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Preface

In its simplest terms, star formation is the combination of processes that, in the
context of very low-density interstellar gas, brings a certain amount of material to
the point where the force of gravity exceeds all other opposing forces, resulting
in collapse. On the theoretical side, one of the early significant accomplishments
in the development of this concept was the determination, by Sir James Jeans in
1928, of what is now called the “Jeans length”, one of the important conditions
needed for the collapse in the interstellar medium to begin. Observationally, an
early convincing piece of evidence in favor of the above hypothesis was the
discovery, for example, by Walter Baade, that hot massive stars, that must be young,
were associated with dust clouds and relatively dense interstellar gas in the spiral
arms of galaxies outside the Milky Way, such as M31. In the last few decades,
progress in understanding the details of this basic picture has been extraordinarily
rapid. Observationally, the development of large ground-based telescopes and space
observatories, and especially the opening up of the infrared and millimeter regions
of the spectrum, have revealed the intricate structures of star-forming regions.
Theoretical advances, based in part on the availability of high-powered computers,
have begun to link together the various important physical and chemical processes
that must be involved in star formation. Nevertheless, many basic questions, such
as why the stars have the range in mass that is observed, and what decides whether
a star is going to end up as a single object or a binary, are just beginning to be
understood.

An impressive range of time scales and length scales are involved in the star
formation process. Star formation began in the early Universe, only a few hundred
million years after the Big Bang. Considerable research effort has been devoted to
the chronicling of the history of the star formation rate throughout the entire history
of the Universe. Star formation can occur at a relatively modest rate, such as in
isolated regions of molecular clouds in our Galaxy, or at a moderate rate, such as
in local regions of star cluster formation, or at quite a rapid rate, as in starburst
galaxies. The length scales involved in star formation are measured in parsecs, the
typical size of molecular clouds, while the sizes of the end products are measured
in the range 0.1–10 solar radii, up to 9 orders of magnitude smaller. As a result
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vi Preface

a wide variety of physical processes must be considered. Clearly radiative transfer
is of paramount importance, as the radiation from the star-forming regions forms
the main link between the actual physical events and the observer. Hydrodynamical
flows, including turbulent flows, and orbital mechanics are also key elements of
the physical picture, but they must be supplemented by additional effects, including
chemistry, atomic physics, nuclear physics, magnetic fields, and the properties of
matter, for example, the equation of state of a gas. Thus the study of star formation
brings together a rich diversity of physical processes, with the result that a rather
complex theoretical model must be generated to interpret the observational data,
which themselves are continuously increasing in resolution and detail.

The main theoretical methods applied in astrophysics range from the very
approximate “back of the envelope” calculations, used to derive order-of-magnitude
estimates from the fundamental laws of physics, to rigorous analytic theory, based
in part on linear perturbation theory, to large-scale numerical simulations, based
on approximate representation of the differential equations involved in the rigorous
theory. There is usually an interplay between all three of these theoretical methods,
and in this book the reader will find examples of each. However, the more recent
theoretical results rely heavily on the numerical approach, as the complexity of
the processes involved makes the purely analytical approach intractable. Analytical
results play an important role as test cases against which to check the numerical
codes, and the order-of-magnitude estimates serve as a “reality check” as to the
physical reasonableness of the results. Even so, the reader is advised to maintain a
critical attitude toward the details of particular numerical simulations, no matter how
flashingly displayed. Many simulations involve magnetohydrodynamics in three
space dimensions coupled with radiation transfer, a system of equations that can
tax the computing power of even the most sophisticated modern machines. Is the
numerical resolution sufficient to represent the important physical effects? Are
the approximations, needed to weed out insignificant effects, justifiable? Has the
simulation been run for a long enough time to provide a significant comparison
with observations? Are there hidden numerical effects that significantly degrade the
solution? Only by continual detailed testing of the numerical results can progress be
assured.

As an introduction to the science of star formation, this book concentrates on
the interpretation of observations in star-forming regions relatively nearby, in our
own Galaxy, at the present time, where the most detailed and accurate results can
be obtained. An excursion is made into the realm of the early Universe and the
formation of the first stars, although no observations are as yet available to validate
the theory. The range of observed phenomena includes turbulent clouds, magnetic
fields, star-forming cores in molecular clouds, infrared protostellar sources, outflows
and jets, Hertzsprung–Russell diagrams of young stellar clusters, disks around
young stars, and multiple stellar systems. Observations over wavelengths ranging
from the X-rays, at 1 nanometer or less, to the radio, at 1 centimeter or greater,
are relevant. While the details of the observational and theoretical results are likely
to change in the future as this developing subject evolves, many of the basic
concepts should still remain appropriate. The on-going nature of research in this
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area is emphasized in the final chapter, which makes clear that there are numerous
fundamental questions still to be resolved.

As an introductory text, this book does not, for the most part, go into “first-
principles” derivations of the physical equations. Many other reliable sources are
available to provide this information. The treatment may be regarded as somewhat
simplified, in order to provide a general view of the subject rather than a rigorous
discussion of the many important details. As such, the text should be useful for
beginning-level graduate courses in astrophysics, as well as for the more advanced
undergraduate courses for students who have had a few years of physics courses as
well as an introduction to the basic concepts of astronomy. The student wishing to
go into more depth on a specific topic is advised to first consult the Annual Review
of Astronomy and Astrophysics, whose articles are written by experts in the field.
And finally, the author acknowledges the many contributions to the substance of
this book that were made by the graduate students in Astronomy and Astrophysics
at the University of California, Santa Cruz, who took the course in Star Formation,
the lecture notes for which formed the basis for this text.

Santa Cruz Peter Bodenheimer
May 2011
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Chapter 1
Overview

The process of star formation occupies a critical position in astrophysics, because
understanding of it is required for progress to be made on other fundamental
problems, including stellar evolution, the energetics of the interstellar medium
(ISM), galactic evolution, and the formation of planetary systems. However, in
contrast to the theory of most phases of stellar evolution, the theory of star formation
is not definitive, owing partly to the complexity of the physical processes involved,
and partly to the fact that stars form in dusty regions of the Galaxy where they
are obscured in the optical region of the spectrum. In recent years, however,
observational progress has been rapid as a result of the opening up of substantial
capabilities in the infrared and millimeter wavelengths, where the obscuration is
much reduced. An extensive survey of the observed properties of star-forming
regions within 2 kiloparsecs of the Sun has been published [430].

An example of the intersection of star formation with stellar evolution and with
processes in the interstellar medium is given in Fig. 1.1. Although it just represents
a hypothetical example, it illustrates the fact that cyclic processes do occur. The
sequence of events starts with the formation of an association of massive stars
in a molecular cloud and continues with the formation of HII regions from the
ionizing radiation of the massive stars. The hot ionized regions provide a mechanism
for the disruption of the molecular cloud [500, 547], and the strong winds from
the massive stars as well as their sequential explosions as supernovae, when they
reach the end of their life, contribute as well. New molecular clouds can form by
a process that is not yet well understood. One possibility involves agglomeration
of the shells of expanding material resulting from the disruption of the old clouds.
Exactly how these shells are collected into giant molecular clouds is unknown, but
the process could involve density waves, which are prominent features in the disks
of spiral galaxies. A second possibility involves a large amount of material in the
interstellar medium, which could become unstable to collapse under gravity. The
cycle concludes with the formation of dense regions in the new molecular clouds and
of stars within them. Alternatively, the supernova shocks could propagate through
the interstellar medium and initiate star formation in a distant dense region. In
Fig. 1.1, the upper line of text in the boxes refers to physical processes that are

P.H. Bodenheimer, Principles of Star Formation, Astronomy and Astrophysics Library,
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2 1 Overview

Fig. 1.1 A possible cycle connecting star formation, stellar evolution, and interstellar matter is
illustrated. Note that two or more processes may be in operation at any given time. For example,
the first supernova may occur before complete disruption of a cloud by ionization has occurred

occurring in stellar evolution or in the interstellar medium, and the lower line refers
to the consequences of those physical processes.

This book concentrates on two aspects of the problem. First, the theory of star
formation must be based on fundamental physical processes that interact over a
rather wide range of conditions of temperature, density, and length scale. Second,
observations, over a wide wavelength range, serve to test the theories, which is
best done in relatively nearby regions in our galaxy; however more distant regions,
also in external galaxies, are providing more and more information as observational
sensitivity and resolution improve. Exciting progress has been made, both on the
theoretical and on the observational side; however, the answers to many fundamental
questions are not well understood. The question mark in the box labelled “Star
Formation” means that although we do know the basic physical laws and processes
that must be involved in star formation, the ways in which these processes interact in
a complicated system is an unsolved problem. The range of length scales involved –
from parsec scales in molecular clouds down to the order of a solar radius – adds to
the difficulties. The following list gives, in no particular order, the major individual
processes that are currently being investigated and which must be included in the
solution of the overall problem.



1.1 Basic Questions: Star Formation 3

• Hydrodynamics of collapse of material under gravity, including magnetic fields
when they are significant

• The equation of state of a multi-phase gas, including heating, cooling, dissocia-
tion, and ionization

• Molecular chemistry and the determination of the abundances of the molecules
whose line emission is observed

• Radiative transfer, as it affects the continuous and line spectra of clouds,
protostars, disks, and young stars

• Turbulence and convection in the interstellar gas, in protoplanetary disks, and in
protostars and young stars

• The physics of dust particles, including their formation, growth, destruction,
interaction with the gas, and their properties for the absorption and emission of
radiation

• Shock waves, for example resulting from accretion of gas onto a star or disk, or
from a supernova explosion that later interacts with a relatively dense region of
the interstellar medium and initiates star formation.

The complete solution to the star formation problem, including all of these effects
and specification of relevant initial conditions, is so difficult that actual research
work incorporates only a limited set of the important physical processes, along with
some simplifying approximations. In the process of reducing the problem to the
point where it is soluble, it is important to identify which processes are the most
important in a particular region of density and temperature. Even reduced problems
are not in general soluble by analytical techniques, and numerical simulations must
be employed.

1.1 Basic Questions: Star Formation

The following questions represent some of the most important points among the
wide range of problems that need to be investigated. Progress toward the solution of
these problems is discussed in more detail later in the book.
1. How does one understand the rate and efficiency of star formation as a
function of time and position in our galaxy and in external galaxies, and
how are these quantities measured? The rate of recent star formation in the
disk of the Galaxy is estimated to be about 1–4 Mˇ yr�1. A common procedure
for the determination of the rate is to measure the intensities of emission lines,
especially H˛, in the ionized regions surrounding hot O and B type stars. These
measurements are converted into star formation rates through the use of the physics
of the ionized regions, estimates of the masses and lifetimes of the stars involved,
and an integration over the OB associations in the Galactic disk. There are various
other ways of estimating this rate, in our galaxy and in external galaxies, based
on luminosities in the ultraviolet (UV), optical, infrared, and radio portions of the
spectrum [103,356]. The observations in almost all cases produce the star formation
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rate of massive O and B stars, and this rate is extrapolated using a standard initial
mass function (see below) to include the lower masses. The lifetime of the OB
stars is short, so the rate is a measure of the current star formation rate; it does
not necessarily reflect the rate of star formation in the distant past in the Galaxy.
The problem is that the rate seems to be unexpectedly slow, based on the facts that
(1) practically all star formation takes place in molecular clouds, (2) the thermal
gas pressure in molecular clouds is not sufficient to keep them in hydrostatic
equilibrium, and (3) thus the overall rate of star formation in the Galaxy might be
expected to be roughly the total mass in molecular clouds (2 � 109 Mˇ) divided
by their free-fall time (4 � 106 yr assuming a typical particle density of 100 H2

molecules per cm3), or 500 Mˇ yr�1. The free-fall time is the time required for a
pressureless gas of initially uniform density �0 to collapse to a point singularity of
infinite density (see Appendix to this chapter for derivation):

tff D
�

3�

32G�0

�1=2

: (1.1)

Thus some other source of support, besides thermal pressure, is required to keep the
molecular clouds from collapsing [576]. This conclusion is supported by the fact
that the widths of spectral lines in molecular clouds are far broader than one would
expect from thermal effects alone.

Another problem is the explanation of the density dependence of the local rate
of star formation in galaxies. The original formulation by Schmidt [449], based on
observations in our galaxy, stated that the rate of star formation is proportional to
the square of the local gas density �. The modern version of Kennicutt [247], based
on observations in many external galaxies, including starburst galaxies, gives

Ṗ� D constant � ˙1:4
g (1.2)

where Ṗ� is the rate of conversion of gas into stars in, for example, solar masses
per year per kpc2 and ˙g is the local surface density in solar masses per pc2 (see
Fig. 1.2). The power 1.4 is somewhat uncertain. An alternative form of this relation
is that the star formation rate is proportional to the ratio of ˙g to the orbital time
scale 2�=˝ , where ˝ is the average angular velocity of the orbit of the region being
considered.

In general the surface density is defined to be

˙ D
Z

�d z (1.3)

where z is the coordinate along the line of sight, and the integration proceeds through
the entire thickness of the galaxy. In the case of disk galaxies, the quantity ˙g is
corrected for the inclination of the disk to our line of sight, so that the integration
is normal to the plane of the galaxy. This quantity is more easily observationally
determined in a distant galaxy than is the actual mass density �, and as a result the
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Fig. 1.2 The Kennicutt–Schmidt star-formation law [247], where the vertical axis gives Ṗ
�. Filled

circles: samples taken from normal disk galaxies; open circles: samples taken from the centers of
normal disk galaxies; squares: samples of starburst galaxies. The solid line is a least-squares fit to
the filled circles and squares; it has a slope of 1.4. The short diagonal gives an indication of the
uncertainly in the slope. Its slope of 1.28 was derived by reducing the star-formation rate in the
starburst galaxies by a factor 2, because systematic errors tend to overestimate the rate. Reproduced
by permission of the AAS from [247]. c� The American Astronomical Society

Kennicutt relation is an average star formation rate over some region of a galaxy. In
the figure, the star formation rate in normal disk galaxies is measured by the strength
of the H˛ line of hydrogen, which again is an indicator of massive star formation
through radiation from their HII (ionized hydrogen) regions, while the gas density is
measured from HI (neutral hydrogen) plus CO (with a correction factor to convert it
into the H2 density) for the molecular gas. In high-luminosity starburst galaxies, the
far-infrared luminosity is a good indicator of the star formation rate, since most of
the radiation from the young massive stars is absorbed by the dust and is re-radiated
in the infrared; in normal disk galaxies some of that radiation is not absorbed. CO
is used to estimate the surface density. However the resulting relation must be true
only in a rough overall sense. Local star formation in our Galaxy appears to occur
only in the very densest regions of molecular clouds, while the Kennicutt relation
is based on an average over a wide range of densities in external galaxies. A theory
involving turbulence-induced star formation in molecular clouds [278, 282] in fact
agrees very well with the data shown in Fig. 1.2 as well as with more modern data.
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Correspondingly, the efficiency of star formation is found to be low, where we
provisionally define “efficiency” to mean the fraction of the mass of a molecular
cloud that is actually transformed into stars during the lifetime of the cloud. This
quantity is crucial for models of galactic evolution. It is generally quoted to be only
2–5% in the galaxy as a whole, although it can be far higher in starburst galaxies.
Roughly the efficiency can be estimated to be

�sf � PM��=M; (1.4)

where PM� is the rate of star formation in the entire disk of the galaxy at the
present time, M is the total mass in molecular gas, and � is the lifetime of a
molecular cloud. Thus this quantity is the ratio of the lifetime of a molecular cloud
to the characteristic time for conversion of molecular cloud material into stars.
The difficulty here is that � is not easily measured. If one puts in approximate
numbers, �sf � 4 Mˇ yr�1 � 107 yr=.2 � 109 Mˇ/ � 2%. Here, the lifetime
of a typical molecular cloud, � 107 yr, is estimated from the ages of clusters as
determined from stellar evolutionary tracks along with observations of the molecular
gas that is associated with the clusters [313]. Young clusters (ages < 5 � 106 yr) are
associated with large amounts of molecular gas, while clusters with ages >107 yr
are associated with much less such gas. Other methods of estimating the lifetime
of clouds yield, however, different results, and there is considerable debate on this
issue. For example, � is found to be 27 ˙ 12 Myr for a sample of giant molecular
clouds in our Galaxy with masses � 106 Mˇ [375]. In a different sample, in a lower
mass range in the vicinity of the Sun, the estimate for � is � 5 Myr [28]. Clearly the
term “efficiency” can have several different meanings, and it is further discussed in
Sect. 2.8.

2. How does a cloud fragment to form clusters and associations of stars? We
know that stars can form either in isolation or in small groups or in massive clusters
and associations. Observational studies indicate that the typical star forms in a small
cluster of a few hundred objects [289]. The fraction of stars formed in each mode
still needs to be determined more precisely. The efficiency of star formation in the
cluster mode must be locally much higher than in the molecular cloud as a whole.
For example, measurements of the star formation efficiency in several very young
clusters embedded in molecular clouds [289], simply from the ratio of star mass to
total mass (stars plus gas), yield efficiencies ranging from 10% to 30%. However,
theoretical results [3,184,229] show that if a cluster forms and reaches approximate
virial equilibrium, and if its massive stars disperse the residual gas quickly (i. e.
in less than a dynamical time, which is roughly the free-fall time of the cluster),
through the effects of stellar winds, protostellar outflows, and ionizing radiation,
the system becomes gravitationally unbound unless at least 50% of the original gas
mass has been converted into stars [288]. Examples of this process in action are the
so-called OB associations, which contain young massive stars; the associations are
not gravitationally bound but are expanding. In general stars are probably formed
predominantly in clusters, but in most cases the clusters disperse because the star
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formation efficiency was relatively low. The typical dispersal time is estimated to be
a few Myr. About 10% of the stars in the galaxy at present do exist in clusters, which
suggests that at least in a few cases the star formation efficiency must have been
around 50%. However it is also possible for at least some of the stars in a cluster
to remain bound even for efficiencies considerably less than 50%, depending on
the initial velocity distribution of the stars [3], or the spatial distribution of gas and
stars, or if the gas is removed slowly, on time scales much longer than a dynamical
time [184,290]. Still, the basic question of how the clusters formed in the first place
remains unresolved.

3. Under what conditions is a “trigger”, such as an external shock or a cloud–
cloud collision, required to initiate star formation? Is it required for high-mass
star formation only? Or is it necessary only in an indirect sense, for example, to
bring a region of a molecular cloud into a state where it can form stars by a more
gradual, spontaneous process? There are several distinct scenarios for the initiation
of star formation:

(a) Star formation by evolution of molecular cloud material on a relatively long
time scale, controlled by the magnetic field, to the point where small regions
reach high enough densities to become unstable to collapse [459];

(b) Star formation as a result of supersonic turbulence and random shock interac-
tions in the interstellar medium, leading to transient dense regions which could,
under the right conditions, collapse [158];

(c) Induced star formation by the action of supernova shocks, spiral density
wave shocks, stellar winds, ionization fronts, cloud–cloud collisions, or galaxy
mergers (e.g. [162]).

One of the main tasks of present star-formation research is to sort out the relative
importance of these various possibilities. In the case of induced star formation there
is at least some observational evidence that it takes place, but at least some of the
plausible mechanisms require the prior presence of stars, formed by some other,
spontaneous, process.

4. Do high-mass stars and low-mass stars form by different processes? By “high-
mass” we mean the range 10 Mˇ or above, while “low-mass” generally refers to the
range around 1 Mˇ. Observations show regions of molecular clouds where both
high-mass and low-mass stars are forming, and other regions where only low-mass
stars appear to form. What is the relation between high-mass and low-mass star
formation, both in time and in space? One suggestion [459] is that low-mass stars
form by gradual diffusion of gas in magnetically controlled regions of molecular
clouds, while high-mass stars form more quickly in regions where the gravitational
energy dominates the magnetic energy, so that collapse occurs even in the presence
of the field.

According to a different point of view, star formation is controlled primarily
by turbulence in molecular clouds, rather than by magnetic fields [387]. In this
case low-mass stars and high-mass stars form by the same process. The supersonic
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turbulence and the resulting shock fronts randomly compress cloud material,
leading to collapse of a small fraction of that material. The statistical nature of the
turbulence leads to a wide range in the masses of the elements of material that
collapse; a relatively small number of these elements are of high mass.

Still another suggestion is based on a problem connected with high-mass star
formation – that of radiation pressure. Once the high-mass core evolves to the
point where it has built up a star of 10 or so Mˇ, the star’s ultraviolet luminosity
is high enough so that it can exert sufficient radiation pressure on the remaining
infalling dust to reverse the collapse and prevent the star from collecting appreciable
additional mass. Thus there must be additional physics connected with high-mass
star formation that does not apply to low-mass star formation. Massive stars almost
always form in clusters, leading to the suggestion [77] that massive stars form by
collisional mergers of less-massive stars in regions of high stellar density. However
this scenario is actually very unlikely. Instabilities in the collapse flow, as well as
the formation of a disk, can help to solve the radiation pressure problem, as further
discussed in Chap. 5.

5. How is the mass spectrum determined? Why does the typical stellar mass fall
in the range 0.1–1 Mˇ? This question concerns the explanation of the observed
distribution of stars according to mass. The maximum mass of a star is over
100 Mˇ, and the minimum mass is defined as that mass below which the object is
never able, in its lifetime, to supply its entire radiated luminosity by nuclear burning
of 4 protons to form 4He. That limit falls around 0.08 Mˇ; objects below that point
and above the planetary range (below about 0.01 Mˇ), are known as substellar
objects or brown dwarfs. In its simplest form, the initial mass spectrum is given by

dN D f .m/dm (1.5)

where dN is the number of stars formed per unit volume over the history of
(for example) the Galaxy with mass between m and m C dm. An often-used
approximation is the Salpeter [443] mass spectrum f .m/ D constant � m�2:35. It
applies to the mass range from the highest masses down to about 0.5–1.0 Mˇ but
not for lower masses.

The alternative (and more usual) description of the mass distribution is the initial
mass function (referred to as IMF)

�.log m/ D dN

d log m
D constant � m�� (1.6)

in which one considers the number of stars (per unit volume) per unit logarithmic
mass interval that have formed over the history of the system being considered,
where the last equality assumes a power-law relation which may not be accurate
in general. In this formulation the Salpeter IMF is �.log m/ D constant � m�1:35.
In fact the average IMF determined from observations in the Galaxy and in the
Large Magellanic Cloud [270] does have almost the Salpeter value (� D 1:3) for



1.1 Basic Questions: Star Formation 9

Fig. 1.3 Sketches of fits to the “standard” initial mass function, as determined from observations.
The solid line is a power-law representation [271] while the smooth dashed curve is a fit using a
lognormal function [108]. The function � is the number of stars per unit interval in log m per cubic
parsec. In both cases the function is the single-star IMF, corrected for unresolved binaries. It is
evident that the function is very uncertain in the substellar region (m < 0:08 Mˇ.)

masses above about 0.5 Mˇ, but � changes to 0.3 in the mass range 0.08–0.5 Mˇ
and to � D �0:7 for masses <0:08 Mˇ (Fig. 1.3). Note that this relation is a rough
average, and individual systems, such as young clusters, can exhibit substantial
deviations from this IMF. The deviations are thought to result from small number
statistical effects or the dynamical evolution of clusters, not from some systematic
variation [270].

Another version of the observed IMF, for the solar neighborhood, is shown in
Fig. 1.3. Here a lognormal function is used instead of a broken power law [108].
The IMF can vary, depending on what data are used and how the IMF is derived
from the observations.

The Chabrier [108] fit to the IMF can be written

�.log m/ D 0:041m�1:35˙0:3 m � 1Mˇ

�.log m/ D k1 exp

�
� .log m � log k2/

2

2 � .0:55/2

�
otherwise (1.7)

where the normalization gives the function per unit logarithmic mass interval per
cubic parsec. The single-object IMF has k1 D 0:093 and k2 D 0:2. The so-called
system IMF has k1 D 0:076 and k2 D 0:25; it should be used to compare with
observations where binary systems are not resolved. Note that k2 gives the mass, in
Mˇ, where the function peaks.

But there are further questions. What determines the upper limit to the mass
of a star? In the 30 Doradus star formation region in the Large Magellanic Cloud
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it is suspected that stars well above 100 Mˇ have formed. Current observations
indicate that the IMF increases continuously as the mass decreases, down to near
0.1–0.2 Mˇ, beyond which it begins to fall. However it appears to remain contin-
uous across the stellar/substellar boundary at about 0.08 Mˇ. Where is the peak?
Does it vary in different kinds of stellar systems? What physically determines it?
Do brown dwarfs form in the same way as stars?

6. What parameters control the formation of multiple star systems, as opposed
to single stars? This question is also connected with that of the probability of
forming planets, as certain types of binary systems do not favor planet formation.
We define the multiplicity fraction as the percentage of observed stars which turn
out to have one or more stellar companions. Among the nearby main-sequence stars
in the range of spectral types from F to G, this fraction is at least 50% [2, 147].
Among other spectral types, the percentage is thought to be even higher for high
mass stars, but for M stars the most accurate survey so far [135] gives a value of
about 25%. Thus if one combines this information with the form of the IMF, which
says that most stars, by number, are low mass stars, one finds [287] that about
2/3 of the observed main-sequence systems in the Galaxy are single stars. There
also have been intensive searches for pre-main-sequence binaries, and it appears
that in some regions, for example Taurus–Aurigae and Rho Ophiuchi [144, 342],
the multiplicity fraction among them is significantly higher than that for main-
sequence stars. In other regions, such as Orion, the fraction seems to be similar to
that of main-sequence stars [264]. Are some binary systems disrupted soon after
they form? How does one understand the possible difference in the multiplicity
fraction in stars which form in the cluster mode as compared with those that form
in a more distributed mode?

7. How can it be determined observationally that an object is a protostar?
A protostar is a recently-formed object which still has a significant amount of
material in hydrodynamic collapse onto a central core which is approximately
in hydrostatic equilibrium, or onto a disk – that is, it is an accreting object. It
obtains most of its radiated energy from accretion, either by conversion of infall
kinetic energy to photons in an accretion shock at the edge of the stellar core or
disk, or by accretion of disk material onto the central object. A related problem
to the identification of protostars is the determination of the accretion rate as a
function of time. Because the infalling material outside the core-disk structure is
cool (30–100 K), dusty, and optically thick, this is the region that is observed at
most wavelengths, and the peak intensity of the radiation falls in the mid infrared at
30–100 �m. Observing protostars is difficult because the collapse phase is relatively
short (a few times 105 yr) and because the star-forming regions are largely obscured
by dust. To prove that an object is a protostar one must show that first, its infrared
continuous spectrum has the expected characteristics, and second, its line spectrum
shows velocity shifts characteristic of infall at near free fall. Many objects have
been claimed to be protostars on the basis of the first test (e.g. [295]), but it has
proved to be more difficult to find objects which also satisfy the second test. The
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relevant spectral lines fall in the millimeter region of the spectrum, and thus there
is a problem of spatial resolution at these long wavelengths; furthermore, evidence
for infall motions can be confused by other types of motion, such as expansion
and rotation. To compare theory with observations, a detailed model of the density,
temperature, and velocity structure of the protostar is needed, including rotation,
along with radiative transfer calculations in the spectral lines. Nevertheless there is
convincing evidence for infall in the spectrum of a number of low-mass protostars
[381], and detailed comparisons with theoretical models are available in a few cases
(e. g. [340, 535, 572]).

8. What are the fundamental processes that govern the evolution of disks?
There is now considerable indirect evidence, for example spectra that do not
represent a single black body, and some direct evidence (for example, adaptive
optics direct imaging or HST imaging of disks in star-forming regions) that young
stellar objects are associated with disks in the 10–1,000 AU size range. It is
possible that all protostars evolve through a disk phase. There is evidence that
matter is accreting from the disks onto the central stars and that there are associated
outflows away from the stars. It has been suggested that in their earlier phases
disks can evolve through the mechanism of gravitational instability. Here the
term “gravitational instability” is taken to mean the development of non-axially
symmetric structure in the density distribution of the disk, as a consequence of
the disk’s self gravity, resulting in transport of mass and angular momentum,
and possible fragmentation. At later stages, disks may evolve under the action of
turbulent viscosity, or magnetic transport of angular momentum; however many
aspects of these theories still remain unclear. How do the gas and dust in the disk
and the central object interact to determine an evolutionary time scale? How much
of a star’s mass is processed through a disk? Can binary companions or planetary
companions form in disks? What is the lifetime of the gas component of a disk?

9. What is the origin of bipolar flows from young stellar objects? In this text
the term outflow is used in connection with flows from young stars that generally
are collimated and bipolar, and are always associated with the presence of disks.
The origin of the flow is probably outside the star, near the inner edge of the disk.
In contrast, the term wind or stellar wind applies in general to stars in any phase of
evolution where the flow is quasi-spherical, and its origin is probably in the outer
layers of the star itself. The terms disk wind and X-wind actually refer to particular
models for the outflow phenomenon. All low mass protostars probably go through
an outflow phase lasting about 105 yr with mass loss rates up to 10�5 Mˇ yr�1

[22, 434]. Most of the mass is in a molecular component, observed in CO at veloci-
ties of 10–20 km s�1 on large scales, up to roughly a parsec. Jet-like structures with
higher velocities are observed in the optical on smaller scales (�100 AU). Herbig–
Haro objects – small knots of optical emission and reflection – are moving away
from several young embedded protostellar objects at velocities of 100–300 km s�1.
Thus the outflowing material has significant interactions with the surrounding
molecular cloud material. The source of energy for these flows is clearly close to
the star, but the explanation of the driving mechanism for the jets is still a major
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problem. However there appears to be a clear connection between the presence of
an accretion disk and a bipolar flow. Does the magnetic-rotational interaction of the
disk and star drive the outflow [461]? What produces the collimation?

10. How does the star formation process produce favorable environments,
particularly in protostellar disks, where planets could form? What is the
evolutionary history of giant planets? Such objects during their formation stage are
considerably brighter, by up to a factor of 105, than Jupiter is today. Could their
presence be detected in a protostellar disk? Our own planetary system can provide
numerous clues regarding star formation. For example, the orbital distances of the
planets give a hint as to the angular momentum of the protostellar cloud. From the
compositions of the planets, satellites, and comets one can infer the conditions of
temperature and density in the primitive solar nebula and obtain information on the
planetary formation process. Now that extrasolar planets have been discovered, first
around a pulsar [559] and then around a star similar to the Sun [347], what can
we deduce about the interaction between disks and giant planets, and how can we
determine the probability of formation of giant planets and terrestrial planets?

11. What are the effects of rotation and magnetic fields in star formation? What
are the mechanisms for angular momentum redistribution at the various stages of
star formation? What is the interaction between rotation and magnetic fields? During
normal phases of stellar evolution one can generally make calculations of adequate
accuracy by assuming spherical symmetry and hydrostatic equilibrium – that is,
rotation and magnetic fields are not significant physical effects. But during star
formation these effects can be of dominant importance at various stages, so that two-
and three-dimensional hydrodynamical or magnetohydrodynamical calculations are
required to follow the evolution. An overall definitive theoretical calculation of the
phases of star formation and protostellar collapse is not yet available. Apart from
the fact that the calculation is very complicated, the details of the initial conditions
are not known. Qualitatively, it is clear that molecular clouds and cloud cores have
much more angular momentum than the stars that form from them. But processes
such as magnetic braking, formation of disks, and fragmentation into binary systems
can go a long way towards resolving the difficulty.

Magnetic fields are observed to be significant in at least some molecular clouds
and cores. The principal questions are, first, observationally, what is the strength
and configuration of the fields over a wide range of densities in the interstellar
medium? Second, to what extent are magnetic forces important, in all phases of
star formation? The magnetic flux [defined in (2.23)] deduced from observations
of clouds is far larger than that in stars. If strong enough, magnetic forces inhibit
collapse and star formation. However the effects of magnetic fields can be reduced
by at least two important effects. The first, known as ambipolar diffusion, involves
the drift of matter across field lines when the degree of ionization becomes very
low, which occurs in the dense cores of molecular clouds with densities in the range
104–106 particles per cm3. As a result, in these regions, the ratio of mass to magnetic
flux builds up to the point where collapse can start. The second effect occurs at
somewhat higher densities where Ohmic dissipation (2.24) starts to occur, resulting
in loss of magnetic flux [357].
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12. How did the first stars form? And, after the first generation, how did star
formation continue, under conditions of very low metallicity, such as in globular
clusters? Conditions in the early history of the Universe were very different from
what they are now. Two of the major ingredients which favor present-day star
formation – low temperature and the presence of about 1% by mass of material in the
form of dust grains – simply were not present. Also, magnetic fields were minimal,
and no triggers were present. How did star formation differ during these early phases
when the only elements in significant amounts were hydrogen and helium? Three-
dimensional numerical simulations have been carried out (e. g. [1]) which start from
small density fluctuations in the early Universe and lead to the formation of the
first protostar, suspected to end up as a star around 100 Mˇ. Is the first actual star
necessarily a single star?

1.2 Observations of Objects in Star-Forming Regions

We take a quick look here at some key observed objects, which have provided
some clues to the answers to the questions posed above. These observed objects are
ordered more or less in an evolutionary sequence, which is defined more precisely
in the following section.

It is clear from both observations and theory that star formation takes place in the
coolest and densest regions of the interstellar gas, where the absolute value of the
gravitational energy of a region approaches the sum of its thermal, turbulent, and
magnetic energies. Molecular clouds are the site of practically all star formation in
the Galaxy. The clouds, which in fact show structure on a wide variety of length
scales, are somewhat arbitrarily subdivided into clumps, which are observed in CO,
with characteristic masses 103–104 Mˇ, radii 2–5 parsec, temperature 10 K, mean
number density of H2 of 102–103 cm�3 and magnetic field 3 � 10�5 gauss. The
random velocities in these clumps, which represent a combination of the thermal
particle motion and larger-scale gas motion, are determined from observations
of the width (at half-maximum intensity) of Doppler-broadened molecular lines.
This width would correspond to 0.2 km s�1 for purely thermal broadening at 10 K.
However in the clumps the actual line widths are 2–3 km s�1, highly supersonic,
indicating that larger-scale gas motions, probably turbulent motions and/or magnetic
Alfvén waves, are indeed present.

Embedded in the clumps are the higher-density cloud cores, observed in NH3,
CS, and other molecules. The masses here are typically about 1 to a few Mˇ,
although a few range up to 1,000 Mˇ. The sizes are 0.05–0.1 pc, the temperature
10 K, and the density � 104–105 cm�3. The linewidths in the low-mass cores are
approximately thermal, indicating that magnetic and turbulent effects are no longer
important and that these regions are likely to undergo gravitational collapse to form
stars. In fact some cores already have embedded infrared sources [46], which are
probably protostars. Others (starless cores) do not have such sources, but some
of them may already have developed infall motions [195, 310]. The suggestion
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Fig. 1.4 Star formation in the Taurus–Aurigae region. Solid curves: contours of equal intensity of
line emission in the CO molecule; large filled circles: dense cores in the molecular cloud, detected
in the ammonia molecule; small filled circles: young stars, already formed; crosses: protostars,
whose central regions, consisting of a young star and a disk, are highly obscured by infalling
dust. The names refer to specific dark clouds. A 1–parsec scale is indicated. From IAU Symposium
No. 115: Star Forming Regions, ed. M. Peimbert, J. Jugaku (D. Reidel Publ. Co., 1987), article by
P. C. Myers: Dense Cores and Young Stars in Dark Clouds, p. 36, Fig. 2. Reproduced with kind
permission of Springer Science and Business Media. c� 1987 International Astronomical Union

that these regions represent the initial condition for low-mass star formation is
strengthened by the close positional correlation (Fig. 1.4; from [377]) between
the ammonia cores (large filled circles), recently-formed young stars known as T
Tauri stars (small filled circles), highly obscured infrared sources (crosses) detected
by IRAS (Infrared Astronomical Satellite), and sources with bipolar CO outflows
[46,49,380]. In Fig. 1.4, which shows part of the Taurus region, outflow sources are
not specifically plotted, but the infrared source (IRS5) in L1551 is a good example.
Other, more isolated, dark regions in space which are likely sites of star formation
are known as Bok globules. An example is shown in Fig. 1.5, which is a photograph
by Bart Bok [72] of the globule Barnard 68, whose radius is about 0.05 pc. The
argument that these cores are the likely sites of star formation is strengthened by
observations that the distribution of masses of the cores is very similar to that of the
IMF of stars.
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Fig. 1.5 Optical photograph of the Bok globule Barnard 68. The almost total lack of stars near
the center of the globule suggests a visual extinction of more than 25 magnitudes. This figure
originally appeared in the Publications of the Astronomical Society of the Pacific (B. Bok: PASP
89, 597, 1977). c� 1977 Astronomical Society of the Pacific; reproduced with permission of the
Editors

Figure 1.6 shows the spectrum of a protostar, the object L1551 IRS5 [7]. There is
practically no optical radiation, and the spectral energy distribution (SED) peaks at
60–100 �m. The data are given by the triangles and the lines are various model fits
to the data. The models consist of a central (obscured) star and a disk around it, both
embedded in a rotating collapsing dusty envelope, viewed at the same inclination to
the rotation axis as that observed in the source.

A direct optical image of a disk around a protostar, with associated jets, is
illustrated in Fig. 1.7, obtained by the Hubble Space Telescope (HST). The object is
known as HH30, which shows an edge-on disk whose optically thick dusty material
obscures the central star. Reflected light from this hidden central star is observed via
scattering from the upper and lower surfaces of the disk. The disk itself, with a radius
of about 200 AU, is the horizontal dark lane between the two reflecting surfaces. The
vertical structure, observed in optical emission lines, is a bipolar high-velocity jet,
originating near the central star. Typical jet velocities are a few hundred km s�1.

The protostellar binary IRAS 16293-2422 [534] has two components separated
by about 800 AU (Fig. 1.8). The objects are not observed in the optical, only in the
radio at mm wavelengths and at 2 cm and 6 cm. The emission probably comes from
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Fig. 1.6 Spectrum of a protostar. Triangles: observed points; lines: theoretical models of rotating,
collapsing clouds. The spectrum is calculated at a radius r3 D 2�1017 cm away from the protostar.
The quantity L	 is the observable luminosity of the protostar at frequency 	, per unit frequency
interval; 	L	 is plotted as a function of 	, in cgs units. The total bolometric luminosity of the source
is about 30 Lˇ. An absorption feature from silicate dust is observed at log 	 D 13:5. Reproduced,
by permission of the AAS, from [7]. c� 1987 The American Astronomical Society

circumstellar disks. The lines of the molecule CS show a gradient in the line-of-
sight component of the velocity, along the axis connecting the two components.
The conclusion is that a rotating circumbinary disk is present, with a radius of
several thousand AU. Each component is associated with a bipolar flow, whose
directions indicate that the disks around the individual components are not coplanar.
The high luminosity of the source (30–40 Lˇ) suggests there still is accretion from
the infalling cloud, and there is a possibility that the infall has been detected in the
CS line profiles.

A classic protostar is L1551 IRS5 [491] which shows a bipolar outflow in
CO at 10 km s�1, the first such flow discovered [472]. Other features include a
disk observed in CS, an embedded infrared source, a reflection nebula which
reveals some properties of the underlying star, and optical emission regions which
correspond to collimated jets near the star and also to Herbig–Haro (HH) objects
[127], luminous gas knots moving radially away from the star (Fig. 1.9).

Polarization measurements of the light from a few background stars indicate that
the local magnetic field is roughly parallel to the outflow axis (although a couple of
objects do not fit the pattern and may be in regions unrelated to IRS5.) It turned
out later that the central object in L1551 IRS5 is a binary; each component is
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Fig. 1.7 The young object HH30: edge-on disk, bipolar jet, and scattered light (bright regions)
from the obscured central star. Courtesy NASA, Space Telescope Science Institute, ESA

surrounded by a disk, whose radiation was detected by the Very Large Array (VLA)
at a wavelength of 7 mm [440]. The separation is about 40 AU (Fig. 1.10).

Another example of HH objects is illustrated in Fig. 1.11 which shows the optical
emission structure of the objects HH1 and HH2, which are moving in opposite
directions from the deeply embedded source VLA1 [222]. Doppler measurements
as well as proper motions give velocities of about 300 km s�1.

Another unusual object associated with early stellar evolution is FU Orionis. It
may be a transition object, on the borderline between protostar and young star. In
1936–1937 it flared up by 6 photographic magnitudes in 120 days [533], and it has
remained at nearly constant brightness ever since. The star is associated with a dark
cloud and young (T Tauri) stars; it has a high lithium abundance in the atmosphere
and an infrared excess. A number of mechanisms have been suggested to explain the
flareup. One possibility is that it represents a thermal instability in the inner part of
the circumstellar disk, associated with the hydrogen ionization zone, that results in a
temporary greatly enhanced rate of accretion from the disk onto the star [205, 322].
Other suggested mechanisms include perturbation of a disk by a passing star [176],
gravitational instability triggered by infall onto a disk [531], or a combination of
magnetohydrodynamic and gravitational effects in which gravitational instability in
a disk triggers a magnetorotational instability (Chap. 4) that produces an episode of
rapid accretion onto the star [23, 574]. In any case, observations of a small number
of stars of the same class suggest that all stars, during their very early history, go
through a process of brightening, followed by a return to the initial luminosity on a
time scale of 100 yr. The process is thought to recur on a time scale of 103–104 yr
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Fig. 1.8 Schematic diagram of a binary protostar. The two components 1629a and 1629b are in
orbit, with the orbital angular momentum along the dashed line passing between the two objects.
Each of the components has a small disk around it, and the angular momenta of the disks are
not parallel. The component 1629a is driving a bipolar outflow, indicated by the cones NER and
SWB . The component 1629b was driving an outflow in the past (EB and WR) but is not currently
doing so. Both sources are embedded in a circumbinary disk which may not be in equilibrium,
rather, still infalling. Darker/lighter shading indicates higher/lower dust column density between
observer and source. The rotational velocity of the circumbinary disk, VR, is estimated to be around
0.75 km s�1. Reproduced, by permission of the AAS, from [534]. c� The American Astronomical
Society

so that each object goes through several events. The light curve of FU Ori, along
with those for two other related objects V1057 Cyg and V1515 Cyg, is shown in
Fig. 1.12. Note that V1057 Cyg has already faded by 3 magnitudes, and that the rise
time for V1515 Cyg is considerably longer than that of the other two objects. The
properties of these unusual objects are discussed in more detail by [47, 202, 206].

Young stars in general, which have just emerged from the collapse phase, show
the following characteristics: they are associated with dark-cloud material, they are
located well above the main sequence in the Hertzsprung–Russell diagram, they
have a high abundance of the rare, light, easily-destroyed element lithium, and they
show evidence of mass outflow and a large infrared excess, indicative of the presence
of a disk. They also have rotation rates which are relatively slow, 5–30 km s�1,
emission lines, particularly H˛, which are a defining characteristic of T Tauri
objects, and excess ultraviolet emission over a normal stellar photosphere. They
are typically irregularly variable at all wavelengths. Two types of T Tauri stars are
recognized, the classical or CTTS, which have an equivalent width (in emission) of
H˛ > 10 Å, and the weak-lined or WTTS, which have an equivalent width in H˛ <

10 Å. The WTTS have much less IR excess, much less UV excess, and weaker (or
no) emission lines. Both types have X-ray emission. Magnetic fields, first measured
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Fig. 1.9 Schematic diagram of the well-studied protostellar source L1551 IRS5 . The infrared
source itself is indicated by the small triangle at ˛ D 4h29m40s, ı D 18ı0160. Solid lines: contours
of equal intensity in the CS molecule, interpreted as a rotating disk [246]; dashed lines: contours of
CO emission, showing the bipolar outflow, with the approaching lobe extending toward the lower
right. The dark regions are knots of optical emission, with a jet near IRS5 and several Herbig–
Haro objects moving away from the source. Cross-hatched region: optical reflection nebula, which
scatters the light from the (obscured) central star in the direction of the observer. Dot-dashed lines
indicate the direction of the local magnetic field. Reproduced, by permission of the AAS, from
[491]. c� The American Astronomical Society

by [34], fall in the range 1–3 kiloGauss [242]. Figure 1.13 shows the continuous
spectrum of the CTTS T Tauri, clearly indicating the IR excess. The spectrum in the
infrared is practically flat, completely unlike a black body at 4,000 K, a temperature
typical of this type of star. The infrared radiation is interpreted as dust emission from
a circumstellar disk, and the observed spectrum is compared with theoretical disk
models in the figure. The typical ages of CTTS are 2–3 million years. The lifetime
of this phase provides an important constraint on the planet formation process.

Figure 1.14 shows how ages and masses of young stars are approximately
derived, by comparing their observed positions in the H–R diagram with pre-
main-sequence evolutionary tracks and isochrones. The particular objects shown
[122] are the components of a pre-main-sequence double-lined eclipsing spectro-
scopic binary in the post-T Tauri phase, whose masses can be directly measured
and compared with those obtained from the tracks, for example those calculated by
[30]. The actual masses [123] obtained from the dynamical analysis of the system
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Fig. 1.10 The protostellar source IRS5 in the cloud L1551, imaged by the Very Large Array at
a wavelength of 7 mm. The spatial resolution is 7 AU (beam in lower right). Contours of equal
intensity are mapped. The source is found to be a binary (as previously suspected by [54]) with
separation about 40 AU. The individual protostars are not seen at this wavelength; the radiation
consists of emission from dust in the surrounding cool disks, each about 10 AU in radius and
0.05 Mˇ in mass. Reprinted by permission from MacMillan Publishers Ltd., L. F. Rodriguez,
P. D’Alessio, D. J. Wilner et al.: Nature 395, 355 (1998). c� 1998 Nature Publishing Group

are 1.27 and 0.92 Mˇ, which are in fairly close agreement with the “track” masses
one reads off from the diagram.

The resolved optical image, taken with the Hubble Space Telescope, of a disk
associated with the star AB Aurigae is shown in Fig. 1.15. A coronagraph occults
the star and the inner disk out to 60 AU. The disk is about 1,300 AU in size and
shows spiral features. This star is a so-called Herbig Ae star, and evidence for its
youth (age 1–3 Myr) is provided by strong H˛ in emission. It is closely related to the
T Tauri stars, but its mass, of approximately 2 Mˇ, is higher than that of the typical
T Tauri star, which falls in the range 0.5–1 Mˇ. The structure of this disk is being
intensively studied through further ground-based observations [397] to determine
the possible presence of a low-mass companion at a separation of about 100 AU,
where a gap in the dust distribution has been observed.

The very late phase of a disk (and also the first disk to be directly imaged)
is represented by that around the main-sequence star ˇ Pictoris, about 1.75 solar
masses. It was first detected by IRAS and later imaged in the optical [468]. The
top part of the 1998 HST picture (Fig. 1.16) is a visible light image of the entire
disk (diameter 1,500 AU), which is made up of microscopic dust grains of ices and
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Fig. 1.11 Observation of the Herbig–Haro objects HH1 and HH2, from optical forbidden line
emission of sulfur. Contours of equal intensity in this line are separated by a factor 2. HH2 is broken
up into a number of emission knots (capital letters). The optically invisible radio source VLA 1 is
thought to be the origin of the outflow that produces the HH knots. Reproduced, by permission of
the AAS, from [474]. c� The American Astronomical Society

silicates with a total mass of only about 10 lunar masses and practically no gas.
The bright star has been blocked out in this image, so that the inner part of the very
faint, nearly edge-on disk can be seen. There actually is a central clear region with
a radius of about 15 AU. The presence of the dust, which is rapidly driven out of
the system by radiation pressure from the central star, strongly suggests there is an
underlying system of planetesimals (solid objects of radius roughly 1 km), which
regenerate dust through their collisions. The dust is probably composed of silicates
inside 120 AU, with additional ice and organic grains outside that point. The bottom
frame shows the details of the inner part of the disk. Both pictures are in false
color to accentuate details in the disk structure. The colors indicate the intensity
of the starlight that is scattered by the dust particles to the observer. Such disks are
important because of the clues they provide regarding the possible prior formation



22 1 Overview

Fig. 1.12 The apparent magnitude (left axis) in the B filter (or the apparent photographic
magnitude at the earliest times) as a function of Julian date for three FU Ori objects. The estimated
absolute B magnitude is given on the right-hand scale. The time in years is given at the top of each
diagram. Different symbols refer to different observers. Reproduced, by permission of the AAS,
from [48]. c� The American Astronomical Society

of planets in the system, and in fact a giant planet of about 10 Jupiter masses has
been directly imaged in the region between 8 and 15 AU from the star [296].

Structure has also been observed in a nearly edge-on disk around AU Micro-
scopii, a star of 0.5 solar masses about 9 parsecs away. The disk has been imaged and
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Fig. 1.13 The spectral energy distribution of the young star T Tauri. The quantity 	L	 , where
L	 is the energy per second per unit frequency interval, is plotted as a function of frequency. The
quantity F	 is the flux density [defined in (8.24)] received at Earth, and r is the distance of the
object. Open triangles: observed data points in the optical and infrared. Filled triangles with error
bars: submillimeter data points. Solid curve: theoretical spectrum under the assumption that the
disk is optically thick at all frequencies. Dotted curves: theoretical spectra, from top to bottom,
of disks with masses 1.0, 0.1, and 0.01 Mˇ, respectively, not assumed to be optically thick. The
fact that the disks are optically thin at long wavelengths allows estimates of their masses to be
made (Chap. 4). The derived disk mass depends on assumptions made regarding the dust opacity at
long wavelengths. This particular source turns out to be a multiple system (Fig. 8.11); the plotted
radiation represents the sum from all components. Reproduced, by permission of the AAS, from
[5]. c� The American Astronomical Society

resolved in the H band (1.65 �m) with the Keck II telescope using adaptive optics
[324]. HST observations in the visual indicate a straight, narrow close-to-symmetric
disk, viewed nearly edge-on, extending 150 AU away from the star, with an inner
hole out to 12 AU [268]. These two examples of late-phase, low-mass disks, known
as debris disks, have many counterparts among main sequence stars, as revealed by
the Spitzer Space Telescope.

The cluster mode of star formation is illustrated in Fig. 1.17, which shows the
Trapezium cluster in the Orion Nebula on a scale of 1/3 of a parsec. The bright,
hot stars of the Trapezium appear in the center; they have masses in the 15–25 Mˇ
range. The faintest objects fall in the mass range of the brown dwarfs, between
0.01 and 0.08 Mˇ. The left-hand frame is in visible light; the right-hand frame in
the near infrared (1 and 1.6 �m). At the age of the cluster, only 1 million years, the
brown dwarfs are bright enough to be detectable. This cluster is a nearby example of
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Fig. 1.14 Theoretical Hertzsprung–Russell diagram showing pre-main-sequence evolutionary
tracks (solid lines), labelled by mass, in solar units, from 0.7 to 1.4 Mˇ. Dashed lines: lines of
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scale height of 1.9. Improved observational determinations of luminosity and Teff [123] give
better agreement between the track masses and the dynamical masses. Nevertheless, the degree
of agreement depends on the particular set of tracks that is used. Credit: E. Covino et al., Astron.
Astrophys. 361, L49 (2000), reproduced with permission. c� European Southern Observatory

a relatively large number of observed clusters which are embedded in interstellar gas
and dust and are presumably still in the process of formation.

1.3 Star Formation Phases

The previous section shows observed examples of objects ranging from pre-stellar
clouds to young objects which have the basic properties of stars. For convenience,
the formation process can be divided into three phases, as indicated in Table 1.1,
where the numbers given refer to the typical case of 1 Mˇ. The first, known as
star formation, involves massive interstellar clouds or cloud fragments, which have
cooled to the point where they are detectable in molecular lines (such as CO) but
which are unable to collapse because of an excess of thermal, turbulent, rotational,
and magnetic energy over gravitational. The phase, whose length is currently
debated but which lies in the range 106–107 yr, involves dissipation of much of this
energy and development of the dense cores. Much of the observational information
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Fig. 1.15 Optical image from Hubble Space Telescope of the young star AB Aurigae. A coron-
agraph is used to occult the central star and reveal the surrounding disk, which is illuminated by
scattered light. Courtesy NASA, Space Telescope Science Institute

about this phase is from the millimeter or submillimeter part of the spectrum. The
second, protostellar, phase starts when cloud cores of �1 Mˇ become unstable to
collapse under gravity, with a resulting increase of 16 orders of magnitude in density
and 5 orders of magnitude in temperature. The observable radiation produced during
this phase is primarily in the midinfrared to submillimeter, and the time scale is
approximately the free-fall time, about 2�105 yr at the typical density of a molecular
cloud core (1.1).

At the end of the collapse phase, when the object has heated up to the point
where gas pressure can support it in equilibrium against gravity, it has star-like
properties, and it begins a slow contraction phase, in near hydrostatic equilibrium.
For 1 Mˇ, the contraction time to the point where nuclear reactions are established
at the zero-age main sequence is about 4 � 107 yr. This time scale, known as the
Kelvin–Helmholtz time, is estimated simply from the gravitational energy at the final
stage of the contraction divided by the average luminosity NL:

tKH � GM 2

R NL (1.8)

where R is the final radius. During this third phase, the objects can be observed in the
optical and near infrared, although millimeter-wave observations are also relevant
(Fig. 1.13) for detecting the surrounding disk. In this book we will cover the first
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Fig. 1.16 Optical images of the debris disk around the star Beta Pictoris, taken with the Hubble
Space Telescope. WFPC2 (upper image) is the Wide-Field and Planetary Camera 2, and STIS
(lower image) is the Space Telescope Imaging Spectrograph. The color scale represents the
intensity of the scattered light, with red corresponding to the highest intensity. Courtesy NASA,
Space Telescope Science Institute

two phases, as well as the earlier part of the contraction phase, during which the star
still has a disk, a remnant of the formation process.

A commonly used observational classification of young objects [285, 286, 291]
involves use of the spectral energy distribution longward of 2 �m. Objects of Class I
have a positive value of the spectral index ˛ D � d log.	F	/=d log 	 in the
vicinity of 2.2 �m (1:36 � 1014 Hz). The flux density F	 is the observed energy
per unit area per second per unit frequency interval. The typical spectrum peaks at
60–100 �m (3 � 1012 � 5 � 1012 Hz). At 2.2 �m the flux is increasing toward longer
wavelengths, and the spectrum is broader than a black body with little radiation in
the near infrared, 
 < 2 �m. This type of object is also known as an “embedded”
IR source, or as a candidate protostar; it is probably completely surrounded by dust.
An object of Class II, on the other hand, has a zero or negative value of ˛; however
it is also broader than a single black body, with a significant IR excess and also
a UV excess, sometimes known as “veiling” (filling in) of the absorption lines in
the blue region of the spectrum. Class II objects are often T Tauri stars; they have
less circumstellar dust than Class I objects, and they are observable in the visible.
Such objects are interpreted to be pre-main-sequence stars with disks. An object of
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Fig. 1.17 Hubble Space Telescope images in the optical (WFPC2; left) and in the infrared
(NICMOS; right) of the Trapezium cluster, which consists of the inner few arc minutes of the
Orion Nebula cluster, centered on the Trapezium stars themselves. [NICMOS D Near Infrared
Camera and Multi-Object Spectrometer]. In the infrared the dust opacity is considerably reduced
and the stars in the cluster are seen. The opacity as a function of frequency is usually expressed as
�	 / 	ˇ, where usually 1 < ˇ < 2, but ˇ is not well known and it depends on the composition of
the dust. Courtesy NASA, Space Telescope Science Institute

Table 1.1 Major phases of early stellar evolution

Phase Size (cm) � (g cm�3 ) T (K) Time (yr)

Star
formation 1020–1017 10�22–10�19 10 106–107

Protostar
collapse 1017–1012 10�19–10�3 10–106 105–106

Pre-main-seq.
contraction 1012–1011 10�3–1 106–107 4 � 107

Class III has a negative value of ˛, its spectrum is close to that of a black body of a
single temperature, and there is little or no evidence for excess IR radiation or dust.
These objects are either pre-main-sequence stars beyond the T Tauri phase, that is
without indications of significant disks, or young main-sequence stars. These three
types of objects overlap the protostar collapse phase and the pre-main-sequence
contraction listed in Table 1.1. For example, the object in Fig. 1.6 is clearly a Class
I, while that in Fig. 1.13, with a flat spectrum, is technically a Class II, but it is really
in the transition region between Class I and Class II.
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A few “Class 0” sources have also been identified; they are thought to correspond
to protostars at an even earlier evolutionary phase than that represented by Class I
[18]. Some of the radiation is in the submillimeter, with hardly any radiation
shortward of 10 �m. Their spectral energy distributions look like black bodies with
temperatures of 15–30 K and a peak near 100 �m. One of the commonly used
criteria for Class 0 is that the mass in the infalling region of such objects is greater
than the mass in the central hydrostatic region, while the reverse is true in Class I.
The four types of objects are illustrated in Fig. 1.18. If a “flat” spectral class is
introduced along with the classes 0 through III [194], then the approximate slopes
in the 2–10 �m spectral region can be summarized as follows:

• I: ˛ � 0:3

• Flat: �0:3 � ˛ < 0:3

• II: �1:6 � ˛ < �0:3

• III: ˛ < �1:6.

Note that the quantity ˛ is not useful in connection with Class 0. In fact the
boundaries between the classes of objects are somewhat fuzzy.

If one takes a census of the relative numbers of objects in Class 0, Class I, the
“flat” class, and Class II in a given star formation region, one can make an estimate
of the relative amounts of time spent in these four phases. Early studies of the Taurus
region and the Rho Ophiuchi cloud indicate that the embedded protostellar phase
(basically Class I) lasts 2–3 � 105 yr [249, 549]. A more extensive survey of star-
forming regions with the Spitzer Space Telescope gives an average value of about
1 � 105, 4:4 � 105, and 3:5 � 105 years, respectively, for Class 0, Class I, and the
“flat” class [164]. The embedded phase is then followed by a (classical) T Tauri
phase (Class II) that lasts, on the average, 1 � 3 � 106 yr. However, these numbers
are uncertain; sources of uncertainly include incompleteness, contamination by
background objects, extinction corrections, and the assumption that star formation is
occurring at a constant rate, allowing a continuous flow through the various classes.

Now consider an example of the phases of evolution (steps 1 to 7) that are
followed by a low-mass star that forms as a single star in isolation by a spontaneous,
rather than a triggered, process. This particular process is based on the idea of
magnetically controlled star formation [459], about which there is considerable
debate at the present time. Thus there are several different suggested processes by
which a star can reach the onset of collapse (step 3). Only one of them is considered
here; the others will be covered later. From that point onward, all cases join the same
path.

1. Starting at densities characteristic of molecular clouds, the frozen-in magnetic
field transfers much of the angular momentum out of the cloud on a time scale
of 5 � 106 yr.

2. Matter becomes less and less tightly coupled to the field, and a molecular cloud
core forms, through hydrostatic contraction, on a diffusion time �107 yr. The gas,
which is mainly neutral, drifts inward with respect to the magnetic field, which
is tied to the ionized particles. Thus the gravitational energy increases relative to
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Fig. 1.18 Classification scheme for young stellar objects (YSO). For reference, a vertical line is
plotted in each frame at a wavelength of 2.2 �m. Class 0 objects have distributions close to a
black body at a single, but low, temperature. Class I objects have negative slopes in this diagram
at wavelengths longer than 2 �m, and the spectral energy distribution is broader than that of a
single black body. Class II objects have zero or positive slopes longward of 2 �m, and show an
infrared excess over a black body at a single temperature. Class III objects are close to black
bodies at a single temperature without any excess infrared. The absorption feature in the Class I
object near 10 �m is caused by silicate dust. From The Origins of Stars and Planetary Systems,
ed. C. J. Lada and N. D. Kylafis, article by C. J. Lada: The Formation of Low-Mass Stars, p.
172, Fig. 11. Reproduced with kind permission of Springer Science and Business Media. c� 1999
Kluwer Academic Publishers
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Fig. 1.19 Theoretical model of a protostar. The vertical axis corresponds to the rotation axis, the
horizontal axis, to the equatorial plane. The scales are in AU. Arrows give gas velocity with length
proportional to speed; the maximum velocity shown is about 5 km s�1. Solid lines: contours of
equal density, separated by � log � D 0:2 and log �min D �15:22. The basic picture is that of
infalling material passing through a shock and joining an equilibrium disk; an unresolved stellar
core sits at the origin. Reproduced, by permission of the AAS, from [306]. c� The American
Astronomical Society

the magnetic energy. The cloud cores are generally observed in an emission line
of ammonia at 1.3 cm or one in CS at 3.1 mm [49].

3. The magnetic field becomes dynamically unimportant, and the protostar col-
lapses nearly in free-fall, with conservation of angular momentum, on a time
scale of 105–106 yr.

4. The stellar core, material which has stopped collapsing and obeys the quasi-
hydrostatic equations of stellar structure, forms with an accretion shock at
its outer boundary. As material with higher angular momentum approaches
equilibrium, a disk forms. The protostar becomes an infrared source with
luminosity �1 Lˇ, because the optical photons released by the stellar core are
absorbed by the dust in the cool infalling envelope and are re-radiated in the
infrared. Figure 1.19 shows an example of a theoretical model in this phase [306],
with about 0.6 Mˇ unresolved in the central stellar core and about 0.4 Mˇ in the
surrounding disk. Densities in the disk range from 10�10 to 10�16 g cm�3, and
temperatures from log T D 2.9 to 2.2. This object would be in Class I, but at
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Fig. 1.20 Schematic picture of a disk around a classical T Tauri star. Short arrows indicate mass
flows: the accretion flow through the disk onto the star, the outflow originating from the inner
part of the disk, and the residual flow from the molecular cloud onto the outer part of the disk.
Roughly 10% of the mass that is flowing through the disk toward the star is ejected in the outflow.
The typical accretion rate through the disk for a young T Tauri star is 10�8 Mˇ yr�1 , but it can
increase to 10�4 Mˇ yr�1 during an FU Orionis outburst. The diagram is not to scale. The radius
of the magnetospheric cavity, inside of which the stellar field dominates, is only 0.1 AU, while the
entire radial extent of the disk may be several hundred AU

earlier phases, when less mass has accumulated in the core, it would be in Class
0.

5. As the protostar accretes, the bipolar outflow phase starts. The outflow starts
early; it is observed even in objects of Class 0. The ejected material first breaks
through the infalling material at the rotational poles, where the density gradient
is steepest and the infall ram pressure the smallest. The outflow velocities are
100–300 km s�1, and near the star the jet is well collimated. Angular momentum
from the star-disk system is transferred away in the outflow. Figure 1.20 shows
a schematic diagram of a young object in the phase when it is still accreting
from the surrounding infalling cloud and also producing an outflow. At this stage,
near the end of protostar collapse, the object is optically visible at least when
observed from the polar direction, so it would probably be placed in Class II.
But if observed edge-on to the disk, it would be highly obscured and have the
characteristics of Class I.

6. Infall stops because all the available material has either been accreted or swept
away by the outflow. The stellar core emerges onto the H–R diagram as a visible
T Tauri star (Class II), with infrared excess still remaining from the disk.
Figure 1.21 shows the H–R diagram of young stars, including pre-main-sequence
evolutionary tracks for various masses and showing the “birth line”, the locus
where stars of various masses first appear on the visible H–R diagram [407]. The
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Fig. 1.21 Hertzsprung–Russell diagram: zero age main sequence labelled with the corresponding
masses in Mˇ, pre-main-sequence evolutionary tracks for those masses, the birth line (upper
envelope of the tracks), and observed positions of the stars in a young cluster. Reproduced, with
permission from the AAS, from [407]. c� 1999 The American Astronomical Society

filled circles are observed stars in the Orion star formation region, to which the
birth line forms the upper envelope, as expected.

7. Disk evolution occurs, driven by the action of turbulent viscosity, gravitational
instability, or magnetic fields. Mass is transferred inwards, angular momentum
outwards. Figure 1.22 shows the evolution of the surface density of a standard
thin accretion disk in which an arbitrarily prescribed viscosity produces the
angular momentum transport [323]. The surface density decreases in the inner
regions as material is accreted onto the star, and the outer regions expand as a
result of angular momentum transport.

8. Planets form in the disk, starting with accretion of solid particles. Although
planet formation will not be discussed in detail in this book, it should be pointed
out that the process is closely coupled with the evolution of the disk. Firstly, the
accretion of solid cores of 10–15 earth masses, which are indicated for the giant
planets, must occur on a time scale short enough so that these planets can capture
gas before the disk is dissipated. The dissipation occurs after an average disk
lifetime of only of a few Myr, as a result of viscous evolution, photoevaporation
of the disk gas, and stellar winds. Secondly, once the planetary core has reached
a mass of order 1 M˚, its gravity results in density perturbations in the nearby
disk, resulting in a torque on the planet, causing its orbital radius to decrease. The
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Fig. 1.22 Viscous evolution of a disk. The surface density of the disk ˙ , mass per unit area
integrated vertically through the disk, is plotted as a function of radius at various times. The
initial state is given by the disk with the smallest outer radius, and the outer radius increases with
time. Units are arbitrary, but the typical disk evolution time scale is 105–106 yr. Reproduced, with
permission from the RAS, from D. N. C. Lin and J. E. Pringle: MNRAS 225, 607 (1987). c� 1987
Royal Astronomical Society

migration rate increases as the planet mass increases, and decreases as the disk
mass decreases. Thirdly, once the planet reaches roughly 0.1–1 Jupiter masses
(about 100 M˚), its tidal effect on the disk can open up a gap in the nebula at the
position of the planet and eventually suppress further accretion onto the planet.
Inward orbital migration continues after the opening up of the gap, but at a slower
rate than before. Observations of young-star disks with sufficient resolution could
in principle detect the gaps and thereby infer the presence of giant planets.

The above sequence of events would lead, therefore, to a single star with a planetary
system. However, surveys of star-forming regions [289,294] indicate that most stars
form in clusters. It is true that in the Taurus star formation region most of the stars
seem to be forming as isolated objects, but in the Rho Ophiuchi cloud, 100 stars are
seen forming in a cluster, in the L1641 molecular cloud in Orion about 85% of the
stars have formed in clusters, and in the L1630 cloud in Orion the cluster mode also
dominates, with most of the stars in 3 rich clusters[292]. Another example is the
young cluster of stars in the center of the 30 Doradus giant HII region in the Large
Magellanic Cloud (e.g. [543]). It is also true that many solar-type stars are found in
binary or multiple systems rather than as single stars. Finally, primordial stars were
probably not influenced significantly by the presence of dust or magnetic fields. The
simple pathway outlined above will have to be modified significantly to take into
account these other possibilities.
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1.4 Appendix to Chap. 1: Derivation of the Free-Fall Time

The free-fall time (1.1) is derived for an assumed initial spherical cloud with zero
temperature and therefore zero pressure, but with a finite mass and constant initial
density �0. If m is the mass enclosed within radius r , then r is a function of (m; t)
where t is the time since beginning of collapse. Although r is a function of two
variables, we use the ordinary derivative dr=dt for the velocity, to indicate that the
derivative is taken in the Lagrangian sense, that is, following the motion of a mass
element. For each such element, the equation to be solved is

d 2r

dt2
D �Gm

r2
: (1.9)

The initial condition is

r.m; 0/ D r0.m/;
dr

dt
.m; 0/ D 0: (1.10)

Multiply both sides of (1.9) by dr=dt and use

d

dt

�
dr

dt

�2

D 2
dr

dt

d 2r

dt2

to obtain
d

dt

�
dr

dt

�2

D �2Gm

r2

dr

dt
: (1.11)

Now integrate both sides over time to obtain

�
dr

dt

�2

D 2Gm

�
1

r
� 1

r0

�
: (1.12)

Each mass point is defined by its initial value: m D 4�r3
0 �0=3. Substituting into

(1.12) one obtains
dr

dt
D �

�
8�Gr2

0

3

� r0

r
� 1

��1=2

(1.13)

where the minus sign corresponds to collapse. Now introduce a new variable 
 :

r.m; t/ D r0.m/ cos2 
 (1.14)

which has the property 
 D 0 at t D 0, so that (1.13) becomes

d


dt
cos2 
 D 1

2

�
8�G�0

3

�1=2

: (1.15)
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This equation may be integrated to obtain


 C 1

2
sin 2
 D

�
8�G�0

3

�1=2

t: (1.16)

Then, from the definition of 
 , all mass elements reach zero radius at the same time
(as long as �0 is a constant), when 
 D �=2, corresponding to a time

tff D
�

3�

32G�0

�1=2

: (1.17)

This time is identified as the free-fall time, and in this idealized problem the density
�.m; tff/ becomes infinite then for all m.



Chapter 2
Molecular Clouds and the Onset of Star
Formation

This chapter is concerned with the main physical processes that lead to star
formation in gas that has already evolved to the molecular cloud state. Although this
material is already relatively cold and dense, in general it has too much magnetic,
rotational, thermal, and turbulent energy to allow collapse into low-mass stars.
A number of physical processes, however, tend to dissipate these energies, or allow
local collapse in spite of them, on time scales up to 107 yr. The main effects that
need to be considered are heating, cooling, the role of shock waves, magnetic
braking of rotation, diffusion of the magnetic field with respect to the gas, and
the generation and decay of turbulence. After a review of the general properties of
molecular clouds, the chapter discusses the physical processes relevant to the phase
known as “star formation” (Table 1.1). It then discusses three important scenarios:
magnetically controlled star formation, turbulence-controlled star formation, and
induced star formation.

2.1 Molecular Cloud Properties

The molecular gas in the galaxy exhibits structure over a wide range of scales, from
20 pc or more in the case of giant molecular clouds down to 0.05 pc for molecular
cloud cores. The clouds have been characterized as both clumpy and filamentary.
The general properties on selected scales are listed in Table 2.1. In fact each type of
structure exhibits a range of properties [335]. The clumpiness of a molecular cloud
can be characterized by a so-called volume filling factor ff . If a component of a
molecular cloud has a particle density n (in cm�3) which is greater than < n >,
the average density of the molecular cloud as a whole, then ff D< n > =n. Thus
roughly ff is the probability that the matter has density n. On the molecular core
scale, where n > 105, and where star formation is believed to occur, this factor
is only about 0.001. In addition to the listed properties, the structures on various
scales exhibit rotation and magnetic fields, which are discussed in later sections of
this chapter.

P.H. Bodenheimer, Principles of Star Formation, Astronomy and Astrophysics Library,
DOI 10.1007/978-3-642-15063-0 2, © Springer-Verlag Berlin Heidelberg 2011
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Table 2.1 Properties of molecular clouds

Giant molec. Molecular Molecular Cloud
cloud cloud clump core

Mean radius (pc) 20 5 2 0.08
Density n(H2) (cm�3) 100 300 103 105

Mass (Mˇ) 105 104 103 101

Linewidth (km s�1) 7 4 2 0.3
Temperature (K) 15 10 10 10

On the giant molecular cloud scale, given an approximate mass one can calculate
the gravitational potential energy and find that it is far greater in absolute value than
the thermal energy. Thus the clouds are certainly highly gravitationally bound, but
in general they are not collapsing. The linewidths in CO (several km/s) are always
greater than the thermal width at 10 K (full width at half maximum of 0.13 km/s
for CO), implying that some other mechanism, such as turbulence or magnetic
fields, is helping to support the cloud against gravity. In fact, if these linewidths
are caused by turbulence and/or magnetic fields, the deduced energies are close
to sufficient to support the clouds. Inside molecular clouds, the gas pressures are
higher than those in the surrounding interstellar medium, and almost all molecular
clouds in our galaxy exhibit star formation. The deduced mean lifetime of molecular
clouds is 10 Myr (subject to considerable argument). The suggested mechanism for
breakup and destruction of the clouds is ionization effects from the most massive
stars, particularly near the edge of the cloud, where the hot gas in the ionized region
drives a flow of material away from the cloud. Evidence for this value of the age is
provided by the fact that intermediate age clusters, with ages >10 Myr, do not have
associated molecular material. By means of a similar method, the typical lifetime of
a molecular cloud in the Large Magellanic Cloud is estimated to be 27 Myr ˙50%
[59].

Although the main constituents of molecular clouds are molecular hydrogen
and atomic helium, it is very difficult to observe spectral lines of these species
because the required excitation conditions do not exist, except possibly under special
conditions, such as shocks. That is, the equivalent temperature needed to lift H2

molecules to their lowest excited states, so they can emit a photon, is 512 K. Instead,
trace species are used, in particular, emission lines of CO. The abundance of CO
relative to H2 is estimated to be about 10�4, but with considerable uncertainty. The
molecule can be observed in three different forms: 12C16O, 13C16O, and 12C18O, the
first of which is usually optically thick in molecular clouds, the second of which
is marginally so, and the third of which is optically thin. At the higher densities
in molecular clouds (n � 105 cm�3) CO ceases to be a reliable estimator of the
density of H2, in part because the lines become optically thick, and in part because
the CO tends to freeze out on grain surfaces at high densities, so that the gas phase
is depleted [13].

To measure masses and densities, the main observed quantity is the particle
column density N , that is, the number of molecules along the line of sight through,
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say, a clump, divided by the projected area of the clump. To measure this quantity
one needs an optically thin line, so that radiation from all molecules emitting
that line is seen; on the larger scales 13C16O is often used for this purpose. The
mechanism for production of the line radiation is collisional excitation of a low-
lying level (for CO the equivalent excitation temperature is around 5 K) by the
dominant molecular H2, followed by radiative de-excitation; thus the strength of
the line, integrated over the line profile (that is, over all velocities in the line) is
proportional to the local emitting particle density. The details of the complicated
and somewhat uncertain conversion from line emission to column density of 13C16O,
and then from column density of 13C16O, to total column density Ntot, are given in
[481]. Then the size of the clump is estimated from the linear scale of the region
over which the line intensity drops by a factor e. Given the distance, the mass then
follows from

M D
Z

mNtotdA (2.1)

and the mean number density n (particles per unit volume) is obtained from

n D M

mV
� 3Ntot

4R
(2.2)

where m is the mean particle mass, V is the total volume, and R is the radius. The
dimension of the cloud along the line of sight is not observed, but one assumes the
cloud is spherical or cylindrical with length along the line of sight comparable to
the linear dimension on the plane of the sky. Thus the typical column density of a
molecular clump, with n � 103 cm�3 and a radius of 2 pc is 8 � 1021 particles per
cm2. An example of an observation in CO is given in Fig. 2.1.

There is a fundamental limitation to the use of a given molecule such as CO as a
density probe, related to the concept of “critical density”, defined as

ncrit D Aij

�ij

(2.3)

where Aij is the Einstein probability for the radiative downward transition i ! j

per particle in level i per unit time, and n�ij is the probability of a downward
collisionally-induced transition per particle in level i per unit time. The critical
density is that where the two probabilities are equal (�ij ncrit D Aij ). Thus at
densities above ncrit the line intensity is no longer clearly related to the density,
because the collisionally induced transition produces no photon. For the J D 1 ! 0

transition in CO, ncrit D 3 � 103 particles cm�3. In practice, a given transition is a
good probe of regions somewhat below or near the critical density, but not above it.

Thus on the clump scale (Table 2.1) the 12C16O is near ncrit and it is useful
for picking out density peaks on that scale (Fig. 2.1). But in general, no single
observational tracer can represent a molecular cloud on all scales. For clumps,
13C16O or 12C18O can be used because of their much lower abundance relative to
12C16O. On the even smaller scales of cores (0.05–0.1 pc), density can be traced
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Fig. 2.1 Contours of equal intensity on the plane of the sky in the Orion A cloud. The transition is
the J D 1 ! 0 in the 12C16O molecule at 2.6 mm. The intensity is integrated over the line width.
The dark region is the star-forming dense gas associated with the Orion Nebula; it has a radius of
roughly 2 pc. Reproduced, by permission of the AAS, from [337]. c� The American Astronomical
Society

by a transition in CS at 3.1 mm (ncrit D 4:2 � 105) and one in H2CO at 2.1 mm
(ncrit D 1:3 � 106).

Another way of getting the column density in a region is to use visual extinction
of starlight by intervening dust. Dust, in the form of small particles with character-
istic size 0.1–0.2 �m, accounts for about 1% of the mass of interstellar material. For
example, there is an empirical relation

Av D .NH C 2NH2/=2 � 1021 (2.4)

where the extinction Av is given in magnitudes, NH is the column density in
particles cm�2 for atomic hydrogen, and NH2 is the column density in molecular
hydrogen [70]. To calibrate this relation, the quantity NH is obtained, via satellite
observations, from the strength of Ly˛ absorption of light from hot OB stars by
material in intervening clouds, while NH2 is obtained similarly from absorption
in the Lyman molecular bands. Then Av is obtained from the reddening of the
light, also from the OB stars. The dust also provides thermal radiation at the dust
temperature; this continuous spectrum in the 1 mm wavelength range, provides a
nice complement to the molecular line radiation. The dust temperature, which is



2.1 Molecular Cloud Properties 41

25

20

15

10

05

D
ec

. (
20

00
)

0:00

10

15

20 5:47:00 40
R.A. (2000)

20 46:00

–0:05

Fig. 2.2 Observed structure of a portion of the Orion B molecular cloud, both in the continuum
at 850 �m (grey scale) and in a molecular transition of CS (contours). The bright spots in the
continuum, an indicator of high dust density, correspond in general to the highest contours in CS
emission, an indicator of high gas density. Those peaks have a size scale of �0:1 pc, and would be
considered “cores”, with masses in the range 0.2–12 Mˇ. Reproduced by permission of the AAS
from [243]. c� The American Astronomical Society

determined from analysis of the properties of the far infrared/millimeter emission
as a function of wavelength, may be different from the gas temperature, which is
determined from the relative strengths of molecular emission lines arising from
energy levels of different excitation energy. Particularly at the lower densities, the
gas and dust are not well coupled by collisions, and the physical processes that
determine their equilibrium temperature are different. Figure 2.2 shows observations
of cores both from continuum 850 �m observations of the dust and molecular
line emission which traces the gas. The scale of the figure (top to bottom) is
approximately 4 parsec. Cloud cores can also be observed by visual extinction of
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Fig. 2.3 The Cone nebula, in the star-forming region NGC 2264, taken by the Advanced Camera
for Surveys (ACS) on Hubble Space Telescope, April 2, 2002. The portion of the dark nebula that is
shown measures about 0.8 parsec in length. Credit: NASA, H. Ford (JHU), G. Illingworth (UCSC),
M. Clampin (STScI), G. Hartig (STScI), the ACS Science Team, and ESA

starlight (Fig. 3.2). Figure 2.3 shows a related observation of a clump-scale object
that is being eroded by ionizing radiation from O and B stars. In this case the cold
molecular gas and dust extinct the optical radiation of the background ionized region
produced by the nearby hot O star S Monocerotis in the young cluster NGC 2264.

A number of well-defined relationships arise from the data, including the
linewidth-size relation, the condition of near virial balance, and the mass spectrum
(number of objects per unit mass interval as a function of mass). If the CO line
widths are determined as a function of scale, a well-defined linewidth-size relation
appears, as first determined by Larson [301]. Over a scale range (L) of 0.05–
60 pc, he found �v � L0:38 where L is given in pc and �v is the observed full
width of a spectral line at half maximum, in km s�1 (see Fig. 2.4). This relation is
similar to what one would expect for laboratory incompressible turbulence, which
gives the so-called Kolmogorov spectrum with the exponent 1/3. Subsequent studies
have confirmed the existence of the linewidth-size relation, but there is appreciable
scatter in the data, and various determinations [224, 312, 475] give power law
exponents ranging from 0.4 to 0.6, depending on the details of how velocities and
sizes are measured. In view of the uncertainty, a value of 0.5 is commonly used.
At the low-mass core scale (0.1 pc), the linewidth-size relation changes, so that
there is no longer any significant correlation between linewidth and size [191].
On this scale, the line widths are usually dominated by the thermal component,
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Fig. 2.4 Sketch of a molecular emission line, giving intensity in arbitrary units as a function of
velocity in the line of sight. Zero velocity corresponds to the rest wavelength at the center of the
line. The linewidth �v is measured according to the dashed line. The line strength is the intensity
integrated over all velocities. The profile shown is assumed to be a Gaussian. If it is assumed to
arise only from thermal motions of the molecule, then �vth D Œ8kB T .ln 2/=m�1=2, where m is the
mass of the molecule in grams and kB is the Boltzmann constant. In the figure, for the case of
the ammonia molecule NH3, the measured �v D 0:188 km s�1 corresponds to a temperature of
13 K. Note that the velocity dispersion, namely the isothermal sound speed or equivalently the root
mean square of the velocity of a particle in one dimension, �th D .kB T=m/1=2 D �v=2:355. If
turbulence is also present, then the linewidth �v2

tot D �v2
th C �v2

turb where �vturb D 2:355�x and
�x is the one-dimensional turbulent velocity dispersion, which is independent of the particle mass

�v=�vtherm � 1:3, so the non-thermal component, while still present, is now
subsonic.

It is not clear exactly what this relation means. The standard interpretation is
that some kind of compressible, highly supersonic, turbulence could be present,
with properties somewhat different from laboratory turbulence (lab turbulence is
subsonic). Under this basic assumption, one can approximately state Larson’s
findings (often referred to as “Larson’s Laws”) as follows. The first is the linewidth-
size relation [475]:

�x � .0:7 ˙ 0:07/R0:5˙0:1
pc km s�1 (2.5)

where �x is the one-dimensional velocity dispersion, in this case the mean turbulent
velocity measured in the line of sight, and R is approximately the radius of the
cloud. Clearly on all scales larger than about 0.1 pc, the turbulence is supersonic,
because the thermal velocity dispersion at 10 K is 0.19 km s�1 for a gas with mean
molecular weight 2.37 (approximately 70% H and 28% He by mass).

The second finding is essentially that molecular clouds and clumps within them
are gravitationally bound and are close to virial equilibrium. The Virial Theorem for
a quasi-spherical cloud in force balance can be written

2Ekin C 2Eth C Emag � 3PsurfV C Egrav D 0: (2.6)
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where Ekin is the total macroscopic kinetic energy, including rotation and turbu-
lence, Eth is the total thermal energy, Emag is the total magnetic energy (magnetic
surface terms are not considered here), Egrav is the total gravitational energy, Psurf

is the external pressure, and V is the total volume. Assuming that the kinetic energy
is dominated by turbulence, that the only other term of importance is Egrav, and that
the cloud can be approximated by a uniform-density sphere with mass M , then the
Virial Theorem gives

M�2 D 3

5

GM 2

R
(2.7)

where the three-dimensional velocity dispersion � is related to �x by �2 D �2
x C

�2
y C �2

z . Assume isotropic velocities and solve for the mass, which is denoted by
the virial mass Mvir:

Mvir D 5�2
xR

G
: (2.8)

For an actual cloud one defines ˛vir D Mvir=M , so that a cloud with ˛vir D 1

is in virial balance but not necessarily in hydrostatic equilibrium, because of the
assumption regarding uniform density. But if ˛vir < 1 then the cloud is definitely
not in force balance and is unstable to collapse.

Note that the mean column density NNH D M=.�mR2/, where m is the mean
mass (in grams) per particle and R is the radius of a clump, so that �2 / NNH R,
so NNH = const. (there is some observational evidence in support of this but
the suggestion of virial equilibrium according to (2.8) is oversimplified). The
conclusion that all molecular clouds have similar column densities, on all length
scales where the linewidth-size relation applies, is Larson’s third finding, even
though it can be derived from the first two. One can also deduce from Larson’s
findings that M / R2 and � / R�1.

Another explanation of Larson’s findings [459] is that they represent virial
equilibrium of masses on various scales with the magnetic field supporting the
region against gravity. The linewidth in that case would arise from Alfvén waves,
and it can easily be shown that �v / R0:5B0:5 (see below).

The mass spectrum of the molecular clouds, clumps and cores has been measured
over a wide range of masses by several different methods. The results are usually
expressed in terms of a power law

dN=dM D const: � M �x (2.9)

where dN is the number of clouds in the mass range M to M C dM . On the
largest scales, corresponding to giant molecular clouds in the mass range above
about 3�104 Mˇ, the preferred method is to use the total luminosity in a spectral line
of 12CO or 13CO as an indicator of mass. The latter molecule is preferred because it
is usually optically thin, but the former is often used simply because its intensity is
greater. In either case corrections must be applied [352] to convert from molecular
column density to total mass. The typical result [552] is x � 1:6 with an upper mass
cutoff at about 6 � 106 Mˇ.
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Fig. 2.5 Mass spectrum of clumps in the L1630 molecular cloud (Orion B). The spectrum is
plotted as a function of the virial mass in solar masses. The dashed line represents a slope of �1:6.
Below about 20 Mˇ the observations are incomplete. Reproduced by permission of the AAS from
[293]. c� The American Astronomical Society

On smaller scales, one can use line widths and sizes of various regions to get
Mvir from (2.8). An example of such a mass spectrum obtained by use of the CS
molecule in the Orion region, in the mass range 20–500 Mˇ, is shown in Fig. 2.5,
where the power-law index is also x D 1:6. This spectrum does not match that of
stars, which if fitted to a power law in the mass range 2–10 Mˇ, has an exponent
of about –2.3. The diagram shown represents clumps in the Orion region; however
very similar relations are obtained in different molecular clouds and with different
line tracers; the power law seems to hold in a wide range of masses. However there
is somewhat of a range in the power laws deduced, so a better representation of the
situation would be that x falls in the range 1.3–1.9 [335]. Still, the power law in the
clump mass spectrum is consistent with that for molecular clouds as a whole.

At even lower masses, in the core-mass range, a somewhat different result is
obtained by a different method [19, 370]. Continuum dust emission at 1.3 mm is
used to estimate actual masses (rather than virial masses). The flux in the (optically
thin) millimeter continuum can be converted, using a standard dust-to-gas ratio, to
column density NH and then to total mass (the method is described in more detail in
Chap. 4). The observations show that pre-stellar condensations in the Rho Ophiuchi
region follow approximately dN=dM / M �1:5 below 0.5 Mˇ, but above that mass
it steepens to dN=dM / M �2:5. This observation (which has been confirmed
by other studies) is not too different from the stellar mass spectrum, which gives
dN=dM / M �2:3 for masses above 0.5 Mˇ but dN=dM / M �1:3 for lower
masses. The switch in slopes occurs at about 0.6 Mˇ, at about the same mass where
a corresponding change occurs in the stellar mass spectrum. There is a factor 2
uncertainty in core masses, and it is not entirely clear that the slope change is not
due to some selection effect, but this result suggests that the IMF for stars in clusters
is determined at the pre-stellar stage.
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Fig. 2.6 Mass function of dense molecular cores in the Pipe Nebula (filled circles), compared
with the initial mass function for stars in the Orion Nebula cluster (grey line). The dashed line
refers to the stellar mass function shifted to higher masses by a factor of about 4. Credit: J. F.
Alves, M. Lombardi, C. J. Lada: Astron. Astrophys. 462, L17 (2007), reproduced with permission.
c� European Southern Observatory

An independent method for the core mass function [15] involves observations of
the nearby (130 pc) molecular cloud known as the Pipe Nebula, whose background
consists of large numbers of stars in the Galactic bulge. By measuring the near IR
extinction of those background stars caused by the dust in low-mass dense cores in
the Pipe Nebula, one can obtain the mass of each core, using the standard conversion
(2.4) between extinction in magnitudes and hydrogen column density NH . The
results are shown in Fig. 2.6 (note that the mass function, not the mass spectrum,
is plotted). The advantage of this method is that it avoids the uncertainties in the
determination of masses through dust emission. The typical core measured here has
density �104 particles/cm3. The broad grey line is the stellar IMF as measured in the
Orion Nebula cluster. The circles with error bars are the mass function determined
in the dense cores. The dotted grey line is the stellar IMF shifted over by a factor
4 in mass. Clearly the shape of the mass function of the dense cores is very similar
to that of the stars and the change in slope at lower masses is evident; the change
in slope occurs at 2–3 Mˇ, rather than about 0.6 Mˇ for the IMF. If a correction
for background extinction is made then the difference in mass between the two
curves reduces to a factor 3. The conclusion is that the stellar IMF is set by the mass
function of dense cores, and there is an efficiency factor of about 30% in the process
of turning the mass of the core into a star. This conclusion is supported theoretically
by a calculation [460] that includes the effects of magnetic fields and outflows and
which also shows an efficiency of about 30%.
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2.2 Initial Conditions for Star Formation

The requirement on a region in a molecular cloud that must be satisfied before it can
collapse and form a star was first derived by Sir James Jeans [241]. His method was
a linear stability analysis performed on the basic hydrodynamic equations, assuming
an isothermal gas (Problem 2), including only thermal and gravitational effects.
A simpler method of defining the initial conditions for collapse, which, however,
includes all relevant physical effects, is to require that the absolute value of the
gravitational energy must exceed the sum of the thermal, rotational, turbulent, and
magnetic energies. This requirement defines a mass (M ) of gas that is gravitationally
bound. For this mass to be as small as a solar mass, the requirement can be satisfied
only in the coolest, densest parts of the interstellar medium. Thus the requirement is

jEgravj > Eth C Erot C Eturb C Emag: (2.10)

For an assumed spherical configuration,

Egrav D �Cgrav
GM 2

R
(2.11)

where Cgrav is a constant depending on the mass distribution and equals 3/5
for uniform density. The total thermal energy for an isothermal ideal gas with
temperature T is

Eth D 3

2

RgTM

�
(2.12)

where Rg D kB=mu is the gas constant, kB is the Boltzmann constant, mu is the
atomic mass unit, and � is the molecular weight of the gas in atomic mass units.
The rotational energy is

Erot D CrotMR2˝2 (2.13)

for an assumed uniform angular velocity ˝ , where Crot depends on the mass
distribution, and equals 1/5 for uniform density. The turbulent kinetic energy is

Eturb D 1

2
M�2 (2.14)

where � is the mean turbulent velocity, as in (2.7). The magnetic energy is given by
the volume integral

Emag D 1

8�

Z
B2dV � 1

6
B2R3 (2.15)

where B is the assumed uniform magnetic field.
Now consider thermal and gravitational effects alone, as did Jeans in his

original analysis. Although his analysis contains a physical inconsistency,
the result is still very similar to that obtained by energy considerations. The
requirement that a uniform-density, uniform-temperature sphere be gravitationally
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bound [.3=5/GM 2=R D .3=2/RgTM=�] leads to the determination of the Jeans
length:

RJ D 0:4GM�

RgT
; (2.16)

where � � 2:37 for solar composition with molecular hydrogen. For a cloud of a
given mass and temperature, the radius must be smaller than RJ to be unstable to
gravitational collapse. Alternatively, we can eliminate the radius from (2.16) in favor
of the density �, assuming again that the gas is a sphere, to obtain an expression for
the Jeans mass, which is the minimum mass that the cloud of given (�, T) must have
to be unstable:

MJ D
�5

2

RgT

�G

�3=2

.
4

3
��/�1=2 D 8:5 � 1022

�T

�

�3=2

��1=2 g: (2.17)

Another commonly used version of the Jeans length is obtained by eliminating
the mass in (2.16) in favor of density and radius:

RJ �
�

RgT

�

�1=2
1p
G�

� cstff (2.18)

where cs is the isothermal sound speed and tff is defined by (1.1). Here, given T and
�, the radius of the cloud must be larger than RJ for collapse to occur.

An alternate form of the thermal Jeans mass is known as the Bonnor–Ebert
mass. The situation envisaged here is slightly different: an isothermal cloud exists
in equilibrium, with the effects of the internal pressure gradient, plus an external
confining pressure Psurf, balancing gravity. Only gravitational effects and thermal
effects are considered in the cloud interior. This problem, involving a bounded
isothermal sphere, is treated in more detail in Chap. 3, where it is shown that the
corresponding critical length for instability to collapse is essentially identical to
(2.16).

We now consider rotational effects in addition to thermal effects and gravity. We
define ˛ D Eth=jEgravj and ˇ D Erot=jEgravj, where the density of the sphere and
its angular velocity ˝ are assumed constant. The revised expression for the Jeans
mass becomes

MJ D
� 3RgT

2�
C 0:2˝2R2

0:6G

�3=2

.
4

3
��/�1=2 ; (2.19)

and M > MJ is the condition for the cloud to collapse. Alternatively,

˛ � 1 � ˇ (2.20)

for collapse, although numerical studies indicate that actually ˛ � 1 � 1:43ˇ is a
more realistic criterion. Clearly rotation has a stabilizing influence, but in the typical
observed cloud core ˇ is relatively small (see below). However, even if criterion
(2.20) is satisfied and the cloud starts to collapse (assuming conservation of angular
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momentum), the rotational energy Erot D J 2=2I � J 2=.MR2/, where J is the
total angular momentum and I is the moment of inertia, increases faster than the
gravitational energy, and the collapse could be stopped at relatively low density.

Rotation is detected in molecular clouds and cloud cores through observations of
a gradient in the radial velocity dv=ds, where s is a distance in the plane of the sky.
This quantity is measured at various points across the cloud, for example, by the
Doppler shifts of emission lines in NH3 [188,191]. A linear velocity variation with
the spatial coordinate across the cloud is consistent with uniform rotation. From
the velocity gradient, and from an assumed model of uniform rotation which is
consistent with the observations within the errors, the angular velocity ˝ � dv=ds

and the specific angular momentum j � 0:4˝R2 are derived. The inclination angle
of the rotation axis to the line of sight is not known. About half of the clouds
observed show measurable rotational velocities; the remainder are presumably
rotating below the observational limit. On the cloud core scale, typical values of
˝ are 10�13–10�14 s�1. Rotation has also been detected on larger molecular cloud
scales. For example, CO measurements indicate that a gradient in the line-of-sight
velocity exists in the Orion A cloud (Fig. 2.1), extending from its upper right end to
its lower left end [337], implying rotation about an axis perpendicular to the galactic
plane, but in the opposite sense to the Galactic rotation.

Rotation does not appear to be a major factor in the support of clouds against
collapse. Nevertheless there is an angular momentum problem, as indicated by the
data in Table 2.2. An example of the angular momentum problem was stated by
Spitzer [476] as follows: Consider a gas cylinder 10 pc long and 0.2 pc in radius
(a filament) with density 5 � 10�23 g cm�3. Its mass is about a solar mass. Let it
rotate about its long axis, say with the typical galactic rotation, ˝ D 10�15 s�1.
Its contraction parallel to J is not opposed by rotation, but to reach stellar size
the radius perpendicular to J must contract by 7 orders of magnitude. Since if
angular momentum is conserved ˝R2 D constant, ˝ must increase by 14 orders
of magnitude, to 10�1. The corresponding rotational velocity of the star then would
be 6 � 109 cm s�1, or 0.2 c! The centripetal acceleration would be 104 times that of
gravity.

Table 2.2 Characteristic values of specific angular momentum

Object J/M (cm2 s�1)

Binary orbit (104 yr period) 4 � 1020–1021

Binary orbit (10 yr period) 4 � 1019–1020

Binary orbit (3 day period) 4 � 1018–1019

100 AU disk (1 Mˇ star) 4:5 � 1020

T Tauri star (rotation) 5 � 1017

Jupiter (orbit) 1020

Present Sun (rotation) 1015

Molecular clump (scale 1 pc) 1023

Cloud core (scale 0.1 pc) 1:5 � 1021
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Fig. 2.7 Ratio ˇ of rotational energy to absolute value of gravitational energy (upper), and
specific angular momentum (lower), as a function of the size of a molecular cloud core, based
on observations of the velocity gradient across the core. 1 km s�1 pc = 3.08 �1023 cm2 s�1.
Reproduced, by permission of the AAS, from [191]. c� 1993 The American Astronomical
Society

The results concerning rotation show that first, the angular velocity ˝ is similar
on all scales; it is only slightly higher in cloud cores than in molecular cloud
clumps as a whole, suggesting magnetic coupling between the two regions. Second,
j D J=M decreases to smaller scales, also suggesting magnetic braking, but this
conclusion is not entirely clear because different mass elements are being sampled.
A survey [191] of rotational velocities in cloud cores on scales of 0.06–0.60 pc
shows values of j � 6 � 1020 to 3 � 1022 cm2 s�1. A fit to the data gives j / R1:6,
implying ˝ / R�0:4, where R is the size of the core. The values of ˇ and j

derived from observations [191] are shown in Fig. 2.7. Note that ˇ is small on
average, only 2 or 3%. But, third, if the cores were to collapse with conservation
of angular momentum into disks, they would reach equilibrium with an outer
keplerian radius of 180–4,500AU, comparable in size to many observed disks. The
fact that cloud cores contain far too much angular momentum to be compatible
with stellar rotational velocities of, for example, T Tauri stars, is demonstrated
in Table 2.2.
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Turbulent motions are important in molecular clouds, and one can define a
turbulent Jeans mass in analogy to the thermal Jeans mass. Equating turbulent
energy to gravitational energy

Mturb D 5�2
xR

2G
(2.21)

where �x is the turbulent velocity dispersion in the line of sight [see (2.5)]. This
mass is clearly closely related to Mvir, as defined by (2.8), but in that equation the
Virial Theorem is used, which accounts for the additional factor 2. For example,
in a turbulent core of radius 0.1 pc with a velocity dispersion of 1 km s�1 the mass
must be above 50 Mˇ for collapse. This situation is appropriate for the formation
of massive stars (Chap. 5), but, as mentioned earlier, in low-mass cores the thermal
effect dominates.

Finally we consider the magnetic Jeans mass, under the assumption that thermal,
turbulent, and rotational effects are unimportant. Using the magnetic energy as
simply Emag D B2

8�
4
3
�R3 one obtains instability to collapse in a cloud of density

�, radius R, and uniform magnetic field B if its mass is greater than M� , where

M� D BR2

.3:6G/1=2
D
�

5

18�2G

�1=2

� D B3

.3:6G/3=2. 4
3
��/2

� 103Mˇ
� B

30�G

�� R

2pc

�2

(2.22)

where � is the magnetic flux. Thus on the clump scale (Table 2.1) where typical
measured fields are around 30 �G, the magnetic Jeans mass is close to the clump
mass.

If one defines a closed loop threaded by a uniform magnetic field B , the magnetic
flux is defined by

� D
Z

S

B � n dA (2.23)

where S is the surface enclosed by the loop and n is the normal to that surface. The
magnetic induction equation reads

@B

@t
D r � .v � B/ � r � .�e r � B/ (2.24)

where v is the velocity vector and �e is the electric resistivity (also referred to as the
magnetic diffusivity)

�e D c2

4��e
: (2.25)

Here c is the velocity of light and �e is the electric conductivity. The second term on
the right-hand side of (2.24) represents the decrease in magnetic field as a result of
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Ohmic dissipation. The ratio of the first and second terms is known as the magnetic
Reynolds number, usually expressed as the dimensionless quantity

Rem D vL

�e
(2.26)

where L is a characteristic length and v is a characteristic velocity. If Rem 	 1,
then dissipative effects are negligible. In the interstellar gas, �e is high enough so
that indeed Rem is very large, so that the second term in (2.24) can be neglected.
Then, using the condition r � B D 0 and the Gauss theorem, one can prove that, as
the material associated with the loop evolves in time, the flux remains constant, a
condition known as flux-freezing.

If the cloud is collapsing quasi-spherically, then the magnetic flux � � �BR2

remains constant as the cloud collapses, and (2.22) shows that M� is constant, that
is, it would not be possible for the cloud, for example the 1,000 Mˇ clump just
mentioned, to fragment into smaller masses. Furthermore, under these conditions
of quasi-spherical collapse B / �2=3 during collapse. In general, however, if the
collapse is not spherical or the field is not frozen in, the field will increase as B / �� ,
implying M� / ��3.2=3��/. As long as � < 2=3, M� decreases on compression,
and fragmentation eventually becomes possible. It has generally been believed, on
both theoretical and observational grounds, that � � 0:5. In this case, as a cloud
contracts, magnetic energy becomes less important relative to gravitational energy.
However an extensive set of measurements [126] suggests that � is actually higher,
closer to 2/3, at densities ranging up to those in molecular cloud cores (Fig. 2.9).

The criterion for collapse in the presence of a magnetic field is often stated as a
critical mass-to-flux ratio: �

M

�

�
crit

D 0:17p
G

(2.27)

where the constant depends on the details of the geometry. If the ratio of the actual
M=� to the critical value is greater than unity, the cloud is supercritical and can
contract. In the subcritical case (ratio < 1), the field dominates, preventing overall
contraction; however the cloud can contract in the direction parallel to field lines
and become quite flattened (neglecting other effects).

The magnetic field influences the evolution of molecular cloud material in
various ways. It is important, first, for at least partial support of the magnetic cloud
clumps against collapse. If they were collapsing, the star formation rate would be far
higher than currently observed. The typical observed field at the mean clump density
is 30 �G. Consideration of the magnetic energy and turbulent energy in comparison
with the gravitational energy indicates that the clumps are unlikely to collapse. The
measured magnitude of the field at these early stages leads to the magnetic flux
problem. For the same interstellar filament of about 1 Mˇ that we considered in
connection with the angular momentum problem, suppose it has a magnetic field
of 3 �G (appropriate for the low-density interstellar gas) parallel to the long axis.
Then the magnetic flux �BR2 D � � 3 � 10�6 � .6 � 1017/2 � � � 1030. Material
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can contract along the magnetic field, and we assume that the contraction across the
magnetic field takes place with conservation of flux. The final stellar radius is about
6 � 1010 cm, about 7 orders of magnitude smaller than that of the cloud, so the field
must increase by 14 orders of magnitude to 3�108 gauss, much higher than observed
(the mean field on the solar surface is only 1 gauss) and giving a magnetic energy
about the same as the gravitational energy, even if the field is uniform through the
star. Despite extensive calculations [318], this difficult problem has not yet been
resolved.

A second important effect is the braking of rotation. The field is the most likely
mechanism to transport angular momentum out of the dense cores of molecular
clouds, as discussed in more detail below. Third, if a region of the cloud is
subcritical, then evolution of the region to the point of collapse requires that the field
diffuse with respect to the matter. Estimated field diffusion times (3 � 106–107 yr)
are consistent with the spread of ages of stars in at least some young clusters. This
process, known as ambipolar diffusion, or plasma drift, is treated in more detail in
Sect. 2.6. Finally the suprathermal line widths observed in molecular cloud clumps
could be accounted for by the Alfvén waves associated with the field.

It is simple to derive an approximate relation between line width �v, field
strength, and linear scale. Assuming approximate balance between magnetic and
gravitational forces:

4

3
�R3 B2

8�
D GM 2

R
(2.28)

and multiplying and dividing the left-hand side by � one obtains

V 2
A � 2GM

R
� 2�G˙R (2.29)

where ˙ D M=.�R2/ is the surface density (in g cm�2), and the Alfvén velocity

VA D Bp
4��

: (2.30)

Then from the critical mass-to-flux ratio, and assuming that the Alfvén speed
determines the line width

˙

B
D 0:17p

G
(2.31)

and

�v D 0:79.
p

GBR/1=2 � 1:23

�
B

30�G

�1=2 �
R

1pc

�1=2

km s�1: (2.32)

Figure 2.8 shows a plot [373] of this relation (solid line) compared with the
observations of regions where R, B , and �v have been measured. This interpretation
of the line widths is in contrast to the alternative view that they are primarily a result
of turbulent broadening. Equation (2.32) can be thought of as the alternate form
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Fig. 2.8 Relationship between the magnetic field, the line width, and the cloud size, as observed
(points with error bars) and as predicted by (2.32) (solid line). The dashed line is a fit to the
data. The quantity �vNT is the non-thermal component of the velocity dispersion, in this case
caused by magnetic effects. Reproduced by permission of the AAS from [373]. c� The American
Astronomical Society

of Larson’s first finding, when magnetic effects are important. The result strongly
suggests that at least in regions where B is strong enough to be measured, the clouds
are close to the point where they are magnetically critical.

The evidence for existence of the field is given by measurements of Zeeman
splitting of molecular lines. The Zeeman effect is strong enough to be measurable
only in certain lines, for example in OH, CN, and the 21 cm line of neutral H. The
measurements are extremely difficult, because the Zeeman splitting is only a small
fraction of the line width. The goals of such observations are to determine to what
extent the magnetic field can support a cloud or clump against collapse, and the
relation between field strength and density. In addition, there are measurements of
the polarization of starlight [190, 532] which give only the direction of the field but
show that the field in a cloud is at least in part well-ordered, rather than random. The
Zeeman measurements give only the line-of-sight component of the field, but the
results can be deprojected under the assumption of random orientation of the field
lines. Relatively few detections exist [125,126,166,510], and in a number of clouds
the field has been looked for and not found. Plots of magnetic field against gas
density, while subject to large uncertainties in both coordinates, show a general trend
that B increases with n with an approximate power law of 0:65 ˙ 0:05 (Fig. 2.9),
as long as the density is above about 300 cm�3; below that value the field does not
depend appreciably on density. These data support the following conclusions which
apply in cases where there are actual detections of B .

1. The ratio of thermal to magnetic pressures is low, averaging about 0.04.
2. The mass to magnetic flux ratio for the average observed cloud is within a factor

2 of the critical value where gravitational energy and magnetic energy are equal,
depending on the assumed geometry. Some observations show that the field is
subcritical, others that it is supercritical. However the mean value is supercritical.
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Fig. 2.9 Relationship, in the interstellar gas, between the observed component of the magnitude
of the magnetic field in the line of sight jBzj and the hydrogen volume density in cm�3.
In molecular clouds, the horizontal axis is 2n.H2/. Filled circles: HI diffuse clouds; open
circles: OH dark clouds; filled squares and stars: molecular clouds. The solid line, obtained
from a statistical analysis, represents the maximum of the total field strength B as a function
of density. In molecular clouds, the actual values of B are randomly distributed between a
very small value and this maximum. The dotted lines give the uncertainty in the statistical
model. Reproduced by permission of the AAS from [126]. c� 2010 The American Astronomical
Society

But the large number of non-detections suggests that on the average the magnetic
field alone does not prevent material from collapsing.

3. Kinetic energy in macroscopic gas motions is roughly a factor 2 higher than
magnetic energy in the average observed cloud. Clouds are in approximate
virial balance, with turbulent kinetic plus magnetic energies comparable to
gravitational energy (Larson’s second finding).

4. At densities above n � 300 particles cm�3, the maximum magnetic field B scales
with density as jBj / �� with � � 0:65. This value agrees with the theoretical
value of 0.67 for the case in which the cloud is relatively spherical and has a weak
magnetic field [362]. However a number of numerical simulations in which the
cloud was initially rapidly rotating, e. g. [98], show that the collapse to a disk
results in a value for � � 0:5.

As a specific example, 34 dark-cloud regions were extensively observed
[510] with the Arecibo radio telescope in the 1665 and 1667 MHz lines of the
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molecule OH. Nine significant detections were made. The number density of H2 in
these regions ranges from 1,500 to 6,600 cm�3. Taking a well-defined set of detec-
tions in the range of column densities N.H2/ D 4 ˙ 2�1021 cm�2, the mean mag-
netic field component in the line of sight is 17 �G, not including the non-detections.
We can now estimate the ratio (R) of the observed mass-to-flux ratio to the
critical value:

R D .M=�/obs

.M=�/crit
D mN

p
G

0:17B
D 6 � 10�21N=B (2.33)

where N is the total column density in particles cm�2, m is the mean mass per
particle, taken to be 2.4 atomic mass units, taking into account the helium, and
B is the magnetic field in �G. The actual magnetic field strength is statistically
obtained from the line-of-sight component by multiplying it by a factor 2, and
the observed column density of H2 is corrected by 20% to get N , taking into
account the helium. With the very specific set of data chosen, R is very close
to 1, perhaps even slightly subcritical. If the cloud region is disk-like rather
than spherical, there is an additional small correction which makes R even more
subcritical. In view of the uncertainties, the observations do not rule out the picture
of magnetically controlled star formation, at least in some regions. However, the
large number of non-significant detections or detections showing a very weak field
indicate that there are many regions where the magnetic field is not a controlling
effect.

Under typical interstellar conditions outside molecular clouds, where the hydro-
gen is neutral and T � 100 K, n � 10 particles cm�3, and the median field
B � 6 � 10�6 gauss (Fig. 2.9), the thermal Jeans mass MJ from (2.17) is 104 Mˇ,
and the magnetic Jeans mass from (2.22) is of the same order of magnitude. The HI
(so-called “diffuse”) clouds have a wide range of properties; however the typical
mass is only 103 Mˇ. Thus it is clear that in order to get a region with mass
of order 1 Mˇ to collapse, we must consider regions, in molecular clouds, that
are denser and cooler than average. In molecular clumps with temperature 10 K,
mean number density of H2 of 103 cm�3, and magnetic field 3 � 10�5 gauss, the
thermal Jeans mass (assuming a mass density of � D 3:3 � 10�21 g cm�3 and
a mean molecular weight � = 2) under these conditions is only about 10 Mˇ,
while the magnetic Jeans mass and the turbulent Jeans mass (2.22) and (2.21) are
both comparable to the clump mass, about 1 � 103 Mˇ. Thus probably turbulence
and the magnetic field combine to keep the typical clump from collapsing. In the
higher-density cloud cores where masses are a few Mˇ, sizes 0.05 pc, temperature
10 K, and density about 105 cm�3, the thermal Jeans mass is down to about
1 Mˇ, and the turbulence is subsonic, so Mturb < MJ . The magnetic Jeans mass,
assuming that the field strength is roughly 100 �G (Fig. 2.9), is about 2 Mˇ.
However here the assumptions of spherical contraction and flux-freezing that led
to (2.22) are starting to break down; also not all cores have magnetic fields
that strong.
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2.3 Heating and Cooling

Star formation is clearly favored in cloud cores where the temperature is only 10 K.
But why is the temperature so low? The rates of heating and cooling are important
for determining the temperature as a function of density and for maintaining the
low temperature of molecular cloud material once it starts to compress under
the influence of gravity. The details of the heating and cooling processes are
complicated, but the somewhat surprising result is that for densities ranging from
the clump value of 103 cm�3 to as high as 1010 cm�3 the temperature stays near
10 K. The only exception is for molecular cloud material in the vicinity of newly
formed stars, where heating to 30 K or even higher is possible.

Let � be the rate of energy gain and � the rate of energy loss, both per unit
volume. Then, if � > � the cooling time scale is given by

tc D 3RgT�

2�.� � � /
: (2.34)

The basic assumption is that cooling times and heating times are short enough so that
an equilibrium is reached, with cooling rate balancing heating rate in determining an
equilibrium temperature. A wide range of physical processes is considered to deter-
mine the rates [73, 134, 187, 189, 476, 481]; we summarize the important ones here.

The dominant external heating processes are: (1) the photodissociation of
molecular H by interstellar photons, (2) the photoionization of carbon atoms by
interstellar radiation, (3) the ionization of H and of H2 by low-energy cosmic rays,
and (4) the production of photoelectrons liberated from grains by interstellar UV
photons. In these heating processes, the extra energy delivered by the photon or
energetic particle, above the ionization or dissociation energy, goes into heating the
gas. The heating from these external sources is proportional to the first power of the
local gas density. At relatively high densities, above 103 cm�3, where most of the
gas is in molecular form, cosmic ray heating dominates. The main constituent of
cosmic rays is high-energy protons. The heating rate [481] is approximately

�CR D 1:1 � 10�11� nH2 � 3 � 10�28nH2 erg cm�3 s�1; (2.35)

where � is the rate of ionization (molecules s�1) of H2 by cosmic rays, estimated to
have a value of �3 � 10�17. This rate actually must be corrected for absorption of
cosmic rays in the outer parts of the molecular region.

At still higher densities, where the mass exceeds the local Jeans mass and
collapse starts, a fifth process, compressional heating, becomes important. It can be
calculated under the assumption that the gas is collapsing at half the free-fall rate:

�f D �P�
dV 0

dt
D P

�

d�

dt
D .8G�/1=2 RgT�

.3�/1=2�
D 2 � 104�3=2T=� erg cm�3 s�1

(2.36)
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where �f is the rate of work done by gravity per unit volume, and V 0 D 1=�. This
approximate relation is obtained by setting dt equal to twice the free-fall time (1.1)
and d�=� to unity, and by using the ideal gas equation for P .

The dominant cooling processes are (1) collisional excitation of atoms,
molecules, and ions, by electrons, H, or H2, followed by radiative decay and escape
of the photon, and (2) grain cooling. The cooling rates are all proportional to the
square of the particle density. For collisional excitation, the important contributors
are CC at low densities and C, O, and CO at higher densities; the details of the
cooling rates are given in [481]. Grain cooling involves collision of molecules with
grains, heating them somewhat but also cooling the gas. The grains then radiate
their excess energy in the infrared; they are assumed to behave as miniature black
bodies, radiating a Planck spectrum at the grain temperature Tg . As long as the
cloud has � < 10�13 g cm�3, it is optically thin to this radiation, and it escapes.
A molecule arrives on a grain with a temperature T and leaves with the (lower) Tg .
The rate of transfer of energy from gas to dust grains is then given by the collision
rate per unit volume times the energy loss per collision:

�g D ngnH2 vH2�r2
gkB.T � Tg/ D 3:2 � 1013�2

H2T
1=2.T � Tg/ erg cm�3 s�1;

(2.37)
where the n’s are number densities, vH2 is the mean of the magnitude (in
3 dimensions) of the velocity of an H2 molecule Œ8kBT=.�m/�1=2, and rg, the grain
radius, is assumed to be 2 �10�5 cm. The sticking coefficient is assumed to be 1
and the number density of grains is assumed to be 2 � 10�13 that of H2. The grain
temperature is then determined by the condition that the heating rate of the grain
by the above process is equal to the cooling rate by emission of infrared radiation.
The emission coefficient is then assumed to be given by j	 D �	B	.T /, so that
j D 2:3 � 10�4�pT 4

g erg g�1 s�1 where �p is the Planck mean opacity (5.13). The
emission coefficient is the energy emitted per unit mass per unit time per unit solid
angle per unit frequency interval, so j�, which is integrated over frequency and solid
angle, is the energy emitted by the grains per unit volume per unit time.

To obtain the temperature one makes the assumption that at equilibrium the total
rate of heating equals the total rate of cooling:

�CR C �f C �photo D �ion C �atomic C �g C �molec (2.38)

where �photo is the heating rate from the sum of all processes involving photons, and
�ion, �atomic , and �molec refer to collisional excitation processes. Then one solves
this expression together with j� D �g to find T and Tg. It turns out that at lower
densities, typical of HI clouds, collisional excitation of CC and photoheating are,
respectively, the dominant cooling and heating processes, while at molecular cloud
densities cosmic ray ionization dominates the heating while CO as well as grains
provide the cooling.

Results of heating–cooling balance, based on a particular model of a molecular
cloud and under the assumption that � D 10�17 [134] show that T D 70 K at n D 35,
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T D 21 K at n D 4 � 103, and T D 10 K at density n D 104 cm�3. Further
calculations [300] show that at still higher densities (�106 cm�3) the gas cools
further to 5 K. Nevertheless, the equilibrium temperature varies only slowly for
104 < n < 1010, or 4�10�20 < � < 4�10�14 g cm�3. Thus the gas is often assumed
to be isothermal at 10 K in that density range. The gas tends to cool on compression,
because the heating rate per unit volume is proportional to particle density (also the
extinction increases with density), while the cooling rate per unit volume, dominated
by collisions, increases with the square of the density. The grain temperature does
indeed turn out to be less than the gas temperature and nearly constant as a function
of density at about 10 K. At the higher densities, above 106 cm�3, the dust and gas
temperatures are practically equal at about 5 K.

2.4 Magnetic Braking

The first stage of the solution of the angular momentum problem is to explain
why the small-scale, high density regions of molecular clouds have specific angular
momentum considerably less than that of the larger-scale regions. One way to solve
the problem is to imagine that the turbulent properties of the cores determine their
angular momentum [95]. A turbulent velocity distribution consistent with Larson’s
first finding can be shown to match the observations of angular momentum. The
line-of-sight component (v) of the velocity field can be interpreted as rotation, as it
shows a velocity gradient across the cloud. Roughly, the specific angular momentum
j / vR and v / R1=2 so j / R3=2, a relation that closely fits the observations
(Fig. 2.7). The turbulent velocity field also gives ˇ � 0:03, independent of the size
of the cloud, also in agreement with the data in Fig. 2.7. It turns out that the turbulent
motions do in fact give an overall net angular momentum to the cloud as a whole.

Another approach, for example in the situation where turbulent effects are not
important, is to assume that the high-density regions are connected by magnetic
field lines to the lower-density material. Suppose a high-density core has a uniform
magnetic field passing through it, and it is rotating faster than the background
medium of lower density. If the magnetic field is coupled to both regions, then
the field lines will become twisted as a result of the rotation. The equations of
magnetohydrodynamics (MHD) show that the twist generates a torque, which slows
down the rotation of the high-density material and transfers its angular momentum
to the low-density material. The braking of the rotation will continue as long as the
time scale for transport of angular momentum is shorter than the contraction time
of the high-density region (as the contraction would tend to spin it up).

The braking time was developed in a heuristic manner [151]; more detailed
numerical solutions of the equations of MHD have shown that this (highly idealized)
argument, summarized in the following paragraph, gives the correct time scale for
braking of the cloud.
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Consider a spherical cloud with radius R, density �, and mass M , threaded by
a uniform magnetic field B; an ordered field is required. The cloud is surrounded
by external material with lower density �ext , which is also threaded by the field.
The field is frozen into the gas in both media. The cloud is rotating with uniform
angular velocity ˝ , parallel to the direction of B , and the external medium is
initially not rotating. The field lines become twisted because of the discontinuity
in ˝ , and the twist propagates outward along the field lines at the Alfvén velocity
VA D B=.4��ext /

1=2 (in the external medium). Suppose the initial field is in the
Z-direction in a cylindrical coordinate system. Then the twist in the field lines
will generate components of the field in the R and �-directions. The torque on an
element of material in the cylinder that contains the cloud is then derived from the
�-component of the Lorentz force

1

4�
Œ.r � B/ � B�� :

But in the argument, a detailed calculation of the torque is bypassed, and it is simply
assumed that the wave spins up the external material within a cylinder with the same
radius as that of the cloud until it corotates with the cloud. The angular momentum
of the cloud itself decreases correspondingly.

The amount of material accelerated per second in the external medium in a
cylindrical shell of radius R and thickness dR as the Alfvén wave passes through it
is 2��ext RVAdR g s�1. Multiply by the specific angular momentum ˝R2 to get the
angular momentum increase per second for the mass element: 2��ext RVA˝R2dR.
We assume that the moment of inertia of the sphere I D 0:4MR2 and that its angular
momentum is J . We equate the angular momentum loss of the sphere to the angular
momentum gain of the external medium, and we integrate over the cylindrical region
of external matter through which the Alfvén waves propagate:

dJ

dt
D 0:4MR2 d˝

dt
D �

�
dJ

dt

�
ext

D ���ext VAR4˝ (2.39)

where the cloud radius is assumed to be constant and where a factor 2 has been
introduced to account for wave propagation in both directions.

The braking time is then given by

tb D ˝
d˝
dt

D 0:4MR2

��ext VAR4
D 0:4˙

�ext VA

D 4M

5.��ext /
1=2BR2

� 0:5�

�ext

R

VA

(2.40)

where ˙ D M=.�R2/, the surface density of the cloud, and � is the density of the
cloud. The braking time is thus closely related to the propagation time of the Alfvén
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wave into the external medium. The time can be re-written in terms of the critical
magnetic Jeans mass: M� D .BR2/=.3:6G/1=2,

M

BR2
D .3:6G/�1=2 M

M�

: (2.41)

Then using the free-fall time of the cloud, tff D Œ3�=.32G�/�1=2 we obtain

tb � 0:4
M

M�

.�=�ext /
0:5tff: (2.42)

For M=M� � 1, the marginally critical case, the braking time is comparable to the
free fall time [357]. For example, if the cloud has � D 10�21 g cm�3 and the density
ratio is 10, then we have tff D 2 � 106 yr and tb about the same for M=M� � 1. If
the cloud is magnetically subcritical the braking is very fast. Then

˝cloud .t/ D ˝.0/ exp .�t=tb/: (2.43)

But if the cloud is supercritical and is already collapsing, a detailed calculation is
required to determine how much angular momentum loss occurs. In the limit where
the collapse velocity exceeds the Alfvén velocity, magnetic braking is not effective
and the cloud collapses with approximate conservation of angular momentum.
Also, when the density of the collapsing cloud becomes quite high, the degree
of ionization becomes so low that the assumption of complete coupling between
matter and field breaks down (Sect. 2.5).

Figure 2.10 shows the results of an analytical solution of the MHD equations for
the case of a uniform-density cylinder with radius R and half-height Z1, linked to
the external medium by a uniform field B along the Z direction [372]. The braking
time can be understood as the time required for the Alfvén wave in the external
medium to sweep across enough material so that its moment of inertia equals that
of the cloud. The figure shows the results for the cloud’s ˝.t/ in units of its initial
value, assuming it is always uniformly rotating, and that the external medium is
initially at rest. The e-folding time for decrease in ˝ is found to be

tb D Z1

VA

(2.44)

where Z1 is the initial half-height of the cylinder, when � D �ext. As the cylinder
contracts in Z at constant R, the braking time is independent of the stage of
contraction indicated by �=�ext. As an example take a typical molecular clump with
R D Z1 D 2 pc and a density of 103 cm�3. If the mean particle mass is 2.3 atomic
mass units, then � D 3:8�10�21 g cm�3 and the total mass is 2:8�103 Mˇ. Assume
that initially � D �ext. Take a field of 30 �G, which gives M� D 1:2 � 103 Mˇ and
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Fig. 2.10 Magnetic braking. The angular velocity of a rotating cloud, in units of its initial value,
is plotted as a function of time. The configuration is a uniform-density, uniformly rotating cylinder.
The unit of time is the Alfvén wave crossing time Z1=VA, where Z1 is half of the height of the
cylindrical cloud at its initial state, when � D �ext , and VA is the Alfvén velocity in the external
medium. Result from [372]

tb D 4:5 � 1013 sec, only slightly longer than the free-fall time of 3:4 � 1013 s. This
assumed cloud is unstable to collapse, and as the density increases, the free-fall time
decreases but the braking time remains the same, so eventually the braking becomes
ineffective.

In the case where the field and the angular momentum are perpendicular, a similar
estimate [371] gives a braking time that is much shorter, up to a factor 10, than in
the parallel case. Both of these times are confirmed by detailed complete numerical
simulations of the MHD equations [35, 139]. However it is quite possible that the
assumed geometry, a uniform parallel or perpendicular magnetic field, is not quite
appropriate, particularly when the cloud has contracted to relatively high density.
In the case where the magnetic field lines are assumed to diverge spherically from
the boundary of the (contracted) cloud, the ratio of braking times between the cases
where the angular momentum (J) is parallel to B to that where J is perpendicular to
B is only about a factor 2 [361]. In this case again the times, assuming the mass-to-
flux ratio is close to the critical value, are close to the free-fall time of the cloud.
In summary, in the case where a rotating cloud is initially subcritical, its angular
velocity will go through three stages. First, the angular velocity will decrease rapidly
as a consequence of braking. Second, the angular velocity will remain constant at

the background value, as there is no longer any torque on the cloud. Third, when the
cloud starts to collapse, the angular velocity will increase again, with approximate
conservation of angular momentum, as its collapse time becomes shorter than the
braking time.
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Fig. 2.11 Ionization in molecular cloud cores. The histogram shows the number of cores as a
function of the ratio xe of charged particles to neutral particles. The numbers in the boxes give
identifications of the cores observed. A star in a box means that the core has at least one embedded
infrared source. Reproduced by permission of the AAS from [551]. c� 1998 The American
Astronomical Society

2.5 Degree of Ionization

The discussion of magnetic braking assumed that the magnetic field was firmly
coupled to the matter, or in other words, magnetic flux was conserved. Coupling
requires the presence of charged particles, as well as a sufficient rate of collisions
between charged particles and neutral particles such that the neutrals are coupled
to the charged particles and therefore are coupled to the field. Define the degree of
ionization x D ni =nn to be the ratio of the number densities of ionized (positively
charged) and neutral particles. In the outer parts of clouds this ratio is determined
by photoionization by UV photons from external hot stars. At core densities (nn �
104 cm�3) the UV is attenuated and cosmic ray ionization dominates. It is difficult
to measure x in molecular clouds, but a value of 10�7 is inferred from observations
of the ion HCOC, which is expected to be one of the dominant charged particles.
A set of observations [551] of 20 low-mass cores (mean density 2:5 � 104 cm�3)
shows a peak at the above value (Fig. 2.11).

Theoretical work [156] assumes that, at a given density, the cosmic ray ionization
is balanced by 2-body recombination of charged particles and recombinations on
charged grains, so that a steady-state value of x can be determined. The cosmic
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ray ionization rate is � per particle per second. In the simplest case of balance,
one would have �nH2 D ˛R � n2

i where the left and right-hand sides, respectively,
are the ionization rate and the recombination rate per unit volume, and ˛R is the
recombination coefficient. So one would have ni / n0:5

H2
or

x D Ki n
�0:5
H2

(2.45)

where Ki D .�=˛R/1=2 � 10�5 cm�3=2, although actually it is a weak function
of temperature and density. The degree of ionization is then 10�7 at a density
of 104 cm�3. It has been shown [357] that the n�0:5 proportionality is applicable
for densities as low as 103 cm�3, below which photoionization effects rather than
cosmic rays begin to dominate, and the field is effectively coupled. At very high
densities, >108 cm�3, the formula is not applicable because cosmic ray ionization
effectively shuts off. Some ionization can be provided under these conditions by
natural radioactivity. The observations shown in Fig. 2.11 actually are consistent
with (2.45) if Ki � 1:4 � 10�5, � D 5 � 10�17 s�1, and ˛R D 2:5 � 10�7 cm3 s�1.
These quantities are uncertain by at least a factor 2, and the values quoted are
within the acceptable range [131, 503]. The recombination coefficient depends on
complicated chemistry within molecular clouds and on which particular molecular
ion dominates in the recombination process. Thus the relation shown in (2.45) is
oversimplified, but nevertheless useful.

2.6 Magnetic Diffusion

In clouds which are not massive enough to contract across magnetic field lines, star
formation can occur only if the ratio of mass to magnetic flux is increased. An
important process that is considered in this regard is “plasma drift”, or “ambipolar
diffusion.” This effect can be significant at relatively high densities where the
degree of ionization is very low and ideal MHD begins to break down. Even if a
cloud is magnetically supercritical, but the magnetic field is of some importance,
this process will act to reduce the magnetic field effects as the cloud contracts
and so contribute to the solution of the “magnetic flux” problem. The process
in effect represents the onset of decoupling between the neutral particles and the
magnetic field.

Consider a cloud which is in equilibrium with magnetic forces balancing
gravitational forces. Neglect pressure forces and assume the cloud is a sphere with
radius R, threaded by a uniform field B. Then a rough estimate of the diffusion time,
that is, the time required for the neutral particles to drift significantly with respect
to the ionized particles, can be derived as follows (from [476]).

The neutral particles are unaffected by the field and tend to drift inward. The ions
feel the magnetic force, which is transmitted to the neutrals by collisions. For the
neutrals, the force of gravity per unit volume is balanced by the frictional force on



2.6 Magnetic Diffusion 65

the neutrals by collisions with ions, which in turn is given by the collision rate times
the momentum exchange per collision:

GM�

R2
D ni h�vinH2mH2uD : (2.46)

Here v is the actual velocity of the particles, assumed to be �105 cm s�1, � �
10�14 cm2 is the cross section for collision, � D mH2nH2 is the total density of the
molecular gas, uD is the drift velocity of ions relative to neutrals, ni is the number
density of ions, and M is the mass of the cloud. The ions, whose motion is controlled
by the magnetic force, satisfy a similar equation, except that the left hand side is
replaced by the magnetic force per unit volume, .r � B/ � B=.4�/ � B2=.8�R/.
Solving the above equation for uD, one obtains

uD D 4�

3

G�R

ni h�vi � R.
10�8

x
/ km s�1 (2.47)

where R is given in parsecs and x is the degree of ionization, ni =nH2, which is
assumed to be small. The time scale for drift out of the core of the cloud is then
given by

tAD D R

uD

D 5 � 105.
x

10�8
/ yr: (2.48)

Even if x is as small as 10�5, the time scale is long, about 5 �108 yr. At a number
density of 106, the degree of ionization (2.45) is small enough (10�8) for the time
scale to come down to 5 �105 yr. But this result shows that in most of the mass
of molecular clouds, which has much lower densities, ambipolar diffusion is not
important on reasonable time scales. However if turbulence is present and there are
local strong compressions of the material, the ambipolar diffusion time is speeded
up by a factor of a few [384].

Going back to (2.47), we find that the diffusion time is given by

tAD D xnnh�vi
4=3�G�n

D 3Kin
0:5
H2

h�vi
4�GmH2nH2

(2.49)

and
tAD

tff

D 3Kih�vi
4�G1=2m0:5

H2
.3�=32/0:5

D 19: (2.50)

The numerical value depends on the composition, the cloud geometry, and Ki

but in any case it is of order 10. This relation is very important because it
implies that subcritical non-turbulent molecular clumps, which are supported by the
magnetic field, evolve quasistatically. Note that the above ratio depends both on the
assumption of equilibrium and on the validity of the ionization law. Although the
value of the field B does not appear in the above expression, it is implicitly present
through the assumption of equilibrium. To see how the result depends on B , just
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replace the left-hand side of (2.46) by B2=.8�R/ (follows from equating magnetic
energy to gravitational energy GM 2=R), solve as before for uD and tAD , and set
Ki D 1:4 � 10�5 to obtain

tAD � 4 � 106 yr
� nH2

104 cm�3

�3=2
�

B

30�G

��2 �
R

0:1 pc

�2

: (2.51)

The times given by (2.48) and (2.51) are in good agreement with more detailed
numerical modelling of equilibrium cloud structures, including ambipolar diffusion,
supported against gravity by magnetic fields and pressure effects [325, 386, 507],
as well as with calculations that extend into the early part of the collapse phase
[35, 171]. During the quasistatic phase the central value of the field evolves
approximately as Bc / n0:5

c . When the central densities increase to the range 105–
106 cm�3, sufficient diffusion has taken place so that the central regions become
unstable to gravitational collapse. At this point the magnetic field is still present,
and it is still coupled to some extent to the gas even though the degree of ionization
is very low. However it is no longer dynamically important; a relatively small flux
loss (factor 2) goes a long way in allowing the central regions to go supercritical,
partly because of flow along field lines.

Some other conclusions from such calculations are as follows: (1) Ambipolar
diffusion can produce cloud cores but the process requires 10 initial free-fall times,
so if one starts from nH2 D 103 cm�3, long time scales (�107 yr) are required. Only
moderate flux loss is required. Therefore the magnetic flux problem remains to be
solved at higher densities. (2) This long time scale is definitely a problem, since
practically all (90%) molecular clouds in the Galaxy show some evidence of star
formation. Supersonic turbulence might help, compressing the magnetic field in
shocked regions and reducing tAD in some regions. Also, analytical and numerical
calculations show [115] that if the cloud is approximated as a thin disk, tAD can
be considerably reduced from 10 tff if the initial mass-to-flux ratio is close to the
critical value. (3) Once the cloud core has been formed, runaway collapse can occur
at the center after �2 � 105 yr. The radial density distribution in the core as it begins
collapse is close to � / R�2. (4) Observed core shapes are not good indicators of
physical conditions, that is, directions of angular momentum and magnetic field.
A flattened cloud core does not necessarily mean that the angular momentum or
magnetic field vectors lie along the short axis. (5) The diffusion times derived above
assumed equilibrium between magnetic and gravitational forces, that is M � M� .
If, as observed, some regions are already supercritical, they could evolve quickly
to the core stage, limited by the decay time of turbulence. Thus the diffusion model
does allow star formation over a range of time scales (slow star formation) and could
be consistent with the range of ages in a young cluster, such as NGC 2264.

Nevertheless some criticisms of the ambipolar-diffusion picture remain.
(1) Observations of magnetic fields suggest that most clumps and cores, over a range
of densities, are already supercritical, so diffusion isn’t needed. Even though there
are observational uncertainties in magnetic field observations, there are enough
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clumps and cores with unobserved or low fields to account for the rate of star
formation. (2) If ambipolar diffusion were the dominant process controlling star
formation, there would be many more high-density cores in molecular clouds
without embedded infrared sources (starless cores) than cores with embedded
protostellar objects, because the time scale for the protostellar phase is only about
2 � 3 � 105 years. A starless core is defined as one which is gravitationally bound
and therefore likely to eventually become a protostar, but which has no detectable
evidence for an embedded protostar. Surveys have been made of the numbers of
starless cores versus cores containing protostars over various star-forming regions
[442]. The ratio is found to be about 3 to 1, but different studies have given
different results. Thus the lifetime of a starless core, at a density close to 105 cm�3

is �6 � 105 yr. The free-fall time in the density range of the observed cores is
1 � 2 � 105 yr. The lifetime is definitely shorter than one would expect from the
ambipolar diffusion model; on the other hand it is longer than the lifetime of a core
that one would expect in a supersonically turbulent model (next section), which is
only 1–2 free-fall times. This kind of study has been done for various density ranges
[537], with the same result. The lifetime of a core is always a few free-fall times,
but definitely less than 10. If true, the implication is that cores, once formed, do not
immediately go into dynamical collapse, but they do evolve on a time scale shorter
than that of ambipolar diffusion.

2.7 How is Star Formation Initiated?

Three different scenarios are being discussed regarding the process by which a cloud
core is brought to the onset of collapse:

1. Low-mass cores are assumed to be magnetically subcritical, that is magnetic
effects prevent collapse and support molecular clouds. The densest regions
evolve to the onset of collapse, controlled by ambipolar diffusion (slow drift of
neutral particles across magnetic field lines). The time scale is a few million to
107 yr.

2. Star formation is controlled by turbulence. Supersonic turbulence generates a
complicated shock pattern. Randomly produced shock-compressed regions of
high density can occasionally reach the point of instability to collapse. The time
scale is much shorter, more like 106 yr, and the efficiency of star formation is tied
to the properties of the underlying turbulence.

3. Cores that are intrinsically stable to collapse are forced into collapse by a specific
event, an external trigger such as an ionization front, a supernova shock wave, or
a cloud–cloud collision. The time scale then is the shock crossing time, which
could be as short as 105 yr.

The first of these possibilities was discussed in the previous section. Existing
observations of magnetic fields in the precursors of cloud cores indicate that most of
them, but not all, are supercritical. Even when they are supercritical, the magnetic
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field is still of some importance and cannot be left out of a theory of star formation.
For example, in supercritical regions, ambipolar diffusion will still take place, but
it is not necessary for the initiation of star formation. It is likely that all three of
the possibilities just mentioned play some role in the theory. Nevertheless, more
emphasis is now being placed on the second and third alternatives, which are
discussed in the next two sections.

2.8 Turbulence and Star Formation

The study of turbulence in the laboratory involves relatively incompressible fluids
and subsonic velocities. The general criterion for onset of turbulence is a Reynolds
number (Re D vL=	, where v is a typical velocity, L is a typical length, and 	

is the molecular viscosity) greater than a critical value, which differs for different
situations but is typically several thousand. Once turbulence develops, motions
develop on a wide range of scales. The general picture is that energy is fed into the
turbulence on the largest scale, and it is transmitted through the so-called “turbulent
cascade” to smaller and smaller scales, until it reaches a very small scale on which
it is dissipated into heat. The relation between typical velocity and length scale is
known as Kolmogorov’s law, in which v / L1=3. Thus most of the kinetic energy is
on the large scales. The dissipation scale is given roughly by

Ldiss

Lm

D R�3=4
e (2.52)

where Lm is the scale of energy input. In molecular clouds the dissipation scale is
estimated to be only �3�10�5 pc [352]. Reynolds numbers on the molecular cloud
scale (Table 2.1) can be estimated using v � 3 km s�1, L � 5 parsecs, 	 � cs
m

where 
m D 1=.n�m/ is the particle mean free path (about 1013 cm), and �m is the
particle scattering cross section, typically 10�15 cm2 for neutral particles. The result
is Re � 107, well in excess of the critical value for the onset of turbulence.

The origin of interstellar turbulence is unclear [29]. Some theories of the
origin include instabilities induced by colliding flows in the interstellar gas [213],
magnetorotational instability in galactic disks [417], and instabilities that develop
behind the spiral waves in the galaxy [80]. It is clear that the turbulence is
compressible, and it is supersonic, on the larger scales, with respect to the cold
molecular cloud material. Nevertheless it retains some properties of laboratory
turbulence. We have seen, from Larson’s first finding, that approximately v / L1=2;
thus most of the kinetic energy is still on large scales. There also is a turbulent
cascade, or an approximation to it, but the energy input is not necessarily limited to
the largest scales, although these scales for energy input may dominate. Also, the
dissipation is not necessarily occurring on the smallest scales, because the random
supersonic motions produce shock waves, which can dissipate kinetic energy into
heat on various scales. On a given scale, the flow can be characterized by a turbulent
Mach number, the ratio of the root-mean-square turbulent velocity (in 3 space
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dimensions) to the sound speed. On the molecular clump scale (2 pc) this ratio is
of order 10. On the other hand, the flow speed is comparable to the Alfvén speed.
Measurements on various scales in molecular clouds indicate rough equipartition
between gravitational, magnetic, and turbulent energy; thus the clouds are supported
against gravity in the global sense. A detailed discussion of interstellar turbulence
appears in [352].

The key to star formation by turbulent effects is the local phenomenon of
transient compression of certain regions by shock waves. If the overdense regions
behind the shocks are massive enough and long-lived enough, they can become
Jeans unstable and begin to collapse. The random nature of the strength of these
shock events suggests that star formation is possible but inefficient. Shock wave
dissipation also implies that supersonic turbulence, without continuous energy input,
must decay on a time scale comparable to that for a strong shock to propagate across
the largest eddies, which for a 5 pc scale is O.106/ yr [186].

Numerical simulations of turbulence, which require 3-dimensional hydrodynam-
ics, can only approximate the actual situation. However such simulations, both with
and without magnetic fields [29, 335] verify the qualitative picture described above
that the kinetic energy in turbulence, at least on the larger scales, decays. Some
of the important points that emerge include: (1) A clumpy structure develops with
the maximum fluctuation in density increasing with turbulent Mach number. (2)
Turbulence decays, even with the presence of magnetic fields, on a time scale
L=vrms, where L is approximately the scale of the system and vrms is the rms
velocity of the turbulence. This time scale for a 1 parsec cloud and an rms velocity
of 1 km/s again is about 106 yr.; it scales as L1=2. If this occurred in a cloud of a few
hundred solar masses, the cloud after decay would have several hundred thermal
Jeans masses, and could form a small cluster. (3) Even if turbulence is maintained
by some driving mechanism and it is able to support the cloud overall, locally high-
density regions are generated randomly as a result of the turbulence. Some of them
could exceed the local Jeans mass for long enough to allow collapse to stars. The
resulting star formation efficiency turns out to depend on the driving scale of the
turbulence. (4) Some mechanism to maintain the turbulence in the ISM is required,
in order to explain the observations that all molecular clouds have line widths above
thermal, and to prevent overall collapse of molecular clouds and a star formation
rate that is much higher than that observed. If there is no continual energy input,
one is driven to the conclusion [203] that the turbulence must have been generated
as part of the process by which the molecular cloud was formed, for example by
large-scale colliding gas flows. In this scenario star formation would have to occur
rather quickly, in less than a crossing time, in a relatively small amount of material
that becomes gravitationally bound. Then, on the same time scale as that of the
decay of turbulence, the cloud is disrupted by stellar feedback. The conclusion then
would be that lifetimes of even the largest clouds are only 2–3 Myr, a result that is
being debated.

With regard to point number (2), numerical simulations both with and without
magnetic fields show that without external energy input the turbulence does decay
on short time scales [334, 494]. Simulations (Fig. 2.12) show that in 0.4 sound
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Fig. 2.12 Decay of turbulence in molecular clouds, according to three-dimensional numerical
simulations, after [494]. The horizontal axis gives the log of the time in units of the sound crossing
time. The vertical axis gives the log of the kinetic energy plus the magnetic energy in turbulent
fluctuations, in non-dimensional units. Short dashed line: Turbulent energy is continuously
supplied to the grid, at a fixed rate, leading to a steady state. Solid line: The turbulence is allowed
to decay, with no energy input. The initial ratio of gas pressure to magnetic pressure is 0.01,
corresponding to a magnetic field far stronger than observed. Long dashed line: decay of turbulence
with no magnetic field

crossing times, which corresponds to about 2 turbulent crossing times for the
calculation shown, the kinetic energy decreases by a factor 10 even if a very strong
magnetic field is present. Without the field the decay in the energy is closer to a
factor 50. Much of the dissipation occurs in shocks, but some energy is lost by
energy cascading to smaller length scales and then being numerically dissipated at
the grid scale. The upper curve shows how the energy in turbulence saturates if
energy is supplied at a given rate by input of a random velocity field.

An independent calculation [334] yielded similar results. The turbulent energy
decayed as approximately t�1, fairly independent of whether or not magnetic fields
were present, and the characteristic decay time is about 0.5 of the turbulent crossing
time, based on a turbulent Mach number of 5. The calculations are performed
with both a smoothed-particle hydrodynamics (SPH) numerical code and a standard
fixed-grid code, with very similar results. These simulations support the suggestion
[202, 387] that the time scale of star formation is that of turbulent decay rather than
ambipolar diffusion, under the further assumption that there is no significant source
of driving for the turbulence. However if star formation took place on a time scale
of only a million years in molecular clouds, even if the efficiency were only 2%, the
rate of star formation in the galaxy would be far higher than observed.

The alternative to pure turbulent decay in molecular clouds is continuous driving
of the turbulence by some process that is not well understood (point 4). Some of
the possibilities are supernova shocks, outflows from embedded young stars, HII
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regions, or galactic rotational shear. Nor is it understood how the energy, if injected
on large scales, cascades down to small scales to limit star formation. Conversely, if
energy is injected on small scales, as it would be from bipolar flows from newly
formed stars, it is difficult to explain the high turbulent velocities observed on
large scales. Of course there could be more than one driving mechanism, and the
expansion of HII regions is a promising way to do the driving on large scales.
Nevertheless if it takes 10 cloud free-fall times to form a significant number of stars,
which can occur for reasonable assumptions regarding the scale of the turbulence,
and the molecular cloud is blown away on that time scale, it may be possible to
explain a low efficiency of star formation. If the driving scale of the turbulence is
long, or if it is not driven at all, local collapse will occur, star formation will be
efficient, and cluster formation could occur. The alternative, mentioned above is
that the turbulence is not driven, but is generated by initial conditions, and that the
time scale for star formation is the same as that for turbulent decay, and once the
star formation occurs, the molecular cloud is dissipated.

Extensive work has been done to simulate numerically the effects of turbulence
on star formation. The typical simulation has a box size of 0.1–1 pc and a mass
100–1,000 Mˇ. Thus, assuming that the initial cloud fragments, these simulations
represent cluster formation. The main question to be considered here is whether
the simulations come up with the same approximate star formation efficiency as
is observed. The different simulations include different physical effects, and the
point is to determine which of these effects is the most important in determining the
star formation efficiency. Such simulations address other questions as well, notably
the form of the initial mass function and the properties of the resulting binary and
multiple systems; these questions are discussed in other chapters of this book.

Suppose one considers pure hydrodynamic turbulence with no driving, no
magnetic fields, and no feedback effects from the stars that have formed. The
initial turbulence just decays and the cloud fragments into protostars. SPH cal-
culations [258] were performed for an isothermal gas in a box which originally
contained 222 thermal Jeans masses but had turbulent kinetic energy comparable
to gravitational energy. Random density fluctuations are introduced to represent
the initial turbulence. The simulation included 500,000 particles and is shown in
Fig. 2.13. When the gas density in a local region exceeds a given minimum, and
the particles in the region are gravitationally bound, the collection of particles is
collected into one “sink” particle, that represents an unresolved collapsing protostar.
The first box represents the initial condition, and the three remaining boxes represent
times at which 10%, 30%, and 60% of the mass has collected into the collapsing
protostellar cores (black dots). The resulting clump mass spectrum looks something
like dN=dM / M �1:5 (similar to what is observed in the interstellar medium). The
core mass spectrum has a lognormal shape – that is, a Gaussian in log M – peaked
at about twice the Jeans mass of the original cloud. The conclusion is that after only
2 free-fall times (final panel) 60% of the mass of the initial cloud has been converted
into a small cluster of protostars, an efficiency much larger than observed, for the
overall ISM, and larger even than what actually occurs locally in cluster-forming
regions (<30 %).
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Fig. 2.13 Decay of turbulence in molecular clouds and formation of a protostellar cluster,
according to three-dimensional numerical simulations with an SPH code. If the initial density in the
cloud is taken to be 105 particles cm�3 then the size of the box is 0.32 parsec and the unit of time
is 6:9 � 104 years. The total number of particles in the simulation is 500,000, not all of which are
shown. Reproduced by permission of the AAS from [258]. c� 1998 The American Astronomical
Society

Further simulations investigate the question of whether driving the turbulence
continuously has an effect on reducing the star formation efficiency. Here the overall
picture would be that energy is injected at a sufficient rate to match the decay rate, so
that the molecular cloud reaches a steady state, supported overall against collapse
by the turbulence, and having a lifetime of say 3 crossing times before the onset
of disruption by stellar feedback. In one example [259] the velocity fluctuations
that are introduced to drive the turbulence have a scale of 1/4 to 1/3 the size of the
box. Calculations have been performed with both grid-based and SPH numerical
codes. The cloud is globally stable against collapse. The high-density compressed
regions randomly produced by shocks in such flows are the sites of local collapse
and star formation even if turbulent energy integrated over the cloud is sufficient
to support it against gravity. At the end about 50% of the mass of the cloud has
been converted to dense collapsing cores, but the time scale (seven initial free-fall
times) is about three times longer than in the case of decaying turbulence. Thus
even driven turbulence gives fairly efficient star formation, but further simulations



2.8 Turbulence and Star Formation 73

show that the efficiency drops as the driving scale decreases. The only way, in this
purely hydrodynamic picture, to prevent star formation altogether (or at least make
it very inefficient) is to introduce high Mach number turbulence, so that even on the
smaller scales the turbulent energy is greater than gravitational, and also to drive
the turbulence on very small scales (say 30 or 40 wavelengths per box) so that
the driving wavelength is smaller than the local Jeans length. However the results
show that the Mach numbers needed to explain the observed low efficiency are
unrealistically high, and the driving scales needed are unrealistically low, so this
approach does not necessarily explain the low efficiency of star formation.

Another SPH calculation [79] with turbulent initial conditions but no driving and
no feedback includes 500,000 particles and starts with a cloud of 1,000 solar masses
and a diameter of 1 parsec. The cloud initially has about 1,000 thermal Jeans masses,
but it is supported by a random turbulent velocity field with total turbulent energy
equal to the gravitational energy; the corresponding mean line-of-sight turbulent
velocity is about 1.3 km/s, approximately Mach 6. The gravity is softened on a
scale of 160 AU, which determines the effective resolution, so many binaries are
not resolved, nor are disks. The lowest mass that is resolved is about 0.1 Mˇ. The
calculation proceeds through a dissipation phase which lasts about 1 free-fall time.
During the decay of the turbulence it produces filamentary structures and locally
high-density regions. These regions form the nucleus of about 5 subclusters, in
each of which a few tens of stars fragment out. Figure 2.14 shows the column
density through the calculated box of 1 pc on a side. The subclusters begin to merge
(panel C) and at the termination of the calculation (2.6 free-fall times) a single
centrally condensed cluster of more than 400 stars has formed, with a maximum
stellar mass of 27 Mˇ. At this time 42% of the initial mass remains in gas, giving
a high star formation efficiency. The mass function at the end of the simulation
has a slope of about �1:0 at the high-mass end, while the Salpeter slope is �1:3.
The turnover at masses below solar is in qualitative agreement with observations.
In the subclusters the stellar density is very high, so many (about a third, including
most of the high-mass objects) objects have close encounters of 100 AU or less,
which would truncate their disks, and possibly harden binary systems and disrupt
planetary systems. Again, this calculation has been criticized on the grounds that,
had the simulation been carried to longer times, the star formation efficiency would
be far larger than observed.

A calculation with similar physical assumptions but much higher numerical
resolution [37] starts with a cloud of 500 Mˇ, temperature 10 K, and size 0.4 pc.
The calculation provides very detailed results on the properties of the IMF and of
the stellar multiple systems (Chap. 6). However, after only 1.5 initial free-fall times
the stars and brown dwarfs contain 191 Mˇ. Had the calculation been continued it
would again have produced a high star-formation efficiency.

A hydrodynamics simulation with additional effects [319, 385], was performed
on a 1283 grid, with a magnetic field (treated as ideal MHD) included, and with
feedback effects resulting from the assumed bipolar outflows generated by the
forming stars. The cloud is supercritical, with mass to flux ratio about 2 times
the critical value. The initial turbulence decays, and is not driven externally, but
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Fig. 2.14 Formation of a stellar cluster from a turbulent molecular cloud region. The grey scale
indicates the log of the column density, ranging from 0.025 g cm�2 (dark) to 250 g cm�2 (light)
[79]. The light dots indicate stars. The frames are 1 pc on a side. The evolution of the system of
1,000 Mˇ is plotted at times of 1.0 (a), 1.4 (b), 1.8 (c) , and 2.4 (d), in units of the initial free-fall
time of 1:9 � 105 yr. Reproduced by permission of John Wiley and Sons Ltd. from I. A. Bonnell,
M. R. Bate, S. G. Vine: MNRAS 343, 413 (2003). c� 2003 Royal Astronomical Society

once stars form, it is assumed that they generate bipolar outflows, with momentum
proportional to the current stellar mass and with a typical velocity of about
50 km s�1. The injection of momentum re-energizes the turbulence from within,
and with the parameters chosen, the cluster-forming cloud remains in near virial
equilibrium, and the formation of subsequent stars is delayed. In the standard
simulation, the cloud had a radius of about 1.5 pc and a mass of �1;000 Mˇ.
After 2 initial free-fall times, or roughly 1 Myr, the star-formation efficiency was
only 3%. The model contains a number of arbitrary but reasonable parameters, and
as one would expect, as the strength of the outflow (as measured by the outflow
momentum per unit stellar mass) decreases, the efficiency increases, in inverse
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proportion. The effect of increasing the magnetic field is to reduce the efficiency.
If the magnetic field is reduced to a negligible value, the efficiency increases by a
factor of �2 relative to the standard case.

A further physical effect that must be considered is the feedback on the collapsing
cloud resulting from the luminosity of the protostars that have formed within it.
In numerical simulations, first, the luminosities, which are derived mainly from
accretion, must be estimated, and second, the transfer of this radiation outward
through the cloud must be calculated. In the previous calculations discussed above,
radiative transfer was not considered, but simple approximations for the temperature
of the gas were used (Chap. 3). The addition of this effect to three-dimensional
numerical codes results in a significant enhancement of required computing time, so
the simulations cannot be followed as far as those with simpler physics. An initial
calculation of this type [38] shows that in a cloud of 50 Mˇ after 1.4 initial free-
fall times the number of stars formed is reduced by a factor 2 compared to the
calculation without radiative transfer, and the number of brown dwarfs is reduced
by a factor of about 5. However the total mass of stars and brown dwarfs formed is
not significantly changed. A further simulation [424], with the same cloud mass and
including magnetic fields, shows that the effect of radiation transfer is to reduce the
efficiency slightly, and that the combined effects of radiation transfer and an initial
magnetic field with a mass to flux ratio 3 times critical (similar to the observed
value) gives an efficiency per free-fall time (see below) of about 10%. Without the
magnetic field the efficiency is a factor 2–3 higher. However the calculation was
carried only about 1.3 initial free-fall times. The physical effect of the magnetic
field is to slow down the collapse on large scales and thus to reduce the rate of star
formation. Radiative transfer effects do not become important until protostars have
formed, and the effect is to heat the surroundings, increasing the Jeans mass and
suppressing further star formation locally, on small scales.

How are these numerical results on star formation efficiency to be compared with
observations? The answer to this question proves to be difficult when one considers
the details. First we consider the various possibilities of defining the efficiency,
going beyond the global and very general definition given in (1.4).

For a single molecular cloud core that forms a single stellar system the
efficiency is

�core D M�
Mcore

(2.53)

where the part of the core that doesn’t accrete onto the star within it is assumed
to have been ejected by the effects of stellar outflows. In an analytic model of
collimated bipolar protostellar outflows [346], the results show an �core of about 25%
for spherical cores and about 75% for cores with a high degree of flattening. These
results are roughly consistent with observations [15] that show that the initial mass
function of cores in a star forming region has the same shape as that for stars, but is
displaced upwards by a factor of about 3 (Fig. 2.6). In principle, the radiation from
the protostar could also affect the efficiency; this effect turns out to be important for
high-mass stars (Chap. 5) but not for low-mass stars.
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For a cluster-forming clump, the total efficiency, defined when star formation is
complete, is

�tot D M�
Mclump;init

(2.54)

where M� is the total mass in stars and Mclump;init is the original total mass of the
clump. This quantity is difficult to determine observationally, because by the time
all the stars have formed, much of the remaining gas has been dissipated. Thus the
observed efficiency is based on the current values of star mass and clump mass

�clump D M�
M� C Mclump

(2.55)

where Mclump is now the current clump mass, not counting that which has already
been dissipated. Thus this efficiency is a function of time, with values ranging
from zero to one. It is difficult to determine for a given observed cluster what its
evolutionary history was and to compare with theory, where the typical calculation
is stopped at 1 or 2 initial free-fall times. Observed values of �clump in embedded
clusters, still in the process of formation, range from 8 to 33% [289]. Even smaller
values (3 to 6%) are obtained for five nearby star-formation regions based on
infrared observations by Spitzer [164]. It is possible that these efficiencies correlate
with the age of the system, as expected. The average value is higher than the overall
efficiency for a molecular cloud as a whole, where it is estimated to be roughly 2%.

A more meaningful comparison with observations can be obtained through use
of still another definition of the efficiency [283]. The dimensionless star formation
rate per free-fall time, equivalent to the efficiency per free-fall time, is defined in
terms of the density of the object considered:

�ff D SFRff D
PM�tff.�/

M.> �/
(2.56)

where M.>�/ is the mass within a given volume with density greater than a
threshhold value �, and tff.�/ is the free-fall time at that density. The quantities
on the right-hand side can be estimated from observations; note that the uncertain
molecular cloud lifetime does not enter. For densities varying from 102 to 105 cm�3,
observations show that the quantity �ff does not vary significantly, and on the
average falls in the range 1–3%. By way of comparison, the overall efficiency
per free-fall time, averaged over all the molecular clouds in the Galaxy, is about
1%. The numerical simulations involving hydrodynamics with decaying or driven
turbulence, which start in the same density range, give much higher values, closer
to 20–30% (per free-fall time). In the model with a magnetic field and regeneration
of turbulence through outflows [385] the computed efficiency per free-fall time is
about 3%. The implication is that clusters form relatively slowly, over many free-fall
times. The model with a magnetic field and radiative transfer, although preliminary,
gives a value of about 10%.
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Although many aspects of the star formation problem still remain unresolved,
the introduction of the theory and simulations involving supersonic turbulence have
resulted in progress. The observational results over a wide range of scales show that
the velocity dispersion scales with the square root of the size of the region; this
fact is a strong argument for the existence of supersonic turbulence. Although it is
no longer believed that most star formation occurs in magnetically subcritical cores
and is controlled by the ambipolar diffusion time, still the magnetic fields must have
some influence on the overall process. The magnetic energy in molecular clouds
is known to be comparable to the turbulent kinetic energy. Thus the combination
of turbulence and magnetic fields in numerical simulations is necessary, although
difficult. Eventually, inclusion of even more physical effects in such simulations,
along with simultaneous treatment of a wide range of scales, from the size of a
whole molecular cloud (parsecs) down to a few solar radii, should result in further
progress on this key problem.

2.9 Induced Star Formation

There is some evidence to suggest that star formation may have been induced, not
only by turbulent effects, as mentioned in the previous section, but by other kinds
of shocks. Induced (or “triggered”) star formation simply means that interstellar
clouds with masses originally less than their Jeans mass are compressed by some
external agent, resulting in a reduction of their Jeans mass to the point where they
are forced into collapse. On large scales, galaxy-galaxy mergers as well as galactic
spiral arms can induce such compressions. In this section we consider the smaller-
scale processes of star formation induced by supernova shock waves, by expanding
HII regions, and by cloud–cloud collisions. Although there is some observational
evidence that induced star formation has occurred, it is still thought that most star
formation occurs by the “spontaneous” processes described in the previous sections.

The supernova shock trigger for star formation is supported by the argument that
meteoritic material in the solar system is known [311] to have had live (radioactive)
26Al, which has a half-life of only 0.7 Myr, in it at the time of solidification, as well
as a number of other so-called extinct radioactivities [193], including 60Fe, with a
half-life of 1.5 Myr. The 26Al decays to 26Mg which is found in meteorites in excess
of the normal isotope ratio 26Mg/ 24Mg. Since the 26Al was presumably produced
in supernovae, some material in the ejecta must have travelled to a molecular cloud,
been injected into a cloud core, evolved to the onset of collapse, collapsed into a
disk, and solidified, all in a time of order 1 Myr. Both the magnetic diffusion picture
and the turbulent star formation picture would have difficulty explaining this short
time scale.

However it is possible that the collapse of molecular cloud material could have
been induced on a shorter time scale by the same event that produced the 26Al,
namely the supernova shock wave [104]. Numerous calculations, for example
[86, 493, 501], have been made of the interaction between clouds and shocks of
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various kinds. For example, consider a supernova which is set off with an energy
of 1051 ergs, 10 parsecs away from a pre-existing relatively dense cloud of radius
1 parsec. The shock hits the cloud at 1,000 km/s. A transmitted shock is sent into
the cloud, which moves more slowly than the shock outside the cloud. The main
shock wraps around the cloud and meets with itself at the back, sending another
shock back into the cloud and also one headed away from the cloud. Effects caused
by the shock include acceleration of the cloud, stripping of the outer edge of the
cloud, and compression of the interior. The shock that wraps around the outside
of the cloud induces Kelvin–Helmholtz and other instabilities which tend to shred
the cloud. If the cooling time behind the shock is long compared to the time for the
shock to cross the cloud, then the cloud will reexpand after passage of the shock and
will not be forced into collapse. If the cooling time is short, there is a chance that
star formation can be induced, but it still must happen before the cloud is shredded.
In general it seems to be difficult for star formation to be induced by such an event.
Nevertheless there is observational evidence supporting this picture: a detailed study
of the Upper Scorpius OB association [419] strongly suggests that star formation
there was initiated by a supernova shock.

The following argument [157] illustrates in a simple way how to get conditions
favorable for shock-induced star formation. Note that the way the Jeans length is
written in (2.62) implies that if the cloud R > RJeans it will be unstable to collapse
even before the shock hits it.

To estimate the likelihood, we can compare the gravitational collapse time of
the cloud at the post-shock compressed density to the time it takes for the shock
to destroy the cloud through Rayleigh–Taylor and related instabilities. The cloud
destruction occurs by the interaction of its surface gas with the fast post-shock flow
that propagates just outside the cloud. The velocity shear generates the instabilities,
and numerical simulations [255, 392] show that the time for the cloud to be torn
apart is about 3 times longer than the time for the shock to propagate through the
inside of the cloud. The destruction time is

tdest � 3R

vs.�0=�c/1=2
(2.57)

where the cloud has initial density �c and radius R, and the interstellar gas outside
the cloud has density �0. The propagation speed of the shock outside the cloud is vs

and that inside the cloud [351] is the denominator on the right-hand side of (2.57),
in the limit of a strong shock.

Let cc and ccA represent, respectively, the sound speed in the cloud before and
after the shock hits it. Let �cA be the compressed density in the cloud behind the
shock. The free-fall time of the compressed region of the cloud is

tff � 1

.G�cA/1=2
: (2.58)
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The shock momentum equation in the frame of the shock reads

P1 C �1v2
1 D P2 C �2v2

2 (2.59)

where the subscript 1 refers to the gas into which the shock is moving, and 2 refers
to the gas behind the shock (the shock equations are discussed in more detail in
Sect. 3.4). In the limit of a strong shock, P1 is small compared to �1v2

1 and �2v2
2 is

small compared with P2. Thus, for the shock moving through the cloud, in the above
notation

�cAc2
cA � �0v2

s : (2.60)

Combining these results we obtain

tdest

tff
� 3R.G�c/

1=2

ccA
: (2.61)

Let 
 be the ratio of the cloud radius to its Jeans length before the shock hits:


 D R

RJeans
� R.G�c/

1=2

cc
(2.62)

so that
tdest

tff
� 3


cc

ccA
: (2.63)

When this ratio is larger than 1, the cloud can collapse before it is torn apart by
the passing shock. Therefore two conditions favor induced star formation in this
situation: (1) R is large compared to RJeans, but if this is true, the cloud will be
unstable to collapse even without the shock. Thus for actual induced star formation
the quantity 3
 will be of order unity. (2) The cloud cools appreciably after the
shock goes through it. If the shock is approximately isothermal, as many types of
interstellar shocks are, then cc � ccA and collapse could be possible. Note that
the shock velocity does not appear explicitly in (2.63), but actually it is important
because a relatively slow shock allows more time for cooling.

A series of simulations [86, 88, 89, 529] suggests that the supernova trigger is a
viable explanation of the existence of at least some of the short-lived radioactive
isotopes. The initial condition is a centrally condensed isothermal (10 K) self-
gravitating Bonnor–Ebert sphere of 1–2 Mˇ, representing a molecular cloud core
with mass slightly below its Jeans mass. It is hit by a mild shock wave, at say
25 km/s, which does not shred and destroy the cloud. The idea is that the supernova
was far enough away and that there was sufficient intervening interstellar material
to slow the shock to this velocity. A supernova can produce both 26Al and 60Fe;
the shock could impact a nearby molecular cloud, inducing collapse and injecting
some of the 26Al into the collapsing cloud material. The simulations show that
a portion of the original cloud material is compressed sufficiently so it becomes
marginally unstable to collapse, while the outer regions of the cloud appear to



80 2 Molecular Clouds and the Onset of Star Formation

escape. Thus the general conclusion from such calculations is that in order to get
the cloud to collapse, first, it must be fairly close to its Jeans mass anyway, second,
the shock must not be too fast nor too slow (5–70 km/s), and third, cooling must be
important, so that the layer behind the shock can cool to close to the original cloud
temperature.

An important question connected with the shocked cloud is whether the radioac-
tive material behind the shock front actually gets injected into the compressed
material that is going to form the star and disk. High-resolution numerical sim-
ulations [88, 89, 528, 529] indicate that Rayleigh–Taylor instability occurring at
the boundary between the cloud and the external material can mix some of the
matter containing supernova-produced radioactivities into the collapsing region. It
has not actually been proved that a sufficient amount of radioactive material can
be introduced into the inner few AU of the disk, but the results shown in Fig. 2.15
indicate that injection into the collapsing cloud on larger scales does occur.

The main difficulty in the hypothesis of supernova-triggered solar-system
formation is that a single supernova does not produce the correct abundance ratios
of all of the dozen or so extinct radioactivities that have been detected in meteorites.
Thus alternate explanations of the radioactive isotopes have been proposed. At
least some of these isotopes could have been produced in the solar nebula itself
[463] by energetic particles produced in solar flares impacting dust grains. However
the problem is that 60Fe cannot be produced this way; it apparently requires the
supernova environment. Energetic particles in the pre-collapse molecular cloud
could also produce some of these isotopes. Another variation on the model [401]
involves a pre-existing solar nebula disk (rather than a molecular cloud core) which
is impacted by a shock from a supernova less than 1 parsec away. If the radioactive
isotopes are incorporated into grains of roughly micron size or larger, they could
penetrate into the disk. There are other stellar sources besides supernovae that can
produce the radioactive isotopes; two important ones are asymptotic giant stars,
and massive 60 Mˇ Wolf–Rayet stars. Both of these types of objects can eject
the isotopes in stellar winds which can then trigger star formation. Although the
supernova trigger is the favored mechanism for the formation of the solar system, the
other processes just mentioned could well have made contributions to the radioactive
inventory in the meteorites as well.

Expanding HII regions around massive stars could also serve as triggers for
star formation. The expansion of an HII region is supersonic with respect to the
surrounding cool gas, and it drives a shock, sweeping up the circumstellar gas
into a dense shell. The shock precedes the ionization front, and once the shell
between them has swept up sufficient mass, it becomes dense and cool, leading
to instability and gravitational collapse [162]. The general picture is illustrated in
Fig. 2.16. Further work [548] strengthened the case that the fragments that are likely
to form in the dense, cool shell will be massive. As such they could generate their
own HII regions and initiate a further wave of star formation. Particular examples
of star formation observed at the edge of HII regions are Sharpless 104 [133] and
RCW79 [570]; an image of the latter region is shown in Fig. 2.17.
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Fig. 2.15 Supernova shock wave hitting a cool cloud of 1 Mˇ. The shock is shown at time
(a) 22,000 years, (b) 44,000 years, (c) 66,000 years, (d) 88,000 years, (e) 110,000 years, and
(f) 132,000 years after it first encounters the cloud. Thin lines: contours of equal density, separated
by a factor 1.5 in density, with a maximum value of 7.93 �10�16 g cm�3; thick lines: contours
of equal density of the material behind the shock wave that is being injected into the cloud. The
shock-compressed layer is developing a Rayleigh–Taylor instability. The size of one zone in this
numerical simulation is 19 AU. The coordinates give the distance scale in units of parsecs on
the x- and z-axes. Reproduced by permission of the AAS from [529]. c� 2002 The American
Astronomical Society

The image was obtained by Spitzer at 8 �m and shows that there is a dust ring
around the edge of the HII region. The region has been observed at numerous
wavelengths. In the millimeter continuum at 1.2 mm a number of dust condensations
are observed, practically coinciding with the edge of the HII region. Their masses
are 50 to several hundred Mˇ. Near infrared photometry and H˛ observations show
that in the dust condensation near the south-east edge of the HII region there is
a compact HII region and several Class I protostars, indicating that a cluster has
formed with at least one massive star. There is good evidence that the large HII
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Fig. 2.16 Sketch of the HII region associated with a group of OB stars interacting with a
molecular cloud. The stars are originally outside the cloud. After a time of 2 Myr, the ionization
front and its preceding shock front have travelled about 10 pc, and the dense layer between them
is forced into gravitational collapse, forming new, relatively massive stars. The layer between the
shock front and the ionization front has a density of about n.H2/ � 105 cm�3 and a temperature of
100 K. The triangles, representing maser sources, infrared sources, or compact continuum sources,
are the observed signposts of the massive stars, which themselves are obscured. Once these new
stars evolve, their own HII regions can propagate even farther into the cloud, setting off a new
wave of star formation, thus inducing a process known as propagating star formation. Adapted
from [162]

region has expanded into the interstellar medium and swept up a compressed layer
of gas and dust between the ionization front and the shock front, and when the layer
became massive and dense enough it cooled and fragmented, producing new stars
(the “collect and collapse” model). The age of the large HII region is about 1.7 Myr.
Analytic models of an expanding HII region in a molecular cloud [548] can be used
to deduce that the dense shell fragmented 105 years ago, which is consistent with the
ages of the protostars and the compact HII region in the clump near the south-east
edge.

The numerical simulation of such an expansion [130] with around 106 SPH
particles showed that an initially uniform-density cloud at 10 K and molecular
density 100 cm�3, with an O star turned on at the center, was driven to the point
of fragmentation after a time of about 3 Myr, a radius of the HII region of about
10 pc, and a typical fragment mass of 20Ṁˇ. These findings are fairly consistent
with analytical results [548]. The implications of the “collect and collapse” model
are that the stars in the daughter cluster, formed in the dense shell, should all have
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Fig. 2.17 Induced star formation. In the interior of the expanding bubble is an HII region, powered
by a massive star. The Spitzer image of RCW79 shown here is taken at 8 �m and indicates emission
from dust particles. Two groups of newly-formed stars are suspected to have formed in the dust

shell, one near angle 200ı relative to the center of the frame, and the other near angle 45ı. The
radius of the HII region is about 6.4 parsecs. The direction north is up, east to the left. Picture
credit: NASA/JPL-Caltech/E.Churchwell [University of Wisconsin-Madison]

about the same age, and that this age should be distinct from that of the original
set of stars that generated the HII region. Observational evidence in favor of this
picture of propagating star formation has been obtained through estimates of the
ages of spatially separated subgroups in an OB star association such as Sco Cen or
Orion OB1 [55, 159].

Cloud–cloud collisions, which are generally supersonic, can compress interstel-
lar material and, under the right conditions, induce star formation. It has been
suggested [497] that such collisions on the scale of clouds with masses �5�105 Mˇ
could explain the global star formation rate in galaxies, and observational evidence
has been found in our Galaxy suggesting that events on these scales have occurred
[445]. However, clouds exist on all scales, and numerical simulations of the
process typically consider clouds in much lower mass ranges (10–1,000 Mˇ) where
numerical issues are less severe. However compression induced by such a collision
does not guarantee star formation. For example, if a shock is produced, converting
kinetic energy of relative cloud motion into heat, one would expect the cloud to be
disrupted if the kinetic energy were on the order of the gravitational binding energy
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of one of the clouds. If, however, the heat of compression is radiated away so that the
shock is close to isothermal, one would expect that star formation could be possible.
However even in this case, early numerical simulations [305] suggested that the
clouds needed to be on the verge of Jeans instability for collapse to be induced.

A number of parameters are involved in such a simulation, including the mass
ratio of the two clouds, their temperature, the impact parameter in an off-center
collision, and the Mach number, which is the ratio of the relative velocity of
collision to the post-shock sound speed. The full parameter space has not been
explored; however an interesting example is shown in Fig. 2.18. Two clouds of
10 Mˇ each, with radius 0.22 parsec and temperature 35 K, collide off-center with
a relative velocity of 1 km s�1. They are Bonnor–Ebert spheres that are not unstable
to collapse. At the initial temperature and density, the interstellar heating/cooling
balance (Sect. 2.3) leads to a decrease of temperature on compression; thus after
shock compression the material cools down to 10 K, a situation favorable to allowing
at least part of the clouds to collapse. The end result, shown in the lower panel
of the figure, is a single protostar of mass 0.7 Mˇ and radius 90 AU. The angular
momentum of the material provided by the off-center collision results in a disk
around the protostar, which develops spiral arms. The fate of the disk is unclear,
but it could either fragment, producing a low-mass companion, or simply transport
angular momentum outward, allowing disk material to accrete onto the protostar.
The mean density of the protostar is �10�13 g cm�3 so it is entering the adiabatic
collapse phase. A wide range of outcomes is possible with such simulations, from
no star formation to formation of several fragments to a binary with a circumbinary
disk.

Radiation-driven implosion is a mechanism in which an expanding HII region
envelops a dense globule and forces it into collapse by increasing the pressure at
the surface [257]. The globules can either be pre-existing or formed by dynamical
instabilities generated by the expansion of the HII region into a molecular cloud
[159]. Cooling of the compressed cloud material is again key to the forcing of
collapse. The heating of the compressed cloud will oppose collapse unless the
excess thermal energy is radiated away. Near- isothermal conditions are then
favorable for triggering star formation. It would seem counterintuitive for ionizing
radiation, which normally tends to disrupt molecular cloud material, to actually aid
in generating collapse. But under the right conditions it can happen. For example,
numerical simulations [161, 197] of ionizing radiation impinging on a pre-existing
turbulent clumpy molecular cloud results in the ionization of the less-dense regions
but the compression of the higher-density clumps, producing pillar-like structures
similar to those observed, and induced gravitational collapse near the tips of the
pillars. A further consequence is an increase in the turbulent kinetic energy in the
cloud; thus the ionizing radiation can serve as a driving mechanism (Sect. 2.8).
An example of the outcome of a numerical simulation of this process is shown in
Fig. 2.19.
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Fig. 2.18 Induced star formation by a cloud–cloud collision calculated with an SPH code in three
space dimensions. Two clouds, each with 10 Mˇ, collide off-center at 1 km/s. The initial velocity
of the clouds is parallel to the x-axis. The upper panel gives the initial condition, and the grey scale
gives the column density, integrated along the z-direction, in g cm�2, ranging from 1.0 �10�3 to
2:69 � 10�2 in sixteen equal logarithmic intervals. The lower panel (on a greatly reduced scale)
shows the star-disk system that has formed after 0.496 Myr, where the logarithmic grey scale ranges
from 0.24 to 2:04 � 103 g cm�2. Reproduced by permission of John Wiley and Sons Ltd. from
S. Kitsionas, A. P. Whitworth: MNRAS 378, 507 (2007). c� Royal Astronomical Society
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Fig. 2.19 Induced star formation by radiation-driven implosion. Left: Optical photograph of
the Eagle Nebula (M16). Credit: NASA/ESA/Space Telescope Science Institute/ASU (J. Hester
and P. Scowen). Right: detail from a three-dimensional numerical (SPH) simulation of ionizing
radiation impinging on a clumpy molecular cloud. The surface density ranges from log ˙ D �2:7

(red) to �5:5 (dark blue), where ˙ is the surface density in g cm�2. Right panel reproduced
by permission of the AAS from [197]. c� The American Astronomical Society. The inset (not
previously published) shows a protostellar disk that has formed in one of the pillars. Composite
figure courtesy M. Gritschneder

2.10 Summary

Magnetically controlled star formation. If prestellar cores are magnetically subcrit-
ical, that is, they have less mass than the magnetic Jeans mass, they can contract
in quasi-equilibrium, and bring the densest central regions to the point of collapse
through the process of ambipolar diffusion, which increases the mass-to-flux ratio.
The time scale is relatively long, about 10 free-fall times, but it could be shortened
in a turbulent region. The main problem with this scenario is that numerous cores
have been observed to be supercritical, in which case ambipolar diffusion will still
occur but will not control the rate of star formation.
Turbulence-controlled star formation. Observed line widths in interstellar clouds
are interpreted in terms of supersonic turbulence. The complicated shock patterns
randomly generate highly-compressed regions, which, if they last long enough can
reach the point of instability to collapse. On the other hand, on more global scales
the turbulence is the primary mechanism that supports most molecular cloud regions
against gravitational collapse. The advantage of the turbulence picture is that the
time scale for star formation is on the order of 1 Myr, which can explain numerous
observations. However, simulations often give efficiencies of star formation that
are too high, unless very special properties of the turbulence are assumed. Another
problem is that turbulence decays on the time scale of one crossing time, and it has
been difficult to identify a mechanism that can continuously regenerate it. Also, the
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effects of the magnetic field must be included in numerical turbulent simulations.
Nevertheless turbulence is now thought to be the major effect in the determination
of the star formation rate and efficiency, and the properties of the resulting stars.
Induced star formation. Supernovae shocks, cloud–cloud collisions, and the swee-
ping up of dense shells and clumps of gas by massive-star winds and HII regions can
induce star formation, and there is considerable observational evidence that these
processes occur. Substantial cooling behind shock fronts is a requirement for star
formation. It is thought that only a relatively small fraction of the observed star-
formation rate can be accounted for by induced processes. However it appears that
such an event is necessary to explain the presence in the Solar System of the decay
products of extinct radioactive isotopes such as 26Al and 60Fe.

2.11 Appendix to Chap. 2: Note on Numerical Methods

The numerical results discussed in this book, on problems of hydrodynamics and
magnetohydrodynamics in 2 or 3 space dimensions, are mostly based on two
basic techniques. The first involves expressing the differential equations as finite
differences on an Eulerian grid (fixed in space), as discussed, for example, by
[435,493]. The second, known as smoothed particle hydrodynamics (SPH), is based
on representation of the fluid by a set of particles, each with a given mass, which
move around in space under the effect of the various forces involved, such as
those from gravity and the pressure gradient. There is no grid, and the method is
Lagrangian in nature. The basic properties of the method are reviewed by [368,422].
A direct comparison of the two methods on the same hydrodynamic collapse
problem is shown in our Figs. 6.11 and 6.12.

The advancement of physical quantities in time in both cases is based on an
explicit numerical scheme, in which a quantity at the advanced time tnC1 is based
entirely on known quantities at the previous time tn and the assumed time interval
�t . Thus, for a simple example of an equation in one space dimension

@y.x; t/

@t
D W.y; x; t/ (2.64)

where y is a physical variable such as density, the explicit time-differencing scheme
would be

y.tnC1/ D y.tn/ C �t W.tn/: (2.65)

An alternative to this scheme, known as an implicit method, can be written

y.tnC1/ D y.tn/ C �t W.tnC1/ (2.66)

where generally the solution has to be iterated to self-consistency. This method is
used in one-dimensional calculations of stellar evolution.
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In any explicit scheme, �t is limited by two important effects. The first is the
Courant–Friedrichs–Lewy (CFL) condition [121] which states that if a grid zone
has a width �x and the fluid is moving through it with a sound speed cs and a
velocity jvj, then �t is limited to a fraction of the crossing time C0�x=.cs C jvj/.
Here C0, the Courant number, must be <1 and is usually taken to be about 0.5.
The actual time step is taken to be the minimum CFL condition over the entire
grid. A numerical instability arises if the condition is not met. In the (gridless)
SPH method, the resolution element �x is replaced by the smoothing length h (see
below). The second limitation is needed if viscosity, either physical or artificial, is
present [see (4.18)–(4.21)]. Then the limit [411] is �t < .�x/2=.4	/ where 	 is the
kinematic viscosity.

In star-formation problems involving collapse from an initially extended config-
uration of relatively uniform density into a very centrally condensed configuration,
a grid-based solution with uniform grid spacing �x soon becomes inadequate to
represent the flow. Much of the mass flows into the central zone and becomes
unresolved. Similar problems arise if the computational problem involves fragmen-
tation. The difficulty may be overcome by rezoning the grid in regions that have
developed, for example, higher than average density, a procedure known as adaptive
mesh refinement [50, 256]. The idea is for the code to automatically generate
(or delete) finer grids to follow the details of small-scale structures that develop.
A three-dimensional zone that needs refinement can be divided into 8 zones, so that
the overall spatial resolution is increased by a factor 2. The time-step restrictions
must be followed on the refined grid, so that several time steps on a refined grid
may be necessary for each time step on the overlying coarser grid. A refined zone
can be further refined if needed; in extreme collapse problems, 40 or more levels
of refinement are needed if the spatial scale reduction per level, for reasons of
accuracy, is limited to a factor 2. For collapse problems, such a procedure is certainly
more efficient than providing a single very large uniform grid with the grid spacing
needed for the highest-density regions. In SPH calculations, no such refinements
are necessary; the spatial resolution is self-adapting as particles move into regions
of higher density.

To represent the density or another physical variable in smoothed particle
hydrodynamics, one assumes that a particle is not a point mass, but rather a
smoothed-out distribution of density over a small volume. Thus, if a particle j

momentarily has a position in space rj , then the contribution of that particle to
the overall density at some radius r is given by

�j .r/ D mj

h3�3=2
expŒ�.jr � rj j=h/2� (2.67)

where mj is the particle mass and h is the smoothing length. Then the total density
at r is

�.r/ D
NX

j D1

�j .r/: (2.68)
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Usually N does not have to include the full set of particles, because only close-
by particles make a significant contribution to �.r/. The Gaussian form of the
smoothing function is given just as an example; typically the function can have other
forms and is cut off at about 2h. To determine h, which is different for each particle,
one requires that the smoothing volume has to include about 50 other particles. Thus
regions of higher density automatically develop higher spatial resolution.

The number of zones in a grid-based calculation or the number of particles
in an SPH calculation must obey an accuracy requirement known as the Jeans
condition [42, 511]. At all points in the domain and at all times the local Jeans
length (2.16) must be resolved. In a grid calculation, that means that, locally, there
must be at least 4 zones per Jeans length. In SPH, the requirement is that the Jeans
length must contain several smoothing lengths. If one ignores this requirement,
one runs the risk of observing numerical fragmentation under conditions where
physical fragmentation would not occur. If the initial number of particles in an SPH
simulation is insufficient to meet this requirement at later times, particle splitting can
be employed, with one particle replaced by 8 particles, to improve the resolution.

From the resolution requirement and the CFL condition, it is clear that, for
example, in the high-density centers of rapidly collapsing regions, the required time
step can be very short, in fact so short that it becomes impossible to follow the
simulation for a reasonable amount of time. To deal with this problem, either on
a grid [279] or in SPH [41], sink particles are introduced. A volume with a given
radius is defined (say 1 AU); once the mean density within such a volume exceeds
a pre-determined limit, then the volume is replaced by a single particle with the
same mass and momentum. Either on a grid or in SPH, the particle is followed as
a Lagrangian object, which moves through space under the influence of the gravity
of all external matter. The particle can also accrete additional mass and momentum
from the surrounding region. Material inside the sink is not resolved; however the
sink can be used as a source of energy input from the accretion luminosity of a
presumed protostar that has formed within it.

2.12 Problems

1. A spherical cloud of 2 Mˇ has a uniform density of 5 � 10�19 g cm�3, uniform
temperature of 10 K, and uniform composition of molecular hydrogen. It is
rotating with uniform angular velocity ˝ D 2 � 10�14 rad s�1 and is threaded
by a uniform magnetic field of 2 � 10�5 Gauss.

(a) Calculate the gravitational energy, the thermal energy, the rotational energy,
and the magnetic energy. Find out if the cloud is unstable to collapse.

(b) The cloud collapses with conservation of mass, angular momentum, and
magnetic flux. How do magnetic energy and rotational energy scale with
radius (compare with the scaling of the gravitational energy)? The collapse
is isothermal. What happens to the total internal energy?
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(c) Will the collapse stop under these assumptions? If so, what stops it and what
is the final radius? (Think of physical simplifications).

(d) Is the total energy of the cloud conserved during the collapse? Why?

2. The aim of this problem is to derive the Jeans length in the same way that Sir
James Jeans did it, and to identify where a physical inconsistency occurs in this
method.

The equations of continuity and momentum are

@�

@t
C v � r� D ��r � v (2.69)

�

�
@v
@t

C v � rv
�

D �rP � �r� (2.70)

where � is the density, P is the pressure, v is the velocity, and � is the
gravitational potential.

Now assume that velocity, density, and � can be represented by a mean state
plus a small fluctuation:

� D �0 C ı�I v D v0 C ıvI � D �0 C ı�: (2.71)

Also assume that the mean state is in equilibrium and is isothermal, so v0 D 0,
@�0=@t D 0, and P D c2

s � where cs is the constant sound speed.

(a) Expand and linearize the equations to get two expressions relating ı� and ıv.
(b) Then make the simplification that �0 is constant and use the linearized

Poisson equation r2.ı�/ D 4�Gı� to get an expression for ı� as a function
of time

@2

@t2
.ı�/ D �0

�
4�Gı� C c2

s

�0

r2ı�

�
: (2.72)

(c) Now assume that the perturbed density ı� has a plane-wave solution

ı� D K 0 expŒi.!t C kx/� (2.73)

where K 0 is a constant, and find the dispersion relation between ! and k. If
!2 is positive, the solution is oscillatory. If !2 is negative, the disturbance
grows exponentially. The critical case corresponds to the Jeans limit. Obtain
the Jeans length and the Jeans mass and compare with values obtained by
simpler means (using energies, for example).

(d) What is physically inconsistent about the assumptions made?

3. Express (2.10) in terms of velocities: sound velocity, Alfvén velocity, rotational
velocity, mean turbulent velocity. Show that the equation for the magnetic Jeans
mass is roughly equivalent to the condition that the free-fall time of the sphere
be comparable to the crossing time of an Alfvén wave.
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4. (a) Use the shock jump conditions for an isothermal shock [(3.37) and (3.38)]
to show that the density ratio across the shock is given by the square of
the Mach number v1=cs , where cs is constant across the shock.

(b) A shock is moving at Mach 6 with respect to a spherical clump of radius
2 pc, mass 225 Mˇ, and sound speed 0.6 km/s. The shock is isothermal.
Would the clump be unstable to collapse before the shock hit it? The
gas external to the clump is hotter than that in the clump but in pressure
balance with it. What is the Mach number of the shock outside the clump?
After the shock hits the clump, calculate the crossing time and the free-
fall time of the compressed layer. Is induced star formation likely? What
if the shock were Mach 12? Would that make a difference?

5. Consider a uniform-density sphere of radius R, mean column density (par-
ticles cm�2) N , particle mass m, uniform magnetic field B , and full-width
half-maximum line width �V . These are all observable quantities. Make the
approximation that the line width arises purely from turbulence.

(a) Calculate the magnetic energy density (energy per unit volume), the kinetic
energy density (in turbulence), and the gravitational energy density in terms
of the above quantities.

(b) Assume a simple model of a cloud core in which all three energy densities
are equal. Show that B / .�V /2=R; find the constant of proportionality.
Assume the cloud is all molecular hydrogen.

(c) A core in Orion A has a measured line width of 1.7 km s�1 in H2CO, a radius
of 0.18 pc, and a measured magnetic field strength B D 250 �G. A core in
Orion KL has a line width of 2.6 km s�1 in NH3, a radius of 0.047 pc, and
B D 3;000 �G. Do these observations agree with the model or not? For
the first case in this problem calculate the column density and the visual
extinction (in magnitudes) in the core.

(d) Show also that, in the model, B / �V n1=2, where n is the density in particles
per cm3. Does this relation agree with observations?



Chapter 3
Protostar Collapse

Once magnetic forces have become dynamically unimportant, turbulence has
decayed, and rotational effects have become unimportant relative to gravity in the
core of a molecular cloud, and the mass of the core exceeds the thermal Jeans mass,
gravitational collapse proceeds. Some of the questions that can be asked include
(1) what are the initial conditions for collapse? (2) What is the physics that induces
and maintains collapse? (3) What is the role of magnetic fields during collapse? (4)
Can the embedded infrared sources (Class I objects) be identified with the stage
of evolution just after disk formation? (5) What is the observational evidence for
infall? (6) What is the origin of bipolar outflows? (7) Once a disk forms, how is
angular momentum transported? (8) Will the core fragment or form a single star?
(9) What fraction of the core mass ends up in the star? (10) How is the high-mass
star formation problem solved? In fact, for high mass star formation, turbulence is
important in the initial conditions, and the problem is considered in more detail in
Chap. 5. The present chapter applies in general to low-mass star formation; however
the physical regimes of the collapse itself, as described next, apply to all masses.

Protostellar evolution can be divided into three phases. During the first, isother-
mal collapse, the gas is optically thin to the infrared radiation of the grains.
Instability to collapse is a consequence of the fact that the released gravitational
energy is essentially all radiated away, so that the thermal energy stays well
below the gravitational energy. Heating of the gas by compression and cosmic
rays is balanced by grain and molecular cooling, with a resulting temperature near
10 K. Although this equilibrium temperature is not exactly constant as a function
of density, it is convenient to assume, without significant error, that the gas is
isothermal at 10 K over the density range 10�19 g cm�3 < � < 10�13 g cm�3. Once
the gas collapses to the point where the density is high enough for the gas to
become optically thick, which occurs first in the high-density center, the second,
adiabatic, phase begins. Much of the released gravitational energy goes into heat, the
pressure increases rapidly, and the collapse slows down. However, once the central
temperature has increased to about 2,000 K, the molecular hydrogen dissociates and
instability to collapse resumes, because much of the released gravitational energy
must go into dissociation energy rather than into an increase in thermal pressure.

P.H. Bodenheimer, Principles of Star Formation, Astronomy and Astrophysics Library,
DOI 10.1007/978-3-642-15063-0 3, © Springer-Verlag Berlin Heidelberg 2011
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The collapse continues until dissociation is complete at the center, at which time
a small amount of material comes into hydrostatic equilibrium there, forming the
“stellar” core. The third phase of evolution involves the accretion of the remainder
of the collapsing cloud onto the core, through an accretion shock at its outer edge.
These same general phases are encountered for spherical protostars as well as for
rotating protostars or protostars with turbulent initial conditions. In the rotating case
there may be accretion onto a disk as well. We first describe in a little more detail
the three main phases in the spherical case, and in later chapters we show some
numerical results for rotating and turbulent protostars.

3.1 Protostellar Initial Conditions

The standard initial conditions for a low-mass spherical protostar in a molecular
cloud core can be characterized as follows:

• The core is composed of a solar mixture of elements, with about 70% hydrogen
by mass; however the hydrogen is in molecular form, so the overall mean
molecular weight per free particle �, in atomic mass units, is about 2.37

• The core has negligible infall motion
• The core has a mass of about 1 to a few solar masses and a radius of 0.05–

0.1 parsec
• The core has a distribution of density that could be (a) uniform, (b) a power law

with � / r�n, where observations typically give n in the range 1–2, or (c) a
Bonnor-Ebert sphere (see below) with a relatively flat density distribution in the
center, but approaching � / r�2 in the outer regions, a distribution that matches
some observations [20, 24, 539]

• The core is nearly isothermal at T � 10 K
• The main parameters are ˛ D thermal energy=jgravitational energyj and the

form of the density distribution.

Observations show that cores are near virial equilibrium with ˛ � 0:4. Magnetic
effects and turbulent effects may be of some importance in a fraction of low-mass
cores, but for simplicity they are not considered here.

The theoretical Bonnor-Ebert sphere is simply an isothermal equilibrium struc-
ture, in which gravity, plus an assumed external pressure Psurf, are balanced by the
internal pressure gradient. The equations are

Gm

r2
C 1

�

dP

dr
D 0: (3.1)

dm

dr
D 4�r2� (3.2)

P D c2
s � (3.3)



3.1 Protostellar Initial Conditions 95

Here m is the total mass interior to a given spherical surface at radius r , � is the mass
density at r , P is the pressure, cs D .RgT=�/1=2 is the sound speed, and � is defined
above. The first equation expresses force balance on a mass element (hydrostatic
equilibrium), the second gives the mass (dm) of a spherical shell at radius r ,
and the third is the ideal gas equation of state. The equations can be combined
to produce

1

r2

d

dr

�
r2c2

s

d ln�

dr

�
D �4�G� : (3.4)

Using dimensionless variables

� u D ln.�=�0/; (3.5)

where �0 is the central density, and

� D r

cs

.4�G�0/1=2 (3.6)

one obtains the equation

1

�2

d

d�

�
�2 du

d�

�
D e�u (3.7)

with boundary conditions at the center u.0/ D 0 and .du=d�/.0/ D 0: The
parameter in the solution is the outer dimensionless radius �1, where the integration
outward from the center is arbitrarily stopped. Note that at �1 the density is not, in
general, zero, and the external pressure Psurf matches the internal pressure at that
point.

Once the outward integration has reached �1 the total mass enclosed is

M.�1/ D 4�

Z �1

0

�0e
�u˛3

B�2d� D
�

1

4��0

�1=2 �
RgT

�G

�3=2

�2
1

�
du

d�

�
�D�1

; (3.8)

where r D ˛B� and

˛B D cs

.4�G�0/1=2
: (3.9)

Equation (3.7) is used to perform the integration.
The basic properties of the solutions to (3.7) are found as follows. Assume that

the total mass M and temperature T are fixed. Then for a given �1 the mass equation
(3.8) determines �0, and the relation R D ˛B�1 determines the outer radius R:

R D GM.�1/

c2
s �1.du=d�/�D�1

: (3.10)
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Fig. 3.1 Properties of solutions for the Bonnor-Ebert sphere, as a function of �1, the dimensionless
radius at which the integration is cut off. Solid curve: the dimensionless surface pressure, long-
dashed curve: u(�1), short-dashed curve: the quantity �1.du=d�/�D�1 , long-dashed–short-dashed
curve: the degree of central concentration �0= N�

The outer pressure is obtained from the ideal gas equation

Psurf D c8
s �4

1 .du=d�/2
�D�1

exp.�u1/

4�G3M.�1/2
; (3.11)

where u1 D u.�1/. For small �1 the density distribution is relatively flat, the radius
is large, and the equilibrium is stable. As �1 is increased note that �1.du=d�/�D�1

increases (Fig. 3.1) so the radius decreases (out to about �1 D 9) and gravity
becomes more important. Also, the ratio of central to mean density �0= N� increases.
As the plot shows, for a critical value �1;cri t D 6:5 the external pressure reaches its
maximum; there the equilibrium is marginally stable. Noting that at �1;cri t we have
.du=d�/�D�1 D 0:375, the corresponding radius and pressure are

Rcrit D 0:41
GM�

RgT
; Pcrit D 1:40

c8
s

G3M 2
: (3.12)

It is clear that Rcrit is almost exactly the Jeans length derived from the energy
argument. At the critical �1 the ratio �0= N� is 5.8, and the ratio of central density
to density at the outer edge is 14. From (3.12) the critical Bonnor-Ebert mass can be
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written, for a fixed cs and external pressure

Mcrit D 1:18
c4

s

P
1=2
crit G3=2

D 1:82
� n

104cm�3

��1=2
�

T

10 K

�3=2

Mˇ; (3.13)

where n is the mean number density of particles in a cloud. Given observational
estimates for n and T in a given interstellar cloud, the critical mass can be
determined and the actual cloud masses compared with the critical value to see if
they are stable or unstable to collapse. Equation (3.13) is also useful if the external
pressure in a region with starless cores is known. Given the sound speed within a
core, and identifiying the external pressure with the surface pressure, the critical
mass is

Mcrit D 1:5
� cs

0:2 km s�1

�4
�

Psurf=k

105 K cm�3

��1=2

Mˇ : (3.14)

This equation illustrates two important points. First, under typical conditions in
molecular cloud cores, masses above about 1.5 Mˇ are unstable to collapse, while
lower-mass clouds are not. Thus masses at the lower end of the observed stellar mass
range are apparently difficult to form. Second, an increase in the external pressure
results in a reduction of the critical mass. However in order to get a core of say
0.1 Mˇ to collapse a rather large increase is needed.

We now discuss briefly the reason for instability. For small �1 the equilibrium is
stable. Gravity is not important compared to the external pressure in determining
the equilibrium, and an increase in the external pressure, for a given mass and cs ,
results in a reduction in size, compression, and an increase in the internal pressure
to match the external pressure. For �1 > �1;cri t the equilibrium is unstable. The
external pressure is no longer important, compared with gravity, in determining the
equilibrium. A small perturbation, for example a decrease in radius at fixed mass
and cs , results in the gravity force becoming larger than the restoring pressure force.
A simple way of looking at the situation involves the total energies. The decrease in
radius results in a more negative gravitational energy, but the total internal energy
doesn’t change with radius. The resulting net inward force will compress the cloud
even further, so the situation is unstable. Another way of expressing the situation
is to quote the well-known thermodynamic result [506] that if the equation of state
of a gas is written P D constant � �� , and the gas sphere is in equilibrium against
the force of gravity, then the equilibrium is unstable if � < 4=3. In the isothermal
case � D 1. (Note that the argument does not apply when the external pressure is
significant in maintaining the equilibrium.) Again, the physical reason is when the
protostar is compressed, the released gravitational energy does not go into heat and
the associated increase in pressure, but instead is radiated away through the optically
thin medium.

The limit of �1 ! 1 corresponds to the singular isothermal sphere, which has
� / r�2, an infinite outer radius, an infinite central density, and is an unstable
equilibrium.



98 3 Protostar Collapse

Fig. 3.2 Observed radial profile (points) of the molecular cloud core Barnard 68. The azimuthally
averaged visual extinction, which is related to the gas column density, is plotted as a function
of distance from the cloud center. Solid line: the corresponding profile of a theoretical Bonnor-
Ebert sphere with �max.D �1/ D 6:9. Reprinted by permission from Macmillan Publishers Ltd.,
J. F. Alves, C. J. Lada, E. A. Lada: Nature 409, 159 (2001). c� 2001 Nature Publishing Group

These theoretical curves can be compared with observational spatially resolved
density distributions for some cores without embedded infrared sources (known as
starless cores or prestellar cores), which are thought to represent conditions just
prior to the onset of collapse. An example is shown in Fig. 3.2. Here the dust
extinction of background giant stars in the near infrared (H and K bands) by the
prestellar core Barnard 68, is used to determine the density profile in the core, which
has about 2 Mˇ, a radius of 12,500 AU, and a mean density of 1:5 � 10�19 g cm�3.
From the reddening of the background stars one can deduce the total dust extinction,
and therefore NH2 at about 1,000 different points across the core [14]. Note that the
data represent the projection on the plane of the sky of the actual three-dimensional
density distribution �.r/. In Fig. 3.2, by astronomical convention, the data is plotted
in terms of visual extinction, AV , in magnitudes, and a theoretical Bonnor-Ebert
profile is converted to those units. The dots give the data, while the solid line
gives the best fit Bonnor-Ebert equilibrium sphere, which happens to have an outer
dimensionless radius �1 D 6:9, very close to the critical value (above which the
sphere is unstable to collapse) of 6.5. Thus only a slight perturbation, such as cooling
of the cloud, would initiate collapse. Note, however, the typical molecular cloud core
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Fig. 3.3 A map of the 1.3 mm emission in the prestellar molecular cloud core L1544. The scale
of the plot is approximately 0.1 pc. Darker regions correspond to higher flux density and therefore
to higher column density of dust. The source is a relatively isolated one in the Taurus molecular
cloud. Reproduced with permission from Wiley D. Ward-Thompson, F. Motte, P. André: MNRAS
305, 143 (1999). c� 2002 Royal Astronomical Society

is not spherical, as illustrated in Fig. 3.3 which shows a 1.3 mm map [538]. At this
wavelength the dust is optically thin, and a measurement at a given point gives the
dust column density, which can be converted to NH2. The map shows an irregular
density structure and non-spherical density maxima. Note also that other cores may
have different density distributions, in some cases closer to the r�2 of the singular
isothermal sphere, which is also used in theoretical calculations as a possible initial
condition. Finally, note that the agreement of an observed cloud density distribution
with that of a Bonnor-Ebert model does not necessarily imply that the actual cloud
is in strict hydrostatic equilibrium. Simulations of turbulent interstellar clouds [335]
show that Bonnor-Ebert-like profiles are often found, but they are transient and the
corresponding clouds are not in equilibrium.

3.2 Isothermal Collapse

The free-fall time from the standard initial conditions falls in the range 1–2 �105 yr.
One can derive, from dimensional analysis, an approximate infall rate PM �
Mcore=tff. Using tff � .G�/�1=2 and � / Mcore=R3

core as well as the assumed initial
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Jeans condition Rcore D 0:4G�Mcore=.RgT / one finds

PM � c3
s =G : (3.15)

For the singular isothermal sphere the proportionality constant is almost exactly
unity and PM is constant in time at a typical value of 2 � 10�6 Mˇ yr�1 for
Tinit D 10 K. To see that PM is constant for this case, consider the mass equation
(3.2) with � / r�2, leading to dm=dr D constant, so m / r . The free-fall time
tff / .m=r3/�1=2 / r . Hence PM � m=tff D constant in time.

As the protostar collapses the temperature remains approximately isothermal
at 10 K over several orders of magnitude increase in density. Spherical collapse
is governed by the equations of motion, mass conservation, and the isothermal
equation of state. In the situation where an extreme degree of density contrast
develops between center and outer edge, it is convenient to express the equations
in terms of m as an independent variable and to use the Lagrangian time derivative,
following the motion of mass elements:

Gm

4�r4
C dP

dm
D � 1

4�r2

d 2r

dt2
(3.16)

dr

dm
D .4�r2�/�1 (3.17)

P D Rg

�
�T : (3.18)

The symbols are the same as those used in (3.1)–(3.3). Since the temperature T is
fixed in time and space, these equations are sufficient to specify the solution for
�, r , and P as functions of (m; t). The solution is obtained numerically, subject to
the inner boundary condition m D 0 at r D 0 and the outer boundary condition that
either the pressure is constant in time or that the radius is fixed with zero velocity at
the outer surface.

Even if the cloud has initially uniform density (and therefore uniform free-fall
time), during collapse the inner regions increase their pressure relative to the surface
value, which is constrained by the outer boundary condition. A pressure gradient is
thus set up; the boundary of the region that has the gradient propagates inward at
the speed of sound relative to the velocity of the infalling material. In other words,
material in the central regions continues to have constant density in space, but
increasing in time, as long as the rarefaction wave generated at the outer edge has
not had time to reach it. As long as the initial sound travel time ts D R=cs , where
R is the total radius and cs is the sound speed, is comparable to or shorter than
the free-fall time, the entire configuration soon develops a gradient in pressure and
density. The collapse is therefore somewhat retarded from a true free fall. Once the
gradient is established, the evolution time becomes far shorter in the central regions
than in the outer regions.
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Fig. 3.4 Density vs. radius (solid curves) at four different times (in units of the initial free-fall
time) during the collapse of an isothermal sphere starting from uniform density (lowest curve).
The dashed line shows a profile with � / r�2. After [299]

The solution [299], starting from near the Jeans limit for a protostar of 1 Mˇ
with initially uniform density, is illustrated in Fig. 3.4. After about 1.5 initial free-
fall times, the central density has increased by several orders of magnitude, but
the mass involved in the central peak is very small, only 10�3 of the total mass.
The outer regions, which contain most of the mass, are collapsing slowly with
respect to the central regions. Typical infall velocities increase to 2–3 times the
sound speed, or roughly 0.5 km s�1 for T D 10 K. This general end result, a
very centrally condensed collapsing configuration with � / r�2 outside a central
“plateau” occurs also when the initial condition is a Bonnor-Ebert density profile,
but forced to be out of equilibrium, that is, the pressure force is assumed to be
somewhat less than the gravitational force [68,395]. In fact it can be shown, through
an analytic similarity solution for the equations of isothermal collapse [299, 413]
that the r�2 density profile is obtained at a given radius in the limit of long times
after the start of collapse. In practice, for this condition to be satisfied it also must
be true that the sound travel time through the initial sphere must not be much greater
than the free-fall time, as indicated above. Once the pressure gradient is established,
the collapse is no longer a true free fall; in fact the outward force resulting from the
pressure gradient is about half that of gravity. Also as mentioned above, the r�2

profile indicates that the collapse evolves toward a steady state, with a constant
mass accretion rate of material into the density peak. If one measures that accretion
rate from the data in Fig. 3.4 one finds, at any radius, m=tff D 2 � 10�6 Mˇ yr�1.
The infall velocities, given by Pm D 4�r2�v are then approximately constant, close
to the sound speed.
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Another possible starting point that has been considered is the singular isothermal
sphere [456], with � / r�2. The equilibrium is unstable and a small perturbation
will result in collapse. The end result is the same as if the collapse started at constant
density, but the process of collapse is different. The dynamical time is shortest at the
center, so the collapse begins there, a situation known as inside-out collapse. The
region that is collapsing spreads outward at the speed of sound, so the boundary
between the collapsing region and the relatively static region is given by Rb D cst .
Thus the outer boundary condition plays a less significant role than in the case of
a collapse starting from constant density, and, in the singular case, the rarefaction
wave spreads outwards rather than inwards. The accretion rate for the singular case
is PM � c3

s =G D 1:9 � 10�6 Mˇ yr�1 for cs D 0:2 km s�1, not very different from
that obtained from Fig. 3.4. It is approximately constant with time as long as the r�2

profile is maintained; however on scales smaller than 1014 cm, at later phases of the
collapse, this profile changes.

3.3 Adiabatic Collapse

At the beginning of the isothermal collapse, when the opacity (�) from dust grains
is below 1 cm2 g�1, the density is about 10�19 g cm�3 and the size is about 1017 cm,
the optical depth � � ��R 
 1. Once the optical depth in the central peak exceeds
unity, which corresponds to a density of about 10�13 g cm�3, the energy released
by the compression of the gas can no longer be radiated freely by the dust, and
the isothermal approximation no longer holds. The heating of the gas results in a
temperature gradient. The gas rapidly becomes optically thick because the opacity
increases with temperature, and the standard radiative diffusion equation, used in
stellar interiors calculations (e.g. [119]) becomes an adequate approximation for
relating the radiative flux Fr and the temperature gradient (see Chap. 8):

Fr D �16�acr2

3�R

T 3 dT

dm
; (3.19)

where �R is the Rosseland mean opacity (defined in Chap. 8) in cm2 g�1, c is the
velocity of light, a is the radiation density constant, and Fr is the energy crossing
a sphere at radius r per unit time per unit area, integrated over all frequencies.
The opacity is dominated by dust grains at temperatures up to about 1,500–2,000K
and by molecules and atoms above that temperature range. Between temperatures
of about 400 and 1,500 K the grains are composed of mainly silicates, iron, and
their compounds. Between 400 and 175 K, volatile organics are also present. Below
175 K, ice grains are present along with the other species. Dust opacities and
molecular and atomic opacities [175, 452] are plotted in Fig. 3.5. Below 175 K
the opacity is dominated by ice grains, and the Rosseland mean increases as T 2.
Between 175 K and about 1,700 K the opacity is dominated by silicates and iron
grains. The sudden dip about 1,700 K is caused by the evaporation of the silicate
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Fig. 3.5 An example of Rosseland mean opacity, in cm2 g�1, appropriate for a protostar with
solar composition, plotted as a function of temperature. The density along the curve is given by
� D 10�19T 3. Dust grains dominate the opacity up to a temperature of about 1,500 K; atoms
dominate beyond about 4,000 K. The dust grains consist of a standard mix of silicates, organics,
amorphous ice, FeS, and iron. The ice grains evaporate at about 160 K. Data from [452]

and iron grains; above that temperature and up to about 3,500 K molecular opacity
dominates with important contributors being H2O, CH4, NH3, and CO.

Equations (3.16), (3.17), and (3.19) must now be solved along with the energy
equation:

dLr

dm
D
�

�dE

dt
� P

dV 0

dt

�
; (3.20)

where Lr D 4�r2Fr , V 0 D 1=�, and E is the internal energy per unit mass.
The first term on the right-hand side is the rate of increase of internal energy,
and the second is the rate at which the gas is compressed by the force of gravity.
The equation is straightforwardly derived from the first law of thermodynamics. It
turns out, however, that in the central regions of the protostar during the relatively
short-lived phase of optically thick collapse, the radiative diffusion time, tdiff �
�R�.�r/2=c, rapidly becomes much longer than the local free-fall time. The core
actually follows a nearly adiabatic curve with slope 0.4 in the (log �, log T ) plane,
as would be expected for a gas of H2 with E D 2:5RgT=�.

To obtain a solution to the four differential equations referred to in the previous
paragraph, the equation of state (3.18) is needed to obtain P and E as functions of
�, T , and composition. But now cs is no longer constant. Also, as the temperature
increases, the molecular hydrogen is subject to dissociation, and later on, to
ionization. The equation of state presented here is somewhat simplified in that it
assumes that helium is in atomic form and is not ionized in the temperature range
considered and that the metals, which do not contribute significantly, have a mean
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atomic weight per particle of 16. Also, radiation pressure is not included. It is also
a good approximation to assume that, as the temperature increases, dissociation
of H2 is completed before the ionization of hydrogen starts. Thus the degree of
dissociation can be defined as

y D �.H/

�.H/ C �.H2/
(3.21)

and the degree of ionization is

x D �.H C/

�.H/ C �.H C/
: (3.22)

Let the mass fractions of hydrogen, helium, and heavier elements be given by X ,
Y , and Z, respectively. Then the pressure [119] is given by

P D Rg

�
�T; (3.23)

where the mean atomic weight per free particle � is given by

��1 D Œ2X.1 C y C 2xy/ C Y �=4 C Z=16: (3.24)

Thus, if hydrogen is in molecular form, � D 2:367 for a standard solar composition
of X D 0:71; Y D 0:27; Z D 0:02. A general expression for E, under the same
assumptions, is

E D ŒX.1 � y/EH2=Rg C 1:5X.1 C x/y C 0:375Y C 0:09375Z�RgT

C X.1:3 � 1013x C 2:14 � 1012/y: (3.25)

In this equation, the terms on the right-hand side that are multiplied by RgT

represent the thermal energy of a free particle per unit mass, 1:5RgT=�, and
the remaining terms, in x and y, refer, respectively, to the ionization energy and
dissociation energy of hydrogen. The internal energy per unit mass of molecular
hydrogen is

EH2.T / D 3

2

RgT

2
(3.26)

only for T < 80 K, where only translational degrees of freedom are excited. Above
that temperature, rotational degrees of freedom begin to become excited, and in the
range 300 < T < 1;000 K

EH2.T / D 5

2

RgT

2
: (3.27)

Between 80 and 300 K, the degree of excitation must be calculated in detail, as
given, for example, by [56]. Above 1,000 K the vibrational levels also become
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excited, contributing additional degrees of freedom; however the dissociation of the
molecules occurs before this excitation is complete.

The dissociation energy per molecule for H2 is 4.48 eV, while the thermal energy
of a molecule is 3

2
kT � 0:25 eV at 2,000 K, the temperature where dissociation

starts. Thus once dissociation starts, almost all the increased heat from compression
goes into dissociation rather than into thermal pressure, and the pressure gradient
can no longer balance gravity, leading to renewed collapse. The dissociation can be
calculated [515] from

ŒP.H/�2

P.H2/
D K.T / D 3:49 � 108 exp.�52490=T /: (3.28)

Using the ideal gas equation of state on the left-hand side we obtain

y2

1 � y
D 2:11

�X
exp

�
�52490

T

�
(3.29)

which can be solved for y as a function of (�; T ).
Under the assumption that dissociation of hydrogen is complete before ionization

starts, and that hydrogen is the only species that is undergoing ionization, one can
similarly solve for the degree of ionization x. From the Saha ionization equation
[251] and (3.22) one obtains the quadratic equation

x2

1 � x
D 4:0105 � 10�9

X�
T 3=2 exp

�
�157600

T

�
: (3.30)

The evolution of the center of the protostar during this phase is sketched in
Fig. 3.6. The material becomes optically thick and begins to heat near point A in
the figure. After a short period of readjustment, during which the rotational degrees
of freedom are excited in the H2 molecules, the collapse approaches an adiabat.
The slope in the diagram follows d log T /d log � D .� � 1/ � 0:42; for pure
molecular hydrogen with 5 degrees of freedom it would be 0.4 (� is the ratio of
specific heats Cp=Cv). As heating progresses, the force produced by the pressure
gradient exceeds that of gravity, and the collapse slows down. Near point B in the
diagram a small amount of mass in the center (10�2 Mˇ) approaches hydrostatic
equilibrium; this region is known as the first core. It starts with T � 170 K and
� � 2 � 10�10 g cm�3. Outside the core, infall velocities become supersonic with
respect to the slowly compressing core material, and a shock wave forms at its outer
edge, at a radius of about 4 AU.

Before the core has had a chance to accumulate much mass, it compresses to a
density of about 10�8 g cm�3 and T D 1,600 K, where the H2 begins to dissociate
(point C ). The dissociation energy per molecule is so large compared with its
thermal energy that most of the gravitational energy released on compression
goes into dissociation energy rather than into heating of the gas. The increase in
temperature slows noticeably, and � falls to about 1.1. The collapse, temporarily
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Fig. 3.6 Schematic diagram of the evolution of the center of a protostar during the isothermal
phase (horizontal portion of curve) and the adiabatic phase. Salient points, as described in the text,
are marked by letters. This curve represents the transition of gas from an interstellar cloud to a star

halted in the first core, begins again in the center of that core, and velocities
eventually approach free fall. Collapse continues over several more orders of
magnitude in density, until the H2 is mostly dissociated in the very center (about
8,000 K; point D). The curve steepens, approaching d log T /d log � D 0:67, as
would be expected for a gas of neutral H and He with � D 5=3.

As a result of the rapidly increasing pressure at the center, the material in this
second collapse regains equilibrium after the dissociation of molecular hydrogen has
been completed and the central temperature has increased to 20,000 K (point E).
The density by this time has increased to about 10�2 g cm�3, so the physical
conditions are approaching those in stars; however the initial mass of the stellar
core is only 10�3 Mˇ. Most of the mass of the protostar at this time is still in the
outer isothermal region, at densities of 10�18–10�19 g cm�3, 17 orders of magnitude
lower than that in the center.

The second hydrostatic core also develops a shock front at its edge, which has a
radius of only a few Rˇ, and it gradually builds up by accretion through the shock
front and becomes a star. The first shock front disappears relatively soon in the
process of erosion of the first core because of the collapse occurring at its center.
As the core temperature increases, the hydrogen begins to ionize, at temperatures
considerably higher than those in the ionization zones of stellar atmospheres,
because of the much higher density here. One might expect that a third collapse
would occur because of the reduction in � resulting from hydrogen ionization.



3.4 Accretion Phase 107

However the increase in degree of ionization with temperature is much slower
than in low-density atmospheres, and furthermore the equation of state under these
conditions is beginning to be non-ideal, that is, interactions between the particles
must be considered. It turns out that � never falls below 4/3, so the second core
remains in hydrostatic equilibrium in spite of ionization. The complicated nature
of the equation of state requires detailed calculations, whose results are usually
presented in tabular form [446].

3.4 Accretion Phase

The third phase of evolution involves the collapse of the remaining protostellar
material onto the second (stellar) core. The main source of energy of the protostar is
the infall kinetic energy of material falling into the accretion shock at the outer edge
of the stellar core. Just behind the shock, that energy is almost entirely converted into
radiation, which flows back out through the shock and into the infalling material. An
additional source of energy is the gravitational contraction of the core itself. Thus
the total luminosity can be written

L D Lacc C Lint: (3.31)

For low mass stars during the main accretion phase, L is almost completely supplied
by Lacc. The infall kinetic energy per unit mass into the core is 1

2
u2 D GMcore=Rcore.

Multiply by PM to get the energy inflow per second. Assuming this is all converted
to radiation in the shock,

Lacc � GMcore PM

Rcore
: (3.32)

In the cool, dusty, optically-thick collapsing layers outside the core, this total
radiation is absorbed and then re-radiated in the infrared region of the spectrum. The
protostar becomes an observable infrared source. At the time of initial formation of
the core, much of the material is still in the isothermal phase with density not much
higher than it was originally. Thus, the main accretion phase lasts at least another
two initial free-fall times, for a total low-mass protostellar lifetime of a few times
105 yr.

There are several important time scales associated with protostellar collapse.

• The free fall time

tff D
�

3�

32G�

�1=2

(3.33)

which ranges from less than 0.01 yr just outside the core to 2 � 105 yr near the
outer edge of the protostar
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• The Kelvin-Helmholtz contraction time of the core [251]

tKH � GM 2

RLint
(3.34)

which gives the time for an object of mass M in hydrostatic equilibrium to
contract from infinity to radius R, at an average luminosity Lint. It is also
approximately the time for an object to achieve “thermal balance” between
energy generated by contraction and energy radiated according to the Virial
Theorem. Here Lint is the energy liberated from the interior of the equilibrium
core, not counting the accretion luminosity generated at the very surface. For a
core of 0.5 Mˇ at 3 Rˇ and Lint = 1 Lˇ, typical of the main accretion phase, this
time is about 3 Myr.

• The accretion time scale tacc D Mcore= PM which, for a core of 0.5 Mˇ is
about 2 � 105 yr. If tacc 
 tKH, which is the normal situation here, the core is
compressed adiabatically, little radiation escapes from the interior, and L � Lacc.
If the inequality is reversed, the star evolves through the Hertzsprung–Russell
diagram while accreting, and L � Lint.

• The radiative diffusion time scale [457]

tdiff � 3�R�.�r/2

c
(3.35)

which represents the time for photons to diffuse by a random walk over a distance
�r in a medium with Rosseland mean opacity �R (c is the velocity of light).
During the adiabatic collapse phase, tdiff > tff, so the radiation released from the
warm material is not able to escape but is carried along with the infalling material.
In the main accretion phase, the situation is different. The radiated energy is
released at the core boundary and propagates outward. Here the relevant time
scales are tacc, roughly the production time scale of radiation, and tdiff in the
dusty infalling envelope. Since tdiff 
 tacc, practically all the radiated energy
produced at the core passes through the envelope. Thus the observed luminosity
is very close to L, although its spectral energy distribution is quite different from
that at the core.

The r�2 density profile set up in the isothermal collapse region suggests that
the accretion rate should be roughly constant in time: PM D const � c3

s =G. In fact
that statement appears to be in conflict with observations. A Class 0 protostar is
defined observationally (Chap. 1) as one with less than half of its total mass in the
central stellar core; a Class I protostar has more than half of its mass in the core.
Yet the observed ratio by number of Class 0 vs. Class 1 objects is about 1 to 5–10
(subject to observational and theoretical uncertainties in both the core mass and
the envelope mass), which can be explained only if the accretion rate drops off
significantly with time. What is responsible for the drop is so far not explained.
It is possible that the r�2 profile is not realized in the central regions because the
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sound travel time is somewhat longer than the free-fall time. That situation could
occur for reasonable initial conditions. Also, at later stages the accretion rate is
determined by disk physics, so the argument regarding the r�2 profile may not apply.
Furthermore, this spherically symmetric solution does not take into account winds
and outflows that could limit the amount of mass from the molecular cloud core that
can be accreted onto the star.

It is reasonable to assume, however, that over short intervals of time a steady
state collapse is set up, with PM constant in space [482, 555]. In steady state,
physical properties at a given radius vary only very slowly with time, so in the
Eulerian hydrodynamic equations the partial time derivative @=@t D 0 at all points
in space. Once the core has formed and its gravity has become significant, the
density distribution in the infalling envelope, especially in the region near the core,
is modified.

�.r/ D
PM

4�r2v
D

PMr�3=2

4�.2GMcore/1=2
; (3.36)

where v is the infall velocity. Note that if PM is constant with r , the velocities become
highly supersonic and follow a profile v / r�1=2 as expected for free fall, while the
density follows � / r�3=2.

A somewhat simplified solution for a model of a protostar involves dividing
it into three parts: the hydrostatic structure of the core, the shock wave, and the
steady-state infalling envelope. The standard stellar structure equations apply to the
core, the time- independent hydrodynamic equations apply to the infalling envelope,
and the two regions are joined by the shock jump conditions [482]. The shock
relations must include the terms representing radiative energy flow through the
shock. Let physical quantities ahead of the shock in the infalling region be labelled
with subscript “1” and those behind the shock in the core be labelled “2”. The
temperature is represented by T , the radiative flux by F , and the velocity by v.
Between regions 1 and 2 exists a very narrow “relaxation layer”. In that layer the
infall is drastically decelerated and most of the kinetic energy is converted into heat;
the resulting temperature is approximately kTrelax � 1

2
�muv2

1 � GMcore�mu=Rcore

where �mu is the mean mass of a particle. For a core of 0.5 Mˇ and radius 3 Rˇ,
Trelax � 5 � 106 K. But the region ahead of the shock is optically thin, so most of
this energy is radiated away ahead of the shock. In fact, so much energy is radiated
that the shock is practically isothermal: T2 � T1.

The shock jump conditions for a radiating shock are, in the frame of reference of
the shock [482]

�2v2 D �1v1 (3.37)

P2 C �2v2
2 D P1 C �1v2

1 (3.38)

L2 � PM.w2 C v2
2=2/ D L1 � PM .w1 C v2

1=2/; (3.39)

where L D 4�r2F and w D E C P=�, the specific enthalpy. The first equation
is simply a consequence of the fact that the mass per unit area per unit time (�v)
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entering the shock must be the same as that leaving it. The second equation is
obtained from the momentum equation

�

�
@v
@t

C v � rv
�

D �rP : (3.40)

The velocity of the shock itself, in the frame of reference chosen, is zero, and
the flow through the shock can be considered to be in steady state. Thus the time
derivative in the momentum equation vanishes, and (3.38) is derived from (3.40)
simply by integrating across the shock. (In fact in the protostar accretion problem the
shock is practically stationary in space.) The third equation states that the increase
in fluid energy per unit time, as a result of passing through the shock, equals the rate
at which pressure forces do work on the gas, minus the net amount of energy per
unit time lost by radiation (L1–L2). More details on the properties of this equation
may be found in [298, 476]. Note that in the form given it applies to a spherical
accretion flow.

The time scale for accretion (Mcore= PM ) becomes much longer than the time for
radiation to diffuse from the shock front to the outer edge of the protostar. Thus
the protostar begins to radiate from the surface, known as the dust photosphere,
where the dust optical depth is unity, which corresponds typically to a temperature
of 100–300 K. At the shock front, practically all the inflowing kinetic energy is
converted to heat, and practically all this energy is radiated out into the optically
thin region just ahead of the shock. Farther out, the radiation is absorbed, re-radiated,
and thermalized in the optically thick dusty infalling region, so that the observable
radiation lies in the mid-infrared. Very little net energy is absorbed in these layers,
so the observable luminosity is given to a good approximation by the total (mostly
accretion) luminosity of the core. The energy radiated out from the shock, L1, can
be approximated as arising from a photospheric layer just behind the shock front,
with

L1 � 4�R2
core�BT 4

eff (3.41)

so the approximate temperature of the radiation from the core is

Teff �
 

GMcore PM

4��BR3
core

!1=4

; (3.42)

which, for a core at 3 Rˇ, PM D 3 � 10�6 Mˇ yr�1, and Mcore D 0:6 Mˇ gives
Teff � 7;000 K, which produces radiation in the optical.

The typical structure of a protostar during this phase, from the core out to the dust
photosphere, is shown schematically in Fig. 3.7. Material infalls through the outer
optically thin envelope region, then through the optically thick dust envelope. Once
the temperature has increased above 1,500 K so that the dust has evaporated, molec-
ular opacity dominates and there is a drop of two orders of magnitude in opacity by
the time the temperature reaches 2,000 K. The opacity then rapidly increases again
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Fig. 3.7 A schematic diagram of the structure of a spherical protostar during the main accretion
phase, for a core mass 0.48 Mˇand a steady-state envelope, infalling at the rate 10�5 Mˇ yr�1 .
Temperature (dashed curve; right scale) and density (solid curve; left scale) are plotted as
a function of radius. The accretion shock at the outer edge of the stellar core is located at
2:2 � 1011 cm. Deuterium burning is occurring in the core. The temperature just behind the shock
is 8,000 K. The dust destruction front is located at 9:5�1012 cm. Interior to that point the hydrogen
has been dissociated. The dust photosphere is located at 1:25 � 1014 cm. Data from [483, 484]

to higher T, but still this region is only marginally optically thick. The material
is decelerated in the shock, its kinetic energy is converted to radiation, and the
radiation flows back outward through the same regions. Calculations show that the
radius of the shock front remains nearly constant at 2–3 Rˇ, and the dust destruction
front also remains at a nearly constant distance from the core, about 1 AU but
dependent on the accretion rate. The dust photosphere is the “visible” surface for
a distant observer; for a given frequency 	 it occurs at an inward integrated optical
depth �	 D R

�	�d z D 2=3, where z is the distance inward from the edge of the
protostar. For typical parameters the “mean” photosphere, averaged over frequency,
is at about 10 AU. However its radial position is strongly dependent on frequency.

3.5 Comparison with Observations

The main points of comparison between observed protostars and models are (1)
the position in the infrared Hertzsprung–Russell diagram, (2) the spectral energy
distribution, and (3) profiles of spectral lines indicative of infall motions. In most
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cases departures from assumed spherical symmetry are required to explain the
observations: these could involve a rotating infall region, and/or the presence of
a disk and/or an outflow cavity in the vicinity of the poles. Thus the comparisons
discussed here do allow for the possibility of non-spherical effects. More detailed
discussion of theoretical models of rotating protostars and disks follows in the next
chapter.

Normal stars in hydrostatic equilibrium are observable in the Hertzsprung–
Russell diagram with surface temperatures down to about 3,000 K, not cooler
[209, 251]. The observable surface of a protostar, however, corresponds to much
cooler temperatures. The reason for these low temperatures is that the outer layers
of protostars are collapsing, and most importantly, are extended enough and cool
enough so that dust particles exist which result in a high optical depth for the
infalling region. The observable surface of a 1 Mˇ protostar starts its evolution at
cool temperatures of order 10 K, progresses leftward (to higher temperatures) in
the H–R diagram, and ends, once the infalling envelope has been accreted, in the
region of pre-main-sequence stars which are in hydrostatic equilibrium with surface
temperature in the range 3,000–4,000K.

A number of evolutionary tracks have been published based on various levels
of approximation. Calculations have been carried out [482] based on the steady-
state approximation discussed above, in which the protostar is divided into core,
shock, and infalling envelope. Other work [299, 563] represents full spherically
symmetric solutions of the equations of hydrodynamics and radiative transfer.
Another approach [378] is to compare observations with approximate collapse
models of a star-disk-envelope system in a (Tbol, Lbol) diagram, where Tbol is the
temperature of the black body with the same mean observed frequency as the
protostar (Fig. 3.8). This diagram is designed as a close analog to the H–R diagram.
The quantity Tbol is used [382] because the effective temperature for a protostar is
not a well-defined quantity. The temperature one observes at the “surface” depends
significantly on frequency. But one can average over frequency by defining a flux-
weighted mean:

Tbol D 1:25 � 10�11 < 	 > where < 	 >D
R

F		d	R
F	d	

and (3.43)

Lbol D 4�D2

Z
F	d	 (3.44)

where F	 is the flux density, i.e. the energy per unit area per unit time per unit
frequency interval radiated by the protostar and received at the earth, and D is
the distance. The constant is defined by the requirement that if the spectrum were
a black body with the same mean frequency, the black body temperature would
equal Tbol.

A wide variety of models is possible, because approximations to the full three-
dimensional evolution of protostellar collapse have to be made. Examples of two
different types of models are shown in Fig. 3.8. The models from [378] are based
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Fig. 3.8 Theoretical evolutionary tracks for protostars of different masses through an analog of
the Hertzsprung–Russell diagram. The total luminosity, integrated over frequency, in solar units,
is plotted as a function of bolometric temperature. The dots and crosses correspond to a selection
of observed objects in nearby star-forming regions. Heavy lines: tracks from [569] with constant
masses of 3.0, 1.0, and 0.3 Mˇ(top to bottom).Light lines: tracks from [378] with initial masses as
indicated. In these cases the masses are assumed to decrease with time. For initial masses 1.0 and
3.0 Mˇ, the final mass is 0.5 Mˇ and the initial envelope temperature is 10 K. For the initial mass
1.8 Mˇ, the final mass is 0.3 Mˇ and the initial envelope temperature is 8 K. Reproduced, by
permission of the AAS, from [569]. c� 2005 The American Astronomical Society

upon several simplifiying assumptions. They take into account the presence of a
stellar core, a circumstellar disk, and an infalling envelope. The accretion rate is
assumed to start off at the standard value for the singular isothermal sphere, then
to decline exponentially with a time constant t�. This assumption is reasonable,
since Class II objects (T Tauri stars) are known to have accretion rates far below
c3

s =G, where cs refers to the sound speed in the molecular cloud core. The envelope
mass is also assumed to decrease exponentially in time from an initial value Me;0,
with a time constant te . This assumption takes into account the dissipation of the
envelope by the jets and winds generated near the central star. The curves with initial
masses of 1.0 and 3.0 Mˇ have a final mass of only 0.5 Mˇ. The curve with initial
mass of 1.8 Mˇ has a final mass of 0.3 Mˇ. The luminosity along the tracks first
increases, then decreases mildly, and the tracks pass roughly through the median of
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the observed points. The tracks suggest that at least some of the observations can
be explained by models with final masses in the range 0.3–0.7 solar masses, with a
time scale of 0.5 Myr for the protostar phase (Class 0 and Class I). However, there
are numerous observed objects with luminosities higher or lower than those of the
calculated tracks. There are a number of parameters in this model: the initial mass,
the initial temperature, the time scale for the reduction in Ṁ, and the time scale
for envelope dissipation. The nearly vertically downward portions of the tracks at
the end of the evolution are the Hayashi tracks. They are defined, for a given mass
star with a given composition, as the locus of fully convective hydrostatic models,
down which low-mass stars evolve during the pre-main-sequence contraction (see
Chap. 8 for more details). The tops of these nearly vertical tracks correspond to the
assumed end of accretion, and the stars then contract at constant mass to the zero-
age main sequence (ZAMS) where nuclear burning takes over as the energy source.
As one can see from the figure, the objects reach the top of their Hayashi tracks at
about 1 Lˇ.

The second set of tracks shown in Fig. 3.8 assume a constant accretion rate, as
appropriate for an initial condition of a singular isothermal sphere [569]. The mass
of the protostar remains constant in time. Again, the model consists of a stellar core,
a surrounding disk, and an infalling envelope. The results show that the luminosity
increases continuously with time for a given mass, and the tracks skirt the upper
envelope of the observed points, giving a typical luminosity much higher than the
observed average.

That seemingly arbitrary assumptions have to be introduced to reduce the lumi-
nosities of the theoretical protostars to values near the median of the observations
of protostars (Fig. 3.8) is an illustration of the so-called luminosity problem [249].
Suppose a protostar accretes at a constant rate of PM D c3

s =G D 1:6�10�6 Mˇ yr�1,
where cs corresponds to a temperature of 10 K in the molecular cloud core. Then the
starlike core reaches 0.5 Mˇ in 3�105 yr, in reasonable agreement with the lifetime
of the protostellar phase. However there are two points of disagreement with the
observations. First, the accretion luminosity (3.32) should increase with time as the
core mass increases, because Rcore is practically constant in time at about 3 Rˇ. But
this behavior is not in agreement with the trend of the observations. Second, once
the protostar reaches 0.5 Mˇ, its accretion luminosity is calculated to be over 8 Lˇ,
well above typical observed values. In fact, the observations of Class I objects show
an even larger spread in luminosities than can be accounted for by models in the
expected mass range (Fig. 3.8), especially on the low-luminosity side [163]. Various
solutions have been proposed to the luminosity problem; a promising one [146] is
that the accretion rate from the infalling envelope onto the disk is relatively constant,
but the accretion rate from disk to star is neither constant nor smoothly decreasing
with time, but involves short episodes of very rapid accretion separated by relatively
long periods of slow or negligible accretion. This assumption is compatible with
the expected behavior of a gravitationally unstable disk. Calculations with such an
assumption give a better agreement between the full range of observed luminosities
and the evolutionary tracks, but as yet there is no fully satisfactory explanation to
the luminosity problem.
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Fig. 3.9 Dust opacity as a function of wavelength. Solid line: dust grains composed of silicates
and graphite without ice mantles. Dashed line: grains composed of silicates and graphite with thick
ice mantles. Data from Ossenkopf and Henning [399]. The opacity is expressed per gram of gas–
dust mixture, assuming a gas-to-dust ratio of 100, by number. These grain opacities are slightly
different from those derived from standard interstellar grains [140]. In the case plotted, the grains
have been allowed to coagulate for 105 years at a molecular-cloud-core density of 106 cm�3

A full hydrodynamic solution for the protostellar collapse, without arbitrary
assumptions but in spherical symmetry, not accounting for the presence of a disk,
has been presented for the case of 1 Mˇ [563]. The initial condition is based on
a fully three-dimensional simulation of the turbulent interstellar medium, in which
protostellar cores are produced by compression induced by transient shock waves
(Chap. 2). A cluster containing a substantial number of such cores was produced,
and the core containing closest to a solar mass was then followed in detail with a
one-dimensional spherically symmetric calculation. The mass accretion rate onto
this core was obtained from the 3-D solution. The Hayashi track is reached in a
time of order 105 yr and the luminosity across most of the infrared H–R diagram
and at the top of the Hayashi track is over 10 Lˇ, noticeably higher than that which
the corresponding mass would have in Fig. 3.8 and again illustrating the luminosity
problem.

A second method of comparison with observations can be made through the
spectral energy distribution. The key to the continuous spectrum is the behavior
of the dust opacity as a function of wavelength, which is shown in Fig. 3.9 for two
different assumptions regarding the grain properties [399]. The grain opacity can
vary significantly depending on grain properties, such as fluffiness, composition,
and size distribution. Note that the opacity is orders of magnitude larger at 1 �m
than at 100 �m.

Following Hartmann [202] we can estimate the radiation properties of a protostar
by considering a simple spherical model. First, the relevant part of the mass may be
considered to be free-falling at a rate PM onto a core of mass Mcore. The density
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distribution in the envelope is given by (3.36). We can then integrate inward to
obtain the optical depth as a function of radius and wavelength, assuming the dust
opacity is independent of radius down to the dust evaporation temperature:

�
 D �

PMr�1=2

2�.2GMcore/1=2
; (3.45)

where �
 is the opacity at 
 in cm2 g�1. Assuming that the stellar core at the center of
the protostar has characteristics something like those of T Tauri stars, a characteristic
wavelength of emission from the core is 1 �m. At that wavelength, using the opacity
from Fig. 3.9 one can solve for the optical depth, integrated inward to an inner radius
of rin:

�.1 �m/ � 4:36 � 104 PM

.Mcorerin/1=2
� 76 (3.46)

for a core of 0.6 Mˇ, dust evaporation point of 1013 cm, and PM D 3�10�6 Mˇ yr�1.
Thus the 1 �m radiation is strongly absorbed in the envelope and the core is not
observable at that wavelength. Now we ask where the radius of the photosphere is
(the characteristic radius where most of the radiation at wavelength 
 is radiated to
space) and find it is very dependent on 
. Defining the photospheric radius r
 where
�
 D 2=3, we find

r
 D 9�2



PM 2

32�2GMcore
: (3.47)

The plot in Fig. 3.10 shows r
 as a function of 
 for PM D 3 � 10�6 Mˇ yr�1 and
Mcore D 0:6 Mˇ. Note that it is at about 20 AU in the range 10–30 �m but on the
order of stellar radii at 1,000 �m. Typical protostars are optically thin at millimeter
wavelengths.

We now can estimate the temperature at the radiating photosphere by defining a
mean radius rm and a mean temperature Tm from the black-body relation:

L D 4�r2
m�BT 4

m; (3.48)

where L is the actual luminosity of the source and rm is the radius with optical
depth �m D 2=3. To obtain rm one needs an average opacity to put into (3.47). The
temperature range for protostellar envelopes is 30–1,500 K, with a corresponding
wavelength range of 2–100 �m. If one simply averages log � over that range for the
solid curve in Fig. 3.9 one obtains �m � 5 cm2 g�1, which is in good agreement with
the Rosseland (8.40) and Planck (5.13) mean opacities in this temperature range
[452]. For the standard case (Mcore D 0:6 Mˇ and PM D 3 � 10�6 Mˇ yr�1) one
obtains Rm � 20 AU and Tm D 177 K, indicating that indeed protostars inhabit the
infrared portion of the H–R diagram.

Figure 3.11 shows the spectral energy distribution of a particular Class I
protostar. One of the main features of this distribution is that it is broader than that
of a black body at a single temperature, a result of the fact that the “photosphere”
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Fig. 3.10 The radius, in cm, of the dust photosphere of a protostar as a function of wavelength.
The opacities used are from the solid curve in Fig. 3.9

Fig. 3.11 Observational data for the spectral energy distribution of a Class I protostar. Data from
the compilations of [248] and [438]. (Left): the flux density F
 in millijanskys is plotted against
wavelength. (1 Jansky = 10�26 watts m�2 Hz�1). (Right): the same data are plotted with 
F
 as a
function of 
, where F
 is expressed per unit wavelength interval

exhibits a range of temperatures, depending on wavelength. A number of simplified
models have been produced that reproduce such spectra, consisting, in general, of
a central stellar source with a given core mass, a surrounding disk, and an infalling
optically thick dusty envelope. A number of parameters are involved, for example,
the core mass, PM , the rotational angular velocity of the initial molecular cloud core
that collapsed to form the protostar, and the viewing angle with respect to the
rotation axis. There is not a unique fit, and the results depend on the assumptions
made in the model, but this particular source can be modelled with approximate
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parameters PM D 10�6 Mˇ yr�1, mass 0.5 Mˇ, ˝cloud D 10�14 s�1 and inclination
of 60ı. The estimated total luminosity Lbol of the object is 3.7 Lˇ.

The general properties of Class 0 protostars [19] are as follows: the ratio
of the submillimeter luminosity Lsubmm, 
 > 350 �m, to the total bolometric
luminosity is greater than 5 � 10�3; the spectral energy distribution (Fig. 1.18) is
relatively narrow, with characteristic black-body temperatures of 15–30 K; there is
generally undetectable near-infrared emission shortward of 5 �m; the mass of the
infalling envelope is greater than that of the stellar core; and Tbol < 80 K. An object
assigned to Class 0 may not necessarily conform to all these criteria. The quantity
Lsubmm=Lbol is considered a more reliable indicator for Class 0 than is Tbol. However
the general interpretation of the class is that it represents the very earliest phase of
protostellar accretion. Estimates of the time scale for residence in the class range
from a few times 104 yr [179] to 105 yr [164]. That time scale is consistent with
the relatively small number of Class 0 objects, only �10–25% relative to Class I
objects. All Class 0 objects have strong bipolar outflows which create low-density
cavities in the polar directions in the infalling envelope. Thus it is not possible
to model these envelopes as spherically symmetric. Typical disk-envelope models
[504] include a bipolar cavity whose geometry is constrained to fit the observations
in particular cases. Some near and mid-infrared flux is observed, which represents
light from the central object or disk beamed toward the poles, and scattered in the
cavity toward the observer. Because of the difficulty of modelling these sources,
protostellar parameters derived from the models, such as accretion rates of disk
onto star, PM of the infalling envelope, Mcore, and Mfinal (the expected mass after
completion of accretion) often vary by up to an order of magnitude, resulting from
different model assumptions.

The quantities that can be determined directly from observations are

• Tbol, given a well-sampled spectral energy distribution
• Lbol, by integration over the SED and by adoption of a distance
• Lsubmm=Lbol, from the radiation observed at 
 > 350 �m
• Menv, the infalling envelope mass, directly from the flux density at 1.3 mm and

the assumed distance. At this wavelength the envelope is optically thin. The basic
method for determining the mass is given in Sect. 4.2.

Errors in luminosity could be up to 50%, in Tbol by ˙10 K, and in mass by a factor 3.
The quantity Lsubmm is a measure of the envelope mass, which is optically thin

at these wavelengths. Lbol is a measure of the stellar core mass through (3.32). The
quantity Rcore is usually set to about 3 Rˇ, and PM is estimated from the sound speed
in the region around the protostar, typically a few times 10�6 Mˇ yr�1. Empirically
it is found [18] that Menv=Mcore exceeds unity when Lsubmm=Lbol > 5 � 10�3,
approximately.

A sample of data for Class 0 objects [178] is presented in Fig. 3.12. Envelope
masses have been determined for these objects; they fall in the range 0.16–6 Mˇ.
Evolutionary tracks have been calculated [19,179,378,469,569]. These approximate
models vary considerably in their assumptions, in particular the assumed accretion



3.5 Comparison with Observations 119

Fig. 3.12 Luminosities log Lbol (filled circles) and envelope masses log Menv (open circles) as a
function of Tbol of a selection of protostars of Class 0 and Class 0/1 within a distance of 500 parsec.
The quantities are plotted in solar units. Class 0 objects chosen satisfy all three of the following
criteria: there is no detection of radiation with 
 < 5 �m, the ratio Lsubmm=Lbol > 0:005, and
Tbol < 80 K. Objects which do not satisfy only one out of the three criteria are classified as Class
0/1. Reproduced by permission of the AAS from [178]. c� The American Astronomical Society

rate as a function of time. They generally go through the observed points, but the
derived properties vary considerably from model to model. In general, the derived
ages are in the range 104–105 yr and final masses are most probably in the range 0.5
to a few Mˇ. For example the specific object RNO 15 has measured Tbol < 73 K,
Lbol D 15 Lˇ, Menv D 0:43 Mˇ, and Lsubmm=Lbol D 0:013. Note that the mean
luminosity of the Class 0 objects is higher than that of the Class I’s, indicating a
higher accretion rate.

The third method of comparison with observations is the analysis of Doppler
shifts in spectral lines to detect evidence for infall. The collapse velocities are high
only very close to the core. On larger scales, which are much more likely to be
observable, the velocities are generally low, about 1 km s�1 for the free-fall velocity
at 1,000 AU from a core of 0.5 Mˇ. An additional complication is the fact that a
protostar exhibits not only infall motions but also rotation, outflow, and turbulence.
Therefore it has proved to be very difficult to actually detect evidence of infall in
protostars of about a solar mass, but in a few cases that evidence is quite convincing.
It is important because it allows a direct estimate of the infall accretion rate.

The basic idea is to detect “infall asymmetry” in a spectral line, usually in the
radio or millimeter region where the dust optical depth is small and one can see far
into the protostar. The required conditions are: the line has to be somewhat optically
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Fig. 3.13 Qualitative sketches of emission line profiles from a collapsing cloud in the optically
thin case (left) and the moderately optically thick case (right). Intensities and velocities are on
arbitrary linear scales. Velocity is measured relative to that of the center of mass of the cloud.
A negative velocity corresponds to a blue shift in the spectrum. The separation of the two peaks
gives a typical infall velocity. The far wings of the line, near velocities of �1 and C1, give the
highest observable infall velocity

thick, and the degree of excitation of the line must increase with increasing depth
into the cloud. If temperature and density increase toward the center of the cloud,
this condition is likely to be met.

Consider, first, a simplified example of a spherical collapsing cloud, with highest
density near the center (� / r�1:5), and infall velocity increasing inwards. For a line
that is optically thin, the line profile will be composed of contributions from the far
hemisphere (infalling toward the observer, so blueshifted) and the near hemisphere
(infalling away from the observer, so redshifted). The line will be broadened because
of the different Doppler shifts arising from emission in the various layers, and we
neglect the additional broadening resulting from thermal or turbulent motions. Most
of the mass is in the outer regions, with small or zero velocity in the line of sight to
the observer. Most of the emission will be near the rest wavelength of the line, and
the line profile will be symmetric about that wavelength. The inner layers with high
infall velocity have relatively little mass and will contribute to the line profile in the
wings, but at reduced intensity. It is shown by Hartmann ([202], pp. 72–73), using
more detailed geometrical and radiative transfer arguments, that an optically thin
line is symmetric about zero velocity and has the general shape indicated in the left-
hand panel of Fig. 3.13. However an expanding envelope with a similar density and
velocity distribution would produce the same line profile, and therefore an optically
thin line cannot be used to distinguish between collapse and expansion.

For the case of an optically thick line, the situation is shown in the right-hand
panel of Fig. 3.13. Strong absorption, from the overlying static material (Fig. 3.14),
takes place around zero velocity, and the blue-shifted intensity peak is stronger than
the red-shifted one. In the case of expansion, the situation would be reversed, with
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To Observer

static envelope

R1 R2

rinf

B2 B1

Fig. 3.14 Aid in the explanation of infall asymmetry. The spherical protostar is divided into a
static region (outside rinf) and an infalling region. The dashed line corresponds to the locus of
points with a constant projected velocity in the observer’s line-of-sight (vlos) in the red-shifted
portion of the cloud. The solid line corresponds to the same absolute value of vlos in the blue-
shifted portion. The points R1; R2; B1; B2 are the points of intersection of an observer’s line of
sight, offset from the center of the cloud, with these curves. Velocity is measured relative to that
of the center of mass of the cloud. Reproduced, by permission of the AAS, from [572]. c� The
American Astronomical Society

the red-shifted peak stronger. This is a complicated problem in line transfer in a
medium with velocity gradients, and the details of the line profile will depend on
the density, velocity, and excitation distributions. However this profile is a definite
indicator of collapse. To see physically what is happening, one can make the
approximation that the velocity varies rapidly with distance (the Sobolev or Large
Velocity Gradient approximation). Thus in a line with unshifted central wavelength

0, the velocity in the line of sight that contributes emission at a slightly displaced
wavelength 
 is

vlos D c.
 � 
0/=
0 : (3.49)

This emission arises from the very small amount of material that has velocity very
close to vlos. The inner parts of these curves (R2, B2 in Fig. 3.14) have higher
excitation than the outer parts (R1, B1) so the line emission will be more intense.
However the light from R2 will be self- absorbed at R1 along the line of sight to
the observer. So the observed radiation will come primarily from R1. On the other
hand, the observer will primarily see light from B2 on the far side, which is more
intense than that from R1 because of higher excitation. And there will be no self
absorption. So the line profile will be asymmetric, with stronger radiation on the
blue side than on the red side. Again, the dip between the two peaks is caused by
self-absorption by non-moving or very slowly-moving material near the outer edge



122 3 Protostar Collapse

of the cloud. Typical molecular lines used for these studies include those of CS,
H2CO, and C18O.

It is now claimed that infall has been detected in a number of objects [381] of
which the best candidates are B335 [572], IRAS 16293-2422 [535,571], and L1527
[379, 573]. The first two are both very cold objects, as indicated by their spectral
energy distributions . The near fit to black-body curves at low temperature (�30 K)
is a characteristic of a Class 0 source. IRAS 16293 is a binary, and L1527 is Class
0/1. B335 has a low rotational velocity (˝ � 10�14), and low turbulence, thus
it is considered an ideal object for detection of infall. The other two sources have
significant rotation. However B335 also has a bipolar outflow almost in the plane
of the sky, which complicates the situation. B335 has been modelled [572] by an
“inside-out” collapse model, which starts from the singular isothermal sphere, and at
a given time has an infalling central region and a static outer region (Fig. 3.14). The
line profiles of several different transitions in CS were compared with theoretical
line profiles. The strengths and profiles of optically thin and optically thick lines
are qualitatively matched by the profiles in the left and right panels, respectively,
in Fig. 3.13. A fit to the data shows that the outer edge of the infall region is at
a radius of 0.04 pc, the core mass is about 0.4 Mˇ, and PM � 3 � 10�6 Mˇ yr�1.
However, not all observed features [554] agree with this model, and other effects,
including the outflow, must be taken into consideration. Thus it is quite clear that
infall has been detected, but it is not clear that the “inside-out” model is the correct
one. A similar comparison was made for IRAS 16293-2422 [571], except in this case
rotation had to be included in the radiative transfer model. Again, the fits provide
good evidence for infall. with a deduced PM D 3�10�5 Mˇ yr�1 onto a central mass
(binary C circumbinary disk) of 2.9 Mˇ. The data are also consistent with rotation,
with a “centrifugal radius” (where the rotational velocity becomes comparable to
the sound speed) of 610 AU, close to the orbital separation of the binary.

Observations of several other objects [231] provide estimates of infall PM �
4��r2vinfall for both Class 0 and Class I objects. In the Taurus star-forming region,
PM of a few times 10�6 Mˇ yr�1 was found in both classes. For the Taurus

objects, these dynamical values of PM were consistent with another rough estimate
obtained from Lbol and an assumed accretion time. However such estimates are
oversimplified, as in most cases the effects of rotation and a disk have to be taken
into account. In cluster sources, of which IRAS 16293 is an example, PM values
an order of magnitude or more higher are found [537]. It turns out to be difficult
to fit most observations with a pure spherical “inside-out” model. Collapse models
starting from a Bonnor-Ebert sphere are better, but even these have to be modified
to include rotation, outflow, and possibly magnetic fields.

3.6 Summary

A protostar collapses because, first, its mass is greater than the local Jeans mass,
and, second, it is optically thin to the infrared radiation generated by heating
from gravitational compression. As collapse proceeds, gravitational energy becomes
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more negative while thermal energy stays about the same, and the object becomes
more and more gravitationally bound. If collapse starts with mass near the (thermal)
Jeans mass, the infall results in a high degree of central concentration, with a small
amount of material near the center having density much higher than the average
density. This central core becomes optically thick as a result of dust opacity when
its average density is around 10�13 g cm�3. It then heats up, the collapse is slowed
down by the increasing pressure gradient, and a small core forms in hydrostatic
equilibrium. Upon further compression, the center of the core heats to �2,000 K,
the molecular hydrogen dissociates, and a second collapse is induced. It ends with
the formation of a “stellar” core, in equilibrium, with a density of about 10�2 g cm�3

and a temperature of 20,000 K.
At this time most of the protostellar mass is still at relatively low density. The

main part of the protostellar evolution consists of the accretion of the remaining
material onto this core. The luminosity is provided by the conversion of infall
kinetic energy into heat and then into radiation at the accretion shock. This radiation
is absorbed in the dusty infalling envelope, and reradiated in the infrared, where
it can be observed. A typical observed low-mass protostar has a “photospheric”
temperature, best defined by Tbol, of a few hundred K for a Class I source and
less than 80 K for a Class 0 source, and a luminosity of order 1 Lˇ for a Class
I source and somewhat higher for Class 0. A protostar is usually identified by its
presence in a star-forming region, a value of Tbol < 500–600 K, a spectral energy
distribution that fits that of an optically thick dusty envelope, and, in a few cases,
direct detection of infall velocity by analysis of spectral line profiles. The accretion
time for a protostar is typically a few times 105 years.

3.7 Problems

The first two problems are based on the Bonnor-Ebert sphere, a model for molecular
cloud cores that fits some observations and is a standard initial condition for
protostellar collapse.

1. Consider a spherical isothermal cloud at temperature T , mean molecular weight
�, mass M , radius R, surface pressure Psurf, and isothermal sound speed c2

s D
RgT=�. Assume the sphere has uniform density. Using the equilibrium Virial
Theorem, including thermal, gravitational, and surface effects (2.6), calculate
Psurf as a function of R. Show there is a maximum value of Psurf:

Ps;max D 3:15c8
s

G3M 2
: (3.50)

Calculate the corresponding radius and compare it with the Jeans length derived
from the simple energy condition for a sphere. The equilibria are unstable for R

less than this critical value.
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2. The Bonnor-Ebert sphere actually does not have uniform density but requires a
density gradient to stay in equilibrium. In this problem you will calculate the
equilibrium structure of the sphere.

(a) Integrate numerically the equations for mass distribution and hydrostatic
equilibrium, starting at the center with an assumed density �0. Pick a sound
speed and a mass; note that typical core temperatures are 10 K and masses
are one to a few Mˇ. Stop the integration when you reach your total mass.
Calculate Psurf.

(b) Show that the Virial Theorem is satisfied. Note that the density is not uniform.
(c) Varying the assumed value of �0, calculate several models, keeping M and cs

constant, and find the surface pressure maximum Ps;max. Compare its value
with that in Problem 1. List Psurf.R/ for a few models around the peak.

(d) Plot the density distribution �.r/ for the model with Ps;max. What is the ratio
of central-to-mean density? In dimensionless units, what is �1?

(e) Calculate the radius of the model with Ps;max and compare it with the Jeans
length, as in Problem 1.

3. Assume a power-law solution in (3.4) i.e. � D C r�n. Find physically reasonable
values of n and C . Find m (which is the mass interior to r) as a function of r . If
the sphere is cut off at a finite value of total mass M and radius R, what is the
gravitational potential energy Egrav?

4. Along the curve in Fig. 3.6 find the minimum Jeans mass before point B . If
the cloud is able to fragment into smaller pieces during the collapse (it is not
clear that it actually will), this mass represents the smallest possible fragment.
Fragmentation is very unlikely during the adiabatic collapse and dissociation
phases [36].

5. In this problem you will calculate the approximate evolution of a protostar
through the infrared H–R diagram.

(a) Assume that the protostellar core accretes mass at the rate

PM D PM0.1 � t=�/; (3.51)

where PM0 is the initial accretion rate (say 2 � 10�6 Mˇ yr�1), t is the time,
and � is the time when accretion stops (say 0.5 Myr, but you can pick your
own parameters). Calculate the mass as a function of time and the final mass.

(b) Obtain a formula for the accretion luminosity of the core as a function of
time. Assume that the core radius is constant at 3 Rˇ.

(c) Produce a table of Lacc, M , and PM at 15–20 different times starting at 0:05�

and ending at 0:95� .
(d) At each time, calculate the approximate mean photospheric temperature and

plot the evolution in the H–R diagram.
(e) At each time find the approximate wavelength at maximum intensity in the

observed continuous spectrum.
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6. A protostar of 1 Mˇ starts collapse at the Jeans limit from a cloud core at 10 K.
The cloud is composed of 72% H and 28% He by mass, and at the beginning all
the hydrogen is in the form of H2. Collapse ends on the Hayashi track as a fully
convective star in hydrostatic equilibrium with all of the hydrogen and all of the
helium ionized and with the equation of state of an ideal gas. The convective star
can be represented by a polytrope of index n D 1:5 whose total gravitational
energy is given by

Egrav D � 3

5 � n

GM 2

R
: (3.52)

(a) Assume no energy is radiated during the collapse. What is the radius of
the final star? What is the mean internal temperature of the final star? The
dissociation potential of H2 is 4.5 eV per molecule, the ionization potential
of hydrogen is 13.6 eV, and the sum of the two ionization potentials of He is
79 eV per atom.

(b) Assume that the star accretes at a constant rate PM and that all of the accretion
energy is radiated at the shock, which has a average radius 1.2� the final
stellar radius. What is the final stellar radius and mean internal temperature?
Note: this is a simple energy budget problem.



Chapter 4
Rotating Protostars and Accretion Disks

In the previous chapter, the idealized case of the spherically symmetric collapsing
protostar was discussed. However it was clear that observations of most protostars
are not consistent with such a simple model, and additional effects must be included.
This chapter considers the effects of rotation. The angular momentum problem was
introduced in Chap. 1: even the relatively small-scale molecular cloud cores have far
too much angular momentum to be able to collapse to stellar dimensions. Various
physical effects can contribute to the solution of this problem. Two of them which
are relevant for the protostellar phase are

1. Fragmentation of the core into a binary or multiple system, with much of the
angular momentum going into orbital motion

2. Collapse of the cloud into a central stellar object surrounded by an orbiting disk,
which contains most of the angular momentum.

Investigation of the first solution involves three-dimensional hydrodynamic simula-
tions, which are further discussed in Chap. 6. The disk solution, which is the subject
of this chapter, can be treated for the most part with assumed axial symmetry in
the collapsing cloud and in the disk structure; thus two-dimensional hydrodynamic
simulations are sufficient. But if the disk becomes gravitationally unstable, its
structure is no longer axisymmetric, and three-dimensional simulations are required
for a detailed description of this phase of its evolution.

A number of issues may be identified with regard to the formation and evolution
of disks. Among them are

• What are the initial conditions for the formation of a star-disk system?
• What is the predicted appearance of the emergent spectrum during the various

phases of disk evolution?
• What are the important mechanisms for angular momentum transport in a disk?

At what stage is each dominant? What are the time scales?
• What are the implications of the physical properties of newly formed disks, and

the angular momentum transport processes, with regard to planet formation?

P.H. Bodenheimer, Principles of Star Formation, Astronomy and Astrophysics Library,
DOI 10.1007/978-3-642-15063-0 4, © Springer-Verlag Berlin Heidelberg 2011
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Disk evolution may be divided into three stages. The first is the formation stage,
lasting 2–5�105 yr, in which the disk structure is built up from the infall of material
from the protostellar cloud. This stage may be identified with the observed objects
known as Class 0 and Class I sources (Chap. 3). The initial mass of the disk may
be relatively high, so that it becomes gravitationally unstable right after formation
and undergoes a rapid process of mass accretion onto the central star. It is possible
that FU Orionis objects, which have been observed to undergo rapid increases in
luminosity, are in a transition stage when the disk mass is still relatively large.
The second stage is known as the viscous stage, during which internally generated
torques, for example, those arising from turbulent viscosity in the presence of a
magnetic field, result in redistribution of the angular momentum in the disk. The
disk then evolves, with both accretion of matter onto the star and the spreading of
the outer regions of the disk. This stage is usually identified with Class II objects,
which exhibit a photospheric spectrum along with infrared excess because of dust
emission in the disk, and whose lifetime is �106–107 yr. However, disk evolution
also takes place while gas is still accreting onto it from the molecular cloud core
(Class I objects). The viscous stage is also associated with the formation of giant
planets. The final stage is known as the clearing stage, during which the disk either
(1) is blown away by the action of irradiation from the central star or external
sources, (2) is blown away by a stellar wind, (3) accretes onto the star, (4) is
accumulated into protoplanets, or (5) is disrupted by external encounters. The first
stage is closely connected with protostellar collapse, as discussed in Chap. 3. After
showing an example of that process, we concentrate on the observational evidence
for disks and the basic physics of disk evolution.

4.1 Disk Formation

The requirement of significant transfer of angular momentum out from the material
that eventually ends up in the star can be solved by various physical processes
operating at different phases of the evolution. Examples of these processes include
magnetic braking in the molecular cloud phase (Chap. 2), formation of disks and
binaries during the protostar collapse, and stellar winds, gravitational instability, or
magnetorotational instability after the disk has formed. In this section we look at the
collapse of rotating protostars in the axisymmetric (2-dimensional) approximation,
without magnetic fields, which can produce disks (but not binaries).

The formation of a disk from a molecular cloud core brings in another aspect
of the angular momentum problem. Even if the total angular momenta of the core
and of the star-disk system are the same, the distributions of angular momentum are
very different. Angular momentum transport is required during the transition from
protostar to star-disk system, as is illustrated in Fig. 4.1. The upper curves show the
distribution of specific angular momentum, as a function of interior (cylindrical)
mass fraction, in a uniform-density cloud core and a centrally condensed cloud
core with the density distribution of the singular isothermal sphere, both with solid
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Fig. 4.1 Specific angular momentum as a function of the mass fraction inside a given cylinder
about the rotation axis. All three curves have total mass 1 Mˇ and total angular momentum
1054 g cm2 s�1. Solid curve: molecular cloud core with uniform density and uniform angular
velocity; short-dashed curve: cloud core with an r�2 density distribution and uniform angular
velocity; long-dashed curve: a T Tauri star of 0.9 Mˇ with surface rotational velocity of 20 km s�1,
uniform angular velocity, and radius 3 Rˇ, surrounded by a disk of 0.1 Mˇ and radius 30,000 AU.
After [64]

body rotation. The total angular momentum is normalized to be consistent with
observations of molecular cloud cores [191]. The long-dashed curve shows the
distribution of angular momentum in a model of a star-disk system with the same
total mass and total angular momentum as in the clouds. The star has 0.9 solar
masses and is rotating uniformly with a typically observed surface rotational speed
of 20 km/s. The disk has 0.1 solar masses and is Keplerian. Clearly some process had
to transfer a lot of angular momentum from the inner regions to the outer regions.
And there is an additional problem. The typical observed disk has a radius of 100–
1,000 AU, not 30,000 AU as the disk shown in the figure must have to contain the
correct total angular momentum. Thus even though the specific angular momentum
(R2˝) of the outer edge of a cloud core (1021 cm2 s�1) is about the same as that of
the outer edge of a disk of 500 AU, the total angular momentum in the disk shown
in the figure is far too large to be consistent with observations. Thus, substantial
angular momentum has to be removed during the transition from cloud core to star
plus disk.

The initial conditions for rotating cloud collapse are the same as those given at
the beginning of Sect. 3.1, with the addition of a rotational parameter. Neglecting
for the moment turbulent effects, the cloud is assumed to have a uniform angular
velocity ˝ . The rotational parameter is generally called ˇ, the ratio of rotational
energy to the absolute value of gravitational energy:

ˇ D Erot

jEgravj D 1

3

R3˝2

GM
; (4.1)
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where the last equality holds for a uniformly rotating sphere of uniform density.
Observationally, a rotating cloud displays a linear change in the Doppler shift of
an optically thin spectral line with position as one scans across the cloud (i. e. one
edge of the cloud has a velocity toward the observer, the other edge away from the
observer). In a number of cloud cores [191] the characteristic velocity pattern has
been observed, and the typical value of ˇ is 0.02–0.03. Thus rotation is not very
important in the initial structure of the cloud, but if angular momentum is conserved
during the collapse, it becomes much more important later on. In fact, once collapse
starts, loss of angular momentum of the cloud as a result of magnetic braking is
likely to be negligible, because the infall time becomes short compared with the
time for an Alfvén wave to cross the cloud.

Rotating collapse can be treated in two different ways, first, by an approximate
analytic solution [502] known as the Terebey–Shu–Cassen (TSC) solution, and,
second, by a full numerical solution of the equations of hydrodynamics and
radiation transport. The TSC solution, while convenient, makes some simplifying
assumptions. As originally formulated by Ulrich [524], the outer radius of the
spherical infalling cloud is Rc , and the cloud is initially rotating with uniform
angular velocity ˝ . Material falls toward a central object of mass M , in free fall
with conservation of angular momentum, with a constant accretion rate PM . The
gravitational effect of other material in the infalling envelope is neglected, as are
pressure effects. It is convenient to define a “centrifugal radius” Rct where material
from the equator of the initial cloud at its outer edge (which has specific angular
momentum j D ˝R2

c) reaches a balance between gravitational and centripetal
effects, that is, a Keplerian orbit:

Rct D ˝2R4
c

GM
: (4.2)

Material at other positions around the cloud surface, where the radius vector makes
an initial angle 
0 with the rotation axis, has smaller angular momentum and falls
to the equatorial plane at smaller distances from the central object. The orbit of
each individual mass element is calculated separately, assuming that it moves in the
gravitational potential of the central mass M . If 
 is the instantaneous angle between
the radius vector of a mass element and the rotation axis, in the infall region, then at
a given (r; 
) in polar coordinates, the density distribution can be derived

�.r; 
/ D
PM

4�.GM r3/1=2

�
1 C cos 


cos 
0

��1=2 � cos 


cos 
0

C 2Rct cos2 
0

r

��1

(4.3)

where PM and M are constants. The details of the derivation are given in [202,524].
This model is often used to represent infalling envelopes. To obtain 
0 one uses the
equation for the trajectory of a mass element starting at 
0, which can be expressed
in the form [524]
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r D Rct cos 
0 sin2 
0

cos 
0 � cos 

: (4.4)

Given (r; 
) this equation must be solved for 
0. Thus the individual mass elements
execute two-body orbits until an element hits the equatorial plane, where it meets
its mirror particle arriving from the other side of the plane. The resulting shock
strongly reduces the velocity component perpendicular to the plane, and as long as
the angular momentum is large enough so that the element misses the central object,
it joins the disk.

The TSC solution itself has two basic assumptions: (1) the overall cloud is slowly
rotating, thus, for example, Rct << Rc . Thus, on the larger scales the solution can be
approximated. (2) The initial condition is close to that of the singular (equilibrium)
isothermal sphere, with � / r�2. The first assumption is supported by the fact
that the rotational ˇ is observed to be small in molecular cloud cores. In the inner
regions, where r � Rct and where rotational effects are important, the model uses
the Ulrich prescription for the gas flow as described above. This solution does not
assume slow rotation; also, in the inner regions the assumptions of that analysis
apply reasonably well. In the outer regions, a perturbation expansion is applied to
obtain the rotating initial configuration and to describe the ensuing collapse. As in
the spherical case, collapse starts at the center, the so-called “inside-out” collapse.
The outer boundary of the region that is collapsing moves outward at the sound
speed in the (assumed isothermal) structure. The outer region is static until the
expansion wave reaches it.

The singular isothermal sphere has a constant mass accretion rate PM D
0:975c3

s =G, where cs is the sound speed in the molecular cloud core. This feature
can be used to estimate how fast the disk grows. Clearly, the central mass as a
function of time is M D 0:975c3

s t=G. In a time t that amount of mass arrived from
within a radius Rx in the density distribution of the isothermal sphere:

M D
Z Rx

0

4�r2c2
s

2�Gr2
dr (4.5)

We can easily solve for Rx D 0:4875cst . The specific angular momentum of
material starting from Rx at an angle 
0 with respect to the rotation axis is j D
R2

x˝ sin 
0, and the “centrifugal” radius where that material ends up is j 2=.GM /

so
Rct D :0579cs˝

2
0 t3 sin2 
0 : (4.6)

Setting 
0 D �=2 to get the maximum radius, we find that the disk first forms when
this radius exceeds the stellar radius, and that its outer edge expands as t3.

The general procedure for using these approximate models is to set up param-
eterized models, make radiation transfer calculations based on those models, and
compare with the spectral energy distributions of observed sources. An example of
such a comparison is given in Fig. 1.6.
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To study disk formation in the more general case, with less-restrictive
approximations, where rotation is not necessarily small, where the self-gravity
of the envelope is not neglected, and for arbitrary initial conditions, one must turn
to detailed numerical solutions. The approximations are made that the collapse is
axisymmetric, that is, there are no gradients in the azimuthal (�) direction, and that
there is symmetry with respect to the equatorial plane. For the moment we assume
that magnetic fields are not coupled to the gas.

The general equations that are solved are shown below, where the two dimensions
are the cylindrical radius R and the height above the midplane Z. The equations
are set up on an Eulerian fixed grid. These equations are sometimes referred to
as “2 1

2
-D” equations, because, although all variables are assumed to have zero

derivatives in the �-direction, the component of the equation of motion in that
direction is included. The first equation is the equation of continuity, and the second
and third are, respectively, the equations of motion in the R- and Z directions. In
the R-component the rotational contribution has to be added to the right-hand side:
A2=�R3, where A D �Rv� is the angular momentum per unit volume and v� is the
linear velocity component in the �-direction. The quantities u and w are the R�
and Z�components of the velocity v, ˚ is the gravitational potential, and P is the
pressure. The fourth equation represents conservation of angular momentum. The
fifth equation is the energy equation, where E is the internal energy per unit mass.
In this approximation, the radiation energy density is not considered separately
from the gas energy density. The last term in this equation is the divergence of
the radiative flux, where the flux is

F D
� �c

3�R�
raT 4

�
(4.7)

in an optically thick medium, where �R is the Rosseland mean opacity and a is
the radiation density constant. This expression is the same as that used in stellar
interiors, however in a protostar some regions of the problem may be optically thin.
In the limit of optical thickness going to zero, it can be shown that the flux is given by

jFj D curad (4.8)

where c is the velocity of light and urad is the radiation energy per unit volume, aT 4

for a black body. A combined approximate expression for the radiative flux, which
is correct in the limits of very optically thin and very optically thick media, is called
flux-limited diffusion. Thus the transition from the isothermal optically thin region
of protostellar collapse to the optically thick adiabatic region can be approximately
taken into account in a relatively simple way.

The modified equation reads

F D
��c


�R�
raT 4

�
(4.9)
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where the flux limiter 
 must reduce to 1/3 in the optically thick limit. The usual
way to calculate 
 is [316] to define a quantity Rlp:

Rlp D jraT 4j
�R�aT 4

(4.10)

which is the ratio of the mean free path of a photon .�R�/�1 to the scale height of
the radiation energy density. Then


 D 2 C Rlp

6 C 3Rlp C R2
lp

: (4.11)

Thus when the mean free path is short, Rlp ! 0 and 
 ! 1=3. When the mean free
path is long, Rlp ! 1, 
 ! 1=Rlp and the flux goes to the limit acT 4, as required
physically. Note that in this limit, (4.7) gives an unphysically large radiative flux.
The temperature is low enough in the region being considered so that grains provide
the main opacity source (Fig. 3.5). The last equation is the Poisson equation for the
gravitational potential.

In the early part of the collapse, conservation of angular momentum is assumed.
Once a disk forms and evolves, some kind of process of angular momentum
redistribution must be included (see below).

@�

@t
C r � .�v/ D 0 (4.12)

@.�u/

@t
C r�.�u v/ D ��

@˚

@R
� @P

@R
C A2

�R3
(4.13)

@.�w/

@t
C r�.�w v/ D ��

@˚

@Z
� @P

@Z
(4.14)

@A

@t
C r�.Av/ D 0 (4.15)

@.�E/

@t
C r�.�Ev/ D �P r � v � r � F (4.16)

r2˚ D 4�G�: (4.17)

These equations are solved in conjunction with the equation of state, as discussed
in Chap. 3. For simplification, it is assumed that the grain temperature Tg and the
gas temperature T are the same (Sect. 2.3). In addition it is necessary to consider
the treatment of shocks, which are very likely to occur during disk formation. The
standard numerical procedure is to use the Richtmyer–von Neumann [530] artificial
viscosity to broaden shocks over a few zones while still obtaining the correct shock
jump conditions (Sect. 3.4). In the R� component of the momentum equation the
derivative @P=@R is replaced by @=@R.P CQRR/ and in the Z� component @P=@Z
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is replaced by @=@Z.P C QZZ/ where

QRR D q2�.�u/2 if
@u

@R
< 0 (4.18)

QRR D 0 if
@u

@R
> 0 (4.19)

QZZ D q2�.�w/2 if
@w

@Z
< 0 (4.20)

QZZ D 0 if
@w

@Z
> 0 : (4.21)

The quantities �u D uj C1;k � uj;k and �w D wj;kC1 � wj;k are the velocity
differences across the zone in the R� and Z� directions, respectively, and (j; k)
are the zone indices in the two directions. The dimensionless constant q is of order
unity; thus the Q’s have dimensions of pressure. The artificial viscocity term is
added only if the zone is compressing in a given direction. In terms of the actual
kinematic viscosity coefficient, say in the R� direction, 	 D q2�Rj�uj in units of
cm2 s�1. The effect of the artificial viscosity is to dissipate kinetic energy of motion
and convert it into heat, as is the situation in an actual shock. Thus an additional
positive term must be added to the right-hand side of the energy equation to take
into account the added heat:

�QRR

@u

@R
� QZZ

@w

@Z
:

Care must be taken near the origin, because in a spherically converging flow (not
usually the case in this collapse problem), artificial viscosity can be generated even
if there is no shock [514].

The details of the numerical solution to these equations are discussed in [66]. The
main problem in the calculation of the numerical collapse of a rotating protostar is
the extreme range of length scales involved, from 1017 cm, the size of the cloud
core, to 1011 cm, the size of the resulting star. Even if the star is resolved with only
ten zones, the sound speed at a temperature of 106 K is 107 cm s�1. The maximum
time step in the numerical solution is determined by the Courant–Friedrichs–Lewy
(CFL) condition [121]

�t D min

�
�R

cs C jvj ;
�Z

cs C jvj
�

(4.22)

where cs is the sound speed, v is the fluid velocity through a zone, and �R, �Z

are the zone sizes. The requirement in the stellar zones is then �t < 103 sec. The
time for the entire cloud to fall onto the star and disk is at least one free-fall time
from the initial density of the core, or 105 yr or 3:15 � 1012 sec. Thus 3 billion time
steps would be required to do the simulation (after formation of a stellar core of
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reasonable mass). In fact there is an additional restriction on the time step [411] if
viscosity is present:

�t <
.�x/2

4	
(4.23)

where �x is the zone size in either direction.
To avoid the problem of very short time steps in the central regions, they are

not resolved but treated as a sink zone, into which mass, energy, and angular
momentum flow. In this way the main disk formation region, say outside 10 AU,
can be calculated in detail. The mass and angular momentum that fall into the
central zone are used to calculate a rough equilibrium model for the core and to
determine the accretion luminosity. This luminosity is fed back into the grid as a
central boundary condition for the radiative transfer:

Lcore D Lint C 3

4

GMcore PM

Rcore
(4.24)

where Lint is the internal contraction luminosity of the central star and Rcore is
reasonably taken to be a few solar radii. The second term, the accretion luminosity,
is multiplied by 3/4 to take into account approximately the fact that the infall onto
the core is not spherically symmetric but is mediated by an accretion disk [10]. This
central source generally dominates the energy input to the protostar and determines
the temperature in the infalling material and the disk. The extreme degree of central
concentration of a protostar can also be dealt with by a series of nested fixed grids,
with spatial resolution increasing toward the center by a factor of 2 for each grid.
Thereby the inner regions are treated with high resolution, where it is needed, and
the outer, low-density regions are represented by a relatively coarse grid.

An example of the solution of the full set of equations [565] is shown in Fig. 4.2.
The initial rotating protostar has a temperature of 20 K and a density distribution
� / r�2 where r is the distance to the center. However it is not an equilibrium
isothermal sphere; the force of gravity exceeds that of the pressure gradient by a
considerable margin. The specific angular momentum R2˝ at the outer edge is
2 �1021 cm2 s�1, and ˇ � 0:01. The numerical solution employed four nested grids,
each with 124 by 124 zones in the (R; Z) plane.

Conservation of angular momentum is assumed. At a time of 7,000 yr, a disk
of radius 260 AU is found. The interior of the disk is practically in hydrostatic
equilibrium, and a shock wave is evident, as the dark band enclosing the disk,
displaced somewhat from the surface of the actual equilibrium disk. This accretion
shock is well resolved at about 10 density scale heights above the plane of the disk,
and its location is determined by the point where the infall ram pressure, �v2, is
matched by the gas pressure of the inner regions of the protostar. In fact there is a
second shock. The component of velocity normal to the outer shock is dissipated,
but the parallel component still results in infall. This inflow is deflected from radial
motion by the mass of the inner disk and by effects of angular momentum, and it
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Fig. 4.2 Results from a two-dimensional hydrodynamic collapse calculation showing the structure
of a newly-formed disk. Dashed lines: contours of equal temperature separated by � log T D 0:1

and with a minimum T D 160 K. Solid lines: contours of equal density with separation
� log � D 0:2 and minimum value log � D �19:4, in g cm�3. Arrows, velocity vectors with length
proportional to speed. Reproduced, by permission of the AAS, from [565]. c� 1995 The American
Astronomical Society

shocks again at the outer edge of the actual disk, then becoming part of the region
of the disk that is near hydrostatic equilibrium.

Clearly this structure is more complicated than the theoretician’s ideal “flat”
disk. The vertical thickness is, however, somewhat exaggerated because of the
logarithmic contour lines; in fact most of the mass of the disk lies interior to the
two pairs of two diagonal (solid) lines in the left-hand side of the diagram, which
correspond to 1 and 2 density scale heights, respectively. The heating of this disk,
and therefore its vertical thickness, is controlled primarily by the luminosity of the
central source. The central unresolved star has a mass of 2.7 Mˇ and a luminosity
of 30 Lˇ. The residual infalling envelope is optically thin along the rotation axis,
so that the central object could more easily be seen in this direction than along the
equatorial plane.

It is clear from the theoretical collapse calculations, also in the case of lower
masses, that once the disk forms its mass becomes comparable to that of the central
object, and it quickly becomes gravitationally unstable. Thus the evolution can no
longer be calculated under the assumption of conservation of angular momentum
of each mass element. The Toomre Q parameter is an indicator of gravitational
instability, and it is defined by [508]

Q D �cs

�G˙
(4.25)



4.1 Disk Formation 137

where ˙ is the surface density (mass per unit area) and � is the so-called epicyclic
frequency

�2 D 2˝

R

d

dR
.R2˝/ (4.26)

which reduces to � D ˝ for Keplerian rotation. Strictly speaking, if Q is greater
than � 1, the material is locally stable to an axisymmetric gravitational perturbation
(presumably it is unstable if Q < 1). The axisymmetric instability would lead to
a dense ring-like configuration. Q is also a useful indicator of non-axisymmetric
gravitational instabilities, which tend to occur in the range Q D 1:3 � 1:5, that is,
earlier in the evolution of the disk than the axisymmetric ones. The derivation and
explanation of the condition for axisymmetric instability in a disk, based upon a
linear perturbation analysis, is given in Shu [458], his Chap. 11.

If a disk’s mass is a substantial fraction (say 0.3 or more) of that of the central
star, it is likely to be gravitationally unstable, but even if the disk mass is small
compared with that of the star, the disk can be gravitationally unstable if it is cold
enough. The approximate argument runs as follows: set Q D 1, corresponding
to the marginal condition for gravitational instability. Then use the (approximate)
Keplerian ˝ D .GM�=R3/1=2 and the (approximate) ˙ D Mdisk=.�R2/ and solve
for Mdisk.

Mdisk

M�
� cs

˝R
: (4.27)

Typically cs=.˝R/ � 0:1, suggesting that even a low-mass disk could be gravita-
tionally unstable, but the disks typically observed around young stars have masses
� 0:01 M� and are probably stable. It has been shown [323] that for Mdisk << M�
the evolutionary time scale is given by tgrav � ˝�1.M�=Mdisk/

2, so that a low mass
disk evolves very slowly, over say 100 rotation periods if, in fact, it is gravitationally
unstable. But, as mentioned earlier, Mdisk is expected to be comparable to M�
during the early infall phases just after disk formation, and the time scale for the
gravitational instability is a few orbital periods.

What is likely to happen as a result of the non-axisymmetric instability is the
generation of spiral waves, which result in a gravitational torque on the material and
the transport of angular momentum outward from the center. Full 3-D numerical
simulations [306] show that this is in fact the outcome for Q � 1:3. For lower
values of Q, near 1, the instability is suspected to result in fragmentation, that
is the formation of gravitationally bound subcondensations in the disk. As a disk
builds up in mass through infall, the main effect on Q is the increase in ˙ , so
Q evolves from high values to low values, reaching 1.3 before reaching 1. As
long as the disk accretion time is long compared with the dynamical time, spiral
waves and angular momentum transport will start before the fragmentation regime
is reached. The heating resulting from spiral wave shocks would tend to stabilize Q,
so fragmentation may not occur. The disk would transfer material to the central star,
reduce its mass, and eventually stabilize.

In fact there are two conditions that are required for a disk to fragment. The first
is a Q-value close to unity in some region of the disk. The second [182] is that the
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cooling time of the disk must be less than about an orbital period; otherwise in fact
the disk will heat up as a result of the instability and remain stable to fragmentation.
The relatively massive disks that form initially as a result of protostar collapse are
quite optically thick in the vertical direction, and their time scale for radiation
transport and cooling is too long to allow fragmentation. Thus they will in fact
develop spiral arms and transfer mass inward to join the central star. An exception
may occur in the outer regions, which remain optically thin with short cooling times.

In any case numerical treatment of the non-axisymmetric gravitational instability
requires a 3-D solution. The key modification to the above equations is in the
equation of conservation of angular momentum (4.15), which is replaced by

@A

@t
C r�.Av/ D �

�
�

@˚

@�
C @P

@�

�
: (4.28)

The variation in gravitational potential and pressure in the �� direction provides
a net torque that transfers angular momentum outward in the disk. Numerous
3-D simulations have been carried out, with varying results but for example [74]
show that even in a relatively low-mass disk it is difficult to meet the criteria for
fragmentation. Thus the typical disk that results from the protostar collapse during
the phase when it is gravitationally unstable [360] may qualitatively have the spiral-
arm structure as shown in Fig. 4.3.

Fig. 4.3 A face-on view of a simulated disk that is unstable to the generation of spiral waves. The
radius of the disk is about 25 AU. The grey scale represents the surface density in g cm�2, ranging
from log ˙ D �2 (dark) to C4 (white). Reproduced by permission of John Wiley and Sons from
F. Meru, M. R. Bate: MNRAS 406, 2279 (2010). c� 2010 Royal Astronomical Society
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The difficulty with the otherwise high-quality 3-dimensional simulations that
have been carried out is that hydrodynamics plus radiation transfer places high
demand on computer resources. Thus typical simulations can follow the gravita-
tionally unstable disk for a few thousand years, depending on assumed disk size
and spatial resolution, short compared with the total duration of the gravitationally
unstable phase. The question has been investigated whether the gravitational
instability can be approximated by a pseudo-viscosity, making it possible to treat
the problem in 1 or 2 space dimensions, which is numerically more tractable. The
general opinion is that it is not a valid approach [307] because the gravitational insta-
bility is of global, rather than local, nature. It may, however, be feasible to use such
an approach [27] in the particular situation when a disk is marginally gravitationally
unstable, that is the minimum Q value hovers around the critical value above which
the instability is not of importance. In the disk formation picture, the disk may in fact
be marginally unstable, with the increase in ˙ caused by mass accretion balanced
by heating caused by the instability itself. Another possibly appropriate situation
[74] is a disk where heating from the instability is balanced by radiative cooling and
the cooling time is related to the orbital frequency by tcool˝ D constant.

To use a viscosity (or pseudo-viscosity) in 2D or 3D solutions of the evolution
of a disk, one must solve the full Navier–Stokes equations for a compressible fluid
[298]. In cylindrical coordinates with no gradients in the �-direction, the 3 equations
of motion and energy equation then become
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@.�E/

@t
C r�.�Ev/ D � P r � v � r � F C �Ediss: (4.32)

If � D 	� is the coefficient of dynamic shear viscosity, then the components of the
viscous stress tensor �ij are
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and the viscous energy dissipation rate per unit mass is

Ediss D 2	
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As (4.31) shows, angular momentum transport is generated by the shear in the ��
velocity in both the R� and Z� directions.

A calculation of disk formation [564] included angular momentum transport
by spiral waves approximately in 2D through use of a pseudo-viscosity, although
a correct treatment would involve 3D. The original cloud had 1 Mˇ, ˛ D 0:39,
ˇ D 0:01, and a radius of 6,667 AU. The initial density � / r�2 where r

is the spherical radius. Once the disk forms, a viscosity is added which mimics
angular momentum transport by spiral waves, even though the calculation remains
axisymmetric. The standard disk viscosity prescription is used

	 D ˛visccsH D ˛visc
c2

s

˝
(4.35)

where H is the disk scale height and ˛visc is a numerical constant of order 10�2 (see
next section). The Navier–Stokes equations are solved in the disk. At each radial
location in the disk, the Toomre Q is calculated, and the minimum value found. An
assumed value of ˛visc is taken to start. If the minimum Q is above the marginal
stability value for non-axisymmetric gravitational instability (about 1.3) then ˛visc

is reduced throughout the whole disk, and angular momentum transport becomes
less effective. If the minimum Q is below 1.3, then ˛visc is increased. After a few
time steps, the viscosity becomes self-regulated such that the disk is always near
marginal gravitational instability. In the case of a molecular cloud core of 1 Mˇ, the
regulated ˛visc falls in the range 0.02–0.07, in rough agreement with the efficiency
of angular momentum transport in a full 3D calculation [306] for a gravitationally
unstable disk in a protostar of the same mass. The reduction of the problem to 2D,
however, allows the calculation of the evolution of the protostar for a few times 105

years, a substantial fraction of its total lifetime. The accretion rate of disk material
onto the star falls in the range .2 � 0:5/ � 10�6 Mˇ yr�1, decreasing with time.
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Fig. 4.4 Theoretical spectral energy distributions obtained by radiative transfer calculations based
on the protostar models with initial molecular cloud core mass of 1 Mˇ. The quantity S	 is the
energy radiated, in erg s�1 Hz�1, at the frequency 	. In each panel, the viewing angles, running
from lower to upper curves, are 90ı, 75ı, 60ı , 30ı, 20ı, and 0ı, measured from the rotation axis.
The evolution time is given in the upper right of each panel. The stellar core masses at the given
times are, respectively, 0.29, 0.47, 0.55, and 0.57 Mˇ. The outer edges of the disks, which have
similar structure to that shown in Fig. 4.2, are located, respectively, at 80, 240, 800, and 1,000 AU.
Reproduced, by permission of the AAS, from [564]. c� 1999 The American Astronomical Society

The calculation ends at 213,100 yr with the central star containing 0.567 Mˇ
and with most of the rest of the mass in the disk. The expected outer radius of the
disk, based on conservation of angular momentum from the initial state, is about
500 AU; however because of angular momentum transport, the disk expands out
to about 1,000 AU, although the outer parts are optically thin. Beyond this time,
however, the time scale for the gravitational instability slows down considerably, to
the point where the star is accreting mass very slowly. Other mechanisms for angular
transport must be considered beyond this time, since the disk mass is still too large
to be consistent with those observed around T Tauri stars (see next section).

Figure 4.4 shows the spectral energy distributions at four different times during
the evolution of the 1 Mˇ protostar, at various viewing angles. Most of the radiation
originates at the central protostellar core and the hot regions of the disk close
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to it. The optically thick outer envelope absorbs and scatters much of the light,
and most of the observable radiation is in the infrared. The equations indicate
that the radiation transfer employed during the calculation of the collapse used a
frequency-averaged opacity. However, at selected times during the evolution, the
core/disk/envelope structure can be used to do a frequency-dependent calculation,
by a solution of the equation of radiative transfer along various lines of sight passing
through the object. The integration of the emerging radiation over the visible surface
then gives the flux at each frequency. The results shown in the figure were based
on 64 separate frequencies. During much of the lifetime of an accreting protostar,
the infrared flux at say 10 �m can vary by orders of magnitude between equator
and pole, and the total bolometric luminosity can vary by up to a factor 30. In the
equator-on views, there are two peaks in the flux, the first arising from the cool,
optically thick equatorial region, the second (around 1 �m) from indirect light from
the central regions, emitted in the polar direction, where there is relatively little
obscuring material, and scattered toward the observer. At the earliest time, the dip in
the SED near 10 �m is absorption by a silicate dust feature. The figure indicates that
near-infrared surveys for protostars are much more likely to pick up objects viewed
pole-on than at other angles. For an inclination of more than 30ı from the pole, the
2 �m flux is reduced by more than a factor 10 compared with the pole-on flux at the
later times. This beaming effect, which indicates large differences in the observed
luminosity of a protostar depending on the viewing angle, may contribute to the
solution of the luminosity problem discussed in Chap. 3, where it was considered in
the context of a spherically symmetric solution.

The various disk formation calculations can be summarized as follows:

• A centrally condensed cloud core collapses to a stellar core surrounded by a
gravitationally unstable disk

• Spiral waves are an effective means of angular momentum transport during early
phases of disk evolution

• It is possible that disks resulting from protostar collapse can be formed that are
gravitationally unstable to the point of fragmentation, but it is not at all clear what
factors control whether the outcome is in fact fragmentation or simply angular
momentum transport by spiral waves

• After a few times 105 yr angular momentum transport by gravitational torques
becomes ineffective, leaving a disk with about 35% of the system mass.
Other mechanisms for angular momentum transport are required for the further
evolution of the disk

• The increase in evolutionary time scale as the disk mass decreases in 2D
simulations is consistent with nonaxisymmetric calculations of disk evolution
with self-gravity

• The spectral appearance of a protostar is strongly dependent on viewing angle.
The mid-infrared flux can vary by several orders of magnitude between pole-on
and equator-on views
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• Once the disk has formed, most of its mass lies between 100 and 1,000 AU
• The surface density distribution of the newly-formed disk is not a power law. It

is nearly flat in the central regions, then drops rapidly farther out
• The temperature of the dust in the protostar drops roughly as the square root of

the distance to the central object.

4.2 Observations of Disks

The previous section has described highly embedded disks in Class I protostars.
Although our observational knowledge of the presence and properties of such
disks in both Class 0 and Class I objects is rapidly developing [244], most of
the observed data refer to Class II objects, that is, pre-main-sequence stars with
surrounding disks of relatively low mass. The transition from the presumed massive
disks that are generated during the formation stage to the low-mass Class II disks
is not understood. But it is clear that many young stars are surrounded by disk-
like structures [44, 51, 102]. We list and then discuss several key properties of disks
and the methods that are used to deduce their presence. This section and the next
describe the so-called “viscous” stage of disk evolution.

Disk observations span a wide range of wavelengths. The radial extent of these
disks is in the range 10–1,000 AU, and the corresponding masses are roughly
estimated to be 0.001–0.1 Mˇ. Central stars over a considerable mass range, from
the brown dwarf region up to roughly 7 Mˇ, give indications that disks are present.
The mass accretion rate from disk onto star is �10�8 Mˇ yr�1 for stars with an
age of 106 yr, and roughly decreases with age [102]. The lifetime of that phase of
evolution when the disk radiates significantly in the infrared ranges from < 3 Myr
to 10 Myr, for stars in the solar-mass range and below, with a median of about 3 Myr.
The frequency of occurrence of disks around young stars with masses < 3 Mˇ and
with ages < 3 Myr is estimated to be 30–50%. Other significant properties are the
distributions with radius of the gas surface density ˙gas .R; t/, the solid surface
density ˙solid .R; t/ and the midplane temperature.

Disk sizes can be obtained best from direct imaging, of which there are many
examples. The first announcement of a resolved disk around a young star [444] was
based on radio maps of the 13CO line emission of the star HL Tauri, which showed
an elongated structure with a radius of about 2,000 AU and a mass estimated at
0.1 Mˇ. It was later determined that the velocities in that structure represent a
rotating infall, so that the “disk” is not in equilibrium but is collapsing onto a small
inner disk [211]. In a few other cases for disks resolved in the CO lines it was
possible to observe the variation in orbital velocity as a function of distance to the
star and to determine that the disk is rotating with a nearly keplerian velocity pattern
(AM Aur [260], GG Tau [149]); here sizes of several hundred AU are indicated for
disks near equilibrium. Disks can also be resolved in the radio continuum; a good
example is the binary in L1551 IRS5 [440], imaged at the VLA at 7 mm (Fig. 1.10).
In this case the disk size is only 10 AU, limited by the scale of the binary orbit.
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Fig. 4.5 A map of the dust continuum emission at 1.3 mm of the disk around the young star TW
Hydrae. The distance scale is in arc seconds. The beam size is indicated in the lower-left corner,
giving a resolution of about 1 arc sec. The observation was made by the Submillimeter Array on
Mauna Kea, Hawaii. The disk outer edge is defined roughly by the radius that contains 95% of
the observed emission. From these observations and theoretical models, the outer radius of the
disk is determined to be 73 AU, and its mass 0.03 Mˇ. This disk is observed nearly face-on: the
inclination of its plane to the plane of the sky is only 7ı. The lowest contour corresponds to a
flux level of 20 mJy and a confidence level of 10 � . Contours are separated by the same amount.
Reproduced, by permission of the AAS, from [239]. c� 2009 The American Astronomical Society

An HST image of the young star AB Aurigae (Fig. 1.15), using a coronagraph to
mask the central star, shows a disk with a radius of about 1,300 AU. The coronagraph
in the STIS instrument on the Hubble Space Telescope was used to image the disk
around TW Hydrae, a nearby T Tauri star, in scattered starlight [437]. The disk has
been resolved in the radio at the VLA at 7 mm [553] which represents emission from
dust and also at 1.3 mm (Fig. 4.5). The scale of the emission region is �100 AU.
Observations at higher spatial resolution (�0:16 arc sec) at 7 mm wavelength [236]
show evidence for a central “hole” in the dust emission out to about 4 AU. The
presence of the hole was earlier suspected because of a deficit of flux in the spectral
energy distribution at 2–20 �m, indicative of the lack of small dust [100] in the
inner, warm regions of the disk. Nevertheless, there seems to be at least some gas in
the region around 1 AU, as deduced from observations of CO [432]. This disk is of
particular interest because it is nearby (51 pc) and it is thought to have properties
similar to those of the primordial solar disk. The Hubble Space Telescope has
provided other spectacular optical images of disks, particularly in the Orion region
[350, 394]. Note in particular the flared structure of the disk (Fig. 1.7) associated
with HH30 [97], which again has a scale of 200 AU.

“Debris disks” have also been resolved by HST; two good examples are the
disk around the main-sequence A star Beta Pictoris (Fig. 1.16), of size 1,000 AU
with an inner hole of 15 AU, and that around the main-sequence M star AU Mic
[268], of size 200 AU with an inner hole of 12 AU. The first image of a debris
disk, that of Beta Pictoris [468], was actually obtained with a telescope at Las
Campanas Observatory in Chile through use of a coronagraph which blocked out
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much of the direct starlight. The star had previously been observed in the early
1980s, by the Infrared Astronomical Satellite (IRAS), to have an infrared excess.
This type of disk is quite distinct from the disks observed around young stars: they
are found around main-sequence stars, the disks have very low mass, and very
little gas is present. They are observed in scattered starlight from the small dust
grains. Presumably these disks are the evolved remnants of the more massive, dusty,
gaseous disks around young stars. Roughly 10–20% of main-sequence stars of solar
type are observed to have such disks [509]. They are observed around stars with
age range 10–1,000 Myr, and their dust masses, which roughly decline with age,
are 0:1 � 10�4 M˚. However the underlying mass must be greater; the origin of the
small dust grains is thought to be from collisions of larger objects in the meter-size
range. The small dust particles, if not replenished by such collisions, would spiral
into the star as a result of the Poynting–Robertson effect, be blown out by radiation
pressure, or be destroyed by collisions.

These disks have been extensively studied by the Spitzer Space Telescope and
have considerable importance in providing clues to the formation and evolution of
planetary systems [363], but they will not be discussed in detail here.

Most of the known disks are not directly imaged but are detected indirectly.
First, many young objects exhibit excess radiation at infrared, submillimeter, and
millimeter wavelengths, above what is expected from a normal stellar photosphere.
Spectral energy distributions derived from disk models agree with those observed,
as discussed below. The disk radiation arises either from reprocessing of stellar
radiation in the surface layers of the disk, or internal energy generation within the
disk, for example by viscous dissipation. The amount of absorption of the radiation
from the star implied by the infrared excess implies that if the absorbing material
were spherically distributed, the star would not be optically visible. For a typical
young star the visual extinction AV would be about 500 magnitudes. The fact
that the typical young star has AV < 3 leads to the conclusion that the geometry
of the circumstellar material must be highly non-spherical. The radiation arises
from emission from dust particles. However, second, spectroscopy of relatively few
young stars shows the presence of circumstellar gas, although this is much harder to
detect than the dust. Third, a large fraction of the young stars with infrared excess
also show ultraviolet excess radiation over that from a normal photosphere. This
radiation is interpreted as arising from material falling from the disk onto the
star, probably channelled along magnetic field lines, and producing shock waves
on the stellar surface. We now discuss the estimation of disk masses, disk ages, and
accretion rates onto the star, based on the above observations.

Disk masses [43] are obtained from long-wavelength continuum emission, in the
millimeter range, to which the disks are optically thin. Figure 4.6 shows a histogram
of the total disk mass, gas plus dust, in two star forming regions, Taurus and
Ophiuchus [17,45]. In the Orion region, the mass distribution is similar [338,339].
The key equation for determining the disk mass is

F	 D L	

4�D2
D 1

D2

Z Rmax

Rmin

B	ŒT .R/��	.R/2�RdR (4.36)
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Fig. 4.6 Histogram of the estimated masses of disks, in solar masses, for Class II objects in the
Taurus and Ophiuchus star-forming regions. Reproduced from [67]. Original data from [17, 45].
c� Annual Reviews

where F	 is the flux density received at earth (erg s�1 cm�2 Hz�1), D is the distance
to the source, R is the radial distance away from the central star, and �	 is the optical
depth along the line of sight at frequency 	, for example, at 231 GHz (
 D 1:3 mm).
This expression assumes an optically thin slab with a black-body source function
B	 which is a function only of distance from the star. The emergent intensity is
I	 D B	�	 , derived directly from the equation of transfer (it is multiplied by 4�

to obtain the emission over all directions). One is observing the dust emission,
integrated over the entire volume of the disk, which is not spatially resolved in the
observation. Assume for simplicity that the disk is observed face-on. If the opacity,
in cm2 g�1 of dust, is �	;dust, then the optical depth is

�	 D �	;dust˙solid.R/ (4.37)

where ˙solid.R/ is the dust surface density in g cm�2. If one further assumes
that the Planck function can be calculated in the Rayleigh-Jeans limit, so
B	 D 2kBT 	2=c2, where kB is the Boltzmann constant and c is the velocity of
light, then the flux density becomes

F	 D �	;dust � 2kB	2

c2D2

Z Rmax

Rmin

T .R/˙solid.R/2�RdR (4.38)

or

F	 � �	;dust � 2kB	2hT i
c2D2

Mdust (4.39)



4.2 Observations of Disks 147

where Mdust is the total dust mass and hT i is a suitable temperature average over
the disk. This formula gives the basic expression for the disk mass. More generally
[225]

Mdisk D F	D2

�	B	.Tdust/
(4.40)

where Tdust is again a suitable average over the disk. This form of the equation can be
used for other optically thin structures, such as protostellar envelopes or molecular
cloud clumps. Here �	 is expressed in cm2 per gram of material (gas plus dust), and
therefore M is the total disk mass, gas plus dust. The assumption is usually made
that the ratio of gas to dust by mass is about a factor 100.

Now one assumes that the temperature distribution and the surface density
distribution can be written as power laws:
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where T0 and ˙0 are the values at the reference point Rmin. Then one can calculate
the average T (see [43] for details)

hT i � T0
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��q
2 � p

2 � q � p
(4.42)

where it has been assumed that Rmin << Rmax, which is reasonable since
Rmin � 1 AU for the dust while Rmax � 100 AU. Standard temperature and density
distributions give q D 0:5 and p D 1 so

hT i � 2T .Rmax/ (4.43)

and
F	 D �	;dust � 4kB	2T .Rmax/

c2D2
Mdust : (4.44)

Typically the temperature at the outer edge of a disk is about 20 K. One still needs
to provide an opacity law: a power law is usually assumed, but the dust opacity is
still quite uncertain, by up to a factor 5:

�	 D �0.	=	0/
ˇ D �0.
=
0/

�ˇ: (4.45)

or, for example,
�	 D 0:02.1:3mm=
/ cm2g�1: (4.46)

Here one has corrected for the fact that the total mass of the disk (gas plus dust) is
about 100 times the dust mass, from which one obtains the final result

Mdisk � 0:03Mˇ
�

F	

1Jy

��
D

100pc

�2 �



1:3mm

�3 �
50K

hT i
��

0:02

�1:3mm

�
(4.47)

where the dust opacity is usually quoted to be uncertain by a factor of a few.
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Fig. 4.7 The fraction of stars in a young cluster that show evidence of the presence of a
circumstellar disk, as indicated by near infrared measurements in the J, H, K, and L bands.
Ages of individual clusters are determined by fitting each source in the cluster to a given set of
pre-main-sequence stellar evolutionary tracks, then taking the mean. The “systematic error”
indicates the additional error that would be introduced by using different available sets of the
evolutionary tracks. Reproduced by permission of the AAS from [199]. c� 2001 The American
Astronomical Society

Does the disk mass correlate with the mass of the central star? Some evidence
indicates that it does [388]. Although there is a large scatter in disk masses for a
given stellar mass (more than an order of magnitude, and there is an age spread as
well) there is a trend suggesting Mdisk / M 0:6� . The typical disk mass is only a
few percent of the stellar mass, well below the mass where gravitational instability
would be important, as Fig. 4.6 indicates.

The lifetime of disks is an important constraint on the planet formation process.
Figure 4.7 shows [199], for various clusters with a range of ages, the fraction of the
stars in the cluster that have disks, as deduced from near-IR excess (2–4 �m). At an
age of 3 Myr, only half of the stars have disks. Other data indicate, however, that
disks can be present in stars of ages up to about 10 Myr (example: TW Hydrae; see
above). However, disks have a temperature distribution, ranging from 1,500 K in the
inner region to only 20 K in the very outer regions. The near-infrared emission arises
primarily in the inner 0.1 AU of a typical disk; one would also like information at
longer wavelengths.

Spitzer data, extending farther into the infrared, and therefore sampling regions
farther out in the disks, suggest a similar trend [227,403]. That is, the characteristic
time scale for disks to dissipate is �5 Myr, and very few disks remain at 10 Myr.
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A very large fraction of stars whose disks are not detected in the near infrared are
also not detected at longer wavelengths, 3.6–70 �m, which strongly suggests that
significant disks are not present out to 10–20 AU. Similar studies [21] extend the
work out to the submillimeter, corresponding to distances of 50–100 AU. Again
in the Taurus region, almost all disks that are not detected in the near IR are also
not detected at these long wavelengths. The combined data indicate that there is a
considerable spread in disk lifetimes, from 1 to 10 Myr.

However the IR and submillimeter observations detect emission from dust, not
gas. What is more important is the mass of the gas as a function of time. It is very
difficult to measure gas masses, although the presence of gas has been detected.
There are only very preliminary indications that the decline of the gas mass roughly
follows the decline in the infrared excess. Further information is expected from
the Herschel satellite, which has the capability of detecting spectral lines in the far
infrared.

It has long been known [219] that young stars have excess continuum radiation in
the blue spectral region, where it fills in the photospheric absorption lines, and in the
ultraviolet (
 < 380 nm). The excess radiation was associated with the boundary
layer [332] through which disk material accretes onto the star, and later a detailed
model was constructed [462] involving flow along stellar magnetic field lines,
connecting star and disk, generally out of the plane of the disk. The hot radiation
itself is interpreted to arise from shocks associated with disk material landing on the
star, The ultraviolet observations can be used to determine approximate accretion
rates ( PMdisk) of disk gas onto the star (derived from Lacc � GM PMdisk=R). The
accretion luminosity is derived from the excess radiation in the U photometric
filter, above the expected photospheric value, and M and R for the star are derived
from its position in the H–R diagram and comparison with theoretical evolutionary
tracks. What is being measured is the accretion of gas. Data from a number of
star-forming regions [99] are shown in Fig. 4.8. The data clearly show a decline
of accretion rate with age, and PM � 10�8 Mˇ yr�1 at 1 Myr. The solid line in
this figure is not a least squares fit but rather the expected decline of PM with age
from a theoretical viscous “alpha” model (see below). The figure includes a range
of masses; other observations [376, 389] indicate that there is a fairly strong mass
dependence, PM / M 2, but with a large spread at any given mass. As a specific
example, the object TW Hydrae is accreting at 5 � 10�10 Mˇ yr�1 and has an age of
about 107 yr. The determination of PM is important because it helps to constrain the
physical mechanism responsible for disk evolution. Clearly, these low rates imply
that the star accretes only a small fraction of its total mass during its lifetime in the
Class II phase.

The observed spectral energy distribution in objects with disks can provide
information on the distribution of surface density and temperature. It is usual
procedure to parametrize the disk surface density and temperature by power laws:
T / R�q and ˙ / R�p , where R is the distance to the star. The power q is
easy to determine from the observed SED, but the power p is more difficult since
the spectrum is insensitive to it [260, 553]. Often it is simply assumed to be 1 or
1.5, as obtained from theoretical models, although such models in general do not
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Fig. 4.8 Mass accretion rate of disk onto star as a function of age for a number of young objects
in various star-forming regions, as indicated in the legend. The solid line is a theoretical disk
evolution model [204]. Reproduced by permission of the AAS from [99]. c� 2005 The American
Astronomical Society

find ˙.R/ consistent with a single power law. If the disk is resolved, say in the
millimeter spectral range, then the observed emission as a function of radius can be
used to constrain p. In the case of the nearby TW Hydrae disk it is found that p � 1

and q � 0:5 [553]. Comparison of model SED’s with observations is discussed in
the next section.

4.3 Basic Theory of Disk Evolution

We assume that the evolution of disks is driven by gravitational instability during
its earliest stages, when the disk is relatively massive. At later times, when much of
the disk mass has been transferred to the star or lost in an outflow, viscous and/or
magnetic torques control the evolution. This assumption applies for most Class II
objects, whose observed disks have low mass. A useful approach, at this later phase,
is to take cylindrical coordinates (R; Z; �) and to assume that all variables are
constant as a function of �. Then the problem can be broken up into two one-
dimensional subproblems, one for the evolution of the surface density, expressed
just as a function of radius R (distance from star), and the second for the vertical
structure of the disk (quantities as a function of Z) at a given R.

The basic equation for the radial evolution of a disk was derived [332] under
the assumptions that the disk is vertically thin, is in Keplerian rotation at all radii,
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and has a negligible mass compared with that of the central object. The purpose af
the following derivation (after [332]) is to show how viscosity and shear result in
angular momentum transport and mass transport in the disk.

Define the total (gas plus dust) surface density ˙.R/ by d˙ D �.Z/dZ, where �

is the mass per unit volume. The assumption of Keplerian rotation gives the angular
velocity

˝ D
�

GM

R3

�1=2

; and R
@˝

@R
D �3

2
˝ (4.48)

where M is the mass of the central star. The differential rotation produces a shear,
and if viscosity is present, a frictional force is exerted. The frictional force per unit
length around the circumference of an annulus is defined to be proportional to the
viscosity times the rate of shear:

f D 	˙R
@˝

@R
: (4.49)

The above expression defines the viscosity coefficient 	 which is in units of cm2 s�1.
The torque exerted on an annulus by material just interior to it is given by

g D R 	˙ 2�R.� R
@˝

@R
/: (4.50)

The angular momentum of an annulus is increased by the torque exerted by material
interior to it, and reduced by the torque it exerts on the material external to it. This is
the basic mechanism for angular momentum transport in a disk. If the net torque on
an element of mass is negative, it loses angular momentum and migrates inward in
the disk. At the same time, angular momentum is transferred outwards. The actual
viscosity has so far not been specified.

Setting the rate of change of angular momentum of an annulus equal to the net
torque:

PJ D D

Dt
.jdm/ D �dR

@g

@R
D dm

Dj

Dt
(4.51)

where the mass element, fixed in time, is dm D 2�R˙.R/dR, and j is the
specific angular momentum. (D=Dt is the Lagrangian derivative, following a mass
element.) But

dm
Dj

Dt
D dm.

@j

@t
C v � gradj / D dm.vR

@j

@R
/ (4.52)

where vR is the radial drift velocity. The specific angular momentum at a given
radius is

p
GMR, independent of time, if the disk has negligible mass. Thus the

equation for PJ , divided by dR, becomes

2�R˙vR

@j

@R
D � @g

@R
: (4.53)
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Using @j

@R
D 1

2
˝R and the Keplerian ˝ one can solve this equation for vR:

vR D � 3

˙R1=2

@

@R
.	˙R1=2/: (4.54)

Using the continuity equation for the surface density

@˙

@t
C 1

R

@

@R
.˙RvR/ D 0; (4.55)

one obtains the fundamental equation

@˙

@t
D 3

R

@

@R

�
R1=2 @

@R
.	˙R1=2/

	
: (4.56)

This equation can be solved for ˙.R; t/ once an initial distribution is specified. The
continuity equation can also be used to obtain the mass accretion rate as a function
of R:

PM D �2�R˙vR: (4.57)

However additional information must be provided to determine the viscosity 	.
To obtain it we consider the vertical structure of the disk. At each radius, the disk
is assumed to be in hydrostatic equilibrium, to be optically thick, and to be in
vertical thermal balance, with the heat generated by viscous friction at a given
radius balanced by radiative loss at the surface of the disk at the same radius. Thus,
vertical, but not horizontal, transfer of heat is considered. Hydrostatic equilibrium
requires that

1

�

@P

@Z
D � GMZ

.R2 C Z2/3=2
: (4.58)

The conservation of mass requires, as above, that @˙=@Z D �. To write the energy
equation, we define F as the vertical radiative flux, in erg cm�2 s�1, and assume that
all of the energy released by viscous dissipation is radiated in the vertical direction,
so that

@F

@Z
D .R

@˝

@R
/2	� (4.59)

which essentially says that the divergence of the flux equals the energy generation
rate per unit volume. The dissipation rate on the right-hand side has been derived
by [298]. As a final relation we assume that the radiative transfer in the Z-direction
is governed by the standard diffusion equation derived for stellar interiors, valid in
material that is quite optically thick:

F D � 4ac

3�R�
T 3 @T

@Z
(4.60)
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where c is the velocity of light, a is the radiation density constant, and �R is the
Rosseland mean opacity in cm2 g�1. Four equations have thus been set up for the
gradients in T , F , ˙ , and P .

The vertical structure equations can be simplified considerably into essentially
a one-zone model, so that the evolution (4.56) can be solved as a function of only
one spatial variable (R). If we assume that the ideal-gas equation holds, we have the
pressure P D Rg�T=� and the sound speed c2

s D RgT=�. For a thin, vertically
isothermal, disk, (4.58) simplifies to

c2
s

P

@P

@Z
D �Z˝2 (4.61)

which has the solution

Psurf

Pcent

� exp.�Z2˝2

2c2
s

/ (4.62)

where P on the left is evaluated at the surface of the disk and at the midplane. The
vertical height in the disk at which the pressure has decreased by a factor e is known
as the scale height H ; we identify H with Zsurf and therefore

H � p
2cs=˝; (4.63)

where cs is evaluated at the midplane. This expression is commonly used in
approximate disk analyses, usually without the

p
2.

The remaining equations are easily simplified. The mass equation @˙=@Z D �

integrates to

˙ D
Z

�dZ � �c � 2H; (4.64)

where �c is the midplane density. The energy equation (4.59) becomes (using dF �
F , the mass equation, and the Stefan–Boltzmann law)

2�BT 4
eff D 9

4
	˙˝2; (4.65)

where �B is the Stefan–Boltzmann constant and Teff the surface temperature of the
disk. If we define the optical depth from surface to midplane as �c D 0:5�c˙ , then
it can be shown that in the limit of large �c the radiation equation (4.60) reduces to

T 4
c � 3

4
�cT

4
eff (4.66)

where Tc is the central (midplane) temperature.
The viscosity is usually calculated [453] according to the assumption

	 � vturbl � ˛visccsH � ˛visc
c2

s

˝
(4.67)



154 4 Rotating Protostars and Accretion Disks

where vturb is the average turbulent velocity, l is the typical turbulent length scale
and ˛visc is an arbitrary coefficient < 1, representing the ratio of turbulent speed to
sound speed. The value of ˛visc can be estimated through more detailed calculations
of MHD turbulence (e. g. [26]) or estimated for gravitational instability [323]. Given
the basic variables ˙ and R, the reduced set of vertical equations can be then solved
for �c; Tc; 	; H; and Teff. Thus, if the ˙ distribution is given at some initial time,
the evolution of ˙ and other quantities in the disk can be solved for, in one space
dimension, as a function of .R; t/ with the use of (4.56).

The viscous time scale is given by

tvisc � R2

	
� 1

˛visc˝

�
R

H

�2

(4.68)

which, for typical R=H � 20 and ˛visc D :01 gives several thousand orbital
periods. This long time scale of course presents problems when one is calculating
with a hydro code with time steps limited by the CFL condition (4.22).

The heat dissipated by viscosity in the disk must eventually be derived from the
gravitational energy of the matter in the disk; thus some of the mass must flow
inwards. However the action of viscosity also results in some transfer of angular
momentum outwards; thus some mass must flow outwards to take up this angular
momentum. Thus the radial drift velocity vR is in general negative in the inner part
of the disk, and positive beyond some radius in the outer part of the disk. Solutions
of the evolution equation show that after a relatively short transient phase, the inner
regions of the disk approach steady state, and it can be assumed that mass is flowing
inward at a constant (as a function of radius) rate PM . If M is the mass of the central
star, then the energy dissipation rate at a given radius is PE D �GM PM=R and,
differentiating with respect to R,

� PE � PM
GM

R2
�R (4.69)

which represents the energy dissipated per unit time as a mass element moves over
a distance �R. Assuming that the energy dissipated there is radiated vertically and
released at the surface of the disk, then the energy radiated is

� PErad D 4�R�R�BT 4
eff (4.70)

since the disk has two sides. Equating these, one obtains

T 4
eff � GM PM=.4�R3�B/:

Then Teff / R�3=4, a result which is independent of the prescription for the
viscosity. A more accurate calculation, taking into account an inner boundary
condition where the shear vanishes [425] gives
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T 4
eff D 3GM PM

8��BR3
Œ1 � .Rin=R/0:5� (4.71)

where Rin is the radius of the inner edge of the disk. This boundary condition
assumes that the disk extends almost all the way in to the star, and that just outside
the star its angular velocity, increasing inwards to that point, reaches a maximum and
rapidly declines to match ˝ at the slowly rotating stellar surface. At the maximum
there is no shear and no torque, which defines the location of Rin.

Specification of an inner boundary condition for the disk is problematical,
because the star-disk interaction at the boundary layer is not fully understood. A
reasonable scenario is that the disk is truncated near the star by the stellar magnetic
field lines [462], roughly where the ram pressure associated with the accretion flow
is balanced by the magnetic pressure. The truncation radius is given by

Rt D R�˛t

�
B4�R5�

GM� PM 2

�1=7

(4.72)

where the subscript � refers to stellar properties, ˛t is a dimensionless constant of
order unity, and PM is the accretion rate of the disk. For the typical magnetic field of a
young star (B� � 1 kilogauss) and the typical accretion rates deduced for these stars,
the truncation point is a few stellar radii out, or approximately 0.05–0.1 AU. Inside
that volume, known as the magnetosphere, completely different physics applies, as
disk material is lifted out of the disk plane by magnetocentrifugal effects, and is
channelled to the stellar surface, generally arriving at latitudes well above or below
the equator.

One can integrate (4.71), assuming that the disk radiates as a black body at each
radius, to get the total luminosity of the disk,

L D
Z Rout

Rin

�BT 4
eff4�RdR D GM PM

2Rin
(4.73)

which applies to the region of the disk that is in steady state. Only half of the total
gravitational potential energy of the disk material is radiated. The rest is stored as
rotational energy and is released when the orbiting disk material settles down onto
the slowly rotating stellar surface. As an example, the disk provides about 0.1 Lˇ
for a central mass of 1.0 Mˇ, a stellar radius of 2 Rˇ, and PM D 1 � 10�8 Mˇ yr�1.

If PM is too low, then the disk luminosity generated by internal viscous heating
will be less important than that provided by re-radiation of stellar light from the disk.
It turns out, by coincidence, that a flat disk without internal heating and with surface
temperature determined by direct irradiation from the central star, also has Teff /
R�3=4. The assumptions made are that the disk is infinitely thin and that it absorbs all
the stellar radiation falling upon it (a “flat, black” disk). Then, to maintain thermal
balance, it reradiates the same energy in the infrared. As one moves in the disk plane
away from the star, the angle subtended by the star becomes smaller and smaller, and
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the vertical component of the stellar flux, which hits the disk, drops off as R�3 (see,
for example [481]). If R� and T� are the stellar radius and surface temperature,
respectively, the flux intercepted (and absorbed) by the disk is, assuming R >> R�,

Fd D �T 4�
�

2

3

�
R�
R

�3

Equating this flux to that radiated by the disk, �T 4
eff gives

Teff D
�

2

3�

�1=4

T�
�

R�
R

�3=4

: (4.74)

A more accurate calculation shows that the disk intercepts and reradiates about 1/4
of the stellar luminosity [7], so in many cases this source will dominate the accretion
luminosity. Setting the re-radiated disk luminosity equal to the internal luminosity
and putting in numbers for L� D Lˇ and R� D 2 Rˇ, for a solar-mass central
star the critical PM D 3:3 � 10�8 Mˇ per year. Below that value, the re-radiation
dominates and the disk is known as a “passive” disk.

However if Teff / R�3=4, then the sound speed along the surface of the disk
cs / R�3=8. If the disk is vertically isothermal, then the simple vertical structure
relations give

H

R
� cs

˝R
/ R�3=8R1=2 / R1=8 (4.75)

so the ratio of scale height to radius increases with radius, which is what is known
as a “flared” disk. Because of flaring the disk will intercept more radiation than
under the assumption of a flat disk, so the surface temperature will vary less rapidly
than R�3=4. Thus the radiation from the outer regions of typical disks tend to be
dominated by stellar re-radiation rather than by internal heating.

The disk continuous spectrum can be obtained under the assumption that each
annulus radiates as a black body at the local Teff, so the luminosity as a function of
wavelength L
 is

L
 D
Z Rout

Rin

�B
ŒT .R/�2�RdR: (4.76)

The resulting spectrum, assuming Teff / R�3=4, is shown in Fig. 4.9, along with
an assumed stellar black body with T� D 4;000 K. The disk inner edge is truncated
at 8 Rˇ, while the star has 2 Rˇ. What actually is plotted is 
F
, where F
 is the
flux density received at the earth from a source in the Taurus star formation region,
140 pc away. In the infrared, the spectrum shows that 
F
 / 
�4=3, which is the
classical (steady-state) disk spectrum. The spectrum falls off at short wavelengths
because there is an inner temperature cutoff in the disk.

This type of theoretical spectrum does not fit most observed sources, which show
a fairly wide variety of slopes and scatter in the .log 
; log 
F
/ plane. Figure 4.9
also shows the combined SED’s of 7 classical T Tauri stars [8], along with another
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Fig. 4.9 The curves give idealized spectral energy distributions in a star-disk system. Dotted
curve: Black-body spectrum of a star with Teff D 4;000 K. Dot-dashed curve: Spectrum of a
disk whose surface temperature decreases with R�0:6 and which radiates as a black body at each
annulus. Long dashes: spectrum of a disk whose surface temperature decreases with R�3=4 and
which radiates as a black body at each annulus. Solid curve: sum of the stellar spectrum and that
of the disk with T / R�0:6. Triangles: Averaged observed spectral energy distributions of seven
typical T Tauri stars [8]. The theoretical curves are not meant to match the data; the important point
to note is the slope of the curves in the IR (10–100 �m)

theoretical spectrum calculated with Teff / R�0:6, which provides a reasonably
good fit with the observed slope of about �2=3. The relation between the infrared
slope of a disk spectrum in this plane, s, and the surface temperature distribution of
the disk, Teff / R�q is

�s D 4 � 2

q
:

Figure 1.13 shows the spectrum of T Tauri, an example of a flat-spectrum source.
The fit to that part of the spectrum is obtained with a radial distribution of surface
temperature (in the disk) of Teff / R�0:515. This solution is approximately consistent
with a flared disk which has more radiation at long wavelengths than does a “flat,
black disk” spectrum.

A modified disk model [111] includes calculation of the flaring and the temper-
ature distribution of a passive disk under the assumption that a warm, optically thin
layer of dust rests above the disk photosphere. This layer, above the disk midplane
by a few gas scale heights, re-radiates some of the starlight outward and also heats
the disk below. The dust layer has a temperature Tdust, which is higher than the
black-body temperature of the disk, because the dust absorbs optical radiation from
the star efficiently, but radiates it less efficiently in the infrared. This effect results
from the opacity curve as a function of wavelength shown in Fig. 3.9. Half of the
radiation absorbed by the grains is re-radiated outward, and the other half heats the
interior, which is at a cooler temperature Ti , vertically isothermal at a given R.

In these models the surface density distribution is assumed to be proportional to
R�3=2. The specific parameters assume a stellar mass of 0.5 Mˇ, a stellar radius of
2.5 Rˇ, and a stellar Teff of 4,000 K, all typical of T Tauri stars. The results show
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Fig. 4.10 The observed spectral energy distribution of GM Aur is given by filled circles. Curves
refer to a theoretical model [111, 112]. Dash-dot line: contribution of the star. Dotted line:
contribution of the warm dust layer. Dashed line: contribution of the cool disk interior. Solid line:
the sum of the three contributions to the spectrum. Reproduced, by permission of the AAS, from
[111]. c� The American Astronomical Society

that the disk flares with H=R D 0:04.R=1AU/2=7 inside 84 AU. The warm dust
layer has temperature Tdust � 550.R=1AU/�2=5, and the interior disk temperature is
Ti � 150.R=1AU/�3=7 out to 84 AU, and constant at 21 K between 84 and 209 AU.
An improved model [113] also shows that Tdust and Ti decrease approximately
as R�0:5. This model has two important consequences. First, the superheated but
optically thin dust layer predicts that spectral features of the dust should appear in
emission. In fact most T Tauri stars exhibit silicate, and in a few cases ice, features
in emission. Second, the fact that the temperatures in the irradiated, flared, disk
decrease less rapidly with distance than do the surface temperatures generated by
internal viscous evolution (Teff / R�3=4) shows that for the purpose of comparison
with observations, stellar irradiation dominates internal heating beyond some radius.
Even if accretion onto the star is occurring, the surface properties of disks can be
calculated as if they were passively irradiated, longward of a wavelength of about
10 �m [113].

Figure 4.10 shows the comparison of the result of a theoretical face-on disk
with the observed spectrum of GM Aur. The stellar photosphere dominates the
short wavelengths, the dust layer dominates at intermediate wavelengths (“surface”),
while the disk interior dominates at long wavelengths. The fit is good, but an inner
hole in the disk, out to roughly 5 AU, is required in the model to fit the low emission
at around 10 �m. The outer edge of the disk model is at 390 AU. A similar spectrum
in which the known inclination of 60ı is taken into account [112] requires essentially
the same parameters. Improved observations of the spectral energy distribution with
the Spitzer IRS instrument in the 5–40 �m spectral range led to a revised estimate
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Fig. 4.11 The minimum mass solar nebula [210]. Solid line: gas surface density (left-hand scale)
as a function of distance to the star. Long dashed line: solid surface density (left-hand scale).
Short dashed line: temperature (right-hand scale). The positions of present Earth and Jupiter are
indicated

of the inner edge of the optically thick disk of about 24 AU [101]. The presence of
a central hole is required for a number of other young objects.

Numerous observations of disks, at various wavelengths, in combination with
radiation transfer models, have been used to deduce that the grain sizes in disks
are somewhat larger than interstellar grains, indicating grain growth, the first step
toward planet formation.

The classical disk model known as the “minimum mass solar nebula” (MMSN) is
shown in Fig. 4.11, as presented by Hayashi [210]. It is defined over the region from
0.35 to 36 AU. The solid surface density distribution is derived from estimates of
the present solid masses of the planets. The surface density for each planet is then
obtained by spreading out that mass from a point half-way to the next innermost
planet to half-way to the next outermost planet. The resulting approximate fit is

˙solid D 7:1.R=1AU/�3=2 g cm�2 for 0:35AU < R < 2:7 AU

˙solid D 30.R=1AU/�3=2 g cm�2 for 2:7AU < R < 36 AU: (4.77)

The gas surface density is then determined by adding sufficient gas, mainly
hydrogen and helium, to each planet to bring it to solar composition:

˙gas D 1700.R=1AU/�3=2 g cm�2 for 0:35AU < R < 36 AU: (4.78)

The temperature in the Hayashi minimum-mass disk is derived under the assumption
that the solid particles, which provide most of the opacity, have settled to the mid-
plane of the disk, leaving most of it transparent to solar radiation. At each distance,
the energy per unit time absorbed by a small solid particle is L��a2=.4�R2/ where
a is the radius of the particle. Assuming that it reradiates over its entire surface,
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the radiated energy per second is 4�a2�BT 4
dust. Equating these energies gives the

temperature distribution in the disk (actually the dust temperature)

T D 280

�
L

Lˇ

�0:25

.R=1AU/�0:5: (4.79)

The jump in the surface density of solid material (lower curve) is caused by the
condensation of ice at temperatures less than 170 K. This jump is known as the
snow line and is located at 2.7 AU in the minimum mass nebula, but during actual
disk evolution its location changes with time. The solid surface density at 5 AU
is only 3 g cm�2, a number which is used as a reference point for calculations of
the formation of Jupiter by core accretion; in this model a core of heavy elements
forms first by accretion of the solid particles and, once the core has reached a few
Earth masses, gas is captured from the disk. Hayashi’s estimate of the total mass of
the disk is 0.013 Mˇ, but uncertainties in the solid masses of the planets lead to a
possible range in that number from 0.01 to 0.07 Mˇ [540]. In any case, the MMSN
should be considered only as a rough approximation, because the distribution of
surface density in typical evolving disk models is not a simple power law.

4.4 General Results of Disk Evolution

A simplified example of disk evolution is shown in Fig. 1.22 [323]. The one-
dimensional disk evolution equation (4.56) is solved with an assumed viscosity that
simulates gravitational instability:

	 � Q�2H 2˝ if Q < 1

	 D 0 otherwise (4.80)

where the standard Toomre Q D cs˝=.�G˙/ and H is the scale height of the
disk. This formulation, although very approximate, has the advantage that 	 depends
only on ˙ and R and constants, so that equation (4.56) can be solved directly. The
general result is that the surface density of the inner part of the disk decreases with
time as material accretes onto the star, and the angular momentum that has to be lost
by that material is transferred to matter in the outer part of the disk, which expands.

Another consideration regarding gravitational instability is the cooling time.
Once the instability develops into a spiral arm pattern, shock dissipation occurs
and the disk tends to heat up, resulting in an increasing Q and a tendency to return
to stability. Only if the heat generated by shocks can be radiated efficiently, can the
amplitude of the perturbations continue to grow and develop into fragmentation.
If the cooling time is less than half an orbital period, the disk, if gravitationally
unstable, can fragment [182]. Otherwise the disk evolves to a steady state with
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a limited amplitude in spiral waves, and it transfers angular momentum without
fragmentation.

The cooling time is the energy content per unit surface area (erg/cm2) divided
by the energy radiated per unit time per unit area. Assuming an isothermal vertical
structure,

tcool D E˙

2�BT 4
(4.81)

where E D 2:5RgT=�, the internal energy per unit mass of molecular hydrogen.
Taking � D 2:3, one obtains

tcool � 200 yr .˙=103/.T=50/�3: (4.82)

Half of an orbital period is

torbit=2 D �R3=2

p
GM�

(4.83)

and if one equates this time with the cooling time one finds that the radius outside
of which fragmentation could occur in a disk around a 1 Mˇ star is 50–100 AU,
depending on how ˙ and T drop off with R. However, for the correct treatment
of the cooling time, detailed numerical simulations with radiation transfer are
required, taking into account the details of the opacity in the disk. The possibility of
fragmentation will be discussed again in Chap. 5.

Once the disk has become gravitationally stable, the physical processes that
must be considered include hydrodynamics, the effects of magnetic field, radiative
transfer, which depends mainly on the properties of the dust, chemistry, which
includes gas-phase reactions as well as reactions on grain surfaces, and the degree
of coupling between the evolution of the gas and the evolution of the solids. The
mechanism that drives disk evolution is not fully understood, but some possibilities
include hydrodynamic instability, driven by the Keplerian shear in the disk [141],
baroclinic instability, driven by a sufficiently steep outward radial temperature
gradient (T / R�1 or steeper) plus either rapid cooling by radiation or rapid thermal
dissipation [254, 415], and the magnetorotational instability [25], the last being the
most likely one.

The long-term evolution of a disk is best carried out in the (1 + 1)D approxi-
mation, in which the radial evolution equation (4.56) is solved in conjunction with
a set of vertical structure models, calculated at each radius and at each time. The
natural time scale is thus the viscous time (tvisc � Œ�R�2=	) where �R is an
appropriate distance interval, and the evolution can easily be followed for more than
1 Myr. However, for a more detailed examination of the basic physical processes,
2-D [in the .R; �/ plane] or 3-D simulations are required. These calculations run
on hydrodynamic (roughly orbital) time scales, and the maximum time that can be
covered is much less than the full evolution time of >106 yr.

An example of an evolution in one space dimension based on the standard
“alpha” model with driving mechanism not specified [137] is shown in Fig. 4.12.
The radial diffusion equation is solved with the full vertical structure equations and
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Fig. 4.12 The evolution of the gas in a disk with an assumed viscosity parameter ˛visc D 0:002.
Top panel: Gas surface density as a function of distance to the star, at various times. Lower panel:
same for gas temperature. The time 2 � 106 years refers to the heavy solid line (lowest curve).
Other times (top to bottom) are 3 � 104, 1:0 � 105, 3 � 105 , 6 � 105, 1:0 � 106 , 1:5 � 106 years.
Reprinted, with permission from Elsevier, from [137]. c� 2008 Elsevier, Inc.

˛visc D 2 � 10�3. The model includes a calculation of the evolution of the surface
density of the solid component, which consists of ices of water, methane, ammonia,
CO, and minor species. The plot shows the total surface density (which is dominated
by the gas), and the temperature as a function of radius at various times. The initial
disk mass is 0.12 Mˇ, the initial radius is 30 AU, and the initial gas surface density is
proportional to r�3=2. The general results of the calculations can be summarized as
follows: (1) The evolution of an active disk with initial mass �0:1�0:2 Mˇ around a
solar-mass star, with size comparable to that of the planetary system, takes place on
a time scale of a few times 106 yr, for a value of ˛visc in the range 10�2–10�3, with
lower ˛visc giving longer times. (2) After an initial adjustment period, the evolution
is fairly independent of initial conditions. (3) Mass, surface density, temperature,
and scale height at a given radius all decline with time, except in the very outer
regions, which are expanding. (4) As the surface density decreases in the main
part of the disk, the evolutionary time lengthens as a result of a decrease in the
efficiency of angular momentum transport. The value of PM onto the star declines,
in agreement with observations (Fig. 4.8). (5) The inner regions of the disk tend



4.4 General Results of Disk Evolution 163

to evolve to a quasi-steady state, where PM is independent of the distance to the
central star. (6) In regions interior to 1 AU the temperature distribution is relatively
flat, but farther out it declines as R�1. (7) The initial disk is gravitationally unstable
outside 30 AU, but the Q value increases with time, and for most of the evolution the
disk is gravitationally stable. It is generally true that active disks of 0.1 Mˇ or less
are gravitationally stable inside �20 AU. (8) On the temperature plot, the dashed
line at 800 K gives the minimum temperature for silicate crystallization. The dotted
line at 160 K gives the sublimation temperature of H2O. Note how this point (the
“snow line”), moves inwards with time. The dash-dot line at 20 K gives the assumed
ambient temperature in the surroundings of the disk.

In the absence of gravitational instability, the main alternative for driving the
evolution of a disk is the magnetorotational instability (MRI), which amplifies an
initially weak magnetic field and develops into turbulence [492]. A linear stability
analysis [25], shows that a Keplerian flow is linearly unstable in the presence
of a weak magnetic field. The Rayleigh criterion (angular momentum increasing
outward) normally stabilizes a disk, but it does not guarantee stability in the
presence of the field. Two- and three-dimensional numerical simulations [207, 208]
extend into the non-linear regime and show growth rates in the linear regime which
match those from the analytical calculations.

The MRI operates under fairly general circumstances, in particular, for the case
of a Keplerian differentially rotating thin disk, magnetized by a uniform vertical
field BZ . Consider two fluid elements, located at the same distance R from the
rotation axis of the disk, but separated vertically by a small amount and located
on the same vertical field line. The instability is generated by a small radial
displacement. Let element 1 move to R � ıR and element 2 move to R C ıR.
The field line is stretched and develops tension, and also it develops an azimuthal
component, because element 2 is moving less rapidly in the � direction than element
1. Element 1 is braked by the tension and loses angular momentum, while element
2 is speeded up, that is, the field acts in the direction to bring about co-rotation. As
a result of the angular momentum exchange, element 1 moves inward even farther,
and element 2 moves outward even farther, causing further stretching of the field in
the R-direction, along with amplification.

The requirements for the instability are (1) the magnetic field must be coupled
to the matter, (2) the angular velocity of the disk must decrease outwards, (3) there
must be an initial poloidal field component present, and (4) the energy density in
the field must be less than the thermal energy density. In connection with point
(1), if Ohmic dissipation is present, the first term on the right-hand side of the
magnetic induction equation (2.24) must be greater than the second, in other words
the magnetic Reynolds number (2.26) must exceed unity. Thus the requirement can
be written [521]

Rem D vL

�e

� V 2
A

�e˝
> 1 (4.84)

where �e is the electrical resistivity, VA is the Alfvén velocity, and VA=˝ is the
magnetic length scale.
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The result of the instability is amplification of the field and generation of MHD
turbulence, which results in outward transport of angular momentum [26], allowing
an accretion flow of mass inwards. The growth time of the instability is fast, only
one orbital period. One can approximate an effective viscosity by 	 � V 2

A=˝ , and
from numerical experiments the turbulence generates an effective ˛visc � 10�2 �
10�1. Figure 4.13 shows a simple numerical example in two space dimensions of
the distortion of the initially vertical field lines (solid lines). At time t D 2 material
near Z D 0 has lost angular momentum and is moving inward, and material near
Z D ˙0:4 has gained angular momentum and is moving outward. The dashed lines
are contours of equal angular momentum.

Magnetic field coupling is expected in the inner regions of the disk, inside 0.1–
1 AU, where the temperature is 1,400 K or higher, as a result of a very low degree
of thermal ionization. In the outer regions, perhaps beyond 10 AU, external cosmic
rays can provide sufficient ionization. The cosmic rays are stopped once they have
penetrated through a layer of order ˙ D 100 g cm�2 [525], which accounts for the
entire disk thickness in the outer regions. However in most disks there will be a
magnetically inactive region near the midplane in the 1 AU to 10 AU range, where
the source of viscosity is problematical. One possibility [181] is that there is still an
ionized skin layer at these radii, through which accretion could progress, but that the
regions near the midplane are inactive and are not accreting. It is also possible that
another source of viscosity exists in the so-called “dead zone”, or that turbulence
generated in the surface layers by the MRI could result in transport of enough
charge into the interior layers to keep those regions ionized enough to generate the
MRI [521].

Suppose the MRI does not operate in a particular region of a disk. Is there
any non-magnetic alternative? This question is still being actively investigated. The
original proposed mechanism for angular momentum transport in disks [321] was
turbulent viscosity arising from convective instability. It is clear that convection
is present in disk models, driven in the vertical direction by the temperature
dependence of the dust opacity, which decreases upwards. The main question is
whether the convection leads to outward angular momentum transport. A critical
quantity in this respect is the Rayleigh number, a measure of the ratio of buoyancy
effects to the product of viscous effects and effects of thermal diffusivity.

Ra D �N 2L4

�	
(4.85)

where � is the thermal diffusivity [k=.�cp/�, where k is the coefficient of thermal
conductivity and cp is the specific heat at constant pressure), 	 is the kinematic
viscosity, L is a characteristic length, taken here to be the vertical disk thickness,
and N 2 is the Brunt–Väisälä frequency, which can be written, for an ideal gas, as:

N 2 D � 1

��

@P

@Z

@

@Z
ln

�
P

��

�
: (4.86)
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Fig. 4.13 The magnetorotational instability: a simple case in two space dimensions. The numer-
ical simulation shown here is similar to that published by [207]. The computational domain of
the axisymmetric simulation is a small section of the (R; Z) plane of a Keplerian accretion disk.
The vertical component of gravity is neglected, and initial pressure and density are constant
across the domain. At t D 0 part of the domain is filled with a uniform vertical field.
Simultaneously, the temperature is adjusted such that the total pressure across the domain remains
constant. Solid curves: field lines. Dashed curves: contours of constant angular momentum,
with angular momentum increasing to the right at t D 0. At time t D 2 material near Z D 0

has lost angular momentum and is moving inward (to the left), while material near Z D ˙0:4

has gained angular momentum and is moving outward (to the right). In three space dimensions the
flow is more complicated but the general effect is the same. Units of time and distance are arbitrary.
Reproduced by permission from [66]. c� 2007 Taylor and Francis Group LLC

Here Z represents the vertical direction in the disk, and � is the adiabatic index
.@lnP=@ln�/s where the derivative is taken at constant entropy. Note that if N 2 is
negative, the region is unstable to convection. Studies with relatively low values of
the Rayleigh number [441] show that angular momentum transport is inwards and
does not allow the disk to accrete onto the star. However if the number is greater
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than about 106, the angular momentum transport can be outwards [314]. It is quite
possible, but not yet completely determined, that the required conditions, that is,
low viscosity and low thermal diffusivity, can exist in some regions of disks.

A second possible mechanism arises simply from the differential rotation in
the disk. The argument that this drives turbulence is based mainly on laboratory
experiments [433] in which fluid between two concentric rotating cylinders, with
angular velocity decreasing outwards, is found to generate turbulence if the
Reynolds number (Re) is high enough. In general,

Re D vL

	
(4.87)

where 	 is the kinematic viscosity, v is a characteristic velocity, and L is a
characteristic length. In this case the Reynolds number is given by

Re D R�˝�R

	

where �R is the distance between the cylinders, R is the average radius, and �˝

is the difference in angular velocity between the two cylinders. However it is not at
all clear whether such experimental results apply to accretion disks. The Rayleigh
criterion states that a rotating fluid is linearly stable to axisymmetric perturbations,
in the limit of zero viscosity, if

d.R2˝/2

dr
> 0;

that is, the angular momentum per unit mass increases outwards. A Keplerian
disk clearly satisfies this criterion. It is under investigation whether, nevertheless,
a finite-amplitude perturbation or a non-axisymmetric mode could produce an
instability [141].

A third hydrodynamic effect which is of interest is the generation of vortices
in the disk. The density waves that they produce can result in outward angular
momentum transport. A process that can produce vortices is the so-called baroclinic
instability. Without going into the details of the complicated physics involved, it
can arise if the density gradient and the pressure gradient in a disk are not aligned.
Detailed studies [315, 415] show that the following conditions are needed: (1) there
must be an entropy gradient with the entropy decreasing outward in the radial
direction, which is equivalent to saying that the disk is unstable to convection
in the radial direction according to the Schwarzschild criterion (8.8), or, in other
words, N 2 (4.86) is negative. (2) The disk must have a radiative cooling time, or a
thermal diffusion time that is relatively short, comparable to a few orbital periods.
(3) The initial perturbation must be finite; that is, the instability is non-linear. Some
numerical simulations show that once vortices form they can survive for hundreds
of orbits; however the details as to the conditions for survival or their effectiveness
in angular momentum transport are still not determined.
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4.5 Disk Dispersal

Numerous mechanisms, most still under investigation, have been proposed to
explain the fact that observational evidence for the presence of disks around newly-
formed stars disappears once the stars reach an age of 1–10 Myr. Note that radiation
from dust, rather than gas, provides most of this observational evidence. Important
information on the nature of the clearing process is provided by the so-called
transition disks. In general, a transition object has observed properties intermediate
between those of classical T Tauri stars and weak-lined T Tauri stars. The usual
observed characteristic is a deficiency in near-infrared radiation in comparison with
normal CTTS, but normal CTTS radiation at 10 �m and longer wavelengths. The
preferred interpretation of these observations is that there is an inner hole in the
disk, where the dust emission is sharply reduced from that of the rest of the disk.
These disks may be ones which are caught in the process of clearing. One piece of
evidence to support this interpretation is that transition objects have lower accretion
rates [383] than standard disks of the same mass, indicating that they are at a
relatively late stage of their evolution. If so, the statistics of the number of such
disks in comparison with the number of classical T Tauri stars gives an estimate
of the time scale of the clearing process. This time scale is relatively short, about
1 � 2 � 105 years, as the number of transition disks is relatively small. A prime
example of a transition disk is that around TW Hydrae, with an inner hole, inferred
from both infrared and radio observations, of about 4 AU. Another example is GM
Aurigae, where observations in the mm spectral region resolve the inner regions
and show a deficit of material interior to 20 AU [237], in general agreement with the
conclusions based on the spectral energy distribution discussed above.

We now summarize various mechanisms that are probably relevant to the clearing
of disk holes and the eventual dispersal of a disk.

• Grain growth: During the evolution of the disk, whether it is turbulent or not,
the small dust grains collide, stick, and grow to meter size. At the same time,
once they become large enough, the particles settle to the midplane of the disk.
This complicated subject will not be treated in detail, but see [138] and [541].
After a few thousand orbital periods, significant grain growth and settling will
have occurred, that is, a few thousand years at 1 AU and a few times 105 years at
30 AU. As the settling and accretion proceed, the infrared opacity from the grains
decreases considerably. Roughly if a is the grain radius, the cross section for
absorption or scattering by a grain is proportional to a2 while the mass of a grain
is proportional to a3. Thus the cross section per unit mass (opacity) decreases
with grain growth. Assuming the emissivity j
 � �
B
, where B
 is the Planck
function and �
 is the opacity at wavelength 
, eventually, even in the near IR,
the disk will no longer radiate appreciably and will be very difficult to observe.
The disappearance of IR excess around young stars of ages 5 � 106–107 yr could
be attributed to the growth process. This process is also one possible explanation
for observed inner “holes” in disks. Thus the disk gives the appearance of having
disappeared, even though no mass has been lost. A problem with this scenario



168 4 Rotating Protostars and Accretion Disks

is that grain growth times in the inner disk (1 AU or less) are far shorter than
disk lifetimes, which means that the small grains, which provide most of the
emission, must either survive or be replenished, perhaps by collisions that result
in fragmentation rather than growth.

• Planet Formation: However, the gas would still remain, and there is a chance
some of it could be incorporated into giant protoplanets. However, the total
mass of the four giant planets in our solar system is only about 10% that of
the minimum mass solar nebula, and giant planets are unlikely to form outside
30 AU. In the terrestrial planet zone, the time scale for planet formation up to
Earth mass is much longer than observed disk lifetimes, and practically no gas
is incorporated into these planets. Thus, planet formation is not an important
mechanism for disk dispersal, although giant planets can open up gaps in the
disk.

• Accretion: Accretion onto the star is observed, mainly through the ultraviolet
excess, implying that gas is present in the disk. Furthermore, there is a strong
correlation between the occurrence of accretion and the presence of near infrared
excess in the star. Thus, indirectly there is a suggestion that loss of gas from
the disk occurs on comparable time scales to the loss of small dust grains. The
time scale for viscous accretion, assuming the standard “alpha” model, is tvis �
.�R/2=	. Approximating H=R D cs=.˝R/ and assuming H=R D constant D
0:05 then

tvis � 5750 yr

�
0:01

˛visc

��
R

1AU

�3=2

: (4.88)

Out to 10 AU, for the standard ˛visc D 10�2 these times are less than 2 � 105 yr
but are over 5 Myr at 100 AU. Thus the time scale depends strongly on distance,
suggesting that the inner disk will clear rapidly, and will be replenished from
the outer disk only on much longer time scales. This picture is inconsistent with
the observed result that disks clear on similar time scales at all distances. The
viscous accretion model also indicates that the accretion rate declines with time,
suggesting that the transition time to an optically thin disk is long. However the
observations regarding transition disks indicate the opposite.

• Stellar winds and outflows: Young stars with accreting disks also generate
bipolar outflows, with mass loss rates roughly 0.05–0.1 times the disk accretion
rates [201], thus at age 106 yr PM � 10�9 Mˇ yr�1. Ejection speeds are 100–200
km s�1. The outflows do result in mass loss from the disk, but again on time
scales too long to be compatible with observations. The young stars may also
generate more nearly symmetric stellar winds. A rough estimate of the time scale
for the stripping of the surface layers of a disk by a spherically symmetric wind
[233] is over 107 yr for typical disk and wind parameters and is only weakly
dependent on distance. In fact even the stellar wind may be collimated in the
polar direction by magnetic fields, and the separate outflow of material from the
disk generated by the photoevaporation process (see below) deflects the stellar
wind, so that this process is unlikely to be important.
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• Photoevaporation by nearby hot stars: In the Orion Trapezium region there is
observational evidence that material is flowing away from disks, as a result of
the UV radiation from OB stars. One can distinguish between FUV radiation (6–
13.6 eV) and EUV radiation (13.6–100eV). EUV photons from the star ionize
particles on the surface of the disk and heat the ionized region to about 104 K.
The sound speed in this region is cs � 10 km s�1. If the sound speed exceeds
the Keplerian orbital speed of the disk, the particles are unbound, and they flow
away in a wind. In the case of FUV photons, which would dominate in the case
of a nearby B star, the disk upper layer is heated to temperatures in the range
100–5,000 K, depending on the details of the heating and cooling processes. The
gravitational radius, where the sound speed exceeds the escape speed, is given by

rg D GM��mp

kT
� 100 AU

�
1000

T

��
M�
Mˇ

�
(4.89)

where � is the mean molecular weight of the gas and mp is the proton mass.
Evidently, for the case of EUV radiation, rg � 10 AU, however more detailed
calculations of the evaporative flow [6] show that the effective escape radius is
about 0:15rg, a result which applies to both EUV and FUV irradiation. External
photoevaporation tends to preferentially remove the outer disk, where the surface
area is largest. Under the Orion Trapezium conditions, where OB stars are present
and the density of stars in the cluster is high (5 � 104 stars per pc3 in the central
regions) photoevaporation can remove the outer parts of disks (outside 20 AU)
in less than 3 Myr [233]. However although most stars do form in clusters, they
do not undergo such extreme conditions; thus for the typical low-mass star, this
mechanism is less effective than self-evaporation.

• Photoevaporation from disk’s central star: Young stars emit significant UV
and X-radiation; the UV photons are the most effective at evaporating the disk,
but their observed flux is variable and somewhat uncertain. The effective escape
radius is again about 0.15 rg. The UV photons are produced in accretion shocks
on the stellar surface, but probably more importantly, by active chromospheres in
young stars. The details of hydrodynamic flow calculations are complicated, and
observations of actual evaporative flows are not available, however the probable
order of magnitude of the effect is given by the following relation [145]

PMEUV � 4 � 10�10

�
˚EUV

1041s�1

�0:5 �
M�
Mˇ

�0:5

Mˇ yr�1 (4.90)

where ˚EUV is the flux in photons per second produced by the central star, typi-
cally 1041 for a low-mass star. This relation suggests that (1) photoevaporation of
a disk can happen very rapidly (105 yr) for a massive star, which has a very high
UV flux, but (2) in the case of a 1 Mˇ star the process is unimportant compared
with the typical PMvisc for viscous accretion until relatively late in the lifetime of
the disk, >6 Myr. In the latter case, PM for the evaporative flow is largest at the
effective radius, is very small inside the effective radius, and declines as R�1=2
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outside the effective radius. The evolution of a disk subject to photoevaporation
and viscous evolution then runs as follows: First, once PM from photoevaporation
exceeds PMvisc at the effective radius, a gap opens in the disk at that point. Second,
the disk interior to that point (say �1 AU) rapidly (105 yr) drains onto the star and
is not replenished, leaving an inner hole. Third, once the hole has been cleared
the UV radiation from the star can impinge rapidly directly onto the outer disk,
and the outer disk is cleared, from inside out, on the short time scale also of
about 105 yr [12]. This result neatly explains the observed fact that outer disks,
as observed in the submillimeter, disappear on about the same time scale as inner
disks, as observed in the near infrared. It is also consistent with the fact that
relatively few “transition” disks are observed [465].

The conclusion one could draw is that in theory the combined effects of viscous
evolution and photoevaporation should completely remove disks around low-mass
stars on a timescale of 107 yr. The fact that the observed main dispersal phase of a
disk is rapid (�105 yr) agrees with theoretical calculations.

4.6 Winds and Outflows

Class 0, Class I, and Class II sources are all, or almost all, associated with some
kind of outflow. The phenomenon extends over the entire range of masses, from
brown dwarfs to massive protostars. The outflows are important with regard to (1)
clearing away of the infalling envelope and terminating the inflow, (2) determining
the range of stellar masses and the star formation efficiency, (3) contributing to the
maintenance of turbulence in the molecular cloud, supporting it against collapse,
and (4) removal of angular momentum of disk material before it lands on the central
star, perhaps explaining why T Tauri stars rotate slowly.

There are various types of observed flows. The bipolar molecular outflows are
associated with all Class 0 and Class I sources and are observed on a extended
scale (0.1 pc to several pc), usually through transitions in the CO molecule in the
millimeter spectral region. A characteristic velocity on the large scales is 20 km s�1.
The optical jets are observed in ionized gas on smaller scales near the central stars
of the outflows. The optical jets are also bipolar, but they are often associated with
a blue shift in a forbidden emission line. The red-shifted component is often not
visible, being hidden by circumstellar material, including the disk. The jets have
velocities in the range 200–300 km s�1. The optical jets are also associated with
neutral flows, observed in a few sources in the 21 cm radiation of HI.

Closely related to the jets are the optical emission knots near young stars, first
observed by Herbig and Haro in the early 50’s [200,217]. Measurement of the proper
motion of knots [127] showed they were moving away from the young star. The
knots emit in H˛ and in forbidden lines such as [SII]. An example is shown in
Fig. 1.11. HH1 and HH2 are moving in opposite directions at velocities of about
350 km s�1, with the main motion in the plane of the sky. The emission regions
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are thought to be caused by stellar jet material impacting relatively dense, slowly
moving knots of material ahead of it and producing bow shocks. A given young
object can have several different knots moving away from it. The kinematic ages
(length scale divided by velocity) suggest that discrete ejection events occurred,
separated by a few hundred to a thousand years, or at least a non-steady outflow.
Derived velocities are 200–400 km s�1.

All of these phenomena, which are most often bipolar and collimated rather than
spherically symmetric, are known generally as outflows. They are practically always
associated with disks, and the source of the outflow, according to most theories, is in
the disk rather than in the central star. The outflows generally decrease in intensity
and frequency of occurrence from Class 0 sources to Class II sources.

In contrast, main sequence stars, particularly those younger than the Sun, have
stellar winds, powered somehow from within the star and accelerated in the very
outer layers of the star, that are quasi-spherical. The weak-lined T Tauri stars,
generally Class III, do not have an associated bipolar outflow, but it is very likely
that they have the more nearly spherically symmetric stellar winds, because they
show evidence of surface activity, like that of the Sun but more intense, for example
from X-ray emission.

The bipolar molecular outflows are associated with objects that are still expe-
riencing inflow of gas. The outflows exhibit a red-shifted and a blue-shifted lobe,
when observed in the CO molecule, with the young stellar object (usually) found in
between. In some cases, quadrupolar flows are observed, from sources that are either
closely associated or in a binary. The classic example of a bipolar outflow is that of
L1551 IRS5, the first one discovered [472]. A schematic diagram of that source
is shown in Fig. 1.9. The general structure of the flow is thought to be a partially
evacuated shell-like structure, with higher-velocity gas inside, but with a relatively
slow-moving shell, observed in the CO molecule, at the outside. The upper left
and lower right regions, respectively, have red-shifted and blue-shifted line profiles.
Herbig–Haro knots are observed in the interior. The flows are perpendicular to the
plane of the accretion disk, shown in the figure as the solid contours of CS emission.
On a smaller scale, the protostellar source is in fact resolved into a 40 AU binary
(Fig. 1.10).

In the CO outflows, typical flow velocities are a few to 100 km s�1 (15 km s�1

in the figure), and length scales are 0.1 pc to several pc. The typical “kinematical
age”, obtained from the observed scale divided by the observed velocity, is about
2–5 �104 yr. However the total lifetime of a given flow is thought to be about 2 �
105 yr. The mass of the associated gas is 0.1–100 Mˇ, which is probably mostly gas
from the molecular cloud swept up by the high-velocity flow from the center. The
actual velocities are deduced to be parallel to the axis, with higher velocities radially
farther from the source, which could be the result of momentum conservation and a
decrease in density away from the source.

There is a class of flows known as “highly collimated”, with the fastest gas
being the most highly collimated and the closest to the axis. Figure 4.14 shows
the well-collimated flow of HH211 [198]; the concentration of high-velocity gas
towards the axis is evident. The central source is a class 0 object, the scale of the
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Fig. 4.14 The jetlike outflow in HH211. Thin contours: Contours of equal CO emission. Thick
contours: Contours of equal emission in continuum radiation at 1.3 mm, representing dust emission
from the central protostar. “Low” and “high” velocity correspond to absolute values of velocity
less than or greater than, respectively, 10 km s�1 with respect to the system’s velocity. The points
marked RI and RII lie on the red-shifted lobe; those marked BI and BII , on the blue-shifted
lobe. Credit: F. Gueth and S. Guilloteau: Astron. Astrophys. 343, 571 (1999). By permission.
c� European Southern Observatory

outflow is 0.1 parsec, and the maximum velocity is about 40 km s�1 with respect to
the system’s velocity. What we see in the figure is the CO flow, not the optical
jet near the star. The grey-scale patches at the head of the outflow are shock-
excited molecular hydrogen. In general, the outflows from Class 0 sources are more
strongly collimated than those from Class I sources.

The ratio of the mechanical luminosity (0:5 PMwindv2
wind) to the luminosity of

the source (Lbol) is typically 0.004 for high-mass sources and 0.03 for low-mass
sources [562]. However total energy in the system is not conserved because some
is radiated, so the luminosity ratio will vary with time for a given source. The
flows are, however momentum-conserving. Figure 4.15 plots the momentum flux
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Fig. 4.15 The rate of transfer of momentum (F D PM v) in protostellar outflows, plotted as a
function of the bolometric luminosity of the source. Solid line: least-square fit. Dashed line:
the momentum transfer that could be delivered by radiation pressure. Open symbols: high-mass
sources. Filled symbols: low-mass sources. The boundary between high-mass and low-mass is
taken to be Lbol D 103 Lˇ, corresponding to a source mass of about 3 Mˇ. Reproduced,
with permission, from Y. Wu et al.: Astron. Astrophys. 426, 503 (2004). c� European Southern
Observatory

( PMwindvwind) in the outflow against the luminosity of the source. These quantities
are quite well correlated. Also shown is the momentum flux that can be delivered by
radiation pressure from the central source, demonstrating that radiation pressure is
insufficient (by at least two orders of magnitude) to drive these flows. Since Lbol is
mainly provided by accretion of matter from the disk to the central stellar core, this
figure strongly suggests a connection between the strength of the accretion flow and
the strength of the outflow.

Figure 4.16 shows a plot of outflow momentum flux as a function of the mass
of the infalling envelope of the protostar [82]. The open circles are Class 0 objects
(envelope mass larger than core mass) and the filled circles are Class I objects.
Apparently by the time an outflow has reached the Class I stage it has lost a good
deal of its collimation and outflow power, with less material at high velocity. The
decrease in outflow strength with age is evident.
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Fig. 4.16 Rate of transfer of momentum in protostellar outflows as a function of envelope mass.
Arrows: upper limits. Filled circles: Class I objects. Open circles: Class 0 objects. The evolution of
protostars is in the general direction of decreasing envelope mass. Credit: Bontemps et al.: Astron.
Astrophys. 311, 858 (1996), reproduced with permission. c� European Southern Observatory

The energy and momentum from the optically observed jets seem to be sufficient
to drive the molecular flows. The origin of the jets appears to be close to the central
star but it is not known observationally precisely how close. Observations of the jets
themselves in optical forbidden emission lines and in the radio continuum extend
to within tens of AU from the central source, not close enough to probe the driving
region of the flow. However it is strongly suspected that the flow originates in the
disk near the star. Existing observations suggest that outflow velocities are highest
near the rotation axis of the star, as in the case of HH211, and decrease as a function
of distance from this axis. Future improvements in instrumentation will allow even
better resolution of this region.

Outflows are also present in classical T Tauri stars and here they are closely
linked to the presence of disks. The diagnostics of the outflows include the
“P Cygni” profiles observed in some objects in H˛, CaII, and Na D. The otherwise
symmetric emission line profile is cut by a deep absorption on the blueward side
of the line, corresponding to absorption by material flowing toward the observer.
Another diagnostic is the blueshifted line profile in forbidden lines of OI and
SII. The corresponding red-shifted emission from the wind flowing away from the
observer is presumably obscured, in part by the disk [153]. These outflow diag-
nostics are always associated with disk diagnostics, in particular infrared excess.
However the weak-lined T Tauri stars show no IR or UV excesses characteristic of
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Fig. 4.17 Rate of disk accretion onto T Tauri stars plotted against rate of mass loss in the outflow.
Reproduced, by permission of the AAS, from [201]. c� The American Astronomical Society

disks, and they also lack the strong H˛ and forbidden line emission that characterize
outflows. Their H˛ profiles are weak, narrow, and have no strong blue-shifted
absorption. The forbidden [OI] is absent, as is infrared excess. However in other
respects the WTTS and CTTS are similar, such as in strength of X-ray emission.

A more precise correlation between the rate of accretion of a disk onto the star
( PMacc) and the mass loss rate in the outflow ( PMout) was first determined by [201]
and is shown in Fig. 4.17. In this case the PMacc is determined from the UV excess,
which is a diagnostic of the flow rate of matter onto the star along magnetic field
lines. The luminosities in several high-velocity forbidden lines are used to estimate
PMout. The proportionality constant between PMout and PMacc is usually quoted to be

0.05–0.1. The ratio of these two quantities (fw) can also be roughly estimated for
even younger objects [434] by use of Fig. 4.15. Assuming that Lbol is primarily
accretion luminosity, which is proportional to PMacc, while the momentum transfer
rate in the wind is proportional to PMout. one can derive fw � 0:1 for both Class 0
and Class I objects.

The theory of the generation of the bipolar flows and optical jets, as well as that
of the coupling between these flows and the slow rotation of T Tauri stars, is still
under development and is discussed in detail by [427] and [454]. Magnetic coupling
in a disk or star or both is involved in all models, and the various models can be
classified according to whether the field is (1) external and passing through the disk
[522], (2) generated in the star but interacting with the disk [462], (3) generated in
the disk [519], or (4) primordial [336]. The flows can also be classified on the basis
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Fig. 4.18 Cross section through the rotation axis of a 3D magnetohydrodynamic simulation of the
collapse of a protostar with a magnetic field. The early stages of a bipolar outflow are seen, as
upward- and downward-moving arrows near x D 0: The x-direction gives the distance from the
rotation axis; the vertical axis indicates the distance above or below the equatorial plane. Arrows:
velocity vectors with a maximum of 20 km s�1 . Colors: particle density in cm�3. The quantities
nc , tc , and t are, respectively, maximum density in the stellar core (at x D 0; y D 0), the time
after the formation of the high-density stellar core, and the time since the beginning of collapse.
Reproduced, by permission of the AAS, from [336]. c� The American Astronomical Society

of the outflow type, either a flow emanating over a considerable range of radii in the
disk [58, 402], or originating close to the star near the point where the disk angular
velocity equals the stellar angular velocity (X-wind [462]), or originating in the star
itself [345].

An example of the effect of the primordial field is shown in Fig. 4.18. The entire
collapse of a protostar from an initial molecular cloud core, in 3D including an initial
uniform field and rotation, is calculated with non-ideal magnetohydrodynamics.The
initial condition is a Bonnor–Ebert sphere at a density of 104 cm�3. The collapse is
followed through an increase of 19 orders of magnitude in density, to the time when
the stellar core has formed. After 300,000 years a disk is formed in the center on a
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scale of only 0.1 AU, and an outward-flowing bipolar jet is created which reaches
maximum velocity of about 30 km s�1 and is collimated toward the axis. The upflow
in this case is driven primarily by a magnetic pressure gradient. This result may
represent the very earliest phase of the generation of a bipolar flow.

Other models for outflows are based on assumed disk structures and magnetic
field configurations at later stages of evolution, corresponding to Class II objects.
One of the important ideas in this work concerns the accretion flow of material

from disk to star along magnetic field lines above or below the equatorial plane.
One might have expected that the accretion of mass and angular momentum from
the disk would spin up the star, while in fact T Tauri stars are rotating quite slowly.
However, it was pointed out [265] that if the star contained a kilogauss field that
truncated the disk out to a few stellar radii, then the stellar magnetic field lines
passing through the disk outside of the corotation distance would tend to transfer
angular momentum from star to disk, slowing down the star, and that a steady state
of relatively slow rotation could be reached where the spinup torque on the star is
balanced by the spindown torque. This model was extended [462] to show that the
excess angular momentum that is stored in the disk is then removed from the system
in the outflow, thus contributing to the solution of the angular momentum problem.

Figure 4.19 shows very schematically the Shu “X-wind” model. The origin of the
magnetic field is in the star. The disk is truncated by the field at a few stellar radii.
The truncation radius is also very close to the co-rotation radius where the angular
velocity of the stellar rotation equals that of the orbiting disk. The stellar dipole field
has B �1 kG, as deduced from observations of several T Tauri stars; the assumption
of a dipole field is not essential to the success of the model [365]. Just outside the
truncation radius, the accretion flow pinches the dipole field lines inwards, toward
the star. At the co-rotation point the accretion flow from the disk divides, part of
it following magnetic field lines onto the surface of the star (the “funnel flow”).
The magnetic field configuration in the inner region is such that most of the angular
momentum of the accreted material is transmitted back to the disk near the co-
rotation point, so that the star is actually spun down. At the equilibrium state it is
rotating relatively slowly as observed.

Just outside of the co-rotation point, there is a potential gradient, forcing material
outward. The mechanism here is different from that shown in Fig. 4.18. Charged
particles are tied to the uniformly rotating magnetic field lines and move outward.
These magnetic field lines are bent inward, making an angle of roughly 60ı or
less with the surface of the disk. The centrifugal force increases with increasing
distance from the rotation axis, so particles continue to be accelerated in the
X-wind, transferring angular momentum off the disk. In this manner, matter can
be accelerated to escape speed. As long as the flow velocity is sub-Alfvénic, the
magnetic field dominates the flow, the acceleration continues, and the angular
momentum in the flow increases. Once the flow reaches the Alfvén surface where
the flow velocity exceeds the Alfvén velocity, the rotating magnetic field no longer
controls it, but the toroidal (�-component) of the field becomes important, and the
inward force generated by it (“hoop stress”) collimates the flow.



178 4 Rotating Protostars and Accretion Disks

critical
equipotential

critical
equipotential

Alfven surface

super-Alfvenic
flow

x-wind

dead zone
coronal gas
soft x-rays

disk
sonic
surface

sonic
surface

star

funnel

force-free
field

flow

flow
sub-Alfvenic

uv hot spot

R
* Rx
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Another possible mechanism for generating outflows is known as the “disk
wind”, as the flow is generated not near a single disk radius but over a range of
radii, extending out to at least a few AU. This mechanism was originated [57]
to explain jets generated near black holes. A magnetic field passing through the
disk is required; it could be a primordial field or it could be generated through
dynamo action in the disk. The origin of the outflow from various radii in the
disk is consistent with the observed decrease in velocity away from the rotation
axis of the outflow, as it can be shown that the magnitude of the outflow velocity
is closely related to the Keplerian velocity in the disk. The basic mechanism for
driving the flow is the same magnetocentrifugal effect that operates in the X-wind
model. Numerous numerical simulations [427] have discussed the detailed physics
appropriate to the generation of outflows, and have shown that this process is
feasible. It has not yet been determined whether disk winds or X-winds dominate
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the generation of bipolar flows; both mechanisms could in fact operate, and an axial
component, similar to that shown in Fig. 4.18, could coexist as well.

4.7 Summary of Disk Evolution

A disk formed from the collapse of a cloud core with angular momentum in the
observed range would be expected to evolve as follows:

1. After initial collapse, the disk will be gravitationally unstable and will evolve
under the effect of gravitational torques generated by spiral waves. The time scale
will be short, comparable to 100 orbital periods, so that a considerable amount of
mass can be accreted by the star in a few thousand years. FU Ori outbursts may
be generated toward the end of this stage.

2. Viscous evolution starts, generated by processes that are not fully explained.
Further accretion onto the star occurs on a time scale of 106 yr, until the
disk accretion rate onto the star is reduced to small values. Then the various
dissipation processes, probably dominated by photoevaporation, remove much
of the remaining mass. Gas and dust disappear from the disk on about the same
time scale.

3. At all stages of the evolution of the disk, the disk angular momentum and
the local magnetic field interact to generate a fast bipolar jet, originating
within a few AU of the central star. On larger scales the fast (200 km/s) jet
entrains and accelerates local molecular cloud material to form bipolar CO flows.
Observations suggest a mass outflow rate on the order of 10% of the accretion
rate of disk material onto the star.

4. During the evolution of the disk, dust grains coagulate into larger particles and
settle to the midplane. As the mean particle size increases, the infrared opacity
decreases, and correspondingly, the observed infrared excesses decline.

5. The solid material begins to coagulate into planets. The residual small dust grains
tend to be blown out by radiation pressure or forced into the central star by the
Poynting–Robertson effect once the gas is gone, but the dust can be regenerated
by collisions between the larger “rocks” that still remain in orbit. This second-
generation dust is likely to be the material observed in the very low mass remnant
“debris disks” around young main-sequence stars such as Beta Pictoris.

4.8 Problems

1. (a) A rotating cloud core of mass M , initial uniform angular velocity ˝ ,
and initial sound speed cs , starts out near equilibrium with thermal and
gravitational energies in balance (the initial rotational energy is small).
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It collapses, with conservation of angular momentum, to an equilibrium
Keplerian disk. Show that its outer radius at the final stage is

Rct D constant
˝2G3M 3

c8
s

: (4.91)

(b) Calculate Rct for an initial cloud of 1 Mˇ with ˝ D 10�14 s�1, with uniform
density and T D 10 K. What is the specific angular momentum j at Rct?
What is the average j for the whole cloud? Compare with j for planetary
orbits in the solar system.

2. The envelope of a Class 0 protostar is observed at a wavelength of 1 mm and has
a flux density of 1 Jansky. The distance is 100 pc. What is its mass? Compare
results with the two different opacity curves in Fig. 3.9.

3. (a) Assume that the radiative diffusion equation holds for the vertical direction
in a disk at a given distance R from the star. If F D �T 4

eff, where F is
the radiative flux and Teff is the surface temperature at R, show that the
midplane temperature Tc at R is given by

T 4
c � 3

4
�T 4

eff (4.92)

where the vertical optical depth � D �c˙=2, ˙ is the surface density, and
�c is the midplane opacity. Assume � is large.

(b) Combine this equation with the equation for vertical thermal balance

2�T 4
eff D 9

4
˙	˝2 (4.93)

where ˝ is the orbital frequency. Find Tc as a function of ˙ , ˝ , and
constants. Use the “alpha” viscosity 	 D ˛visccsH , where H is the scale
height and cs is the isothermal sound speed. You can use the thin disk
approximation H D cs=˝ . Assume the opacity �c is constant = 1. Note
that a typical value of ˛visc is 0.01.

(c) Now calculate the central density, assuming an ideal gas with molecular
weight � D 2.

(d) Calculate the cooling time of the disk as a function of ˝ . What do you
conclude about the possibility of fragmentation in this disk?

4. A uniformly rotating uniform sphere of radius 1�1017 cm and a mass of 1 Mˇ has
˝ D 2 � 10�14 rad/s. It collapses to a system consisting of a T Tauri star of
0.98 Mˇ and a Keplerian disk of 0.02 Mˇ, conserving total angular momentum.
The star is uniformly rotating with a surface rotational velocity of 30 km s�1

and a radius of 4 Rˇ. What is the outer radius of the disk? Assume that the
surface density distribution in the disk goes as R�1=2, where R is the distance
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from the star. Compare with the sizes of observed disks. What do you conclude
(see Fig. 4.1)?

5. Use the information from Problem 3 to calculate a simple numerical disk model
from 1 AU to 20 AU for a central star of 1 Mˇ. Assume that the disk surface
density scales as R�1 and that the total mass between 1 AU and 10 AU is
0.03 Mˇ. Calculate ˙.R/, Tc.R/, �c.R/, and Teff.R/. Is the disk gravitationally
unstable anywhere?

6. This problem illustrates a moderate version of the “beaming” effect of radiation
along the polar axis of a flattened, rotating cloud.

(a) Calculate numerically the density distribution along the polar axis and very
close to the equatorial plane in a rotating cloud, according to (4.3). Assume
the outer cloud radius is 1017 cm, the rotation rate is ˝ D 7 � 10�15 s�1 and
the interior mass is 0.75 Mˇ. The accretion rate is 10�5 Mˇ yr�1.

(b) Calculate the optical depths in the polar and equatorial directions, integrating
inward to the dust destruction front at 1 AU. The mean opacity can be taken
to be 0.2 cm2 g�1. Explain the result.

(c) Repeat the calculation for an interior mass of 0.25 Mˇ.



Chapter 5
Massive Star Formation

We will define a high-mass star as one with a final mass of greater than 10 Mˇ. On
the main sequence this group would include stars of spectral type O, B0, and B1.
Although stars in this mass range are few in number compared with low-mass stars,
they are extremely important with regard to galactic chemical evolution and the
physics of the interstellar medium. Stars in this mass range (actually down to about
8 Mˇ) evolve to become Type II supernovae which produce and eject a significant
amount of the heavy-element material in the Galaxy. The heavy elements act as
cooling agents in the interstellar gas, promoting the formation of later generations
of stars. The UV radiation from the massive stars and the concomitant generation
of HII regions, along with strong stellar winds, and eventually supernovae remnants
stir, energize, and heat the ISM, producing fascinating observable structures. The
resulting dynamical effects are thought, in some cases, to induce the formation
of a new generation of stars in the surrounding medium (Chap. 2). On the other
hand, the resulting ionization and heating can erode nearby molecular cloud material
and suppress subsequent star formation in the neighborhood. The brightness of HII
regions allows them to be a useful tool in estimating the star formation rate in distant
galaxies. The UV radiation from massive stars can have a significant effect on the
evaporation of protostellar disks around lower-mass stars in the same cluster.

Although the basic picture of collapse of a rotating molecular cloud core applies
to both high-mass and low-mass star formation, there are a number of significant
differences between the two cases. For example, (1) the accretion time of the
envelope (M= PM ) for high mass stars is longer than the gravitational contraction
time (1.8) of the equilibrium stellar core. For example, tKH D 104 yr for 50 Mˇ
while the accretion time is closer to 105 yr, so that the core can reach the main
sequence while accretion is going on. On the other hand, the low-mass stars, with
tKH D 3 � 107 yr and an accretion time of 3 � 105 yr for 1 Mˇ, finish their accretion
while the cores are still in the gravitational contraction phase, well before the main
sequence, with surface temperatures around 4,000 K. (2) In massive star formation,
when the stellar core approaches the main sequence, the radiative acceleration in
the infalling envelope, arising from radiation interacting with the dust, becomes
more important than gravity. In the low-mass case, gravity always dominates in
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the infalling envelope. (3) It was earlier suggested [459] that massive stars form in
magnetically supercritical molecular cloud cores, and that low-mass stars form in
subcritical cores by ambipolar diffusion. Although magnetic fields are undoubtedly
important in both mass ranges, there is no strong observational evidence in support
of this suggested bifurcation; while massive stars undoubtedly do form under
supercritical conditions, it is entirely possible for low-mass stars to form under
such conditions as well. Rather it is becoming apparent from observations [52,418]
that massive stars form in a highly turbulent environment from high-mass, high-
density (n � 106 cm�3) cores, while low-mass stars form from relatively quiescent
lower-mass cores of density n � 105 cm�3. (4) The protostellar evolution time is
not much different [353] between high-mass stars (� 105 yr) and low-mass stars
(� 3 � 105 yr); thus PM for accretion of high mass stars must be significantly greater
than that for low-mass stars. This requirement is apparently consistent with the
formation of high-mass stars in very turbulent high-density regions; this initial
condition naturally provides a high mass accretion rate.

In this chapter, we point out the theoretical and observational difficulties in
studying high-mass star formation, consider the probable initial conditions in
molecular clouds, summarize the suggested theoretical solutions to the problem
of high-mass star formation, and address the question: are there theoretical and
observational upper limits to the mass of a star?

5.1 Information from Observations

Although high-mass stars in the process of formation are very bright, there are
difficulties in observing them because they are relatively few in number, they are
found typically only at large distances from the Sun, leading to limited spatial
resolution, and they are located in regions that are highly obscured in optical
radiation. In addition they are almost always found in clusters, so at their large
distances it is difficult to resolve individual objects in the cluster. But additional
clues as to their formation may be obtained from the properties of already-formed
massive stars. A few important major features that have been determined from the
existing massive stars as well as from the suspected massive star-forming regions
are discussed in this section.

5.1.1 The Present Massive Star Population

Massive stars apparently form primarily in clusters, along with numerous low-
mass stars. The present locations of massive stars can be roughly divided into four
groups. First, many postformation stars are observed in gravitationally bound OB
clusters, good examples of which include the Orion Nebula cluster, the dense cluster
associated with the galactic HII region NGC 3603, and the R136 cluster in the 30
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Doradus star formation region in the Large Magellanic Cloud (LMC). The latter
is the most massive cluster of the three and contains on the order of 100 O stars
packed within a radius of a few parsecs. Second, some massive stars are found in
OB associations, for example Scorpius OB2 and Orion OB1. In this case the stars
are 1–10 pc apart, and the association is gravitationally unbound. The relationship
between the bound OB clusters and the associations is not clear, but one possible
scenario [272] is that a bound cluster forms with a low star formation efficiency,
after which a considerable amount of remaining gas is expelled. A large fraction
of the stars becomes unbound and forms an expanding association, while a smaller
fraction, those near the center of the initial cluster, is able to remain as a bound
cluster, smaller than the original one. The third category is the so-called “runaway”
OB stars, which are individual stars in the field with velocities of 40 km/s or more,
which presumably were ejected from a cluster or association. Finally, fourth, there
are a few OB stars in the field that cannot be traced back to an origin in a cluster or
association and could have formed independently; this group consists of <10% of
massive stars.

The fraction of massive stars in binary or multiple systems, both spectroscopic
and visual, is higher than in solar-type stars. This quantity is difficult to measure,
because of the scarcity and large distances of the massive stars; furthermore their
extreme brightness makes it difficult to detect faint companions. Estimates of the
fraction of systems that are binary or multiple range up to 80%, although this
fraction is highly variable from cluster to cluster. The fraction seems to be similar
in OB clusters and OB associations [575] but somewhat lower for field stars
[341]. Triple systems and higher multiples are common among massive stars as
are “twins”, binaries with practically equal-mass components. A particularly well-
defined (although small) sample of massive stars that has been used to determine
the multiple star fraction is the young Orion Nebula Cluster [421]. Out of 13
stars observed, in the mass range 3.5–45 Mˇ, eight turned out to have at least one
companion, giving a lower limit of 61% for the multiple star fraction, uncorrected
for possible undetected companions. This fraction is significantly higher than
that for solar-mass stars [147], 44%, also uncorrected. Note however that the
total number of companions among the 13 primaries is 14: there are three triple
systems, one quintuple system and four binary systems among the eight stars with
companions. The fraction of systems that are triple or higher is also greater than that
for solar-mass stars.

The initial mass function, on the average, has a slope quite similar to that
of stars in the 1–5 Mˇ range, that is, a Salpeter-like slope of d log (N)/d log
(m) D � 1:35, although the slope can vary from cluster to cluster because of
small-number statistics. The slope is thought to be about the same in OB clusters
and OB associations. There is no “feature” or change in slope of the IMF near
the transition between the high-and low-mass stars, indicating that the differences
in physics between high-mass and low-mass star formation do not affect the
origin of the IMF. However, particularly for massive stars the determination of the
IMF from observations is uncertain and involves some assumptions. In general,
the following ingredients are needed to determine the IMF from stars presently
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on the main sequence: the luminosity function (since masses are usually not
directly determined), the mass-luminosity relation, main-sequence lifetimes, and
the correction for evolved stars. The latter correction is important for massive stars,
since the present-day mass function is not the same as the initial mass function,
because of the short time scale of stellar evolution. To make the correction an
assumption regarding the history of the galactic star formation rate is needed.
A summary of the actual procedure is given in the Appendix to this chapter.

The question arises whether there is an upper mass limit for stars. The most
massive stars whose masses have been accurately measured, through analysis of
the orbit of a double-lined spectroscopic eclipsing binary, are the two components
of WR 20a, with masses of 83 ˙ 5 and 82 ˙ 5 Mˇ [75, 429]. The orbital period
is 3.7 days, the eccentricity is zero, and Teff for the primary is about 42,000 K.
The orbital separation is only 0.25 AU, about 6 stellar radii. Both components
are Wolf-Rayet stars, indicating mass loss, so the original masses could have been
somewhat higher. But stars have formed with masses higher than 80 Mˇ. A double-
lined spectroscopic eclipsing binary, NGC 3603-A1, has been analyzed to obtain
masses of 116 ˙ 31 and 89 ˙ 16 Mˇ [450].

The upper limit can also be estimated indirectly through observations of the upper
end of the main sequence in various clusters. The most massive clusters observed are
R136 in the LMC and the Arches cluster near the Galactic center. Various authors
[575] have shown that there is an apparent upper limit of about 150 Mˇ. However,
extrapolation of the Salpeter-slope IMF in these massive clusters indicates that stars
with up to about 750 and 500 Mˇ in the two clusters, respectively, would have been
present if they had formed [172, 542].

The rather well-accepted upper limit of about 150 Mˇ may have been broken,
however, by observations of the highly luminous star R136a1 in the LMC [124].
The analysis was again indirect, based upon the observed luminosity and spectrum,
as compared with theoretical stellar evolutionary models and model atmospheres,
combined with an estimate of the mass loss rate of this Wolf-Rayet star. The same
technique was applied to NGC 3603-A1, and the mass obtained agreed with the
dynamically determined mass (above). The resulting estimate for the initial mass of
R136a1 is 320C100

�40 Mˇ.
It is not clear whether the upper limit, which is uncertain because of mass loss

from the most massive stars, is physical, or statistical, resulting from the extreme
rarity of the most massive stars. The possible physical mechanisms that could limit
the mass include (1) pulsational instability generated by nuclear reactions in the core
of the star [309], (2) limits on accretion during star formation arising from radiation
effects on the infalling gas (Sect. 5.2), and (3) rapid mass loss from the surface of
newly-formed massive stars owing to radiation pressure in the absorption lines near
the stellar photosphere [284]. In cases (2) and (3) the mass limit would be expected
to increase as the metal content of the region decreases. It is not clear which of these
processes is the most important.
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5.1.2 Formation Sites

An observed example of a region of massive star formation is shown in Fig. 5.1.
Seven specific features are pointed out. Feature 1 is a young compact cluster
dominated by a triple system of massive stars. The cluster has formed in the head
of a massive dust pillar. It is suggested that here is an example of triggered star
formation: outflows from the massive cluster R136 (not on frame) could have shaped
the pillar and induced the collapse of part of it to form this secondary cluster. The
new stars have blown off the top of the pillar with their HII regions and winds, and
thus the cluster is visible in both the infrared and visible pictures.

Features 2 and 3 are also young stars or clusters still embedded in dusty regions;
thus they represent a somewhat earlier stage of evolution than does Feature 1. They
are very bright in the infrared image, but very faint in the visible. Feature 4 is a very
red star that has formed within a compact dust cloud.

Feature 5 is another young triple-star system with a surrounding cluster of fainter
stars. Features 6 and 7 are glowing patches which are interpreted, at least tentatively,

Fig. 5.1 Active region of massive star formation near the star cluster R136 in the Large Magellanic
Cloud. The top panel shows a visual image taken with Hubble’s Wide Field and Planetary
Camera 2. The lower panel shows the same region in the near infrared, taken with Hubble’s Near
Infrared Camera and Multi-Object Spectrograph. Although this region is 55 kpc away, details of
some individual objects are discernible (see text). WFPC2 image credit: NASA, John Trauger (Jet
Propulsion Laboratory), James Westphal (California Institute of Technology). NICMOS image
credit: NASA, Nolan Walborn (STScI), Rodolfo Barba (La Plata Observatory). Courtesy Space
Telescope Science Institute. (5 light years D 1.5357 pc)
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Fig. 5.2 The star-forming region RCW108, about 1,200 pc away in the Milky Way. The image is a
composite of X-ray data from the Chandra X-ray Observatory (blue points) and an infrared image
obtained with the Spitzer Space Telescope. Most of the X-ray sources are part of a young cluster
NGC 6193. It is thought that the formation of the cluster of massive stars seen in the infrared image
was triggered by effects of massive stars outside the dusty region, in NGC 6193. At the same time,
the hot, massive stars in 6193 may be eroding the dust clouds around the forming cluster through
their high-energy radiation. Image credit: NASA/JPL-Caltech/CXO/CfA. Courtesy Spitzer Science
Center

to be caused by bipolar jets from Feature 5 impacting onto surrounding dust clouds.
They are symmetrically located on opposite sides of Feature 5 and possibly originate
in a disk around one of the objects in the triple-star system. This image at least
suggests that bipolar flows are produced by massive stars, possibly involving similar
mechanisms to those found for low-mass stars. It has been shown observationally
that massive stars forming closer by, in our Galaxy, do generate outflows [455] (see
below).

Another example of observed star formation, closer by in the Milky Way, is
shown in Fig. 5.2. The young cluster NGC 6193, of which many of the X-ray
points are members, contains massive O stars which are producing an HII region;
the brightest O stars are off the image to the left. The edge of this region is eating its
way into the dusty cloud shown in the infrared image, and gradually eroding it. At
the same time this region is thought to be a good example of induced star formation
[558]. A dense region of newly formed massive stars, known as RCW108-IR, is
seen in the IR image.

The initial conditions for massive star formation seem to require molecular cloud
cores with surface density ˙ D M=.�R2/ higher than that for low-mass stars
[354]. For example, 100 Mˇ within a radius of 0.1 pc gives ˙ � 0:7 g cm�2, while
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Fig. 5.3 An example of an Infrared Dark Cloud (G29.55C00.18) observed with Spitzer at 8 �m
(left) and Herschel at 350 �m (right). The mass of the dark cloud is estimated to be � 500 Mˇ, its
radius 1.7 pc, its central density 3 � 104 cm�3, and its temperature 16 K. It appears in absorption
against the bright IR background at 8 �m, and in emission at 350 �m. Credit: D. Stamatellos et al.:
MNRAS 409, 12 (2010). Reproduced with permission from John Wiley and Sons. c� 2010 Royal
Astronomical Society

1 Mˇ within a radius of 0.05 pc (a typical low-mass core) gives ˙ � 0:027 g cm�2.
The high-˙ conditions are believed to exist in the so-called Infrared Dark Clouds
(IRDC’s), which are regions of molecular clouds that are dense enough so that
they have several magnitudes of dust extinction in the infrared, around 10 �m.
They are observed as absorption patches against the diffuse background Galactic
emission from hot dust at those wavelengths. Observations [414] from the Infrared
Space Observatory and [154] from the Midcourse Space Experiment at mid-infrared
wavelengths have revealed a large number of such objects [466]. They also are
observed, from dust emission in the millimeter continuum [428], to have dense,
compact cores. These cores could represent the formation sites of massive stars
or even clusters. Figure 5.3 shows observed images of one of these clouds at two
different wavelegths [485].

At least some of the massive molecular cloud cores found in infrared dark clouds
could represent the initial stage of star formation. The observational characteristics
of such cores would be emission from dust at mm and submm wavelengths,
molecular lines observed in the mm, and no evidence, from strong mid-infrared
radiation, which would indicate that a collapsed protostar had already formed.
Typical physical characteristics include: masses of 100 to a few thousand Mˇ,
mean densities of 105 cm�3, sizes of 0.25–0.5 pc, and temperatures around 15 K.
Observations are not sensitive enough to rule out low-mass protostars in these
objects, but they probably have not yet formed high-mass protostars [183]. Mean
values of linewidths were found [479] in a sample of suspected high-mass starless
cores to be 1.6 km s�1, indicating the presence of turbulence.
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As examples of the next phase of evolution after the high-mass starless core
phase, one would expect to find some infrared dark clouds with evidence of protostar
formation as indicated observationally, for example by the presence of emission at
8 �m (along with the dust emission in the mm and submm). Many surveys of such
objects have been undertaken [52]. Their overall characteristics are similar to those
of starless cores (preceding paragraph) except the temperatures are slightly higher
(22 K) and the turbulent linewidths somewhat greater (2.1 km s�1.) They are often
associated with water, OH, and methanol (CH3OH) masers which are thought to
originate either in molecular outflows or disks. Water masers are found also around
low-mass protostars, but OH and CH3OH only around high-mass protostars. It is not
clear what physical process is associated with the maser production, but it could be
shock activity. Massive collimated molecular outflows have in fact been observed
for a number of massive protostars, and their general properties are consistent with
those around low-mass protostars [52]. The observations indicative of outflows,
as for low-mass protostars, are red-shifted and blue-shifted emission lines in, for
example, the CO molecule. However, no collimated outflows have been observed
for high-mass protostars exceeding 30 Mˇ. There are cases of observations of high-
mass protostars with wide-angle CO outflows; an example is one of the infrared
sources in the massive star-forming complex W49A, located 11.4 kpc from the Sun.
This source is estimated [470] to be a protostar of 45 Mˇ. It is suggested that this
object has been accreting from a disk, which powers the outflow as in the case of
low-mass stars. The inner part of the disk is in the process of being cleared out,
possibly explaining the wide angle of the outflow.

An example of the spectral energy distribution of a high-mass protostar [366,
367] is shown in Fig. 5.4. The peak of the SED is at about 100 �m. Its precise
evolutionary stage is difficult to determine, but it is not yet at the stage where it
has a detectable HII region, and very possibly its core has not reached the main
sequence. The object is considered to be a Class 0 protostar because (1) its stellar
core mass (� 10 Mˇ) is much less than the mass of the collapsing envelope (a few
hundred Mˇ), and (2) the ratio of submillimeter to bolometric luminosity is about
3 � 10�3. Also there is a molecular outflow with properties similar to but scaled
up from those of low-mass Class 0 objects. The high accretion rate onto this object
(�10�3 Mˇ yr�1) is probably sufficient to suppress the formation of an HII region.

The presence of the outflows strongly suggests that disks are also present in the
high-mass protostars, although they have proved difficult to detect. The highest-
mass star around which a Keplerian disk has been definitely detected is in the early
B spectral range, with a mass of about 7 Mˇ [105]. The luminosity of this object
(IRAS 20126C4104) suggests that it is a protostar accreting at about 2 � 10�3

Mˇ yr�1. In some cases, for suspected high-mass protostars, velocity gradients have
been detected (e.g. [167]) perpendicular to the direction of the outflow. However the
velocity structure is not that of a Keplerian disk. In this case the structure could
either be an inflow of rotating gas, possibly the precursor of a Keplerian disk, or
a massive, self-gravitating disk whose orbital velocity as a function of distance
from the star is not Keplerian. Thus the observations at least suggest that high-mass
protostars go through a disk phase, although the disk may be short-lived.
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Fig. 5.4 The spectral energy distribution of a suspected high-mass protostar IRAS 23385+6053
whose stellar core has not yet reached the main sequence. Diamonds: observations at the four
IRAS satellite wavelengths. Open squares: mid-infrared data from the Spitzer satellite. Asterisks:
a combination of observations with the James Clerk Maxwell Telescope and the Owens Valley
Radio Observatory in the mm and submm region, and upper limits in the infrared at 6.75 �m and
15 �m obtained from the ISO satellite. There are also upper limits at 2 cm and 6 cm, from the VLA,
indicating that if an ultracompact HII region is present at all, it must be very faint. The 12 �m and
25 �m IRAS fluxes arise from sources outside the actual protostar. The dashed line is a fit to the
data based on an assumed spherical envelope model with power-law distributions of density and
temperature, including the 60 �m and 100 �m IRAS points. The solid line is a fit using the more
reliable Spitzer data instead of the IRAS data. Credit: Molinari et al.: Astron. Astrophys. 487, 1119
(2008). Reproduced with permission. c� European Southern Observatory

Once a massive protostar has gained enough mass so that its core has evolved to
the main sequence, the core, while still accreting, starts to emit ionizing radiation.
In the earlier phases, there is still high-density gas accreting onto the core, and
the ionizing flux can ionize only a small volume. The observational evidence for
this phase is thought to be cm radiation, along with the mid-infrared emission and
mm emission characteristic of the earlier phases. The cm radiation is produced
by free–free emission from the ionized gas. The ionized region at this phase is
known as a hypercompact HII region, defined as having a size less than 0.01 pc
and a density of �106 electrons cm�3. It is probably produced by a single O
or B star that is still accreting, with the ionized region comprising only a small
fraction of the protostellar volume. The high-pressure ionized region is prevented
from expanding by the dynamic pressure of the infalling material, and the ionized
particles are still gravitationally bound to the star [250,536]. The presence of broad
radio recombination lines emitted in at least some of these regions indicates the
presence of accretion, rotation, and outflow activity.

At some stage, most of the accretion onto the central star will occur via the disk,
and the density and inflow rate in other directions, in particular the polar direction,
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will decrease. Also, as the star accretes more mass, its ionizing flux increases, and
the HII region will be able to expand into almost the entire protostellar volume,
excluding the disk. At this stage the HII region is called an ultracompact HII region.
It is distinguished from the hypercompact HII region by the fact that the former is
larger, with size of �0:1 pc, and has lower density (104 electrons/cm3). Also, the
line widths in the radio are smaller. The ultracompact HII regions are also detected
through their radiation at cm wavelengths [560]. Even at this stage, all of the optical,
UV and near IR radiation produced by the protostellar core is absorbed by the
infalling dust, and the object is detected primarily at mid-infrared wavelengths.

The size of an ultracompact HII region is comparable to the original molecular
cloud core which spawned the massive star. The relevant size scales are the
Strömgren radius, which characterizes the size of an ionized region, and the
gravitational radius which is defined by

rg D GM�
c2

i

(5.1)

where ci is the sound speed in the ionized gas, about 10 km s�1. For a 50 Mˇ star
this radius is about 400 AU or 6 � 1015 cm. It marks the boundary for an ionized
region, inside of which gas can continue to rain down upon the protostar, and
outside of which accretion is suppressed. By comparison, the Strömgren radius,
which defines a volume in which the rate of ionization by stellar photons is balanced
by the rate of recombination of electrons onto hydrogen atoms

rS D
�

3Ni

4�˛Rn2
e

�1=3

(5.2)

where Ni is the number of ionizing photons per second, ne is the electron density
in cm�3, and ˛R is the recombination coefficient of electrons onto hydrogen atoms
to levels n D 2 or above (recombinations to the ground state, h	 > 13:6 eV,
immediately result in a nearby ionization so do not affect the overall balance;
˛R D 3 � 10�10T

�3=4
HII D 3:5 � 10�13 cm3 s�1 for THII D 8;100 K). For a 30 Mˇ

star, Ni � 1049 s�1, and the typical density in a dense molecular cloud region is
104 cm�3, giving rS D 0:13 pc, assuming uniform density for simplicity. Thus,
since rS >> rg, the ultracompact HII region is not gravitationally bound to a
single protostar and is beginning to ionize the molecular cloud material in the
neighborhood. At this stage the HII region is expected to be photoionizing the disk
[232] and evaporating it, resulting in escape of the material from the protostar.

The feedback as a result of the HII region may have ultimately some influence
on the final mass of the star, but a more important feedback effect is that of radiation
pressure on the dust, which we discuss in the next section. Even if the HII region
is present, accretion can still take place through a disk. It is more likely that the
final mass is determined by the mass of the initial molecular cloud core, modulo an
efficiency factor that depends more on the properties of the mass outflow than on
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those of the HII region. However once the HII region expands beyond the region
that is gravitationally bound to the star, it begins to have a more global effect. The
HII region of a single star or a combination of HII regions from several massive
stars produce a high-pressure bubble in the surrounding molecular cloud material as
a result of the high temperature in the ionized gas, typically 8,000 K. The material
begins to expand, and when the ionized region reaches the edge of the cloud, rapid
mass loss from the cloud occurs. With sufficient ionizing flux, the star-forming
region in the molecular cloud can be destroyed.

5.2 The Problem of Radiation Pressure

Consider now a single massive core, a subunit of a massive molecular clump, out of
which a massive star can form. The question of cluster formation will be discussed
below. Although there is a wide spread in observed properties, for definiteness let
us say that the core has 100 Mˇ and a radius of 0.1 pc, therefore a mean density of
1:4 � 10�18 g cm�3. It is initially supported against gravitational collapse by
turbulent motions, possibly combined with magnetic effects. The thermal Jeans
mass under the core conditions (T � 15 K) is less than 1 Mˇ. Nevertheless the
observed virial parameter ˛vir D 5�2

xR=.GM /, is of order unity, where �x is the
one-dimensional velocity dispersion and R and M are, respectively, the radius and
mass of the core. For the assumed core properties, the mean turbulent speed vturb

turns out to be about 1.6 km/s, consistent with observations.
The cloud is destabilized once the turbulence starts to decay, and collapse sets

in. In a thermally dominated core the implied mass accretion rate is given by (3.15),
PM � c3

s =G which, for a low-mass core at T D 10 K gives PM � 2�10�6 Mˇ yr�1.
For the case of an initially turbulence- dominated core, the turbulent speed is added
in quadrature to the sound speed,

PM D .c2
s C v2

turb/3=2

G
(5.3)

and PM � 10�3 Mˇ yr�1 for the same T . Also, if one takes the total mass divided
by the mean free-fall time (5:6 � 104 yr) one obtains the same approximate PM .
However the actual collapse is not a true free fall, and these estimates for PM should
be reduced by at least a factor 2, giving about 2 � 105 year to form a 100 Mˇ star.
In fact the final mass would be reduced by an unknown factor because of the effect
of outflows. The question is whether the final mass of perhaps 50 Mˇ can ever be
reached.

As the collapse proceeds, thermal effects eventually dominate, the Jeans mass is
low, and one might expect the core to fragment into several pieces; this issue will
be further discussed below. For the moment, assume that most of the mass will be
accreted onto a single stellar core, which can build up to high mass (although some
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mass will be lost in the outflow). For simplicity, consider first the case of spherical
symmetry.

The stages of protostellar evolution, once collapse sets in, are at first very
similar to those for low-mass stars. The gas collapses isothermally for six orders
of magnitude increase in central density and becomes highly centrally condensed.
The adiabatic collapse phase then ensues for the matter near the center. It heats up
and the collapse slows down until the central temperature reaches 2,000 K; then a
second collapse begins in the center, induced by the dissociation of H2. Once the
dissociation has completed and the central temperature reaches 20,000 K the stellar
core begins to form in hydrostatic equilibrium, initially with a mass of only a few
thousandths of a solar mass.

The accretion phase begins, but it differs from that for low-mass stars in that
the equilibrium core, once it exceeds about 10 Mˇ, contracts on the same time
scale as the accretion takes place. The point at which the core arrives on the main
sequence depends on the accretion rate. In simple spherical models [406] at constant
accretion rates, stars arrived at the main sequence with masses of 8, 10, and 15 Mˇ,
at accretion rates of 10�5, 3 � 10�5, and 10�4 Mˇ yr�1, respectively. For a variable
accretion rate [354] in the range 10�4 � 10�3 Mˇ yr�1 the initial main-sequence
mass was about 20 Mˇ. The difference in mass as a function of accretion rate
depends on the ratio of the characteristic accretion time to the thermal adjustment
time of the star. For high accretion rates, the star is not able to radiate away its excess
thermal energy and contract to the radius it would have in the absence of accretion.
The higher the accretion rate, the larger the radius of the star remains in comparison
with the thermally adjusted radius. An additional effect comes when deuterium
starts burning in a shell outside the core of the star; this effect results in a temporary
increase in radius as a result of the deposition of nuclear energy which cannot be
radiated rapidly. Once the star becomes massive enough, its thermal adjustment time
shortens to the point where it can contract to the main sequence, and subsequent
evolution moves it up along the main sequence. The object becomes very luminous,
the radiation from the core surface shifts toward the UV region, ionizing photons
are produced, and the question of radiative acceleration of the dusty infalling gas
must be considered.

The opacity of the dust in the infalling envelope is much higher in the optical
and UV than in the infrared. The opacity as a result of dust is far greater than that
of the gas, but all species of dust have essentially evaporated at temperatures above
1,500 K; this temperature defines the dust destruction front which, for example, lies
at about 8 AU for a star with L/Lˇ D 1;000 [557] and scales with L1=2. To evaluate
the effect of radiation in slowing down the infall, we consider a point with distance
r from the star slightly larger than that of the dust destruction front. We wish to
compare the force of gravity with that from the radiation pressure gradient. If the
following condition is satisfied, infall of a given layer can occur:

GM�
r2

> �.1=�/.dPr=dr/ D N�F=c (5.4)
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from basic radiation transfer theory, where N� is the opacity averaged over frequency

N� D 1

F

Z 1

0

�	F	d	; (5.5)

a flux-weighted mean. Here � is the density, Pr is the radiation pressure, F.r/ is
the radiative flux from the star integrated over all frequencies, and F	 is the flux at
frequency 	. The luminosity L� D 4�r2F , where the asterisk subscript refers to
stellar properties. Setting the ratio of forces to 1, we find a critical value of

L�=M� D 4�cG= N� D 1; 600Lˇ=Mˇ (5.6)

above which radiation pressure dominates gravity and material can no longer
accrete. The value of N� has been chosen to be the appropriate one1 at the tempera-
tures in the dusty region, where, between T D 1;000 K and T D 300 K, the mean
opacity is roughly constant at 8 cm2 g�1 [420]. This value of L�=M� corresponds
to a main-sequence star of about 15 Mˇ, above which further accretion tends to
be shut off. Note that in the spherical case the accretion luminosity (GM� PM=R�),
where R� is the main-sequence radius, has to be included as well. However, if, as is
likely, much of the accreting material falls onto a disk at radii much larger than that
of a main-sequence star, then the accretion luminosity is less than the main-sequence
stellar luminosity.

Note that the same argument gives the Eddington limit, where, in the absence
of dust, the opacity at the stellar surface is given by electron scattering, N� D
0:2.1 C X/, where X is the hydrogen mass fraction. The critical value of L�=M�
is then 36,500 Lˇ/Mˇ, corresponding to a mass of over 200 Mˇ, comparable
to the highest mass known. Or, if the star is accreting, the spherical accretion
luminosity GM PM=R cannot exceed the Eddington limit, giving a limiting accretion
rate PM � 10�2 Mˇ yr�1 for 100 Mˇ.

In most of the infalling dust envelope, the radiation is thermalized and takes on
the temperature of the local gas. A given layer can continue to collapse onto the star
as long as gravity exceeds the radiation pressure gradient. However an additional
problem occurs at the dust destruction front itself, where the optical/UV radiation
from the star directly impinges on the dust. The mean opacity is higher than 8 cm2

g�1 by about a factor of 3, and in the UV part of the spectrum it reaches 200 cm2 g�1.
Thus one might expect the limiting mass to be much less than 15 Mˇ. This problem
was investigated by Wolfire and Cassinelli [557] who made detailed (spherical)
models of infalling envelopes around main-sequence stars, including detailed grain
properties. They compared the rate of momentum transfer by the material of the
infalling envelope, PM v, where v is the infall velocity, to the rate of momentum input
to the dust from the stellar radiation field L�=c, where c is the velocity of light. The
condition for continued infall at the dust destruction front is

1The flux-weighted mean opacity is approximated by the Planck mean (5.13) in this case.
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PM >
L�

c.2GM�=rd /1=2
(5.7)

where it is assumed that the envelope is at free fall at the dust sublimation radius rd .
Evaluating this expression for a 30 Mˇ star on the main sequence (L� � 105 Lˇ),
PM has to be larger than 8 � 10�5 Mˇ yr�1. For 100 Mˇ the requirement is

10�3 Mˇ yr�1. The initial conditions in a turbulent core mentioned at the beginning
of this section satisfy these conditions.

However condition (5.7) applies only at the dust destruction front. In the outer
regions of the infalling envelope, say at a radius of 100 rd , where the free-fall
velocity is much lower and in fact the infall velocity is less than that of free fall,
the required PM , from (5.7), to allow a 100 Mˇ star to form goes up to more than
10�2 Mˇ yr�1, and for a 30 Mˇ star up to more than 10�3 Mˇ yr�1. Thus the
expected infall PM , based on conditions in the initial turbulent core, is insufficient to
allow the collapse of the outer envelope for a central mass of above about 30 Mˇ . In
that outer envelope, where the radiation has been converted into the infrared part of
the spectrum, the force condition (5.6) still applies, based as previously mentioned,
on a mean opacity in the infrared of 8 cm2 g�1.

Various suggestions have been made regarding overcoming the radiation-
pressure problem for massive stars.

• Non-spherical geometry, with most of the mass arriving at the star through a
disk and most of the luminosity (and associated radiation pressure) going in the
direction of the poles where, also, there may be an outflow cavity

• Collisions and mergers of intermediate-mass stars in the dense core of a young
cluster

• Non-standard grain properties in massive star formation regions, for example,
reduction in grain abundance by a factor of 4 or a considerable increases in the
typical grain size over interstellar values [557]

• A Rayleigh-Taylor instability, visible only in three-dimensional simulations,
which allows material to break through the expanding radiation bubble and
continue to accrete onto the star.

The first point was examined in a full two-dimensional hydrodynamic collapse
calculation, with rotation and radiative transfer included [566]. The initial condi-
tions were similar to that mentioned at the beginning of this section; for initial
masses of 30, 60 and 120 Mˇ the radii were, respectively, 0.05, 0.1, and 0.2 pc.
The initial temperature was 20 K, giving a ratio of thermal to gravitational energy
of 0.05 in each case. Turbulent effects were not included but the initial condition is
consistent with the turbulent core models [354]; effectively the calculation assumed
that the presumed initial turbulence had already decayed. The clouds rotated with
˝ D 5 � 10�13 s�1 in each case. For 60 Mˇ, for example, the mean density
is 1:0 � 10�18 g cm�3, � / r�2, the ratio of rotational energy to the absolute
value of gravitational energy is 0.09, the free-fall time is 6:5 � 104 yr, and PM D
10�3 Mˇ yr�1.
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The equations solved are given in Chap. 4 as (4.9), (4.12), (4.17), and (4.29)
through (4.32), except that the energy equation is expanded to include separate
equations for the radiation energy and the gas energy (see below, Sect. 5.3). The
viscosity parameter ˛visc is set to a constant, for treatment of the evolution of the
disk. Radiation transfer, treated by the method of flux-limited diffusion (Chap. 4),
includes extinction from both absorption and scattering. The grain components that
are included in the opacity calculation are amorphous carbon, silicates, and ice-
coated silicates. The calculation includes the formation of a disk around the central
protostar, as well as its subsequent photoevaporation by the UV radiation from the
central object. Results are compared for two different assumptions regarding the
radiative transfer: first, a “grey” (frequency-independent Rosseland mean opacity)
calculation, and, second, a full frequency-dependent calculation.

The star at the center is not resolved; it is contained in a “sink” zone of
radius 40 AU, into which mass can fall but from which no mass can escape.
The luminosity is determined from stellar evolutionary tracks (Chap. 8) and
includes contributions from contraction, nuclear burning, and accretion. The opti-
cal/UV radiation properties of the central object are calculated, and this radiation
heats the infalling envelope. Fragmentation cannot be treated in an axisymmetric
2-D calculation. A disk similar to those calculated by [566], before the effects of
radiation pressure take hold, is shown in Fig. 5.5.

For the two 60 Mˇ cases, the frequency-dependent case reaches a higher total
mass, 34 Mˇ, as compared to 20 Mˇ in the frequency-independent case, before
radiative acceleration disperses the infalling material. The inflow is first halted
and reversed in the polar direction, allowing accretion to continue in the disk
region in the equatorial plane. In the presence of the disk, the radiation from the
central object becomes highly non-isotropic. This “flashlight effect” results in much
higher radiative flux in the polar direction, where the density is lower than in the
equatorial plane, and the average radiative acceleration is reduced in the disk as
compared with the spherical case. As the final mass is approached, the infall has
been reversed everywhere even though most of the radiation, especially the hard UV
radiation, is directed outwards in the polar direction. The disk is quickly dissipated.
The difference between the frequency-independent (grey) cases and the frequency-
dependent cases arises mainly because the opacity in the UV due to dust is much
higher than the opacity in the IR. Thus the high-frequency radiation, which is the
most effective at accelerating grains outwards, is most strongly collimated toward
the poles, which constitute the lowest-density channel of escape of the radiation.
Thus this radiation is able to accelerate a smaller amount of material outwards than
in the grey case, where the radiation at the mean frequency is less concentrated
toward the pole.

The results show that an initial molecular core mass of 30 Mˇ produces a final
star of mass 31.6 Mˇ in the frequency-dependent case (inflow across the outer
boundary is allowed) and 19.1 Mˇ in the grey case. An initial core mass of 120 Mˇ
produces a final star of mass 42.9 Mˇ in the frequency-dependent case and 22.9 Mˇ
in the grey case. Clearly the correct treatment of radiation transfer has a significant
effect on the final mass. But the result may be dependent on the initial conditions,



198 5 Massive Star Formation

log T   [ K ]

1.5 2.0 2.5 3.0
log ρ   [ g cm-3 ]

-19-18-17-16-15-14

10  km s-1

12008004000400800
Distance from Axis [ AU ]

800

400

0

400

800

D
is

ta
nc

e 
 fr

om
  E

qu
at

or

Fig. 5.5 Example of a calculation in two space dimensions [575] of the formation of a star of
10 Mˇ, including the effects of rotation. The plot is in the (R; Z) plane, where Z is the distance
above or below the equatorial plane, and R is the distance from the rotation axis. The time is
65,000 yr after the start of the collapse of the core of the molecular cloud. The stellar core is
unresolved at the center (0,0) and has a mass of 7.0 Mˇ, the disk has 2.8 Mˇ, and the infalling
envelope has 0.2 Mˇ. The white contours on the right-hand panel correspond to densities of log
� D �18; �16; �14; �12: The white contours on the left-hand panel correspond to temperatures
of log T D 2:0, 2.5, 3.0. The arrows are velocity vectors, with length proportional to speed. Dark
bands in the temperature plot indicate shock compression. Reproduced by permission. c� Annual
Reviews 2007

which used a constant number of thermal Jeans masses for all cases, meaning the
higher masses were initially larger with lower densities and longer free fall times. An
increase in PM for the 120 Mˇ case could have allowed its mass to grow even larger.
An equivalent calculation without rotation was not performed, so it is not clear to
what extent the non-spherical geometry aided star formation. However it is clear
that the original mass limit of 15 Mˇ in the spherical case has been significantly
increased. This result is in fact an upper limit, because outflows were not included.
However the outflows, although they result in mass loss, also clear out a cavity in the
polar direction which would intensify the beaming effect that preferentially directs
radiation toward the poles [280].

The second mechanism, stellar mergers, was considered in a numerical simula-
tion [77]. Observationally, massive stars seem to form in the central regions of rich
stellar clusters. To get a reasonable time scale for collision, however, comparable to
the lifetime of a massive star, the stellar density has to be on the order of 108 stars per
pc3, if collisions between single stars are considered, or 106 stars per pc3 if mergers
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of pre-existing binaries are considered [78]. Even in the center of the Orion cluster
the stellar density (�104 stars per pc3) is nowhere near that high, and in the dense
cluster W3 IRS5 [358] the five observed OB protostars within a radius of 0.015 pc
give a stellar density of �5 � 105 stars per pc3 plus an unknown contribution from
lower-mass stars. The merger scenario would require that clusters produce a short-
lived high-density core, which later reexpands as a result of the ionizing photons
and outflows of the high-mass stars formed there.

The numerical simulation, which is discussed here as an example of cluster
evolution, is a combination of N-body and SPH methods. There are initially 1,000
stars in a bound cluster with a Gaussian density distribution and a mean density of
about 200 stars per pc3. Additionally there is gas with 91% of the total mass. All of
the stars are of equal mass (0.5 Mˇ in the numerical example). The initial cluster
radius is 1 pc, and stars and gas have zero velocity. Initially there are 1,000 thermal
Jeans masses in the cloud. A million particles are used. An SPH particle is assumed
to have accreted onto a star if it is gravitationally bound and if it is within 20 AU.
Two stars are assumed to have merged if they are gravitationally bound and within
2 AU of each other. The calculation was followed until 7% of the gas accreted onto
stars. In fact a high-density core is produced, with �108 Mˇ pc�3, with massive
stars forming there and resulting in mergers. Radiative feedback from the massive
stars was not included, which would tend to decrease the accretion rate of gas onto
stars. The final mean stellar mass is 0.8 Mˇ and the most massive star has 50 Mˇ.
During the simulation, 19 mergers occur, 5 of which help to build up the most
massive star. A number of binaries are produced by 3-body capture. The mergers
are generally produced by hardening of close binaries. The term “hardening” refers
to loss of angular momentum from the orbit of the binary, and consequent shrinking
of the orbit. The loss of angular momentum occurs partly from interactions of a third
star with a pre-existing binary, partly from accretion by the binary of low-angular-
momentum gas, and partly from transfer of angular momentum from the orbit to a
circumbinary disk. In the simulation being described, the actual merger processes
took place as a result of a close encounter of the binary with a third star, which
carried away some angular momentum. The most massive star, which is a binary,
obtained half of its mass by gas accretion and the other half by mergers. The mass
function at the end looks strikingly like the IMF of Salpeter (dN=dm / m�2:35).

The specific outcome may have been affected by the initial conditions and the
liberal criterion for a merger to occur, but the authors probably are correct in
pointing out that the formation of a massive star must be considered not in isolation,
but in connection with the formation of an entire cluster. Also, a model of this type is
reasonably consistent with the high percentage of massive stars that exist in binaries.
Although the binary merger process produces, at least temporarily, a single star, it
is easy for the object to capture a new star into orbit, in the dense environment in
the cluster center. A problem is, however, that mergers would tend to suppress the
formation of disks and associated outflows.

An observational result, however, seems to cast considerable doubt upon the
merger scenario. Observations of v sin i , the spectroscopic rotational velocity of
young stars in the range 0.2–50 Mˇ[556], show that the ratio of the rotational
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velocity to the equatorial breakup velocity (centripetal acceleration equal to gravity
at the equator) is nearly constant with mass and has a median value of � 0:15.
There is no sign of a discontinuity over this entire mass range. Furthermore the
specific angular momentum of rotation is a smooth function of mass, again, with
no evidence of a discontinuity. This observation suggests that there is a unique star
formation mechanism, at least up to 50 Mˇ: if mergers played a role at high mass
one would expect rotational velocities above the average in that mass range. Thus,
while the occurrence of mergers is not ruled out, they probably play a minor role in
massive star formation.

The third point, involving the suggestion that grain properties are somehow
different in high-mass star forming regions as compared with the interstellar
medium in general, has little if any observational support. As mentioned above, it
would take a significant reduction in the dust-to-gas ratio to allow the formation
of a 60 Mˇ star. However it is conceivable that in the process of collapse, the
grain properties could be modified by coagulation: at a given total mass, the mean
opacity of large grains is significantly less than that of small grains. A calculation
involving 30 grain species [496] showed that coagulation and settling effects became
important in the disk once it had formed, and shattering effects become important in
shocked regions, but the effects were negligible in the infalling material outside the
disk. Thus at best the grain effects could reduce the radiative acceleration in the disk.

The last point, three-dimensional effects, is discussed in the next section.

5.3 Full 3D with Radiation Transfer

The key to solving the massive star problem is to perform full three-dimensional
numerical simulations with radiation transfer. Here the physics becomes very com-
plicated, and the amount of mass growth that can be followed becomes somewhat
limited. A further problem that must be overcome is that inevitably very dense
localized regions form, which severely limit the time step (Chap. 4). In SPH, the
particles in such a region, once a certain density criterion is met, are combined into a
single “sink” particle which is treated according to N-body dynamics. An analogous
method has been developed for Eulerian grid-based numerical simulations [279].
The main questions that 3-D simulations could answer that could not be answered
in 2-D are the following: (1) will the 100 solar mass collapsing cloud actually build
up into a massive star, or will it fragment into small pieces? and (2) are there 3-D
effects that permit the accretion to high masses, in spite of the problem of radiation
pressure?

First we extend the set of equations given in Chap. 4 to three space dimen-
sions, including radiative transfer in the flux-limited diffusion approximation, and
including the dynamics of both the gas and the sink particles, which in fact are
unresolved protostars. In two space dimensions the sink particle is fixed at the center
and is more accurately called a sink zone; it is allowed to accrete mass. In 2D the
center is the only likely location where a high-density region might form. In three
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space dimensions a high-density concentration may occur anywhere in the grid, and
the sink particles are followed as Lagrangian elements as they move through the
grid and accrete mass. The set is further extended over that in Chap. 4 to include
separate equations for the energy of the gas and the energy of the radiation. The
following equations [275, 277] are written in a cartesian coordinate system and
neglect quadratic and higher-order terms in v=c:
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r2˚ D 4�G Œ� C ˙i Miı.x � xi/� : (5.12)

Here xi, PMi; pi, and Mi are respectively the position, mass accretion rate,
momentum, and mass of the i th sink particle. The quantities �, v, E, and urad are
respectively the gas density, the gas velocity, the internal plus macroscopic kinetic
energy, per unit mass, of the gas, and the energy per unit volume in the radiation
field, in the rest frame of the computational grid. [Note that in (4.16) the quantity E

is just the internal energy per unit mass of the gas, not including the kinetic energy].
In (5.8), (5.9), and (5.10), the last term represents, respectively, the rate of transfer

of mass, momentum, and energy, per unit volume, from the gas to the particles by
accretion. Thus P�i is the rate of transfer of total energy, thermal plus kinetic. The
summation ˙i is over the i sink particles that have been created. In (5.11) the last
term represents the energy input to the radiation field arising from the luminosities
Li of the protostellar sink particles. This term in an important feedback mechanism.
Each particle is followed as it accretes gas, and the appropriate luminosity is
calculated according to evolutionary models of isolated protostars. The function
W.x � xi/ is a weighting function, with dimensions of inverse volume, which
defines the region in the gas flow which is affected by accretion onto particle i ,
which is taken to be a few grid cells in the vicinity.

In (5.8) through (5.11), the second term on the left-hand side represents the
advection of the relevant variable arising from the flow through the fixed grid. In
(5.12), ˚ is the gravitational potential and ı is the Dirac delta function, chosen to
represent the spike in density at xi. The Rosseland mean opacity �R is given by
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(8.40), and the Planck mean �P is

�P D 1

B

Z
�	B	.T /d	 (5.13)

where B is the Planck function B	.T / integrated over all frequencies. Both of these
mean opacities are independent of the local radiation field and can be tabulated
as a function of density, temperature and composition. In (5.10) and (5.11) the
terms involving .4�B � curad/ represent the exchange of energy between matter
and radiation: the term �P �4�B is the radiation emitted by the gas, while the term
involving curad is the radiation absorbed. The quantities �P and �R are evaluated in
the reference frame comoving with the gas, while all other quantities are evaluated
in the fixed rest frame of the grid.

The first term on the RHS of (5.10) represents the rate of work done by the
gas through expansion or contraction, and the second represents the effect on the
energy generated by the external force of gravity. The first term on the RHS of (5.11)
represents the energy transferred by radiation (see 4.9). The quantities relevant to
flux-limited diffusion [316] are
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where 
 is the flux limiter and R2 is the Eddington factor.2 An alternate approxi-
mation for 
 is given in Chap. 4. In (5.9) the term �
rurad is the radiation force
�R�F=c, where F is the radiative flux; (this term is analogous to the rP term for the
gas). The r˚ term represents the gravitational force. In (5.10) the term involving

vrurad is the work done by the radiation field on the gas, and in (5.11) the same
term with a minus sign represents the work done by the gas on the radiation field.
The second term on the LHS of this equation represents the advection of radiation.

The individual protostars, once formed, move through the gas according to

dxi

dt
D pi

Mi

and
dpi

dt
D �Mi r˚ C Ppi (5.17)

where, in the momentum equation, the first term on the right-hand side represents
the gravitational effect and the second the accretion effect. A crucial quantity is

2In general, the Eddington factor, either at a given frequency or integrated over all frequencies,
is the ratio of the radiation pressure to the radiation energy density. It usually varies between the
values of 1/3 (for a nearly isotropic radiation field) and 1 (for a highly beamed, non-isotropic,
radiation field).
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then PMi , the gas accretion rate onto the sink particles, which can be roughly
approximated by the Bondi-Hoyle-Lyttleton rate. If a point mass moves through
a medium with density �1 at a velocity v1, it accretes at the Hoyle-Lyttleton
rate [235]

PM D 4�G2M 2�1
v31

(5.18)

where the density and velocity are defined at a distance reasonably far from the
point mass. Bondi [76] then extended this formula to include gas pressure within a
medium with sound speed c1. The revised formula, usually known as the Bondi-
Hoyle accretion rate, is

PM D 4�G2M 2�1
.v21 C c21/3=2

: (5.19)

However, as pointed out by [152] there are numerous simplifying assumptions in
this formula, as compared to the actual accretion flow in the protostar. For example,
the gas in the accretion flow is assumed to have negligible mass in comparison with
the point mass. In actual numerical simulations the accretion rate onto the particles
is adjusted to local flow conditions, using (5.19) as a guide [279].

Numerical simulations of the formation of a massive star from a turbulent core
have been reported, but this difficult computational problem is still work in progress.
An example is a full three-dimensional collapse calculation with grey radiative
transfer, using mean opacities �R and �P and radiative feedback from the cores
that have formed, with an adaptive-mesh grid code [276]. The initial condition is a
turbulently supported core of radius 0.1 pc and 100 Mˇ, with a centrally condensed
density distribution. The turbulence is allowed to decay. Some fragmentation occurs,
but much less than what happens if the run is approximated to be purely isothermal
with no feedback. It is mainly the increase in temperature of the infalling gas,
generated by the luminosity of the main core, that limits fragmentation. The results
show that most of the mass goes into one dominant star with most of the mass
being added by accretion of gas rather than by mergers. It gains mass at 10�3–
10�4 Mˇ yr�1. A disk forms around the massive star, and gravitational instability
results, producing rapid accretion onto the star as well as disk fragmentation. Most
of the fragmentation in fact occurs in the disk, but the fragment masses remain low,
and some of them merge with the central star. An example of the disk fragmentation
is shown in Fig. 5.6. This occurs about 20,000 yr after the beginning of the
simulation. However the central star, which is accepting mass from the disk at a
rate of 10�4 Mˇ yr�1 at this time, continues to accrete, and relatively little mass
goes into the fragment.

In two different runs up to 2 �104 yr (only about 1/3 of the initial mean-
density free-fall time) the most massive star accreted 5.4 and 8.9 Mˇ, respectively,
so the effect of stellar UV radiation on the further buildup of the star was not
considered. The two runs differ only in the statistics of the initial spectrum of
velocity perturbations, which correspond to those expected in supersonic turbulence.



204 5 Massive Star Formation

Fig. 5.6 Numerical 3D simulation of the formation of a massive star from a turbulent core. Stars
are indicated by crosses. The upper panel, at a time of 17 kyr, shows the column density, integrated
along lines of sight face-on to the disk as a function of position in the (x; y) plane (left) and
perpendicular to the disk axis in the (x; z) plane (right). Distances on the axes are given in AU.
The lower panel shows the same at 20 kyr. The generation of spiral arms as a result of gravitational
instability is evident. The fragment that has formed in the disk at the later time has a mass of
only 0.2 Mˇ, in comparison to the central protostar, which has a mass of 5.4 Mˇ. Reproduced by
permission of the AAS from [276]. c� 2007 The American Astronomical Society

The overall conclusion is that massive stars form from massive cores, and that
mergers play only a minor role.

Further calculations from a similar initial condition allowed the calculation to be
carried to a higher total mass [277]. The angular momentum, instead of arising
from the random turbulent velocity field, was assumed to be generated by an
overall uniform rotation with rotational energy 2% that of the absolute value of the
gravitational energy. At 57 kyr the configuration consisted of a binary with masses
41.5 Mˇ and and 29.2 Mˇ with an estimated semimajor axis of 1,280 AU (Fig. 5.7).
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Fig. 5.7 Numerical 3D simulation of the formation of a massive star system from a uniformly
rotating core of 100 Mˇ [277]. Stars are indicated by crosses. The upper panels correspond to a
time 41.7 kyr, the lower, to 55.9 kyr. The logarithmic color scale indicates the column density in
a plane perpendicular to the rotation axis, with a range from 10�1 (dark blue) to 103 (orange)
g cm�2. The box size is 966 AU in the right-hand panels and 3,864 AU in the left-hand panels.
The generation of a massive binary is evident; note circumstellar disks as well as circumbinary
material. The orbit expands with time and reaches a semimajor axis of 1,280 AU at the end of the
simulation. From Krumholz et al.: Science 323, 754 (2009). Reprinted by permission of the AAAS.
c� The American Association for the Advancement of Science

Young O-type stars in fact are often contained in systems with similar properties.
The companion again was formed by disk fragmentation.

Once the star reached about 17 Mˇ, radiation effects became important and gas
was driven outward in the polar direction. Along with this outflow a “radiation
bubble” developed, both above and below the equatorial plane, in which radiation
pressure dominated gas pressure. At least two different effects allowed continuing
accretion onto the star. Infalling gas hit the boundary of the bubble and was shocked.
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However it was able to travel along the edge of the bubble until it hit the disk,
which was shielded from the radiation and allowed continued accretion onto the
star. Eventually, when the radiation pressure became strong enough, a second effect
took over. The bubble itself became unstable and non-axisymmetric, developing
a clumpy structure. Most of the mass became relatively dense in the clumps, and
because of the high optical depth there, the radiation tended to flow around the
clumps through the low-density material between them. The radiation can ionize
and heat the low-density material, and the resulting expansion of these regions can
further compress the higher-density clumps. The net force on the clumps themselves
resulted in inward motion even though, on the average over the surface, the radiation
pressure gradient dominated the gravitational force. This effect is a form of the
classical Rayleigh-Taylor instability, which involves a heavy gas on top of a light
gas in a gravitational field: dense fingers of the heavy fluid move downwards through
the light fluid. In the massive star case, the radiation-filled cavity plays the role of
the light fluid. Material continues to infall onto the disk, and buildup of mass is
expected to continue after the 57 kyr cutoff, up to an undetermined final mass. The
final mass of 41.5 Mˇ is considerably higher than the maximum mass obtained
in 2-D simulations (22.9 Mˇ) with similar assumptions regarding the radiation
transfer but somewhat different initial conditions [566]. Again, most of the mass
growth occurred through gas accreting through the disk, not by collisions with small
fragments.

At least three additional effects, not included in the above calculation, could
tend to allow further accretion onto the star despite radiation pressure. First, the
calculation used grey radiation transfer rather than frequency-dependent transfer, in
view of computer time limitations. In 2-D, as mentioned above [566], frequency
dependence allowed accretion to a higher mass than did grey radiation transfer. The
same trend is likely in 3-D. Second, outflows were not considered. While they do
limit the amount of mass that finally accretes onto the star(s) to roughly 1/3 that of
the initial molecular cloud core, they reduce the effect of radiation pressure over
much of the solid angle away from the pole by allowing much of the radiation
to escape along the polar outflow cavity, thus accentuating the “flashlight effect”.
Third, if magnetic fields had been included, the photon bubble could have developed
another instability [520]. The instability occurs if magnetic pressure and radiation
pressure are larger than gas pressure and the bubble is optically thick to its own
thermal photons. Shocks develop in the infalling gas, allowing dense regions of
gas to form and to continue to move inward, while allowing the photons to escape
through the low-density regions between the shocks.

The overall conclusion is that although the problem has not been completely
solved, there are reasonable physical mechanisms that can overcome the radiation
pressure barrier to the formation of a massive star. However, the two examples
discussed above show that the details of the outcome are sensitive to even small
changes in the initial conditions, for which there are many possibilities. A further
calculation [275] shows how the outcome depends on the assumed surface density
of the molecular cloud core. As above, the core contains 100 Mˇ and includes a
random turbulent velocity field such that the kinetic energy is comparable to the
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gravitational energy. Surface densities of 0.1, 1, and 10 g cm�2 are considered.
For the lowest value, radiation feedback effects are relatively unimportant, and
fragmentation produces a cluster of low-mass stars. For the highest value, most of
the mass that ends up in stars is contained in a single massive star. Fragmentation
is suppressed because of the heating of the gas by the radiation resulting from
accretion onto the first protostellar cores. In the high-surface-density case, the higher
density results in higher PM and therefore higher accretion luminosity than in the
low-surface-density case. Furthermore, the high-density gas has a higher optical
depth and is able to trap the radiation more efficiently than in the low-density case.
This result reinforces the conclusion that massive stars are most likely to form from
molecular cloud cores of high surface density.

5.4 Massive Star Formation: Competitive Accretion
or Monolithic Collapse?

There has been an ongoing debate regarding the mechanism for the formation of
massive stars, which involves primarily the initial condition for the formation. In
the models described in the previous section, the basic premise was that a single
molecular cloud core of �0:1 pc size would result in the formation of a single, or
perhaps a binary, massive star, provided that the surface density is high enough.
The cloud core has presumably formed by condensation from a much larger unit,
a molecular cloud clump with a mass of thousands of Mˇ, but once the core has
formed, the resulting collapse is little influenced by the remainder of the material
in the clump, which is overall stable to collapse under gravity. Thus low-mass stars
would form from individual low-mass cores, and high-mass stars from high-mass
cores. The entire mass of the core would not necessarily go into the final star; there
is an efficiency factor involved as a result primarily of outflows during the formation
process, but that factor is likely to be fairly uniform over a set of cores. This model
is often referred to as monolithic collapse.

There are several observational consequences of this picture. First, the initial
mass function of stars is essentially already determined by the process of fragmen-
tation of the cloud clump to form the cores. Thus the observed core mass function
must be very similar to the observed IMF. There is considerable observational
evidence that this is in fact the case. For example, in the mass range 0.5–3 Mˇ[370]
and in the range 1.7–25 Mˇ [53] the core mass spectrum dN=dm / m�2:5 (with
substantial uncertainty at the massive end), very close to the stellar mass spectrum.
Second, the fact that the cores in the model are non-interacting strongly suggests
that the efficiency of star formation in a given clump should be relatively low, that
is, only a small fraction of the clump actually evolves to cores that are unstable to
gravitational collapse, over a dynamical time. The comparison with observations is
accomplished through the use of (2.56), the efficiency of star formation per free-fall
time �ff [283]. The results, based on structures in the density range 102 � 105 cm�3,
show an efficiency of only a few percent per dynamical time, not too different
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from the overall value in larger-scale molecular clouds, about 1% per free-fall time
[576]. Third, in young systems, the spatial distribution and velocity distribution of
young stars and cloud cores should be similar, again reasonably consistent with
observations [274].

The second model, competitive accretion, is based on the premise that star
formation is controlled not by collapse of individual cores, but by the overall
collapse of a much larger region, containing initially gas with several thousand
Mˇ. The fragmentation into a cluster of stars, containing high-mass and low-mass
members, takes place after the overall collapse has started. Individual fragments
form at low mass and compete for the accretion of the remaining gas; also there
can be interactions among the various fragments. One might expect a massive star
to form in the center, since as the cloud collapses and develops a gravitational
potential well, a considerable amount of gas can be funnelled toward the center. In
fact massive stars are found to be preferentially located near the centers of clusters,
but it is not entirely clear that they formed there. They could have settled to the
center after formation as a result of dynamical interactions with other stars. Thus
massive stars do form, but the majority are low-mass, because the typical thermal
Jeans mass at 10 K in such a cloud is about 1 Mˇ. In this picture, then, massive stars
must form in clusters, as is generally observed.

An example of a calculation involving competitive accretion [37] involves an
SPH calculation with sink particles, starting with a cloud of 500 Mˇ and a radius
of 0.4 pc, mean density of about 105 cm�3 and a temperature of 10 K. Although the
typical star-formation clump actually is somewhat larger than this, computational
requirements limit the size of the region that can be practically computed, and
the basic features of a competitive accretion model should be represented. With
a total of 3 � 107 particles, masses down to the brown dwarf range can be resolved.
Radiative feedback from the stars that have formed is not included, nor are magnetic
fields. The initial cloud is supported against collapse by an assumed turbulent
velocity field, with turbulent energy approximately equal to the absolute value of
gravitational energy, and with random turbulent velocities consistent with Larson’s
linewidth – size relation. As the evolution starts, shock dissipation results in a loss
of turbulent energy, and collapse begins. The initial fragmentation of the cloud into
low-mass cores is followed by the buildup of the mass of these cores primarily as
a result of competitive accretion. The cores themselves would exist only for a very
transient period before developing protostars in their interiors; thus the “starless
core” phase is brief, and by the time a fragment has built up to high mass, it is very
likely to contain an infrared source.

The end result of the calculation was the production of 459 stars and 795 brown
dwarfs, with an overall mean mass of 0.15 Mˇ. Thus the overall star formation
efficiency was high, about 20% in 1.5 initial free-fall times. Several subclusters
formed, which then merged into one centrally condensed cluster. In the centers of
the subclusters the formation of massive stars could begin. In the actual simulation
the most massive star to form had about 7 Mˇ, but it was continuing to accrete.
(A similar simulation [79] with a higher total cloud mass but fewer SPH particles
produced a star of 27 Mˇ). The IMF is in good agreement with the observed one
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Fig. 5.8 The initial mass function produced in a numerical simulation of cluster formation with
an initial total mass of 500 Mˇ. The single-hatched region includes all 1,254 stars and brown
dwarfs that were formed, while the double-hatched region includes only those objects which have
stopped accreting. The line labelled “Salpeter” gives the Salpeter IMF [443], that labelled K01
gives the Kroupa IMF [270], and that labelled C03 gives the Chabrier IMF [107]. Credit: M. R.
Bate: MNRAS 392, 590 (2009). By permission of John Wiley and Sons. c� Royal Astronomical
Society

down to about 0.1 Mˇ (Fig. 5.8) but it overproduces brown dwarfs. Numerous
comparisons with the observed properties of binary and multiple systems are
possible; they are treated in Chap. 6. The main mechanism for termination of
accretion onto a given fragment is dynamical interaction with another fragment,
ejecting it into a region where little gas density remains. Thus brown dwarfs could
maintain their low masses by ejection from an unstable multiple system, soon after
formation [431].

The main criticism of the competitive accretion model is that it is very efficient.
If the three-dimensional calculations had been continued for longer times, most of
the mass in the initial clouds would have ended up in stars. This problem is most
likely a result of the neglected physical effects – radiative feedback and magnetic
fields – both of which tend to suppress fragmentation. The higher temperatures
near stars caused by radiative feedback tend to suppress disk fragmentation. In
fact, simulations [38, 424] with magnetic fields and radiative feedback included,
but with a much smaller initial cloud mass because of computational limitations,
at least partially resolve these problems. The mean stellar mass increases and
overall star formation efficiency per free-fall time drops to below 10%, in better
agreement with observations. A further simulation of cluster formation [526] using
SPH with an initial volume of about 1 pc3 and a mass of 760 Mˇ includes heating
from the accretion luminosity and the contraction luminosity of the protostars that
form. Compared with an isothermal simulation with the same initial conditions, the
heating results in far fewer fragments and an increase in the average mass, clearly
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favoring the formation of massive stars. Another result of the calculation is that the
accretion rate onto a given protostar is highly variable in time.

Thus the advantages of the competitive accretion model are, first, that it considers
the massive star formation problem in the context of cluster formation, a picture
which is consistent with observations. Second, it is able to predict an initial mass
function, also consistent with observations. Third, it can be used to explain the
observed properties of binary and multiple systems. However the computational
demands for this model, considering the large number of stars that eventually are
produced, are markedly greater than for the monolithic collapse model, to attain the
same level of physical input and numerical resolution.

5.5 Summary

It is clear that high-mass star formation differs from low-mass star formation, but in
general there is not a sharp distinction: in many respects there is a smooth transition
between the two cases, as regards, for example, the importance of radiation pressure
in the infalling protostellar envelope and the ratio of time scales of accretion and
quasi-static contraction to the main sequence. There is no obvious change in slope
of the initial mass function in the high mass region as compared to the 1–10 Mˇ
region, although the IMF at high masses is difficult to determine. High-mass stars
form in turbulent cores, but again there could be a smooth transition between weakly
turbulent low-mass cores and highly turbulent high-mass cores. There is no clear
observational evidence on this point.

Bipolar outflows are observed among high-mass protostars, and their properties
are similar but scaled-up versions of those of low-mass stars, although at the
very high-mass end they appear to be less sharply collimated. Their formation
mechanism, as in the low-mass case, is likely to be magnetic interaction near the
star-disk interface, with radiation pressure playing a lesser role. Disks are thus
inferred to be present among high-mass stars, although the observational evidence
is scant, and they are certainly produced in numerical simulations.

There does appear to be a smooth transition in the binary frequency as a
function of mass, with high-mass stars formed preferentially in binaries or higher-
order multiples. In the monolithic collapse picture of massive star formation,
the binary formation mechanism is fragmentation in a massive, gravitationally
unstable protostellar disk. In the competitive accretion scenario, the preferred
formation mechanism is three-body capture in a young cluster-formation interactive
environment, although some disk fragmentation is possible as well. The question of
binary formation is considered in more detail in the next chapter.

In the monolithic collapse picture, supersonic turbulence in molecular clouds,
in a region that is overall stable to gravitational collapse, produces occasional
high-density fluctuations which can form molecular cloud cores and then collapse
as individual stars. Thus fragmentation occurs first, then collapse. There is little
interaction between cores once they have formed. Observations show that the mass
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function of the cores is very similar to that of the observed IMF. Thus the mass
function of the cores determines the mass function of the stars, taking into account
an efficiency factor, most likely caused by outflows, of roughly 50%. Thus massive
stars form from massive cores. Radiation feedback, as well as magnetic fields,
prevent the core from fragmenting into many small pieces.

In the competitive accretion picture, a region of a molecular cloud, containing
perhaps a few thousand Mˇ, becomes overall unstable to collapse, overcoming the
effects of turbulent pressure. Fragmentation into smaller masses then occurs after the
overall collapse starts. The fragmentation starts with a number of low-mass cores,
which compete for the remaining gas. The fragments can interact strongly once they
are formed. The central regions are favored to accrete more gas than the outlying
regions, and massive stars tend to form there. Mergers of fragments can occur, and
the spiralling together of the massive components of a close binary system could
be a way of producing a very massive star. The end result is the formation of a
cluster, with massive stars preferentially at the center. Numerical simulations of this
process also show that the mass function is in very good agreement with the IMF.
Whether this process or the alternative one dominates is yet to be worked out, but
the structure of observed molecular clouds could account for both possibilities.

A significant feature of high-mass stars is their production of ionizing photons,
which, above a threshhold level, can ionize and eventually disrupt the surrounding
molecular cloud material, suppressing further star formation in the region. However
this property does not depend on any particular star-formation mechanism.

There is in fact an internal barrier to formation of very massive stars, caused
by the high luminosity of the stellar core once it reaches the main sequence at 10–
20 Mˇ, while still accreting. The collapse of dusty infalling regions can, in principle,
be reversed by the radiative force exerted by the stellar photons. A combination
of effects can allow inflow to continue; they include (1) a high accretion rate
(�10�3 Mˇ yr�1) which is a consequence of the relatively high density and
consequent short free-fall time in the initially turbulence-supported molecular cloud
core, (2) disk formation and bipolar outflows, which channel the radiation in the
polar direction and allow accretion through the disk, and (3) hydrodynamic and
hydromagnetic instabilities, evident only in three-dimensional simulations, in which
“fingers” of high-density infalling material can penetrate through the high-radiation-
pressure environment and accrete onto the stellar core. Nevertheless there is an
upper limit to the mass of a star, and, although it is not clear what causes the limit,
the effects of radiation pressure, outflows, and the formation of HII regions may all
be significant.

5.6 Appendix to Chap. 5: Determination of the IMF

The basic quantity to be determined is the initial mass function, usually given the
symbol �.log m/, which is the number of stars formed over the history of the galaxy
in a given volume of space, per unit logarithmic mass interval. It is usually expressed
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as number of stars per unit volume. However Scalo [447] defines it per unit area,
that is, the number of stars per pc2 in the Galactic disk. To get the volume density in
this case one must divide by the scale height of the Galactic disk for the particular
population of objects that is being counted. The IMF includes stars which have
evolved and are no longer visible. It can be normalized in various ways, for example
it could be defined as the fractional number of stars in the given mass interval in the
given volume. It is also useful to define the slope of the IMF,

� .m/ D �@ log �.log m/

@ log m
jm; (5.20)

which is independent of mass if the mass function is a power law, and which for the
Salpeter IMF gives � D 1:35.

A summary of the actual procedure, based on field stars in the nearby region
of the Galaxy, follows [107, 271, 447]. It should be emphasized that the procedure
is complicated enough so that numerous uncertainties are introduced, particularly
for massive stars. It is assumed that �.log m/ is time-independent and a smooth
function of mass. The fundamental observed quantity is the luminosity function,
�.Mv/, which is the total number of stars observed at absolute visual magnitude Mv

per unit volume, per unit magnitude interval. Note that distances are needed for all
stars included in the count. The main-sequence stars in the sample are then used to
convert this distribution into a mass function �ms.log m/, from the main-sequence
mass-luminosity relation. This mass function is the number of main-sequence stars
per unit volume, at mass m per unit logarithmic mass interval. It is obtained from
the relation

�ms.log m/ D �.Mv/

�
dMv

d log m

�
gms.Mv/ (5.21)

where gms is the fraction of stars at a given Mv that are on the main sequence, that
is, the actual observations are corrected for stars that have evolved away from the
main sequence. The derivative in brackets is obtained from the well-known main-
sequence mass-luminosity relation obtained from stellar models and calibrated
through use of those stars, in binaries, whose masses can be determined directly.
The relation that should be used in the brackets is the average luminosity of a main-
sequence star of a given mass during its main-sequence lifetime.

The function �ms.log m/ is known as the Present-Day Mass Function (PDMF).
However, particularly for massive stars, that is not the same as the IMF, which refers
to the frequency distribution of stellar masses at birth in the region considered,
integrated over the lifetime of the Galactic disk. However the massive stars evolve
in a time short compared with the lifetime of the galactic disk, so a correction must
be made for stellar evolution, taking into account the main-sequence lifetime of a
star of given mass as well as the history of star formation over the lifetime of the
disk. For stars less than about 0.9 Mˇ, whose main-sequence lifetimes are greater
than the age of the disk, the PDMF is essentially the IMF.
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To make the correction, define a “creation function” C (log m, t) which is the
number of stars born per unit volume in the disk during the time interval t to t C dt

in the mass range log m to log m C d log m, averaged over a suitably large volume
around the Sun. This function is distinct from the “birthrate”, to be defined below.
Let the age of the galactic disk be T � 1:0 � 1010 yr. Then the total number of stars
ever formed in the particular region of the Galaxy, per unit volume, is

Ntot D
Z log mhigh

log mlow

Z T

0

C.log m; t/ dt d log m (5.22)

where mhigh and mlow are respectively the upper and lower limits to stellar mass.
For stars with main-sequence lifetimes �.m/ < T , the PDMF is

�ms.log m/ D
Z T

T ��.m/

C.log m; t/dt (5.23)

because all stars born between t D 0 and T � �.m/ have evolved away from the
main sequence. And the actual IMF is

�.log m/ D
Z T

0

C.log m; t/dt: (5.24)

Now assume that the creation function is a product of separate functions of mass
and time, C (log m; t) = H.log m/B.t/ where B.t/, the birthrate function, is the total
number of stars born per unit volume per unit time at time t . The quantity H.log m/

is closely related to the IMF, as shown below. As mentioned above, �.log m/ is
time-independent but the birthrate can vary with time.

B.t/ D
Z log mhigh

log mlow

C.log m; t/d log m: (5.25)

Thus the average birthrate, over the entire lifetime of the galactic disk, is

hBi D 1

T

Z T

0

B.t/dt: (5.26)

Now define the relative birthrate b.t/ as the absolute birthrate in units of the average
birthrate:

b.t/ D B.t/

hBi : (5.27)

Thus for example at the present time b.T / is the birthrate now divided by the
average birthrate in the past. The function b.t/ has the property
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Z T

0

b.t/dt D T: (5.28)

Now combine different expressions for Ntot and use the definition of �.log m/

Ntot D
Z log mhigh

log mlow

Z T

0

H.log m/B.t/ dt d log m

D hBiT
Z log mhigh

log mlow

H.log m/d log m

D
Z log mhigh

log mlow

�.log m/d log m (5.29)

so
�.log m/ D hBiTH.log m/ (5.30)

and the creation function can be expressed as

C.log m; t/ D �.log m/
b.t/

T
: (5.31)

Then the IMF is given by (5.23)

�.log m/ D �ms.log m/TR T

T ��.m/
b.t/dt

(5.32)

which again is the number of stars ever formed in the disk per pc3 per unit (log m)
interval. This expression holds if �.m/ < T ; otherwise �.log m/ D �ms.log m/.

Note in fact that the IMF is observed to be continuous across the boundary
between low-mass stars and high-mass stars, so in itself it does not provide any
evidence in favor of different star-formation mechanisms in the two groups.

For massive stars, �.m/ << T , so

�.log m/ D �ms.log m/T

�.m/b.T /
: (5.33)

For a star with a main-sequence lifetime of only 3 Myr, the correction to �ms.log m/

to get �.log m/ is very large, up to several thousand, assuming b.T / is of order
unity. In fact there are several arguments [447] which indicate that the past average
birthrate did not differ from the present birthrate by more than a factor 2. Note
also that the main-sequence lifetime of a star of 2 Mˇ is about 109 yr, so that the
approximation applies. Only for the mass range 1 � 2 Mˇ does one need to know
the detailed star formation history b.t/.

An alternate method for determining the IMF is through observations of star
clusters. A cluster’s age can be reasonably well determined, and typically the spread
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of ages in a given cluster is much less than the actual age. Thus the luminosity
function below the main-sequence turnoff directly gives the IMF for that cluster,
without the necessity of corrections for stellar lifetimes or a variable past history of
the stellar birth function. The IMF so derived represents a particular time point in
Galactic evolution; it is not integrated over time as is the case for the IMF derived
for the field stars. However, the slopes in various mass ranges can be compared
between different clusters and between the clusters and the field. It should be noted
that the cluster formation process depends on local conditions and may not reflect
the IMF on larger scales in the Galaxy. The main problem with most clusters is that
the total number of stars, particularly massive stars, is relatively small, so there will
be statistical fluctuations in the IMF. Also, clusters tend to be mass-segregated, with
more massive stars at the center and low-mass stars in the outer regions. A true IMF
must include all the low mass stars, for which it is difficult to establish membership.
In fact some of lowest-mass members may have escaped. In relation to the massive
star problem, those clusters with massive stars still in them are the youngest clusters,
for which the spread in ages is comparable to the actual age. A correction must be
made for stars that have evolved, as well as for a possible non-constant birthrate
function.

An independent method for obtaining the IMF is to use very young clusters, most
of whose stars are in the pre-main-sequence phase. Here the mass-luminosity rela-
tion cannot be used, and stellar masses are obtained from theoretical evolutionary
tracks. This method is described in more detail in Chap. 8.

In spite of the difficulties involved in determinations of the IMF, its form in the
galactic disk and in clusters, including globular clusters, is very similar. There are
cluster-to-cluster variations in � , but on the average, the results are consistent with
� � 1:35 above 1 Mˇ. Below that mass, it is clear that there is a reduction in
� , with a turnover to negative values at a characteristic mass of about 0.2 Mˇ.
In the brown dwarf regime the IMF is also uncertain, as indicated by the two
different approximations to it given in Fig. 1.3. There is no mass-luminosity relation
for brown dwarfs, because they never reach the main sequence. Thus ages need
to be estimated to determine the IMF for brown dwarfs; given an age, the mass
corresponding to a given luminosity can be obtained from theoretical evolutionary
tracks. Brown dwarf IMF’s can be determined in young clusters [108] where the
ages are known, and it is clear that the number of brown dwarfs decreases with
decreasing mass, down to � 0:02 Mˇ, and there is negligible difference between
the cluster IMF and the field IMF for these objects. Taking into account Poisson
noise, dynamical evolution of clusters, and the corrections needed for undetected
binaries, there is no solid evidence for a variable IMF among the various systems
in the Galaxy that have been observed [107, 270]. An exception could be the IMF
near the Galactic center; there has been considerable discussion about a possible
difference in the IMF there versus the rest of the Galaxy. Also, in the case of
primordial star formation (Chap. 7), with zero metal abundance, it is very likely
that the IMF differed from that in the present Galaxy, but it is not possible to obtain
the relevant observations.
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Note the numerous problems in determining the IMF:

• To get the luminosity function, distances must be known and reddening must be
corrected for

• Stars move through the galactic disk during their lifetime
• The corrections to the PDMF to obtain the IMF for massive stars are large
• There is a limited number of observable massive stars
• The correction for unresolved binaries can be significant and has not been

included in the above analysis [270]
• There is mass segregation in the Galactic plane
• In clusters there are problems with small-number statistics, especially for massive

stars, and with the possible escape of low-mass stars
• In clusters, membership is a problem; however one can assume that all stars have

about the same age and distance.

Figure 5.9 gives an example of the comparison between the IMF and the PDMF
for stars above 1 Mˇ, as derived from observations for field stars in the galactic disk.

Star formation is known to occur in molecular clouds with supersonic turbulent
velocities in which magnetic fields also play a role. Thus the IMF is determined by
the complicated physics of such a region. A definitive theory of the IMF has yet to be
worked out, yet important contributions toward that goal have been presented. The
numerous theories that have been presented [81, 107, 160] include both analytical
and numerical approaches, and many of them do provide satisfactory agreement
with the observations. One of the many numerical examples is shown in Fig. 5.8
which shows that the simulation of fragmentation and cluster formation can produce
a reasonable IMF. In this case competitive accretion is the main process that shapes

Fig. 5.9 Comparison of the IMF for single objects in the region of the Galaxy close to the Sun
(solid line) and the present-day mass function (dashed line). Data from [447], converted to volume
density and fit by [107]. The unit of � is (log m)�1 pc�3
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the IMF. The overproduction of brown dwarfs in this simulation can no doubt be
corrected with improved physical assumptions in the calculations.

On the analytical side, one approach [404] relies upon the statistical properties
of turbulence. The main assumptions are (1) the velocity varies with length scale
according to Larson’s first finding (Chap. 2); (2) protostellar cores are formed by
hydrodynamic or magnetohydrodynamic isothermal shocks, and the core size and
density are determined by the thickness and density of the post-shock layer, (3)
the number of shocks scales as the inverse cube of their size, and (4) a protostellar
core collapses if its mass exceeds the Bonnor-Ebert mass. Without going into all the
details, the result is that the IMF has a power-law slope close to the Salpeter value at
masses above 1–2 Mˇ, and a turnover at around 0.25 Mˇ, depending on the mean
column density, magnetic field, particle density, and temperature in the molecular
cloud.

The turnover, and the sparse number of low-mass objects, can be understood on
the basis of the Jeans mass in the molecular cloud. At molecular core temperatures
of around 10 K, to get gravitational collapse for a low-mass object, say 0.05 Mˇ,
the density of the protostellar core has to be relatively high compared with
typical molecular cloud densities. In the theory, the highest-density cores which
are unstable to collapse are produced by the strongest shocks generated by the
supersonic flows. However the higher the density of the core that has to be produced,
the less probable it is that the shock compression is strong enough to result in that
density.

It should be noted that the monolithic collapse picture of star formation relies
heavily on the properties of turbulence to explain the IMF, since in that picture
the core mass function essentially determines the IMF. In the competitive accretion
model, turbulence also plays a role, but not as large a one. The initial condition is
a turbulent clump, so the initial protostellar cores that are formed will depend on
the properties of that turbulence. However the later buildup of the IMF depends on
the more complicated gravitational potential and hydrodynamics of the collapsing
cloud. In this model, the prestellar core mass function has little relation to the final
stellar IMF.

The theory involving turbulence gives the mass function of protostellar cores,
not the final stars. The analytic results are tested by the use of three different
magnetohydrodynamic computer codes in three space dimensions [405] and are
confirmed. The results indicate that to get the correct power-law slope above
1 Mˇ the magnetic field must be included; it is important in shaping the IMF
even if globally the magnetic energy is less than the turbulent energy. Another
numerical simulation with magnetic fields [317] of the production of self-gravitating
protostellar cores also is in agreement with the analytical model [404] and the
observed IMF.

An alternate approach to explain the characteristic mass where the IMF reaches
a peak is to consider the thermal properties of the interstellar gas. Take the
density range n D 105 � 108 particles per cm�3, which we have previously
(Chap. 3) approximated as being isothermal. In fact there is a slow dependence
of T on n. Below some critical value of the particle density (nc) the gas cools as
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it is compressed, based upon detailed heating and cooling calculations [302, 304].
If we define the index � by the relation P D K�� , then for an ideal gas, the
temperature T / ���1. Cooling upon compression implies � < 1. The result of
the calculations gives � � 0:7 in the region below nc because the heating rate
has a weaker dependence on density than the cooling rate. Turbulent compression
causes substantial increase in density, reducing the Jeans mass and promoting
fragmentation. However for n > nc , � changes to 1.1, resulting in a reduction of the
tendency to fragment. Thus the Jeans mass at nc is identified as the characteristic
mass scale for fragmentation, and it should correspond to the peak mass in the IMF.
The theoretical heating/cooling calculations give nc � 2:5�105 cm�3 [240] and the
corresponding Jeans mass is about 0.3 Mˇ. However the value for nc is uncertain,
since it is difficult to determine it from observations. Also, the peak of the IMF
depends on other factors besides nc .

Another analytic version of the theory of the protostellar core IMF [214, 215],
based upon statistical properties of turbulence, includes some additional effects
such as turbulent support (in addition to thermal) of the protostellar cores and
a non-isothermal equation of state, and finds good agreement with the observed
IMF even without a magnetic field. However the low-mass end of the IMF of the
cores is strongly dependent on the thermodynamical properties of the interstellar
gas, in particular the value of � , which are only approximately known. The results
are found to be in agreement with numerical simulations of a non-isothermal
gas without magnetic fields [240], given the proper choice of parameters in the
simulations. In these simulations the turbulence is not allowed to decay but is
continuously driven to maintain a constant turbulent Mach number. The value of
nc is taken to be a parameter, with values of � of 0.7 and 1.1, below it and above it,
respectively. The simulations give a characteristic protostellar mass of 0.5 Mˇ for
nc D 2 � 105, and about 0.2 Mˇ for nc D 2 � 106. Again, feedback effects in the
determination of the final stellar IMF are not considered.

The theoretical models in general predict the protostellar core mass function, or
at best the protostellar mass function as represented by sink particles in numerical
simulations. An example of the latter is shown in Fig. 5.8. The actual final stellar
IMF is still a further step. However as mentioned previously, observationally the
core mass function scales with the IMF for stars [15], and theoretically, outflows
should result in an efficiency factor of 25–75% [346], very roughly in agreement
with observations. At the low-mass end, the IMF is clearly continuous between the
regimes of brown dwarfs and low-mass stars, and there are several other arguments
[160] that indicate that brown dwarfs form by the same mechanism as stars, for
example, their spatial distribution and disk fractions are very similar. Clearly further
theoretical clarification of the origin of the IMF is a challenging problem for the
future.
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5.7 Problems

1. A massive star with solar metal abundance starts to form in a molecular cloud
core with a radius of 0.1 pc, and mass of 100 Mˇ, a temperature of 10 K, and
a mean turbulent velocity of 2 km/s. For the purposes of this problem, assume
spherical symmetry.

(a) What is the “thermal” Jeans mass? What is the “turbulent” Jeans mass? When
the core starts to collapse, what will be the approximate mass accretion rate
onto the “stellar” core, once it forms?

(b) Once the stellar core has reached 20 Mˇ, its luminosity is 50,000 Lˇ. What
is its contraction time to the main sequence in comparison to the free-fall
time? Take a main-sequence radius of 5 Rˇ. What is the implication of this
result?

(c) By the time half of the mass has accreted onto the stellar core, it is radiating
at 5�105 Lˇ. Compare the rate of photon momentum transfer into the cloud,
L=c, with the rate of transfer of momentum from the collapse, PM v. Evaluate
these quantities (1) at the dust destruction front, assuming free fall there,
and (2) at the half-radius point in the infalling envelope, where the collapse
is going at half the free-fall rate. Is the massive star likely to grow beyond
50 Mˇ?

2. Assume that a massive molecular cloud core can be represented approximately
by a polytrope, P D C3�

� where P is the (mostly) turbulent pressure, � is the
density, and C3 is a constant [354]. Furthermore, assume that the pressure and
density distributions are power laws in radius, with P D C1r

�m, and � D C2r
�n.

Note that the mean turbulent speed ct D p
.P=�/ is in general not constant.

(a) Show from the equations of hydrostatic equilibrium (Sect. 3.1) that n D
2=.2 � �/.

(b) Assume that n D 1:5, roughly consistent with observations. Then, if the mass
of the core is 100 Mˇ and the radius 0.1 pc, calculate the density at the outer
edge of the core, where the pressure matches that of the surrounding clump.
What is the corresponding free-fall time tff?

(c) Now assume that the polytrope starts to collapse and that the accretion rate
onto the forming star in the center is Pm D m=tff where m is the current mass
of the star. Assume that a constant fraction 0.5 (with time) of the core mass
M ends up in the star. Show that the stellar mass is given by

m D mF .t=tsf /4�3� (5.34)

where mF is the final stellar mass and tsf is the total time. Then calculate Pm
as a function of time, mF , and tsf .

(d) For the case n D 1:5 you will see that Pm increases with time. Is this result
physically reasonable? Which of the assumptions made is likely to have led
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to this result? What parameter can be changed to result in a constant accretion
rate?

(e) Show that tsf D .4 � 3�/tf s where tf s is the free-fall time at the outer edge
of the core. Then eliminate the time-dependence in part (c) and calculate Pm
as a function of m and other parameters. How long does it take to form a star
of 50 Mˇ?

3. Assume the IMF has the single-object form given in (1.7). A region in the solar
neighborhood is observed to have 125 stars and brown dwarfs, within a volume
of 1,000 pc3 with the lower mass limit at 0.02 Mˇ.

(a) What is the ratio of the number of brown dwarfs to the total number of
objects? The boundary between brown dwarfs and stars is at 0.076 Mˇ.

(b) What is the mass of the most massive star in the region (to nearest 1 Mˇ)?



Chapter 6
Formation of Binary Systems

Recent observational studies of the properties of binary systems among young stars
indicate that the majority of binaries are formed very early in the history of a star,
perhaps during the protostellar collapse. Observational studies of these early phases
also point to the fact that most stars are formed in binary or multiple systems.
Major observational facts to be explained include the present-day overall binary
frequency and how it varies with primary mass,1 the non-negligible occurrence
of multiple systems, and the distributions of period, eccentricity, and mass ratio
among the individual binaries. Theoretical calculations of the collapse of rotating
protostars during the isothermal phase indicate instability to fragmentation into
multiple systems. This process in general produces systems with periods greater
than a few 100 yr, although somewhat shorter periods are possible. Fragmentation
during later, optically thick, phases of collapse tends to be suppressed by pressure
effects. Therefore, major theoretical problems remain concerning the origin of close
binaries. Fission of rapidly rotating stars, tidal capture, and three-body capture
have been shown to be improbable mechanisms for formation of close binaries.
Mechanisms currently under study include gravitational instabilities in disks, orbital
interactions and disk-induced captures in fragmented multiple systems, hierarchical
fragmentation, and orbital decay of long-period systems. Single stars, on the other
hand, most likely result from escape from multiple systems during the early phases
of evolution, but they could also form by the collapse of clouds of low angular
momentum, coupled with angular momentum transport after disk formation.

Further issues include: what is the interaction between binaries and disks? How
do binary orbits evolve after the binary has formed? Are some binaries disrupted?
Why are close brown-dwarf companions rare among G–K main-sequence stars?
How does the cluster environment affect binary formation and evolution? What is
the influence of magnetic fields on the binary formation process? How are binary
formation processes modified in the early universe?

1The primary star in a visual binary system is often operationally defined simply as the more
luminous star of the pair; here we denote the more massive star in the system as the primary.
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222 6 Formation of Binary Systems

This chapter summarizes some relevant observational data [144], reviews a
number of the suggested formation processes [505], and concentrates on recent
theoretical results, primarily 3-D numerical hydrodynamical simulations [192].

6.1 Observational Data

Although no direct observation of the formation of a binary system has been made,
systems at very early stages have been identified, for example IRAS 16293-2422,
shown in Fig. 1.8 [534, 561]. The components A and B in the figure are suspected
to be a binary protostar with separation 750 AU and a total mass of about 3 Mˇ.
Another good example is the well-observed system L1551 IRS5, which appears as a
binary with separation 40 AU and total mass about 1 Mˇ (Fig. 1.10), when observed
at high angular resolution with the VLA [440].

The formation process must explain the following observed properties of
binary/multiple systems:

1. Approximately 60% of main-sequence solar-type stars have one or more com-
panions [2, 147]. We are using the multiplicity fraction to define the frequency of
binary/multiple systems:

MF D B C T C Q

S C B C T C Q
(6.1)

where, for a given number of primary stars observed, S is the number of systems
that are single, B the number that are binary, T the number that are triple, and Q

the number that are quadruple. Thus, for example, if a given observed binary later
turns out to be a hierarchical triple, the MF doesn’t change. Note that an alternate
form of this definition is the companion star fraction (CSF) where the numerator is
replaced by B C 2T C 3Q. The primary star is the most massive in the system.

The standard sample of Duquennoy and Mayor [147] consists of all primaries
between spectral types F7 and G9 within 22 pc of the Sun and visible from the
Northern hemisphere (164 stars). Although surveys are not as complete for other
spectral classes on the main sequence, results indicate that the frequency is highest
for high mass stars (at least 70% [303]) and relatively low for the M dwarfs, in which
only 30% of the systems are multiple [287]. The fact that the M dwarfs are by far
the most numerous class of stars implies that in fact more than half of all observed
main-sequence systems are single stars.

Extensive surveys have recently been made for the presence of binaries among
pre-main-sequence stars [144, 262, 344, 349]. The frequency is in general greater
than that of the F and G type stars on the main sequence. There seems to be an excess
of about a factor 2 in the Taurus-Auriga star formation region in the mass range
0.5 – 2 Mˇ and the separation range 19–1,900 AU. The lower-mass Taurus young
stars have a smaller frequency, but still high compared to main-sequence stars in
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the same mass range (0.1–0.5 Mˇ.) The shorter-period spectroscopic binaries have
not been surveyed suffiently completely to reach any firm conclusions about the
multiplicity fraction, but there is a suggestion that they are also overabundant with
respect to main-sequence stars [144]. Thus, considering the full range of binary
separations and masses above about 0.3 Mˇ, the multiplicity fraction in Taurus-
Aurigae is close to 100% [263]. The observed binary excess applies not only to the
Taurus-Aurigae region but also to other nearby star-forming regions such as TW
Hydrae and Rho Ophiuchi. The binary frequencies of the classical T Tauri stars
and the weak-lined T Tauri stars are about the same. On the other hand, in the more
distant and dense Orion Nebula cluster region the binary frequency among the Class
II sources appears to be about the same as for the main sequence [349].

In recent years sufficient observational information has been obtained for
protostars (Class I objects) in the Taurus region and in the Rho Ophiuchi region
so that their binary properties can be ascertained. The binary frequency in those
regions, in the projected separation range 110–1,400AU [143], is very similar to
that of the T Tauri stars, and both are almost a factor 2 higher than the main-
sequence frequency for G dwarfs. Further surveys of Class I objects in several
clouds [144] show a similarly high binary frequency. The overall conclusion is
that stars are almost always born in multiple systems, preferentially binaries, and
that the multiplicity declines with time, after a few times 105 yr. The mechanism
is suspected to be disruption of loosely-bound systems – those preferentially with
low-mass companions.

2. The periods of main-sequence G-type binaries form a smooth distribution in the
range 0 < log P (days) < 9 with a single maximum at about 180 yr, corresponding
to a mean separation of 30 AU [147], as shown in Fig. 6.1. In the figure, the dotted
line gives the actual observed data, and the solid line gives the derived frequency,
corrected for incompleteness, with error bars. The period distribution for M stars
is similar, but the peak is not accurately determined; it lies in the range 9–220 yr,
corresponding to separations of 3–30 AU [173]. For very low mass stars and brown
dwarfs the mean separations of about 4 AU are clearly smaller than those for the G
stars [120]. The distribution of specific angular momenta of binary orbits of young
stars is compared with that of the spin of molecular cloud cores in Fig. 6.2. Clearly
the distributions overlap. In fact they may overlap more closely than shown, because
the longer period binaries are excluded from the survey that is plotted, and the cloud
cores with low rotation are not represented because of an observational lower limit at
around log j = 20.5, where the unit of j is cm2 s�1. Also, the spin angular momenta
of cores may have been overestimated, as it was assumed they are uniform-density
spheres. Still, the spectroscopic binaries,2 and in general the shorter-period systems,
have much lower orbital angular momentum than that indicated by the spin of the
cloud cores (see Table 2.2 in Chap. 2). The figure supports the assumption that there

2A spectroscopic binary is a pair which can not be visually resolved but in which the presence of a
companion can be deduced from a periodic Doppler shift in the spectral lines of one or both of the
components. The orbital periods generally lie at the low end of the distribution.
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Fig. 6.1 Period distribution of main-sequence binary G dwarfs, corrected for incompleteness
(solid histogram). The data are fit by a Gaussian-like curve. Credit: A. Duquennoy, M. Mayor:
Astron. Astrophys. 248, 485 (1991). Reproduced by permission. c� European Southern Obser-
vatory

is an efficiency factor in the formation of a binary system from a given core: not all
the angular momentum of the core ends up in the binary orbit, possibly as little as
10%. Furthermore, the figure shows (solid line) that the wide range of binary periods
observed at the present time (Fig. 6.1) must have been set up at very early times. The
figure also gives a clue as to why the binary fraction decreases between star-forming
regions and the main sequence. The theoretical model shown takes into account
stellar interactions and binary disruptions in a young cluster. The initial cluster,
represented by the solid histogram, was assumed to contain 200 binary systems with
a total mass of 128 Mˇ. The cluster was dynamically evolved until it completely
dissolved, with the result that many of the longer-period orbits were disrupted and
the multiplicity fraction decreased (short-dashed histogram).
3. The distribution of mass ratios (q D m2=m1 where m2 < m1 is the secondary
mass) is a difficult function to determine, and the full range of primary masses and
orbital periods has not been completely sampled. Accurate mass ratios in general are
obtainable only for double-lined spectroscopic binaries,3 which are relatively few
in number. Thus error bars for this function are large. Figure 6.3 shows the mass
ratios derived by [348] for a sample of 62 main-sequence spectroscopic binaries
(43 of which are double-lined) with relatively short periods, all to the left of the

3Systems in which the spectral lines of both components are seen and exhibit Doppler shifts at the
same period.
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Fig. 6.2 Specific orbital angular momenta of binaries (J=M ). The dashed histogram gives data
from observations of the rotation of molecular cloud cores [191]. The solid histogram gives a model
[269] of the initial binary population, in general agreement with observations. The short-dashed
histogram gives a model of the distribution after interactions in a forming cluster, which cause
some binary and multiple systems to break up and liberate single stars. This final distribution is in
agreement with observations on the main sequence. Credit: P. Kroupa: MNRAS 277, 1507 (1995).
Reproduced by permission. c� 1995 Royal Astronomical Society

peak in Fig. 6.1. Primary masses are in the range 0.6–0.85 Mˇ and periods in the
range 2–3,000 days. The lower part of the figure shows the results corrected for
incompleteness; however the corrections are very uncertain for low q. Thus in
the region where the results are reliable, 0:3 � q � 1, the distribution is quite
flat. For very low q < 0:08, other data show that for solar-type stars there is a
definite shortage of companions with separations less than 5 AU; this phenomenon
is known as the brown-dwarf desert. A larger sample with accurately determined q’s
in the range q > 0:85 shows the flat distribution but with a narrow peak, probably
statistically significant, at q > 0:95 [327]. This peak is not resolved in Fig. 6.3.
These systems with nearly identical masses are known as “twins”.

For the longer-period visual binaries, the distribution of q is more difficult to
measure and is somewhat uncertain in details, but it is clearly different from that
of the short-period binaries. The distribution N.q/ is generally found to be rising
slowly as q decreases. In [348] it is found that a period of 100 days separates the
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Fig. 6.3 Mass ratio distribution of main-sequence spectroscopic binaries with primary masses in
the range 0.6–0.85 Mˇ. Top: the directly measured distribution; bottom: the distribution corrected
for undetected binaries. Reproduced, by permission of the AAS, from [348]. c� 2003 The
American Astronomical Society

systems with a flat q distribution from those where the frequency increases toward
lower q, but this borderline is uncertain. The present mass ratio distribution for
all main-sequence G stars was analyzed by [147], over the full range of periods.
It is reasonably consistent with an initial distribution in which both the primary and
secondary masses are picked at random from the standard IMF [2, 147, 269, 409,
410]; this characteristic is thought to hold for periods longer than 100 yr. In the
case of pre-main-sequence binaries the mass ratios are more difficult to measure,
but indications are that the q distribution is similar to that of main-sequence stars
[262].
4. Binaries probably formed with a wide range of eccentricities. Field main-
sequence systems with P < 10 days have circular orbits, probably as a result of
post-formation tidal evolution. At longer periods, practically all orbits are eccentric
[147]. Figure 6.4 shows the eccentricity vs. orbital period for main-sequence M
dwarfs and for main-sequence G and K dwarfs, both in the field and in open
clusters [523]. Note that the distributions are very similar. The orbital eccentricity
distribution of pre-main-sequence binaries is very similar, also with a tidally
circularized population at very short periods. The maximum period for primarily
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Fig. 6.4 Binary orbital eccentricity as a function of orbital period for M dwarfs (open circles),
G and K dwarfs in the field (filled circles), and G and K dwarfs in open clusters (triangles). Credit:
S. Udry, M. Mayor, J.-L. Halbwachs, F Arenou: in Microlensing 2000: A new Era of Microlensing
Astrophysics, ed by J. Menzies, P. D. Sackett (Astron. Soc. of the Pacific, San Francisco, 2001).
Reproduced by permission. c� Astronomical Society of the Pacific

circular orbits is somewhat shorter than that shown in Fig. 6.4, consistent with the
shorter time available for tidal circularization of the orbits. These distributions are
close to “thermal”, that is, all binding energies are equally probable, as given by the
relation

dN D f0f .e/de D f02ede (6.2)

where dN is the number of systems with eccentricity between e and e C de and f0

is a normalization constant.
5. Most binaries formed during the star formation phase or during protostellar
collapse, as indicated by the fact that binary stars are detected among pre-
main-sequence stars and protostars with ages as young as 105 yr and that pre-
main-sequence and protostar binary frequencies are generally greater than the
corresponding main-sequence frequencies.
6. Evidence from observations of a few pre-main-sequence systems suggests that
the components of a given binary are coeval, at least to within an age difference
of 106 yr [544]. Figure 6.5 shows the H-R diagram for four different systems, with
evolutionary tracks from [408]. In the case of GG Tau, all four components fall in the
age range 1–2 Myr. Also, the sum of the masses of the two massive (A) components,
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Fig. 6.5 Pre-main-sequence evolutionary tracks in the (log Teff, log L/Lˇ) diagram, for solar-
metallicity stars with masses, in Mˇ, as listed at the main-sequence end of the tracks [408]. The
components of four different non-eclipsing spectroscopic binaries/multiples are indicated: V773
Tau, NTTS 162814-2427, P 1540, and the GG Tauri quadruple system. The dashed lines are
isochrones, labelled with the time in Myr. The dotted line represents the birthline. The figure
illustrates the fact that, taking into account the uncertainties, the components in each system were
formed at about the same time. Reproduced, by permission of the AAS, from [408]. c� 2001 The
American Astronomical Society

deduced from the tracks, is about 1.3 Mˇ, in excellent agreement with that obtained
from observations of the Keplerian velocity in the circumbinary disk surrounding
these two objects [268, 439]. An image of this disk is shown in Fig. 6.6.

The example of GG Tauri clearly shows the importance of binary systems
for calibrating pre-main-sequence tracks. For example the masses of low-mass
objects, in the brown dwarf range or even down to the 10 Jupiter mass range,
are often determined just from comparing their positions in the H-R diagram with
evolutionary tracks. The calibration is done by measuring, if possible, the masses
of pre-main-sequence binaries by methods based on dynamics. An example is the
determination of the sum of the masses in a binary by using velocity measurements
in a circumbinary disk as shown in Fig. 6.6. Clearly the method can also be used,
if the disk can be resolved, for single stars with circumstellar disks. A second,
potentially even more accurate method is to discover pre-main-sequence eclipsing
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Fig. 6.6 Hubble Space Telescope image of the circumbinary disk around the Aa and Ab
components of the quadruple system GG Tau. The images of the stars themselves have been
subtracted, and their positions indicated by crosses. The image was taken in the visual region
of the spectrum at a central wavelength of 555 nm. The two stars have a projected separation of
35 AU and they are of spectral types M0 and M2. The inner edge of the disk falls at about 150 AU
from the center of mass of the binary. The disk mass is about 0.1 Mˇ. Reproduced by permission
of the AAS from [268]. c� 2005 The American Astronomical Society

double-lined spectroscopic binaries, of which a few are known. Measurements of
the eclipse light curve and the spectroscopic radial velocity curve give the individual
masses. Then the luminosity and surface temperature of the individual components
have to be determined accurately so the components can be placed in the H-R
diagram. Comparison with evolutionary tracks, as shown in Fig. 6.5, then gives the
“track” masses, which can then be compared with the actual “dynamical” masses.
This kind of comparison is considered in more detail in Chap. 8.
7. Hierarchical multiple systems are common; they have a wide range of properties,
but an example would be a primary with a close secondary with a period of 10
days and a wide companion with a period of 30 yr. This type of triple system is
dynamically stable if the ratio of the semimajor axes of the outer to the inner orbit is
above a critical value, roughly 5, depending on the inner and outer mass ratios [155].
The overall frequency of triple systems is about a quarter that of binary systems.
Most period ratios in such systems fall in the range 10–104 [170]. A good example
is the system T Tauri itself, whose originally discovered component, T Tauri N,
is a 2 solar mass star in a 100 AU orbit about T Tauri S, which itself is a binary
with a separation of about 13 AU (Sect. 8.3). A clue to the formation mechanism of
such systems can be obtained by examining the statistics of the degree to which the
angular momenta of the inner and outer orbits are aligned. If � is the angle between
the angular momenta, and if � D 0 corresponds to alignment, then the observed
systems are typically not aligned [490]. However the angles � are not randomly
distributed; rather they average between 67ı and 79ı.
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6.2 Basic Formation Mechanisms

A number of different ideas have been put forward regarding the origin of binary
systems. The original suggestion put forward by Laplace in 1796 (see [499]) was
that binaries formed from separate stellar nuclei during star formation; the nuclei
then somehow came into orbit. The physics behind this picture was never fully
explained, so we may assume that the separate nuclei combined by capture. Capture
into orbit of two independently formed unbound stars in the presence of a dissipative
process was suggested in 1867 by Stoney (see [11]). Fission, meaning the breakup
by dynamical instability of a rapidly rotating object in hydrostatic equilibrium, is
attributed to Kelvin and Tait in 1883 (see [499]) and was strongly advocated by
Jeans [241].

Fragmentation, on the other hand, refers to the breakup of a rotating protostar
during the hydrodynamical collapse phase. It was originally proposed by Hoyle
[234], who based the argument simply on the fact that an isothermal collapsing
cloud, originally dynamically unstable on a large scale, becomes dynamically
unstable on smaller and smaller scales because of the density increase during
collapse. That is, as the density increases and the temperature remains constant,
the Jeans mass decreases. However it was pointed out [326] that this process cannot
continue indefinitely, because once the center of the cloud becomes optically thick,
as it continues to collapse the temperature, and as a result the Jeans mass, starts to
increase. Thus there is a lower limit to the mass of a fragment, given roughly by
the minimum Jeans mass along the temperature-density evolution of the protostar
(Fig. 3.6). This limit, which depends on the dust opacity, has been shown in various
calculations to be about 0.01 Mˇ.

Later work has shown that rotation is a crucial element that stops the overall
collapse of the cloud and allows individual fragments to separate out [62]. Thus,
a molecular cloud evolves and develops slowly-rotating dense cores, which, after
gravitational collapse has set in, spontaneously fragment into two or more pieces,
perhaps induced by small density perturbations in the initial cloud core.

A variation of this process involves triggering of the fragmentation process
by cloud–cloud collisions [426] with the angular momentum of the orbit arising
from the initial condition of an off-center collision. The high expected values of
semimajor axis and eccentricity could later be reduced by interaction of the two
components with each other’s disks. An example of a numerical calculation of such
a collision is shown in Sect. 2.9 (Fig. 2.18) in which the outcome was a single
star with a circumstellar disk [252]. However, only a slight change in the initial
condition, an increase in the relative velocity of the two clouds from 1 km s�1

to 2 km s�1, results in the formation of two protostars with circumstellar disks,
which later capture each other into a binary with a circumbinary disk. The two
components of the binary have masses of about 1.5 Mˇ each, and the separation is
about 40 AU [253].

Finally, the disks that form around young stars can, under the right conditions,
become gravitationally unstable and could possibly fragment [9]. Disk instability,
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if the Toomre Q is �1 and the disk is massive enough and cool enough, can
produce stellar-mass secondaries or possibly giant planets. A basic requirement for
disk fragmentation [182] is that the cooling time be comparable to or shorter than
the orbital time. The following sections concentrate on the four basic processes of
capture, fission, spontaneous fragmentation, and disk instability. However analysis
of large numerical simulations of cluster formation (the probable dominant mode
of star formation) from an initially turbulent cloud strongly indicates that there
is not one single process by which binary formation occurs. Although fission
has been practically ruled out, the complicated interactions between stars and
gas during cluster formation result in binary formation by a combination of
processes, including fragmentation, capture, and probably gravitational instability in
disks [117].

6.3 Capture

Two independently formed stars can be captured into orbit if (1) a third body is
present to take away the excess energy, if (2) the encounter is close enough so that
tidal dissipation performs the same function, or if (3) a dissipative medium, such
as residual gas in a young cluster or a circumstellar disk, is present. Considering
processes (1) and (2), expected capture rates in the galactic disk or in even young
dense clusters have been shown to be far too slow to explain the observed binary
frequency [84]. The presence of residual gas, either ambient in a newly forming
cluster or in the form of disks around young stars could change the picture. However
stellar encounters with disks could also have the opposite effect of truncating or
ejecting the disk, so capture occurs only in a limited range of circumstances [118];
this process may account for a small fraction of binary or multiple stars in a forming
cluster [117].

Three-body captures produce wide separations, two-body tidal captures produce
very close separations, and disk captures give separations comparable to the disk
outer radius. The combination of such processes is unlikely to produce the observed
smooth period distribution. The capture process also predicts (1) a wide range of
eccentricities, as observed, (2) a wide range of mass ratios, essentially uncorrelated,
as observed at least for wide binaries, (3) non-coevality of the components, for
which there is no evidence except at the 106 yr level, and (4) non-alignment of the
angular momentum in spin and orbit, for which there is evidence in some systems.
Capture is unlikely under normal circumstances in the galaxy, so its role must
be examined through detailed numerical simulations of cluster formation where
fragmentation could produce protostars with typical separations close enough so that
capture could occur. Indeed N-body simulations of the interaction of a number of
point masses with arbitrary initial conditions do result in captures. The treatment of
such systems as an N-body problem has been extensively investigated (e.g. [527]),
and simulations have shown that the results are extremely sensitive to changes in
the initial conditions and that a wide variety of orbital parameters and eccentricities
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is possible. However in actual cluster formation the gas plays a very important
role, so the process must be simulated by full three-dimensional hydrodynamic
calculations, e.g. [39]. Captures will play some role in the formation of binaries
in such a simulation, but other processes are active as well, and a description of the
results of such a simulation will be deferred until later in the chapter.

6.4 Fission

The physical process of fission is quite distinct from fragmentation, as it occurs
in configurations which are assumed to be in hydrostatic equilibrium. As a star
accumulates during protostar collapse, or as it contracts toward the main sequence
after disk accretion has been completed, it tends to spin up, if angular momentum
is conserved, and the ratio ˇ of the rotational energy to the absolute value of the
gravitational energy increases. When ˇ obtains a critical value, the star becomes
unstable to non-axisymmetric perturbations. It has been hypothesized that breakup
into orbiting subcondensations then occurs. Because only a small amount of angular
momentum can be stored in a star, this mechanism would produce close binaries.

Consider the contraction of an object of constant mass and constant angular
momentum. The classical path to fission was based on the properties of uniform-
density configurations [333]. The contracting sequence of axisymmetric Maclaurin
spheroids, which are defined to be uniformly rotating and have constant density,
becomes secularly unstable, in the presence of a dissipative mechanism, to defor-
mation into triaxial objects (Jacobi ellipsoids), when ˇ D 0:138. Evolution was
then envisaged to proceed along the sequence of contracting Jacobi ellipsoids
until a point of dynamical instability to a pear-shaped mode was encountered at
ˇ D 0:163. Fission was thought to result, but analytical methods were not sufficient
to demonstrate this outcome. It is now thought that fission cannot occur by this
route, because even if the point of secular instability at ˇ D 0:138 is reached, the
dissipative mechanism, which is viscosity in the case of a pre-main-sequence star,
has a time scale which is long compared with the time scale for further contraction
of the star.

An alternative path to fission that has been considered involves the continued
axisymmetric contraction of the Maclaurin spheroids beyond the point of secular
instability, until a point of dynamical instability to non-axisymmetric perturbations
is reached at ˇ D 0:274. It has been shown that analogous points of instability exist
along sequences of polytropes,4 that is, centrally condensed configurations [400].
However it has not been shown that even this instability results in fission, even
though it does result in the development of a triaxial object. The situation is well
summarized by Tohline [505].

4A polytrope is a hydrostatic structure in which the pressure is assumed to obey the relation P D
K�.nC1/=n, where K is a constant and n is the polytropic index
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The fission scenario has several major problems [499]. First, T Tauri stars
are observed to rotate very slowly. They have far too little angular momentum
to reach a point of secular or dynamical instability. It would seem that fission
could occur during the period of buildup of the stellar core by accretion from
a disk and the associated increase in angular momentum. In fact the theory
of disk accretion, mediated by a magnetic field [462], shows that the spin of
the star is regulated by the disk and remains at relatively low values. Second,
angular momentum considerations require the binary mass ratio to be �1:10, in
disagreement with observations. That is, if the result of fission were a system with
comparable masses, and if the angular momentum of the original spin of the star
were conserved, the two stars would overlap in space. Third, even if the critical ˇ for
dynamical instability were reached, several independent 3-dimensional numerical
hydrodynamical calculations [148] show that the result is in fact deformation of the
initially axisymmetric object into a triaxial configuration, but fission does not occur
because of transfer of angular momentum out from the core by spiral waves, so that
ˇ is reduced below the critical value.

Figure 6.7 shows a calculation [550] starting from a rapidly rotating polytrope of
index 0.8 with ˇ D 0:31. Thus at the initial time the object should be unstable to
deformation into an ellipsoidal-type structure and perhaps to fission, on a dynamical
time scale. The initial stage (a) is axisymmetric and very flattened. The figure shows
that on a time scale of about 10 central rotation periods the system develops spiral
arms which exert torques on the central object, so that the eventual outcome is a
more slowly rotating central object plus a ring. The same result occurs if the critical
ˇ is approached (through accretion) from below [85]; this calculation uses a realistic
equation of state and includes radiative transfer. Even though fission does not occur
promptly once ˇ > 0:274, the ellipsoidal structure can still evolve through further
contraction and possibly eventually become unstable to fission at a later time [308].
It is a difficult 3-D numerical problem to test this hypothesis, and attempts so far
have not produced conclusive results [505].

6.5 Fragmentation

Various forms of fragmentation can be identified, including (1) fragmentation during
the collapse of a low-mass core, producing a binary or a small multiple system,
(2) Fragmentation of a higher-mass core, leading to formation of a small cluster,
(3) fragmentation of a gravitationally unstable disk, and (4) fragmentation induced
by a cloud–cloud collision. We first consider the collapse of a single, isolated,
rotating, low-mass core and ask whether a binary can form. This question is
appropriate for the case of star formation by monolithic collapse (Chap. 5), where
a particular molecular cloud core collapses to form a single stellar system without
much interaction from the outside. We then consider the more complicated case of
cluster formation.
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Fig. 6.7 Numerical simulation of the evolution of a rapidly rotating polytrope of index 0.8 with
initial ˇ D 0:31. Times are indicated on each frame in units of the initial central rotation period.
Constant-density surfaces are shown at 10�3 of the central density. Reproduced, by permission of
the AAS, from [550]. c� 1988 The American Astronomical Society

Protostar collapse is divided into an early optically thin isothermal phase and
a later optically thick adiabatic phase. Conditions for fragmentation are favorable
during the isothermal phase. It has been known for some time that isothermal
rings are unstable to fragmentation [393]. Collapse calculations starting from a
molecular cloud core of a few solar masses are often done with the assumption of
isothermality, although calculations have also been done under the assumption of an
adiabatic collapse, or a collapse with cooling, or a collapse with radiation transport,
or a collapse with turbulent initial conditions, or a collapse with a magnetic field.
Three-dimensional hydrodynamical calculations start from initial conditions which
involve a large number of parameters: (˛i ; ˇi ), which are, respectively, the thermal
and rotational energies divided by the absolute value of the gravitational potential
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Fig. 6.8 Numerical 3D simulation of the evolution of a collapsing molecular cloud core. The
meridional plane in (R; Z) cylindrical coordinates is shown after 1.21 free fall times from an initial
cloud of uniform density and a size of 6:54 � 1016 cm. The Z axis is the rotation axis. Curves are
contours of equal density, with a maximum density of 5 � 10�14 g cm�3. Arrows are velocity
vectors, with length proportional to speed. Initial .˛i ; ˇi / D .0:5; 0:1/. The cloud is isothermal
at 10 K. Reproduced, by permission of the AAS, from [69]. c� 1980 The American Astronomical
Society

energy, the density distribution (for example a power law), the angular momentum
distribution (for example solid-body rotation), and the shape of the cloud, for
example prolate or oblate with respect to the rotation axis. A small initial density
perturbation, either ordered or random, is introduced. An example of an ordered
perturbation, of mode m D 2 and 10% amplitude, is

�.r; �/ D �0.r/Œ1 C 0:1 cos 2��; (6.3)

where r is the distance from the center and � is the azimuthal angle about the
rotation axis. Some of the parameters can be constrained by observations: a typical
core has a mass of a few solar masses, a radius of 0.1 pc, (˛i ; ˇi ) = (0.4, 0.01).
The problem is computationally difficult because an increase in density by many
orders of magnitude must occur before the fragmentation sets in. In the following
examples, magnetic fields are not considered; however it is known that magnetic
fields with strengths consistent with observations in molecular cloud cores can
significantly suppress fragmentation [424].

Figure 6.8 illustrates the fact that before fragmentation can occur, the cloud must
collapse and approach equilibrium in a disk-like configuration. This result follows
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from the fact that during a near-free-fall collapse the time scale for the growth of
perturbations in density is nearly the same as the time scale for collapse of the
overall cloud. Thus by the time pressure effects, which suppress fragmentation,
become important, the perturbations will not have grown significantly with respect
to the background. In the figure, the vertical axis is the rotation axis, and a shock
forms on the upper and lower faces of the disk, decelerating the inflowing material
there. The disk is supported against gravity in the vertical direction by gas pressure,
and in the horizontal direction by rotation and gas pressure. Since ˇi has to be
relatively large (a few per cent) if rotational flattening (which is the necessary
precursor to fragmentation) is to occur while the system is still isothermal, a long-
period system is produced, typically with binary separation of 100–1,000 AU.

To include the transition to the adiabatic collapse phase in a simple way, one can
modify the equation of state as follows:

P D �c2
s D �c2

0 Œ1 C .�=�tr/�
��1 (6.4)

where cs is the sound speed, c0 is the sound speed in the isothermal collapse phase,
�tr is the approximate density where the transition to adiabatic collapse occurs, and
the ratio of specific heats � is 5/3 below about 80 K, making a transition to 7/5
above that temperature. Figure 6.9 shows an SPH calculation [106] in which the
initial cloud did not have uniform rotation, but rather ˝ / r�1=3. The initial density
perturbation was small and random, and (˛i ; ˇi ) = (0.60, 0.035). Nine different
snapshots in time are shown, in the equatorial (x; y) plane. The equation of state
switched from isothermal to adiabatic at �tr D 10�13 g cm�3. About the time the
configuration became adiabatic, an axially symmetric ring formed near the center.
Then the ring fragmented into three equal mass objects in an unstable triangular
configuration. The interaction of these fragments led to a fourth low-mass fragment,
but as a result of mergers the final number of fragments was 2, in a binary system
with separation of about 500 AU. Disks are evident around the individual binary
components.

Figure 6.10 shows a simulation done with a 3-D grid code with adaptive mesh
refinement. The initial condition is (˛i ; ˇi / D .0:26; 0:16/ with uniform density and
angular velocity and with a 10% m D 2 density perturbation. The adiabatic heating
transition is used with �tr D 10�13 g cm�3. Heating slows the collapse once the
transition density has been reached. A binary forms with separation 1016 cm. Disks
form around the individual components, having sizes of �100 AU, comparable
to those observed around T Tauri stars. Also evident is a circumbinary spiral-arm
structure. At the end of the simulation about half the mass is in the fragments plus
the disks and spiral arms.

During the adiabatic phase fragmentation tends to be suppressed because
pressure effects cause perturbations to decay unless ˛i is very small. Nevertheless,
calculations starting in the isothermal phase have demonstrated that fragmentation
can still occur in the central regions after they have already entered the adiabatic
phase and that orbital separations as small as �1 AU can result [83]. However the
main mechanisms for close binary formation are thought to be different from direct
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Fig. 6.9 Numerical 3D SPH simulation of the evolution of a collapsing molecular cloud core.
Particle positions projected onto the (x; y) plane, where the z axis is the rotation axis, are shown
at nine different times, starting (ending) at 1.15 (1.5) initial free-fall times. Initial .˛i ; ˇi / D
.0:6; 0:035/. The initial size of the cloud is 0.01 pc. The box size varies from 0.4 to 1.4 �1016 cm.
Credit: S.-H Cha, A. P. Whitworth: MNRAS 340, 91 (2003). Reprinted with permission from John
Wiley and Sons. c� 2003 Royal Astronomical Society

fragmentation during collapse. The transition zone between isothermal and adiabatic
collapse turns out to be important in determining the outcome of fragmentation, and
to treat it properly requires 3D hydrodynamics including radiative transfer. Exam-
ples of work where radiative transfer has been included in collapse calculations for
isolated cores may be found in [87] and [546]. In the latter study it is shown that
including it results in temperature increases by up to an order of magnitude in some
regions of the cloud, compared with results using (6.4).

The results may depend qualitatively on numerical resolution, particularly if
the Jeans condition is not satisfied. This condition requires that the local Jeans
length be resolved by several zones in a grid calculation [511, 512] or several
smoothing lengths in an SPH calculation [42]. When the density has increased
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Fig. 6.10 Numerical 3D grid-based simulation, with adaptive mesh refinement, of the evolution
of a collapsing molecular cloud core [65]. The density distribution in the equatorial plane is shown
at a time of 1.5 initial free-fall times. The initial cloud had uniform density and an m D 2 density
perturbation of 10% amplitude. Initial .˛i ; ˇi / D .0:26; 0:16/. The density range is from log
�max D �10:28 (centers of fragments) to log �min D �16:48 (violet). The maximum spatial
resolution in the adaptive grid is 1014 cm. The arrows give velocity vectors with length proportional
to speed, and a maximum velocity of 2.75 km s�1. Credit: Color Plate 11 from Protostars and
Planets IV, ed. by V. Mannings, A. P. Boss, S. S. Russell. c� 2000 The Arizona Board of Regents.
Reprinted by permission of the University of Arizona Press

to the point where fragmentation typically begins, the Jeans mass has decreased
to about 0.01 Mˇ; thus very fine zoning is required. Even if the Jeans length is
resolved, calculations must show numerical convergence, that is, a change in the
number of zones or particles does not significantly change the outcome. A number
of comparisons have been made between different numerical codes, and this is an
important test for verifying the results of a particular simulation. For example,
in [94] there is a comparison of the collapse of centrally condensed clouds as
calculated with a grid code and with an SPH code. The transition to adiabatic
collapse is included. The results are shown in Figs. 6.11 and 6.12. Four fragments
form in the central regions. Apart from showing that the two codes give qualitatively
the same results, these figures also demonstrate that the formation of an initial
central binary in a close orbit can induce the formation of additional fragments
farther out, and that the fragmentation process can lead to a small cluster. The fact
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Fig. 6.11 Numerical 3D grid-based simulation, with a series of fixed nested grids increasing in
resolution toward the center. The density distribution in the equatorial plane is shown at four
different times. The initial cloud had a power-law density (� / r�1) and an m D 2 density
perturbation of 10% amplitude. Initial .˛i ; ˇi / D .0:25; 0:23/. The maximum spatial resolution is
10�3Ri , where Ri is the initial cloud radius of 5 � 1016 cm. Velocity vectors are shown with
length proportional to speed, with the maximum value ranging from 2 km s�1 (upper left) to
3.7 km s�1 (lower right). Maximum density in all frames is about 10�10 g cm�3. The final time is
1:2�1012 s. Credit: A. Burkert, M. R. Bate, P. Bodenheimer: MNRAS 289, 497 (1997). Reproduced
by permission. c� 1997 Royal Astronomical Society

that four fragments form is consistent with the fact that ˛i D 0:25; usually in such
simulations the number of fragments is comparable to the number of Jeans masses
in the initial configuration. We may conclude that different numerical codes with a
similar degree of resolution produce about the same results; however the question
of numerical convergence has not been investigated thoroughly enough, and there
are noticeable differences in detail. The effect of the initial perturbation has also
not been investigated extensively, but existing studies, for example [516] indicate
that the occurrence of fragmentation depends only slightly on the form of the initial
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Fig. 6.12 Numerical 3D SPH simulation with 200,000 particles, of the same collapse that is shown
in Fig. 6.11. The spatial resolutions in the centers of the two calculations are very nearly the same.
The density distribution in the equatorial plane is shown at four different times. At the end of the
simulation, a system of four fragments is produced, in agreement with the result shown in Fig.
6.11. If the simulations were continued, further interactions among the fragments would result.
The density values, maximum speeds, and final time are about the same as in Fig. 6.11. Credit:
A. Burkert, M. R. Bate, P. Bodenheimer: MNRAS 289, 497 (1997). Reproduced by permission.
c� 1997 Royal Astronomical Society

perturbation, but the details of how the initial fragmentation phase proceeds is likely
to be strongly affected.

One can reach several general conclusions from the results of the isolated-
core fragmentation calculations. (1) Collapsing, rotating clouds are unstable to
fragmentation, given a small initial perturbation, in the isothermal phase, subject
to the criterion given below. If the calculation is started in the adiabatic phase,
instability occurs if the initial thermal energy (˛) is small. (2) Fragmentation begins
only after one free-fall time, when rotational effects have become important. (3) The
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initial perturbation can contain less than one Jeans mass. Clouds with high ˛ seem
to break up into only 2 fragments. With smaller ˛ the number of fragments seems
to increase. Very roughly the number of fragments is comparable to the number
of Jeans masses in the initial cloud. (4) Numerical spatial resolution is important,
particularly for small initial perturbations or investigation of higher-order modes of
fragmentation. (5) The properties of the fragments themselves are such that they
are unstable to further collapse, generally have low ˛ (so if they were produced in
the isothermal phase they might still be able to subfragment in the adiabatic phase),
and have a ratio of remaining spin to orbital angular momentum of roughly 0.2.
The reduction in J=M of a fragment as compared with that of the initial rotating
cloud is about a factor 15–20, so considerable progress can be made in solving the
angular momentum problem. (6) Fragment interactions can play a role, as shown in
Fig. 6.9. (7) Disk fragmentation, as well as spontaneous fragmentation, can occur
during the collapse of an individual core. An example is the computation of the
collapse of a core of 100 Mˇ (Chap. 5) which initially resulted in the formation of
a single fragment with a massive disk; the disk later fragmented and the end result
was a massive binary [277]. An example of the initial phase of disk fragmentation
is shown in Fig. 5.6, and the massive binary is shown in Fig. 5.7.

Various simulations of fragmentation have produced a number of different types
of results, for example, (1) binary formation, (2) formation of a binary followed by
induced fragmentation in a circumbinary disk, (3) formation of a small cluster, (4)
fragmentation of filaments, or (5) formation of a binary plus low-mass fragments.
The assumed initial conditions have some influence on the outcome.

However the typical fragmentation calculation has not been carried out long
enough so that most of the material in the original cloud has collapsed to the
equatorial plane. Thus the final outcome in these systems, as influenced by captures,
mergers, further accretion, and escapes, is not known. For example, accretion of
relatively high angular momentum material (compared with the orbital angular
momentum) tends to equalize the mass ratio in a binary.

Is there a criterion for fragmentation? This question has been investigated only
in particular cases, for example, the initial condition of a uniform density uniformly
rotating sphere, with a small initial perturbation, either m D 0 (ringlike) or m D 2

(barlike). The results for various (˛i ; ˇi ) are described in [516]. The general
criterion is that fragmentation occurs if ˛ < 0:4, almost independent of ˇ. The
typical molecular cloud core with no turbulence is close to ˛ D 0:4. However other
results show that if the core is centrally condensed, then the region in (˛i ; ˇi ) where
fragmentation takes place becomes smaller. For a power law � / r�2, a linear
analysis shows that the object is stable against fragmentation [513].

Simulations of the fragmentation of an individual core are very useful for
examining the binary formation mechanism in detail, but they are less useful for
explaining the overall statistical properties observed for a wide range of systems.
The typical star, however, does not form from an isolated core but rather in a
small cluster. Including the interactions between fragments in the process of cluster
formation may be crucial for the explanation of these observations. Numerical
simulations are beginning to be able to treat this problem. Small cluster formation
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involves an extension of the single-core case to a larger core which contains many
thermal Jeans masses. The general picture is that this core is initially primarily
supported against collapse by turbulent kinetic energy, that is turbulent energy
is comparable to gravitational potential energy. However the turbulence, if not
continuously driven by external effects, tends to decay. Once this occurs, the core
begins to collapse and to develop into multiple fragments.

The process was simulated in [39], under the assumption that the initial condition
was a cloud of 50 Mˇ with diameter 0.375 pc and temperature 10 K, containing
�50 thermal Jeans masses. The cloud is initially supported against collapse by a
turbulent velocity field, with an rms turbulent Mach number of 6.4, and with the
velocity field consistent with the linewidth-size relation i.e. � / 
0:5, where � is
the velocity dispersion and 
 is the size scale. A smoothed particle hydrodynamic
code is used with 3:5 � 106 particles. The isothermal/adiabiatic equation of state is
included according to (6.4). The turbulence decays on a time scale of 1 initial free-
fall time, dense self-gravitating cores form, and star formation begins. Figure 6.13
shows the configuration of gas and stars at the end of the simulation, 1.4 initial free-
fall times. This particular simulation well illustrates some possible mechanisms for
close binary formation. This problem will be discussed first, then the results of an
even more detailed simulation [37] will be considered, with attention to the question
of how well the simulation agrees with general observed properties of binary and
multiple systems.

A number of binary and multiple systems are formed, as indicated in the figure.
An important point is that relatively close binary systems are formed, down to
separations of about 1 AU (below that limit the simulation is not resolved). These
close systems are not formed by direct fragmentation of the collapsing cloud,
because heating and the associated increase in pressure suppresses fragmentation
on the small scales involved. Instead, wide binaries are forced to decrease their
separation by three different processes: (1) material accretes from the surrounding
gas that has lower angular momentum than that of the orbit, resulting in shrinkage
(“hardening”) of the orbit; (2) a circumbinary disk is affected by gravitational
torques from the binary itself, so that angular momentum is transferred to it, again
resulting in a decrease in the separation of the binary, and (3) close encounters with
external third bodies, in the presence of the dissipative effects of the gas, result in
transport of angular momentum from the binary to the third object and the resulting
shrinking of the orbit. The particular simulation shown in Fig. 6.13 produced seven
close binaries out of a total of about 50 stars and brown dwarfs. The binaries have
mass ratios between 0.29 and 0.96 and separations in the range 1–10 AU. In general
the simulations produce a larger proportion of high q-values than shown by the
observations. The calculation also shows that more massive stars are more likely to
have close companions, in rough agreement with observations. The calculation also
suggests that formation of a hierarchical triple is a relatively common outcome.

Figure 6.14 shows a small section of the calculation starting at 1.32 initial free
fall times, illustrating how multiple systems can form by the mechanism of disk
fragmentation. A single protostar first forms and a very massive circumstellar disk
forms around it (upper left). The disk develops spiral arms, which later fragment into



6.5 Fragmentation 243

32
, 4

2,
 4

4,
 5

0

38
, 4

3 
&

 4
5

20
, 2

2 
&

 2
5

3 
&

 1
0

–1
.7

+
1.

5
+

3.
0

–
0.

5

7 
&

 8

39
 &

 4
1

26
 &

 4
0

50
 A

U

75
0 

A
U

75
0 

A
U

10
 A

U

C
ol

ou
r 

S
ca

le
lo

g 
N

 [g
/c

m
2 ]

F
ig

.6
.1

3
O

ri
gi

n
of

cl
os

e
bi

na
ri

es
in

a
nu

m
er

ic
al

si
m

ul
at

io
n

of
th

e
fo

rm
at

io
n

of
a

sm
al

lc
lu

st
er

.T
he

co
lo

r
sc

al
e

in
di

ca
te

s
th

e
lo

g
of

th
e

co
lu

m
n

de
ns

it
y

th
ro

ug
h

th
e

cl
ou

d.
T

he
in

se
ts

sh
ow

th
e

de
ta

ils
of

th
e

se
ve

n
cl

os
e

bi
na

ry
sy

st
em

s
fo

rm
ed

du
ri

ng
th

e
si

m
ul

at
io

n.
M

os
ta

re
m

em
be

rs
of

m
ul

tip
le

sy
st

em
s

an
d

ar
e

as
so

ci
at

ed
w

it
h

di
sk

s.
T

he
m

ai
n

fr
am

e
sh

ow
s

a
re

gi
on

80
,0

00
A

U
ac

ro
ss

.N
um

be
rs

ab
ov

e
th

e
in

se
ts

ar
e

id
en

ti
fie

rs
fo

r
pa

rt
ic

ul
ar

ob
je

ct
s.

N
ot

e
in

pa
rt

ic
ul

ar
th

e
in

se
ti

n
th

e
lo

w
er

ri
gh

t,
w

he
re

,i
n

th
e

le
ft

ha
lf

of
th

e
pa

ne
l,

a
hi

er
ar

ch
ic

al
tr

ip
le

ha
s

fo
rm

ed
,s

ur
ro

un
de

d
by

a
di

sk
.T

hi
s

sy
st

em
,l

ab
el

le
d

“3
&

10
”,

co
ns

is
ts

of
a

bi
na

ry
w

it
h

co
m

po
ne

nt
s

of
0.

73
an

d
0.

41
M

ˇ
,s

ep
ar

at
ed

by
ab

ou
t1

A
U

,a
nd

an
ou

tl
yi

ng
co

m
pa

ni
on

of
0.

08
3

M
ˇ

,a
ta

di
st

an
ce

of
28

A
U

.C
re

di
t:

M
.R

.B
at

e,
I.

B
on

ne
ll

,V
.

B
ro

m
m

:M
N

R
A

S
33

6,
70

5
(2

00
2)

.R
ep

ro
du

ce
d

w
it

h
pe

rm
is

si
on

fr
om

Jo
hn

W
il

ey
an

d
So

ns
.

c �
20

02
R

oy
al

A
st

ro
no

m
ic

al
So

ci
et

y



244 6 Formation of Binary Systems

Fig. 6.14 Origin of a hierarchical multiple system in a numerical simulation of the formation of a
small cluster [40]. The grey scale gives the log of the column density through the cloud, ranging
from log N = 0 (dark) to log N = 2.5 (light). N has units of g cm�2. Times in the upper right of
each frame are given in units of the initial free fall time of 1:9 � 105 yr; the values range from 1.32
to 1.4. At the end of the simulation a quadruple system has been produced, consisting of two binary
pairs in orbit about each other (center of last frame). An unstable triple system (upper left in last
frame) is orbiting the quadruple system. The box sizes are 600 by 600 AU. Credit: M. R. Bate, I.
Bonnell, V. Bromm: MNRAS 339, 577 (2003). Reproduced with permission from John Wiley and
Sons. c� 2003 Royal Astronomical Society

six additional protostars. These undergo gravitational interaction with themselves
and are also influenced by the gas. At the end of the simulation the result is a
triple system (upper left of lower right figure) which is unstable, in orbit around a
quadruple system (center of figure), which is itself composed of two binaries. Each
panel is 600 AU across. The disk fragmentation shown in the figure was studied
earlier in a linear stability analysis [9] and through a numerical simulation [4]. The
conditions required for fragmentation to occur are (1) the Toomre Q somewhere
in the disk must be very close to 1; and (2) the radiative cooling time must be
short, comparable to the orbital time [182]. For a massive disk in the isothermal
phase these conditions are met, because cooling is in effect almost instantaneous,
indicating that the process does contribute to binary or multiple formation. These
authors conclude that most binaries form by fragmentation, either in the molecular
cloud or in disks, and that close binaries form by hardening of wider binaries. Note
that disk fragmentation can be an important process in the formation of massive
stars [273].
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Cluster formation was further investigated in a similar calculation [37] in which
the mass was increased to 500 Mˇ and the radius to 0.4 pc. The turbulent Mach
number was increased to 13.6 to result in equality in absolute value of gravitational
and turbulent energies. The numerical simulation included 3:5 � 107 SPH particles,
allowing a mass resolution down to about 0.01 Mˇ. The main result of the
calculation, which ran 2:85 � 105 yr, was the production of 1,254 stars and brown
dwarfs, among them 90 binary systems, 23 triple systems, and 25 quadruples. The
initial mass function (IMF) found was in agreement with that observed, above about
0.1 Mˇ (Fig. 5.8). However too many brown dwarfs were produced as compared
with the number of stars to be consistent with the observed ratio of about 1:4
[330,369]. It is very likely that this problem could be resolved with the incorporation
of radiative transfer into the simulations. As shown by [38] for a lower-mass initial
cloud, radiative transfer results in the heating of the gas in the vicinity of the stellar
cores. Their disks are thus less likely to fragment, and in the simulation many of
the brown dwarfs were produced by disk fragmentation, which typically results in
low-mass companions.

The main calculation, without radiation transfer, produces encouraging results
regarding the properties of binary and multiple systems. The increase in multiplicity
fraction as a function of primary mass turned out to be in good agreement with
observations, up to about 5 Mˇ, the highest mass produced in the simulation
(Fig. 6.15). For example, for solar type stars this fraction was computed to be

Fig. 6.15 The multiplicity fraction as a function of primary mass as calculated in a numerical
simulation, compared with observations. The open squares give observed values, with the
horizontal bars giving the mass range that applies, and the vertical bar giving the error and/or the
upper or lower limit. The blue filled squares give the results from the numerical simulations, with
the shaded blue regions giving the region of uncertainty. The red filled squares and shaded boxes
give the numerical result excluding brown-dwarf companions, which are unlikely to be picked
up in observational surveys. The vertical dashed line separates stars from brown dwarfs. Credit:
M. R. Bate: MNRAS 392, 590 (2009). Reproduced with permission from John Wiley and Sons. c�
2009 Royal Astronomical Society
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0:56 ˙ 0:12. Excluding brown-dwarf companions, which were overproduced in the
simulation, the fraction was 0:5 ˙ 0:1, still reasonably consistent with the observed
fraction of 0:58˙0:1 [147]. The agreement is good in the lower-mass range as well,
where the fraction is 15–20%. The distribution of semi-major axes for the stellar-
mass companions (Fig. 6.1) is also in good agreement with observations, with a
peak at about 30 AU. The trend of decreasing mean separation with decreasing
primary mass is also well represented. The distribution of mass ratios in binary
systems (Fig. 6.3) was found to be fairly flat; it underproduced systems with low q.
It has been argued that when a binary forms and continues to accrete gas, much of
this gas will have higher angular momentum than that of the orbit, and therefore
will preferentially accrete onto the secondary, which is the component farther
removed from the center of mass. It is possible, however, that this disagreement
with observations is a numerical effect [117]. The simulations are also in agreement
with the observed mean value of the angle between the angular momentum vectors
of the inner and outer orbits of triple systems. Although these conclusions may have
to be changed as a result of future simulations that include radiation transfer, they
do represent a major step forward in explaining the observed properties of binary
and multiple systems.

We now consider the following question: Does fragmentation during a rotating
collapse explain the observed properties of binary systems?

The positive answers to this question include the following points:

1. A wide range of orbital angular momenta is predicted, depending on the angular
momentum of the initial cloud core or its turbulent structure, plus effects of
captures after fragmentation into a small cluster as well as hardening of the orbits
of some wide binaries

2. Calculations do indicate presence of circumstellar and circumbinary disks
3. This process predicts that components of young binaries are coeval, in agreement

with most comparisons of young binaries with pre-main-sequence evolutionary
tracks

4. Calculations predict eccentric orbits, in qualitative agreement with observations
5. Cloud core angular momenta are of the correct order of magnitude to explain

wide binary orbits. Typical single-core collapse calculations produce binary
systems with separations of a few hundred to 1,000 AU. The systems form either
by direct fragmentation or by gravitational instability in a massive disk. Although
Fig. 6.2 indicates that core angular momenta are somewhat higher than those of
wide binaries, in fact simulations [41] show that not all of the angular momentum
of the core goes into the orbit: a substantial fraction remains in a circumbinary
disk. Thus when one considers the collapse of an individual rotating core, there
is a built-in efficiency factor whereby some of the core’s mass and some of its
angular momentum do not become part of the resulting binary. This efficiency
factor is in addition to that associated with mass loss and angular momentum
loss in the bipolar flows from the individual components. Furthermore, very wide
binaries are easily broken up during the evolution of a cluster
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6. Numerical simulations [39,136,269] indicate the early formation of hierarchical
multiple systems in cluster formation, by gravitational interactions and captures,
and the gradual breakup of such systems with time. This general trend is
roughly supported by observations. Low-mass systems are more easily broken
up by gravitational interactions than high-mass systems; this fact can explain the
observed result that at the present day high-mass stars have a greater multiplicity
fraction than low-mass stars.

However there are a number of unsolved problems:

1. For standard core parameters, fragmentation sets in just at the density where
the center of the cloud is beginning to heat. Many calculations have not treated
radiation transport but have assumed adiabatic heating starting from an assumed
transition density. The precise treatment of radiation transfer has been shown to
be important.

2. The role of magnetic fields in regulating the protostellar collapse and fragmen-
tation phase has not been explored in sufficient detail. While the general effect
of a magnetic field on cluster formation is to suppress fragmentation and star
formation [423, 424], the numerical simulations that yield that conclusion are
based on ideal MHD, while in fact at the densities where fragmentation becomes
important one would generally expect the field to be largely decoupled from the
gas because of a very low degree of ionization.

3. Since there are so many possible initial conditions, the statistics of mass ratio
distributions, eccentricities, and multiplicity fraction will be difficult to derive
from detailed three-dimensional calculations. It will be interesting to determine
in the future how dependent the results of cluster-formation scenarios are on the
details of the initial conditions. Although many observed properties of the binary
population are explained by the limited number of existing cluster-formation
simulations, the effects of improved spatial resolution and improved physics
remain to be investigated. In particular, the mass ratio distribution in binaries
remains to be explained, both theoretically and observationally.

4. It is difficult to explain close binaries, with separations of a few AU or less,
by the fragmentation process. It appears that interactions in a cluster-forming
environment may be the key to their formation. Even though the transition in
observable properties between close binaries and wide binaries is smooth, there
are likely to be a number of different physical processes that produce close
binaries. The formation of very close binaries, with separation < 0:1 AU, has not
been explained in theoretical simulations. However an intriguing possibility is the
Kozai mechanism [165, 267], which can operate in a hierarchical triple system.
If the inner and outer orbital planes are inclined by more than a critical angle ic
(about 39ı) and less than 180ı � ic , then an exchange between the inclination
and the eccentricity of the inner binary can occur, with both of these quantities
undergoing periodic oscillations. If the amplitude of the eccentricity oscillation is
large enough, the periastron point of the inner binary can be close enough so that
tidal effects reduce the semimajor axis of the inner orbit, gradually converting a
relatively long-period orbit into a short-period orbit of a few days.
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6.6 Summary

Detailed numerical simulations, combined with observational data, are beginning to
provide some clues regarding the dominant physical processes that govern binary
formation. However, the range of input parameters in such calculations is wide,
and the results often depend sensitively on them. The theory is not yet at the
point where it can fully explain the observed distributions of binary period, mass
ratio, and eccentricity. However the simulation described above [37] does provide
a significant step forward in this respect. The initial condition of this simulation,
however, represents only one of a large number of possible cases. Furthermore
there remain significant physical effects to be explored, including feedback on the
cloud from outflows and radiation from the stars that have been produced [281].
Nevertheless, a few conclusions can already be reached.

First, fission has essentially been ruled out as a viable process for the formation of
close binaries. Second, capture is unlikely to have produced many of the observed
systems, although a few captures may have occurred in the cores of dense young
clusters where circumstellar disks can act as the dissipation mechanism. Third,
protostellar disks have been shown to be unstable, in the linear regime, to the growth
of one-armed or two-armed spiral modes as long as the Toomre Q value is below a
critical value and the disk can cool efficiently. Non-linear numerical calculations
show that under the right conditions this instability can lead to formation of
multiple stellar systems. Fourth, fragmentation during the isothermal phase of
isolated-core protostar collapse has been demonstrated to produce binaries with
long periods. Whether fragmentation occurs or not depends on initial conditions,
in particular the density distribution and the value of ˛i . However the majority of
stars form in clusters, and the properties of binary and multiple systems depend on
the complicated interactions betweeen stars and between stars and gas during the
formation phase of the cluster. Thus massive numerical simulations are required to
account for the details of binary properties deduced from observations.

The formation of close binaries is still a major issue, and it may require a
combination of processes. At least three interesting suggestions should be further
explored. First, at least some fragments that form during the isothermal collapse
are suitable for subfragmentation as they evolve into the adiabatic phase. Thus,
hierarchical fragmentation is likely to produce some close systems, and there is
observational evidence to support this view. Second, an initial fragmentation stage
during the isothermal collapse could produce a number of fragments in eccentric
orbits. Gravitational interactions, disk dissipation, gravitational instabilities in disks,
and captures in such a system could produce binary orbits with a wide range of
periods and eccentricities. Third, the orbit of a long-period binary, formed during
the isothermal collapse of a core or in a cloud–cloud collision, can decay as a
result of angular momentum transport to a circumbinary disk or through dynamical
interactions in which a close encounter can lead to hardening of the orbit. Thus
the general mechanism of fragmentation could either directly or indirectly be
responsible for the formation of a wide range of binary and multiple systems.
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6.7 Problems

1. Two M stars (half a solar mass each) are in a circular orbit with period 15 days.
A G2V star (1 Mˇ) is in a circular orbit around the pair with a period of 10 yr.
Find the specific angular momenta of each of the orbits and compare with that
in molecular cloud cores. Suggest one or more scenarios by which this system
could have formed.

2. A uniform-density molecular cloud core has a mass of 2.2 M , a radius R, and a
rotational frequency ˝ . It collapses and splits up into an equal-mass binary, on a
circular orbit, each component having mass M . The total angular momentum of
the binary is half that of the original cloud. Each component has uniform density,
uniform rotation in synchronism with the orbit, and radius 0.1 times the binary
separation, which is 2d .

(a) Find the orbital frequency of the binary, ˝b, in terms of the quantities given.
(b) What is the ratio of the specific angular momentum of spin of one of the

fragments to the specific angular momentum of spin of the original cloud?
(c) Put in numbers to find d : M D 2 Mˇ, R D 3�1017 cm, ˝ D 2�10�14 s�1.

Is this system considered to be a wide binary or a close binary?
(d) What does this result imply with regard to the solution of the angular

momentum problem?

3. A T Tauri star of mass M and radius R is spinning, with uniform ˝ at its
maximum rate, the so-called “breakup” velocity. Assume it fissions and forms
a binary in a circular orbit with equal mass (M=2) components. The components
are spinning at the orbital frequency. The problem is to figure out whether this
result is reasonable.

(a) What is the binary separation in units of R?
(b) What is the ratio of the spin specific angular momentum of one component

to the specific orbital angular momentum of the system?
(c) What assumed mass ratio for the system would be needed to get a reasonable

result?

4. Assume that both the primary (m1) and secondary (m2) masses in a binary are
chosen at random from an initial mass function, and that function is given by
(1.7). Plot the resulting distribution of mass ratios q D m2=m1. Choose a mass
range 10�2 � 10 Mˇ.

(a) for all primary masses
(b) for primary masses only in the range 0:5 � 1 Mˇ.

How do the results of (b) compare with observations? The best comparison with
observations would be to consider a range of q between 0.3 and 1.

5. During a certain phase of the formation of a star, the central star has a mass
of 5 Mˇ, and it is surrounded by a disk of 2 Mˇ. The disk’s outer radius is at
R D 1;000 AU, its distribution of surface density is ˙ / R�1, and its temperature
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distribution is T / R�1=2 where T D 1;000 K at 1 AU. What is the minimum
radius in the disk where it is likely to fragment? Estimate the mass of the
fragment, assuming it forms at that radius. The most unstable radial wavelength
in a gravitational instability is roughly [391]


crit D 2c2
s

G˙
:

6. A cloud core of radius 2:5 � 1017 cm and mass 2 Mˇ, of uniform density
and uniformly rotating, collapses and begins to fragment near the transition to
adiabatic collapse, when the density in the central regions is 3 � 10�14 g cm�3

and the temperature is 10 K. The two equal-mass fragments in the binary each
have one Jeans mass and are separated by 2 Jeans lengths. Assume that the total
mass and angular momentum of an inner sphere at the given density has gone
into the binary orbit.

(a) What is the angular frequency ˝ of the initial cloud? Mass and angular
momentum of the inner sphere are conserved during collapse.

(b) What is the specific angular momentum of the initial cloud and its ratio of
rotational energy to gravitational energy? Compare the J=M with those of
observed molecular cloud cores (Fig. 6.2).

(c) Assume that half of the mass of the initial cloud eventually ends up in an
equal-mass binary, conserving mass and angular momentum. What is the
period and separation of the resulting orbit?



Chapter 7
The Formation of the First Stars

The first stars formed in the very early Universe at times in the range 108–109 years
after the Big Bang. Conditions then were very different from those in the Galaxy
at the present time. (1) Only insignificant amounts of elements heavier than H and
He were present; (2) dust grains were not present, so opacities and optical depths
were quite different from those in present-day protostars; (3) heating and cooling
mechanisms in prestellar clouds and protostars were also quite different, leading
to altered conditions of temperature and density; (4) dark matter, the exact nature
of which is still unknown, played an important role in the formation process; (5)
magnetic fields were probably not present, or at most were very weak compared
to present-day interstellar values. The first stars are known as Population III and
have not been directly observed. They may be divided into two sub-classes: Pop.
III.1 and Pop III.2. The former refers to the true first generation of stars, where
the composition is that produced in the Big Bang and there has been no prior star
formation. The latter refers to the second generation, in which the composition is
still primordial, but star formation is influenced by the kinetic energy and radiation
deposited into the interstellar medium by the first generation. In contrast, the oldest
observed stars have iron abundances between 10�3 solar and less than 10�5 solar
[114, 174, 471]; they are known as Population II and clearly belong to a still later
generation of stars but still very old, �13 Gyr. The carbon and oxygen abundances
in these stars are less depleted relative to solar than is the iron. The details of the
abundance patterns in these objects give important clues regarding the nature of
the earliest generations of stars whose supernovae produced these elements. This
chapter concentrates primarily on Population III.1.

The properties of the first stars have an important impact on the early evolution
of the Universe, as their production of UV photons affects reionization of the
Universe, and their supernovae produce the first enrichment of the heavy elements
in the interstellar medium, which substantially affects the formation of the later
generations of stars. If, as it is likely, the first stars were very massive, they also
could have contributed to black-hole formation in the early Universe; however, the
nature of the initial mass function, and the upper mass limit, are critical and as
yet unanswered questions. This chapter summarizes some of the important physical
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processes relevant to the formation of the first stars and sketches the evolutionary
phases through which they must progress.

7.1 Physics of the First Stars

Many of the basic processes previously discussed for present-day star formation still
apply to the first stars.

• Hydrodynamic collapse of material under gravity, although the importance of
magnetic fields is probably negligible

• Equation of state of the gas, including heating, cooling, ionization, dissociation
• Molecular chemistry and the determination of abundances of molecules, particu-

larly H2, whose cooling radiation is important
• Radiative transfer, both in the continous and line spectra
• Turbulence and convection in the prestellar gas as well as in the interiors of

protostars; however turbulence is thought to play a less important role than in
present-day star formation, because it is probably sonic or subsonic, rather than
supersonic

• Shock waves, both those involving accretion of material onto forming stars and
disks, and those generated by the radiation or explosion of the first stars, which
can induce the formation of the second stars.

In some ways, the physics here is somewhat simpler than that in present-day star
formation, because of the virtual absence of magnetic fields and dust grains, because
the cooling mechanism is straightforward, because there are no previously-formed
stars to influence the physical conditions at the formation site, and because the initial
conditions can be fairly well defined through cosmological simulations.

Of all of these physical processes, the formation and excitation of H2 is the
most crucial, since it is the cooling that arises from this molecule that allows
the Jeans mass in primordial gas clouds to become low enough to allow the
formation of stellar-mass objects. However, at the time of formation of the first
stars the hydrogen gas in the Universe has recombined and is primarily neutral, and
molecular formation on dust grains, the principal process in present-day molecular
clouds, is clearly not possible. Also, direct attachment of two H atoms to form a
molecule, with the binding energy given off as a photon, is not possible because
vibration-rotation transitions in the H2 molecule are forbidden for electric dipole
radiation.

Thus the following reactions must occur, given a few e� and HC left over from
recombination:

H C e� ! H� C h	 (7.1)

H� C H ! H2 C e� (7.2)
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or

H C HC ! HC
2 C h	 (7.3)

HC
2 C H ! H2 C HC: (7.4)

The first set of reactions generally dominates. The abundance of electrons and ions
is very low, so it turns out that these reactions, below a density n D 108 cm�3,
produce only a small amount of H2. Above that density, three-body reactions are
possible

H C H C H ! H2 C H and (7.5)

H2 C H C H ! H2 C H2 (7.6)

and the density of H2 increases considerably.
Once the temperature reaches about 2,000 K and the density is relatively high,

the hydrogen molecules undergo dissociation, mainly by collisional processes

H2 C H ! 3H (7.7)

H2 C H2 ! H2 C H C H: (7.8)

The main heating mechanisms are gravitational compression and heating of
free electrons by the cosmic microwave background. When H2 forms the heat of
formation must be taken into account. Cooling occurs from atomic and molecular
line cooling and Compton cooling, which involves transfer of energy from high-
energy electrons to low-energy photons by scattering. At relatively low densities,
the collapse proceeds nearly adiabatically. At higher n and T , collisions between
H atoms and H2 molecules excite the H2 molecules, primarily to the lowest-lying
rotational levels. Then the molecules de-excite with the emission of a photon, which,
up to a density of about 1013 cm�3, is able to escape from the cloud, thus cooling it.
However the excitation potential of the first level of H2 corresponds to an excitation
temperature of 512 K; thus the gas is able to cool via this process down to 200 K
but not lower; it can cool to that value through collisions with particles in the
high-energy tail of the Maxwell velocity distribution. When H2 dissociates, the
dissociation energy must be provided by the gas, so that is effectively a cooling
mechanism.

Figure 7.1 shows a sketch of the path in a (log n, log T ) diagram which a
metal-free protostar is expected to take. At low densities, to the left of point A,
the molecular hydrogen fraction is less than 10�4, all cooling mechanisms are
ineffective, and the gas heats adiabatically by compression. Between points A and
C, H2 forms through reactions (7.2) and (7.4), the H2 fraction is in the range 10�4–
10�3, and cooling acts to reduce the temperature to 200 K. Point B represents the
range where H2 cooling is most effective. At point C, the cooling rate saturates,
as the level populations in H2 approach local thermodynamic equilibrium. Between
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Fig. 7.1 Evolutionary path
of protostars in the
(log n; log T ) plane. Upper
curve: a metal-free protostar
in the early Universe; lower
curve: a protostar with solar
metal abundance forming at
the present time. Upper curve
is adapted from [568]

points C and D the gas again heats nearly adiabatically. Near point D, three-body
reactions ((7.5) and (7.6)) become important. Between points D and E the molecular
fraction rises to almost unity. However there is only slight cooling, because in that
region the optical depth in the H2 cooling transitions becomes larger than one.
Because the probability of escape of the photon becomes smaller, cooling by that
process becomes less and less effective. An additional cooling process comes in
at densities above 1014 cm�3, point F. The process of collision-induced emission
involves a transition within a molecule from one state, characterized by a rotational
quantum number J and a vibrational quantum number v, to another state with J 0; 	0,
resulting in the emission of a photon:

H2.	; J / C H2 ! H2.	
0; J 0/ C H2 C h	: (7.9)

Such transitions result in a continuum-like spectrum [180]. However beyond point
G, at n � 1018 cm�3 the gas becomes opaque to the continuum emission as well, and
further increase in density is nearly adiabatic, as no cooling processes are important.
At point G, the H2 begins to dissociate, resulting in a decline of the H2 fraction.

Note the considerable differences between the tracks in the (log n; log T )
diagram between the metal-free protostar and the one with solar metallicity. In the
latter case, CO molecules and dust grains provide much more efficient cooling
than H2, and even at low densities the gas can cool to 10 K. The gas stays at that
temperature over several orders of magnitude in n, because the cooling time is
shorter than the free-fall time. The gas becomes optically thick in the continuum at
n � 1011 cm�3, much earlier than in the metal-free case. The compression beyond
that density is adiabatic. Note that the conditions for onset of dissociation are very
similar in the two cases.
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7.2 Sequence of Events During Formation

Several phases can be identified in the formation of the first stars, with size scales
ranging from very large (Mpc) cosmological scales down to a few Rˇ. The work
describing this process includes semi-analytical and one-dimensional numerical
simulations, but the most detail is provided by three-dimensional numerical hydro-
dynamic simulations. Nevertheless the problem is sufficiently difficult, owing partly
to the large range of length scales involved and partly to the complications of
radiation transport, so that such simulations have not been carried all the way to
the point where the star has obtained its final mass. Observations of the first stars
have so far been not possible, but with improved instrumentation in the future this
goal may be achieved, particularly if they end up as very bright supernovae with
gamma-ray bursts.

7.2.1 Cosmological Phase

The start of the process involves a mixture of dark matter and baryons, with the
baryons providing only about 15% of the density. Their composition, a result of
big-bang nucleosynthesis, is about 76% hydrogen and 24% helium by mass. The
dark matter particles, whose nature is unknown, are considered to be collisionless,
while the baryons are collisional and can dissipate energy. The Universe at the
start of the simulations has a spectrum of very tiny density perturbations on a
smooth background. Detailed numerical simulations, starting at a redshift z �
100, are usually based on the Cold Dark Matter picture, which, along with the
observations of the cosmic microwave background radiation, determines the nature
of these perturbations. Those which have above-average amplitude tend to grow
the fastest, forming small overdense regions composed mainly of dark matter.
These regions grow larger in mass through encounters with each other and mergers.
The gravitational interactions and mergers result in a net spin angular momentum
for each of these dark-matter-dominated haloes. The first region to grow up to a
mass of 105–106 Mˇ is the probable site of the formation of the first star. A dark-
matter halo, in general, consists of an infall region and a virialized region, where,
in the latter, the kinetic energy of random motions is one-half the absolute value
of gravitational energy. At redshifts of 10–20, the virialized region contains 105–
106 Mˇ and the corresponding temperature is about 1,000 K. Within the dark-matter
halo of say 106 Mˇ, the baryonic matter, under the influence of the dark-matter
gravitational potential, settles to the center, forming a core of about 1,000 Mˇ, close
to hydrostatic equillibrium. At about z D 18, corresponding to 200 Myr after the
Big Bang, the baryonic core begins to collapse, marking the onset of the protostellar
phase.
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7.2.2 Protostellar Collapse

One requirement for the baryonic core of a dark-matter halo to collapse is that the
cooling time must be less than the free-fall time. When the halo mass approaches
106 Mˇ[92], temperatures in the core are about 1,000 K, and atomic transitions
in the neutral hydrogen are ineffective at cooling; they require about 104 K. The
condition can be satisfied only when a fraction of about 10�4 of the hydrogen
has been converted to H2, corresponding approximately to point A in Fig. 7.1. The
cooling rate increases with n.

When a sufficient amount of H2 has formed, the baryonic material cools and
compresses, reaching conditions (point C in Fig. 7.1) where T � 200 K and n �
104 cm�3. This density corresponds to the critical density where the excited levels
of H2 are de-excited by collisions (which produce no photons) at about the same
rate as radiative de-excitations. The cooling time, previously inversely proportional
to the density, becomes independent of density. Thus further compression is held
up. The condition now needed to get the core to collapse is that its mass must be
greater than the Jeans mass, which [92] can be written

MJ � 700Mˇ
�

T

200 K

�3=2 � n

104 cm�3

��1=2

: (7.10)

Thus once about 1,000 Mˇ has accumulated with conditions appropriate to point
C, collapse can begin. The total mass of the baryonic matter in the halo is at least
105 Mˇ, and this matter gradually accretes into the center. However the final mass
of the first star is probably not determined by the Jeans mass of the initial core, but
rather by feedback effects that occur later on.

The protostellar core of the dark-matter halo has angular momentum, determined
by tidal interactions with the neighboring halos. However at the initial state of the
core, the rotational effects are small, with rotational kinetic energy less than 1%
of the gravitational energy. Also, magnetic and turbulent effects are expected to be
small, so the thermal Jeans mass, (7.10), is probably appropriate.

The question arises whether this core of 1,000 Mˇ will fragment into a cluster
of stars, or at least into a binary system. This question is still unresolved. For solar-
metallicity clouds, the likely fragmentation regime is the isothermal collapse stage,
where the Jeans mass decreases with density and pressure effects are relatively
unimportant. As discussed in Sect. 6.5, rotational effects are important in slowing
down the collapse during this stage and promoting fragmentation. However in the
metal-free case the isothermal stage does not occur (Fig. 7.1) and pressures at a
given density are much higher than in the present-day case. The high pressures
tend to suppress perturbations that could lead to fragmentation. Further, the angular
momentum of the baryonic material that falls to the center of the dark-matter halo is
relatively small. For example, a three-dimensional simulation, carried up to a central
density of 1016 cm�3 [398], showed that indeed fragmentation did not occur, and an
analytic stability analysis [568] verified this result. Three-dimensional calculations
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Fig. 7.2 Numerical simulation, in three space dimensions, of the first protostar [1]. On two
different scales but at the same time, a two-dimensional density slice through the collapsing object
is shown. The number density is shown on a logarithmic color scale, at the end of the simulation
(redshift z D 18:18, corresponding to a time of about 1.5% of the current age of the Universe).
The scales indicated on the plots correspond to the side length of the box. At that time the central
density is 3 � 1013 cm�3, the outer density on the 6 pc scale is about 100 cm�3, and the outer
density on the 0.06 parsec scale is about 107 cm�3. The enclosed mass on the 0.06 parsec scale is
about 100 Mˇ. The small yellow dot in this frame corresponds to a protostar of 1 Mˇ, which is
still in the collapse phase, before the formation of the hydrostatic stellar core. From T. Abel, G.
Bryan, M. Norman: Science 295, 93 (2002). Reprinted with permission from AAAS. c� American
Association for the Advancement of Science

carried to even higher densities [567] also did not show fragmentation. However,
the amount of mass included in the high-density central regions at the end of these
simulations was small, as was the corresponding angular momentum. At later times,
not yet fully explored by numerical simulations, the material farther out, with higher
angular momentum, can collapse, and a relatively massive disk could form. Cooling
in this disk could be sufficient to give the right characteristics for it to become
gravitationally unstable and to fragment.

If the central region of a protostar, once it has reached the stage represented
in Fig. 7.2, is converted into a sink particle, the evolution can be followed to later
stages, and the question of fragmentation can be investigated. One such simulation
[480] treats a sink particle, initially of approximately 1 Mˇ, as unresolved, although
mass is allowed to accrete onto it. Thus the very short time steps required to follow
its evolution are avoided. The result of this simulation was the formation of a
disk with mass �30 Mˇ, and radius 2,000 AU. The disk became gravitationally
unstable and fragmented. The end result was two major fragments of 40 and
10 Mˇ, respectively. The final fate of these fragments is unknown – for example,
it is possible they could merge and/or continue to accrete to high mass – but the
possibility that the first star is a binary remains open.

Returning to the single-star case, once the Jeans mass is reached, the cloud goes
into collapse, with gradually increasing temperatures. At first the H2 fraction is still
quite low (10�3) and the cooling efficiency is low, resulting in a temperature rise
back to around 1,000 K. Then, at a density of above 108 cm�3 (point D in Fig. 7.1)
the three-body reactions for the formation of H2 become significant, and the H2
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fraction rises quickly, approaching 100%. About 1 Mˇ at the center becomes fully
molecular. The more efficient cooling then results in a brief phase of temperature
decline. However at only slightly higher density the optical depth in the lines
corresponding to the cooling transitions becomes greater than unity, and the cooling
photons become trapped in the cloud, having a smaller and smaller chance to escape
with increasing density. By the time the density reaches 1014 cm�3 the escape
probability is only 1% that at 1010 cm�3. Figure 7.2 shows the structure of the
protostar at about this time. Note that protostar at this stage has not yet developed an
equilibrium stellar core. However, above that density, collision-induced transitions
of molecular H provide further cooling through continuum radiation, slowing
down but not stopping the upward trend in temperature. When n � 1016 cm�3 and
T � 2;000 K, the H2 starts to dissociate, and beyond that point the gas becomes
completely optically thick in the continuum as well as in the lines. The collapse
then becomes nearly adiabatic, because the time for transfer of radiation out of the
central region is longer than the collapse time.

Once hydrogen dissociation has begun at the center, that region goes into dynam-
ical collapse once more. The dissociation is not complete until the temperature is
above 20,000 K. The collapse is fast, nearly free-fall, with a time scale of only
a year between points A and B (Fig. 7.3). Then a hydrostatic core forms, with a
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Fig. 7.3 One-dimensional hydrodynamic simulation of the collapse of the first protostar [436].
The evolution of the center (solid line) is shown in the (log n; log T ) plane. The dashed line and
point A indicate where the cloud becomes optically thick in the continuum. (In 3-D calculations,
this point is shifted to higher densities, because non-spherical effects allow escape of photons
in the polar direction). Point B indicates where the initial hydrostatic “stellar” core forms. The
dotted lines indicate the molecular hydrogen dissociation zone; the upper, middle, and lower lines
correspond to equilibrium H2 fractions of 0.01, 0.1, and 0.9, respectively. From E. Ripamonti et al.:
MNRAS 334, 401 (2002). Reproduced with permission from Wiley. copyright Royal Astronomical
Society
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Fig. 7.4 Spherically averaged density (a) and temperature (b) distributions from three-
dimensional simulations of the evolution of the first protostar at several different times [567]. This
protostar was formed at the time corresponding to redshift z � 14 and was carried to higher central
density than that shown in Fig. 7.2. The density structure approaches a power law n / r�2. The
four times shown (bottom to top) correspond to central densities of 1012, 1015, 1018, and 1021 cm�3,
corresponding, respectively, to the points where the core becomes optically thick in molecular lines,
where cooling by collision-induced emission sets in, where the core becomes optically thick in the
continuum, and where H2 dissociation is complete in the core. The time intervals between curves
are roughly the free-fall time at the given density. From N. Yoshida, K. Omukai, L. Hernquist:
Science 321, 669 (2008). Reprinted with permission from AAAS. c� American Association for
the Advancement of Science

shock wave on its outer edge, in a process that is similar to that in a protostar with
solar metallicity. The initial core mass is about 10�2 Mˇ with a radius of about
5 � 1011 cm, and it is accreting mass rapidly, a few �10�2 Mˇ yr�1. Rotational
effects have become relatively important at this time, and a disk forms outside the
stellar core, with a radius of about 1013 cm and a mass of 0.1 Mˇ. In a clustered
environment, it is possible that close encounters with other protostars could eject
the core from its parent cloud with the result of cutoff of accretion and a rather low
final mass. However in the case of the first star there are no such disturbances, and
the core is expected to grow to high final mass, as discussed in the next subsection.

The evolution of the density- and temperature structures and the characteristics
of the protostar at time of stellar core formation, according to three-dimensional
calculations [567] are shown in Figs. 7.4 and 7.5. The density distribution becomes
extremely centrally condensed, and at the final time the central density is 21
orders of magnitude higher than it was when cooling from H2 began (point A
in Fig. 7.1). The temperatures maintain a generally upward trend despite various
cooling processes. Exceptions are noted at 1010 cm�3, where 3-body reactions
convert all of the hydrogen to H2, and at about 1013 cm�3, where the gas is still
optically thin to collision-induced transitions. The initial stellar core, at the final
time, is that region with R < 5 � 1011 cm.

Figure 7.5 shows that in that core (10�2 Mˇ) only a few percent of the hydrogen
is still molecular, most of it is neutral, and it is beginning to ionize. Only when the
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Fig. 7.5 Characteristics of the protostar [567] at the final time shown in Fig. 7.4. Left: the number
fractions of molecular hydrogen (H2), neutral hydrogen (HI), and ionized hydrogen (HII) as a
function of enclosed mass. Right: Infall velocities as a function of enclosed mass (left scale) in
the direction parallel to the rotation axis (Vvertical) and azimuthally averaged in the equatorial plane
(Vmidplane). The right-hand scale shows the degree of rotational support frot D .L=r/=	K , where L

is the specific angular momentum at radius r and vK is the Keplerian velocity
p

GMenc=r . From
N. Yoshida, K. Omukai, L. Hernquist: Science 321, 669 (2008). Reprinted with permission from
AAAS. c� American Association for the Advancement of Science

core has built up to considerably higher masses will it become completely ionized.
Outside the core, the region where H2 dominates is only a few Mˇ, while the bulk
of the mass, out to 100 Mˇ, is primarily neutral H. But even the very small amount
of H2 that remains there is sufficient to cool the gas to about 200 K. The right-
hand panel shows that high velocities of infall are generated just outside the core,
induced by molecular dissociation, in both the polar and equatorial directions. At
the edge of the core there is a sudden deceleration caused by a shock wave, and
inside the core the velocities reduce to near zero, signalling the onset of hydrostatic
equilibrium. The curve labelled frot shows that at the time of stellar core formation
rotational effects have become important throughout the inner 100 Mˇ. They are
particularly important just outside the core, where a disk forms. The reduction in
frot in the core itself is caused by angular momentum transport induced by spiral
waves in the disk.

7.2.3 Accretion Phase

The next phase of the formation of the first star involves the accretion of material
from the low-density infalling envelope onto the high-density stellar core (initially
n � 1021 cm�3). Although this core of 10�2 Mˇ is similar for the first star and for
solar-metallicity protostars, the accretion phase differs in two important respects in
the two cases. First, the first-star low-density core contains at least 1,000 Mˇ of
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baryonic material which has collected at the center of a dark-matter halo, while the
typical molecular cloud core in the solar-metallicity case contains only a few Mˇ.
Second, a rough estimate of the accretion rate is given by PM � c3

s =G, where cs

is the sound speed in the low-density core. In the case of a typical molecular cloud
core at 10 K, PM � 1:6 � 10�6 Mˇ yr�1, while in the first-star case at 200 K the rate
is two orders of magnitude higher at about 1:5 � 10�4 Mˇ yr�1, and, at 1,000 K,
three orders of magnitude higher at �10�3 Mˇ yr�1.

The actual accretion rate can differ significantly from the rough (dimensional)
estimate, and in fact it can vary, depending on the detailed properties of the dark-
matter haloes in which the first stars form. As we have seen, at the time of stellar
core formation the rate is above 10�2 Mˇ yr�1. However, as in the case of solar-
metallicity protostars, the complete 3-dimensional evolution of the first star has not
been calculated all the way up to the final mass. Thus, various estimates have been
made for the accretion rate. In any case, if the accretion can be approximated as
infall onto a metal-free main-sequence star of a given mass, the infall rate cannot
exceed the Eddington limit for that mass, which is the luminosity above which the
radiation pressure force exceeds gravity at the surface of the star. Assuming that the
luminosity is dominated by accretion, then

Lacc � GM PM

R
; (7.11)

where R is the main-sequence radius of the star with mass M . The Eddington limit
is given by

Led D 4�cGM

�
; (7.12)

where c is the velocity of light and � is the Rosseland mean opacity at the stellar
surface. Thus the limiting mass accretion rate is

PMlim D 4�cR

�
: (7.13)

This limit is plotted in Fig. 7.6, under the reasonable assumption that � is dominated
by electron scattering and that the main-sequence radii are given by standard stellar
structure calculations [448] for zero metals.

A reasonable estimate of the actual accretion rate can be made, based on the
structure of the protostar, as determined from 3-D calculations [398,568], when the
central density has reached about 1015 cm�3. The estimates of this rate are displayed
in Fig. 7.6. The rate is calculated by obtaining

PM D 4�r2�vr (7.14)

as a function of the enclosed mass, where � is the gas density in g cm�3 and 	r

is the radial infall velocity. This formula essentially gives the rate at which gas in
the low-density protostellar core is delivered to the point of onset of dissociation,
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Fig. 7.6 Mass accretion rates as a function of enclosed mass for simulations of the formation of
the first stars. (Dot-dashed line:) the Eddington limit for accretion onto main-sequence stars with
zero metals (Z=0.). (Solid line:) accretion rate as estimated by [398]. (Long-dashed line:) accretion
rate as estimated by [568]. (Short-dashed line:) Accretion rate as estimated by [498]. Below the
mass range 50–100 Mˇ the calculated rates are higher then the Eddington limit for main-sequence
radii, therefore the actual radii during this phase must be larger than main-sequence values

from which it free-falls onto the surface of the stellar core. It is clear that this rate
is very fast initially and then decreases with time, which can be roughly understood
as reflecting the increase in dynamical time as one proceeds outwards in the core to
lower-density material, as well as the decrease in cs in the estimate PM � c3

s =G.
An analytical estimate [498] which agrees well with the above numerical results

is based on the assumption that the low-density core has a hydrostatic, polytropic
structure with P D K�� . The value of K is obtained from the numerical results.
Then the accretion rate is estimated to be

PM D �
M

tff
; (7.15)

where M is the central mass, tff is the free-fall time measured in the initial core
where the mass interior is M , and � is a numerical parameter of order unity that
depends on the structure of the low-density core. The accretion rate that results is

PM � 0:026

�
M

Mˇ

��3=7

Mˇ yr�1 (7.16)
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for typical parameters of the initial core, assuming all the collapsing mass ends up
on the star rather than in an outflow, and that the inflow is spherical, without a disk.
The exponent of �3=7 arises from the assumption � D 1:1, approximately correct
for the evolution beyond point C in Fig. 7.1. If accretion through a disk is taken into
account, the accretion rate is multiplied by a factor of about 2/3 [498]. This formula
is also plotted in Fig. 7.6. The time to accrete up to a given mass is then

tacc � 27

�
M

Mˇ

�10=7

yr; (7.17)

which gives 20,000 yr for 100 Mˇ and 94,000 yr for 300 Mˇ. If disk accretion is
included, the times increase by about a factor 1.5. These mass values are chosen
because they bracket the probable range of final masses according to the picture we
have been describing, in which feedback, to be described in the next subsection,
determines the final mass. In the absence of feedback, the star could in principle
accrete all the baryons in the initial dark-matter halo, more than 100,000 Mˇ.

In Fig. 7.6 it is clear that for the early part of the accretion phase, at low stellar
masses, the estimated accretion rate exceeds the estimated Eddington limit. The
actual accretion rate will be slowed down partly because of the effects of angular
momentum, which would tend to result in the formation of a disk around the forming
star. Also, the rapid accretion will feed back on the structure of the star. If the time
scale for accretion tacc � M= PM is shorter than the thermal adjustment time tKH ,
which is true for low M , then the star cannot accept the material as fast as it is
being supplied, and it must expand in radius. As shown in Fig. 7.7 this expansion is
significant, resulting in radii greater than 200 Rˇ.

Although approximate three-dimensional calculations have been performed for
the accretion phase [92], the essence of the character of the evolution of a proto-first
star during the accretion phase can be obtained [568] in the spherically symmetric
approximation through the use of standard stellar models in hydrostatic equilibrium.
Accretion through a disk can also be taken into account [498]. The star is simply
assumed to add mass as given by the appropriate curve in Fig. 7.6. While the mass is
less than 10 Mˇ, as expected, the thermal adjustment time tKH is relatively long and
the accretion rate is fast, so the star is unable to accept the mass at its main-sequence
radius: it must expand. The radius as a function of mass is shown in Fig. 7.7. As a
result of the large radius, the accretion luminosity (GM PM=R), also shown in the
figure, drops well below the Eddington limit. Around 10 Mˇ the radius makes a
small upward spike as a result of the details of the transition of the interior of the
star from a convective to a radiative structure. At masses between 10 and 100 Mˇ
the accretion rate drops and the thermal adjustment time decreases, so a decrease
in radius results and the star is able to contract to the main sequence and start
nuclear burning at about 100 Mˇ. At masses above this value, the star is able to
accept the mass while remaining at its main-sequence radius. The evolution is then
simply up along the main sequence with increasing mass and increasing radius. The
increase in radius along with the decrease in PM result in a fairly abrupt shift from
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Fig. 7.7 Radius (left scale) and luminosity (right scale) as a function of total mass from an
approximate model of a spherically accreting primordial star [568]. Dotted line: the Eddington
limit for accretion (7.12; right scale). Solid line: radius of the accreting star. The increasing radius
above 100 Mˇ corresponds to the zero-metal main sequence. Long-dashed line: the accretion
luminosity, based upon the mass accretion rate given as the long-dashed line in Fig. 7.6. Short-
dashed long-dashed line: the nuclear luminosity from main-sequence stellar models with Z D 0:,
starting at 100 Mˇ [448]. Feedback effects were not included; they would tend to shut off accretion
at about 140 Mˇ (Fig. 7.8)

the luminosity being dominated by the accretion luminosity to being dominated by
nuclear luminosity, as shown also in Fig. 7.7. The plot continues up to 1,000 Mˇ,
but in practice feedback effects of the stellar photons upon the infalling material will
limit the mass to values less than that, as discussed in the next section. As shown
in the figure, the total luminosity never exceeds the Eddington limit. An evolution
similar to that shown in Fig. 7.7 results if the presence of a disk is included [498].
The general conclusion is that, depending upon parameters, the first star arrives on
the main sequence in the mass range 50–100 Mˇ, at which point it is still accreting.
A higher accretion rate corresponds to a slightly higher mass at the arrival point.

7.2.4 Feedback Phase

When the first star actually arrives on the main sequence, its surface temperature is
approaching 100,000 K. As a result there is a high luminosity of UV photons beyond
the Lyman limit. The precise mass at which the effects of these photons cut off
accretion from the dark-matter halo is important, because it affects the reionization
of the Universe, and the initial enrichment of heavy elements when it becomes a
supernova. The pattern of elements produced depends on the mass of the supernova
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progenitor, and in some mass ranges no metals are produced at all because the entire
star collapses and becomes a black hole.

In present-day star formation, the main feedback effect is radiation pressure
on the infalling dust, which becomes important for masses as low as 10 Mˇ (see
Chap. 5.) But in the early Universe, this effect is absent. Stellar winds and outflows
are likely to be important in limiting accretion in present-day star formation, but
the magnetic fields that play a crucial role in producing bipolar flows in low-mass
stars, and the effect of radiation pressure in metal absorption lines that is important
in driving winds in massive stars, are also very likely to be of little importance in
the case of the first stars. Instead, effects resulting from ionization and dissociation
dominate the feedback processes.

The main effects that are likely to be important [355] are (1) dissociation of H2,
(2) Lyman ˛ radiation pressure, (3) creation of an HII region, and (4) photoevap-
oration of a disk. Rotational effects and the presence of a disk are important in
determining the final mass, and they have been considered in an approximate way.
These four effects are discussed briefly in the following paragraphs.

Once the forming first star has reached a mass of 25–30 Mˇ it radiates substantial
energy in the far-ultraviolet (FUV) with energies less than the 13.6 eV necessary
to ionize hydrogen. Although during protostellar collapse the main mechanism for
dissociating H2 is by collisions, in low-density regions the primary mechanism is
photodissociation by photons above 11.2 eV in energy (H2 Ch	 ! H CH Ch	0 C
KE). These photons are able to excite the molecule from the ground electronic state
to the first excited electronic state (Lyman band) or to the second excited electronic
state (Werner band). The net result is either decay back to the ground state, or,
a fraction of the time, dissociation. In the latter case the energy in excess of the
4.48 eV binding energy of the molecule goes into radiation and kinetic energy of the
hydrogen atoms.

Once the flux in these bands becomes significant, the molecules at low density
in the baryonic core of the dark-matter halo can become dissociated. Without the
molecules, the primary cooling mechanism for the core disappears. One might
expect that the low-density core would heat up and stop its contraction, but by the
time the dissociation becomes significant, there is already a significant amount of
collapsed mass interior to the core. In most cases a detailed analysis shows [355]
that accretion onto the forming star will continue, at a rate that is at most reduced by
20% from that before dissociation. Thus this feedback effect has a negligible effect
on shutting off accretion. However, the Lyman–Werner radiation from the first star
could result in dissociation in nearby dark-matter halos with baryonic cores that
have not yet reached the point of collapse. Here suppression of star formation could
occur, but only if the affected core is relatively nearby, �100 parsec or less [495],
and then only if the core is still relatively early in its evolution, with a central density
of 103–104 particles cm�3 or less.

The FUV radiation from the central star can also be absorbed in the Lyman ˛ and
other Lyman lines in the infalling material, resulting in a radiation pressure which
could decelerate and perhaps reverse the collapse. The complicated problem of
calculation of the transfer of momentum from the outgoing photons to the infalling
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gas [355] leads to an estimate of the conditions under which the accretion can be
stopped. The result in this case depends on the rotation of the flow, because for
moderate rotation the mass inflow rate is low enough in the polar direction so that
radiation pressure can easily reverse the infall. At about 20 Mˇ this effect becomes
important, and mass is blown off primarily at the rotational poles. Once the mass
in the infalling region in that direction is lost, a low-opacity cavity is created,
and the Lyman photons tend to escape through the cavity, reducing the effect of
their radiation pressure in other directions. Thus the end result is that the radiation
pressure effect is not particularly important. The accretion rate can be somewhat
reduced because of outflow in the polar direction, but inflow in most directions,
involving most of the mass, cannot be stopped.

Once the central star becomes hot enough, it produces substantial radiation in
the extreme UV (EUV), with photon energies above 13.6 eV. The radiation ionizes
and heats the infalling gas. The balance of heating and cooling processes in an HII
region with no metals gives a temperature of about 25,000 K. Thus the pressure
is substantially increased with respect to that of neutral H, and in particular the
pressure gradient between ionized and neutral material at the outer edge of the HII
region can suppress infall. Again the rotation of the infalling gas, which modifies
the density distribution in the gas near the protostar, results in a non-spherical HII
region. The radius of the outer edge of the HII region thus depends on the angle
with respect to the rotation axis, the infall PM , and the mass of the central star, which
determines the production rate of ionizing photons.

The accretion onto the star will tend to be suppressed when the HII region has
expanded to the point where the thermal energy of the ionized gas is comparable to
its gravitational potential energy, and thus a particle is only marginally bound. This
so-called gravitational radius is given by

rg D G�edM

c2
i

; (7.18)

which is on the order of 100 AU for a star of 100 Mˇ. Here M is the total mass of
the central star plus disk, ci is the sound speed in the ionized gas, and the quantity
�ed corrects for the effects of radiation pressure

�ed D 1 � L

Led
: (7.19)

It can then be determined [355] at what mass the HII region will cut off accretion.
The suppression will occur first at the pole, because the reduced density of the
rotating flow in that direction results in a larger HII radius than in other directions.
For moderate rotation it is found that polar inflow will be suppressed at 50–100 Mˇ.
However the presence of the relatively high-density disk near the equatorial plane
shields some of the infalling material from the ionizing photons. The fraction of
infalling material shielded depends on the geometry and detailed structure of the
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Fig. 7.8 Schematic illustration of the effects of feedback on limiting the mass of the first star.
Short-dashed line: the mass accretion rate onto a forming star based on the properties of a
polytropic low-density baryonic core [498], without feedback. This line is the same as the short-
dashed line in Fig. 7.6. Solid line: The modified accretion rate onto the forming star, taking into
account the effects of the HII region in limiting the rate. The point A gives the mass at which
this effect begins to be important. Long-dashed line: the rate at which the disk surrounding the
forming star is photoevaporated, as a function of mass. Once this rate exceeds the infall rate (point
B) then the disk, which has been shielding some of the infalling matter from becoming ionized,
disappears, the infall stops, and the final mass is determined. Reprinted in adapted form from [355]
by permission of the AAS

disk, but could be about 0.3. Overall, therefore, the accretion rate is reduced because
of the presence of the HII region but not shut off altogether.

The disk shielding effect is important at about 100 Mˇ, but eventually the disk
itself will be photoevaporated; this process will determine the final mass of the
star. The critical point will occur when the photoevaporation rate exceeds the mass
accretion rate, which declines with time (Fig. 7.8). Once this happens, the disk
is eroded, and its shielding effect becomes negligible. The entire infalling region
becomes ionized, and the accretion flow stops.

The disk evaporation rate can be estimated according to the theory developed for
present day star formation [232] and modified to account for the properties of the
first star [355]. The disk evaporation PM can be obtained as a function of mass and
ionizing flux, which also is a function of mass. Then this rate can be equated to the
infall rate as a function of mass (Fig. 7.6) and the limiting mass, at which accretion
is shut off, determined. The results of a more detailed numerical study, which also
takes into account the prior effects of the HII region, are shown in Fig. 7.8. At
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about 45 Mˇ the effect of the HII region, especially in the polar directions, becomes
important in reducing the inflow rate. At about 140 Mˇ the accretion is shut off
completely. This final mass naturally is subject to some uncertainty, for example in
the properties of the low-density protostellar core, and it could range from 35 to
300 Mˇ. One of the uncertainties is the core rotation rate which is parameterized
by fKep D 	rot=	Kep, the ratio of orbital velocity of rotation compared with the
Keplerian orbital velocity [.GM=r/1=2], evaluated at the point where the infall
velocity in the low-density core exceeds the sound speed. The curves shown in
Fig. 7.8 are calculated for fKep D 0:5, which is a value typically obtained in the
three-dimensional simulations of core formation [1,398]. Another uncertainty is the
entropy parameter in the low-density core, that is, the value of K in the polytropic
approximation P D K�� .

The surprising result of the theory of the formation of the first stars is that there
are likely to be quite a few of them, one per dark-matter halo, and that they are
all going to be in a restricted mass range around 140 Mˇ, unless fragmentation of
the low-density cores is likely. The typical mass is much higher than that produced
at the present day, and the IMF is completely different (although it has not been
well determined and is not observable for the first stars). In addition, there is
a potential problem: according to calculations of stellar evolution of metal-free
stars, most of them in the range 140–260 Mˇ become so-called pair-instability
supernovae, in which rapid oxygen burning and silicon burning eject most or all
of the star [212]. But the computed abundance pattern of the elements is not in
accord with that observed in the oldest, low-metal stars in our Galaxy [517]. For
stars in the mass range 25–140 Mˇ, the outcome is collapse of the entire star into
a black hole, with little, if any, ejection of heavy elements. Also, observations
of element abundances in high-redshift, low metallicity, damped Lyman Alpha
systems, which are a useful probe of the early universe [412], find disagreement
with abundances predicted from the pair-instability supernovae. Both observed
patterns are more nearly consistent with that produced by metal-free supernovae
in the 8–40 Mˇ range, or possibly by stars more massive than 300 Mˇ. Is there
a way of producing the first star in a different mass range? Clearly the first
possibility is fragmentation into a binary or multiple system, with one component
less than about 25 Mˇ. Theoretical calculation of binary formation requires three-
dimensional hydrodynamic simulations, and those which have been carried through
the accretion phase to the point where a massive disk surrounds the protostar
[116, 480, 518] suggest that binary formation, or even multiple fragmentation, is
a possible outcome. In the next section we examine an alternative possibility – that
the masses of the first stars could have been much larger.

7.3 Dark Matter Annihilation in the First Stars

The first stars form in dark-matter halos, but the dark matter itself plays a relatively
passive role, simply providing the gravitational potential in the center of which the
baryonic material can accumulate. However, although the nature of dark matter is
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unknown, certain types of dark matter candidates, known as Weakly Interacting
Massive Particles, are their own antiparticles. Thus when two of them collide,
their entire mass is converted into energy, which can heat a forming star under
the right conditions. A typical proposed particle mass is about 100 proton masses
or �100 GeV in energy. In the present-day Universe, the volume density of such
particles is low enough so that they are not a significant energy source. However
at the centers of the dark-matter halos in which the first stars form, their density
is significantly higher, to the point where they could influence the formation of the
first stars through their interactions.

The dark-matter candidates with the right properties to affect the first stars are
also known as supersymmetric (SUSY) particles. The lowest-mass particles of the
class are known as neutralinos. These particles have an annihilation cross section
h�	i D 3�10�26 cm3 s�1 and a mass of about 100 GeV, although other cross sections
and masses are possible. The expected abundances of such particles in the early
Universe, and this value of h�	i, lead to a calculation of the expected relic density
of such particles at the present time, which in fact agrees with current observations
regarding dark matter. Thus these particles are the favored candidate for dark matter.
But several conditions must be satisfied if heating from dark matter annihilation is
to be significant in a star.

• The dark-matter density must be high enough. This condition is actually not
satisfied in the centers of 105–106 Mˇ dark matter halos in the early Universe
when the baryonic matter starts to collect there. What is required is, that as
the baryonic matter contracts as a result of molecular hydrogen cooling and
eventually collapses to high density, the dark matter, as a result of gravitational
interaction with the baryons, must also contract to high density. Simulations of
this process show that the required high densities of dark matter can be attained.

• The products of dark-matter annihilation must be trapped inside the star. For
typical densities (104 cm�3) in low-density protostellar cores, this condition is
not met. The main products are neutrinos, photons, electrons, and positrons. Once
the gas density reaches about 1013 cm�3 (for a 100 GeV dark-matter particle) the
electrons, positrons, and photons can deposit a significant amount of their energy
into the gas and heat it; however the neutrinos escape.

• The heating from dark-matter annihilation must dominate over all other heating
and cooling mechanisms. The main cooling process is from molecular H.
Simulations of the various heating and cooling processes [478] show that for a
typical protostar contraction track, this condition is also met at a density of about
1013 cm�3 for a 100 GeV particle. On the evolutionary path shown in Fig. 7.1
this condition is satisfied near point E, when the mass of the equilibrium region
is about 0.6 Mˇ. However, as more mass accretes, the luminosity of the protostar
exceeds that provided by the dark matter, and it contracts, reaching densities
(1015 cm�3) where H2 dissociates, acting as an energy sink. A true hydrostatic
and thermal equilibrium, where all of the radiative luminosity is provided by
annihilation, is not reached until the density is much higher, and all of the H
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Fig. 7.9 Density profiles, according to adiabatic contraction, with increasing central density as
a function of time, of dark matter in a halo, as influenced by the gravitational effects of the
contracting baryonic matter. Left panel: the starting point (lowest curve) is a Navarro-Frenk-White
profile [390]. Right panel: the starting point is a Burkert profile [93]. The enhancement of the dark-
matter density, as shown here, is crucial for the effects of dark-matter annihilation to be important
in the first stars. (1 GeV cm�3 D 1:065 H atoms cm�3 D 1:778 � 10�24 g cm�3.) Reprinted with
permission, from D. Spolyar, K. Freese, P. Gondolo: Phys. Rev. Lett. 100, 051101 (2008). c� 2008
The American Physical Society

has been dissociated and ionized. Once the dark matter heating dominates, the
configuration is known as a dark star.

Calculations showing the increase in the dark-matter density at the center of
a halo, as a result of the contraction and collapse of the baryonic component,
are shown in Fig. 7.9. This process is known as adiabatic contraction[60]. As the
baryons continue to contract they pull the dark matter in with it; however the dark
matter density doesn’t increase quite as fast as the density of ordinary matter. An
approximate result [478] of the adiabatic contraction of the dark matter, verified by
more detailed calculations, gives the dark-matter density

�dm � 5n0:81
H GeV cm�3; (7.20)

where nH is the local hydrogen volume density in cm�3. For example, if the
hydrogen density is 1013 cm�3 at a given radius, then �dm � 1011 GeV cm�3 �
1:8 � 10�13 g cm�3. If it were not for adiabatic contraction, dark matter heating
would not be a significant source of heating in the first stars. Note that an important
restriction on the applicability of adiabatic contraction is that the orbital time of the
dark-matter particles that are being drawn in must be short compared to the collapse
time of the baryonic matter.
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The quantity �dm is important because the rate of heating per unit volume goes
as its square:

Qdm D h�	i�2
dm

mdm
� 10�29 erg

cm3 s

� h�	in1:6
H

3 � 10�26cm3=s

��
100GeV

mdm

�
; (7.21)

where again nH is in cm�3 and mdm is the mass of the dark matter particle. About
1/3 of the energy is lost in the form of neutrinos, so the total energy production in
the star, in erg s�1 is

Ldm � 2

3

Z
QdmdV; (7.22)

where dV is the volume element.
The formation of a star in which dark-matter annihilation is taken into account

follows the curve shown in Fig. 7.1. As previously mentioned, once the protostar
reaches point E, dark-matter heating becomes important. Beyond that point, the
dissociation collapse proceeds and the equilibrium stellar core is formed. The
accretion phase follows, and its evolution has been calculated starting at the point
where most of the hydrogen in the core has been ionized, which corresponds to a
core mass of about 3 Mˇ. Beyond that point the core is in thermal and hydrostatic
equilibrium, and the accretion rate onto it can be estimated from the curves in
Fig. 7.6.

The buildup of a dark star in thermal and hydrostatic equilibrium can be
calculated in a simple way. Thermal equilibrium implies that the energy radiated
at the surface is entirely supplied by dark matter annihilation integrated over the
interior:

Ldm D L� D 4�R2
S �BT 4

eff; (7.23)

where RS is the outer radius and Teff is the surface temperature. The hydrostatic
structure can be approximated under the assumption that the star is a polytrope

dP

dr
D ��

Gm

r2
I dm

dr
D 4�r2�.r/ (7.24)

with
P D K�1C1=n; (7.25)

where P is the pressure, � is the density, m is the mass enclosed within radius r ,
and the constant K is determined once the total mass and radius are specified [110].
The dark stars are adequately described by polytropes in the range n D 1:5 (fully
convective) to n D 3 (fully radiative). Given P and � at a point, the temperature T

is defined by the equation of state of a mixture of gas and radiation

P.r/ D Rg�.r/T .r/

�
C 1

3
aT .r/4 D Pg C Prad ; (7.26)
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where Rg D kB=mu is the gas constant, mu is the atomic mass unit, kB is the
Boltzmann constant, a is the radiation density constant, and the mean atomic
weight � D .2X C 3=4Y /�1 D 0:588. The primordial composition consists of
a hydrogen mass fraction X D 0:76 and a helium mass fraction Y D 0:24. In the
resulting models T 	10;000 K except near the very surface, so the approximation
for � assumes that H and He are fully ionized. In the final models with masses near
800 Mˇ the radiation pressure is of considerable importance.

The procedure for obtaining a model of a given mass M is to make a first guess
for RS and to assume that the polytrope has a given index n. These quantities
determine the central density �c . A second central boundary condition is obtained
from (7.24) from which one can show that d�/dr D 0 there because m / r3. One
then integrates the ordinary differential equations outward from the center. Given
�.r/ and T .r/ at a given point one can determine the Rosseland mean opacity �R.r/

from a table calculated for zero-metal gas [238]. The integration stops at the surface
which is defined by the photospheric condition

�pPp D 2

3
gp; (7.27)

where the subscript p denotes the photosphere and g is the acceleration of gravity.
At the surface the radius is set to RS and the temperature determined from (7.26) is
set to Teff. The radiated luminosity is then determined from (7.23).

To see whether the thermal equilibrium condition is now satisfied, one must
determine the annihilation luminosity Ldm (7.22). Given the polytropic density
distribution one can apply the adiabatic contraction model to determine the dark-
matter density distribution �dm; the result is approximately given by (7.20). Then
(7.22) is integrated to determine Ldm, assuming a particle mass mdm. This quantity
isn’t known, so it enters as a parameter into the calculations. The condition L� D
Ldm must now be met. To do so one revises the first guess radius RS , recalculates
the distributions � and �dm, and iterates on the radius until the luminosities agree.

To progress from the first converged model, which will have M � 3 Mˇ, through
an evolutionary sequence in which the mass increases through accretion, one defines
a mass increment �M and then assumes an accretion rate PM .M /, as determined
from one of the curves in Fig. 7.6, which are based on the properties of the low-
density core of baryonic matter within the dark-matter halo. The associated time
increment

�t D �M

PM
: (7.28)

Note that PM is quite high, >10�2 Mˇ yr�1 for M < 10 Mˇ, but it decreases
considerably for higher masses. The dark matter annihilated during �t is removed.
It then must be determined which polytropic index n is appropriate. The lowest-
mass models turn out to be fully convective, so that n D 1:5. At higher mass, the
interior heats up, the opacity drops, and there is a transition to an interior radiative
structure, for which n D 3 approximately holds. To determine how to make the
transition one uses the Schwarzschild criterion for convection
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d lnT

d lnP
D 3�RLrP

16�GacT 4m
> 0:4 (7.29)

for an ideal gas. One calculates this quantity at all points in a given model and thus
determines when the shift to a radiative structure is necessary. Given the new M ,
n, one takes a new guess for RS and goes through the same iteration procedure as
described for the first model to obtain the thermal equilibrium for the new mass.
The added mass and resulting increase in the central density of the gas results in the
pulling in of more DM by the adiabatic contraction process. Thus the dark matter is
resupplied at a rate that somewhat exceeds the rate at which it is destroyed, at least
for the first few 100 Mˇ.

One might expect that the mass could build up until all of the baryonic matter in
the dark-matter halo, more than 105 Mˇ, has accreted. A typical evolutionary track
is shown in Fig. 7.10 (solid line) for mdm D 100 GeV. Up to a mass of 600 Mˇ
the surface temperature increases gradually from 4,000 to 9,000 K, the radius stays
relatively constant at 8 � 1013 cm (a few AU), and the luminosity increases from
105 to 5 � 106 Lˇ. Thus the “dark star” is a large, luminous, but relatively cool
object. At these surface temperatures, feedback effects (described in Sect. 7.2.4),
which could potentially limit the mass, are negligible. However at about 600 Mˇ
two separate physical effects come into play, the second a consequence of the first.

Fig. 7.10 Schematic evolution in the Hertzsprung–Russell diagram of first stars during the
accretion phase. Dotted line: Zero-age nuclear-burning main sequence of zero-metallicity stars
without mass accretion [448], in the mass range 10–1,000 Mˇ. Solid line: evolutionary track
of an accreting star including the effects of dark-matter annihilation as an energy source [477],
assuming a dark-matter particle mass of 100 GeV. Short-dashed long-dashed line: the same with a
dark-matter particle mass of 10 TeV. Short-dashed line: Evolutionary track of a star without dark-
matter annihilation in which the luminosity is derived primarily from spherical accretion (data
from [568]). The final masses, where accretion stops, are indicated by filled squares. From top to
bottom, these masses are 780, 550, and 140 Mˇ, respectively
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The first is connected with the dark matter supply. Because of the high luminosity,
which is generated by dark-matter burning, and because PM is decreasing with time,
eventually the point is reached where the dark matter mass reaches a maximum, and
from then on it is used up faster than it can be resupplied. Note that this mass is
less than 1% of the baryonic mass; nevertheless it is able to account for the entire
radiated luminosity because annihilation is about 67% efficient at converting mass
into heat energy of the star (in stellar nuclear burning less than 1% of the mass is
converted into energy).

Once the dark-matter mass starts to decrease, the star must contract to increase
the rate of energy production by annihilation. The central temperature is still only
2 � 106 K, not nearly enough to supply the required energy by nuclear burning
(deuterium from the Big Bang is present, but its burning supplies only a small
fraction of the luminosity for a brief period). Once the contraction starts, some of
the dark matter that previously was inside the star is now outside it, in optically
thin layers, and it cannot contribute to the heat generation. In a short time the star
contracts by 2 orders of magnitude and the dark matter runs out completely. For a
time, the energy is provided by gravitational contraction, the luminosity remains
nearly constant, the surface temperature increases, and the second mechanism,
feedback, begins to operate. In the range Teff D 50;000–100;000 K the ionizing
radiation and the heating of the infalling gas reverses the inflow at a final mass of
�780 Mˇ. At this point the star has reached the metal-free zero-age main sequence
with Teff D 100;000 K and with all of the energy supplied by nuclear burning. The
overall time for evolution through the dark-star phase is about 400,000 yr.

One might ask how sensitive this result is to the main parameter mdm. One might
expect quite different results because Qdm is inversely proportional to mdm and the
plausible range in mdm is more than 4 orders of magnitude! However, surprisingly,
the final stellar mass is only weakly sensitive to mdm. The numerical simulations
show that a range in mdm from 1 GeV to 10 TeV translates into a range of final
masses of 820–550 Mˇ. For example, in the 10 TeV case the reduced heating results
in a smaller radius and smaller luminosity but similar Teff, and the evolutionary time
to the main sequence is also somewhat shorter (250,000 yr). Thus in spite of the
greatly reduced energy supply the final mass is still 550 Mˇ. The end result is that
the effect of dark-matter annihilation is to produce masses considerably higher than
those (�140 Mˇ) produced without dark-matter heating. Of course the final masses
are undoubtedly dependent on other parameters, such as the details of the adiabatic
contraction model and the precise history of PM .

What are the consequences of this difference in mass? The main point is the
eventual fate of the star once it runs through its nuclear evolution [212], which
will not be discussed in detail here. Acccording to spherically symmetric evolution
calculations, metal-free stars in the mass range 500–1,000 Mˇ do not become
supernovae but simply collapse to become black holes, ejecting no material
enriched in metals for incorporation in future generations of stars. But they could
provide the seeds for the 109 Mˇ black holes that are thought to have existed in
the early Universe [168]. On the other hand the stars around 140 Mˇ reach the
pair instability supernova, which blows up the entire star leaving no black hole
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at all. Furthermore, the chemical abundances of the ejected material do not agree
with those observed in the oldest stars in the Galaxy. Thus actually both scenarios
have problems with the metal enrichment. Perhaps the problem can be resolved
by including non-spherical effects in the higher-mass models [396]. First results of
such calculations show that about half of the mass collapses to a black hole, and the
remained is ejected, with chemical abundances that better match those observed.

Even with dark-matter annihilation, the final mass of a first star is limited to
less than 1,000 Mˇ, because the supply of dark matter near the center of the dark-
matter halo is used up, and it is very difficult to resupply it. However there are
two further speculative avenues by which the first stars could have even higher
mass. If this mass could approach 105 Mˇ, the objects would be so luminous that
they could potentially be observationally detectable. They also could provide even
more massive seeds for primordial black holes, which could be built up to 109 Mˇ
by gas accretion triggered by galaxy–galaxy mergers. The first possibility is that
the amount of dark matter available in the star might be higher than previously
calculated. The initial estimates, on which the results shown for 780 Mˇ in Fig. 7.10
are based, assumed a spherical dark-matter halo. In fact numerical simulations of
the formation of the haloes show that they are not spherical, and if they are not,
the supply of dark matter to the very center could be considerably enhanced. The
actual amount depends on complicated calculations of the trajectories of dark-matter
particles in the halo. The second possibility is that even if the supply of dark matter
delivered by adiabatic contraction runs out, once the star contracts to relatively high
densities, the dark matter particles from the surroundings can scatter elastically off
the nuclei in the star and be captured, eventually sinking to the center of the star
and annihilating. Various laboratory experiments have aimed at the measurement
of this scattering cross section, but so far only upper limits are available. In either
case, calculations show [177] that dark stars can be built up to at least 105 Mˇ,
with luminosities of 2 � 109 Lˇ. The surface temperatures are cool enough so that
the feedback effects discussed above do not limit the mass; the only limit is the
available supply of baryons in the dark-matter halo.

7.4 Summary

Clearly many problems remain to be solved concerning the first stars. Since none
of them have been observed, understanding progresses through a complex web of
theory and indirect observation. For example, the oldest known observed objects
already have been enriched somewhat in heavy elements such as carbon and iron.
The first stars form from the growth of tiny density fluctuations in the baryonic
and dark matter of the very early Universe. The usual cosmological model applied
is �CDM, where typically 70% of the initial mass energy is “dark energy”, 26% is
cold dark matter, and 4% is baryonic (ordinary) matter. The nature of the dark matter
and dark energy is unknown. The density fluctuations grow, filamentary structure
develops, gravitational instability results in gravitationally bound dark matter halos,
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and mergers of the halos bring them up to a mass of about 106 Mˇ. At this mass the
temperature is about 1,000 K, and the baryons are settling toward the center. A small
amount of molecular hydrogen forms, and once the cooling from this molecule gives
a cooling time less than the dynamical time, the baryons cool to about 200 K and
collapse to higher densities.

At a density of about 104 cm�3 the cooling saturates and the gas gradually heats
up. Once about 1,000 Mˇ has accumulated, the Jeans mass has been reached and
the condition of gravitational collapse for the baryons is met. Once the density
reaches about 109 cm�3 molecular hydrogen can form by three-body reactions, and
the hydrogen becomes essentially 100% molecular. Cooling is limited however,
because at a density of about 1011 cm�3 the H2 cooling lines become optically thick.
At somewhat higher densities the gas becomes optically thick in the continuum as
well. A small core reaches a density of 1016 cm�3 and a temperature of 2,000 K,
where dissociation of the H2 sets in, triggering a collapse. The collapse doesn’t stop
until a very low-mass region, with less than 1% of a solar mass, heats to 20,000 K
and a density of 1021 cm�3. This material forms the initial stellar core, and the rest
of the formation process involves the accretion of the remaining baryonic material
in the core of the dark-matter halo onto this stellar core.

Accretion rates onto the stellar core are estimated from the properties of the
contracting matter in the low-density core. They are high at first, more than
10�2 Mˇ yr�1 and decline with time. The first stars are thought to be massive,
at least 100 Mˇ, but they can form in 105–106 yr. They have sufficient angular
momentum so that much of the accreted stellar material passes first through a disk.
Initially the accretion rate is high enough so that the time scale for accretion
is less than the thermal adjustment time of the core that is receiving the matter.
Thus the radius remains large, well above the main-sequence radius, for some
time. Once the accretion rate is reduced and the thermal time becomes relatively
short at higher masses, the star is able to contract to the main sequence, but this
does not occur until the star has grown to �100 Mˇ. The surface temperature is
now high, Teff � 100;000 K, and the ionizing radiation creates an HII region in
the infalling matter. The thermal pressure is able to halt and reverse accretion in
the polar direction. Later on the disk is photoionized, and accretion stops in the
equatorial plane as well. The final mass is in the range 50–300 Mˇ, and the first
stars probably did have a range in mass, primarily dictated by varying properties of
the initial low-density core in the dark-matter halo.

An important issue is whether all the mass from the low-density core forms
one star, or whether fragmentation into a binary or small cluster can occur. The
relatively high temperature of the protostar, and the resulting high pressure that tends
to suppress growing density perturbations, suggests that fragmentation does not
occur. However the question is not settled, and some numerical simulations do show
fragmentation. If fragmentation did occur, then the supernovae in the 10–40 Mˇ
range could provide the metal enrichment needed for the later generations of stars,
with abundance ratios appropriate as observed for the oldest stars in the Galactic
halo. If not, a 140–260 Mˇ star later blows up completely as a pair-instability
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supernova, producing metal enrichment but not with the correct abundance ratios.
Or if the final mass is 40–100 Mˇ or above 260 Mˇ, the star becomes a black
hole and doesn’t produce any enrichment at all. In the mass range 100–140 Mˇ
a “pulsational” pair-instability supernova occurs, in which part of the mass, but
essentially only hydrogen and helium, is ejected and the rest becomes a black hole.

An alternate path to the formation of the first stars includes the effects of
annihilation of dark matter particles and the resulting heating of the star. This
heating is a significant energy source, and it can result in a stellar structure in
hydrostatic and thermal equilibrium at densities and temperatures well below those
on the main sequence. Models of these “dark stars” show that they are large, with
radii of a few AU, they are cool, with Teff D 5;000–10;000 K, and they have high
luminosities, more than 106 Lˇ. They build up in mass by accretion of the baryons in
the dark matter halo. As the baryons contract, they pull in more dark matter through
their gravitational effects, thus maintaining the fuel supply. Because the objects are
cool, the feedback effects which ordinarily would shut off the mass accretion at
around 150 Mˇ, are delayed until the mass reaches about 800 Mˇ, determined by
the point where the dark-matter fuel supply has effectively run out. This final mass,
when the star has reached the main sequence, is weakly dependent on the assumed
dark-matter particle mass. But even at a fixed particle mass there will be a spread
in masses of the first stars, because cosmological simulations show that there are
variations in the properties of the dark-matter halos in which are produced the first
stars, for example in their density distributions. The eventual fate of the �800 Mˇ
stars is not well known. They may collapse to black holes and provide the seeds for
supermassive black holes known to exist at early times. They may also explode as
supernovae, leaving part of their mass in a black hole but expelling the rest, with
chemical abundances that do match the observations of the oldest stars.

Whether dark-matter annihilation is included or not, the initial mass function
of the first stars is completely different from that of the present stars, or even
of the Population II stars in the Galaxy. Thus there must have been a transition,
relatively early in the history of the Universe, when the mass scale for star formation
was reduced considerably from the 100–1,000 Mˇ range. The key physical process
involved is the cooling in the low-density baryonic core of the dark matter halo.
Beyond cooling by H2 there are two other known mechanisms. First, if the molecule
HD is produced (DC C H2 !HD C HC), it can result in cooling to temperatures
well below the 200 K allowed by H2. But to produce HD an ionized medium is
required, above 10,000 K. To get the virial temperature in the dark-matter halo
into this range, a more massive halo, say 108 Mˇ, is required, which could be
produced at a later stage of cosmological evolution than the 106 Mˇ needed for
the first stars. In that case, stars in the mass range 10 Mˇ could be produced [196],
and these supernovae would be responsible for producing most of the early metal
enrichment. The second process is metal enrichment, which through various atomic
and molecular transitions can result in cooling down to the 10–20 K range and allow
star formation in the solar mass range. There is considerable debate on exactly how
much metal enrichment is required, but a typical figure is Zcrit � 10�4 Zˇ.
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7.5 Problems

1. A dark star accretes at 10�3 Mˇ yr�1 up to 105 Mˇ. During most of the accretion,
beyond 500 Mˇ, the star is radiation-pressure dominated, so luminosity L /
M , at half the Eddington limit for electron scattering. What is the total energy
radiated by the star up to the time when it reaches its final mass? What is the total
time? How many solar masses of dark matter have to be annihilated to produce
this total energy?

2. A protostar (without dark matter) accretes at the rate given by (7.16). Assume
that the accretion luminosity is equal to the Eddington luminosity at all times,
and that the opacity is given by electron scattering. Assume that the radius cannot
be less than the main-sequence radius for a given mass at zero metallicity: Rms D
4:3ŒM=.100Mˇ/�0:55 Rˇ. Plot the evolution in the Hertzsprung–Russell diagram
starting at 1 Mˇ and ending at 150 Mˇ.



Chapter 8
Pre-Main-Sequence Evolution

The time for the completion of protostellar evolution is effectively 2–3 times the
free-fall time of the outer layers, which lies in the range 105–106 yr, depending on
the initial density. As the accretion rate tapers off in the later phases and the infalling
envelope becomes less and less opaque, the observable surface of the protostar
declines in luminosity and increases in temperature. Once the infalling envelope
becomes transparent, the observer can see through to the stellar core at optical and
near IR wavelengths, which by now can be identified in the H–R diagram as a star
with a photospheric spectrum. The locus in the diagram connecting the points where
stars of various masses first make their appearance is known as the birth line; it is
shown as the upper envelope of the tracks in Fig. 1.21.

Once internal temperatures are high enough (above 105 K) that hydrogen is
substantially ionized, the star is able to reach an equilibrium state with the pressure
of an ideal gas supporting it against gravity. Rotation, according to observations,
has a relatively small effect on the structure of the central star during pre-main-
sequence evolution. The angular momentum problem has largely been solved by
the beginning of this phase. Much of the angular momentum of the collapsing
cloud has been taken up by the circumstellar disk, which lasts 1–10 Myr before
being photodissipated. It is thought that magnetic coupling between star and disk
has substantially reduced the angular momentum of the material that went into
the star. Also there has been significant angular momentum removal through
bipolar outflows, which are strongest during the protostellar phase. Before the disk
disappears, giant planets may have a chance to form, and the left-over solid material,
including dust grains and planetesimals, could evolve into terrestrial planets all the
way through the pre-main-sequence phase.

The star itself radiates from the surface, and this energy is supplied by gravita-
tional contraction. This contraction does imply a very slight deviation from strict
hydrostatic equilibrium, but the acceleration term is completely negligible and the
normal hydrostatic equation can be used. The evolution can be regarded as a passage
through a series of equilibrium states, and the process is often referred to as quasi-
hydrostatic contraction.

P.H. Bodenheimer, Principles of Star Formation, Astronomy and Astrophysics Library,
DOI 10.1007/978-3-642-15063-0 8, © Springer-Verlag Berlin Heidelberg 2011
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The Virial Theorem thus simplifies to

2Eth C Egrav D 0: (8.1)

The total energy (of a spherical star) is

Etot D Egrav C Eth D �Eth D Egrav=2: (8.2)

In a small contraction �Eth D ��Egrav=2, so the internal kinetic energy increases
by half the change in gravitational energy. The total energy drops by �Egrav=2 so
the remainder is radiated away. For the simple case of an ideal, nondegenerate gas,
Eth D .3=2/RgTM=�, where � is the mean atomic weight per free particle, so an
increase in internal kinetic energy corresponds to heating.

This chapter describes the equations that are solved to calculate the structure
and evolution of stars in this phase, summarizes the results of such calculations,
and shows how these results may be compared with observations. Although the
stellar evolution calculations are straightforward, they are based on simplifying
assumptions, and the observations regarding the phase bring out a number of
puzzles. For example, what causes the irregular variability and activity of many
T Tauri stars? How do the angular momentum and magnetic field evolve during pre-
main-sequence evolution? How are FU Orionis outbursts explained? What is the
role of the stellar wind? Are the masses for young objects derived from evolutionary
tracks a good measure of their actual masses? Does the Initial Mass Function derived
from very young stars agree with that derived from older, main-sequence stars?

8.1 Physical Relations

8.1.1 Basic Equations of Structure and Evolution

The calculation of the evolution can now be accomplished by solution of the
standard structure equations, which assume spherical symmetry, no rotation or
magnetic fields, and no mass loss or accretion. Although young stars do show
evidence of accretion, the amount accreted during this phase is quite small. The
equations of hydrostatic equilibrium (3.1) and mass distribution (3.2) are rewritten
with m, the mass enclosed within radius r , as the independent variable:

dP

dm
D � Gm

4�r4
(8.3)

and
dr

dm
D 1

4�r2�
; (8.4)
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where the dependent variables � and r are, in general, functions of m and time t , but
the ordinary derivative is used to emphasize the fact that the system is Lagrangian.

The third condition is that of conservation of energy. In the pre-main-sequence
phase the star is not in thermal equilibrium: its total energy decreases with time, as
only half of the released gravitational energy goes into internal heat. The equation
becomes

dLr

dm
D �nuc � dE

dt
� P

dV 0

dt
; (8.5)

where V 0 D 1=�, �nuc is defined as the nuclear energy generation rate per unit
mass, and E is now the internal energy per unit mass including non-kinetic forms
of energy such as ionization energy. The luminosity Lr D 4�r2Fr , where the net
outward energy flux Fr is the amount of energy per unit time per unit area crossing
a spherical surface at radius r . If �nuc D 0, the star contracts and obtains its energy
from the third term on the right hand side. The nuclear energy term can become
important during pre-main-sequence evolution because deuterium, a small amount
of which is present in the material from which the star forms, burns at temperatures
of 106 K, well before the main sequence is reached.

A fourth differential equation describes the energy transport. The transport of
energy outward from the interior of a star to its surface depends in general on the
existence of a temperature gradient. Heat will be carried by various processes from
hotter regions to cooler regions; the processes that need to be considered include
(1) radiative transport and (2) convective transport. Conductive transport is not
important during this evolutionary phase. In each case a relation must be found
between the energy flux Fr and the temperature gradient dT=dr . The diffusion
approximation for radiative transport (to be discussed in Sect. 8.1.3) can be re-
written, with m as the independent variable, in a form which can be used for all
three types of transport [251]:

dT

dm
D � GmT

4�r4P
r; (8.6)

where, if the energy transport is by radiation,

r D rrad D 3

16�Gac

�RLr P

mT 4
D
�

d ln T

d ln P

�
rad

; (8.7)

where the derivative refers to the actual temperature–pressure variation in the
structure of the star, and �R is the Rosseland mean opacity (8.40).

The Schwarzschild criterion for the onset of convection in material with uniform
chemical composition is

rrad > rad D .d ln T =d ln P /ad � � � 1

�
; (8.8)

where the factor involving � holds for an ideal gas. An equivalent relation is given as
(7.29). Here � is the ratio of specific heats cP =cV and rad is the so-called adiabatic
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gradient. Each point in the star must be tested to see if this condition is satisfied
and if so, r in (8.6) is replaced by the “convective gradient” rconv. In most of the
interior of a star it can be shown that convection is very efficient, and that only a
very small excess of the actual temperature gradient over the adiabatic gradient is
required for the transport of the entire flux by convection. In this case, rconv D rad

to a high degree of accuracy.
However, if convection occurs in the surface layers of a star, for example just

below the photosphere as in the case of the Sun, then rconv must be calculated
in more detail. A simple one-dimensional hydrodynamic formulation known as
the “mixing-length theory” [71, 251] is generally used, but it contains an arbitrary
parameter, the ratio (l=H ) of the mixing length, which is effectively the mean
free path of the largest convective elements, to the local pressure scale height
H D P=jdP=dr j D P=.g�/ where g is the acceleration of gravity. The ratio l=H ,
which is of order unity, can be determined empirically by fitting a stellar model to
the known properties of the Sun, or numerically through two-dimensional or three-
dimensional simulations of the turbulent, convective motions in the outer layers
of a star [328, 489]. This effect is important for pre-main-sequence stars in their
convective phase, and the treatment of the mixing-length approximation affects the
location of the evolutionary tracks in the H–R diagram.

The four differential equations for stellar structure require four boundary con-
ditions, which are split between surface and center. At the center of the star the
boundary condition is simple: at m D 0, the radius r and luminosity Lr also must
vanish. At the surface, the boundary conditions are more complicated, and they
play an important role for pre-main-sequence stars in the phase where the energy
transport is mainly by convection.

A simple way to apply them is to take first the definition of the effective (or
photospheric) temperature:

L D 4�R2�BT 4
eff; (8.9)

where L is the surface luminosity, �B is the Stefan-Boltzmann constant, and R is the
surface radius. Second, one can obtain the equation of hydrostatic equilibrium for
an atmosphere with a fixed value of the gravitational acceleration g by combining
(8.3) and (8.4):

dP

dr
D �Gm�

r2
D �g� (8.10)

if m (the interior mass) D M (the total mass) in the thin atmospheric layer. Then
from the definition of optical depth d� D ��R�dr , where �R is the Rosseland mean
opacity, we obtain

dP

d�
D g

�R

: (8.11)

Integrating this expression approximately from a small value of � inwards to
� D 2=3, which defines the photosphere,

�pPp D 2

3
g; (8.12)
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where the subscript p refers to the photosphere. An adequate but still approximate
representation of the two surface boundary conditions is given by (8.9) and (8.12).

In order to make detailed comparisons of models with observations, it is
desirable to have a more accurate atmospheric calculation. In some cases frequency-
dependent radiative transport has been employed in the atmosphere so that colors
and fluxes could be calculated to compare with observed objects [30]. Another
reason to make a detailed atmosphere model is that the dominant elements H and He
tend to be only partially ionized in the outer layers, while in most of the deep interior
they are fully ionized. Furthermore, the convective temperature gradient in the outer
convection zone of cool stars is usually superadiabatic rather than adiabatic in a
fairly thin surface layer; therefore the mixing-length approach must be employed. It
is convenient to confine the complicating frequency-dependent effects as well as the
effects of partial ionization and non-adiabatic convection to the thin surface layer
where they are important, and thereby to allow the simplification of the physics
in the deep interior. The strategy, therefore, is to apply atmospheric physics in the
outermost mass zone, between the surface m D M and a deeper layer m D matm,
and to apply the outer boundary condition for the interior at matm.

8.1.2 Equation of State

The equation of state in the interior can for the most part be taken to be that of an
ideal gas (3.23) plus radiation pressure

Prad D 1

3
aT 4; (8.13)

where a is the radiation density constant (�B D ac=4). For a fully ionized gas the
mean molecular weight � can be approximated by

��1 D 2X C 3

4
Y C 1

2
Z; (8.14)

where X , Y , Z are, respectively, the mass fractions of H, He, and heavier elements.
For the very lowest-mass stars, as they approach the main sequence, non-ideal
gas effects as well as partial degeneracy of the free electrons begin to become
significant. Partial degeneracy occurs when quantum effects begin to affect the free-
electron pressure (see below).

The transition from an ideal to a partially degenerate equation of state is
important in determining whether the end point of star formation is an actual star
or a brown dwarf, in which nuclear reactions never become fully established as
an energy source. A simple argument [251] is based on the assumption that the
contraction is homologous, that is, the same mass fraction resides within the same
radius fraction at all stages during contraction. Then, approximating the derivative
of the pressure in (3.1) by Pc=R, where Pc is the central pressure and R is the total
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radius, and the average and central densities, respectively, by N� � C1M=R3 and
�c � C2M=R3, one obtains

Pc � C3

GM 2

R4
D C4

R4
and �c � C5

R3
(8.15)

for constant total mass M , where the various C ’s are constants. Differentiat-
ing (8.15)

dPc

Pc

D � 4

R
dRI d�c

�c

D � 3

R
dR: (8.16)

Now consider a general equation of state

�.P; T / D K1P
˛T �ı (8.17)

and differentiate it
d�c

�c

D ˛
dPc

Pc

� ı
dTc

Tc

: (8.18)

Then eliminate dPc=Pc to obtain

dTc

Tc

D 4˛ � 3

3ı

d�c

�c

: (8.19)

For an ideal gas, ˛ D 1 and ı D 1 so dTc=Tc D .1=3/d�c=�c , giving a slope in
the (log �, log T ) plane of 1/3 for a homologously contracting object, that is, one in
which the density distribution, normalized to the central value, does not change.

However if the density increases for a fixed temperature for an ideal ionized gas,
eventually the point is reached where the available momentum quantum states for
free electrons, according to the Pauli exclusion principle, begin to be filled, forcing
electrons into higher and higher momentum states, thus increasing the pressure
beyond that of an ideal gas. When this increase is significant the gas is said to
be approaching the condition of electron degeneracy. The equation of state for a
completely degenerate gas – one in which all electron quantum states are filled up
to some limiting momentum – but in which the electrons are non-relativistic – is
given by [110]

Pe D 1:004 � 1013.�=�e/
5=3 dyne cm�2; (8.20)

where the total pressure is well approximated by the electron pressure Pe . Here �e

is the mean atomic weight per free electron: �e D 2=.1 C X/ for a fully ionized
gas with hydrogen mass fraction X . Thus ˛ D 3=5 and ı D 0: As a result, in a
degenerate gas,

dTc

Tc

! � 1

5ı

d�c

�c

(8.21)
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and the slope becomes large and negative as ı ! 0, so the gas cools upon
contraction.

It is easy to show that a contraction track in the (log �, log T ) plane must
eventually reach the degenerate region. Simply equate the ideal gas electron pressure
to the fully degenerate electron pressure to define a line in that plane where
degeneracy effects start to become important:

� > 2:4 � 10�8�eT
3=2 g cm�3: (8.22)

The slope of this expression (see Fig. 8.4) is 2/3 in the (log �, log T ) plane; thus
contraction tracks with slope 1/3 must eventually intersect it.

8.1.3 Opacity

An important quantity in pre-main-sequence evolution is the opacity. When the star
is mostly convective, there is still a thin radiative zone at the surface that controls the
loss of energy to space. When the star is largely radiative, the opacity throughout
the interior controls the evolution. This subsection provides a simple derivation of
the radiative transfer equation in the interior, defines the Rosseland mean opacity,
and discusses the main opacity sources.

Numerous atomic processes contribute to this quantity, and in general the
structure of a star can be calculated only with the aid of detailed tables of the
opacity, calculated as a function of �, T , and the chemical composition. Starting
at the highest temperatures characteristic of the stellar interior and proceeding to
lower temperatures, the main processes are

1. Electron scattering, also known as Thomson scattering, in which a photon
undergoes a change in direction but no change in frequency during an encounter
with a free electron.

2. Free-free absorption, in which a photon is absorbed by a free electron in the
vicinity of a nucleus, with the result that the photon is lost and the electron
increases its kinetic energy.

3. Bound-free absorption on metals, also known as photoionization, in which the
photon is absorbed by an atom of a heavy element (e.g. iron) and one of the
bound electrons is removed.

4. Bound-bound absorption of a heavy element, in which the photon induces an
upward transition of an electron from a lower quantum state to a higher quantum
state in the atom.

5. Bound-free absorption on H and He, which generally occurs near stellar surfaces
where these elements are being ionized.

6. Bound-free and free-free absorption by the negative hydrogen ion H�, which
forms in stellar atmospheres in layers where H is just beginning to be ionized
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(example: the surface of the sun). The bound-free process is H �Ch	 ! H Ce�
where the photon energy must exceed 0.75 eV.

7. Bound-bound absorptions by molecules, which can occur only in the atmo-
spheres of the cooler stars (Teff < 4;000 K, although even the Sun shows a few
molecular features in its spectrum).

8. Absorption by dust grains, which can occur in the early stages of protostellar evo-
lution and possibly in the atmospheres of brown dwarfs, at temperatures below
the evaporation temperature of the more refractory grains (1,400–1,800K).

A simple derivation of how the Rosseland mean opacity is calculated follows (for
more details see [119,364]). Energy transport by radiation depends on the emission
of photons in hot regions of the star and absorption of them in slightly cooler regions.
The radiation field may be characterized by the specific intensity I	 , which is defined
so that

dE	 D I	 cos 
 d	 d˝ dt dA; (8.23)

where dE	 is the energy carried by a beam of photons across an element of area dA

in time dt in frequency interval 	 to 	 C d	 into an element of solid angle d˝ , in
a direction inclined by an angle 
 to the normal to dA (Fig. 8.1).

Another fundamental quantity is the radiation flux density F	 . In a spherical
coordinate system (r; 
; �) the flux in the radial direction is the net energy crossing
a given surface, per unit area per unit time, per unit frequency interval, integrated
over all directions, thus

F	 D
Z 2�

0

Z �

0

I	 cos 
 sin 
d
d�: (8.24)

A third fundamental radiation quantity is the energy density, which is the amount
of energy per unit volume per unit frequency interval in the radiation field

u	 D 1

c

Z
4�

I	d˝: (8.25)

Fig. 8.1 Illustration of the
definition of the specific
intensity. The radiation is
flowing through an element of
area dA into an infinitesimal
cone with solid angle d˝, in
the direction Os, which is
inclined by an angle 
 with
respect to the normal, On,
to dA

s

dA

dΩ

n̂

θ

^
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If we integrate u	 over all frequencies we get, in the case of black-body radiation,
where I	 D B	 , the Planck function

u D 4�

c
B.T / D 4�

c

�B

�
T 4 D aT 4; (8.26)

where the radiation density constant a D 7:65 � 10�15 erg cm�3 ıK�4. Also, for
black-body radiation,

u	 D 4�

c
B	 D 8�h

c3

	3

exp



h	
kT

� � 1
: (8.27)

The derivation to follow relies heavily on the concept of thermodynamic equi-
librium. Strict thermodynamic equilibrium (TE) [364] refers to the situation where
material in an enclosure is adiabatic, homogeneous, and isothermal at a constant
temperature T . The relevant properties of a gas in TE are: (1) the radiation field I	

is isotropic, (2) I	 D B	.T /, and (3) across any given surface in the region, there is
no net flux of energy. However, a star in which the energy transport is by radiation
cannot be in strict TE, because there must be a net energy flow through it. However
the star’s interior is very close to TE, and it can be approximated by the condition
of local thermodynamic equilibrium, or LTE. In this case, all the thermodynamic
properties of the gas that apply in TE still apply, for example the degree of ionization
and the opacity. The main difference is that in LTE, the radiation field is not precisely
isotropic, the intensity I	 departs slightly from B	.T /, and the radially outward flux
across a given surface is slightly greater than the inward flux. The main condition
that is required for LTE to be an adequate approximation is that the temperature at
which a photon is emitted must be very close to the temperature at which it is later
absorbed, or, in other words, the temperature change must be negligible over the
mean free path of a photon.

The equation of transfer shows how the intensity of a beam is changed as
it interacts with matter. The mass emission coefficient j	 is defined so that
j	 � dV d	 d˝ dt is the energy emitted by the volume element dV into d˝ in time
dt in the frequency range d	. The corresponding mass absorption coefficient �	 is
defined so that the energy absorbed in the same intervals is �	 � I	 dV d	 d˝ dt . If
we consider both the absorption and the emission of the radiation passing through a
cylinder with length ds and cross section dA, in the direction perpendicular to dA,
the equation of transfer becomes

dI	

ds
D ��	�I	 C j	�: (8.28)

Suppose that the direction ds is inclined by an angle 
 to the radial direction in the
star so that the projected distance element dr D ds cos 
 . Also define the optical
depth (in the radial direction) �	 by
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d�	 D ��	�dr (8.29)

and the equation of transfer becomes

cos 

dI	

d�	

D I	 � j	

�	

: (8.30)

Note that this equation only considers the radial variation of I	 . In stellar layers
with significant curvature, in principle a term in dI	=d
 should also be included.
However this effect in the stellar interior can be shown to be negligible [451].

In the stellar interior the mean free path of a photon .�	�/�1 before it is absorbed
is only 1 cm or less. Thus a typical photon is absorbed at practically the same
temperature as it is emitted. These conditions are so close to strict thermodynamic
equilibrium that the approximation of LTE applies, and the ratio j	=�	 can be shown
to be the same as it is in strict thermodynamic equilibrium, namely j	=�	 D B	.T /:

This approximation holds very well in the interior of a star, but it breaks down near
the surface where the mean free path can be long.

The equation of transfer in stellar interiors can thus be expressed as

cos 

dI	

d�	

D I	 � B	.T /: (8.31)

This equation can be integrated over all frequencies and solved for the flux in terms
of the temperature gradient for conditions appropriate to the stellar interior, that is,
if LTE holds. Multiply (8.31) by cos 
 and integrate over all directions:

d

d�	

Z
4�

I	 cos2 
d˝ D F	 (8.32)

using the definition of the flux F	 , and noting that d˝ D sin 
d
d� and that B	 is
isotropic (I	 is not assumed to be isotropic). But the radiation pressure is defined by

Prad;	 D 1

c

Z
4�

I	 cos2 
d˝ (8.33)

an expression which, when integrated over all directions and all frequencies, given
the LTE assumption I	 � B	 , yields (8.13). Using the definition of optical depth
d�	 D ��	�dr we obtain

dPrad;	

dr
D ��	�

c
F	: (8.34)

If we now integrate over all frequencies, we obtain

dPrad

dr
D � N��

c
F: (8.35)
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Since we require that
R

F	d	 D F , where F is the total flux, the mean opacity N�
must be defined so that

1

N� D
R1

0
1
�	

dPrad;	

dr
d	R1

0

dPrad;	

dr
d	

: (8.36)

We now use LTE and a slightly non-isotropic intensity, so we can assume that
Prad;	 D 1

3
u	 , where u	 is the energy density, and also u	 D 4�

c
B	 . Note that this

approximation is acceptable because the integral for Prad;	 over direction involves
cos2
 , so the integrand is always positive and the actual radiation field deviates only
slightly from a black body. On the other hand, this approximation cannot be made
for calculation of the flux, because the cos 
 factor is positive of 0 � 
 � � and
negative otherwise. An assumption of isotropy for that calculation would lead to
zero net flux.

Then the expression for N� can be written

1

N� D
R1

0
1
�	

dB	

dT
dT
dr

d	R1
0

dB	

dT
dT
dr

d	
D
R1

0
1
�	

dB	

dT
d	R1

0
dB	

dT
d	

: (8.37)

Then from (8.35)
d

dr

�
1

3
aT 4

�
D � N��

c
F: (8.38)

or

F D �4ac

3 N��
T 3 dT

dr
(8.39)

which gives the relation between the flux and the temperature gradient. Note ac D
4�B where �B is the Stefan-Boltzmann constant, c is the velocity of light and a is
the radiation density constant. Here N� is the absorption coefficient averaged over
frequency according to the so-called Rosseland mean; its unit is cm2 g�1. A more
detailed derivation, taking into account pure absorption processes, as done above,
as well as scattering processes, gives the general form of the Rosseland mean

1

N� D 1

�R

D
R1

0
dB	 .T /=dT d	

�	;aŒ1�exp.�h	=kT /�C�	;sR1
0

dB	.T /=dT d	
: (8.40)

Here �	;a refers to processes of true absorption which have to be corrected for
induced emission, and �	;s refers to scattering processes. This form of the mean
opacity is useful because it can be calculated as a function of density, temperature,
and composition and stored in a table for general use; it does not depend on the
radiation field at a particular layer in the star.

Equation (8.39) is known as the diffusion approximation for radiative transfer,
an appropriate nomenclature because a photon is absorbed almost immediately
after it is emitted, so that an enormous number of absorptions, re-emissions, and
scatterings must occur before the energy of a photon is transmitted to the surface.
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The quality of the radiation changes during this process. As the photons diffuse
to lower temperatures, their energy distribution corresponds closely to the Planck
distribution at the local T , because matter and radiation are well coupled. The
appropriate time scale for significant changes in the thermal profile of a radiative
star is known as the thermal adjustment time. A reasonable approximation for this
time scale is the Kelvin-Helmholtz time scale, as shown by [251], their Sect. 5.3.

8.2 Pre-Main-Sequence Evolutionary Tracks

A theoretical evolutionary track is specified by a mass, chemical composition, l=H ,
and an initial model. The starting point is generally close to the birth line, where for
stars of 1.5 Mˇ or less the object is nearly fully convective and can be represented
by a polytrope of index 1.5. For higher masses, the prior protostellar evolution must
be taken into account to determine the initial distributions of �; T; P; Lr ; r with
mass. The birth line itself is determined by the physics of the accretion phase of
protostellar evolution, as described in more detail in [481]. There it is shown that the
radius of the stellar core during that phase is only a few Rˇ and that it is relatively
insensitive to the infall PM .

The solutions are shown in the H–R diagram in Figs. 8.2 and 8.3. These tracks
start at the birth line for each mass. For earlier times, a hydrostatic stellar-like core
may exist, but it is hidden from view by the opaque infalling protostellar envelope.
Note that the sun arrives on the standard H–R diagram with about 5 times its
present luminosity, The higher-mass stars actually do not appear on the normal
H–R diagram until they have already reached the main sequence. For accreting
protostars that reach these higher masses, the mass at which the star arrives at the
main sequence depends on the accretion rate. If the accretion rate is constant with
time at the appropriate value for a typical low-mass protostar (10�5–10�6 Mˇ yr�1)
then the corresponding main-sequence arrival mass is 5–10 Mˇ. However at higher
accretion rates, the arrival mass is higher (Sect. 5.2).

The results of the calculations show in general that a star of a given mass first
passes through a convective phase, known as the Hayashi track [209], during which
the evolution in the H–R diagram is nearly vertical and downwards. Later, for all
masses greater than about 0.5 Mˇ, the evolution goes into a radiative phase, known
as the Henyey track [216], which is relatively horizontal in the diagram. The relative
importance of the two phases depends on the stellar mass. During the convective
phase, energy transport in the interior is quite efficient, and the rate of energy loss
is controlled by the thin radiative layer right at the stellar surface. The opacity is
a very strongly increasing function of T in that layer, and that fact combined with
the photospheric boundary conditions ((8.9) and (8.12)) can be shown to result in a
nearly constant Teff during contraction. As the surface area decreases, L drops and
Teff stays between 2,000 and 4,000 K, with lower masses having lower Teff.

As the star contracts, the interior temperatures increase and in most of the star
the opacity decreases as a function of T . The star gradually becomes stable against
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Fig. 8.2 Overview of pre-main-sequence evolutionary tracks in the Hertzsprung–Russell diagram.
The end point of each track, on the main sequence, is labeled with the corresponding mass, in Mˇ.
A given track starts at the birth line (upper solid line) and ends on the zero-age main sequence
(lower solid line). Loci of constant age are indicated by dotted lines. Reproduced by permission of
the AAS, from [407]. c� The American Astronomical Society

Fig. 8.3 Sketch of the
pre-main-sequence (solid
line) and the beginning of the
post-main-sequence (dashed
line) phases for 1 Mˇ.
Evolutionary times in years
are given for the filled
squares. The present Sun is
indicated by a plus sign. The
ZAMS (Zero-Age Main
Sequence) is the point where
nuclear reactions completely
take over the energy
production. Adapted
from [63]

convection, starting at the center, because the radiative gradient (8.7) drops along
with the opacity and soon falls below rad. When the radiative region includes about
75% of the mass, the rate of energy release is no longer controlled by the surface
layer, but rather by the opacity of the entire radiative region. At this time the tracks in
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the 1 Mˇ range make a sharp bend to the left, and the luminosity increases gradually
as the average interior opacity decreases.

The following points can be made regarding the Hayashi tracks, named after the
Japanese astrophysicist who discovered them:

• The Hayashi line, strictly, represents the locus in the H–R diagram for fully
convective stars of a given mass at various radii. This location depends on
mass and composition; the effective temperature generally decreases as mass
decreases.

• The region to the right of the Hayashi track is “forbidden” for a star of a given
mass in hydrostatic equilibrium, at any phase of evolution, including the red giant
phase.

• An object not in hydrostatic equilibrium, such as a variable star or a collapsing
protostar, can exist in the forbidden region.

• The exact location of the Hayashi line in Teff depends on the opacity in the
radiative surface layer. The opacity in the relatively cool (3,000–4,000K) surface
layers is mainly due to H � and molecules. An increase in the metal abundance
produces more free electrons from elements, such as Fe, with low first ionization
potentials and thus more H �. The result is higher opacity, and thus lower
luminosity for a given radius. The Hayashi line shifts to the right.

• The location of the Hayashi line also depends on the efficiency of convection in
the superadiabatic zone below the surface. An assumed increase in the mixing
length results in more efficient convective energy transport and thus higher
luminosity for a given radius. The Hayashi line shifts to the left.

• A decrease in the radius of a star of given mass along the Hayashi line
corresponds to decreasing (more negative) total energy.

• The entropy of a monatomic ideal gas is given by S D const C Rg

�
ln T 3=2

�
. Since

the temperature scales approximately as M=R, and the density as M=R3, the
entropy also decreases as the star contracts.

Tracks for four different masses in the (log �c , log Tc) plane are shown in Fig. 8.4.
As one would expect from the Virial Theorem, at a given density a star of higher
mass has a higher temperature. At the end points of the tracks for 7, 1, and 0.1 Mˇ
nuclear burning has become dominant, but before that time the slope of the tracks is
in fact close to 1/3. The tracks for 7 and 1 Mˇ reach nuclear burning, which stops the
contraction, well before they enter the degenerate region. The track for 0.1 Mˇ does
enter the degenerate region and the slope begins to decrease, but the object is able to
reach nuclear burning temperatures. However the evolution of 0.04 Mˇ reaches the
degenerate region at a relatively low temperature, significant nuclear burning does
not develop, and the interior begins to cool; this is the characteristic track of a brown
dwarf.

Contraction times to the main sequence, starting at the birth line, for various
masses are given in Table 8.1. These numbers can vary considerably for a given mass
among the various published tracks, as a result of different physical assumptions
and parameters and, for the highest masses, the location of the birth line. They also
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Fig. 8.4 Overview of pre-main-sequence evolutionary tracks in the (log �c , log Tc) diagram,
where the subscripts refer to the center of the star. Stars (solid lines) of 7.0, 1.0, and 0.1 Mˇ

and a brown dwarf (short-dashed line) of 0.04 Mˇ are shown. The upper ends of the stellar
tracks correspond to the zero-age main sequence. The long-dashed line shows the approximate
boundary in the equation of state between the ideal gas region (left) and the electron-degenerate
region (right). Data from [464] (stars) and [96] (brown dwarf )

Table 8.1 Evolutionary times (years)

Mass Pre-main-sequence Mass Pre-main-sequence
(Mˇ) time (Mˇ) time

0.1 1:2 � 109 1.2 3:4 � 107

0.2 5:1 � 108 1.4 1:6 � 107

0.3 3:8 � 108 1.6 1:1 � 107

0.4 2:3 � 108 1.8 9:0 � 106

0.5 1:5 � 108 2.0 7:0 � 106

0.6 1:0 � 108 2.5 4:0 � 106

0.7 7:5 � 107 3.0 2:0 � 106

0.8 6:5 � 107 4.0 5:0 � 105

0.9 5:5 � 107 5.0 2:0 � 105

1.0 4:0 � 107 6.0 1:0 � 105

depend on how the zero-age main sequence is precisely defined, because the phase
of transition to full nuclear burning takes a substantial fraction of the time to reach
it. The times given in the table correspond to the point where at least 99% of the
energy radiated by the star is supplied by nuclear burning. Stars above 6 Mˇ are
not included because they do not have a well-defined quasi-static contraction phase.
They remain in the protostellar accretion phase until, in some cases, they are well
onto the main sequence. The time to reach the final mass depends on the accretion
rate.That time is best estimated from the accretion time, M= PM , which, for example,
is 5 � 105 yr for a final mass of 5 Mˇ accreting at 10�5 Mˇ yr�1.
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The stars in the range 1–5 Mˇ have relatively high internal temperature and
therefore relatively low internal opacities and are able to radiate rapidly. The
contraction times are short, and because the luminosity is relatively constant during
the radiative phase, during which they spend most of their time, the contraction time
is well approximated by the Kelvin-Helmholtz time

tKH � GM 2

L

�
1

R
� 1

Rb

�
; (8.41)

where R is the main-sequence radius and Rb is the radius at the birth line. A star
of 1 Mˇ spends 107 yr on the Hayashi track. For the next 2 � 107 yr, the star is
primarily radiative, but it maintains a thin outer convective envelope all the way to
the main sequence. The final 107 yr of the contraction phase represents the transition
to the main sequence, during which the nuclear reactions begin to be important at
the center, the contraction slows down, and, as the energy source becomes more
concentrated toward the center, the luminosity declines slightly.

As the mass decreases below 1 Mˇ the convective phase begins to dominate. For
a star of 0.5 Mˇ a radiative core forms in the center and increases in mass to about
60% of the total mass. The track remains approximately vertical all the way to the
main sequence. Stars of 0.3 Mˇ or less remain fully convective all the way to the
main sequence. Because the luminosity varies continuously during the contraction,
tKH is determined by integration along the track. It takes a star of 0.1 Mˇ about
109 yr to reach the main sequence. At 0.075 Mˇ, depending somewhat on chemical
composition, occurs the borderline between stars and brown dwarfs. As shown in
Fig. 8.4, below this mass, because of the onset of electron degeneracy, the central
temperature never becomes high enough so that nuclear reactions can provide the
energy needed to power the star. After reaching a maximum, the central temperature
begins to decline, even though the slow quasi-static contraction continues. The
released gravitational energy no longer is able to heat up the star, as it would for
an ideal gas, but instead it is required to lift the degenerate electrons into the higher
energy states, as determined by the Pauli exclusion principle.

Another view of the low-mass star/brown dwarf transition is shown in Fig. 8.5.
The stars are able to reach hydrogen burning through the proton-plus-proton
reaction, and their luminosity levels off with time as they reach the main sequence.
The brown dwarfs (masses below 0.075 Mˇ) are able to burn deuterium (1HC2D !
3He C � ), which accounts for the leveling off of the luminosity tracks (known as
cooling curves) at the earlier phases of the evolution. This energy supply is soon
exhausted, and the proton-plus-proton reaction is never able to supply the entire
radiated energy. Note also that there is a mass limit below which Li does not burn
(1H C 7Li ! 4He C 4He) because internal temperatures never reach 2:5 � 106 K,
the characteristic burning temperature. Thus brown dwarfs below about 0.065 Mˇ
should show Li in their surface layers, a very useful test to show that an object
actually is a brown dwarf. Figure 8.5 can be used to estimate the mass of an observed
low-mass object, if the luminosity and age can be determined.
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Fig. 8.5 Luminosity vs. time
for low-mass stars and brown
dwarfs. From top to bottom,
the curves are for masses 0.2,
0.1, 0.075, 0.05, and
0.02 Mˇ. The dividing line
between stars and brown
dwarfs in these calculations is
at 0.075 Mˇ. Data from
[31, 32, 96]

8.3 Comparison with Observations

The comparison of observed properties of young stars with the theoretical contrac-
tion tracks reveals a number of properties of these objects. The observations of the
young-star population known as the T Tauri stars are reviewed, for example by
[33, 51]. The class was defined by Joy [245] on the basis of irregular variability,
presence of emission lines, and association with nebulosity. They are now classified
on the basis of the strength of the H˛ line in emission, with equivalent width greater
than 10 Å defining a classical T Tauri star (CTTS), and a width less than that amount
defining a weak-line T Tauri star (WTTS) [221]. The CTTS are generally also
known as Class II objects and are associated with infrared excess, indicating the
presence of a disk. The WTTS would generally fall into Class III, with little IR
excess. Sample spectra and spectral energy distributions [359] are shown in Fig. 8.6.
The H˛ in emission originates mainly in the magnetospheric cavity, generally within
about 0.1 AU of the star but outside the actual photosphere. The details of the
line strength and line profile depend in a complicated way on both the accretion
characteristics and the outflow characteristics of the star [320]. Young stars in
the mass range 0.1–2 Mˇ fall within the T Tauri classification. The higher-mass
analogues are known as Herbig Ae and Be stars.

The T Tauri stars have high lithium abundances, typically 10�9 that of hydrogen,
comparable to the abundance in meteorites in the solar system and much higher
than in the solar photosphere itself. These abundances are considered to be the
primordial abundances of the material out of which the stars formed. The stars
are associated with dark clouds where star formation is taking place and display
irregular variability in light which can amount to up to 3 magnitudes in the visible
spectrum. The CTTS in particular display mass loss that is much more rapid than
that of most main-sequence stars, have excess infrared emission over that expected
from a normal photosphere, indicating the presence of a surrounding disk, and
excess ultraviolet radiation, indicating accretion onto the star.
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Fig. 8.6 Upper: Medium-resolution optical spectra of 4 T Tauri stars, ranging from an extreme
CTTS (DR Tau) to moderate CTTS (DN Tauri and DF Tauri) to a WTTS (TAP57). Note that the
spectrum of DR Tau consists mainly of emission lines; there is no absorption-line photospheric
spectrum. Note also the ultraviolet excess around 350 nm. The H˛ line decreases in strength
from the upper to the lower spectra. Lower: The spectral energy distributions of the same objects,
showing the increase in the IR excess from WTTS to extreme CTTS. These data are not corrected
for extinction. Reproduced with kind permission of Springer Science and Business Media, from
The Origin of Stars and Planetary Systems, ed by C. J. Lada, N. D. Kylafis, article by F. Ménard,
C. Bertout: The nature of young solar-type stars, p. 341, Fig. 1. c� 1999 Kluwer Academic
Publishers
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In a few cases, surface magnetic fields have been measured through the Zeeman
effect; the values are of order a kilogauss. In general T Tauri stars are thought to
have magnetic fields considerably stronger than that of the Sun. The main piece of
observational evidence that supports this claim is the almost ubiquitous detection of
X rays in young stars [169, 185], both in CTTS and WTTS. The X-ray luminosity
of a given star is highly variable, but on the average, in the 0.2–2 keV energy range
it is 10�3–10�4 times the total luminosity, whereas in the Sun the ratio is closer
to 10�5–10�6. The X-ray properties differ little between CTTS and WTTS, except
that the CTTS tend to be somewhat fainter. In fact a large number of WTTS have
been discovered on the basis of their X-ray brightness, since their H˛ is weak.
The observations strongly suggest that in most cases stellar activity produces the
X-rays, and they are unrelated to the presence of a disk. The source of the X rays is
probably similar to that in the chromosphere and corona of the present Sun, but at
an enhanced level, with complicated magnetic field structures evolving to produce
rapid magnetic reconnection events, which lead to local heating to temperatures
sufficient to produce X rays. In any case, although the inferred fields are strong,
there must have been substantial magnetic flux loss during the protostellar phase.

From spectroscopic and photometric observations one is able to determine the
rotational velocity at the surface of T Tauri stars; however there is no information
on the distribution of angular momentum as a function of radius in the interior. It
is often assumed that in the fully convective phase the star is uniformly rotating
(constant angular velocity ˝); however it is known from helioseismology that this
assumption is incorrect in the case of the solar convection zone. Nevertheless it is a
useful first approximation.

From spectroscopic observations of line broadening arising from the rotational
Doppler shift, one obtains v sin i , where v is the rotational speed at the equator and
i is the angle of inclination, that is, the angle between the rotation axis and the
line of sight, with sin i = 1 for a star viewed equator-on. Already in the 1950s the
method was used [218] to determine that v sin i for 3 T Tauri stars fell in the range
20–65 km s�1. Many subsequent observations give similar results, with most T Tauri
stars in the range 1–150 km s�1. From photometric observations of the stars one can
often detect periodic variations superimposed on the general irregular variability;
these variations are presumably due to active regions (“starspots”) that are carried
by rotation around the star. The direct observational result is the rotational period P

(or ˝ D 2�=P ), which, when combined with the stellar radius (obtained from
Teff and the luminosity), gives the actual rotational velocity, not dependent on
sin i . In general the rotational velocities are fast compared with that of the Sun. A
T Tauri star, of 1 Mˇ, uniformly rotating with v D 20 km s�1 and a radius of 3 Rˇ
has an angular momentum about 100 times larger than that of the Sun. However the
rotational velocities are generally at last a factor of 10 slower than the “breakup”
rate, where the centripetal acceleration balances gravity at the equator. The typical
angular momentum is 4 orders of magnitude smaller than that of a molecular cloud
core of the same mass.

The evolution of angular momentum during pre-main-sequence evolution is
complicated and is only beginning to be understood [223]. There are three main
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physical effects operating: (1) A star of constant mass and constant angular
momentum will spin up during contraction, and the rotational period will decrease.
(2) A star with a disk will interact magnetically with the disk, resulting in angular
momentum transport to the disk at a rate depending on the strength of the magnetic
field. This braking mechanism can be efficient, resulting in approximately constant
˝ with time as the star contracts. It could also be only partially effective, resulting in
some angular momentum loss during contraction but with ˝ increasing slowly with
time. (3) Even if the star does not have a disk, the ordinary stellar wind, expected
to be a scaled-up version of the solar wind, will result in angular momentum loss.
However this mechanism is inefficient, with the time scale for angular momentum
loss longer than the typical Kelvin-Helmholtz contraction time.

Figure 8.7 shows evidence for these effects through comparison of two clusters of
different age [297]. The rotational periods shown are based on photometric variation
in the light from the stars as a result of starspots carried with the rotation of the star,
so there is no uncertain factor of sin i . On the average, both the higher-mass stars
and the lower-mass stars show definite evidence of spin-up with age. Furthermore,
the higher-mass stars show definite evidence of two peaks in period. In the Orion
cluster these peaks fall around 8 days and about 2 days. A similar double peak, at
5 days and 1 day, is seen in the slightly older cluster NGC 2264. The shorter-period

Fig. 8.7 The distribution of rotational periods for the young cluster NGC 2264 and for the Orion
Nebula cluster is shown for two groups of stars in each case: mass greater than 0.25 Mˇ (upper),
and mass less than that value (lower). The quantity (Rc–Ic ) is a red color index, an approximate
indicator of mass. Age estimates are uncertain, but the general understanding is that the Orion
cluster, with a mean age of �1 Myr, is at least a factor 2 younger than NGC 2264. Vertical lines
indicate median periods. Credit: Lamm et al. Astron. Astrophys. 430, 1005 (2005). Reproduced
with permission. c� European Southern Observatory
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peak is thought to represent stars which are contracting at fairly constant angular
momentum and spinning up. The other peak is thought to represent stars which are
magnetically locked to their disks, and thus have relatively slow rotation. At both
ages shown there is a tail of relatively slowly rotating stars, indicating that in at
least some cases there is significant angular momentum loss. Then, if disk locking
is a significant effect one would expect a correlation between slow rotation and the
presence of a disk accreting onto the star. The main signatures for accretion include
a high equivalent width in H˛ emission and mid-infrared excess. There is some
evidence for such a correlation, but the observational results are ambiguous [90],
the statistics are incomplete, and this point is subject to contention.

All the characteristics of T Tauri stars are consistent with youth; their locations in
the H–R diagram fall along Hayashi tracks for stars in the mass range 0.1–2.0 Mˇ.
The arguments that the properties of T Tauri stars clearly point to their identification
as pre-main-sequence stars, as originally suggested by Ambartsumian [16], were
summarized by Herbig [219]. He provided a further argument [220] by showing
that the T Tauri stars in the Taurus-Aurigae region have the same radial velocities
as the associated molecular clouds. The disk characteristics vanish after ages of a
few million to 107 yr, putting a constraint on the time available for the formation
of gaseous giant planets. Here we consider in somewhat more detail some definite
connections between theory and observation.

1. As predicted by Hayashi, no stars in equilibrium are observed to exist in the
forbidden region of the H–R diagram. In young clusters, the location of observed
objects, corrected for extinction, in the H–R diagram is consistent with the coolest
objects being on their Hayashi tracks and consistent with the decreasing value of Teff

on the tracks as the mass decreases. For old evolved clusters, the red giants are not
fully convective, but their convective envelopes are deep enough so they fall close
to, but slightly to the left of, their Hayashi lines. The observed cluster diagrams, for
non-variable, extinction-corrected stars, are in agreement with this conclusion.

2. The location of the theoretical “birth line” in the H–R diagram is consistent with
the upper envelope of the positions of stars in a young cluster. In Fig. 8.8 the color-
magnitude diagram for one of the youngest clusters known, NGC 2264, is shown.
The upper dashed-dot line, corresponding to an age of 105 years, corresponds
approximately with the birth line for the range of masses shown. The birth line is
based on protostar theory and, for a given mass, corresponds to the point in the
H–R diagram where for the first time the infalling circumstellar dust has been
cleared away and the photospheric spectrum of the underlying stellar core is visible.
The line itself connects the points for the various masses. The birth line may be
considered to correspond to the end of significant mass accretion, but in fact a
slow accretion may still occur beyond it. Clearly none of the observed points lie
significantly above the theoretical birth line. Another example is shown in Fig. 1.21,
where Palla/Stahler evolutionary tracks are compared with the observed [226]
positions of young stars in the Orion Nebula cluster. Again, practically no observed
objects fall above the birth line.
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Fig. 8.8 The extinction-corrected color-magnitude diagram for the young cluster NGC 2264 is
shown [129]. Visual magnitude is plotted against (V � I ) color. The solid lines are evolutionary
tracks [132], converted to the observed quantities [226]. The dashed-dot lines are isochrones,
with examples of ages marked. The filled circles are classical T Tauri stars (CTTS), the open
triangles are weak-lined T Tauri stars (WTTS), and the crosses are X-ray sources. The lower solid
line gives the observed main sequence of the Pleiades cluster; the dot-dashed line represents its
upward extension. Reproduced by permission of the AAS, from [129]. c� 2005 The American
Astronomical Society

3. The distribution of stars in the H–R diagram in a young cluster is used to
determine the age spread of the stars. Figure 8.8 shows that the stars in a young
cluster are not co-eval; there is a spread in ages of about 107 years in NGC 2264.
The median age of this cluster, based on a compromise among the discrepant results
of the various pre-main-sequence evolutionary tracks [128] is about 3 � 106 yr, and
most stars fall between 0.1 and 5 Myr. There is apparently no significant difference
in the age spread among the CTTS and the WTTS. There is a similar spread in
the Orion cluster. However the determination of ages in this manner is uncertain.
Depending on which set of evolutionary tracks is used, the distribution can change
because of differences in physics and parameters in the various calculations. Also
somewhat uncertain is the conversion of the theoretical (log L, log Teff) diagram
into observed quantities, particularly for the cooler objects; also the presence of
circumstellar disks must be accounted for. And of course some of the stars plotted
in Fig. 8.8 may not actually be members of the cluster.

An accurate observed position of a young star in an H–R diagram can be used
to determine not only its age but also its mass, in conjunction with evolutionary
tracks. The distribution of masses in a young cluster is clearly an excellent probe of
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Fig. 8.9 A histogram showing the number of stars of a given mass as a function of log mass for
low-mass stars in the inner region of the young Orion Nebula cluster. The evolutionary tracks used
to determine the masses are from [132]. The solid histogram with error bars gives the results for
all stars observed. The dotted histogram gives the results for all stars, corrected for incompleteness.
The hatched histogram gives the results for stars with ages less than 5 Myr. Reproduced by
permission of the AAS, from D. Spolyar, K. Freese, P. Gondolo: Phys. Rev. Lett. 100, 051101
(2008). c� 2004 The American Astronomical Society

the IMF, a critical quantity for the understanding of star formation. Figure 8.9 is an
example, giving the distribution of low-mass stars in the Orion Nebula cluster. The
observed positions in the H–R diagram were obtained through use of both infrared
spectroscopy and photometry. There is a peak at 0.2 Mˇ and a decrease in the
function to both higher and lower mass. Below the peak there is a sharp drop near the
stellar/brown dwarf boundary, then the function levels off in the brown dwarf region.
The peak mass is in agreement with the general Galactic IMF given by (1.7); how-
ever the slopes away from the peak are not in precise agreement. Determining the
IMF in this way is tricky, because there is no well-defined mass-luminosity relation
as there is for main-sequence stars (see Chap. 5); the track masses must be used.

The question is often posed whether the IMF is universal. The cluster IC 348
has a similar age to the Orion cluster, and its low-mass IMF is similar [329].
Spectroscopic methods were used to derive the IMF, as in the case of Orion.
However, in the Taurus-Aurigae star forming region, which is not regarded as a
cluster, the IMF is quite different [329]. It was determined by similar methods to
those used for IC 348, and the age (1–2 Myr) is also about the same. However the
IMF peaks at about 0.8 Mˇ and then slowly declines toward lower masses and into
the brown dwarf region. The clear difference between the functions for Taurus and
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Fig. 8.10 A histogram showing the number of stars of a given mass as a function of log mass for
low-mass stars in the Taurus star-forming region (upper) and in the young clusters IC 348 (center)
and the Orion Nebula cluster (lower). The evolutionary tracks used to determine the masses in
the upper and center frames are from [109] for mass M < 0:1 Mˇ, from [30] for 0:1 < M <

1 Mˇ, and from [407] for M > 1:0 Mˇ. The lower frame is derived from [374]. Reproduced by
permission of the AAS, from [329]. c� 2004 The American Astronomical Society

those in IC 348 and Orion, illustrated in Fig. 8.10, strongly suggests that the nature
of the IMF depends on the star-forming environment. The reason for the discrepancy
remains unresolved, but it has been suggested that either the Jeans mass [91,331] or
the turbulent velocity field [404] could have been different in the molecular cloud
cores in Taurus, as compared to those in IC 348 or Orion. It is also possible that
additional data in the future, as well as improved pre-main-sequence evolutionary
tracks, will reduce the apparent discrepancy.

4. The masses derived in the previous paragraph are not fundamental mass measure-
ments; they are based on theoretical evolutionary tracks, and they are subject to a
number of uncertainties. It is a critical test of pre-main-sequence stellar evolution
to compare the masses derived from the positions of stars in the H–R diagram with
actual masses derived from binary orbits. Several methods are available to determine
masses; one is from an eclipsing binary system, both of whose components have
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observable spectra from which the orbital radial velocity as a function of time can
be determined. In such systems the individual masses can be measured, independent
of the distance, which may not be known. There are not many eclipsing systems
known in which both components are in the pre-main-sequence phase. One of the
first to be discovered was that shown in Fig. 1.14 (RXJ 0529:3 C 0041), whose
components are nearly coeval at �107 yr. The masses derived from the positions
in the H–R diagram and evolutionary tracks [30] are about 1.4 and 0.82 Mˇ. The
binary observations give a period of 3.04 days and radial velocity amplitudes of 81
and 110 km s�1. The binary is in Orion, and both components have lithium as well
as H˛ emission. The dynamical masses are 1:25 ˙ :050 and 0:91 ˙ 0:05 Mˇ. Thus
the track masses can be trusted to about 10% in this mass range. Other sets of pre-
main-sequence tracks give about the same mass for the primary but disagree on the
mass for the secondary.

Another method for determining the mass of a young star is to use the properties
of its circumstellar disk. If the disk has low mass relative to the star, the Keplerian
velocity measured in the disk is determined by the mass of the star; such velocities
are usually measured by the Doppler shifts in CO lines in the mm part of the
spectrum. Correction for the inclination of the disk can usually be obtained, if the
disk is spatially resolved, from the observed morphology. The distance to the star
must be known, since the radius at which the velocity is measured is needed to
obtain the central mass.

An good example is GG Tau, which is a quadruple system, consisting of two
binary pairs in orbit about each other. All components have Li in absorption, H˛ in
emission, and lie on approximately the same isochrone in the H–R diagram [545].
The more massive pair has an orbit with separation of about 30 AU. The components
are surrounded by a circumbinary disk (Fig. 6.6) whose orbital velocities have been
measured as a function of distance to the star, giving the sum of the masses of the two
stars as 1:28 ˙ 0:08 Mˇ (and subject to an additional uncertainty of 15% because
of the distance). The two stars have been also been placed in the H–R diagram,
and the track masses agree or disagree, depending on which set of tracks is used
and depending on the effective temperature scale used for T Tauri stars, which is
uncertain. The best agreement is obtained from the Baraffe tracks [30] in which
the ratio of convective mixing length to pressure scale height (l=H ) is set to 1.9.
The sum of the track masses in this case comes out to be 1:46 ˙ 0:1 Mˇ, while if
l=H is set to 1, the result is 2.04 Mˇ. However l=H D 1:9 is reasonably close to
the solar value of 1.6, and the Baraffe models use non-grey model atmospheres as
surface boundary conditions, which represents improved physics over the other sets
of tracks.

A third method of obtaining masses is the combination of data for a spectroscopic
binary with astrometric data for the system. Ordinarily spectroscopic binaries are
close enough so that they cannot be spatially resolved to allow measurement of
their relative positions as a function of time. However improvement in observational
techniques, including the use of the Fine Guidance Sensors on the Hubble Space
Telescope, adaptive optics on large telescopes, and ground-based interferometers,
has resulted in both spectroscopic and astrometric data for a few pre-main-sequence
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Fig. 8.11 A near-infrared
image (Ks band) of the triple
system T Tauri, taken with
NACO, the adaptive-optics
near-infrared camera on the
ESO Very Large Telescope,
on 1 Feb 2008. Reproduced
with permission, from R.
Köhler: Journ. of Phys.:
Conference Series 131,
012028 (2008). c� 2008 IOP
Publishing Ltd.

systems. If both spectra are visible, even though the system is not eclipsing, both
masses can be determined without the necessity of an independent distance deter-
mination. The method has been used [61] to find masses of 0.70 and 0.58 Mˇ, with
an uncertainty of about 8%, for the binary HD 98800Ba and Bb. The agreement with
evolutionary tracks is not particularly good, unless the assumed metal abundance for
the tracks is reduced below solar. Another example is NTT 045251 C 3016 [488]
where the measured masses are 1:45˙0:19 and 0:81˙0:09 Mˇ. The best agreement
is obtained with Baraffe tracks [30] but with l=H D 1:0 rather than 1.9.

A particularly interesting system is T Tauri itself (Fig. 8.11). First observed
in 1852 from London by Hind [230], it was long thought to be a single star. A
surprising discovery [150] showed that in fact it had a companion, observable only
in the infrared, which came to be designated as T Tau S, while the optically visible
component was denoted T Tau N. Then it turned out that the infrared companion
itself was a binary [266], whose components are known as T Tau Sa and Sb. The
apparent separation of Sa and Sb is about 0.087 arcsec, with a probable semimajor
axis of 13 AU. The apparent separation of N and S is about 0.65 arcsec (� 100 AU),
but its orbit, and therefore the mass of N, is not well determined. The orbit of the
Sa–Sb system is in the process of being determined by pure astrometry using radio
and infrared observations [142, 261]. Although only a fraction of the 28 year orbit
has been measured, the masses of the two components are reasonably well estimated
at 2.28 and 0.41 Mˇ, respectively, for Sa and Sb, with an error of ˙0:2 Mˇ in both
cases. Both components of S radiate primarily in the infrared; the secondary because
it is an M star, and the primary probably because it has an edge-on circumstellar
disk. Because Sb is heavily extincted, the comparison of the dynamical mass with a
track mass is very uncertain. On the other hand, the mass of T Tau N is not available
from dynamical measurements, but its track mass is estimated to be 2 Mˇ.
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The general agreement between dynamical measurements of the masses of pre-
main-sequence stars and the masses obtained from evolutionary tracks is not entirely
satisfactory. In several cases, dynamical masses can be measured to an accuracy of a
few percent or better. However the average deviation of track mass from dynamical
mass is 20%, and in a few cases it is as large as 50% [228, 343]. Almost all of
the measured dynamical masses are for stars above 0.5 Mˇ, and the agreement is
generally better for stars above 1.0 Mˇ rather than for the lower-mass stars. The
tendency is for the theoretical tracks to under-predict the dynamically determined
masses. The comparison is clearly most difficult for the cool, low-mass stars and the
brown dwarfs, and very few dynamical measurements are available in that range.
Thus derived quantities, such as low mass IMF’s, should be viewed with caution.

Nevertheless, observational progress is expected in the future and already there
has been a remarkable discovery of a double-lined eclipsing binary of a young
brown dwarf in the Orion Nebula cluster [486, 487]. The respective masses are
0.054 and 0.034 Mˇ, with an accuracy of 8%, surface temperatures are 2,715 and
2,820 K, and radii are 0.67 and 0.51 Rˇ. These properties are generally consistent
with theoretical Hayashi tracks at the �1 Myr age of the cluster [30, 132], but the
track masses differ from the dynamical ones by about a factor 2. Also surprising is
the fact that the more massive dwarf is the cooler, which is not consistent with the
evolutionary tracks. This discrepancy is not explained, although it could possibly be
a result of non-coevality of the components, or atmospheric magnetic effects which
could affect the derived temperatures.

Given that dynamical masses, when available, are quite accurate, the main
improvements needed for the comparison are first, better measurements of stellar
properties, such as luminosity and Teff for low-mass stars and brown dwarfs, and
second, improvements in stellar evolutionary tracks and atmospheric models for
comparing observed and synthetic spectra to determine Teff. More dynamical mea-
surements for stars below 0.5 Mˇ are also highly desirable. These improvements
are clearly important for the understanding of star formation.

5. Observations of the rare light element lithium provide a unique probe of the
interior structure of pre-main-sequence stars and can serve to calibrate uncertain
theoretical parameters, such as the convective mixing length. The main test is a
comparison of observed lithium abundances of stars that have just reached the main
sequence with calculations of the depletion of lithium in the surface layers during
the contraction. The lithium abundance that present-day newly forming stars inherit
from the interstellar medium is about 10�9 that of hydrogen. Yet it is observable
in the red part of the optical spectrum through the presence of an absorption line
at 670.7 nm. Lithium is easily destroyed by reactions with protons at temperatures
above about T D Tburn D 2:5 � 106 K (7Li C1 H ! 4He C 4He). The youngest stars
have internal temperatures less than this and they are fully mixed by convection, so
they should show their initial Li abundances at the surface: most T Tauri stars in
fact do.

During the contraction, the lower-mass stars, say 0.6 Mˇ or less, remain fully
convective at least until the time when T D Tburn at the center. The Li will burn
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there, and the entire star will be mixed by convection, so even the surface value will
be depleted. Thus low-mass stars will arrive at the main sequence with very little
surface Li. However the higher-mass stars, say 1.2 Mˇ or above, develop radiative
cores before T D Tburn at the center, and the inner edge of the convection zone
retreats toward the surface. As a result, Li is burned in the central regions, but the
inner edge of the convection zone always remains at T < Tburn, so there is no Li
depletion at the surface. For masses in between these limits, the amount of depletion
depends on the history of T at the base of the convection zone. For example, a 1 Mˇ
star reaches a maximum temperature at the base of the convection zone of about
4 � 106 K, and maintains this temperature for about 107 years, sufficient to burn
only about half the Li at the surface.

Figure 8.12 shows the Li abundances on the main sequence of the Pleiades
cluster, which is sufficiently young so that any main-sequence depletion mechanism
should not have been important. The abundances clearly decrease as one proceeds
from the F stars to the K stars, by 3 orders of magnitude. The relatively wide scatter
in the observational points is only in part a result of observational uncertainties;
stellar surface activity in these young stars could account for some of it. The
theoretical curve is based on standard stellar models with solar abundances, which
closely matches those in the Pleiades. A reduction in the metal abundance used for
the theoretical curve would shift it upward. However, accounting for convective
overshoot at the base of the convection zone would tend to move the curve
downward, that is to higher Li depletion for a given mass. However the theory of
overshoot is very uncertain. Although the theoretical result is sensitive to assumed
physical parameters in the models, in general the agreement is good and gives
reasonable certainty as to the presence of convection zones during pre-main-
sequence evolution.

Fig. 8.12 The lithium
abundance along the main
sequence of the Pleiades
cluster, by number relative to
hydrogen, as a function of
Teff. At the cluster age of
about 108 yr the depletion
pattern seen at the lower
temperatures is almost
entirely the result of
convective mixing during the
pre-main-sequence evolution.
The crosses are observations
from [473] and the solid line
is a model calculation
from [416]
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Fig. 8.13 The lithium
abundance in a star of 1 Mˇ

as a function of age, as
observed in various clusters
and the Sun. At this mass the
pre-main-sequence depletion,
which ends at log age D 7:5,
is roughly a factor 2, and the
plot shows that nevertheless
the lithium continues to be
depleted on the main
sequence

Figure 8.13 shows what happens to the abundance of lithium in a main-sequence
star of a solar mass as a function of age, based on observations in three different
clusters and the Sun itself. At the age of the Hyades (6 � 108 yr) the abundance
has already dropped by a factor of 3 with respect to the Pleiades, and the general
trend shows a gradual depletion on a time scale of 109 yr. But main-sequence models
do not have surface convection zones deep enough to account for depletion due to
mixing down to Tburn. The Sun’s convection zone extends down to about 2 � 106 K
during this phase. Overshoot, rotational mixing, and hydrodynamical instabilities
have been considered to account for this effect, but there is no satisfactory solution.
Clearly the time scale for this process must be very long, of order 1 Gyr.

8.4 Summary

For stars below about 6 Mˇ, once the protostellar infall has been completed, the
internal temperatures are not high enough to supply the star’s radiation through
nuclear burning. Gravitational contraction is the main energy source, except that
burning of primordial deuterium may hold up the contraction for �1 Myr. For
stars above about 1 Mˇ the interior of the star is mainly radiative during this
phase, and the evolutionary track proceeds more-or-less horizontally and to the
left in the H–R diagram towards the main sequence. For stars of 1 Mˇ or less a
substantial portion of the evolution is characterized by a fully convective phase,
during which the evolution in the H–R diagram is mainly vertically downwards.
The fully convective track, known as the Hayashi line, forms a limit to the right
of which is a forbidden region for stellar models in hydrostatic equilibrium. The
surface temperature along this line is about 4,000 K for 1 Mˇ, decreasing to about
3,000 K for 0.1 Mˇ. For stars below 0.3 Mˇ the star remains fully convective on
a nearly vertical track all the way to the main sequence. For stars above 0.3 Mˇ
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a radiative core eventually develops. Contraction times from the birth line to the
main sequence range from 2 � 105 years at 5 Mˇ to 109 years at 0.1 Mˇ. Below
about 0.075 Mˇ the effects of increasing electron degeneracy prevent the onset of
sufficient nuclear burning to supply the stellar energy, and the object becomes a
brown dwarf, which eventually cools in the interior.

The observed properties of young stars can be combined with the theoretical
evolutionary tracks to deduce some properties of the end-products of star formation.
Precise observed locations in the color-magnitude diagram can be used to deduce
masses and ages. In a typical young cluster, star formation apparently proceeds over
a time of up to 107 years. In addition the distribution of masses can be estimated,
which generally shows a peak at about 0.2 Mˇ, declining to lower masses. However
these estimates are uncertain because of the generally anomalous observed proper-
ties: emission lines, excess infrared and ultraviolet radiation, irregular variability,
strong X-ray flux. Some of the objects are accreting material from a disk as well as
losing mass in a wind. It is difficult, especially for the cooler, lower-mass objects, to
convert observed colors or spectra into Teff.

There are two important tests on the validity of the theoretical results in pre-
main-sequence evolution. The first is made possible by direct dynamical mass
determination in a few cases, mainly from eclipsing binaries and stars with spatially
resolved disks. In principle the dynamically determined masses should agree with
the “track” masses determined from the positions of objects in the H–R diagram. For
objects around 1 Mˇ the agreement is reasonably good; for lower-mass objects in
some cases the disagreement is at the 50% level and it varies according to which
set of evolutionary tracks is used. The second test is based on observations of
the rare light element lithium. Above 1 Mˇ the stars are predominantly radiative
in the interior, with surface convection zones that are not deep enough to reach
the Li burning temperature. Thus these stars should reach the main sequence
with close to the primordial Li abundance in their photospheres, a conclusion in
agreement with observation. The lower-mass stars have deeper convection zones,
and theoretical calculations show that the observable lithium should decrease as the
mass decreases along the main sequence. This result is also in general agreement
with observations, as long as the youngest possible main-sequence stars are used,
to avoid the complication of the further long-term depletion of Li during main-
sequence evolution.

8.5 Problems

1. Assume that the intensity in a slightly non-isotropic radiation field can be
represented by I	 D I	;0 C I	;1 cos 
 where I	;1 
 I	;0 and 
 is the angle with
respect to the normal to a given surface. Calculate the radiation pressure from
(8.33) and use the result to justify (8.13).



8.5 Problems 309

2. A star of 0.1 Mˇ stays fully convective during its entire pre-main-sequence
contraction and maintains a constant Teff D 3;000 K. What is the contraction
time to the main-sequence radius of 0.1 Rˇ, neglecting nuclear burning?

3. This problem provides an approximate solution for the Hayashi line in the
H–R diagram, under the assumption that the star is a fully convective ideal gas,
corresponding to a polytrope P D K�5=3.

(a) Find the relation between pressure and temperature.
(b) The mass-radius relation for an n D 1:5 polytrope is [110] K D

0:424GM 1=3R. K is not a constant along the Hayashi track for a given
mass; as the star contracts the entropy decreases. Thus K needs to be
eliminated from the expression for the pressure.

(c) Assume the opacity in the radiative surface layers has the form �p D
�0P

˛T ˇ. Use the surface boundary conditions (8.9) and (8.12) to match
the polytropic pressure and temperature to the surface conditions. Thus
obtain an equation relating M , L, and Teff along a Hayashi track.

(d) Calculate the slope of the Hayashi line for a given mass, and show that it
becomes steeper as ˇ increases.

(e) Plot the Hayashi line for two different masses, assuming ˛ D 1 and ˇ D 3.

4. This problem provides a rough estimate of the transition mass between a star and
a brown dwarf.

(a) The central density �c of a fully convective star is 6 times the mean
density. The central temperature Tc of a star is roughly twice the mean
temperature determined from the Virial Theorem (for an ideal gas). The
gravitational energy of a fully convective star is .6=7/GM 2=R: Use these
approximations to obtain a relation between �c and Tc and mass.

(b) Obtain a relation between �c and Tc along which the gas is on the
borderline between being an ideal gas and a fully degenerate electron gas
(non-relativistic) by equating the ideal gas electron pressure (Rg�T=�e)
to the fully degenerate electron pressure. The quantity �e is the mean
atomic weight per free electron, 2=.1 C X/, where X is the hydrogen
mass fraction.

(c) Assuming that Tc D 4 � 106 K is the minimum temperature needed to
support nuclear burning, find the corresponding minimum mass.

5. Show that a homologously contracting object has an effective energy generation
per unit mass per unit time �grav D KT where T is the temperature and K is
an unknown constant. Find the value of K . In practice it can be specified for an
initial stellar model by a guess for the total luminosity. Use (8.5) with �nuc D 0:,
and (8.16).

6. Combine (8.3) and (8.6) to obtain an equation for dT /dP . Assume that the
opacity �R D 0:2.1CX/, where X is the hydrogen mass fraction; this expression
holds for electron scattering as the main opacity source and is appropriate for hot
stars. Now evaluate the expression in the surface layers where Lr D L, the total
luminosity, and m D M , the total mass. You should have an equation relating T
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and P , all other quantities being constants. Integrate this equation inwards from
the surface, starting from P D T D 0, to get P.T /. Assume the equation of state
is an ideal gas. Test the P.T / relation, which assumes radiative energy transport,
to see if it might actually be convective.



Chapter 9
Summary: Issues in Galactic Star Formation

Many new ideas, ground-based and space-based observations, theories, and numeri-
cal computations have considerably advanced our knowledge of star formation over
the past few decades. This summary of the main physical ingredients in the process
emphasizes the many questions that still remain unanswered or controversial. With
more powerful telescopes and computers that will be available over the next decade,
some of these questions will be further clarified, and further insights will contribute
to this evolving subject. The topics covered in this text start with the assumed
existence of molecular clouds over a range of masses, and end with stars in
hydrostatic equilibrium, having a photospheric spectrum, and proceeding through
the contraction phase toward the main sequence.

9.1 Molecular Clouds

Turbulence in molecular clouds is an important element in the physical picture.
Turbulent elements are observed over a wide range of length scales L, and their
velocities, as measured by molecular line widths, scale approximately as the square
root of the size. The deduced supersonic velocities require that shocks be generated,
and the result is dissipation of kinetic energy. Numerical simulations show that
as a result the turbulence in a cloud should decay on approximately the turbulent
crossing time L=vturb, generally shorter than the lifetime of the molecular cloud
itself. Magnetic fields are present in molecular clouds, with magnetic energy less
than or comparable to gravitational energy, and with the deduced Alfvén speed,
at least in some regions, similar to the turbulent speed. However the presence of
the field does not appear to significantly lengthen the decay time. In many regions
of molecular clouds the magnetic field appears to be weak, and the importance of
magnetic fields, as compared with turbulence, in regulating star formation is still an
open question.

The lifetime of a molecular cloud is not well determined and is subject to debate;
most estimates fall in the range of a few million to 107 years or more. Thus it seems
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to be necessary to invoke some mechanism for maintaining the turbulence, assuming
it is generated during the process of formation of the cloud. The maintenance of the
turbulence requires that a significant amount of energy be injected on the larger
scales. The role of the various possible mechanisms, for example continued infall
of gas onto the cloud from the outside, or expansion of HII regions, or supernova
explosions, remains to be clarified. There is a significant input of energy on small
scales, from well-observed bipolar, collimated outflows from forming stars, but this
mechanism by itself is probably not sufficient to maintain the overall turbulence.

The question of fragmentation at the molecular cloud level is still unresolved.
Given a molecular clump of order 1,000 Mˇ which is thought to be near virial
equilibrium and not collapsing, how does it fragment into individual molecular
cloud cores, and what are the properties of the fragments? This question is closely
related to another fundamental question: how is star formation initiated, that is,
how is molecular cloud material brought to the point where individual objects in
the solar-mass range are gravitationally bound and are collapsing? There are two
different avenues for star formation: stars are formed in clusters of typically a
few hundred (but sometimes more) objects, as for example in the Orion Nebula
cluster. Or they can form as more-or-less independent objects, such as in the
Taurus-Aurigae region. In the case of individual objects, at least three different
mechanisms have been actively considered for the initiation of star formation. First,
in regions which are magnetically controlled, collapse is inhibited, but an object can
contract quasi-statically until its density is high enough so that ambipolar diffusion
increases the mass-to-flux ratio to the point where collapse can set in. Second,
in supersonically turbulent regions, shocks of various strengths can compress
randomly located regions to high enough density for a long enough time so they
become Jeans unstable and begin to collapse. Third, collapse can be induced by
outside events such as the expanding shells of HII regions or supernova remnants,
as well as by cloud-cloud collisions. It still remains to be determined exactly what
the role of these three different processes is. A key observational clue is simply
the ratio of the number of starless cores (without protostars) to cores with infrared
sources already embedded within them. The magnetic diffusion theory suggests that
the ratio should be relatively large, close to ten, although turbulent effects could
reduce it. The turbulence theory suggests that cores are relatively short-lived, and the
ratio should be small, around unity. Observational estimates of this ratio have varied
considerably in the past, but current determinations cluster about an intermediate
value of about 3.

The situation for cluster formation is not as well defined. It is quite possible that
cluster formation can be induced in an expanding HII region, where the increasing
density in the shell of swept-up material can lead to gravitational collapse. There are
observations which support this picture. Another mechanism for cluster formation
is overall gravitational collapse of a molecular cloud clump of order 1,000 Mˇ,
with fragmention into individual protostars occurring after collapse has started.
Clumps are generally supported against collapse by turbulent and magnetic effects,
but decay of the turbulence could allow collapse to proceed, and the initial turbulent
fluctuations could induce fragmentation. However it is not clear why a few clumps
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undergo decay of turbulence while most others maintain it. A third alternative for
cluster formation is for the individual cores to form first, perhaps initiated by the
turbulent shocks. Then the Jeans-unstable cores collapse, and the clustering results
from the overall properties of the turbulence, which has a hierarchical structure so
that cores tend to form in clusters.

9.2 The Initial Mass Function

The theoretical understanding of the observed initial mass function is one of the
important unsolved problems of star formation. Numerous theories and numerical
simulations have produced mass functions in fairly good agreement with the
observations, but it is not clear which mechanism dominates. The function itself
is determined from observations of main-sequence stars in the field in the solar
neighborhood and from stars in clusters with a well-defined main sequence, by
use of the main-sequence mass-luminosity relation. It is also derived in very young
clusters by means of comparison of the positions of stars in the H-R diagram with
theoretical pre-main-sequence evolutionary tracks. A surprisingly uniform picture
emerges. The IMF, in terms of number of stars per unit log mass, is fairly flat
in the range 0.1–1 Mˇ, with a peak at about 0.2 Mˇ. It drops off at lower and
higher masses, and above 1 Mˇ the dropoff has the well defined (Salpeter) slope of
dN=.d log M / / M �1:35. There are statistical fluctuations from cluster to cluster,
and a notable exception, the Taurus-Aurigae region, shows a peak in the IMF at
0.8 Mˇ. But even the oldest stars, in globular clusters, show an IMF similar to that
observed in the nearby field stars and open clusters.

A significant observational discovery regarding the IMF is that in various star-
forming regions, and especially in the Pipe Nebula where the cores have not yet
formed stars, the mass function of the dense molecular cloud cores (n � 104 cm�3)
has a very similar shape to that of the IMF, although displaced to higher masses
by a factor of about 3. A crucial question regarding the origin of the IMF is, then,
how this core-mass function was produced. Theory suggests that turbulent shock
compression and the resulting fragmentation could produce this mass function,
or it could simply represent a statistical spread around the critical Bonnor-Ebert
mass at the given temperature and pressure of the molecular cloud region. Then it
still remains to be understood why there is a fairly universal efficiency factor of
about 1/3, independent of mass, involved in the conversion of the cores into stars.
The efficiency can qualitatively be explained by the facts that some of the core
mass is later ejected in the form of bipolar flows, while other portions of it, with
significant angular momentum, may be left behind in the form of a circumstellar or
circumbinary disk, to be dissipated later. The similarity of the core mass function
to the IMF suggests that cores form first, survive for a few free-fall times, and
then collapse. This picture may well apply to stars that form in relative isolation.
However, if stars form in relatively dense clusters, the picture becomes more
complicated, because the individual protostars interact with each other, through
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encounters, mergers, outflows, ionized regions, competitive accretion, ejections of
components of multiple systems, and mass segregation. If most stars are in fact
formed under such conditions, it remains a puzzle why the core mass function is so
well preserved as it evolves into the IMF.

9.3 Protostar Collapse

Once a molecular cloud core becomes gravitationally bound, with the gravitational
force exceeding the effects of gas pressure, turbulence, rotation, and magnetic
fields, a hydrodynamic collapse ensues, during which the object becomes extremely
centrally condensed and the mean density increases by 16 orders of magnitude. One
of the main issues associated with the collapse phase is the angular momentum
problem. The angular momentum of a core is measured by observations of the
change in Doppler shift of a molecular line as a function of position across the core.
The origin of the angular momentum is most likely the random turbulent velocities
in the molecular cloud. In the end products of the collapse, T Tauri stars, the rotation
is best determined by measuring the photometric variations caused by starspots
moving across the field of view as the star rotates. The specific angular momenta
of the T Tauri stars are 3–4 orders of magnitude less than those of the cores.

Several mechanisms have been considered to explain this transition, and each
one of them may contribute to some extent to the solution of the problem. In the
low-density outer regions, where the magnetic field is still coupled to the gas,
angular momentum can be transferred away by magnetic braking, as long as the
travel time of an Alfvén wave across the core is shorter than the collapse time.
However, at higher densities, the field effectively decouples from the gas as a result
of the very low level of ionization. Once rotational effects become important as the
core spins up during collapse, fragmentation into a binary or multiple system can
occur; however the typical binary orbital angular momentum is still considerably
less than those of cores. Mechanisms suggested for extracting angular momentum
from binary orbits include angular momentum transfer to circumbinary disks,
gravitational encounters with external third objects, which can carry away angular
momentum and harden the binary, and accretion of low angular momentum material
onto the binary components. Another process to be considered is the formation of
circumstellar disks. The disk itself stores some angular momentum, and in addition,
in the warm, partly ionized central regions, a magnetic field links the disk to
the central star, resulting in angular momentum transfer out of the star. Some of
the angular momentum thus delivered to the disk is probably lost from the system
in the bipolar outflow from the forming star.

The magnetic field clearly plays a role in solving the angular momentum problem
during both early and late stages of collapse, but the reduction of magnetic flux
(� �BR2) by 5 or 6 orders of magnitude between the initial state of a molecular
cloud core and a T Tauri star has not been satisfactorily explained. At relatively
high densities both ambipolar diffusion and Ohmic dissipation affect the magnetic
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field, but detailed numerical simulations that include these processes have not yet
shown that the magnetic flux can be reduced to the values observed in young stars.
The magnetic field is effectively decoupled from the gas once the density in the
infalling cloud exceeds about 1011 cm�3; some of the magnetic flux could simply
be left in the circumstellar regions and the disk, as gas flows through it toward the
protostellar core. The difficulty is that once the temperature in the central regions
of the collapsing cloud reaches just above 1,000 K, the field recouples to the gas
as a result of thermal ionization of heavy elements, and the magnetic flux in the
recoupled region is expected to be conserved as that material accretes onto the star.

The evolutionary tracks for protostars in the 1 Mˇ range or below are not nearly
as well defined as those for stars. It is not even clear what the relative time scales are
in the different phases; different studies give different results, and studies in different
galactic regions give different results. The time scale for the Class II evolution,
namely that for the T Tauri stars, is fairly well defined at an average of about
2–3 Myr. What needs to be determined is the ratio of the Class I time scale to the
Class II time scale, and the ratio of the Class 0 time scale to the Class I time scale.
It has generally been assumed that the Class I time scale is about 1/10 that of the
Class II time scale, but recent Spitzer results put that ratio as closer to 1/5. The ratio
of the Class 0 to Class I time scales is much less certain. If the Class 0 is defined
as the phase during which the mass of the collapsing envelope is greater than the
mass of the equilibrium stellar core, and if the accretion rate is constant through
both phases, then the two time scales should be the same. However most existing
observations suggest that the accretion rate is much higher in Class 0 than in Class I,
so the Class 0 time scale is much shorter, perhaps by a factor 5. Further observations,
especially of Class 0 objects, are needed to confirm this conclusion.

The accretion rate is determined observationally from the luminosity of the
protostar, and its behavior as a function of time is difficult to determine. Is it nearly
constant, at say 1:67�10�6 Mˇ yr�1, as needed to build an 0.5 Mˇ star in 3�105 yr?
Is it strongly decreasing as a function of time, as assumed in the relatively flat (in
luminosity) tracks shown in Fig. 3.8? Is it episodic, with low accretion rates for
much of the protostellar lifetime, punctuated by short bursts of very rapid accretion?
The latter scenario may be necessary to explain the wide range of luminosities
observed for protostars. It also could account for the sudden brightening associated
with the FU Orionis event. Note that the accretion rate onto the disk can be fairly
steady, but the accretion from disk to star can be irregular, perhaps as a result of
gravitational instabilities; the latter rate is what primarily determines the luminosity.
Alternatively, the turbulent nature of the inflow onto protostars could also result in
fluctuations in the accretion rate onto the disk.

Theoretical calculations of collapse in a spherical or pseudo-spherical approxi-
mation, which provide accretion rates as a function of time, tend to show an increase
in luminosity for a given protostar as a function of time. The luminosity L is
approximately GMcore PM=Rcore, and if PM is approximately constant, as it would
be in the � / r�2 distribution set up during the isothermal phase of protostar
collapse, then Mcore increases with time, Rcore remains the same, and L increases.
This conclusion is not in agreement with observations, which show a large spread
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but a relatively constant average L in Class I protostars as a function of time.
Also the actual average values of the luminosities observed in the Class I phase
are considerably less than those predicted by theoretical tracks; this inconsistency
is known as the ‘luminosity problem’. However, full two-dimensional simulations
of the protostar collapse, taking into account gravitational instability in the disk,
do show a decreasing accretion rate from disk to star as a function of time.
Furthermore, radiative transfer calculations in connection with such models show
that the observable luminosity of a protostar varies considerably, by an order of
magnitude or more, depending on the viewing angle with respect to the rotation
axis and the wavelength of observation. This effect could explain at least part of
the luminosity spread. Furthermore, protostellar outflows could modify the picture
somewhat if they interact with and remove some of the infalling matter during the
later stages of collapse. They also intensify the beaming effect of radiation from the
protostar in the polar direction.

9.4 Binary and Multiple Systems

Once a core does form in a molecular cloud, under what conditions will it produce
a single star, and under what conditions will it produce a multiple system? How
does the outcome depend on the mass of the core? Theoretical and computational
investigation of this question is needed to explain why the binary/multiple star frac-
tion is much higher for high-mass stars than for stars below solar mass. Preliminary
numerical simulations of cluster formation do demonstrate the latter property, in part
because low-mass binaries are likely to be disrupted by gravitational encounters. It
is possible that all stars formed in binaries or multiples, but the dissolution rate
depends on mass. Stars formed in isolation should not show this effect; however
most stars are believed to have formed in clusters.

The main binary formation mechanisms are fragmentation, capture, and fission.
Fragmentation can occur either in a collapsing cloud or in a disk that becomes
gravitationally unstable. A number of arguments indicate that fission is unlikely, but
if it did work it could explain the closest observed binaries. Capture, which requires
some mechanism of energy dissipation, is unlikely in the Galactic disk under present
conditions, but it could play a role as a consequence of gravitational interactions in
a collapsing, fragmenting cloud that is forming a cluster. Fragmentation, in both
forms mentioned above, is likely to be the dominant mechanism. Fragmentation in
a collapsing cluster cloud, or in the collapse of an individual protostar, is likely
to produce a wide binary with a separation of 100–1,000 AU. Disk fragmentation
will occur in the outer region of a disk, where cooling is effective; thus the binary
separation is also likely to be wide.

In connection with fragmentation, it remains to be explained in detail what the
primary mechanism is for brown dwarf formation. Although brown dwarfs are
thought to have formed in the same way as stars, it is not clear how likely it is
to form them by direct collapse of a molecular cloud core, which would have to be
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much denser and lower in mass than the typical observed case. Is fragmentation the
primary mechanism, either in the protostar collapse or via disk fragmentation? If the
latter, do the brown dwarfs retain their low mass by ejection from the system soon
after formation?

The formation of close binaries, especially the ones with periods of only a few
days and separations of only a small fraction of an AU, is particularly difficult
to explain. The most likely process involves transferring angular momentum out
of the orbit of a wide binary. The angular momentum could be transferred to a
nearby third object in a gravitationally interacting system or to a circumbinary disk.
Alternatively, the initial binary system could simply accrete meterial of low angular
momentum from the surroundings. Nevertheless, periods of only a few days are still
difficult to explain. An attractive possibility is the so-called Kozai mechanism. In a
typical triple-star system, a pair of stars in a relatively close orbit has a companion
in a wide orbit. Such systems are fairly common, with Polaris and ˛ Centauri
being familiar examples. If the inclination of the outer orbit to the inner orbit is
greater than 39ı, a combination of gravitational and tidal effects transfers angular
momentum out of the inner orbit and allows that system to become a very close
binary. The time scale for the process increases with the separation of the wide
companion. Nevertheless, the quantitative explanation of the full observed range of
binary periods, as well as the full range of mass ratios, has not been accomplished.

9.5 Star Formation in the Early Universe

As telescopes become more powerful and able to discern events occurring in the
very early history of the universe, it becomes important to understand how the first
stars form and to determine whether their IMF is significantly different from that of
stars in our galaxy. On the one hand, if the first stars are very massive, they could
be very luminous and even detectable by the most sensitive telescopes. Furthermore
their final collapse could lead to the formation of black holes in the range 103 �
105 Mˇ. Later mergers of these objects or rapid gas accretion onto them could
explain the black holes of � 109 Mˇ which are believed to have formed in the
early Universe. On the other hand, if the IMF of the first stars is similar to that
observed today, then the supernovae in the 10 Mˇ range would produce element
abundances in agreement with those observed in the oldest and most metal-poor
stars observed in the Galaxy. If the first stars become supernovae in the mass range
140–260 Mˇ, they do not produce element abundances in the observed range. In
other mass ranges above 100 Mˇ it is not clear what the outcome is, but in many
cases they just collapse to black holes without ejecting any synthesized elements
at all. A major unsolved problem in first-star formation is to explain the observed
abundance pattern in the oldest stars, and at the same time account for the massive
black holes deduced to have formed in the early Universe. Most current theories for
the formation of the first stars indicate that the typical star has over 100 Mˇ, and
that the IMF is quite distinct from that observed today.
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The conditions for the formation of the first stars are different from those for
stars forming at the present time. Cosmological evolution of very small density
fluctuations in the very early universe leads to the formation of relatively dense
halos, composed of about 85% dark matter and 15% ordinary matter (baryons) by
mass. Once the mass of a halo reaches about 106 Mˇ, conditions are suitable for
forming stars. The baryons settle to the center of the halo, cool by radiation from
H2 molecules, and reach their Jeans mass of about 1,000 Mˇ at n � 104 cm�3

and T D 200 K. Once the collapse starts, the major question is whether the cloud
will fragment or not. The halo has sufficient angular momentum so that the cloud
could form a binary system, or in fact break up into a whole system of fragments.
It remains to be tested by detailed numerical simulations whether fragmentation is
a frequent or rare occurrence and what the detailed outcome is. If it does occur,
the IMF, still unknown, could still be different from that in the Galaxy at present.
If numerous small fragments are produced, stars in the 10 Mˇ range or less would
likely be present. If a few fragments formed or if there were a significant number of
mergers, the first stars could still have masses in the 100 Mˇ range.

If fragmentation doesn’t occur, as suggested by the earliest simulations of the
formation of the first stars, the entire 1,000 Mˇ, or even more mass, has the potential
to accrete onto the first protostellar equilibrium core, once it forms. The accretion
rate is high, about 10�3 Mˇ yr�1. Taking into account angular momentum and disk
formation, it has been shown in this case that the equilibrium stellar core reaches
the main sequence and starts nuclear burning at about 100 Mˇ. However by this
time the surface of the star is quite hot and is radiating a substantial number of UV
photons. The formation of an HII region in the infalling material around the star
reduces the rate of infall and eventually shuts it off entirely. The resulting mass is
in the range 100–200 Mˇ. The IMF still remains to be determined, but it is likely to
peak at near 150 Mˇ.

Another channel of first-star formation is possible if additional physics is brought
in, namely dark-matter annihilation. The nature of dark matter is unknown, but
one of the prime candidates is the neutralino, a particle with mass of order 100
proton masses which is its own antiparticle. Thus if two such particles collide,
they annihilate, producing photons, positrons, and electrons, which heat the gas,
and neutrinos, which escape. In the primordial halos, the settling of the baryonic
matter to the center increases the concentration of dark matter toward the center as
well, through a process known as adiabatic contraction. As a result, the dark-matter
density in the forming star is thought to be high enough so that the heating from
annihilations can be a significant effect. Once the collapsing protostar reaches a
density of about 1011 cm�3, the photons and particles are trapped inside the protostar
and the additional heating begins to take effect. The equilibrium star remains larger,
and with cooler surface temperature, than the analog without dark-matter heating.
As the star gains mass its surface temperature remains in the range 5,000–15,000K,
and as a result the feedback effects from the formation of an HII region do not come
into play. The mass of the star can increase well beyond 150 Mˇ. The final mass
depends on when the supply of dark matter inside the star runs out, an unknown
at the present time. Once it does, the star has to contract to the main sequence,
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which it reaches with surface temperatures above 100,000 K, and the feedback effect
shuts off accretion. This final mass can be anywhere in the range 1,000–105 Mˇ. In
this scenario, eventual massive black hole formation is possible. The IMF would
result from the differing properties of the various dark-matter halos, assuming that
only one star forms per halo. The implications of this scenario on the primordial
nucleosynthesis remains to be explored.

9.6 Massive Stars

Although substantial production of very massive stars is quite possible in the early
universe, at the present time in our galaxy they are quite rare but very significant.
Their feedback into the molecular cloud material self-limits star formation. Their
ionizing photons create HII regions, which are hot bubbles in the molecular cloud,
causing expansion and eventual loss of the material in the cloud. Because of this
effect, reinforced by supernova explosions and stellar winds, most molecular clouds
dissipate after only a few percent of their material has been converted into stars.
The details of why this number is so low is not well understood theoretically. The
HII regions also contribute to the maintenance of turbulence, which on larger scales
tends to suppress star formation, while on small scales encouraging it through shock
compression. Also the HII region can initiate star formation in the dense shell of
swept-up material outside it.

In the past a major difficulty in the formation of massive stars was identified, in
the form of feedback of the radiation pressure from the central star on the dust in
the infalling envelope. It was considered difficult to form a star even with a mass
as low as 6–7 Mˇ. However several different mechanisms have been suggested
to suppress this effect. First, the accretion rate onto massive stars is high, around
10�3 Mˇ yr�1, and the infall momentum can counter the effect of radiation pressure
to some extent. Second, much of the accretion onto the massive star occurs through
a disk, which can shield some material from the effects of radiation pressure. Third,
various instabilities, found through three-dimensional simulations of massive star
formation, can allow dense fingers of material to accrete with radiation escaping
between them. Simulations, which involve various degrees of approximation, have
produced stars up to about 50 Mˇ. However stars more massive than that exist, and
it is not clear what determines the upper mass limit to stars.

Another fact about massive stars is that they are predominantly in binary or
multiple systems. A relatively large fraction of them are found in spectroscopic
binaries with short periods and with the masses comparable or even nearly equal.
The most massive object whose mass has been accurately dynamically measured
(WR20a) is an equal-mass short-period binary with a total mass of 165 Mˇ. (There
undoubtedly exist stars with still higher masses; see Sect. 5.1.1). It remains to be
explained how the components build up to 80 Mˇ each, in the face of the radiation
pressure from the combined masses, and how the binary separation decreases from
its initial value, after fragmentation in a circumstellar disk, of perhaps tens of AU
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down to only a few stellar radii. This example indicates that there are many unsolved
problems in massive star formation.

The origin of the WR20a system could have been a single turbulent molecular
cloud core, whose total mass, allowing for an (uncertain) efficiency factor of 1/3
resulting mainly from the protostellar outflow, would have to be close to 500 Mˇ.
One might expect a core this massive, once the turbulence decays and collapse
sets in, to fragment into many pieces. However, numerical simulations suggest that
radiative feedback from the earliest-forming fragments can heat the gas and prevent
further fragmentation, provided that the surface density of the molecular cloud core
were high enough. A magnetic field could also suppress fragmentation. Also, some
of the fragments could later merge. However, the further question arises as to how
such a core could have formed in the first place.

The main alternative to formation from a single isolated core is formation in a
cluster environment, a reasonable possibility since most massive stars are found in
clusters. The central parts of a protocluster cloud form a natural environment for the
formation of a massive star, since much of the mass of the cloud will tend to collapse
into that region. In fact massive stars are often found near the centers of clusters, but
it is still an ongoing debate whether they actually formed there or whether mass
segregation occurred, with massive stars preferentially falling toward the center,
after the cluster formed. A further question arises regarding how the feedback from
the massive star, in the form of outflows and radiation, affects the properties and
the mass function of the lower-mass stars forming in the cluster. These questions
concerning massive star formation will need to be clarified through further detailed
observational and theoretical studies.

9.7 Young Stars and Disks

The end product of star formation in the range 0.2–2 Mˇ is a classical T Tauri
star. Below 0.2 Mˇ young stars also display T Tauri-like characteristics. Above
about 2 Mˇ young stars are known as Herbig Ae–Be stars, also with T Tauri-like
characteristics. Above a mass in the range 7–10 Mˇ there are no T-Tauri like stars.
The objects pass through the pre-main-sequence phase while still hidden from view
in the optical spectrum by their infalling circumstellar envelopes. The hallmarks of
T Tauri stars are strong H˛ in emission, usually other strong emission lines, irregular
variability, lithium abundances characteristic of the interstellar medium and those
observed in meteorites, as well as infrared and ultraviolet excess. These objects
are still accreting mass from a disk, at the relatively slow rate of 10�8 Mˇ yr�1

or less, and at the same time they are ejecting mass in a stellar wind as well as
in a protostellar outflow. Among the issues associated with the T Tauri stars are
the following: how does the rotational period of the star evolve, as influenced by
disk accretion, angular momentum loss in the wind, and contraction? How are the
winds and outflows generated? Why do the masses of a number of young stars as
determined from evolutionary tracks differ noticeably from the masses derived from
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dynamical considerations, for example in eclipsing binaries? What is the spread in
ages of stars in a young cluster? What physical process determines the effective
viscosity in the disk that allows material to accrete onto the star? The disks are
of relatively low mass compared with the stellar mass, so the known mechanism of
gravitational instability is unlikely to operate here. Additionally what causes disks to
dissipate rather suddenly, and what causes the large spread in lifetimes (1–10 Myr)
of disks around different stars?

In particular, the accretion mechanism, which must transfer angular momentum
outward to allow mass flow inward, is not understood. It is usually parameterized
by an effective viscosity ˛visccsH , where ˛visc is a constant, cs is the sound speed,
and H is the pressure scale height of the disk. Observed accretion rates can be
reproduced in model disks if ˛visc D 10�2 � 10�3. However the actual form of the
effective viscosity is probably different from that assumed, and ˛visc is probably
not a constant as a function of position in the disk. Possible mechanisms divide
into those controlled by pure hydrodynamics and those by magnetohydrodynamics.
Strong doubts have been raised over whether any of the hydrodynamic processes,
including turbulent convection generated in the vertical structure, shear instabilities,
or baroclinic instabilities, can do the job; however research is continuing on these
complicated processes. The magnetorotational instability (MRI) has been shown to
amplify a weak field and to generate turbulence with the right properties to allow
accretion. However it also has the problem that an initial magnetic field structure
has to be assumed, and it is not clear that real disks have this structure. Also, there
are regions in disks, most notably between about 1 and 10 AU from the star, where
the ionization is insufficient to couple the field to the matter, and the MRI doesn’t
work. In a closely related problem, the masses of disks are not well determined
observationally, as the method depends on dust opacity, where the properties of the
dust are not well known and are likely to vary in time and with position in the disk.

The regions of disks interior to about 1 AU are crucial to the understanding of
the workings of young stars. On this size scale lie the transitions from the dust-rich
optically thick outer regions to the region where the dust has mainly evaporated and
the optical depth is much reduced. Here occurs the complicated physical interaction
that determines the nature of the accretion flow onto the star and the generation
of the outflow. The physics of radiation transfer and magnetohydrodynamics, as
well as the chemistry, need to be studied in more detail in this context, and future
observations, which will solve the difficult problem of resolving these inner regions,
will provide the empirical tests of the models which are developed.

The FU Orionis-type outbursts still present a major problem in interpretation.
The various observed objects show differing times to reach maximum light and
differing decline times. It remains to be clarified what the time interval between
recurring events is, and how these outbursts affect the dynamics of young-star
outflows. The basic mechanism is thought to be a sudden rise of the accretion
rate of a disk onto its central star, with a peak value of about 10�4 Mˇ yr�1.
This event could be induced by a gravitational encounter with a nearby star, a
thermal instability in the very inner regions of the disk where hydrogen ionization
is occurring, a gravitational instability in the disk, or a combination of gravitational
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and magnetohydrodynamic effects. The event is probably associated with the phase
of evolution when accretion from the molecular cloud core onto the disk is still
occurring, toward the end of the protostar phase. Further theoretical calculations
are required to clarify the mechanism and provide a more detailed comparison with
observations.

9.8 Rate and Efficiency

The overall star formation rate in the Galaxy as a whole is only a few solar masses
per year, low compared with the available mass in molecular clouds divided by their
free-fall time. Molecular clouds are known to be supported against collapse by a
combination of turbulence and magnetic fields; thus the key to maintaining a low
star formation rate is the regeneration of turbulence, which, if left to itself, would
decay on relatively short time scales. There are several known mechanisms for
regenerating turbulence (Sect. 9.1), but the problem is to show that they are adequate
for maintaining the overall level of turbulence in molecular clouds for the entire
lifetime of the clouds. Qualitatively then the star formation rate depends on a number
of factors: the rate at which turbulence-induced shocks generate regions dense
enough to go into collapse, the rate at which material in magnetically dominated
regions can slip past the magnetic field to the point of collapse, and the rate at which
violent events, such as supernovae or expanding HII regions, can induce collapse.
The overall star formation rate in the Galaxy must also be controlled to some extent
by the rate at which gas clouds pass through spiral arms, whose shock compression
can induce molecular cloud formation behind the shocks, as well as the rate at which
gas clouds collide, which also can lead to the formation of molecular clouds.

Star formation efficiency has three different aspects. The first applies to the
collapse of an individual cloud core and is defined as the fraction of the mass in
the core (or region) that ends up in stars. For the individual cores, assuming that the
mass function of the cores determines the IMF of stars, this factor is � 1=3. It is
roughly understood how bipolar flows from protostars can produce this result, but
the uncertainties are large, and it is not clear why the factor 1/3 should be universal
over the full mass range. The dissipation of circumstellar or circumbinary disks
by photoevaporation could also play a role. The second aspect applies to cluster
formation from a relatively large unit of molecular cloud material. The observed
efficiency in young clusters is � 5 � 30%. However these measurements only give
a snapshot of the fraction of the material in stars at some arbitrary time in the star-
forming history of the cluster. The overall efficiency, after star formation in the
cluster is complete, is not known. The same mechanisms that limit the efficiency
in individual cores no doubt apply to the cluster situation as well; furthermore
once massive stars form in the cluster, the heating of the residual gas by the HII
regions will sweep the gas away. The third aspect is the global efficiency, applying
to all of the molecular clouds in the galaxy, defined as the fraction of the mass
of a molecular cloud that is converted into stars during the lifetime of the cloud.
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This number, probably less than 5%, is uncertain for the most part because the
lifetime of the clouds is not well determined. A revised definition of efficiency,
namely the efficiency per free-fall time, is a more useful quantity for comparing
theory and observations, first, because it is measurable, and second because many
numerical simulations run for only 1–2 free-fall times. Again observed values are
low, of the order of 1%, for molecular cloud material up to densities of 105 cm�3,
pointing to the fact that many numerical simulations have produced too high an
efficiency and require additional physics to improve the situation. Again, in general
the overall efficiency is low because of magnetic and turbulent inhibition of star
formation, but also because of the finite lifetimes of molecular clouds, limited by
the feedback effects of HII regions and supernovae, generated by star formation
itself.

Clearly the full understanding of the star formation rate, including its dependence
on density, and the star formation efficiency require considerable future research.
However these quantities are useful tools for investigating the evolution of galaxies,
when the fine details of the star formation process do not have to be taken into
account.
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501. G. Tenorio-Tagle, M. Różyczka, Astron. Astrophys. 155, 120 (1986)
502. S. Terebey, F.H. Shu, P. Cassen, ApJ 286, 529 (1984)
503. A.G.G.M. Tielens, The Physics and Chemistry of the Interstellar Medium (Cambridge

University Press, Cambridge, UK, 2005)



References 337

504. J.J. Tobin, L. Hartmann, N. Calvet, P. D’Alessio, ApJ 679, 1364 (2008)
505. J.E. Tohline, Annu. Rev. Astron. Astrophys. 40, 349 (2002)
506. R.C. Tolman, ApJ 90, 568 (1939)
507. K. Tomisaka, S. Ikeuchi, T. Nakamura, ApJ 362, 202 (1990)
508. A. Toomre, ApJ 139, 1217 (1964)
509. D.E. Trilling, G. Bryden, C.A. Beichman, G.H. Rieke, K.Y.L. Su et al., ApJ 674, 1086 (2008)
510. T.H. Troland, R.M. Crutcher, ApJ 680, 457 (2008)
511. J.K. Truelove, R.I. Klein, C.F. McKee, J.H. Holliman, II, L.H. Howell, J.A. Greenough, ApJ

489, L179 (1997)
512. J.K. Truelove, R.I. Klein, C.F. McKee, J.H. Holliman, II, L.H. Howell, J.A. Greenough,

D.T. Woods, ApJ 495, 821 (1998)
513. J. Tsai, E. Bertschinger, Bull. A. A. S. 21, 1089 (1989)
514. W.M. Tscharnuter, K.-H. Winkler, Comput Phys. Commun. 18, 171 (1979)
515. T. Tsuji, Publ. Astron. Soc. Jpn. 18, 127 (1966)
516. T. Tsuribe, S. Inutsuka, ApJ 523, L155 (1999)
517. J. Tumlinson, A. Venkatesan, J.M. Shull, ApJ 612, 602 (2004)
518. M.J. Turk, T. Abel, B. O’Shea, Science 325, 601 (2009)
519. N.J. Turner, P. Bodenheimer, M. Różyczka, ApJ 524, 129 (1999)
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