x P(x, t)

]
(13.22)

with the “diffusion constant” D = λ/N0. This implies that all time scales in the
problem scale as t ∼ D−1 ∼ N0; this is easily seen by introducing a dimensionless
time τ = Dt , resulting in a rescaled equation

∂τ P(x, τ ) = ∂2
x

[
x P(x, τ )

]
. (13.23)

Hence for a (deterministically) “neutral dynamics”, the extinction time, that is, the
time to reach the absorbing state N = 0, scales, also quite generically, linearly in
the initial system size T ∼ N0.

Finally, there are processes such as the snowdrift game where the deterministic
dynamics drives the population towards an interior fixed point well separated from
the absorbing boundaries x = 0 and x = 1. In such a case, starting from an ini-
tial state in the vicinity of the interior fixed point, the stochastic dynamics has to
overcome a finite barrier in order to reach the absorbing state. This is reminiscent of
a chemical reaction with an activation barrier, which is described by an Arrhenius
law. Hence we expect that the extinction time scales exponentially in the initial
population size T ∼ exp N0.

These simple arguments on the dependence of the mean extinction time T of
competing species on the system size N can now be used to define a general frame-
work to distinguish neutral from selection-dominated evolution. For a selection-
dominated parameter regime, instability leads to steady decay of a species, and
therefore to fast extinction [13, 71, 72]: The mean extinction time T increases only
logarithmically with the population size N , T ∼ ln N , and a larger system size does
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not ensure much longer coexistence. This behavior can be understood by noting
that a species disfavored by selection decreases at a constant rate. Consequently, its
population size decays exponentially in time, leading to a logarithmic dependence
of the extinction time on the initial population size. In contrast, stable existence of
a species induces T ∼ exp N , such that extinction takes an astronomically long
time for large populations [45, 71, 72]. In this regime, extinction stems from large
fluctuations that cause sufficient deviation from the (deterministically) stable coexis-
tence. These large deviations are exponentially suppressed and hence the time until
a rare extinction event occurs scales exponentially with the system size N . Then
coexistence is maintained on ecologically relevant time scales, which typically lie
below T . An intermediate situation, that is, when T has a power-law dependence
on N , T ∼ Nα , signals dominant influences of stochastic effects and corresponds
to neutral evolution. Here the extinction time grows considerably, though not expo-
nentially, with increasing population size. Large N therefore clearly prolongs coex-
istence of species but can still allow extinction within biologically reasonable time
scales. Summarizing these considerations, we have proposed a quantitative classi-
fication of a coexistence’s stability in the presence of absorbing states, which is
presented in Table 13.1 [13].

The strength of this classification lies in that it only involves quantities that are
directly measurable (for example through computer simulations), namely the mean
extinction time and the system size. Therefore, it is generally applicable to stochas-
tic processes, for example, incorporating additional internal population structure
such as individuals’ age or sex, or where individuals’ interaction networks are more
complex, such as lattices, scale-free networks, or fractal ones. In these situations,
it is typically impossible to infer analytically, from the discussion of fixed points
stability, whether the deterministic population dynamics yields a stable or unstable
coexistence. However, based on the scaling of extinction time T with system size N ,
differentiating stable from unstable diversity according to the above classification
is feasible. In Sect. 13.5, we will follow this line of thought and fruitfully apply
the above concept to the investigation of a “rock–paper–scissors” game on a two-
dimensional lattice, where individuals’ mobility is found to mediate between stable
and unstable coexistence.

Table 13.1 Classification of coexistence stability

Stability: If the mean extinction time T increases faster than any power of the system size N ,
meaning T/Nα →∞ in the asymptotic limit N →∞ and for any value of α > 0, we refer to
the coexistence as stable. In this situation, typically, T increases exponentially in N .

Instability: If the mean extinction time T increases more slowly than any power in the system
size N , meaning T/Nα → 0 in the asymptotic limit N →∞ and for any value of α > 0, we
refer to the coexistence as unstable. In this situation, typically, T increases logarithmically
in N .

Neutral stability: Neutral stability lies between stable and unstable coexistence. It emerges when
the mean extinction time T increases proportional to some power α > 0 of the system size N ,
meaning T/Nα → O(1) in the asymptotic limit N →∞.
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13.4.2 Cyclic Three-Strategy Games

As we have learned in the previous section, the coexistence of competing species
is, owing to unavoidable fluctuations, always transient. Here we illustrate this
for the cyclic Lotka–Volterra model (“rock–paper–scissors” game) introduced in
Sect. 13.2.2 on evolutionary game theory as a mathematical description of nontran-
sitive dynamics. Like the original Lotka–Volterra model, the deterministic dynamics
of the “rock–paper–scissors” game yields oscillations along closed, periodic orbits
around a coexistence fixed point. These orbits are neutrally stable due to the exis-
tence of a conserved quantity ρ. If noise is included in such a game, it is clear
that eventually only one of the three species will survive [66, 73–75] (Dobrinevski
and Frey). However, it is far from obvious which species will most likely win the
contest. Intuitively, one might think, at a first glance, that it pays for a given strain
to have the highest reaction rate and hence strongly dominate its competitors. As
it turns out, however, the exact opposite strategy is the best [76]. One finds what
could be called a “law of the weakest”: When the interactions between the three
species are (generically) asymmetric, the “weakest” species (i.e., the one with the
smallest reaction rate) survives at a probability that tends to one in the limit of a
large population size, while the other two are guaranteed to go extinct.

The reason for this unexpected behavior is illustrated in Fig. 13.7, showing a
deterministic orbit and a typical stochastic trajectory. For asymmetric reaction rates,
the fixed point is shifted from the center Z of the phase space (simplex) towards one
of the three edges. All deterministic orbits are changed in the same way, squeez-
ing in the direction of one edge. In Fig. 13.7 reaction rates are chosen such that
the distance λA to the a-edge of the simplex, where A would win the contest, is
smallest. The important observation here is that for simple geometric reasons λA is
smallest because the reaction rate kA is smallest! Intuitively, the absorbing state that
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Fig. 13.7 The phase space S3. We show the reactive fixed point F, the center Z, and a stochastic
trajectory (red). It eventually deviates from the “outermost” deterministic orbit (black) and reaches
the absorbing boundary. λA, λB and λC (blue/dark gray) denote the distances of the “outermost”
orbit to the boundaries. Parameters are (kA, kB , kC ) = (0.2, 0.4, 0.4) and N = 36. Figure adapted
from [76]



13 Bacterial Games 315

is reached from this edge has the highest probability of being hit, as the distance λ
from the deterministic orbit towards this edge is shortest. Indeed, this behavior can
be validated by stochastic simulations complemented by a scaling argument [76].

13.5 Spatial Games with Cyclic Dominance

Spatial distribution of individuals, as well as their mobility, are common features of
real ecosystems that often come paired [77]. On all scales of living organisms, from
bacteria residing in soil or on Petri dishes, to the largest animals living in savan-
nas – such as elephants – or in forests, populations’ habitats are spatially extended
and individuals interact locally within their neighborhood. Field studies as well
as experimental and theoretical investigations have shown that the locality of the
interactions leads to the self-formation of complex spatial patterns [6, 11, 77–90].
Another important property of most individuals is mobility. For example, bacte-
ria swim and tumble, and animals migrate. As motile individuals are capable of
enlarging their district of residence, mobility may be viewed as a mixing, or stirring
mechanism that “counteracts” the locality of spatial interactions.

13.5.1 The Role of Mobility in Ecosystems

The interplay between mobility and spatial separation on the spatio-temporal devel-
opment of populations is one of the most interesting and complex problems in theo-
retical ecology [13, 77–79, 81, 83]. If mobility is low, locally interacting populations
can exhibit involved spatio-temporal patterns, such as traveling waves [91], and,
for example, lead to the self-organization of individuals into spirals in myxobacte-
ria aggregation [91] and insect host–parasitoid populations [11]. In contrast, high
mobility results in well-mixed systems where the spatial distribution of the pop-
ulations is irrelevant [13]. In this situation, spatial patterns no longer form: The
system adopts a spatially uniform state, which therefore drastically differs from the
low-mobility scenario. Pioneering work on the role of mobility in ecosystems was
performed by Levin [10], who investigated the dynamics of a population residing
in two coupled patches: Within a deterministic description, he identified a crit-
ical value for the individuals’ mobility between the patches. Below the critical
threshold, all subpopulations coexisted, while only one remained above that value.
Later, more realistic models of many patches, partially spatially arranged, were
also studied; see for example [11, 81, 82, 92] and references therein. These works
shed light on the formation of patterns, in particular traveling waves and spirals.
However, patch models have been criticized for treating the space in an “implicit”
manner (i.e., in the form of coupled habitats without internal structure) [38]. In
addition, the above investigations were often restricted to deterministic dynam-
ics and thus did not address the spatio-temporal influence of noise. To overcome
these limitations, Durrett and Levin [37] proposed considering interacting particle
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systems, that is, stochastic spatial models with populations of discrete individu-
als distributed on lattices. In this realm, studies have mainly focused on numeri-
cal simulations and on deterministic reaction–diffusion equations, or coupled maps
[12, 37–39, 83, 88, 93–95].

13.5.2 Cyclic Dominance in Ecosystems

An intriguing motif of the complex competitions in a population, promoting species
diversity, is constituted by three subpopulations exhibiting cyclic dominance, also
called nontransitive competition. This basic motif is metaphorically described by the
“rock–paper–scissors” game, where rock crushes scissors, scissors cut paper, and
paper wraps rock. Such nonhierarchical, cyclic competitions, where each species
outperforms another but is also itself outperformed by another one, have been identi-
fied in different ecosystems such as coral reef invertebrates [96], rodents in the high-
Arctic tundra in Greenland [97], lizards in the inner Coast Range of California [98],
and microbial populations of colicinogenic E. coli [6, 99]. As we have discussed
in Sect. 13.3, in the latter situation it has been shown that spatial arrangement of
quasi-immobile bacteria on a Petri dish leads to the stable coexistence of all three
competing bacterial strains, with the formation of irregular patterns. In stark con-
trast, when the system is well-mixed, there is spatial homogeneity, resulting in the
takeover of one subpopulation and the extinction of the others after a short transient.

13.5.3 The May–Leonard Model

In ecology competition for resources has been classified [100] into two broad
groups, scramble and contest. Contest competition involves direct interaction
between individuals. In the language of evolutionary game theory the winner in
the competition replaces the loser in the population (Moran process). In contrast,
scramble competition involves rapid use of limiting resources without direct inter-
action between the competitors. The May–Leonard model [15] of cyclic dominance
between three subpopulations A, B, and C dissects the nontransitive competition
between these into a contest and a scramble step. In the contest step an individual of
subpopulation A outperforms a B through “killing” (or “consuming”), symbolized
by the (“chemical”) reaction AB → A", where " denotes an available empty
space. In the same way, B outperforms C , and C beats A in turn, closing the cycle.
We refer to these contest interactions as selection and denote the corresponding rate
by σ . In the scramble step, which mimics a finite carrying capacity, each member
of a subpopulation is allowed to reproduce only if an empty space is available,
as described by the reaction A" → AA and analogously for B and C . For all
subpopulations, these reproduction events occur with rate μ, such that the three
subpopulations equally compete for empty space. To summarize, the reactions that
define the May–Leonard model (selection and reproduction) read
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AB
σ−→ A" , A" μ−→ AA ,

BC
σ−→ B" , B" μ−→ B B ,

C A
σ−→ C" , C" μ−→ CC . (13.24)

Let a, b, and c denote the densities of subpopulations A, B, and C , respectively.
The overall density ρ then reads ρ = a + b + c. As every lattice site is at most
occupied by one individual, the overall density (as well as densities of each sub-
population) varies between 0 and 1, that is, 0 ≤ ρ ≤ 1. With this notation, the rate
equations for the reactions (13.24) are given by

∂t a = a [μ(1− ρ)− σc] ,
∂t b = b [μ(1− ρ)− σa] ,
∂t c = c [μ(1− ρ)− σb] . (13.25)

The phase space of the model is organized by fixed point and invariant manifolds.
Equations (13.25) possess four absorbing fixed points. One of these (unstable)
is associated with the extinction of all subpopulations, (a∗1 , b∗1, c∗1) = (0, 0, 0).
The others are heteroclinic points (i.e., saddle points underlying the heteroclinic
orbits) and correspond to the survival of only one subpopulation, (a∗2 , b∗2, c∗2) =
(1, 0, 0), (a∗3 , b∗3, c∗3) = (0, 1, 0), and (a∗4 , b∗4, c∗4) = (1, 0, 0), shown in blue in
Fig. 13.8. In addition, there exists a reactive fixed point, indicated in red in Fig. 13.8,
where all three subpopulations coexist (at equal densities), namely (a∗, b∗, c∗) =
μ

3μ+σ (1, 1, 1).
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Fig. 13.8 The phase space of the May–Leonard model. It is spanned by the densities a, b, and
c of species A, B, and C . On an invariant manifold (yellow), the flows obtained as solutions of
the rate equations (13.25) (an example trajectory is shown in blue) initially in the vicinity of the
reactive fixed point (red) spiral outwards, approaching the heteroclinic cycle that connects three
trivial fixed points (blue). Adapted from [101]
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For a nonvanishing selection rate, σ > 0, Leonard and May [15] showed that
the reactive fixed point is unstable, and the system asymptotically approaches the
boundary of the phase space (given by the planes a = 0, b = 0, and c = 0). There,
they observed heteroclinic orbits: the system oscillates between states where nearly
only one subpopulation is present, with rapidly increasing cycle duration. While
mathematically fascinating, this behavior was recognized to be unrealistic [15]. For
instance, as discussed in Sect. 13.4, the system will, due to finite-size fluctuations,
always reach one of the absorbing fixed points in the vicinity of the heteroclinic
orbit, and then only one population survives.

13.5.4 The Spatially Extended May–Leonard Model

As discussed above, in the experiments by the Kerr group [6] crucial influence
of self-organized patterns on biodiversity has been demonstrated, employing three
bacterial strains that display cyclic competition. Here, from theoretical studies, we
show that cyclic competition of species can lead to highly nontrivial spatial pat-
terns as well as counterintuitive effects on biodiversity. To this end we analyze the
stochastic spatially extended version of the May–Leonard model [13], as illustrated
in Fig. 13.9. We adopt an interacting particle description where individuals of all
subpopulations are arranged on a lattice. Let L denote the linear size of a two-
dimensional square lattice (i.e., the number of sites along one edge), such that the
total number of sites is N = L2. In this approach, each site of the grid is either
occupied by one individual or empty, meaning that the system has a finite carrying
capacity, and the reactions are then only allowed between nearest neighbors.

In addition, we endow the individuals with a certain form of mobility. Namely,
at rate ε all individuals can exchange their position with a nearest neighbor. With
that same rate ε, any individual can also hop onto a neighboring empty site. These
“microscopic” exchange processes lead to an effective diffusion of the individu-
als described by a macroscopic diffusion constant D = ε/2L2. For simplicity, we
consider equal reaction rates for selection and reproduction, and, without loss of
generality, set the time unit by fixing σ = μ ≡ 1. From the phase portrait of the
May–Leonard model it is to be expected that an asymmetry in the parameters yields

A

C

B

Fig. 13.9 Individuals on neighboring sites may react with each other according to the rules of
cyclic dominance (selection: contest competition), or individuals may give birth to new individuals
if they happen to be next to an empty site (reproduction: scramble competition)
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D3 x 10–6 3 x 10–5 3 x 10–4 Dc

Fig. 13.10 Snapshots obtained from lattice simulations are shown of typical states of the system
after long temporal development (i.e., at time t ∼ N ) and for different values of D (each color,
blue, yellow and red, represents one of the species and black dots indicate empty spots). With
increasing D (from left to right), the spiral structures grow, and outgrow the system size at the
critical mobility Dc: then, coexistence of all three species is lost and uniform populations remain
(right). Figure adapted from [13]

only qualitative, not quantitative, changes in the system’s dynamics. The length
scale is chosen such that the linear dimension of the lattice is the basic length unit,
L ≡ 1. With this choice of units the diffusion constant measures the fraction of the
entire lattice area explored by an individual in one unit of time.

Typical snapshots of the steady states are shown in Fig. 13.10.3 When the
mobility of the individuals is low, one finds that all species coexist and self-arrange
by forming patterns of moving spirals. With increasing mobility D, these structures
grow in size, and they disappear for large enough D. In the absence of spirals, the
system adopts a uniform state where only one species is present; the others have
died out. Which species remains is subject to a random process, all species having
an equal chance of surviving in the symmetric model defined above.

The transition from the reactive state containing spirals to the absorbing state
with only one subpopulation left is a nonequilibrium phase transition [102]. One
way to characterize the transition is to ask how the extinction time T , that is, the
time for the system to reach one of its absorbing states, scales with system size
N . In our analysis of the role of stochasticity in Sect. 13.4 we have found the fol-
lowing classification scheme. If T ∼ N , the stability of coexistence is marginal.
Conversely, longer (shorter) waiting times scaling with higher (lower) powers of N
indicate stable (unstable) coexistence. These three scenarios can be distinguished
by computing the probability Pext that two species have gone extinct after a waiting
time t ∼ N :

Pext = Prob
[
only one species left after time T ∼ N

]
. (13.26)

3 You may also want to haven a look at the movies posted on http://www.theorie.physik.
uni-muenchen.de/lsfrey/research/fields/biological_physics/2007_004/. There is also a Wolfram
demonstration project that can be downloaded from the internet: http://demonstrations.wolfram.
com/BiodiversityInSpatialRockPaperScissorsGames/.

http://www.theorie.physik.uni-muenchen.de/lsfrey/research/fields/biological_physics/2007_004/.
http://www.theorie.physik.uni-muenchen.de/lsfrey/research/fields/biological_physics/2007_004/.
http://demonstrations.wolfram.com/BiodiversityInSpatialRockPaperScissorsGames/.
http://demonstrations.wolfram.com/BiodiversityInSpatialRockPaperScissorsGames/.
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Fig. 13.11 The extinction probability Pext that, starting with randomly distributed individuals on a
square lattice, the system has reached an absorbing state after a waiting time T ∼ N . Pext is shown
as a function of the mobility D (and σ = μ = 1) for different system sizes: N = 20× 20 (green),
N = 30×30 (red), N = 40×40 (purple), N = 100×100 (blue), and N = 200×200 (black). As
the system size increases, the transition from stable coexistence (Pext = 0) to extinction (Pext = 1)
sharpens at a critical mobility Dc ≈ (4.5± 0.5)× 10−4. Figure adapted from [13]

In Fig. 13.11, the dependence of Pext on the mobility D is shown for a range of
different system sizes N .

As the system size increases, a sharpened transition emerges at a critical value
Dc = (4.5± 0.5)× 10−4. Below Dc, the extinction probability Pext tends to zero as
the system size increases, and coexistence is stable in the sense defined in Sect. 13.4.
In contrast, above the critical mobility, the extinction probability approaches one
for large system size, and coexistence is unstable. As a central result, agent-based
simulations show that there is a critical threshold value for the individuals’ diffusion
constant, Dc, such that a low mobility, D < Dc, guarantees coexistence of all three
species, while a high mobility, D > Dc, induces extinction of two of them, leaving
a uniform state with only one species [13].

13.5.5 Pattern Formation and Reaction–Diffusion Equations

The emergence of spatial patterns, their form, and characteristic features can be
understood by employing a continuum approach that maps the agent-based model
to a set of stochastic partial differential equations (SPDEs) (often referred to as
Langevin equations) [102]:

∂t a(r, t) = D	a(r, t)+AA[a] + CA[a]ξA ,

∂t b(r, t) = D	b(r, t)+AB[a] + CB[a]ξB ,

∂t c(r, t) = D	c(r, t)+AC[a] + CC[a]ξC , (13.27)

where a = (a, b, c) and 	 denotes the Laplacian operator. The first term describes
the diffusive motion of each of the individual agents with a macroscopic diffusion
constant D. The reaction terms Ai [a] derived in a Kramers–Moyal expansion [101]
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are identical – as they must be – to the corresponding nonlinear drift term in the
diffusion–reaction equation F[a] = A[a], which describes coevolution of different
species in the absence of spatial degrees of freedom and with a large number of
interacting individuals. Noise arises because processes are stochastic and population
size N is finite. While noise resulting from the competition processes (reactions)
scales as 1/

√
N , noise originating from hopping (diffusion) only scales as 1/N . In

summary, this gives (multiplicative) Gaussian white noise ξi (r, t) characterized by
the correlation matrix

〈ξi (r, t)ξ j (r ′, t ′)〉 = 	i jδ(r − r ′)δ(t − t ′) (13.28)

and amplitudes depending on the system’s configuration:

CA = 1√
N

√
a(r, t)

[
μ(1− ρ(r, t))+ σc(r, t)

]
,

CB = 1√
N

√
b(r, t)

[
μ(1− ρ(r, t))+ σa(r, t)

]
,

CC = 1√
N

√
c(r, t)

[
μ(1− ρ(r, t))+ σb(r, t)

]
. (13.29)

The strength of such a continuum description is that it is generic, that is, the
form of the equations does not depend on, for example, the precise form of the
lattice or the shape and size of individuals’ neighborhood as long as it is local. It
is the interplay between diffusion, mixing the system locally on a certain length
scale, and the reaction kinetics, whose features are encoded by the phase portrait of
the well-mixed system, which gives rise to the observed complex dynamics. The
stochastic reaction–diffusion equations can be solved numerically. Figure 13.12
shows the outcome of such a simulation starting from an inhomogeneous initial
condition (and using periodic boundary conditions) [13], and compares the results
obtained by agent-based simulations and deterministic diffusion–reaction equations.
The comparison of those snapshots reveals a remarkable coincidence of the patterns
obtained from agent-based simulations and the continuum approach. As shown in
[101, 102], these similarities in patterns are actually fully quantitative and the spatio-
temporal correlations functions for the population densities are almost identical.

The approach of mapping the interacting particle system to the SPDEs, (13.28),
yields extremely insightful results, as it enables the application of bifurcation the-
ory [103]. Determining the bifurcations that the nonlinear functions Ai [a] exhibit
defines universality classes for the emerging patterns. Namely, in the vicinity of
bifurcations, the behavior is described by generic normal forms, characterizing each
bifurcation type. The resulting universality classes have already been widely stud-
ied in the physical and mathematical community, mostly by investigating deter-
ministic partial differential equations, see for example [104–106] for reviews, as
well as references therein. Although specific models for competing populations
will not yield SPDEs that are identical to the general equations studied there, their
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a) Typical spiral b) Agent based c) SPDE d) PDE

Fig. 13.12 Spiral patterns. a Schematic drawing of a spiral with wavelength λ. It rotates around
the origin at a frequency ω. b Agent-based simulations for D < Dc, when all three species coexist,
show entangled, rotating spirals. c Stochastic partial differential equations show similar patterns
to agent-based simulations. d Spiral pattern emerging from the dynamics of the deterministic
diffusion–reaction equation starting from a spatially inhomogeneous initial state. Parameters are
σ = μ = 1 and D = 1× 10−5. Figure adapted from [13]

bifurcation behavior may coincide with an equation that has already been inves-
tigated. Consequently, the specific SPDE falls into that universality class, and
generic results may be transferred. In the present case of a spatially extended May–
Leonard model, projecting the deterministic version of the diffusion–reaction equa-
tion (13.28) onto the reactive manifold M one obtains [13, 101, 102]

∂t z = D	2z + (c1 − iω)z − c2(1+ ic3)|z|2z . (13.30)

Here, we recognize the celebrated complex Ginzburg–Landau equation (CGLE),
whose properties have been extensively studied in the past [104, 105]. In particular,
it is known that in two dimensions the latter gives rise to a broad range of coher-
ent structures, including spiral waves whose velocity, wavelength, and frequency
can be computed analytically. Remarkably, the results for the spirals’ velocities,
wavelengths, and frequencies agree extremely well with those obtained from the
agent-based simulations [13, 101, 102].

Thus the formulation of the spatial game theoretical model in terms of stochastic
diffusion–reaction equations has enabled us to reach a comprehensive understanding
of the resulting out-of-equilibrium and nonlinear phenomena. Employing a map-
ping of the diffusion–reaction equation onto the reactive manifold of the nonlinear
dynamics indicated that the dynamics of the coexistence regime is in the same “uni-
versality class” as the complex Ginzburg–Landau equation. This fact reveals the
generality of the phenomena discussed in this chapter. In particular, the emergence
of an entanglement of spiral waves in the coexistence state, the dependence of spi-
rals’ size on the diffusion rate, and the existence of a critical value of the diffusion
above which coexistence is lost are robust phenomena. This means that they do not
depend on the details of the underlying spatial structure: While, for specificity, we
have (mostly) considered square lattices, other two-dimensional topologies (e.g.,
hexagonal or other lattices) will lead to the same phenomena, too. Also the details
of the cyclic competition have no qualitative influence, as long as the underly-
ing rate equations exhibit an unstable coexistence fixed point and can be recast
in the universality class of the Hopf bifurcations. It remains to be explored what
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kind of mathematical structure corresponds to a broader range of game-theoretical
problems.

In this chapter, we have mainly focused on the situation where the exchange
rate between individuals is relatively high, which leads to the emergence of reg-
ular spirals in two dimensions. However, we have seen that when the exchange
rate is low (or vanishes) stochasticity strongly affects the structure of the ensuing
spatial patterns. In this case, the (continuum) description in terms of SPDEs breaks
down. In this situation, the quantitative analysis of the spatio-temporal properties of
interacting particle systems requires the development of other analytical methods,
for example, relying on field-theoretic techniques [95]. Fruitful insights into this
regime have already been gained by pair approximations or larger-cluster approx-
imations [88, 107–109]. These researchers investigated a set of coupled nonlinear
differential equations for the time evolution of the probability of finding a cluster
of a certain size in a particular state. While such an approximation improves when
large clusters are considered, unfortunately the effort required to solve their cou-
pled equations of motion also drastically increases with the size of the clusters. In
addition, the use of these cluster mean-field approaches becomes problematic in the
proximity of phase transitions (near an extinction threshold), where the correlation
length diverges. Investigations along these lines represent a major future challenge
in the multidisciplinary field of complexity science.

The cyclic “rock–paper–scissors” model as discussed in this section can be gen-
eralized in manifold ways. The model with asymmetric rates turns out to be in the
same universality class as the one with symmetric rates [110]. Qualitative changes
in the dynamics, however, emerge when the interaction network between the species
is changed. For example, consider a system where each agent can interact with its
neighbors according to the following scheme:

AB
1−→ AA

BC
1−→ B B

C A
1−→ CC (13.31)

AB
σ−→ A"

BC
σ−→ B"

C A
σ−→ C" (13.32)

A" μ−→ AA
B" μ−→ B B
C" μ−→ CC (13.33)

Reactions (13.31) describe direct dominance in a Moran-like manner, where an indi-
vidual of one species is consumed by another from a more predominant species, and
the latter immediately reproduces. Cyclic dominance appears as A consumes B and
reproduces, while B preys on C and C feeds on A in turn. Reactions (13.32) encode
some kind of toxicity, where one species kills another, leaving an empty site ".
These reactions occur at a rate σ , and are decoupled from reproduction, (13.33),
which happens at a rate μ. Note that reactions (13.31) and (13.33) describe two dif-
ferent mechanisms of reproduction, both of which are important for ecological sys-
tems: In (13.31), an individual reproduces when having consumed prey, as a result
of thus increased fitness. In contrast, in reactions (13.33) reproduction depends
solely on the availability of empty space. As can be inferred from Fig. 13.13, the
spatio-temporal patterns sensitively depend on the strength σ of the toxicity effect.
Actually, as can be shown analytically [111], there is an Eckhaus instability, that
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Fig. 13.13 Snapshots of the biodiverse state for D = 1 × 10−5. a For large rates σ , entangled
and stable spiral waves form. b A convective (Eckhaus) instability occurs at σE ≈ 2; below this
value, the spiral patterns blur. c At the bifurcation point σ = 0, only very weak spatial modulations
emerge; we have amplified them by a factor of two for better visibility. The snapshots stem from
numerical solution of an appropriate SPDE with initially homogeneous densities a = b = c = 1/4.
Figure adapted from [109]

is, a convective instability: a localized perturbation grows but travels away. The
instabilities result in the blurring seen in Fig. 13.13.

It remains to be explored how more complex interaction networks with an
increasing number of species and with different types of competition affect the
spatio-temporal pattern formation process. Research along these lines is summa-
rized in a recent review [88].

13.6 Conclusions and Outlook

In this contribution we have given an introduction to evolutionary game theory. The
perspective we have taken was that, starting from agent-based models, the dynamics
may be formulated in terms of a hierarchy of theoretical models. First, if the pop-
ulation size is large and the population is well-mixed, a set of ordinary differential
equations can be employed to study the system’s dynamics and ensuing stationary
states. Game-theoretical concepts of “equilibria” then map to “attractors” of the
nonlinear dynamics. Setting up the appropriate dynamic equations is a nontrivial
matter if one is aiming at a realistic description of a biological system. For instance,
as nicely illustrated by a recent study on yeast [8], a linear replicator equation might
not be sufficient to describe the frequency dependence of the fitness landscape. We
suppose that this is the rule rather than the exception for biological systems such
as microbial populations. Second, for well-mixed but finite populations, one has to
account for stochastic fluctuations. Then there are two central questions: (i) What
is the probability of a certain species going extinct or becoming fixated in a popu-
lation? (ii) How long does this process take? These questions have to be answered
by employing concepts from the theory of stochastic processes. Since most systems
have absorbing states, we have found it useful to classify the stability of a given
dynamic system according to the scaling of the expected extinction time with pop-
ulation size. Third, and finally, taking into account finite mobility of individuals in
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an explicit spatial model makes a description in terms of stochastic partial differen-
tial equations necessary. These Langevin equations describe the interplay between
reactions, diffusion, and noise, which give rise to a plethora of new phenomena. In
particular, spatio-temporal patterns or, more generally, spatio-temporal correlations,
may emerge, which can dramatically change the ecological and evolutionary stabil-
ity of a population. For nontransitive dynamics, such as the “rock–paper–scissors”
game played by some microbes [6], there is a mobility threshold, which demarcates
regimes of maintenance and loss of biodiversity [13]. Since, for the “rock–paper–
scissors” game, the nature of the patterns and the transition was encoded in the
flow of the nonlinear dynamics on the reactive manifold, one might hope that a
generalization of the outlined approach might be helpful in classifying a broader
range of game-theoretical problems and identify some “universality classes”.

What are the ideal experimental model systems for future studies? We think that
microbial populations will play a major role since interactions between different
strains can be manipulated in a multitude of ways. In addition, experimental tools
such as microfluidics and various optical methods allow for easy manipulation and
observation of these systems, from the level of an individual up to the level of a
whole population. Bacterial communities represent complex and dynamic ecologi-
cal systems. They appear in the form of free-floating bacteria as well as biofilms in
nearly all parts of our environment, and are highly relevant for human health and
disease [25]. Spatial patterns arise from heterogeneities of the underlying “land-
scape” or are self-organized by the bacterial interactions and play an important role
in maintaining species diversity [7]. Interactions include, among others, competi-
tion for resources and cooperation by sharing of extracellular polymeric substances.
Another aspect of interactions is chemical warfare. As we have discussed, some
bacterial strains produce toxins such as colicin, which acts as a poison to sensitive
strains, while other strains are resistant [6]. Stable coexistence of these different
strains arises when they can spatially segregate, resulting in self-organizing pat-
terns. There is a virtually inexhaustible complexity in the structure and dynamics
of microbial populations. The recently proposed term “socio-microbiology” [112]
expresses this notion in a most vivid form. Investigating the dynamics of those
complex microbial populations is a challenging interdisciplinary endeavor, which
requires the combination of approaches from molecular microbiology, experimental
biophysical methods, and theoretical modeling. The overall goal would be to explore
how collective behavior emerges and is maintained or destroyed in finite populations
under the action of various kinds of molecular interactions between individual cells.
Both biology and physics communities will benefit from this line of research.

Stochastic interacting particle systems are a fruitful testing ground for under-
standing generic principles in nonequilibrium physics. Here biological systems have
been a wonderful source of inspiration for the formulation of new models. For exam-
ple, MacDonald [113], looking for a mathematical description for mRNA trans-
lation into proteins managed by ribosomes, which bind to the mRNA strand and
step forward codon by codon, formulated a nonequilibrium one-dimensional trans-
port model, nowadays known as the totally asymmetric simple exclusion process.
This model has led to significant advances in our understanding of phase transitions



326 E. Frey and T. Reichenbach

and the nature of stationary states in nonequilibrium systems [114, 115]. Searching
for simplified models of epidemic spreading without immunization, Harris [116]
introduced the contact process. In this model infectious individuals can either heal
themselves or infect their neighbors. As a function of the infection and recovery
rate it displays a phase transition from an active to an absorbing state, that is, the
epidemic disease may either spread over the whole population or vanish after some
time. The broader class of absorbing-state transitions has recently been reviewed
[117]. Another well-studied model is the voter model, where each individual has
one of two opinions and may change it by imitation of a randomly chosen neighbor.
This process mimics opinion making in a naive way [118]. Actually, it was first
considered by Clifford and Sudbury [119] as a model for the competition of species
and only later named voter model by Holley and Liggett [120]. It has been shown
rigorously that on a regular lattice there is a stationary state where two “opinions”
coexist in systems with spatial dimensions where the random walk is not recur-
rent [118, 121]. A question of particular interest is how opinions or strategies may
spread in a population. In this context it is important to understand the coarsening
dynamics of interacting agents. For a one-dimensional version of the “rock–paper–
scissors” game, Frachebourg and collaborators [122, 123] have found that, start-
ing from some random distribution, the species organize into domains that undergo
(power law) coarsening until finally one species takes over the whole lattice. If this
model is generalized to account for species mobility and multiple occupation of
each site, several distinct pathways to extinction emerge, ranging from annihilating
propagating waves to intermittent dynamics arising from heteroclinic orbits [124]
(Rulands, et al.). When mutation is included the coarsening process is counteracted
and in an interesting interplay between equilibrium and nonequilibrium processes
a reactive stationary state emerges [125]. Yet another endeavor in nonequilibrium
dynamics is to find global variables that provide a characterization of the system.
Entropy production has been proposed as a useful observable [126, 127], and dif-
ferent principles governing its behavior have been suggested [128, 129], although
problems arise from the different definitions of entropy employed and the different
approaches to nonequilibrium dynamics [127, 130, 131]. Recent investigations of
the “rock–paper–scissors” model with mutations show that entropy production can
indeed characterize the behavior of population dynamics models. At a critical point
the dynamics exhibits a transition from large, limit-cycle-like oscillations to small,
erratic oscillations. It is found that the entropy production peaks very close to this
critical point and tends to zero upon deviating from it [132]. One may hope that,
in a similar manner, entropy production may yield valuable information about other
models in evolutionary game theory.
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Chapter 14
Darwin and the Evolution of Human
Cooperation

Karl Sigmund and Christian Hilbe

Abstract Humans are characterized by a high propensity for cooperation. The
emergence and stability of this trait is one of the hottest topics in evolutionary game
theory, and leads to a wide variety of models offering a rich source of complex
dynamics based on social interactions. This chapter offers an overview of different
approaches to this topic (such as kin selection, group selection, direct and indirect
reciprocity) and relates it to some of the views that Darwin expressed over 150 years
ago. It turns out that, in many cases, Darwin displayed a remarkably lucid intuition
of the major issues affecting the complex mechanisms promoting the evolution of
cooperation.

14.1 Darwin on Complexity

Charles Darwin (1809–1882), who was celebrated especially in 2009, which marked
the 200th anniversary of his birth and the 150th anniversary of the publication of On
the Origin of Species, was one of the first scientists to become fascinated by the
many facets of complexity, be it complexity of organs or complexity of interactions.
His approach to explaining the emergence of complex structures by the effect of
natural selection operating on inheritable variations is almost universally accepted
today. But in addition to this gradual adaptation through ceaseless trial and error,
a few big events shaped the course of evolution. Major transitions brought about
genomes, eukaryotic cells, multicellular organisms, sexual reproduction, and animal
societies. These major transitions in evolution [1] introduced new levels of organi-
zation, and even produced new units of selection. In particular, the evolution of
cooperation is widely recognized as one of the most important areas for Darwinian
theory.

The mathematical tools for the analysis of social interactions, and in particular
the interplay of competition and collaboration, are provided by game theory. It
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originated in the 1940s, and was initially meant to analyze rational behavior in
economic interactions. In particular, it assumed that the players are rational – they
could figure out the consequences of their action, and choose whichever action opti-
mized their expected payoff, taking into account that the co-players would similarly
decide upon their strategy. In the hands of evolutionary biologists such as William D.
Hamilton and John Maynard Smith, this assumption of rationality, which was hardly
applicable to humans, let alone to other biological organisms, was thrown overboard
[2]. In evolutionary game theory, the players were the members of a population.
Strategies were no longer the outcome of rational decision making, but behavioral
programs, and the payoff was not measured in monetary units or derived from some
other preference scale, but simply indicated Darwinian fitness, that is, reproductive
success. The applications of evolutionary game theory quickly spread through all
fields of behavioral sciences [3–5].

It is unlikely that Darwin would have felt at ease with the formal aspects of
evolutionary game theory. He often regretted that he “had not proceeded far enough
to know something of the great leading principles of mathematics” and wrote that
“persons thus endowed seem to possess an extra sense”. But he would certainly
have enjoyed the investigation of the feedback loops characteristic of evolutionary
dynamics. The feedback is based on the fact that the success of a strategy depends
on what the other players are doing, and hence on the relative frequencies of the
strategies in a population. This success, or payoff, in turn determines how quickly
the strategy spreads, provided that it corresponds to an innate program that is inher-
ited by the offspring. Thus evolutionary game theory is very similar to population
ecology [4]. Just as the densities of diverse types of predators and prey, for instance,
affect growth rates, which, in turn, determine the densities in the following genera-
tions, so the frequencies of behavioral types determine their growth rates and hence
the future frequencies.

Darwin, with his staggering ecological intuition, delighted in describing “how
plants and animals [. . . ] are bound together by a web of complex relations”. He
relished in figuring out how, “if certain insectivorous birds were to increase in
Paraguay”, a species of flies would decrease; and how – since these flies para-
sitize newborn cattle – “that decrease would cause cattle to become abundant; which
would certainly greatly alter the vegetation; how this again would largely affect the
insects; and this again the insectivorous birds; and so on in ever increasing circles
of complexity.”

We shall presently see that in a similar vein, different types of cooperation-related
behavior can influence each other “in ever increasing circles of complexity”.

14.2 The Riddle of Cooperation

At first sight, it seems surprising that cooperation, which is so obviously a good
thing, should present any problems. If two individuals profit from cooperating, why
shouldn’t they? But let us be more specific, and consider a “game” where two
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players independently can decide between two options: to send a gift to the other
player, or not; that is, to cooperate (play C) or to defect (play D). Let us assume that
the gift confers a benefit b to the recipient, at a cost c to the donor, with 0 < c < b.
If both players cooperate, each receives a payoff b − c > 0, whereas both receive
nothing if they both defect. But the socially desirable outcome of mutual cooperation
has an Achilles’ heel. It is inconsistent in the sense that if the other player duly plays
C, then one can improve one’s own payoff by playing D. From the viewpoint of an
individual player, it is always better to defect, no matter what the co-player is going
to decide. This can be seen from the following payoff matrix, which describes the
payoff for player I (who can chose between the rows C and D, whereas the co-player
can chose between the columns C and D):

∗ C D
C b − c −c
D b 0

(14.1)

The only consistent outcome is for both players to play D: consistent in the sense
that both players cannot improve their payoff by unilaterally switching strategy.
“Unilaterally” is the crucial word: if their actions were correlated, that is, if they
had to chose the same move, then cooperation would be the obvious outcome. But
they are independent actors. This is just the point about being “individuals”. If we
assume the viewpoint of “methodological individualism”, that is, that societies are
based on individual decisions, we find that altruistic behavior – helping others at a
cost to oneself – poses a problem indeed.

We stress that we need not assume that the players are rational, and able to predict
and optimize their payoff. The outcome is just the same if we consider a population
of C-players and D-players randomly meeting and playing the game. The defectors
would always do better, have a higher payoff, which means more offspring, and
hence they would spread and ultimately eliminate the cooperators.

This game is an example of a social dilemma : self-interested motives lead to
self-defeating moves. There are quite a few other social dilemmas, but we shall
stick with this one, and its generalization, the so-called prisoner’s dilemma. This
describes any symmetric interaction between two players, with two strategies each,
having a payoff matrix

∗ C D
C R S
D T P

(14.2)

with T > R > P > S. The prisoner’s dilemma game encapsulates the tug-
of-war between the common interest (R is larger than P) and the selfish interest
(D dominates C).
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14.3 Kin Selection

There exist two major ways, in theoretical biology, to come to grips with the prob-
lem of cooperation. The first is known as kin selection theory. Clearly, a huge part
of biological cooperation occurs within families. This is an immediate corollary of
the Darwinian struggle for survival. Genes that promote their own spreading (by
enhancing the survival and the fecundity of their carriers) become necessarily more
frequent than those that do not. Just as parents programmed to help their children
have an obvious advantage in passing along their genetic program, so siblings pro-
grammed to help each other will also have an advantage. More precisely, a gene
causing you to help your brother will help to spread itself: for it is, with a high
probability, carried by your brother too.

This approach was developed in William D. Hamilton’s inclusive fitness the-
ory [6], although earlier geneticists had anticipated the basic idea. For instance,
R.A. Fisher used the approach in explaining the spread of bright warning colors
among distasteful caterpillars. This appears at first sight a suicidal advertisement
policy, but a bird who swallows such a lurid caterpillar will most likely not do it
again. If this saves the life of the caterpillar’s siblings (as will most probably be the
case, since they travel in family groups), then the victim’s demise has not been in
vain. The genes for bright colors will be passed on through the siblings, and can
spread. The famous geneticist Haldane is said to have quipped, in a similar vein: “I
am ready to lie down my life to save two of my brothers, or eight of my cousins”
[7]. Why two? Why eight? Obviously, there is some theory behind it. It is based on
the quantification of relatedness.

The coefficient of relatedness between two players can be defined in various
ways. Here, we simply assume that it measures relatedness by descent: this is the
probability ρ that a recently mutated gene (or allele, to use the correct term), if it is
carried by one player, is also carried by the other. Of course, any two humans are
related, if we go back to primordial Eve. But we do not share all our genes. A muta-
tion occurring in the body of your grandfather produces an allele that will be found
with probability 1/2 in his children and with probability 1/4 in his grandchildren
(Fig. 14.1). Under usual circumstances (e.g., no parental inbreeding), the coefficient
of relatedness between two siblings is 1/2; between you and your nephew it is 1/4,
and between two cousins it is 1/8. You can view your relatives as watered-down
copies of yourself. The coefficient ρ measures the amount of dilution. The higher ρ,
the more your genetic interests coincide.

Suppose now that the coefficient of relatedness with your co-player is ρ. You
can view any increase in the co-player’s fitness as an increase of your own fitness,
discounted by the factor ρ. The payoff matrix then turns into

∗ C D
C (b − c)(1+ ρ) bρ − c
D b − cρ 0

(14.3)
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Fig. 14.1 Coefficients of relatedness in a small family. A and B are the parents, C and D their
offspring, E and F their grandchildren. Individuals have two copies (alleles) of each gene, one
inherited from the mother, the other from the father. The probability that a specific allele of A is
passed to C is 1/2. The probability that a specific allele of C comes from A is 1/2. The degree
of relatedness between A and C is 1/2. The siblings C and D can both have inherited a newly
mutated allele, either from A (probability 1/2 × 1/2 = 1/4) or from B, hence their degree of
relatedness is 1/4 + 1/4 = 1/2. The degree of relatedness between F and C (nephew and uncle)
is 1/2 × 1/2 × 1/2 + 1/2 × 1/2 × 1/2 = 1/4, the degree of relatedness between E and F (two
cousins) is 1/8

If the coefficient of relatedness satisfies ρ > c/b, the elements in the first row are
larger than the corresponding elements of the second row. So in this case, no matter
what your co-player does, it is better to chose the first row, that is, to cooperate. This
is known as Hamilton’s rule.

14.4 Relatedness and Assortment

This “selfish gene” view, elaborated as the theory of kin selection, has been devel-
oped to a considerable extent within the last 50 years. A more “modern” version
of Hamilton’s rule is based on relatedness by assortment [8, 9]. Let us denote by
P(C | C) the probability that a C-player meets with a C-player, and by P(C | D)
the probability that a D-player meets a C-player. As the notation suggests, these
expressions can be viewed as conditional probabilities. Let us consider

r := P(C | C)− P(C | D) ,

and denote by p the frequency of C-players in the population. From

P(C | D)P(D) = P(D | C)P(C)

(both expressions measure the probability that one player defects and the second
cooperates), we deduce
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P(C | D) = p[1− P(D | C)+ P(C | D)] = p(1− r)

and

P(C | C) = r + P(C | D) = r + (1− r)p .

In the prisoner’s dilemma game, the expected payoff for cooperators
is given by P(C | C)R + [1 − P(C | C)]S, and that for defectors by P(C | D)T
+ [1− P(C | D)]P . Cooperators do better than defectors if and only if

r >
P − S + p(T − R − P + S)

R − S + p(T − R − P + S)
.

In the special case of the gift-giving game, we have T − R = P − S and hence the
inequality reduces to

r >
c

b
,

which is just Hamilton’s rule, but this time for relatedness by assortment rather than
relatedness by descent.

Using r instead of ρ has several advantages. In particular, relatedness by descent
ρ is not easy to define properly. In the case of a recently mutated gene, it reduces
to the same expression as r , in principle, but how old is a “recently mutated gene”?
Moreover, there exist certainly situations where the positive assortment between
cooperators is due to other factors than common descent. Somewhat confusingly,
there is a trend to subsume all such situations under the heading of kin selection,
even if family ties play no role at all [10]: in the most extreme examples, the two
players could be from different species [11]. Moreover, it should be stressed that
for games involving more than two players, the relevant “relatedness” becomes a
complex expression involving the probabilities for triplets, etc. [9].

14.5 Darwin on Kin Selection

The fact that “kin selection” is a semantically overstretched expression does not
take anything away from the importance of family ties for promoting cooperation.
Many of the most remarkable examples of altruistic behavior occur among social
insects, such as bees or ants, where the family ties are extremely tight. Typically,
all workers in a beehive or an anthill are sisters, the daughters of one queen, who
herself is often the product of intensive inbreeding. The degree of relatedness, in
that case, is so high that one can view an insect state as a “super-organism”.

Darwin, who had overlooked (like everyone else) the contemporary work by
Mendel, did not have a clear idea of how traits could be passed on from one genera-
tion to the next. The notion of a gene was unknown to him. Nevertheless, he had as
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good a grasp of the principles of kin selection as was possible in his time. This can
be seen in the following quotes:

One special difficulty [. . . ] at first appeared to me insuperable, and actually fatal to my
whole theory. I allude to the sterile females in insect-communities [who] differ widely [. . . ]
from both males and fertile females, and yet, from being sterile, cannot propagate their kind.

“Natural selection may be applied to the family, as well as to the individual
. . . Thus a well-flavored vegetable is cooked, but the horticulturist sows seeds of the
same stock and confidently expects to get nearly the same variety. Or, on the topic
of a particularly tasty beef: “the animal has been slaughtered, but the breeder goes
with confidence to the same family. Thus I believe it has been with social insects:
a slight modification in structure, or instinct, correlated with the sterile condition
. . . has been advantageous . . . consequently the [related] fertile males and females of
the same community flourished, and transmitted to their fertile offspring a tendency
to produce sterile members having the same modification.”

Such modifications can gradually build up to impressive feats of altruism and
self-sacrifice. For instance, so-called honeypot ants are worker ants that spend all
their life clinging to the wall of a subterranean chamber, their bodies exclusively
used for storing nutrient. And worker bees are ready to sting intruders and thus to
perform a suicide attack in order to defend their hive. It seems that such acts of
self-immolation can only be explained by indirect fitness benefits.

14.6 Political Animals

In his zoology, Aristotle classified humans together with ants and bees as “social
animals”. The similarities between anthills, beehives, and human cities have often
since been taken up by other authors, most famously by Bernard de Mandeville in
his Fable of the Bees, written more than 300 years ago. Some of the parallels are
striking indeed: the division of labor, the ceaseless bustle and exchange, the hier-
archical organization, etc. Nevertheless, it has become clear that human sociality
is very different from that of hymenoptera or termites. Basically, humans have not
given up reproduction in favor of a few highly privileged individuals. Most humans
can and do reproduce, in contrast to social insects, where the job is delegated to
specialized queens and consorts. As a consequence, the degree of relatedness in a
beehive is vastly higher than in a city. While it is clear that a lot of human cooper-
ation occurs within the family, and that a tendency to nepotism is nearly universal,
there also exist many instances of close collaboration among unrelated individuals.
Hence kin selection, while certainly important, cannot be the only cause behind
human cooperation.

It is well known that Darwin, in his Origins of Species, avoided touching on the
human species, except in one sentence: “Light will be thrown on the origin of man
and his history”. Clearly, he expected his readers to see the light for themselves.
It took Darwin more than a dozen years before he spelled out his conclusions, in
The Descent of Man, and Selection in Relation to Sex and The Expression of the
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Emotions in Man and Animals. The reason for the long delay was caused by Dar-
win’s carefulness in marshaling his facts, but it may also have been due, in part,
to hesitation. Darwin had to brace himself for the storm of bigotry, outrage, and
ridicule expected to arise. (Among Darwin’s files, a particularly voluminous one is
devoted entirely to caricatures, ditties, and abuse heaped on him and his family.)

Since human cooperation among nonrelatives cannot be explained by indirect
fitness benefits, there must be other reasons, causing direct fitness benefits, reasons
which are not genetic but economic in nature. The economist Adam Smith had
them in mind when, in The Theory of Moral Sentiments (written long before his
Wealth of Nations), he spoke of “our propensity to trade, barter and truck”. Darwin,
who was well versed in the writings of economists such as Adam Smith or Robert
Malthus, took this up when he wrote: “The small strength and speed of man, his want
of natural weapons, etc., are more than counterbalanced . . . by his social qualities,
which led him to give and receive aid from his fellow men.” To give and to receive:
this economic viewpoint anticipated the second major approach to the evolution of
cooperation.

14.7 Reciprocal Altruism

The theory of reciprocal altruism was first developed in a landmark paper by Trivers
in 1971 [12]. It defined reciprocal altruism as “the trading of altruistic acts in which
benefit is larger than cost, so that over a period of time both parties enjoy a net
gain.” In the simplest model, this can be described by a repeated prisoner’s dilemma
game: the same two players meet in round after round. In that case, they are not
obliged to choose the same option (C or D) in every round. In particular, they can
use conditional strategies, and decide whether to cooperate or defect according to
the past behavior of their co-player. The most natural strategy, in this context, is
to reciprocate good with good, and bad with bad. Many experiments have shown
that a large majority of humans are conditional cooperators, and want to play C if
the co-player also chooses C. In the context of repeated games, they can base their
decision on the past behavior of their co-player. The simplest such strategy is “tit
for tat” (TFT): it prescribes playing C in the first round, and from then on using
whichever move the co-player used in the previous round.

If w is the probability that the same two players will engage in a further round of
the game, then the expected number of rounds is given by 1/(1−w). If we consider
only the two strategies TFT and AllD (i.e., defect in every round), then the payoff
matrix is given by

∗ TFT AllD
TFT (b − c)/(1− w) −c
AllD b 0

(14.4)

If w > c/b, that is, if the expected number of rounds is sufficiently large, then it
does not pay, against a TFT-player, to play AllD: the advantage gained in the first
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round cannot make up for the handicap of turning the co-player into a defector. On
the other hand, it does not pay, against an AllD-player, to use TFT. The best policy
is to do whatever the other player does. This means that the evolutionary dynamics
is bistable. If most players in the population use one of the strategies, then it is best
to adopt it, too. If w is close to 1, however, then the contest between TFT and AllD
is rigged in favor of the former: its basin of attraction is much larger [13, 14].

Nevertheless, TFT has some weaknesses. For instance, unconditional coopera-
tors (AllC-players) can enter a population of TFT-players by neutral drift. Both
strategies do exactly as well, everybody cooperates in every round, and therefore,
selection does not act in one direction or the other. This means that, by sheer chance,
a sizable number of AllC-players can build up. But once this happens, AllD players
can invade, since they can exploit the AllC-players. The state of a population con-
sisting of TFT-, AllC- and AllD-players can be described by a point (x1, x2, x3) on
the unit simplex (since x1+ x2+ x3 = 1). The dynamics is interesting, see Fig. 14.2
[15]. Let us first note that the vertices are fixed points. So are the points on the edge
where AllD is missing (x3 = 0). Suppose now that a small minority of AllD is
introduced, by some random event. If the frequency of TFT-players is sufficiently
large, the invader is immediately eliminated again. If the frequency is too small,
the defectors take over. But if the frequency of TFT-players is in the middle range,
not too small and not too large, the AllD-players will, at first, prosper and grow.
However, by preying on the unconditional AllD-players, they destroy the basis of
their own success and will, eventually, be eliminated. The state, then, consists again
of a mixture of conditional and unconditional altruists, as before, but now the fre-
quency of TFT-players is so large that AllD-players can no longer invade. They
have to wait (figuratively speaking) until neutral drift has again reduced the number

Fig. 14.2 The good, the bad, and the reciprocator, for the repeated prisoner’s dilemma game in
the absence of errors. A horizontal line z = c/wb divides the state space. For smaller values of
the frequency z of reciprocators, the AllD-players win; for larger values, they are eliminated. Here
and in all other figures, full circles correspond to stable rest points, and empty circles to unstable
rest points
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of TFT-players in favor of unconditional defectors. If they invade too often, this
will not happen. Hence, cooperative societies are more stable if they are challenged
more often.

Another weakness of TFT-societies is that they are very vulnerable to errors [16].
If two TFT-players interact and one of them defects by mistake, this will cause a
long vendetta. If such errors are taken into account, the dynamics of a population
consisting of TFT-, AllC-, and AllD-players is highly unstable. Either AllD elimi-
nates the other two strategies, or else all three will endlessly oscillate (Fig. 14.3).

There are other conditional strategies that do not have the defects of TFT. This
holds in particular for Pavlov. Players using that strategy start with a cooperative
move and from then on cooperate if and only if their co-player, in the previous
round, chose the same move as themselves. This means that a Pavlov player repeats
the former move if it yielded a positive income, and switches to the other move
if not. As a consequence, Pavlov is error-correcting [17]. If two Pavlov-players
are engaged in a repeated prisoner’s dilemma game and one of them inadvertently
defects, then in the next round both play D and afterwards resume mutual cooper-
ation. Moreover, AllC-players cannot subvert a Pavlov-population by neutral drift.
On the other hand, Pavlov cannot invade an AllD-population. It needs TFT to pave
the way [17, 18].

So far, we have implicitly assumed that strategies are inherited from parent to
offspring. For the hard-wired behavior of social insects, this is reasonable enough,
but for humans, it is absurd to assume that TFT-players breed true. Fortunately, we
can use the machinery of evolutionary game theory even if strategies are transmit-
ted not through inheritance but through learning. If we assume that humans have
a propensity to preferentially imitate more successful strategies, then we can apply
the same dynamics to “memes” rather than genes. The role of “mutations”, in this
context, is provided by the random adoption of behavioral alternatives. Whether in

Fig. 14.3 The good, the bad, and the reciprocator, for the repeated prisoner’s dilemma with errors
in implementation. If z is below a threshold, defectors win; if z is above the threshold, all three
strategies co-exist, their frequencies oscillating periodically
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the context of selection–mutation or of imitation–exploration, we are led to the same
process of trial-and-error, and hence to the same dynamics [4, 14].

14.8 Indirect Reciprocity

Not every help is directed at a recipient able to return that help, but it may well be
that an act of help is returned not by the recipient but by a third party. The idea of
an indirect, or “generalized” reciprocity can already be found in Trivers’s seminal
paper of 1971. In direct reciprocity, if Alice provides help to Bob, then Bob should
return help to Alice. In indirect reciprocity, if Alice helps Bob, then the help can be
returned to Alice by some third party, for instance Charlie (Fig. 14.4). This seems
a more subtle form of reciprocation. Direct reciprocity works on the principle that
“I’ll scratch your back if you scratch mine”, indirect reciprocity on the principle
“I’ll scratch your back if you scratch somebody’s”. In direct reciprocity, I use my
experience with someone. In indirect reciprocity, I also use the experience of others.
This is cognitively much more demanding, but both direct and indirect reciprocity
are forms of conditional cooperation: the willingness to assist those who are willing
to provide assistance.

The evolutionary biologist Richard Alexander, who coined the term “indirect
reciprocity”, stressed that it “involves reputation and status, and results in everyone
in the group continually being assessed and reassessed”. He argued that it represents
the Biological Basis of Moral Systems [19] (the title of his book). Indirect reciprocity
requires a high degree of information. Whether Alice provides or refuses help to
Bob can be either directly observed by third parties, or learned through gossip from
others. This forms the basis for Charlie’s decision on whether or not to help Alice,
in turn. Charlie in effect acts upon a moral judgment on whether Alice deserves to
be helped or not.

In the very simplest model, we can assume that every player has a binary repu-
tation, which can be either G (for good) or B (for bad). Individuals meet randomly,
as potential donors or recipients, and the donors can confer a benefit b to the the
recipient at a cost c for themselves. Donors who provide help obtain reputation G,
and those who refuse obtain B. The discriminating strategy consists in giving help to

Fig. 14.4 Direct versus indirect reciprocity. On the left, player A gives help to B and B returns the
help to A. On the right, it is player C who returns the help to A
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Fig. 14.5 The good, the bad, and the reciprocator, for indirect reciprocity. If the information on
the co-player’s past behavior is sufficiently large, defectors, cooperators, and reciprocators coexist.
The horizontal line of fixed points includes a stable mixture of AllC-players and reciprocators, but
random shocks can lead, in the long run, to a population consisting only of AllD-players

G-recipients, and withholding help from B-recipients. This discriminating strategy
is what, in the simpler situation of direct reciprocity (repeated games between the
same two players) corresponds to TFT. In indirect reciprocity, it may be that players
meet only once. Reputation takes the place of repetition.

Let us consider a population consisting of discriminators, as well as AllC- and
AllD-players. It turns out that if the degree of information (i.e., the probability q
of knowing the other player’s reputation) is sufficiently large, then the population
will either evolve towards fixation of the all-out defectors, or towards a mixture of
discriminating and undiscriminating cooperators (Fig. 14.5). This mixture can even-
tually be subverted by neutral drift, in a manner reminiscent but not quite similar to
the direct reciprocity case. If we assume that each player, in time, becomes better
informed about the co-players, then the mixture of discriminating and undiscrimi-
nating altruists actually becomes a stable attractor for the evolutionary dynamics.

14.9 Competition of Moral Systems

The discriminating strategy considered so far displays an element of paradox
[20, 21]. Indeed, it is certainly useful to the society when cooperation is channeled
towards cooperators, and defectors are kept at bay, but it is costly to the discrimina-
tor. By refusing to help a B-player, discriminators acquire themselves the B-label,
and are therefore less likely to be helped in the next round. Clearly, it would be
better to distinguish between justifiable and unjustifiable defection, but this requires
more sophisticated rules for assessing what is good and what is bad.

The very rudimentary moral system considered up to now is called SCORING:
according to this system, it is always bad to refuse to help. The STANDING rule
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Table 14.1 The assessment specifies which image to assign to the potential donor of an observed
interaction (“good→ bad” means “a good player helps a bad player”, “bad �→ good” means “a
bad player refuses to help a good player”, etc.)

Situation/strategy SCORING STANDING JUDGING

Good→ good Good Good Good
Good→ bad Good Good Bad
Bad→ good Good Good Good
Bad→ bad Good Good Bad
Good �→ good Bad Bad Bad
Good �→ bad Bad Good Good
Bad �→ good Bad Bad Bad
Bad �→ bad Bad Good Bad

seems more reasonable: for this rule, it is bad to refuse help a to good player, but not
to refuse help to a bad player. A more sterner version is named JUDGING: it views,
additionally, help to bad players as a bad behavior (Table 14.1).

We can classify the different types of assessment rules. A first-order assessment
rule simply takes into account whether help is given or not. A second-order assess-
ment rule takes moreover into account whether the recipient is good or bad. A third-
order assessment rule takes additionally into account whether the donor is good
or bad. This leads to 256 value systems. Ohtsuki and Iwasa [22] have shown that
only eight of them are stable in the following sense. For a homogeneous population
adopting such a value system, there exists a uniquely specified rule of action (pre-
scribing when to help, depending on the donor’s and the recipient’s image) which
leads to cooperation and which cannot be invaded by any other rule of action, and
in particular not by AllC or AllD. Two of the stable rules are of second order, none
of first order (Table 14.2).

So far, there exist only very rudimentary theoretical results on the competition
between several coexisting assessment rules [23]. Empirically, however, it seems
clear that in many societies, several assessment rules coexist. In particular, experi-
ments have consistently shown that SCORING, despite its drawbacks, is adopted by

Table 14.2 The assessment modules of the leading eight strategies. These strategies obtain the
highest payoff values, and are uninvadable by defectors. Strategy L3 corresponds to STANDING
and strategy L8 to JUDGING. No SCORING strategy occurs in the list. The assessment only
differs on the issues good→ bad, bad→ bad, and bad �→ bad

Situation/strategy L1 L2 L3 L4 L5 L6 L7 L8

Good→ good Good Good Good Good Good Good Good Good
Good→ bad Good Bad Good Good Bad Bad Good Bad
Bad→ good Good Good Good Good Good Good Good Good
Bad→ bad Good Good Good Bad Good Bad Bad Bad
Good �→ good Bad Bad Bad Bad Bad Bad Bad Bad
Good �→ bad Good Good Good Good Good Good Good Good
Bad �→ good Bad Bad Bad Bad Bad Bad Bad Bad
Bad �→ bad Bad Bad Good Good Good Good Bad Bad
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a substantial part of the players [24–26]. It seems to be cognitively very demanding
to adopt higher-order assessment rules, since such rules require information not only
on the recipient’s past behavior but also on that of the recipient’s recipients, etc.
It can be argued that a population adopting a higher-order assessment rule could
continuously update the images of all the players in a consensual process, but this
seems to require an extraordinary amount of information exchange.

Indirect reciprocity was an essential factor in human evolution, because it pro-
vided a selective pressure for social intelligence, human language, and moral fac-
ulties. This does not imply, of course, that moral rules are innate. Just as we do
not inherit a particular language, but have an innate faculty to quickly acquire a
language, so we are not born with a ready-made moral system, but have the faculty
to adopt one at an early age.

14.10 Exceptionalism

Many people, especially among those with a background in the humanities, are
uneasy with the application of Darwin’s theory to the evolution of moral norms. In
their eyes, moral is a taboo topic for natural science, since it has to do with values,
rather than with empirical facts. The following quote stems from Pope John Paul II:
“Consequently, theories of evolution which [. . . ] consider the mind as emerging
from the forces of living matter, are incompatible with the truth about man.” It is not
only American creationists, but many European intellectuals who would essentially
agree. They may accept Darwinism in all other aspects, but shrink from applying it
to the so-called higher faculties of humans. The most distinguished “exceptionalist”
was Alfred Russell Wallace, the man who almost scooped Darwin. Wallace wrote:
“Man’s intellectual and moral faculties [. . . ] must have another origin [. . . ] in the
unseen universe of Spirit.”

Darwin himself never shrank from investigating the evolution of our moral sense.
One of his folders, which he later entitled “Old and useless notes on the moral sense”
dates from 1837, when he was still in his twenties. Darwin certainly grasped the
importance of reciprocation, as is clear from the quote: “We are led by the hope
of receiving good in return to perform acts of sympathetic kindness to others”, and
when he wrote: “[Man’s] motive to give aid [. . . ] no longer consists solely of a
blind instinctive impulse, but is largely influenced by the praise and blame of his
fellow men” he had obviously understood that, in contrast to social insects, human
cooperation is to a large extent based on reputation. He may have anticipated a kin
selection approach to the evolution of moral faculties when he wrote: “The founda-
tion of moral instincts lies in the social instincts, including in this term the family
ties.”

Darwin even went so far as to adopt in this context Lamarckist tendencies. This
is shown by the following quote: “It is not improbable that virtuous tendencies may
through long practice be inherited.” Today, this is viewed as extremely improba-
ble. But part of what Darwin may have had in mind can be couched in terms of
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“gene–culture coevolution” [27]. We know that a culturally shaped environment can
cause a selective pressure for the spread of well-adapted genes. To give an example,
cattle-raising is certainly a cultural phenomenon, but it provided the appropriate
conditions for a genetic disposition that allows most Caucasians to digest lactase
products even as adults, long after weaning. In societies without the cattle-raising
tradition, for instance in Japan, this genetic predisposition is rare. We can similarly
conceive that the culturally shaped social environment of our ancestors led to the
spreading of genetic predispositions for what Darwin termed “virtuous tendencies”
(such as fairness or solidarity).

14.11 Team Efforts

So far, we have only considered interactions between two players. These can, in
general, be understood by a cost-to-benefit analysis. The ratio c/b has to be smaller
than something – for instance, the coefficient of relatedness ρ, or the probability of
another round w, or the degree of information q about other players. Many inter-
actions occur in larger teams, however, and this raises additional difficulties. The
mere concept of reciprocation, for instance, becomes more difficult. Whom do you
reciprocate with, if your group contains both cooperators and defectors?

A typical model for such a situation is given by the so-called public goods game.
All N players in a group are asked to contribute some amount, knowing that this will
be multiplied by a certain factor r > 1 and then divided equally among all players.
If all contribute the same amount, their return will be the r -fold of that amount. But
each individual receives only the (r/N )th part of his or her investment in return: if
r < N , it is more profitable to invest nothing, and exploit the contributions of the
co-players. However, if the other players follow the same line of action, no one will
contribute anything. In actual experiments, players often contribute a substantial
amount, but then, from round to round, reduce their contributions gradually. They
feel exploited by those who contribute less than they did, and try to retaliate by
contributing even less. But this hurts the cooperative players too, who then reduce
their contributions in turn, etc.

Obviously, the snag in this game is that exploiters cannot be treated differently
from cooperators. If the game is modified so that between the rounds of the public
goods contributions players can punish or reward specific individuals, depending
on the size of their contributions, then cooperation can often be stabilized at a high
level [28–31]. This targeted form of providing positive or negatives incentives – the
carrot and the stick – again relies on reciprocation.

Trivers described this in his paper on reciprocal altruism [12]. He wrote: “Altru-
istic acts are dispensed freely among more than two individuals, an individual being
perceived to cheat if he dispenses less than others, punishment coming from the
others in the system.” And in an essay on “Innate Social Aptitudes of Man”, Hamil-
ton has a section on “Reciprocity and Enforcement”, in which he describes, first, the
problem of reciprocation in larger groups, and then points out that, in a many-person
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game, cooperators can gang together to punish cheaters. He noted that “There may
be reasons to be glad that human life is a many-person game and not just a disjoined
collection of two-person games”.

14.12 Group Selection

The public goods game is another example of a social dilemma. In all such dilem-
mas, individual advantage and group benefit are at odds. The same tension occurs
not only in economics, but also in biology. The controversy between individual
selection and group selection has a long history, and is marked by confusion. Many
of the earlier arguments involving “the benefit of the group” (or “the good of the
species”) were plain wrong, but this led to a backlash. For some time, group selec-
tion arguments were simply out. It took the patient efforts of several theoreticians
to show that, in certain situations, group selection arguments can indeed work: for
instance, if the time scales for competition within groups and competition between
groups are not too different, if migration between groups falls into the right range,
etc. [32–34].

Many evolutionary biologists argue today that group selection arguments can
be couched in terms of kin selection, rightly understood (namely via relatedness
through assortment, rather than relatedness through descent). Nevertheless, it seems
that it is legitimate to phrase an argument in terms of group selection if the relevant
evolutionary process can be described in terms of one group eliminating another.
Such scenarios, mostly based on murderous conflicts and forms of raiding warfare,
seem to have been frequent in the human past. Most of the run-of-the-mill behavior
displayed in economic games can be interpreted in terms of self-interest, properly
understood: for instance, as attempts to acquire and keep valuable partners. But
extreme traits, such as the willingness to sacrifice oneself for others, or the readiness
to view other groups as inferior, possibly require different explanations, based on a
past history of violent encounters between groups [35].

Darwin stressed the importance of group survival on several occasions, for
instance when he wrote: “There can be no doubt that a tribe including many mem-
bers who [. . . ] were always ready to give aid to each other and to sacrifice them-
selves for the common good, would be victorious over most other tribes; and this
would be natural selection.” He did not say: “. . . and this is group selection”, but he
obviously was aware of the tension between individual and group selection when he
wrote: “He who was ready to sacrifice his life [. . . ] would often leave no offspring to
inherit his noble nature. Therefore it seems scarcely possible (bearing in mind that
we are not here speaking of one tribe being victorious over another) that the number
of men gifted with such virtues could be increased through natural selection.” The
term in parentheses clearly indicates that Darwin saw no way of explaining the evo-
lution of such traits other than by violent inter-group conflict. In another passage, he
stressed that “extinction follows chiefly from the competition of tribe with tribe, and
race with race.” To many ears, today, this sounds politically incorrect. But Darwin
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was very conscious of the dark side of human nature. Some of the most remarkable
examples of human cooperation occur in war, and other forms of lethal conflict
between groups.
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Chapter 15
Similarities Between Biological and Social
Networks in Their Structural Organization

Byungnam Kahng, Deokjae Lee, and Pureun Kim

Abstract A branching tree is a tree that is generated through a multiplicative
branching process starting from a root. A critical branching tree is a branching
tree in which the mean branching number of each node is 1, so that the number
of offspring neither decays to zero nor flourishes as the branching process goes
on. Moreover, a scale-free branching tree is a branching tree in which the number
of offspring is heterogeneous, and its distribution follows a power law. Here we
examine three structures, two from biology (a phylogenetic tree and the skeletons
of a yeast protein interaction network) and one from social science (a coauthorship
network), and find that all these structures are scale-free critical branching trees.
This suggests that evolutionary processes in such systems take place in bursts and
in a self-organized manner.

15.1 Introduction

Darwin’s theory of biological evolution is one of the most revolutionary contri-
butions to progress of recent centuries. His renowned book [1], On the Origin of
Species, published over 150 years ago, contains two major themes, descent with
modification and natural selection acting on hereditary variation. Since then, evo-
lutionary theory has developed into diverse areas such as ecology, animal behavior,
and reproductive biology. Recently, as research tools on the molecular level have
become more sophisticated and available, new directions of evolutionary study have
been developed to confirm Darwin’s theory. Molecular evolutionary studies that ana-
lyze evolutionary processes at the genetic level have drawn considerable attention
from the scientific community. Large-scale databases that accumulate various types
of biological data have been compiled, so that researchers have easy access and can
discover new facts.
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Here we download taxonomy data of evolution from the GenBank database [2],
and construct a phylogenetic tree, which provides a cornerstone to understanding
evolution at the gene level. Structural properties of the taxonomy tree are examined.
We also analyze the skeleton of protein interaction networks, and the evolution of a
coauthorship network (taken from social networks). From these examples, we find
that there exists a common feature, that there exist scale-free critical branching trees
underneath such complex networks. The presence of such trees suggests that evolu-
tion takes place in bursts, but in a self-organized manner.

15.2 Branching Tree and Fractal Structure

15.2.1 Scale-Free and Critical Branching Structure

A tree structure can be generated through a multiplicative branching process starting
from a root [3]. A node (ancestor) generates n offspring, in which the number n is
not fixed, but distributed with probability bn ,

bn =
{

n−γ
ζ(γ−1) for n ≥ 1 ,

1−∑∞
n=1 bn for n = 0 .

(15.1)

This tree structure is heterogeneous in the number of offspring, called the branching
number, and thus is a scale-free branching tree. The root can be taken at any vertex
in the system. For convenience, here we take as the root the hub, the vertex with
the largest degree. When each vertex born in the previous step generates n off-
spring with probability bn , the criticality condition means that the mean branching
number is 1:

〈n〉 ≡
∞∑

n=0

nbn = 1 . (15.2)

Thus, this critical branching tree grows perpetually with offspring neither flourish-
ing nor dying out on the average. In this case, the number of vertices M in the tree
within a region with linear size � scales in a power law as M ∼ �z [3–5] with

z =
{
(γ − 1)/(γ − 2) for 2 < γ < 3 ,

2 for γ > 3 .
(15.3)

Thus, the branching tree structure is fractal with the fractal dimension dB = z.
Such a critical branching tree is similar in topological characteristics to the so-called
homogeneous scale-free tree network [6]. On the other hand, when the mean branch-
ing number fulfills 〈n〉 > 1 (〈n〉 < 1), called the supercritical (subcritical) case, M
grows (reduces) exponentially with respect to linear size � or the distance from the
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root, that is, M ∼ e�/�0 (M ∼ e−�/�0 ) with constant �0. Thus, the branching tree in
the supercritical state exhibits the small-world property.

For later discussions, we recall another property of the branching tree structure
briefly [4]. Since the branching tree is stochastically generated, it can die out after
just a few branching steps or survive for a large number of branching steps. The
distribution of the number of offspring generated from a single ancestor is nontriv-
ial, which is often referred to as the cluster size distribution. When the branching
probability is given as bn ∼ n−γ , the distribution of s-size clusters follows a power
law Pb(s) ∼ s−τ , where the exponent τ is given as

τ =
{
γ /(γ − 1) for 2 < γ < 3 ,

3/2 for γ > 3 ,
(15.4)

for the critical branching tree.

15.2.2 Fractality

Fractal scaling refers to a power-law relationship between the minimum number of
boxes NB(�B) needed to tile an entire network and the lateral size of the boxes �B,
that is,

NB(�B) ∼ �−dB
B , (15.5)

where dB is the fractal dimension [7]. This method is called the box-covering
method.

One may define the fractal dimension in another manner through the mass–radius
relation [7]. The average number of vertices 〈MC(�C)〉 within a box of lateral size
�C, called average box mass, scales in a power-law form,

〈MC(�C)〉 ∼ �dC
C , (15.6)

with the fractal dimension dC. This method is called the cluster-growing
method. The formulae (15.5) and (15.6) are equivalent when the relation N ∼
NB(�B)〈MC(�C)〉 holds for �B = �C. Such is the case for the conventional fractal
objects embedded in the Euclidean space [7] for which dB = dC. However, for
complex networks, the relation (15.6) is replaced by the small-world behavior,

〈MC(�C)〉 ∼ e�C/�0 , (15.7)

where �0 is a constant.
Thus, fractal scaling can be found in the box-covering method, but not in

the cluster-growing method for scale-free fractal networks. This contradiction can
be resolved by the fact that a vertex is counted into only a single box in the
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box-covering method, whereas in the cluster-growing method it can be counted
into multiple ones. The number of distinct boxes a vertex belongs to in the
cluster-growing method follows a broad distribution for scale-free networks. This
is in contrast to a Poisson-type distribution obtained from conventional fractal
objects [8].

The box-covering method runs as follows:

(i) Label all vertices as “not burned” (NB).
(ii) Select a vertex randomly at each step; this vertex serves as a seed.

(iii) Search the network by distance �B from the seed and burn all NB vertices.
Assign newly burned vertices to the new box. If no NB vertex is found, the box
is discarded.

(iv) Repeat (ii) and (iii) until all vertices are burned and assigned to a box.

This procedure is schematically illustrated in Fig. 15.1. Different Monte Carlo real-
izations of the procedure may yield a different number of boxes to cover the net-
work. Here, for simplicity, we choose the smallest number of boxes among all the
trials. The power-law behavior of the fractal scaling is obtained by at most O(10)
Monte Carlo trials for all fractal networks we studied. It should be noted that the
box number NB we employ is not the minimum number among all the possible
tiling configurations. Finding the actual minimum number over all configurations is
a challenging task by itself.

The origin of the fractal scaling has been studied [9–11]. We demonstrated
recently [11] that the fractal property can be understood from the existence of the
underlying skeleton [12]. When the skeleton is a critical branching tree, the struc-
ture is fractal, because the number of boxes needed to cover the original network is
almost identical to that needed to cover the skeleton. Thus, the fractal dimensions
of the original network and its skeleton are the same.

1

3 4

2

Fig. 15.1 Schematic illustration of the box-covering algorithm. Vertices are selected randomly,
for example, from vertex 1 to 4 successively. Vertices within distance �B = 1 from vertex 1
are assigned to a box represented by the continuous (red) circle. Vertices from vertex 2, not yet
assigned to their respective box are represented by the dashed–double dotted (black) closed curve,
vertices from vertex 3 are represented by the dashed–dotted (green) circle, and vertices from ver-
tex 4 are represented by the dashed (blue) ellipse
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15.3 The Phylogenetic Tree

We have downloaded the taxonomy data from the GenBank database [2], which
contains the names of all organisms with at least one nucleotide or protein sequence,
and then we examined the structural properties of the taxonomic tree. The obtained
taxonomic tree is composed of more than 500,000 nodes, allowing us to investigate
the evolutionary pattern of biological organisms. The taxonomic tree indicates that
the evolution of organisms proceeds in a branching process manner. The number
of branches corresponds to the number of mutants in the next generation. We find
that the distribution of the number of branches follows a power law. That is, the
probability Pb(k) that k different gene types of descendants are generated obeys a
power law, Pb(k) ∼ k−γ with γ ≈ 2.2. This fact suggests that the evolution takes
place in bursts. Moreover, we find that the mean branching rate is 1, suggesting that
the biological system maintains itself in self-organized way such that the diversity of
organisms maintains its steady state. Besides, the self-similarity and the correlation
between branching numbers turn out to be nontrivial.

15.3.1 Database

The taxonomy tree starts from a root that has five branches: viruses, viroids, cellular
organisms, other sequences, and unclassified. The total number of nodes was about
510,000 when we collected the data in June 2009. As the database is updated daily,
that number will have increased since then. The number of species on the tree is
about 400,000. The maximum lineage length is 41. For example, Homo sapiens is
located at the 31st step from the root via the path root → cellular organisms →
Eukaryota (superkingdom)→ Fungi/Metazoa group (kingdom)→Metazoa (king-
dom) → Eumetazoa → Bilateria → Coelomata → Deuterostomia → Chordata
(phylum) → Craniata (subphylum) → Vertebrata → Gnathostomata (superclass)
→ Teleostomi → Euteleostomi → Sarcopterygii → Tetrapoda → Amniota →
Mammalia(class)→ Theria→ Eutheria→ Euarchontoglires (superorder)→ Pri-
mates (order)→ Haplorrhini (suborder)→ Simiiformers (infraorder)→ Catarrhini
(parvorder)→ Hominoidea (primates)→ Hominidae (family)→ Homininae (sub-
family) → Homo(genus) → Homo sapiens(species) → Homo sapiens → nean-
derthalensis (subspecies).

15.3.2 Structural Features

The degree distribution of the taxonomy tree follows a power law with the exponent
−2.2. The mean branching number is 〈nb〉 = 1, indicating that the taxonomy tree
is a critical and scale-free branching tree. However, the degree–degree correlation
between two neighboring nodes is nontrivial as 〈knn〉(k) ∼ k−0.5, which implies
that the branching processes between two vertices has nontrivial correlation. Further
investigation associated with this numerical result has to be carried out.
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15.4 Evolution of Protein Interaction Networks

Protein interaction networks (PINs) have been studied in a variety of organisms,
including viruses [13], yeast [14], and C. elegans [15], in which nodes represent
proteins and links are connections between two proteins that physically interact
each other. Previous studies have focused on dynamical or computational aspects of
interacting proteins as well as their potential links. Construction of evolution models
of the PIN with biologically relevant ingredients has been also attractive. One of
the successful models was introduced by Solé et al. [16], in which three dynamic
processes of edges, such as duplication, mutation, and divergence, were used as
key ingredients of the evolution of protein interactions. Similar models that follow
this model are listed in the references [17–22]. Here we briefly introduce structural
features of the Solé model, and show that the protein interaction network contains a
generic critical branching tree underneath it. This feature may reflect that each mod-
ule in the protein interaction network was generated through evolutional processes
such as mutations and divergences as we observed in the phylogenetic tree.

15.4.1 The Solé Model

The model by Solé et al. is a growing network model in which the number of nodes
(proteins) increases by one at each time step, which is achieved in the form of
duplication: A new node duplicates a randomly chosen pre-existing protein and its
links are also endowed by its ancestor. Each link of the new protein is removed
with probability δ (divergence) and the new protein can also form links to any
pre-existing node with probability β/N (mutation), where N is the total number of
nodes existing at each time step. The two parameters δ and β control the densities
of short-ranged and long-ranged edges, respectively. This model has been solved
analytically [23]. Here, we review some important analytic results.

Let ns(N ) be the density of s-size clusters at time N , and g(z) = ∑
s sns zs the

generation function for sns , where the sum excludes the giant percolating cluster.
g(1) is the density of nodes belonging to finite clusters and g′(1) is the average clus-
ter size, that is, 〈s〉 = ∑

s2ns . The model exhibits an unconventional percolation
transition in which the parameter δ turns out to be irrelevant, and thus it is ignored
for the time being. Within this scheme, the analytic solution yields that

〈s〉 =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1− 2β −√1− 4β

2β2
for β ≤ βc ,

e−βG + G − 1

β(1− e−βG)
for β > βc ,

(15.8)

where G is the density of the giant cluster G = 1 − g(1) = 1 −∑
s sns . βc is

the percolation threshold and obtained as βc = 1/4. The cluster-size distribution
follows a power law,

ns ∼ s−τ , (15.9)
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where the exponent is solved as

τ = 1+ 2

1−√1− 4β
. (15.10)

This power-law behavior holds in the entire range β < βc, in contrast to the behavior
of the conventional percolation transition. At the transition point β = βc, the cluster-
size distribution decays as ns ∼ 1/[s3(ln s)3].

The order parameter of the percolation transition is written as

G(β) ∝ exp

(
− π√

4β − 1

)
. (15.11)

Thus, all derivatives of G(β) vanish as β → βc, and the transition is of infinite
order.

The degree distribution was also studied in [23] for general δ. When δ > 1/2 and
β > 0, the degree distribution follows a power law Pd(k) ∼ k−γ , where the degree
exponent is determined from the relation

γ (δ) = 1+ 1

1− δ − (1− δ)
γ−2. (15.12)

15.4.2 Numerical Results

To examine a percolation transition in parameter space, we measure the mean cluster
size 〈s〉 as a function of β at a fixed parameter value δ = 0.95, corresponding to the
case with little duplication of links. We find that the mean cluster size exhibits a peak
at transition point βc, which is estimated to be βc ≈ 0.29 (Fig. 15.2) . This critical
point is regarded as a percolation threshold. The percolation threshold βc varies as
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Fig. 15.2 Mean cluster size 〈s〉 versus β at δ = 0.95. The data, obtained from system size N = 105

(#), display a peak at the percolation transition estimated to be β ≈ 0.29. All data points are
averaged over 100 configurations
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Fig. 15.3 Plot of phase boundary between percolating and nonpercolating phases in the parameter
space of β and δ. Data are obtained from system sizes N = 103(�) and 104(◦)

a function of δ. Thus, we plot in Fig. 15.3 the mean cluster size as a function of β
and δ. The peak locus lies in the small β region, indicating that a small fraction of
long-range edges is sufficient to develop the giant cluster.

We show a giant cluster of the model network with small system size N = 104

at the percolation threshold in Fig. 15.4. This network is constructed with parameter
values β = 0.29 and δ = 0.95. The network topology is effectively a tree but with
small-size loops within it.

We examine the degree distributions of the giant component at evolution steps
N = 103 and N = 104 with parameter values δ = 0.58 and β = 0.16 and show
them in Fig. 15.5. It shows a power-law behavior. The dashed line in Fig. 15.5 has a
slope of −2.94, the theoretical value obtained from (15.12).

In order to see the fractality of the model network, we measure the number of
boxes NB as a function of box size �B using the box-covering method. In Fig. 15.6,

Fig. 15.4 Snapshot of the giant component near the percolation threshold δ = 0.95 and β = 0.29
with size N = 568
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Fig. 15.5 Degree distribution Pd (k) versus k for the giant component of the Solé model with
δ = 0.58 and β = 0.16. Shown are the distributions for N = 103 (◦) and 104 (�). The dotted line
is the predicted line with slope −2.94
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Fig. 15.6 a Fractal scaling analysis of the giant component (�) and its skeleton (•) near the per-
colation transition point δ = 0.95 and β = 0.29 (�, •) of the Solé model. The number of boxes
follows a heavy-tailed distribution. b However, data obtained at δ = 0.6 and β = 0.3 ($), located
far away from the percolation threshold, decay faster than the previous one. All data points are
log-binned and averaged over 100 configurations

NB(�B) exhibits a heavy-tailed distribution with respect to �B when the data are
obtained near the percolation threshold (δ = 0.95 and β = 0.29). The numbers of
boxes covering the skeleton for each box size are also shown in Fig. 15.6a: They
overlap with those covering the entire network. Since power-law behavior is not
manifest, one may wonder if this model network is indeed a fractal. Thus, we present
NB(�B) for the network obtained from a different parameter set, particularly, located
far away from the percolation threshold. Indeed, NB(�B) for this case decays fast
compared with that obtained near the percolation threshold.

The criticality of the skeleton is checked. We measure the mean branching
number function n̄(d) as a function of distance from a root. Indeed, it fluctuates
around 1, implying that the skeleton can be regarded as a critical branching tree and
thus manifestly a fractal (Fig. 15.7). Since the box numbers required to cover the
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Fig. 15.7 Mean branching number as a function of distance from a root for the skeleton of the
giant component of the Solé model produced by the parameter values δ = 0.95 and β = 0.29

entire network with each box size and the skeleton only are the same, we can say
that the entire network is a fractal.

15.5 Evolution of a Coauthorship Network

It would be interesting to compare the evolution pattern seen in biological systems
with that in social systems. To achieve this goal, we use a data set of a coauthorship
network of scientists doing research on complex network theory. Through fine-scale
measurements on various evolution mechanisms, we show that the social network
follows a couple of distinct evolutionary steps: a tree-like structure forms at an early
stage and large-scale loop structure develops at a later stage. We also show that a
genuine skeleton structure underneath the coauthorship network is also a critical and
scale-free branching tree.

15.5.1 Data Collection

To track time evolution of the coauthorship network, we first identify a set of
ground-breaking papers, which will serve as the root papers, which all subsequent
papers should cite. For complex network theory, we chose two papers, one by Watts
and Strogatz about the small-world network [24] and the other by Barabási and
Albert on the scale-free network [25], as the root papers. We further chose three
early review papers [26–28]. Then we considered that the authors of papers that
cited any of these five papers form the complex network coauthorship network.
According to Web of Science, by December 2008 there were 5,008 such papers
in total, with the information on the list of authors and the publication time in units
of months, written by 6,816 nonredundant authors (in terms of their last name and
initials) for the period spanning 127 months (from June 1998 to December 2008).
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In the coauthorship network, a link is made between two nodes (researchers) if they
are coauthors of at least one paper. The weight of the link is given by the number
of papers they have coauthored. To track the time evolution of the network, we
generated the coauthorship network for each month, from the papers published up
to that month.

15.5.2 Evolution of a Large-Scale Structure

Temporal analysis reveals a global structural transition of the network through three
major regimes (Fig. 15.8c): (I) nucleation of small isolated components, (II) for-
mation of a tree-like giant component by cluster aggregation, and (III) network
entanglement by long-range links. Subsequently, the network reaches the steady
state, in which the mean separation between two nodes stabilizes around a finite
value. The locality constraint, that is, new links are formed much more locally than
globally, played an important role in sustaining the network’s tree-like structure
in regime II. Here, by tree-like structure we mean that the network is dominated
by short-range loops and devoid of long-range connections, thus becoming a tree
when coarse-grained into the network of supernodes, corresponding in this case
to groups led by each principal investigator. This implies that most papers are
the result of in-group collaborations. If the locality effect were weak, the inter-

Fig. 15.8 Evolution of large-scale structure of the complex network coauthorship network. a The
number of nodes as a function of time. b The size of the largest component as a function of time.
c The mean separation between two nodes of the largest component as a function of time
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mediate stage II would not appear. Moreover, such a tree-like structure is a frac-
tal [29, 30] and is sustained even underneath the entangled network even in the
late regime III. This structure is unveiled upon the removal of inactivated edges,
and has the same fractal dimension as in the tree-like structure. This implies that
a hidden ordered structure with the same fractal dimension underlies the evolution
process.

To see whether the general pattern of evolution conforms to that of conventional
network growth models [25–27], we visualized snapshots of the network in time,
as shown in Figs. 15.9, 15.10, 15.11 and 15.12. The network grows both by the
expansion and merging of the existing components and by a continuous introduction
of new components, as seen in the sea of small components surrounding the largest
component at all stages. In the early stage, the largest component grows in a tree-like
manner, in that it branches more and deeper as time goes on, but rarely establishes
links between branches. It leads to the gradual increase of the largest component size
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Fig. 15.9 Snapshot of the coauthorship network in October 2002 in regime I
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Fig. 15.10 Snapshot of the coauthorship network in August 2003 in early regime II. The network
is effectively a tree

and diameter, with a few intermittent jumps resulting from the merging of the small
but macroscopic component to the largest one. Not until 2004 does a large-scale loop
appear formed by a long-distance interbranch link (Figs. 15.11 and 15.12). Such
a long-range loop formation can be monitored by the sudden drop in the largest
component diameter. From then on more and more large-scale loops are formed,
resulting in more entangled giant component structure.

15.5.3 Fractal Structure and Critical Branching Tree

The network has grown both by the expansion and merging of existing com-
ponents and by the continuous introduction of new components. In intermedi-
ate time regime II, the giant component grows in a tree-like manner, it branches
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Fig. 15.11 Snapshot of the coauthorship network in February 2004 in regime II

out more, and more deeply, with the passage of time, but rarely establishes links
between branches. Component sizes become inhomogeneous in the growth pro-
cess. The ramified network topology is reminiscent of the diffusion-limited aggre-
gation (DLA) cluster. We find indeed that the giant component is a fractal with the
fractal dimension dB ≈ 1.7, close to that of the DLA cluster in two dimensions.
We also find that the skeleton of the fractal network is a critical branching tree
(Fig. 15.13).

Coauthorship links may be no longer active if the collaboration has ceased long
ago. Thus, to ensure that the generic structural features remain robust, we examine
how the overall network structure is affected in the presence of a link degradation
process, that is, removal of redundant edges. The central issue would be whether the
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Fig. 15.12 Snapshot of the coauthorship network in March 2004 in regime II

giant component persists in the system. To this end, for each month, we removed
all the links that had not been re-activated during the previous 2 years – a typical
postdoctoral contract period. We find that 86% of the links formed up to the year
2006 eventually disappeared before the end of 2008 according to the 2-year inacti-
vation rule. However, the giant component not only persists upon degradation, but
is also more stable, in the sense that its relative size S has been stable at ≈10% of
the total network since 2000. At the same time, the link-degraded giant component
(LDGC) is highly dynamic, in that its members constantly change over time. At
the end of 2008, 1,195 nodes formed the LDGC, among which only 272 were the
LDGC members in December 2006, when it was composed of 727. This indicates
that complex network research is still a vigorous field [31]. The LDGC exhibits a
tree-like structure throughout the observation period, implying that such a tree-like
spanning component structure exists to provide a dynamic backbone underlying
the complex original interwoven network. Furthermore, the LDGC resembles the
original giant component in regime II, and their fractal dimensions are the same
as dB ≈ 1.7(1). The skeleton of the remaining fractal structure is also a critical
branching tree (Fig. 15.13).
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Fig. 15.13 a Fractal scaling and b mean branching number for the coauthorship network. Data are
for the giant component in February 2004

15.6 Conclusions

In this chapter, we have studied the structural properties of the phylogenetic tree,
the skeletons of the yeast protein interaction network, and the coauthorship network
(whose authors do research on complex networks). Through this study, we found
the evolution patterns of these systems. Interestingly, there exists a common feature
arising in all these systems, which is the presence of critical and scale-free branching
trees. This suggests common evolutionary processes behind these structures: that
evolution takes place in bursts, but in a self-organized manner in biological and
social systems.
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Chapter 16
From Swarms to Societies: Origins
of Social Organization

Alexander S. Mikhailov

Abstract What are the distinguishing features of socially organized systems, as
contrasted to the other known forms of self-organization? Can one define a society in
abstract terms, without referring to the specific nature of its elements and thus mak-
ing the definition applicable to a broad class of systems of various origins? Is social
evolution different from biological evolution? This chapter attempts to approach
such questions in a general perspective, without technical details and mathematical
equations.

16.1 What Is a Society?

In 1944, Erwin Schrödinger gave a series of lectures in Dublin and later published
a book [1] with the title What is Life? This small book had a great impact and
continues to fascinate researchers. Analyzing experimental data, Schrödinger con-
jectured that the material basis of biological evolution should be at the molecular
level, because only molecules can guarantee safe storage of genetic information and
its precise transfer to the next generations. His ideas opened the way to the discovery
of the DNA code.

In the same book, Schrödinger also touched on a different aspect of the problem.
Why are biological processes so different from what is observed in physical sys-
tems? How can one explain that biological systems tend to maintain and increase
their order, in apparent contradiction to the second law of thermodynamics, which
states that entropy – the measure of disorder – must increase with time? According
to him, this behavior is possible because living biological systems are open, receiv-
ing energy and/or matter from external sources and dissipating energy or releas-
ing the products into the environment. Together with the flows of mass or energy,
entropy can be exported, so that its content within a system remains constant or even
decreases with time, despite persistent entropy production.
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Explicit examples of self-organization processes were subsequently given by
Turing [2] and Prigogine [3], initiating many publications on nonlinear pattern for-
mation far from thermal equilibrium. In such studies, reaction–diffusion systems are
usually considered. They can be viewed as formed by active nonlinear elements with
local interactions through diffusional flows caused by concentration gradients. It has
been found that such systems can support a variety of dissipative structures main-
tained under energy supply. Not only uniform synchronous oscillations, stationary
patterns, or traveling waves, but also chaotic regimes and turbulence are possible
[4, 5].

Investigations revealed that essentially the same models are repeated again at
different levels of biological or ecological organization. For example, actively trav-
eling waves can be observed inside single biological cells and are found in cell
populations. They are of principal importance for operation of the heart and are
also observed in the brain. Similar wave structures exist in spatially distributed
ecological populations. The lesson learned from such investigations was that in
mathematical biology attention should be focused on the search for and analysis
of generic models describing self-organization processes [6].

With this experience, it seems natural to ask whether there are also some char-
acteristic models that should be used to describe social phenomena. Do social
self-organization phenomena represent a variant of behavior already seen in more
primitive chemical or biological systems? Or are we dealing here with a distinc-
tive kind of models that become essential only at the next, and higher, level of
self-organization?

16.2 Swarms and Active Fluids

While particles in a reaction–diffusion system are passively transported by diffusion,
agents of a social system are able to move themselves, determining the direction
and the magnitude of their motion. This ability is already characteristic for simple,
single-cell organisms. In the behavior known as chemotaxis, bacteria can control
their active motion, steering according to gradients of chemical substances. The
direction and the velocity of active motion of an agent can moreover be influenced
by its perception of other active agents in its neighborhood. Again, this is possi-
ble already for primitive microorganisms where chemical communication is typical
(a cell releases chemical substances into the growth medium, whose presence can
be sensed by the other cells, affecting their motions). Such behavior is characteristic
for animals such as fish, birds, or sheep that are permanently sensing the presence
of other individuals around them and adjusting their motion accordingly [7, 8].

If interactions are attractive, compact groups of actively moving agents become
formed. Such groups are generally known as swarms, although they may also bear
different specific names (schools of fish, flocks of birds, or herds of sheep). In the
swarms, coherent collective motion of a population takes place. Usually, a swarm
moves towards areas with higher nutritional value or to avoid predators. Swarms
can be seen as possessing a certain degree of collective intelligence [9]. An optimal
size of a swarm is typically maintained. Running into an obstacle, a swarm becomes
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split, but later rejoins. Separation into a number of smaller swarms can take place
under a predator attack.

Investigations of swarm models have become popular within the last decade. The
motivation is to understand the collective behavior of particular biological species.
Many projects dealing with swarm models are, however, stimulated by military
applications. The vision is to develop flocks of miniature flying (or otherwise mov-
ing) robots that collectively attack and destroy targets.

Under spatial confinement, a high density of agents can be maintained even when
attractive interactions between them are absent (short-range repulsive interactions
are obviously always present, e.g., as an effect of excluded volume). A population
behaves then as an active fluid. Bacterial films provide a good example of such
systems. Active fluids are described by models that are an extension of the Navier–
Stokes equations for classical fluids (see, e.g., [10]).

Under certain conditions, human populations behave as swarms or active fluids.
This is clear when such behavior as evacuation under panic is considered. Pilgrims
circling around the sacred stone in Mecca provide an impressive example. A closely
related behavior is exhibited by traffic flows. Cars on highways, controlled by intel-
ligent drivers, behave not very differently from primitive bacteria forming biofluids
[11, 12]. It is, however, obvious that swarm and active-fluid behavior cannot be
considered as a distinguishing property of social self-organization.

16.3 Internal Dynamics and Communication

Even molecules may have different internal states, transitions between which follow
dynamical laws. The level of internal organization increases sharply when biological
cells are considered. Animals and humans are agents with great internal complexity.
To specify a state of such an agent, it is not enough to indicate only its spatial
location.

In addition to spatial coordinates, an active agent is characterized by a number of
internal coordinates, so that the dynamics of a population of agents proceeds both in
the coordinate and the internal space. Note that the dimension of the internal space
of a population is much larger than that of the coordinate space.

Communicating, agents can exchange information about their internal states.
Single cells can communicate using chemical signals or elastic strains. Animals use
optical and acoustic signals. Humans have developed sophisticated communication
tools, such as languages, and electronic communication is currently employed. In a
modern society, local human contacts are complemented by communication through
mass media, enabling persons or groups to address a large audience.

When discussing communication aspects, emphasis is often placed on the
exchange of signals immediately influencing the dynamics of involved agents, but
information can also be laid aside and stored, allowing its communication at a
later time and even information transfer to the next generation. Stored information
accounts for the emergence of culture, which has played a fundamental role in the
transition from biological to social evolution. Note that culture does not necessarily
involve language and other advanced means. Material culture is already expressed,
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for example, in the modifications of environment resulting from the activity of
agents. When ants chemically mark their tracks, a primitive form of material culture
is already involved [13].

Communication is typically nonlocal in the internal space, in terms of internal
variables of communicating agents. There is no general reason to expect that a sig-
nal, reflecting an internal state of an individual, will only affect other individuals in
close internal states.

16.4 Synchronization

Through interactions, coherent dynamics of a group of agents can emerge. Such
coherence is already characteristic for swarms which represent groups of agents
compactly located in the coordinate space and traveling there as single entities.
Coherence can also develop in the internal space of agents. Then, swarms are formed
with respect to the internal coordinates of their members. Generally, coherence is
revealed in synchronization of individual processes and implies the presence of cor-
relations between dynamical variables of the agents.

When the internal dynamics of elements is cyclic, so that the same internal
motions are repeatedly performed, phase variables can be introduced. The phase
of an oscillator specifies its current position within the cycle. If complete phase
synchronization takes place, dynamical states of all oscillators become identical and
the entire population oscillates as a single element. It can also be that not phases but
velocities of internal motions become synchronized.

In heterogeneous populations, it may happen that only a subset of agents under-
goes synchronization, starting to move as a swarm, while other elements are not
entrained. Synchronization can persist in the presence of fluctuations and noise. Not
only periodic oscillators, but even elements with intrinsically chaotic dynamics can
synchronize [14–16].

Coherence must play an important role in any society. Indeed, the ultimate rea-
son for the existence of a society is that, collectively, a group of agents is able to
accomplish tasks beyond the reach of individual members. But this is possible only
if actions of the agents are coherent.

However, social organization is certainly much more complex than simple syn-
chronous dynamics. When the states of all members are nearly identical, the whole
population behaves just like a single element. Such collective dynamics, while being
highly ordered, would obviously lack the complexity and richness expected for a
society.

16.5 Clustering

Investigations show that, in a population of identical agents, clusters can sponta-
neously develop as a result of interactions. Effects of dynamical clustering have
been extensively discussed by Kaneko in his studies of globally coupled logistic
maps [17]. They were also considered for chaotic Rössler oscillators (see [16]).
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A good illustration of clustering was provided by a study [18] in which a popu-
lation of identical agents, each possessing its own neural network, was investigated.
The neural network of an individual agent was chosen to generate persistent chaotic
oscillations. The agents could communicate, exchanging limited information about
their mental states (for details, see [18]). The communication was global, in the
sense that each agent responded only to an average of the signals received by it from
all other population members and each agent communicated with all of them. A sub-
set of neurons in each network was sensitive to communication, so that the dynamics
was determined by a combination of the internal signal and the population-averaged
external signals. The relative weight of the external signals in such a combination
determined the interaction intensity.

When interactions were absent or very weak, the “mental” dynamics of different
agents was independent and noncorrelated. As the interaction strength was gradu-
ally increased, a remarkable transition took place, however. The internal states (i.e.,
instantaneous network activity patterns) of some agents became identical. These
coherently operating agents formed several groups or clusters, with the internal
states being the same within any of them. The rest of the population remained
nonentrained and their internal states were random.

The increase of interaction intensity led to the growth of coherent clusters, until
eventually they included all population members. The fully clustered state persisted
within an interval of interaction strength. As the interactions were further increased,
the clusters disappeared and became finally replaced by a synchronous regime where
the internal states of all agents were identical [18].

This sequence of transitions is typical for various globally coupled populations
of chaotic elements, including logistic maps and Rössler oscillators (see [16]). In
the above example, however, individual oscillators have complex internal organiza-
tion, each representing a certain neural network. As the strength of global coupling
is increased, asynchronous dynamics of individual oscillators become transformed
into the synchronous dynamics of the entire ensemble. The final full synchronization
is, however, preceded by the regimes with dynamical clustering, where coherent
oscillator groups are formed.

The properties of clustered dynamics are interesting. While the dynamics of all
elements within a particular cluster are identical, such dynamics is different for
different clusters, depending on their relative sizes. Identical agents become spon-
taneously distributed into a set of coherently operating groups and their internal
dynamics gets differentiated, depending on the particular coherent group to which
they belong. Thus, symmetry is broken and an ordered state of a population emerges.

Such phenomena can be viewed as a paradigm of primary social self-
organization, where a homogeneous population undergoes spontaneous structur-
ing. The seeds of coherently operating groups emerge and grow as the intensity of
communication and its efficiency are increased. Each group has its own dynamics,
affected, however, by the interactions with other coherent groups and with nonen-
trained agents, if they are still present.

For populations of logistic maps, special numerical investigations have been per-
formed, revealing that they behave as dynamical glasses [19, 20]. This means that
such systems have a large number of different coexisting dynamical attractors, each



372 A.S. Mikhailov

corresponding to a particular partition of elements into the clusters. Depending on
initial conditions, the same population may disaggregate into a different number of
clusters of variable sizes. The collective dynamics of a population is different for
each of the cluster partitions. Moreover, so-called “replica symmetry” can become
violated, implying that, among various possible kinds of collective dynamics in dif-
ferent clustered states, one would always be able to find dynamical behavior of any
degree of similarity. It seems feasible that other populations of chaotic elements,
including the above example of communicating neural-network agents, also repre-
sent dynamical glasses in their clustered states.

It should be noted that clustering is possible even for agents that represent
simpler, periodic oscillators. In this case, however, the number of developing
clusters and their sizes are usually uniquely determined by interactions between
them [16].

Moreover, clusters can develop as a result of a Turing instability in globally
coupled systems. In this case, oscillations are absent. All oscillators belonging to
a cluster are in the same stationary internal state, but these states vary for different
clusters [21].

Generally, clustering means that functional structure develops in an initially uni-
form population, with different functional roles played by self-organized groups.
The presence of such structure distinguishes clustered populations from homoge-
neous swarms.

16.6 Hierarchies

Hierarchies are ubiquitous in nature. Quarks and gluons, as elementary particles,
form protons and neutrons, which make up the atomic nuclei, that, together with
electrons, combine to form atoms. Atoms give rise to molecules, which in turn
constitute solid bodies, fluids, or gases. Interactions between them produce all the
systems of the macroscopic world. This physical hierarchy extends further to plan-
ets, stars, and galaxies.

The lowest level of the biological hierarchy is formed by elementary biochem-
ical reactions that combine to produce complex chains. A sophisticated system of
such reaction chains builds up a living cell. Interacting cells constitute a biological
organism. Animals and plants form populations whose interactions determine all
processes in the biosphere.

The above examples refer to gross hierarchies whose existence is obvious. A
detailed analysis would, however, also often reveal the hierarchical structure of var-
ious particular processes in biological organisms, ecological systems, and human
societies. Apparently, the hierarchical organization is not accidental. It must be
essential for functioning of complex living systems.

To understand the origins and the role of natural dynamic hierarchies, let us return
to physics. Subsequent structural levels correspond here to the operation of different
forces responsible for interactions between elements. It can be noted that forces
acting at lower levels are significantly stronger. The hierarchy of structures has its
parallel in a hierarchy of interactions – from extremely strong nuclear forces to
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relatively weak electromagnetic interactions and further to very weak gravitational
effects.

The hierarchy of interactions makes physical systems nearly decomposable. If
we could switch off electromagnetic forces, we would see that atomic nuclei still
exist, but atoms and molecules already do not form. If gravitational forces were
eliminated, planets, stars, and galaxies would be absent, but all lower levels of the
structural physical hierarchy would be left intact.

The decomposability implies that, to describe structure formation at a certain
hierarchical level, one needs to take into account only the forces operating at this
particular level. For example, atomic nuclei are produced by strong nuclear interac-
tions between protons and neutrons. The influence of the electromagnetic force can
here be neglected. If we move one step higher and consider atoms and molecules,
the dominant role is played by electromagnetic interactions. Such interactions oper-
ate in a system made of nuclei and electrons. Though the nuclei actually have a
complex internal structure, they can be viewed as simple particles at such a higher
structural level. This becomes possible because electromagnetic forces are too weak
to interfere considerably with the internal organization of nuclei.

Note that the same forces can give rise to interactions of varying strength. The
interactions between atoms and molecules are also essentially electrostatic, though
they are much weaker than the interactions between particles inside an atom. This
is explained by the fact that the total electric charge of such composite particles is
zero, and hence the principal electrostatic forces are shielded to a large extent. The
residual forces give rise to weak dipole–dipole or van der Waals interactions, which
are responsible for the formation of liquids or solids.

The decomposability of physical systems plays a fundamental role. If all inter-
actions had the same strength, the separation into different structural levels would
have not been possible. Then the whole Universe would have been represented just
by a single huge nondifferentiated structure.

Apparently, a similar decomposability underlies various biological and social
hierarchies. The problem is how to compare and define the “strength” of biologi-
cal or social interactions. Indeed, all physical forces are quantitatively well defined
by the respective laws. Their intensities are measured in the same units and can
easily be compared. In contrast to this, no universal dynamical laws are available
for biological and social systems. At most, we have here various phenomenological
models that describe particular aspects of their behavior.

The strength of interactions in a physical system determines the time scale of the
processes resulting from such interactions. The stronger the interactions, the shorter
the characteristic time scale of the respective process. Indeed, if an elastic string is
stiffer and a stronger force is needed to expand it, the oscillation period of this string
is smaller. The structural hierarchy of physical systems corresponds to a hierarchy
of their time scales.

This suggests that we can estimate and compare the strength of chemical, bio-
logical or social interactions by looking at their characteristic time scales. Viewed
from this perspective, interactions between biochemical reactions in a living cell are
strong, since they lead to characteristic times of a millisecond. Physiological pro-
cesses in a human body correspond to weaker interactions, since their characteristic
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times would typically lie in the range of seconds or minutes. Social dynamics of
small human groups proceeds on the scale of hours or days, whereas large social
groups evolve only on the scale of months or years.

The separation of time scales is important. Because of it, slow processes of a
higher structural level cannot directly interfere with the dynamics at lower levels.
However, they can effectively guide this dynamics by setting conditions under which
it takes place. Variables of a higher structural level can play the role of control
parameters for the subordinated systems of a lower level. Their slow evolution
induces instabilities and bifurcations in such systems, switching their dynamical
behavior. On the other hand, low-level processes also cannot interfere with the
high-level dynamics. These processes are so rapid that their influence on the slow
dynamics of a high-level structure is simply averaged out.

Thus, biological and social systems are also nearly decomposable. Self-
organization of structural units at any hierarchical level is determined by interactions
with the time scale corresponding to this level. When higher levels are considered,
elements of a previous level can be viewed as simple objects described by a small
number of relevant properties. Consequently, theoretical understanding and mathe-
matical modeling of emerging hierarchically organized patterns becomes possible.

From a general perspective, hierarchical organization provides a solution of an
apparent contradiction between the complexity of a dynamics and its stability and
predictability. At a first glance, the collective dynamics of more complex systems,
consisting of a larger number of various interacting components, would generally be
expected to be more complicated and less predictable. If, however, a complex system
is appropriately hierarchically designed, its behavior can still be quite regular.

Emergence of hierarchies must represent an important aspect of self-organization
behavior. At present, however, this kind of self-organization remains very poorly
understood. The difficulty is the formulation of simple mathematical models that
would allow spontaneous development of a hierarchy characterized by variation of
time scales of the processes taking place at different levels. Although some examples
are available, much remains to be done in this direction.

16.7 Networks

As we have noted above, interactions between agents are usually not local in terms
of their internal states, that is, even agents with strongly different internal conditions
can communicate and affect the internal dynamics of each other. Moreover, spatial
locality of interactions, requiring that only immediate spatial neighbors communi-
cate, is also gradually being eliminated in biological and social evolution. Acousti-
cal and optical communication has long ranges and the range of modern electronic
communication is practically infinite.

Nonlocality of interactions allows an agent to broadcast information to the entire
population. On the other hand, it is also obvious that, even in relatively small pop-
ulations, the amount of information received by an agent from other population
members under such global communication would be too large. Only some selected
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pieces of information, essential for all population members (e.g., alerting of poten-
tial common dangers), need to be broadly broadcast.

Most of the information is communicated in an addressed manner, so that an
agent effectively interacts only with a relatively small number of other agents. Thus,
networks are established. The nodes of a network are individual agents; two nodes
are connected by a link if there is communication between them. These networks are
distributed dynamical systems. Each agent, occupying a network node, has its own
internal dynamics (and may also actively move in the coordinate space). Signals,
received by an agent along the links from other agents, affect its internal dynamics.
In heterogeneous populations with variation in the properties of agents, the presence
of a connection between two nodes can be determined by particular properties of
these agents. Then, the connections are fixed and independent of the dynamical
processes taking place inside the network. However, connections can also be estab-
lished or broken depending on the current (or past) internal states of the agents.
Already available links can be used more or less intensively for communication,
depending on the internal dynamics of agents. Generally, networks are flexible and
their architecture can change, reflecting changes in the activity patterns of the pop-
ulation (and also strongly influencing such activity patterns).

The presence of self-organizing dynamical networks can be considered as a gen-
eral property that distinguishes societies from more primitive forms of population
organization, such as swarms.

16.8 Coherent Patterns and Turbulence

Interactions between dynamical elements – nodes of a network – may lead to the
development of coherent patterns of network activity. The simplest kind of coher-
ence is synchronization, that is, a regime where internal states of all network ele-
ments become identical or sufficiently close. Synchronization is already possible
for globally coupled systems and it is also known for spatially extended reaction–
diffusion systems, where it corresponds to stable uniform oscillations. More com-
plex forms of coherent dynamics, which would correspond to clustering or traveling
waves in reaction–diffusion models, should, however, be also possible in networks.

Coherence develops through interactions between elements, and only if these
interactions are strong enough. Decreasing the intensity of interaction, destruction
of coherent activity patterns, and emergence of chaos (or network turbulence) can
usually take place.

Generally, the difference between coherent regimes and turbulence lies in the
presence of correlations between internal dynamical states of network elements.
Coherence can thus be revealed through the analysis of correlations in the behavior
of individual agents. Another way to characterize such differences is to consider the
number of effective degrees of freedom involved in the generation of a particular
dynamics (in the theory of dynamical systems, this corresponds to the “embedding
dimension” of a system).

Coherent network dynamics is governed by a relatively small number of under-
lying collective dynamical variables, known as order parameters. The dynamics of
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individual agents are enslaved by order parameters and many internal variables of
the agents are controlled by them. In the state of extensive chaos or turbulence, the
order parameters disappear and the embedding dimension of the dynamics becomes
proportional to the overall size of the system.

Coherent patterns in spatially extended reaction–diffusion systems represent
some spatial structures, stationary or time-dependent. In networks where spatial
separations and coordinates are irrelevant, coherent patterns are some network struc-
tures.

The transition from synchronization to turbulence has been numerically investi-
gated for networks of coupled logistic maps [22]. Similar to globally coupled pop-
ulations of logistic maps, clustered dynamical states were found within an interval
of interaction intensities in the transition region. Several clusters of different sizes
were usually observed. Within a cluster, the states of elements were close (but not
identical).

Each cluster represents a coherent group and can be viewed as a new, effec-
tive dynamical unit. Such new units continue to interact and their mutual dynamics
determines the collective behavior of the entire population. While internal states
of agents in a group are nearly identical, their temporal evolution depends on the
current activity states of other coherent groups.

Considering interactions between the groups, one can notice that they are gen-
erally different and their presence and intensity are determined by the architecture
of network connections between individual agents. Obviously, two groups of agents
can only interact if there are some interactions between their members. Therefore,
a system of interacting coherent groups will itself represent a certain dynamical
network.

For logistic maps, different cluster partitions are usually possible for the same
parameter values. This means that, in the clustering regime, such systems are char-
acterized by multistability. Depending on initial conditions, the same population can
build up various coherent states with different cluster organization. The number of
coherent groups, their sizes, and composition can be different in each of these states.
Since interacting coherent groups form a network, the same network system can
give rise to various socially organized networks with different collective dynamics,
depending on a particular cluster partition [22].

The transition from synchronization to turbulence, proceeding through self-
organized coherent patterns, has also been investigated for networks of periodic
oscillators. On the other hand, self-organized stationary patterns, representing
an analog of Turing patterns in reaction–diffusion systems, are also possible in
networks [21].

16.9 Feedback and Control

A society can operate in an ordered and predictable way only if it finds itself in
a coherent state and is not degenerated to the state of chaos. On the other hand, its
organization should also be flexible, not hindering social evolution and adaptation to



16 From Swarms to Societies 377

environmental changes. To maintain ordered functioning of a society, some control
mechanisms should usually be employed.

One mechanism consists in imposing rigid centralized control, where each soci-
ety member receives commands dictating what its actions should be. In an absolutist
state, the sovereign directly controls all actions of his subordinates. Remarkably,
centralized control re-emerged in communist states, motivated by the ideology that
can be traced back to the mechanistic concepts of the nineteenth century. If the laws
of a society are all known, should it not be possible to determine, based on such
laws, what are the correct actions of every society member and enforce them?

However, such rigid controls are only possible in systems with primitive organi-
zation. When each element of a society is involved in a variety of subtle interactions
with other members, centrally issued commands will often destructively interfere
with intrinsic social interactions and their effects may be unpredictable. Instead of
imposing order, rigid central control may well bring a society to chaos.

A society is a self-organized system. Forces and perturbations used for its
control should not interfere destructively with the processes responsible for self-
organization. Instead, steering of social processes should be performed by creat-
ing conditions and biases that favor the development of the required self-organized
structures. The control is particularly efficient near critical points and bifurcations,
where even weak perturbations may be enough to select a particular kind of coherent
collective behavior.

In principle, control perturbations needed to maintain a system in a desired self-
organized state can be computed if the laws governing the system dynamics are
known. However, this is rarely the case and, moreover, environmental conditions
can vary, making such a method impracticable. Instead, control methods employing
certain feedbacks may be employed.

In the feedback control, signals and perturbations acting on a system are col-
lectively generated by all population members or a subset of them. Thus, control
perturbations are automatically adjusted to the current activity state of a system
and, moreover, they also accommodate changes in the environmental conditions. In
this manner, particular self-organized states can be induced and stabilized.

As an example, a recent study [23] can be mentioned. There, a network formed
by interacting phase oscillators was considered. Interactions were chosen in such a
way that network turbulence was intrinsically established in the absence of control.
Global feedback was used, so that each oscillator additionally experienced a force
collectively generated by the whole population. The feedback was chosen in such
a way that, acting alone, it would have induced synchronization. When the feed-
back was introduced and its intensity varied, the transition from network turbulence
to complete synchronization could be observed. Furthermore, it was also possible
to choose the feedback intensity so that the system was kept inside the transition
region, that is, in the regime with partial synchronization characterized by certain
coherent patterns.

The laws imposed by parliaments and governments in modern societies can
be viewed as providing feedback controls, aimed at maintaining a society in a
desired state. They should not be too strong and restrictive, disrupting important
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self-organization processes. Ideally, they must be designed in such a way that only
certain biases and preferences are created.

16.10 Social Evolution

The transition from biological to social evolution took place when, instead of genet-
ically transferring acquired changes, cultural transfer of innovations from one gen-
eration to another became possible. Once social evolution had been initiated, it led,
within an unprecedentedly short historical time, to explosive growth of culturally
transferred information.

In a changing world, society must evolve in response to variable challenges.
At the same time, it should also exhibit robustness, so that it is not destroyed by
perturbations.

Robustness can be achieved through negative feedbacks, as already suggested by
Wiener in his cybernetics approach. Recent investigations additionally show that
robustness can also be enhanced at the structural level, by using networks with
special self-correction properties [24]. Such networks, resulting from an evolution
process, can maintain their functions despite structural perturbations or action of
noise.

On the other hand, a certain degree of fluctuations and variability must be
retained to ensure efficient evolution of a society. Similar to biological evolution,
a persistent flow of “mutations” is needed to provide the material for subsequent
selection. In social systems, mutations represent innovations and seeds of new social
structures. Such fluctuations should not be suppressed, hindering social progress.

The presence of fluctuations can also be of vital importance to guarantee that a
society recovers, by rearranging itself, after large-scale perturbations. Recovery is
facilitated if the society had in advance the seeds of new structures that are required
for responding to a perturbation. Otherwise, adaptation may need to go through
the process of chaos development, with a danger of complete disruption of social
organization.

Thus, the optimal control strategy should be aimed at balancing within the inter-
val separating rigid organization from social chaos. It has been already proposed
that balancing on the edge of chaos might be a characteristic property of all com-
plex living systems. There are good reasons to believe that this can be essential for
complexly organized social systems, too.

16.11 Open Questions and Perspectives

Further progress in mathematical modeling of societies would require extensive
studies of self-organization phenomena in dynamical networks. What are the insta-
bilities and bifurcations possible in such systems? What kinds of self-organized
coherent patterns, beyond full synchronization and clustering, can spontaneously
develop in the networks? What are their characteristic features and how can the
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presence of self-organized patterns be detected in the data? What are the properties
of network turbulence? What coherent patterns can exist in the regimes of intermit-
tent turbulence in networks?

Control of network dynamics is a field where very little research has so far
been carried out. How can feedback be introduced that would not impose complete
synchronization, but instead stabilize certain desired coherent patterns of network
activity? What kinds of feedback are needed if one only wants to suppress hazardous
fluctuations, leaving intact basic social self-organization processes?

In addition to dynamical processes that take place in given networks, dynamics
of the networks must also be considered. The architecture of a network can change
depending on its activity pattern. Growth, disintegration, and fusion of the networks
are possible. Feedback may act on the network architecture, so that network archi-
tectures that generate needed activity patterns become stabilized or established.

How can networks interact? What are the evolution processes in network popula-
tions? How can “culture” be defined in abstract terms and how can cultural evolution
be modeled mathematically?

How can networks with specific dynamical properties be designed and engi-
neered? Can functional networks with desired coherent activity patterns, which are
robust against random damage and noise, be constructed?

Providing answers to these questions would be important not only for social
research. The constructed generic models and approaches can be used in the design
and control of robot populations with the elements of social organization. They
will be essential in the introduction of mechanisms governing interactions between
robots and human communities.

In this chapter, I have covered a broad spectrum of problems and could only
outline them briefly. My aim was not to provide a review of the considered topics
and I have not provided here a systematic list of references to specific publications.
Further details of the discussed models and related references can be found in the
monograph [25].
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