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Preface

Overview

Each century has its own scientific and engineering paradigm. The nineteenth
century was the age of steam engines, and the twentieth century was the age of
nuclear energy. Both centuries were characterized by extremely fast growth in
regard to consumption of energy and resources. At the end of the twentieth century,
energy and resource issues became the priorities in the development of all leading
fields of industry and economy all over the world. American Cadillac battleships
passed into oblivion, and the main interest today is in cost-efficient Japanese cars.
Now, in the second decade of the twenty-first century, the priority task can be
defined as efficient utilization of resources and energy, which requires significant
effort from all branches of economy, industry, and science. One of the main ave-
nues toward reaching this goal is the development of mini- and microtechnologies
and devices with improved performance. Nanotechnologies are also within this
category.

A typical trend in the worldwide engineering market over the last three decades
has been the development of microsystem engineering (MSE) and corresponding
technologies. MSE devices ensure the generation, conversion, and transfer of
energy and motion, as well as the analysis, processing, compilation, and storage of
information. A mere list of already used and developed MSE devices would require
a special review. To mention but a small number of examples: heads for hard disk
storage drives, heads for jet printers, cardio-pacemakers, in vitro diagnostic tools,
deaf-aid devices, pressure transducers, chemical sensors, magnetoresistive sensors,
microspectrometers, drug delivery systems, on-chip laboratories, high-resolution
DNA liquid chromatography, injectors, micronozzles (thrusters) for space vehicles,
and various microelectromechanical system (MEMS), which are followed by
nanoelectromechanical systems (NEMS). This list is far from complete. It should be
emphasized that rapid diversification of this field has been observed since the
1990s. Many new applications have been developed for medicine, pharmacology,
biology, thermal engineering, catalysis, etc. The advantages of MSE devices and
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technologies are their high operational characteristics (mass, size, weight, energy,
etc.). The MSE market has been intensely developed all over the world, though it is
still not yet completely formed. The cost of this market increases by approximately
20 percent every year and now reaches more than 100 billion dollars.

In practice, many MSE devices and technologies involve fluid flows in
microchannels. Nanoflows have already become a focus of interest in this century.
This is not only due to the development of nanotechnologies for various purposes,
but also due to research in fairly traditional fields, such as biology, geophysics,
thermal engineering. Up to now, transportation of nutrients in plants and living
organisms is still one of the most mysterious of processes. Investigations into
various microporous coatings and the flows in such coatings are intensely per-
formed. The pore size in typical oil- and gas-bearing formations varies from tens of
nanometers to tens of micrometers, which means that both nanoflows and micro-
flows occur in these media.

Nevertheless, this topic also has an important basic research component. There
are two reasons for that. First, some phenomena that are not typical for macroflows
are observed in microflows. Therefore, a correct interpretation and description
of these phenomena are needed. On the other hand, almost all methods for studying
fluid flows were developed for macroscopic systems. Are these methods applicable
to the description of micro- and nanoflows? This is not an idle inquiry, because
micro- and nanofluidics have become extremely important fields of mechanics.
Moreover, such flows cannot be treated within the framework of mechanics alone.
At small scales, it is necessary to revise the concepts of transportation and relax-
ation processes, because there is no reason to believe that the viscosity and the
thermal conductivity of a fluid in bulk and in a sufficiently small channel are
identical. Thus, it is necessary to study thermophysical properties of fluids in micro-
and nanochannels to provide a correct interpretation and description of the exper-
imental data.

The use of nanofluids as working fluids in some facilities and devices seems to
be fairly promising: it allows for heat removal at room temperature of the coolant,
in contrast to traditional low-temperature coolers. The thermal conductivity of
currently available nanofluids of different compositions with a sufficiently small
volume fraction of nanoparticles might exceed the thermal conductivity of a carrier
fluid by tens of percent. At the same time, the character of nanofluid flows is still
almost unexplored for several reasons, many involving lack of reliable data (on
transport coefficients, on formulation of boundary conditions, etc.). The situation is
aggravated by the fact that none of the thermophysical properties of nanofluids, in
particular, their viscosity and thermal conductivity, are described by the classical
theories. Moreover, these properties are not universal, in contrast to fluids with
coarse particles. Therefore, simulations of nanofluid flows should be performed
carefully, based on consideration of particular fluids. In the general case, it is
difficult here to use even the similarity criteria typically applied in fluid dynamics.

The problems of experimental investigations of microflows are fairly obvious.
First, the small sizes of examined systems require appropriate measurement tools.
In principle, such tools have been actively developed over the last three decades,
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and it can be stated that many of these tools are fairly adequate. However, to
characterize the flow, it is usually necessary to measure the flow rate, pressure
difference, pressure in the channel, velocity profile, velocity at the wall, stress at the
wall, hydraulic resistance coefficient, temperatures of the channel walls and fluid,
temperature profile, transport coefficients in the channel, surface distribution of the
charge, etc. Moreover, the level of roughness of the channel walls and the exact size
of the channel should be carefully monitored, because they can change over the
course of the experiment, owing to the compliance and elasticity of the channel
walls. Nevertheless, most researchers manage to measure the integral characteristics
of the flow: flow rate, pressure drop, temperature, etc. Local and, moreover, fluc-
tuating characteristics are actually unmeasurable. On the other hand, it should be
borne in mind that perturbations excited in microflows, and especially nanoflows,
by the measurement instrument in the course of measurements may be of the same
order or even greater than the measured variable. The situation is similar to that in
quantum mechanics, a field of knowledge for which a theory of measurements was
specially developed. Something like that is needed for interpreting experimental
data in microflows, and especially nanoflows. This is important because the
interpretation techniques of almost all currently available methods are based on
theoretical relations derived for macroscopic flows.

As was already mentioned, micro- and nanofluidics have become rapidly
developing fields of economy. Naturally, this is supported and stimulated by intense
development of research all over the world. All industrial companies actively
collaborate with various research centers. It should be mentioned that almost every
high-ranking university has a laboratory dealing with this topic.

There are dozens of monographs that describe microflows. The difficult task is
choosing the material, because the area of micro- and nanofluidics is unbounded. In
May 2012, the fourth session of the Russian conference entitled “Fundamentals of
MEMS and nanotechnologies” was held, arousing significant interest from the
academic community. Based on presentations at this conference, the monograph
entitled “Modeling of micro- and nanoflows” was published in Russia in 2014. The
revised and supplemented version of that monograph is the basis of the present
book. Priority is given to the modeling of micro- and nanoflows. The book
describes two cycles of experimental activities aimed at studying microjets and
microflows and to develop unique tools for these purposes. Both subsonic and
supersonic jets are considered. The remaining chapters in the book describe various
methods of numerical simulation of micro- and nanoflows. Much attention is paid
to the systematic description of the area of applicability of particular methods,
hydrodynamic modeling of micromixers, and molecular dynamics modeling of
nanoflows. Algorithms of molecular dynamics modeling of flows without involving
an external force of thermostats for controlling molecular velocities are compre-
hensively described for the first time. The last chapter provides a systematic
description of the statistical theory of fluid transport processes under confined
conditions. It is demonstrated that both the viscosity and thermal conductivity of
such a fluid are no longer the properties of the fluid itself alone. These properties are
determined to a large extent by interaction of fluid molecules with atoms
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(or molecules) of the channel walls where the flow occurs. Moreover, by varying
the wall material, it is possible to control the hydraulic resistance in such a channel
by means of increasing or, vice versa, decreasing the viscosity.

Organization of the Book

Chapter 1 is devoted to problems of methods of numerical simulation of micro- and
nanoflows. The chapter begins with a brief classification of these flows, and it is
arranged in a manner that allows for consecutive consideration of all situations. The
methods of simulating flows of the rarefied and dense gases, liquids, and disperse
liquids, including nanofluids are repeatedly considered.

The goal of Chap. 2 is to study the structure and stability of microjets. The
overview of the works on the study of the gas dynamics of subsonic and supersonic
mini- and microjets is given in Sect. 2.1. As the tools used in experimental
investigations are also very important, they are described in great detail. Diagnostic
methods and the results of studying subsonic plane jet stability are described in
Sect. 2.2. Experiments aimed at studying the structure and stability of supersonic
axisymmetric microjets and the results obtained therein are discussed in Sect. 2.3.
Much attention is paid to the techniques used to obtain experimental data. Finally,
the problem of microjet modeling with the use of commonly used similarity
parameters is discussed in Sect. 2.4.

Chapter 3 describes the results of measurements of hydraulic resistance coeffi-
cients in microchannels of various shapes and various diameters for laminar and
turbulent flows, as well as these same coefficients for input regions.

Chapter 4 describes the results of CFD simulations of micromixers of Y- and
T-types. The method used to solve the Navier–Stokes equations is described in the
first section, followed by consideration of flows with low and then moderate
Reynolds numbers. The regimes of the flows and mixing are analyzed.

In Chap. 5, we propose new molecular dynamics algorithms, which allow one to
simulate a real plane Poiseuille-type flow characterized by a certain pressure gra-
dient, and discuss specific features of plane flows in nanochannels. This is the
subject of the first four sections of the chapter. In Sects. 5.5 and 5.6, the
self-diffusion of the fluid molecules in nanochannels and porous media is studied.
Finally, the last section deals with the modeling of the separation of nanofluids
through the use of nanomembranes.

In Chap. 6, we propose the statistical theory of transport processes under con-
fined conditions. The new constitutive relation and formulas for transport coeffi-
cients are obtained. Using the molecular dynamics method, the viscosity of the
fluids in nanochannels with walls of different materials is simulated.

In conclusions, the main inferences are formulated.
The preface, Chaps. 1, 5, and 6, and the conclusionwere written byV.Ya. Rudyak.

The authors ofChap. 2 areV.M.Aniskin, A.A.Maslov, and S.G.Mironov. Chapter 3
was written by V. M. Aniskin and A. A. Maslov. Finally, the authors of Chap. 4 are
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A. V. Minakov and V. Ya. Rudyak. The overall editing of the book was also per-
formed by V. Ya. Rudyak.
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Ĵ3a Operators of energy flux
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Chapter 1
Methods of Modeling of Microflows
and Nanoflows

Abstract The development and application of methods of numerical simulation of
micro- and nanoflows are urgent tasks because of the lack and inconsistency
of systematic experimental data. However, interpretation of results and determination
of the applicability area of particular methods of modeling such flows should also be
treated carefully and cautiously. In addition, precise terminology is important,
because inadequate usage of terms can lead not only to misunderstanding, but even to
erroneous ideas about the physics of the phenomena being considered. The usual
flows of liquids and gases are rather difficult in the general case. This is even more so
for micro- and nanoflows. Therefore, such flows should be treated with different
methods. The situation becomes even more complicated if multiphase fluid flows are
studied. In the present chapter, all of these situations were considered consecutively.
It begins with a brief classification of these flows. After that, the methods of the
modeling flows of the rarefied and dense gases and liquids are described. In the
following two sections, the modeling of dispersed fluids, including nanofluids, is
analyzed. The last section is devoted to a brief description of the method of molecular
dynamics, the application of which is necessary for the modeling of nanoflows.

Keywords Microflows � Rarefied and dense gases � Kinetic theory
Boltzmann equation � DSMC � Model kinetic equation � Dispersed fluids
Nanofluids � Nanoparticles � Viscosity � Thermal conductivity � Diffusion
Molecular dynamics method

1.1 Considered Systems and Their Classification

Microflows are usually understood as flows whose characteristic linear size (e.g.,
diameter of a cylindrical channel or distance between the plates in a plane channel)
is d� 5� 10�4 m. The channel length L, however, is usually much greater than the
characteristic linear size: L � d. It can reach dozens of centimeters in micromixers
and several meters in microreactors. The characteristic Reynolds number for such
flows of a homogeneous liquid or gas, Re ¼ ðqUdÞ=l, usually varies in the interval
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10�3 �Re� 103, where q;U, and l are the fluid density, velocity, and shear vis-
cosity, respectively. The Knudsen number Kn ¼ l=d (l is the mean free path of gas
molecules) of the gas in microflows at standard pressure varies in the interval
10�4 �Kn� 1. However, the gas flow can actually already be considered as
free-molecular at pressures on the order of one hundredth of atmospheric pressure,
i.e., as a flow with no molecular collisions.

The characteristic size of nanochannels varies from 100 to 1 nm. Channels with
the characteristic size on the order of 1 nm are carbon nanotubes. However, the
length of such channels can reach several millimeters and even centimeters. Carbon
nanotubes form a very durable material; one of the space elevator projects implies
the use of fibers made of such tubes, and the length of these fibers is expected to
reach several kilometers.

In nanoflows obtainable today, the Reynolds number is always smaller, or even
much smaller, than unity. In gas flows in nanochannels, the Knudsen number is
usually greater than or on the order of unity. Formally, the Knudsen number in liquids
with the mean free path of molecules of about 10�10 m is almost always smaller than
unity, because in channels with the characteristic size on the order of 100 nm, it has
the values Kn� 10�2 � 10�3: Standard hydrodynamic description becomes valid at
the lower limit of these values; however, the following fact should be noted. The
respective processes of viscous dissipation in gases and liquids are principally dif-
ferent. In gases, the momentum is leveled off, basically due to its transfer in molecular
collisions; therefore, l� l in rarefied gases. This manner of momentum redistribution
also occurs in liquids, but it has little effect, because each molecule in a liquid always
interacts with several neighbors simultaneously. In fact, viscous dissipation is
associated with violation of the short-range order whose characteristic scale d is on
the order of nanometers. Thus, the viscous fluid concept becomes valid only at scales
L[ d. Dissipative coefficients are formed at mesoscales.

To identify similarity parameters in heterogeneous fluid flows, it is necessary to
determine the characteristic scales for these flows. There are three scales in homo-
geneous fluids: characteristic scale of the flow, mean free path, and size of fluid
molecules. The internal structure of heterogeneous fluids is much more complicated.
In the general case, the set of the characteristic scales for a heterogeneous fluid is
determined not only by the sizes of the internal structural elements of the medium,
carrier medium molecules, and disperse particles, but also by other parameters: mean
free path of molecules or particles in gases, Debye radius in plasmas, etc.

Heterogeneous or disperse fluids are multiphase media. A simple example of such
media is a two-phase fluid consisting of a carrier liquid (gas) and solid, liquid, or
gaseous particles suspended in the carrier fluid. These particles are considered a
disperse phase. If disperse phase particles have an identical size and identical
physical nature, the medium is monodisperse; otherwise, it is a polydisperse medium.

The most popular classification of disperse fluids is based on their aggregate
state (Soo 1990). However, this classification is obviously insufficient. In some
cases, e.g., mixtures of solid particles with liquids and gases, the behavior is the
same; in other situations, even the behaviors of disperse media of the same class can
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be different. The variety of heterogeneous fluids does not give a chance for creating
a universal model suitable to describe all of them. One can only speak about the
development of models that can describe certain classes of such media. So, the task
of the classification of heterogeneous fluids is to identify such classes. An appro-
priate classification was developed in Rudyak (1996); here, we mention only some
of its principal postulates that are important for further considerations.

Heterogeneous fluids are media with a developed internal structure. Therefore, in
addition to the aggregate state, another important classification attribute should be
the relationship of internal structural elements of the medium. Moreover, the
heterogeneous medium properties substantially depend on the disperse phase den-
sity. Thus, the following triad can be selected for classifying heterogeneous media:

• Classification in terms of the aggregate state of the carrier fluid;
• Classification in terms of the relationship of internal structural elements of the

medium;
• Classification in terms of the disperse phase density.

In the development of the classification of heterogeneous media in terms of the
aggregate state, the aggregate states of both the carrier and disperse phases are taken
into account. For simplicity, only monodisperse media are considered in this sec-
tion. In the commonly used terminology (Soo 1990), gas suspensions and aerosols
are understood as gas mixtures with solid and liquid particles, respectively.
Suspensions are mixtures of the carrier liquid with solid particles, and emulsions are
mixtures of the carrier liquid with droplets of another liquid. There are also
gas-liquid media, which are sometimes called bubbly media.

Certainly, this classification is rather conventional. In practice, even in academic
publications, the term “aerosol” is used for both suspensions and emulsions. In
meteorology, aerosols are understood as particles dispersed in the atmosphere.
Hence, specific classifications and terminology are used in this branch of science
(dust, water dust, smoke, smog, etc.). There is also a certain classification in terms
of the optical properties of the disperse phase. In a very good monograph
(Friedlander 2000), aerosols are defined as gas suspensions. Simultaneously,
aerosols are understood as all systems consisting of disperse particles (regardless of
their nature) and carrier air or another gas.

Finally, referring to the classification of heterogeneous media in terms of their
aggregate state, we have to recall one more specific state of the media. Today, both
engineering applications and natural conditions involve heterogeneous media
whose carrier component is the plasma. Such media are encountered, e.g., in the
upper layers of the atmosphere, in facilities for plasma-enhanced deposition, etc.
Thus, it seems reasonable to identify two more types of heterogeneous medium:
plasma suspensions and plasmasols with solid and liquid particles as disperse
components, respectively.

The complete set of characteristic scales is different for different heterogeneous
fluids and is determined by the aggregate state of the carrier phase. Therefore, in
constructing a classification of heterogeneous media in terms of the sizes of internal
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structural elements, the above-mentioned classes of medium should be considered
separately. The scales in monodisperse gas suspensions can be the characteristic
radii of molecules r0 and particles R0, mean free paths of molecules lf and particles
lp, and mean free paths of particles with respect to molecules lpf . If the virial
parameter ef ¼ nvfr30 (nvf is the number density of molecules) of the carrier gas or,
identically, the volume concentration of molecules is small, then the gas can be
considered rarefied, and its evolution is determined by the Boltzmann equation for a
single-particle distribution function.

Models that describe the behavior of gas suspensions are qualitatively different
depending on the ratio of the disperse particle size and the characteristic linear scale
of the carrier gas. Depending on this ratio, the following classes of gas suspension
can be identified: ultrafine suspension with nanoparticles as the disperse phase and
suspensions of fine, medium-size, and coarse particles in a gas. In the general case,
the dynamics of these suspensions is described by different models.

A necessary condition for a pseudo-gas of suspended particles to be considered
as rarefied is a small value of the corresponding virial parameter (volume con-
centration); moreover, the coarser the disperse particles, the more rarefied the
carrier gas should be. Finally, all mean free paths in a rarefied gas suspension
should be significantly greater than the sizes of internal structural elements of the
medium. Depending on the degree of rarefaction of the disperse phase, it is possible
to identify strongly rarefied gas suspensions, rarefied gas suspensions, moderately
dense gas suspensions, and dense gas suspensions. In suspensions of the last type,
the molecular component occupies a comparatively small volume; these suspen-
sions are usually called granular media in the literature.

The classification developed above for gas suspensions is inapplicable for liquid
suspensions, because the kinetic stage of evolution is practically absent in liquids.
Therefore, there are only three characteristic linear scales in suspensions: r0; R0,
and L. At the next stage, liquid suspensions are divided in terms of particle size:
ultrafine, fine, medium-size, and coarse particles. With certain restrictions, this
classification can also be used for aerosols and emulsions. In regard to aerosols and
emulsions, however, it should always be borne in mind that coagulation is an
important process in such media, and neither aerosols nor emulsions (generally
speaking, suspensions as well) can be considered as mixtures containing one
fraction of particles. Moreover, because of nucleation and coagulation, which
always proceed in aerosols and emulsions, most mixtures have particles of almost
all possible sizes. Depending on the disperse phase density, it is possible to identify
strongly rarefied, rarefied, moderately dense, and dense suspensions. It should be
noted that suspensions can change their rheology depending on the disperse phase
density.
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1.2 Modeling of Rarefied Gas Microflows

A rarefied gas is usually defined as a gas where collisions occur only between pairs
of molecules. This corresponds to the pressures ranging approximately from ten
atmospheres to several hundredths of a percent of the atmosphere. In more rarefied
flows, there may be practically zero collisions of molecules within the characteristic
time of process observation; in this case, a free-molecular flow is formed. At
pressures above ten atmospheres, the gas is no longer ideal, and corrections for
density should be made both in the equation of state and in transport coefficients.

The method that can be used for modeling a gas flow is determined by the
Knudsen number of this flow. The flow of a rarefied gas, i.e., a gas with only paired
collisions of molecules and with no multiparticle collisions, is described by the
Boltzmann equation (Chapman and Cowling 1990) for the single-particle distri-
bution function f1 as

@f1
@t

þ v1 � @f1
@r1

¼ JB; ð1:1Þ

JB ¼
Z

dv2djv21 f1ðr1; v01; tÞf1ðr1; v02; tÞ � f1ðr1; v1; tÞf1ðr1; v2; tÞ
� �

; ð1:2Þ

where v1 and v2 are the velocities of molecules 1 and 2 before the collision, v01 and
v02 are the velocities of these particles after the collision,
v21 ¼ v2 � v1; dj ¼ dedbb, b is the impact parameter, and e is the azimuth angle.

Nevertheless, the description at the level of the single-particle distribution
function (kinetic description) is necessary only if the Knudsen number is not too
low. A continuum flow regime is formed as Kn ! 0, and a free-molecular flow is
observed as Kn ! 1.

Experiments and investigations of the areas of applicability of various methods
show that the Navier-Stokes equations

@q
@t

¼ �r � qu; q
@u
@t

¼ �qu � ru�r � J2;
@T
@t

¼ �u � rT � 2
3qR

J2 : ruþr � J3ð Þ
ð1:3Þ

ensure an accurate description of gas flows up to Knudsen numbers on the order of
10�3. Here, q; u, and T are the mass density, velocity, and temperature of the gas, R
is the gas constant, and J2 and J3 are the stress tensor and the heat flux vector,
which are defined in the Navier-Stokes approximation by the expressions

J2 ¼ qRTU� lD� lV ðr � uÞU; J3 ¼ �krT ; ð1:4Þ

where l and lV are the shear and volume viscosity coefficients, respectively, k is
the thermal conductivity coefficient, and D is the strain rate tensor:
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D 	 Dij ¼ 1
2

@ui
@xj

þ @uj
@xi

� �
:

When the Navier-Stokes equations are used, the channel walls are usually
subjected to the no-slip boundary conditions

uðr ¼ rW Þ ¼ uW ; Tðr ¼ rW Þ ¼ TW ;

where uW and TW are the velocity and temperature on the wall. However, beginning
from the Knudsen number Kn� 5� 10�3; it is necessary to apply the velocity slip
and temperature jump conditions

uðr ¼ rW Þ ¼ uW þ c1n � rus þ c2rsT ;

Tðr ¼ rW Þ ¼ TW þ c3n � rT þ c4 r � us � nn : rusð Þ; ð1:5Þ

where us is the tangential (to the surface) component of the gas velocity, rs is the
tangential component of the gradient, and n is the normal to the surface. The
coefficients ci used here are proportional to the mean free path of molecules.

The Navier-Stokes equations with the boundary conditions (1.5) make it possible
to move approximately by an order of magnitude toward higher Knudsen numbers;
after that, higher-order transport equations with appropriate boundary conditions
can apparently be used. It should be borne in mind in regard to this particular
situation that the traditionally recommended Burnett equations are incomplete,
strictly speaking, because they ignore memory effects; therefore, these equations
can only be used for steady flows (Rudyak 1995).

The so-called transitional flow regime begins at Knudsen numbers on the order
of unity. At Kn[ 10, the flow can be considered as free-molecular, though, strictly
speaking, the free-molecular flow regime corresponds to an infinite Knudsen
number. The Boltzmann collision integral (1.2) is equal to zero in this case, and the
flow is described by a homogeneous kinetic equation.

This discussion refers to the class of rarefied flows as a whole, but flows in
microchannels have some specific features. First, it is a typical situation that the
Knudsen numbers based on the channel length KnL, channel width Knw, and
channel height (depth) Knd can differ by orders of magnitude. For example, a
typical case is KnL 
 1, Knw � 10�1, but Knd � 1. The flow in such a channel
cannot be described hydrodynamically; it is necessary to use the kinetic Boltzmann
equation (1.1). Regular methods for its solution have been developed fairly suc-
cessfully (see, e.g., Aristov et al. 2007), but practically no specific problems have
yet been solved.

In practice, rarefied gas dynamic simulations are usually performed by the Direct
Simulation Monte Carlo (DSMC) method. The principal scheme of the DSMC
method for rarefied gases was formulated by Bird and was described in detail in his
monograph (Bird 1976). The method is based on dividing the molecular motion
process into free flight and collisions. In the scheme of the collision process, the
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physical volume is split into cells Dr of such a size that the variations of flow
parameters in each cell are small. The time is measured in discrete steps Dtm, which
are small when compared to the mean time of free flight of gas molecules. The
computational domain is filled with N particles (molecules). The particle state is
defined by its coordinate ri and velocity vi: Thus, the state of the modeled system at
each time instant is characterized by a 6N-dimensional vector r1; v1; . . .; rN ; vNf g 	
rN ; vNf g: The motion of molecules and their collisions at each time step are cal-

culated in two consecutive stages. At the first stage, particle collisions in each cell
are simulated independently. In choosing a pair of colliding particles, their mutual
distances are ignored. It is only the particle velocities that change after collision,
while the particle coordinates remain unchanged.

At the second stage, convective transfer of all molecules to distances propor-
tional to their velocities and the time Dtm ¼ Dt is performed. Thus, if the coordinate
and velocity of the ith molecule at the time tk are riðtkÞ and viðtkÞ, then its coor-
dinate at the time tkþ 1 ¼ tk þDt is determined by the formula riðtkþ 1Þ ¼
riðtkÞþ viðtkÞDt: Interaction with physical boundaries (body surfaces) is also sim-
ulated at this stage. New particles are generated on the boundaries of the compu-
tational domain, whereas particles intersecting these boundaries are eliminated from
the computation.

The most important aspect of this scheme is the simulation of particle collisions
in the cell. This problem is of independent significance, because this process defines
the process of relaxation in a spatially homogeneous system. To clarify the basic
features of this stage, let us consider a cell a with the number of molecules Na. The
state of these molecules is characterized in the phase space by the vector
r1a ; v1a ; . . .; rNa ; vNaf g 	 rNa ; vNaf g: As the molecule positions are ignored when

collision partners are chosen, the state inside the cell can be characterized only by
the vector vNa . The next important assumption implies that the transition of a
particle from the state vNaðtkÞ to the state vNaðtkþ 1Þ is performed by means of paired
collisions. Therefore, to study the process of spatially homogeneous relaxation of
Na molecules within the time interval Dt, it is necessary to determine the total
number of collisions during this time interval NDt and to establish pairs of colliding
molecules.

The frequency of molecular collisions in the cell m is proportional to the scat-
tering cross-section rðvijÞ of the colliding molecules i and j; their density n, and
relative velocity vij : m ¼ nrðvijÞvij. The mean collision frequency is obtained by
summation over all molecules. To find the number of collisions during the time
interval Dt, the thus-obtained frequency should be multiplied by the number of pairs
in the system and the time interval: NDt ¼ n½ðNa � 1Þ=2�\rðvijÞvij [Dt: The
angular brackets here mean averaging over all pairs of molecules. The number of
collisions of the pair of molecules i and j within the time interval is determined by
the expression
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Nij
Dt ¼ ðn=NaÞrðvijÞvijDt; ð1:6Þ

and the probability of the collision of this pair is

Pij ¼ N
ij
Dt

NDt
¼ 2

NaðNa � 1Þ
rðvijÞvij

\rðvijÞvij [ ð1:7Þ

Thus, for modeling the process of relaxation due to collisions in the cell, it is
necessary to simulate NDt collisions between molecule pairs in accordance with
Eq. (1.6). When the pair of colliding molecules is chosen, their velocities after the
collision are determined on the basis of conservation laws.

The above-described procedure shows that this method, strictly speaking, does
not solve the kinetic Boltzmann equation. Instead, it solves the so-called master
kinetic equation for the N-particle distribution function FN (Rudyak 1989a, 1991)

@FN

@t
þ

XN
i¼1

pi
m
� @FN

@ri
¼ JN ;

JN ¼ V�1
XN
j[ i

Z2p
0

Z1
0

dj vij FNðr1; p1; . . .; ri; p0i; . . .; ri; p0j; . . .rN ; pN ; tÞ
h

�FNðr1; p1; . . .; ri; pi; . . .; ri; pj; . . .; rN ; pN ; tÞ
�
:

ð1:8Þ

The master kinetic equations (1.8) are equations for the N-particle distribution
function, similar to the Liouville equation. In contrast to the latter, however, the
master kinetic equation is irreversible and non-invariant with respect to time
inversion. It can be demonstrated (Rudyak 1989a, 1991) that the master kinetic
equation (1.8) yields the following kinetic equation for the single-particle distri-
bution function:

@f1
@t

þ v1 � @f1
@r1

¼ N � 1
N

Z
dv2

Z
dj12v12ðf 01f 01 � f1f1Þ

þ N � 1
N

Z
dv2

Z
dj12v12ðg02 � g2Þ;

ð1:9Þ

which is drastically different from the Boltzmann equation (1.1), (1.2) and reduces
to it only in the limit as N ! 1 and under the assumption of multiplicativity of the
pair (two-particle) distribution function f2 ¼ f1f1 þ g2; g2 ¼ 0 (here, f2 is the pair
distribution function). Equation (1.9) depends on the two-particle correlation
function g2; as a consequence, there appear two-particle correlations in the solution,
which are absent in the rarefied gas. In particular, they arise owing to a large
number of repeated collisions in the simulated cell. Such collisions are typical for
dense gases. To eliminate them from consideration, a special procedure using a
thermostat was developed (Gimelshtein and Rudyak 1991). As a result, the number
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of particles needed for simulations could be reduced by two or three orders for
spatially homogeneous problems.

With the capabilities of advanced computers, the DSMC method provides suf-
ficiently accurate solutions for a wide range of problems. In particular, it is possible
to simulate supersonic jets and supersonic external flows. However, the velocities
of flows in microchannels are usually not very high, and the DSMC method does
not ensure satisfactory accuracy. Therefore, the method can hardly be used for
modeling such flows in reality.

It is possible to move further in studying rarefied gas microflows by using model
kinetic equations, i.e., equations in which the collision integral is presented in a sig-
nificantly simplified form. The first model equation was developed by Bhatnagar et al.
(1954) (the so-calledBGKequation). The collision integral in this equation has the form

JBGK ¼ m fMðq;u; TÞ � f1ðr1; v1; tÞ½ �;

where m is the frequency of molecular collisions and fMðq; u; TÞ is the local
Maxwell distribution function. This model, however, has an important drawback: it
does not allow for correct determination of the gas viscosity and thermal conduc-
tivity, and yields an incorrect Prandtl number for this reason. This drawback was
corrected by Shakhov (1968), whose model equation is called the S-model. The
collision integral in this model is determined by the expression

JS ¼ P
l

fM 1þ 2m

15nðkTÞ2 q � C mC2

2kT
� 5
2

� �" #
� f1ðr1; v1; tÞ

( )
;

where q is the heat flux vector and C ¼ v� u.
There are also more complicated models, e.g., the ellipsoidal model, but they can

only be applied for solving linearized problems because of an extremely compli-
cated form of the model collision integral. Examples of the description of rarefied
gas microflows with the use of model equations can be found in Cercignani and
Pagani (1967), Graur and Sharipov (2008a, b).

A principal problem that cannot be resolved by using the above-described methods
of rarefied gas modeling is the necessity of taking into account the roughness of the
channel wall. This is an extremely important factor for macroscopic flows as well. It is
known that the flow in a smooth tube is stable under comparatively small perturbations.
This means that the flow in the tube remains laminar at sufficiently high Reynolds
numbers. It was experimentally found that this is at least true for Reynolds numbers up
to 105. On the other hand, it is usually assumed that a laminar-turbulent transition
occurs in a circular tube at Reynolds numbers on the order of 2.200. This transition is
usually associated with the roughness of the tubewall. This factor becomes evenmore
important in microflows. The roughness height in sufficiently smooth channels is
normally several tens of nanometers. Nevertheless, there are channels where the
roughness height can vary from hundreds of nanometers to tens of micrometers.
Roughness of this height can drastically change the character of the microflow.
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Gas/surface interaction in microflows, and especially in nanoflows, is sometimes
a key factor. Indeed, the number of molecules near the cylindrical channel surface,
which interact with the latter during mean free flight times, is on the order of
NS � pdlLn. At the same time, the number of molecules interacting with each other
in the bulk is NB �ðpd2L� pdlLÞn. It can be easily seen that two thirds of
molecules already interact with the wall at Knudsen numbers of about 0.2, and
collisions of molecules in the bulk can actually be ignored at Knudsen numbers of
0.4. Under these conditions, the adequacy of the description of interaction of
molecules with the wall is the governing factor. The situation, however, is not that
simple. In the kinetic description of a gas system, interaction of gas molecules with
the surface changes the probability of finding the gas system in a given state. In fact,
an additional source term JW appears in the kinetic equation. The explicit form of
this term can be obtained in the following manner. Let us consider a rarefied gas
and assume, for simplicity, that molecules incident onto the surface interact with it
instantaneously and return to the system, leaving the surface at the point of their
incidence.1 The number of molecules located at the time t near the point ðr; pÞ in
the phase volume element drdp is f1ðr; pÞdrdp. Let us now determine the number
of molecules leaving this group during the time Dt as a result of their incidence onto
the surface W. The only molecules capable of colliding are those whose momentum
satisfies the condition p � n\0. Then, the number of molecules incident onto the
surface element dW during the time dt is drdpdtHð�p � nÞg p � nj jf1ðr; p; tÞdðr�
RWÞdW ; where RW is the radius-vector of the points on the surface W, H is the
Heaviside function, dðrÞ is the Dirac delta function, and n is the internal normal to
the surface.

The total number of molecules colliding with the surface during the time dt is
obtained by integration over dW:

drdpdt
Z

dWHð�p � nÞ p � nj jf1ðr; p; tÞdðr� RW Þ: ð1:10Þ

The number of molecules entering the volume drdp during the time dt due to
interaction with the surface is

drdpdt
Z

dWHðp � nÞ p � nj jf1W ðRW ; p; tÞdðr� RW Þ: ð1:11Þ

Here, f1W is the distribution function of molecules reflected from the wall, which
is related in the general case to the distribution function of the incident molecules as

1Strictly speaking, interaction of gas molecules with the surface is not instantaneous. Moreover,
incident gas molecules can be adsorbed on the surface and experience ionization or dissociation.
Adsorption, in turn, can lead to the formation of an adsorbed layer on the surface, whose state
depends on the ambient gas. In addition, gas/surface interaction depends on the surface state,
temperature, roughness, etc.
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f1W ðp � nÞHðp � nÞ ¼
Z

dp�Hð�p� � nÞ p� � nj jf1W ðRW ; p�Þwðp�; pÞ; ð1:12Þ

where p� is the momentum of the molecule incident onto the surface and wðp�;pÞ is
the scattering kernel.

In view of Eqs. (1.10)–(1.12), the source term of the kinetic equation induced by
the presence of the surface can be presented as

JW ¼
Z

dW dðr� RWÞZ
dp�Hð�p� � nÞjp� � njf1W ðRW ; p�Þwðp�; pÞ �Hðp � nÞ p � nj jf1ðr; pÞ

� �
:

ð1:13Þ

The calculation of the scattering kernel wðp�; pÞ is extremely complicated in the
general case, and its general solution can hardly be obtained (see Cercignani 1975;
Goodman and Wachman 1976). In practice, researchers often use model presen-
tations of the scattering kernel, which are based on the specular-diffuse Maxwell
model (Maxwell 1879), in which some portion of molecules ð1� aÞ experience
specular reflection from the surface, and the remaining portion of molecules ðaÞ are
reflected with the Maxwell distribution at the wall temperature (diffuse reflection).
The scattering kernel in this model has the form

wðp�; pÞ ¼ ð1� aÞdðp� p� þ 2nðp� � nÞÞþ a f10W ðp�Þðp� � nÞ: ð1:14Þ

Here,

f10 p; r; tð Þ ¼ n p; r; tð Þ
½2pmkT p; r; tð Þ�3=2

exp � p� mu2 p; r; tð Þ
2mkT p; r; tð Þ

� �
is a local Maxwell distribution function whose parameters depend on coordinates
and time, and f10W is the local Maxwell distribution function with the wall
temperature.

Kernel (1.14) is written under the assumption that the surface is at rest. If the
surface moves with a velocity VW , then the momentum p should be replaced by
ðp� mVWÞ. Thus, reflection of molecules is described by the specular law at a ¼ 0
and by the diffuse law at a ¼ 1. In this case, the model completely loses the
memory of its characteristics before its incidence. The coefficient a is usually called
the accommodation coefficient. Nevertheless, some care is needed here, because the
molecule interacting with the boundary exchanges both momentum and energy with
this boundary. This interaction is inelastic in the general case, but momentum and
energy exchange is performed in a different manner. The accommodation coeffi-
cient does not take this fact into account. The accommodation coefficients for
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momentum ap or energy aE for a rarefied gas in the general case are determined by
the following relation (Cercignani 1975):

aðuÞ ¼

R
p�n\0

uðpÞ p � nj jf1ðpÞdp� R
p�n[ 0

uðpÞ p � nj jf1ðpÞdpR
p�n\0

uðpÞ p � nj jf1ðpÞdp� jm
R

p�n[ 0
uðpÞ p � nj jf10WðpÞdp: ð1:15Þ

Here, uðpÞ is a certain function of molecular momentum and jm is a normal-
ization factor chosen in such a way that jmf10W provides the same mass flux as the
function f1: The energy accommodation coefficient is obtained from here by
assuming that uðpÞ ¼ p2=2m, the tangential momentum accommodation coefficient
aps is found at uðpÞ ¼ p� n, and the normal momentum accommodation coeffi-
cient apn is obtained at uðpÞ ¼ p � n.

Expression (1.15) can be written in macroscopic variables as

aE ¼ =i � =r

=i � =W
; aps ¼ Psi � Psr

Psi � PWs
; apn ¼ Pni � Pnr

Pni � PWn
;

where =i; =r; =W are the energy fluxes of incident molecules and reflected
molecules from the wall per unit time and the energy flux corresponding to the case
of diffuse reflection of all molecules incident onto the wall. In two remaining
formulas, the subscripts s and n correspond to tangential and normal momenta of
the incident (subscript i) and reflected (subscript r) molecules, and PW is the
momentum acquired by the molecules due to wall motion. Naturally, this
momentum is equal to zero for a motionless wall.

The boundary conditions (1.5) can also be rewritten in terms of the accommo-
dation coefficients. For simplicity, we consider only the case with no thermal
slipping. In this case, we have (Maxwell 1879; Smoluchowski 1898)

uðr ¼ rWÞ ¼ uW þ 2� ap
ap

Kn n � rusð Þ;

Tðr ¼ rWÞ ¼ TW þ 2� aE
aE

2cKn
ðcþ 1Þ Pr n � rTð Þ;

ð1:16Þ

where c ¼ cp=cV is the ratio of specific heats at constant volume and pressure, and
Pr ¼ ðlcp=kÞ is the Prandtl number.

According to Eq. (1.16), the slip coefficients increase almost linearly with an
increase in the Knudsen number. Accommodation coefficients have been intensely
studied for the last 50 years, because of their various applications in space aero-
dynamics, vacuum engineering, etc. Experiments aimed at investigating the
accommodation coefficients for industrial materials have shown that the momentum
accommodation coefficient ap at room temperature is fairly close to unity. This is
primarily related to the roughness of these materials and the adsorption of mole-
cules on them. The accommodation coefficients increase with increasing surface
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roughness. Contrastingly, in experiments on carefully treated and cleaned surfaces,
it was found that the accommodation coefficients can turn out to be appreciably
smaller than unity. Unfortunately, there are no universal relations or even regular
features. Moreover, the accommodation coefficients are certainly not universal,
because they depend on the surface material, the degree of its purity, gas temper-
ature, pressure, and velocity, and surface temperature. Moreover, the accommo-
dation coefficient depends in the general case on the degree of gas rarefaction, i.e.,
on the Knudsen number.

1.3 Modeling of Moderately Dense Gases

The Boltzmann kinetic equation is the kinetic equation for rarefied gases. The
Boltzmann gas should be rarefied to an extent that it should be possible to neglect
all multiparticle collisions except for paired collisions and to assume that the
molecules are statistically independent before their collision. A moderately dense
gas in which the pressure at standard temperatures varies approximately from ten to
100–200 atmospheres cannot be described by the Boltzmann theory. The mean free
path of molecules of a moderately dense gas is 10�5 � 10�6 cm. Therefore,
Knudsen numbers in microchannels can vary from 10�4 for the largest channels to
10�1 for the smallest channels. As for rarefied gases, there is a range of parameters
in which the flow can be described hydrodynamically, but there is also a range of
parameters in which the kinetic description should be applied. Flows in
nanochannels should almost always be described kinetically.

The first successful attempt to construct the kinetic theory of moderately dense
gases was made by Enskog (Chapman and Cowling 1990). He derived an equation
that was named after him, which has the form

@f1
@t

þ v1 � @f1
@r1

¼ JE; ð1:17Þ

JE ¼ d2
Z

dp12

Z
p12�e[ 0

de
p12 � e
m

vðr1 þ 1
2
reÞf1ðr1; p01Þf1ðr1 þ re; p02Þ

�

� vðr1 � 1
2
reÞf1ðr1; p1Þf1ðr1 � re; p2Þ

�
;

ð1:18Þ

where v is the correlation function, which takes into account two effects: (i) re-
duction of the system volume due to screening effects induced by the emergence of
overlapping configurations of molecules; (ii) enhancement of the collision fre-
quency due to reduction of the free volume of the system.

The collision integral (1.18) is nonlocal [in contrast to the Boltzmann collision
integral (1.2)]. This nonlocality is caused by nonlocal interaction of molecules;
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during the collision, their centers are located at a distance r (molecule diameter).
Enskog simulated the molecules by finite-diameter solid spheres and phenomeno-
logically derived a Boltzmann-type equation for them. As a result, the problem
could be principally simplified: in a gas consisting of solid spheres, only paired
collisions occur, regardless of the gas density. The kinetic Enskog equation (1.17),
in contrast to the Boltzmann equation, takes into account momentum and energy
transfer in collisions at distances on the order of the molecule’s diameter. The
denser the gas, the more important it is to take into account this transfer mechanism.

After solving the Enskog equation, the gas description in the first approximation
over the gradients of the macroscopic variables reduces to the hydrodynamic
Navier-Stokes equations (1.1), where the equation of state and the fluxes are now
defined as

p ¼ ð1þ qbvÞnkT ; eJ2 ¼ �2lsE22ðruÞ � lvE22 ðr � uÞ; J3 ¼ �lE33rT: ð1:19Þ

The transport coefficients involved in these equations are defined by the
expressions

lsE22 ¼ l022 1þ 0:8qbvþ 0:7614ðqbvÞ2
h i

v�1; lvE22 ¼ 1:002ðqbvÞ2v�1;

b ¼ ð2p d3=3mÞ; lE33 ¼ l033 1þ 0:6qbvþ 0:7574ðqbvÞ2
h i

v�1:
ð1:20Þ

Thus, the Enskog theory not only provides density-based corrections to the shear
viscosity and thermal conductivity coefficients, but also determines the volume
viscosity coefficient, which is absent in the theory of structureless rarefied gases.

The equation of state (1.19) can be expanded in the virial parameter2 qb:

ðp=nkTÞ ¼ 1þ qbþ 0:625ðqbÞ2 þ 0:2869ðqbÞ3 þ . . . ð1:21Þ

This expansion coincides with the virial expansion of the equation of state in
equilibrium statistical mechanics. Thus, the function v introduced by Enskog is
actually the equilibrium two-particle correlation function v20.

The results predicted by the Enskog theory, with the molecule’s diameter being
chosen on the basis of calculations of the rarefied gas transport coefficients, ensure a
good description of experimental data on the transport coefficients of inert gases up
to qb ¼ 0:4 (Ferziger and Kaper 1972). In this case, however, the molecule’s
diameter should be a function of temperature.

The derivation of the Enskog equation is based on three model assumptions:
(i) the molecules are modeled by hard spheres; (ii) the influence of dynamic cor-
relations can be neglected; (iii) multiparticle collisions are effectively taken into

2This parameter is proportional to the van der Waals parameter and density; therefore, the cor-
responding expansion can also be called the expansion in terms of density.

14 1 Methods of Modeling of Microflows and Nanoflows



account by introducing an equilibrium configuration correlation function.
Numerous calculations and comparisons with experiments have shown that the
main drawbacks of the theory are caused by the first assumption. Therefore, a
model kinetic equation for a dense gas of the Enskog equation type was derived in
(Rudyak 1985, 1989b) for real interaction potentials

@f1
@t

þ v1 � @f1
@r1

¼
Z

dx2
@U12

@r1
� @

@v1
v2S

ð2Þ
� f1ðt0Þf1ðt0Þ: ð1:22Þ

Here, U12 is the molecular interaction potential.
The kinetic equation (1.22) takes into account imperfection effects associated

with nonlocality and the delay of molecular interaction; moreover, multiparticle
collisions are taken into account by the quasi-equilibrium two-particle correlation
function v2. Thus, this equation, in contrast to the Enskog equation, can be used for
gases with real interaction potentials and takes into account the influence of the
delay and the correlation between the delay and spatial nonlocality on the transport
processes. A detailed solution of this equation in the approximation of a moderately
dense gas can be found in Rudyak (1989b).

The kinetic equations (1.17) and (1.22) actually provide a reliable base for the
description of moderately dense gases, but they have to be solved at sufficiently
high Knudsen numbers, as was demonstrated above. Unfortunately, there are no
methods that can be used to solve these equations at such Knudsen numbers.
Therefore, the only way out is to use the molecular dynamics method, which will be
discussed in the last section of this chapter.

1.4 Modeling of Dense Gas and Liquid Flows

The density of a dense gas is close to liquid density. However, the thermodynamic
properties of fluids in these two aggregate states are significantly different. Thus, for
example, the viscosity coefficient increases with temperature in gases and, vice
versa, decreases with increasing temperature in liquids. This is caused by the fact
that the transport processes in gases are mainly induced by kinetic effects, i.e., by
transfer in the course of motion of molecules and their interaction. Liquids are
governed by the short-range order, and the processes of viscous dissipation, for
instance, are caused by violation of the short-range order and by diffusion processes
of momentum leveling in the system, in addition to molecular transfer. Naturally,
this should be taken into account in simulating dense fluids. However, the simu-
lation methods are actually identical. Indeed, dense fluid molecules are almost
always in the sphere of interaction with other molecules. Their mean free path is
l� r� 10�8 cm, where r is the effective size of the molecules. The corresponding
Knudsen numbers in microchannels are always smaller, or even much smaller, than
unity. However, the hydrodynamic description requires a certain degree of care to
be used. As was already noted, the concept of a continuum medium is valid if it is
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possible to select a physically infinitesimal hydrodynamic scale rh such that fluc-
tuations inside the corresponding volume could be neglected. For liquids, we have
rh �

ffiffiffiffiffiffi
rd

p
(Rudyak 1995), where d is the characteristic linear scale of the flow

(diameter of a cylindrical channel, distance between the plates in a plane Poiseuille
flow, etc.). If the microchannel height is d� 1 lm, then rh � 10�4 m, which is
already comparable with the channel height. Fluctuations of the number of particles
in such a volume for a dense fluid in equilibrium are on the order of 1=

ffiffiffiffiffiffi
Nd

p � 10�2,
which is quite noticeable. Therefore, the hydrodynamic description fails if there are
gradients of macroscopic variables in the flow.

Particular problems arise near the channel walls. As was already noted, viscosity
in gases is related to momentum transfer by molecules; therefore, it is formed at
scales greater than the mean free path of molecules. In liquids, however, the
short-range order is observed at scales on the order of 1 nm, and viscosity is formed
at mesoscales rl : r\rl\rh. Thus, the viscous liquid concept is valid only at scales
beginning from tens of nanometers. Therefore, the liquid in sufficiently small
microchannels can have different values of viscosity near the walls and in the bulk.
Moreover, the transport processes in microchannels are no longer isotropic. For
example, diffusion of molecules along and across the channel has different
characteristics.

Nevertheless, it should be noted that the hydrodynamic description is rather
rough, in the sense that it is valid far beyond the area of its applicability. It should
be borne in mind, however, that the existence of roughness on the channel walls can
significantly change in the character of the flow, and this fact should be taken into
account in simulations. The second problem arising here is the formulation of the
boundary conditions. A fairly large slip length is observed on the walls, even in
liquid microflows. Correspondingly, the no-slip boundary condition can turn out to
be insufficient.

Naturally, all of the above-described problems are aggravated if nanoflows are
considered. The Knudsen numbers are still smaller than unity, but have such values
that the hydrodynamic description is inapplicable. The physically infinitesimal
hydrodynamic scale in such a flow is on the order of rh �

ffiffiffiffiffiffi
rd

p � 10�7 cm. In this
case, the relative fluctuations in the number of particles, even as predicted by the
equilibrium theory, are on the order of 1=

ffiffiffiffiffiffi
Nd

p � 1� 10�1. It was shown (Rudyak
and Kharlamov 2003; Kharlamov and Rudyak 2004) that the fluctuations in the
number of particles, momentum, and energy in such small systems are no longer
described by the classical relations. In particular, the distribution functions of the
fluctuations of the number of particles and energy are appreciably different from the
Gaussian curve and do not coincide with the Poisson distribution in the case of an
ideal gas. The distribution function of the momentum fluctuations for a small
subsystem is Gaussian, but the dispersion of the distribution depends, to a large
extent, on the thermostat density, in contrast to the usual equilibrium theory.
Molecular dynamics calculations have also shown that autocorrelation functions of
the momentum fluctuations decrease nonmonotonically. It was demonstrated that
the temperature can be introduced beginning from volumes with the characteristic

16 1 Methods of Modeling of Microflows and Nanoflows



size of about ten nanometers, i.e., at the mesoscale rl. All of these circumstances
suggest that the only method suitable for modeling dense fluid nanoflows is
molecular simulation, and the most appropriate technique here is the molecular
dynamics method.

1.5 Modeling of Disperse Fluid Flows

In the general case, disperse fluids are multiphase systems. The method of modeling
these fluids is determined by the classification given in Sect. 1.1. A gas suspension is a
two-phase system consisting of carrier gas molecules and a pseudo-gas of disperse
particles. Inwhat follows, the disperse phase is assumed to consist of solid particles for
simplicity, though themajority of conclusions formulated here are also valid for liquid
particles. Thus, let the particles in the gas suspension be hard spheres of radius R0.
Then, in addition to the molecule size r and particle size R0, it is possible to choose
threemore characteristic scales: mean free path offluidmolecules lf , mean free path of
particles lp, and mean free path of particles with respect to molecules lpf . The mean
free path of molecules is determined by their number density nvf and the scattering
cross-section lf � 1=nvfr2: For a gas consisting of hard spheres (Chapman and
Cowling 1990), lf ¼ 0:177=nvfpr2: Similarly, lp ¼ 0:177=nvppR2

0. The mean free
path of particles with respect to molecules is

lpf � 0:177c0p
nvfpR2

0c0f
� 0:177

nvfpR2
0

ffiffiffiffiffi
m
M

r
� 0:177

nvfpR2
0

ffiffiffiffiffi
r30
R3
0

s
; ð1:23Þ

where it is also taken into account that m� r3; M�R3
0; c0p=c0f �

ffiffiffiffiffiffiffiffiffiffiffi
m=M

p
; and

c0p; c0f are the mean thermal velocities of the disperse particles and carrier gas

molecules, respectively, c0i �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kT=mi

p
; i ¼ f ; p.

Formula (1.23) shows that, if the carrier gas is, e.g., air under standard condi-
tions, then the mean free path for particles with the characteristic size R0 
 10�8 m
is lpf 
 lf . Moreover, lpf\r almost always, i.e., the process of particle collisions
with molecules is almost continuous. Naturally, the mean free path lpf increases
with an increasing level of carrier gas rarefaction.

In fine disperse gas suspensions, the characteristic particle size is on the order of
the infinitesimal (for the carrier gas) kinetic scale (Klimontovich 1974)

R0 � rkf � ffiffiffiffi
ef

p
lf ; ð1:24Þ

where ef ¼ nvfr3: For air under standard conditions, we have lf � 10�6 m,
ef � 10�4, and R0 � 10�7 m. The value of rkf increases with increasing gas rar-
efaction. For example, at an altitude of 100 km above the Earth’s surface, the
density of molecules in the atmosphere is nvf � 1013; lf � 1 m, and ef � 10�10:
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Therefore, a fine disperse suspension at this altitude can have molecules with
R0 � 10�5 m. On the other hand, the physically infinitesimal kinetic scale in dense
gases and liquids is on the order of nanometers. Therefore, a fine disperse sus-
pension is understood here as a gas or liquid suspension with nanoparticles. Such
media are called nanofluids, and they will be discussed in the next section. In all
other situations, we have a usual fluid with macroscopic particles. Modeling of this
fluid depends, to a large extent, on both the flow regime and the microchannel size.
It should be mentioned that such fluid flows in nanochannels are impossible (strictly
speaking, it is possible to organize a flow with compliant particles; a well-known
example of such a fluid is blood, though disperse particles are not solid).

For the hydrodynamic description of gas suspensions, the Knudsen numbers of
the carrier gas Kng and the pseudo-gas consisting of particles Knp should be small:
Kng � 1=ðngr2dÞ 
 1; Knp � 1=ðnpR2

0dÞ 
 1, where ng and np are the number
densities of carrier gas molecules and particles, respectively. The lower boundary of
the microchannel size is about d
 10�1 lm. The upper boundary is smaller than
500 lm. Therefore, the carrier gas can be described hydrodynamically if its density
is ng � 1=ðr2dÞ. In fact, this condition is satisfied only for moderately dense and
dense gases. Even if the carrier gas is dense, however, the second condition should
be also satisfied. It can be easily seen that it is not satisfied, even for the largest
microchannels and the finest particles.3 Thus, it is almost always impossible to
describe gas suspensions in microchannels hydrodynamically.

In suspensions, only three characteristic linear scales can be identified: r; R0,
and d. An important scale of the liquid flow is the physically infinitesimal hydro-
dynamic scale rhf ¼

ffiffiffiffiffiffi
rd

p
. The corresponding physically infinitesimal hydrody-

namic volume is vhf �ðrdÞ3=2. In the equilibrium state, the fluctuations of
macroscopic variables are inversely proportional to the square root from the number
of particles in the system. As the number of molecules in this volume is

Nhf ¼ nvfvhf � nvfðr0LÞ3=2, then the condition
ffiffiffiffiffiffiffi
Nhf

p ¼ ffiffiffiffiffiffi
nvf

p ðrdÞ3=4 � 1 should be
satisfied for the fluctuations of macroscopic variables to be small in this volume.
This relation is almost always valid for liquids.

A fine disperse suspension is understood as one with the particle size

R0 
 rhf �
ffiffiffiffiffiffi
rd

p
; ð1:25aÞ

a medium disperse suspension has particles with the size

R0 � rhf �
ffiffiffiffiffiffi
rd

p
; ð1:25bÞ

3At the boundary of applicability of the hydrodynamic description, one can try to study a
microflow of a moderately dense or dense gas with particles on the order of one micrometer.
However, the boundary conditions here should be imposed carefully, because the usual hydro-
dynamic boundary conditions are invalid for the pseudo-gas of particles (see below).
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and the particle size in a coarse disperse suspension are determined by the
inequality

d � R0 [ rhf or d � R0 � rhf : ð1:25cÞ

As the suspension characteristics are different depending on the particle and
channel sizes, they have to be described by different models. In a microchannel with
the characteristic size on the order of several micrometers, a fine or medium dis-
perse suspension is a nanofluid, i.e., a suspension in which the disperse phase
consists of nanoparticles (see the next section). Thus, the only classical disperse
fluid, i.e., disperse fluid with macroscopic particles, in a microchannel is a coarse
disperse suspension.

The single-fluid hydrodynamic description, i.e., description in which the dis-
perse fluid is defined by the mean density, velocity, and temperature, can be used
only if (i) the disperse phase distribution over the entire volume is sufficiently
uniform and (ii) the physically infinitesimal hydrodynamic scales for the carrier
phase rfh �

ffiffiffiffiffiffi
rd

p 
 d and pseudo-gas of particles rph �
ffiffiffiffiffiffiffiffi
R0d

p 
 d are sufficiently
small, as compared to the characteristic size of the channel. In particular, the first
condition implies that adsorption and absorption of particles on the channel walls
and sedimentation of particles can be neglected. Otherwise, the particle distribution
becomes nonuniform and has a maximum disperse phase density near the surface.
According to the second condition, rph � 10 µm in a microchannel with the char-
acteristic size on the order of 100 µm and the particle size on the order of 1 µm
(these are actually the Brownian particles; in Perrin’s experiments, the particle size
was 0.2 � 1 µm), which certainly does not satisfy the condition of existence of the
hydrodynamic flow regime.4 Thus, in considering a disperse fluid in a
microchannel, the single-fluid description is actually valid only for a granular
medium with a characteristic particle size smaller than one micrometer, in which the
second phase is represented by a certain gas whose contribution to the macroscopic
characteristics can be neglected.5 The two-fluid description, in which each com-
ponent is described by its own macroscopic variables (see, e.g., Soo 1990; Rudyak
2004, 2005) is impossible for the same reason.

4In experiments performed according to the method of Particle Image Velocimetry (PIV), the
characteristic size of tracer particles is usually on the order of one micrometer. The estimates show
that the single-fluid flow regime is violated in this case. For the fluctuations of the number of tracer
particles Nhp in a physically infinitesimal hydrodynamic volume to be small, their density should

satisfy the condition 1=
ffiffiffiffiffiffiffi
Nhp

p � 1=
ffiffiffiffiffiffiffiffiffiffi
r3phnp

q

 1. It can be easily seen that this condition is valid

only if these particles are densely packed, which obviously contradicts the posed problem. In all
other cases, the fluctuations of the number of tracer particles are so large that it is impossible to
obtain reasonable data on the carrier fluid velocity field. Nanoparticles should be used as tracers
in such microchannels, but it should be also done carefully (see the next section).
5Here, only suspensions are indicated; emulsions and gas-liquid media require a special analysis.
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As was already noted, the Knudsen number for the pseudo-gas of particles in the
suspension is Knp � 1=ðnpR2

0dÞ. The Knudsen number for particles with the char-
acteristic size on the order of 1 µm in a channel 100 µm in diameter is
Knp � 1010=np. On the other hand, the corresponding van der Waals parameter in a
usually gas suspension with small volume concentrations of particles is
ep � npR3

0 � 10�12np 
 1: A comparison of these two estimates shows that
Knp 
 1, which means that the pseudo-gas consisting of particles should be
described kinetically. The estimates become more rigorous as the particle size
increases or the channel size decreases.

In situations when the carrier component can be described hydrodynamically
and the disperse component cannot, a hybrid description should be used: the carrier
component (gas or liquid) is described hydrodynamically, and the disperse com-
ponent (particles) is described kinetically (Rudyak 1999). Let us consider a
monodisperse two-phase medium with the carrier component being a liquid or a gas
and the disperse component being solid particles. Let the carrier medium be a gas
that is not strongly rarefied. Then, its dynamics is described by the following
hydrodynamic equations for the density qf , velocity uf , and energy Ef , which also
include the forces of interaction between the phases Fm; Fe:

@qf
@t

þr � qfuf ¼ 0; qf
@uf
@t

þ qfuf � ruf þr � J2f ¼ Fm;

@Ef

@t
þr � Efuf þ J2f : ruf þr � J3f ¼ Fe:

ð1:26Þ

The explicit form of the stress tensor, heat flux vector, and interphase interaction
forces in these equations is determined by several factors. As previously, we
assume that the carrier medium is a Newtonian fluid. Single-component Newtonian
fluids are described by the Navier-Stokes equations, where the stress tensor and the
heat flux vector are defined by linear local constitutive relations

J2f ¼ pf � lf ðruf Þs � lVfr � ufU; J3f ¼ �kfrTf :

In accordance with the usual phenomenological concepts, we use relations of the
above-mentioned type, but involve the effective transport coefficients

J2f ¼ pf � lse22ðruf Þs � lVe22r � ufU; J3f ¼ �le33rTf ; ð1:27aÞ

which can be chosen by using various available correlations. The thermal con-
ductivity is related to the viscosity coefficient via the Prandtl number.

The interphase interaction forces can be presented for wide ranges of variation of
the disperse fluid parameter as
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Fm ¼ nf KmðReD; MpÞðup � uf Þ; FE ¼ nf KEðReD; MpÞðTp � Tf Þ; ð1:27bÞ

where ReD is the Reynolds number based on the disperse particle diameter D, Mp is
the Mach number of particles, Tp; Tf are the temperatures of the carrier fluid and
particles, nf is the number density of the carrier phase, and up is the macroscopic
velocity of the pseudo-gas of particles. The friction coefficient Km and heat transfer
coefficient KE are functions of the similarity parameters of the medium and can at
least be determined experimentally.

Strictly speaking, the stress tensor, heat flux vector, and interphase interaction
forces in Eq. (1.26) may contain some additional terms proportional to diffusion
velocities and temperatures (see Rudyak 2005). They have to be taken into account
when studying strongly nonhomogeneous transport processes, and this should be
borne in mind in each particular case. Unfortunately, there is practically no
experimental information about the coefficients at these terms.

Finally, one more comment should be made. In the general case, the stress tensor
and heat flux vector include additional terms associated with allowance for dissi-
pative fluxes of the disperse component for the carrier fluid. As a consequence,
cross-coefficients of the form liifp appear. However, it is difficult (practically
impossible!) to measure these transport coefficients, though they can be calculated
by constructing an appropriate solution to the Boltzmann equation (see Rudyak
2004) in the case of a rarefied carrier gas and by the molecular dynamics method for
a dense gas or a liquid. Therefore, the constitutive equation (1.27a) should be
considered as effective.

The disperse component dynamics is described in the general case by the kinetic
equation6

@fp
@t

þV � @fp
@R

¼ JppðfpfpÞþ JpgðfpfgÞ ð1:28aÞ

for the single-particle distribution function fp: Here, Jpp; Jpg are the integrals of
collisions of disperse particles with each other and with carrier medium molecules,
fg is the single-particle distribution function for gas molecules, and V; R are the
velocity and coordinate of the center of mass of the disperse particle.

If the gas or liquid suspension is not too dense (e1=3p ¼ n1=3p r0p 
 1, where np is
the density of the pseudo-gas consisting of disperse particles), then the integral of
particle collisions Jpp can be modeled by the Boltzmann collision integral. For

6Strictly speaking, the disperse component is described by the kinetic equation for the
single-particle distribution function only if the particles are not too coarse and the gas suspension is
not too dense. Actually, such sufficiently rarefied gas suspensions are of interest for practice.
Otherwise, the evolution of the disperse component is described by a system of kinetic equations,
which, in addition to the equation for the single-particle distribution function, include equations for
multiparticle distribution functions, in particular, the paired distribution function.
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practical purposes, this integral can often be modeled by the relaxation collision
integral

JppðfpfpÞ ¼ �ðfp � fp0Þs�1
p ;

where fp0 is the local Maxwell function of the pseudo-gas of disperse particles and
sp is their free flight time. If the disperse phase density is sufficiently high, the
Enskog collision integral or other model collision integrals can be used as Jpp.

The pseudo-gas of particles behaves similarly to a non-ideal gas at sufficiently
high densities, when the corresponding van der Waals parameter is ep ¼
npR3

0 
 10�3: If 10�8 
 ep\10�3, the collision integral has the Boltzmann form. If
the van der Waals parameter has even smaller values, particle collisions can be
neglected, and the kinetic equation for the pseudo-gas becomes significantly
simplified:

@fp
@t

þV � @fp
@R

¼ JpgðfpfgÞ: ð1:28bÞ

In the collision of a molecule with a disperse particle, the velocity of the latter
changes only slightly. By virtue of the adiabaticity of the change in the function fp
in the momentum space, the collision integral Jpg can be presented as the linear
Fokker-Planck collision integral

Jpg ¼ JFP ¼ K
@

@V
� Vfp þ kT

2M
@fp
@V

� �
; ð1:28cÞ

where K is a certain friction coefficient. If the drag force acting from the carrier fluid
on the particle is defined by Eq. (1.27b), then K ¼ Km. Thus, the kinetic equation
for the disperse component has the form

@fp
@t

þV � @fp
@R

¼ JppðfpfpÞþ JFPðfpfgÞ: ð1:29Þ

System (1.26), (1.28a) of the hybrid kinetic-hydrodynamic description of dis-
perse fluids was formulated phenomenologically. For rarefied fine disperse gas
suspensions, it was formulated rigorously (Rudyak 2004), based on the system of
kinetic equations that describe the evolution of the carrier and disperse components.

Formulating a boundary-value problem for the system of kinetic-hydrodynamic
equations is a nontrivial task, because it is necessary to impose the boundary
conditions on the solid surfaces for the hydrodynamic variables of the carrier gas,
for the disperse particles, and for the distribution function of the latter. Concerning
the boundary conditions for the hydrodynamic parameters of the carrier medium,
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they are fairly obvious. They should be the no-slip condition or the velocity slip and
temperature jump conditions (1.5).

Particles in medium and coarse disperse gas and liquid suspensions have suffi-
ciently large sizes; therefore, their thermal velocities are very (or even negligibly)
small: for particles of 10�7 m, the thermal velocity at room temperature is
approximately 10�2 � 10�1 m/s, which is smaller than the corresponding velocity
of the carrier gas molecules by four or five orders of magnitude.7 As a result, the
mechanisms of interaction of disperse particles and molecules with the wall are
essentially different. At subsonic velocities, the velocity of the particles themselves
is defined by the flow velocity. Interaction of disperse particles with the surface is
determined by the laws of slipping and rolling along the solid wall, rather than by
the law of particle scattering by the surface. The losses of energy and momentum on
the surface depend on the corresponding slipping and rolling friction coefficients.
The laws of such friction have not been adequately studied. Moreover, the process
of particle motion along the surface is usually not continuous. Nevertheless, if
particle slipping on the surface is assumed to follow the dry friction law,8 Ff ¼ kfN,
then there is a certain region of particle velocity relaxation whose characteristic
length in the simplest approximation is on the order of xr �Mv2pð0Þ=kfN kfð is the
slipping friction coefficient, which can depend on velocity in the general case, and
N is the force of the normal pressure of the particle onto the surface). The same
effect is obtained by taking into account deceleration of disperse particles by the
fluid. In this case, however, the relaxation region length is proportional to the
particle velocity, and the boundary condition on the wall has the form (Soo 1990)

uxpðy ¼ 0Þ ¼ Up � cx; ð1:30Þ

where c is the drag coefficient.
Particles become accumulated behind the relaxation region. As a result, the

particle concentration near the solid surface appreciably increases, and a “boundary
layer” consisting of disperse particles is formed. For this reason, a two-layer
description (inside and outside the boundary layer) was proposed (Gorbachev 1981,
1982). In this case, however, the results can apparently depend both on the flow
geometry and on the flow parameters. Nevertheless, the use of the no-slip condition
in this region seems to be fairly reasonable in practical problems.

If the flow velocity has a non-zero component normal to the solid surface or the
small (but not zero) thermal velocity of the particle is taken into account, an
ensemble of reflected particles appears in the flow field. As the velocities of such

7It should be noted, however, that these velocities can be comparable to or even greater than the
gas suspension flow velocity in a microchannel.
8For simplicity, a flat surface is considered here; otherwise, the friction force also depends on the
particle velocity. However, the considered approximation is usually sufficient because the particle
size is usually negligibly small as compared to surface curvature.
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reflected particles themselves can noticeably differ9 from the velocities of particles
in the bulk, the initially two-phase medium effectively transforms into a three-phase
medium. An example of a description of such a medium can be found in the
monograph (Nigmatulin 1987).

Formulation of boundary conditions for distribution functions satisfying kinetic
equations has been well studied (see the monographs Cercignani 1975; Goodman and
Wachman 1976). An additional difficulty in the considered problem is the possibility
of particle slipping along the surface in addition to conventional scattering, and the
dynamics of such slipping motion has not been studied. There is little information
about the laws of interaction of disperse particles with surfaces of different physical
nature, though the interest in this problem has been increasing over the last two
decades, owing to several important applications: gas-dynamic spraying, interaction
of spacecraft with their own atmosphere and microparticles of space origin, interac-
tion of gas-powder jets with the rocket engine nozzle, and some others. Thus, before
giving recipes for formulating boundary conditions for the distribution function of
disperse particles, we have to consider how this problem was solved in the kinetic
theory of rarefied gases. This is useful because the thus-obtained relations can at least
be used for formulating boundary conditions for ultrafine gas suspensions.

As the kinetic equation for particles includes the derivative with respect to the
coordinate, an appropriate boundary condition for the distribution function on the
wetted surfaces S bounding the flow field should be imposed. In other words,
the distribution function for molecules flying from the boundary toward the flow
should be prescribed on these surfaces at each time instant. As the number of mole-
cules incident onto the surface depends linearly on the distribution function of par-
ticles in the volume f�ðvÞ � ðn � v\0Þ, the distribution function ofmolecules reflected
from the surface f þ ðv0Þ � ðn � v0 [ 0Þ is a certain linear functional of this function:

f þ ðv0Þ ¼ K½f�ðvÞ� on S ð1:31Þ

(n is the internal normal to the surface).
We can easily see that the functional K is an integral operator. Indeed, the

number of molecules leaving from the surface element dS within a unit time with
velocities in the interval ½v; vþ dv� near the point r at n � v0 [ 0 is
f þ ðr; vÞðn � vÞdSdv[ 0. The number of molecules incident onto the same surface
element within a unit time with velocities in the interval ½v0; v0 þ dv0� is determined
by a similar relation �f�ðr; v0Þðn � v0ÞdSdv0 [ 0 at n � v0 � 0. We assume that all of
these molecules become reflected from the surface, but the molecule moving with a
velocity v0 in the interval dv0 is reflected from the surface with a probability Rðv0; vÞ
with a velocity v in the interval dv. To obtain all molecules reflected within the
considered velocity interval, the last relation should be integrated over all possible

9This depends on the surface properties, particle material, energy of interaction, and scattering
laws.
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velocities of incident molecules. As a result, the total number of reflected molecules
is determined by the formula

f þ ðr; vÞðn � vÞdSdv ¼ �dSdv
Z

n�v0\0

dv0ðn � v0Þf ðr; v0ÞRðv0; vÞ

or

ð1:32aÞ

In deriving the last expression, it was assumed that molecule reflection from the
surface occurs instantaneously. However, this is not so in the general case.
Molecules can be adsorbed on the surface. Formally, this fact can be easily taken
into account. If the time of adsorption of a molecule incident onto the surface with a
velocity v0 is sa, then the distribution function of reflected molecules is

f þ ðr; v; tÞ ¼ �
Zs

0

dsa

Z
n�v0\0

dv0
ðn � v0Þ
ðn � vÞ Rðv

0; v; t; saÞf�ðr; v0; t � saÞ: ð1:32bÞ

The number of molecules colliding in a unit time with the considered surface
element is ng n � vj jdS. If �sa is the mean time of molecule adsorption, then the
surface portion dS equal to ng n � vj jpr20�sa is occupied by adsorbed molecules. If all
molecules incident onto the surface become reflected, we haveZ

n�v[ 0

dvðn � vÞf þ ðr; vÞ ¼ �
Z

n�v0\0

dv0ðn � v0Þf�ðr; v0Þ

Therefore, the obvious condition of normalization of the scattering kernel isZ
n�v0\0

dvRðv0; vÞ ¼ 1:

This relation is violated if some molecules incident onto the surface do not return
to the volume.

In the general case, the scattering kernels R depend on the physical and chemical
properties of the surface and on the energy, properties, and density of incident
molecules. In principle, scattering kernels can be studied experimentally, but the
number of parameters exerting a significant (often determining) effect on the final
result is so large that there have yet been few successful investigations. Obviously,
experiments should be combined with numerical simulations.

Certainly, one may try to calculate transport kernels. The formulation of the
corresponding mathematical problem can be found in the monograph (Cercignani
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1975). The difficulties of solving such a problem are clearly visible, and mathe-
matical modeling is still the most universal method of solving practical problems
despite significant success in understanding the phenomenon. Various issues of
simulations were considered by many researchers. Below, we consider only two
simple and popular models, which were formulated back in the 19th century.

Let the surface be absolutely elastic and smooth and let the molecule be modeled
by an elastic hard sphere. When such a model collides with the surface, its tan-
gential velocity v0s (along the surface) remains unchanged, whereas the velocity
directed normal to the surface v0n; changes into the opposite: v0s ¼ vs; v0n ¼ �vn (the
prime here denotes the velocities of the molecule incident onto the surface). This
type of collision is called specular reflection, and the corresponding scattering
kernel has the form

Rðv0; vÞ ¼ dðv0 � vþ 2nðn � vÞÞ: ð1:33Þ

As was mentioned above, another popular model is diffuse reflection, which
implies that molecules are thermalized by the surface and leave the latter with the
Maxwell distribution of velocities and with a temperature equal to the surface
temperature. The corresponding scattering kernel is written as

Rd(v0; vÞ ¼ 1
2p

m
kTw

� �2

ðn � vÞ exp � mv2
2kTw

� �
: ð1:34Þ

In practice, a combination of the scattering kernels (1.33) and (1.34) is usually used:

Rðv0; vÞ ¼ ð1� asÞdðv0 � vþ 2nðn � vÞÞ � asRd(v0; vÞ; ð1:35Þ

where the tangential momentum accommodation coefficient as is introduced.
The use of kinetic equations for the description of the disperse component

dynamics is not only necessary for studying coarse disperse gas suspensions and
liquid suspensions. The kinetic description of the disperse component evolution is
required in all cases when the Knudsen number of the pseudo-gas of particles is not
too small: Knp [ 10�2. For this reason, in discussing the boundary conditions in
this section, we consider not only coarse disperse, but also fine disperse and
ultrafine disperse gas and liquid suspensions.

For ultrafine and fine disperse particles, it is possible to use the method of
boundary condition formulation developed in the kinetic theory of rarefied gases. In
this case, it is also possible to use the specular-diffuse reflection law (1.35). It
should be noted, however, that this model is rather rough and contradictory in some
aspects. For instance, the accommodation coefficients depend, in the general case,
on the distribution function of incident particles, material surface, and its temper-
ature. One of the first models to take into account the dependence of the coefficient
as on velocity was proposed in Epstein (1967). It was assumed there that ½1�
asðv0Þ� particles are reflected in a specula manner, and asðv0Þ particles are reflected
diffusely, independent of v0:
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Rðv0; vÞ ¼ ½1� asðv0Þ�dðv0 � vþ 2nðn � vÞÞ � asðv0ÞRd(vÞ: ð1:36Þ

If the energies of particles incident onto the surface are sufficiently large, then
the distribution of reflected particles has peaks at certain reflection angles. In this
case, the scattering kernel can be simulated by a set of d-functions with several
values of the mean velocity vi of reflected particles:

Rðv0; vÞ ¼
X
i

d½v� viðv0Þ�: ð1:37Þ

More complicated models were also used (see, e.g., Cercignani 1983).
An important specific feature of interaction of disperse particles with the solid

surface is its inelastic character caused by several factors: transfer of some part of
energy and momentum to the crystal lattice of the surface, adsorption, presence of
inhomogeneities on the surface, etc. Inhomogeneities on a treated surface, often
called surface roughness, have the characteristic size from 10�8 to 10�4 m, which is
comparable with the particle size. These inhomogeneities are randomly distributed;
therefore, particle scattering laws depend on statistical properties of the surface. It is
usually assumed that reflection from a surface element follows either a specular or a
diffuse reflection model.

As was already noted, sufficiently coarse particles have small thermal velocities.
When such particles interact with the surface, the probability of their sticking to the
wall is fairly high. To characterize the particle impact onto the surface, we have to
classify possible situations arising here.

1. Impact onto a smooth surface. In the case of particle incidence onto a smooth
surface, the tangential component of the particle velocity remains unchanged,
whereas the normal component is determined by the initial velocity vn0 and
surface properties: vs ¼ v0s; vn ¼ f ðv0n0; SÞ. To describe the possibility of an
inelastic impact, the recovery coefficient is introduced: kn ¼ vn=v0n. Thus, kn ¼ 1
for an absolutely elastic impact and kn ¼ 0 for an absolutely inelastic impact.
If 0\kn\1; then the impact is not completely elastic. As v0s ¼
v0sina; vs ¼ vsinb; v0n ¼ v0cosa, and vn ¼ v cos b, the recovery coefficient is
equal to the ratio of the incidence angle tangent to the reflection angle tangent:
kn ¼ tga=tgb.

2. Impact onto a rough surface. In an impact onto a rough surface, both the normal
and tangential velocity components can change in the general case: vs ¼ ksv0s
and vn ¼ knv0n; here, the recovery coefficient for the tangential velocity com-
ponent is introduced: ks ¼ v0s=vs. Thus, ks ¼ �1 for an absolutely elastic rough
surface and ks ¼ 0 for an absolutely inelastic rough surface.

The change in the particle momentum components p ¼ fpn; psg after its colli-
sion with the surface and the kinetic energy defect DEk ¼ Ek � E0

k are determined
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by the relations pn ¼ knp0n; ps ¼ ðks þ 1Þp0s; and DEk ¼ ð1=2MÞ½p02n ðk2n � 1Þþ
p02s k

2
s �.
Thus, the simplest and most reasonable way (because of the lack of experimental

information) to choose the scattering kernel of disperse particles by an arbitrary
solid surface is to use the d-shaped kernel

Rðv0; vÞ ¼ d½v0 � vþðkn þ 1Þnðn � vÞþ ðks � 1Þsðs � vÞ�:

The vector s is directed along the surface and coincides with the direction of the
corresponding component of the particle velocity v0.

1.6 Modeling of Nanofluid Microflows

1.6.1 Methods of Modeling of Nanofluid Flows

Nanofluids10 are two-phase systems consisting of a carrier medium (liquid or gas)
and nanoparticles. Nanoparticles are particles with characteristic sizes ranging from
1 to 100 nm, and they can be solid, liquid, or gaseous in the general case. Typical
carrier liquids are water, organic liquids (ethylene glycol, oil, or biological fluids),
and polymer solutions. Particles of chemically stable metals and their oxides are
usually used as solid nanoparticles. Fullerene, whose diameter is about 1 nm, can
be considered as the smallest nanoparticle. Viruses occupy an intermediate position
(their size is around tens of nanometers). On the other hand, nanofluids based on
carbon nanotubes have been intensely investigated. Such fluids differ considerably
from the usual nanofluids and resemble various structured fluids (polymers, liquid
crystals, etc.).

Studies of physical features of nanofluids and their transport properties were
begun comparatively recently. They were initiated by using nano-disperse systems
in various applications. The small size of nanoparticles is responsible for their
specific properties. Nanofluids are characterized by particular transport properties,
while nanoparticles experience practically no sedimentation in contrast to coarse
particles, and they do not induce erosion in channels where they move. For these
and some other reasons, nanofluids are already used or will be soon used in the
following fields:

10The term “nanofluid” was first introduced by Choi (1995), who meant a suspension consisting of
a carrier liquid and solid nanoparticles. It seems reasonable to extend this term to gas suspensions
of nanoparticles for several reasons. First, gas suspensions of nanoparticles have many applications
in practice, similar to liquid suspensions of nanoparticles. Second, many properties of nanofluids
and nanosuspensions are very close to each other, especially if the carrier gas is sufficiently dense.
Finally, the same methods or models can be used for modeling transport processes in gas and
liquid suspensions of nanoparticles. For example, implementation of the molecular dynamics
method is absolutely identical in both cases.
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• Chemical processes including catalysis;
• Cooling of various devices;
• Creation of new systems for transportation and production of thermal energy;
• Biotechnologies, MEMS technologies, and nanotechnologies;
• Creation of new medicines and cosmetic formulations;
• Delivery of drugs, nanosensors, and nanoactuators;
• Creation of detection and recognition systems for various contaminants;
• Creation of air and water cleaning systems;
• Creation of new lubricants;
• Creation of new varnishes and paints.

This list can be expanded, but the key role in all of these processes belongs to the
specific character of nanofluids and their transportation properties.

Of significant interest are magnetic nanofluids, which allow for controlling the
behavior of carrier fluid. Magnetic nanoparticles are single-domain magnets. If a
magnetic field is applied, such particles in the fluid are arranged in the field
direction, and the fluid becomes magnetized. Strong magnetic fields can even
induce macroscopic motion of the fluid. Magnetic nanofluids confined by a mag-
netic field are used as sealing materials in vacuum devices. These fluids are widely
used for targeted drug delivery to damaged organs. They are already used for cancer
treatment through the method of hyperthermia: reaching the tumor, magnetic
nanoparticles kill cancerous cells by means of local heating of the damaged region
in an alternating magnetic field. X-ray contrasting nanofluids based on yttrium
tantalate allow for obtaining images of internal organs.

In addition to the applied aspect, investigations of transport processes in nano-
fluids have an important fundamental component, because there is no adequate
qualitative understanding of their nature yet, leaving aside a comprehensive
physical theory. At the same time, systematic applications of nanofluids will
become possible only if their properties can be predicted in advance, which requires
understanding of transport mechanisms in nanofluids. Despite a large amount of
experimental and theoretical knowledge, there are still no systematic data, and
experimental results are often contradictory. This is largely caused by objective
factors that make experiments difficult. In particular, it is not easy to control the size
and uniformity of the nanoparticle distribution; moreover, addition of nanoparticles
can alter fluid rheology.11 It is often impossible to determine how the transport
properties will be changed owing to variations of certain parameters of the system:
nanoparticle material, shape, size, volume concentration, etc. There is no physical
understanding of the observed effects either. Thus, it is necessary, on the one hand,
to develop an ab initio theory of transport processes by using, in particular, the
kinetic theory and, on the other hand, to apply the molecular dynamics method,
which has a predictive capability of an experiment and allows an “ideal” experi-
ment to be performed.

11This statement can be made even more severe: beginning from certain particle concentrations, all
nanofluids composed on the basis of conventional Newtonian fluids become non-Newtonian.
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Generally speaking, nanofluids (like disperse fluids, see Sect. 1.1) should be
classified in terms of several attributes. The first one is the aggregate state. Here, we
can distinguish gas nanosuspensions (gas+solid nanoparticles), nanosols (gas+liq-
uid nanoparticles), liquid nanosuspensions (liquid+solid nanoparticles),
nanoemulsions (liquid+liquid nanoparticles), and liquids with nanobubbles. The
second attribute is the volume concentration of nanoparticles /. Nanofluids can be
classified as rarefied ð/� 10�3Þ, moderately dense ð10�3 �/� 10�1Þ, and dense
10�1\/� 4� 10�1ð Þ. If the volume concentrations are even higher, we deal with
nanopowders. Finally, as the nanoparticle sizes can vary by two orders of magni-
tude, nanofluids can also be classified in terms of the relationship of internal
structural elements of the medium: nanoparticle and molecule sizes and mean free
paths of fluid molecules and nanoparticles. This is particularly important for gas
nano-suspensions, in which the degree of rarefaction of the carrier medium can vary
noticeably. As a result, the mean free path of the carrier gas molecules l can be
either greater or smaller than the particle radius R0. It was demonstrated (Rudyak
1992; Gladkov and Rudyak 1994a, b) that the dynamics of gas nano-suspensions
with a sufficiently rarefied carrier gas is described by a system of the Boltzmann
equations for the single-particle distribution functions of the carrier gas f1g and
pseudo-gas of nanoparticles f1p

@f1g
@t

þ v � @f1g
@r

¼ JggB þ JgpB ;
@f1p
@t

þV � @f1p
@R

¼ JpgB ; ð1:38Þ

where the collision integrals marked by the subscript “B” are the usual Boltzmann
collision integrals, JggB is the collision integral of carrier gas molecules, and JgpB and
JpgB are the collision integrals of molecules with nanoparticles. If the carrier gas is
sufficiently dense, the collision integrals in the kinetic equations contain additional
terms whose structure was described in Gladkov and Rudyak (1994a, b).

The kinetic theory of nanofluids can be developed only if the carrier medium is a
rarefied gas. Naturally, it cannot be constructed for liquid suspensions of
nanoparticles. It may seem that nanofluids, in this case, could be treated with the
usual methods of mechanics of continuous media. Indeed, a nanoparticle in the
carrier fluid metric is a material point. Therefore, macroscopic flows of nanofluids
and their microflows in channels with characteristic sizes of several micrometers
can be modeled by using the conventional transport equations (1.3). However, there
are several factors that should be taken into account.

First, in solving problems of isothermal nanofluid flows, it is almost always
possible to use conventional single-fluid hydrodynamic equations with effective
transport coefficients. At the same time, such problem formulation in a case with
temperature gradients can lead to significant errors. The point is that, considering a
nanofluid as a single homogeneous continuum, we imply that thermal diffusion of
all its elements is identical. However, this is not so in the general case. It is
impossible to introduce an effective coefficient of thermal diffusion of a nanofluid.
Thermal diffusion of nanoparticles (see below) is essentially different from thermal
diffusion of carrier fluid molecules. In the presence of temperature fields, the
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nanoparticle distribution will be non-uniform. Thus, it is necessary to use a
two-fluid description of the nanofluid flow, in which the carrier fluid and
pseudo-gas of nanoparticles are described by a system of coupled hydrodynamic
equations.

Second, at small concentrations of nanoparticles, the majority of nanofluids are
conventional Newtonian fluids if the carrier fluid is a Newtonian fluid. In this case,
the transport laws are described by the usual relations (1.4), for which effective
transport coefficients are used.

Third, even if the carrier medium is a Newtonian fluid, the nanofluid transforms
into a non-Newtonian fluid beginning from a certain volume concentration of
nanoparticles. The transition to the non-Newtonian rheology depends on the
nanoparticle material and size. Changes in the rheological properties of nanofluids
with increasing nanoparticle concentration have not been adequately studied yet; for
this reason, no general recommendations can be formulated.

1.6.2 Diffusion of Nanoparticles in Gases and Liquids

Transport processes play a key role in the description of nanofluid flows. The
development of a consistent theory of transport processes in nanofluids is com-
plicated by many factors (both subjective and objective). Objectively, the theoret-
ical description of transport processes, even in ordinary homogeneous fluids, is not
yet sufficiently adequate. Therefore, there is little hope for constructing a theory of
transport processes in nanofluids, which are significantly more complicated sys-
tems. The lack of experimental data can also be considered an objective factor,
because investigations of nanofluids have only started comparatively recently. On
the other hand, it has been commonly assumed for a long time that nanofluids are
not principally different from the usual disperse fluids (with macroscopic particles).
It is only now that researchers have gained the understanding that the situation in
nanofluids is much more complicated. In the general case, nanofluids differ both
from ordinary disperse fluids and from molecular solutions.

Probably, the only example of a consistent theory of transport processes in the
present field is rarefied gas nano-suspensions. A kinetic theory was developed that
made it possible to construct a regular theory of transport processes, which was then
verified experimentally. In particular, diffusion of nanoparticles in gases at standard
pressure (Rudyak 2004; Rudyak and Krasnolutskii 2001, 2002, 2003a; Rudyak et al.
2008a), thermal diffusion (Rudyak and Krasnolutskii 2010), and viscosity of gas
nano-suspensions (Rudyak and Krasnolutskii 2003b, 2004) were studied. In all cases,
it turned out that nanoparticle transport processes are essentially different from
transport processes of ordinary disperse particles in gases, including Brownian par-
ticles, which are sufficiently small, but still macroscopic from the viewpoint of con-
tinuous media. The diffusion coefficient of Brownian particles of radius R ðR � lf Þ is
determined by the Einstein formula (Einstein 1906)
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DE ¼ kT=ð6plRÞ; ð1:39Þ

therefore, DE �R�1. The following estimate was obtained for nanoparticles
(Rudyak and Krasnolutskii 2002; Rudyak 2004):

D� 1
R2 1þ a1ffiffiffi

R
p þ a2

R

� �
ð1:40Þ

Formulas (1.39) and (1.40) yield one asymptotic curve for sufficiently large
particles, but the results are significantly different for small particles. The depen-
dence of the diffusion coefficient on the particle radius at a fixed temperature (T =
288 K) is illustrated in Fig. 1.1, which shows the diffusion coefficient of zinc
particles in neon as a function of the particle radius at a fixed temperature T =
300 K and atmospheric pressure as an example. The diffusion coefficient predicted
by the kinetic theory is shown by the solid curve; the dashed curve is the depen-
dence determined by the Einstein formula (1.39). The experimental
Cunningham-Millikan-Davies (CMD) correlation (Friedlander 2000) is plotted by
the dotted curve. The last curve largely agrees with our data in the major part of the
considered domain. In the range of small particle sizes (smaller than 10 nm),
however, there is a significant difference between the CMD correlation and the
kinetic theory. Moreover, diffusion of Brownian particles is determined only by the
particle size and is independent of the particle material. At the same time, diffusion
of sufficiently small nanoparticles depends on their material to a large extent
(Rudyak et al. 2008a).

One of the most interesting and fine transport processes is thermal diffusion.
Thermal diffusion of nanoparticles is often confused with thermophoresis typical
for aerosol particles (see, e.g., the review Mädler and Friedlender 2007). However,
there is a certain misunderstanding here. Strictly speaking, thermophoresis is the
motion arising as a result of a non-uniformly heated particle surface. However, the
nanoparticle size for a not-too-rarefied gas is on the order of the physically
infinitesimal hydrodynamic scale, i.e., the nanoparticle in the carrier gas metric is a

Fig. 1.1 Diffusion coefficient
(cm2/s) of Zn particles in Ne
versus the nanoparticle radius
(nm)
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material point, so it makes no sense to talk about its non-uniform heating (even if it
is non-uniformly heated!). For the same reason, this non-uniformity cannot arise at
physically reasonable temperature gradients. Thus, the motion of nanoparticles in a
non-uniform temperature field is nothing other than thermal diffusion.

Thermal diffusion of nanoparticles was studied on the basis of the kinetic theory
in Rudyak and Krasnolutskii (2010). It was demonstrated, in particular, that thermal
diffusion of nanoparticles, like their conventional diffusion, depends on the
nanoparticle material. As an example, Fig. 1.2 shows the thermal diffusion coeffi-
cient DT of Zn, Li, and U nanoparticles in Ne (dot-and-dashed, dotted, and solid
curves, respectively). The volume concentration of nanoparticles is / ¼ 10�3, and
the carrier gas temperature is T = 300 K. The values of the thermal diffusion
coefficient are noticeably different for sufficiently small nanoparticles. However,
they become almost material-independent for nanoparticles greater than 10 nm.

Another specific feature of thermal diffusion of nanoparticles (in contrast to
thermal diffusion of molecules) is the absence of temperature inversion of the
thermal diffusion factor. At low temperatures, it is monotonic and positive in all
cases. Beginning from room temperature, the temperature dependence of the
thermal diffusion factor becomes rather complicated and exhibits individual features
for small nanoparticles. These differences become less noticeable as the particle size
increases and are practically invisible for nanoparticles greater than 10 nm.
Moreover, the absolute values of the thermal diffusion factor of nanoparticles are
higher by more than an order of magnitude than the corresponding values for
molecular systems. The thermal diffusion ratio for gas nano-suspensions at fixed
volume concentrations of nanoparticles and pressure increases almost linearly with
increasing temperature. This means that DT �DT :

Finally, the dependence of the thermal diffusion characteristics on the volume
concentration of nanoparticles should be noted. The thermal diffusion ratio kT gives
the quantitative characteristic of the ratio of the flux induced by thermal diffusion to
the flux induced by diffusion at identical relative gradients of concentration and
temperature. Therefore, an increase in this ratio with increasing nanoparticle con-
centration is a very important characteristic of nanoparticle diffusion and thermal
diffusion. Figure 1.3 shows a typical dependence of the thermal diffusion ratio on

Fig. 1.2 Thermal diffusion
coefficient DT (cm2/s) of Zn,
Li, and U nanoparticles in Ne
versus the nanoparticle radius
R (nm)
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the concentration of nanoparticles (or heavy component molecules) / at a fixed
temperature T = 300 K for suspensions of uranium nanoparticles in neon, R =
20 nm (curve 1) and R = 1 nm (curve 2) and for a mixture of Xe and Ne gases
(curve 3). In the above-indicated range of concentrations, the thermal diffusion ratio
monotonically increases (for large nanoparticles, almost linearly). As the particle
size and mass increase, the relative influence of the thermal diffusion process
becomes less pronounced. The values of the thermal diffusion factor for gas sus-
pensions of nanoparticles can be higher, even significantly higher (small
nanoparticles), and lower (large nanoparticles) than those of gas mixtures.

Diffusion of nanoparticles in liquids has not been adequately studied experi-
mentally, partly because it is a popular opinion that it is described by the
Einstein-Stokes law (1.39). Nevertheless, scarce experimental data testify that this
law is invalid for nanoparticles (Evans et al. 1981; Haselmeyer et al. 1994; Kato
et al. 1993; Wuelfing et al. 1999; Kowert et al. 2004). The reason for this dis-
crepancy is often attributed to the necessity of using slip boundary conditions for
the description of the force acting on the particle (Evans et al. 1981; Wuelfing et al.
1999). Certainly, this is a misunderstanding. The motion of nanoparticles in a fluid
cannot be described hydrodynamically at all, because they are material points in the
carrier fluid (continuous medium) metric. Is it possible to impose the slip condition
on a material point? For this reason, there is no clear concept of the force acting on
a nanoparticle. Therefore, many researchers (Evans et al. 1981; Nuevo et al. 1997)
have proposed describing experimental data by a correlation of the form D ¼ A=gp;
where the parameter A and p have to be chosen for a particular particle radius and
medium temperature.

Attempts were made to verify the adequacy of the Einstein-Stokes law (1.39) by
the molecular dynamics method (Nuevo et al. 1997; Ould-Caddour and Levesque
2000). The main conclusion that can be drawn is that this law does not describe
nanoparticle diffusion in the general case. Simultaneously, a systematic study of
diffusion of small nanoparticles 1–2 nm in diameter was performed (Rudyak et al.
2000). Nanoparticles and molecules were simulated by a system of solid spheres
with different diameters. The carrier medium density was described by the

Fig. 1.3 Thermal diffusion
ratio versus the volume
concentration of the heavy
component
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parameter a ¼ ðV � VpÞ=V0 (V is the cell volume, V0 ¼ Nr3=8
ffiffiffi
2

p
is the volume of

a dense packing of molecules of radius r, and Vp ¼ 4pR3=3 is the nanoparticle
volume), which varied from 2 to 75. The data obtained are plotted in Fig. 1.4. The
dependence of the diffusion coefficient of nanoparticles on density is drastically
different from the behavior predicted by Eq. (1.39).

As was already noted, diffusion of sufficiently small nanoparticles depends
substantially on their material (Rudyak et al. 2008b). Figure 1.5 shows the diffusion
coefficients of lithium and aluminum nanoparticles 1–4 nm in diameter in argon at a
temperature of 322.5 K and argon density eV ¼ 0:707 (Rudyak et al. 2011). The
difference with Eq. (1.39) for small nanoparticles reaches 50%, and the difference
in the diffusion coefficient of Al and Li nanoparticles can reach 20–30%. Moreover,
in accordance with the Einstein theory, the diffusion coefficient of a particle is
inversely proportional to the particle radius. In the general case, the diffusion
coefficient as a function of the nanoparticle radius is described by a power-law

Fig. 1.4 Diffusion coefficient
of nanoparticles versus the
density. The solid curve is
obtained in molecular
dynamics simulations, and the
dashed curve is predicted by
the Einstein law (1.39)

Fig. 1.5 Diffusion coefficient
D (cm2/s) versus the radius
R (nm). The dashed curve and
squares show the results for Li
nanoparticles, the
dot-and-dashed curve shows
the results for Al
nanoparticles, and the solid
curve is predicted by the
Einstein formula
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function, D ¼ aR�k; and the power-law exponent also depends on the nanoparticle
material. The values are kLi = 1.37 for Li particles and kAl = 1.59 for Al particles.

The dependence of the diffusion coefficient on the fluid temperature is absolutely
different. As for the Brownian particles, this dependence is described by a
power-law function, D� Tn, where the power-law exponent n is not universal and
depends on the nanoparticle material and size. As an example, Fig. 1.6 shows the
temperature dependence of the diffusion coefficient of Li nanoparticles 2 nm in
diameter in argon ðeV ¼ 0:707Þ. The symbols here are the point predicted by
molecular dynamics simulations, and the dashed curve is the approximation of
these data by using the above-mentioned power-law dependence with the exponent
value n = 1.1. The Einstein formula (solid curve) predicts a significantly smaller
increase. This difference is aggravated as the temperature increases.

The entire set of experimental and numerical results shows that the commonly
accepted theoretical models either are unable to describe diffusion of nanoparticles
in gases and liquids, or are applicable within a rather narrow range of parameters.
This is particularly important for sufficiently small nanoparticles. Large nanopar-
ticles can certainly be described by relations derived for the Brownian particles.

1.6.3 Viscosity of Gas Suspensions of Nanoparticles

The viscosity coefficient of a nanofluid is one of the key parameters determining the
nanofluid flow. It has been assumed for a long time that the effective viscosity
coefficient of a nanofluid, similar to ordinary disperse fluids, depends only on the
volume concentration of particles. However, the use of the kinetic theory for rar-
efied gas nano-suspensions has demonstrated that this is not so.

The effective viscosity coefficient of rarefied suspensions was calculated for the
first time by Einstein (1906), who took into account the influence of particles on the
hydrodynamic field of the carrier fluid velocity and, as a consequence, on the stress

Fig. 1.6 Diffusion coefficient
D (cm2/s) of nanoparticles
versus the medium
temperature T (K)
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tensor and viscosity coefficient. He demonstrated that the effective viscosity coef-
ficient of the suspension

g ¼ g0 1þð5=2Þ/½ � ð1:41Þ

is always greater than the carrier fluid viscosity coefficient g0; where / is again the
volume concentration of disperse particles. There were many later publications in
which the Einstein theory was extended to sufficiently dense suspensions and
appropriate formulas were derived. With accuracy of terms on the order of /2, these
formulas have the form

g ¼ g0 1þð5=2Þ/þ b/2� �
; ð1:42Þ

where the coefficient b usually varies from 5.9 to 7.2.
The situation in rarefied gas suspensions of nanoparticles, however, is more

complicated. The viscosity coefficient of the considered rarefied gas suspension of
nanoparticles is described by the formula (Rudyak and Krasnolutskii, 2003b, 2004)

g ¼ 1þ Zð Þ= X þ Yð Þ; ð1:43Þ

where

X ¼ x21
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5
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p r2iiX
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; g12 ¼
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16

pm12 kTð Þ1=2
p r212X
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:

Here, x1 and x2 are the molar fractions of components 1 and 2, and l ¼
m1=m2; m1 and m2 are the mass of the carrier gas molecule and particle, respec-
tively (the subscript 2 refers to nanoparticles everywhere, if not stated otherwise). T

is the temperature, A�
12 ¼ Xð2;2Þ�

12 =Xð1;1Þ�
12 ;Xðl;mÞ�

12 are the reduced X-integrals
(Chapman and Cowling 1990), and r2 ¼ 2R. Thus, similar to molecular mixtures
of gases, the calculation of the transport coefficient for gas nano-suspensions
reduces to the calculation of the corresponding X-integrals for the
molecule-nanoparticle interaction potential (Rudyak and Krasnolutskii 1999). The
viscosity coefficient of a gas nano-suspension (1.43) is a multiparameter function
and varies considerably due to changes in the nanoparticle size, nanoparticle con-
centration, and gas suspension temperature. For small molar fractions of the dis-
perse phase, x2 
 1, coefficient (1.43) takes the form
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g ¼ g1 1þ x2
1þ 0:6A�

12l
0:3A�

12
1þ lð Þ2

l
g12
g1

þ 2� 1:2A�
12 � 2

g1
g12

" #( )
: ð1:44aÞ

Function (1.44a) essentially depends on the relationship between the mass ratio
l, nanoparticle radius, nanoparticle temperature, and interaction potential parame-
ters. In particular, the expression in square brackets in formula (1.44a) can change
its sign at certain values of these parameters. This means that the addition of small
volume fractions of solid nanoparticles to the gas can lead either to an increase or to
a decrease in the effective viscosity of the medium. Specially aimed calculations
have shown that this is indeed so; particular examples can be found in Rudyak and
Krasnolutskii (2003b, 2004). Thus, the behavior of the effective viscosity of a gas
suspension is determined by its composition and by the parameters of its compo-
nents. Knowing these parameters, one can predict the behavior of the effective
viscosity. At small volume fractions of particles, formula (1.44a) can be used. For
gas suspensions, this formula also includes small parameters, because, usually,
l ¼ m1=m2 
 1 and s ¼ r1=r2 
 1. In the general case, these parameters are
related to each other and la ¼ s3, where a is the ratio of the particle material
density to the carrier gas molecule density. As these parameters have small values,
formula (1.44a) yields one more useful estimate:

g ¼ g1 1þ x2 1:2
ffiffiffi
2

p a
s
Xð2;2Þ�

1

Xð1;1Þ�
12

þ 2� 1:2A�
12 �

ffiffiffi
2

p

4
1
s2
Xð2;2Þ�

12

Xð2;2Þ�
1

" #( )
: ð1:44bÞ

If the sizes of carrier gas molecules and nanoparticles are significantly different,
the last term in Eq. (1.44b) may become dominant, and the effective viscosity is
expected to become smaller than the gas viscosity. Certainly, it is necessary to take
into account the value of the parameter a and the values of the X-integrals, which
can vary by a factor of 2–3.

Finally, it should be noted that, usually, r1 � r2 for gas mixtures; correspond-
ingly, at l 
 1, Eq. (1.44a) yields

g ¼ g1 1þ 1:2
ffiffiffi
2

p
x2

s2

l
Xð2;2Þ�

12

Xð1;1Þ�
12

þOð1Þ
" #

:

The addition of a small amount of a heavier gas to a light gas always leads to an
increase in the mixture viscosity, as compared to the light component viscosity.
However, this increase in the general case does not depend monotonically on the
heavy component concentration and varies significantly as the temperature
increases.
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1.6.4 Viscosity of Nanosuspensions

Viscosity of nanofluids has been intensely studied for the last two decades (see
Hosseini et al. 2011; Mahbubul et al. 2012; Rudyak 2013). The following facts
have been reliably established. First of all, nanofluids exhibit a Newtonian behavior
only if the carrier fluid is Newtonian and the nanoparticle concentration is not very
high. Apparently, the volume concentrations of nanoparticles are within 10–15% in
this case. A typical dependence of the viscosity coefficient Dg ¼ g=g0 � 1 of a
nanofluid consisting of ethylene glycol with SiO2 particles on the volume con-
centration of nanoparticles is shown in Fig. 1.7 (Rudyak et al. 2013b). These
measurements were performed at a temperature of 25 °C. The mean particle sizes
are 18.1 nm (diamonds), 28.3 nm (triangles), and 45.6 nm (squares). The line is the
viscosity coefficient predicted by the Einstein formula: Dg ¼ 2:5u. The viscosity
coefficients for three considered fluids are different and increase with decreasing
nanoparticle size. The viscosity coefficient appreciably increases with increasing
particle concentration; for the mass concentration of nanoparticles equal to 7%, the
viscosity of the nanofluid with the largest particles increases by 40%, and that of the
nanofluid with the smallest particles increases by almost 80%. These results agree
with the data obtained by other researchers.

The effective viscosity coefficient for moderate concentrations of nanoparticles
can always be presented as

g ¼ g0 1þ k1ðDÞuþ k2ðDÞu2
� �

; ð1:45Þ

and the coefficients in this formula should be functions of the nanoparticle size D.
The Einstein theory does not describe the nanofluid viscosity, even at small volume
concentrations of nanoparticles. The experimentally measured value of the

Fig. 1.7 Viscosity of a nanofluid consisting of ethylene glycol with SiO2 nanoparticles on their
volume
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coefficient k1 for particles of various diameters varies from 4.3 to 22, which is
several times greater than the value predicted by the Einstein formula [to obtain it,
one has to set k1 ¼ 2:5 and k2 ¼ 0 in Eq. (1.45)]. It should again be emphasized
that the values of the coefficients k1 and k2 are not universal. In the general case,
they depend on the nanoparticle size: the nanofluid viscosity increases as the
nanoparticle size decreases. Moreover, it turned out that the viscosity coefficient of
nanofluids depends on the nanoparticle material. This dependence was first found
through the molecular dynamics method (Rudyak and Krasnolutskii 2014), and was
then confirmed experimentally (Rudyak et al. 2016).

The temperature dependence of the viscosity coefficient of a nanofluid is a very
important thermophysical characteristic. In contrast to gases, the viscosity coeffi-
cient in liquids decreases with increasing temperature. Based on physical consid-
erations, the same behavior should be expected for nanofluids. In fact, nanofluid
viscosity does decrease with increasing temperature in almost all studies in which
this dependence was determined. There are about 50 papers in which the temper-
ature dependence of nanofluid viscosity was investigated; some of them were cited
in the reviews (Hosseini et al. 2011; Mahbubul et al. 2012). These dependences are
fairly similar in all of those studies. Naturally, the viscosity coefficient depends on
the volume concentration of nanoparticles. As an example, Fig. 1.8 shows the
viscosity coefficient as a function of temperature, which was obtained for a nano-
fluid consisting of ethylene glycol with silicon dioxide particles (Rudyak et al.
2013a). Indeed, the viscosity coefficient decreases with increasing temperature.
Moreover, this decrease is fairly significant: as the temperature increases from 25 to
60 °C, the viscosity coefficient decreases by a factor of more than 4.

Many correlations were proposed to describe the viscosity coefficient of a
nanofluid as a function of temperature. However, none of them are universal, and
they all substantially depend on the concentration, material, and size of nanopar-
ticles and on the carrier fluid viscosity. For this reason, it seems useful to under-
stand the temperature dependence of the normalized nanofluid viscosity gr ¼ g=g0.
For the nanofluid in Fig. 1.7, the dependences of gr on temperature are shown for
different nanoparticle concentrations given in Fig. 1.9 (Rudyak et al. 2013a). At
low and moderate concentrations of nanoparticles, the normalized viscosity
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coefficient remains unchanged with increasing temperature and slightly decreases
(approximately by 3%) at the highest nanoparticle concentration (8.2%). Similar
dependences were also obtained in Chen et al. (2007), Namburu et al. (2007),
Nguyen et al. (2008) for nanofluids consisting of ethylene glycol and TiO2 particles,
aqueous solution of ethylene and SiO2 particles, and water and Al2O3 and CuO
particles, respectively.
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Fig. 1.9 Normalized viscosity coefficient of a nanofluid consisting of ethylene glycol and SiO2

nanoparticles (28.3 nm) versus temperature for different volume

Table 1.1 Thermal
conductivity of various solid
and liquid substances at room
temperature (Grigoriev and
Moilikhova 1991)

Substance Shape Thermal conductivity,
W/(m K)

Carbon Nanotubes 1800–6600

Diamond 900–2300

Graphite 110–190

Metals Silver 429

Copper 401

Nickel 91

Aluminum 237

Gold 317

Zinc 116

Non-metals Silicon 148

Al2O3 40

Liquids Water 0.613

Ethylene glycol 0.254

Machine oil 0.145

Freon-21 0.1005
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1.6.5 Thermal Conductivity of Nanofluids

The use of elevated thermal conductivity of nanofluids in various applications is
one of the main challenges in the field. It is well known (see Table 1.1) that the
thermal conductivity of solids, in particular, metals, their oxides, graphite, and its
derivatives, is several orders higher than that of commonly used liquid heat carriers
(water, ethylene glycol, various freons, etc.). The idea of using disperse fluids as
heat carriers and coolants was put forward long ago, but traditional disperse fluids
could not be used for this purpose, because of sedimentation of disperse particles
and their abrasive effect. Fortunately, nanofluids are devoid of these drawbacks.
The very first experiments with measurements of the thermal conductivity of
nanofluids (Masuda et al. 1993; Eastman et al. 1998; Wang et al. 1999) provided
excellent results: the addition of even small amounts (on the order of fractions of a
percent) of solid nanoparticles increased the thermal conductivity of the carrier fluid
by several percent or even tens of percent. It should be noted that the classical
theories predicted an increase proportional to the volume concentration of
nanoparticles. The theory of the thermal conductivity of disperse fluids was
developed by Maxwell (1881), who derived the following relationship between the
thermal conductivities of the suspension k and carrier fluid k0:

k ¼ k0 1þ 3ð1� -Þ/
1þ 2-� /ð1� -Þ

� �
; ð1:46Þ

where - ¼ k0=kp; kp is the thermal conductivity of the particle material and / is the
volume concentration of nanoparticles. Formula (1.46) was obtained for spherical
particles that do not interact with each other. The model proposed later by
Bruggeman (1935) takes into account interaction of randomly distributed particles.
The thermal conductivities of the suspension and carrier fluid are related as

/
kp � k
kp þ 2k

� �
þð1� /Þ k0 � k

k0 þ 2k

� �
¼ 0: ð1:47Þ

This model, in contrast to Eq. (1.46), has no constraints in terms of the particle
concentration; however, within the limit of small concentrations, it yields the same
results as the Maxwell model.

Hamilton and Crosser (1962) extended model (1.46) to non-spherical particles:

k ¼ k0
1þðn� 1Þ-� ðn� 1Þð-� 1Þ/

1þðn� 1Þ-þð-� 1Þ/ ; ð1:48Þ

where n is the particle surface factor determined via the spherical shape factor
w : n ¼ 3=w. The latter is defined as the ratio of the surface area of a sphere whose
volume coincides with the particle volume to the particle surface area. If the
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spherical shape factor is equal to unity, then the equation transforms into the
Maxwell model.

The experimental data obtained for thermal conductivities of various nanofluids
are usually greater than the values predicted by the classical theories (1.46)–(1.48).
However, these data are rather contradictory (see the reviews Wang and Mujumdar
2007, 2008; Ding et al. 2007; Yu et al. 2007; Kleinstreuer and Feng 2011). The
reasons are the same as those in studying nanofluid viscosity. Thermal conductivity
coefficients of nanofluids with different nanoparticle sizes and materials were
compared in many cases.

Molecular dynamics modeling of thermal conductivity was performed in
Rudyak et al. (2010, 2012) for the hard sphere model and the particle sizes smaller
than 2 nm. The normalized thermal conductivity is plotted in Fig. 1.10 as a function
of the volume concentration of nanoparticles. In all cases, there is a certain limiting
value of nanoparticle concentration above which thermal conductivity no longer
increases. This behavior is also predicted by many experiments (see, e.g., Zhu et al.
2007). Moreover, for a fixed nanoparticle size, the thermal conductivity depends

Fig. 1.10 Thermal
conductivity versus the
volume concentration of
nanoparticles (in percent) for
D=d ¼ 4 and different mass
ratios: M/m = 130 (Circles),
M/m = 100 (Plus), and M/
m = 80 (Squares). The carrier
fluid density is
n ¼ pd3=6 ¼ 0:37

Fig. 1.11 Normalized
thermal conductivity
coefficient of water-based
nanofluids versus the particle
size at room temperature and
volume concentration of 2%
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not only on the volume concentration /, but also on the particle material density. It
should be noted that many researchers have tried to represent thermal conductivity
at moderate densities by a quadratic dependence of the form of Eq. (1.45) (see, e.g.,
Lu and Lin 1996). Nevertheless, such dependence is qualitatively incorrect.

It was clearly demonstrated in experiments that the thermal conductivity of
nanofluids is not only a function of nanoparticle concentration, but also of
nanoparticle size. Typical dependences of the relative thermal conductivity kr ¼
k=k0 of several nanofluids are plotted in Fig. 1.11 (Pryazhnikov et al. 2017). For a
fixed particle concentration, the thermal conductivity increases with growth of the
particle size.

The thermal conductivity of the disperse fluid in Eq. (1.46) depends on the
thermal conductivity of the particle material. It has been definitively established that
the increase in the thermal conductivity of the nanofluid as compared to the base
fluid is independent of the thermal conductivity of the nanoparticle material. As the
analysis of experimental data shows, however, the greater the nanoparticle density,
the greater the thermal conductivity of the nanofluid. It was experimentally
demonstrated that this dependence is close to linear (Pryazhnikov et al. 2017).
Processing and analysis of experimental data made it possible to derive the fol-
lowing formula (Ceotto and Rudyak 2016; Pryazhnikov et al. 2017)

kr ¼ 1þð0:0193þ 0:00383~qÞ
ffiffiffiffiffiffiffi
u~D

q
; ð1:49Þ

which ensures an adequate description of the thermal conductivity coefficient of the
nanofluid. Here, ~q ¼ qp=qf , where qp and qf are the densities of the nanoparticle
and carrier liquid materials, respectively.

1.7 Molecular Dynamics Method

In analyzing various methods of modeling micro- and nanoflows in the previous
sections, it was demonstrated that methods of continuous mechanics have severe
constraints. Beginning from certain characteristic channel sizes, it is necessary to
use the molecular dynamics method. In this case, ab initio simulations of the system
are performed on the basis of the set of particles (atoms or molecules) composing
this system. This direct numerical molecular modeling of phenomena and processes
is the most advanced and powerful tool for studying them. This technique is called
the molecular dynamics (MD) method. This method is often preferred over
experiments, because experimental investigations are usually much more expensive
and sometimes impossible, e.g., in studying some properties of nanoparticles or
flows in nanochannels.

At the moment, there are many MD algorithms, which were used as a basis for
the development of dozens of standard software packages, including on-line
available and free programs. There are also specialized packages, for example, for
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solving quantum chemistry problems, and universal packages, which can solve
various problems of physics, mechanics, chemistry, and biology. The most popular
universal packages are AMBER, CHARMM, NAMD, LAMMPS, DL-PLOY,
GROMACS, and others.

The idea of the MD method is natural and simultaneously trivial: the system is
presented as a set of interacting molecules (atoms) and their dynamics is consid-
ered. As the system dynamics is described by the Newton equations12

m
d2ri
dt2

¼ Fi; i ¼ 1; 2; . . .;N; ð1:50Þ

the initial problem reduces to solving this system of equations on a computer. This
method was applied for the first time for solving physical problems more than
50 years ago by Alder and Wainwright (1959, 1960) and has been used since then
for solving versatile problems of physics, chemistry, mechanics, and biology.
Despite the apparent simplicity of the idea of the MD method, the situation is far
from trivial. Indeed, the number of molecules in a real system is tremendous. For
example, the number of molecules in one cubic centimeter of air at standard
pressure is about 1019. The number of molecules in a liquid is greater by approx-
imately three orders of magnitude. A modern computer with good performance
allows one to study the dynamics of 104 molecules (the greatest number of
molecules used in MD simulations was 1011). Can such a comparatively small
number of molecules represent real properties of large systems? Numerous com-
parisons of MD data with various experimental observations show that this com-
paratively moderate number of molecules still makes it possible to obtain
reasonable qualitative and quantitative results. It turned out that a system of several
thousands of molecules is already sufficiently representative, though certain care
should be applied in some cases. For example, many authors have indicated that
several tens of particles are sufficient for modeling transport coefficients (see, e.g.,
Alder and Wainwright 1970). It was demonstrated, however, that this is not so
(Rudyak et al. 2008a). Accuracy within 1% in modeling self-diffusion can be
reached only by using several tens of thousands of molecules.

The main element of the MD method is setting interparticle forces. In the general
case, the potential energy U of a system consisting of N particles can be presented
in a series form as

U ¼
X
i

U1ðriÞþ
X
i

X
j[ i

U2ðri; riÞþ
X
i

X
j[ i

X
k[ j[ i

U3ðri; rj; rkÞþ . . .;

where ri is the radius-vector of the particle i, U1 is the potential energy of external
fields applied onto the system, and Ul with l > 1 is a two-particle, three-particle,
etc., potential of particle interaction. Typical MD simulations, however, are usually

12Only the classical systems are considered in that which follows.
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limited to only two-particle interaction potentials.13 This is usually fairly sufficient,
especially in view of the fact that interaction potentials used in practice are actually
effective potentials and take multiparticle interactions to a greater or smaller extent.
The true two-particle potential is the hard sphere potential

UðrÞ ¼ 1 for r� d
0 for r[ d

	
; ð1:51Þ

and as the time of interaction of hard spheres is equal to zero, only paired collisions
are possible. Here, d is the effective diameter of the sphere used to represent a
molecule. Using potential (1.51), one can model transport processes and obtain
good quantitative results if an appropriately effective particle diameter is chosen.
Nevertheless, this model has an obvious drawback: it ignores forces of inter-
molecular attraction. There are many models of real potential. The most popular one
is the Lennard-Jones potential

UðrÞ ¼ 4e
r
r


 �12
� r

r


 �6
� �

; ð1:52Þ

where r and e are the parameters of the potential. This is the potential most
frequently used in MD simulations.

After an appropriate choice of parameters with the help of potentials (1.51) and
(1.52), it is possible to describe various properties of systems, from the laws of
particle scattering after collisions to thermodynamic and transport properties of the
system, including, e.g., pressure, temperature, density, viscosity and thermal con-
ductivity coefficients, diffusion coefficient, etc. Implementation of the method is
different in these two cases. The principal schemes of constructing the algorithms
for both situations are considered below.

1.7.1 Continuous Potentials

If continuous potentials of the form (1.52) are used, the system dynamics is
described by the Newton equations (1.50), and the task is to solve this system of
equations on a computer. For this purpose, a cell is chosen, most often a cubic cell,
and any amount of particles from several thousands to several tens or hundreds of
thousands are placed into this cell. Each particle is assigned some initial velocity in
accordance with a certain law. Then, the Cauchy problem should be solved for
system (1.50) in order to determine the coordinates and momentums of all particles

13This assumption appreciably simplifies computations, though is not of principal importance.
Moreover, the MD method is actually the only reliable tool for studying the effect of non-additive
forces on transport processes.
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at a certain time instant if the corresponding values at the previous time instant are
known. For this purpose, Eq. (1.50) are replaced with finite-difference equations.
From known dynamic variables for the ith molecule at the time tn, it is possible to

determine the values of these variables at the time tnþ 1 ¼ tn þ dt : rðnþ 1Þ
i ; vðnþ 1Þ

i .
Many various algorithms were developed for calculating these dynamic variables.
The simplest discretization of Eq. (1.50) has the form

rðnþ 1Þ
i ¼ rðnÞi þ vðnÞi dt; vðnþ 1Þ

i ¼ vðnÞi þm�1dt
XN
j 6¼i

FijðrðnÞi ; rðnÞj Þ:

This is an explicit scheme with the first order of accuracy in terms of dt, and it is
called the Euler scheme. There are also more complicated approximations. In the
method of central differences, it is assumed that the increments of coordinates are
determined by the velocities in the middle of the time step:

riðtþ dtÞ ¼ riðtÞþ dtviðtþ dt=2Þ; viðtþ dt=2Þ ¼ viðt � dt=2Þþm�1dt
XN
j6¼i

FijðtÞ:

Many algorithms include an expansion of the function riðt � dtÞ into a series:
riðt � dtÞ ¼ riðtÞ � _riðtÞdtþ€riðtÞðdt2=2Þþ . . .. Summation of these two equations
yields riðtþ dtÞþ riðt � dtÞ ¼ 2riðtÞþ€riðtÞdt2, with accuracy to the third-order
terms. In turn, the velocity is obtained by subtracting one of these equations from
the other. With the same accuracy, we have _riðtÞ ¼ riðtþ dtÞ � riðt � dtÞ½ �=2dt: As
a result, we obtain

riðtþ dtÞ ¼ �riðt � dtÞþ 2 _riðtÞþ€riðtÞdt2:

The above-described algorithm was proposed by Verlet (1967). There are many
other schemes, e.g., the predictor-corrector scheme, the Runge-Kutta methods of
various orders of accuracy, etc. The most popular schemes used at the moment are
the above-described Verlet scheme, the Schofield scheme (Schofield 1973), and the
predictor-corrector scheme. The choice of the numerical approximation is actually
determined by the problem to be solved and has to be discussed in each particular
case. Different schemes have been compared in many papers (see, e.g., Allen and
Tildesley 1989; Haile 1992; Rapaport 2005). The interval dt should be chosen in
such a way as to ensure stability of integration of system (1.50) and obtain a
solution with the deviation from the exact solution that grows as slowly as possible
with time. Solution stability is usually verified on the basis of the satisfaction of
conservation laws.

All coordinates, velocities, and accelerations of particles calculated at different
time instants are stored in the computer memory and can be used later for com-
puting various system properties. Computations are repeated many times, thus
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providing an ensemble of different variants of evolution of the considered system in
the phase space.

An appropriate choice of the time step is also important. It should be greater than
the inverse maximum frequency in the system.

1.7.2 Smooth Hard Spheres

For a system whose molecules are simulated by elastic hard spheres (1.51),
application of the MD method is appreciably simpler. There is no need to solve the
Newton equations at all. The entire procedure reduces to finding the sequence of
times between molecular collisions and determining the minimum value of this
series at each step, which actually determines the pair of molecules colliding in
reality. Then, all particles are shifted along their trajectories by this minimum time,
and the velocities of two colliding particles are recalculated, after which the
computation procedure is repeated. It is this technique that was proposed by Alder
and Wainwright (1959, 1960) and now has many modifications (Rapaport 2005).

1.7.3 Boundary and Initial Conditions

As computer resources are limited, the number of molecules that can be used in
computations is not very large; it ranges from several hundreds and thousands to
hundreds of thousands. For such a comparatively “small” system to possess the
properties of a system with a large number of particles modeling a liquid or a gas,
the so-called periodic boundary conditions are most often used. For this purpose,
the considered volume V is divided into cells, e.g., cubic cells with a rib length
L and number of particles N. It is assumed that the cells form a periodic grid.
Therefore, if some molecule with a momentum pi crosses the cell boundary and

ip
ip

Fig. 1.12 Periodic boundary
conditions used in the MD
method
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leaves the cell, then a molecule with the same momentum enters this cell through
the opposite face. This procedure is illustrated in Fig. 1.12 for a plane system.

If periodic boundary conditions are imposed, then the computations actually
involve not only the main computational cell shown in Fig. 1.12, but all the cells
around the main cell. These cells contain molecules with which molecules from the
main cell interact, and molecules from these cells center the main cell when one
molecule leaves the main cell. Thus, simulations are performed in the main cell and
some of its copies: 8 cells for two-dimensional simulations and 26 cells for
three-dimensional simulations. It should be borne in mind, however, that periodic
boundary conditions can be used only for systems of particles with short-range
interaction potentials, such as the Lennard-Jones potential. This approach is inap-
plicable for particle systems with long-range interaction, e.g., plasmas.

The molecular interaction potential is assumed to be truncated, and the effective
radius of action of molecular forces should be much smaller than L. To reduce the
computation time, periodic conditions can be modified by considering the motion of
molecules at the cell boundaries in an explicit manner.

In the case of periodic boundary conditions, it is clear that the number of
particles in each cell remains unchanged, as well as the energy and momentum (the
angular momentum is certainly not unchanged). An ensemble corresponding to
such a system is a microcanonical ensemble. As there are no fluctuations of the
number of particles in the system, statistical errors associated with a finite number
of particles and molecular correlations that are not typical for real systems will
appear. These statistical errors can be reduced, first, by increasing the statistical
information drawn from computations and, second, by assuming a possibility of
fluctuations of the number of particles in the cell. Stochastic boundary conditions
are used for this purpose. In this case, the particle intersecting the cell boundary
leaves the system. However, new molecules with a random momentum are ran-
domly inserted into the system (at random points in space and at random time
instants). Obviously, the law of generation of new particles should prevent changes
in the mean density, momentum, and energy in the system. An advantage of this
system is the possibility of simulating the dynamics of a large canonical ensemble.
It is only necessary to verify that the laws of conservation of the average values of
the number of particles, momentum, and energy are satisfied, whereas fluctuations
of these variables are allowed.

Both periodic and stochastic boundary conditions are only suitable for modeling
unbounded systems. In flows bounded by solid surfaces, it is necessary to take into
account interaction of gas or liquid molecules with the walls. In this case, periodic
or stochastic conditions should be combined with boundary conditions of reflection
of molecules from the solid surface or their interaction with molecules of the walls.

A complete formulation of the problem for system (1.50) also requires initial
conditions to be imposed, i.e., coordinates and velocities of all molecules in the cell.
The initial conditions are determined by the physical aspect of the problem. In
high-density systems (solids or liquids), particles are arranged in an ordered or
quasi-ordered manner. For example, as argon forms a face-centered cubic lattice
after its crystallization, it is simulated with the use of a cubic cell. The molecules in
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this cell form a face-centered cubic lattice and are located at the nodes of this lattice.
Conversely, in studying gases, the molecule coordinates are defined in a
pseudo-random manner, with an additional condition that there are no overlapping
configurations of molecules. There are also many ways to define the initial values of
molecule velocities. In problems aimed at studying equilibrium states, particle
velocity should be subjected to conditions of a zero total momentum of the system
and correspondence of the total energy of the system to its temperature. The
temperature of the system is determined by its mean kinetic energy. This arbi-
trariness in initial conditions is caused by the fact that it is impossible to determine
the correspondence between the microscopic and macroscopic states of the system.

1.7.4 Reaching Equilibrium in Molecular Systems

Despite the simplicity of the basic idea of the MD method, its implementation has
turned out to be very fruitful. The reason is that the MD method ensures the
evidential effect of experiments and allows one to perform “ideal” experiments to
elucidate the mechanisms of various physical processes in nature and engineering
facilities. Therefore, the MD method is successfully used for verification of various
fluid theories, derivation of equations of state for liquids and non-ideal gases,
calculation of transport coefficients, investigation of interaction of molecules with
solid surfaces, simulation of epitaxy and crystal growth processes, condensation,
crystallization, and formation of clusters, investigation of the molecular structure,
creation of materials with prescribed properties, inspection of damages of walls of
nuclear reactors, thermonuclear devices, and plasma reactors, in microelectronics,
material science, chemistry, biology, and some other fields. It is impossible to make
a comprehensive review of the results obtained owing to the sheer volume of them.
There are dozens of topical reviews dealing with investigations of molecular sys-
tems using the MD method. The theory of the MD method was recently reviewed
by Norman and Stegailov (2013), who discussed various principally important
issues of the method; in particular, much attention was paid to studying phase
trajectories of the system, the necessity of obtaining an ensemble of MD data,
averaging of these data, etc.

MD simulations provide information about the dynamic variables of the system:
the coordinates and velocities of particles composing this system. Based on these
data, one can use the methods of statistical mechanics (Zubarev 1974; Rudyak
1987, 2004, 2005) to calculate all macroscopic characteristics of the system:
pressure, density, velocity field, stress, transport coefficients, etc. The MD method
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allows one to model both equilibrium and nonequilibrium properties of multipar-
ticle systems. The correctness of simulations of equilibrium properties of the system
depends, to a large extent, on whether or not the considered system reached the
equilibrium state. To monitor the degree to which a homogeneous system has
approached the equilibrium state, the following variables are usually calculated:

1. Mean particle energy per each degree of freedom:

\Ek [ ¼ 1
N

XN
i¼1

mv2ik
2

; k ¼ x; y; z:

2. Root-mean-square fluctuations of the velocity of one particle:

\ðv�\v[ Þ2 [ ¼ 1
N

XN
i¼1

\ðvi �\v[ Þ2 [ ; \v[ ¼ 1
N

XN
i¼1

vi:

3. Mean distance between two particles in the cell:

Ra ¼ 2
NðN � 1Þ

XN
i6¼j

rij:

After the initial relaxation process, these variables reach their equilibrium values
and fluctuate around them. The distribution of particle velocities in the equilibrium
state is the Maxwell distribution. In particular, the distributions of the velocity vx
and the absolute value of the velocity v are described by the formulas

f10ðvxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
m

2pkT

r
exp �mv2x

2kT

� �
; ð1:53Þ

f10ðvÞ ¼ 4p
m

2pkT


 �3=2
v2 exp �mv2

2kT

� �
: ð1:54Þ

1.7.5 Statistical Ensemble

It is usually assumed in MD simulations that interparticle forces are independent of
time. As the system is closed, it moves over a constant-energy hypersurface. Such a
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system corresponds to a microcanonical ensemble. Other types of ensemble are also
used in simulations, in particular, canonical and isothermal-isobaric ensembles.
Naturally, the corresponding macroscopic variables in the system should be mon-
itored. In the two ensembles specified, it is necessary to control the temperature.
The kinetic energy in the system is not conserved in the general case, even if the
total energy is unchanged; hence, the temperature of the system also changes.
A constant temperature can be ensured by several methods. For example, this can
be done by using the so-called thermostats. A typical procedure is the use of the
Berendsen thermostat (see, e.g., Berendsen 1986). This algorithm implies that the
deviation of the system temperature T from the prescribed temperature T0 is
described by the relaxation equation

dT
dt

¼ T0 � T
s

; ð1:55Þ

where s is the corresponding relaxation time. To introduce a required correction, a
thermostat weakly coupled with the system is used, and the velocities of all
molecules of the system are multiplied at each time step dt by the coefficient

k ¼ 1þ dt
s

T0
T

� 1
� �� �1=2

: ð1:56Þ

In principle, the relaxation times in Eqs. (1.55) and (1.56) do not necessarily
coincide.

Though the Berendsen thermostat is very effective in maintaining a prescribed
temperature in the system, it does not generate states corresponding to the canonical
ensemble. Thermostats that can be used to describe the canonical ensemble were
developed by Nose (1984) and Hoover (1985). In Hoover’s formulation, the
equation of motion of each particle is supplemented with a certain drag force

mi
d2ri
dt2

¼ Fi � c
dri
dt

; i ¼ 1; 2; . . .;N; ð1:57Þ

where the drag coefficient is found by solving the equation

dc
dt

¼ ðT � T0Þ
s�

:

The relaxation time in this equation is a function of temperature and determines
the degree of coupling of the system with the thermostat. There is a principal
difference between two above-described thermostats: in the first case, temperature
fluctuations decay exponentially; in the second case, relaxation is an oscillating
function.
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Chapter 2
Gas-Dynamic Structure and Stability
of Gas Microjets

Abstract Microjets are widely used for the mixing of gases and the protection of
surfaces from chemically aggressive and high-temperature media. The basic tech-
nological characteristics of jets in this case are their penetration capability and
the intensity of mixing processes. The goal of the present chapter is to study the
structure and stability of microjets. The overview of the works on the study of the
gas dynamics of subsonic and supersonic mini- and microjets is given in Sect. 2.1.
As tools used in experimental investigations are also very important, they are
described in much detail. Diagnostic methods and the results of studying subsonic
plane jet stability are described in Sect. 2.2. Experiments aimed at studying the
structure and stability of supersonic axisymmetric microjets and the results obtained
therein are discussed in Sect. 2.3. Much attention is paid to the techniques used to
obtain experimental data. Finally, the problem of microjet modeling with the use of
commonly used similarity parameters is discussed in Sect. 2.4.

2.1 Investigation and Application of Microjets

At the moment, gas microjets have found numerous applications in advanced
technological processes, aviation, and space engineering (Tabeling 2005). In avi-
ation, supersonic microjets are used to suppress the noise generated by jet engines
(Alvi et al. 2003; Lou et al. 2006; Choi et al. 2006) and in amplifiers of automated
pneumatic devices (Tanney 1970). Synthetic jets (with a zero integral flow rate) first
proposed in Kosinov et al. (1990) are used for modeling unsteady wave processes
to study the stability and receptivity of shear flows (Maslov et al. 2001; Fedorov
et al. 2003) and for suppression of oscillations in laminar and turbulent flows
(Zhuang et al. 2006; Zhang and Zhong 2010).

Supersonic microjets offer significant prospects for aviation and space engi-
neering for the protection of surfaces in high-temperature flows and the suppression
of plasma formation around aircraft and reentry vehicles (Parmentier et al. 1970;
Akey 1970). Supersonic microjets are actively used in thrusters of orientation
systems of so-called microsatellites with masses smaller than 10 kg (Bayt and
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Breuer 2001; Zilic et al. 2007). The main advantage of microjets over macrojets is
the possibility of creating ensembles of microjets with a high density per unit area at
a fixed total flow rate of the gas. The supersonic core length of the jet plays a key
role in estimating the efficiency of the jet action on the flow.

Practical needs are responsible for the academic interest in studying subsonic
and supersonic microjets. Nevertheless, there is also a fundamental aspect of
studying these jets, because it is not clear whether there are principal differences in
the characteristics of macroscopic and microscopic jets. Another important issue
arising here can be formulated as follows. Is it possible to simulate microjet
characteristics by using similarity parameters involved in modeling macroscopic
flows: Mach number, Reynolds number, Strouhal number, etc.?

The characteristics of supersonic microjets were studied in great detail in
Scroggs and Settles (1996), Phalnicar et al. (2008) for nozzles with diameters
ranging from 100 to 1200 lm, and no significant differences in the properties of
micro- and macrojets were found. In particular, the measured supersonic core length
of the jet was in good agreement with generalized data obtained for macrojets
(Shirie and Siebold 1967; Pogorelov 1977). The flow structure in the first barrel of
the wave structure of a plane supersonic underexpanded microjet of nitrogen that
escaped from a slot sonic nozzle 17 � 1875 lm was investigated in Fomin et al.
(2010) with the use of a Pitot microtube. Total pressure measurements revealed the
existence of streamwise structures whose amplitude increases in the downstream
direction, whereas the number of these structures decreases. These structures are
associated with micronozzle edge roughness and are identified with the Gortler
vortices, which almost inevitably arise in the case of exhaustion of underexpanded
macrojets.

It was only in Aniskin et al. (2011, 2013) that a drastic increase in the supersonic
core length of microjets being exhausted out of sonic nozzles smaller than 60 lm in
diameter was discovered for the first time. A previously unknown phenomenon of
recovery of the supersonic core length after its reduction due to the laminar-
turbulent transition in the jet for nozzles smaller than 20 lm in diameter was
detected.

As was already noted, investigations of the characteristics of subsonic microjets
are traditionally inspired by the necessity to organize gas flow mixing in various
engineering processes. These characteristics largely depend on jet flow stability and
the formation of certain structures during the transition to turbulence. Stability of
subsonic macroscopic jets was intensely studied, both experimentally and numer-
ically. A comprehensive review of the research on stability, noise generation, and
acoustic influence on subsonic turbulent (mostly round) jets can be found in
Ginevskiy et al. (2001). It was demonstrated that the rate of instability development
and, hence, jet penetration depth and mixing intensity can be controlled by inserting
artificial periodic perturbations into the jet. Various methods of periodic forcing of
jet flows were reviewed in Brown (2005).

There are many recent numerical and experimental studies of the flow charac-
teristics in subsonic low-velocity round and plane air jets from nozzles within the
millimeter and submillimeter range. The nozzle diameter (or the smaller linear size
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for plane nozzles) in those studies varied from 40 mm to 200 lm, and the maxi-
mum velocity of air exhaustion was smaller than 15 m/s. In particular, the effects of
nozzle roughness (Kozlov et al. 2002; Litvinenko et al. 2004), velocity profile at the
nozzle exit (Kozlov et al. 2008), and periodic acoustic action on the jet (Kozlov
et al. 2010; Litvinenko et al. 2011) were considered. The results of those activities
were summarized in the monograph (Grek et al. 2012).

The experiments (Kozlov et al. 2002, 2008, 2010; Litvinenko et al. 2004, 2011;
Grek et al. 2012) were mainly performed through methods of smoke visualization,
supplemented with stroboscopic illumination and hot wire anemometry. The
experimental results were compared with predictions of the linear stability theory
and direct numerical solution of Navier-Stokes equations at moderate Reynolds
numbers. It was shown that surface roughness and the acoustic forcing of round jets
lead to the emergence of the Kelvin-Helmholtz instability, which is well known in
shear layer and boundary layers. At the nonlinear stage of instability development
in a round jet, annular vortices are formed and united in pairs further downstream.
In plane jets, instability has a sinusoidal character, and the jet becomes curved in its
plane. At the nonlinear stage, vortices also appear in the form of staggered “rolls”
entrained by the flow.

The presence of artificial roughness at the nozzle edge gives rise to the emer-
gence of streamwise structures in the jet, which transform in the downstream
direction into X-shaped vortices for round jets or into hairpin vortices for plane jets,
after which the jet becomes turbulent. Acoustic forcing appreciably accelerates
the process. The velocity profile at the nozzle exit was also found to affect the
development of instability in subsonic jets. If the velocity profile is uniform over the
radius and the boundary layer is small, instability development and jet turbulization
occur rapidly. On the other hand, the laminar flow is appreciably longer for a
parabolic velocity profile. A high-intensity transverse acoustic action on a round or
plane jet leads to almost instantaneous development of sinusoidal instability with
the formation of vortex streets separated in space. It is interesting that preliminary
turbulization of the flow produces a minor effect on these phenomena.

Almost all of the above-described phenomena have already been discussed in
publications dealing with stability and laminar-turbulent transition in boundary and
shear flows at the macroscopic scale. Therefore, based on the data obtained in those
studies, it was concluded that there is no essential difference between subsonic
macrojets and subsonic microjets up to characteristic scales on the order of 200 lm.

Experiments with subsonic microjets escaping from nozzles 50, 100, and
200 lm in diameter were described in Gau et al. (2009). For nozzles 50 lm in
diameter, a significant difference in instability development in microjets and
macrojets was found for the first time. In particular, the absence of vortices at the
mixing layer boundary and an increase in the penetration capability of the microjet
were noted.

Experimental data for plane subsonic helium jets being exhausted out of a slot
nozzle 17 � 1875 lm2 into the atmosphere were reported in Fomin et al. (2010),
Aniskin et al. (2012). The main results were obtained for the interaction of acoustic
waves incident onto the microjet on the side of the greater linear scale of the nozzle.
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The influence of the amplitude and frequency of acoustic waves and the helium jet
velocity on the process of turbulization and breakup of the jet flow was studied, and
the corresponding characteristics were reported.

As was demonstrated by means of stroboscopic schlieren visualization and
micro-PIV (Particle Image Velocimetry) measurements, when the flow transforms
into the turbulent mode, the microjet becomes divided into several (up to four)
vortex streets propagating at an angle to the initial microjet direction. The number
of these vortex streets and the angle of their propagation depend on the frequency
and amplitude of acoustic forcing and on the helium jet velocity. The drawback is
the use of helium, because the density and mean velocity of the helium jet behave in
a complex manner.

2.2 Stability of a Subsonic Plane Gas Microjet

The experiment with a subsonic plane microjet is schematically illustrated in
Fig. 2.1. The helium jet exhausts vertically upward from a slot micronozzle into the
atmosphere. The flow field is visualized in the direction of the greater linear scale of
the slot micronozzle by a schlieren device. The schlieren device includes a stro-
boscopic light source, which can be synchronized with the source of acoustic
forcing of the microjet for obtaining instantaneous averaged flow fields at given
time instants. The visualization patterns are recorded by a digital video camera. The
source of acoustic forcing is a loudspeaker with a power of 1 W. The direction of
propagation of acoustic waves is normal to the jet plane. The amplitude and fre-
quency of acoustic waves are registered by a microphone.

In the experiments described in this chapter, the stagnation temperature of the
helium microjet was equal to room temperature (the temperature of the jet and
atmosphere could vary from 293 to 298 K). A photograph of the slot nozzle and its
sizes (in micrometers) is shown in Fig. 2.2. It is seen that the aspect ratio of the
linear scales of the nozzle is more than 100, and the helium flow can be considered
as a microjet only in one direction. The nozzle edge was not absolutely smooth

Fig. 2.1 Scheme of the
experiment. 1—a helium jet,
2—slot micronozzle, 3—
schlieren device, 4—
stroboscopic light source,
5—digital video camera,
6—loudspeaker, 7—
microphone, 8—sensor of
hot-wire anemometer
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(the roughness level was about 1 µm). The use of helium made it possible to apply
the schlieren technique to visualize the microjet flow, owing to a significant dif-
ference in the refractive indices of helium and air. The ratio of the stagnation
pressure of helium to the atmospheric pressure p0=pa varied from 1.016 to 1.12,
which corresponded to exhaustion of a subsonic helium jet with an initial velocity
in the interval u0 ¼ 140� 370m=s: The Reynolds number of the jet based on the
nozzle width h and velocity of gas exhaustion at the nozzle exit u0 was in the
interval Reh = 23 � 62, which corresponds to exhaustion of an initially laminar jet.

Despite the use of helium, the contrast of the schlieren image of the jet was
insufficient for direct identification of the flow structure. Therefore, the image
contrasting procedure was applied, i.e., the background image was subtracted
during digital processing of visualization patterns.

The mass flow rate perturbations generated by the source of acoustic waves in
the microjet were measured by an A.A. Lab Ltd constant-resistance hot-wire
anemometer with a wire sensor (see Fig. 2.1) 5 µm in diameter and 2 mm wide
within the frequency range from 500 to 50 kHz. The hot wire was aligned normal to
the direction of jet exhaustion from the nozzle. The wire sensor could be moved
along the jet and across the greater side of the nozzle. For determining the spectral
composition and characteristics of nonlinear interaction of disturbances in the jet,
the hot-wire signals were processed by means of harmonic and bispectral (Shiplyuk
et al. 2003) analysis.

Fig. 2.2 SEM images of a slot nozzle and its increased central part. Size in microns
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The instantaneous and averaged velocity fields were measured by particle image
velocimetry with a DANTEC laser microdiagnostic system. Glycerin tracer parti-
cles were simultaneously inserted into the system of helium injection to the
micronozzle and to the ambient atmosphere surrounding the jet. The size of the
tracer particles was determined in special experiments aimed at studying
the velocity of particle deceleration in the shock wave in a supersonic flow. The
estimates showed that the mean particle size was 0.25 lm. To introduce controlled
periodic perturbations, the helium microjet was subjected to the action of
monochromatic acoustic waves with intensity L up to 125 dB in the frequency
range fA = 4 � 20 kHz. These acoustic waves were generated by a loudspeaker
located near the jet. The measurements of the mean velocity field in the jet flow
showed that the flow velocity is already 10 m/s at a distance of 5 mm from the
nozzle exit for the initial velocity of helium equal to 140 m/s, which is consistent
with calculations of laminar helium jet exhaustion into the atmosphere performed in
accordance with Vulis and Kashkarov (1965). Such a drastic decrease in velocity is
caused by rapid mixing of the helium jet with ambient air and by the emergence of a
dominant air jet flow. The action of intense acoustic waves shifts the beginning of
the low-velocity section in the upstream direction to a distance approximately equal
to 3 mm from the nozzle exit.

Figure 2.3 shows the stroboscopic patterns of the schlieren visualization of a
plane microjet under acoustic forcing for some fixed parameters of jet exhaustion
and acoustic forcing. The stroboscopic schlieren visualization was performed for
the following constant parameters of the microjet flow: fA = 4.25 kHz and
u0 = 200 m/s (Fig. 2.3a), u0 is the velocity at the nozzle exit; fA = 4.25 kHz and
L = 125 dB (Fig. 2.3b); u0 = 200 m/s and L = 120 dB (Fig. 2.3c). Flow field
visualization has shown that the helium microjet is not intensely expanded without
acoustic forcing or with weak acoustic forcing (less than 40 dB) and propagates in
the form of a single-jet flow (see the left-hand photograph in Fig. 2.3a).

Intense acoustic forcing gives rise to rapidly growing sinusoidal disturbances of
the jet flow field and breakup of the single-jet flow (see Fig. 2.4). After breakup of
the original jet, a flow consisting of several jets with a large angle of expansion is
formed (Fig. 2.3a–c). Depending on the acoustic forcing amplitude (Fig. 2.3a), gas
velocity at the nozzle exit (Fig. 2.3b), and frequency of acoustic waves (Fig. 2.3c),
there may be two, three, or even four individual jets. The process of breakup of the
initial jet depends, in a complicated manner, on flow conditions and acoustic
forcing intensity and is not yet adequately understood. The maximum expansion of
the jet is reached at the acoustic forcing frequency fA = 4.25 kHz for the helium
exhaustion velocity u0 ≅ 200 m/s (see Fig. 2.3). Within the range of forcing
amplitudes L = 110–125 dB, the splitting point location and the jet expansion angle
depend weakly on the sound intensity. It should be noted that propagation of
acoustic waves along the greater side of the nozzle reduces the efficiency of acoustic
forcing of the microjet by an order of magnitude.

The use of PIV and the calculation of the instantaneous vorticity field for the
example illustrated in Fig. 2.5 showed that individual plane jets visible in the
stroboscopic pictures (see Fig. 2.3) are actually chains of vortices propagating at an
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angle to the initial direction of the microjet flow. These vortices arise in the region
of the maximum bending and breakup of the microjet and move upward or
downward in the plane of the figure (see Fig. 2.5), depending on the direction of
rotation.

An effect similar to the Magnus effect in translational motion of a vortex
structure is observed here. Vortex structures of this kind were also observed in the
case of exhaustion of a colored fluid jet into a transparent fluid (Reynolds et al.
2003). The formation of several pseudo-jets was numerically demonstrated in
Danalia and van Boersma (2000) by averaging of the field of an unsteady single-jet
flow with vortex structures. As additional (more than two) jets appear under
high-intensity forcing, it may be assumed that their origin is caused by generation
of new vortex streets by intense paired primary vortices. This process is illustrated
in Fig. 2.5, where at least five vortex streets are clearly visible.

Fig. 2.3 Stroboscopic schlieren-visualization of the flow. a acoustic amplitude is changed, b the
velocity is changed, c the frequency is changed
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The characteristics of mass flow rate perturbations in the low-velocity part of the
jet were measured by a hot-wire anemometer in the range of distances k = 60 �
1072 from the nozzle exit. Here, k = x/h is the dimensionless distance in calibers of
the slot nozzle width h. The characteristics of both natural and controlled distur-
bances were studied. The latter were generated due to acoustic forcing of the jet. If
an external acoustic field is applied, intense disturbances at the ground frequency
and superharmonic frequency are observed near the nozzle, whereas the flow pat-
tern far from the nozzle includes broadband turbulent oscillations combined with
imposed oscillations at the ground frequency.

The dynamics of the spectra of the mass flow rate fluctuations as a function of the
dimensionless distance from the nozzle k with different intensities of acoustic forcing
of the plane microjet is presented in Fig. 2.6. The amplitudes of the power of oscil-
lations are shown in the form of darkened isolines with the corresponding scales.
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Fig. 2.4 The isolines of instantaneous pulsations of the jet velocity in the acoustic wave vector
direction (in the direction of the coordinate Y)
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Fig. 2.5 Instantaneous field
of isolines of vorticity. The
dark and light coloring
corresponds to the opposite
direction of the vorticity
vector perpendicular to the
plane of the figure.
u0 = 200 m/s, fA = 4.25 kHz,
L = 125 dB
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If there is no acoustic forcing, the disturbances start to increase at a distance of
about k = 500. They grow within a rather narrow range bounded by the frequencies
0.8–2.9 kHz (Fig. 2.6a). As the distance from the nozzle increases, the range of
growing frequencies is enhanced; the spectrum of oscillations gradually covers the
entire frequency range available for measurements and acquires the shape typical
for turbulent flows with increasing amplitude of oscillations at low frequencies. The
amplitude of broadband oscillations continuously increases up to the last mea-
surement section. As the disturbance amplitude increases, nonlinear processes
occur, beginning from the distance k = 610 in the frequency range bounded by the
peak of natural fluctuations. Further downstream, the amplitude of disturbances and
nonlinear interaction are enhanced.

If an acoustic field is applied onto the microjet, a sharp peak corresponding to
the ground frequency of acoustic forcing fA = 4.2 kHz, and also peaks of the
superharmonics at f = 8.4, 12.6, and 16.8 kHz (the last two harmonics are not
shown in the figure), appear in the spectra of the power of the mass flow rate
fluctuations. The maximum amplitude of artificial disturbances is reached at a
distance k � 290 (Fig. 2.6b). The superharmonics of artificial perturbations grad-
ually decay in the downstream direction, and the spectra at a distance k � 620 have
only the ground frequency of excitation left. The growth of natural low-frequency
oscillations begins approximately in the same cross-section as in the case without
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Fig. 2.6 Spectra of the mass flow rate fluctuations with different intensities of acoustic forcing on
the jet: a L = 0 dB, b L= 20 dB, c L = 90 dB, d L = 120 dB, u0 = 220 m/s, fA = 4.25 kHz
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acoustic forcing. As the distance from the nozzle exit increases, however, distur-
bances are also enhanced, but then start to decay (at k � 900). Moreover,
disturbances at this distance do not grow along the entire measured frequency
range. Amplification of disturbances is limited by the frequency of 2.5 kHz. The
center of the spectral peak has a lower frequency, which varies from 1.3 to 1 kHz,
depending on the distance from the nozzle.

With a further increase in the amplitude of acoustic forcing (Fig. 2.5c), the
low-frequency natural oscillations in the jet start to grow noticeably earlier. The
low-frequency peak in the spectrum of oscillations can already be detected at a
distance k � 400. Natural disturbances start to decay at distances of about k � 930,
but then these disturbances are moderately enhanced again, beginning from dis-
tances k � 1000. The reason for the repeated growth of disturbances is not clear. As
in the previous case, the growth of oscillations is limited by the frequency
approximately equal to 2.5 kHz. The center of the spectral peak roughly corre-
sponds to the same frequencies: f = 1.3–0.8 kHz. The maximum of artificial dis-
turbances is shifted closer to the nozzle exit, and the amplitude of artificial
perturbations decays faster.

A further increase in the amplitude of the external acoustic field practically does
not affect the place where the maximum value of artificial perturbations is observed
(k � 438, Fig. 2.5d). The harmonics of artificial perturbations already decay at k �
510. Enhancement of natural disturbances is shifted even closer to the nozzle exit
(k � 350). The overall decay of artificial perturbations in the jet also occurs earlier,
already at a distance k � 820. At k = 870, one can again see the growth of natural
oscillations, which decay at k � 1040. However, the amplitude of natural distur-
bances is lower than that in the previous cases.

To identify specific features of nonlinear processes in the microjet, we applied
the method of the bispectral analysis of the hot-wire signal, which has become very
popular in investigations of boundary layer stability (Shiplyuk et al. 2003). The
method ensures quantification of the degree of correlation between flow oscillations
at two different frequencies in the spectrum and flow oscillations at a frequency
equal to the sum of these two frequencies. This correlation is not equal to zero only
if the oscillations at the summed frequency are generated by nonlinear interaction of
two above-mentioned oscillations. Normalization of the desired correlation to
autocorrelations of each wave in the triad yields the value of bicoherence, which
varies in the interval from zero to unity. If the bicoherence value is close to unity,
then the third wave is the result of nonlinear interaction of the first two waves. If the
bicoherence value is equal to zero, these three waves are absolutely independent of
each other. Figures 2.7, 2.8, 2.9, 2.10, 2.11 and 2.12 show the bicoherence spectra
for mass flow rate oscillations in some cross-sections of the microjet in the form of
darkened isolines corresponding to the bicoherence scale. The spectral on the left
and on the right were obtained for the microjet without acoustic forcing and under
the action of acoustic waves with the amplitude L = 90 dB, respectively. For
convenience, the graphs also show (along the frequency axes) the spectra of the
power of oscillations Af (arbitrary units), which are checked in terms of nonlinear
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interaction between them. Projections of points in domains with nonzero bicoher-
ence onto the abscissa and ordinate axes yield the values of nonlinearly interacting
frequencies of oscillations in the microjet.

The analysis of these spectra shows that the domain of interacting waves
expands and fills the entire range of the peak of natural oscillations (500 Hz < f1 <
4.4 kHz, 500 Hz < f2 < 2.2 kHz). The bicoherence spectrum displays the center of
nonlinear processes at the frequencies f1 = 1.5 kHz and f1 = 2 kHz, which yields the
third interacting wave with the frequency f3 = f1 + f2 = 3.5 kHz. It is of interest to
note that the frequency of the peak of nonlinear interaction (maximum bicoherence)
differs from the frequency of the peak of natural oscillations f = 1.3 kHz.

A further analysis of the bicoherence spectra shows that there are already intense
nonlinear processes induced by the imposed acoustic field in the first measurement
section; these disturbances reach the highest intensity at a distance k � 120–160.
All nonlinear processes are associated with the generation of superharmonics of the
wave with the ground frequency fA = 4.2 kHz (Figs. 2.7, 2.8 and 2.9): f1 = f2 = fA =
4.2 kHz, f3 = f1 + f2 = 8.4 kHz = 2fA—generation of the first superharmonic; f1 =
8.4 kHz = 2fA, f2 = fA = 4.2 kHz, f3 = f1 + f2 = 12.6 kHz = 3fA—generation of the
second superharmonic, etc.

Beginning from the distance k � 225, one more type of nonlinear interaction
appears at the frequency of the subharmonic of the wave with the ground frequency
in bicoherence spectra: f1 = f2 = 2.1 kHz = fA/2, f3 = f1 + f2 = 4.2 kHz = fA (see
Fig. 2.10). Now we have three waves participating in nonlinear interaction: the
wave with the ground frequency and its two subharmonics, similar to the situation
in the boundary layer. Such interaction suggests that there is a subharmonic reso-
nance. Apparently, it is the subharmonic resonance that is responsible for the earlier
growth of natural low-frequency oscillations, which was mentioned above.

Thus, the energy of high-frequency disturbances is pumped via nonlinear inter-
action to low-frequency perturbations, thereby initiating the growth of the latter.
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Fig. 2.7 Bicoherence spectra for mass flow rate oscillations, k = 95
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As was already noted, similar processes occur in the boundary layer as well. As the
distance from the nozzle increases, nonlinear processes associated with the imposed
acoustic field gradually decay (see Figs. 2.11 and 2.12). The degree of this decay
depends on the amplitude of artificial perturbations. Thus, nonlinear interaction ceases
at k � 720 if the perturbation intensity is 60 dB, k � 610 at 90 dB, and k � 510 at
120 dB.

Nonlinear processes associated with natural disturbances in the jet, which cor-
respond to the bicoherence spectra in the left parts of Figs. 2.7, 2.8, 2.9, 2.10, 2.11
and 2.12, slowly increase and reach the maximum intensity at distances where the
nonlinear processes induced by the acoustic field are already finished (see the
right-hand parts of Figs. 2.10 and 2.11); they are clearly visible even in the last
measurement section. It follows from here that the development of natural
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disturbances in the microjet passes through the same stages that are typical for
macroscopic shear flows.

The maximum receptivity of the microjet to acoustic forcing is observed at
characteristic Strouhal numbers based on the helium flow velocity at the nozzle exit
u0 and the minimum micronozzle width h, Sh = hf/ u0, smaller than 10−3.
A comparison of the values of Sh and the level of acoustic forcing pressure
oscillations obtained for the helium microjet with the corresponding data for air
macrojets (Ginevskiy et al. 2001) shows that the greatest receptivity of air macrojets
is reached at Strouhal numbers Sh = 0.2 � 0.3. The small Strouhal number of the
helium microjet can be explained by the fact that it is not absolutely appropriate to
use the helium flow velocity at the nozzle exit and nozzle width for calculating the
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Fig. 2.10 Bicoherence spectra for mass flow rate oscillations, k = 345
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Fig. 2.11 Bicoherence spectra for mass flow rate oscillations, k = 690
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Strouhal number. Helium has a comparatively high coefficient of diffusion in air,
high frequency of collisions with nitrogen and oxygen molecules, and small relative
atomic weight. Therefore, the helium microjet becomes rapidly mixed with ambient
air, the flow velocity decreases, and the effective jet width increases. In fact,
instability is developed in a low-velocity jet consisting almost completely of air.

The helium jet’s receptivity to acoustic forcing is found to be higher than that of
macrojets (Ginevskiy et al. 2001). The amplitude of acoustic forcing of the air
macrojet needed for excitation is 20–40 dB higher than the amplitude of acoustic
forcing necessary for microjet excitation. Thus, nonlinear processes in a subsonic
microjet already start near the nozzle at the forcing amplitude of 60 dB, which can
be attributed to an extremely thin shear layer near the nozzle and a comparatively
small fraction of the potential flow, which is typical for plane microjets.

2.3 Structure and Characteristics of Stability
of Supersonic Axisymmetric Microjets

2.3.1 Experimental Equipment

The experimental equipment, techniques, and results of studying the structure and
characteristics of stability of supersonic underexpanded nitrogen microjets briefly
outlined in Aniskin et al. (2011) are described in detail below.

The micronozzle was a connecting pipe for pneumatic pipelines with bayonet
fastening, which allowed for easy replacement of the nozzles. A hole was drilled in
the connecting pipe, and a tube for measuring the pressure in the settling chamber
was welded to this hole. The pressure was measured by a Honeywell sensor with a
measurement range from 0 to 10 atm.
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The connecting pipe was fixed onto a special table with a Plexiglas base and an
arrester plate made of the same material attached normal to the base. The pipe axis
was parallel to the table foundation and simultaneously perpendicular to the
arrester. After that, a brass cylinder was tightly inserted into the pipe; one end of the
cylinder was conically sharpened. The cone angle was 50°. The roughness of
the conical cylinder was determined by a ZYGO 6200 microscope; its level was
within 1–2 lm. The tip of the conical part of the cylinder protruded from the pipe
end by 3.5 mm and rested on the arrester plate on the table. After that, the conical
part of the cylinder (i.e., the space between the arrester and the pipe end face) was
filled with a photopolymer. After some time necessary for photopolymer solidifi-
cation, the arrester was removed and the cylinder was withdrawn. Thus, nozzles
with diameters of 341, 215, 149, and 65.3 lm were fabricated. The geometry of
these nozzles is shown in Fig. 2.13. Each time before nozzle fabrication, the cone
was ground off to a needed diameter.

Nozzles with diameters smaller than 65 lm were fabricated in two stages. The
first stage is described above and consisted in fabricating a nozzle with a diameter
of about 300 lm. At the second stage (see Fig. 2.14), a cylindrical needle with
double conical sharpening was fabricated. The needle was first ground off at an
angle of 5.5°, and then at an angle of 22°. After that, the needle was inserted into
the connecting pipe (with the already fabricated nozzle approximately 300 lm in
diameter) and was fixed there. The sharpened tip of the needle protruded from the
nozzle fabricated at the first stage and rested on the arrester plate. After that, the
photopolymer was poured (with subsequent polymerization), the arrester plate was
separated, and the needle was removed. In this way, nozzles with diameters smaller
than 5 lm were fabricated. First, the nozzle with the smallest diameter was fabri-
cated, then the needle was sharpened to a needed diameter and the nozzle with a
greater diameter was fabricated, etc. The geometry of the thus-fabricated
micronozzles is shown in Fig. 2.14. All nozzles were sonic, i.e., they had no
expanding portion.

Figure 2.15 shows the nozzle exit images taken by the electron microscope (the
ratio of the scales of different images is not retained). There are dust particles at the

Fig. 2.13 Sketch of nozzles
with a diameter of
341–65 lm
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edges of some nozzles, which are shed away during the first test performed in them.
Some nozzles have deviations from the inscribed circle shape, e.g., nozzles 341 or
149 lm in diameter. Moreover, it cannot be definitively argued that the nozzle
edges are absolutely smooth. The data on the maximum deviations of the nozzle
exit shape from a circumference, the absolute roughness levels, and the estimates of
the relative roughness level from above based on the absolute level are summarized
in Table 2.1. Here, D is the nozzle diameter and D is the maximum deviation of the
nozzle exit shape.

Fig. 2.14 Sketch of nozzles with a diameter less than 65 lm

Fig. 2.15 Scanned electron microscope images of the micronozzle outlets
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Several methods are usually used for studying the structure of supersonic jets:
schlieren visualization, hot-wire anemometry, PIV, and Pitot tube measurements.
Some of these methods are principally inapplicable for studying microjet charac-
teristics, while others can be used to a limited extent. Among the above-mentioned
techniques, the best tool for studying the structure of sufficiently small supersonic
microjets is the Pitot tube. In this case, microtubes can be used as the Pitot tube
taps; the fabrication technology of these microtubes was described in Prinz et al.
(2000, 2001), Golod et al. (2001), Vorob’ev and Prinz (2002). The microtube is
formed from a stressed heterofilm, which is rolled due to internal stresses when it is
peeled off from the substrate. The cross-sectional view of the microtube is illus-
trated in Fig. 2.16 (Seleznev et al. 2009). The tube diameter is determined by the
thickness of the rolling heterofilm and by the values of elastic stresses in the film; in
the molecular beam epitaxy process, it is defined with extremely high accuracy
within the range from hundreds of micrometers to several nanometers.

These microtubes were used as a basis for fabrication of a miniature Pitot tube
(Fig. 2.17). The tube consisted of three elements: pressure tap, pipeline, and
receiver tube. The pressure tap was a Honeywell sensor with a pressure range from
0 to 7 atm.

The pipeline was made of a glass tube bent at an angle of 90°–120°. The glass
tube length was 15–20 mm, and its external diameter was 0.3–0.4 mm. One end of
the glass tube was tightly attached directly to the pressure tap. The other end of the
tube was constricted and contained the receiver microtube. The tube constriction
was provided by pulling the glass tube in the air above the alcohol burner flame,
with the tube then being broken in the narrowest place. The space between the

Table 2.1 The roughness of the micronozzles

D (lm) 341 215 149 65.3 61.4 54.5 44.3 36

D (lm) 5 1 1 1.5 1.8 1.1 1.1 1

d 0.015 0.0057 0.007 0.023 0.029 0.02 0.025 0.028

D (lm) 34.8 26 24.3 21.4 18.4 16.1 10.4

D (lm) 1 0.9 1 1.1 0.9 0.5 0.4

d 0.029 0.035 0.04 0.05 0.049 0.028 0.034

Fig. 2.16 Cross-sectional
view of the microtube; 1
compressed layer; 2 stretched
layer; 3 conducting layer; 4
sacrificial layer; 5 substrate
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internal surface of the glass tube and the microtube was filled with the epoxy
compound.

The receiver microtube had an outer diameter of 12 lm, and the thickness of the
tube wall was about 0.1 lm. The design of the Pitot microtube structure ensured the
minimum volume. A typical time of pressure stabilization in the microtube was
determined experimentally, based on the time needed for the pressure to reach a
constant value, and was found to be smaller than a second.

It should be noted that a sufficiently large outer diameter of the glass tube is
required by the strength condition (at the end, the glass tube has a diameter on the
order of 100 lm). The point is that the glass tube starts to vibrate if its diameter is
too small, e.g., 50 lm, as was observed experimentally, especially near the nozzle.
The amplitude of these vibrations can reach 200 lm. It should also be noted that the
end face was specially sharpened to have a streamlined shape before the microtube
was inserted into the tube.

2.3.2 Experimental Arrangement and Measurement
Conditions

All experiments were performed with nitrogen as a test gas. The nitrogen was at
room temperature and escaped into the atmosphere. The experimental arrangement
is shown in Fig. 2.18. A pressurized gas was injected into the settling chamber after
passing through three filters: 10, 1.4, and 0.45 lm. Such severe requirements for
gas purity are caused by the small diameter of the microtube and the submicrometer
thickness of the tube wall. Without triple cleaning of the gas, fine particles either
break the microtube or become deposited on the internal surface and plug the tube,
thus making the latter unsuitable for measurements.

The microtube was fixed onto a holder, which was moved in space by a
Narishige NT-88E micromanipulator with accuracy of ±1 lm in three mutually
perpendicular directions. The Pitot microtube’s position was monitored by a Nikon
SMZ1500 stereoscopic microscope. The data from the pressure sensors were
reflected by a microvoltmeter and recorded on a computer.

∅ 12 μm

Fig. 2.17 Pitot microtube (the inserts are made with ever increasing magnification)
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A problematic aspect of the experiments was the lack of coincidence of the jet
axis and the line of Pitot microtube motion. The maximum misalignment was about
one degree, which corresponds to a deviation of 9 lm from the jet axis at a distance
of 500 lm.

Three domains are usually identified in a supersonic jet: the basic part of the jet
(with a self-similar velocity profile), the initial part, and the transitional region. In
the basic part of the jet, the pressure profile measured by the Pitot tube has a
bell-shaped form. In this region, the Pitot tube was tuned to the maximum readings
of the microvoltmeter. This served as a criterion verifying that the Pitot microtube is
located at the jet axis. In the initial section of the jet, the criterion that confirmed the
Pitot microtube location at the jet axis was the maximum or minimum readings of
the microvoltmeter. In the transitional region, the hat-shaped profile ultimately
transforms into the bell-shaped profile, and this reconstruction is sometimes
asymmetric. As a result, the clear criterion (extreme readings of the microvoltmeter
exactly at the jet axis) is no longer valid, and data scatter is most often observed in
this region.

First, the Pitot microtube was placed at the nozzle exit and was then moved
along the jet. The step of Pitot microtube motion along the jet axis was varied from
2 to 20 µm depending on the nozzle diameter. After one, two, or three steps
(depending on the position at the axis), the Pitot microtube’s position with respect
to the jet axis was checked.

The test conditions are listed in Table 2.2. The pressure in the settling chamber
was varied from 2 to 8 atm. The maximum pressure in the settling chamber was
determined, on the one hand, by the strength of the connection of the gas supply
system fittings and, on the other hand, by the microtube’s strength. Here, NPR is the

Pitot microtube 
or hot-wire probe

Micronozzle

Р

Microscope
Nikon SMZ 1500

Air 
micro manipulator
Narishige NT-88E 

Filter 10 mμ

Filter 1.4 mμ

Filter 0.45 mμ

Fig. 2.18 Sketch of the experiment
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nozzle pressure ratio, i.e., the ratio of the pressure in the settling chamber to
atmospheric pressure. The jet pressure ratio (JPR) is the ratio of the pressure at the
nozzle exit to atmospheric pressure. The value of JPR is smaller than NPR by a

factor of ½1þðc� 1Þ=2�c=ðc�1Þ. The jet is underexpanded at JPR > 1 and overex-
panded at JPR < 1.

The number M in the table is the Mach number of the so-called design (com-
pletely expanded) jet. The Reynolds number ReD was calculated on the basis of the
nozzle diameter and flow parameters at the nozzle exit. The value of ReD was
linearly related to n. The Knudsen number Kn was determined as the ratio of the
Mach number M to

ffiffiffiffiffiffiffiffi

JPR
p � ReD, and Table 2.2 shows the maximum values of this

ratio for the examined ranges of M, JPR, and ReD. In fact, the Knudsen number was
determined on the basis of the length and flow parameters in the first cell (barrel) of
the wave structure of the jet. It can be seen from the table that jet flows correspond
to a continuous medium. The accuracy of pressure assignment in the settling
chamber of the micronozzle was 3% within the pressure range from 2 to 4 atm and
1% for pressures higher than 4 atm. The accuracy of Pitot microtube mounting at
the nozzle exit was 0–5 µm. The nominal error of the pressure sensors was
±0.25%. In all cases, the size of the symbols in the graphs presented below is
greater than or equal to the measurement error.

2.3.3 Measurement Results

Figures 2.19, 2.20, 2.21 and 2.22 show the total pressure distributions along the
microjet axis measured by the Pitot microtube and normalized to the total pressure
at the nozzle exit p′/p0 as functions of the normalized distance from the nozzle exit
X/D. Different curves in the graphs show the results for different jet pressure ratios.
[AU: I didn’t see an ‘n’s in any of the graphs, so I assumed this was a typo.] It is
seen that the total pressure displays periodic oscillations along the jet axis. They are

Table 2.2 Flow parameters in experiments

D (lm) NPR JPR M ReD Kn

341 2.2 � 5.7 1.2 � 3 1.1 � 1.8 10857 � 27875 0.0001

215 2.3 � 7.4 1.2 � 4 1.1 � 2 6938 � 22817 0.00016

150 2.1 � 7.3 1.1 � 3.9 1.1 � 2 4560 � 15682 0.00023

65.3 2.2 � 7.2 1.2 � 3.8 1.1 � 2 2098 � 6771 0.00052

61.4 2.1 � 6.9 1.1 � 3.7 1.1 � 1.9 1805 � 6102 0.00058

44.3 1.9 � 5.8 1 � 3.1 1.1 � 1.8 1233 � 3710 0.00082

34.8 2.1 � 7.2 1.1 � 3.8 1.1 � 1.9 1068 � 3568 0.001

21.4 2.2 � 6.3 1.2 � 3.4 1.1 � 1.9 669 � 1946 0.0016

16.1 2.3 � 7.6 1.2 � 4 1.2 � 2 529 � 1759 0.002

10.4 2.1 � 7.8 1.1 � 4.1 1.1 � 2 312 � 1163 0.0033
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caused by the existence of the shock wave structure (cells of the wave structure) in
the underexpanded jet. It can be noted that the first and even the second cell is hard
to identify at JPR > 3, and it is next to impossible to determine their positions,
which is typical for jets of all diameters. Moreover, it was found that a large number
of cells of the wave structure are formed in jets escaping from the nozzles with the
diameters 34.8, 21.4, and 16.1 µm within a very narrow range of pressures.

Thus, for example, 28 cells of the wave structure were observed in the jet
being exhausted from the 21.4-µm nozzle and 35 cells were detected in the jet
escaping from the 16.1-µm nozzle, which was not observed in macroscopic,

Fig. 2.19 Axial distribution of the total pressure. The nozzle diameter is 149 lm

Fig. 2.20 Axial distribution of the total pressure. The nozzle diameter is 61.4 lm
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underexpanded jets. At pressures in the settling chamber higher or lower than this
range, the number of cells is not that large. The smaller the nozzle diameter, the
greater the range of existence of the “multi-cellular” flow regime. For the jet being
exhausted from the 34.8-µm nozzle, this regime was observed only at one value of
the jet pressure ratio JPR = 1.6. For the jet escaping from the 21.4-µm nozzle, this
flow regime existed within a certain range of the jet pressure ratios JPR = 1.82 �
1.89. The greatest interval of existence of the multi-cellular regime was found in the
microjet being exhausted from the 16.1-µm nozzle: JPR = 2.74 � 3.12.

Fig. 2.21 Axial distribution of the total pressure. The nozzle diameter is 21.4 lm

Fig. 2.22 Axial distribution of the total pressure. The nozzle diameter is 16.1 lm

78 2 Gas-Dynamic Structure and Stability of Gas Microjets



Such regimes were not observed in jets escaping from the 44.3 and 10.4-µm
nozzles. Strictly speaking, it does not mean that they do not exist. Possibly, the
interval of existence of the multi-cellular regime for the jet escaping from the
44.3-µm nozzle is so small that it could not be detected in the present experiments.
For the jet being exhausted from the 10.4-µm nozzle, this regime may be located
within the range of the jet pressure ratios that was not reached in these experiments.

It is known that the cell size of the wave structure in jets escaping into a
submerged space permanently decreases with increasing distance from the nozzle
because of mixing layer thickening and flow deceleration. The sizes of the second,
third, and fourth cells were mainly used to determine the mean cell size la. At small
jet pressure ratios, only the second cell size or, if the third cell could be detected by
the Pitot microtube, the second and third cell sizes were taken for this purpose.

At JPR > 3, when it was impossible to determine the end of the first cell and the
beginning of the second cell, the sizes of the third and fourth cells were used.
The data obtained are shown in Fig. 2.23. The solid curve is the approximation of
the experimental data for the air macrojet escaping from the 14-mm nozzle (filled
circles) measured in the schlieren photographs. It is seen that the data for all
microjets coincide with each other up to the jet pressure ratio JPR < 2 and lie
slightly higher than the dependence for the macrojet, but the qualitative agreement
is fairly good. The experimental data for JPR > 2 are considerably scattered, but
they are still also consistent with the dependence for the macrojet. This good
agreement shows that a decrease in the nozzle diameter does not exert any
noticeable effect on the wave structure of the jets.

As is seen from Fig. 2.15, there is noticeable roughness on the micronozzle
edges. For small-diameter nozzles, the relative roughness level is sufficiently high.
Therefore, good agreement of the mean cell sizes for all microjets in Fig. 2.23 also
suggests that the nozzle edge roughness produces a weak effect on the gas-dynamic
structure of the jet flow. Nevertheless, the deformation of the jet flow boundary was
measured in the first cell of the microjet being exhausted from the 23-µm nozzle at

Fig. 2.23 The average shock
cell size versus JPR
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JPR = 3.8. Figure 2.24 shows the results of these measurements for three
cross-sections. The jet boundary deformation is enhanced with distance from the
nozzle, which was observed earlier for plane supersonic underexpanded microjets
(Fomin et al. 2010). For macroscopic jets, this phenomenon has been known for a
long time; it is attributed to the development of the streamwise Görtler vortices in
underexpanded jets.

Using the total pressure distribution at the jet axis, we studied the supersonic
core length of the jet. It was determined as the distance from the nozzle exit to the
point where the gas velocity reaches the local velocity of sound and the pressure in
the Pitot tube reaches 1.89 atm. The supersonic core length of the microjet nor-
malized to the nozzle diameter Lc/D is plotted in Figs. 2.25, 2.26 and 2.27 as a
function of the jet pressure ratio n. The solid and dotted curves are the generalized
dependences of the normalized supersonic core length for macroscopic turbulent
jets obtained in Shirie and Siebold (1967), Pogorelov (1977).

The data obtained for microjets escaping from the largest nozzles agree well with
the generalized dependences for turbulent macrojets (Fig. 2.25). They are also
consistent with the experimental data (Phalnicar et al. 2008) for nozzles 200 and
400 µm in diameter.

Figure 2.26 shows the data for microjets being exhausted from intermediate-size
nozzles (61.4 � 21.4 µm in diameter). In this case, the microjet’s supersonic core

r/D

x/D

Fig. 2.24 Isolines of total pressure along a microjet and in three sections of the first shock cell
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length appreciably (several-fold) increases and then drastically decreases to the
supersonic core length of turbulent macrojets. Finally, the pattern for jets escaping
from the smallest nozzles is essentially different (Fig. 2.27).

Here, the supersonic core length of the jet also significantly exceeds the corre-
sponding values for macroscopic jets, and the supersonic core length of the jet does
not decrease to the level of the generalized dependences for macrojets within the
entire examined range of the jet pressure ratios. Drastic reduction of the supersonic

Fig. 2.25 The normalized supersonic core length versus the jet pressure ratio for the jets escaping
from nozzles with a diameter from 400 to 65.3 lm

Fig. 2.26 The normalized supersonic core length versus the jet pressure ratio for the jets escaping
from nozzles with a diameter from 61 to 21 lm
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core length of the microjet with an increase in the jet pressure ratio is associated
with the laminar-turbulent transition. This fact was demonstrated by means of
measuring the intensity of the mass flow rate oscillations at the microjet axis
performed by a hot-wire anemometer.

Figure 2.28 shows the isolines of the intensity of the mass flow rate oscillations in
the plane of the frequency f versus the normalized distance along the jet axis X/D for
three points of the dependence Lc/D(JPR). Brown regions in these plots correspond to
higher intensities of oscillations. It is seen that the spectrum does not substantially
contain oscillations before the supersonic core length decreases. However, the mass
flow rate oscillations are drastically enhanced immediately after reduction of the
supersonic core length. Further on, as the distance increases, the frequency spectrum
of oscillations is expanded. This fact shows that instability in the microjet is con-
vective rather than global. Otherwise, these oscillations would be detected over the
entire length of the microjet.

An interesting phenomenon was detected in the range of nozzle diameters from
30 to 20 µm. The supersonic core length of the microjet decreased with increasing
jet pressure ratio due to the laminar-turbulent transition and then started to increase
again (see Fig. 2.29). The intensity of oscillations in the microjet decreased in this
case. The repeated increase was observed only in a comparatively moderate interval
of the jet pressure ratios; however, with a further increase in JPR, the supersonic
core length of the jet decreased again to the corresponding values for turbulent
macrojets. Intense oscillations of the mass flow rate at the microjet axis were
observed in the entire region of supersonic core length. Moreover, the length of the
second region in terms of the value of JPR, where the supersonic core length of the
microjet increased, becomes greater as the nozzle diameter decreases (cf. the data in
Fig. 2.29).

To illustrate the situation, let us combine hot-wire measurements for different jet
pressure ratios and construct isolines of integral oscillations in the coordinates

Fig. 2.27 The normalized
supersonic core length versus
the jet pressure ratio for the
jets escaping from nozzles
with a diameter from
16.1 to 10.4 lm
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Fig. 2.28 The normalized supersonic core length versus the jet pressure ratio for the jets escaping
from nozzles with a diameter 21.4 lm and spectra of mass flow pulsations along the jet axis for
three values of the jet pressure ratio: 1—JPR = 1.49; 2—1.89; 3—3.35
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JPR − Lc/D. We also construct the supersonic core length of the jet curves in the
same coordinates and impose them onto the plots obtained from the hot-wire
measurements. Let us compare the domains of drastic changes in the supersonic
core length with regions where elevated oscillations were obtained by means of
hot-wire anemometry (i.e., the laminar-turbulent transition).

Examples of such comparisons for jets escaping from the nozzles less than 60 µm
in diameter are given in Fig. 2.30. The red lines in these graphs show the value of the
integral oscillations from which their growth begins. This curve actually indicates the
position of the laminar- turbulent transition in the jet as a function of the jet pressure
ratio. The solid and dotted curves are the generalized dependences of the supersonic
core length for turbulent macrojets (Pogorelov 1977; Shirie and Siebold 1967). These
dependences play a key role in the analysis of the plots in Fig. 2.30.

As is seen in these figures, the jet is turbulized almost instantaneously. If the
supersonic core length is greater than that of turbulent macrojets, the jet turbu-
lization point clearly correlates with the location of the laminar-turbulent transition
in the jet. If the laminar-turbulent transition point is shifted closer to the nozzle, the
supersonic core length becomes consistent with the generalized dependences for
turbulent macrojets and independent of the position of the laminar-turbulent tran-
sition in the mixing layer of the jet.

Thus, the increase of the supersonic core length of microjets is associated with
the laminar character of the flow in these jets. Vice versa, the decrease in this length
is caused by jet flow turbulization and by enhancement of oscillations in microjets.
The repeated increase in the microjet length is associated with flow relaminariza-
tion, which is observed, however, in a very narrow interval of the jet pressure ratios.
For small microjet diameters, the laminar-turbulent transition is absent in the
examined range of the jet pressure ratios (Fig. 2.27).

To determine the influence of the roughness of the micronozzle edge on the
supersonic core length of the microjet, we performed measurements with
micronozzles 44.3, 34.8, 21.4, 16.1, and 10.4 µm in diameter with rough edges at

Fig. 2.29 The supersonic
core length versus the jet
pressure ratio for the jets
escaping from nozzles with
diameters 26 and 23.4 lm
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the nozzle exit. The rough edges were produced by means of repeated purging of
the nozzles with nitrogen in the absence of filters in the gas supply system. Rust
particles approximately 10 µm in size partly destroyed the micronozzle edges. The
absolute level of roughness determined from electron microphotographs was
approximately 1 � 1.5 µm. As an example, Fig. 2.31 shows the SEM images of
nominally “smooth” (left) and rough (right) micronozzles.

(1) (2)

(3) (4)

Fig. 2.30 Isolines of mass flow integral pulsations and the normalized supersonic core length
versus the jet pressure ratio: 1—D = 36 lm; 2—26 lm; 3—24.3 lm; 4—16.1 lm
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Figures 2.32 and 2.33 show some dependences of the normalized supersonic
core length of the microjet as a function of the jet pressure ratio for nominally
“smooth” (circles) and rough (filled points) nozzles of similar diameters.

As is seen from the graphs, the roughness of the micronozzle edge exerts ver-
satile effects on the length of the supersonic core. At small values of n, the data for
smooth and rough nozzles are fairly close to each other. The major difference is
observed in the region where the flow regime changes. It was found that the
transition in flows generated by rough micronozzles may occur at both lower and
higher values of JPR and, hence, of the flow Reynolds numbers.

Fig. 2.31 Scanned electron microscope images of nominally “smooth” (left) and rough (right)
micronozzles

86 2 Gas-Dynamic Structure and Stability of Gas Microjets



2.4 Microjet Simulation with the Use of Macrojets

To consider the possibility of modeling microjets with the help of parameters
similar to those used in macroscopic flows (in particular, Reynolds number), we
performed experiments aimed at measuring the supersonic core length of the jets
escaping from a macroscopic sonic nozzle 1 mm in diameter. A medical needle
with an inner diameter of 100 µm served as the Pitot tube. The experiments were
performed in the low pressure chamber; the experimental layout and the pho-
tographs of the nozzle and Pitot tube are shown in Figs. 2.34 and 2.35.

These experiments were performed with a smooth sonic nozzle. Exhaustion of
microjets from nozzles with diameters ranging from 40 to 2 µm was considered.

Fig. 2.32 The normalized supersonic core length versus the jet pressure ratio for the jets escaping
from nominally “smooth” and rough nozzles

Fig. 2.33 The normalized
supersonic core length versus
the jet pressure ratio for the
jets escaping from nominally
“smooth” and rough nozzles
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The Reynolds number at the sonic nozzle exit ReD and the JPR were maintained
approximately equal to their values in microjets. Low values of ReD in the 1-mm
nozzle were provided by reducing the pressure in the settling chamber. JPRs equal
to or even higher than those in experiments with microjets were obtained by
decreasing the pressure in the low-pressure chamber. Thus, for each value of ReD, it
is possible to introduce an effective nozzle diameter Deff equivalent to the
micronozzle diameter in experiments with jet exhaustion into the atmosphere.

The normalized mean length of the shock cells of model microjets Ls/D was
measured in the low-pressure chamber. Figure 2.36 shows some examples of the
dependence of Ls/D on the JPR for real (filled points) and model (open points)
microjets escaping from real and effective nozzles of similar diameters. It is seen
that these dependences coincide with each other within the measurement scatter,
and the gas-dynamic structure of microjets and macrojets is adequately modeled.

Figure 2.37 shows the measured length of the supersonic core for the 1-mm
nozzle. The effective nozzle diameters Deff are also indicated in the figure. The main
conclusion can be formulated as follows. The length of the supersonic core of

Chamber 
pressure

Nozzle 
pressure

To vacuum 
pump

Pitot pressure

Pitot
tube

Nozzle

Low-pressure 
chamber

Fig. 2.34 The sketch of experiments in a low-pressure chamber

Pitot tube Nozzle

Fig. 2.35 Photograph of the
nozzle and Pitot tubes in a
low-pressure chamber
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model microjets also increases rapidly at the beginning, and then it decreases to the
turbulent limit. As Deff decreases, the decrease in Lc/D is terminated beginning from
the diameter of 15 µm, and the supersonic core length starts to increase again with
increasing jet pressure ratio n. This phenomenon is similar to the relaminarization
of the microjet flow shown in Fig. 2.29. For Deff < 5 µm, only the growth of the
supersonic core length was observed in the examined interval of the jet pressure
ratios. For Deff < 10 µm, it was also found that the roughness of the nozzle edge
does not produce any noticeable effect on the supersonic core length as a function
of the jet pressure ratio. The most probable reason is rapid decay of streamwise
structures generated by the notches on the nozzle edge.

The dependences Lc/D on JPR for four diameters of real and model microjets are
compared in Fig. 2.38 (the filled and open points refer to the model and real
microjets, respectively). It was impossible to make the effective nozzle diameters in

Fig. 2.37 The normalized
supersonic core length of the
model jets versus the jet
pressure ratio

Fig. 2.36 The average shock
cell size of the real (filled
symbols) and model (light
symbols) microjets versus jet
pressure ratio
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the low-pressure chamber exactly identical to those of real micronozzles, but they
were fairly close to each other. It is seen that the dependences of the normalized
length of the supersonic core of real and model microjets on the nozzle pressure
ratio are in good quantitative agreement.

A detailed analysis of the supersonic core length’s behavior and development of
oscillations in the mixing layer in microjets allowed us to obtain flow fields for
different values of the nozzle pressure ratio.

In terms of the mechanism of evolution of disturbances in the mixing layer, all
jets can be conventionally classified into four groups.

The first group includes jets escaping from nozzles with diameters greater than
60 µm (macrojets and minijets). The second group consists of jets being exhausted
out of nozzles with diameters ranging from 60 to 35 µm. Jets generated by nozzles
with diameters between 35 and 10 µm are included in the third group. Finally, the

Fig. 2.38 Comparison of the supersonic core length versus JPR for real (circles) and model (filled
points) microjets
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fourth group includes jets escaping from nozzles with diameters smaller than
10 µm.

A jet of the first group is schematically shown in Fig. 2.39, with the axes being
the jet pressure ratio and the normalized supersonic core length. The curve is the
generalized dependence for the supersonic core length of turbulent macrojets.
The central part is the supersonic core length of the jet.

The jet boundaries and the nozzle are also shown. Different positions of the
nozzle correspond to different jet pressure ratios.

In turbulent macrojets, the mixing layer already becomes turbulent within the
first cell (barrel) of the jet (Avduevskiy et al. 1971). As the jet pressure ratio
increases, the mixing layer remains turbulent, while the supersonic core length
increases, as predicted by the generalized dependences. The pattern in Fig. 2.39 can
be conventionally called the turbulent macroscenario of supersonic core length
changing.

Figure 2.40 shows the supersonic core length behavior for jets of the second
group (35 µm < D < 60 µm). At moderate values of the jet pressure ratio, the
mixing layer is laminar, and the supersonic core length increases without experi-
encing any effect produced by growing disturbances (Fig. 2.40, 1–4). Then, sudden
turbulization occurs (Fig. 2.40, 5), and the point of the laminar-turbulent transition

Lc
/D

JPR

Fig. 2.39 The jet flow
pattern for the first group
(D > 60 lm)

Lc
/D

1 2 3 4 5 6 7

JPR

Fig. 2.40 The jet flow
pattern for the second (35 µm
< D < 60 µm)
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and the value of the supersonic core length approach the generalized dependence
for turbulent macrojets. With a further increase in the jet pressure ratio (Fig. 2.40, 6,
7), the position of the laminar-turbulent transition in the mixing layer of the jet is
shifted toward the nozzle, whereas the supersonic core length increases in accor-
dance with the turbulent macroscenario.

The behavior of the supersonic core length for jets of the third group
(10 µm < D < 35 µm) is schematically illustrated in Fig. 2.41. At the beginning, at
small values of the jet pressure ratio, the mixing layer is laminar, and the supersonic
core length increases (Fig. 2.41, 1–4). As the jet pressure ratio increases, the
laminar-turbulent transition occurs in the mixing layer, but the transition point lies
higher than the generalized dependence for macrojets (Fig. 2.41, 5). A further
increase in JPR shifts the transition point even closer to the nozzle, but it is still
higher than the generalized dependence (Fig. 2.41, 6). As JPR is further increased
to higher values, sometimes complete relaminarization of the flow may occur
(Fig. 2.41, 8). With a further increase in n, the laminar-turbulent transition point is
shifted back to the nozzle [to the generalized dependence for macrojets (Fig. 2.41,
9)], and the turbulent macroscenario is realized after that (Fig. 2.41, 10, 11).

For jets of the fourth group (D < 10 µm), the behavior of the supersonic core
length is illustrated in Fig. 2.42. It should be noted here that the supersonic core
length for these jets with the initial (small) values of the jet pressure ratio (Fig. 2.42,
1–3) does not reach the level of the normalized supersonic core length of macro-
scopic jets, whereas it is from this level that the supersonic core length starts to
increase for jets of the second and third groups (at JPR ≅ 1–1.05). As the jet
pressure ratio is increased (Fig. 2.42, 4), the supersonic core length reaches the
corresponding level for macrojets and then exceeds the latter (Fig. 2.42, 5–8). The
subsequent behavior of the supersonic core length is not clear, because there are no
data for very large values of the jet pressure ratio (n > 30).

The generalized dependence of the Reynolds number at the place of the
laminar-turbulent transition on the nozzle diameter is shown in Fig. 2.43. The red
and blue points are the Reynolds number for the complete change in the flow
regime (Fig. 2.40, 5–7) and the beginning of the development of turbulence in the
mixing layer (see Fig. 2.41, 5). The triangles show the Reynolds numbers at which

Lc
/D

JPR

1 2 3 4 5 6 7 8 9 10  11Fig. 2.41 The jet flow
pattern for the third group
(10 µm < D < 35 µm)
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either partial (Fig. 2.41, 6) or complete (Fig. 2.41, 8) relaminarization of the flow
occurs. The Reynolds numbers of repeated shifting of the laminar-turbulent tran-
sition point are marked by green diamonds (Fig. 2.41, 9).

The diagram of regimes of jet exhaustion from the micronozzle can be con-
ventionally divided into four basic domains. The first domain (blue color in
Fig. 2.43) corresponds to subsonic exhaustion of the jet.

The second domain (green color in Fig. 2.43) is the regime of a large supersonic
core length and laminar mixing layer. The left boundary of the second domain is
bounded by the Reynolds number reached in experiments.

The third domain (pink color in Fig. 2.43) corresponds to the regime typical for
turbulent macrojets. There are no differences between macrojets and microjets in
this domain.

Fig. 2.43 Reynolds number of the jet flow regime change depending on the nozzle diameter
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1 2 3 4 5 6 7 8Fig. 2.42 The jet flow
pattern for the fourth group
(D < 10 µm)
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Finally, the fourth domain (yellow color in Fig. 2.43) is the region where the
supersonic core length can decrease because of the laminar-turbulent transition, but
is still greater than the supersonic core length of macrojets. The fourth domain can
be divided into two subdomains, one where the jet range decreases and one where
the supersonic core length increases again.

Based on comparisons of the data for real and model microjets in Figs. 2.36 and
2.38, we can argue that it is possible to model the domains with changes in the
microjet flow regimes in terms of the Reynolds number. On the other hand, it seems
that the jet flow in the third domain is not absolutely stable and again becomes
turbulent as ReD increases. It should be noted that the repeated laminar-turbulent
transition obtained in real microjets was not observed in model microjets (see
Fig. 2.37). Possibly, it can be detected at higher values of JPR (higher Reynolds
numbers).

The transition of the flow from domain 1 to domain 2 in supersonic macrojets
has been well studied. The transition from domain 2 to domain 3 was observed only
for microjets. The laminar domain 3 is not formed for all nozzle sizes. It is observed
only for nozzle diameters of about 25 µm. This value can be considered as a
boundary between gas microjets and macrojets. However, the dimension value of
the nozzle diameter responsible for this boundary cannot yet be considered as
definitely established.

References

Akey ND (1970) Overview of RAM reentry measurements program. In: Proceedings of the reentry
plasma sheath and its effect on space vehicle electromagnetic systems, vol 1. NASA Langley
Research Center SP-252, pp 25–26

Alvi FS, Shih C, Elavarasan R, Garg G, Krothapalli A (2003) Controll of supersonic impinging jet
flows using supersonic microjets. AIAA J 41(7):1347–1355

Aniskin VM, Maslov AA, Mironov SG (2011) Effect of nozzle size on supersonic microjet length.
Tech Phys Lett 37(11):1046–1048

Aniskin VM, Bountin DA, Maslov AA, Mironov SG, Tsyryul’nikov IS (2012) Stability of a
subsonic gas microjets. Tech Phys 57(2):174–180

Aniskin V, Mironov S, Maslov A (2013) Investigation of the structure of supersonic nitrogen
microjets. Microfluid Nanofluid 14(3):605–614

Avduevskiy VS, Ivanov AV, Karpman IM, Traskovskiy VD, Yudelovich MY (1971) Effect of
viscosity on movement in the initial section of a highly underexpanded jet. Dokl Phys 197
(1):46–49

Bayt R, Breuer K (2001) Systems design and performance of hot and cold supersonic microjets.
AIAA Paper 2001-0721

Brown CA (2005) Acoustics of excited jets—a historical perspective. NASA TM. 2005-213889
Choi JJ, Annaswamy AM, Lou H, Alvi FS (2006) Active control of supersonic impingement tones

using steady and pulsed microjets. Exp Fluids 41:841–855
Danalia I, van Boersma B (2000) Direct numerical simulation of bi-furcating jets. Phys Fluids 12

(5):1255–1257
Fedorov A, Shiplyuk A, Maslov A et al (2003) Stabilization of a hypersonic boundary layer using

an ultrasonically absorptive coating. J Fluid Mech 479:99–124

94 2 Gas-Dynamic Structure and Stability of Gas Microjets



Fomin VM, Aniskin VM, Maslov AA, Mironov SG, Tsyryul’nikov IS (2010) Gas-dynamic flow
structure and development of perturbations in microjets. Dokl Phys 55(8):419–422

Gau C, Shen CH, Wang ZB (2009) Peculiar phenomenon of micro-free-jet flow. Phys Fluids
21:092001 (1-13)

Ginevskiy AS, Vlasov EV, Karavosov RK (2001) Acoustic control of turbulent jets. Fizmatlit,
Moskow

Golod SV, Prinz VY, Mashanov VI, Gutakovsky AK (2001) Fabrication of conducting GeSi/Si
micro-and nanotubes and helical microcoils. Semicond Sci Technol 16:181–185

Grek GR, Kozlov VV, Litninenko YA (2012) Stability of subsonic jet streams. Tutorial. Editorial
Publishing Center NSU, Novosibirsk

Kosinov AD, Maslov AA, Shevelkov SG (1990) Experiments on the stability of supersonic
laminar boundary-layers. J Fluid Mech 219:621–633

Kozlov VV, Grek GR, Lofdahl LL, Chernoray VG, Litvinenko MV (2002) Role of localized
streamwise structures in the process of transition to turbulence in boundary layers and jets
(review). J Appl Mech Tech Phys 43(2):224–236

Kozlov GV, Grek GR, Sorokin AM, Litvinenko YuV (2008) Influence of initial at nozzle section
on flow structure and instability of plane jet. Vestn NSU Phys Ser 3(3):25–37

Kozlov VV, Grek GR, Litvinenko YV, Kozlov GV, Litvinenko MV (2010) Subsonic round and
plane jets in the transversal acoustic field. Vestn NSU Phys Ser 5(2):28–43

Litvinenko MV, Kozlov VV, Kozlov GV, Grek GR (2004) Effect of streamwise streaky structure
on turbulization of a circular jet. Appl Mech Tech Phys 45(3):349–357

Litvinenko YA, Grek GR, Kozlov VV, Kozlov GV (2011) Subsonic round and plane jets in a
transverse acoustic field. Dokl Phys 56(1):26–31

Lou H, Alvi FS, Shih C (2006) Active and passive control of supersonic impinging jets. AIAA J
44(1):58–66

Maslov AA, Shiplyuk AN, Sidorenko AA et al (2001) Leading-edge receptivity of a hypersonic
boundary layer on a flat plate. J Fluid Mech 426:73–94

Parmentier EM, Wray KL, Weiss RF (1970) Aerophysical plasma alleviation. In: Proceedings of
the reentry plasma sheath and its effect on space vehicle electromagnetic systems, vol 1. NASA
Langley Research Center SP-252, pp 579–616

Phalnicar KA, Kumar R, Alvi FS (2008) Experiments on free and impinging microjets. Exp Fluids
44:819–830

Pogorelov VI (1977) Parameters determining the range of a supersonic gas jet. Sov Tech Phys
47(2):444–445

Prinz VY, Seleznev VA, Gutakovsky AK, Chehovskiy AV, Preobrazhenskii VV, Putyato MA,
Gavrilova TA (2000) Free-standing and overgrown InGaAs/GaAs nanotubes, nanohelices and
their arrays. Physica E 6:828–831

Prinz VY, Grutzmacher D, Beyer A, David C, Ketterer B, Deckardt E (2001) A new technique for
fabricating three-dimensional micro- and nanostructures of various shapes. Nanotechnology
12:399–402

Reynolds WC, Parekh DE, Juvet PJD, Lee MJD (2003) Bifurcating and blooming jets. Annu Rev
Fluid Mech 35:295–315

Scroggs SD, Settles GS (1996) An experimental study of supersonic microjets. Exp Fluids
21:401–409

Seleznev VA, Prinz VY, Aniskin VM, Maslov AA (2009) Generation and registration of
disturbances in a gas flow. 1. Formation of arrays of tubular microheaters and microsensors.
J Appl Mech Tech Phys 50(2):291–296

Shiplyuk AN, Bountin DA, Maslov AA, Chokani N (2003) Nonlinear mechanisms of the initial
stage of the laminar-turbulent transition at hypersonic velocities. J Appl Mech Tech Phys
44(5):654–659

Shirie JW, Siebold JG (1967) Length of supersonic core of jets. AIAA J 5(11):2062–2064
Tabeling P (2005) Introduction to microfluids. Oxford University Press, Oxford
Tanney JW (1970) Fluidics. Prog Aerosp Sci 10:401–510

References 95



Vorob’ev AB, Prinz VY (2002) Directional rolling of strained heterofilms. Semicond Sci Technol
17:614–616

Vulis LA, Kashkarov VP (1965) Theory of viscous fluid jets. Nauka, Moskow
Zhang S, Zhong S (2010) Experimental investigation of flow separation control using an array of

synthetic jets. AIAA J 48(3):611–623
Zhuang N, Alvi FS, Alkilsar M, Shih C (2006) Aeroacoustic properties of supersonic cavity flows

and their control. AIAA J 44(9):2118–2128
Ziliĉ A, Hitt DL, Alexeenko AA (2007) Numerical simulations of supersonic flow in a linear

aerospike micronozzle. AIAA Paper 2007-3984

96 2 Gas-Dynamic Structure and Stability of Gas Microjets



Chapter 3
Fluid Flows in Microchannels

Abstract The chapter describes the results of measurements of friction factors in
microchannels of various shapes and various diameters for laminar and turbulent
flows, as well as the friction factor for input regions. Much attention is paid in this
chapter to technologies of fabrication of test benches, methodical aspects of
experiments, and evaluation of reliability of experimental data. The chapter is
organized in such a way that all aspects of microflow experiments are consecutively
considered: from the development of test benches through choosing measurement
techniques to estimating the error of results obtained.

3.1 Methods of Determining the Friction Factor in Tubes

The development of advanced technologies required applications and, corre-
spondingly, fabrication of miniature fluidic devices. The design of microfluidic
devices raised the following question: are the known laws of fluid motion in
macrochannels valid for fluid motion in channels of micron and submicron sizes?
Many research teams have reported their results on measurements of the friction
factor and pressure distribution for laminar and turbulent fluid flows in
microchannels and also on heat transfer during the last 15–20 years. These results
are scattered and often contradictory. Measurements by microscopic probes impose
particular requirements on experiment arrangement, fabrication of test benches, and
measurement techniques. Moreover, measurement errors should be carefully esti-
mated. Methods developed for semiconductor instruments are now being increas-
ingly used for the fabrication of microscopic devices. However, manual work is still
widely used for test bench assembling. In addition, measured results should be
accurately and carefully interpreted because these results are affected, e.g., by the
roughness of even smoothly polished surfaces.

The following characteristics can be chosen to classify microchannels into
several groups:

• Microchannel shape (straight or curved);
• Cross-sectional profile of the microchannel;
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• Microchannel size;
• Material of the microchannel walls;
• Wall roughness;
• Presence or absence of holes in the microchannel walls.

In practice, various cross-sectional shapes are used (circular, square, rectangular,
or tapered cross-sections). The channel walls can be made of versatile materials:
silicon, glass, quartz, polytetrafluorethylene (PTFE), metals, photopolymers,
polydimethylsiloxane, and polymethylmethacrylat (PMMA). The majority of
experiments are performed with three types of fluid: gas, liquid, and nanofluid. Two
flow regimes (laminar and turbulent) are formed in microchannels, similar to
macrochannels.

Kandlikar (2003) proposed the following classification of microchannels in
accordance with their size:

• Conventional channels: D > 3 mm;
• Minichannels: 3 mm � D > 200 µm;
• Microchannels: 200 µm � D > 10 µm;
• Transitional channels: 10 µm � D > 0.1 µm;
• Transitional microchannels: 10 µm � D > 1 µm;
• Transitional nanochannels: 1 µm � D > 0.1 µm;
• Molecular nanochannels: 0.1 µm � D,

where D is the hydraulic diameter of the channel, D = 4S/P (S is the
cross-sectional area and P is the channel perimeter).

As a whole, this classification is not very effective because of the dimensional
parameter D used as a basis for the classification. Possibly, it is more correct to use
specific features of physical processes in the fluid flow in the channel as a criterion.
However, there are no sufficient systematic theoretical and experimental investi-
gations to derive such a criterion. Therefore, this classification is applied to con-
sideration of flows in microchannels and transitional microchannels in this chapter.

Investigations aimed at finding the law of fluid motion in tubes have occupied a
key position in the history of hydrodynamics. One of the main problems solved by
researchers was determining the friction factor in tubes. Let us consider various
methods of determining the friction factor in a microchannel, based on commonly
accepted approaches for large-diameter tubes.

The pressure decrease over the channel length is a sum of the pressure drops in
different regions of the channel schematically shown in Fig. 3.1. The pressure
decreases at the channel input (ΔPin) and output (ΔPout) owing to a drastic change
in the cross-sectional area of the channel where the fluid flows. At the initial part of
the channel, the pressure decrease ΔPdev occurs in the region of stabilization of the
pressure profile from the uniformly distributed pressure at the channel input to the
pressure profile corresponding to a developed flow. In the laminar flow, this is
the Poiseuille parabola. The length of the developing flow region Ldev depends on
the hydraulic diameter of the microchannel D and on the Reynolds number. Various
researchers believe that it is determined as 0.029DRe (Idel’chik 1992; Shiller 1936)
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or as 0.05DRe (Donsqing 2008). Thus, the total decrease in the liquid pressure
along the microchannel is a sum of the pressure drops in the above-mentioned
regions:

DP ¼ DPin þDPdev þDPf þDPout:

The change in pressure in the fully developed flow region is induced only by
friction and is determined as

DP ¼ f
qV2

2
L
D
; ð3:1Þ

where q is the fluid density, D is the channel diameter, V is the mean mass velocity
of the fluid in the channel, L is the channel length, and f is the coefficient of
proportionality between the pressure drop in the microchannel and dynamic pres-
sure, which is called the friction factor and depends on the cross-sectional shape of
the microchannel, wall roughness, and Reynolds number.

Determination of the friction factor on the basis of the pressure difference.
Expressing the friction factor f from Eq. (3.1), we obtain

f ¼ 2
DP
qV2

D
L

ð3:2Þ

Thus, for determining the friction factor of the microchannel, it is necessary to
measure the pressure difference in the developed flow region.

If the measurements are performed at several points of the developed flow, then
Eq. (3.2) can be rewritten as

ΔPin

ΔPdev

ΔPf
ΔPout

L dev

Fig. 3.1 Schematic distribution of fluid pressure inside the channel
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fij ¼ p2D5DPij

8qQ2Lij
; ð3:3Þ

where Q ¼ VpD2=4 is the volume flow rate of the fluid, DPij are the pressure
differences between the measurement points i and j, and DLij are the distances
between these points.

In practice, however, it is not always possible to measure the pressure directly
inside the microchannel. The pressures in manifolds at the channel input and output
are usually measured. In this case, it should be borne in mind that the
thus-measured pressure difference is a sum of the pressure losses in various parts of
the microchannel. To eliminate edge effects, which are understood as the decrease
in pressure at the microchannel input and output, as well as in the developing flow
region, some researchers (Rands et al. 2006; Barlak et al. 2011) use reference values
of local loss coefficients available for macrochannels.

Method of two channels. The friction factor is often determined, in practice, by
the method of two channels (Mala and Li 1999; Celata et al. 2006). The main idea
behind this method can be formulated as follows: the edge effects are independent
of the channel length; they are determined only by the flow rate of the fluid. This
means that the edge effects are identical in microchannels of identical diameter, but
are of different lengths if the flow rates of the fluid in these channels are identical. If
we consider two microchannels of the same diameter but different length, and
ensure identical flow rates of the fluid in these channels, then the pressure drop at
the microchannel input and output can be eliminated. The difference in the pressure
drops in these microchannels corresponds to the difference in their linear sizes. This
idea is illustrated in Fig. 3.2.

Equation (3.2) can be rewritten in accordance with the method of two
channels as

f ¼ 2
DP1 � DP2

L1 � L2

D
qV2 ;

where DP1 is the pressure decrease in the longer microchannel, DP2 is the pressure
decrease in the shorter microchannel, and L1 and L2 are the lengths of the corre-
sponding microchannels.

ΔРin 1+ΔРdev 1 ΔРf 1 ΔРout 1

ΔР1

ΔРin 2+ΔРdev 2 ΔРf 2 ΔРout 2

ΔР2

Q2

Q1

Q1=Q2 

ΔРin 1+ΔРdev 1=ΔРinх 2+ΔРdev 2 

ΔРout 1=ΔРout 2

Fig. 3.2 Illustration of the method of two channels
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Let us transform the resultant expression by using measurable quantities:

f ¼ 1
8
p2D5

qQ2

DP1 � DP2

L1 � L2
; ð3:4Þ

where Q is the volume flow rate of the fluid.

3.2 Fabrication Technology and Characteristics
of Microchannels

For the fabrication of microfluidic systems, it is necessary to solve a number of
problems associated with fabrication of the microchannel proper and its connection
with channels providing fluid or gas inflow and outflow. Various methods are
applied for microchannel fabrication. Selective etching of silicon is used most
frequently (Wu and Cheng 2003; Chen et al. 2004). Microchannels are etched into
the silicon substrate in a procedure consisting of several steps. In this case,
microchannels can have tapered, triangular, or rectangular shapes (Wu and Cheng
2003; Tsai et al. 2004; Morini 2004).

Tubes used for studying the friction factor of microchannels and solving prob-
lems of heat transfer in microchannels usually have a circular cross-section and are
made of glass (Li et al. 2003; Cui and Silber-Li 2004), quartz (Judy et al. 2002;
Rands et al. 2006), or stainless steel (Lelea et al. 2004; Wook and Kim 2006). PTFE
tubes are also used sometimes (Celata et al. 2006). Methods of fabrication of
metallic microchannels with a rectangular cross-section are available (Costaschuk
et al. 2007).

An interesting method of fabrication of micron- and submicron-size channels
was proposed by Zhang et al. (2008). In that work, nano-sized quartz filaments
obtained by the drawing of a heated quartz rod are used as a mold for the initial
shape. These filaments are inserted into a polycarbonate substrate by means of hot
stamping. Submicron channels and nanochannels are formed after the quartz fila-
ments are removed by using hydrofluoric acid.

Fluid input/output in circular microchannels proceeds coaxially (Cui and
Silber-Li 2004; Rands et al. 2006). In microchannels etched into a silicon plate and
in other composite microchannels, fluid input/output occurs at an angle of 90° to the
microchannel or a system of microchannels (Wu and Cheng 2003; Costaschuk et al.
2007).

To calculate microfluidic systems, one needs to know not only the microchannel
resistance in the steady flow region, but also the hydraulic resistance of input/output
regions where the flow turns by 90° (Costaschuk et al. 2007). It is also necessary to
know the friction factor of elbow regions, bending and branching parts of the
channel, and also the constricting and expanding regions of microchannel systems.
Because of the complex geometry of the microchannel, reference values for

3.1 Methods of Determining the Friction Factor in Tubes 101



large-size channels cannot be used in many cases. Therefore, it is necessary to
measure the static pressure inside microchannels to justify the applicability of
reference values of local values of friction factor available for macrochannels.

There were some activities in which channels with holes were fabricated to
measure the pressure along the microchannel. Thus, Kohl et al. (2005) used silicon
microchannels with rectangular cross-sections and hydraulic diameters from 25 to
100 lm. Water was used as a working fluid. The microchannel system consisted of
three silicon chips containing microchannels, and also integrated outputs from the
microchannels for pressure measurements, which were sensitive to the membrane
pressure. Eight holes 7 � 10 lm were made in the channel wall.

Costaschuk et al. (2007) performed experimental investigations of the fluid flow
in an aluminum microchannel with a rectangular cross-section and a hydraulic
diameter of 169 lm within the range of Reynolds numbers from 230 to 4740. Eight
holes 27 lm in diameter were made in the channel wall; six of them were located
near the microchannel entrance so as to study the developing flow region. The holes
in the channel wall were made through microelectrodischarge machining.

Actually, investigations aimed at pressure measurements inside microchannels
were only reported in those two publications. The lack of studies of this kind is
caused by the complexity and labor intensity of fabrication of such microchannels.
At the same time, it is clear that the possibility of pressure measurements inside
microchannels would be a reliable basis for determining both the friction factor of
microchannels proper and the local losses (i.e., resistances of the input and output
regions). It is particularly important to determine the local losses for microchannels,
because reference books (e.g., Idel’chik 1992) often do not provide information on
geometric configurations of input and output regions of microchannels. As these
measurements are extremely important, the technology of fabrication of
microchannel systems is considered in detail in this section, following the publi-
cation of Aniskin et al. (2012).

Fabrication of test benches for studying flows in microfluidic systems starts from
fabrication of microchannels themselves. In this section, we describe the basic
stages of fabrication of glass, photopolymer, and silicon microchannels.
Straight-line and U-shaped channels with circular and square cross-sections are
considered. The fabrication technology of polymer microchannels implies the
presence of holes in microchannel walls for static pressure measurements.

Glass microchannels. Microchannels are fabricated from glass capillaries by
means of heating and drawing above open flame. Microchannels of needed length
are consecutively cut off from the thus-obtained microcapillary workpieces of dif-
ferent diameters. The shapes and sizes of cross-sections of the resultant
microchannels are measured by scanning electron microscopy.

Precise determination of the shape and size of the microchannel cross-section is
an extremely important task, because even small errors in size determination may
lead to large errors in determining the friction factor. Figure 3.3 shows the SEM
photographs of the input cross-sections of microchannels fabricated according to
the above-described method. The analysis of these photographs shows that a small
difference in the sizes of the input and output cross-sections cannot be avoided in
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this technology. In addition, certain ellipticity of the cross-sections is observed in
some cases, which is then taken into account in determining the hydraulic diameter.

The aspect ratio of glass microchannels varies from 80 to 600.
Conditions for pressure measurements along glass microchannels are not pro-

vided. The roughness of the inner surface of microchannels is determined by a Zygo
NewView 6300 three-dimensional analyzer of the surface structure. For this pur-
pose, the examined channel is cut along the axis. It is found that the inner surface
roughness is within 5 nm, which allows these microchannels to be considered as
smooth.

Polymer microchannel. Polymer microchannels are fabricated with outputs for
static pressure measurements, which offer a possibility of measuring the pressure
distribution along the microchannel. The technology allows for fabrication of both
straight microchannels and microchannels of complex curved shapes. The tech-
nology is based on the molding principle and has the following stages. First, the
shapes of the channel and outputs for pressure measurements are formed. Then, the
mold is flooded with a liquid photopolymer, which is solidified due to exposure to
light with a certain wavelength. When the photopolymer transforms into the solid
state, the material used for molding is removed. As a result, a microchannel with
holes in the walls is formed.

Let us consider the main stages of fabrication of the microchannel system for
studying the flow in a cylindrical microchannel.

Definition of the channel shape. At the first stage, the shape of the examined
channel is defined by using a fish line. A piece of the fish line of a required diameter
shaped like the future channel is flooded with a photopolymer and exposed to light
with a certain wavelength; after solidification, the fish line is removed. It is easy to
remove the fish line, because its diameter slightly decreases due to tension, resulting
in decoupling of the connection between the fish line’s surface and the solidified
photopolymer. A channel is left in the photopolymer. The channel’s diameter, its
surface roughness, and its shape correspond to the diameter, roughness, and shape
of the fish line.

Formation of outputs for pressure measurements. Fish line pieces (or, e.g.,
synthetic hair lines of paint brushes) forming outputs for pressure measurements are
superimposed at a right angle onto the basic fish line used to form the curved or
straight microchannel. Tight contact with a very small area is provided at the points

D=34.5 μm D=33.6 μm D=25.4 μm  

Fig. 3.3 SEM images of microchannel cross-sections
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of intersection of these lines. When the structure is flooded with a photopolymer, it
does not penetrate to the places of this tight contact, and a hole connecting the
examined microchannel and the outputs for pressure measurement is formed after
photopolymer solidification. After photopolymer exposure and removal of all lines,
the basis of the microchannel system, with a possibility of measuring the pressure
distribution along the curved channel, is formed.

Formation of end plates. The next important step is the formation of end planes
(microchannel entrance and exit). These are also fabricated on the basis of the
molding principle. The photopolymer is poured into a narrow slot, and a fish line is
again used to produce holes. Two plates approximately 500 lm thick with through
holes at the center are fabricated. One of the plate sides (which is further used as a
working surface) is polished. After polishing, the plates are washed in an ultrasonic
bath.

Fabrication of the microchannel system. The end plates are mounted on a
Plexiglas plate normal to its plane at the distance required to form the channel
shape. Their polished surfaces are turned toward each other. These plates are
connected by a fish line, which forms the microchannel; the ends of this line pass
through the holes in the end plates and are fixed outside. Then, outputs for pressure
measurement are formed in accordance with the above-described technique.

The entire structure is flooded with a photopolymer and exposed to radiation;
after removal of the end plates and fish lines, a microchannel system with a curved
or straight microchannel and outputs for pressure measurement are formed. The
prepared mold (a) and the resultant straight microchannel (b) are shown in Fig. 3.4.

Input-output of the fluid and connection of sensors. The final stage of the
procedure is creating ducts for fluid input and for connection of various sensors.
A copper plate 1 (Fig. 3.5) with c soldered tubes 2 is fixed on the Plexiglas plate.
The microchannel system 3 is located at the center. The cylindrical manifold 4
made of the photopolymer is connected to the fluid input tube 5. The manifold is
immediately adjacent to the end face of the c 6, and the junctions are thoroughly
greased with epoxy resin 7.

1

3

2

(a)

4

6

5

(b)

Fig. 3.4 Prepared mold (a) and fabricated microchannel (b): 1—plate for the formation of end
cross-sections; 2—fish line forming the microchannel; 3—lines forming outputs for pressure
measurements; 4—end face of the fabricated microchannel system; 5—microchannel; 6—outputs
for pressure measurements
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Specially prepared fish lines 8 are used to ensure a fluid flow from small-diameter
outputs to larger-diameter tubes to which pressure transducers are connected
(Fig. 3.5). One end of the line has a diameter of about 1 lm and is inserted into the
output hole of the microchannel system. The other end of the line has a diameter of
0.2 mm and is inserted into the tube of the pressure sensor 9. After the manifolds and
micro-outputs are connected, the entire structure isfloodedwith the photopolymer and
exposed to radiation, followed by removal of the fish lines.

Figure 3.6 shows a SEM image of the longitudinal slice of the microchannel.
The holes in the microchannel wall are clearly visible. They have an oval shape
with a size of 5 � 10 lm. The SEM images of the end faces of the microchannel at
various stations (Fig. 3.7) allow one to measure the microchannel diameter and also
to determine its variation along the microchannel. For this purpose, a copy of the
microchannel is fabricated, which is cut along the channel. It should be emphasized
again that precise measurement of the microchannel diameter is extremely impor-
tant for determining the friction factor.

This technology was applied to fabricate various straight and curved
microchannels. A typical example of a curved microchannel is shown in Fig. 3.8.

Advantages and disadvantages of the technology. The above-described
technology offers the following advantages:

1 23

4

5

6

7

8 9

Fig. 3.5 Test bench and connection of manifolds

Fig. 3.6 SEM image of the
longitudinal slice of the
microchannel
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• Fabrication of microchannels with a circular cross-section and holes in the
channel walls;

• Fabrication of complex-shape microchannels: U-shaped and S-shaped channels
with different bending radii, and also out-of-plane microchannels (e.g., coil
pipes);

• Broad variations of manifold design;
• Fabrication of not only microchannels, but also other objects of versatile

axisymmetric shapes: diffusers, nozzles, etc.;
• Fabrication of channels that cannot be produced by other methods.

The main drawback of this technology is its poor manufacturability: it is com-
pletely manual and rather complicated, because it requires special skills of working
with microscopic objects.

Silicon microchannel structures. A silicon microchannel matrix is a regular
system of microchannels with a square cross-section and vertical walls whose
length reaches hundreds of micrometers, whereas the transverse size ranges from
several to several tens of micrometers (Figs. 3.9 and 3.10). To obtain such matrices
with different channel parameters, researchers at the Institute of Semiconductor
Physics of the Siberian Branch of the Russian Academy of Sciences developed a

Fig. 3.7 SEM image of the transverse slice of the microchannel

Fig. 3.8 Photograph of a
curved microchannel
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special process of electrochemical anodic etching of hole-type monocrystalline
silicon. The current density in this process changes during etching in accordance
with a certain law described analytically within the framework of the patented
phenomenological model of obtaining silicon microchannels with a prescribed
profile (Romanov et al. 2011).

Microflow experiments were performed in microchannel matrices with lattice
constants of 6 � 6 and 15 � 15 lm. The transparency coefficient of silicon
microchannel matrices was sufficiently high: 56 and 64% for matrices with the
lattice constants of 6 � 6 lm and 15 � 15 lm, respectively. As a result, a large
flow rate of the fluid is reached with a moderate pressure difference on the plate. For
this reason, such structures are fairly attractive for applications.

In experiments aimed at determining the friction factor, it is desirable to obtain
as high as possible Reynolds numbers. For this purpose, the flow velocity in the
microchannel is increased owing to reduction of the number of microchannels on
the plate.

The number of channels in microchannel matrices is determined by considering
the matrix photograph taken in transmitted light. The photograph is analyzed by the
Image Pro software, which allows the number of channels to be counted with an
error of 0.5–1%. Figure 3.11 shows photographs of microchannel matrices with
lattice constants of 6 and 15 lm. The thickness of the microchannel matrices (equal
to microchannel length) is 190 lm (for the lattice constant of 6 lm) and 200 lm
(for the lattice constant of 15 lm).

As was noted above, precise determination of the transverse size of
microchannels is a key factor affecting the accuracy of calculating the friction

4 μm 4 μm

Fig. 3.9 SEM images of
silicon microchannel matrices
4 � 4 lm: top view and side
view (presented by Romanov)

10 μm 10 μm

Fig. 3.10 SEM images of
silicon microchannel matrices
10 � 10 lm: top view and
side view (presented by
Romanov)
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factor. The area and perimeter of microchannels used for calculating the hydraulic
diameter are determined by the Image Pro software. As an example, Fig. 3.12
shows a SEM image of the inner wall of the microchannel with the lattice constant
of 15 � 15 lm. Based on the SEM images of the inner surface of microchannels,
the absolute value of roughness is estimated as 1 lm. The normalized roughness is
0.08. SEM images of the inner wall of microchannels with a smaller lattice constant
do not reveal any wall roughness.

Test benches. A special test bench is made for each microchannel so as to
perform experiments. Examples of test benches are shown in Fig. 3.13. The main
problem in test bench fabrication is connecting the glass microcapillary and metallic
tubes. Special fittings were developed and fabricated for this purpose. One of the
fittings is schematically shown in Fig. 3.14. Fitting 1 is made of a photopolymer.
Fluid input and output are provided through a cylindrical channel 2 with a diameter
of 1400 lm. In the side wall of the input channel 2, an additional channel 3 with a
diameter of 300 lm leading to pressure sensors is made. The microcapillary 4 is
fixed in the fitting with epoxy resin 5. The accuracy of positioning of the end face of
the microcapillary with respect to the end plane of channel 2 is ±25 lm, which is
comparable with the internal diameter of the microcapillary.

Fig. 3.11 Photographs of microchannel matrices with lattice constants of 6 � 6 lm (a) and
15 � 15 lm (b) (presented by Romanov)

Fig. 3.12 SEM image of the
inner wall of the
microchannel with lattice
constant of 15 � 15 lm
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3.3 Experimental Arrangement

Distilled deionized water is used in all experiments described below. In addition,
water is outgassed by means of purging a small amount of helium with a constant
flow rate. Water outgasing is needed to prevent the effect of cavitation in the
microchannel, which leads to the formation of microbubbles and to errors in fluid
flow rate measurement. Let us consider some possible experimental arrangements.

Arrangement of experiments aimed at fluid flow rate measurements. This
experimental arrangement is shown in Fig. 3.15. Under the influence of the helium

Fig. 3.13 Test benches

Fig. 3.14 Microchannel fitting. The sizes are given in micrometers

2

1 3Fig. 3.15 Experiment with
glass microchannels
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pressure, water moves from the reservoir 1 to the microchannel 2 located on the test
bench, and then to the tube for fluid flow rate measurement 3. The parameters
measured in experiments are the fluid flow rate, fluid pressure at the microchannel
entrance, and pressure difference in the microchannel. The fluid motion in the tube
for flow rate measurement is recorded by a video camera. The pressure is measured
by pressure sensors, e.g., Honeywell sensors of the 26PC 100 psi series.

Arrangement of experiments aimed at pressure measurements. This exper-
imental arrangement is shown in Fig. 3.16. The test fluid 2 is outgassed by helium 1
and is directed by the fluid pump 4 through the filter 3 to the microchannel 6 located
on the test bench. The Gilson 305 fluid pump ensures a constant flow rate of the
fluid up to 10 ml/min with a step of 0.1 ml/min. The channel provides the possi-
bility of pressure measurement. The parameters measured in experiments are the
fluid pressures at the microchannel entrance and exit, as well as at some points
along the channel. If necessary, the scales 5 are used for monitoring the flow rate of
the fluid. Depending on the test conditions, various pressure sensors with suitable
ranges and measurement accuracy can be used, e.g., Honeywell 250 or 100 psi and
Druck 250 bar.

Experimental arrangement with microchannel matrices. This experimental
arrangement is shown in Fig. 3.17. The fluid 2 is driven by the fluid pump 4
through the filter 3 to devices 6, in which the experimental samples are fixed. The
flow rate is monitored by the scales 5. The filter pore size is 0.45 lm.

Some comments on specific features of experiments of this kind. The most
important factor for obtaining reliable data is water purity. The filter is followed by
threaded connections, which may serve as a source of contamination. Before the

Fig. 3.16 Experimental arrangement for pressure measurements
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Fig. 3.17 Experimental
arrangement with
microchannel matrices
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system is assembled, all elements are carefully washed, first in an ultrasonic bath
and then in running water. The entire experimental system is assembled (except for
the microchannel matrix), and the fluid is purged through the system with the
maximum flow rate that can be ensured by the pump. This is made to remove
possible contaminants from the system behind the filter. It is only after this pro-
cedure that the microchannel matrices are connected.

3.4 Errors in Microchannel Measurement

The measurement accuracy is extremely important in studying fluid flows in
microchannels. Let us consider possible sources of errors. Various types of errors
and their contributions to determining the friction factor were analyzed by
Lorenzini et al. (2009). They concluded that the most important contributions to the
total error are made by errors in pressure and flow rate measurement at low
Reynolds numbers and errors in microchannel diameter measurement at high
Reynolds numbers. The accuracy of channel diameter measurement is limited by
the capabilities of electron microscopy. However, the question concerning diameter
homogeneity along the channel still remains open. Possible sources of measurement
errors for glass and polymer microchannels and for microchannel matrices are
analyzed below.

The measurement error is determined in a standard manner as

eF ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼0

@F
@xi

exi

� �2
vuut ;

where F is the variable whose measurement error is estimated, xi is the experi-
mentally measured quantity used for determining F, exi is the error of xi mea-
surement, and n is the number of experimentally measured quantities used for
determining F.

Glass microchannels. To estimate the influence of the experimental parameters
on the friction factor of microchannels with smooth walls and without outputs for
pressure measurement, it is convenient to convert Eq. (3.2) into the form based on
the measured quantities as

f ¼ 2
pD5DPt2

ql2Ld4
;

where D is the internal diameter of the microchannel, d is the diameter of the glass
tube for fluid flow rate measurement, L is the microchannel length, l is the height of
the fluid column in the tube for fluid flow rate measurement, and t is the time
needed for the fluid to cover the distance l.
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The normalized error in determining the friction factor in this case is determined
as

ef
f
¼
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It is seen from this formula that the maximum contribution to the error in
determining the friction factor can be made by an error in microchannel diameter
measurement. The error in microchannel diameter determination is 1%. The error in
fluid flow rate determination is 4% at low Reynolds numbers and 2% at high
Reynolds numbers. The channel length is measured within ±50 lm. The nominal
error in the pressure sensor specification is 0.25%. Thus, the error in friction factor
measurement varies from 8 to 13%.

Polymer microchannels. To estimate the error in determining the friction factor
in microchannels with holes for pressure measurement, we use Eq. 3.3. The nor-
malized error of the friction factor as a function of the errors of independent
variables is determined by the formula

ef
f
¼
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The error in diameter measurement in a microchannel with a diameter of
68.9 lm is ±0.56 lm for a straight microchannel and ±2.26 lm for a curved
microchannel. The error in microchannel length determination is ±0.02 mm in both
cases, and the error in fluid flow rate measurement is ±0.06 ml/min on average.
The error in pressure measurement is determined by the sensors used; the nominal
value is ±0.25% of the measured value. Thus, the friction factor measurement error
is 7–10% for a straight microchannel and 10–18% for a curved microchannel.

Microchannel matrices. For microchannel matrices, the normalized error of the
friction factor is determined by Eq. 3.5 as a function of the errors of independent
variables.

The hydraulic diameters of the microchannel matrices with the lattice parameters
of 6 � 6 and 15 � 15 lm are 4.5 and 12 lm, respectively. The error in deter-
mining the microchannel size is 0.1 and 0.3 lm, respectively. The thickness of the
microchannel matrices is determined within 2 lm. The error in fluid flow rate
determination is ±0.06 ml/min on average. The error in pressure measurement is
determined by the sensors used; the nominal value is ±0.25% of the measured
value. Thus, the friction factor measurement error is 11–16% for the microchannel
with hydraulic diameter of 4.5 lm and 13–14% for the microchannel with
hydraulic diameter of 12 lm.
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3.5 Fluid Flow in Straight Tubes

The study of flows in straight tubes is the classical problem of fluid dynamics.
Beginning from the experiments of Hagen (1839) and Poiseuille (1841), various
researchers have investigated this problem: Stokes (1845), Reynolds (1883), Lord
Rayleigh (1892), Darcy (1858), and many others. At the beginning of the 20th
century, Nikuradse (1933) performed comprehensive experiments aimed at study-
ing the effect of roughness on laminar and turbulent flows in tubes. All of these
investigations were performed for tubes with sufficiently large diameters.

Systematic investigations in microchannels were started at the end of the 20th
century. Thus, based on modern concepts, Bontemps (2005) considered various
effects arising in microchannel flows in great detail. However, the available
experimental data are sometimes contradictory. In many investigations, experi-
mentally measured friction factors coincide with theoretical predictions for
macroscopic tubes. One such publication is that of Rands et al. (2006), who per-
formed experiments in tubes 16.6–32.2 µm in diameter. Lelea et al. (2004) did not
find any discrepancies between experimental results and theoretical estimates either
(diameters of microchannels made of stainless steel in their studies were 100, 300,
and 500 µm). The experimental data of (Judy et al. 2002) are also in good
agreement with theoretical macroscopic values; those experiments were performed
for different fluids (distilled water, isopropanol, and methanol) in microchannels
made of stainless steel and quartz with different cross-sectional shapes (circular and
square) and hydraulic diameters of 15–150 µm. The friction factor for smooth
microchannels made of glass and quartz with diameters ranging from 80 to 205 µm
(Li et al. 2003) and from 50 to 100 µm (Li et al. 2007) in the laminar case is also
consistent with the classical theory. As a whole, the data of (Celata et al. 2006) for
microtubes 31–326 µm also agree with theoretical macroscopic predictions, but the
scatter of data is sometimes greater than 10%.

At the same time, some investigations reveal significant differences between
experimental and theoretical macroscopic data. Thus, for instance, such differences
were noted by Mala and Li (1999), who studied the flow of deionized water in
quartz and stainless steel microtubes with circular cross-sections and diameters
smaller than 150 µm, and also by Cui and Silber-Li (2004), who performed
experiments with tubes 3, 5, and 10 µm in diameter. It was noted that the flow rate
of the fluid is greater than that predicted by the classical theory, whereas the
normalized Poiseuille number is smaller than unity.

In experiments with microtubes, special attention should be paid to their inner
surface roughness. It is usually difficult to control the roughness level, glass and
quartz surfaces are often considered smooth, and the differences in data obtained in
stainless steel channels are often attributed to the roughness effect of the walls. As a
whole, roughness increases the friction factor. For example, the Poiseuille number
in experiments with stainless steel channels was 15% greater than the theoretical
value for a laminar flow (Li et al. 2003). Kandlikar et al. (2003) considered the
influence of roughness on the distilled water flow in tubes 0.62 and 1.067 mm in
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diameter and proved that roughness increases the pressure drop in the microchannel
and affects the friction factor for channels smaller than 1 mm.

The friction factors for smooth quartz microchannels and rough stainless
steel microchannels were compared by Li et al. (2007). The diameter of quartz
microchannels varied from 50 to 100 µm, and the diameter of stainless steel
microchannels varied from 373 to 1570 µm. It was noted that the friction factor for
rough channels is greater than that predicted by the theory and increases with
increasing normalized roughness. The use of methanol as a test fluid also showed that
the surface roughness, viscosity, and channel geometry exert significant effects on
microchannel flow characteristics (Chen et al. 2004). The hydraulic diameter in that
work varied in the interval of 57–267 µm.

There are also discrepancies in determining the Reynolds number of the tran-
sition from a laminar to a turbulent flow. The transition location is affected by
several factors: surface roughness, differences in the input regions, aspect ratio of
the channel, accuracy of channel geometry, etc. It is not always possible to detect
these factors at the microscopic level. Experimentally determined transition loca-
tions display significant scattering. Thus, it was demonstrated for silicon channels
with a tapered cross-section (Wu and Cheng 2003) that the transition from a laminar
to a turbulent flow in channels with large hydraulic diameters (103.4–291 µm)
occurs within the range of Reynolds numbers from 1500 to 2000. Barlak et al.
(2011) experimentally studied the fluid flow in steel microtubes with diameters
ranging from 200 to 589 µm and found that the laminar-turbulent transition is
observed at Reynolds numbers in the interval from 2000 to 2500. Morini et al.
(2007) considered a nitrogen flow in circular microchannels 100–130 µm in
diameter and found the transition Reynolds number to be 2100–3900.

Let us consider some new results obtained recently. Detailed measurements of
the fluid flow rate in microchannels and the pressure distribution along the channel
were performed by Aniskin et al. (2012) in microchannels fabricated in accordance
with the technology described in this chapter.

Fluid flow rate through microchannels. Some measured data on the fluid flow
rate through glass and silicon microchannels are shown in Fig. 3.18.

It is seen that the fluid flow rate in all experiments within the considered ranges
of parameters is directly proportional to the pressure drop along the microchannel,
which is consistent with the classical data.

Pressure distribution inside microchannels. A specific feature of the pressure
distribution inside the microchannels is the experimental arrangement with the
opposite directions of fluid motion, i.e., the fluid flow input and output were
alternated. In what follows, they are mentioned as forward and backward flows.
This experimental arrangement allowed the number of measurement points to be
doubled, and the effect of the input conditions could be observed. Though the
fittings were fabricated by the same technology, there might be some differences in
the input conditions.

The pressure distributions along a straight microchannel with a diameter of
100 µm and length L = 19.35 mm for four Reynolds numbers are plotted in
Fig. 3.19. The abscissa axis shows the normalized length of the channel. The
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pressure distributions are computed by the ANSYS Fluent software package for the
chosen Reynolds numbers. The computed results are indicated by the curves and
agree well with the experimental points.

More detailed pressure distributions in a channel with a diameter of 68.9 µm and
length of 11.33 mm for six Reynolds numbers ranging from 322 to 2895 are plotted
in Fig. 3.20. The filled and open points show the pressure distributions for the
forward and backward flows, respectively. At low Reynolds numbers, the pressure
distributions for the forward and backward flows coincide with each other.
However, the curves differ from each other for elevated Reynolds numbers from
1800 to 2574. The reason for these differences can be formulated as follows: the
transition from a laminar to a turbulent flow already begins in the backward flow,
whereas the forward flow is still laminar, as is demonstrated below. At the Reynolds

Fig. 3.18 Fluid flow rate versus the pressure drop in the microchannel

Fig. 3.19 Pressure
distributions in a straight
microchannel 100 µm in
diameter
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number equal to 2895, the pressure distributions for both cases coincide again,
which means that the laminar-turbulent transition has already occurred in both cases
and the fluid flows are turbulent.

For Reynolds numbers higher than 600, there is some nonlinearity in the pres-
sure distribution as a function of the streamwise coordinate (a “hump” in the middle
of the curve). This deviation from linearity is observed in both forward and
backward flow cases. Such situations were also observed in earlier investigations.
Thus, nonlinearity is observed in the data of Kohl et al. (2005), but the authors
ignored this nonlinearity and considered the dependence as linear. Costaschuk et al.
(2007) observed a nonlinear pressure distribution inside the microchannel, which
was attributed to a possible effect of the separation region in the initial part of the
microchannel. In our opinion, the nonlinearity of the pressure distribution inside the
microchannel is induced by different rates of the pressure decrease in the region of
developing and fully developed flows. In further experiments, the friction factor
was determined only in the fully developed flow region.

Friction factor of glass microchannels. The friction factors for glass
microchannels calculated according to the method of two channels (Eq. 3.4) are
shown in Fig. 3.21. For better presentation, the curves are given for the normalized
Poiseuille number C* as a function of the Reynolds number, where the normalized
Poiseuille number is defined as the ratio of the experimentally determined Poiseuille
number to the value theoretically predicted for a macroscopic laminar flow:

C� ¼ ðfReÞexp
ðfReÞtheor

:

Fig. 3.20 Fluid pressure distributions in a straight microchannel 68.9 µm in diameter
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Figure 3.21a shows the normalized Poiseuille number for microchannels 34.5,
33.6, and 25.4 µm in diameter. The difference in the length of these channels
normalized to the microchannel diameter DL/D is 462, 264, and 255, respectively.
In all measurements, the normalized Poiseuille number is close to unity within the
experimental accuracy, i.e., the experimental data are adequately predicted by the
macroscopic theory.

Figure 3.21b shows the data obtained for the same hydraulic diameters, but for
the values of DL/D being 112 for the channel diameter of 34.5 µm, 90 for the
channel diameter of 33.6 µm, and 73 for the channel diameter of 25.4 µm. It is seen
that the friction factors exceed the theoretical value by 15–50%. The normalized
Poiseuille number, i.e., the ratio of the experimental to theoretical data, stays within
the interval from 1.15 to 1.5.

The conducted experiments showed that the area of application of the method of
two channels is limited. For this method to ensure correct results, the length of the
short microchannel should be at least 150 calibers (diameters), and the difference in
the lengths of two microchannels should be 150–170 calibers or more. The method
of two channels is invalid for short microchannels (shorter than 100–120 calibers).

Friction factor of polymer microchannels. Figure 3.22 shows the friction
factor for a straight microchannel 100 µm in diameter and 19.39 mm long as the
normalized Poiseuille number versus the Reynolds number. The Reynolds numbers
reached in the experiment varied from 150 to 2200. Within the experimental
accuracy, the values of the normalized Poiseuille number are close to unity (except
for very low Reynolds numbers), i.e., the friction factor of the microchannel is
consistent with its theoretical value.

Figure 3.23a shows the friction factor for a straight channel 68.9 µm in diameter
(L = 11.33 mm) for the forward and backward flow cases. In this case, the
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Fig. 3.21 Normalized Poiseuille number versus the Reynolds number for channels with different
aspect ratios
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laminar-turbulent transition occurs at Reynolds numbers of 2300 for the backward
flow and 2600 for the forward flow. The difference in the Reynolds numbers is
apparently caused by the difference in the input conditions at the opposite ends of
the microchannel. The corresponding normalized Poiseuille number C* is plotted in
Fig. 3.23b. In the transition region, C* starts to grow, because normalization is
performed to the theoretical value for a laminar flow.

Friction factor of silicon microchannels. The friction factor for a single
channel in a microchannel matrix is determined by Eq. 3.2. The edge effects can be
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Fig. 3.23 Friction factor (a) and normalized Poiseuille number (b) for a microchannel 68.9 µm in
diameter; forward flow (1) and backward flow (2)

118 3 Fluid Flows in Microchannels



neglected for low Reynolds numbers. As is seen from the pressure distribution
along a straight microchannel (Fig. 3.20), there is no drastic decrease in pressure at
the microchannel entrance at Reynolds numbers smaller than 200. In view of this
fact, the friction factor can be calculated on the basis of the total pressure drop along
the microchannel matrix and the microchannel length. The thus-treated experi-
mental results are shown in Fig. 3.24 as the normalized Poiseuille number C*
versus the Reynolds number. The Poiseuille number for channels with a square
cross-section is 56.9. The normalized Poiseuille number is close to unity, i.e., good
agreement is observed between the experimental and theoretical data.

Friction factor of the input region of microchannels. The channel input region
(more exactly, the friction factor of this region) is of significant interest from the
viewpoint of microchannel design and determining its total friction factor. Problems
of studying this important issue are aggravated by the extremely small size of this
region, where a decrease in pressure occurs. Figure 3.25 shows the friction factors
of input regions, which were determined for microchannels on the basis of pressure
measurement. It should be noted that the reference book on friction factors contains
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no data for the configuration of manifolds and Reynolds numbers considered in the
present study.

The length of the developing flow region in these experiments is calculated as
Ldev = X*DRe. It is determined from the pressure distribution in a straight
microchannel 68.9 µm in diameter for Reynolds numbers ranging from 321 to
1125. For finding the developing flow region, the experimental pressure distribution
is approximated by the fourth-power polynomial. The coordinate of the point of
intersection of the approximation curve with the straight line drawn through the
points of the fully developed flow region was taken as the length of the developing
flow region. Figure 3.26 shows the dimensionless length of the developing flow
region. The value of X* lies in the interval from 0.04 to 0.06, which is consistent
with X* = 0.05 (Donsqing 2008) and is greater than X* = 0.029 (Idel’chik 1992;
Shiller 1936). Thus, the value X* = 0.05 is preferable for estimating the length of
the developing flow region in microchannels.

3.6 Fluid Flows in Curved Tubes

Elbow tubes are necessary and important elements of pipelines for flow turning.
The fluid flow in curved tubes was studied by Dean (1927). A secondary transverse
flow arises in curved tubes and channels owing to a change in the flow direction,
i.e., a paired vortex is formed, which is superimposed onto the main flow; for this
reason, the streamlines acquire a screw-like shape. The emergence of such a vortex
is explained by the fact that the rapidly moving central portions of the fluid are
displaced by centrifugal forces to the external walls; in turn, they displace slowly
moving peripheral portions of the fluid, which finally form a paired vortex owing to
flow symmetry. Motion of this type increases the friction factor of the channel.
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In addition to the basic governing parameters, the motion in curved tubes is also
characterized by the bending radius R0. A special dimensionless parameter (the
Dean number) is introduced for such a flow:

Dn ¼ Re
D
2R0

� �0:5

:

It is commonly assumed (Idel’chik 1992) that tubes are smoothly curved if the
ratio of the bending radius to the tube diameter is much greater than 1.5:
R0 � 1:5D.

The total friction factor of smoothly curved tubes and channels is not only a
function of the Reynolds numbers, but also of the bending radius:

f ¼ 20

Re0:65
D
2R0

� �0:175

:

This formula is valid for the range of the Dean numbers from 50 to 600.
Pressure distribution inside curved microchannels. The pressure distributions

inside a curved microchannel 100 lm in diameter obtained in experiments by
Aniskin et al. (2012) are shown in Fig. 3.27. In addition, the corresponding com-
putations were also performed with the use of the ANSYS Fluent software package
for Reynolds numbers reached in these experiments. The computed results are
shown by the curves, which are seen to be in good agreement with the experimental
points. The fluid pressure distribution has a nonlinear character.

The calculations show that the Dean vortices are formed in the curved region;
these vortices arise even at small flow rates and lead to a nonlinear pressure dis-
tribution. Figure 3.28 shows the transverse distributions of the fluid velocity at the
beginning of the curved region (cross-section 1), in the middle (cross-section 2),
and at its end (cross-section 3). The flow direction is from cross-section 1 to
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cross-section 3. The results are given for the fluid flow rate Q = 1 ml/min. Vortex
structures are visible in the elbow region and at the beginning of the straight-line
part of the channel.

More detailed pressure distributions along a microchannel 70.3 lm in diameter
are shown in Fig. 3.29. In this case, the elbow region was studied in great detail.
Here, the filled and open points show the pressure distributions for the forward and
backward flow cases, respectively. For all Reynolds numbers, the pressure distri-
butions in the forward and backward flow cases coincide with each other. The data
in the figure confirm the nonlinear character of the pressure distributions in the fluid
flow in a curved channel.

Friction factor of curved microchannels. The rounded (elbow) region is of
major interest in curved microchannels. Yang et al. (2005) measured the friction
factor of microchannels 100 lm high and 0.5–1.0 mm wide, with banding radii
ranging from 33 to 53 mm. The friction factor was found to decrease slightly as the
bending radius was increased, and its value was smaller than that predicted by the
classical Navier-Stokes equations for hydraulically smooth surfaces. The calculated
results become consistent with the experiment if the surface roughness is taken into
account. However, Yang et al. (2005) did not consider the flow in the input region,
which may lead to significant distortion of the results.
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Fig. 3.28 Transverse distributions of the fluid velocity for Q = 1 ml/min

Fig. 3.29 Pressure distributions in a curved microchannel
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Chu et al. (2010) considered the flow in curved rectangular channels with different
geometric parameters on a silicon plate in the interval Dn = 10–167. The results
calculated by the classical Navier-Stokes equations were observed to agree well with
experimental values. For the range of Reynolds numbers 80 < Re < 876, the mean
differences between the predicted values of the friction factor and the experimental
results are smaller than 10%. It was noted that the geometric ratio of the channel sides
exerts an appreciable effect on the pressure decrease; moreover, the smaller the
channel bending radius, the higher the pressure loss. The number Po = f Re for four
bent configurations of microchannels varies almost linearly and increases with
increasing Dn.

The friction factors in the bending region were determined by Aniskin et al.
(2012); they are shown in Fig. 3.30 for curved microchannels with diameters of 100
and 70.3 lm. The results obtained in this study were compared to the reference
value for smoothly curved tubes (Idel’chik 1992).

For the 100 lm microchannel, the friction factor of the bending region is smaller
than the reference value by 17%. For the microchannel 70.3 lm in diameter, the
difference varies from 10–16% for Reynolds numbers higher than 1500.

As a whole, the reported results show that the friction factor of straight
microchannels can be described by the classical formulas derived for large-diameter
channels. Such data are available in the literature and can be used in applications
with a 10% error in the range of fluid flow parameters discussed in this chapter. The
friction factor of the bending region of curved channels is smaller than the reference
values by 10–17%.

Experimentally determined friction factors of output regions are extremely
important for the design of microfluidic devices. In the present work, however, only
one input region configuration is considered. In practice, it is necessary to know
friction factors for many other input geometries, which requires new experiments
with microchannels.
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A nonlinear pressure distribution along the length of the straight microchannel is
detected. The friction factor of microchannel input for the given geometries and the
Reynolds numbers of the input sections not represented in the reference literature
are determined. For curved microchannel sections, the friction factors obtained in
the present study are less than those indicated in the literature for the corresponding
Reynolds numbers and curvatures of microchannels.
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Chapter 4
Modeling of Micromixers

Abstract Mixing of fluids is an extremely important process, widely used in
various microfluidic devices (chemical microreactors, chemical and biological
analyzers, drug delivery systems, etc.). Mixing in macroscopic flows usually occurs
in the turbulent regime. However, microflows are mainly laminar, and mixing under
standard conditions is caused only by molecular diffusion. Because of the extremely
low values of the molecular diffusion coefficient, this manner of mixing is very
ineffective. To increase the mixing velocity, it is necessary to use special devices:
micromixers. For this reason, such devices are key elements of many microelec-
tromechanical systems (MEMS). This chapter describes the results of CFD simu-
lations of the simplest micromixers. The method used to solve the Navier-Stokes
equations is described in the first two sections. Sections 4.3 and 4.4 are devoted to
the study of the flow and mixing regimes in Y-type micromixers at low and
moderate Reynolds numbers. In the next section, the flow in T-type micromixers is
studied experimentally and the obtained data is compared with those from mod-
eling. Modeling of two-phase flow and heat transfer in micromixers is considered in
the two subsequent sections. One simple active method for mixing is discussed in
the last section.

4.1 Algorithm for Solving the Navier-Stokes Equations

There are passive and active methods of mixing velocity enhancement (see, e.g.,
Karnidakis et al. 2005; Tabeling 2005; Karnik 2008). In the first case, the channel
geometry is varied, various inserts are used, etc. In the second group of methods,
some external (acoustic, electrical, or magnetic) fields are applied or the flow rate of
the fluid is varied.

Though the problem is urgent, the structure and properties offlows in such channels
have not been adequately studied. Experimental investigations are difficult because of
extremely small channel sizes. Only the integral properties of flows can be measured
experimentally:flow rate of thefluid at a prescribed pressure gradient, velocity profile,
pressure drop, etc. However, to optimize the mixing process, it is necessary to
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understand the flow structure and the mixing mechanisms. Thus, mathematical
modeling plays a key role in studying such flows. There are many publications in
which micromixer design has been investigated through methods of computational
fluid dynamics (CFD) (see, e.g., the reviews (Stroock et al. 2002; Karnidakis et al.
2005), the papers (Vanka et al. 2004; Hong et al. 2004; Jiménez 2005; Aubina et al.
2005; Lin et al. 2007; Cao et al. 2008), and the references cited therein). The general
principles of micromixer operation were discussed in Tabeling (2005). At the same
time, the number of already developed and possible newmixers is so large that, on the
one hand, their simulations should be continued and, on the other hand, some opti-
mization research is needed. The Reynolds numbers are usually not very high,
especially in sufficiently small microchannels, and the flow is laminar. Therefore, the
first challenge in studying micromixers is the investigation of the character of
microflows in this range of Reynolds numbers. In practice, however, there are situ-
ations with sufficiently high Reynolds numbers (Re) in microflows (Hoffmann et al.
2006; Mansur et al. 2008). Moreover, if the Reynolds number in the microchannel
flow is sufficiently high, some new interesting phenomena occur, which have to be
considered both from the basic research viewpoint and for applications. These pro-
cesses can be studied using the Navier-Stokes equations.

A considerable number of algorithms for solving the Navier-Stokes equations
are available today. These are various modifications of the Galerkin method,
including spectral methods, finite element and finite volume methods, various
meshless methods, large eddy simulation, etc. Several commercial software pack-
ages have also been developed. In the present work, the flow and heat transfer in
microchannels were simulated with the SigmaFlow package, which is suitable for
solving a large class of problems of hydrodynamics, heat and mass transfer, and
combustion. The package is based on the algorithm for solving the Navier-Stokes
equations according to the finite volume method; the basic features of the algorithm
were formulated in Rudyak et al. (2008), Minakov et al. (2008), Gavrilov et al.
(2011). The algorithm is briefly described below, and only incompressible flows of
Newtonian fluids are considered here. In this formulation, the flow is described by
the Navier-Stokes equations (1.3). However, for the present purpose, it is more
convenient to rewrite these equations in a different form. The continuity and
momentum equations are transformed into

@q
@t

¼ �r � qu; @qu
@t

þr � ðquuÞ ¼ �rpþr � sþ qg; ð4:1Þ

where q is the fluid density, u is the velocity vector, p is the pressure, and the
viscous stress tensor components are defined as s ¼ �lD.

Introducing the enthalpy of the system

hðTÞ ¼
ZT

T0

cpdT ; ð4:2Þ
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we can write the energy conservation equation in the form

@qh
@t

þr � ðquhÞ ¼ r � ðkrTÞ; ð4:3Þ

where k is the thermal conductivity of the fluid and cp is the specific heat. As the
flows under consideration may be non-isothermal, both the specific heat of the fluid
and the transport coefficients are functions of temperature. In the algorithm, this
temperature dependence is represented by a fourth-power polynomial.

Thus, the fluid temperature T at each point is calculated from Eq. (4.2) with the
enthalpy value found from Eq. (4.3). The fluid density as a function of temperature
is described by the formula

q ¼ q0
1þ bðT � T0Þ :

Here, q0 is the fluid density at room temperature T0 and b is the thermal
expansion coefficient.

The CFD equations (4.1), (4.3) were discretized on the chosen grid according to
a widely known control volume method for unstructured grids, which automatically
ensures the conservativeness of the resultant scheme. A finite difference analog of
these equations is obtained by integration over all control volumes (Ferziger and
Peric 2006).

The convective terms are approximated by the QUICK second-order upwind
scheme (Leonard 1979). The unsteady terms are discretized according to a
first-order implicit scheme. The diffusion fluxes and the source terms are approx-
imated with the second order of accuracy.

The input boundary of the computational domain is subjected to the Dirichlet
condition, i.e., all three components of the velocity vector and the medium tem-
perature are assumed to be known. At the output boundary of the computational
domain, the Neumann conditions (the so-called “soft” conditions) are imposed for
all scalar variables U considered in the study: @U=@n ¼ 0, where n is the vector of
the external normal to the computational domain. The correct boundary conditions
on the microchannel walls for the fluid velocity components in most cases are the
no-slip or slip conditions. The last condition, in our case, can be rewritten in the
form of the Neumann condition: b@u=@n ¼ 0, where b is the slip length.

As only incompressible flows are considered here and the equations of motion
include only the pressure gradient, it is not necessary to calculate the absolute value
of pressure. The relative pressure value is used here for flow modeling. Moreover,
as the SIMPLEC algorithm is applied for solving the CFD equations, which implies
solving the equation for the pressure correction, the boundary condition should be
imposed only for correcting the pressure p0. The Neumann condition is used in this
algorithm for the pressure correction on all boundaries of the computational domain
(input, output, and walls).
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Depending on the considered problem, the computational algorithm offers a
possibility of setting all three kinds of boundary conditions for heat exchange with
the solid wall. The boundary conditions of the first kind imply that the temperature
dependence on the time t and coordinates r on the boundary is known: Tw = f(r, t).
If the amount of heat incoming from outside is known, then the boundary condition
of the second kind is imposed; in this case, the specific heat flux through the body
surface is specified:

qw ¼ �kð@T=@nÞ;

moreover, the heat flux can be an arbitrary function of the coordinates and time.
The boundary conditions of the third kind imply prescribing the ambient tem-

perature and the coefficient of heat exchange between the surface and the ambient
medium in accordance with the Newton-Richman law. Thus, the amount of heat
released (or received) by a unit surface with a temperature Tw per unit time to (from)
the ambient medium with a temperature Tm is directly proportional to the difference
between the surface and ambient temperatures: qw ¼ aðTw � TmÞ: The amount of
heat released (or received) by the surface to (from) the ambient medium determined
by this formula should be equal to the amount of heat transferred to this surface by
means of heat conduction, which is determined by the Fourier law. The equality of
these fluxes yields the boundary condition of the third kind

@T
@n

����
w
¼ � a

k
ðTw � TmÞ:

Multiphase flows in microchannels are fairly typical. The calculation of
two-phase flows is a challenging task, because fluid-wall interaction in
microchannels is very important. In this work, two-phase flows are simulated by a
numerical technique based on the volume of fluid (VOF) method (Hirt and Nichols
1981), which was well approved in calculations of various macroscopic flows,
including those with a free surface (Gavrilov et al. 2011; Podryabinkin and Rudyak
2011). The main idea of the method is to consider the fluid and the gas as a unified
two-species medium, with the spatial distributions of the phases within the com-
putational domain being determined by a special marker function F(x, y, z, t), whose
value defines the volume fraction of the fluid phase in the computational cell in the
following manner: Fðx; y; z; tÞ ¼ 0 if the cell is empty, Fðx; y; z; tÞ ¼ 1 if the cell is
completely filled with the liquid, and 0\Fðx; y; z; tÞ\1 if the cell contains the
interface between the phases. Figure 4.1 shows an example of the representation of
the free surface of the fluid with the use of the function F(x, y, z, t) on a rectangular
computational grid.

As the free surface moves together with the fluid, its motion is traced by solving
the transport equation for the volume fraction of the fluid phase in the cell:
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@F
@t

þ u � rF ¼ 0: ð4:3Þ

Here, u is the velocity vector of the two-phase medium found through CFD
equations.

The density and molecular viscosity of the considered two-component medium
are found by using the volume fraction of the fluid in the cell: q ¼ q1Fþð1� FÞq2
and l ¼ l1Fþð1� FÞl2; where q1 and l1 are the density and viscosity coefficient
of the liquid, whereas q2 and l2 are the density and viscosity coefficient of the gas.
The thus-obtained values of the densities and viscosity coefficients are included in
the equations of motion and determine the physical properties of the two-phase
medium.

In considering fluid flows with an interface, one encounters surface tension,
which cannot be neglected for microchannel flows, because it plays a key role in
some cases. It is not a simple task to study flows controlled by surface tension
forces. Nevertheless, this method allows for the influence of surface tension forces
to be taken into account comparatively easily.

The algorithm most often used for surface tension simulation within the
framework of the VOF method is the so-called continuum surface force
(CSF) algorithm (Brackbill et al. 1992). It implies insertion of an additional volume
force Fs into the equations of motion; the magnitude of this force is determined by
the relation Fs ¼ rkrF, where r is the surface tension coefficient and k is the free
surface curvature determined by the divergence of the normal vector
k ¼ r � ðnjnjÞ. In turn, the normal to the free surface is calculated as the gradient of
the volume fraction of the liquid phase in the cell: n ¼ rF. On the solid wall, the
magnitude of the normal vector is determined on the basis of the wetting angle h as

n ¼ nw cos hþ sw sin h;

where nw and sw are the normal and tangential vectors to the wall (see Fig. 4.2).

Fig. 4.1 Representation of
the free surface of the fluid by
the function F(x, y, z, t)
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The accuracy of this numerical technique depends, to a large extent, on the
quality of solving Eq. (4.3). Therefore, particular attention was paid to testing and
choosing the method for solving this equation. In particular, three different methods
of integration of Eq. (4.3) were considered. The first one was the explicit TVD
scheme

Fnþ 1 ¼ Fn � s
hx

ðuRFR � uLFLÞn � s
hy

ðvDFD � vFFFÞn

� s
hz
ðwTFT � wBFBÞn þ sFnr � vs;

where uK ; vK , and wK are the velocity vector components at the K-th face of the
control volume, h is the computational grid step, s is the time step found from the
Courant condition, n is the number of the time layer, and FK is the fraction of the
liquid phase at the corresponding face of the control volume. The following
example illustrates how this fraction is found. For instance, this fraction for the right
face is found as FR ¼ Fi;j;k þ @F þ

R if uR [ 0 and FR ¼ Fi;j;k þ @F�
R if uR\0. The

first term of this expression corresponds to the first-order UDS scheme, which
ensures computation stability, and the second one is a correction, which increases
the order of approximation. The value of this correction is found by the formula

FR ¼ Fi;j;k þ @F þ
R ¼ 1

2
W

Fiþ 1;j;k � Fi;j;k

Fi;j;k � Fi�1;j;k

� �
ðFi;j;k � Fi�1;j;kÞ;

where WðrÞ is a limiter, which ensures solution monotonicity in high-gradient
regions. In this work, we use the Superbee limiter (Ferziger and Peric 2006)

WðrÞ ¼ maxð0;minð2r; 1Þ;minðr; 2ÞÞ:

Then, we considered an explicit TDV scheme with local one-dimensional
splitting in space (Marchuk 1990)

Fig. 4.2 Conditions on the
contact line
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F̂ ¼ Fn � s
hx

ðuRFn
R � uLF

n
LÞ; ~F ¼ F̂ � s

hy
ðvDF̂B � vFF̂FÞ;

Fnþ 1 ¼ ~F � s
hz
ðwT ~FT � wB~FBÞþ sFnr � vs;

where the convective fluxes through the control volume faces are determined in the
same manner as described above.

In addition, we also used the first-order implicit scheme

Fnþ 1 � Fn

s
þ vns � rFnþ 1 ¼ 0

and the second-order implicit scheme

3Fnþ 1 � 4Fn þFn�1

2s
þ vns � rFnþ 1 ¼ 0:

These equations were solved according to an iterative method of incomplete
factorization. The convective fluxes on the faces were approximated by various
upwind schemes, including some TDV schemes. The results of testing will be
discussed in the next section.

Though turbulent regimes are not typical for microchannel flows, they may
occur, which is of significant interest from both fundamental and practical view-
points. Turbulent flows are calculated by an algorithm based on semi-empirical
turbulence models formulated with the use of the Reynolds approach. Normally,
this is the standard k-e model or the so-called k-x SST model of turbulence (Menter
1993).

In the case of turbulent flows, it is necessary to specify the turbulence charac-
teristics in addition to the usual boundary conditions at the computational domain
input. The kinetic energy of turbulent fluctuations k and the turbulence dissipation

rate e at the input are defined by the relations kin ¼ ð3=2ÞI2�v2 and ein ¼ C3=4
l k3=2in =l.

Here, �v is the mean input velocity, l is the characteristic size of vortices, and I is the
level of turbulent fluctuations at the input. It is rather difficult to determine the exact
values of the last two variables; for this reason, they are usually defined by the

formulas I ¼ 0:16ðReÞ1=8 and l ¼ ð0=07� 0:1ÞL. Here, L is the reference input
number and Re is the Reynolds number determined on the basis of L and �v.

The turbulent characteristics in close vicinity to the wall are determined by using
the wall functions (Menter 1993). In this method, the flow parameters are related to
the distance from the wall, and a simplified analytical solution is found. With the
use of the wall functions, it is possible to avoid extreme refining of the computa-
tional grid and, correspondingly, significant computer expenses, while reasonable
accuracy sufficient for solving engineering problems is still provided.
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4.2 Testing of the Algorithm

Let us start by testing the algorithm through verification of the solution of Eq. (4.3).
A two-dimensional convective problem (convective transfer of a square) is con-
sidered. The initial distribution for this problem is shown in Fig. 4.3 (left). The
function F in the entire computational domain is equal to zero, except for the square
located in the bottom left corner of the computational domain, where it is equal to
unity. This square is transferred by a uniform flow directed along the diagonal of
the computational domain. The flow velocity is v ¼ 1:41m=s. Naturally, the exact
solution of the problem in this formulation is the shift of the initial distribution
upward along the diagonal of the computational domain to a distance proportional
to the computation time (Fig. 4.3, right). The computational domain size is 1 m
� 1 m. The square rib size is 0.25 m.

The computation was performed on a uniform orthogonal grid consisting of
61 � 61 nodes. The Courant number was set equal to 0.8 for the TVD schemes and
to 0.25 for other schemes. The computational time was 0.6 s. The problem was
solved through many methods in which not only different schemes of approxima-
tion of the convective fluxes were used, but different techniques of discretization of
the time derivative as well. The results calculated with the use of several schemes
are presented in Fig. 4.4, which shows the isolines of the function F. The blue and
red colors correspond to F = 0 and F = 1, respectively. The letters indicate the
implicit first-order (a) and second-order (b) schemes with respect to time, the
explicit first-order scheme with respect to time (c), and the explicit scheme with
local one-dimensional splitting (d). The analysis of data in Fig. 4.4 allows one to
draw the following conclusions. The use of first-order schemes leads to significant
smearing of the numerical solution. The solution amplitude is approximately halved
after the first 50 time steps. Naturally, it is not reasonable to use schemes of this
kind for solving problems of the class under discussion.

Fig. 4.3 Problem of convective transfer of a square: initial distribution (left) and exact solution
(right)
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The use of high-order upwind schemes, such as QUICK, gives rise to solution
oscillations, which can be damped only by decreasing the time step or by grid
refining. Therefore, it is undesirable to use such schemes for solving Eq. (4.3).
Local one-dimensional splitting of the spatial operator ensures appreciable
improvement of the quality of solving the multidimensional problem posed. An
interesting difference was found in the behavior of solutions obtained by using the
implicit and explicit schemes. When the transfer equation is solved, the implicit and
explicit schemes “stretch” the solution in the velocity vector direction and the
perpendicular direction, respectively. Moreover, the implicit scheme turned out to
be more dissipative than the explicit scheme; therefore, the explicit scheme is
preferable for solving Eq. (4.3), though the time step should be limited by the
Courant condition in this case. Thus, the best option for solving Eq. (4.3) turned out
to be the Superbee explicit TVD scheme with local one-dimensional splitting.

Fig. 4.4 Numerical solution of the problem of square transfer. The following numerical schemes
are used: Superbee TVD scheme (first row), UMIST TVD scheme (second row), QUICK scheme
(third row), and first-order scheme (fourth row)
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The evolution of a collapsing water column is one of the most popular tests for
algorithms developed for solving problems with free surfaces. Numerical solutions
of such problems through various methods have been reported in many publications
(Wang and Su 1993; Monaghan 1994, 2005; Zaleski et al. 1995; Morris 1997;
Koshizuka et al. 1998; Liu and Liu 2003). The problem formulation is illustrated in
Fig. 4.5. A water column of width a is bounded by a wall of height 2a. At the initial
time instant, the wall is instantaneously removed, and the fluid spreads under the
action of the gravity force. In fact, this is the problem of dam breakdown, and
numerical predictions are usually compared with the experimental data (Martin and
Moyce 1952). These comparisons are performed in terms of two parameters: dis-
tance x covered by water during the time t from the beginning of the dam opening
and water level b at the left wall of the reservoir containing the fluid (Fig. 4.5).

The results of water column collapsing reported below were obtained for the
following parameters: computational domain size 1.25 � 0.7 m, initial width of the
water column a = 0.2 m, and its height 0.4 m. A uniform grid consisting of
80 � 142 nodes was used in these computations. The computational domain
boundaries were subjected to slip and no-slip conditions.

The QUICK scheme was used for approximating the convective terms of the
hydrodynamic equations. The transfer equation for the volume fraction of the fluid
phase in the computational cell was solved by the Superbee explicit TVD scheme
with local one-dimensional splitting. The time step for solving the hydrodynamic
equations was set to 0.0025 s. The time step for solving the transfer equation for the
fluid phase concentration was determined from the Courant condition, CFL = 0.7.

The numerical and experimental (Martin and Moyce 1952) data are compared in
Fig. 4.6, which shows that the results agree with each other well. The qualitative
behavior of the fluid after dam breakdown is illustrated in Fig. 4.7. Here, the first
and third pictures are the photographs of the laboratory experiment (Martin and
Moyce 1952), whereas the second and fourth pictures are the numerical predictions.
It can be seen that the numerical results provide an adequate description of the
experimentally observed fluid evolution.

Fig. 4.5 Formulation of the
problem of water column
collapsing
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As was already noted, the developed algorithm was used for solving a broad range
of problems of external and internal flows. However, its applicability for microflows
had to be specially tested. Three examples of such testing are described in the present
section for flows with low Reynolds numbers (see also Rudyak et al. 2010).

Let us consider the flow of a Newtonian fluid in a microdiffuser (Wing and Rajan
2004). The channel height is h = 100 µm, and the channel width is w = 150 µm at
its narrow part and W = 750 µm at its broad part. The fluid moves from the narrow
part of the channel to the broad part. The solid walls are subjected to the no-slip
condition. The flow rate of the fluid corresponding to the Reynolds number Re ¼ 1
is fixed at the input boundary. The dimensionless velocity profile U0 ¼ U=Um (Um

is the maximum value of the flow velocity in this section) calculated according to
the algorithm described in the previous section is compared in Fig. 4.8 with the
experimental data (Wing and Rajan 2004) obtained by micro-PIV in the broad part
of the diffuser. It is seen that the numerical data (solid curve) are in good agreement
with the experimental (filled points).

х/а

t'

b/2

t'

Fig. 4.6 Distance x/a covered by water during the time t0 ¼ ffiffiffiffiffi
ga

p
(left) and dynamics of the water

level at the left wall of the reservoir (right). 1—computation, 2—experimental data (Martin and
Moyce 1952)

Fig. 4.7 Comparison of the
predicted and experimental
(Martin and Moyce 1952)
shapes of the water surface at
t = 0.3 s (two upper pictures)
and t = 0.6 s (two lower
pictures)
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The next test example is also taken from Wing and Rajan (2004). A micro-wave
consisting of an input channel with a symmetric rectangular branching is consid-
ered. The height and width of all three channels are identical and equal to 100 µm.
The solid walls are subjected to the no-slip conditions. The Reynolds number based
on the flow rate at the channel input is Re ¼ 1. Figure 4.9 shows the calculated
(solid curves) and measured (filled points) dimensionless velocity profiles. The
dimensionless velocity profiles are obtained by means of normalization to the
velocity UQ determined by the flow rate Q at the input: UQ ¼ Q=qS, where q is the
fluid density and S is the cross-sectional area of the microchannel. The measure-
ments and calculations were performed in two cross-sections: in the middle of the
input channel (curve 1) and in the middle of the symmetric part of the channel
(curve 2). The calculated and measured data are again seen to be in good agreement.

Fig. 4.8 Comparison of the
numerical (solid curve) and
experimental (Wing and
Rajan 2004) results (filled
points) for the velocity profile
in a microdiffuser. The input
Reynolds number is Re = 1

Fig. 4.9 Comparison of the
predicted (solid curves) and
experimental (Wing and
Rajan 2004) (filled points)
normalized values of the
streamwise velocity of the
flow in a micro-wye. Re = 1.
Curves 1 and 2 show the data
in the middle of the input
channel and in the middle of
the symmetric part of the
micro-wye, respectively
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Finally, let us give one more test example in which the flow in a Y-type
micromixer was studied (Fig. 4.10). Mixing of glycerol solution (input A) with
water (input B) was studied in Kim et al. (2004). The width of the input channels A
and B was 150 µm, and the mixer width was 300 µm. The height of all channels
was identical and equal to 50 µm. The angles a and b were identical in the
experiment. Water was mixed with 20, 50, and 60% glycerol solutions, with
consecutively increasing density and viscosity coefficient. In all cases, the calcu-
lations provide an adequate description of the experimental data. Figure 4.11 shows
the streamwise velocity profile in cross-section C for the 20% glycerol solution. As
previously, the solid curve and the filled points show the calculated and experi-
mental data, respectively.

4.3 Mixing of Fluids in a Y-Type Mixer at Low Reynolds
Numbers

A Y-type micromixer is one of the simplest configurations. Mixing in such a
micromixer has been intensely studied in the last decade. Nevertheless, there are
practically no systematic data on the effect of some flow parameters on the mixing

Fig. 4.10 Y-type micromixer

Fig. 4.11 Comparison of the
calculated (solid curve) and
experimental (filled points)
values (Kim et al. 2004) of the
streamwise velocity in a
Y-type micromixer in
cross-section C (see
Fig. 4.10) in the case of water
mixing with a 20% glycerol
solution
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process. For this reason, we begin studying micromixers from consideration of
devices of this kind. In this section, we follow the papers of Rudyak et al. (2010),
Minakov et al. (2010). Let us consider the mixing of two identical fluids, black and
gray, in the micromixer shown in Fig. 4.10. For certainty, let the black fluid enter
the micromixer through input A and the gray fluid enter the micromixer through
input B. The mixing process is affected, to a large extent, by equalization of the
velocity profile in the mixing channel. As the Reynolds number in microchannels
considered in this section is very low, the velocity profile becomes equalized close
to the channel entrance (approximately at a distance 0.06H, where H is the mixing
channel width, see Fig. 4.10). If the flow rates in both input channels are identical,
then the Reynolds numbers of the flows in channels A and B are also identical and
equal to Re ¼ qUQw=l. The mixing time is determined only by the fluid diffusion
coefficient D (it is on the order of sm �w2=D). If the mixer channel has a length L,
then the time needed for the fluid particle to pass through this channel is on the
order of sL � L=UQ �ðqLwhÞ=Q. In this case, the mixing efficiency in the channel
is determined by the ratio of these two times:

sm
sL

� w2UQ

DL
� w

L
Re

m
D
; ð4:4Þ

where m ¼ l=q is the kinematic coefficient of viscosity. Therefore, for a given
channel and given fluids, the mixing time increases with the increasing Reynolds
number. If water is taken as a mixing fluid, then Eq. (4.4) predicts that mixing in a
channel of length L ¼ 1 cm will be effective if sm � 10ResL, which is valid only
for very low Reynolds numbers. In particular, it follows from here that the mixing
efficiency will remain almost unchanged beginning from certain values of the
Reynolds number. This prediction is also confirmed by direct numerical simula-
tions. Indeed, the mixing efficiency at Reynolds numbers from 10 to 0.01 is almost
constant.

Equation (4.4) readily yields one more estimate

sm
sL

� w
L
Pe; ð4:5Þ

which includes the diffusion Peclet number Pe ¼ wUQ=D. For a given Peclet
number, the smaller the channel width, the smaller the mixing length
Lm �UQsm �wPe. Moreover, this length increases with the Peclet number.

However, it should be emphasized that the mixing efficiency is a nonlinear
function of the Peclet number. It is shown in Fig. 4.12. Here, the mixing efficiency
M is determined by the formula

M ¼ 1� 2
W

ZH

0

ðC � 0:5Þdy
2
4

3
5 � 100%; ð4:6Þ
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where H ¼ 300 µm is the width of the channel where the mixing process occurs
(see Fig. 4.10) and C is the dye concentration in the cross-section located at a
distance of 4000 µm from the point where the flows merge together. This depen-
dence is adequately described by the formula

M ¼ 113:2
1þ 0:037Pe0:7

;

shown by the solid curve in Fig. 4.12, whereas the calculation is presented by the
filled points. Certainly, this dependence is rather conventional, because it is related,
in particular, to determination of the mixing efficiency.

Let us now consider the influence of the angles a and b on the mixing efficiency.
Each of the angles was varied from 0� to 90� (see Fig. 4.10). It was found that the
angle between channels A and B has a minor effect on the mixing efficiency. The
difference for the mixer where two identical fluids were mixed was approximately
7%. In the case of identical angles (symmetric mixer), the maximum efficiency was
reached at a ¼ b ¼ 90�. Thus, the efficiency of the T-type mixer turned out to be
slightly lower than the efficiency of the Y-type mixer. As the angles were increased
up to 90�, the mixing efficiency monotonically decreased from 18.2 to 17.6%. The
mixing efficiency of the asymmetric mixer is lower than that of the symmetric
mixer. Thus, the mixing efficiency of the mixer with a ¼ 60�; b ¼ 10� was 17.4%,
which is lower than the minimum value of the mixing efficiency for the symmetric
mixer. These differences are slightly higher if two different fluids are mixed. In all
situations, however, the symmetric mixer is more effective at the minimum angles
between the input channels. These results are fairly predictable and are related to
changes in the local values of the Peclet number.

As the most important factor of the mixing process in microchannels is diffusion,
the channel length should be sufficiently large so as to ensure mixing. A natural
result is a significant pressure drop because of friction on the channel walls. On the
other hand, this decrease is smaller if flow slipping on the channel walls is provided

Fig. 4.12 Mixing efficiency
in a Y-type mixer versus the
Peclet number
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rather than the no-slip condition. At the macroscopic level of the flow analysis, the
no-slip boundary condition is always imposed. The slip boundary condition is used
only for sufficiently rarefied gas flows. The reason is that the characteristic slip
length b on the walls is on the order of the Knudsen number, b�Kn, which can be
rather large in gases (here, the slip length on the wall is determined by the condition
v ¼ bð@v=@yÞ, where the flow is directed along the x axis, v is the flow velocity in
this direction, and the y axis is normal to the channel wall). In macroscopic fluid
flows under standard conditions, the slip length varies from several nanometers to
several tens of nanometers. In this case, slipping can be neglected. In microflows,
however, this slipping can be fairly significant. Moreover, the slip length in
microflows can reach hundreds of nanometers because of changes in the near order
of the fluid near the surface, possibility of gas release on the channel walls, etc.
Slipping leads to considerable reduction of the friction drag on the channel walls
and, hence, to a smaller decrease in pressure. The slip length can be increased by
various hydrophobic or even ultrahydrophobic coatings (see, e.g., Ou et al. 2004;
Lauga et al. 2005). In this case, the slip length can reach tens of micrometers.

Systematic calculations of the flow in a Y-type micromixer were performed in
Minakov et al. (2010) for studying the influence of slipping. The slip length was
varied from 10 nm to 20 µm; the corresponding data are listed in Table 4.1. An
increase in the slip length up to 5 µm reduces the pressure decrease by a factor of
almost 2. It should be emphasized that the mixing efficiency in the case of slipping
on the channel walls remains unchanged at small slip lengths, and even somewhat
increases at large slip lengths.

Up to now, we have discussed the mixing of identical fluids. In practice,
however, it is of interest to consider the mixing of different fluids. Naturally, the
developed algorithm allows one to analyze such situations as well. As an example,
the data on mixing water with another fluid in a Y-type micromixer are given below
(Table 4.2). Water enters the channel through input A. As the physical character-
istics of these fluids are considerably different, the efficiencies of their mixing with
water are also different. In particular, the parameter M for acetone, glycerin, ethyl
alcohol, and isopropyl alcohol is 36.8, 3.1, 18.2, and 9.4%, respectively. In this

Table 4.1 Effect of slipping on the channel walls on the pressure difference and mixing efficiency

b 0 0.01 0.05 0.1 1 5 20

Dp (Pa) 293.3 293.1 291.7 290.1 263.0 184.5 87.6

M (%) 17.6 17.6 17.6 17.6 17.7 17.9 18.4

Table 4.2 Parameters of mixing fluids (Physical Values 1991; Reid et al. 1977)

q (kg/m3) l (Pa s) D� 10�9 (m2/s)

Acetone 800 0.00029 4.56

Glycerol 1260 1.48 0.0083

Ethanol 790 0.0012 1.24

Isopropyl alcohol 786 0.0029 0.38
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case, the pressure drop in inputs A and B are different and vary from 239.5 kPa for
glycerin to 165 Pa for acetone.

Relations (4.4) and (4.5) yield estimates of the mixing time and mixing length,
thus providing an estimate of the micromixer’s efficiency. It is clear from the
general considerations that the mixing time can be appreciably reduced through
multiple splitting of the mixing flow. This is the principle on which operation of
lamination mixers is based. A similar idea is to insert a number of obstacles into the
flow that change the flow’s structure, thus accelerating the mixing process.
Obviously, symmetrically located obstacles are ineffective in a laminar flow. In
addition, the characteristic size of these obstacles should be comparable with the
channel width. The mixer can be easily optimized in terms of this parameter. The
results of such calculations for mixers of various types are presented below.

As the first example, Fig. 4.13 illustrates the mixing of two fluids in a T-type
mixer with asymmetrically arranged three, five and seven rectangular inserts [a
T-type mixer is actually a symmetric Y-type mixer with the angle between the input
channels equal to p=2 (see Fig. 4.10)]. The width of the mixing channel is 100 µm,
the width of the input channels is 50 µm, and the mixer height is 50 µm. The
Reynolds number is Re = 2, and the Peclet number is Pe ¼ 5� 103: As the channel
length increases with an increasing number of inserts, it is reasonable to analyze the
mixing characteristics and the pressure drop normalized to the channel length
(Table 4.3). The first column in Table 4.3 shows the number of inserts, the size of
all inserts is identical except for the last row, the cross-sectional size of the inserts
was 50 µm � 20 µm, and the insert height was 50 µm.

The mixing efficiency increases with the number of inserts, but the pressure drop
also increases. The latter can be reduced by using hydrophobic coatings. For
instance, for the slip length b ¼ 1 µm, the pressure drop can be reduced by 10%.
The inserts in the second and third pictures are arranged in a staggered order at a
certain distance from the channel walls. The mixing efficiency can be appreciably

Fig. 4.13 Mixing of two fluids in a T-type mixer with rectangular inserts

4.3 Mixing of Fluids in a Y-Type Mixer at Low Reynolds Numbers 143



increased by extending the inserts and connecting them with the channel walls. The
last picture in Fig. 4.13 shows the mixing process in such a mixer with seven inserts
70 µm � 20 µm. The mixing efficiency in this mixer is given in the last row of
Table 4.3.

Certainly, the flow topology depends, to a large extent, on the channel geometry,
in particular, on the distance between the inserts. By varying this distance, it is
possible to increase the mixing efficiency. As an example, Fig. 4.14 shows the
mixing efficiency in a channel with five rectangular inserts as a function of the
dimensionless width of the insert a, which is equal to 20 µm. The cross-sectional
size of the inserts is again 50 µm � 20 µm, and the flow characteristics are the
same as those in Fig. 4.13. This mixer ensures optimal operation if the distance
between the inserts is approximately 2a. By increasing the distance between the
inserts, we monotonically reduce the pressure drop. Thus, as the distance between
the inserts is increased from a to 2a, the pressure drop can be reduced by 25%. On
the other hand, slipping on the mixer walls has a smaller effect on the decrease in
pressure than it would in a smooth channel.

Finally, it should be noted that optimization of micromixer parameters in the
general case also depends on the Reynolds and Peclet numbers. As was already
noted, however, the mixing efficiency is almost independent of the Reynolds
number within a wide range of this parameter ðRe	 1Þ and starts to increase only at
Re[ 1. The mixing efficiency weakly depends on the Peclet number beginning

Table 4.3 Specific (per unit
length) mixing efficiency and
specific decrease in pressure
in the mixer with rectangular
inserts

N M (%/µm) Dp (Pa/µm)

0 0.0094 0.37

3 0.026 0.92

5 0.035 1.44

71 0.045 1.92

72 0.085 7.38

Fig. 4.14 Normalized
mixing efficiency in a mixer
with five rectangular inserts
versus the dimensionless
distance between them
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from Pe� 103. On the other hand, the mixing efficiency changes approximately by
an order of magnitude as the Peclet number increases from 10 to 103.

4.4 Mixing of Fluids in a T-Type Micromixer at Moderate
Reynolds Numbers

Flow regimes in micromixers arising at elevated Reynolds numbers have been
intensely studied for the last decade. The most attention was paid to studying flows
in T-type micromixers. In this case, a complex vortex flow characterized by the
formation of the so-called Dean vortices occurs in the microchannel. The existence
of a critical Reynolds number at which the Dean vortices become asymmetric was
experimentally demonstrated in Engler et al. (2004). It was found that the critical
Reynolds number for a 600 � 300 � 300 µm channel is about 150. It was shown
that the critical Reynolds number depends on the channel size. Numerical simu-
lations were performed in Telib et al. (2004) to study transitional flow regimes (at
Reynolds numbers in the interval Re = 300–700), but mixing processes were not
considered. Mixing of two fluids within the range of the Reynolds numbers from 50
to 1400 was studied experimentally and numerically in Wong et al. (2004). Gobert
et al. (2006) were the first researchers to numerically demonstrate the existence of
an unsteady periodic flow regime at some values of the Reynolds number.
A comprehensive experimental study of mixing in a T-type microchannel at
moderate Reynolds numbers (100–400) was performed in Hoffmann et al. (2006),
in which the velocity and concentration fields in various cross-sections of the mixer
were studied with the use of µ-LIF and µ-PIV. The mixing efficiency was measured
for the first time.

Finally, some numerical and experimental investigations (Bothe et al. 2004;
2006; Dreher et al. 2009) should be noted, in which some flow regimes in T-type
microchannels were calculated. Some characteristic flow regimes were identified,
and the flow structure in these regimes was studied. The mixing efficiency was then
calculated. The calculated and experimental mixing patterns were then qualitatively
compared, and the distribution of the mixing efficiency along the channel was
calculated.

Despite a comparatively large number of papers dealing with the flow and
mixing in T-type micromixers at moderate Reynolds numbers, the data have not
been systematized for a long time. This gap was filled by Minakov et al. (2012),
who performed systematic simulations of the flow and mixing of incompressible
fluids in a T-type micromixer at Reynolds numbers ranging from 1 to 1000. Below,
we follow this work, as well as (Minakov et al. 2013a, b, c).

The geometry of the modeled micromixer is schematically shown in Fig. 4.15.
Below, we present the results of CFD simulations of various flow regimes in a
T-type micromixer at Reynolds numbers Re ¼ ðqUh=lÞ from unity to one thou-
sand. Here, U ¼ Q=ð2qdh2Þ, d = 100 µm is the channel height and h = 133 µm is
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the hydraulic diameter. The mixing channel has a cross-section of 100 � 200 µm
and a length of 1500 µm. The input channels are symmetric with respect to the
mixing channel and perpendicular to the latter; their cross-sectional size is
100 � 100 µm, and their total length is 800 µm. Pure water is fed through the left
input, and water colored with rhodamine is fed through the right input. The flow
rates of these fluids are identical and equal to Q. The densities and viscosity
coefficients of both fluids are identical and equal to 1000 kg/m3 and 0.001 Pa s,
respectively. The coefficient of dye diffusion in water is D ¼ 2:63� 10�10 m2/s.
Thus, the Schmidt number for the considered flow Sc ¼ l=ðqDÞ is 3800. This
means that the thickness of the hydrodynamic boundary layer is much greater than
the thickness of the diffusion boundary layer. Therefore, obtaining high-quality
numerical results requires the use of sufficiently fine computational grids, which can
resolve the mixing layer. The computations were performed on a two-block grid
consisting of 9.8 million nodes (140 nodes over the mixing channel width, 70 over
its height, and 1000 nodes along the channel).

As a result, five different flow regimes were detected; each of them is formed at
certain Reynolds numbers. At low Reynolds numbers (Re < 5), a steady flow
without vortices is formed in the mixer. In this case, mixing is induced by the usual
molecular diffusion, and the mixing efficiency is rather low (see the previous sec-
tion). The flow structure in the streamwise and transverse sections of the mixer can
be illustrated by trajectories of tracer particles. At low Reynolds numbers, it has the
form shown in Fig. 4.16a.

As the Reynolds number increases, a pair of steady symmetric horseshoe vor-
tices are formed at the mixing channel entrance (see Fig. 4.16b), which are usually
called the Dean vortices. The resultant vortex structure can be seen especially
clearly in three projections in terms of the isosurface of the variable k2, which is the
second eigenvalue of the tensor ðS:SþX:XÞ, where

S 
 Sik ¼ 1
2

@vi
@xj

þ @vj
@xi

� �

Fig. 4.15 Geometry of a
modeled T-type mixer
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is the strain rate tensor and

X 
 Xik ¼ 1
2

@vi
@xj

� @vj
@xi

� �

is the vorticity tensor. The corresponding structure of vortices for the flow with the
Reynolds number Re = 120 is shown in Fig. 4.17.

Horseshoe vortices appear owing to the development of secondary flows caused
by the action of the centrifugal force induced by flow turning. The structure of the
velocity field evolution with an increase in the Reynolds number is shown in
Fig. 4.18. Figure 4.18a, b correspond to the Reynolds numbers of 20 and 120. The
vortices formed at the channel entrance dissipate and move further along the
channel. Vortex dissipation is caused by fluid viscosity; therefore, the dissipation
rate decreases with increasing Reynolds number. For the flow with the Reynolds
number Re = 120 (see Fig. 4.18b), the horseshoe vortices decay in the mixing
channel at distances on the order of 400 µm from the entrance cross-section,
whereas the corresponding distance for Re = 20 (Fig. 4.18a) is about 70 µm. This
means that the intensity of the Dean vortices increases with increasing Reynolds
number. Moreover, their configuration becomes different (cf. Fig. 4.18a, b).

Fig. 4.16 Trajectories of tracer particles in a T-type micromixer for different Reynolds numbers.
a Re = 1, b Re = 120, c Re = 186, d Re = 600
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The emergence of the Dean vortices is a threshold phenomenon. The corre-
sponding Reynolds number, generally speaking, is determined by the channel size
and can be characterized by the critical Dean number Dn ¼ Re

ffiffiffiffiffiffiffiffi
d=R

p
(Kelleher

et al. 1980), where R is the radius of curvature of flow turning. In the channel
considered in the present work, the Dean vortices were detected at Re � 20. If the
radius of flow turning in this microchannel is assumed to be R = d/2, this corre-
sponds to the critical value of the Dean number Dn = 28.

Fig. 4.17 Vortices formed at the mixing channel entrance. Re = 120. Front view (left), back view
(center), and side view in the vertical section of the channel (right)

Fig. 4.18 Velocity field in the mixing channel cross-section at a distance of 100 µm from the
channel entrance for different Reynolds numbers. a Re = 20, b Re = 120, c Re = 186
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With a further increase in the Reynolds number, an interesting reconstruction of
the flow can be observed. Beginning from the Reynolds number approximately
equal to 150, the pair of horseshoe vortices turns in a jump-like manner by 45°
toward the central streamwise plane of the mixer, owing to the development of the
Kelvin-Helmholtz instability. This reconstruction of the flow is clearly visible in
Fig. 4.19, where the flow is presented in terms of the isosurface k2. The upper and
lower pictures correspond to Re = 120 and Re = 186 (which is higher than the
critical value at which flow reconstruction occurs). This flow reconstruction can
also be clearly seen in Figs. 4.17 and 4.18 (see also Fig. 4.16c).

The Kelvin-Helmholtz instability leads to the formation of a diagonal shear flow
in the channel cross-section. The center of symmetry of the flow is shifted to the
central streamwise line passing over the mixing channel. As a result, already at a
distance on the order of 400 µm from the mixing channel entrance, instead of four
vortices (Fig. 4.18b) as in the case of a symmetric flow (Re < 150), we can see two
intense vortices with an identical direction of vorticity (Fig. 4.18c). The flow has an
S-shaped vortex structure, which can be seen particularly clearly in Fig. 4.20 (left
picture). Here, mixing is illustrated as dye concentration isolines in four
cross-sections of the mixer. From left to right, the first cross-section is the mixing
channel entrance, the second one is located at a distance of 100 µm from the
entrance, the third is located at a distance of 200 µm from the entrance, and the
fourth is located at a distance of 400 µm from the entrance. The blue and red colors
in the first correspond to pure water and to water with rhodamine added, respec-
tively. This flow regime is also steady and is observed up to the Reynolds number
of 240. The flow structure is illustrated in Fig. 4.21, where the flow in the mixing
channel formed at Re = 186 is shown in terms of the isosurface k2.

Fig. 4.19 Velocity field in the mixer cross-section (view from the end face) and isosurface k2, Re
= 120 (upper picture) and Re = 186 (lower picture)
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In a symmetric flow (Re < 150), the vortices compensate for each other, and the
total hydrodynamic moment is equal to zero. In an asymmetric unsteady flow, the
hydrodynamic moment of the flow differs from zero, because the vortices in the
S-shaped structure rotate in the same direction. Naturally, the total mechanical
moment in the system is preserved in both cases, because the compensating
moment in the asymmetric regime is formed on the channel walls. Finally, it should
be noted that the intensity of the vortices in the asymmetric mode is appreciably
higher than that in the symmetric flow. Therefore, these vortices are visible over the
entire length of the mixer despite dissipation.

The emergence of S-shaped vortices was already observed in experiments. The
results of experimental visualization (Hoffmann et al. 2006) and computations
(Minakov et al. 2012) for Re = 186 in three cross-sections of the micromixer are
compared in Fig. 4.22. The experiment was performed for the same micromixer
with the use of laser-induced fluorescence (µ-LIF). The upper, middle and lower
pictures show the distributions of the concentrations of the mixing species in the

Fig. 4.20 Mixing process in the micromixer for different Reynolds numbers. Re = 186 (left) and
Re = 600 (right)

Fig. 4.21 Vortices formed at the mixing channel entrance. Re = 186. Front view (left), back view
(center), and side view in the vertical section of the channel (right)
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cross-section at the mixing channel entrance, at a distance of 1000 µm from the
entrance, and at the exit from the mixer, respectively. It can be seen that the shapes
of the interface between the fluid in the calculations and experiments are in good
agreement.

The above-described steady asymmetric flow regime is observed in the interval
of the Reynolds numbers from 140 to 240. Beginning from the Reynolds number
approximately equal to 240, the flow is no longer steady. A periodic flow regime is
observed in the interval of the Reynolds numbers 240 < Re < 400. In particular, this
means that the flow velocity is also a periodic function of time. This flow regime is
described by the lower curve in Fig. 4.23.

The frequency of flow oscillations f is determined by many factors: channel
geometry, fluid viscosity, and Reynolds number. This dependence can be charac-
terized by the Strouhal number St ¼ ðfd2Þ=ðmReÞ, which is actually the dimen-
sionless frequency of flow oscillations normalized to the Reynolds number (m is the
kinematic viscosity coefficient). The Strouhal number as a function of the Reynolds
number is plotted in Fig. 4.24 (square symbols). The frequency of oscillations
monotonically increases up to Re = 300, and then slightly decreases. The data of
our calculations agree well with the experimental results (Dreher et al. 2009), which
are represented by the filled points in Fig. 4.24. The maximum differences are

Fig. 4.22 Isolines of the dye concentration in different cross-sections of the mixer at Re = 186.
Results of computations (left) and µ-LIF measurements (right) (Hoffmann et al. 2006)
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observed at high Reynolds numbers, but it should be borne in mind that the
experimental data were obtained in a channel with a cross-sectional size of
600 � 300 µm.

Beginning from the Reynolds number of about 450, the flow oscillations are no
longer rigorously periodic. First, the flow becomes quasi-periodic (450 < Re < 600),
and then chaotic (Re > 600). The frequency spectrum of the velocity field becomes
further filled. This is clearly seen in Fig. 4.23, where the middle and upper curves
correspond to the Reynolds numbers Re = 600 (see also Fig. 4.20) and Re = 1000,
respectively.

The distribution of the kinetic energy of the flow oscillations e in terms of
frequencies for Re = 600 is shown in Fig. 4.25. This spectrum was obtained for a
point lying at the center of the mixing channel at a distance of 400 µm from the
channel entrance. The dotted straight line corresponds to the universal

Fig. 4.23 Flow velocity at the exit of the mixing channel versus time. The lower, middle, and
upper curves show the results for Re = 300, 600, and 1000, respectively

Fig. 4.24 Strouhal number
versus the Reynolds number
in steady periodic flow
regimes in the mixing channel
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Kolmogorov-Obukhov law. Though the spectrum for Re = 600 cannot be consid-
ered as a complete continuum, as in the case of a developed turbulent flow, it still
has a large number of frequencies and an inertial interval, which allows us to say
that the flow regime is at least transitional. This early beginning of the development
of turbulence for channel flows is caused by the Kelvin-Helmholtz instability at the
initial portion of the mixing channel. At the same time, the calculations show that
the flow oscillations decay with distance from the place of flow merging if the
channel is sufficiently long, the flow is relaminarized, and a steady velocity profile
is formed.

Naturally, the distance needed for the velocity profile to become stabilized
depends on the Reynolds number. To prove it, we solved a problem for a channel
7000 µm long. The results are illustrated in Fig. 4.26, where the velocity profiles
for two Reynolds numbers are compared: Re = 186 (Fig. 4.26a, b) and Re = 600
(Fig. 4.26c–e). Laminar velocity profiles are formed in both cases, but the length
needed for velocity profile equalization is close to 3500 µm for Re = 186 and to
700 µm for Re = 600.

The friction coefficient k of the mixing channel as a function of the Reynolds
number for this mixer is plotted in Fig. 4.27. This coefficient is determined by the
formula k ¼ ð2DPdÞ=ðqU2LÞ, where DP is the pressure difference in the channel
and L is the channel length. The calculated data are represented by the filled point
and the line connecting them. For comparison with the calculated data, the dashed
line in the figure shows the friction coefficient for a steady laminar flow in a
rectangular channel with a height-to-width aspect ratio of 0.5. In this case, the
friction coefficient is close to 64/Re (green dotted line). Nevertheless, the analysis
shows that the friction coefficient in the micromixer at low Reynolds numbers is
greater (on average, by 20–30%) than the friction coefficient in a steady flow.

Then, the friction coefficient abruptly deviates from the dependence k = 64/Re,
which testifies to the laminar-turbulent transition. The calculated values of the

Fig. 4.25 Spectrum of the
kinetic energy of velocity
oscillations for Re = 600
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friction coefficient in the micromixer at moderate Reynolds numbers are adequately
described by the dependence k ¼ 1:8=Re0:25. The corresponding value of the
friction coefficient is higher almost by a factor of 6 than the classical Blasius
dependence ðk ¼ 0:316=Re0:25Þ for a developed turbulent flow in a straight chan-
nel. Such a large difference is caused both by turning of the flows entering the
channel and by the flow swirling in the mixing channel. In particular, the pressure
behavior is not monotonic along the channel. The pressure evolution for two
Reynolds numbers is illustrated in Fig. 4.28 (the lower and upper curves corre-
spond to the Reynolds number values of 120 and 186, respectively).

Fig. 4.26 Velocity profiles in different cross-sections of the mixing channel. a Re = 186, L =
500 µm, b Re = 186, L = 3500 µm, c Re = 600, L = 500 µm, d Re = 600, L = 3500 µm, e Re =
600, L = 700 µm

64/Re

1.8/Re0.25

Re

λ

Fig. 4.27 Friction coefficient
in the mixing channel versus
the Reynolds number
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At high Reynolds numbers, the flow and the mixing process are essentially
three-dimensional. In this case, it is convenient to describe the mixing efficiency by
using the parameter M ¼ 1�

ffiffiffiffiffiffiffiffiffiffiffiffi
r2=r20

p
, where

r2 ¼ 1
V

Z
V

ðf � �f Þ2dV

is the concentration dispersion over the mixer volume V [f is the species concen-
tration, �f is the corresponding average value, and r20 ¼ �f ð1� �f Þ].

As was already noted, a steady flow without vortices is formed in the mixer at
low Reynolds numbers (Re < 5). In this case, mixing is caused by the usual
molecular diffusion, and its efficiency is rather low (about 3%, see Fig. 4.29). As
the Reynolds number increases, steady Dean vortices are formed. These horseshoe
vortices are symmetric with respect to the central streamwise plane of the mixer.
Each horseshoe vortex is located within one fluid and actually does not cross the
interface between the mixing media; for this reason, this interface remains almost
plane. As the diffusion Peclet number increases with increasing Reynolds number,
the mixing efficiency becomes even smaller than that in a vortex-free flow (see
Fig. 4.29) and stays at this low level up to Reynolds numbers on the order of 150.
When the Dean vortices lose their symmetry and an S-shaped vortex structure is
formed, the mixing character becomes qualitatively different. The contact surface of
the mixing fluids appreciably increases; as a consequence, the mixing efficiency
drastically increases. For instance, as the flow transforms from symmetric (Re <
150) to asymmetric (Re > 150), the mixing efficiency increases by a factor of 25
(see Fig. 4.29).

After the transition to turbulence, the S-shaped structure, which was formed in
the mixing channel at Re > 150 and existed in the unsteady flow regime, is
destroyed (see Fig. 4.20, which shows the evolution of the S-shaped vortex

l, m

p, PaFig. 4.28 Pressure
distribution on the mixer
walls
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structure for Re = 600). The flow disintegrates into a large number of sufficiently
large vortices. As a result, the contact area of the mixing fluids becomes smaller and
the mixing efficiency drastically decreases (M = 26% for Re = 600). Naturally, with
a further increase in the Reynolds number, large-scale vortex structures disintegrate
into a large number of small vortices, which ensure very good mixing of the flow.
Therefore, the mixing efficiency in a developed turbulent flow is significantly
higher than the corresponding laminar value.

To ensure effective mixing, the mixer length should usually be sufficiently large.
In this case, naturally, there are significant pressure losses induced by friction on the
walls. On the other hand, these losses can be reduced by using hydrophobic or even
ultrahydrophobic coatings. As was shown in the previous section, the mixing
efficiency remains almost unchanged if the flow’s Reynolds number is sufficiently
low. However, the situation is different at moderate Reynolds numbers.

Slipping on the channel walls leads to significant changes in the flow regime.
Figure 4.30 shows the flow structure for the Reynolds number Re = 186 and
different values of the slip length b. As was noted above, a two-vortex structure is
formed if the no-slip condition is applied (Fig. 4.30a). However, this structure
transforms into a configuration with one vortex if the slip length is sufficiently large
(see Fig. 4.30b, c).

The change in the flow structure with increasing slip length is also illustrated in
Fig. 4.31, which shows the dye concentration isolines in the mixer cross-section at
a distance x = 1000 µm for different slip lengths. If there is no slipping (Fig. 4.31,
left), the S-shaped structure is clearly expressed. As the slip length increases, the
S-shaped structure becomes smeared and transforms into a single vortex. Naturally,
the mixing efficiency increases in this case (for the mixer considered here, by
approximately 30%). On the other hand, the pressure drop monotonically decreases
with increasing slip length (for the mixer considered here, by approximately 30–
40%). Therefore, hydrophobic coatings can be used for flow control.

Fig. 4.29 Mixing efficiency
versus the Reynolds number
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Fig. 4.30 Vortex structure of the flow in the micromixer for different slip lengths b. Re = 186.
a b = 0; b b = 10 µm; c b = 30 µm

Fig. 4.31 Dye concentration isolines for flows with different slip lengths b for Re = 186 and b = 0
(left), b = 10 µm (center), and b = 30 µm (right)
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In practice, the roughness of the wall can significantly alter the character of
microflows. To study the influence of roughness, several series of computations
were performed. Periodic roughness elements in the form of protruding rectangular
obstacles were prescribed on the side (upper and lower) walls. Two types of
roughness element were considered. In the first case, they were regularly arranged.
The roughness height was 4 µm, the width of the roughness elements was 2 µm,
and the distance between them was 10 µm. In the other series of computations, the
width of the roughness elements was prescribed randomly within the interval from
1 to 5 µm. The presence of the roughness elements appreciably changed the
hydraulic resistance of the mixing channel. Figure 4.32 shows the pressure differ-
ence as a function of the Reynolds number. The upper and lower curves correspond
to rough and smooth channels, respectively. The hydraulic resistance remains
almost unchanged at low Reynolds numbers, because the flow regime is laminar in
both cases. Then, the hydraulic resistance in the rough channel rapidly increases.

On the other hand, the mixing efficiency behaves in a different manner. At low
Reynolds numbers, it is almost identical in both mixers (see Fig. 4.33). As the
Reynolds number increases, however, the mixing efficiency in the smooth channel
is higher than that in the rough channel approximately up to Re * 350. At higher
Reynolds numbers, the mixing efficiency in the rough channel exceeds that in the
smooth channel, because the turbulence in the rough channel develops faster than in
the smooth channel. The spectra of the kinetic energy of velocity oscillations E are
compared in Fig. 4.34 (the red and green curves are the spectra obtained in the
rough and smooth channels, respectively). The blue line corresponds to the uni-
versal Kolmogorov–Obukhov law.

Fig. 4.32 Pressure difference
in the channel versus the
Reynolds number
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4.5 Experimental Study of Flow Regimes in a T-Type
Micromixer

Experimental investigations of microflows involve certain difficulties discussed in
the previous sections. In practice, two methods are widely used for this purpose:
digital tracer visualization (or microscopic particle image velocimetry, micro-PIV)
and microscopic laser-induced fluorescence (micro-LIF). The main idea of
micro-PIV is the recording of consecutive tracer patterns in certain time intervals
and subsequent cross-correlation processing of these images. Knowing the time
between the light flashes and the displacements of the tracer particles, one can
calculate the instantaneous and average velocity fields in the micromixer.
Micro-LIF is a method for measuring the concentration and temperature fields with
a micron-level resolution. It is based on the fact that the fluorescence intensity is

Fig. 4.33 Mixing efficiency
versus the Reynolds number

Fig. 4.34 Spectrum of the
kinetic energy of velocity
oscillations for Re = 300
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proportional to the concentration of the fluorescent dye and decreases with
increasing temperature. In the case of micro-LIF measurements, a fluorophore is
added to the examined flow, which is illuminated by exciting light. By virtue of
proportionality of the intensity of the fluorescence to the dye concentration (which
have to be small), the fluorescence patterns allow one to reconstruct the instanta-
neous velocity field. The experiments described below were performed in Minakov
et al. (2013a, b, c).

The experimental setup is schematically shown in Fig. 4.35. The image for-
mation system consists of a Carl Zeiss AxioObserver.Z1 epi-fluorescent inverted
microscope with 20x/NA = 0.3 and 5x/NA = 0.12 objectives for micro-PIV and
micro-LIF experiments, respectively. Flow illumination and recording of images by
a digital camera are provided by a PILIS measurement system, which consists of the
following basic elements: double pulsed Nd:YAG laser with a pulse energy of
50 mJ, wavelength of 532 nm, and pulse repetition frequency of 8 Hz, which
illuminates the flow through the microscope objective, liquid light guide used to
direct the beam to the microscope, system of fiber alignment with the optical path of
the microscope, mercury lamp used to illuminate the microchannel during the
micro-LIF experiments, cross-correlation digital camera used for image recording,
personal computer used to process the data obtained in the experiment, and pro-
grammable processor, that ensures synchronization of the operation of the entire
system. Experiment control and data processing were performed with the use of the
ActualFlow software package.

The experiments were performed within the range of the Reynolds numbers
from 10 to 300. The fluid motion was controlled by an infusion syringe pump with
a controlled flow rate of the fluid. The fluid flow was seeded with fluorescent tracer
particles produced by DukeScientific. The particles consisted of a melamine

Drain tank

Microchannel
Syringe pump

Camera
Dichroic mirror

Filters

Laser

Light guide

Fig. 4.35 Experimental
setup for micro-PIV and
micro-LIF experiments
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polymer marked with a rhodamine B fluorescent dye. The particle density was
1.05 g/cm3, and the mean particle diameter was 2 µm. For detection of light
emitted by the particles and suppression of light reflected from the channel, we used
a light splitter consisting of a dichroic mirror and two filters for excitation and
detection of rhodamine B.

The T-type micromixer is schematically shown in Fig. 4.15; the experiments
were performed with a mixer produced by MicroLiquid (Spain). The cross-sectional
sizes of the input and mixing channels of the micromixer were 200 � 200 µm and
200 � 400 µm, respectively. The lengths of the input and mixing channels were
identical and equal to 5 mm. Distilled water was used as a test fluid. Micro-PIV
measurements were performed in three regions of the T-type mixer; therefore, the
velocity field was calculated up to seven calibers from the mixing channel entrance.
The measurements were performed in the central plane of the channel at the
Reynolds numbers from 10 to 300 with a step of 30. As the entire depth of the
microchannel is illuminated in micro-PIV experiments, the thickness of the
cross-section of velocity measurements is determined by the depth of focus of the
objective. Micro-PIV measurements usually involve a notion of the “correlation
depth” defined as a double distance from the focal plane to the nearest plane where
the particles become sufficiently defocused and do not make any significant con-
tribution to the cross-correlation function. In Hoffmann et al. (2006), the correlation
depth is defined by the relation

dz ¼ 3nk0
NA2 þ 2:16dp

tan h
þ dp; ð4:7Þ

where n is the refractive index of the immersion fluid, k0 is the wavelength of light
emitted by the fluorescent particles, NA is the numerical aperture of the microscope
objective, h is the aperture angle of the objective lenses, and dp is the diameter of
the tracer particles. Thus, according to Eq. (4.7), the correlation depth in the present
experiment was 34 µm.

Figure 4.36 shows the normalized velocity profiles U0 in the central section of
the mixing channel at a distance of 2.5 calibers from the mixing channel entrance.
Normalization was performed to the velocity UQ determined by the flow rate Q at
the entrance: UQ ¼ Q=qS. The average velocity fields in the central section of the
micromixer for different Reynolds numbers are shown in Fig. 4.37. The analysis of
the velocity profiles and fields shows that the velocity profiles change at Reynolds
numbers of 150 and higher, and inflections appear in the velocity profiles (see
Fig. 4.36). This behavior is caused by the formation of an S-shaped structure in the
mixing channel; a systematic description of this regime can be found in the previous
section. The transition to this regime occurs at 120 < Re < 150.

For correct interpretation of the experimental data obtained through the
micro-LIF method and comparisons with results of numerical simulations, we have
to estimate the spatial resolution of the method. It can be demonstrated that the
intensity of radiation of a point source at a distance z from the object plane is

4.5 Experimental Study of Flow Regimes in a T-Type Micromixer 161



JðzÞ ¼ J0D2
aðs0 þ zÞ4

4pðd2s þM2D2
az

2Þ2s2
0

; ð4:8Þ

where s0 is the working distance of the microscope objective, M is the objective
magnification, Da is the lens aperture diameter, J0 is the light flux emitted by the
point source, k0 is the wavelength of fluorophore emission, NA is the numerical
aperture, and ds ¼ 1:22ðMþ 1Þk0=NA. It was further found that the mean diameter
of spatial averaging of the method is equal to the mean diameter of the point spread
function. For instance, for the 5x/NA = 0.12 objective and the channel depth of
200 µm, the mean diameter of spatial averaging is 55 µm.

A mercury lamp was used for illumination in micro-LIF measurements. The
above-described objective was used for flow visualization. With the use of a green
light filter, the green wavelength was cut out of the mercury lamp radiation spec-
trum. A light filter was used to detect the light emitted by the rhodamine 6G
fluorophore and suppress the reflected light. The fluorophore radiation was recorded
by a Videoscan digital camera with a resolution of 2048 � 2048 pixels and
dynamic range of 12 bit.

First, we determined the range of concentrations in which the fluorophore
radiation intensity is a linear function of its concentration. For this purpose, aqueous
solutions of rhodamine 6G with concentrations of 0, 10, 25, 40, 50, 62.5, and
75 mg/liter were fed into the T-type channel. The channel image was recorded for
each fluorophore concentration. After that, a special calibration series of mea-
surements was performed, which made it possible to eliminate spatial inhomo-
geneity of light in the channel.

U’

Fig. 4.36 Normalized
velocity profiles in the central
section of the mixing channel
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In concentration field measurements, distilled water was fed into one of the input
channels of the T-type mixer and an aqueous solution of rhodamine 6G with a
concentration of 60 mg/l was fed into the other input channel. Five hundred images
were recorded for each flow regime corresponding to a prescribed Reynolds
number. Then, the images were averaged, and the background noise was subtracted
from the averaged image. Figure 4.38 shows the fields of the concentration C
normalized to the maximum concentration Cmax in the mixing channel for the
Reynolds numbers of 30, 150, and 300. Visualization of the concentration fields
shows that intense mixing of the fluids begins when an S-shaped structure is formed
(at the Reynolds number of 150).

Spatial averaging of data over the depth of the T-type mixer was performed for
comparisons of the concentration fields obtained through numerical simulations and
experiments. This procedure was applied to the concentration fields in the XY plane
in eleven cross-sections over the depth symmetrically with respect to the center of
the T-type mixer. The concentration fields for each section were spatially averaged
by using a “moving average” filter with a circular window whose diameter was

Fig. 4.37 Average velocity fields in the central section of the T-type micromixer for different
Reynolds numbers

4.5 Experimental Study of Flow Regimes in a T-Type Micromixer 163



equal to the point spread function diameter in this section. The resultant concen-
tration field was calculated as the arithmetic mean for these eleven sections. The
computed velocity fields and the averaged experimental values for different
Reynolds numbers are shown in Fig. 4.39. The velocity profiles were obtained in
the central section at a distance of 2.5 calibers from the mixing channel entrance.
Here, the points connected by the curves are the experimental data, whereas the
curves that are not marked by the points are the results of numerical simulations.
The data for the Reynolds numbers of 30, 120, and 150 are marked by the circles,
crosses, and squares, respectively. In all cases, the experimental data are seen to be
in good agreement with the numerical predictions, but the resolution of the
experimental data interpretation (determined by the correlation depth) at the highest
Reynolds numbers is insufficient to provide an adequate description of the complex

Fig. 4.38 Average concentration fields in the T-type mixer for different Reynolds numbers. From
left to right: Re = 30, Re = 150, and Re = 300

Fig. 4.39 Velocity profiles in
the central streamwise section
of the mixing channel
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behavior of the velocity profile caused by the formation of S-shaped structures.
Numerical simulations ensure better accuracy.

The numerical and experimental data are qualitatively compared in Figs. 4.40
and 4.41, which show the velocity isolines at the input part of the mixer (Fig. 4.40)
and in the mixing channel (Fig. 4.41) for several Reynolds numbers. Here, the data
are in fairly good agreement as well. Concerning the dye concentration, the pre-
dicted and experimental profiles are in excellent agreement (see Fig. 4.42). Here,
the Reynolds number is Re = 30, the points show the experimental data, and the
solid curve is the numerical prediction.

Fig. 4.40 Averaged experimental and computed velocity fields in the central streamwise section
of the mixer

Fig. 4.41 Averaged experimental and computed concentration fields in the central streamwise
section of the mixer
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4.6 Modeling of Two-Phase Flows in a T-Type
Micromixer

Two-phase flows are extremely important for numerous microfluidic applications,
in particular, in micromixers. Actually, systematic investigations have only started
recently, though a number of interesting results have already been obtained.
However, a comprehensive review cannot be provided here, because of the limited
volume of the present chapter. Here, we consider and analyze only typical diffi-
culties encountered in modeling two-phase flows.

The first problem is related to modeling the flow of a water-oil mixture in a T-type
micromixer. The channel height is 100 µm, and the width of the upper channel is
50 µm. Oil is fed through the right side channel, and water is fed through the narrow
upper channel. The computations were performed for various ratios of the mass flow
rates of water and oilQw/Qo = 0.3� 2, whereQw = 0.14 ml/s, for twowetting angles.
A typical flow pattern for a certain prescribed ratio of the water and oil mass flow rates
is shown in Fig. 4.43. Here, the mass flow rates are identical (Qw/Qo = 0.3), whereas
the contact angle is 90° in the upper picture and 150° in the lower picture. The flow
character is determined by the wetting angle. A film flow is observed in the
microchannel in the case with a contact angle of 90°. The limiting value of the wetting
angle at which water droplets start to form is approximately 120°.

At the same time, the shape of water droplets formed in oil is determined by the
capillary number Ca = lU/r. Here, l, U, and r are the viscosity coefficient, average
velocity determined on the basis of the flow rate, and surface tension coefficient of

Fig. 4.42 Comparison of the
experimental and computed
concentration profiles in the
central streamwise section of
the mixer

Fig. 4.43 Visualization of numerical simulation of the water-oil flow in a microchannel for two
wetting angles
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oil. As the surface tension coefficient decreases, the droplets become more and more
extended, and begin to resemble a slug flow. The evolution of the flow with the
parameter Ca is shown in Fig. 4.44. Here, the contact angle is 150° in all pictures,
but the values of Ca are different: Ca ¼ 18:47� 10�3 in the upper picture, 12:67�
10�3 in the next picture, 7:92� 10�3 in the third picture, 4:22� 10�3 in the fourth
picture, and 3:168� 10�3 in the last picture.

Figure 4.45 shows the pressure isolines in the central section of the channel.
Here, the values of the flow rate ratio Qw/Qo are 0.3, 0.5, 0.8, 1.5, and 2 from top to
bottom, which correspond to the same values of the capillary number and wetting
angle in Fig. 4.44. This flow was studied experimentally in Garstecki (2006).

A quantitative comparison of the numerical and experimental data was per-
formed for the dependence of the dimensionless length L′ = L/W of the water
droplet on the ratio of the water and oil mass flow rates (here, W = 100 µm is the
width of the channel through which oil is fed). The results of this comparison are
shown in Fig. 4.46. As could be expected, the droplet length depends, to a large
extent, on the wetting angle h. Here, the experimental data are represented by the
crosses (1); the squares (2) and plus signs (3) are the data computed for the wetting
angles of 150° and 180°, respectively.

The next problem is modeling a gas-liquid flow in a T-type micromixer with a
circular cross-section. The channel is schematically shown in Fig. 4.47. The mixing
channel length is 18,000 µm, its diameter is d = 300 µm, and the input channels
have the same diameter and the length 1800 µm. Water and air were fed through
the upper and lower input channels, respectively. The ratio of the mass flow rates of
water and air at the channel entrance was varied in the computations. The solid
walls were subjected to the no-slip condition. The wetting angle was 90°.

Fig. 4.44 Shape of the water droplets with decreasing Ca
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A typical structure of the flow formed in the micromixer is shown in Fig. 4.48.
Three situations were considered: gas velocity 0.05 m/s and water velocity 0.02 m/s
(upper picture); identical gas and water velocities 0.05 m/s (middle picture); gas
velocity 0.05 m/s and water velocity 0.1 m/s (lower picture). The droplet shape is
determined by the velocities of water and air supply.

The simulated and experimental results (Quin and Lawal 2006) are quantita-
tively compared in Fig. 4.49, which shows the dimensionless length of the water
droplet L ¼ L=d as a function of the dimensionless velocity of the liquid

Fig. 4.45 Pressure isolines in the water-oil flow

L'

Qw/Qo

Fig. 4.46 Dimensionless
length of the water droplet
versus the ratio of the water
and oil mass flow rates Qw/Qo
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~V ¼ VL=ðVL þVGÞ, where VL and VG are the water and air velocities. The exper-
imental data are significantly scattered; nevertheless, the numerical data (filled
points) ensure an adequate description of the experimental results.

It is of interest to consider the behavior of pressure along the channel. It is clear
from the general considerations that it should decrease because of friction. The
calculated behavior of pressure (Fig. 4.50) shows that this really is so. However, the
monotonic decrease in pressure due to viscous friction is combined with pressure
changes induced by capillary forces.

The slug regime of the two-phase mixture flow is involved in many engineering
and industrial devices. It is not an easy task to study this flow regime, especially in
channels with non-circular cross-sections and sharp angles. In this flow regime,
capillary forces exert a dominating effect on the velocity of motion of gas bubbles;
therefore, the experimental data (Kuznetzov et al. 2005) on the velocity of emer-
gence of gas bubbles in various channels can serve as a good test for the algorithm
developed for calculating flows with free surfaces. The numerical calculation of
emergence of gas bubbles described below was performed for an open rectangular

Water

Air

Fig. 4.47 Gas-liquid flow in a cylindrical micromixer

Fig. 4.48 Density isolines in the micromixer
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Fig. 4.49 Dimensionless length of the water droplet formed in the micromixer versus the ratio of
the water and air velocities

Fig. 4.50 Evolution of pressure along the central line of the channel for the gas velocity of
0.05 m/s and water velocity of 0.1 m/s
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channel with a height of 500 mm and cross-sectional area of 2 � 7 mm. At the
initial time, the existence of an air bubble shaped like a parallelepiped with a
volume of about 300 mm3 in a channel filled with acetone was assumed.
Approximately 1 s after the beginning of the computation, the bubble acquired the
shape of a gas slug, which remained almost unchanged at later times. The variable
measured in the computation was the velocity of bubble emergence U as a function
of the channel slope relative to the horizontal line H. This velocity was practically
constant; therefore, it was determined to be the distance covered by the bubble
center in one second. Figure 4.51 shows the dimensionless velocity of bubble
emergence W ¼ U=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gb sinH

p
as a function of the Eotvos number Et ¼

qg sinHb2=r for four angles of the channel: 30°, 45°, 60°, and 90°. Here, b is the
width of the narrow part of the channel. The circular and square points in the figure
correspond to the experimental and numerical data, respectively. Thus, the simu-
lated results are in good agreement with the experimental data.

One more example of the numerical simulation of the slug flow is presented in
the last part of this section. The scheme and geometry used in the computation are
shown in Fig. 4.52. Water was supplied from the top with a velocity of 0.2 m/s. Air
was injected through a narrow tube. A quasi-stationary gas slug was formed in the
channel after a certain time depending on the flow rate of air. A typical pattern of a
steady slug flow is also shown in Fig. 4.52 in eight consecutive pictures. The first
four pictures show the experimental data (Kashinskii et al. 2010), and the next four
pictures are the results of numerical simulations. In all cases, the data are given for
four values of the slug length.

In the upper part of the slug, the flow is almost steady. At the slug bottom, gas
bubbles are periodically shed, which is clearly visible in Fig. 4.52, both in the
experimental photographs and in the visualized numerical patterns. Entrainment of
the gas with the bubbles is compensated by gas injection through the tube. As a
result, the slug size remains almost constant.

The process studied in the experiment (Kashinskii et al. 2010) was the friction on
the channel wall as a function of the length of the gas slug. In this case, the friction

Et

WFig. 4.51 Dimensionless
velocity of emergence of
water slugs versus the Eotvos
number
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is almost completely determined by the thickness of the liquid film formed between
the gas bubble and the channel wall.

The friction was also determined in the numerical simulations. The results of the
simulated and experimental results for two values of the slug length (4 and 10 cm)
are compared in Fig. 4.53, which shows the specific friction К (dyn/cm2) along the
channel. The experimental curve (curve passing through the circular points) was
obtained for a slug with a length greater than 12 cm. Therefore, reasonable
agreement can be expected only on the part of the friction curve for the corre-
sponding slug length. Indeed, the friction on the wall is independent of the slug
length until the end of the slug. The plus signs and crosses in Fig. 4.53 show the
simulated results for the slug lengths of 4 and 10 cm, respectively.

It should be noted that this slug flow is only quasi-steady. It is seen in Fig. 4.53
that the liquid film formed between the wall and the bubble becomes unstable
approximately after 2 cm. Perturbations develop on this film, leading to the for-
mation of waves moving in the flow direction. These waves are particularly clear on
the curve that describes the friction for the shortest slug. The experimental curve
shows the friction averaged in time; therefore, this instability is not observed.

Fig. 4.52 Scheme of the test section and comparisons of the experimental patterns of a steady
slug flow in a circular channel with those obtained in numerical simulations
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4.7 Heat Transfer in a T-Type Micromixer

Before studying the processes of thermal mixing in a micromixer, let us consider
typical features of the microflow in a cylindrical microchannel with a length of
2000 µm and radius of 50 µm. The thermophysical properties of the examined
medium are listed in Table 4.4.

A constant heat flux equal to 10 W/mm2 was imposed on the channel wall (the
area of the side surface of the channel was 0.3141 mm2). The temperature of the
medium at the channel entrance was 273 K. In addition, a parabolic velocity profile
shown in Fig. 4.54 was set at the channel entrance. The computation was performed
on a three-dimensional five-block grid refined toward the channel walls; each block
contained 30 � 30 � 150 cells (a total of 675,000 cells).

The calculated velocity and temperature profiles along the channel are shown in
Fig. 4.55 and are adequately described by available analytical solutions. At the
initial thermal segment 0	 x	 lth; whose length is determined by the relation lth ¼
0:07dPe; the local value of the heat transfer coefficient decreases along the channel
(with increasing x).

К, dyn/cm2

x, m

Fig. 4.53 Friction in the slug
flow along the channel

Table 4.4 Thermophysical
properties of the medium

Viscosity coefficient 0.001 Pa s

Thermal conductivity 1.4 W/(m K)

Specific heat 4200 J/(kg K)

Density 1000 kg/m3

Prandtl number 3

Mass flow rate 0.7854 mg/s

Mean mass velocity 0.1 m/s
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A theoretical analysis yields the following approximate relation for the Nusselt
number Nu in this region (Tzvetkov and Grigoriev 2005):

Nu ¼ 1:31ðdPe=xÞ1=3: ð4:9Þ

The theoretical value is compared with the results of numerical simulations for
different Reynolds numbers in Fig. 4.56.

Fig. 4.54 Velocity profile at the channel entrance

Fig. 4.55 Velocity (upper picture) and temperature (lower picture) distributions along the channel

Analytical solution

Nu

x/d

Fig. 4.56 Comparison of the numerical and analytical results
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The expression for the Nusselt number, which is valid for the entire heat transfer
region, has the form (Tzvetkov and Grigoriev 2005)

Nu�1 ¼ 11
48

þ
X1
n¼1

An � wn � exp �2e2n �
1
Pe

� x
d

� �
; ð4:10Þ

where An, wn, and e2n are constants depending on n. The first seven values are listed
in Table 4.5.

The behavior of the calculated Nusselt number (different points) along the
channel for different Reynolds numbers is illustrated in Fig. 4.57. These points are
compared with the analytical solution (4.10) (solid curves).

The local Nusselt number asymptotically tends to an integral value, which is
constant for a laminar flow and unchanged density of the heat flux on the wall and
equal to 4.364. Here, the local Nusselt number is determined by the relation

Table 4.5 Values of the constants An, wn, and e2n in Eq. (4.10)

n e2n wn An

1 25.680 −0.49252 +0.20174

2 83.862 +0.39551 −0.087555

3 174.17 −0.34587 +0.052797

4 296.54 +0.31405 −0.036640

5 450.95 –0.29125 +0.027518

6 637.39 +0.27381 −0.021742

7 855.85 −0.25985 +0.017799

Nu (х)

x/d

Analytical solution

Fig. 4.57 Local Nusselt number versus the Reynolds number
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NuðxÞ ¼ d
k

q
TwðxÞ � TcðxÞ ;

where TwðxÞ is the temperature on the wall, TcðxÞ ¼ ð4qxÞ=ðlReCpÞ is the tem-
perature in the core flow, and q is the density of the heat flux on the wall.

Let us now consider typical features of heat transfer in a T-type rectangular
minimixer. Its width was 2h = 0.5 mm, its height was 1 mm, the length of the
mixing channel was L = 30 mm, and the length of the input channels was l/2 =
1.25 mm. The test fluid was deionized water. A constant mass flow rate equal to
0.025 g/min was set in the input channels. The fluid temperature was 27 °C in one
input channel and 55 °C in the other input channel. For a correct description of heat
transfer in the rectangular T-type mixer, it is necessary to separate regions of mixing
in the T-shaped junction and in the mixing channel. In the region of the T-shaped
junction, the hot and cold water flows coaxially in two input channels. Thermal
mixing begins after these flows contact each other. Thermal diffusion prevails in
this region. The Reynolds number is smaller than unity, and the flow is laminar.
Thermal diffusion and convection prevail in the course of thermal mixing in the
mixing channel, and the flow regime remains laminar. The computed temperature
distribution (left) is compared in Fig. 4.58 with the experimental one (Xu et al.
2010). The temperature distribution along the input channel is shown in Fig. 4.59.
The thin and bold curves here are the predicted and experimental (Xu et al. 2010)
data. The agreement between the numerical and experimental data is actually within
measurement accuracy.

The temperature distributions in the mixer entrance cross-section and at a dis-
tance of 7.5 mm from the entrance are shown in Fig. 4.60. Again, the simulated and
experimental data are plotted with the solid curve and square points, respectively.

Fig. 4.58 Temperature profile in the T-type micromixer. Results of simulations (left) and
experiments (right)
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The temperature gradients are appreciably different in these cases, but the tem-
perature levels off fairly rapidly.

The above-described simulations of the T-type micromixer are readily extended
to simulations of rather complicated Thermophysical systems. Figure 4.61 shows a
microphotograph of a multichannel block of heat transfer in a microscopic heat
exchanger consisting of 15 microchannels with rectangular cross-sections. The
microchannels have the following dimensions: channel height 772 µm, channel
width 1100 µm, and channel length 5000 µm; one block contained 15
microchannels. The geometry of the considered heat exchanger is schematically
presented in Fig. 4.62, which shows the distribution of the temperature isolines for
the Reynolds number Re = 100. Cooling water is supplied through a circular
channel 5 mm in diameter (see Fig. 4.61), subsequently passing to a distributing

Fig. 4.59 Temperature distribution along the input channel

T, oC T, oC

x/h x/h

Experiment Experiment
CalculationCalculation

Fig. 4.60 Temperature distributions at the mixing channel entrance (left) and at a distance of
7.5 µm from the entrance
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manifold with a cross-sectional size of 30 � 15 mm2 and 2.5 mm high. Then,
water moves in the microchannels whose lower wall touches the cooled surface.
After that, heated water enters a collecting manifold and is removed through the
second circular channel. The area of the cooled surface of this heat exchanger is
approximately equal to 1500 mm2, which corresponds to the size of typical
microchip elements; therefore, it is convenient to use such systems, e.g., for cooling
computer processors.

This microscopic heat exchanger was experimentally studied in Khandekar et al.
(2010). In our numerical calculations, the Reynolds number was varied from 100 to
2000. It was determined on the basis of the flow rate of water at the heat exchanger
entrance and input channel diameter. The examined variables were the decrease in
pressure between the entrance and exit of the heat exchanger and the average heat
transfer coefficient. A constant heat flux density equal to 10 kW/m2 was prescribed
on the lower wall in each microchannel. The remaining walls were assumed to be
adiabatic. The computations were performed on a structured multiblock grid con-
sisting of 400,000 nodes.

Fig. 4.61 Photograph of a
minichannel heat exchanger
(Khandekar et al. 2010)

Fig. 4.62 Temperature
isolines on the microscopic
heat exchanger walls
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The results of numerical simulations (large squares and curves connecting them)
are compared in Fig. 4.63 with the experimental data (Khandekar et al. 2010) (filled
points). The figure shows the pressure drop between the entrance and exit of the
heat exchanger and the average heat transfer coefficient as functions of the
Reynolds number. The heat transfer coefficient was determined by the formula
a ¼ q=ðTw � Tf Þ; where Tw is the average temperature of the microchannel wall
and Tf is the mean arithmetic temperature of the fluid at the entrance and exit of the
heat exchanger.

A comparison of these results shows that simulations ensure an adequate
description of the experimental curves within the entire considered range of the
Reynolds numbers in terms of both the pressure difference and the heat transfer
coefficient. The scatter of the experimental data, which is enhanced as the Reynolds
number increases, is caused by the fact that the flow in the collecting manifold of
the heat exchanger is no longer steady at Reynolds numbers of 800 and higher.
Therefore, the data calculated at high Reynolds numbers were averaged in time. It
should also be mentioned that the values of the heat transfer coefficient for this
microscopic heat exchanger reach 13,000 W/m2 K. Such extremely high values of
the heat transfer coefficient under standard conditions cannot be reached in
macroscopic single-phase heat exchangers. Thus, we again see that microscopic
heat exchangers offer significant prospects for effective utilization of thermal
energy.

4.8 Active Method of Mixing

To finalize this chapter, we give one example of an active mixer, which implies
variations of the flow rates of the fluids in the input channels. In the presented series
of computations, the ratio of the flow rates in the upper and lower input channels

Pa W/m2K

Fig. 4.63 Pressure difference (left) and average heat transfer coefficient (right) versus the
Reynolds number
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Q1/Q2 was varied from 0.25 to 1. Three flow regimes were considered (see
Sect. 4.4): symmetric steady regime with Re = 120, asymmetric and periodic
unsteady regime with Re = 250. Different regimes of mixing in the microchannel
cross-section obtained in the simulations and experiments (Hoffmann et al. 2006)
with the Reynolds number Re = 186 and different ratios of the flow rates are
qualitatively compared in Fig. 4.64.

The mixing efficiency is shown in Fig. 4.65 as a function of the ratio of the flow
rates at the channel entrance for different Reynolds numbers. The behavior is
significantly affected by the Reynolds number. For Re = 120 (lower curve), the
asymmetry of the input conditions allows for substantial enhancement of mixing
(by a factor of 15). The maximum intensity of mixing is observed at Q1/Q2 = 1/3.
For Reynolds numbers greater than 150, at which an S-shaped structure is formed in
the mixing channel, artificial asymmetry leads to disintegration of this structure,
resulting in worse mixing.

One of the simplest methods of active mixing in Y- and T-type mixers is the
method with periodic variations of the flow rate in one of the input channels. The
parameter varied in Rudyak et al. (2010) was the velocity UQ determined by the
flow rate Q in the upper input channel at the T-type micromixer entrance:

Fig. 4.64 Qualitative comparison of the mixing regime observed in the experiment (Hoffmann
et al. 2006) (left) with the computed data (right) for the Reynolds number Re = 186 and different
ratios of the flow rates: Q1/Q2 = 1 (upper picture), Q1/Q2 = 1/2 (middle picture), and Q1/Q2 = 1/3
(lower picture) steady regime with Re = 186

180 4 Modeling of Micromixers



UQ ¼ Q=qS, where q is the fluid density and S is the cross-sectional area of the
microchannel. It was described by the relation

UQ ¼ U0 þV sin 2pft: ð4:11Þ

The parameters involved into Eq. (4.11) are determined, in the general case, by
the characteristic size of the channel where the mixing process occurs and by the
flow characteristics (Reynolds and Peclet numbers). Obviously, if the characteristic
time of mixing is much shorter than the period of the flow rate variation
sm � ð2pf Þ�1 ¼ Tf , the mixing efficiency will be almost the same as that in the
case of steady mixing. Therefore, the situation with sm � Tf is preferable. On the
other hand, the period of flow rate variation should be smaller than the characteristic
time of the flow Tf\sL. Certainly, it is rather difficult from the engineering
viewpoint to ensure very high frequencies in microchannels. Therefore, a good
compromise would be sm 
ð2p f Þ�1. The optimal amplitude of oscillations can be
easily estimated by considering the volume of the mixing fluid during the period Tf .

These qualitative considerations are supported by direct computations. As an
example, we can consider the mixing of two fluids in a T-type micromixer. Its
width is 200 µm, its height is 120 µm, its length is 2000 µm, and U0 ¼ 10�3 m/s.
Mixing of a fluid with the viscosity coefficient l ¼ 6:67� 10�4 Pa s and diffusion
coefficient D ¼ 7� 10�11 m2/s is analyzed, which corresponds to Re ¼ 0:3 and
Pe ¼ 3000. For these parameters, we have sm � 560 s and sL � 2 s. Therefore, the
optimal frequency should satisfy the conditions Tf\2 s and sm 
 Tf .

Fig. 4.65 Mixing efficiency
versus the ratio of the flow
rates at the mixer entrance for
different values of the
Reynolds number: Re = 120
(blue curve), Re = 186 (red
curve), and Re = 250 (green
curve)
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The corresponding frequency is found from the condition fop [ 0:08 Hz. This
estimate yields the frequency fop � 1 Hz. Figure 4.66 shows the mixing efficiency
in this mixer as a function of the frequency f and amplitude V.

Indeed, optimal mixing is reached at frequencies on the order of 1 Hz.
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Chapter 5
Modeling of Nanoflows

Abstract By definition, nanoflows are flows in channels with a characteristic size
(height of a plane channel or diameter of a cylindrical channel) smaller than (or
equal to) one hundred nanometers. Depending on the cross-sectional configuration,
nanochannels are usually classified as follows. A plane channel is a 2D channel and
has only one nanosize (distance between the plates); it is also called a nanoslit.
There are also cylindrical nanochannels (1D). Short cylindrical nanochannels are
often called nanopores. These flows have been studied for about forty years.
However, up to now, there were no algorithms that would permit us to model real
nanoflows. In addition, in recent years, many new problems have appeared in this
area. To solve these problems, we need correspondent techniques. In this chapter,
we propose new molecular dynamics algorithms, which allow one to simulate a real
plane Poiseuille-type flow characterized by a certain pressure gradient, and discuss
specific features of plane flows in nanochannels. This is the subject of the first four
sections of the chapter. In Sects. 5.5 and 5.6, the self-diffusion of the fluid mole-
cules in nanochannel and in porous media is studied. Finally, the last section deals
with modeling the separation of nanofluids through the use of nanomembranes.

5.1 Molecular Dynamics Simulation of a Channel Flow
Generated by an External Force

Interest in nanoflows first appeared back in the 1980s. It was primarily inspired by the
development of increasingly compact and effective devices for various biochemical
analyses. However, beginning from the 1990s, this topic was diversified. More
applications appeared, including those in the fields of medicine, pharmacology,
biology, catalysis, etc. This is related not only to the development of nanotechnologies
for various purposes, but also to more detailed investigations in fairly traditional
fields: biology, geophysics, thermal engineering, etc. There are also intense investi-
gations aimed at creating various nanoporous materials, including nanoceramics.
Typical pore sizes in carrier formations vary from tens of nanometers to tens or even
hundreds of microns (Nelson 2009). Thus, nanoflows are involved here as well.
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Nanochannels, in particular, are used as nanosensors for recognition of DNA and
other complex molecules. Nanofilters used for separation of molecules and
nanoparticles or as electro-osmotic pumps consist of a tremendous number of long
nanochannels. Long nanochannels are also used for fabrication of nanowires,
electrodes for supercapacitors, etc. Certainly, in addition to very high applied
significance, the interest in flows in nanochannels is also motivated by academic
aspects, because new physical phenomena occur here and the transport processes
are not described by the classical macroscopic theories.

A review of various methods of nanochannel fabrication can be found in the
encyclopedia (Li 2008). There is a special class of nanochannel called carbon
nanotubes fabricated by graphene rolling. Their diameter is on the order of several
nanometers. Carbon nanotubes have unique properties: high strength, high thermal
conductivity (which exceeds that of metals by an order or even several orders of
magnitude), high electrical conductivity, etc.

As was already mentioned, the conventional hydrodynamic approach cannot be
applied for modeling gas and liquid flows in sufficiently small channels. Actually,
the only method that raises no conceptual objections is the method of molecular
dynamics (MD). This method has been actively applied for studying microflow
properties since the 1980s (see, e.g., Karnidakis et al. 2005 and references therein),
and many interesting results have been obtained. The main objects of simulation
have been nanoscopic analogs of the known Couette and Poiseuille flows.

The Couette flow is usually modeled by a cell bounded by plates moving in
opposite directions. Fluid molecules are located between them. Velocity profiles
and other characteristics of the flow were obtained for this system (see, e.g.,
Thompson and Robbins 1990). In reference to the correspondence between the
Couette flow and real flows of this kind, it should be borne in mind that shear
velocities in MD simulations exceed realistically achievable values by a factor of
hundreds, which is caused by the limited performance of modern computers. In
other aspects, MD simulations of this flow are consistent with the real Couette flow.

At the same time, a certain fictitious force is introduced in MD simulations for
generation of the Poiseuille flow (see, e.g., Koplik et al. 1989; Heinbuch and
Fischer 1989; Thompson and Robbins 1990; Karnidakis et al. 2005 and references
therein). This force is often called the gravity force, but it is greater than the latter
by orders of magnitude. On the other hand, the presence of a permanently acting
force leads to molecule acceleration, which is absent in nature; therefore, various
methods for correcting their velocities, such as the so-called thermostat and others
(see, e.g., Heinbuch and Fischer 1989; Karnidakis et al. 2005), should be used.
Because of the use of such artificial procedures, the real flow arising in a channel
under the action of a pressure difference cannot be adequately modeled.

Obviously, MD simulations of fluid flows are rather complicated. Molecules are
in the state of random thermal motion with fairly high velocities. The problem is to
make all molecules move along the channel with a prescribed hydrodynamic
velocity, which is usually smaller than the thermal velocity. In typical macroscopic
fluid flows in tubes and channels, this velocity reaches several meters or several tens
of meters per second, which is smaller than the thermal velocity by at least an order
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of magnitude. The real velocity in microchannels cannot exceed several centimeters
per second, and the velocity in nanochannels is even smaller by several orders of
magnitude. Thus, to simulate such a flow, it is insufficient to organize directed
macroscopically observed motion of molecules on the background of their thermal
motion. The velocity of this organized motion should be smaller than the thermal
velocity by many orders of magnitude. In the absence of Maxwell’s demon, there
are two obvious solutions to this problem. The first one is to control the velocities of
all molecules at each step of the algorithm. This is an extremely complicated
procedure. It can be implemented in principle for a system of hard spheres with
only binary collisions. It cannot be implemented for real potential, because the
problem for three bodies is not integrable, and it is impossible to recalculate the
velocities correctly.

The second solution is to introduce a certain mass force Fe that would make
molecules move in a necessary direction. In this case, we have

mi
d2ri
dt2

¼ Fi þFe; i ¼ 1; 2; . . .;N; ð5:1Þ

where N molecules considered here include n molecules of the fluid and
(N − n) molecules of the channel walls. In this case, the channel walls are modeled
by several layers of the wall material packed in this or that way (body-centered
lattice, face-centered lattice, etc.).

This algorithm was developed more than 20 years ago (see, e.g., Koplik et al.
1988, 1989, 1996; Heinbuch and Fischer 1989; Bitsanis et al. 1990 and references
therein). This force is often called the gravity force, but it is greater than the latter
by orders of magnitude. Thus, e.g., in (Koplik et al. 1988; Heinbuch and Fischer
1989), the acceleration acquired by the molecule at each step is g ¼ 0:1e=ðmrÞ,
which is easily seen to be greater than the freefall acceleration by many orders of
magnitude. The thus-generated flow velocities are many times greater than those
observed in practice. This drawback was obvious to researchers who used this
algorithm. Thus, it was noted (Heinbuch and Fischer 1989) that it would be useful
to make the driving force more realistic, i.e., substantially smaller; in this case,
however, the flow becomes indiscernible on the background of thermal noise. It
was also shown there that the flow characteristics in a nanochannel change as the
external force decreases.

On the other hand, the presence of a permanently acting force gives rise to
acceleration of molecules, which is absent in nature; therefore, various methods for
correcting these velocities should be used. In particular, this is done by using
various methods of temperature correction (Heinbuch and Fischer 1989).
Sometimes this is done with the use of the Nose-Hoover thermostat described in
Chap. 1. In all cases, simulated flows are fairly sensitive to all described tech-
nologies. Because of the use of such artificial procedures, the real flow arising in a
channel under the action of a pressure or flow rate difference cannot be adequately
modeled.
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5.2 Algorithm of Modeling a Plane Nanoflow Under
Pseudo-periodic Conditions

An algorithm that does not involve an external force for flow generation was
proposed in (Rudyak et al. 2008a, 2010). A plane flow (along the x axis, see
Fig. 5.1) of a molecular fluid in a channel of length L between two parallel plates
separated by a distance h is considered. The modeling cell is a rectangular paral-
lelepiped whose lower and upper faces (perpendicular to the z axis) are channel
walls. The cell size in the y direction is b� h, and usual periodic boundary con-
ditions are applied in this direction.

To organize the fluid flow, a special algorithm was developed, which involves
the use of specially modified periodic boundary conditions on the left and right
faces of the cell (perpendicular to the x axis). Molecules located inside the channel
cannot cross the left face of the cell (e.g., molecule 1 in Fig. 5.1), and interaction
with this molecule is defined by specular or diffuse boundary conditions (see
below). Molecules can cross the right face; for a molecule crossing the right
boundary (e.g., molecule 2a in Fig. 5.1), a copy on the left boundary is created
(molecule 2b in Fig. 5.1). The x coordinates of the centers of the molecule and its
copy differ by L, whereas other coordinates and velocities of these molecules are
identical. In solving the equations of motion of such a molecule, its interaction with
molecules both on the left boundary and the right boundary is taken into account,
which corresponds to periodic boundary conditions. When the molecule crosses the
right face of the cell and leaves the channel, its copy at the left boundary remains.
The velocity of this molecule is randomly sampled in accordance with the Maxwell
distribution (1.54), (1.55). The projection of the molecule velocity onto the x axis is
always set to be positive. Thus, the left boundary of the channel can be considered
as a source of molecules whose velocities are distributed in accordance with
Eq. (1.54). The total number of molecules in the cell in this algorithm is unchanged,
which is convenient for its program implementation.

Interaction of fluid molecules can be described by the Lennard-Jones
(LJ) potential (1.53) and the hard sphere (HS) potential (1.52). Interaction of
fluid molecules with the wall is defined by two different methods, depending on the
type of intermolecular potential used. In the first case (LJ potential), each wall is
modeled by two (or more) rows of molecules located in nodes of a certain lattice.
Interaction of fluid molecules with wall molecules is defined by potential (1.53),

1

2a2b 

Fig. 5.1 Modeling of the
flow in a plane channel with
pseudo-periodic boundary
conditions
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whose parameters are determined from combinatorial relations. The simplest rela-
tions are most often used in practice: r12 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

r11r22
p

and e12 ¼ ffiffiffiffiffiffiffiffiffiffiffi
e11e22

p
, where r11

and e11 are the parameters of interaction of fluid molecules, while r22 and e22 are the
parameters of interaction of wall molecules.

For a fluid with the HS potential, the upper and lower walls of the channel are
modeled by two parallel solid surfaces. Interaction of fluid molecules with the walls
occurs instantaneously; their post-collision velocities are determined by the specular,
diffuse, or specular-diffuse law. In the case of specular reflection, the molecule
changes the sign of the velocity projection onto the normal to the wall vz, whereas the
projections vx and vy remain unchanged. In the case of diffuse reflection, the molecule
velocity components are sampled in accordance with Eq. (1.54) with a corresponding
temperature. Finally, in the case of specular-diffuse reflection, a fraction h of mole-
cules interacts in a diffuse manner and the fraction ð1� hÞ of molecules interacts in a
specularmanner. It should be noted that specular boundary conditions correspond to a
zero value of the momentum accommodation coefficient of the wall h, whereas the
accommodation coefficient of diffuse walls is equal to unity.

At the initial time, fluid molecules are uniformly arranged in the simulation cell.
Their density is determined by the van der Waals parameter eV ¼ nd3 for the HS
fluid and eV ¼ nr3 for the LJ fluid, where n is the number density of molecules. The
molecule velocities at the initial time are defined in accordance with the Maxwell
distribution (1.54). Then, the system’s evolution was calculated. When the relax-
ation processes are finalized (the relaxation time depends on the channel size, fluid
density, and conditions of interaction with the wall), a steady fluid flow is formed in
the channel. After that, required characteristics (concentration, velocity, pressure,
etc.) are calculated.

The described MD algorithm allowed for a flow with a pressure gradient along the
channel (analog of a steady Poiseuille flow) to be simulated for the first time. Results
of these simulations will be partly described in Sect. 5.4. It should, however, be noted
here that this algorithm is not devoid of drawbacks either. Themain problem is that the
pressure gradient cannot be prescribed directly, though it can be predicted with suf-
ficient accuracy on the basis of the known channel size and properties of the fluid and
the wall. One more drawback is the non-physical long-range interaction of molecules
located at the channel exit with molecules at the channel entrance. This effect is not
very dramatic, because it occurs only in narrow relaxation regions (actually, the flow
with a pressure gradient occurs at the exit of these regions).

5.3 Algorithm of Modeling a Plane Nanoflow
with a Prescribed Flow Rate

One of the main drawbacks of the algorithm described in the previous section is the
fact that the parameters of the flow being formed are determined not only by the
fluid density and temperature, but also by the channel geometry. For this reason, it
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is difficult to form a flow with a prescribed flow rate. Below, we propose an MD
algorithm that allows one to simulate a real plane Poiseuille-type flow characterized
by a certain pressure gradient and a prescribed flow rate.

We again consider a plane fluid flow between infinite parallel walls. As in the
previous section, the walls are modeled by several rows of densely packed mole-
cules. Interaction of fluid molecules with each other and with wall molecules is
defined by a certain potential, e.g., the Lennard-Jones potential (1.53). The com-
putational cell is shown in Fig. 5.2. It consists of four zones. At the channel
entrance, there is a zero zone of length L0, through which molecules are inserted.
With a certain periodicity determined by the fluid flow rate Q, a layer of densely
packed molecules is formed here; these molecules move to the right with a constant
velocity u (molecules with velocity vectors in Fig. 5.2). Let us call them “heavy”
molecules. In fact, these molecules move as solid bodies. Molecules located in the
channel cannot pass through densely packed layers of “heavy” molecules, thus
pushing the remaining molecules to the right. We may say that a layer of densely
packed “heavy” molecules plays the role of a piston forming the flow in the
channel.

After the transition from the zero to the first zone (zone of length L1 in Fig. 5.2),
“heavy” molecules transform into usual molecules and are assigned new velocities
at the instant of this transition, which are generated on the basis of the Maxwell
distribution function (1.54) for a given temperature T. Thus, the temperature T is
maintained in this zone. The temperature in zones 1 and 3 (zone of length L3 in
Fig. 5.2) is maintained through a special procedure of regularization of molecule
velocities. In fact, it is similar to the Nose-Hoover thermostat. By using the latter in
the zone where such regularization is performed, the total kinetic energy is calcu-
lated as

eEK ¼
X
i

miv2i
2

:

On the other hand, the kinetic energy corresponding to a given temperature T is
determined by the expression EK ¼ ð3kT=2Þ. Thus, for the fluid temperature in this

L

h

x
y

L0 L1 L2 L3

z

Fig. 5.2 Computational cell for modeling the flow with a prescribed flow rate
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zone to be equal to the prescribed temperature, the velocities of all molecules

located here are multiplied by the coefficient kv ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EK=eEK

q
. However, the

above-described procedure is valid only for the absence of the flow. In the presence
of the flow, the kinetic energy of molecules is determined by the relation

eEK ¼
X
i

mi �vi � �uð Þ2
2

; ð5:2Þ

where �u is the flow velocity, which is not known in advance. If formula (5.2) has to
be used directly for regularization of molecule velocities, the hydrodynamic
velocity of the flow inevitably changes. To avoid this effect, only velocity com-
ponents normal to the flow direction are recalculated. By virtue of the uniform
distribution of the molecule energy over its degrees of freedom, the kinetic energy
for two velocity components normal to the flow direction has the form

E�
K ¼

X
i

mi v2iy þ v2iz
� �

2
:

The coefficient of molecule velocity recalculation is defined as

kv ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EKy þEKz

E�
K

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kTP

i
mi v2iy þ v2iz
� �vuut :

To generate a flow with a prescribed flow rate, it is necessary to control the fluid
density in addition to the flow velocity. For this purpose, the density in the third
zone is also kept constant. At each step of integration, the density q ¼ nr3 of
molecules located in this zone is calculated. If this density is higher than a pre-
scribed value qC, then molecules crossing the right boundary of the channel leave
the channel (i.e., are not taken into account in further calculations). Otherwise,
molecules crossing the right boundary are reflected from this boundary in a specular
manner (vx changes its sign), and the x coordinate is assigned a value equal to the
right wall coordinate. In the second zone, molecules move freely, and no regular-
ization procedures are applied (zone of length L2 in Fig. 5.2). It is this zone that
should be considered as the modeled channel. Thus, the channel length is L2.

5.4 Specific Features of Nanoflows in MD Simulations

In this section, the results of modeling a pure argon nanoflow at a temperature T =
300 K are described. The flow is modeled by the algorithm described in Sect. 5.2.
The channel height is varied from 6r to 50r of the effective diameters of molecules,
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the length is varied from 60r to 250r, and the width is varied from 6r to 20r. Thus,
the longest channel is only slightly longer than 70 nm, and its height is varied from
2 to 15 nm. The fluid density is varied within fairly wide limits: eV ¼ nr3 ¼
0:0014� 0:88. Typical features of nanoflows are discussed below.

5.4.1 Flow Velocity Profile

A steady flow is formed in zone 2 (see Fig. 5.2). If the algorithm with
pseudo-periodic boundary conditions is used (Sect. 5.2), it is formed at a certain
distance from the entrance (left boundary of the channel shown in Fig. 5.1). The
flow velocity profile is caused by interaction of fluid molecules with the wall. For
the LJ fluid, a parabolic velocity profile is formed, and there is slipping on the wall
in all cases. Thus, the velocity profile has the form

u ¼ Aðz2 � zh� bhÞ; ð5:3Þ

where A is a constant and b is the so-called slip length determined by the relation
uðz ¼ 0; hÞ ¼ bð@u=@zÞjz¼0;h. It should also be mentioned that the velocity profile
in sufficiently narrow channels at high flow velocities becomes considerably dis-
torted and is no longer parabolic. In fact, the fluid is structured at such a level that
each of its layers with the characteristic size on the order of a molecule flows with
its own velocity (see Travis et al. 1998; Travis and Gubbins 2000). This effect is
less pronounced at low velocities of the flow.

The slip effect was detected previously in almost all activities aimed at MD
simulations of the LJ fluid. In the HS fluid flow, a parabolic velocity profile of the
form (5.3) is observed only if interaction of molecules with the wall is not specular.
In the case of specular reflection, a shock velocity profile is formed over the entire
channel length.

In real macroscopic fluid flows, it is usually assumed that the fluid sticks to the
wall, i.e., the flow velocity on the wall is equal to the velocity of the wall itself.
Slipping is observed for rarefied gas flows only. In this case, we have b� l�Kn,
where l is the mean free path of the molecule. Thus, it is usually assumed that
slipping should be taken into account beginning from Knudsen numbers
Kn� 5� 10�3. As the slip length is proportional to l, it can be neglected in
macroscopic flows if the gas is not too rarefied. The error at low Knudsen numbers
is small.

The nature of slipping in liquid flows is more complicated that than in gas flows.
For gases, a systematic theory determining the slip length was developed; however,
there is no corresponding analog for liquids. Nevertheless, the slip length in
microflows has been intensely studied in experiments in recent years. As was
already noted (see Chap. 4), slip lengths from several nanometers to approximately
twenty micrometers are registered (Lauga et al. 2007). The slip length can be even
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greater if hydrophobic and especially so-called ultrahydrophobic coatings are used
(Watts et al. 1990; Ou et al. 2004). Clearly, such large values (and also small values
on the order of several nanometers) of the slip length cannot be explained on the
basis of the kinetic theory. A review of available experimental data can be found in
publications mentioned above and in Karnidakis et al. (2005), where a list of
models proposed for explaining the observed phenomenon is also given (see also
Vinogradova 1995; Alexeyev and Vinogradova 1996; Andrienko et al. 2003; Fan
and Vinogradova 2005; Vinogradova and Yakubov 2006).

In modeling the LJ fluid by the above-described algorithms, the velocity profile
of the steady flow is determined only by the parameters of the potential of fluid
interaction with wall molecules. In calculations, the slip length decreased with an
increase in the fluid density. In the general case, however, the character of inter-
action of fluid molecules with the wall and, hence, the slip length depend on the
type of crystal lattice of the solid surfaces forming the channel. In particular, it was
found (Soong et al. 2007) that the slip length is affected by the type of packing of
molecules in the channel walls and the angle of orientation of the fluid flow with
respect to the bases of the crystal lattice forming the wall. Thus, by changing the
wall topology, it is possible to control the resistance to fluid motion in the
nanochannel.

The slip length for the HS fluid flow primarily depends on the accommodation
coefficient h and decreases with an increase in the accommodation coefficient. Thus,
the slip length for h ¼ 0:5 is 1.7d (the fluid density is eV ¼ 0:88); as h increases up
to unity, the slip length decreases by more than a factor of 3 and reaches the value
of 0.5d. Naturally, the slip length in the general case increases with a decrease in the
fluid density. For instance, for the fluid density eV ¼ 0:0014, its value is about 10d.

The slip lengths predicted by MD computations are appreciably smaller than
those actually observed in experiments, in which the values of tens and even
hundreds of nanometers were detected. What is the reason for these large values of
the slip length? If we ignore possible “imperfections” of the real fluid, e.g., its
saturation with the gas, which produces the effect of “gas lubrication” in some
cases, the most realistic reason is the presence of roughness elements on the wall
surface. The height of roughness elements on a solid surface is usually several
nanometers and more. Naturally, the character of fluid interaction with the wall is
changed by the presence of roughness. The study of this issue is one of the most
urgent problems of microflow physics. However, the slip length is usually greater
than the roughness height.

5.4.2 Decrease in Pressure

A usual steady Poiseuille flow is a flow formed at a prescribed pressure gradient
and, as a consequence, prescribed values of input and output pressures. The
decrease in pressure along the channel is caused by friction on the walls. The
algorithms described in two previous sections allow one to study nanoflows with a
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linear gradient of pressure along the channel. The pressure is usually determined on
the basis of the virial theorem, which implies that

p ¼ 2
3V

XN
i¼1

p2i
� �
2m

þ 1
6V

XN
i¼1

XN
j 6¼i

rij � Fij
� �

:

For the HS fluid, the interaction potential and the force Fij are singular, the virial
of the force rij � Fij

� �
is defined by the momentum transferred in collisions, and the

pressure is determined as

p ¼ 2
3V

XN
i¼1

p2i
� �
2m

þ 1
6V

XN
i¼1

XN
j6¼i

r�ij
Dpij
Dt

� �
:

Here, r�ij is the distance between the molecules (this distance is equal to the
molecule diameter at the collision instant) and Dpij is the change in the absolute
value of the momentum of the i-th molecule during the time Dt owing to its
collision with the j-th molecule.

Figure 5.3 shows typical data for the decrease in pressure for different types of
interaction of fluid molecules with each other and with the channel walls; the
pressure is normalized to its value at the channel entrance p0 (zone 2). Here,
x0 ¼ x=r. The decrease in pressure along the channel is related to the resistance
induced by the interaction of fluid molecules with the wall. Therefore, the pressure
in the case of specular reflection of molecules of the HS fluid remains unchanged
along the channel (curve 1 in Fig. 5.3). The pressure gradient increases with
increasing accommodation coefficient (cf. curves 1 and 2).

Fig. 5.3 Pressure versus the
dimensionless streamwise
coordinate of the channel.
HS fluid, h ¼ 0 (curve 1); HS
fluid, h ¼ 0:5 (curve 2);
LJ fluid, (curve 3). L ¼ 60r,
h ¼ 6r, and eV ¼ 0:79
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5.4.3 Resistance Coefficient

In practice, it is extremely important to find the differences between nanochannel
flows and usual hydrodynamic flows. One of the most important characteristics is
the hydraulic resistance coefficient determined by the formula

k ¼ h
dp
dx

2
q�u2

:

In the flow calculated by the MD algorithm with pseudo-periodic conditions
(Sect. 5.2), the relationship between the pressure gradient and the flow rate is not
known. Nevertheless, the friction coefficient predicted by MD computations was
compared with the hydrodynamic resistance in Rudyak et al. (2011a). These
comparisons were performed at identical pressure differences. The results of these
comparisons are shown in Fig. 5.4. The solid curve is the hydrodynamic resistance
coefficient k ¼ 24=Re, and MD predictions are represented by crosses. The dotted
curve was obtained through the least squares method on the basis of MD data. Both
curves are qualitatively similar, but the hydrodynamic values are slightly higher. It
should be noted that these values were obtained for low Reynolds numbers. On the
other hand, these Reynolds numbers are typical for nanoflows. It should also be
mentioned that the Reynolds number in calculations based on MD data was
obtained for the usual value of the viscosity coefficient corresponding to the fluid
with a given density. However, the viscosity of the fluid in the nanochannel in the
general case is appreciably different from its bulk viscosity (it is significantly
higher). If this fact is taken into account, the differences in the resistance coefficients
are more pronounced.

Figure 5.5 shows the resistance coefficient as a function of the Knudsen number
for the HS fluid with different accommodation coefficients. The squares and crosses
correspond to the accommodation coefficients h ¼ 1 and h ¼ 0:5, respectively. As

Fig. 5.4 Resistance
coefficient in the nanochannel
versus the Reynolds number.
The solid and dotted curves
show the hydrodynamic value
and MD predictions,
respectively
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could have been expected, the resistance coefficient increases with increasing
accommodation coefficient. It should be noted that the Reynolds number is a rough
and, in a certain sense, more universal similarity parameter. Different Reynolds
numbers correspond to different accommodation coefficients.

The algorithm described in Sect. 5.3 also allows for generation of the flow with a
given flow rate. The specific flow rate is understood in this section as Q ¼ qu,
where u is the flow velocity, and the fluid density is determined by the formula
qc ¼ nr3. Here again, n is the number concentration. The flow rate is measured in
meters per second. The relationship between the pressure decrease along the
channel and the flow rate is one of the key parameters in hydrodynamics. For
Newtonian fluids, the decrease in pressure is a linear function of the flow rate. The
same dependence was found for nanoflows in the course of MD simulations. The
results simulated for channels of different heights are shown in Fig. 5.6. As
the channel height increases, this dependence becomes less steep.

5.4.4 Compressibility of the Fluid in Nanochannels

It is known that the fluid dynamics of usual macroscopic and even microscopic
flows is adequately described by the model of an incompressible fluid. However,
this model should be used for nanoflows with caution. If there is a pressure decrease
in an isothermal nanoflow, it is possible only if the fluid density also decreases
along the channel. As the pressure of liquids and dense gases at a fixed temperature
is a nonlinear function of density, comparatively large changes in pressure along the
channel lead to comparatively small changes in density. This is the pattern observed
in MD simulations of nanoflows. Figure 5.7 shows the behavior of pressure along
the channel for an argon flow at the temperature T = 300 K in a channel with carbon
walls for two values of density. The higher the fluid density, the greater the decrease

Fig. 5.5 Resistance
coefficient in the nanochannel
versus the Knudsen number
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in pressure. The corresponding change in density along the channel is shown in
Fig. 5.8 (the streamwise coordinate is measured in units of r).

It is seen that the density decreases in both cases, but the decrease in density is
appreciably smaller than the decrease in pressure. The density on the right boundary
of the channel is equal to the prescribed density qC.

5.4.5 Fluid Structure in a Plane Channel

Interaction of fluid molecules with the channel walls is a principally important
factor of all nanoflows. For example, in a cylindrical nanochannel 5 nm in diam-
eter, approximately one half of all molecules interact with the wall. Layers of fluid
molecules are formed near the channel walls, almost simultaneously interacting

Q, ml/s

Fig. 5.6 Pressure gradient
versus the flow rate in a
channel of length L = 60r; h =
6r (crosses), h = 12r
(squares), and h = 24r
(circles)

р,atm

x'

Fig. 5.7 Fluid pressure in the
channel versus the streamwise
coordinate, qC ¼ 0:6
(crosses) and qC ¼ 0:8
(circles)
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with each other and with channel wall molecules. As the channel walls consist of
molecules of a different nature as compared to fluid molecules, the structure of these
near-wall layers of fluid molecules should differ from the structure of the bulk fluid.
This is true. Figure 5.9 shows the profiles of the dimensionless density q0 ¼ q=�q
(where �q is the mean density in the channel) of the HS and LJ fluids in a plane
channel of height 6r: Here, z0 ¼ z=r. In both cases, the density exhibits
quasi-periodic changes across the channel. In the HS fluid, the maximums and
minimums of the density profile are more pronounced; the first peaks of density
near the walls are also appreciably higher. This is primarily related to more
expressed regions of screening for HS fluid molecules near the wall surfaces.
Owing to the presence of these regions, the effective volume occupied by LJ
molecules is greater than that occupied by HS molecules. For this reason, the
effective density of the HS fluid is somewhat higher than that of the LJ fluid. As the
density increases, the effects of fluid structuring become more pronounced.

It should be emphasized that the orderliness of the fluid near the walls is a typical
feature of nanochannel flows, and it persists as the distance between the channel
walls increases. This fact is illustrated in Fig. 5.10, which shows the density profiles

x'

Fig. 5.8 Fluid density in the
channel versus the streamwise
coordinate, qC ¼ 0:6
(crosses) and qC ¼ 0:8
(circles)

ρ'

z'

Fig. 5.9 Density profiles for
the HS (plus) and LJ (crosses)
fluids. L ¼ 60r, h ¼ 6r, and
eV ¼ 0:79
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across the channels of different heights: h = 6r (curve 1), h = 12r (2), h = 24r (3),
and h = 48r (4). Structuring of the fluid in the channel becomes almost independent
of the channel height at h > 10r and is observed at distances on the order of 5–6r,
i.e., at distances on the order of two nanometers from the wall.

Intense oscillations of the density profile in the nanochannel are universal
phenomena that are always observed regardless of the flow generation algorithm
used (see, e.g., Zhu and Granick 2001, 2002). The density profile provides local
information about the fluid structure. However, the analysis of Figs. 5.9 and 5.10
shows that the short-range order of the fluid in the channel becomes different.

At least, it should occur near the channel walls. The character of the fluid
structure is detected by the paired radial distribution function of molecules

g2ðrÞ ¼ dN
4pnr2dr

; ð5:4Þ

where dN is the number of molecules in the radial layer of thickness dr at a distance
r from the chosen molecule. The radial distribution function (5.4) is a measure of
the probability of finding the fluid molecule at a distance r from the chosen
molecule. Thus, this function shows how the density of molecules is distributed
around an arbitrarily chosen molecule. The density distribution in the nanochannel
is not uniform; therefore, to obtain sufficiently objective information about the fluid
structure, the radial distribution functions should be constructed in layers of
thickness dh parallel to the channel walls and located at different distances from
them:

g2ðr; hÞ ¼ dN
2pnr drdh

: ð5:5Þ

The character of the resultant radial distribution function for the first peak of
density (see Fig. 5.10) is shown in Fig. 5.11 (dotted curve). For comparison, the
figure also shows the radial distribution function for the fluid of the same density in
the bulk (solid curve). A comparison of these distribution functions shows that the
character of the fluid structure near the surface is appreciably different. In the bulk,

ρ'

z'

Fig. 5.10 Density profiles in
nanochannels of different
heights. eV ¼ 0:88, h = 6r
(1), h = 12r (2), h = 24r (3),
and h = 48r (4)
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the short-range order is manifested at distances on the order of 1 nm (3r–4r); near
the surface, however, a quasi-long-range order is actually observed. The radial
distribution function decays at distances greater than those in the bulk by at least an
order of magnitude.

Thus, there is a nanoscale layer of the fluid (one to several nanometers thick)
near the surface, which possesses particular properties. Apparently, it is the pres-
ence of this layer that determines the slip length under ideal conditions. This layer
plays the role of the Knudsen layer in a rarefied gas. The most important conclusion
to be drawn is that the fluid in the nanochannel is not homogeneous. Its density near
the walls and in the middle of the channel differs by several degrees. For this
reason, the dynamic behavior of the fluid in the nanochannel is appreciably different
from its behavior in the bulk.

5.5 Diffusion of Molecules in Nanochannels

Because of the change in the fluid structure in nanochannels and significantly
different scales of their spatial sizes, the transport processes in such channels in the
general case differ from those in the bulk. This is really so. The importance of
studying the transport processes is obvious, because they are responsible for the
character of microflows and especially nanoflows. At the same time, the possibility
of investigating such flows is rather limited for several reasons. First, experimental
studies of these processes are extremely difficult, or even impossible in some cases.
Second, perturbations comparable with the measured characteristics can be (and
are) inserted in the course of measurements. A similar situation occurs in quantum
mechanics, in which a special theory of measurements was developed. Naturally,

g2

r '

Fig. 5.11 Radial distribution
function in the bulk (solid
curve) and in the layer of the
first maximum of the fluid
density in the nanochannel
(dotted curve), h ¼ 6r,
eV ¼ 0:88, and r′ = r/r
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specific methods for experimental data interpretation also have to be developed in
studying the transport processes in micro- and nanoflows.

An alternative to experimental investigations of the transport processes in such
flows is molecular modeling. The only comprehensive method of such modeling is
the MD method. At the moment, this method has been successfully used for
studying molecular diffusion in nanochannels and porous media, as well as the
viscosity of simple fluids. The main results obtained in this field are described
below.

Self-diffusion of molecules was studied in (Andryushchenko and Rudyak 2011;
Rudyak et al. 2011b) for a system of hard spheres. Diffusion was considered in both
plane and rectangular channels. The channel walls were modeled by solid surfaces,
and interaction of fluid molecules with the walls was described by a specular,
diffuse, or specular-diffuse law. The parameters varied in the simulations were the
channel height h (along the z axis), channel width w (along the y axis), and fluid
density. The channel height was varied from 2 to 50 nm, and the ratio h/w was
varied from unity to infinity. In the latter case, the flow in a rectangular channel
reduces to a plane flow. The fluid density nd3 was also varied within wide limits,
from 0.7 to 0.01, so that the low and upper limits corresponded to a liquid and a
dense gas, respectively. Here, n is the number density of molecules in the system,
and d is the molecule’s diameter. The channel was aligned in the x direction so that
an extended channel was simulated, and usual periodic boundary conditions were
imposed on this axis.

The self-diffusion coefficient D is determined by the Green-Kubo formula

D ¼ 1
3

Zsp
0

vðtÞ dt; ð5:6Þ

where v is the autocorrelation function of velocity (ACFV) of molecules, which is
defined by the following relation ða ¼ x; y; zÞ:

vaðtÞ ¼
1
Nl

XN
i¼1

Xl�1

j¼0

viaðjDtÞ � viaðjDtþ tÞ½ 	: ð5:7Þ

Here, sp is the time needed for the ACFV to reach the so-called plateau value
(Rudyak et al. 2008b), i.e., the time after which the diffusion coefficient remains
almost unchanged, N is the number of particles in the cell, Dt is the integration step,
and l is the number of independent phase trajectories over which the averaging is
performed.

The self-diffusion coefficient was simultaneously determined by the Einstein
relation for the root-mean-square displacement of molecules:
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R2
dðtÞ

� � ¼ 1
Nl

XN
i¼1

Xl�1

j¼0

ridðjDtÞ � ridðjDtþ tÞ½ 	2 ¼ 2Ddt: ð5:8Þ

As the behavior of the self-diffusion coefficient is determined by the ACFV
relaxation character, it is first necessary to study the ACFV behavior in the
nanochannel, as compared to its behavior in the bulk. Relaxation of the ACFV of
dense fluids occurs in two stages: exponential decay is observed at the first stage
and power-law relaxation takes place at the second stage (Rudyak et al. 2008b). It is
only in the dense fluid that a negative tail of the ACFV is observed due to the
formation of the short-range order. The ACFV in the nanochannel becomes
nonisotropic.

A typical pattern of ACFV evolution for a rectangular channel is shown in
Fig. 5.12. Here, the channel height is h = 5d, the channel width is w = 10d, and the
fluid density is nd3 ¼ 0:047. The ACFV based on the components of molecule
velocities along the channel behaves in the same manner as that in the bulk,
whereas two other dependences have a valley whose depth increases as the cor-
responding geometric size of the channel (height or width) decreases.

The emergence of the negative branch of the ACFV is caused by interaction of
fluid molecules with the channel walls and testifies that, first, the diffusion of
molecules in the nanochannel is nonisotropic and, second, the diffusion coefficients
in the directions normal to the walls should be substantially smaller than the dif-
fusion coefficient along the channel. To find the values of these coefficients, it is
convenient to use the information about the behavior of the root-mean-square
displacements of molecules (5.8) along and across the channel. For the system
presented in Fig. 5.12, the corresponding data are plotted in Fig. 5.13. Two lower
curves show that the values of the root-mean-square displacement normal to the

Fig. 5.12 Time evolution of
the ACFV components; the
time s is measured in units of
the mean free times of
molecules
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channel wall gradually reach a certain constant value, which means zero values of
the corresponding diffusion coefficients. The upper curve in Fig. 5.13 almost
transforms into a straight line after a certain time, as was predicted by the Einstein
theory, and the slope of this curve determines the diffusion coefficient along the
channel. It turns out to be Db=3, where Db is the value of the self-diffusion coef-
ficient in the bulk.

The observed character of the diffusion of fluid molecules is fairly natural from
the physical viewpoint and takes place in nanochannels of almost all sizes. This is
illustrated in Fig. 5.14, which shows the root-mean-square displacements across the
channel for different channel heights. Two lower curves correspond to the channel
heights 6d and 12d, and the numbered curves show the data for 18d (curve 1),
24d (2), 30d (3), 36d (4), and 48d (5).
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2RFig. 5.13 Root-mean-square
displacements of molecules in
the x (periodic boundary
conditions), y, and z directions
versus time
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Fig. 5.14 Root-mean square
displacements of molecules
along the z axis versus time
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5.6 Self-diffusion of Molecules in Porous Media

The transport processes in micro- and nanochannels help in understanding the
transport processes in porous media. The latter play an important role in everyday
human life and various engineering processes. The most important examples of
such processes are heat and mass transfer in living organisms, motion of moisture in
soil, precipitation of impurities on filters of waste treatment facilities, acceleration
of reactions by porous catalysts, motion of hydrocarbons in reservoirs, etc.
Self-diffusion of fluid molecules is a key process here. It is widely used in practice
for obtaining information about the structure of the porous space and its geometry
(see, e.g., Kärger and Ruthven 1992; Latour et al. 1993; Cheng and Cory 1999;
Song et al. 2000). The importance of self-diffusion has inspired the development of
numerous methods for its measurement. The most popular methods are the method
of nuclear magnetic resonance, optical methods including neutron radiation scat-
tering, various methods of visualization, and methods using radioactive isotopes
(see, e.g., Song et al. 2000). Both laboratory and full-scale experiments are usually
performed in porous media with characteristic sizes ranging approximately from ten
nanometers to hundreds of micrometers, due to specific features of available
experimental techniques. Despite numerous investigations of diffusion in porous
media over the last three decades, many issues remain unclear, including those of
principal importance. Even the law of molecular diffusion in porous media is not yet
clear, though the Einstein law is used in most applications for interpreting exper-
imental data.

MD simulations of the self-diffusion of fluid molecules and investigations of its
characteristics in a medium with a nanometer pore size were performed in
(Andryushchenko and Rudyak 2011). The matrix porosity u ¼ Vp=V , where Vp is
the pore volume and V is the total volume of the medium, was varied from 0.5 to
0.9, and the fluid density n ¼ Vf =V was varied from 0.07 to 0.565 (Vf is the volume
of the fluid molecules). The characteristic pore size of the simulated medium in
those studies varied from several nanometers to several hundreds of nanometers.
Self-diffusion of molecules of a dense or moderately dense gas was considered in
almost all cases. At the upper limit, the fluid density was close to the liquid density.

A typical porous medium is shown in Fig. 5.15 (left). It is usually simulated by a
system of hard spheres (see Fig. 5.15, right). Therefore, the porous matrix in MD
simulations was represented by cubic packing of spheres with an identical radius;
the packing density and the grain size were varied.

The calculations were performed in a cell (pore) whose boundaries were sub-
jected to periodic boundary conditions, i.e., an infinite porous medium was actually
modeled; the cross-section of the simulated porous space is shown in Fig. 5.16. The
fluid molecules were arranged in the pore of the simulation cell. Interaction of fluid
molecules with each other is always elastic, whereas interaction of fluid molecules
with the grain of the porous skeleton could be either elastic (specular) or inelastic
(diffuse or specular-diffuse). Moreover, adsorption of fluid molecules on the walls
of the porous skeleton could be also modeled.
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A typical shape of the ACFV normalized to the root-mean-square initial velocity
v0 ¼ v=\v2ð0Þ[ for a fluid of density n ¼ 0:0707 is shown in Fig. 5.17. In all
computations, the ACFV had negative value, which corresponds to a typical valley
(cf. Fig. 5.13.) whose depth and position depend on the fluid porosity, fluid density,
and ratio of the fluid molecule size to the particle size in the porous medium. The
emergence of this valley is caused by interaction of molecules with the solid matrix,
similar to the situation in a channel. Significant changes in the ACFV of fluid
molecules in the porous medium lead to smaller values of the diffusion coefficient,
as compared to its bulk value. This is absolutely natural from the physical points of
view; however, it is important to understand what these changes are and how they
depend on the medium and fluid parameters.

One of the most important parameters determining diffusion in a porous medium
is the ratio of the radius of the transported matter molecules r to the particle size of
the porous matrix R. In fact, this ratio determines the characteristic pore size in the
medium. The self-diffusion coefficient was calculated as a function of the parameter

Fig. 5.15 Typical porous medium with large magnification (left) and its simulation by a system of
hard spheres (right)

Fig. 5.16 Computational
domain for MD simulations of
transport processes in a
porous medium
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k ¼ R=r for different values of density, porosity, etc. In all cases, this dependence is
accurately described by the function

D=D0 ¼ a ln kþ b; ð5:9Þ

where the coefficients a and b depend on the system parameters. Hereinafter, the
diffusion coefficient is normalized to its bulk value D0. An example of the com-
putation for the fluid of density n ¼ 0:0707 is shown in Fig. 5.18.

The results of this computation are adequately approximated by the formula
D=D0 ¼ 0:22 ln k� 0:4. The shape of function (5.9) and the values of the corre-
sponding coefficients were determined from the condition of minimization of the
root-mean-square deviation of the considered test function from data obtained in
simulations. Dependences of the form (5.9) were also obtained previously in
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Fig. 5.17 Autocorrelation
function of velocity versus
time (in units of the mean free
time). Curves 1 and 2 show
the results for bulk
self-diffusion and
self-diffusion in a porous
medium, respectively

Fig. 5.18 Normalized
self-diffusion coefficient
versus k
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experimental investigations. A similar dependence was obtained, e.g., in Kim
(1998), in which the experiment was performed in pores with a characteristic size
ranging from 50 to 600 lm. The characteristic pore size in the simulations of
Andryushchenko and Rudyak (2011) was smaller by several orders of magnitude.
Nevertheless, the experimental dependences for the self-diffusion coefficient (Kim
1998) are qualitatively consistent with Eq. (5.9), which apparently testifies to the
more or less universal character of this formula.

The next important characteristic of the system is its porosity. The porosity u of
the medium formed by a pack of hard spheres is naturally related to the grain
(sphere) radius in the pack. It can be easily seen that u ¼ 1� 4p npR3=3, where np
is the density of the grain in the skeleton (number of particles in a unit volume). As
the dependence of the diffusion coefficient on the grain radius is determined by
Eq. (5.9), it is almost obvious that its dependence on the porosity is also determined
by a logarithmic function. It is so indeed; the dependence of the diffusion coefficient
on the skeleton’s porosity is determined as D=D0 ¼ c lnuþ 1, where c is a certain
coefficient depending on the parameters of the considered system. In particular, for
a fluid with n ¼ 0:0707 and k ¼ 25, this dependence has the form

D=D0 ¼ 0:984 lnuþ 1: ð5:10Þ

The corresponding data of MD simulations are plotted in Fig. 5.19, where the
points are the computed results and the solid curve is their approximation with
Eq. (5.10).

As in the bulk, the fluid self-diffusion coefficient significantly depends on the
fluid density. The self-diffusion coefficient is a linear function of the Knudsen
number Kn for different ratios of the radii and different values of porosity values.
An example of such a dependence (for the porosity value u ¼ 0:5) for two different
values of k is given in Fig. 5.20.

Fig. 5.19 Normalized
self-diffusion coefficient
versus the medium porosity
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The Knudsen number of the considered system is determined here as the ratio of
the molecule mean free path to the grain radius of the porous skeleton Kn ¼ l=R.
The behavior illustrated in Fig. 5.20 is typical for ideal gases; in this case, the linear
dependence of D on Kn should correspond to an inversely proportional dependence
of the self-diffusion coefficient on the fluid density. Indeed, the results of simula-
tions showed that D=D0 ¼ a=n, where a is a coefficient depending on the system
parameters. It should be noted that the difference of the self-diffusion coefficient in
the porous medium from the corresponding bulk value for less dense fluids is more
significant than that for denser fluids. This fact is associated with the increase in the
fraction of interactions of fluid molecules with the porous medium in the total
number of interactions (certainly, for an identical characteristic pore size).

In accordance with Eq. (5.6), the self-diffusion coefficient calculated according
to the MD method depends on time. The self-diffusion coefficient proper is obtained
when a plateau value is reached, i.e., when D(t) is no longer time-dependent.
Typical dependences of the self-diffusion coefficients in the porous medium and in
the bulk are compared in Fig. 5.21. Here, the dotted curve shows the bulk value of
the self-diffusion coefficient (n = 0.0707), and the bold solid curve shows the
self-diffusion coefficient in the porous medium at u = 0.5, k = 25, and n = 0.0707.
As follows from the presented data, the function D(t) in the porous medium is not
monotonic. Nuclear magnetic resonance measurements are usually used to study the
self-diffusion coefficient at small times (short-time diffusion) when the molecule
covers a distance smaller than the characteristic pore size. At these times, however,
the dependence of the root-mean-square distance covered by the molecules is
nonlinear (see Fig. 5.21) and is not described by the Einstein-Langevin law.
Therefore, experimental data should be interpreted cautiously. The thin solid curve
in Fig. 5.21 is the approximation of short-time diffusion, which is described by the
relation D=D0 � t�0:22. Thus, the root-mean-square distance covered by the

Fig. 5.20 Self-diffusion
coefficient versus the
Knudsen number. The
triangles and circles show the
results for k ¼ 25 and k ¼ 30,
respectively
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molecule is not a linear function, as is predicted by the Einstein theory; it is
described by the law L2

� �� t0:78, which corresponds to the so-called subdiffusion.

5.7 Modeling of Nanofluid Separation with the Use
of Nanomembranes

The possibility of using nanoporous membranes for separation of gas mixtures has
been intensely discussed in recent years (Chen et al. 2008; Bernardo et al. 2009;
Rajabbeigi et al. 2009). Here, the MD method is actively used for studying the
transport processes, in addition to experimental investigations. In Xu et al. (2000),
the membrane was modeled by a three-dimensional network of pores. The transport
processes and adsorption of gas molecules were considered, and an optimal con-
figuration of the porous structure to ensure the most effective separation of gases
was found. The efficiency of separation of O2/N2 and CO2/N2 gas mixtures in three
zeolite membranes was studied in Jia and Murad (2005). It was found that it is
difficult to separate gases having similar adsorption characteristics and molecule
sizes. In studying separation of the H2/CO mixture in nanoporous carbon mem-
branes (Wu et al. 2008), it was demonstrated that the parameter that produces the
greatest effect on the mixture separation velocity is the characteristic pore size.
Finally, the study of Kozachok (2010) should be mentioned, in which separation of
exhaust gases in nanoporous carbon membranes at high temperatures was inves-
tigated. In particular, an optimal density of the mixture for effective separation of
gases at a temperature of 673 K was determined.

As was noted in previous chapters, interest in the transport processes in nano-
fluids is rapidly increasing. Separation of nanofluids through the use of
nanomembranes is of considerable interest as well. As an example of such

Fig. 5.21 Normalized
self-diffusion coefficient
versus time (in mean free
times)
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separation, we can mention systems that cleanse air and water of viruses, which are
nanoparticles in terms of their size. On the other hand, a nanoporous membrane is a
typical tool for separation of various substances in living organisms. However, the
main factors responsible for the efficiency of separation of a nanofluid passing
through a nanoporous membrane have actually not yet been identified. We try to do
this below, following (Rudyak and Andryushchenko 2014). We study the influence
of the membrane porosity, type of packing of its granules, ratio of the nanoparticle
size to the granule size, ratios of the masses and sizes of the fluid components, and
carrier fluid density on the mixture separation velocity. Simulations were performed
according to the MD algorithm, which is an extension of the algorithm for a system
of hard spheres. Porous membranes were modeled by regular packs of solid par-
ticles (granules). In this section, we present the results of modeling a system with
the granule diameter 4r and nanoparticle diameter 5r, where r is the diameter of
the carrier fluid molecule.

The simulated system is schematically illustrated in Fig. 5.22. The system is a
cell shaped like a parallelepiped with solid walls. Its left part (domain 1) was filled
with a nanofluid at the initial time. The carrier component could be either a fluid or
a gas. Approximately ten thousand molecules were used in a typical computation.
Computations with a substantially greater number of molecules were also per-
formed, but the results obtained were almost unchanged. The bulk concentration of
nanoparticles varied from 1 to 20%.

In domain 2 of the cell (see Fig. 5.22), a membrane was formed from spheres
with an identical diameter. Simple cubic, cubic face-centered, and cubic
body-centered types of particle packing were considered. In addition, the packing
porosity / could be varied (it was changed from 0.3 to 0.6). The porosity was
increased by changing all distances between the pack nodes by an identical factor.
At the initial time, the concentration of fluid molecules in the cell to the right of the
membrane (domain 3) was equal to zero. The volume of this domain was much
greater (by a factor of 100) than the volume of domain 1.

At the initial time, the velocities of molecules and nanoparticles in domain 1
were prescribed in accordance with the Maxwell distribution at a given temperature.
The different in pressure between domains 1 and 3 initiated directed motion of the

Fig. 5.22 Schematic illustration of the computational domain
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nanofluid from left to right. As the nanoparticle diameter was greater than the
characteristic pore size, only carrier gas molecules moved in the course of evolution
of the process to the domain occupied by the membrane (domain 2 in Fig. 5.22) and
then to domain 3, from which practically none of the molecules returned to domains
1 and 2.

The efficiency of nanofluid separation was determined on the basis of the
velocity of molecule transportation through the porous membrane. This velocity
was found in the following manner. First, filling of the membrane with gas
molecules was performed. After that, there was a certain quasi-steady mode of
molecule transportation; during this process, the molecule concentration in the
membrane fluctuated around some constant value. In this mode, the decrease in the
number of molecules in domain 1 was almost equivalent to the increase in
the number of molecules in domain 3. As a result, the molecule transportation
velocity is defined as the rate of change in the carrier gas mass in a unit volume of
domain 3; its value within the time interval dt is Q0 ¼ mðdN=dtÞ, where m is the gas
molecule mass and dN is the number of molecules that entered domain 3 during this
time. For this quantity to be independent of the transverse size of the cell, it should
be divided by the cross-sectional area of the channel S. Thus, the molecule trans-
portation rate is Q ¼ mðdN=dtÞS�1. The system evolution was considered at times
during which the bulk concentration of molecules in domain 1 changed by less than
3–5%. It is in cases of molecules such as this that the transportation could be
considered as a quasi-steady process.

In all cases considered here, the nanofluid separation velocity was proportional
to the carrier fluid density gradient along the entire channel: Q ¼ aðdn=dxÞ, where
a is a certain coefficient and n is the number density. The total mass flux is a sum of
the diffusive Qd and convective Qc fluxes: Q ¼ Qd þQc. The total flux was cal-
culated in the course of MD simulations. The diffusive flux was estimated as
Qd ¼ Dðdn=dxÞ, where D is the diffusion coefficient of molecules in the porous
medium. It was found that the convective flux exceeds the diffusive flux by two
orders of magnitude in all cases considered here. Thus, we can argue that the
process of molecule transportation through the membrane mainly proceeds in the
convective mode.

The proportionality of the mass flux of the filtered gas to the gradient of its
concentration is fairly natural and expected. However, the coefficient a (see the
previous paragraph) defining this proportionality should depend on a number of
factors. First of all, the following should be noted: if the volume of domain 1
(Fig. 5.22) is sufficiently large that a stable and almost constant gradient of the
carrier gas concentration is formed in the cell, then the filtration velocity should be
independent of the bulk concentration of nanoparticles. Indeed, systematic simu-
lations did not reveal this effect. If the membrane thickness H is increased for a
given volume of the computational cell (see Fig. 5.22), then the filtration velocity
decreases inversely proportionally to the membrane thickness. In our simulations,
the membrane thickness was varied from unity to ten diameters of porous skeleton
particles, and it was found that Q�H�1. In this case, the decrease in the filtration
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velocity is actually associated with the decrease in the density gradient, which is
also inversely proportional to the membrane thickness.

Certainly, the filtration velocity should also depend on the membrane porosity.
Figure 5.23 illustrates this dependence for the case when the number concentration
of carrier gas molecules in domain 1 is equal to 0.177, and the volume concen-
tration of particles is 20%. Moreover, the data are given for three different types of
packing of membrane granules: simple cubic, cubic body-centered, and cubic
face-centered packing. In all three cases, the membranes had an identical thickness
and cross-section. The dependence of the separation velocity on the membrane
porosity is nonlinear and is adequately described in all cases by a quadratic function
of /. The greatest separation velocity is provided by the membrane with cubic
body-centered packing of granules. For the minimum porosity considered in this
study, the filtration velocity for simple cubic and cubic face-centered types of
packing of membrane granules is equal to zero, i.e., there is no filtration at all.

The dependence on the packing type is related to the difference in cross-sections
of porous media for different types of granule packing, resulting in different
effective capacities of membranes, even if they have identical porosity values. As
the filtration modeled here is the so-called mechanical filtration (Dimov et al. 2012),
the most important parameter characterizing it is the ratio of the size of filtered
molecules and porous medium granules: r=D.

In turn, the pore throats actually determine the characteristic size of channels
where molecular motion occurs. The pore throat sizes are significantly different in
media with different types of granule packing. For example, for the porosity of 0.5,
the pore throat size is 1.12r for cubic face-centered packing, 1.68r for simple cubic
packing, and 2.12r for cubic body-centered packing. Thus, body-centered packing
is expected to ensure the maximum filtration velocity and face-centered packing is

Q

φ

Fig. 5.23 Mixture separation velocity versus the membrane porosity for the simple cubic
(crosses), cubic body-centered (squares), and cubic face-centered packing of membrane granules
(triangles)
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expected to ensure the minimum filtration velocity, which is confirmed here by the
computations (see Fig. 5.23).

The pore throat size also determines the threshold from which separation begins.
This threshold is also related to the ratio of the sizes of filtered molecules and
porous medium granules [it was experimentally studied in Dimov et al. (2012)]. To
establish this threshold, filtration of particles of different sizes through a filter with a
granule size D was simulated. The results are plotted in Fig. 5.24. Here, the
membrane porosity was 0.6, and cubic body-centered packing was used. The
separation velocity decreased with increasing diameter of filtered molecules and
ceased at D = 1.8r. For this membrane, the pore throat diameter was 1.81r. Thus,
filtration is terminated only when the size of filtered molecules reaches the order of
the pore throat size.

To conclude, it can be noted that the separation process can be controlled by
varying the nanofluid and membrane parameters. In particular, for a given density
of the carrier gas in domain 1, the concentration gradient and, hence, the separation
velocity can be reduced by increasing the membrane’s thickness. The type of
granule packing in the filter plays the governing role in filtration velocity
enhancement.
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Chapter 6
Fluid Transport Under Confined
Conditions

Abstract The viscosity and thermal conductivity of the fluid are determined by the
transport of the impulse and energy in the system considered. In turn, these
transports are defined by and depend on the interaction of the fluid molecules. The
situation in the fluid under confined conditions (e.g., in a nanochannel) is more
complicated, because the transport of the impulse and energy in fluids is highly
dependent on the interaction of the fluid molecules with the wall atoms (or mole-
cules). Therefore, the viscosity and thermal conductivity of such a fluid are the
properties of the entire “fluid+wall” system. In this chapter, the statistical theory of
transport processes in fluids under confined conditions is proposed. The considered
system is the specific two-fluid system consisting of fluid and wall molecules. In the
chapter, the new constitutive relations for the fluid under confined conditions are
proposed. As a result, the Green-Kubo formulas were generalized. Using this new
formula and the molecular dynamics method, the viscosity coefficient of the fluid in
a nanochannel was studied. It is shown that the viscosity coefficient depends, to a
large extent, on the properties of interaction of fluid molecules with channel wall
atoms.

6.1 Physics of the Transport Processes in Fluid

The analysis of methods used to describe flows in microchannels, and especially in
nanochannels (see Chap. 1), shows that it is impossible to use the traditional
hydrodynamic description of the fluid in some typical situations. First, there are
significant fluctuations of density, momentum, and energy in sufficiently small
channels in a physically infinitesimal volume, which does not even allow for
adequate introduction of the hydrodynamic variables themselves. Moreover, there is
one more reason. It was demonstrated in Sect. 5.5 that the flow structure in a
nanochannel is essentially different from the flow structure in a larger volume. In
particular, the fluid density is inhomogeneous, and well-ordered nanolayers of the
fluid are formed near the surface. In fact, there is a quasi-long-range order here.
However, as one of the mechanisms (and the most important one!) determining the
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fluid viscosity is local failure of the short-range order, the presence of such layers
suggests the following conclusion. The fluid viscosity in nanochannels is inho-
mogeneous and may differ significantly from the fluid viscosity in a larger volume.
The same conclusions can be drawn for other transport processes: those of mass and
energy.

The idea that transport processes in nanochannels should differ from the usual
transport processes has been approved long ago. During the last decade, several
attempts were made to calculate or measure the fluid viscosity coefficient in
nanochannels, or even to propose a new model for its description (Popov 2011).
Calculations are usually performed according to the molecular dynamics method
(see, e.g., Travis 2004; Liu et al. 2004; Zhu et al. 2002, 2004; Zhu and Schulten
2003; Kumar et al. 2007; Zhang and Ye 2009; Thomas and McGaughey 2009;
Rudyak et al. 2011 and references therein). The results obtained were versatile and
poorly correlated with each other, but the main idea is fairly obvious: the fluid
viscosity in nanochannels is not equal to its bulk viscosity.

Experimental data (see the review of Abdullaeva and Nagiev 2011) are rather
speculative for reasons that are easy to understand. First of all, it is impossible to
measure the fluid viscosity in sufficiently small channels. Therefore, some integral
data on the flow are used, which are then interpreted from a macroscopic viewpoint.
Nevertheless, it should be noted that available experimental data confirm the higher
effective viscosity of the fluid in nanovolumes, as compared to its macroscopic
value (Li et al. 2007).

It was noted above that the formation of fluid viscosity occurs at mesoscales
whose characteristic scale is on the order of at least ten nanometers. Therefore,
some caution is needed in discussing the fluid viscosity in nanochannels whose
characteristic size is smaller than that at which fluid viscosity is formed. The same
goes for other transport processes, though the energy (heat) transfer mechanisms
differ from that of momentum. However, before trying to develop a theory of such
processes, we have to define how these processes are understood. Let us consider an
arbitrary molecular system: gas, liquid, or solid. As molecules are permanently
moving, there are always local fluctuations of density, momentum, and energy in
any system. In the general case, because of a very large number of molecules and
the absence of correlations of molecular states, these fluctuations have a random
character.1 In the equilibrium state, these fluctuations are inversely proportional to
the square root of the number of particles in the system: N�1=2. Therefore, there are
no visible fluctuations in equilibrium macroscopic systems with N � 1. In
nonequilibrium systems, however, there are fluctuations of observed variables at
scales much greater than the molecular scale. Fluctuations of the quantity / are
schematically shown in Fig. 6.1 (left picture) in the form of a dark region. The
gradient of this variable is leveled off with time, until the entire domain becomes

1Strictly speaking, in solids, there is some correlation of motion of crystal lattice atoms by virtue of
the orderliness of the configurations. Nevertheless, the number of molecules is also so large that
the motion of atoms can be considered as stochastic.
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homogeneous (Fig. 6.1, right picture). Thus, the transition to the equilibrium state
means elimination of large-scale fluctuations.

Reaching the equilibrium state is accompanied by transport processes, i.e.,
processes of level-off of various macroscopic characteristics of the system (density,
momentum, or energy). Let us again recall that transport processes are processes
that lead to elimination of large-scale fluctuations.

Weakly nonequilibrium transport processes are characterized by linear consti-
tutive relations, where the fluxes Ji are proportional to gradients of macroscopic
variables:

J1a ¼ �
X
b

lab11rmb � lab13rT ; J2 ¼ pU� l022ðr � uÞU� l22ðruÞs;

J3 ¼ �l33rT �
X
a

la31rma:
ð6:1Þ

Here, J1a; J2, and J3 are the diffusion vector, stress tensor, and heat flux vector,
respectively, T is the temperature, u is the macroscopic velocity, and ma ¼ fa=T ,
where fa is the chemical potential of the component a and lij are the transport
coefficients.

Transport processes in rarefied gases are easily interpreted; they are induced by
transfer of the corresponding microscopic quantity at scales on the order of the
mean free path of molecules. Transport processes in liquids are more complicated.
For example, viscosity is caused not only by momentum transfer in molecular
collisions, but also by failure of the short-range order and by diffusion processes of
momentum transfer in the system. Near the surface, an important factor of
momentum equalization in the flow is interaction of fluid molecules with molecules
of the surface. In a nanochannel with a characteristic transverse size on the order of
5 nm, almost 50% of all interactions of fluid molecules are their collisions with
molecules of the channel wall. Under such conditions, it makes no sense to talk
about the viscosity of an individual fluid. Fluid viscosity should be considered as a
property of the entire system consisting of the fluid and nanochannel walls.
Certainly, it is not easy to study such “viscosity” experimentally. To develop
appropriate tools, it is first necessary to create an adequate theory of transport
processes, which will be used for interpreting experimental data and their modeling.

0φ 0≠∇ =∇ φ

Fig. 6.1 Illustration of level-off of the gradient of a macroscopic variable / in a closed system
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6.2 Statistical Theory of Transport Processes

Transport processes in micro- and nanochannels are multi-scales processes. On the
one hand, they are formed at mesoscales; on the other hand, they also proceed at
both macro- and nanoscales. Therefore, an adequate theory can be developed only
with the use of formalism that is suitable for all of these scales. This can be done
only on the basis of the first principles. Such formalism was constructed in (Rudyak
and Belkin 2014, 2015) through methods of nonequilibrium statistical mechanics.
Our considerations presented below are based on these publications.

6.2.1 Dynamic Description of the Fluid-Surface System

As the states of the molecules of the fluid and channel walls are essentially different
(in particular, the walls are stationary, whereas the fluid moves), the system is a
kind of two-fluid medium. It is proposed below to describe the properties of such a
medium by using tools developed earlier for disperse systems (Rudyak and Belkin
1994, 1996). In this case, the system consisting of the fluid and channel walls is
considered as a two-phase medium, in which each phase consists of molecules of
the same type and is characterized by its own macroscopic variables: density,
velocity, and temperature. The system dynamics is described by an N-particle
distribution function FN , which satisfies the Liouville equation (see Rudyak 2005)

@FN=@tþ LNFN ¼ 0; ð6:2Þ

where the Liouville operator is defined as

LN ¼
X2
a¼1

XNa

i¼1

pi
ma

� @

@ri
þ 1

2

X2
u¼1

XNu

j¼1

Fij � @

@pi
� @

@pj

 !( )" #
:

Here, mi; ri, and pi are the mass, coordinate of the center of mass, and
momentum of the i-th molecule of phase a. The force Fij of intermolecular inter-
action may be non-potential in the general case, which does not alter the structure of
the Liouville operator.

The state of the system is characterized by partial values of the number density
of particles na, momentum pa, and energy Ea. These are averaged values of the
corresponding dynamic variables, which can be written by virtue of their additivity
in the form of local (at the point r) densities of these variables:

n̂a rð Þ ¼
XNa

i¼1

d ri � rð Þ; p̂a rð Þ ¼
XNa

i¼1

p̂id ri � rð Þ; Êa rð Þ ¼
XNa

i¼1

Êid ri � rð Þ ð6:3Þ
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Acting with the Liouville operator on the dynamic densities (6.3), we can derive
transport equations for them (Rudyak 2005):

n̂
�
a ¼ �r � Ĵ1a; p̂

�
a ¼ �r � Ĵ2a þ ĵ2a; Ê

�
a ¼ �r � Ĵ3a þ ĵ3a: ð6:4Þ

The operators of the flux of the number of molecules Ĵ1a, momentum flux Ĵ2a,
and energy flux Ĵ3a, and also the operators of the interphase forces ĵ2a and ĵ3a, are
defined as follows:

Ĵ1a ¼
XNa

i¼1

pi
ma

d ri � rð Þ;

Ĵ2a ¼
XNa

i¼1

pipi
ma

d ri � rð Þþ 1
2

Xf ;b
u

XNu

j¼1

rijFij

Z1
0

dgd rj � rþ grij
� �2

4
3
5;

ĵ2a ¼
1
2

XNa

i¼1

XNu 6¼a

j¼1

Fij d ri � rð Þþ d rj � r
� �� �

;

Ĵ3a ¼
XNa

i¼1

piEi

ma
d ri � rð Þþ 1

4

XNa

i¼1

Xl
u¼1

XNu

j¼1

pi
ma

þ pj
mu

� �
� rijFij

Z1
0

dgd rj � rþ grij
� �

;

ĵ3a ¼ 1
4

XNa

i¼1

XNu 6¼a

j¼1

Fij � pi
ma

þ pj
mu

� �
d ri � rð Þþ d rj � r

� �� �
:

The macroscopic values of the density naðr; tÞ, momentum paðr; tÞ, and energy
Eaðr; tÞ of the system are obtained by averaging of the local densities (6.3) over the
ensemble FN :

naðr; tÞ ¼
Z

dxn̂aðrÞFNðtÞ;

paðr; tÞ ¼ manaðr; tÞuaðr; tÞ ¼
Z

dxp̂aðrÞFNðtÞ;

Eaðr; tÞ ¼
Z

dxÊaðrÞFNðtÞ;

ð6:5Þ

The macroscopic velocities of the fluid (marked by f Þ and body walls (marked
by bÞ are defined as uf r; tð Þ ¼ pf r; tð Þ=mf nf and ub r; tð Þ ¼ 0, because the walls are
at rest.

The transport equations for macroscopic variables are obtained by averaging of
the transport equations for local dynamic densities (6.3) over the ensemble FN .
Passing for the fluid to a local fluid-fitted coordinate system, which moves with
respect to the laboratory coordinate system with the velocity uf , we obtain
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dnf
dt

¼ �nfr � uf ; dnb
dt

¼ 0;
d
dt

¼ @

@t
þ uf � r;

qf
duf
dt

¼ �r � J02f þ j2f ;
dub
dt

¼ 0;

dE0
f

dt
¼ �E0

fr � uf �r � J03f
� J02f þ Jfb
� �

:ruf � jfb � uf þ j03f ;

dE0
b

dt
¼ �r � J03b � j03f þ Jfb:ruf :

ð6:6Þ

Here, A ¼ Â
D E

, the angular brackets denote averaging over the ensemble FN ,

and all primed quantities are obtained from the corresponding non-primed quan-
tities by means of the momentum transformation: p0i ¼ pi � maua. We also
introduce additional microscopic densities

Ĵfb ¼ � 1
4

XNf

i¼1

XNb

j¼1

rijFij

Z1
0

dgd rj � rþ grij
� �

; ĵfb ¼
1
2

XNf

i¼1

XNb

j¼1

Fijd ri � rð Þ;

typical for multi-fluid systems (Rudyak and Belkin 1996; Rudyak 2005).

6.2.2 Nonequilibrium Distribution Function

Derivation of the transport equations and constitutive relations reduces to finding
the solution to Eq. (6.2) for an appropriately chosen shortened description. By
virtue of the linearity of Eq. (6.2), its solution can be sought as a sum of the
quasi-equilibrium distribution function FN0 and the dissipative function
FN1:FN ¼ FN0 þFN1. The function FN0 is found from the condition of the extre-
mum of the information entropy

S ¼ �k
Z

dCNFN0 lnFN0

for prescribed mean values of the parameters of the number of particles, momen-
tum, and energy of particles of each phase, i.e., from the condition of the extremum
of the functional

�k
X
b

Z
dCN FN0 lnFN0 � ða0b þ 1ÞFN0 þ

X
i

Z
draibA

_

ibðrÞFN0

" #
;

where aib are the Lagrangian multipliers. The resultant distribution function cor-
responds to the two-fluid quasi-equilibrium description of the system. In finding
FN0, it should be taken into account that the macroscopic velocity of the walls is
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equal to zero, whereas the temperatures of the walls and the fluid can differ from
each other. As a result, we easily see that

FN0 ¼ Q�1
0 exp �

Z
dr bf r; tð ÞÊ0

f rð Þ � mf r; tð Þn̂f rð Þþ bb r; tð ÞÊb rð Þ � mb r; tð Þn̂b rð Þ� �� 	
;

Q0 ¼ exp �
Xl
a¼1

X3
k¼1

Z
gka r; tð ÞĜ0

ka rð Þ
( )* +

:

ð6:7Þ

The Lagrangian multipliers gka are chosen so that g3a ¼ ba ¼ 1=kTa is the local
inverse temperature of the component
a; g1a ¼ ba �la þmau2a=2

� �
; g2a ¼ �baua; ma ¼ �ba1a, and 1a is the local chemi-

cal potential. The mean values of the number density of particles of the component
a and its energy calculated over the quasi-equilibrium ensemble (6.7) are

n̂a rð Þh i0¼
d lnQ0

dma rð Þ ; Ê0
a rð Þ
 �

0¼
d lnQ0

dba rð Þ :

Here, averaging over the ensemble (6.7) is marked by the zero subscript at the
angular brackets. For the thermodynamics of the system to be determined by the
function FN0, we have to require that the macroscopic variables coincide with their
quasi-equilibrium values:

na r; tð Þ ¼ n̂a rð Þh i0; E0
a r; tð Þ ¼ Ê0

a rð Þ
 �
0:

As FN0 is an even function with respect to the momentum p0i and relative
coordinates rij, the mean values of non-diagonal elements of the stress tensor and
the tensor Jfb calculated on the basis of this function are equal to zero:

J002f r; tð Þ ¼ 1
3

Ĵ
0
2f rð Þ:U

D E
0
¼ pf r; tð ÞU; J0fb r; tð Þ ¼ 1

3
Ĵ0fb rð Þ:U
 �

0¼ pfb r; tð ÞU:

Here, pf is the partial pressure of the fluid, which is assumed to be isotropic, and
U is the unit tensor of the second rank. For the same reason, other fluxes and
interphase forces are also set to zero. As a result, the transport equations for the
considered fluid in the quasi-equilibrium approximation (which corresponds to the
Euler equations in conventional fluid dynamics) have the form

dnf
dt

¼ �nfr � uf ; qf
duf
dt

¼ �rpf ;
dE0

f

dt
¼ � E0

f þ pf þ pfb
� �r � uf ; ð6:8Þ

Equation (6.8) are derived on the basis of the ensemble FN0 and do not describe
dissipative processes in the system. To construct the nonequilibrium distribution
function, we have to solve the linear inhomogeneous equation
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@FN1=@t þ LNFN1 ¼ � @FN1=@tþ LNFN1ð Þ: ð6:9Þ

The right-hand side of this equation contains derivatives with respect to the time
of hydrodynamic variables, which are determined from the transport equation (6.6)
with the use of the total distribution function (marked by the subscript 1):

qf
duf
dt

� �
1
¼ �r � J012f þ j12f ; qb

dub
dt

� �
1
¼ �r � J012b � j12f ¼ 0;

dE0
f

dt

� �
1
¼ �r � J013f � J012f þ J1fb

� 

:ruf � j1fb � uf þ j013f ;

dE0
b

dt

� �
1
¼ �r � J013b þ J1fb:ruf þ j1fb � uf � j013f :

The method for solving Eq. (6.9) was developed and described in detail by
Rudyak (1987). Omitting cumbersome transformations, we present the final explicit
form of the nonequilibrium distribution function for the system of nonspherical
particles considered here:

FN1 tð Þ ¼ p t; t0ð ÞS Nð Þ
� t�t0ð ÞFN1 t0ð Þ

þ
Xf ;b
a

X5
k¼1

Z t

t0

dt1

Z
dr
Z

dr0p t; t1ð ÞS Nð Þ
� t�t1ð ÞFN0 t1ð ÞDIka � Yka r0; t1ð Þ;

DIka ¼ Îka r; r0ð Þ � I0ka r; r0ð Þ:
ð6:10Þ

Here, S Nð Þ
� t�t1ð Þ is the displacement operator over the trajectory of N particles. The

operator p t; t1ð Þ has the form of an infinite series in thermodynamic forces (Rudyak
and Belkin 1996; Rudyak 2005). For weakly nonequilibrium systems (which cor-
respond to the Navier-Stokes approximation in conventional fluid dynamics), it is
sufficient to retain only the first term of this series, which is equal to unity. The
fluxes Îka and thermodynamic forces Ŷka are defined as
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Î1f ¼ Ĵ01f rð Þ d r� r0ð Þ � bf rð Þ
nf rð Þ

dpf rð Þ
dmf r0ð Þ
� �� �

; Î1b ¼ Ĵ01b rð Þd r� r0ð Þ; Y1a ¼ �r0ma;

Î2f ¼ Ĵ02f rð Þþ Ĵfb rð Þ� �
bf d r� r0ð Þ

� E0
f r0ð Þþ pf r0ð Þ þ pfb r0ð Þ� �

n̂f rð Þ dmf rð Þ
dE0

f r0ð Þ
� �

nf

�Ê
0
f rð Þ dbf rð Þ

dE0
f r0ð Þ

� �
nf

" #
U

� nf r0ð Þ n̂f rð Þ dmf rð Þ
dnf r0ð Þ
� �

nf

�Ê
0
f rð Þ dbf rð Þ

dnf r0ð Þ
� �

nf

" #
U;

Î2b ¼ pfb r0ð Þ n̂b rð Þ dmb rð Þ
dE0

b r0ð Þ
� �

nb

�Ê
0
b rð Þ dbb rð Þ

dE0
b r0ð Þ

� �
nf

" #
U; Y2a ¼ �r0 � ua;

Î3f ¼ Ĵ03f rð Þd r� r0ð Þ þ p̂0f rð Þ bf rð Þ
mf nf rð Þ

dpf rð Þ
dbf r0ð Þ

 !
mf

; Î3b ¼ Ĵ03b rð Þd r� r0ð Þ;

Y3a ¼ �r0ba;

Î4f ¼ �ĵ2f rð Þbf d r� r0ð Þ; Y4f ¼ uf ; Y4b ¼ 0;

Î5f ¼ ĵ
0
3f þ 1

2
ĵ2f rð Þ � uf

� �
d r� r0ð Þ; Y5f ¼ bf � bb; Y5b ¼ 0:

ð6:11Þ

In these expressions, the subscript nf at the brackets means that the expression in
brackets is determined at a fixed value of the concentration of fluid molecules.

6.2.3 Constitutive Relations and Transport Coefficients

The nonequilibrium ensemble (6.10) allows one to obtain close transport equations
of fluid in flows confined by channel walls, based on Eq. (6.6). The constitutive
relations for the stress tensor, heat flux vector, and interphase forces involved in
these equations are non-local and delaying in the general case:

f ia r; tð Þ ¼ f ia r; t0ð Þþ f0ia r; tð Þ

þ
X5
k¼1

Xl
b;/

Z t

t0

dt1

Z
dr0
Z

dr00Mkb
ia r; r0; r00; t � t1ð Þ � Ykb r00; t1ð Þ; ð6:12Þ

where i = 1, 2, … 7, f0ia r; tð Þ ¼ f̂ ia r; tð Þ
D E

0
;
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f̂1a ¼ Ĵ01a; f̂2a ¼ Ĵ02a; f̂3a ¼ Ĵ03a; f̂4a ¼ ĵ2a; f̂5a ¼ ĵ03a;

f̂6f ¼ Ĵfb; f̂7f ¼ ĵfb; f̂6b ¼ f̂7b ¼ 0:

The relaxation transport kernels in these formulas are defined as

Mkb
ia r; r0; r00; t � t1ð Þ ¼ f̂ ia rð Þp t; t1ð ÞS Nð Þ

� t�t1ð Þ f̂kb rð ÞDIkb r0; r00ð Þ
D E

0
; ð6:13Þ

As the quasi-equilibrium distribution function is an even function over the
momentum and relative coordinates of molecules, it can be demonstrated that the
transport kernels (6.13), which are odd over these variables, are equal to zero.
Moreover, the constitutive relations (6.12) are simplified if the bulk viscosity is
neglected, i.e., only the symmetric nondivergent part (denoted below by s in
superscript) of the stress tensor and the tensor Jfb is left:

J0s2f r; tð Þ ¼ J0s2f r; t0ð Þþ
Z t

t0

dt1

Z
dr0 Ĵ0

s
2f rð Þp t; t1ð ÞS Nð Þ

� t�t1ð ÞD Ĵ0
s
2f r0ð Þþ Ĵ

s
fb r0ð Þ

� 

:bfruf r0ð Þ

D E
0
;

j2f r; tð Þ ¼ j2f r; t0ð Þþ 1
2

Z t

t0

dt1

Z
dr0 ĵ2f rð Þp t; t1ð ÞS Nð Þ

� t�t1ð ÞDĵ2f r0ð Þ � bf þ bp
� �

uf r0ð Þ
D E

0
;

J03f r; tð Þ ¼ J03f r; t0ð Þ

�
Z t

t0

dt1

Z
dr0
Z

dr00
*
Ĵ03f rð Þp t; t1ð ÞS Nð Þ

� t�t1ð ÞD

 
Ĵ03f r0ð Þþ p̂f r0ð Þ bf r0ð Þ

mf nf r0ð Þ

dpf r0ð Þ
dbf r00ð Þ

 !
mf

1
A � rbf r00ð Þ

+
0

;

j03f r; tð Þ ¼ j0s3f r; t0ð Þþ
Z t

t0

dt1

Z
dr0 ĵ03f rð Þp t; t1ð ÞS Nð Þ

� t�t1ð ÞD ĵ03f r0ð Þ bf r0ð Þ � bb r0ð Þ� �D E
0
;

Jsfb r; tð Þ ¼ Jsfb r; t0ð Þþ
Z t

t0

dt1

Z
dr0 Ĵ

s
fb rð Þp t; t1ð ÞS Nð Þ

� t�t1ð ÞD Ĵ0
s
2f r0ð Þþ Ĵ

s
fb r0ð Þ

� 

:bfruf r0ð Þ

D E
0
;

jfb r; tð Þ ¼ jsfb r; t0ð Þþ 1
2

Z t

t0

dt1

Z
dr0 ĵfb rð Þp t; t1ð ÞS Nð Þ

� t�t1ð ÞDĵ
0
2f r0ð Þ � bf þ bb

� �
uf r0ð Þ

D E
0
:

ð6:14Þ

In the general case, the constitutive relations (6.14) are nonlinear, nonlocal, and
delaying rheological relations. Several types of nonlocality can be identified. Spatial
nonlocality is caused by nonlocality of molecular interaction, retaining of correla-
tions, and statistical effects, which are induced by interaction of physically small
volumes of the fluid. Two types of nonlocality in the generalized constitutive
relations should be distinguished: nonlocality associated with spatial correlations of
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dissipative fluxes and thermodynamic forces and nonlocality caused by the nonlocal
character of relaxation transport kernels.

The characteristic scale of nonlocality of the first type lc has the order of the
correlation length, i.e., the length at which the relaxation transport kernels have
nonzero values. For gases far from the critical point, the correlation length turns out
to be on the order of the mean free path of molecules. The characteristic scale of
nonlocality of the second type is related to the sizes of the internal structural ele-
ments of the medium. Therefore, depending on the considered medium, it varies
from r0 � l to a certain value ln � l, or even ln � L. Thus, ln 6¼ lc in the general case.

The delay of the generalized constitutive relations is caused by the finite velocity of
propagation of disturbances in the medium and by the finite time of interaction of its
structural elements. As in the case of spatial nonlocality, two types of temporal non-
locality can be identified: nonlocality associated with the time correlations of fluxes
and thermodynamic forces and nonlocality caused by temporal nonlocality of the
evolutionoperator and, hence, relaxation transport kernels. The characteristic scales of
thefirst sc and second sn types of temporal nonlocality in the general case are not equal
to each other either. Under standard conditions in gases and liquids, the second type of
temporal nonlocality has the characteristic scale on the order of the time of molecular
interaction (Rudyak 1987). For this reason, this type of nonlocality at the hydrody-
namic level of the flow description can be neglected if the gradients of the hydrody-
namic variables are not very large. However, under extreme conditions, in which the
changes in the macroscopical variables are significant at scales on the order of r0 and
times on the order of s0, taking into account the nonlocality of this type is principally
important. In particular, unusual equations of the state of the medium can be obtained
by taking into account the temporal nonlocality of relaxation transport kernels.

Transport coefficients can be introduced into the constitutive relations only if
nonlocality and delay of thermodynamic forces can be neglected by means of taking
them away from the integral sign in Eq. (6.14). Moreover, in the linear approxi-
mation in terms of thermodynamic forces, it may be assumed that p t; t0ð Þ ¼ 1 and
the initial values of the fluxes and interphase forces can be ignored. In this case, the
fluid transport equations take the form

dnf
dt

¼ �nfr � uf ; qf
duf
dt

¼ �rpf �r � lsff þ lsfb
� 


:rusf � mfb � uf ;
dE0

f

dt
¼ �E0

fr � uf �r � kff � rbf �r � kfb � rbb � lsff þ lsfb þ lsbf þ lsbb
� 


:ruf :ruf

þ rfb:ufuf þ-fb bf � bb
� �

;

ð6:15Þ

For simplicity, we do not write the stress tensor components responsible for bulk
viscosity here, and the remaining coefficients in the general case are tensors:
lsff ; l

s
fb; l

s
bf , and lsbb are tensors of the fourth rank, mfb; kff , and rfb are tensors of the

second rank, and -fb is a scalar. All of these quantities depend on the spatial
coordinate and are determined by the formulas
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lff rð Þ ¼ bf

Z
dr1

Z t

t0

dt1 Ĵ0
s
2f rð ÞS Nð Þ

� t�t1ð ÞDĴ
0s
2f r1ð Þ

D E
0
;

lfb rð Þ ¼ bf

Z
dr1

Z t

t0

dt1 Ĵ0
s
2f rð ÞS Nð Þ

� t�t1ð ÞDĴ
s
fb r1ð Þ

D E
0
;

lbf rð Þ ¼ bf

Z
dr1

Z t

t0

dt1 Ĵ
s
fb rð ÞS Nð Þ

� t�t1ð ÞDĴ
0s
2f r1ð Þ

D E
0
;

lbb rð Þ ¼ bf

Z
dr1

Z t

t0

dt1 Ĵ
s
fb rð ÞS Nð Þ

� t�t1ð ÞDĴ
s
fb r1ð Þ

D E
0
;

kff rð Þ ¼
Z

dr1

Z t

t0

dt1 Ĵ03f rð ÞS Nð Þ
� t�t1ð ÞĴ

0
3f r1ð Þþ p̂0f r1ð Þ bf r1ð Þ

mf nf r1ð Þ
dpf r1ð Þ
dbf r1ð Þ

 !
mf

* +
0

;

kfb rð Þ ¼
Z

dr1

Z t

t0

dt1 Ĵ03f rð ÞS Nð Þ
� t�t1ð ÞĴ

0
3b r1ð Þ

D E
0
;

-fb rð Þ ¼
Z

dr1

Z t

t0

dt1 ĵ03f rð ÞS Nð Þ
� t�t1ð ÞD̂j

0
3f r1ð Þ

D E
0
;

rfb rð Þ ¼ 1
2

bf þ bp
� � Z

dr1

Z t

t0

dt1 ĵfb rð ÞS Nð Þ
� t�t1ð Þ ĵ

0
2f r1ð Þ

D E
0
;

mfb rð Þ ¼ 1
2

bf þ bp
� � Z

dr1

Z t

t0

dt1 ĵ2f rð ÞS Nð Þ
� t�t1ð Þ ĵ2f r1ð Þ

D E
0
:

ð6:16Þ

It should be noted that the hydrodynamic velocity ub in the case of incom-
pressible channel walls is equal to zero. From the conditions of equality of the
absolute value of the interphase forces j2f ¼ j2b and the equation
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qb
dub
dt

¼ �r � J02b þ j2b ¼ 0;

it follows that j02f ¼ �r � J02b, and the fluid velocity evolution equation can be
written in the divergent form as

qf
duf
dt

¼ �rpf �r � lsff þ lsfb þ lsb
� 


:rusf : ð6:17Þ

Thus, the fluid viscosity under confined conditions is not only determined by
interaction of fluid molecules with each other (which is the responsibility of the
tensor coefficient lsff ); the effective viscosity coefficient also includes contributions
that describe interaction with the surface; the latter is determined by the relation

lsb rð Þ ¼ bb

Z
dr1

Z t

t0

dt1 Ĵ0s2b rð ÞS Nð Þ
� t�t1ð ÞDĴ

s
fb r1ð Þ

D E
0
: ð6:18Þ

The transport equations can be further simplified in systems possessing the
properties of symmetry. For an isotropic medium, the transport kernels (6.13) and
the corresponding transport coefficients (6.16) are scalar quantities multiplied by
isotropic tensors. Thus, for an isotropic medium, the local constitutive relations
reduce to

J02f r; tð Þ ¼ pf r; tð ÞU� lsff þ lsfb þ lsb

� 

rusf ; J03f r; tð Þ ¼ kffrbf þ kfbrbb;

j2f r; tð Þ ¼ 0; j03f r; tð Þ ¼ xfb bf � bb
� �

;

Jfb r; tð Þ ¼ � lsbf þ lsbb

� 

rusf ; jfb r; tð Þ ¼ �rfbuf :

ð6:19Þ

The scalar transport coefficients are obtained by applying the convolution of the
tensor coefficients; for example, the components of the shear viscosity and thermal
conductivity coefficients that take into account interaction of fluid molecules with
each other are determined by the formulas
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bf
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Z
dr1

Z t

t0

dt Ĵ0
s
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� t�t1ð ÞĴ
0s
2f ðr1Þ

D E
;

lfb rð Þ ¼ bf

Z
dr1

Z t

t0

dt1 Ĵ0s2f rð Þ:S Nð Þ
� t�t1ð ÞDĴ

s
fb r1ð Þ

D E
0
;

lsb rð Þ ¼ bb

Z
dr1

Z t

t0

dt1 Ĵ0s2b rð Þ:S Nð Þ
� t�t1ð ÞDĴ

s
fb r1ð Þ

D E
0
;

kff rð Þ ¼ 1
3

Z
dr1

Z t

t0

dt1 Ĵ03f rð Þ � S Nð Þ
� t�t1ð ÞĴ

0
3f r1ð Þþ p̂0f r1ð Þ bf r1ð Þ

mf nf r1ð Þ
dpf r1ð Þ
dbf r1ð Þ

 !
mf

* +
0

;

kfb rð Þ ¼
Z

dr1

Z t

t0

dt1 Ĵ03f rð Þ � S Nð Þ
� t�t1ð ÞĴ

0
3b r1ð Þ

D E
0
;

rfb rð Þ ¼ 1
2

bf þ bp
� � Z

dr1

Z t

t0

dt1 ĵfb rð Þ � S Nð Þ
� t�t1ð ÞDĵ

0
2f r1ð Þ

D E
0
:

ð6:20Þ

Thus, in the simplest situation, the fluid transport equations under confined
conditions have the following form:

dnf
dt

¼ �nfr � uf ; qf
duf
dt

¼ �rpf �r � lsff þ lsfb þ lsb

� 

rusf

h i
;

dE0
f

dt
¼ �E0

fr � uf �r � ðkffrbf Þ � r � ðkfbrbbÞ � lsff þ lsfb þ lsbf

� 

ruf :ruf

þ rfbu2f þ-fb bf � bb
� �

:

ð6:21Þ

Here, the continuity equation has a traditional form. In the momentum equation,
the shear viscosity coefficient ðlsff þ lsfb þ lsbÞ is now a complex variable, which is
determined not only by momentum transfer in the fluid volume, but also by
interaction of fluid molecules with confining surface molecules. In fact, the vis-
cosity coefficient of the fluid is only the first term in this expression. The second
term, lfb, has the same structure as lff , but is determined by interaction of fluid
molecules with atoms of the channel walls. Moreover, there arises one more term,
lb, which has no analogs in traditional statistical mechanics of transport processes
in a simple fluid. It is caused by correlation of intermolecular forces of the fluid and
channel walls. Therefore, it is clear that the transport coefficients in sufficiently
small channels are significantly different from the transport coefficient in the bulk of
the fluid.
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The energy transport equation is principally different from the traditional
equation. It contains three additional source terms caused by interaction of fluid
molecules with atoms of the channel walls. The first source term is induced by the
change in the kinetic energy of fluid motion due to interaction of its molecules with
ambient surfaces. Two other terms are caused by heat fluxes arising due to a
possible difference in temperature between the walls and the fluid. If the walls and
the fluid have identical temperatures, the last equation of system (6.21) is simplified
and reduces to

dE0
f

dt
¼ �E0

fr � uf �r � ðkff þ kfbÞrbf
� �� lsff þ lsfb þ lsbf

� 

ðruf Þ2 þ rfbu2f :

The thermal conductivity of the fluid and its viscosity are now also determined
by interaction of fluid molecules with atoms of the channel wall.

Thus, the transport coefficients of the liquid or gas in the nanochannel do not
coincide with the corresponding bulk values; moreover, they are determined by
certain other parameters in addition to those of the fluid. Studying the fluid
momentum and energy transport processes, it is necessary to introduce the viscosity
and thermal conductivity of the “fluid-surface” system.

On the other hand, the constitutive relations (6.14) in the general case have a
rather complicated structure and, possibly, look strange to specialists working in
terms of transport coefficients. Typical aspects of the traditional CFD approach are
scalar, homogeneous, and isotropic transport coefficients. It should be borne in
mind that they cannot be used for the flow, e.g., in a carbon nanotube, where all
fluid molecules permanently interact with molecules of the tube wall. Spatial and
temporal nonlocality of transport processes and their anisotropy are properties of
principal importance for such systems. Nevertheless, the influence of these effects
becomes more pronounced as the system’s size increases. In the limiting case of
macroscopic systems, the classical hydrodynamic equations are naturally obtained,
and interaction of the fluid with the surface is taken into account only by boundary
conditions (e.g., slip or no-slip conditions). Let us consider which relations are valid
in systems of various sizes.

As was already noted, for nanochannels several nanometers in diameter or
similar nanoporous systems, it is necessary to use Eq. (6.14). Probably, the only
alternative for detailed studies of transport processes is the use of molecular
dynamics (MD) simulations, and there are many recent investigations of this kind.
Nevertheless, the MD method does not provide a direct answer to the question as to
what the viscosity or thermal conductivity coefficient is and whether it is possible to
determine this parameter for this or that system. In activities in which MD simu-
lations were used to study nanoflow characteristics, attempts were sometimes made
to write the usual CFD equations and Green-Kubo formulas for transport coeffi-
cients. Obviously, the use of this approach is not grounded for such small systems.

In nanochannels about ten nanometers in diameter, it is possible to identify a
near-wall region and a region where fluid molecules do not directly interact with the
wall. Here, it becomes possible to neglect the nonlocality and delay of
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thermodynamic forces and to introduce transport coefficients; however, it should be
taken into account that these coefficients are anisotropic (i.e., these coefficients are
tensors) and inhomogeneous.

The influence of anisotropy and inhomogeneity becomes less pronounced as the
system’s size increases; apparently, the transport Eq. (6.21) will be valid for
channels and pores with characteristic sizes of several tens of nanometers.
Nevertheless, the volume of near-wall regions of intense fluid-wall interaction is not
infinitesimal either. Therefore, a correct description of transport processes may
require a hybrid description with different equations for the near-wall and internal
regions.

Within the framework of the developed approach, the transport equations for the
near-wall regions determine the boundary conditions for the classical CFD equa-
tions for the fluid in the internal region. It is because of the presence of the
near-wall region that the no-slip boundary condition on the channel walls is
replaced by the slip condition typical for microflows. Thus, the results of this work
can be used to analyze the influence of various characteristics of microflows on the
slip length and on the momentum and energy accommodation coefficients.

Even if the stress tensor and the heat flux vector can be expressed via the
effective coefficients of viscosity and thermal conductivity, the constitutive relations
contain additive terms corresponding to fluid-fluid and fluid-surface interactions.
Thus, the transport coefficients of the liquid or gas in the nanochannel do not merely
fail to coincide with the corresponding bulk values; they are not determined by the
fluid parameters alone. Studying the fluid momentum and energy transport pro-
cesses, it is necessary to take into account the viscosity and thermal conductivity of
the fluid-surface system.

6.3 On Fluid Viscosity in the Nanochannel

In the first section of the present chapter, we described a statistical theory of
transport processes under confined conditions. Using this theory, it is possible to
derive closed transport equations and constitutive relations for transport coeffi-
cients; analogs of these equations in unconfined systems are the Green-Kubo
relations. It was shown that momentum and energy transport in fluid flows in
nanochannels and, possibly, in sufficiently small microchannels cannot be described
on the basis of the fluid properties alone. Viscosity and thermal conductivity are no
longer properties of the fluid itself; they become properties of the fluid-surface
system. The only method that can be used to study these properties is the molecular
dynamics method. The viscosity of fluids in nanochannels is studied below
according to this method.

It is further assumed that the fluid and the walls of the plane channel constraining
the fluid have an identical temperature. In this case, the stress tensor is determined
by the formula
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J2 ¼ � lsff þ lsfb þ lsb

� 

rusf ffi �leffrusf ; ð6:22Þ

where the viscosity coefficients are determined by the fluctuation-dissipative the-
orems (6.20).

To calculate the temporal correlation functions included in the
fluctuation-dissipative relations (6.20), it is necessary to use the MD method. This
method is applied below to calculate the effective viscosity coefficient leff of the
fluid in a plane nanochannel between two parallel plates (Fig. 6.2). The channel
walls are two square plates parallel to the xy plane and consisting of two rows of
atoms. The atoms are located in nodes of a cubic face-centered lattice. Periodic
boundary conditions are applied to the channel boundaries parallel to the yz and xz
planes.

The plate length L is chosen in such a manner that the results remain unchanged
as the plate length increases. The main parameters of the channel walls are the
distance between them or the channel height h and the constants of the interaction
potential between the wall and fluid molecules.

All intermolecular interactions are described below by the truncated
Lennard-Jones potential

UðrÞ ¼ 4eab
rab
r

� �12� rab
r

� �6� 

� U0; r
RC

0; r[RC

(
; ð6:23Þ

where r is the effective diameter, e is the depth of the potential well, RC is the radius
of action of the potential, r ¼ ri � rj

�� �� is the distance between the molecule centers,
and a; b ¼ f ; b. The radius of action of the potential is taken to be Rc ¼ 2:5rff , and
the shift of the potential U0 is determined from the condition UðRCÞ ¼ 0. The
parameters of interaction of fluid molecules with the walls’ atoms are calculated on
the basis of the constants of interaction of individual substances by the following
combination relations: rfb ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

rffrbb
p

and efb ¼ ffiffiffiffiffiffiffiffiffiffi
eff ebb

p
.

Fig. 6.2 Computational cell.
The dark and light circles
show the molecules of the
channel walls and of the fluid,
respectively. The arrows
show the velocities of the
molecule located at the
channel boundary with
periodic boundary conditions
and of its copy
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The effective viscosity coefficients calculated for such systems are compared
with the viscosity coefficient of the corresponding fluid in an unconfined system
modeled by a cubic cell filled with molecules with periodic boundary conditions in
all directions. Here, an additional problem arises, which is often not mentioned in
publications aimed at modeling transport coefficients in nanochannels. This is
determination of the effective concentration of molecules in the channel. Obviously,
zones inaccessible for molecules are formed near the walls. In this case, the
effective volume of the channel decreases, and it is not clear with which open
system the fluid in the nanochannel should be compared and what the reduced
concentration of molecules nr3 should be. For this reason, the results obtained in
the nanochannel and in the bulk are compared below for an identical pressure (and,
naturally, identical temperature). This is consistent with a typical experimental
situation.

First, let us consider the influence of variations of the wall’s material properties
on the effective viscosity coefficient of the fluid, i.e., the influence of the interaction
constants rbb and ebb. For this purpose, we calculate the viscosity coefficients of
argon with rff = 3.405 Å and eff =k = 119.8 °K in channels with different properties
of the walls. The fluid temperature is 160 K, and the reduced concentration of
molecules is nr3 ¼ 0:4. The parameters of the wall molecules are varied.

Variations of the effective size of wall molecules rbb are found to produce a
minor effect on the viscosity coefficient. However, the latter is significantly affected
by variations of ebb and efb. The left-hand picture in Fig. 6.3 shows the viscosity
coefficient g� ¼ g=g0 normalized to the fluid viscosity coefficient in the bulk g0 as a
function of ebb in the channel with h = 20.4 Å and rbb = 3.405 Å. If the values of
the parameter e of the fluid and wall molecules are close to each other, the viscosity
coefficient in the channel increases by several tens of percent. However, as inter-
action between the fluid atoms and wall molecules becomes less intense, the

Fig. 6.3 Normalized viscosity coefficient of argon versus the parameter of the interaction
potential of the wall and fluid molecules, h ¼ 20:4 Å (left). Normalized viscosity coefficient of
argon versus the height h (Å) of the channel composed of argon molecules (circles) and carbon
molecules (squares)
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viscosity coefficient decreases, and even becomes smaller than g0. This behavior is
caused by the fact that the number of intermolecular interactions of the fluid
molecules in the channel becomes smaller than that in the volume. Thus, the
viscosity of the fluid placed in the nanochannel can be expected to decrease in
systems with ebb � eff and to increase in systems with ebb � eff . This conclusion is
confirmed in Fig. 6.3 (right), which shows the viscosity coefficient as a function of
the channel height for channels whose walls are made of different materials. It is
seen that the viscosity really decreases in the nanochannel with walls made of
carbon whose molecules have a small value of e(rbb = 3.4 Å and ebb=k = 28 K). At
the same time, if the constants of interaction of the fluid and wall molecules are
identical, the viscosity increases. In both cases, the difference of the viscosity
coefficient from g0 monotonically increases with decreasing channel height.

Figure 6.4 shows the normalized viscosity coefficient of benzene (rbb = 5.04 Å
and ebb=k = 440 K) as a function of the channel height for carbon walls. As in the
previous case, the small value of the parameter e of the channel for all molecules
leads to a decrease in viscosity, which is fairly considerable.

Thus, the viscosity of the fluid in the nanochannel in the general case differs
from its bulk viscosity. The viscosity coefficient depends, to a large extent, on the
properties of interaction of fluid molecules with channel wall atoms; enhanced
interaction leads to an increase in viscosity. However, a decrease in viscosity can
also be observed in the case of small values of the interaction constant efb.
Therefore, in channels with identical shapes as those of the walls and identical
roughness, it is possible to control the properties of fluid transport in the channel
and the flow characteristics by varying the wall’s material. It should be noted that
the above-mentioned reduction of the effective viscosity coefficient will also lead to
reduction of hydraulic resistance on the walls, which is usually attributed to the slip
effect. However, we can see that the physical nature of the observed reduction of
hydraulic resistance is absolutely different.

Fig. 6.4 Normalized
viscosity coefficient of
benzene versus the channel
height h (Å) for carbon walls

6.3 On Fluid Viscosity in the Nanochannel 235



References

Abdullaeva S, Nagiev F (2011) Nanohydrodynamics. Scientific Center of Higher Technology,
Baku

Kumar P, Starr FW, Buldyrev SV, Stanley HE (2007) Effect of water-wall interaction potential on
the properties of nanoconfined water. Phys Rev E 75:011202

Li T-D, Gao J, Szoszkeiwicz R, Landman U, Riedo E (2007) Structured and viscous water in
subnanometer gaps. Phys Rev B 75:115415

Liu Y-C, Wang Q, Lu L-H (2004) Transport properties of fluids in micropores by molecular
dynamics simulation. Chin J Chem 22:238–242

Popov IY (2011) Statistical derivation of modified hydrodynamic equations for nanotube flows.
Phys Scr 83:045601

Rudyak VY (1987) Statistical theory of dissipative processes in gases and liquids. Nauka,
Novosibirsk

Rudyak VY (2005) Statistical aerohydromechanics of homogeneous and heterogeneous media.
Hydromechanics, vol 2. NSUACE, Novosibirsk

Rudyak VY, Belkin AA (1994) Statistical hydromechanics of two-phase media. J Aerosol Sci 25
(1):S387–S388

Rudyak VY, Belkin AA (1996) The equations of multi-fluid hydrodynamics. Math Model 8
(1):33–37

Rudyak VY, Belkin AA (2014) Fluid viscosity under confined conditions. Dokl Phys 59(12):604–
606

Rudyak VY, Belkin AA (2015) Statistical mechanics of transport processes of fluids under
confined conditions. Nanosystems Phys Chem Math 6(3):366–377

Rudyak VY, Belkin AA, Ivanov DA, Andrushenko VA (2011) Self-diffusion and viscosity
coefficients of fluids in nanochannels. In: Proceedings of 3rd micro and nano flows conference,
Thessaloniki, Paper 1-74

Thomas JA, McGaughey AJH (2009) Water Flow in carbon nanotubes: transition to subcontinuum
transport. Phys Rev Lett 102:184502

Travis KP (2004) Viscosity of confined inhomogeneous nonequilibrium fluids. J Chem Phys 121
(21):10778–10786

Zhang ZH, Ye H (2009) Pressure-driven flow in parallel-plate nanochannels. Appl Phys Lett
95:154101

Zhu F, Schulten K (2003) Water and proton conduction through carbon nanotubes as models for
biological channels. Biophys J 85:236–244.

Zhu F, Tajkhorshid E, Schulten K (2002) Pressure-induced water transport in membrane channels
studied by molecular dynamics. Biophys J 83:154–160

Zhu F, Tajkhorshid E, Schulten K (2004) Collective diffuision model for water permeation through
microscopic channels. Phys Rev Lett 93:22450

236 6 Fluid Transport Under Confined Conditions



Chapter 7
Conclusions

Abstract Though micro- and nanoflows have been successfully investigated for
several decades, we can honestly say that we are still at the very beginning of the
road. The goal of this chapter is to discuss the main problems which have to solve
in future. The experimental problems of the micro and nanoflows studying and their
modeling are analyzed. Then the transport processes in nanochannels and nano-
pores are considered. Complexity of these processes in general case is their non-
locality. Finally, the last part deals with discussing the applicability of the similarity
parameters to model the nanofluid flow.

Though micro- and nanoflows have been successfully investigated for several
decades, we can honestly say that we are still at the very beginning of the road, a
fact that will require a lot of effort to overcome. Nevertheless, it is clear that the
currently existing paradigm of development of microsystem technologies and
nanotechnologies in the 21st century requires this path to be explored as quickly as
possible. It is obvious, however, that this path will not be easy to traverse and there
will be unpredictable obstacles. Even now, after at least three decades of serious
effort, there are still no clear criteria for what can and cannot be considered as a
microflow. In this aspect, the situation with nanoflows is more definite: all flows
with a characteristic size smaller than one hundred nanometers are nanoflows by
definition. It seems reasonable to consider microflows in the same manner. For
example, all flows with a characteristic size smaller than five hundred micrometers
could be considered as microflows. However, many of these flows may exhibit the
classical behavior. On the other hand, it is almost always possible today to predict
the situations in which the nonclassical behavior of microflows can be expected.

It is also important to understand that experimental data obtained for microflows,
and especially nanoflows, should be treated cautiously. The point is that the
majority of experimental techniques are based on the classical relations derived for
macroscopic flows. Moreover, only integral information can be obtained in nano-
flows (and often in microflows), and its interpretation can be less than unique.
Therefore, the success in studying these problems depends on the tools used for
investigations and on the methods used for interpretation of the experimental data.
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On the other hand, results of simulations can also be rather conventional. In fact,
the absolute majority of data obtained in microflow simulations are the results of
traditional computational fluid dynamics. Usually, nobody even raises the question
as to whether such simulations are justified in such situations. It was mentioned
above that fluid dynamics modeling is somewhat rough and is often used far beyond
the area of its formal applicability. If the results of such modeling are definitely
outside the area of applicability of CFD, their importance and reliability should not
be overestimated.

Because of limitations of both experimental research and simulations, it is
obviously necessary to use both methods for studying microsystems. Examples of
such combined modeling (both physical and mathematical) are given in this book.
We can even say that combining experimental investigations of microflows with
simultaneous simulations is the only method for obtaining reliable information. In
particular, this is caused by the fact that methods of adequate interpretation of
experimental data are developed in the course of formulating the problem for
mathematical modeling and solving this problem.

The situation with nanoflows is even more complicated. First of all, experimental
investigations of such flows are extremely difficult for several reasons. On the one
hand, there are no necessary tools available. On the other hand, if such tools were
available, it would be necessary to develop an appropriate theory of measurements,
as was done in quantum mechanics. Perturbations, which are inevitably inserted
into the nanoflow in the course of measurements, may drastically change the flow’s
character. Let us emphasize again that only some integral information about
nanoflows can be obtained today; moreover, when we say “integral information,”
we do not even mean obtaining data on integral properties of the flow (e.g., flow
rate), which is obviously implied. The situation is aggravated by the fact that such
investigations provide information about an ensemble of nanoflows, rather than
about an individual nanoflow. A typical example is a system of nanochannels. The
flow rate is measured throughout the entire system. A similar situation is observed
for the decrease in pressure, i.e., with the force of resistance along the channel. In
such situations, the classical hydrodynamic theories are usually used for data
interpretation. For example, the pressure drop is described by the Darcy law relating
the filtration velocity u with the pressure drop as

u ¼ � k=gð Þrp; ð7:1Þ

where g is the viscosity coefficient of the filtered fluid and k is the so-called
permeability. Here, we make two mistakes simultaneously. First, it is implied that
the fluid viscosity has the same value in microchannels, nanochannels, and
macrochannels. It is clear today that this is not so, but the differences in these
situations are not yet understood. Interpretation of measured results with the use of
Eq. (7.1), for example, may yield different values of permeability. The final result is
determined by the fluid viscosity coefficient used. The error may be several times or
several orders of magnitude. Thus, for example, in the experiments (Holt et al.
2006) with water filtration through a nanoporous membrane, its permeability turned
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out to be higher by three orders of magnitude than the value predicted in CFD
simulations.

Such an unusual result (Holt et al. 2006) is caused, in particular, by the important
role of transport processes in microflows, and especially in nanoflows. Moreover,
the main problem is not the fact that transport processes are no longer isotropic and
homogeneous like the corresponding processes in the volume. The problem is that
momentum and energy transfer under confined conditions and, hence, the fluid
viscosity and thermal conductivity are no longer the properties of the fluid itself.
These properties are determined, to a large extent, by interaction of fluid molecules
with channel wall atoms. As a result, as is demonstrated in Chap. 6, the processes of
fluid transport under confined conditions are described by a set of
fluctuation-dissipative theorems, which are principally different from the known
Green-Kubo formulas.

The fluid in the nanochannel is always structured, and there is a near-wall layer
with a characteristic size on the order of several nanometers, where the transport
processes are essentially different. In this sense, both the fluid viscosity and thermal
conductivity under confined conditions are inhomogeneous.

There is one more point that should be borne in mind in considering micro- and
nanoflows. It does not make much sense to describe such flows through the use of
usual global parameters of similarity. The characteristic sizes of a microchannel
may be significantly different. The Reynolds numbers based on the width and
height of a rectangular channel may also significantly differ from each other. For
example, the flow in a rectangular channel whose width is one hundred times
greater than its height and whose height is equal to 1 µm cannot be considered as a
plane channel, though such a situation is admissible in macroscopic flows. The
roughness of the channel wall also plays an extremely important role in such flows.
The presence of roughness elements can essentially alter the flow’s character. This
fact can be illustrated by the following simple example. The typical height of
roughness elements in well-treated macroscopic channels (e.g., glass tubes) is
usually several micrometers. Through use of special treatment, the roughness height
can be further reduced several more times. In macroscopic channels, this roughness
is mainly considered as being negligibly small. However, it generates perturbations
that trigger the laminar-turbulent transition (though roughness is not the only reason
for that). In a plane channel with the characteristic distance between the plates on
the order of 0.1 m, perturbations generated by roughness elements several
micrometers high are small for this kind of flow. In this case, the laminar-turbulent
transition will follow the classical scenario. However, if such roughness elements
are present in a microchannel with the characteristic size of 100 µm, they generate
perturbations of finite amplitude, and the transition to turbulence occurs in an
absolutely different manner. It is clear from this example that local criteria of
similarity should be taken into account in microflows in addition to global criteria.

A large part of this book deals with nanofluids, in particular, nanoflows. What
conclusions can be drawn here? First, a nanofluid is not a standard fluid, and its
properties are not described by the classical relations. Certainly, this could be
expected. Fluids with coarse particles are macroscopic objects. The carrier fluid and

7 Conclusions 239



the disperse particles are macroscopic objects, both individually and as a whole, as
long as the properties of the carrier fluid are described by methods of dynamics of
continuous media. At the same time, a nanofluid is a mesoscopic object, and
disperse particles occupy an intermediate position between the usual molecules
(microscopic objects) and macroscopic particles. The main difference separating
nanofluids from fluids with coarse particles is their unusual thermophysical prop-
erties, which depend not only on the nanoparticle concentration, but also on the
nanoparticle size and material. The current state of research allows for simulation of
nanofluid flows on the basis of reliable data on transport coefficients. After all,
adequate modeling of such flows will become possible. It should be borne in mind,
however, that the traditional hydrodynamic description of flows, even in sufficiently
large microchannels, may fail. Concerning small microchannels, and especially
nanochannels, standard hydrodynamic methods, including the two-fluid descrip-
tion, are inapplicable. It is necessary to use a hybrid kinetic-hydrodynamic
description or molecular dynamics method.

The second important fact that should be taken into account in modeling and
interpreting experimental data is the fact that the use of similarity parameters tra-
ditionally used in physics and fluid dynamics may yield inadequate results. Among
popular similarity parameters, probably the only parameter that can be definitely
used is the Reynolds number Re ¼ ðqULÞ=g. However, it should be borne in mind
that different nanofluids may correspond to identical Reynolds numbers. The sit-
uation with the Prandtl number Pr ¼ ðCpgÞ=k is extremely severe. Here, the vis-
cosity and thermal conductivity coefficients exhibit the opposite dependences on the
nanoparticle size. In the general case, they also exhibit the opposite behaviors due
to temperature variation. Therefore, similarity in terms of the Prandtl number may
mean nothing at all: it is just that different nanofluids correspond to different Prandtl
numbers (Rudyak et al. 2017). A similar situation in the general case also refers to
the Nusselt number.
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