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Preface

Over the last decade, stellar interferometry has developed from a specialist tool to a
mainstream observing technique. The user community has expanded well beyond
the experts, attracting scientists whose research benefits from milliarcsecond angu-
lar resolution. As a result, the number of scientific publications has grown exponen-
tially, showing the same trend as in radio interferometry some 30 years earlier.

Stellar interferometry has become part of the astronomer’s toolbox, complement-
ing single telescope observations by providing unique capabilities that will advance
astronomical research.

While there is a large number of publications dealing with individual topics of
interferometric observations and technical developments – all requiring a good level
of understanding of the underlying physical principles – there is no text introducing
these principles, deriving the relevant properties for interferometry and relating them
to interferometric observations.

This book provides this information both for the astronomer using interferom-
etry, but not being an interferometrist per se, and for the student starting in this
field either to prepare astronomical research or to develop instruments. Rather than
attempting to detail technical developments that are constantly evolving, the phys-
ical ideas behind the concept of interferometric observations are analysed, and the
fundamental limitations are discussed. Numerical examples are given so that the
basic performance of interferometers can be assessed.

Having spent the better part of the last 13 years with the Very Large Telescope
Interferometer (VLTI), the material in this book is based on my experience with
planning and developing this facility, and, thus, it is based on the work of the VLTI
team. It is my pleasure to acknowledge this invaluable contribution. The kind sup-
port and the patience of the Springer-Verlag are also appreciated. In addition, I
would like to thank Michael Dobers, Georg Junker and Gautam Vasisht for reading
parts of the text, and Bruno Leibundgut for going through the whole manuscript,
providing valuable advice.

This book would have never been completed without the unfailing support of my
family. I am indebted to my wife Birgit, to Paula and to Jasper.

Garching Andreas Glindemann
July 2010
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Introduction

Less than 300 years after Galilei’s first telescope observations of celestial objects,
Hippolyte Fizeau suggested in 1868 to improve the measurement of stellar diame-
ters by masking the telescope aperture leaving only two small sub-apertures [69].
Light passing through these sub-apertures would then interfere in the telescope focal
plane. Following Fizeau’s suggestion [129], the first demonstration of stellar inter-
ferometry was performed with masked telescopes by M. Stéphan in 1874 [219] and,
independently, by A.A. Michelson in 1890 [156] measuring the diameter of the
moons of Jupiter.

The first successful measurement of a stellar diameter with separate apertures
was performed 30 years later by A.A. Michelson and F.G. Pease on Mt. Wilson,
California, determining the diameter of ˛ Orionis to 0.047 arcsec [158]. This was at
a time when the smallest diameter that could be measured with a full aperture was
about 1 arcsec, equivalent to the angular resolution of the telescope when observing
through atmospheric turbulence.

Although the measurement of a stellar diameter is not the same as an image, the
dramatic increase in angular resolution sparked enough interest in the new method
so that it was soon understood how such contrast measurements with different pairs
of sub-apertures – different in separation and orientation – can be combined to form
a high resolution image not only of stars but of any type of celestial object.

However, due to insurmountable technical problems with the mechanical stability
at larger separations of the sub-apertures, stellar interferometry in the optical1 was
abandoned in the late 1930s. It took until 1974, when A. Labeyrie combined the
light from two independent telescopes at the Observatoire de la Côte d’Azur, France,
demonstrating that stellar interferometry was feasible [121].

While the angular resolution increases linearly with the telescope diameter when
eliminating atmospheric turbulence with adaptive optics, even today’s largest tele-
scopes cannot resolve features on the surface of individual stars. The diffraction
limit is still so much larger than a star’s disk that their images in the telescope focus

1 Throughout the text, optical refers to both visible and infrared wavelengths as long as the light is
manipulated by optics.

A. Glindemann, Principles of Stellar Interferometry, Astronomy and Astrophysics
Library, DOI: 10.1007/978-3-642-15028-9 1,
c� Springer-Verlag Berlin Heidelberg 2011
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2 Introduction

Fig. 1 Comparison of the image quality on an 8-m telescope at an observing wavelength of 2
m.
On the left, the seeing limited image is displayed for a seeing of 0.5 arcsec. In the middle, the
diffraction limited image of an 8-m telescope with adaptive optics is shown. On the right, the
reconstructed image of a stellar interferometer with a baseline of 100 m demonstrates the improve-
ment over single telescope observations. These images are only simulations for comparison of the
achievable angular resolution. Especially for stellar interferometers, an image of this size and this
amount of detail has yet to be produced. (Courtesy R. Genzel)

are undistinguishable from point sources. For example, the angular resolution of
50 mas on an 8-m telescope is only just about the angular size of Betelgeuse.

Combining individual telescopes to form a stellar interferometer, the resolution
is no longer determined by the individual telescope diameter but by the distance
between the telescopes, called the baseline, B. Linking two 8-m telescopes that are
separated by B D 130m, like the telescopes of ESO’s Very Large Telescope Inter-
ferometer (VLTI), improves the angular resolution by a factor of baseline/telescope
diameter D 130/8 D 16 to about 3 mas in the near-infrared. Then, a large number
of stars can be resolved revealing their shape that is not necessarily circular [55].
However, for a good image quality, one has to make many observations at different
baselines, different in length and orientation (see Sect. 3.4), to obtain an image as in
Fig. 1.

The major limitation for stellar interferometry – as for all observations from the
ground – is set by the Earth’s atmosphere. Just like for adaptive optics on individual
telescopes, a bright reference star is needed for interferometry to reduce the effects
of atmospheric turbulence so that faint objects can be observed. Since the reference
star has to be typically within 1 arcmin of the faint object, the number of faint objects
that can be observed is severely limited.

Thus, while the angular resolution as one parameter of the observing perfor-
mance is improved drastically with stellar interferometers, the sensitivity as the
second parameter suffers, unless a nearby bright reference star is available.
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About this Book

Stellar interferometry is about observing interference patterns that are determined
by the correlation of the amplitudes in the interferometer apertures. Therefore this
is also called amplitude interferometry. The light of the star interfering with itself,
we speak about homodyne detection to distinguish it from heterodyne detection,
measuring the same quantity by having the light from each aperture interfere with a
local oscillator with extremely stable frequency [109].

Apart from amplitude interferometry, one can also measure the correlation of
intensities in each aperture, forming the basis of intensity interferometry that was
developed by Hanbury Brown and Twiss [96]. They presented first results in the
1950s but owing to the very low sensitivity of the method, it has never been pursued
rigorously.

Throughout the book, we will concentrate mainly on amplitude interferometry.
Frequently, we will take a look beyond this border, discussing topics like intensity
interferometry, speckle interferometry and adaptive optics in individual sections,
highlighting what amplitude interferometry has in common with these topics and
what distinguishes it from them.

One of the objectives of this book is to provide easy access to all topics. Short
summaries at the end of each section, focussing on the main results, should enable
the reader to step faster through the material up to the topic of interest.

Discussing stellar interferometers on the ground, we subdivide the field in the
propagation of light through space and through optical systems, the imaging process
in interferometers, the analysis of the statistics of atmospheric turbulence in free
atmosphere and in telescopes, the principles of beam combination and of the layout
of interferometric arrays, and the measurement of fringe patterns when observing
through turbulence.

Accordingly, the book is organized as follows. In the second chapter, we will
regard the basic properties of light propagating through space, discussing not only
amplitude and intensity of the electro-magnetic wave but also its coherence func-
tion. Often, we will use Young’s experiment to facilitate the interpretation of these
quantities. Almost free of mathematical theory, interferometry will be explained in
heuristic manner in Sect. 2.4.4.

In Chap. 3, we will use this formalism for the imaging process in interferometers,
discussing the principles of the imaging process first for a single aperture and then
for an interferometer with individual apertures. Introducing the uv-plane in Sect. 3.4,
the impact of the number of baselines on the imaging process will be investigated
and general principles of image reconstruction methods will be debated.

Chapter 4 is devoted to atmospheric turbulence. We will discuss the statistics
of atmospheric turbulence, introducing basic parameters like the Fried parameter,
and we will provide the statistical parameters of the perturbed wave after passage
through apertures, with emphasis on spatial and temporal characteristics of fringe
and image motion.

In Chap. 5, starting with the description of the Fizeau and Michelson configu-
ration for two telescopes, we will expand the discussion to multiple apertures, and
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to multi-axial and co-axial beam combination. The layout of interferometric arrays
and basic requirements for delay lines will be presented as well.

Finally, Chap. 6 combines the preceding results providing requirements and lim-
itations for observing through turbulence. Beginning with visibility measurements
in the presence of turbulence, we will then discuss how to beat the turbulence using
fringe tracking and dual-feed systems. In the final section, the fundamental limits of
adaptive optics systems will be discussed and compared to fringe tracking.

Focussing on the physical background, we left out technical developments and
astronomical results that are in the process of constant advancement and are much
better treated in review articles like those of Shao [211], Quirrenbach [188,189] and
Monnier [161]. More information on these topics can also be found in the book of
Labeyrie et al. [123].

Selected publications of interferometry, commencing with the original paper by
Fizeau [69], were compiled by Lawson [134] who also edits a web page with optical
long baseline interferometry news, http://olbin.jpl.nasa.gov, providing up-to-date
information on scientific results, literature, meetings and links to interferometry
projects.

http://olbin.jpl.nasa.gov


Chapter 2
Propagation of Light

Propagating through space, light carries with it the information on the shape and
the spectrum of the source. A straightforward way to extract this information is an
optical system that forms an image, reproducing the source’s spatial and spectral
intensity distribution. However, there is a limit to the level of detail that can be
resolved in the image of the source both due to fundamental physical boundaries –
the diffraction at the aperture – and due to atmospheric turbulence.

While the increase in aperture size, improving the angular resolution, has its
limitations, the combination of two or more apertures forming an interferometer
has the maximum baseline as the limiting parameter. The imaging process in an
interferometer requires to regard not only the amplitude of the light but also the
coherence function, which is the correlation of the light amplitudes.

In this chapter, we will discuss the propagation of light, repeating briefly the
scalar diffraction theory when the electromagnetic wave is represented by a scalar
that is proportional to one component of the electric field vector. Using the Fresnel
approximation we will introduce the thin lens as the simplest form of an optical
system, and we will discuss the properties of the Airy disk.

The formalism for the propagation of the amplitude will then be expanded to the
propagation of the coherence function, describing the coherence properties of the
propagating wave. We will mainly restrict the discussion to incoherent sources and
investigate partially coherent sources only as an exception. The main result is the van
Cittert–Zernike theorem providing the link between the source intensity distribution
and the coherence function in a plane far away from the source, e.g. in the aperture
plane of our optical system.

Young’s experiment with two pinholes will serve as an example for an inter-
ferometer, explaining the effect of the source shape on the coherence function by
applying the theory developed in Sect. 2.3, and using a heuristic approach without
coherence functions.

Finally, we will discuss the intensity interferometer involving higher order cor-
relation functions of the amplitudes. We shall see that the intensity interferometer is
less demanding in terms of opto-mechanical precision but in turn much less sensitive
than an amplitude interferometer.

A. Glindemann, Principles of Stellar Interferometry, Astronomy and Astrophysics
Library, DOI 10.1007/978-3-642-15028-9 2,
c� Springer-Verlag Berlin Heidelberg 2011
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6 2 Propagation of Light

2.1 Preliminaries

2.1.1 Basic Properties of the Electromagnetic Wave

The electric field vector E of the electromagnetic wave is a function of space
and time. Assuming a monochromatic plane wave in vacuum propagating in the
z-direction (see Fig. 2.1), the x-component of E can be written as

Ex D Ex0 cos.!t � kz/; (2.1)

with ! D 2��, time t , and k D 2�=�, where � is the frequency and � is the wave-
length of the monochromatic wave. The phase velocity of the wave is !=k D ��.
The y-component can be described in the same way.

If the cosine functions of the x- and the y-component are not in phase, the result-
ing electric field vector E rotates around the propagation axis, describing a circle if
the components are of equal amplitude with a phase difference of ' D � . The light
is then called circularly polarized. If the phase difference is zero, the two compo-
nents are in phase and the resulting field vector E oscillates in a plane. Then, the
light is called linearly polarized. For all other phase differences, the light is ellipti-
cally polarized. When discussing polarization properties independent of a particular
coordinate system one usually refers to the orthogonal components of the electric
field vector as s and p polarization.

Since we will only describe the wave propagation in isotropic media the magnetic
field H could be used just as well to describe the electromagnetic wave.

The intensity is the quantity that we usually measure with optical detectors. It is
related to the energy flow density given by the Poynting vector S D E � H . The
Poynting vector is perpendicular both to E and H , and it points into the direction
of propagation of the electromagnetic wave. If the electric field vector E is linearly
polarized in the x-direction then the magnetic field vector H has a component only
in the y-direction, and the wave propagates in the z-direction. Then, the Poynting

x

z
y

E = (Ex, Ey) 

Fig. 2.1 The electric field vector E , split into two orthogonal componentsEx andEy , propagating
in the z-direction. If one of the two components is shifted by a phase difference ' ¤ 0 the wave is
polarized elliptically, i.e., the field vector – displayed as a short arrow – rotates around the z-axis
describing an ellipse while propagating. If the phase difference ' is 0 the light is linearly polarized
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vector has a component in the z-direction only, which can be written as

Sz D c"0E
2
x0 cos2.!t � kz/: (2.2)

Sz has the dimension of W/m2. c is the speed of light in vacuum with c D 2:998 �
108 m/s, and "0 is the permittivity of vacuum with "0 D 8:854 � 10�12 A s

V m . In a
medium with refractive index n, the actual speed of light c=n has to be used, and "0
has to be replaced by the electric permittivity in the medium, usually expressed by
""0, with " the dielectric constant of the material.

The Poynting vector oscillates with twice the frequency � of the electromagnetic
wave, which is about 1015 Hz in the visible part of the spectrum. Since the tempo-
ral resolution of the available detectors is much lower than 10�15 s, one can only
measure the time average of the Poynting vector defined as

< Sz >D lim
T!1

1

2T
c"0

Z T

�T
E2x0 cos2.!t � kz/ dt D c"0

2
E2x0; (2.3)

where < : > denotes the time average as defined above.
In practice, it is sufficient if the integration interval T is much longer than any

of the processes involved, thus T � 1=�. Even time intervals down to 10�12 s fulfil
this requirement.

NB 1. In some cases, heterodyne detection can be applied to detect amplitude and
phase of the light wave by mixing two waves of very similar frequency – one of them
precisely defined in amplitude and phase – and measuring the beat frequency. This
was done the first time in 1955 by mixing Zeeman components of a visible spectral
line [70]. In astronomy, this is applied in the mid-infrared around a wavelength of
10�m, corresponding to a frequency of 3�1013 Hz. Here, light from a local oscilla-
tor, typically a CO2 laser, is combined with the light to be detected producing a beat
frequency signal in the GHz range [109]. This signal can be temporally resolved,
and the amplitude and phase of the mid-infrared light can be determined. The limi-
tation of heterodyne detection to the mid-infrared comes from the fact that at shorter
wavelengths the sensitivity deteriorates very quickly [237], and that lasers with
longer wavelengths are not available. However, if one aims at wavelengths beyond
100�m, in micro-wave and radio interferometers, suitable tunable oscillators are
available and heterodyne detection is the standard measurement method.

The time average of the Poynting vector is called the flux (in astronomy) or the
irradiance (in radiometry) of the electromagnetic wave in units of W m�2. The mea-
surable quantity in an optical detector is the integral of the flux over the area of the
detector, i.e., the power in units of Watt.

Since, throughout this book, we are above all interested in the spatial flux dis-
tribution and not in absolute values we will work with dimensionless quantities. At
first, we introduce a dimensionless scalar, the optical disturbance v.r ; t/ that is pro-
portional to one component, e.g., Ex , of the electric field vector with v D CEx and
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C a suitable constant to make v dimensionless. The y component of the electric
field vector can be treated independently.

As long as optical systems like, e.g., astronomical telescopes interact linearly
with the amplitude and the phase of the incoming light wave we can use product
relations between the light wave and a so-called transfer function of the optical
system. For the mathematical treatment, it is very convenient to extend the optical
disturbance by an imaginary part so that v becomes a complex quantity. A linear
optical system is then described by a complex transfer function, and the outgoing
wave can be calculated as the product of two complex functions, the complex optical
disturbance and the complex transfer function.

For a plane wave propagating along the z-axis, the extension of the optical
disturbance by an imaginary part reads as

v.z; t/ D v0 cos.!t � kz/ � i v0 sin.!t � kz/ D v0 e�i.!t�kz/: (2.4)

It is important to keep in mind that the introduction of the complex optical distur-
bance is just a convenience and that only the real part has physical significance,
since only the real part represents the electromagnetic wave.

The time average of the product vv� – the superscript � denoting the complex
conjugate – can be used to define the intensity as

I.z/ WD lim
T!1

1

2T

Z T

�T
v.z; t/v�.z; t/ dt D v20 : (2.5)

The intensity is a dimensionless quantity that is proportional to the flux < Sz >

and, thus, proportional to the signal that is measured with optical detectors. Through-
out this book, we will always use the intensity I instead of the flux.

For the propagation of light in space it is convenient to introduce the time inde-
pendent dimensionless amplitude V.r/ at frequency � so that the monochromatic
optical disturbance can be written as

v.r ; t/ D V.r/ e�i2��t : (2.6)

With (2.5) one sees that the intensity is I.r/ D jV.r/j2.
In the case of polychromatic light, the linear superposition of individual mono-

chromatic waves forms the polychromatic optical disturbance. We introduce the
time independent spectral amplitude V.r ; �/ such that it is

v.r; t/ D
Z 1

0

V.r; �/ e�i2��t d�: (2.7)

V.r ; �/ has the dimension of Hz�1. The integration is restricted to the positive fre-
quency arm since the spectral amplitude has to be zero for negative frequencies.
Only then the physically relevant real part of the optical disturbance contains all
the information, and the imaginary part can be ignored. Since this was pointed out
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by Gabor [76] the complex optical disturbance is also called Gabor’s analytic sig-
nal. Formally, we can extend the integration to �1 writing the optical disturbance
v.r ; t/ as the temporal Fourier transform of the spectral amplitude V.r ; �/ (see
Sect. A.1).

The spectral intensity I.r; �/1 is defined such that it is

I.r/ D
Z 1

0

I.r; �/ d�: (2.8)

The dimension of I.r; �/ is Hz�1. The spectral intensity is proportional to the flux
density in units of W m�2 Hz�1. In astronomy, a common unit for the flux density
is 1 Jansky (Jy) D 10�26 W m�2 Hz�1.

The spectral intensity is linked to the spectral amplitude through an averaging
process similar to (2.5). The exact definition will be given in Sect. 2.3.1 in the con-
text of coherence functions. When discussing the scalar diffraction theory in the
following we will simplify this relationship by setting I.r; �/ D jV.r; �/j2 without
affecting the general conclusions of the discussions.

With the polychromatic intensity I.r/ being the integral of the spectral intensities
I.r; �/, the propagation of polychromatic light through space and through optical
systems can be treated by first considering the monochromatic case and then adding
up the spectral intensities at the very end of the propagation process.

Throughout the book, we will use the monochromatic amplitude V.r/ or the
spectral amplitude V.r; �/ to discuss diffraction effects and the propagation of light
in space, and we will use (2.8) to calculate the intensity. When discussing the coher-
ence function in Sect. 2.3 we will follow a similar principle. This facilitates the
mathematical treatment enormously. But we should keep in mind that the simple
relationship between monochromatic and polychromatic intensity (2.8) is valid only
because optical detectors measure the intensity as a time average. Otherwise the
measured signal would show high frequency oscillations and the relationship would
be more complicated.

2.1.2 Young’s Experiment

This is the classical diffraction experiment that we will discuss very often in the
following sections. It is named after Thomas Young who conducted it in 1802, pro-
viding the experimental cornerstone for the demonstration of the wave nature of
light [256]. Describing Young’s experiment, we will introduce diffraction effects
and the concept of coherence.

1 In the literature, this is sometimes called the power spectral density, since it gives the power
per Hz.
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α

OPD = α B

Q

B

x

r2

r1 zz = z1

Fig. 2.2 The geometry of Young’s experiment in a plane across the pinholes. A plane wave illu-
minates the two pinholes separated by a distance B . For small angles, ˛ is approximately equal to
x=z1 with x the coordinate of Q, the point of observation. The difference r1 � r2 of the distances
from the pinholes to Q is called the optical path difference (OPD), which equals ˛B for small
angles ˛. The OPD is related to the difference in arrival time � between the light from the two
pinholes by � D OPD=c

Young illuminated a screen with two pinholes with light from a single pinhole
at a large distance. On passing through the pinholes the light was diffracted and the
waves from the two pinholes interfered. On a second screen, the diffraction pattern
could be observed showing the characteristic fringe pattern. In Fig. 2.2 the experi-
ment is depicted schematically for an illuminating source at very large distance from
the screen so that an approximately plane wave illuminates the two pinholes.

For the mathematical treatment we assume that the two pinholes are so small that
they can be regarded as point sources of spherical waves. The spectral amplitude of
a spherical wave at a distance r D jrj from its origin can be written as

V.r; �/ D V0

r
eikr : (2.9)

The spectral intensity is the squared modulus of the amplitude, I.r; �/ D V 20 =r
2,

decreasing with the square of the distance from the source.
The assumption that spherical waves originate from each pinhole comes across

quite naturally in this context. However, the underlying concept is the Huygens–
Fresnel principle of elementary waves, forming the basis of scalar diffraction theory
that will be treated more formally in Sect. 2.2.

The amplitude V at point Q D .x; 0/ in a plane at distance z1 is then the sum of
the two spherical waves originating from the pinholes,

V.x; �/ D V0

r1
eikr1 C V0

r2
eikr2

D V0

z1
eik.r1Cr2/=2 2 cos

�
k.r1 � r2/=2

�
: (2.10)
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ri is the distance between an individual pinhole and the point Q, with the approxi-
mation r1 D r2 D z1 for the amplitudes V0=ri .

The spectral intensity is the squared modulus of the amplitude,

I.x; �/ D jV.x; �/j2 D
�
V0

z1

�2
2
�
1C cos.k.r1 � r2//

�
: (2.11)

For small diffraction angles ˛, it is ˛ D x=z1, and r1 � r2 D ˛B is the optical
path difference (OPD) between the optical paths from each pinhole to the point of
observation. A difference in optical path length is at the same time a difference
in arrival time called the time delay � between the light from the two pinholes,
with � D ˛B=c. We will see later that the diffraction pattern for increasing diffrac-
tion angles ˛ – corresponding to increasing time delays � – is constrained by the
temporal coherence of the incoming light.

We can now write the monochromatic intensity distribution of the diffraction
pattern in its familiar form as a function of the diffraction angle ˛,

I.˛; �/ / �
1C cos.k˛B/

�
: (2.12)

This intensity distribution is also called the fringe pattern since the maxima of the
cosine function appear as fringes on a two-dimensional screen. The first intensity
minimum is at ˛min D �=.2B/ as stated by Young as a result of his experiment.
The OPD at the first minimum is r1� r2 D �=2 and, consequently, the time delay is
� D .�=2/=c D 1=.2�/. Figure 2.3 shows the fringe pattern for a pinhole separation
of 10 cm at wavelengths of 2.0, 2.2 and 2.4
m.

The monochromatic fringe patterns have excellent contrast since the intensity
oscillates between 0 and 1. This can be expressed more formally by defining the
contrast called the fringe visibility as introduced by Michelson [156] as

V D Imax � Imin

Imax C Imin
: (2.13)

With Imin D 0 and Imax D 1, the contrast of the fringe pattern is V D ∞.
Stellar interferometry is about measuring the contrast of fringes. Hence, we

should have a closer look at the result of Young’s experiment. A contrast of 1 in
a fringe pattern, i.e., perfect constructive and destructive interference in its max-
ima and minima, implies that the light waves from the two pinholes are perfectly
coherent. In fact, the monochromatic plane wave illuminating the screen with the
two pinholes and, thus, the light waves emerging from the pinholes are perfectly
coherent.

The term coherence is linked to the existence of interference phenomena in
diffraction experiments like Young’s experiment. A fringe pattern with a good con-
trast requires a good coherence between the light waves from the two pinholes. Light
of perfect coherence causes a fringe pattern with a contrast of 1 as stated above. If
there is no coherence between the light from the pinholes, there is no fringe pattern
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α [arcsec]

I(α)

0–20 –10 10 20

1

0.5

Fig. 2.3 Three individual monochromatic fringe patterns of Young’s experiment, for � D 2:0, 2.2
and 2.4
m (blue, green and red lines), and the resulting polychromatic fringe pattern of the full
K-band, I.˛/ D R

.I.˛; �/d�, displaying decreasing contrast for increasing diffraction angle ˛.
The pinhole separation is 10 cm. The first minima of the individual monochromatic fringe patterns
are at ˛min D �=.2B/ D 2:1, 2.3 and 2.5 arcsec from the central maximum

but only a homogeneous illumination as a result of the diffraction of light at each
individual aperture. Then, the light is called incoherent.

Implicitly, by discussing the behaviour of the amplitude only, we have used the
fact that optical detectors perform a time average over a period much longer than
1=�. If we had assumed that we have an ideal detector temporally resolving the
oscillating electromagnetic wave we would then measure the instantaneous inten-
sity of the light wave that is affected by the temporally varying parts exp(i2��t) of
the optical disturbances in the two pinholes. The effect is that in any given moment,
there is constructive or destructive interference at any point in the plane of obser-
vation regardless of the state of coherence. This diffraction pattern is oscillating
typically with twice the light frequency. It settles to the familiar fringe pattern by
the temporal averaging process when measuring the intensity with a real detector.

In Sect. 2.4, we will see in detail how the state of coherence of the light in the
pinholes depends on the source properties. As an introduction, we now discuss the
effect of a finite spectral bandwidth �� of the light source. The resulting fringe
pattern is formed by adding up interference patterns like (2.12) at different frequen-
cies to obtain the observed intensity distribution. This is displayed in Fig. 2.3 for
the K-band,2 with � D 2:2˙0.2
m, and �� D 0:4 
m, and a pinhole separation
of 10 cm. For zero OPD, at ˛ D 0, all wavelengths have an intensity maximum.
This is why this fringe is called the white-light fringe. The position of the first

2 The atmosphere transmits only certain bands in the infrared. One frequently used band in the
near-infrared is the K-band at 2.2˙0.2
m, (see Sect. A.2). Most of the numerical examples will
be given for this band.
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minimum ˛min D �=.2B/ or OPD D �=2 is then wavelength dependent, as well
as the positions of the following maxima and minima.

This effect reduces the contrast of the resulting polychromatic fringe pattern for
increasing diffraction angles ˛. Since ˛ is related to the difference in arrival time,
the time delay � , through � D ˛B=c, this effect can be reformulated by stating that
the contrast of the resulting fringe pattern is reduced with increasing � . The time
delay that is related to the quasi loss of fringe contrast is called the coherence time
�c , which is proportional to the reciprocal of the spectral bandwidth ��. The exact
relationship depends on the form of the spectral band.

This introduces the connection between temporal coherence, quantified by the
coherence time �c , and the fringe contrast in a rather casual way. The spatial coher-
ence of the incoming light, and its influence on the fringe contrast, is more difficult
to come by. In Sect. 2.3 we will treat coherence as a statistical phenomena, and
we will see that both temporal and spatial coherence are part of the more general
coherence theory.

2.2 Scalar Diffraction Theory

The foundations of scalar diffraction theory have been discussed in most standard
texts on optics [19]. Goodman [88] gave a very concise summary of the historical
background and the mathematical deduction. We will briefly revisit the cornerstones
of this theory in order to give an idea of how the propagation of a coupled vector
field, i.e., of the electromagnetic wave can be reduced to the Fourier transform of a
scalar.

2.2.1 The Rayleigh–Sommerfeld Diffraction Formula

Forming images in optical instruments, the propagation of light and the diffrac-
tion at physical boundaries needs to be dealt with. The fundamental equations
treating the propagation of electromagnetic waves are Maxwell’s equations [19].
They describe the propagation of both the electric and the magnetic field vectors E

and H , respectively, through coupled partial differential equations.
We will make a number of assumptions and approximations that are adequate

for the imaging process. First, light is treated as a scalar quantity as introduced in
Sect. 2.1, by defining a dimensionless scalar v.r ; t/, the optical disturbance, that
is proportional to one component of, e.g., the electric field vector E . Second, one
assumes that the propagation of the two orthogonal vector components of E that are
perpendicular to the direction of propagation can be treated independently.

This approximation is valid if (1) diffracting apertures are large compared to
the wavelength, and if (2) the diffracted fields are not observed too close to the
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diffracting apertures. Both conditions are easily fulfilled in optical systems in
general, and in astronomical telescopes in particular.

One solution of the time dependence of the differential equation describing the
propagation of v.r ; t/ is given by the monochromatic complex harmonic wave
V.r/ exp.�i2��t/ in (2.6). Then, Maxwell’s equation can be replaced by the
Helmholtz equation, which is the time-independent form of the wave equation,
acting on the amplitude V.r/:

.r2 C k2/V .r/ D 0; (2.14)

with r2 being the Laplace operator @2

@x2 C @2

@y2 C @2

@z2 , and k D 2�=�. Solutions
of this differential equation are a monochromatic plane wave, for example V.r/ D
V0 exp.ikz/ for a wave propagating along the z-axis, or a monochromatic spherical
wave V.r/ D V0

r
exp.ikr/ with r D jrj.

In optical systems, one is interested in the amplitude V in the plane of obser-
vation, the image plane, as a function of the amplitude in the aperture plane, or as
a function of the amplitude of the object. Any solution for V needs to satisfy the
Helmholtz equation at all points r .

A starting point for tackling this problem is Green’s integral theorem assuming
two functions V and G that are solutions of the Helmholtz equation. The choice
of function G, also called Green’s function, is now crucial. Kirchhoff’s choice of
a spherical wave G D exp.ikr/=r leads to the integral theorem of Huygens and
Kirchhoff obtaining the amplitude V at point P0 as a function of the amplitude on a
closed surface A surrounding P0:

V.P0/ D 1

4�

ZZ

A
.G rV � V rG/d�; (2.15)

where r D . @
@x
; @
@y
; @
@z / is the gradient or nabla operator.

Kirchhoff further developed this formula by performing the step from a closed
surface to a plane surface limited by an aperture. Thus, he described a situation that
is more similar to the setup in optical systems. This led to the Fresnel-Kirchhoff
diffraction formula. Although it has been found experimentally to yield remarkably
accurate results, the choice of Green’s function required a number of assumptions
known as the Kirchhoff boundary conditions implying, when applied rigorously,
that the amplitude V needs to be identical to zero everywhere in space.

This inconsistency was removed by Sommerfeld by assuming two point sources
emitting spherical waves that are placed symmetrically to the aperture on either
side of it. Then, two new Green’s functions G� or GC can be defined as either the
difference or the sum of the two spherical waves.

The final result known as the Rayleigh–Sommerfeld diffraction formula forms
the basis of all our discussions on diffraction and propagation of light [88]. In the
approximation of small diffraction angles, the propagation of the amplitude from
the aperture plane � into the plane of observation x, see Fig. 2.4, is computed by
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Fig. 2.4 The geometry for the diffraction at an aperture A. The aperture plane has coordinates
.�; �/ and the coordinate vector �, the plane of observation is denoted by .x; y/ with the vector x.
The distance between the planes is z1 and the vector between two points .�; �/ and .x; y/ is r D
.x� �; y� �; z1/, with the notation r D jrj. We call the z-axis of the coordinate system the optical
axis. Usually, all elements of optical systems, i.e., apertures, lenses and mirrors, are centred on the
optical axis

V.x/ D 1

i�

ZZ

A
V.�/

eikr

r
d�: (2.16)

Let us assume for the moment that the incoming wave is a plane wave with
V.�/ D V0 in the aperture plane. Then the integration is performed over spherical
waves V0

r
exp.ikr/ originating from each point in the aperture, and the superposition

of these elementary waves forms the wave front3 behind the aperture. This concept is
called the Huygens–Fresnel principle of elementary waves. Huygens first expressed
this principle out of intuition. In the context of seeking solutions for the integral
theorem (2.15) the elementary waves come in as Green’s functions.

In the extreme case of an infinitely large aperture A that is illuminated by a plane
wave, a plane wave is expected to arrive in the plane of observation. In fact, the
result of the integration (2.16) with infinite integration boundaries cancels with the
factor 1=.i�/ and a plane wave remains.

The other extreme is a single pinhole when a lone spherical wave originates from
the pinhole. Since this is in conflict with the condition that apertures need to be
large compared to the wavelength we will use the term pinhole if an aperture is
small enough to describe the diffraction pattern for small diffraction angles (2.16)
by a single spherical wave originating from the aperture. A pinhole diameter of a
few wavelengths is sufficient to fulfil this condition.

One can now regard 1=.i�/ as a weighting function of the spherical wave
V0

r
exp.ikr/. Then, the amplitude of the spherical wave is reduced by 1=� com-

pared to that of the incident wave V.�/. This is intuitively comprehensible since
long wavelengths are diffracted more strongly and the amplitude decreases over a
given area in the plane of observation. The phase of V.�/ is shifted by ��=2 (since

3 The term wave front describes the virtual surface of the same phase of a propagating wave.
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1=i D exp.�i�=2/) by the very process of diffraction at the pinhole. This is curious
in a historical sense because Fresnel assumed that the secondary sources have this
property in order to accurately calculate diffraction patterns. The deduction leading
to the diffraction formula showed the mathematical necessity of this phase factor.

Returning to Young’s experiment, we see that it represents the case when the
aperture is reduced to two pinholes, and the resulting intensity distribution in plane
x is calculated by adding the two spherical waves originating from the pinholes as
a consequence of the general diffraction formula (2.16).

2.2.2 Fresnel Approximation

For small angles of the distance vector r with respect to the z-axis, jx � �j=z1
(see Fig. 2.4), its length r can be approximated by z1. However, for the phase kr
in (2.16) the requirement is more stringent. Here, the residual of the approximation
for r needs not only be relatively small but the approximation of the product kr has
to be accurate within fractions of a radian. Developing r into a power series and
neglecting orders higher than quadratic for jx � �j4=z31 � �, yields the quadratic
Fresnel approximation:

r D z1 C jx � �j2
2z1

� :::: (2.17)

This approximation is of fundamental importance for Fourier optics.
Inserted in (2.16) one obtains

V.x/ D 1

i�z1
eikz1

ZZ

A
V.�/ eikjx��j2=.2z1/d�

D 1

i�z1
eikz1 eikjxj2=.2z1/

ZZ

A
V.�/ eikj�j2=.2z1/ e�ikx��=z1 d�: (2.18)

The two exponential functions before the integral describe a constant phase kz1 due
to the propagation between the planes, and a parabolic phase kjxj2=.2z1/ due to the
quadratic approximation for spherical waves originating from the aperture. These
two functions disappear when calculating the intensity distribution I.x/ D jV.x/j2
in a plane at z1. We will omit them in the remainder of this section.

The shape of the aperture A is called A.�/, and it is incorporated under the inte-
gral through Vap.�/ D A.�/V .�/. Then, the amplitude for Fresnel diffraction [88]
can be written as

V.x/ D 1

i�z1

ZZ 1

�1
Vap.�/eikj�j2=.2z1/e�ikx��=z1 d�: (2.19)
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In the following, integration boundaries will only be given explicitly if they are
finite.

At a very large distance from the aperture, i.e., for j�j2=.2z1/ � �, the argument
of the first exponential under the integral in (2.19) goes to zero. This approximation
is called the Fraunhofer approximation. Then the amplitude V.x/ in the plane of
observation and the amplitude Vap.�/ in the aperture are linked through a Fourier
transform.

There is an apparent contradiction when considering the case of an infinitely
large aperture. In the discussion following (2.16) we stated that an aperture of infi-
nite extent lets a plane wave travel unaffected by any aperture boundaries into the
plane of observation. This means that the diffraction pattern of the infinitely large
aperture is a plane wave of infinite extent. This is in contrast to the diffraction pattern
in Fraunhofer approximation that is computed by Fourier transforming the infinite
aperture formally obtaining the Dirac •-function as an intensity distribution (see
Sect. A.1). However, the Fraunhofer approximation j�j2=.2z1/ � � requires not
only a large distance z1 but also a very small angular size j�j=z1 � p

�=z1 of the
aperture. If the aperture is of infinite extent the Fraunhofer approximation cannot be
applied.

At the other extreme, we discussed in Sect. 2.2.1 that a very small aperture, a pin-
hole, cannot be infinitely small but needs a diameter of a few wavelengths. Formally
such an aperture can be expressed by a •-function since we investigate only small
diffraction angles within the Fresnel approximation.

Returning to apertures of finite size, we regard an aperture with a diameter of
10 cm and an observing wavelength of 2.2
m. Then, the Fresnel approximation is
valid for distances z1 � 4 m while in Fraunhofer approximation the distance has
to be much larger than 2,500 m in order to properly compute the diffraction pattern
with a Fourier transform (see Fig. 2.5).

Using a lens (or a parabolic mirror), Fraunhofer diffraction can be observed
closer to the aperture. For our purpose, it is sufficient to regard the lens as a simple
focusing element that converts an incoming plane wave into a spherical wave con-
verging in the focus. The distance between the lens and the focus is called the focal
length.

In quadratic approximation, the lens can be described by

L.�/ D e�ikj�j2=.2F /; (2.20)

with F the focal length [88]. The ideal lens has no absorption, hence jL.�/j D 1, it
affects the phase of the incoming wave by adding a parabolic phase term kj�j2=.2F /,
and it is infinitely thin. A lens in this definition is called a thin lens, and a mirror a
thin mirror.

Inserting L.�/ in (2.19) one obtains

V.x/ D 1

i�z1

ZZ
Vap.�/e�ikj�j2=.2F / eikj�j2=.2z1/ e�ikx��=z1 d�: (2.21)
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Fig. 2.5 Intensity distributions of the diffraction patterns of an aperture with 10 cm diameter and
an observing wavelength of � D 2:2
m at different distances. 4 m after the aperture, the intensity
distribution is very similar to the geometrical shadow pattern of the aperture that is indicated as a
circle in each diffraction pattern. At about 40 m the Fresnel approximation describes the situation
properly showing typical ringing effects inside the aperture and a fast decrease to zero outside.
At about 2,500 m the intensity distribution resembles the Fraunhofer diffraction pattern, which
is fully developed at 6,000 m. The diameter of the first diffraction ring is 12 cm at 2,500 m and
30 cm at 6,000 m. Note that this diameter is never smaller than the diameter of the aperture. For
an observing wavelength of 10
m the Fresnel approximation is a proper approximation at 21 m
(instead of 36 m), and the Fraunhofer diffraction pattern appears at 600 m (instead of 6,000 m).
(Courtesy R. Wilhelm)

In the focal plane, with z1 D F , the first two exponential functions under the
integral cancel. Following common practice, we replace the spatial coordinate x

in the focal plane by the angle coordinate ˛ D x=F . Then, the amplitude V.˛/ in
the focal plane can be expressed as the Fourier transform of the amplitude Vap.�/ in
the aperture [88]

V.˛/ D 1

i�F

ZZ
Vap.�/ e�ik˛�� d�: (2.22)

With this formula we can describe the situation in a telescope. The incoming
plane wave stems from a point-like star approximately at infinity, i.e., the phase
'.�/ of the complex amplitude is zero, and V.�/ D V0 D constant so that Vap.�/ D
V0A.�/. The light is diffracted at the aperture, and the telescope optics form the
Fraunhofer diffraction pattern of the aperture in the telescope focal plane with the
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intensity distribution given by I.˛/ D jV.˛/j2. Thus, this intensity distribution is
the diffraction limited image of the point-like star, and the star is called unresolved.

In the theory of linear systems, the diffraction pattern represents the response of
the optical system to an impulse, in this case the approximately point-like intensity
distribution of an unresolved star. This response is called the point-spread function
(PSF) of the optical system. The PSF is dimensionless and describes the spread of
the intensity in the focal plane.

Aberrations of the telescope optics are incorporated in the phase '.�/ of the aper-
ture function A.�/. Then, the subsequent PSF describes no longer the diffraction
limited but the aberrated image of the point source.

NB 2. Apart from placing the lens directly in the aperture plane, we can also place
the aperture at a distance z0 in front of the lens. Then, the amplitude in the back
focal plane of the lens can be written as [88]

V.˛/ D 1

i�F
eik.1� z0

F /j˛j2F=2
ZZ

Vap.�/ e�ik˛�� d�: (2.23)

The amplitude in the back focal plane is again given as a Fourier transform of the
amplitude Vap.�/ in the aperture, multiplied by a quadratic phase term. Following
(2.18), we argued that this phase term needs not be considered since we are mainly
interested in intensity distributions.

It is interesting, however, to discuss how this phase term is affected by the dis-
tance z0 from the lens. We see that for z0 D F , i.e., with the aperture in the front
focal plane of the lens, the phase term disappears, and we have a Fourier connection
between the amplitude in the front focal plane and in the back focal plane without
any further approximation.

Thus, the position of the aperture with respect to the lenses in optical system does
not affect the Fourier connection and, unless choosing extreme parameters for focal
length and distance, the quadratic phase term can be disregarded.

2.2.3 The Airy Disk

As shown in the preceding section, the response of an optical system to a unresolved
source is never point-like but enlarged by the diffraction at the telescope aper-
ture. We now discuss the circular aperture as the most common case of a telescope
aperture.

The circular aperture is described by the circ-function that is defined
as circ. j�j

R
/ D 1 if j�j � R and 0 elsewhere. A circular aperture with diameter

D is then given by A.�/ D circ
� j�j
D=2

�
, with the area of the circular aperture called

A0 D �.D=2/2. A.�/ is illuminated by a point source at infinity with V.�/ D V0 D
const. in the aperture plane.
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Fig. 2.6 Profiles of the amplitude V .˛/, normalised to unity, and of the subsequent intensity dis-
tribution I.˛/ of the point-spread function (PSF) for a circular aperture with a diameter of 8 m, and
an observing wavelength of 2.2
m. V .˛/ has the form of the Besinc-function. The first minimum
of I.˛/ at ˛min D 1:22 �=D D 69mas (we use the notation mas for milliarcsec), and the full
width at half maximum (FWHM) of ˛FWHM D �=D D 57mas are indicated. For the computation
of the angle in mas, the formula ˛FWHM=mas D 206

�=
m
D=m is useful, and for the FWHM as a length

in the focal plane, we can use xFWHM D f#�, with f# the f-number of the optical system defined
as f# D F=D. Note that the diffraction rings in the intensity distribution at ˛ � ˙90mas reach
only about 2% of the peak intensity

Using (2.22), the diffraction limited amplitude in the focal plane can be written as

V.˛/ D V0

i�F

ZZ
circ

� j�j
D=2

�

e�ik˛��d�

D V0

i�F
A0 Besinc.k˛D=2/; (2.24)

with ˛ D j˛j.
The result of the Fourier transform (2.24) of the circ-function is called the Besinc-

function (see Fig. 2.6) defined as Besinc.x/ WD 2J1.x/=x, with J1.x/ the first order
Bessel function. The Besinc-function is a real function that is point-symmetric with
respect to x D 0. With A0, the area of the circular aperture, and �F both having the
dimension of length2, the quotient is dimensionless and the amplitude V.˛/ has the
same dimension as V0, the amplitude of the incoming plane wave.

Splitting the amplitude V.˛/ in (2.24) into modulus and phase, one finds that the
modulus is simply the absolute value of the Besinc-function, and the phase takes
on distinct values of ��=2, with 1=i D exp.�i�=2/, when the Besinc-function is
positive and C�=2 when it is negative. A phase function in the focal plane jumping
between values of C�=2 and ��=2 means that the wave front in the focal plane is
not curved but essentially flat with jumps of � .

This represents the transition from a converging spherical wave immediately after
the optical system with the centre of the sphere in the focal plane, and a diverg-
ing spherical wave after the focal plane. However, despite the flat wave front the
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amplitude in (2.24) is not a plane wave because of the phase discontinuities at the
phase jumps and the modulus following a Besinc-function. This causes the wave
to expand into a diverging spherical wave in the course of the propagation. Further
calculations of the phase just before and after the focal plane show that there is a
phase jump from �� to 0 when moving along the optical axis through the focal
plane [19].

The intensity distribution of the diffraction limited PSF of telescopes with circu-
lar aperture is called the Airy disk [19]. The squared modulus of the amplitude V.˛/
yields the Airy disk as

I.˛/ D V.˛/V �.˛/ D V 20
.�F /2

A20 Besinc2.k˛D=2/: (2.25)

The dimensionless PSF describing the shape of the intensity can now be defined
as:

PSF.˛/ WD I.˛/

V 20
D 1

.�F /2
A20 Besinc2.k˛D=2/: (2.26)

As long as we discuss monochromatic light, the wavelength appears as a con-
stant parameter in the formula, and we write the PSF as a function of ˛ only.
Later, in Sect. 3.3.3, when we will investigate the imaging process in polychromatic
illumination we will write PSF.˛; �/.

The first minimum of the PSF, the first dark ring is at ˛min D 1:22 �=D. 84% of
the total intensity are confined to the inside of the first dark ring. For a binary star
with a separation ˛min, the resulting image, which is the sum of two individual Airy
disks, shows a local minimum between the peaks of the Airy disk (see Fig. 2.7).
Therefore the two stars of the binary can be identified as individual objects in the
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Fig. 2.7 The joint intensity distribution in the diffraction limited image of a binary star separated
by the Rayleigh limit of resolution of 69 mas for an aperture diameter of 8 m and an observing
wavelength of 2.2
m. The local minimum between the two peaks is 19% lower than the intensity
of the peaks
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image. This criterion of angular resolution, when the smallest resolvable angle is
˛min, is called the Rayleigh criterion of resolution of a telescope [19].

This definition is, however, somewhat arbitrary. Why should a local minimum
with a larger value than 84% between the two peaks not be sufficient to resolve
them? Therefore, another resolution criterion is often used. This criterion is related
to the full width at half maximum (FWHM), i.e., the diameter of the Airy disk at
half its maximum intensity, which is in good approximation ˛FWHM D �=D (see
Fig. 2.6). About 50% of the total intensity is within the FWHM of the Airy disk.

If two stars are separated by ˛FWHM the intensity distribution between the two
peaks of the Airy disks is almost flat so that the FWHM represents the limit to iden-
tify the peaks as separate. One could, however, argue that a much smaller separation
could be spotted by precisely measuring the deviation of the resulting intensity
distribution from the perfectly circular shape of an individual Airy disk. There is
virtually no limit for the resolution unless the reality is taken into account with
measurements that are never perfect [56, 87]. Implicitly, we have assumed a certain
measurement quality in the discussion of Rayleigh criterion and FWHM that is suf-
ficient for the identification of local intensity maxima, which can then be attributed
to maxima of the object intensity.

Thus, the Rayleigh criterion has its virtue in providing a conservative estimate
for the angular resolution that is linked to a prominent feature, the first minimum,
of the Airy disk. We will see in Chap. 3 that the matter of angular resolution is more
complex depending on many parameters of the imaging situation.

It should be noted that both quantities, ˛min and ˛FWHM, depend on the shape
of the telescope aperture that usually has a central obscuration due to the telescope
design with the secondary mirror centrally above the primary mirror. For compar-
ison, Fig. 2.8 displays three PSF: without central obscuration (black curve), with
a central obscuration of 40% of the telescope aperture (red) and with an annular
aperture (blue). The latter represents the theoretical limit with close to zero trans-
mission. One can see that for the practical cases between 0 and 40% obscuration the
PSF varies only slightly. While the position of the first minimum is reduced from
1:22 �=D to about �=D, the FWHM is practically unchanged. Therefore we will
always discuss the case of an unobscured aperture.

NB 3. The possibility of increasing the angular resolution considerably beyond the
Rayleigh limit was first recognised in the context of the development of microwave
antennas by G. Toraldo di Francia in 1952 [58]. Combining nested ring apertures he
showed that the intensity in the first diffraction rings could be suppressed so that the
PSF was almost zero around its core up to a very bright diffraction ring limiting the
field of view. The price to pay was a reduced peak intensity of the central core. Soon
after, the connection between increase of angular resolution and decrease of peak
intensity was analysed on general grounds [144], and more recently a quantitative
analysis was presented [205].
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Fig. 2.8 Examples of PSF with different central obscuration and a circular 8-m aperture for an
observing wavelength of 2.2
m. In black the PSF without central obscuration is displayed, as in
Fig. 2.6. The PSF with a circular central obscuration of 40% of the telescope aperture is shown
in red, and the PSF of an infinitely thin annular aperture is shown in blue. The first minimum of
the PSF at 1:22 �=D D 69mas (black curve) is reduced to about �=D D 57mas (red curve) and
further to 0:76 �=D D 43mas (blue curve). For comparison, all PSF are normalised to unity

Polychromatic Airy Disk

So far, we have treated the case of monochromatic light. We now discuss the case
of polychromatic illumination before moving on to the coherence function in the
next section. The polychromatic intensity distribution I.˛/ of an Airy disk can be
calculated as the integral of the monochromatic Airy disks (2.25) over the spectral
band. Using the atmospheric K-band (2.2˙0.2
m), the result of the K-band Airy
disk as well as the monochromatic Airy disk are displayed in Fig. 2.9. Around the
peak the difference is barely noticeable. The ringing, however, is reduced in the
minima – not reaching zero any more – as well as in the maxima – being lower
than in the monochromatic case – both due to the wavelength dependence of the
minima and maxima positions. Beyond the third sidelobe this effect wipes out any
diffraction rings in the polychromatic Airy disk, albeit at extremely low light levels.

The influence of the wavelength on the diffraction pattern was much more
prominent in Young’s experiment (Fig. 2.3) when the contrast of the fringe pattern
was reduced considerably. However, the physical process, namely the wavelength
dependent diffraction, is the same in both cases.

This exercise of moving from monochromatic to polychromatic illumination by
integrating over the spectral band will come back to us when treating the diffraction
process in a stellar interferometer. There the situation is more complex since the
properties of spatial coherence need also to be treated.
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Fig. 2.9 The Airy disk of an 8-m telescope, observing the full K-band, 2.2˙0.2
m. In the grey
box, the Airy disk is displayed with an enlarged intensity scale. Compared to the monochro-
matic Airy disk displayed by the dashed line, the sharp monochromatic minima disappear in the
polychromatic Airy disk since their position is a function of wavelength

Scalar Diffraction Theory: Summary

The Rayleigh–Sommerfeld diffraction formula (2.16) describes the prop-
agation of the amplitude V.�/ in space. Reducing the discussion to the
propagation between two planes – the aperture plane and the plane of obser-
vation – in Fresnel approximation (2.17), the diffraction formula can be
simplified considerably.

In addition, a lens with focal length F is introduced in the aperture
plane. Then, the diffraction formula can be simplified further (2.21), and the
Fraunhofer diffraction pattern of the aperture that usually appears at a very
large distance can now be found in the back focal plane of the lens.

For Fraunhofer diffraction, the amplitude Vap.�/ in the aperture and the
amplitude V.˛/ in the focal plane are linked through a Fourier transform:

V.˛/ D 1

i�F

ZZ
Vap.�/ e�ik˛�� d�: (2.22)

Vap.�/ is the product of the amplitude of the incoming wave V.�/ with the
aperture functionA.�/, the latter incorporating the shape of the aperture in its
modulus and optical aberrations in its phase.

If the aperture is illuminated by a plane wave, V.�/ D V0 exp.ikz/, from
a point source at a very large distance (e.g., an unresolved star), then the
intensity distribution I.˛/ D jV.˛/j2 in the focal plane is the diffraction lim-
ited image of the point source. In telescopes, the diffraction limited intensity
distribution is called the Airy disk. For a circular aperture of diameter D the
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Airy disk is given by

I.˛/ D jV.˛/j2 D V 20
.�F /2

A20 Besinc2.k˛D=2/: (2.25)

Treating the optical system as a linear system, it is customary to introduce
the dimensionless point-spread function (PSF) describing the form of the Airy
disk. The PSF is the squared modulus of the Fourier transform of the telescope
apertureA.�/ (2.24) linked to the intensity distribution I.˛/ in the focal plane
through

PSF.˛/ D I.˛/

V 20
D 1

.�F /2
A20 Besinc2.k˛D=2/: (2.26)

The Rayleigh criterion of angular resolution defines the resolution limit of
a telescope as the angular distance between the peak of the Airy disk (or the
PSF) and its first minimum,˛min D 1:22 �=D, withD the diameter of the tele-
scope aperture. Stars that are separated by this distance can still be identified
as individual objects, i.e., they can be resolved. Another resolution criteria
is given by the full width at half maximum (FWHM) that is approximately
given by ˛FWHM D �=D. The latter is easier to measure in real astronomical
images, the former slightly more conservative measure has the historical merit
of having introduced diffraction theory into observations with astronomical
telescopes.

2.3 The Coherence Function

The nature of coherence was discussed in text books on optics [19], on statisti-
cal optics [87], and, very specialised, in books on coherence theory [147, 148].
The coherence function was introduced as a measure for the coherence of the
light. If the light has good coherence, the value of the coherence function is high,
and interference phenomena like the fringes in Young’s experiment show a good
contrast.

We will introduce the concept of the coherence function more formally in this
section, we will present its different flavours, and we will provide the necessary
detail for observing with stellar interferometers. By and large, we will follow the
formalism laid out in [87] and [148].

Starting with this section, two-dimensional integrals will be denoted by a single
integral sign. The vector as integration variable shall indicate the integration over
two dimensions.
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2.3.1 Varieties of the Coherence Function

Before defining the coherence function, the nature of the random process leading
to coherence and to incoherence needs to be discussed. So far, the optical distur-
bance v has been regarded as a deterministic signal throughout the propagation and
diffraction process, forming a plane or a spherical wave. Now, approaching large
celestial bodies emitting (mostly) thermal radiation, their light cannot be regarded
as monochromatic and only approximately as a plane wave. Very close to the surface
of a star, it is almost impossible to define a wave front and a direction of propaga-
tion. At a very large distance from the star, a point is a good approximation for its
shape, and a plane wave describes the situation rather well.

In any moment during the propagation process, the optical disturbance, fed by
light from individual, independently radiating points on the star, takes on random
values that fluctuate typically at timescales 1/�, the reciprocal of the average fre-
quency. If one could take a series of snapshots with femto second exposure time,
the pictures would all look different. However, these fluctuations average out over
time intervals longer than 1/�. Thus, snapshots with longer exposure time would all
look similar.

We will regard the individual wave fronts as possible realizations or members
of the ensemble of the random process, and the optical disturbance v.x; t/ as the
random variable. Figure 2.10 illustrates the situation when the wave fronts, com-
posed by values of the optical disturbance, are individual realisations of the random
process.

We will make two assumptions on the random process that will make our life
much easier:

First, we assume that the random process is statistically stationary in time. This
means that the statistical properties are the same over the ensemble, i.e., that the
average is independent of the absolute moment in time t when it is taken and that
the correlation only depends on the time difference t1 � t2.

Second, we assume that the statistics over one particular wave front at a given
moment is the same as the statistics at a given point waiting a “long” time. In other
words, the statistics, e.g., the average, over the complete wave front as an individual
realization of the random process can be replaced by the average over many different
realizations that appear in temporal succession. A “long” time providing the average
over a sufficient number of realisations is defined as T � 1=�, i.e., much longer
than the oscillation of the electromagnetic wave.

If these two conditions are met, the process is called ergodic and the ensemble
average can be replaced by the time average. Figure 2.10 illustrates the situation.

Incidentally, the measurement with an optical detector provides a time average
< v.x; t/v�.x; t/ > (see (2.5)) that is sufficiently long to replace the ensemble
average of the intensity. In Sect. 2.4 we will show how optical detectors – although
only measuring the intensity – can be used to measure the coherence function, which
is the correlation function of the optical disturbance as we shall see in the following
discussion.
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Fig. 2.10 Illustration of the propagation of light as an ergodic random process. The wave fronts of
optical disturbances vi are displayed at a given moment in time, t D t0, and at different locations
on the z-axis. The wave fronts were emitted at different times from an extended source at a large
distance, having, thus, travelled different distances in the z-direction at t D t0. Each wave front
is an individual realisation of the random emission process. Due to the ergodicity of the random
process the ensemble average Efv0.x; t0/v�

0 .x; t0/g “across” the wave front for instance at z D z0
is identical to the time average < vz0 .x01; t /v

�

z0 .x01; t / > of different wave fronts passing through
z D z0 if the integration time is sufficiently long, i.e., T � 1=�. The correlation function of
optical disturbances, the MCF 	 .x01;x02; �/, is computed as a time average < vz0 .x01; t C �/

v�

z0 .x02; t / >, (2.27), depending only on the time difference � . The ensemble average over pairs of
points x1;x2 across the wave front at z D z0 would yield the same result

Unlike the time averaged intensity, the time average of the optical disturbance
< v.x; t/ > and, thus, its ensemble average Efvig are zero since the optical distur-
bance fluctuates around zero.

The Mutual Coherence Function (MCF)

The correlation function,4 also called the second order moment, of the optical dis-
turbances v at positions x1 and x2 in a plane at times tC� and t is called the mutual
coherence function (MCF) [87, 148]:

	 .x1;x2; �/ D lim
T!1

1

2T

Z T

�T
v.x1; t C �/v�.x2; t/ dt

D < v.x1; t C �/v�.x2; t/ > : (2.27)

4 Here, the correlation function < v1v2 >cor is identical to the covariance function < v1v2 >covD
< v1v2 >cor � < v >2, as the optical disturbance has zero mean < v >D 0.
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Remembering that the optical disturbance is proportional to one component of the
electrical field vector, one could say that we determine the correlation of two elec-
trical field vectors at two points in space (e.g., at two telescopes) and two moments
in time.

The MCF is dimensionless. Depending on the optical disturbance v, the MCF
can be complex with the phase denoted by 
MCF.x1;x2; �/. Using (2.27), it can
easily be shown that the complex conjugate of the MCF is 	 �.x1;x2; �/ D
	 .x2;x1;��/.

The time average over the period T at two fixed points x1 and x2 replaces the
ensemble average Efv.x1; t C �/v�.x2; t/g “across” the wave front at a fixed time
t since the random process is ergodic as discussed above (see Fig. 2.10).

The MCF at two identical points at the same moment provides the time average
of the product of the optical disturbances, which is the intensity I.x/ as defined
in (2.5):

I.x/ D 	 .x;x; 0/ D lim
T!1

1

2T

Z T

�T
v.x; t/v�.x; t/ dt: (2.28)

The MCF inherently varies for different pairs of points if the intensity at these
points varies. In order to obtain the pure correlation of optical disturbances, i.e.,
the probability to measure the same value, the MCF has to be calibrated by the
intensities at the individual coordinates x1 and x2. We call this function the degree
of coherence or the correlation coefficient of the optical disturbances:

�.x1;x2; �/ D 	 .x1;x2; �/
p
	 .x1;x1; 0/ 	 .x2;x2; 0/

; (2.29)

which is in general a complex function with 0 � j�.x1;x2; �/j � 1.
The dependence of the MCF and of the degree of coherence on the time differ-

ence � and on the spatial coordinates x1 and x2 characterises two different aspects,
the temporal and the spatial coherence of the light. In Sect. 2.1.2, we gave an intro-
duction to temporal coherence. In this section, we will treat both cases under the
umbrella of a general coherence theory.

The Mutual Spectral Density Function (MSDF)

We introduced the spectral amplitude V.x; �/ of the harmonic wave in Sect. 2.1.1
as a time independent function so that the Helmholtz equation (2.14) could be used
to describe the propagation of light. The spectral amplitude V.x; �/ is related to the
optical disturbance v.x; t/ through a temporal Fourier transform (2.7).

Here, in the domain of coherence functions, we follow the same path. We define
the mutual spectral density function (MSDF) [148], also called the cross spectral
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density function [87], as the correlation function of the spectral amplitudes:

O	 .x1;x2; �/ WD lim
T!1

1

2T
E
˚
VT .x1; �/V

�
T .x2; �/

�
; (2.30)

where the subscript T indicates that the spectral amplitude for the interval �T to T
is taken. The dimension of the MSDF is Hz�1.

Thus, the MSDF describes the spatial coherence at the frequency � as a correla-
tion of spectral amplitudes between two individual points x1 and x2.

The MCF is related to the MSDF through a Fourier transform,

	 .x1;x2; �/ D
Z

O	 .x1;x2; �/e�i2��� d�; (2.31)

keeping in mind that the MSDF being deduced from the spectral amplitude is zero
for negative frequencies.

In general, the MSDF is a complex quantity and its phase will be denoted by
O
.x1;x2; �/. The complex conjugate of the MSDF is given by O	 �.x1;x2; �/ D
O	 .x2;x1; �/.

We will use the MSDF to describe the propagation of the coherence properties in
space and through optical systems. This is in analogy to the scalar diffraction theory
when the propagation of the spectral amplitude V was discussed.

The MSDF at two identical points defines the spectral intensity:

I.x; �/ WD O	 .x;x; �/ D lim
T!1

1

2T
E fV.x; �/V �.x; �/g : (2.32)

Using the connection between MCF and MSDF in (2.31) we find that the
intensity I.x/ can be written as

I.x/ D 	 .x;x; 0/ D
Z

O	 .x;x; �/ d� D
Z
I.x; �/ d� ; (2.33)

which is the integral of the spectral intensity I.x; �/ over the frequency band. This
expresses in the language of coherence functions what we found under very general
assumptions in (2.8).

In the following, we will call the intensity I.x/ the polychromatic or white-light
intensity in order to clearly distinguish it from the spectral intensity I.x; �/.

The Self-Coherence Function

The MCF 	 .x;x; �/ at two identical points and arbitrary � is called the self-
coherence function [87, 148]. With (2.31) it can be written as the Fourier transform
of the spectral intensity,
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	 .x;x; �/ D
Z

O	 .x;x; �/e�i2��� d� D
Z
I.x; �/e�i2��� d�: (2.34)

The self-coherence function is a measure for the temporal coherence of the light
source. If the spectral intensity distribution I.x; �/ is very narrow with respect
to �, i.e., if the spectral bandwidth �� is very small, the self-coherence function
	 .x;x; �/ is very wide with respect to the time difference � . This can be quantified
by defining the coherence time as that value �c when the self-coherence function is
reduced significantly.

Describing, e.g., I.x; �/ by a rectangular function with a width of ��, one finds
that 	 .x;x; �/ as the Fourier transform of I.x; �/ has the form of a sinc-function,
the sine function divided by its argument, with a width of about 1=��. A suitable
choice of the coherence time would be �c D 1=�� when the self-coherence function
has its first zero.

At the end of Sect. 2.1.2 we discussed the contrast of the fringe pattern in Young’s
experiment for different spectral bandwidths of the illuminating light. We saw that
the contrast as a function of diffraction angle, which is proportional to the difference
in arrival time � , depends on the spectral bandwidth. The contrast goes down faster,
i.e., at smaller � , with increasing bandwidth��.

Here, in the context of coherence functions we deduced the mathematical rela-
tionship between spectral bandwidth and the self-coherence function. Both the
contrast and the self-coherence function show the same behaviour with respect to the
spectral bandwidth. This is intuitively comprehensible since the contrast in Young’s
experiment depends on the correlation of the interfering amplitudes. In Sect. 2.4 this
will be discussed in full detail.

Very often the term coherence length lc is used to express the permitted optical
path difference before interference phenomena disappear. The coherence length can
be defined as

lc D c�c

	 c=�� D ��=�� D �2=�� (2.35)

As a numerical example we regard again the K-band, 2.2˙0.2
m, with �� D
0:4
m and a spectral bandwidth�� D 0:25� 1014 Hz. The coherence time is then
approximately �c D 4 � 10�14 s and the coherence length lc D 12
m.

Thus, the physical quantity governing the temporal coherence is the spectral
width of the light source. In Sect. 2.3.4 we will see that the spatial coherence is
determined by the angular size of the source, which is an entirely different physical
property.

Special Cases: Coherence and Incoherence

Perfect coherence means perfect correlation of the optical disturbances throughout
time and space. The requirement for coherence is that the degree of coherence (2.29)
is unity, j�.x1;x2; �/j 
 1, for all combinations of x1 and x2 in a domain D, and
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for arbitrary large time differences � [87,148]. In terms of fringe contrast in Young’s
experiment (see Sect. 2.1.2) it is easy to comprehend that perfect coherence means
a contrast of unity. We will see soon that the degree of coherence is a measure for
the contrast.

The requirement for coherence is fulfilled for instance by a monochromatic plane
wave with

v.x; t/ D
Z
V.x; �/•.� � �0/ exp.�i2��t/d� D V.x/ exp.�i2��0t/; (2.36)

since using (2.27) we obtain

	 .x1;x2; �/ D < v.x1; t C �/v�.x2; t/ >
D V.x1/V

�.x2/e�i2��0� ; (2.37)

and

�.x1;x2; �/ D 	 .x1;x2; �/p
	 .x1;x1; 0/	 .x2;x2; 0/

D exp.�i2��0�/; (2.38)

with a modulus equal to one. In general, all solutions V.x/ of the Helmholtz
equation (2.14) provide a perfectly coherent wave.

Strictly speaking, only monochromatic fields, having an infinitely narrow spec-
tral line by definition, are perfectly coherent. This is not a very practical definition.
The measurement of the MCF would have to last infinitely long in order to deter-
mine perfect coherence. For measurements of shorter duration a spectral line of
finite width would deliver a result that is undistinguishable from perfect coherence.
Laser light with a coherence length of many hundred metres is a typical example for
light that is practically coherent.

We call light incoherent if the optical disturbances are perfectly uncorrelated
even for infinitely small distances in space and time. Then, each point of the source
radiates independently of its neighbour.

In terms of the coherence functions, the requirement for incoherence is
j	 .x1;x2; �/j 
 0 unless x1 D x2 and unless � D 0 [87, 148]. In incoherent
illumination there would be no fringes in Young’s experiment. Their contrast like
the value of the MCF would be zero.

Although the MCF is infinitely narrow with respect to the coordinate difference
x1 � x2, the spatial extension of the intensity distribution with respect to x can be
very large like, e.g., the incoherently radiating surface of a star.

The Dirac •-function seems to be ideally suited to express the MCF of an
incoherent source, writing

	 .x1;x2; �/ D �I.x1/•.x1 � x2/•.�/; (2.39)

where � is a constant.
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However, an incoherent light source that is defined as above cannot radiate
because either the value of the MCF and, thus, the intensity is infinitely large,
•.x1 � x2/ ! 1 for x1 D x2 and •.�/ ! 1 for � D 0, which is physically
impossible. Or, if the values of the •-functions are reduced to finite values, the inte-
gral over the infinitely narrow functions is zero, setting the emitted intensity to zero
[13, 87, 148].

Therefore, we look for a more practical definition of incoherence. Instead of the
MCF, we will discuss the MSDF O	 .x1;x2; �/ that is related to the MCF through
a Fourier transform (2.31). The MSDF as a function of � contains the spectrum of
the light source. If the spectrum were infinitely wide, the Fourier transform of the
MSDF would be infinitely narrow with respect to � . In practice, a very wide spec-
trum will be sufficient to establish incoherence if the absence of interference effects
in any practical experimental configuration, e.g., zero contrast fringes in Young’s
experiment, is regarded as a sufficient criteria.

For the spatial characteristics, we replace •.x1 � x2/ in (2.39) by a narrow func-
tion that has non-zero values not only for x1 D x2 but for an interval of the order
of the wavelength � with jx1 � x2j � O.�/. For example, a Gaussian function
with a width of �=

p
2� fulfils this requirement. The narrow Gaussian function has

the same effect on the coherence function at some distance from the source as a
•-function if regarding only small angles.

A similar argument was used in Sect. 2.2.1 when discussing a diffracting pinhole
with a diameter of the order of the wavelength �. We found that a wave front passing
through this pinhole can formally be replaced by a spherical wave emerging from
the centre of the pinhole due to the restriction to small diffraction angles.

We will therefore keep the notation with the •-function and choose � D �2

in order to obtain the same integral value for the •-function as for the Gaussian
function:

R
�•.x/ dx D � D R

exp.�jxj2=.�2=�// dx.
The MSDF of an incoherent source [27] now reads as

O	 .x1;x2; �/ D �2I.x1; �/•.x1 � x2/: (2.40)

This definition of incoherence allows us to describe light that is spatially incoherent
but that has an arbitrary spectrum. We can thus model for instance a spatially inco-
herent but monochromatic source. This makes it much easier to separate the effects
of spatial and temporal coherence.

2.3.2 Generalised van Cittert–Zernike Theorem

The generalised van Cittert–Zernike Theorem [248, 259] describes how the statis-
tical properties, the coherence, of light change when it propagates. In analogy to
the scalar diffraction theory (see Sect. 2.2) using the spectral amplitude we dis-
cuss the propagation of the MSDF. In this section, we provide a formalism for the
computation of the MSDF of the propagating light field in different planes along the
path of propagation.
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Fig. 2.11 The geometry for the propagation of the coherence function of an incoherent source in
plane ˙ . The coordinate vector in the source plane is denoted by x0, the plane of observation has
the coordinate vector �. The size of the source and the area of interest in the plane of observation are
much smaller than the distance z0 allowing for small angle approximations, ˛0 D x0=z0 . In a stellar
interferometer the source would be a star or another celestial body, and the plane of observation
would be the aperture plane of an interferometric array

The propagation of the MSDF can be derived in the same way as the Rayleigh–
Sommerfeld diffraction formula (2.16) yielding [87, 148] the MSDF in the plane of
observation with coordinate vector � (see Fig. 2.11) as a function of the MSDF in
the source plane˙ as

O	 .�1; �2; �/ D 1

.�z0/2

ZZ

˙

O	 .x0
1;x

0
2; �/ eik.r1�r2/ dx0

1dx0
2: (2.41)

This is the basic equation for the propagation of the MSDF in space. It describes
the propagation essentially as the product of two Rayleigh–Sommerfeld integrals
(2.16) at individual points �1 and �2. Equation (2.41) is valid if the angles involved
are small, i.e., if the diameter of the light source and the observed area in the plane
of observation are much smaller than the distance between them.

The argument in the exponential can be simplified by using the Fresnel approxi-
mation (2.17):

r D z0 C jx0 � �j2
2z0

� :::; and

r1 � r2 D j�1j2 � j�2j2
2z0

� �1 � x0
1 � �2 � x0

2

z0
C jx0

1j2 � jx0
2j2

2z0
� ::::

Then, the propagation of the MSDF in Fresnel approximation is calculated by

O	 .�1; �2; �/ D 1

.�z0/2
eik.j�1j2�j�2j2/=.2z0/ (2.42)

�
ZZ

O	 .x0
1;x

0
2; �/e

ik.jx0

1
j2�jx0

2
j2/=.2z0/e�ik.�1�x0

1
��2�x0

2
/=z0 dx0

1dx0
2:
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Fig. 2.12 The principle of the generalized van Cittert–Zernike theorem. The MCF 	 .x0

1;x
0

2; �/ in
the source plane is Fourier transformed yielding the MSDF O	 .x0

1;x
0

2; �/. Applying (2.41) yields
the MSDF O	 .�1; �2; �/ in the plane of observation and a Fourier back-transform provides the MCF
	 .�1; �2; �/ in the plane of observation

This formula describes the propagation between two planes that are separated by a
sufficiently long distance z0 to justify the Fresnel approximation.

Treating the general case of polychromatic light requires discussing the mutual
coherence function, starting with the source MCF 	 .x0

1;x
0
2; �/. Using the relation-

ship between the MCF and the MSDF (2.31), the first step is to calculate the MSDF
O	 .x0

1;x
0
2; �/ in the source plane, and then to apply (2.41) describing the propa-

gation of the MSDF into the plane of observation. There, the MCF 	 .�1; �2; �/
can be computed by Fourier transforming the MSDF O	 .�1; �2; �/ in (2.41). The
MCF completely describes the coherence properties of the polychromatic light in
the plane of observation. This process is visualised in Fig. 2.12. It is called the
generalized van Cittert–Zernike theorem [87, 148].

In the following, we will see how the situation can be simplified by reducing the
discussion to an incoherent source.

2.3.3 Incoherent Sources of Light: Stars

Observing celestial bodies, we will use ˛0 D x0=z0, the angle of observation, as a
source coordinate (see Fig. 2.11). We also reduce our discussion to spatially inco-
herent sources since stars as thermal sources are spatially incoherent. This means
that every point on the surface of the star radiates independently of its neighbour
point as discussed in Sect. 2.3.1. This applies to all celestial bodies. In its simplest
form a star is shaped like a disk with a diameter independent of wavelength.

If the shape of the source is independent of wavelength over the observed spec-
trum, the spectral intensity I.˛0; �/ can be split into the product of source brightness
distribution, Ib.˛0/, and source spectrum, G.�/:

I.˛0; �/ D Ib.˛
0/G.�/: (2.43)

Ib.˛
0/ is dimensionless and describes the shape of the source intensity assumed

to be independent of wavelength. G.�/ has the dimension Hz�1 and, unless stated
otherwise, it is calibrated to unity

R
G.�/d� D 1.
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For ground-based observations the width of the spectrum is limited either by
the width of the atmospheric bands like the K-band or by spectral filters in the
astronomical instruments.

Similar to (2.40), the MSDF of the star in the source plane in angular coordinates
now can be written as

O	 .˛0
1;˛

0
2; �/ D �2

z20
Ib.˛

0
1/•.˛

0
1 � ˛0

2/G.�/: (2.44)

Due to the change of variables, the factor 1=z20 comes in, keeping in mind the
discussion at the end of Sect. 2.3.1.

Whenever we speak about incoherent sources it is in this definition of a spatially
incoherent source with arbitrary spectrum G.�/.

The expression for the MSDF of an incoherent source (2.44) is inserted into
(2.42) replacing x0

i=z0 by ˛0
i and dx0

i by z20d˛0
i . The quadratic exponential before

the integral in (2.42) describes the planes of equal phase, similar to the wave front
when describing the propagation of the spectral amplitude (2.18). In stellar inter-
ferometers, the source is usually a star at a fairly large distance z0, and the plane
of observation is on the surface of the Earth or, for space interferometers, in a near
Earth orbit. Then the quadratic exponential can be approximated by unity, yielding
the MSDF in the plane of observation

O	 .�1; �2; �/ D G.�/

�
ZZ

Ib.˛
0
1/•.˛

0
1 � ˛0

2/e
ik.j˛0

1
j2�j˛0

2
j2/z0=2 e�ik.�1�˛0

1
��2�˛0

2
/d˛0

1d˛0
2

D G.�/

Z
Ib.˛

0
1/e

�ik.�1��2/�˛0

1d˛0
1; (2.45)

which is the product of the spectrum G.�/ with the Fourier transform of the source
brightness distribution Ib.˛0/. Thus, the MSDF at frequency �, i.e., the spatial
coherence in the plane of observation, is determined by the Fourier transform of
the source shape.

With the exponential kernel 2�
�
.�1��2/ �˛0

1, the Fourier transform is performed
from ˛0 to .�1��2/=�. This means firstly that the Fourier transform does not depend
on the individual coordinates �1 and �2 but on their difference only, and secondly
that the Fourier transform is a function of wavelength, 1=�.

The consequence of working with an incoherent source is, thus, that the MSDF
is a function of coordinate difference only. Therefore, we will write the MSDF and
the MCF in the plane of observation5 as functions of coordinate difference in the
following:

5 More generally speaking, the coherence function depends on the coordinate difference in those
planes that are illuminated by an incoherent source at large distance when the van Cittert–Zernike
theorem applies.
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O	 .�1 � �2; �/ D O	 .�1; �2; �/ and 	 .�1 � �2; �/ D 	 .�1; �2; �/: (2.46)

It is also important to note that the quadratic phase term exp.ik.j˛0
1j2 � j˛0

2j2/
z0=2/ in (2.45) that stems from the Fresnel approximation disappears only because
the light of the celestial source is spatially incoherent. There is no further approxi-
mation required.

The spectral intensity at frequency � is the MSDF for �1 D �2, i.e., I.�; �/ D
O	 .� � �; �/ D O	 .0; �/. Then, the Fourier transform in (2.45) is reduced to a simple

integration I.�; �/ D O	 .0; �/ D G.�/
R
Ib.˛

0/d˛0 D G.�/I0 yielding the constant
spectral intensity G.�/I0 in the plane of observation.

In general, we are interested in polychromatic light. To determine the white-
light intensity I.�/ in the plane of observation, we integrate the spectral intensity
I.�; �/ D G.�/I0 over the spectral band (see (2.33)) yielding the constant value
I0 since the integral over G.�/ is unity. Thus, not very surprising, the star sheds its
light homogeneously over the surface of the Earth. Only the coherence functions
reflect the properties – in particular the shape – of the source.

When it comes to coherence properties of polychromatic light we have to deal
with the MCF in the plane of observation. The relationship between the MSDF and
the MCF is defined by (2.31). However, this is not completely straightforward since
a complicated integral with two entangled Fourier transforms needs to be resolved:

	 .�1 � �2; �/ D
Z

O	 .�1 � �2; �/e�i2��� d�

D
Z
G.�/

Z
Ib.˛

0/e�ik.�1��2/�˛0

d˛0 e�i2��� d�: (2.47)

A common simplification of this double integral is based on the assumption that the
source brightness distribution Ib.˛0/ is independent of wavelength. This is, however,
not sufficient for splitting the formula into an integral over � and an integral over ˛0
since – bearing in mind that the Fourier transform is done from ˛0 to .�1 � �2/=� –
the Fourier transform of Ib.˛0/ is still a function of wavelength.

One has to assume additionally, that also the Fourier transform of Ib.˛0/ is
invariant over the frequency range set by the spectrum. Then the MCF can be
split into the product of the Fourier transform of the source brightness distribu-
tion

R
Ib.˛

0/ exp.�ik.�1 � �2/ � ˛0/d˛0 and the Fourier transform of the spectrumR
G.�/ exp.�i2���/d�. While the first Fourier transform can be regarded as the

purely spatial part of the MCF, the second Fourier transform is the temporal part of
the MCF like the self-coherence function.

If the source were approximately point-like, described by a •-function, then its
Fourier transform would be a constant, I0, independent of the coordinate difference
�1 � �2 and of �. In this case, the MSDF in the plane of observation reads as

O	 .�1 � �2; �/ D G.�/I0: (2.48)
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For a source of finite size, ˛0, the Fourier transform would be approximately
constant only either for very small coordinate differences �1 � �2 or over a very
narrow spectrum. Writing the coordinate in Fourier space as .�1 � �2/=� we can
also state that the Fourier transform is invariant over any coordinate range smaller
than 1=˛0. This puts a constraint on the size of the source. For a larger source or for
a wider spectrum the Fourier transform would vary over the observed spectrum, and
the separation of the two integrals and the approximation no longer holds.

This approximation restricting the width of the spectrum and, implicitly, the size
of the source is also known as the quasi-monochromatic approximation.

2.3.4 Quasi-Monochromatic Approximation

We simplify the double integral for the propagation of the MCF (2.47) to a manage-
able formula by assuming a narrow spectrumG.�/ with�� � �0 and by observing
only time differences shorter than the coherence time, � � 1=�� [148]. The latter
means that the corresponding optical path difference (OPD) must be much smaller
than the coherence length lc .

A narrow spectrum in connection with a small source means that, as argued
above, the Fourier transform of Ib.˛0/ is invariant over the spectrum and the
Fourier transform is represented by the value at the average frequency �0 (and
at the average wave number k0). The restriction to small time differences, � �
1=��, means that the second integral over � is reduced to the function value
G.�0/ exp.�i2��0�/�� D exp.�i2��0�/ due to the calibration of G.�/.

Now the MCF in the plane of observation can be written in quasi-monochromatic
approximation as

	qm.�1 � �2; �/ D
Z
Ib.˛

0/e�ik0.�1��2/�˛0

d˛0 e�i2��0�

D 	qm.�1 � �2; 0/ e�i2��0� : (2.49)

Not very surprisingly, the MCF in quasi-monochromatic approximation (2.49)
has some similarity to the MCF of coherent light (2.37). While in the coherent case
the product of two deterministic amplitudes V�0

.�1/V
�
�0
.�2/ exp.�2��0�/ formed

the MCF for any time delay � , the quasi-monochromatic MCF is valid for small
time delays � only.

However, unlike in the case of coherent light, there is not a product of determin-
istic amplitudes in quasi-monochromatic approximation but a correlation function
	qm.�1 � �2; 0/ that is determined by the Fourier transform of the source shape.

With the MCF at � D 0 we can now write down the fundamental van Cittert–
Zernike theorem determining the spatial coherence in the plane of observation as

	qm.�1 � �2; 0/ D
Z
Ib.˛

0/e�ik0.�1��2/�˛0

d˛0: (2.50)
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The brightness distribution Ib.˛0/ of an incoherent source is linked to the MCF
	qm.�1��2; 0/ in the plane of observation at � D 0 through a Fourier transform. The
spatial coherence depends on the shape of the intensity distribution of the source,
and it is a function of the coordinate difference. The size of the source has to be
sufficiently small so that its Fourier transform is invariant over the spectral band��
and can be replaced by its value at the average frequency �0 and k0 respectively.

Dividing the MCF 	qm.�1 � �2; 0/ by the geometric mean of the intensities
I.�i / D 	qm.�i � �i ; 0/ at position �1 and �2, we obtain the normalised MCF,
which is the degree of coherence, � , (2.29) at � D 0. In quasi-monochromatic
approximation, this is called the complex visibility function ��0

.�1 � �2/.
Then, the van Cittert–Zernike theorem can be written in its most common

form as:

��0
.�1 � �2/ D 	qm.�1 � �2; 0/

p
I.�1/I.�2/

D
R
Ib.˛

0/e�ik0.�1��2/�˛0

d˛0
R
Ib.˛

0/ d˛0 : (2.51)

so that 0 � j��0
.�1 � �2//j � 1 and ��0

.0/ D 1. The normalisation by the geo-
metric mean of the intensities I.�i / is replaced by the integral over Ib.˛0/ that has
the constant value I0 D R

Ib.˛
0/d˛0. However, observing with a real interferometer

through atmospheric turbulence the intensity fluctuates randomly and the values at
�1 and �2 are no longer constant and have to be accounted for individually. This
calibration is a very important part of the interferometric data processing.

The phase of the visibility function will be denoted by 
�0
.�1 � �2/, which is

identical to 
MCF.�1 � �2; 0/, the phase of the MCF at � D 0.
The definition of the visibility function in (2.51) can be used to formally rewrite

the MSDF in (2.45), as

O	 .�1 � �2; �/ D G.�/I0��.�1 � �2/; (2.52)

at any frequency �. The phase, O
.�1 � �2; �/, of the MSDF is then identical to the
phase, 
�.�1 � �2/, of the visibility function since I0 and the spectrum G.�/ are
real functions.

Thus, the MSDF is composed of the spectrum G.�/ determining the tempo-
ral coherence, and of the visibility function ��.�1 � �2/ describing the spatial
coherence. This facilitates the interpretation of the MSDF when discussing poly-
chromatic illumination in the following sections. Because of the exponential kernel,
2�
�
.�1 � �2/ � ˛0, of the Fourier transform, �� varies with wavelength (indicated

by subscript �) although the source brightness distribution Ib.˛0/ is independent
of wavelength. In quasi-monochromatic approximation, regarding only the average
frequency �0, we use the subscript �0.

Similar to the coherence time that was defined in the context of the self-coherence
function in Sect. 2.3.1 as the reciprocal of the spectral bandwidth (2.34), we can now
define the coherence width as that coordinate difference �1 � �2 when the value
of the visibility function is reduced significantly. Due to the Fourier connection
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between the visibility function and the source intensity distribution (2.51), the
coherence width is inversely proportional to the angular size of the source.

The symmetry characteristics of the visibility function are driven by the fact that
the source brightness distribution is a real and positive function by definition. Then,
its Fourier transform is a Hermitian function (see Sect. A.1), meaning that the mod-
ulus of the visibility function is symmetric with respect to j�1 � �2j D 0 and that
the phase 
� of the visibility function is anti-symmetric:

j��.�1 � �2/j D j��.�2 � �1/j and


�.�1 � �2/ D �
�.�2 � �1/:

How does the propagation of the coherence function described by the van Cittert–
Zernike theorem (2.50) compare to the propagation of the spectral amplitude as
discussed in Sect. 2.2.2? Both the Rayleigh–Sommerfeld diffraction integral in
Fresnel approximation (2.22) and the van Cittert–Zernike theorem link physical
properties in two separate planes through a Fourier transform. While the Rayleigh–
Sommerfeld diffraction integral connects the spectral amplitude in the plane of
observation with the spectral amplitude in an aperture – which are the same physi-
cal quantities – the van Cittert–Zernike theorem links the intensity distribution of an
incoherent source with the visibility function in the plane of observation, which are
seemingly different physical quantities. However, this should be well understood
by now since the intensity is a special case of the coherence function, which, as a
product of two optical disturbances, has the dimension of an intensity.

Both formulae are valid in Fresnel approximation and quadratic phase terms can-
cel in both cases albeit for different reasons: The diffraction integral is reduced to a
Fourier transform by introducing a lens (2.21), and the van Cittert–Zernike theorem
uses a Fourier transform because the light source is spatially incoherent.

The Visibility Function of Venus

An example illuminates the situation: we model Venus as a uniform disk with angu-
lar diameter ˛0

0 varying between about 15 and 45 arcsec depending on the mutual
positions of Venus and Earth. The circular source brightness distribution is then

represented by Ib.˛0/ D .�.˛0
0=2/

2/�1 circ
� j˛0j
˛0

0
=2

�
. The factor .�.˛0

0=2/
2/�1 is a

normalization factor so that the integral of the intensity over the source and, thus,
the denominator in (2.51), equals one, and we compute the visibility function as the
Fourier transform of Ib.˛0/ yielding

��.�1 � �2/ D 1

�.˛0
0=2/

2

Z
circ

� j˛0j
˛0
0=2

�

e�ik.�1��2/�˛0

d˛0

D Besinc.kj�1 � �2j˛0
0=2/: (2.53)
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Fig. 2.13 The modulus of the visibility function j��.�1��2/j of Venus in the plane of observation,
e.g., on the surface of the Earth. The visibility function has the form of a Besinc-function since
Venus is a light source at a very large distance, modelled as a uniform disk (2.53). If Venus has
an angular diameter of ˛0

0 D 15 arcsec the visibility function has its first zero for a coordinate
difference of j�1 � �2j0 D 37mm with j�1 � �2j0 D 1:22�=˛0

0 and for an observing wavelength
of 2.2
m (in the visible, it is j�1 � �2j0 D 8mm). The second zero of the visibility function is
at j�1 � �2j0 D 2:233�=˛0

0 D 67:5mm. If Venus were closer to the Earth displaying an angular
diameter of e.g. 45 arcsec, the coherence width would be reduced to 12 mm

Figure 2.13 displays the modulus of the visibility function for Venus’ smallest
angular diameter of ˛0

0 D 15 arcsec as a function of the coordinate difference in mm.
A suitable measure for the coherence width is the first zero of the visibility function,
which occurs at a coordinate difference of j�1 � �2j0 D 1:22�=˛0

0 D 37mm for an
observing wavelength of � D 2:2 
m. For larger coordinate differences the visibil-
ity function slowly oscillates between negative and positive values with decreasing
amplitude.

Applying the quasi-monochromatic approximation we would assume that the
visibility function at the average frequency �0 is a suitable approximation for the
visibility function at all frequencies within the spectral band. If the spectral band is
too wide or if the size of the source is too large this approximation no longer holds
and we have to compute the integral over the spectral band in (2.47) by properly
considering the visibility function as a function of wavelength.

The angular diameter of stars is typically in the milliarcsecond range, i.e., a factor
of 1,000 smaller than Venus. If a star is modelled as a uniform disk the shape of the
visibility function is again described by a Besinc-function but the coherence width
has values of several 10 m and not millimetres. Separating the two points �1 and �2
by only a few metres, the light coming from the star still has a very high coherence
indicated by values of the visibility function that are close to unity.

Another way of putting this is to say that the incoherent light emitted by the star
formally has acquired coherence by the very process of propagation. While the
coherence function on the surface of the incoherent star (2.44) is zero unless the
coordinate difference is zero, the increased coherence width of the light at a large
distance from the star allows for a coordinate difference of a few metres before the
coherence function in the plane of observation drops substantially.
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In contrast, we will see later that light from a coherent source does not change
its state of coherence when propagating in free space. Coherent light remains coher-
ent throughout space and time. Thus, the visibility function of a coherent source is
always unity independent of the coordinate difference.

For these examples of uniform disks the visibility function as a Besinc-function
has the same mathematical form as the spectral amplitude in the diffraction pattern
of a circular aperture (2.24). While the diffraction pattern can be observed with the
naked eye, the visibility function describing the correlation of optical disturbances
at different points cannot be observed directly. It can only be observed through an
interferometer experiment.

Revisiting Young’s experiment in the following section we will see how the con-
trast of a fringe pattern as a measurable quantity can be related to the visibility
function.

NB 4. Expanding the scope of our discussion to sources of arbitrary spatial coher-
ence we replace the •-function in (2.44) by a function of finite extent describing the
source’s spatial coherence. Describing the spatial coherence by the visibility func-
tion �.˛0

1 � ˛0
2/ – without the subscript � since we are free to define the source’s

spatial coherence independent of wavelength – we write the MSDF of a partially
coherent source as

O	 .˛0
1;˛

0
2; �/ D �

z20

q
Ib.˛

0
1/

q
Ib.˛

0
2/ �.˛

0
1 � ˛0

2/G.�/: (2.54)

Then the coherence width of the source is no longer zero but it is determined by the
shape of the visibility function �.

In this notation, the visibility function is linked to the degree of coherence �.˛0
1�

˛0
2; �/, using (2.29) and (2.31), through

�.˛0
1 � ˛0

2; �/ D
Z
�.˛0

1 � ˛0
2/G.�/e

�i2���d�; (2.55)

like the MCF to the MSDF. This is why the visibility function is sometimes called
the spatial degree of coherence.

Choosing a Gaussian function for both the visibility function �.˛0
1 � ˛0

2/ with
a width of �� and for the brightness distribution Ib.˛0/ with a width of �˛0 , we
introduce Gaussian Schell-model (GSM) sources [147, Sect. 5.3 and 5.4] with an
MSDF defined as

O	 .˛0
1;˛

0
2; �/ D �

z20
exp

 

�j˛0
1 C ˛0

2j2
8�2˛0

!

exp

 

�j˛0
1 � ˛0

2j2
2�2�

!

G.�/; (2.56)

with the condition �� � �˛0 , i.e., the coherence width is much smaller than the size
of the source.

The propagation of light from the GSM source is described by the van Cittert–
Zernike theorem replacing the •-function in (2.45) by �.˛0

1 � ˛0
2/. The spatial
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coherence in the plane of observation in Fraunhofer approximation is again descri-
bed by the Fourier transform of the intensity distribution in the source plane that –
being a Gaussian function – is itself a Gaussian function of width 1=.2��˛0/.
The coherence width is thus proportional to the reciprocal of the angular source
diameter, �˛0 , just like for an incoherent source.

It was shown by Carter and Wolf [27], that the intensity distribution I.�/ in the
plane of observation, which was constant in the case of an incoherent source, is
the Fourier transform of the source’s visibility function �.˛0

1 � ˛0
2/. Then, I.�/ is

a Gaussian function of width 1=.2���/. In the incoherent limit when the coher-
ence width in the source plane approaches zero, �� ! 0, the width of the intensity
distribution steadily increases until it fills the plane of observation homogeneously.

Thus, the source visibility function determines the intensity distribution in the
plane of observation and, vice versa, the source intensity distribution determines
the visibility function in the plane of observation. This reciprocity theorem was first
pointed out by Walther [251].

In practice, GSM sources can be used to describe the propagation of multi-mode
laser light [89, 217, 240]. Observing celestial bodies we rarely come across multi-
mode laser light but we do encounter partially coherent light during the imaging
process. In the preceding section, discussing the visibility function of Venus we found
that the coherence width in the plane of observation, e.g., on the surface of the Earth,
is some 10 mm. The light is then partially coherent. The aperture of a ground-based
telescope is filled by this partially coherent light and, computing the propagation
of light from the aperture plane into the image plane, we treat a case similar to the
one above. In Sect. 3.2.3, discussing the coherence properties in the image plane,
we will return to this subject.

The Coherence Function: Summary

The mutual coherence function is the critical quantity for understanding stellar
interferometry. It is the second order correlation function of the optical distur-
bance as a function of time difference and spatial coordinates. The mutual
coherence function (MCF) is defined as

	 .x1;x2; �/ D< v.x1; t C �/v�.x2; t/ >; (2.27)

where xi are the coordinate vectors and � is the time difference.
For the propagation of the MCF in space it is convenient to introduce the

mutual spectral density function (MSDF) that is the correlation function of
spectral amplitudes, defined as

O	 .x1;x2; �/ WD lim
T!1

1

2T
E
˚
VT .x1; �/V

�
T .x2; �/

�
: (2.30)

The MSDF is related to the MCF through a Fourier transform,
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	 .x1;x2; �/ D
Z

O	 .x1;x2; �/e�i2��� d�: (2.31)

The polychromatic or white-light intensity is then

I.x/ D 	 .x;x; 0/ D
Z

O	 .x;x; �/ d� D
Z
I.x; �/ d�; (2.33)

with I.x; �/ D O	 .x;x; �/, the spectral intensity.
The propagation of the coherence functions in space is described by apply-

ing the generalised van Cittert–Zernike theorem (2.41) that was derived from
the Rayleigh–Sommerfeld diffraction formula (2.16) yielding the MSDF in
the plane of observation with coordinate � as the Fourier transform of the
source brightness distribution Ib.˛0/:

O	 .�1; �2; �/ D G.�/

Z
Ib.˛

0/e�ik.�1��2/�˛0

d˛0; (2.45)

with ˛0 D x0=z0, and G.�/ the source spectrum. The source brightness
distribution is assumed independent of wavelength.

For simplification, a number of assumptions and approximations are made,
which are suitable for the situation in a stellar interferometer:

� Fresnel approximation (all involved angles are small)
� Spatially incoherent light sources (e.g., stars)
� The quasi-monochromatic approximation when

(1) The spectral bandwidth �� is assumed to be much smaller than the
average frequency �0
(2) The time difference � is much smaller than 1/�� corresponding to an
OPD much smaller than the coherence length lc

With the assumption of an incoherent light source the coherence functions in
the plane of observation can be written as functions of coordinate difference
only

O	 .�1 � �2; �/ D O	 .�1; �2; �/ and 	 .�1 � �2; �/ D 	 .�1; �2; �/:

The van Cittert–Zernike theorem (2.50) in quasi-monochromatic approx-
imation describes the propagation of the mutual coherence function under
these conditions stating that the MCF 	qm.�1��2; 0/ in the plane of observa-
tion, i.e., the spatial coherence, is given by the Fourier transform of the source
brightness distribution Ib.˛0/,

	qm.�1 � �2; 0/ D
Z
Ib.˛

0/e�ik0.�1��2/�˛0

d˛0: (2.50)
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The Fourier transform of Ib.˛0/ is taken at the average frequency �0 and k0
respectively, under the assumption that the size of the source is sufficiently
small so that its Fourier transform is invariant over the spectral band ��.

The normalized MCF is called the complex visibility function ��0
, defined

as

��0
.�1 � �2/ D 	qm.�1 � �2; 0/

p
I.�1/I.�2/

D
R
Ib.˛

0/e�ik0.�1��2/�˛0

d˛0
R
Ib.˛

0/ d˛0 ; (2.51)

so that 0 � j��0
.�1 � �2//j � 1 and ��0

.0/ D 1. We often denote the
integral over Ib.˛0/ in the denominator by I0 D R

Ib.˛
0/ d˛0, describing the

homogeneous intensity in the plane of observation.
It is very important to note that the visibility function is a function of coor-

dinate difference only. The absolute positions of the two points �1 and �2 are
not relevant.

The visibility function ��0
.�1 � �2/ is a complex function with phase


�0
.�1 � �2/. Due to the source brightness distribution being real and pos-

itive by definition, the modulus j��0
j is symmetric and the phase 
�0

is
anti-symmetric:

j��0
.�1 � �2/j D j��0

.�2 � �1/j and


�0
.�1 � �2/ D �
�0

.�2 � �1/:

Using the definition of the visibility function, the MSDF in polychromatic
illumination, (2.45), can be written as

O	 .�1 � �2; �/ D G.�/I0��.�1 � �2/; (2.52)

splitting the MSDF in a term G.�/ determining the temporal coherence, and
a term ��.�1 � �2/ describing the spatial coherence.

This facilitates the interpretation of the MSDF. The phase, O
.�1 � �2; �0/,
of the MSDF is then identical to the phase, 
�.�1 � �2/, of the visibility
function since I0 and the spectrum G.�/ are real functions.

2.4 Young’s Experiment Revisited

So far, we have discussed the properties of the coherence functions under various
conditions and in different planes along the direction of propagation. But how do
we relate these properties to a measurable quantity? In Sect. 2.1.2 it was noted
that coherence effects have an influence on the interference pattern in Young’s
two-pinhole experiment. This will be discussed now in the context of the coherence
functions.
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Fig. 2.14 Young’s experiment with an incoherent source at large distance z0. The two pinholes
are at positions �p1 D .�p1; 0/ and �p2 D .�p2; 0/ on the �-axis. This plane is now called the
aperture plane. The vector between the pinholes is called baseline vector with B D �p1 � �p2.
The diffraction pattern is calculated as a function of observing angle ˛ in the plane of observation.
The source could be a star and the aperture plane could be on the surface of the Earth

2.4.1 The Coherence Function in Young’s Experiment

We modify the experiment in Sect. 2.1.2 by replacing the plane wave illumination of
the two pinholes6 by an illumination from an incoherent source at a large distance
from the pinholes (see Fig. 2.14). Therefore, we replace the constant amplitudes V0
in (2.10) by variable amplitudes �2V.�p1; �/ and �2V.�p2; �/, with �2, the square
of the wavelength, accounting for the size of the pinholes.

Then, the spectral amplitude V.˛; �/ in the plane of observation (see Fig. 2.14)
is the sum of two elementary (spherical) waves originating from the pinholes,
weighted by the spectral amplitudes V.�pi ; �/ in the pinholes,

V.˛; �/ D �2V.�p1; �/

i�z1
eikr1 C �2V.�p2; �/

i�z1
eikr2 : (2.57)

This result is identical to applying the Rayleigh–Sommerfeld diffraction formula
(2.16) to an aperture with two pinholes of diameter �.

We call the vector between the two pinholes the baseline vector B D �p1 � �p2,
and the distance between the pinholes B D j�p1 � �p2j. The optical path difference
(OPD) between the light from the two pinholes is the scalar product of the baseline
vector B with the coordinate vector ˛, OPD = ˛ � B.

Then, the spectral intensity, i.e., the intensity distribution of the diffraction
pattern at frequency �, is

6 As discussed at the end of Sect. 2.2.1 we define a pinhole as a small aperture with a diameter of
a few wavelengths with the approximation that diffraction effects can be calculated using a single
spherical wave emerging from the centre of the aperture.
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I.˛; �/ D O	 .˛;˛; �/ D lim
T!1

1

2T
EfV.˛; �/V �.˛; �/g

D �2

z21
lim
T!1

1

2T
EfjV.�p1; �/ eikr1 C V.�p2; �/ eikr2 j2g

D �2

z21

�
I.�p1; �/C I.�p2; �/C 2Re

h O	 .B; �/e�ik˛�B
i�
; (2.58)

using ˛ � B D r2 � r1 (see Fig. 2.14), and

I.�pi ; �/ D lim
T!1

1

2T
EfV.�pi ; �/V �.�pi ; �/g; i D 1; 2; and

O	 .B; �/ D lim
T!1

1

2T
EfV.�p1; �/V �.�p2; �/g:

In the discussion following (2.45), we stated that the intensity in a plane illu-
minated by an incoherent source is a constant independent of the position � in the
aperture plane. Assuming that the two pinholes are illuminated by an incoherent
source at a large distance we find indeed that the intensity in the aperture plane is
constant, I.�p1; �/ D I.�p2; �/ D G.�/I0.

Now, we replace the MSDF, O	 .B; �/, by the product of spectrum and visibil-
ity function, G.�/I0��.B/, see (2.52), and we write the real part in (2.58) as the
product of its modulus and the cosine of its phase. We obtain the spectral intensity
distribution of the diffraction pattern I.˛; �/ in the plane of observation as

I.˛; �/ D 2
�20
z21

�
G.�/I0 C jG.�/I0��.B/j cos

�

�.B/� k˛ � B

��

D 2G.�/I 0
0

�
1C j��.B/j cos

�

�.B/� k˛ � B

��
; (2.59)

with �0 the mean wavelength, and I 0
0 D �2

0

z2
1

I0. The result is a fringe pattern essen-

tially proportional to 1 C cos.:/ like in (2.12). The fringe spacing in the direction
parallel to B is �=B . The modulus of the visibility function, j��.B/j, taking val-
ues between 0 and 1, acts as a damping factor on the cosine function, determining
the contrast of the fringe pattern, and the phase of the visibility function, 
�.B/,
determines the position of the white-light fringe.

While the simplifying assumption of equal intensities in the two pinholes per-
mits to simplify the formulae without restricting their general validity, we should be
aware that in practice, the intensities in two apertures are rarely constant. Writing
the intensities in the individual apertures as I.�pi ; �/ D G.�/Ipi , with i D 1; 2, we
modify (2.59), yielding

I.˛; �/ D G.�/
�
I 0
p1 C I 0

p2 C 2
q
I 0
p1I

0
p2j��.B/j cos

�

�.B/� k˛ � B

��
:

(2.60)
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The contrast of the fringe pattern is now given by 2.I 0
p1I

0
p2/

1=2=.I 0
p1 C I 0

p2/ �
j��.B/j. We will use this formula when discussing observations through atmo-
spheric turbulence in Sect. 6.1. In the absence of turbulence, we will apply the
simplified approach in (2.59).

The fringe pattern of a point source on axis is centred at the position of zero
OPD, ˛ D 0. In case of a non-zero phase 
�.B/, the fringe pattern would be shifted
by ˛0, with k˛0 � B D 
�.B/. A phase of � is equivalent to replacing the cos(.) by
�cos(.), replacing a fringe maximum by a minimum and vice versa.

Before we discuss this in detail we will step from the spectral intensity I.˛; �/ to
the white-light intensity by integrating over the observed frequency band, I.˛/ DR
I.˛; �/d�. For a sufficiently narrow spectral band we replace the factor �2 before

the bracket by the average wavelength �20 since we are primarily interested in the
influence of the wavelength on the shape and not in its contribution to the absolute
intensity.

For the discussion of the polychromatic case we start by assuming a point source
on axis, with ��.B/ D R

•.˛0/ exp.�ikB � ˛0/d˛0 D 1 in the aperture plane.
Integrating monochromatic fringe patterns over the spectral band, the integration

is applied individually to each term in (2.59). The first term yields the white-light
intensity in the aperture plane

R
G.�/I0d� D I0. The second term is again written

as the real part of a complex function as in (2.58). Integrating over the frequency
�, we replace k˛ � B by 2��� , writing the polychromatic intensity distribution as a
function of time delay � as

I.�/ D 2I 0
0

�

1C Re

	Z
G.�/e�i2���d�


�

: (2.61)

Replacing � by ˛ � B=c we would obtain the diffraction pattern as a function of ˛

again.
The spectrum G.�/ has its centroid at the average frequency �0. Introducing the

centred spectrum Gc.�/ D G.� C �0/, we write

I.�/ D 2I 0
0

�

1C Re

	Z
Gc.� � �0/e�i2���d�


�

D 2I 0
0

�

1C Re

	Z
Gc.�

0/e�i2��0�d�0 e�i2��0�


�

; (2.62)

using the coordinate transform �0 D � � �0, see Sect. A.1. The Fourier transform of
the centred spectrum is called g.�/ that is a real function if Gc.�/ is symmetric, for
example rectangular or gaussian.

The polychromatic fringe pattern of a point source can now be written as

I.�/ D 2I 0
0

�
1C g.�/ cos.2��0�/

�
; (2.63)

with g.�/ D F� .Gc.�// and g.0/ D 1. F� denotes the Fourier transform with
respect to coordinate �.
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Fig. 2.15 Fringe patterns of Venus in Young’s experiment. On the left, the intensity distributions
along horizontal lines display the fringe pattern for pinhole separations B between 10 and 80 mm.
The fringe spacing is �0=B . The light source illuminating the pinholes is Venus with a uniform
disk diameter of 15 arcsec. The spectral band is the K-band (2.2˙0.2
m), i.e., �0=�� D 5:5 .
The finite spectral bandwidth makes the fringe visibility disappear for diffraction angles j˛j larger
than about 5:5�0=B , i.e., there are about 11 fringes in the fringe pattern (compare to (2.63)). The
fringe spacing decreases with increasing pinhole separation, and the fringe visibility is reduced to
zero at B D 37mm. For 37 mm 	 B 	 67:5mm, the fringe pattern inverts its sign displaying
a black fringe at ˛ D 0. On the right, the visibility function j��0 .B/j as a function of pinhole
separation B is displayed following a Besinc-function (see also Fig. 2.13)

The variable part – the cosine function – of a fringe pattern with frequency �0
is multiplied by g.�/, the (real) Fourier transform of the (centred and symmetric)
spectrumGc.�/, that acts like an envelope on the fringe pattern. If the fringe pattern
is observed in the K-band (2.2˙0.2
m) with �� D 0:4
m and �� D 2:5 �
1013 Hz, then g.�/ has its first zero for a time delay � D ˙1=�� D ˙4 � 10�14 s
(see Sect. A.1). This time delay corresponds to an optical path difference (OPD)
equal to the coherence length lc D �c D ˙12
m corresponding to ˙5.5 �0, i.e.,
the fringe pattern has about 11 perceivable fringes (see Fig. 2.15).

Returning to the general case of an extended source we write the integral of the
spectral intensity distributions I.˛; �/ (2.59) over the observed frequency band in
the complex notation as
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I.˛/ D
Z
I.˛; �/d�

D 2I 0
0

�

1C
Z
G.�/j��.B/j cos

�

�.B/� k˛ � B

�
d�

�

; (2.64)

or, with k˛ � B D 2��� ,

I.�/ D 2I 0
0

�

1C Re

	Z
G.�/��.B/e�i2���d�


�

: (2.65)

Disentangling the integral over the product of spectrum G.�/ and the visibility
function ��.B/ – both functions of � – we can apply the same reasoning as after
(2.47), bringing back the quasi-monochromatic approximation with the assumption
of a narrow spectral bandwidth ��, implicitly of a source of size ˛0 that is larger
than a point but still so small that its visibility function ��.B/ does not vary over
the spectral band.

We obtain the intensity distribution of the diffraction pattern of Young’s experi-
ment in quasi-monochromatic approximation as

Iqm.�/ D 2I 0
0

�

1C Re

	

��0
.B/

Z
G.�/e�i2���d�


�

; (2.66)

with ��0
.B/ the visibility function at �0, (2.51).

If the real part of the complex function is written as the modulus of��0
.B/ times

the cosine of the phase we obtain the intensity distribution of the fringe pattern

Iqm.�/ D 2I 0
0

�
1C g.�/j��0

.B/j cos.
�0
.B/� 2��0�/

�
; (2.67)

or in the more familiar notation with diffraction angle ˛:

Iqm.˛/ D 2I 0
0

�
1C gB .˛/j��0

.B/j cos.
�0
.B/ � k0˛ � B/

�
; (2.68)

with k0˛ � B D 2��0� , and gB .˛/ D g.˛ � B=c/ D g.�/ using ˛ � B D �c.
Like for the spectral intensity distribution in (2.59) the modulus of the visibil-

ity function determines the contrast of the fringe pattern around the white-light
fringe, when gB .˛/ is approximately constant, and the phase, 
�0

.B/, determines
the position of the fringe pattern with respect to the position of zero OPD at ˛ D 0.

This result is identical to (2.12) when the two pinholes were illuminated by a
monochromatic plane wave, so that gB .˛/ is infinitely wide, since the modulus of
the visibility function of a plane wave is j��0

.B/j 
 1 and the phase is 
�0
.B/ 
 0.

In Sect. 2.1.2, the contrast was called the visibility V of the fringe pattern and it
was defined (2.13) as

V D Imax � Imin

Imax C Imin
: (2.69)
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Comparing this definition with (2.68) it is easy to see that, in the ideal case,
j��0

.B/j D V around the white-light fringe. Thus, we can measure the modulus
of the visibility function by determining the fringe contrast in Young’s experiment.
However, if the fringe pattern is affected by atmospheric turbulence or other dis-
turbances, we distinguish V , the contrast of the measured fringe pattern, from the
source visibility function ��0

.
Very often, the visibility is interpreted as the quotient between the correlated flux

and the total flux of the light since the visibility function is defined (2.51) as the
quotient of the MCF, which is the correlation function of the optical disturbances,
and the integrated intensity.

We can now understand the effect of a visibility function on the fringe pattern.
Regarding for instance the visibility function of Venus, displayed in Fig. 2.13, that
is shaped like a Besinc-function (2.53) we see in Fig. 2.15 that the visibility function
shows up in the varying contrast of the fringe patterns. Each horizontal line shows
a fringe pattern for an individual pinhole separation B , the contrast of which is
determined by the modulus j��0

.B/j of the visibility function.
The Besinc-function is a real function with zero phase. However, working with

the modulus of the visibility function, negative values of the Besinc-function have to
be accounted for by a phase of 
 D � , since j��0

.B/jei� D �j��0
.B/j. The fringe

pattern is shifted by � , producing a black fringe at ˛ D 0 for pinhole separations
between 37 mm and 67.5 mm when the Besinc-function has negative values (see
Fig. 2.15).

The two pinholes can be regarded as an instrument to measure the coherence
properties by probing the wave front with two pinholes, and determining the spa-
tial coherence as the visibility of the fringe pattern. This result is interesting in two
respects. First, we found how to relate a measurable quantity to the complex visibil-
ity function. Second, by doing so, we derived the visibility function in the aperture
plane from characteristics of the intensity distribution (fringe contrast and centre
fringe position) in the plane of observation.

2.4.2 ABCD Method

A method to derive both modulus and phase of the complex visibility from the fringe
pattern was described by Shao [214], originally proposed by Wyant [254]. It is called
the ABCD method since it relies on measuring the intensity at four different points
around the white-light fringe of the fringe pattern Iqm.˛/, (2.68), that are separated
by 1=4 of the fringe spacing of �0=B . If we denote the intensities by IA; IB ; IC ; ID
and their sum by Itot we write

j��0
.B/j D V D C

p
.IA � IC /2 C .IB � ID/2

Itot


�0
.B/ D tan�1

�
IA � IC

IB � ID

�

: (2.70)
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The value of the constant C depends on the measurement method. If the four inten-
sities are determined at individual points on the fringe pattern, it is C D 2. If the
intensities are measured by pixels that are �=.4B/ wide, integrating the inten-
sity over 1=4 of the fringe spacing and, thus, damping the fringe pattern, it is
C D �=

p
2. However, this value is only of academic interest since the visibility

always has to be calibrated for instance by observing a point source with a nominal
visibility ��0

D 1. This will be discussed in Sect. 6.1.
Thus, we can determine the visibility by applying the ABCD method to the

white-light fringe. However, if it is difficult to identify the white-light fringe and
by mistake another fringe in the field is used, its contrast is affected additionally
by the temporal coherence, gB .˛/, so that the estimate for j��0

j is too small, while
the phase estimate remains unaffected. Therefore, the ABCD method is particularly
well suited to measure the fringe position.

As an alternative, the Fourier spectrum of the fringe pattern can be processed
providing an estimator for the complex visibility function.

2.4.3 Power Spectrum of the Fringe Pattern

The fringe pattern can be regarded as a function of either the diffraction angle ˛ or
of the time delay � . The two quantities are linked through the optical path difference
˛ � B = OPD = �c, with the baseline vector B D �p1 � �p2. In the following, we
will choose the variable � and we will perform the Fourier transform between time
and frequency space. The properties of the Fourier spectrum will be discussed in
detail before we introduce the power spectrum, which is the squared modulus of the
Fourier spectrum.

We will first treat a monochromatic fringe pattern to develop a feeling for the
process, and then we will discuss the general expression for the polychromatic
diffraction pattern of Young’s experiment (2.65).

The monochromatic fringe pattern is calculated in (2.65) by integrating the spec-
tral intensity I.˛; �/ (2.64) with a monochromatic spectrum G.�/ D •.� � �0/

as

I.�/ D 2I 0
0

�

1C Re

	Z
G.�/��.B/e�i2���d�


�

; (2.71)

using I 0
0 D �2

0

z2
1

I0. Then the Fourier transform OI .�/ of this fringe pattern reads as

OI .�/ D
Z
2I 0
0

�

1C Re

	Z
•.� � �0/��.B/e�i2���d�


�

ei2��� d�

D I 0
0

�
2•.�/C •.� � �0/��0

.B/C •.� C �0/�
�
�0
.B/

�
; (2.72)

Note that, depending on the properties of I.�/, OI .�/ can be a complex function.
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Despite the syntax with time delay � and frequency � this is not a temporal
Fourier transform since the replacement of the diffraction angle ˛ by the time dif-
ference � does not make I.�/ a temporal signal but a signal of time difference.
However, in analogy to (2.34) when introducing the self-coherence function, the
coordinate � is the frequency of the light, and we can draw conclusions on the shape
of the spectrum G.�/ as will be discussed in the following.

The peak of the Fourier spectrum at � = 0, sometimes called the photometric
peak, describes the constant component of the fringe pattern proportional to the
constant intensity I0 in the aperture plane. The •-peaks at �0 and ��0, sometimes
called the interferometric peak, are weighted by the visibility function ��0

.B/ at
baseline B determining the amplitude of the cosine pattern.

The fringe pattern of a polychromatic point source was discussed in Sect. 2.4.1,
and we found the intensity distribution of the fringe pattern (2.61) to be

I.�/ D 2I 0
0

�

1C Re

	Z
G.�/e�i2���d�


�

; (2.73)

or, in its more familiar form (2.63), using g.�/ D F� .G.� C �0//,

I.�/ D 2I 0
0 .1C g.�/ cos.2��0�// ; (2.74)

when the Fourier transform of the centred spectrum is the envelope of the cosine
pattern reducing its visibility with increasing time delay � , or diffraction angle ˛.

Using (2.61), it is straightforward to calculate the Fourier spectrum of the fringe
pattern of a polychromatic point source as

OI .�/ D
Z
2I 0
0

�

1C Re

	Z
G.�/e�i2��� d�


�

ei2��� d�

D I 0
0 .2•.�/CG.�/CG.��// ; (2.75)

which is displayed in Fig. 2.16. If the width of the spectrum G.�/ increases, the
width of its Fourier transform decreases and the fringe pattern loses contrast after
fewer and fewer periods. Another way of putting this is to say that each individual
frequency �i within the spectral band provides a cosine of frequency �i in the fringe
pattern. Adding up these cosine functions results in a cosine pattern of the average
frequency �0 that loses contrast depending on the spread of contributing frequencies,
i.e., the width of the spectrum.

A similar exercise leads us to the Fourier spectrum of an extended source. We
write the polychromatic fringe pattern of an extended source I.˛/ (2.65) as

I.�/ D 2I 0
0

�

1C Re

	Z
G.�/��.B/e�i2��� d�


�

; (2.76)

and perform the Fourier transform, yielding the Fourier spectrum as

OI .�/ D I 0
0

�
2•.�/CG.�/��.B/CG.��/��

� .B/
�
: (2.77)
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Fig. 2.16 On the left, the K-band fringe pattern of a point source for a pinhole separation of
10 cm is displayed both as a function of time difference � and of diffraction angle ˛ (for ˛kB),
linked through � D ˛ � B=c. On the right, its Fourier transform is shown both as a function of
frequency � and of wavelength �. The •-peak is at � D 0, and the shape of the spectrum G.�/ is
given by a rectangular function over the K-band, � D 1:25 
 1014 � 1:5 
 1014 Hz (respectively
� D 2:0� 2:4
m)

The peak of the Fourier spectrum at � = 0 describes again the constant component of
the fringe pattern, proportional to the white-light intensity I0 in the aperture plane.
The width of the spectrum G.�/ and its mirror function at �� is given by the width
of the spectral band, and the values of the visibility function��.B/ over the spectral
band are determined by the shape of the spectrum and by the spatial coherence at
the given baseline B.

Now it seems to be straightforward to determine the values of the spectrally
resolved visibility function – in modulus and in phase – in the Fourier spectrum.
However, in reality the situation is not quite that simple. Celestial bodies at a large
distance are observed through the Earth’s atmosphere so that the fringe pattern is
temporally unstable and weak, and the white-light intensity I0 in the aperture plane
is neither temporally nor spatially constant. The implications will be discussed in
detail in Chaps. 5 and 6.

Instead of exploiting the spectral information in the Fourier spectrum, one can do
the opposite, averaging over the spectrum to improve the signal quality and directly
measure the visibility function.

It was the idea of Roddier and Léna [196] to determine the average visibility
function by calculating in the Fourier spectrum the ratio between the integral of
the MSDF, the interferometric peak, over the spectral band and the integral of the
•-peak, the photometric peak, at � = 0.

Collapsing the spectrally resolved visibility function into a single value means to
lose the spectral information. If the spectral band is sufficiently narrow and if the
source is sufficiently small we can replace the visibility function by its value at the
average frequency �0 yielding ��0

.B/ in quasi-monochromatic approximation as
given in the van Cittert–Zernike theorem (2.50).
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Integrating the visibility function over the spectral band and dividing it by the
integral of the spectrum at � D 0 yields the estimator for the visibility function
��0

.B/ as

R
I 0
0G.�/��.B/ d�
R
2I 0
0•.�/d�

	 ��0
.B/

2
: (2.78)

Although for this theoretical deduction it is not required to explicitly account for I 0
0,

we must not forget that working with real data the spectrum at � D 0 is given by
I 0
0 and around � D �0 it is given by the product OI .�/ D I 0

0G.�/��.B/ so that both
integrals in (2.78) have to be performed.

This conceptually simple computation provides a direct measure for the visibility
of the fringe pattern. Due to the •-peak at � D 0 being a real number we also
measure the phase of the visibility function.

Discussing the quasi-monochromatic approximation in Sect. 2.4.1, we empha-
sised that ��0

.B/ describes the fringe visibility only for small diffraction angles,
i.e., around the white-light fringe, (2.68). It is the integral over the spectral band in
(2.78) that reduces the information about the visibility over the full fringe pattern to
the visibility around the white-light fringe as discussed before. The advantage of this
method is that in case of noisy signals more values of the fringe pattern contribute
to the measurement than just a few points around the white-light fringe.

The treatment of noise in the interferogram requires to calculate the power spec-
trum of the fringe pattern in order to have an unbiased measurement of the visibility
function [224]. The power spectrum reads as

j OI .�/j2 D I 0
0
2 �
4•2.�/C jG.�/��.B/j2 C jG.��/��

� .B/j2
�
; (2.79)

and, using again the visibility value at the average frequency �0, we obtain the
squared visibility function as

R jI 0
0G.�/��.B/j2d�
R
4I 0
0
2
•2.�/d�

	 j��0
.B/j2
4

: (2.80)

While this quadratic estimator has advantages when measuring noisy signals, the
phase 
�.R/ of the visibility function is lost (see Sect. 6.1.1). However, in prac-
tice it is very difficult to determine the position of the white-light fringe since
atmospheric turbulence constantly moves the fringe pattern. Even when process-
ing the fringe pattern directly instead of the power spectrum the phase cannot be
determined unambiguously without further calibration methods (see Sect. 6.1).

The result of the Fourier transform of the fringe pattern is familiar from the
Michelson Fourier Spectrometer measuring the source spectrum G.�/. There, the
fringe pattern is created by splitting a light beam with a beam splitter and introduc-
ing an optical path length modulation in one of the two arms. The fringe pattern
is then registered as a function of the OPD modulation after recombining the
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beams with a second beam combiner. Formally, the two spatial coordinates are then
identical, �p1 D �p2 D � andB D 0, and we obtain the spectral intensity I.�; �/ D
G.�/

R
Ib.˛

0/ d˛0 D G.�/I0 with a homogeneous intensity distribution I0.
In Young’s experiment, we do not use beam splitters but two pinholes, and the

spatial correlation between the two different points �p1 and �p2 across the wave
front enters the result.

Thus, by Fourier transforming the polychromatic fringe pattern I.˛/ we receive
information not only on the spectrum G.�/ but also on the spatial coherence prop-
erties of the light determined by the Fourier transform of the source brightness
distribution. The term double Fourier spatio-spectral interferometry was phrased
to emphasise this characteristic [150].

Example: A Uniform Disk

Stars can be modelled as a uniform disk, writing the source brightness distribution

Ib.˛
0/ D 1

�.˛0

0
=2/2

circ
� j˛0j
˛0

0
=2

�
for a disk with diameter ˛0

0. This formula implies that

the disk diameter is independent of the wavelength over the observed spectral band,
which is a common assumption when attempting for instance to determine stellar
diameters.

The visibility function is given by the spatial Fourier transform of the circular
source brightness distribution (2.53) as

��.B/ D Besinc

�
2�

c
�B
˛0
0

2

�

; (2.81)

with 2�
c
� D 2�

�
.

So far, we have always discussed how the visibility function varies with pinhole
separation B = j�p1� �p2j, and we have taken the wavelength as a fixed parameter.
Here, we regard B as constant and discuss the Besinc as a function of �, i.e., we
regard the visibility function for a fixed pinhole separation at different frequencies.
Although the disk diameter is wavelength independent, its Fourier transform, the
Besinc-function, varies with wavelength since with the exponential kernel 2�

�
B � ˛0

the Fourier transform is performed from ˛0 to B=� D B�=c. If the stellar diameter
varied with wavelength, the Besinc-function would be distorted reflecting the actual
stellar shape at every frequency.

In Fig. 2.17 both the spectrum G.�/ and the Besinc-function are displayed as a
function of �. The consequences of the averaging process (2.78) over the spectral
band are apparent in this figure. As long as the spectral band is sufficiently narrow
for the visibility function to be linear within the band, the function value at the
average frequency is a good estimate for the integral. It is very obvious that this
approximation cannot be fulfilled with the same quality for the visibility function
and for the squared visibility function.
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Fig. 2.17 The spectrum OI .�/ of a K-band fringe pattern of a uniform disk. The •-peak at � D 0

and the visibility function ��.B/ at a fixed baseline are displayed. The effective visibility function
is the product of the spectrum G.�/ with the Besinc-function, which is the visibility function of a
uniform disk. Since we discuss the visibility function as a complex function, the Besinc-function
is split into its modulus (green lines) and its phase 
�.B/ (red lines). The phase is zero up to
the first minimum of the Besinc-function and jumps to � beyond when the Besinc-function has
negative values. For this example the pinhole separation is chosen as B D 100m and the stellar
diameter as ˛0

0 D 4:7mas yielding the first zero of the Besinc-function at �0 D 1:6 
 1014 Hz,
using �0=Hz D 755=..B=m/.˛0

0=mas//1014. The squared modulus of the Besinc-function (blue
lines) is also displayed forming the power spectrum of the fringe pattern

2.4.4 Heuristic Approach

Since the connection between the coherence function and the intensity as a measur-
able quantity (2.68) is one of the fundamental pillars of stellar interferometry, we
also look at it from a different perspective. Why is the fringe contrast affected by
the shape of the source? We regard an individual point at angle position ˛0

0 on the
surface of the source with intensity I.˛0

0/. Then, the incoming plane wave is slightly
tilted and there is a difference in arrival time at the pinholes that can be expressed as
an OPD of ˛0

0 �B. The zero OPD position in the plane of observation is no longer on
the optical axis but at position ˛ D �˛0

0 so that the incoming and outgoing OPDs,
˛0
0 � B and �˛ � B in Fig. 2.18, cancel.

We regard the fringe pattern in the plane of observation as given in (2.68), with
j��.B/j 
 1 and 
�.B/ 
 0 for a point source on-axis in quasi-monochromatic
approximation with a spectral width �� sufficiently narrow to allow for an OPD of
several wavelengths without losing the fringe contrast. For an off-axis point source
at angle position ˛0

0, the visibility function is ��.B/ D exp.�ik˛0
0 � B/ (using

(2.51) with �1 � �2 D B), and the intensity distribution reads as

I.˛;˛0
0/ D 2

�2

z21
I.˛0

0/�

�
1C cos

��k.˛ C ˛0
0/ � B

��
:
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OPD = r1−r2 ~ −α . B

α

r2

z

α' ξ

Source Plane Aperture Plane Plane of Observation

r1
α'0

r'1

−α'0

r'2

OPD' = r'2 − r'1 ~ α'0 . B

z0

ξp1

ξp2

z1

Fig. 2.18 Young’s experiment with a point source at angle position ˛0

0. For the sake of simplicity,
only one coordinate axis per plane is displayed. The optical path lengths between the source and
the pinholes are slightly different with OPD’ D ˛0

0 � B. The position of zero OPD in the plane of
observation, i.e., the position where the total optical path lengths are equal, r 0

1 C r1 D r 0

2 C r2, is
then at angle position ˛ D �˛0

0. This means that the centre of the fringe pattern, the white-light
fringe, is shifted to �˛0

0

The homogeneous intensity distribution in the aperture plane due to a source point
at ˛0

0 is denoted by I.˛0
0/� .

The step from a point source to an extended source is done by summing up the
fringe patterns of the individual points of the source, as in Fig. 2.19. This is cor-
rect since we assumed the light source to be spatially incoherent with every point
radiating independently.

The subsequent integral over the fringe patterns of each point of an incoherent
source with diameter j˛0

0j reads as

I.˛/ D
Z j˛0

0
j=2

�j˛0

0
j=2
I.˛;˛0/d˛0

D 2
�2

z21

 

I0 C
Z j˛0

0
j=2

�j˛0

0
j=2
I.˛0/� cos

��k.˛ C ˛0/ � B
�

d˛0
!

;

which is a convolution between the source intensity I.˛0/ and the fringe pattern of
an on-axis point source.

The first term I0 is a constant intensity as a result of the integration over the
source I.˛0/. The second term is the real part of the complex Fourier transformR
I.˛0/ exp.�ik.˛ C ˛0/ � B/d˛0. We extract exp.�ik˛ � B/ since this term does not

depend on ˛0. The remaining expression
R
I.˛0/ exp.�ik˛0 � B/d˛0 D ��.B/I0 is

the van Cittert–Zernike theorem as given by (2.51) with �1 � �2 D B. Reducing
the discussion to the real part again we obtain the final result as in (2.68),

I.˛/ D 2I 0
0

�
1C j��.B/j cos.
.B/ � k˛ � B/

�
;
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α [arcsec]

I(α)

0 2010–10–20

1

0.5

Fig. 2.19 Three individual monochromatic intensity distributions of the fringe patterns in Young’s
experiment for point source positions at j˛0j D �1 arcsec, 0 and C1 arcsec (grey lines), and the
resulting fringe pattern of an extended source with diameter 2 arcsec. ˛0 and ˛ are parallel to the
baseline vector B. The pinhole separation B is 10 cm, the observing wavelength � D 2:2
m and
the fringe spacing �=B D 4:5 arcsec. The resulting fringe pattern is reduced in contrast since it is
the sum of the individual fringes. Note that the contrast would be even smaller if either the pinhole
separation were larger – and the fringe spacing smaller – or if the source were larger in diameter

describing a fringe pattern following in principle a 1Ccos.:/ function with a contrast

of j��.B/j. It is I 0
0 D �2

0

z2
1

I0.

The interpretation of the phase 
 of the visibility function �� is now rather sim-
ple. Returning to the process of adding up fringe patterns originating from individual
points one can think of cases when the resulting fringe pattern does not have its
white-light fringe at ˛ D 0. For example a source that is not extended between
C and �j˛0

0=2j but between 0 and j˛0
0j would display the white-light fringe at

˛ D �˛0
0=2.

In the language of the coherence functions this is another way of saying that the
phase of the visibility function is �k.˛0

0=2/ � B. If the source were not constant in
intensity but, e.g., be brighter on one side, then fringe patterns with varying inten-
sities have to be added causing the resulting fringe pattern to be shifted sideways.
Thus, it is essential to measure not only the modulus but also the phase of the visi-
bility function, i.e., the position of the white-light fringe, if one wants to determine
the position of the star or to obtain its shape, which means its image.

The answer to the question at the beginning of this section, why the fringe
contrast is affected by the source shape, is thus, that fringe patterns with slightly
different white-light fringe positions are overlaid loosing contrast by this very pro-
cess. The formal treatment of this integration reintroduces the coherence functions
as discussed in Sect. 2.4.1.
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Figure 2.20 illustrates the equivalence of regarding individual source points and
regarding individual wavelengths. In both cases, the intensity distributions either of
individual source points or of individual wavelengths are integrated. While the width
of the spectrum G.�/, in this case the K-band, determines the temporal coherence,
the width of the angular intensity distribution I.˛0/, in this case the diameter of the
star, determines the spatial coherence. The temporal coherence affects the visibility
as a function of diffraction angle ˛ that translates into a time delay � (Fig. 2.20b), the
spatial coherence affects the visibility as a function of baseline B (Fig. 2.20c). Thus,
short baselines display a fringe pattern with higher visibility than long baselines.

In this context, a monochromatic source with infinitely narrow spectrum – or an
emission line source – G.�/ is equivalent to a point source with infinitely narrow
angular intensity distribution I.˛0/, since the fringe pattern of the monochromatic

α [arcsec]

I(α)

1

α [arcsec]

I(α)

0–20 –10 10 20

1

point source, monochromatic

extended source, monochromatic

α [arcsec]

I(α)

0

a

c d

b

–20 –10 10 20

0–20 –10 10 20 0–20 –10 10 20

1

α [arcsec]

I(α)

1

0.5 0.5

0.5 0.5

point source, K-band

extended source, K-band

Fig. 2.20 Summary of the influence of source size and spectral bandwidth on the fringe pattern.
The pinhole separation B is 10 cm in all figures, and we only observe at diffraction angles ˛ with
˛kB. In (a) an individual fringe pattern for an observing wavelength of � D 2:2 
m and a point
source is displayed. In (b) the K-band fringe pattern is shown when observing a point source (as
in Fig. 2.3). In (c) the monochromatic illumination of a source with diameter 2 arcsec produces a
fringe pattern with reduced contrast (as in Fig. 2.19). In (d) the resulting fringe pattern in K-band
illumination with a 2 arcsec source is displayed. The visibility is reduced around ˛ D 0 due to
the source diameter and it is further reduced for increasing diffraction angles ˛ due to the finite
spectral bandwidth
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source has a constant visibility for any value of the diffraction angle ˛, and the
fringe pattern of a point source displays a constant visibility for any baseline B.

It is important to note the different starting point of the discussion in this section
compared to the preceding sections. Before, we discussed the propagation of the
coherence functions from the source to the aperture plane dealing with the coherence
properties along the way. Here, on the contrary, we have regarded a monochromatic
point source, for which we calculated the diffraction pattern, and we have drawn our
conclusions from integrating the diffraction patterns of many point sources, thus
introducing heuristically the concept of coherence at the very end of the process.
This is a very convenient method to explain and understand the impact of coherence
properties. We will see in Chap. 3 that by summarising integrals in different ways
one can focus on different aspects of the imaging process.

In the real world, when stars are neither point sources nor monochromatic one
could calculate two sets of fringe patterns, for each point and for each wavelength,
and then do the sums as displayed in Fig. 2.20. Or one uses the coherence functions
that elegantly combine both cases.

Young’s Experiment Revisited: Summary

The spectral intensity distribution of the diffraction pattern in Young’s exper-
iment is a fringe pattern described essentially by a 1 C cos.:/ function with
the contrast being determined by the modulus of the visibility function��.B/
and the position of the white-light fringe by its phase, 
�.B/,

I.˛; �/ D 2G.�/I 0
0

�
1C j��.B/j cos

�

�.B/� k˛ � B

��
; (2.59)

with I 0
0 D �2

0

z2
1

I0, G.�/ the spectrum and B D �p1 � �p2 the baseline vector

between the two pinholes at positions �p1 and �p2. The fringe spacing is �=B .
The quasi-monochromatic approximation is valid for narrow spectral

bands, �� � � that means implicitly that the sources must be sufficiently
small so that their visibility functions ��.B/ do not vary over the spectral
band. The intensity distribution of the fringe pattern for small ˛ can be written
as

Iqm.˛/ D 2I 0
0

�
1C gB .˛/j��0

.B/j cos.
�0
.B/ � k0˛ � B/

�
; (2.68)

with k0˛ � B D 2��0� , �0 the average frequency,��0
.B/ the visibility func-

tion at �0, (2.51), and gB .˛/ D gB .�c=B/ D g.�/ the envelope function of
the fringe pattern, which is the Fourier transform of the spectrum G.�/.

The visibility function ��0
.B/ is a function of baseline vector B and

not of the individual coordinates �p1 and �p2 (see Fig. 2.14). For very small
diffraction angles around the white-light fringe, when gB .˛/ is approximately
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constant, the visibility of the fringe pattern is given by j�.B/j. The phase

�0

.B/ determines the position of the fringe pattern.
The ABCD method can be used to derive both modulus and phase of the

complex visibility from the fringe pattern [214,254]. It relies on measuring the
intensity around the white-light fringe at four different points that are spaced
by 1=4 of the fringe spacing�=B . If we denote the intensities by IA; IB ; IC ; ID
and their sum by Itot, we write

j��0
.B/j D V D C

p
.IA � IC /2 C .IB � ID/2

Itot


�0
.B/ D tan�1

�
IA � IC

IB � ID

�

: (2.70)

The value of the constantC is �=
p
2 if the intensities are measured with pixels

that are �=.4B/ wide. In practice, the visibility always has to be calibrated,
for instance by observing a point source with a nominal visibility V D 1.

Applying the ABCD method to any other fringe than the white-light fringe
provides too small an estimate for j��0

j since the fringe visibility V is reduced
by the temporal coherence.

Returning to polychromatic illumination with spectrum G.�/, the Fourier
transform (2.77) of the fringe pattern – expressed as a function of � , using
�c D ˛B – provides information on the temporal and the spatial spectrum of
the source (see Fig. 2.17) without the restriction of the quasi-monochromatic
approximation to the white-light fringe:

OI .�/ D I 0
0

�
2•.�/CG.�/��.B/CG.��/��

� .B/
�
; (2.77)

displaying a peak at � D 0, and the visibility function ��.B/ and its mirror
function ��

� .B/ (see Fig. 2.16). In the absence of spectral information of the
source, one can only measure the integral of the visibility function over the
spectral band.

Under the assumption that the visibility function is linear over the spectral
band the value of the integral is approximately equal to the value of the visibil-
ity function at the average frequency �0 as requested in quasi-monochromatic
approximation.

The ratio of the integral of the visibility function over the spectral band in
the Fourier transform, the interferometric peak, (2.77) and the integral of the
peak at � D 0, the photometric peak, is a measure for the average visibility
function ��0

.B/, with

R
I 0
0G.�/��.B; �/ d�
R
2I 0
0•.�/d�

	 ��0
.B/

2
: (2.78)
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If the signals are noisy the power spectrum of the fringe pattern provides
an unbiased estimate of the visibility as

R jI 0
0G.�/��.B; �/j2d�R
4I 0
0
2
•2.�/d�

	 j��0
.B/j2
4

: (2.80)

Up to now, we have focused on determining the visibility function that
we expressed as the Fourier transform of the source brightness distribution
according to the van Cittert–Zernike theorem. This incorporates the possibil-
ity to reconstruct the source brightness distribution from the visibility function
through a Fourier back transform, i.e., to form an image. For this it is required
to measure the visibility function for many different vectors B. However,
without the phase of the visibility function the imaging capability is very
limited.

We have, thus, introduced the topic of imaging while originally discussing
Young’s experiment to explain the basic principles of the measurement of the
coherence function. We will see in Chap. 3 that the conceptual step towards
an imaging system like a telescope and a stellar interferometer is relatively
small.

2.5 Higher Order Correlation Functions: Intensity
Interferometry

In 1949, R. Hanbury Brown developed the idea of correlating the intensities mea-
sured by individual telescopes rather than the amplitudes. The motivation was to
determine stellar diameters using very long baselines avoiding – coming from radio
interferometry – the use of local oscillators. First results at radio wavelengths were
published only three years after the first idea [94]. Together with R.Q. Twiss,
Hanbury Brown developed the theory, first for radio interferometers [95] and then
for electromagnetic waves in general [97]. An intensity interferometer for the visi-
ble was eventually built by them near Narrabri in Australia in the early 1960s [96].
The history and theory of intensity interferometry are competently summarised in
Hanbury Brown’s book The Intensity Interferometer [93].

We will concentrate in the following on the concept of intensity interferometers
in the general context of coherence functions, and we will discuss the example of a
binary star to explain the concept.

We start by defining the instantaneous intensity

i.�; t/ D v.�; t/v�.�; t/ (2.82)
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as the product of optical disturbances. The instantaneous intensity like the optical
disturbance is a fast oscillating signal that cannot be measured directly. Therefore, in
Sect. 2.1, the intensity was defined as the time average (2.5) of this product, reading

I.�/ D < i.�; t/ > : (2.83)

In the present context however, we will discuss the instantaneous intensity before
calculating the time average. This is mathematically correct since the ergodicity of
the random emission process of light allows us first to calculate statistical averages
like the correlation and then to apply temporal averaging [87].

When introducing the coherence function as the second order moment of optical
disturbances in Sect. 2.3.1 it was not necessary to make any assumptions on the form
of the probability density function of the optical disturbances. Now, computing the
correlation of instantaneous intensities and, thus, the fourth order moment of opti-
cal disturbances, we make use of the common assumption that optical disturbances
v.�; t/ follow a circular Gaussian random process [87] meaning that the real and
imaginary part are independent, identically distributed zero-mean Gaussian random
numbers. Then, higher order moments are reduced to second order moments [147],
and the correlation of instantaneous intensities, measured at two different points
�1; �2 in the aperture plane (e.g., at two telescopes) and at different times t1; t2, is
written as

< i.�1; t1/i.�2; t2/ > D < v.�1; t1/v
�.�1; t1/v�.�2; t2/v.�2; t2/ >

D < v.�1; t1/v
�.�1; t1/ >< v�.�2; t2/v.�2; t2/ >

C < v.�1; t1/v
�.�2; t2/ >< v�.�1; t1/v.�2; t2/ >

D < i.�1; t1/ >< i.�2; t2/ > Cj < v.�1; t1/v�.�2; t2/>j2
D I.�1/I.�2/C j	 .�1 � �2; �/j2; (2.84)

with � the time difference t1� t2. Being a stationary random process the correlation
only depends on the time difference � .

Since we are interested in the fluctuations of the intensity we write down the
intensity covariance as

< i.�1; t C �/i.�2; t/ >cov D < i.�1; t C �/i.�2; t/ >

� < i.�1; t C �/ >< i.�2; t/ >

D j < v.�1; t C �/v�.�2; t/ > j2
D j	 .�1 � �2; �/j2: (2.85)

Thus, the intensity covariance is the squared modulus of the MCF 	 .�1 � �2; �/,
which is the correlation function of the optical disturbances (2.27).

We should keep in mind that in practice the intensities are measured in the focal
plane of each telescope individually. There is no interference of the amplitudes in a
common plane of observation as in Young’s experiment. The coordinate �i denotes
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the center of each telescope aperture, and the fact that the average of the intensity
over the telescope aperture is actually measured does not affect the conclusion of
this discussion.

One major shortcoming of the covariance of two intensities is that the phase of
the MCF is lost when the squared modulus of the MCF is computed, and real images
cannot be obtained. For binary stars this means that their separation can be measured
with high resolution but one cannot determine which one of the two is the “brighter”
star if they are of unequal intensity. More generally speaking, the symmetric content
of the image can be determined but not the asymmetric content (see Sect. A.1).

Computing the triple correlation of intensities, the phase of the MCF can be
recovered. We measure the intensities at three points �1; �2; �3 (three telescopes)
and at three moments in time t1; t2 and t3, writing the triple correlation as

< i1.t1/i2.t2/i3.t3/ > D
Z
i1.t C �1/i2.t C �2/i3.t/dt

D < jv1.t C �1/j2jv2.t C �2/j2jv3.t/j2 >; (2.86)

when the subscript i indicates the position �i where the intensity is measured, and
t1=2 are replaced by t C �1=2 and t3 by t .

Under the same assumption as above, that the optical disturbances follow a
circular Gaussian random process, we can reduce the sixth order moment of the
disturbances to combinations of second order moments [147], yielding

< i1.t C �1/i2.t C �2/i3.t/ > D I1I2I3

C I1j	23.�2/j2CI2j	13.�1/j2CI3j	12.�1��2/j2
C j	12.�1 � �2/jj	23.�2/jj	13.�1/j
� cos.
12.�1 � �2/C 
23.�2/�
13.�1//:

(2.87)

Similar to (2.84), we have the sum of the intensity products and of the squared MCF
j	ij .�i /j2 plus a term depending on the sum of MCF phases 
12.�1��2/C
23.�2/�

13.�1/. The latter is called the closure phase because it is the sum of phases around
a closed loop of three telescopes. Repeating this measurement for a large number of
configurations one can recover the phases 
ij of the individual baselines from the
closure phase [9, 84].

The intensity covariance in (2.85) represents the ideal result if the instantaneous
intensities i.�; t/ were measured with infinite temporal resolution. However, only
the time averaged intensity is available. Applying a temporal averaging over a period
T to the instantaneous intensities on the left hand side of (2.85) we have to calculate
the time average of j	 .�1 � �2; �/j2, now with respect to the time difference � :

j	 .�1 � �2; �/j2T D 1

T

Z �CT=2

��T=2
j	 .�1 � �2; �

0/j2d� 0: (2.88)
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If T is much smaller than the width of the MCF, the time averaged signal is
very similar to the original signal. Since the width of the MCF is determined by
the coherence time �c the intensities would have to be measured with a temporal
resolution better than the coherence time. However, even for a very narrow spectral
bandwidth �� of 1/1,000 of the frequency, e.g., � 	 1015 Hz in the visible, the
coherence time is approximately �c D 10�12 s, which is beyond the state of the art
of today’s detectors resolving signals only down to approximately T D 10�9 s.

If T is much larger than the width of the MCF, the time average of j	 .�1 �
�2; �/j2 is proportional to the coherence time �c [146]. The result is that the time
average of the MCF and thus the covariance of time averaged intensities (2.85) are
attenuated by a factor of �c=T D �f=�� compared to an ideal detector, reduc-
ing its sensitivity. �f D 1=T is the detector bandwidth. Diminishing the spectral
bandwidth�� reduces the intensity so that the overall situation does not change.

Therefore, the signal-to-noise ratio (SNR) of this measurement is independent
of the spectral bandwidth �� but it is proportional (1) to the spectral intensity of
the source – strictly speaking to the number of detected photo electrons per unit
optical bandwidth and per unit time –, (2) to

p
�f , the square root of the detector

bandwidth, and (3) to the square root of the integration time, limiting the sensitiv-
ity for a 5� SNR to stars of approximately magnitude 5 for 10-m class telescopes
and 10-min observations [97]. This does not compare very favourably to amplitude
interferometry reaching stars of magnitude 10 in a few 10 msec.

The averaging process does not affect the behaviour of the MCF with respect to
the spatial coordinates �i that is determined by the shape of the object. Thus, the
purpose of the intensity interferometer to measure the squared MCF as a function
of baseline B D �1 � �2 can be pursued.

Example: A Binary Star

The simple example of a binary star will give us an idea why the covariance of inten-
sities turns out to be the square of the correlation of optical disturbances, i.e., the
square of the MCF, and why only small frequency differences lead to a measurable
signal. However, the reasoning in the following on the plausibility of the concept
cannot replace a thorough mathematical analysis that can be found in [87, 93].

We place the individual stars at positions C˛0
0=2 and �˛0

0=2 and we assume that
Fraunhofer conditions (see Sect. 2.2.2) apply for the setup displayed in Fig. 2.21.
Then, the optical path length r1 for the light from the star at ˛0

0=2 can be approx-
imated by z1 C �1˛

0
0=2, and r2 by z1 � �1˛

0
0=2. We ignore the constant distance

z1, giving rise to a constant phase term, and we write the optical disturbance with
frequency � at position �1 as the sum of the individual contributions

v.�1; t/ D V0 cos

�

k�1
˛0
0

2
C 2��t C '1

�

C V0 cos

�

�k�1˛
0
0

2
C 2��t C '2

�

:

(2.89)
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α'0/2

−α'0/2

ξ
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r1

z

z1
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ξ1

Source Plane Aperture Plane

Fig. 2.21 A binary star separated by ˛0

0 at a distance z1 from the aperture plane with coordinate
�. The optical path lengths r1 and r2 between the individual stars and the position �1 are dis-
played. The separation of the binary and the distance allows for the application of the Fraunhofer
approximation with r1=2 � z1 ˙ �1˛

0

0=2

'1=2 are random phase terms considering the fact that the light from the two stars
although formally of the same frequency will have a variable phase difference due
to the random emission process in each star.

We can now write the instantaneous intensity as

i.�1; t/ D v2.�1; t/

D 4V 20 cos2
�

k�1
˛0
0

2
C '1 � '2

2

�

cos2
�

2��t C '1 C '2

2

�

: (2.90)

Since we cannot measure signals with a time resolution of the optical frequency we
apply a moving time average over a period T longer than 1=� but shorter than the
typical fluctuation of the random phases '1 and '2.

Then the second cos2 term that is a function of � averages to 1
2

. We call the
averaged signal iT .�1; t/, yielding

iT .�1; t/ D 1

T

Z t

t�T
i.�1; t

0/dt 0 D 2V 20 cos2
�

k�1
˛0
0

2
C �'

2

�

; (2.91)

with �' D '1 � '2. This is a periodic signal, like a fringe pattern, as a function
of the coordinate �1 in the aperture plane. The period length is determined by the
wavelength and by the separation of the binary. The time dependence of iT .�1; t/ is
determined by the randomly varying values of �'. If the random phases were zero
we formally would have a coherent binary in (2.89) – which is the same as a pair of
pinholes illuminated by a plane wave – displaying a fringe pattern as in (2.59).

The random phases '1 and '2 were introduced because the phase of the wave
with frequency � changes randomly each time wave trains are emitted by individ-
ual atoms. If the integration time T in (2.91) is extended beyond the typical time
constant of the fluctuations of the random phases, i.e., of their difference �', the
cos2 function is averaged to 1

2
, and one obtains the familiar expression of a constant

intensity iT .�1; t/ D V 20 in the aperture plane that is illuminated by two stars at a
large distance.
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What happens if light of two different frequencies interferes? We first have to add
optical disturbances of two different frequencies �1 and �2 in the first and second
term of (2.89), eventually obtaining the intensity time average over T as

iT .�1; t/ D 2V 20 cos2
�

k�1
˛0
0

2
C �'

2
C �.�1 � �2/t

�

: (2.92)

This means that as long as the frequency difference, the beat frequency, •� D �1��2
is smaller than 1=T , the contribution of these two frequencies to the intensity is tem-
porally resolved. However, we still cannot determine the separation ˛0

0 of the binary
because of the random phase �' taking different values for each measurement of
iT .�1; t/.

If the integration time T is both longer than 1=•� and longer than the time con-
stant of the phase difference �' then the fluctuations average out and the intensity
is constant with iT .�1; t/ D 2V 20 .

Regarding the interference of optical disturbances with different frequencies in
(2.92) seems to contradict our former statements that interference processes can be
computed by first determining the spectral intensity, and then by integrating these
intensities over the spectrum finding the polychromatic intensity (see e.g. Sect. 2.1).
However, this approximation is limited to the cases when the integration time T is
longer than the time scales of the fluctuations involved. Here in (2.92), we assume
explicitly that the T is shorter than the fluctuations so that extra terms have to be
considered. In the preceding sections, we were not interested in high frequency fluc-
tuations of the intensity but we discussed the (long) time average intensity of the
fringe pattern in order to determine the coherence function in the aperture plane.

The computation of the correlation between the two measured signals iT .�1; t C
�/ and iT .�2; t/ with frequency � – at positions �1 and �2 and at times t C � and
t – is now straightforward. With (2.91) and V 20 D 1 we obtain the product of the
intensities as

iT .�1; t C �/iT .�2; t/ D 4 cos2
�

k�1
˛0
0

2
C �'

2

�

cos2
�

k�2
˛0
0

2
C �'

2

�

D �
1C cos.k�1˛

0
0 C�'/

� �
1C cos.k�2˛

0
0 C�'/

�

D 1C cos.k�1˛0
0 C�'/

C1

2
cos.k.�1 � �2/˛

0
0/C 1

2
cos.k.�1 C �2/˛

0
0 C 2�'/

C cos.k�2˛0
0 C�'/: (2.93)

The correlation is the time average over a period that is long enough to average over
all fluctuations of the random process, i.e., much longer than T (see Sect. 2.3.1).
Then, all terms containing �' in (2.93) disappear since their average is zero,
yielding
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< iT .�1; t C �/iT .�2; t/ > D 1C 1

2
cos.k.�1 � �2/˛0

0/

D 1

2
C cos2

�

k.�1 � �2/˛
0
0

2

�

: (2.94)

This is the correlation of the intensities at �1 and �2 when observing a binary star
separated by ˛0

0 in monochromatic illumination at frequency �. As in the general
result in (2.84) we have a constant term and we found the squared modulus of the
MCF of a binary (see (3.75)).

If we now look again at the signal with two different frequencies �1 and �2 with
a frequency difference •� we obtain the intensity correlation as

< iT .�1; t C �/iT .�2; t/ >D 1

2
C cos2

�

k.�1 � �2/
˛0
0

2
C �•��

�

: (2.95)

This is the result if the integration time T is shorter than 1=•�. If the beat fre-
quency •� is larger than 1=T then the individual intensities iT .�i ; t/ are constant
and the intensity correlation is itself constant (see discussion after (2.92)) providing
a constant background signal.

In our deduction, we assumed that one star radiates with frequency �1 and its
neighbour with �2. If the spectrum were properly considered by having both stars
emit light of two frequencies, �1 and �2, the cos2 function in (2.95) would be
replaced by a product of two cos2 functions yielding

< iT .�1; t C �/iT .�2; t/ > D 1C cos2
�

k.�1 � �2/
˛0
0

2

�

cos2.�•��/ and

< iT .�1; t C �/iT .�2; t/ >cov D cos2
�

k.�1 � �2/
˛0
0

2

�

cos2.�•��/: (2.96)

Thus, the intensity covariance as a measure for the intensity fluctuations is
exactly the squared modulus of the MCF of a binary observed at two frequencies.
The MCF of a binary as the Fourier transform of its intensity distribution is
cos.kB˛0

0=2/, with B D �1 � �2, and cos.�•��/ is the Fourier transform of the
spectrum consisting of two spectral lines at �1 and �2. For this result, we assumed
that the integrals over � and ˛0 in the van Cittert–Zernike theorem can be treated
individually (see discussion following (2.47)).

As discussed above, only those frequencies contribute to the intensity fluctua-
tions that are separated by less than •� D 1=T and all those that are further apart
contribute to the background signal. The temporal resolution of the available detec-
tors limits T to about 10�9 s. Observing a finite spectrum that is usually much wider
than 109 Hz, the measured signal of the intensity covariance is the squared MCF
attenuated by •�=��, with �� the width of the observed spectrum [87]. Discussing
the time average of the squared MCF (2.88) we came to the same conclusion stating
that the fluctuations are reduced by a factor of �c=T , with �c D 1=�� the coherence
time.
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τ [10−9 sec]

<iT (ξ1, t+τ)iT (ξ2, t)>cov
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a b

Fig. 2.22 The measurement of the MCF (a) with an amplitude interferometer, e.g., Young’s
experiment, and (b) with an intensity interferometer. The observed binary star is separated by
˛0

0 D 6mas and two spectral lines are accounted for, centred around � D 2:2 
m, i.e.,
� D 1:37 
 1014 Hz, and separated by •� D 109 Hz. The separation of the two pinholes in the
aperture plane is the baseline B D �1 � �2 D 10m. The fringe pattern in Young’s experiment, (a),
which is the intensity distribution in the plane of observation due to interference of the amplitudes,
here as a function of time delay � , displays a visibility of about 0.9 according to the binary’s MCF
cos.kB˛0

0=2/ for the given parameters. With an intensity interferometer, (b), the measured signal
is the covariance between the intensities when the two intensity detectors replace the pinholes in
the aperture plane. Displayed is the covariance signal (2.96) given by cos2.�•��/ attenuated by
cos2.kB˛0

0=2/ D 0:92 , the latter being the squared modulus of the MCF

Figure 2.22 shows the comparison of interferometric measurements of a binary
star, separated by ˛0

0 D 6mas, with an amplitude interferometer (Fig. 2.22a) and
with an intensity interferometer (Fig. 2.22b). Out of the K-band, two spectral lines,
separated by •� D 109 Hz, are used. The separation of the pinholes is B D 10m.
The amplitude interferometer as in Young’s experiment shows a fringe pattern as a
function of time delay � with a fringe period of 1=� D 0:73�10�14 s (see Fig. 2.22a)
equivalent to �=B D 45mas fringe spacing. For these parameters the MCF of the
binary, cos.kB˛0

0=2/, has a value of 0.9 displayed by the reduced fringe contrast.
The beat frequency of •� D 109 Hz is about 105 times smaller than the average
frequency of � D 1:37 � 1014 Hz at 2.2
m, and gives rise to a periodic envelope,
cos.�•��/, of the fringe pattern with a period length of about 105 fringes, i.e., 2 �
10�8 s that cannot be displayed in Fig. 2.22a.

The square cos2.�•��/ of this envelope with a period length of the reciprocal of
the beat frequency of 1=•� D 10�9 s describes the intensity covariance (2.96) in an
intensity interferometer as displayed in Fig. 2.22b. Here, the detectors are placed at
the positions of the pinholes. The 6 mas separation of the binary reduces the maxi-
mum of the covariance to cos2.kB˛0

0=2/ D 0:92. The latter, the spatial part of the
MCF, is the quantity that we want to determine.

Writing these results as a function of OPD instead of time delay � , using OPD D
�c, we see that while the fringe spacing in the amplitude interferometer corresponds
to an OPD of �, i.e., 2.2
m in the example above, the spacing of two maxima in
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Fig. 2.22b corresponds to an OPD of c=•� D 30 cm. This comparison illustrates the
advantage of the intensity interferometer over the amplitude interferometer when it
comes to real interferometers. If two telescopes are used and the detectors are placed
at the end of an optical system, the optical path lengths can be several hundred
metres long including a large number of optical surfaces. In both the intensity and
the amplitude interferometer one has to make sure that the optical path difference,
OPD, is about zero so that we know how to define � D 0 in the measurement setup.
However, the requirements for an intensity interferometer are much more relaxed
compared to an amplitude interferometer.

For precise measurements with an amplitude interferometer, the OPD has to be
stable to a fraction of the wavelength, since the fringe pattern moves by one fringe
if the OPD varies by �. With an intensity interferometer, the relevant fringe spacing
is about 30 cm (see Fig. 2.22) so that the required OPD accuracy is in the centimetre
range.

By the same token, the random variations of the optical path lengths of sev-
eral micrometers caused by atmospheric turbulence (see Chap. 4) do not disturb the
measurement with an intensity interferometer since they are far below the relevant
stability requirement of some centimetres.

At the time when Hanbury Brown came up with his idea this was an enormous
advantage since the technology was not available to control the OPD with sub-
m
accuracy as required for an amplitude interferometer.

In the meantime, the problems of OPD control have been resolved, and ampli-
tude interferometers are in operation. Considering the severely limited sensitivity
of intensity interferometry (see discussion following (2.88)) there have been no
new attempts of building intensity interferometers. However, some new ideas based
on using a large number of telescopes, that are relatively cheap due to the low
requirement on optical quality, might lift the sensitivity to useful levels [173, 174].



Chapter 3
Imaging Process: Propagation Through
Optical Systems

So far, we have discussed the propagation of light – of the amplitude and of the
coherence function – through free space, from an incoherent light source at a very
large distance to the plane of observation, and its diffraction at single and multi-
ple apertures. We introduced Young’s experiment as an instrument to measure the
coherence function by determining contrast and position of the diffraction fringes.
In Sect. 2.2, the diffraction of light at an aperture was investigated, and the case of
an optical system was made by introducing the lens.

In this chapter, we will link these two formalism describing what is effectively
the imaging process in optical systems.

This process involves multiple integrals that can be grouped in different ways
in order to focus on different aspects of the propagation process. We will mainly
restrict the discussion to incoherent light sources, and we will assume that Fresnel
conditions apply and only the intensity is measured in the image plane. For the sake
of completion we will take little excursions discussing coherent light sources and
the coherence properties in the image plane.

In the first section, Fourier Optics as the “classical” imaging theory will be dis-
cussed, introducing the optical transfer function and optical aberrations. The second
section will describe the propagation of the coherence function through optical sys-
tems. Regarding again the intensity distribution in the image plane, we will find a
formalism that is identical to Fourier Optics. Two special cases, imaging of coherent
sources and the coherence function in the image plane will be treated at the end.

In the third section, we will apply this formalism to interferometers, first dis-
cussing Young’s Experiment as an imaging system and then interferometers with
apertures of finite size. A brief section will be devoted to investigating the coher-
ence properties of the light in the fringe pattern. We will look at the implications
of the object size and the field of view connecting the findings in this chapter on
imaging to the general concept of the quasi-monochromatic approximation in the
first chapter. In the final section, the uv-plane coverage and image reconstruction
methods will be discussed.

A. Glindemann, Principles of Stellar Interferometry, Astronomy and Astrophysics
Library, DOI 10.1007/978-3-642-15028-9 3,
c� Springer-Verlag Berlin Heidelberg 2011
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z1 = Fz0

Image Plane

α'x
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Fig. 3.1 The geometry of the imaging process with a source at a very large distance z0 . The aper-
ture plane contains a thin lens of focal length F and diameter D, imaging the source into the
image plane, in this case the focal plane, at distance F from the aperture plane. The coordinates
in the source and in the image plane are angles ˛0 and ˛ respectively, and the z axis represents
the optical axis. The axes in the source plane are deliberately inverted in order to consider the fact
that the object is imaged upside down. Note that using a single lens for imaging, the angular mag-
nification factor of the imaging process is always unity. In the aperture plane spatial frequencies
f� D .f� ; f�/ D �=� are used

3.1 Fourier Optics

Assuming monochromatic illumination, we discuss the propagation of the ampli-
tude through an optical system. This process can be separated into two steps. First,
we calculate the propagation from the object into the aperture plane (see Fig. 3.1).
Then, we calculate the propagation further into the image plane. For convenience,
the optical system is represented by a single focussing element, a thin lens. Then, the
entrance and the exit pupils1 lie on top of each other in the aperture plane resulting
in an angular magnification factor mp D ˛=˛0 D 1. Optical systems with more than
one optical element have the entrance and exit pupils at different positions and the
angular magnification factor can be mp ¤ 1.

Spatial frequencies defined as f� D �=� are introduced in the aperture plane.
For the time being, we can regard f� as a spatial coordinate calibrated by the wave-
length, and we express the aperture function A as a function of f� . It should be
noted that the diameter of a circular aperture, as a function of f� , is now wave-
length dependent, f�;D D D=�. In the following section on Fourier optics, we will
see why it is advantageous to define the aperture as a function of f� and why the
interpretation as a spatial frequency is adequate.

We first regard a single source point on-axis at ˛0 = 0 emitting a monochro-
matic spherical wave. Assuming that the source is at a very large distance z0,
an approximately plane wave arrives in the aperture plane. Introducing the thin
lens, L.f�/ D exp.�i 2�jf� j2�=.2F //, in the aperture plane, we write the
monochromatic amplitude V.˛/ in the image plane, similar to (2.21), as

1 The entrance and the exit pupils are images of the aperture that are produced by the optical
elements before and after the real aperture respectively.
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V.˛/ D �

if

Z
Vap.f�/L.f�/e

i2�jf� j2�=.2z1/ e�i2�f� �˛ df�

D �

if

Z
Vap.f�/e

�i2�f� �˛ df� ; (3.1)

where the quadratic phase term jf� j2�=.2z1/ due to Fresnel diffraction cancels
with the quadratic phase term �jf� j2�=.2F / that was introduced by the lens with
focal length F , since we observe in the focal plane with z1 D F , as discussed in
Sect. 2.2.2. Replacing d� in (2.22) by df��

2 yields the factor � before the integral.
At a very small distance �z1 out of focus, at z1 D F C �z1, a quadratic term

�jf� j2��z1=.2F 2/ remains. This phase term can be interpreted as an aberration
function for defocus.
Vap.f�/ is the amplitude in the aperture plane, with Vap.f�/ D V.f�/A.f�/, and

V.f�/ D V0 D const in the case of a single source point on-axis representing an
approximately plane wave in the aperture plane.

Then, the shape of the amplitude V.˛/ in (3.1) is the Fourier transform of the
aperture function A.f�/ (see the discussion following (2.22)), and the monochro-
matic intensity distribution I.˛/ in the image plane is given by

I.˛/ D jV.˛/j2 D V 20
�2

F 2

ˇ
ˇ
ˇ
ˇ

Z
A.f�/e

�i2�f� �˛ df�

ˇ
ˇ
ˇ
ˇ

2

: (3.2)

This is the diffraction limited image of a point source at infinity. The shape of the
amplitude is given by the Fraunhofer diffraction pattern of the aperture in the image
plane (see Sect. 2.2.2).

The shape of the image intensity distribution is described by the dimensionless
point-spread function (PSF) of the optical system denoted by

PSF.˛/ D I.˛/

V 20
: (3.3)

Discussing monochromatic illumination in this section, we keep writing the PSF
as a function of ˛ only, considering the wavelength as a constant parameter.

In astronomical telescopes with a circular aperture the diffraction limited inten-
sity distribution is called the Airy disk (see Sect. 2.2.3) that has the form of a Besinc2

function (2.26).
To find the intensity distribution in the image plane one has to sum up individual

PSFs, each weighted according to the object intensity. This assumes that the PSF
is shift-invariant over the field of view, i.e. that the so-called isoplanatic angle is
larger than the size of the source. We will see in the context of imaging through
atmospheric turbulence in Sect. 4.3 that the isoplanatic angle can be much smaller
than the field of view.
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3.1.1 The Optical Transfer Function

The linear superposition of shift-invariant PSFs is replaced by the integral over the
source yielding the convolution of the object intensity distribution that, from now
on, we will denote by O.˛0/, with the PSF:

I.˛/ D
Z
O.˛0/ PSF.˛ � ˛0/ d˛0

D O.˛/ � PSF.˛/; (3.4)

with � denoting the convolution. This formula is valid for an angular magnification
factor mp D 1. In general, one has to write O.˛=mp/ � PSF.˛/.

It is difficult to link the properties of the PSF through the convolution to the qual-
ity of the full image. In Sect. 2.2.3 we made an effort discussing the resolving power
of an optical telescope by introducing the Rayleigh criterion defining the radius of
the first minimum of the Airy disk as the limit of angular resolution. In general, one
has to look at the transfer function of the optical system. The mathematical concept
that we have for this purpose is called Fourier Optics.

The convolution of the object intensity with the PSF in image space can be
replaced by a multiplication in Fourier space. This very general property, called
the convolution theorem, can be used when Fourier transforming both sides of (3.4)
turning the Fourier transform of the convolution into the product of the individual
Fourier transforms of the object intensity O.˛/ and of PSF.˛/ (see Appendix A.1).

Before doing so, we have, a closer look at the PSF. Rearranging the order of
integration in (3.2) yields

PSF.˛/ D �2

F 2

ZZ
A.f�;1/ A

�.f�;2/e�i2�.f�;1�f�;2/�˛ df�;1df�;2; (3.5)

and introducing the difference of two spatial frequency vectors R D .u; v/ D f�;1�
f�;2 as a new variable, the optical transfer function (OTF) is defined as

OTF.R/ WD �2

F 2

Z
A.f�;1/A

�.f�;1 � R/ df�;1 ; (3.6)

which is the autocorrelation of the aperture functionA.f�/.2 Note that the shapes of
the aperture functionA.f�/ and of the OTF – being functions of spatial frequency –
vary with wavelength. This is not particularly relevant for the discussion in this
section treating only monochromatic light but it will have to be considered carefully
when moving to polychromatic illumination.

2 The correlation (3.6) differs from the convolution (3.4) by a change of sign in the coordinate of
the second function and by using the conjugate complex of the second function.
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In the presence of optical aberrations that are accounted for in the phase '.f�/ of
the aperture function A.f�/, the OTF is a complex quantity with the phase denoted
by 
OTF. A few cases of optical aberrations will be discussed in Sect. 3.1.2. In the
case of chromatic aberrations, i.e. if the shape of the phase is wavelength dependent,
'.f�/ and the phase 
OTF become functions of wavelength.

NB 5. It is customary to define a normalised OTF with OTF(0) D 1. We would,
thus, have to divide the OTF in (3.6) by .�=F /2

R jA.f�/j2df� . This would simplify
the treatment of the optical system in the context of linear systems theory. With a
normalised OTF the relative influence on individual spatial frequencies is easy to
judge. However, the normalization complicates the formal treatment that we apply.
Therefore, we will maintain our definition but, for simplification, we will display the
OTF always as a normalised function.

It is important to note that the OTF is a function of the difference R D f�;1�f�;2
of two spatial frequency vectors in the aperture plane and not a function of the spatial
frequency vector f� itself in the aperture plane.

This has to be kept in mind when linking the OTF to features of the aperture
function. Discussing for example off-axis apertures one finds that the OTF will still
be an even function centred at R D 0. When treating interferometric imaging with
two and more telescopes we have to keep this in mind.

The OTF of a telescope without aberrations is displayed in Fig. 3.2 together with
a graphical example of how to compute the value of the OTF at a given spatial
frequency R0. Here, the OTF is a real function. Examples of complex OTF with
optical aberrations will be discussed in the next section.

fξ = ξ/λ

fζ = ζ/λ

R0 = (u0, v0)A( fξ)

A*( fξ−R0)

15

–150.5

–15

15

OTF(R)

v [arcsec–1]

u [arcsec–1]

 = OTF(R0) = (λ/F)2 ∫ A( fξ) A
*( fξ−R0) dfξ

OTF(R0)

1

0

0

0

D/λ

v0

u0

R = (u, v)

Fig. 3.2 The optical transfer function (OTF) of a circular aperture without aberrations. On the
left, the real and positive OTF is displayed. It has a triangular shape reaching zero at jRj D
D=� D 17:6 arcsec�1 for an 8-m telescope in the K-band. Its Fourier transform, the PSF of a
circular aperture, is the Airy disk. In general, if the telescope has aberrations, the OTF is a complex
function. On the right, an example for the calculation of the autocorrelation of the aperture function
A.f� / is shown. The autocorrelation integral at the arbitrary value R0 is illustrated by the shaded
overlapping area between the two apertures
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V(α)

PSF(α)

A( fξ)

uv-PlaneImage Plane

V (α)V*(α)

OTF(R)

 A( fξ) A*( fξ−R) d fξ∫

Fig. 3.3 Illustration of the autocorrelation theorem, called the Wiener–Khinchine theorem. The
PSF being the modulus squared of the amplitude V .˛/ – and, thus, real and positive – implies that
the OTF is the autocorrelation function of the aperture function A.f� / of the optical system, which
is the Fourier transform of the amplitude V .˛/

Inserting (3.6) in (3.5), we find that the PSF is the Fourier transform of the OTF,

PSF.˛/ D
Z

OTF.R/e�i2�R�˛ dR : (3.7)

With the PSF being a real function by definition, the OTF is Hermitian meaning
that the modulus of the OTF is an even function, jOTF.R/j D jOTF.�R/j, and the
phase is an odd function, ˚OTF.R/ D �˚OTF.�R/ (see Appendix A.1).

The PSF is also a positive function by definition, given by the product of the
amplitudes V.˛/V �.˛/, see (3.2) and (3.3). Because of this, its Fourier transform,
the OTF, is the autocorrelation of the aperture function A.f�/, (3.6), with A.f�/
being related to V.˛/ by a Fourier transform, (3.1). This is called the autocorrelation
theorem, or the Wiener–Khinchine theorem that is illustrated in Fig. 3.3.

Generally speaking, any real and positive function, like the PSF, has a Fourier
transform that is Hermitian, like the OTF, and can be expressed as an autocorrelation
of another function, like A.f�/. While this point seems a bit academic in this con-
text, we will see its importance in Sect. 3.4 when discussing image reconstruction
from multi-baseline visibility measurements [17, 102, 119].

With the definition of the OTF at hand, we now discuss the Fourier transform
of the convolution, O.˛/ � PSF.˛/ (3.4), that describes the imaging process. The
convolution in image space is then replaced by a multiplication in Fourier space.
Formally, we use the Fourier back-transform, writing

F�1
˛ .I.˛// D F�1

˛

�
O.˛/ � PSF.˛/

�

D F�1
˛

�
O.˛/

�F�1
˛

�
PSF.˛/

�
: (3.8)

Replacing the Fourier back-transform of the PSF by the OTF (see 3.7) and intro-
ducing the spatial frequency spectra OO.R/ and OI .R/ of the object and image
intensity as

OO.R/ D F�1
˛ .O.˛// D

Z
O.˛/ei2�R�˛ d˛; (3.9)
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and

OI .R/ D F�1
˛ .I.˛// D

Z
I.˛/ei2�R�˛ d˛ ; (3.10)

we can write

OI .R/ D OO.R/OTF.R/: (3.11)

The image intensity spectrum OI .R/ is the product of OTF and OO.R/. This mul-
tiplication is equivalent to filtering the spatial frequency spectrum of the object
intensity, with the optical transfer function acting as a filter.

In the context of this section, Fourier transforms of intensity distributions appear
as rather abstract mathematical quantities that are very useful to describe the imag-
ing process. However, when discussing the propagation of the coherence function
in Sect. 3.2 we will be reminded that for monochromatic light, the spatial fre-
quency spectrum as the Fourier transform of the object intensity distribution is
identical to the visibility function in the aperture plane according to the van Cittert–
Zernike theorem (2.45), putting the concept of Fourier optics in the context of stellar
interferometry.

With the definition of the spatial frequency spectra OI .R/ and OO.R/ as Fourier
transforms of the intensity distributions I.˛/ and O.˛/, the coordinate R can be
interpreted with respect to the variables of the Fourier transform. Since the vari-
able of the intensity distribution, ˛, is an angle (a spatial coordinate) the variable
of its Fourier transform, R, is a spatial frequency with the dimension 1/angle.
The introduction of spatial frequency, f� D �=�, and R D f�;1� f�;2, enables this
interpretation since the exponential kernel of the Fourier transform, 2�

�
.�1 � �2/ � ˛

in (2.45) reads as 2�R � ˛ in (3.10), providing a Fourier transform between the
coordinates ˛ and R.

We will continue to discuss the imaging process in the notation with spatial fre-
quency spectra in this section. Putting aside the aspects of the coherence properties
we concentrate on the imaging process preparing the formalism that we will use
later when discussing the situation in stellar interferometers.

The consequence of the definition of the spatial frequency is that the spec-
trum OO.R/ only depends on the shape of the object. An object with a wavelength
independent circular diameter ˛0 has a spatial frequency spectrum that is also
independent of wavelength. OO.R/ has the form of a Besinc-function with its first
minimum at R0 D 1:22=˛0 (see Fig. 3.4). Calculating the visibility function as a
function of �1��2 the first minimum is at j�1��2j0 D 1:22�=˛0 (see the example
of Venus in Fig. 2.13).

The advantage of having wavelength independent spatial frequency spectra brings
with it the disadvantage of a wavelength dependent OTF.R/ being a function of spa-
tial frequency. For a circular aperture with diameter D the wavelength dependent
OTF radius is D=� (see Fig. 3.2).

Apart from facilitating the formal treatment, the reasons for introducing spa-
tial frequencies are partially historical. In the late 1930’s, Fourier methods for the
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Fig. 3.4 Profile of the spatial
frequency spectrum OO.R/ of
a disk shaped object with a
diameter of ˛0 D 10mas as a
function of R D jRj. OO.R/
follows a Besinc-function
with the first zero at R0 D
1:22=˛0 D 122 arcsec�1
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analysis of optical systems were described by P.M. Duffieux [64, 65]. One of the
first applications was the optimization of television camera lenses, treating them as
linear systems like in signal theory [208]. Then, the coordinate-pair time-frequency
was replaced by the pair spatial coordinate-spatial frequency and the mathematical
tools were applied to optical systems [177].

Since we are interested in computing the image intensity I.˛/, we rewrite
(3.11) as

I.˛/ D FR
� OI .R/

�
D FR

� OO.R/OTF.R/
�
; (3.12)

expressing the image intensity distribution as a Fourier transform of the product of
the object’s spatial frequency spectrum multiplied by the transfer function of the
optical system.

The general concept of a spatial frequency spectrum calls for the interpretation
of an object as a superposition of cosine functions with different spatial frequencies.
Their amplitudes and phases form the Fourier spectrum.

For example, a source with the shape of a circular disk has a Fourier transform
given by a Besinc-function displayed in Fig. 3.4. The spatial frequency spectrum in
the form of a Besinc-function indicates that low spatial frequencies with rather high
amplitude are combined with higher spatial frequencies with lower amplitudes of
alternating signs since the Besinc-function has also negative values.

The product of a Besinc-function with an OTF like in Fig. 3.2 shows a sharper
decrease than the Besinc-function alone, and eventually, beyond the cut-off fre-
quency at D=�, the product drops to zero. This has the effect that the sharp
rectangular shape of the disk is softened and the edges are round rather than square.
One could say that the “sharpness” of the image is lost if high frequencies are cut off.

Another example is that of a binary star that can be used to discuss criteria of
angular resolution in the spatial frequency spectrum. A binary star is represented
by the sum of two •-functions:

O.˛/ D 1

2

�
•
�j˛ � ˛0

2
j�C •

�j˛ C ˛0

2
j�
�
; (3.13)
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with the components symmetrical to the optical axis at C and �˛0=2 and of equal
intensity of 1/2. ˛0 is called the separation vector.

The Fourier transform of the object intensity is then (see (A.4))

OO.R/ D cos
�
2�

˛0

2
� R
�
: (3.14)

This cosine function – forming the spectrum of the binary – provides at each spatial
frequency R the value of the amplitude, which in turn determines the weighting in
the superposition of cosine functions when computing the object intensity as the
Fourier back transform of the spectrum.

The spectrum OO.R/ is multiplied by the OTF in order to obtain the image
intensity spectrum OI .R/, see (3.11) and Fig. 3.5.

Angular resolution criteria that were discussed in Sect. 2.2.3 by using properties
of the Airy disk can now be discussed in frequency space. The binary star is called
resolved if a full period of the cosine function (3.14) is transferred by the OTF. This
is the case if the first zero of the OTF at R D D=� is equal to 1=˛0. The separation
˛0 of the resolvable binary star is then ˛0 D �=D. This resolution limit was given
in Sect. 2.2.3 when it was linked to the full width at half maximum (FWHM) of the
Airy disk.

=

I^(R)O^(R) OTF(R)

=

I(α)O(α) PSF(α)

–1

α
–1

α
R

Fig. 3.5 The illustration of the imaging process at the limit of angular resolution with a circu-
lar aperture. The top row displays the convolution (�) of the object intensity O.˛/ – in this case a
binary star separated by ˛0 D �=D – with the PSF, the Airy disk, yielding the image intensity I.˛/.
The bottom row shows the situation in Fourier space: The OTF with radius D=� is multiplied (
)
by the object intensity spectrum OO.R/ (3.14), a cosine function (one period is displayed) since we
regard a binary star. If the separation ˛0 of the binary is chosen as ˛0 D �=D then the OTF is
wide enough to transfer one full period of the cosine function. The resulting image intensity spec-
trum OI .R/ is significantly narrower than the OTF along the separation vector ˛0 and unaffected
perpendicular to its direction. Its Fourier transform displays the image intensity I.˛/ that can just
be resolved as a binary



82 3 Imaging Process: Propagation Through Optical Systems

Using ˛0 D �=D as a limit of resolution is reasonable since the system does not
transfer spatial frequencies larger than D=�. On the other hand, even a separation
smaller than ˛0, when one period of the cosine function is wider than the OTF,
affects the resulting image spectrum still making it narrower in the direction of the
separation vector, similar to Fig. 3.5. Equivalently, the resulting image intensity is
wider than it would be for a single star, as discussed in Sect. 2.2.3. This deviation
from the perfect circular symmetry can obviously not be measured for arbitrary
small values since the measurement is never perfect. Thus, �=D is a reasonable
limit of resolution if the criterion is to resolve two objects as two local maxima. The
actual detectability of two objects depends on the imaging situation, the quality of
the measurement, the type of object and can be better than �=D.

The Rayleigh criterion of resolution that was defined as the distance between
the maximum of the PSF and the first minimum at 1.22�/D is more conservative
requiring a larger separation ˛0 D 1:22 �=D of a resolvable binary star. Then, the
cosine in the spatial frequency spectrum in (3.14) is narrower and the OTF transfers
slightly more than one period of the cosine function. Eventually, the more periods
of the cosine functions are transferred, the more the image intensity distribution
resembles a binary star.

Examples of complex OTF in the presence of aberrations will be discussed in the
next section before we move on to the propagation of the coherence function.

3.1.2 Optical Aberrations: The Zernike Polynomials

Diffraction limited imaging that we have discussed so far is a rather exceptional
case in real imaging situations. Usually, the optical wave front does not leave the
optical system as a spherical wave converging in the focus, but there are aberrations
from the spherical shape due to the imperfections of the optical elements or due to
atmospheric turbulence when the light from a star travels through the atmosphere.
These aberrations cause the Airy disk to change its shape to something wider than
�=D, decreasing the image quality and the angular resolution.

The exact form of the PSF depends on the form of the optical aberrations and
can range from a well defined shape in the case of classical aberrations to something
highly irregular in the case of atmospheric turbulence.

Optical aberrations are accounted for by a phase term ' in the exponential of the
complex aperture functionA.f�/ D P.f�/ei'.f� / as a function of spatial frequency
f� D �=�, when P.f�/ denotes the shape of the telescope aperture.

The Strehl ratio is a simple metric that is often used when describing the image
quality of adaptive optics systems (see Sect. 6.3). It is the defined as the ratio
between the peak of the PSF and the peak of the Airy disk. The aberrations can be
related to the Strehl ratio in a simple way, using the Maréchal approximation [19]. If
the phase variance �2' is smaller than about�2=4, the Strehl ratio is approximated by

S D e�	2
' : (3.15)
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In the following, we will discuss PSF and OTF for classical aberrations, and we
will regard the symmetry properties. The case of atmospheric turbulence will be
treated in Sect. 4.3.3.

Usually, Zernike polynomials are employed to describe aberrations. They were
introduced in 1934 by F. Zernike who deduced them from the Jacobi polynomials
and slightly modified them for the application in optics [258]. Zernike polynomials
have the advantage that they are defined on the unit circle fitting the circular shape of
most optical apertures and that the low order terms are related to the classical aber-
rations like astigmatism, coma and spherical aberration. The influence of the central
obscuration due to the secondary mirror in astronomical telescopes is negligible for
this discussion.

The Zernike polynomials form a set of orthogonal polynomials and it is con-
venient to write them as a function of polar coordinates � and � , with � D
jf� j=.f�;D=2/ � 1, with f�;D D D=� and D the diameter of the aperture. The
normalization is chosen such that the variance of each polynomial over the circle is
set equal to 1 rad2, yielding

Zjeven D p
nC 1 Rmn .�/

p
2 cos.m�/; for m ¤ 0;

Zjodd D p
nC 1 Rmn .�/

p
2 sin.m�/; for m ¤ 0; (3.16)

Zj D p
nC 1 R0n.�/; for m D 0;

where

Rmn .�/ D
n�m

2X

sD0

.�1/s.n� s/Š

sŠ.nCm
2

� s/Š .n�m
2

� s/Š
�n�2s : (3.17)

Table 3.1 shows the low order Zernike polynomials when the columns m indicate
the azimuthal orders and the rows n the radial orders.

Table 3.1 Zernike polynomials Zj for j D 1 to 11. n is the radial order and m the azimuthal
order. The modes are ordered such that even j correspond to the symmetric modes given by cosm�
and odd j to the antisymmetric modes given by sinm�

n m D 0 1 2 3

0 Z1 D 1

(piston)
1 Z2 D 2� cos �

Z3 D 2� sin �
(tip and tilt)

2 Z4 D p
3 .2�2 � 1/ Z5 D p

6 �2 sin 2�
(focus) Z6 D p

6 �2 cos 2�
(astigmatism)

3 Z7 D p
8.3�3 � 2�/ sin � Z9 D p

8�3 sin 3�
Z8 D p

8.3�3 � 2�/ cos � Z10 D p
8�3 cos 3�

(coma) (trefoil)
4 Z11 D p

5.6�4 � 6�2 C 1/

(spherical aberration)
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If the optical aberrations are composed of a multitude of Zernike polynomials
the weighted sum forms the aberration function

'.�; �/ D
1X

iD1
aiZi .�; �/; (3.18)

and the coefficients ai , using the orthogonality, are given by

ai D
Z

aperture

.�; �/Zi .�; �/�d�d�: (3.19)

Here, we will discuss only two examples, the Zernike polynomials for the classi-
cal aberrations astigmatism, Z8 with m D 2 and n D 2, and coma, Z5 with m D 1

and n D 3, that are displayed in Fig. 3.6.
It is interesting to note that every Zernike polynomial is balanced in order to min-

imise the remaining aberration. For instance, if pure coma is considered to be / �3,
the Zernike coma (Z7 and Z8) has an additional linear term � that tilts the wave
front so that the contribution of this aberration is minimised in the sense that the
integral over the square of the aberrationZ27 , the phase variance, is at a minimum.

The PSFs are computed by first Fourier transforming the aperture functionA.f�/
obtaining the shape of the amplitude V.˛/ in the image plane (3.1). The PSF
describes the shape of the squared modulus jV.˛/j2, i.e. the intensity, using (3.2),
(3.3) and A.f�/ D P.f�/ei'.f� /:

PSF.˛/ D �2

F 2

ˇ
ˇ
ˇ
ˇ

Z
P.f�/e

�i.2�f� �˛�'.f�// df�

ˇ
ˇ
ˇ
ˇ

2

: (3.20)

θ

ξ

ρ

ζ

Astigmatism: Z5 =  6 ρ2 sin 2θÖ Coma: Z8 =  8 (3ρ3 − 2ρ) cos θÖ

Fig. 3.6 Zernike polynomials for astigmatism Z5.�; �/ and coma Z8.�; �/ in the notation with
polar coordinates � D .�; �/. The aperture has the radius � D 1 since Zernike polynomials are
defined on the unit circle. The polynomial for astigmatism is an even, or symmetric, function
Z5.�/ D Z5.��/ and the polynomial for coma is an odd, or anti-symmetric, function Z8.�/ D
�Z8.��/, both with respect to the centre of the aperture
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Fig. 3.7 Point-spread functions (PSFs) for astigmatism and coma. On the left, the PSF with
astigmatism is an even function, point-symmetric with respect to the image centre, PSF.˛/ D
PSF.�˛/. On the right the PSF with coma shows an axis-symmetry with respect to the ˛x-axis

In the presence of astigmatism as an even function, the PSF is also an even function.
In the case of coma as an odd function, '.f�/ D �'.�f�/, the PSF shows an
axis-symmetry with respect to the ˛x-axis. Both PSFs are displayed in Fig. 3.7.

The influence of both astigmatism and coma on the image quality is difficult to
interpret because of the convolution of the object intensity distribution with the PSF,
(3.4). Therefore, we compute the OTFs by Fourier transforming the PSFs, (3.7). We
should remember, that due to the PSF being real by definition, the OTF is Hermitian,
with even modulus and odd phase function.

For astigmatism, with a real and even PSF, the OTF is also a real and even func-
tion with rather high values along the diagonals. Writing the OTF as modulus and
phase, the negative values are denoted by an OTF phase of ˙� .

In the case of coma, the modulus of the OTF is not perfectly round but it is
narrower along the direction of the large overall slope of the OTF phase. The latter
is an odd function similar to the Zernike polynomial for coma. The axis-symmetry
of the PSF is reflected by the axis-symmetry of the OTF phase with respect to the
u-axis.

Compared to the diffraction limited OTF in Fig. 3.2, the moduli of the aberrated
OTFs in Fig. 3.8 both show a narrow peak and a wide disk dropping to zero at
the diffraction limit. This means that, while low spatial frequencies are transferred
rather well, higher spatial frequencies are attenuated due to low values of the OTF
modulus and may additionally suffer a phase shift due to the OTF phase. Compared
to the diffraction limited case, the overall deterioration of the transfer of high spatial
frequencies in the case of aberrations results in PSFs that are wider than in the
diffraction limited case.

It is the goal to optimise the image quality by minimising optical aberrations
when designing optical systems. We have seen here, that this is equivalent to max-
imising the OTF with the upper limit being the diffraction limited OTF as in Fig. 3.2.
Especially if the optical quality is close to the diffraction limit it is important to
optimise the OTF and not only the optical aberrations in the design process [60,105].

Since the role of the phase of the OTF and of the visibility function is important
for the imaging process, we have a closer look.
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Fig. 3.8 Modulus (top row) and phase (bottom row) of optical transfer functions (OTF) with
astigmatism (left) and coma (right) as a function of spatial frequency R D .u; v/. The phase 
OTF

of the OTF with astigmatism (left) has only values of 0 and ˙� since the OTF is a real function
with negative values for 
OTF D ˙� . While the OTF phase with astigmatism on the left lost all
resemblance to the Zernike polynomial for astigmatism, the phase 
OTF of the OTF with coma
(right) is not dissimilar to the Zernike polynomial for coma (see Fig. 3.6)

What happens if we try to calculate a PSF with the modulus of the OTF only,
ignoring its phase? In the case of astigmatism one would obtain a PSF that is very
similar to the one in Fig. 3.7 since the non-zero phase values are ˙� creating the
negative parts of the OTF with very small values. However, in the case of coma,
Fourier transforming only the OTF modulus gives a PSF that is very dissimilar to
the correct PSF in Fig. 3.7. In fact, one would recover only the even parts of the PSF
that look not at all like the PSF for coma in Fig. 3.7 (see Appendix A.1).

These examples show the importance of the phase of a Fourier transform. The
characteristics of the Fourier pair PSF–OTF can be applied directly to the pair stellar
intensity distribution–coherence function. If the phase of the coherence function is
not determined, one assumes implicitly that the stellar intensity distribution must be
an even function. Or one is content with just determining the even part of the stellar
intensity distribution.

Fourier Optics: Summary

The propagation of light through optical systems is a two-step process, first
from the source plane into the pupil plane, and then from the pupil plane
into the image plane. Discussing the principle, we choose a thin lens as the
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simplest form of an optical system. Then, the aperture of the lens is the pupil
of the system.

For the propagation of the amplitude we regard a single point at a large
distance emitting a monochromatic spherical wave that arrives as an approx-
imately plane wave in the aperture plane. The spatial coordinate � in the
aperture plane is replaced by the spatial frequency f� defined as f� D �=�.
We write the amplitude of the plane wave as V.f�/ D V0 = const.

The amplitude V.˛/ in the image plane at a distance z1 D F , i.e. in
the focal plane of the thin lens, is then the Fourier transform of the aperture
function, and the monochromatic intensity in the image plane can be written as

I.˛/ D jV.˛/j2 D V 20
�2

F 2

ˇ
ˇ
ˇ
ˇ

Z
A.f�/e

�i2�f� �˛ df�

ˇ
ˇ
ˇ
ˇ

2

; (3.2)

with A.f�/ the aperture function, containing aberrations of the optical system
in its phase and the transmission in its modulus.

The shape of the intensity distribution is called the point-spread function
(PSF), with PSF.˛/ D I.˛/=V 20 . In astronomical telescopes with a circular
aperture, the intensity distribution is called the Airy disk and its shape has the
form of a Besinc2 function.

Rearranging the order of integration in (3.2), the optical transfer function
(OTF) is defined as

OTF.R/ WD �2

F 2

Z
A.f�;1/A

�.f�;1 � R/ df�;1 ; (3.6)

as a function of R D .u; v/ D f�;1�f�;2, and the PSF is the Fourier transform
of the OTF

PSF.˛/ D I.˛/

V 20
D
Z

OTF.R/e�i2�R�˛ dR : (3.7)

Discussing instead of a point source an extended incoherent source emit-
ting monochromatic light, the object intensity distributionO.˛0/ is written as
a function of the image plane coordinate ˛, with O.˛/ D O.˛0/ since we
discuss the case of a thin lens with an angular magnification factor of 1.O.˛/
is convolved with the PSF to obtain the intensity distribution in the image
plane as

I.˛/ D O.˛/ � PSF.˛/; (3.4)

with O.˛/ the source intensity distribution and I.˛/ the image intensity
distribution.

It is a basic property of Fourier transforms that a convolution is equivalent
to a multiplication in Fourier space. Therefore, we introduce the spatial
frequency spectrum OO.R/, in general a complex function, as the Fourier
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transform of the source intensity O.˛/, writing the image intensity distribu-
tion as

I.˛/ D FR
� OO.R/OTF.R/

�
: (3.12)

In this notation, the imaging process is a linear process, with the OTF acting
as a filter on the spatial frequency spectrum OO.R/ of the source intensity.

3.2 The Coherence Function

The propagation of the coherence function, i.e. the coherence properties of light
propagating through an optical system, can be separated into two steps, from the
star in the source plane into the aperture plane, and then further on into the image
plane of the telescope, denoting planes and coordinates as in Fig. 3.1. We will apply
the van Cittert–Zernike theorem describing the propagation of the MSDF (2.42) first
for the propagation from the source plane into the aperture plane and a second time
for the propagation into the image plane.

We will see that, observing incoherent objects, the source can be described by
the intensity distribution instead of the MSDF, facilitating the step from the source
plane into the aperture plane. In the image plane, using detectors that measure the
intensity, we can also restrict the discussion to the intensity as a special case of
the coherence function. Thus, we discuss the coherence function only in the aper-
ture plane. Nevertheless the complete formalism is required to properly describe the
imaging process.

For the sake of completion, the case of a coherent source and of the coherence
properties in the image plane – i.e. the MSDF in the source and in the image plane –
will also be discussed in Sects. 3.2.2 and 3.2.3.

3.2.1 Image Intensity Distribution

We start with the MSDF of the incoherent star in the source plane ˛0 (2.44) as
discussed in Sect. 2.3.3:

O	 .˛0
1;˛

0
2; �/ D �2

z20
Ob.˛

0
1/ •.˛

0
1 � ˛0

2/G.�/; (3.21)

with Ob.˛0
1/ the object brightness distribution and G.�/ the spectrum. Since this

MSDF has non-zero values only for ˛0
1 D ˛0

2 we can replace it by the spectral
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intensity distribution of the incoherent source is

O.˛0; �/ D O	 .˛0;˛0; �/ D Ob.˛
0/G.�/: (3.22)

We make the assumption that the object brightness distribution Ob.˛0/, i.e. the
shape of the object is independent of wavelength over the observed spectral band.

Applying (2.45) in the notation with spatial frequencies f� D �=�, we write the
MSDF in the aperture plane owing to an incoherent source at a large distance z0 as

O	 .f�;1 � f�;2; �/ D z20
�2

ZZ
O	 .˛0

1;˛
0
2; �/e

ik.j˛0

1
j2�j˛0

2
j2/z0=2

� ei2�.f�;1�˛0

1
�f�;2 �˛0

2
/ d˛0

1d˛0
2

D G.�/

Z
Ob.˛

0/ ei2�.f�;1�f�;2/�˛0

d˛0

D G.�/I0�.f�;1 � f�;2/: (3.23)

Note that the exponential has a positive sign since the axes in the source plane ˛0
are inverted with respect to the axes in the aperture plane.

While the spectrum G.�/ characterises the temporal coherence, the visibility
function �.f�;1 � f�;2/ determines the spatial coherence of the light in the aperture
plane.

The visibility function is defined in (2.51) as the Fourier transform of the source
brightness distribution Ob.˛0/ divided by I0. As a function of spatial frequencies
f� D �=�, we now write the van Cittert–Zernike theorem as

�.f�;1 � f�;2/ D
R
Ob.˛

0/e�i2�.f�;1�f�;2/�˛0

d˛0
R
Ob.˛

0/ d˛0 ; (3.24)

with I0 D R
Ob.˛

0/d˛0. It is 0 � j�.f�;1 � f�;2/j � 1 and �.0/ D 1.
The second step leads us from the aperture plane f� into the image plane ˛. We

modify (2.45) in order to describe the propagation of the MSDF from the aperture
plane into the image plane at distance F , applying the aperture function A.f�/ and
the lens function L.f�/ D exp.�i2�jf� j2�=.2F //. Dealing only with the intensity
in the image plane, we write the spectral image intensity distribution I.˛; �/ in the
notation with spatial frequencies as

I.˛; �/ D O	 .˛;˛; �/ D �2

F 2

ZZ
O	 .f�;1 � f�;2; �/A.f�;1/A

�.f�;2/L.f�;1/

�L�.f�;2/ei2�.jf�;1j2�jf�;2j2/�=.2F /e�i2�.f�;1�f�;2/�˛ df�;1df�;2

D �2

z21
G.�/I0

ZZ
�.f�;1 � f�;2/A.f�;1/A

�.f�;2/

� e�i2�.f�;1�f�;2/�˛ df�;1df�;2 : (3.25)
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The quadratic phase terms exp.i2�jf�;i j2�=.2F // cancel with those of the lens
L.f�;i / since we chose z1 D F and a star at a large distance z0. This means that the
image of the star appears in the back focal plane of our optical system.

NB 6. It is interesting to discuss the case of a star (or any other incoherent source)
at finite distance so that the image plane will be at a distance z1 ¤ F . In this case
we have to keep the phase term exp.i2�.jf�;1j2 � jf�;2j2/�=.2z0// in front of the
integral, as in (2.41), and we have to compute the product

exp
�

i2��
�jf�;i j2=.2z0/C jf�;i j2=.2z1/� jf�;i j2=.2F /

��

D exp
�

i2��jf�;i j2
� 1

z0
C 1

z1
� 1

F

�
=2
�
:

The quadratic phase term disappears if 1
z0

C 1
z1

D 1
F

. This is the familiar lens law
from elementary geometrical optics where it is used to calculate the image position
in the paraxial approximation [88]. Here, in the context of the propagation of the
coherence function we obtain the same relationship to eliminate the quadratic phase
terms in Fresnel approximation so that Fourier transforms can be used to describe
the imaging process from the source plane through the aperture plane into the image
plane.

In the following, we will write the visibility function as a function of the spatial
frequency vector R D .u; v/ D f�;1 � f�;2, and we will call the spatial frequency
plane the uv-plane of the interferometer. These are the most common notations for
the visibility function and for the spatial frequency space.

With R D f�;1�f�;2, the spectral intensity distribution in the image plane (3.25)
reads as

I.˛; �/ D �2

F 2
G.�/I0

ZZ
�.R/ A.f�;1/A

�.f�;1 � R/ e�i2�R�˛df�;1dR : (3.26)

Performing the integration over f�;1 yields the OTF as defined in (3.6) and we obtain

I.˛; �/ D G.�/I0

Z
�.R/OTF.R/ e�i2�R�˛dR

D G.�/I0FR
�
�.R/OTF.R/

�
: (3.27)

The advantage of this notation is that the visibility �.R/ only depends on the
shape of the object, which is assumed independent of wavelength. The influence
of the wavelength is considered only indirectly since moving in the uv-plane could
mean either to change the coordinate difference �1 � �2 or the wavelength �. It is
their quotient, R, that determines the function value of �.

Now, the shape of the OTF depends not only on the aperture but also on the
wavelength. For instance, the OTF of a telescope aperture of diameterD has a wave-
length dependent radius of R D D=� in the uv-plane (see discussion in Sect. 3.1.1).
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We will see in Sect. 3.4 that the formal treatment of the imaging process in an
interferometer is simplified by using spatial frequencies.

Fourier Optics in monochromatic illumination was discussed in Sect. 3.1.1 when
we introduced the spatial frequency spectrum OO.R/ as the Fourier transform of the
object intensity distributionO.˛0/. Using the formalism of coherence functions, we
find the following identities:

O.˛0/ D
Z
O.˛0; �/d� D

Z
•.� � �0/Ob.˛

0/d� D Ob.˛
0/

OO.R/ D I0

Z
G.�/�.R/d� D I0

Z
•.� � �0/�.R/d� D I0�.R/: (3.28)

Thus, in the monochromatic case with G.�/ D •.� � �0/, the intensity distribution
is identical to the brightness distribution, and the spatial frequency spectrum is iden-
tical to the visibility function. Consequently, the expression for the image intensity
in Fourier Optics, describing it as the Fourier transform of the product of the spatial
frequency spectrum with the OTF (3.12), is reproduced in (3.27) with the visibility
function multiplied by the OTF.

The physical interpretation of the spatial frequency spectrum as the visibil-
ity function in the uv-plane explains immediately that OO.R/ is not an intensity
distribution like O.˛0/ but a coherence function. And that R is a difference coordi-
nate and not the coordinate vector in the aperture plane.

We should, however, keep in mind that the frequency spectrum OO.R/was defined
as an abstract mathematical quantity, following from the reasoning that the image
intensity distribution of an incoherent object is the linear superposition of PSFs
(3.4). In this section, discussing the propagation of the coherence function we have
used a more elaborate definition of an incoherent source (2.44) taking physical
properties into account.

Using (3.23), we simplify the formalism rewriting the imaging process as a con-
volution of individual Fourier transforms in (3.27) with I0FR.�.R// D Ob.˛/ –
the object brightness distribution and the visibility function form a Fourier pair – and
with the PSF as the Fourier transform of the OTF:

I.˛; �/ D G.�/I0FR
�
�.R/OTF.R/

�

D G.�/I0

�
FR
�
�.R/

� � FR
�
OTF.R/

��

D G.�/
�
Ob.˛/ � PSF.˛/

�
: (3.29)

Note that we obtain the polychromatic intensity I.˛/ – as the quantity that we can
measure – by integrating the spectral intensity I.˛; �/ over the spectrum.

In the monochromatic case, withG.�/ D •.���0/, we obtain the image intensity
very simply as
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I.˛/ D
Z
I.˛; �/d� D I0FR

�
�.R/OTF.R/

�

D Ob.˛/ � PSF.˛/; (3.30)

with
R
G.�/d� D 1.

The formalism of the propagation of the coherence function through an optical
system has led us to exactly the same result as in Fourier optics. This is due to the
restriction of our discussion to an incoherent source, instead of a source with arbi-
trary coherence function, and because the intensity distribution is discussed instead
of the coherence function in the image plane.

In the following two subsections, we expand the discussion by investigating
coherent sources and the coherence properties in the image plane. We will return
to the image intensity in Sect. 3.3 regarding the imaging process in interferometers.

3.2.2 Coherent Imaging

A coherent source in the source plane ˛0 is given by a plane wave travelling along
the z-axis with the monochromatic amplitude V.˛0/. Plane waves, like all other
solutions of the Helmholtz equation, form a coherent field (see Sect. 2.3.1), and
the MSDF of a coherent field is simply the product of the amplitudes, using (2.37)
and (2.31).

The shape of the object, its transmittance distribution is given by Vo.˛0/, and
we set V.˛0/ D Vo.˛

0/ immediately after the object. Slide projectors and micro-
scopes are examples for optical systems illuminating the object with a dedicated
illumination system.

Coherent imaging is described by the propagation of the MSDF of the coher-
ent field, that as the product of the amplitudes is given by O	 .˛0

1;˛
0
2; �0/ D

Vo.˛
0
1/V

�
o .˛

0
2/. Introducing this in (3.23) yields the MSDF in the aperture plane as
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1/e
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0
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2 d˛0
2

D Vo.f�;1/ V
�
o .f�;2/: (3.31)

Thus, after propagation from the source into the aperture plane the light is still
perfectly coherent and the MSDF remains the product of the amplitudes. Here,
O	 .f�;1;f�;2; �0/ can no longer be written as a function of coordinate difference

as in the case of an incoherent source but the individual coordinates f�;1 and f�;2
have to be considered.
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The quadratic phase terms exp.i2�j˛0
i j2z0=.2�0// in (3.31) that disappeared in

(3.23) due to the incoherence of the source, do not disappear here unless the object
is small. They indicate that the surface of equal phase of the amplitude is not plane
but parabolic. Rigorous calculation without the Fresnel approximation shows that
the surface of equal phase is a sphere with its centre in the aperture plane [148].

Most of our objects have a very small angular size ˛0 and we set the exponential
to unity. The necessity to deal with small objects means that the isoplanatic angle
is very small in coherent imaging. With this approximation, the amplitude Vo.f�/
in the aperture plane is the Fourier back transform of the amplitude in the source
plane:

Vo.f�/ D z0
�0

Z
Vo.˛

0/ei2�f� �˛0

d˛0 : (3.32)

Vo.f�/ is the spatial frequency spectrum of Vo.˛0/, i.e. of the object transmittance
in the source plane.

The final step leads us into the image plane, by putting the result of the MSDF
(3.31) into (3.25). With I.˛/ D R O	 .˛;˛; �0/•.� � �0/d� we obtain the intensity
in the image plane as

I.˛/ D �20
F 2

ZZ
Vo.f�;1/V

�
o .f�;2/A.f�;1/A

�.f�;2/e�i2�.f�;1�f�;2/�˛df�;1df�;2

D �20
F 2

Z
Vo.f�;1/ A.f�;1/e

�i2�f�;1 �˛ df�;1

�
Z
V �
o .f�;2/ A

�.f�;2/ei2�f�;2 �˛ df�;2

D �20
F 2

ˇ
ˇFs

�
Vo.f�/A.f�/

�ˇˇ2 : (3.33)

The image intensity is the squared modulus of the amplitude Vim.˛/ in the image
plane, with Vim.˛/ D �0

iF Ff �.Vo.f�/A.f�//,3 which is the Fourier transform of the
product of the spatial frequency spectrum Vo.f�/ of the amplitude with the aperture
function A.f�/, defining the coherent optical transfer function as OTFcoh.f�/ WD
�0

F
A.f�/.
We now define the coherent point-spread function

PSFcoh.˛/ WD Fs
�
OTFcoh.f�/

�
; (3.34)

which is the amplitude (and not the intensity) of the diffraction pattern of a circular
aperture (3.1) displayed in Fig. 3.9. In the image plane, the Fourier transform of the
product in (3.33) is rewritten as a convolution of the amplitude in the source plane

3 The quadratic phase factor exp.i2�j˛j2F=�0/ (2.42) has been omitted since we only regard the
intensity I.˛/ in the image plane.
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Fig. 3.9 Coherent and
incoherent PSF as function of
�0=D. The first minimum of
the PSF (and the first zero of
PSFcoh) is at 1.22�0=D

PSF

PSFcoh

–4 4

0.2

1

0.8

0.6

0.4

–2 21 3–1–3

a[l0/D]

Vo.˛/ with PSFcoh,

I.˛/ D jVo.˛/ � PSFcoh.˛/j2 : (3.35)

We have to keep in mind that this convolution is only applicable if the object is rather
small, i.e. in coherent imaging the isoplanatic angle is small. In the incoherent case
(3.4), the isoplanatic angle is unlimited within the Fresnel approximation.

What is the Difference Between Coherent and Incoherent Imaging?

Comparing the image intensity distribution of a point source in the incoherent case
with that in the coherent case by using a •-function to describe the object in (3.4) and
in (3.35) we see that the intensity distributions are PSF.˛/ respectively jPSFcoh.˛/j2
with, taking the discussion in Sect. 2.2.3 into account, PSF.˛/ D jPSFcoh.˛/j2. This
is not really surprising since the point source, although treated by the formalism of
the incoherent imaging process, is a coherent source by definition.

The difference between the two processes lies in the treatment of extended
objects. In the coherent case (3.35), the superposition of coherent PSFs forms the
amplitude in the image, which is equivalent to convolving PSFcoh with the amplitude
of the object. In the incoherent case (3.4), when the intensities add, the convolution
is between the PSF and the intensity distribution of the object.

The difference between these two cases is particularly obvious when looking at
the image of an edge, displayed in Fig. 3.10. The coherent image shows a prominent
fringe structure with an intensity of 0.25 at the nominal edge position (˛ D 0) while
the incoherent image is rather smooth with I.0/ D 0:5. Both curves have about
the same gradient around the nominal edge position but the position of the edge,
defined, e.g., as the position of 50% intensity, is different in coherent and incoherent
illumination. This is important for instance in microlithography when the exact edge
position in the image defines the width of the conductor strip on the integrated
circuit.
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Fig. 3.10 The image intensity distribution of a straight edge in coherent and incoherent illumina-
tion. The fringe structure shows up in coherent illumination as a consequence of the convolution
with the coherent point-spread function PSFcoh while the curve is rather smooth in incoherent illu-
mination. For an infinitely large aperture with D ! 1 the fringe spacing goes to zero and the
two curves are identical

Imaging the Telescope Aperture, Entrance and Exit Pupil

In astronomical telescopes, entrance and exit pupils are defined as the images (real
or virtual) of the physical telescope aperture. The entrance pupil is then formed
by all optical elements before the aperture and the exit pupil by those behind the
aperture. If the only light source of this imaging process is a point-like star providing
spatially coherent illumination, one has to apply the formalism of coherent imaging.

Thus, we will discuss an imaging process when the telescope aperture is the
object. It is not completely straightforward to define the limiting optical aperture
determining the point-spread function in the image of the telescope aperture. In a
first attempt we assume that the involved optical elements have a very large diameter
and that the limiting aperture is in the Fourier plane of the telescope aperture, which
is the image plane of the telescope. We have then swapped the roles of image and
aperture plane.

If there is only one focus in the optical path of the telescope, for instance the
Cassegrain or the Nasmyth focus, the illumination of the telescope aperture is by
the stars in the sky. However, very often there are one or more intermediate foci in
the optical path for which the optical train for the Coudé focus is a typical example,
as are most interferometers with lights paths of several hundred metres. Then the
image of the telescope aperture is also formed several times along the optical train –
alternating with intermediate foci – with the exit pupil being the last image before
the detector.

Let us take the example of an optical train of an interferometer when the focal
plane just before the science camera is limited by a field stop. Very often this field
stop is as small as one Airy disk as we will see later. First, we set the size of
the field stop to a few arc seconds. The camera optics will form the final image
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on the detector. The camera optics will also form an image, the exit pupil, of the
telescope aperture somewhere in the camera. If the observation is done at infrared
wavelengths, the camera and its optics are usually placed in a dewar ensuring the
required low temperatures for the detector. The exit pupil is also inside the dewar
and a physical aperture, the cold stop is placed at its position to make sure that
only the light passing through the telescope aperture and no stray light from mirror
mounts arrives on the detector. The cold stop is carefully dimensioned in order to
match the size of the reimaged telescope aperture.

The intensity distribution in the exit pupil, i.e. the image of the telescope aper-
ture, is determined by a point-spread function that is the Fourier transform of the
field stop in the focal plane before the science camera. For a numerical example
we assume an 8-m aperture and a field stop limiting the diameter of the focal plane
to 2 arcsec. Then, in the K-band we will find an intensity distribution in the exit
pupil as displayed in Fig. 3.11a when an individual star provides spatially coherent
illumination for the aperture. There is a fringe structure similar to the fringes when
imaging a straight edge (see Fig. 3.10) in coherent illumination. If the field stop is
reduced to the diameter of the Airy disk, clipping its diffraction rings, the intensity
distribution in the exit pupil in Fig. 3.11b is very smooth without fringes and with-
out a sharp edge limiting the exit pupil. Inspecting the image formed on the detector
of the camera, it is obvious that the point-spread function forming the image of the
stellar object in case of the small field stop – having clipped the Airy rings in the pre-
ceding focus – no longer has the shape of an Airy disk but, as the Fourier transform
of the exit pupil, is a smooth function similar to a Gaussian function.

These considerations illustrate the interplay between field stops and aperture
stops along the optical train and their influence on the intensity distributions.

Fig. 3.11 The intensity distribution in the exit pupil of an 8-m telescope, illuminated by a single
non resolved star in the K-band. If the field of view is limited by a physical field stop to 2 arcsec,
the intensity distribution in the exit pupil (a) displays a fringe structure similar to a coherent edge
image (see Fig. 3.10). A field stop of the size of the Airy disk, clipping its diffraction rings, has an
intensity distribution (b) similar to a Gaussian
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=

I(α)O(α) PSF(α)

=

I(α)Vo(α) PSFcoh(α)

2

Fig. 3.12 Comparison of the incoherent (top row) and the coherent (bottom row) imaging pro-
cess. A binary star with a separation ˛0 D 1:5�=D is displayed in the left column. Both the object
intensity distribution O.˛/ and the object transmittance Vo.˛/ are represented by the sum of two
•-functions. The incoherent point-spread function, PSF.˛/, in the top row and the coherent one,
PSFcoh.˛/, in the bottom row are linked through PSF.˛/ D jPSFcoh.˛/j2. With an aperture diam-
eter of D the FWHM of PSF.˛/ is about �=D. In the incoherent case, the convolution of O.˛/
with PSF.˛/ yields directly the image intensity distribution I.˛/. In the coherent case, the modu-
lus squared of the convolution product Vo.˛/� PSFcoh.˛/ provides the intensity. It is interesting to
note the difference in angular resolution due to the different FWHM of the relevant point-spread
functions. While the binary is clearly resolved in the incoherent case, using the PSF with a FWHM
of �=D, it is only barely resolved in the coherent case, when PSFcoh has a width of about 1.38�=D

A Binary Star

We use again the example of a binary star to illustrate the different behaviour of
coherent and incoherent imaging keeping in mind that in reality a coherent binary
star emitting radiation with a constant phase of the light of the two stars is an
unrealistic situation. In Fig. 3.12, the two convolution products are displayed. It is
interesting to note that the angular resolution of an optical system in coherent illu-
mination is much lower than in incoherent illumination. This is due to the fact that
the full width at half maximum (FWHM) of PSFcoh is about 1.38�=D while it is
�=D for the PSF that is used in the case of incoherent illumination. Therefore, the
binary star with a separation of ˛0 D 1:5�=D is clearly separated in the incoherent
case by an optical system with a circular aperture of diameter D, but only barely
resolved if it is illuminated coherently.

The advantage of incoherent over coherent illumination can also be explained
regarding spatial frequency spectra and transfer functions in (3.12) and (3.33). The
OTF as the autocorrelation function of the aperture A.f�/ has twice the width of
the aperture function as illustrated in Fig. 3.2, and spatial frequencies up to D=�
(the radius of the OTF) are transferred through the system. In coherent imaging
when the aperture function �

F
A.f�/ serves as the transfer function, the frequency

cutoff is at s0 D 1
2
D=�. Due to the approximately triangular shape of the OTF – in

contrast to the rectangular shape of the aperture function – the angular resolution in
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incoherent illumination is not twice that of coherent illumination since the spatial
frequency spectrum is damped.

Discussing the image quality of a straight edge in Fig. 3.10, we found that the
steepness of the intensity distribution around ˛ D 0 is similar in coherent and
incoherent illumination. Using this steepness as a criterion for image sharpness
and angular resolution the conclusion from the edge image would be that the two
illuminations provide similar resolution contradicting the result of the binary star
image.

However, the type of object is pivotal [3]. Individual points have to be treated
like the binary above, and an extended source with a sharp edge behaves more like
the straight edge in Fig. 3.10. In addition, there might be situations when the fringe
structure at the edge ruins the image quality while for instance in micro lithography
this might not be important if the detector has a suitable sensitivity curve.

In any case, in astronomy we will not observe objects emitting spatially coher-
ent illumination. There is some speculation that pulsars are spatial coherent sources
[220] but since there angular size is too small to be resolved they are indistinguish-
able from a point source and the imaging process can be described like that of an
incoherent source. Thus, we will stay with incoherent sources for the remainder of
this book.

Summary of Coherent and Incoherent Imaging

An incoherent source requires treating the transfer of the MSDF through the opti-
cal system. The Fourier transform of the spectral intensity distribution O.˛0; �/ D
G.�/Ob.˛

0/ is the MSDF in the uv-plane O	 .R; �/ D G.�/I0�.R/ (see 3.23),
which, in monochromatic illumination, is formally identical to the spatial fre-
quency spectrum OO.R/ D F 0̨ .O.˛0//, the Fourier transform of the object intensity
distribution.

� The transfer function is the OTF, which is the autocorrelation of the aperture
function A.f�/, acting on the visibility function �.R/.

� The Fourier transform of the product OTF and visibility function provides the
intensity distribution in the image plane, see (3.29).

� The optical system is linear with respect to the transfer of the visibility function
and spatially stationary since the isoplanatic angle is unlimited within the Fresnel
approximation.

A coherent source allows for the transfer of the amplitude V.˛0/ through the
optical system. The Fourier transform of the coherently illuminated object transmit-
tance distribution Vo.˛0/ is the amplitude Vo.f�/ in the aperture plane, with Vo.f�/
containing the spatial frequency spectrum of Vo.˛0/.

� Here, the transfer function is the aperture function A.f�/ acting on the spatial
frequency spectrum Vo.f�/ of the amplitude, see (3.33).

� The Fourier transform of this product provides the amplitude in the image plane,
and its squared modulus is the image intensity distribution.
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� The optical system is linear with respect to the transfer of the spatial frequency
spectrum of the amplitude. However, the isoplanatic angle is limited.

In optical instruments, intermediate states of coherence, partial coherence, do
also exist. Then, the state of partial coherence in the source plane has to be deter-
mined and the propagation of the coherence function through the optical system is
calculated by multiple applications of the van Cittert–Zernike Theorem [80].

The important point to keep in mind is the fact that a perfectly coherent wave does
not lose coherence by the process of propagation. The state of coherence remains the
same from the source plane through the optical system into the image plane, even if
we are observing through atmospheric turbulence, as we will discuss in Sect. 4.3.

This is in contrast to the wave field of an incoherent source that acquires coher-
ence by the very process of propagation as described in Sect. 2.3.4 when discussing
the coherence function of Venus.

3.2.3 Coherence Properties in the Image Plane

Although most of the time we measure the image intensity, it is interesting to inves-
tigate how the coherence properties in the image plane are affected by the imaging
process. For an incoherent source we write the MSDF in the aperture again as a
function of coordinate difference, O	 .f�;1 � f�;2; �/ D G.�/I0�.R/. We obtain
the MSDF in the image plane by applying the van Cittert–Zernike theorem. This
was done in (3.25) for the spectral intensity in the image I.˛; �/ D O	 .˛;˛; �/ by
reducing the coordinates to ˛ D ˛1 D ˛2. Allowing for different values of the
image coordinates, we modify (3.26) to write the MSDF in the image plane

O	 .˛1;˛2; �/ D �2

F 2
G.�/I0 (3.36)

�
ZZ

�.f�;1 � f�;2/A.f�;1/A
�.f�;2/ e�i2�.f�;1 �˛1�f�;2 �˛2/ df�;1df�;2:

We replace the visibility function by the Fourier transform of the object brightness
distribution assuming an incoherent light source (3.23).

The MSDF in the image plane can now be written as

O	 .˛1;˛2; �/ D �2

F 2
G.�/

�
ZZZ

Ob.˛
0/A.f�;1/A�.f�;2/ e�i2�.f�;1�.˛1�˛0/�f�;2 �.˛2�˛0// df�;1df�;2d˛0

D G.�/

Z
Ob.˛

0/PSFcoh.˛1 � ˛0/ PSF�
coh.˛2 � ˛0/d˛0 : (3.37)

The MSDF is determined by a two-fold convolution of the object brightness dis-
tribution with the coherent point-spread function PSFcoh, which is the Fourier
transform of the aperture A.f�/.
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If we reduce the MSDF again to the spectral intensity I.˛; �/ D O	 .˛;˛; �/,
we obtain the familiar convolution between the object brightness Ob.˛0/ and the
point-spread function PSF.˛ � ˛0/ D jPSFcoh.˛ � ˛0/j2 as described in (3.4).

Regarding the coherence properties, the coherence width – the permissible coor-
dinate difference ˛1 � ˛2 before the value of the MSDF goes to zero – is a good
measure for the size of the area with good coherence in the image plane.

In order to have an idea about the form of the MSDF we assume for the moment
that the object brightness distribution is well resolved by the optical system, i.e. that
Ob.˛

0/ does not vary too much over the area of the coherent point-spread function
PSFcoh.˛/. We also apply a variable transform, ˛0 D ˛1 � ˛ to (3.37) yielding

O	 .˛1;˛2; �/ D G.�/

Z
Ob.˛1 � ˛/PSFcoh.˛/ PSF�

coh.˛ � .˛1 � ˛2//d˛

	 G.�/Ob.˛1/

Z
PSFcoh.˛/ PSF�

coh.˛ � .˛1 � ˛2//d˛

D G.�/Ob.˛1/PSFcoh.˛1 � ˛2/: (3.38)

In this approximation, the correlation at two positions ˛1 and ˛2 is determined by
the autocorrelation of PSFcoh, which is PSFcoh itself. It drops to zero, indicating
the coherence width, at 1.22�=D. Compared to the MSDF in the source plane, with
•.˛0

1�˛0
2/ characterizing the spatial incoherence with zero coherence width, we find

that the coherence has improved in the image plane due to the propagation through
an optical system with finite aperture diameter.

In the theoretical case of an infinitely large aperture and an infinitely narrow PSF
the coherence width goes to zero and the light in the image plane is incoherent as it
was in the source plane.

The Illuminated Aperture as a Light Source

This discussion has stayed very close to the topic of this section, which is the
imaging process. Taking a different point of view, we ignore everything before the
aperture plane and regard the light in the aperture plane as our source that prop-
agates into the image plane. The light in the aperture plane is partially coherent,
indicated by the visibility function �.f�;1 � f�;2/ as a function of finite extent, and
the intensity distribution of our source in the aperture plane is determined by the
shape of the aperture A.f�/.

We then have a situation similar to the discussion about partially coherent
Gaussian Schell-model (GSM) sources at the end of Sect. 2.3.4. There we found
the reciprocity relation stating that the coherence function of the source determines
the intensity distribution in the plane of observation and, vice versa, that the inten-
sity distribution of the source determines the coherence function in the plane of
observation.

Here, we found the same relationship. The Fourier transform of the intensity dis-
tribution, its shape given by the aperture A.f�/, is PSFcoh.˛1 � ˛2/ determining
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the coherence function in the image plane as discussed above (3.38). And the
Fourier transform of the visibility function �.f�;1 � f�;2/ in the aperture plane
(3.23) provides the intensity distribution Ob.˛/ in the image plane, also as above.
The approximation above, that the intensity distribution Ob.˛/ does not vary over
the area of PSFcoh.˛/, i.e. that the object is well resolved by the telescope, can now
be translated into the aperture plane stating that the coherence width in the aperture
plane needs to be smaller than the diameter of the aperture. Similar approximations
were used for GSM sources, see Sect. 5.4.2 in [147].

While at first sight a partially coherent light source seems to be a very academic
problem we have shown here that the light in the aperture plane of a telescope can
be regarded as a partially coherent source, thus, a very common situation. Being
able to relate the coherence properties in the aperture plane to an incoherent source
at a large distance through the van Cittert–Zernike theorem should be helpful for the
interpretation of the characteristics of partially coherent sources in general and the
propagation of its light.

The Coherence Function of Venus

A numerical example illuminates the situation. In Sect. 2.3.4 we looked at Venus
and its coherence function at a very large distance, e.g., on Earth or in the aperture
plane of a telescope on Earth. With Venus’ angular diameter varying between 15
and 45 arcsec depending on the mutual position of Earth and Venus, we found that
for 15 arcsec diameter the coherence width in the aperture plane is about 37 mm
at a wavelength of 2.2
m. It should be noted that the intensity distribution in the
aperture plane is homogeneous.

If we choose an 8-m telescope producing a point-spread function with a FWHM
of 57 mas 2,2
m, the image of Venus is well resolved, about 260 times wider than
the PSF. The coherence width in the image plane is determined by the width of
PSFcoh – the Fourier transform of the 8-m aperture – and is, thus, about 69 mas. This
angular width is converted into a spatial coordinate through multiplication with the
focal length of the telescope (see Sect. 2.2.2). The focal length is chosen usually
such that there are about two detector pixels per PSF in order to ensure proper
sampling of the image. With a typical pixel size of about 10
m, the diameter of the
PSF and, thus, the coherence width is about 24
m.

Although the scale is rather arbitrary, it gives an idea about the basic properties
of the propagation of the coherence function. While Venus causes homogeneous
illumination in the telescope aperture with a coherence width of 37 mm, the subse-
quent imaging process can reduce the coherence width in the image plane to values
that are substantially smaller than in the aperture plane. Multiple application of the
reciprocity relation, from the source into the aperture plane and from the aperture
plane into the image plane, can alter the degree of coherence from incoherent in
the source, to partially coherent in the aperture plane (coherence width 37 mm), to
almost incoherent (coherence width 24
m) in the image plane.
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The Coherence Function: Summary

For the propagation of the coherence function through an optical systems, a
two-step process with the van Cittert–Zernike theorem has to be employed.
We regard a spatially incoherent source as discussed in Sect. 2.3.3 with the
MSDF as

O	 .˛0
1;˛

0
2; �/ D �2

z20
Ob.˛

0
1/ •.˛

0
1 � ˛0

2/G.�/; (3.21)

with Ob.˛0
1/ the object brightness distribution and G.�/ the spectrum. We

assume that the object brightness distribution, i.e. the shape of the object is
independent of wavelength over the observed spectral band.

The MSDF, having non-zero values only for ˛0
1 D ˛0

2, is replaced by the
spectral intensity distribution of the incoherent source:

O.˛0; �/ D O	 .˛0;˛0; �/ D Ob.˛
0/G.�/: (3.22)

Applying the van Cittert–Zernike theorem, the MSDF O	 .R; �/ in the uv-
plane reads as

O	 .R; �/ D G.�/

Z
Ob.˛

0/ ei2�R�˛0

d˛0

D G.�/I0�.R/; (3.23)

when the uv-plane, with R D .u; v/ D f�;1 � f�;2, is related to the aperture
plane with coordinate vector � through R D .�1 � �2/=�.

The MSDF is the product of the spectrum G.�/, of the mean intensity
I0 D R

Ob.˛
0/d˛0, and of the visibility function �.R/, which is the Fourier

transform of the source brightness distribution Ob.˛0/ divided by I0, so that
it is 0 � j�.R//j � 1 and �.0/ D 1.

Both O	 .R; �/ and �.R/ are complex functions. Under the assumption of
an object brightness distribution that is independent of wavelength, its Fourier
transform, the visibility function, only indirectly depends on wavelength
through R D .�1 � �2/=�.

Using the van Cittert–Zernike theorem again, we propagate the MSDF
from the uv-plane into the image plane. We restricted the discussion to the
intensity in the image plane since optical detectors can only measure inten-
sity. With the optical transfer function (OTF) as defined in (3.6) the spectral
intensity in the image plane is

I.˛; �/ D G.�/I0FR
�
�.R/OTF.R/

�
; (3.27)
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yielding the product of the visibility function and the OTF, as in Fourier optics
(3.12) between spatial frequency spectrum of the object intensity OO.R/ and
the OTF.

Thus, the propagation of the coherence function from the source plane
through the aperture plane into the image plane, using the van Cittert–
Zernike theorem, is substantially simplified by observing incoherent sources
and by determining the image intensity only. The coherence function, i.e. the
visibility function, needs to be dealt with only in the aperture plane.

The spectral intensity in the image plane can also be expressed as a con-
volution of the individual Fourier transforms in (3.27). With FR.�.R// D
Ob.˛/ and the PSF as the Fourier transform of the OTF, we obtain the spectral
intensity distribution as

I.˛; �/ D G.�/
�
Ob.˛/ � PSF.˛/

�
: (3.29)

Note that we obtain the polychromatic intensity I.˛/ as the quantity that we
can measure by integrating the spectral intensity I.˛; �/ over the spectrum.

In the monochromatic case, with G.�/ D •.� � �0/, the image intensity
reads as

I.˛/ D
Z
I.˛; �/d� D I0FR

�
�.R/OTF.R/

�

D Ob.˛/ � PSF.˛/: (3.30)

Using the fact that the spatial frequency spectrum OO.R/ is identical to
the visibility function, the complete formalism of Fourier Optics including
the treatment of aberrations can be applied to the propagation of the MSDF
through optical systems when observing the intensity in the image plane.

3.3 Propagation Through Interferometers

So far, we have described the imaging process in optical systems with the transfer
function and the visibility function. We have seen how modulus and phase of both
functions affect the properties of the image. The explicit measurement of the coher-
ence function that we discussed in Sect. 2.4 when linking the contrast of a fringe
pattern to the coherence function in the aperture plane has not been considered in
this context. It is the nature of the imaging process to effectively multiply the OTF
by the visibility function at all spatial frequencies inside the telescope aperture,
and then to compose the Fourier transform of the product by propagating through
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the optical system to form the image. In this respect, the optical system acts as an
analogue computer.

In this section, we discuss the propagation of light through an interferometer
in the context of the formalism developed in Sect. 3.2, basically applying Fourier
optics to the propagation of the MSDF.

In the case of an interferometer with separate apertures, or of masks in the aper-
ture of a single telescope, we do not obtain an image in the classical sense but a
fringe pattern that does not bear much resemblance to the object, although we can
detect fine detail limited by the fringe spacing.

If we want to have an image we need to measure coherence functions in the aper-
ture plane for many different baselines B and then do the Fourier transform into
the image plane with a digital computer. The process of filling this virtual aper-
ture that has a diameter given by the longest baseline is called aperture synthesis.
This is a well established technique in radio interferometry obtaining images with a
spatial resolution determined by the longest interferometer baseline and not by the
telescope diameter [180, 203]. This will be discussed in Sect. 3.4.

Combining many apertures simultaneously, directly forming an image, avoids
the measurement of the coherence function but requires an enormous technological
effort since the OPDs between all apertures need to be controlled and minimised
to the sub-wavelength level at all times. In Sect. 5.3, we will investigate different
concepts of direct imaging.

3.3.1 Young’s Experiment with a Lens

After discussing single aperture imaging, we will now do the step to an interfer-
ometer, first by introducing an aperture consisting of two sub-apertures the size of
pinholes at position �p1 and �p2.

The vector between the two sub-apertures is called the baseline vector B of the
interferometer that is defined as B D �p1 � �p2. The separation between the sub-
apertures is B D jBj.

In the notation with spatial frequencies f� D �=�, we write the aperture as

A.f�/ D •.f� � f�;p1/C •.f� � f�;p2/: (3.39)

The pinhole size of the sub-apertures is accounted for by using •-functions.
The baseline vector RB in the uv-plane is given by RB D f�;p1 � f�;p2 D B=�

(see Fig. 3.13). The baseline vector in the uv-plane has units of spatial frequency.
The OTF is the autocorrelation of A.f�/ (see (3.6)) yielding three •-peaks, one

at the origin at R D 0, and two at R D ˙RB :

OTF.R/ D �2

F 2

�
•.R � RB /C 2•.R/C •.R C RB/

�
: (3.40)
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Note that the •-peak at R D 0 is twice as large as the other two •-peaks due to the
autocorrelation process.

Then, the PSF as the Fourier transform of the OTF reads as

PSF.˛/ D FR
�
OTF.R/

� D 2
�2

F 2

�
1C cos.2�RB � ˛/

�
: (3.41)

This is the shape of the image intensity of a two-pinhole aperture that is illuminated
by a point source at infinity. This intensity distribution is the familiar fringe pattern
of Young’s experiment (2.12). The lens in our optical system is required only to
provide the diffraction pattern at a finite distance, i.e. in the back focal plane. The
interpretation of the fringe pattern as the image of a point source should not be
confused by the fact that this PSF is formally extended to infinity, thus not bearing
much resemblance to a point at all. In the discussion of sub-apertures of finite size
in Sect. 3.3.2 the diffraction patterns will be more similar to the familiar PSF.

Three Sub-Apertures

The step to apertures with more than two sub-apertures is straightforward. Assuming
we have three pinholes at positions f�;p1, f�;p2 and f�;p3, the aperture reads as

A3.f�/ D •.f� � f�;p1/C •.f� � f�;p2/C •.f� � f�;p3/: (3.42)

We then have three baselines in the uv-plane, RB1 D f�;p1 � f�;p2, RB2 D
f�;p2 � f�;p3 and RB3 D f�;p3 � f�;p1 as displayed in Fig. 3.13. The sum of the
three baseline vectors amounts to zero, RB1 C RB2 C RB3 D 0, since they connect
the three points of a triangle. The OTF as the autocorrelation of the aperture function
A3.f�/ becomes

OTF3.R/ D �2

F 2

�
•.R � RB1/C •.R � RB2/C •.R � RB3/C 3•.R/

C •.R C RB1/C •.R C RB2/C •.R C RB3/
�
: (3.43)

Instead of a combination of three •-peaks as in (3.40) we have now three pairs of
•-peaks at ˙RBi and the one at the origin at R D 0. The autocorrelation of three
sub-apertures yields a factor of three at R D 0. Subsequently, combining four or
more sub-apertures, the weighting at R D 0 increases linearly.

The Fourier transform of this OTF provides the point-spread function of a three-
pinhole aperture as

PSF3.˛/ D FR
�
OTF3.R/

�
(3.44)

D �2

F 2

�
3C 2 cos.2�RB1 � ˛/C 2 cos.2�RB2 � ˛/C 2 cos.2�RB3 � ˛/

�
:
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This PSF is always positive since the sum of the three baseline vectors RBi amounts
to zero. This in turn is due to the fact that the OTF is the autocorrelation function
of three sub-apertures so that its Fourier transform, the PSF, is real and positive by
definition.

Observing real objects, the fringe pattern loses contrast and is shifted depending
on modulus and phase of the visibility at the given baseline. With a single baselines
these quantities can be detected in the fringe pattern. However, using three or more
sub-apertures, it is very difficult to discern the visibilities of the individual baselines
in the bumpy fringe pattern. Then, the Fourier transform of the fringe pattern can be
analysed as discussed in Sects. 2.4.3 and 6.1.

Polychromatic Light

The spectral intensity distribution in the image of an extended incoherent source can
be calculated, (3.29), by convolving the source brightness distribution Ob.˛0/ with
the interferometer PSF,

I.˛; �/ D G.�/ .Ob.˛/ � PSF.˛// : (3.45)

This is equivalent to the linear superposition of individual fringe patterns, PSF
.˛ � ˛0/, created by individual source points at ˛0 (see 3.4).

The Fourier transform of this equation takes us into the uv-plane, forming the
product of the OTF with the visibility function, �.R/, (3.27) as

I.˛; �/ D G.�/I0

Z
�.R/OTF.R/ e�i2�R�˛dR

D �2

F 2
G.�/I0

Z
�.R/

�
•.R � RB/C 2•.R/C •.R C RB/

�
e�i2�R�˛dR

D �2

F 2
G.�/I0

�
�.RB/e�i2�RB �˛ C 2�.0/C �.�RB/ei2�RB �˛�

D 2
�2

F 2
G.�/I0

�
1C j�.RB/j cos

�

.RB/� 2�RB � ˛

��
; (3.46)

with �.0/ D 1 and �.�RB/ D ��.RB /.
In the case of three sub-apertures, the terms at ˙RB2 and ˙RB3 have to be added

as in (3.43) and (3.44).
This is exactly the same result as in Young’s experiment, (see (2.59) in Sect. 2.4),

in the notation with spatial frequency RB D B=�.
The fringe pattern is proportional to 1 C cos(.) with a visibility proportional to the

modulus of the visibility function, j�.RB/j, and with a fringe position determined
by the phase 
.RB/.

Before discussing the intensity distribution of polychromatic light with a finite
spectral band ��, we will use the formalism developed in Sect. 3.1 to discuss the
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more realistic case of a stellar interferometer with finite apertures in monochromatic
illumination in the next section.

Finishing this section, we will now have a look at the coherence properties –
instead of the intensity distribution – of the fringe pattern.

Coherence Properties of the Fringe Pattern

For the sake of completion, we investigate the coherence properties of the fringe
pattern in Young’s Experiment. We start with the formula for the MSDF in the image
plane of an optical system (3.37) writing the aperture function as A.f�/ D •.f� �
f�;p1/ C •.f� � f�;p2/, for two pinholes at position f�;p1 and f�;p2. Then, with
f�;p1 D RB=2 and f�;p2 D �RB=2, its Fourier transform reads as

PSFcoh.˛/ D 2 cos

�

2�
RB

2
� ˛

�

: (3.47)

Inserting this function into (3.37) yields the MSDF in the image plane as

O	 .˛1;˛2; �/

D 4
�2

F 2
G.�/

Z
Ob.˛

0/ cos

�

2�
RB

2
� .˛1 � ˛0/

�

cos

�

2�
RB

2
� .˛2 � ˛0/

�

d˛0

D �2

F 2
G.�/

	Z
Ob.˛

0/d˛0 cos

�

2�
RB

2
� .˛1 � ˛2/

�

C
Z
Ob.˛

0/ cos

�

2�
RB

2
� .˛1 C ˛2 � 2˛0/

�

d˛0



D 2
�2

F 2
G.�/I0

	

cos

�

2�
RB

2
� .˛1 � ˛2/

�

C j�.RB/j cos

�


.RB/� 2�
RB

2
� .˛1 C ˛2/

�


: (3.48)

The MSDF is composed of the two terms inside the square brackets, the first being
a cosine function of the coordinate difference, the second a cosine of the sum of
the coordinates, ˛1 C ˛2. Setting ˛1 D ˛2, we obtain O	 .˛;˛; �/ D I.˛; �/, the
spectral intensity as in (3.46).

The special case of ˛1 D ˛0 and ˛2 D �˛0 gives an idea of the impact of the
source size on the coherence properties of the fringe pattern. This choice of coor-
dinates means that we compute the MSDF for two points that are symmetrical to
the optical axis. The first term inside the square brackets of (3.48) now becomes
cos.2�RB � ˛0/, and the second one, j�.RB /j cos.
.RB//, is a constant, indepen-
dent of the sum of our coordinates, but depending on the size of the object Ob.˛0/.
For a given baseline, j�.RB /j is wider if the object is smaller.



3.3 Propagation Through Interferometers 109

A point source provides spatially coherent illumination, and it is j�.RB/j D 1

for any baseline so that the MSDF of a point source is

O	 .˛0;�˛0; �/ D 2
�2

F 2
G.�/I0 .cos.2�RB � ˛0/C 1/ : (3.49)

As discussed in Sect. 3.2.2, coherent light remains coherent during the propaga-
tion process. Illuminating the two pinholes coherently, i.e. with a plane wave, we
expect the light in the image plane to be coherent, too. The result for the MSDF in
the image plane using (3.48) is cos.2�RB � ˛0/ C 1, i.e. varying periodically with
˛0. Does this mean that the correlation varies with the position of the two points?

To answer this question we have to return to the MCF, which in the case of
monochromatic illumination is simply 	 .˛2;˛2; �/ D O	 .˛1;˛2; �0/ exp.i2��0�/,
and j	 .˛2;˛2; �/j D j O	 .˛1;˛2; �0/j. We have to calculate the degree of coherence
(2.29) as the MCF calibrated by the intensities at positions ˛1 and ˛2. Then, we can
check if the criterion for coherence, j�.˛1;˛2; �/j 
 1, is fulfilled that was given in
Sect. 2.3.1.

With I.˛; �/ / .1 C cos.2�RB � ˛// and I.˛/ D I.˛; �0/ for monochromatic
illumination, it is straightforward to see that

j�.˛0;�˛0; �/j D j	 .˛0;�˛0; �/j
p
I.˛0/I.�˛0/

D j O	 .˛0;�˛0; �0/j
p
I.˛0; �0/I.�˛0; �0/

D cos.2�RB � ˛0/C 1

1C cos.2�RB � ˛0/
D 1 ; (3.50)

as requested for coherent light. Although this computation was done for two specific
coordinates – two points at opposite sides from the optical axis – the result applies
to any combination of coordinates.

This example shows very clearly, that MCF and MSDF do not provide directly
the correlation as a probability value for measuring the same values of the ampli-
tudes. The calibration with the individual intensities leading to the degree of coher-
ence is required to obtain this probability value and to make a statement on
coherence.

After the discussion of illumination by a point source, the other extreme, that of a
very large source, is straightforward. A very large source makes the light in the aper-
ture plane practically incoherent, and the contrast of the fringes goes to zero. Then,
the visibility function in the aperture plane for a baseline RB , �.RB/, determining
the contrast of the fringe pattern, goes to zero, and the MSDF in the image plane,
(3.48), reads as O	 .˛1;˛2; �/ D G.�/I0 cos.2�RB=2 � .˛1�˛2//. Without any spe-
cific assumptions on the coordinates, we find the MSDF as a function of coordinate
difference only.

If there are no fringes, the intensity distribution in the image plane is constant,
and the calibration of the MSDF does not change the functional dependence on
the coordinates. Thus, we can state that the correlation, like the MSDF, varies
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periodically with ˛1 � ˛2. If we forget for the moment about the interferometer, we
can describe this setup as two incoherent point sources – the two pinholes that are
illuminated incoherently – illuminating homogeneously the plane of observation –
the image plane at a “large” distance due to the lens in the aperture plane – so that we
can calculate the MSDF in the plane of observation through a Fourier transform of
the intensity distribution of the two point sources, applying the van Cittert–Zernike
theorem as in Sect. 2.3.3. According to the van Cittert–Zernike theorem we find that
the MSDF depends on the coordinate difference ˛1 � ˛2 only.

The situation changes again if the source has a finite size. We then will find inter-
mediate states of coherence in the fringe pattern that can be computed with (3.48).

3.3.2 Apertures of Finite Size

The aperture function of an interferometer can be expressed by a convolution of
the individual telescope aperture a.f�/ with •-functions setting the centre aperture
positions at spatial frequencies f�;p1 and f�;p2:

A.f�/ D a.f�/ � �•.f� � f�;p1/C •.f� � f�;p2/
�
: (3.51)

Formally, this describes the masking of a large aperture with two small sub-apertures
a.f�/, each with diameterD as displayed in Fig. 3.14. Note that in the notation with
spatial frequencies the shape of A.f�/ is wavelength dependent.

fξ = ξ/λ

z

fζ = ζ/λ 

Source Plane Aperture Plane

z1 = Fz0

fξ, p2

fξ, p1 

α'y

α'x
Image Plane

αx

αy

Fig. 3.14 The geometry of a stellar interferometer simplified as a masked aperture with two
small sub-apertures f�;p1 and f�;p2, the so-called Fizeau configuration. Each sub-aperture has
the diameter D. The distance between the apertures is related to the baseline vector B through
f�;p1 � f�;p2 D RB D B=�. The source is at a very large distance z0 . The aperture plane contains
a thin lens of focal length F , creating the diffraction pattern of the aperture in the back focal plane,
in this case the image plane. With the two sub-apertures at the same distance jf�;p1j D jf�;p2j
from the optical axis z, the optical path lengths between each sub-aperture and the centre of the
image plane at ˛ D 0 are equal and the optical path difference, OPD, is zero
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Doing the step from a masked aperture to the combination of individual tele-
scopes, the optical paths between each telescope and the image plane are passing
through optical elements and can be several hundred metres long. Controlling
the optical path lengths and determining the OPD is a major issue in stellar
interferometry. Due to the physical separation of the telescopes, the reimaging of the
telescopes’ exit pupils into the beam combining instrument also requires attention as
will be discussed in Sect. 5.1. If the reimaged exit pupils are arranged such that the
ratio of pupil diameter to pupil distance is the same as that of telescope aperture to
baseline, called homothetic mapping of the telescope apertures, the interferometer
can still be treated like a masked aperture. Then, the interferometric field of view,
i.e. the area of the image with fringes, can be very large, only limited by the optical
design of the interferometer. This configuration is named Fizeau configuration.

If the telescope apertures are not mapped homothetically but if the distance of
the exit pupils in the beam combining instrument is chosen independent of the base-
line, this is called the Michelson configuration. While this configuration puts fewer
constraints on the optical design than the Fizeau configuration, the interferometric
field of view is very small, basically confined to the Airy disk, i.e. to the diffraction
limit of the individual apertures. In the extreme case, in co-axial combination, the
exit pupils are projected on top of each other with a beam splitter and, unlike all
configurations with separated exit pupils, we do not find fringes in the image plane.
By modulating the optical path length in one of the two beams, constructive and
destructive interference can then be produced, “switching” the Airy disk on and off.
All these aspects will be discussed in more detail in Sect. 5.1.3.

We restrict the following discussions to two sub-apertures bearing in mind that
the same formalism applies to three and more sub-apertures. Aspects of combining
multiple apertures in different configurations will be investigated in Sect. 5.2.

In the Fizeau configuration, the interferometer OTF is the convolution of the
individual aperture OTFa with the OTF of two pinholes, (3.40), yielding the sum of
three OTFa at positions RB ; 0 and �RB (see Fig. 3.16), as

OTF.R/ D OTFa.R/ � �•.R � RB/C 2•.R/C •.R C RB/
�
: (3.52)

While observations with a single telescope are limited to spatial frequencies jRj �
D=� inside OTFa, the interferometric combination adds a range of higher spatial
frequencies within a radius D=� around RB and �RB to the imaging process.
This range of baselines around the interferometer baseline RB D B=� can also
be explained as those baselines connecting individual points in the two apertures. It
is exactly the information in the higher spatial frequencies that we are looking for
and that provides increased angular resolution with an interferometer.

The interferometer PSF is the product of the individual Fourier transforms of the
functions forming the convolution in (3.52). The Fourier transform of OTFa is the
point-spread function PSFa of an individual aperture, and the Fourier transform of
the sum of the •-functions is the fringe pattern of two pinholes, 1 C cos(.):

PSF.˛/ D FR .OTF.R// D 2PSFa.˛/
�
1C cos.2�RB � ˛/

�
: (3.53)
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Fig. 3.15 The PSF of a
stellar interferometer (3.53)
with two apertures as in
Fig. 3.14 in monochromatic
illumination. The baseline B
is three times larger than the
aperture diameter D,
resulting in a fringe spacing,
�=B , of 1/3 of the FWHM,
�=D, of the Airy disk. The
fringes in the diffraction ring
are also visible

If the individual apertures have a circular shape, then PSFa has the form of an Airy
disk with a FWHM of �=D, called the primary beam in radio interferometry, and
the complete PSF of this stellar interferometer is an Airy disk with fringes, with
fringe spacing 1=jRB j D �=B , as displayed in Fig. 3.15.

Now, we have the interferometer with individual apertures as an optical sys-
tem producing a PSF, an Airy disk with fringes, much better resembling a point
source than the infinitely extended PSF in Young’s experiment that we discussed
in Sect. 3.3.1. However, it is still a long way from this high-resolution PSF, which
allows to resolve detail limited by the fringe spacing and not by the first minimum
of the Airy disk, to a high-resolution image. It involves the combination of observa-
tions with many different baselines so that the fringe structure in the reconstructed
PSF disappears at the same rate as the “holes” in the uv-plane are filled. This will
be discussed in Sect. 3.4.

Extended Objects

The next step expands the discussion to an incoherent source with angular brightness
distributionOb.˛/ that we assume independent of wavelength.

In monochromatic illumination with G.�/ D •.� � �0/, we obtain the image
intensity distribution, I.˛/, by a convolution (3.30) of Ob.˛/ with the interferome-
ter PSF (3.53), writing

I.˛/ D Ob.˛/ � PSF.˛/

D 2Ob.˛/ � .PSFa.˛/ .1C cos.2�RB � ˛/// : (3.54)

Equivalently one can discuss the imaging process in the uv-plane with the image
intensity spectrum being the product of �.R/ and OTF (3.30), reading
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OI .R/ D
Z
I.˛/ ei2�R�˛d˛

D I0�.R/OTF.R/ (3.55)

D I0�.R/
�
OTFa.R/ � .•.R � RB/C 2•.R/C •.R C RB //

�
;

when the interferometer OTF itself is a convolution of the OTF of an individual
aperture, OTFa, with the OTF of a two-pinhole interferometer (3.52).

We can now discuss the imaging process in an interferometer either in the image
plane ˛, (3.54), or in the uv-plane, R D .u; v/, (3.55).

In the image plane, the convolution (3.54) between the object brightness and the
interferometer PSF (see Fig. 3.15), means adding up interferometer PSFs of individ-
ual points of the object. Each point of the object gives rise to a PSF that is shifted
and weighted according to the object point coordinate and brightness. As long as the
object is smaller than the Airy disk the fringe patterns overlap, and the fringes lose
contrast. This is what we found in Young’s Experiment, and this is what we expect
here: a loss of contrast if the object is extended.

However, in Young’s Experiment, we did not discuss the convolution of the
object intensity with the PSF since the fringe visibility directly provides the visi-
bility function at the point RB in the uv-plane (3.46). We obtain the same result
here if we use the optical transfer function, OTFa.R/ D •.R/, of a pinhole so that
�.R/OTFa.R ˙ RB / can be replaced by �.˙RB/.

With finite apertures instead of pinholes we do not find the same simple relation-
ship between the visibility of the fringe pattern and the visibility function because
we have to multiply �.R/ by OTFa, which is shifted to R D ˙RB , (3.55), and
which is a function of roughly triangular shape and diameter 2D=� (see Fig. 3.16).
It is the Fourier transform of �.R/ weighted by OTFa at R D 0 and at ˙RB that
determines the intensity distribution of the fringe pattern. If the visibility function
were a smooth function that does not vary over the width of OTFa we could still
replace it by single values. We will see in the following that the smoothness of
�.R/ depends on the object size.

One aspect that has been left aside so far is that of an object larger than the
Airy disk. The image would then be composed of many PSF that do not overlap
for all parts of the object so that the visibility of the fringe pattern would vary over
the image. Thus, there is no longer the visibility of the fringe pattern that is linked
unambiguously to the shape of the object. We will come back to this point at the
end of Sect. 3.3.4 discussing a wide binary star. Here, linking the results of finite
apertures to Young’s experiment we will discuss small objects.

Small Monochromatic Objects

For monochromatic objects that are much smaller than the Airy disk, PSFa, the
intensity distribution in the image plane of an individual telescope is about the same
as that of the Airy disk, i.e. indistinguishable from a point source. The object cannot
be resolved. However, if the source size is still larger than the fringe spacing its
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contrast is reduced as a function of the baseline. This situation is not unusual when
observing with stellar interferometers, and measuring stellar diameters is a typical
example of an observation of an object that is smaller than the Airy disk.

For small objects, the convolution in (3.54) can be simplified by setting PSFa.˛/
as constant for all points of the object, Ob.˛/, and the image intensity distribution
is written as

I.˛/ D 2 PSFa.˛/
�
Ob.˛/ � �1C cos.2�RB � ˛/

��
: (3.56)

This means that the structure of the small object affects the contrast of the fringes by
adding up individual fringe patterns of individual object points – the convolution of
Ob.˛/ with 1Ccos(.) – without affecting the Airy disk as the envelope of the fringe
pattern.

In the uv-plane, the Fourier transform of the object brightness distribution, the
visibility function �.R/, is not only much wider than the Fourier transform of the
Airy disk, OTFa.R/, but it is also a very smooth function that does not vary over
distances given by the width of OTFa. This is the consequence of the approximation
above, assuming the object to be much smaller than PSFa.

To explain this, we swap the roles of image and Fourier space for the moment. If
we regard the brightness distribution Ob.˛/ in image space as a function contain-
ing the spatial frequency spectrum of �.R/ we can state that Ob.˛/ as the spatial
frequency spectrum is limited to a maximum “frequency” that is determined by the
size of the object, ˛0. Thus, the structure of �.R/ does not contain detail finer
than 1/˛0. Together with our assumption that the object is much smaller than the
Airy disk, its Fourier transform, OTFa, is much narrower than 1/˛0. Then, �.R/,
containing only structure coarser than 1/˛0, is completely represented by samples
spaced by the width 2D=� of OTFa.

If we return to computing the intensity distribution by Fourier transforming the
product of the visibility function �.R/ and the interferometer OTF, (3.55), we can
replace the visibility function by the value of �.R/ at the centre of the respective
OTFa since �.R/ contains no significant information over the width of OTFa.

We now rewrite the image intensity spectrum (3.55) and the monochromatic
intensity distribution of a fringe pattern (3.56) in case of a small object as

I.˛/ D I0

Z
OTFa.R/

� �
�.RB/•.R � RB/C 2�.0/•.R/C �.�RB/•.R C RB/

�
e�i2�R�˛dR

D 2I0 PSFa.˛/
�
1C j�.RB/j cos

�

.RB/ � 2�RB � ˛

��
; (3.57)

with �.�RB / D ��.RB /, which is very similar to the fringe pattern of Young’s
Experiment (3.46). In contrast to the fringes in Young’s Experiment, here the fringe
pattern is limited in diameter, enveloped by the point-spread function of a single
telescope, PSFa.
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Figure 3.16 visualises the imaging process in the case of a narrow binary star.
The object brightness distribution Ob.˛/ is given by the sum of two •-functions
with a cosine as visibility function �.R/. Note, that the separation vector ˛0 of
the binary is parallel to the interferometer baseline RB . The top row displays the
convolution in the image plane, (3.54), and the bottom row shows the multiplication
in the uv-plane, (3.55), with the interferometer OTF composed of three individual
OTFa at R D 0 and at R D ˙RB . Here, the value �.RB/ can be used in good
approximation to describe the visibility of the fringe pattern, (3.57).

Thus, for objects that are smaller than the Airy disk of an individual aperture the
measurement of the complex visibility of the fringe pattern as a single parameter
sufficiently characterises the fringe pattern, yielding the single parameter �.RB /.

3.3.3 Spectra of Finite Width

The step from monochromatic illumination to a spectrum of finite width is done
by integrating the spectral intensity distribution of the fringe pattern (3.54) over
the spectrum. We now write the PSF explicitly as a function of ˛ and �, properly
considering the functional dependency in the following integrals over the spectral
band.

We start by observing a point source withOb.˛/ D I0•.˛/. Then the convolution
in (3.29) is reduced to a product and the spectral intensity distribution in the image
plane is

I.˛; �/ D I0G.�/•.˛/ � PSF.˛; �/

D I0G.�/PSF.˛; �/: (3.58)

In addition to a wavelength independent object shape we also assume that the PSF
of an individual aperture, PSFa, is independent of wavelength. Being the envelope
of the fringe pattern its effect on the polychromatic image is relatively benign.

The interferometer PSF (3.53) is now written as

PSF.˛; �/ D 2PSFa.˛/
�
1C cos.2�RB � ˛/

�
; (3.59)

with RB � ˛ D B
�

� ˛. The wavelength dependent part of the PSF is the fringe pattern
with fringe spacing 1=RB . The PSF of an individual telescope that we consider
approximately independent of wavelength is the envelope of the fringe pattern. PSFa
is used at the mean wavelength �0.

Then, the polychromatic interferometer PSF is calculated as

PSFpc.˛/ D I.˛/

I0
D
Z
G.�/PSF.˛; �/d�

D 2PSFa.˛/
Z
G.�/

�
1C cos.2�RB � ˛/

�
d� : (3.60)
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The spectrum G.�/ is normalised,
R
G.�/d� D 1, so that the first part of the

integral is equal to one. To solve the integral over G.�/ cos.2�RB � ˛/ we shift
the spectrum G.�/ that is centred around �0, the average frequency, to � D 0

writing G.�C �0/, like in Sect. 2.4.1 discussing Young’s Experiment. The Fourier
transform of G.� C �0/ is a function of time difference � , and we write g.�/ D
F�.G.� C �0//, with g.0/ D 1. The image coordinate ˛ is related to � through
� D ˛ � RB=� D ˛ � B=c, and we define gB .˛/ D g.˛ � B=c/ D g.�/. While the
width of g.�/ is given by 1=��, the reciprocal of the spectral bandwidth, the width
of gB .˛/ – in the direction parallel to B – is given by lc=B , with lc the coherence
length.

Then it is
R
G.�/ cos.2�RB � ˛/d� D gB .˛/ cos.2�R0;B � ˛/, and the polychro-

matic PSF of a stellar interferometer becomes

PSFpc.˛/ D 2PSFa.˛/
�
1C gB .˛/ cos.2�R0;B � ˛/

�
; (3.61)

with R0;B D B=�0 the baseline vector at the mean wavelength �0. The sum inside
the brackets describes a fringe pattern with a spacing of 1=R0;B D �0=B multiplied
by gB .˛/.

A very similar expression, (2.63), describes the polychromatic fringe pattern of
the pinholes in Young’s Experiment. Here, with real apertures, the fringe pattern has
the point-spread function of the individual aperture, PSFa, as an additional envelope
as displayed in Fig. 3.17.

The consequence of multiplying the cosine by gB .˛/ – a function with a width
of about lc=B in the direction parallel to B – is that the fringe contrast is reduced
after a few periods depending on the coherence length lc as discussed in Sect. 2.4.1.
Thus, without additional assumptions, the polychromatic fringe pattern cannot be
characterised by a single visibility value.

The polychromatic interferometer PSF is shown in Fig. 3.17 for an aperture diam-
eter of 8 m and a baseline of 100 m observing in the K-band. Due to the width of
the K-band, with �0=�� D 5:5, there are about 5 fringes visible on each side
of the white-light fringe – corresponding to 5:5�0=B D 25mas – before the con-
trast goes to zero (compare to Fig. 2.15). The half-width of the fringe package is
.�0=��/=R0;B D .�0=��/�0=B D lc=B .

In the following, we will mainly discuss cases when the fringe package is
narrower than the Airy disk, lc=B < �=D, as in Fig. 3.17.

In the uv-plane, the situation is described by integrating OTF at individual wave-
lengths over the spectral band, keeping in mind that the OTF as a function of the spa-
tial frequency R is a function of wavelength. For instance the physical baseline B

is converted to the wavelength dependent spatial frequency RB D B=�. Integrating
over the spectral band we therefore will have to consider OTF(R) as a function of
wavelength.

A general expression for the fringe pattern as Fourier transform of the product of
OTF and�.R/ was given in (3.29). For a point source, the visibility function is con-
stant, �.R/ D 1. Integrating over the spectral band yields the intensity distribution
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Fig. 3.17 The polychromatic PSF of a stellar interferometer (3.61) with two apertures as in
Fig. 3.14, with telescope apertures of D D 8m and a baseline B of 100 m in the K-band, with
� = 2.2˙0.2
m. The FWHM of the Airy disk – only the central core is displayed – is �0=D D
57 mas and the fringe spacing �0=B D 4.5 mas. The consequence of observing a spectral band
instead of a single spectral line is a complete loss of contrast after �0=�� D 2:2=0:4 D 5:5

periods, i.e. after about ˙25mas from the white-light fringe at the centre. There is no single vis-
ibility value describing the polychromatic PSF. Setting the Airy disk independent of wavelength,
the FWHM variation over the K-band, which is 57˙5mas, is ignored and the average value is
used for the whole K-band. The effect on the fringe package is negligible

of the polychromatic PSF as

I.˛/ D I0

ZZ
G.�/OTF.R/e�i2�R�˛dR d�

PSFpc.˛/ D I.˛/

I0
D
Z �Z

G.�/OTF.R/d�

�

e�i2�R�˛dR : (3.62)

We move our discussion completely into the uv-plane, formally by regarding the
Fourier transform of PSFpc that is called the polychromatic optical transfer function,
OTFpc , with

OTFpc.R/ D
Z
G.�/OTF.R/d� (3.63)

D
Z
G.�/OTFa.R/ � �•.R � RB/C 2•.R/C •.R C RB/

�
d� ;

In Fig. 3.18, OTF at three different wavelengths are displayed, illustrating the
impact of the wavelength on form and position of the OTF. The integral over
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Fig. 3.18 The OTF at three different wavelengths as in (3.64). For a given physical baseline B

there are three different baseline vectors RBi D B=�i , i D 1; 2; 3, in the uv-plane. The colours
of the curves indicate their wavelengths. For longer wavelengths, towards the red end of the spec-
trum, RB is shorter and the individual OTFa are narrower. For a spectral bandwidth of �� the
monochromatic OTFa are distributed over a range with a width of .��=�0/B=�0 D B=lc , with
lc the coherence length. The sum of the monochromatic OTF forms the polychromatic OTF that is
elongated by B=lc

the three distinct areas – around jRj D 0 and around R D ˙RBi
– forms the

polychromatic OTF.
Our assumption that PSFa is approximately independent of wavelength means

that also OTFa is not a function of �. We use OTFa at the mean frequency �0,
writing the polychromatic OTF as

OTFpc.R/ D OTFa.R/ �
Z
G.�/

�
•.R � RB /C 2•.R/C •.R C RB/

�
d�

D OTFa.R/ � �GB .R/C 2•.R/CGB .�R/
�
; (3.64)

with GB .R/ the spectrum as a function of spatial frequency R for the baseline B,
since GB .R/ WD GB .

B
�
/ D GB .

B
c
�/. GB .R/ is dimensionless, with

R
GB .R/d

R D 1. It forms a Fourier pair with gB .˛/, like the spectrum G.�/ with g.�/.
If G.�/ is a rectangular function of width �� centred at the average frequency

�0, the width of g.�/ is 1=��. And if GB .R/ is a rectangular function of width
B=lc , centred at the spatial frequency R0;B D B=�0, gB .˛/ has the width lc=B .

The convolution of OTFa with the three •-peaks and the subsequent integration
over the spectral band in (3.63) is replaced by the convolution of OTFa with the
spectra GB.˙R/ and the •-function in (3.64). Both computations yield the same
result, displayed in Fig. 3.18.

We have thus attached the source spectrumG.�/ to the OTF that characterises the
optical system. We can do this since we assume that the object shape is independent
of wavelength over the observed spectral band, so that the object is described by its
brightness distributionOb.˛/.
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When G.�/ was introduced in Sect. 2.3.3 it was noted that it would describe
the spectral distribution of the source as well as the width of the spectral band
that is transmitted by the atmosphere or by spectral filters in the interferometer.
In (3.64), we put the emphasis more on its role as defining the width of the spec-
tral band to study the imaging process. When it comes to interpreting the fringe
pattern we always will investigate the product of the polychromatic OTF and the
visibility function �.R/ so that the role of G.�/ as the source spectrum is properly
considered.

The result of the convolution is that OTFpc is wider than the monochromatic
OTF in the direction parallel to the baseline vector RB . The elongation of the areas
around ˙R0;B is 2D=�0 CB=lc , which is the width of OTFa plus the width of the
spectrum GB .R/.

In Sect. 2.4.3, we discussed the power spectrum of the fringe pattern in Young’s
experiment, investigating the Fourier transform of the fringe pattern without any
consideration of optical transfer functions. For that discussion, we expressed the
fringe pattern as a function of time delay � using � D ˛ � RB=�. The Fourier trans-
form was then performed from � to �. We found that the Fourier transform of the
fringe pattern consists of a •-peak at � D 0 and G.�/ around ˙�0 (2.75), see
Fig. 2.16.

Equation (3.64) can easily be modified to describe the situation in Young’s
Experiment. For pinhole sized apertures the optical transfer function is given by
a •-function, OTFa.R/D •.R/, and the convolution in (3.64) is reduced to the sum
of three terms:

OTFpc.R/ D GB .R/C 2•.R/CGB.�R/; (3.65)

when GB .R/ is the spectrum as a function of spatial frequency centred around
B=�0. This is the same result as in (2.75) when the spectra were written as a function
of �.

Summary: The polychromatic interferometer PSF displays a fringe package
within the Airy disk of an individual telescope when the fringes lose contrast after
about �0=�� periods and, thus, cannot be characterised by a single value. The fringe
spacing is �0=B , and the FWHM of the Airy disk is �0=D, with �0 the mean wave-
length of the spectral band,B the baseline length andD the telescope diameter (see
Fig. 3.17). The polychromatic OTF consists of OTF of individual telescopes, OTFa,
with diameter 2D=�0, centred at R D 0 and at ˙R0;B (see Fig. 3.18). The dis-
tribution of individual OTFa over .��=�0/B=�0 D B=lc around ˙R0;B makes
OTFpc wider than the monochromatic OTF. This is the equivalent of the decrease of
fringe contrast after �0=�� periods, making the area with fringes narrower than in
the monochromatic PSF.
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Small Objects with Wavelength Dependent Shape

Observing objects that are larger than a point but much smaller than the fringe
package allows for a different interpretation of the polychromatic fringe pattern.
Throughout this chapter we have used the approximation of a wavelength indepen-
dent object shape. What happens if we observe such a small object with varying
shape over the observed bandwidth? We no longer describe the imaging process by
the product of the polychromatic OTF with the visibility function�.R/ but we have
to multiply �.R/ at each wavelength by the monochromatic OTF, integrating over
the spectrum at the end.

The polychromatic fringe pattern forms by adding up the resulting mono-
chromatic fringe patterns in the image. It should be noted that this is the normal
procedure when doing the step from monochromatic to polychromatic illumina-
tion. Using the polychromatic PSF and the polychromatic OTF is just a convenient
approximation in case of a wavelength independent object shape.

Regarding the Fourier transform of the polychromatic fringe package we would
still find an elongated area around R0;B . While this could be represented by a
single value in the case of wavelength independent object shape, we can now
attribute the shape of the visibility function over this area to values at different
wavelengths, remembering that the elongated areas are the integral over monochro-
matic OTF, see Fig. 3.18. However, the spectral resolution is limited since at a
given spatial frequency R, there is a mix of contributions from a wavelength �1
and a baseline B1 with those at another wavelength �2 and a baseline B2, as long
as R D B1=�1 D B2=�2. The baseline vectors B1 and B2 connect individual
points in the telescope apertures that are separated by the interferometer baseline,
the centre-to-centre distance of the telescopes, B. This mixing reduces the spectral
resolution to the width 2D=� of OTFa, which is equivalent to a resolvable spectral
band of �� D �02D=B .

For a baseline of 100 m and a telescope diameter of 1.8 m the resolvable spectral
bands in theK-band would be about�� D �0=28 D 0:08
m wide. Given that the
width of the K-band is 0.4
m, one can distinguish about five spectral channels for
this combination of baseline and telescope diameter.

If the baseline were reduced to B D 20m the spectral resolution would be only
�� D 0:4
m, equivalent to the full K-band. Then, there would be no additional
spectral information across the elongated OTF.

These values of the spectrally resolved visibility function can be used to recon-
struct a polychromatic image. The values have to be processed according to the
spectral channel, first reconstructing a monochromatic image and then adding up
the monochromatic images at the end, copying the physical process that takes place
in the optical system.

The variation of spectral resolution with baselines leads to some ambiguity when
filling the uv-plane with values at different baselines. Therefore, one has to carefully
consider if the lowest spectral resolution would be applied to all baselines or if one is
only interested in the high spatial frequencies using the highest spectral resolution.
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If the size of an object with wavelength dependent shape is unknown there is
no choice but reducing the measured size to the half-width of the fringe pack-
age by integrating over OTFpc around R0;B . Otherwise, the spatial and spectral
information would be mixed in an indiscernible way.

Objects that are larger than the half-width of the fringe package cannot be
resolved spectrally and require the approximation of a wavelength independent
shape. This can also be achieved by reducing the width of the spectral bands by
physically splitting the light in the interferometric instruments into narrow spectral
channels like a spectrometer so that each channel creates a narrow-band fringe pat-
tern. The spectral resolution of the instruments has to be such that the object shape
is approximately independent of wavelength in each spectral channel.

3.3.4 Objects of Finite Size

After the discussion on the fringe pattern of very small sources, it is straightforward
to move to larger objects. The results in this section investigating apertures, spectra
and objects of realistic dimensions form the basis for the description of the imaging
process in stellar interferometers.

We use again (3.29), writing the spectral intensity distribution as the convolution
of the spectral intensity O.˛; �/ with the interferometer PSF. Assuming that the
object brightness distributionOb.˛/ is independent of wavelength over the observed
spectrum G.�/, we write

I.˛; �/ D G.�/Ob.˛/ � PSF.˛; �/

D Ob.˛/ � �G.�/PSF.˛; �/
�
: (3.66)

The integral over the spectral band to obtain the polychromatic intensity distri-
bution can be reduced to the integral of the product G.�/PSF.˛; �/, which is the
polychromatic PSF as shown in (3.60).

Thus, the convolution of the object brightness distribution with the polychromatic
PSF (3.61) forms the image intensity distribution of an extended object as

I.˛/ D Ob.˛/ �
Z
G.�/PSF.˛; �/d�

D Ob.˛/ � PSFpc.˛/

D 2Ob.˛/ � �PSFa.˛/ .1C gB .˛/ cos.2�R0;B � ˛//
�
; (3.67)

with gB .˛/ the Fourier transform of the spectrum GB .R/, and with the approxima-
tion that the PSF of an individual aperture, PSFa.˛/, is independent of wavelength.

An example for a polychromatic PSF is displayed in Fig. 3.17. The image inten-
sity of an extended object is thus a repetition of PSFpc – each displaying a fringe
pattern – all over the image plane, weighted and positioned according to the object
brightness distributionOb.˛/.
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The polychromatic PSF displays a white-light fringe at its centre. A white-light
fringe identifies the position of zero OPD for the optical paths from the source point
through the apertures into the image plane. Thus, the distribution of point-spread
functions in the image plane means that the light from each point of the object has
zero OPD at its image position where its PSF forms. In fact, it is the nature of the
imaging process that the image of each point forms at exactly that position where
the optical paths through the optical system are equal and the OPD is zero.

We have to keep in mind that we are discussing the Fizeau configuration that is
modelled by masking a large aperture with two small sub-apertures. As mentioned in
Sect. 3.3.2, stellar interferometers with individual telescopes, requiring the reimag-
ing of the telescope apertures, are often operated in Michelson configuration, when
there is no homothetic mapping of the telescope apertures, i.e., when the reimaged
apertures in the exit pupil are not a downscaled image of the interferometer array.
Then, the imaging process cannot be modelled as a masked aperture. The OPD is
not necessarily zero at the centre of each PSF and we do not see fringes in each PSF
but only in those close to the image centre. This will be discussed in Sect. 5.1.2.

If the object is larger than PSFpc there is no single fringe pattern since not all
point-spread functions overlap in the image. The visibility of the fringes varies over
the image both due to the object shape and to the spectral bandwidth. There is no
single visibility value for the fringes in the image. However, this does not affect the
ability to produce a high resolution image as we shall see in the following.

The image intensity can be expressed by the Fourier transform of the product of
�.R/ with the OTF, (3.55). The spectral intensity in the image is then

I.˛; �/ D I0

Z
G.�/�.R/OTF.R/e�i2�R�˛dR ; (3.68)

and the polychromatic intensity is

I.˛/ D I0

ZZ
G.�/�.R/OTF.R/e�i2�R�˛dRd�

D I0

Z �

�.R/

Z
G.�/OTF.R/d�

�

e�i2�R�˛dR ; (3.69)

with
R
G.�/OTF.R/d� being the polychromatic optical transfer function, OTFpc ,

(3.63). We should note again that the shape of OTF.R/ varies with wavelength (see
Fig. 3.18) so that it stays under the integral over the spectral band while the visibil-
ity function �.R/ as the Fourier transform of the object brightness is wavelength
independent since the object brightness is also independent of wavelength over the
observed spectral band.

What would happen if the object brightness distribution were a function of wave-
length? The object brightness distribution in (3.67) and the visibility function in
(3.69) would have to stay under the integral over � and the complete imaging
process would first be treated like in the monochromatic case integrating the spec-
tral intensities over the spectral band at the end. The advantage of a wavelength
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independent object brightness, describing the imaging process as a linear process
with a polychromatic optical transfer function, will be discussed in the following.

We move completely into the uv-plane by regarding the image intensity spec-
trum, the Fourier transform of the image intensity distribution in (3.69) (compare to
3.55), which is

OI .R/ D
Z
I.˛/ei2�R�˛d˛

D I0�.R/OTFpc.R/

D I0�.R/
�
OTFa.R/ � .GB .R/C 2•.R/CGB .�R//

�
: (3.70)

The spatial frequency spectrum OI .R/ of the image intensity is the product of the
visibility function�.R/ of the object brightness distribution multiplied by the poly-
chromatic OTF (3.64) that is displayed in Fig. 3.18. Like the PSF of an individual
aperture its optical transfer function, OTFa, is independent of wavelength using the
function at the mean wavelength �0.

Thus, we have the expressions for the polychromatic image intensity I.˛/ as
a convolution, (3.67), and as a Fourier transform of its visibility function, (3.70).
For these formulae, we assumed that Ob.˛/ and the PSFa, and therefore OTFa, are
independent of wavelength.

We will now discuss the two extreme cases of an object that is much smaller than
the fringe package and one that is larger than an Airy disk.

Small Objects, the Quasi-Monochromatic Approximation

The notation can be further simplified by regarding small objects, as discussed in
quasi-monochromatic approximation in Sect. 2.3.4. Indirectly, we have used this
approximation when discussing the conditions under which the fringe pattern can
be characterised by a single visibility value. Here, we will put this discussion in the
general context of the quasi-monochromatic approximation.

We make the assumption that the width of the spectrum G.�/ is smaller than the
mean frequency �0, or, more precisely, the width of the spectrum together with the
object size is such that the visibility function �.R/ is invariant over the elongated
area in the polychromatic OTF, which is about B=lc C 2D=�0. If the object size ˛0
is smaller than PSFa and additionally smaller than the half-width lc=B of the fringe
package in PSFpc , this condition is met.

We can then simplify the spatial frequency spectrum in (3.70), similar to (3.57),
writing

OI .R/ D I0

�
�.R0;B/OTFa.R/ �GB .R/ (3.71)

C 2�.0/OTFa.R/ � •.R/C �.�R0;B/OTFa.R/ �GB .�R/
�
;
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replacing the visibility function by its individual values at ˙R0;B , the spatial fre-
quency at the mean wavelength �0, and at jRj D 0 since �.R/ is invariant over the
elongated OTF due a source that is smaller than the half-width of the fringe package.

Computing the image intensity distribution I.˛/ by Fourier transforming OI .R/
yields a fringe package with a width of gB .˛/ that has a maximum contrast of
j�.R0;B/j around the white-light fringe at j˛j D 0, writing

Iqm.˛/ D 2I0 PSFa.˛/

� �1C gB .˛/j�.R0;B/j cos .
.R0;B/� 2�R0;B � ˛/
�
; (3.72)

with 
.R0;B/ the phase of the visibility function and using
R
GB .R/dR D 1.

We obtained the same expression in Sect. 2.4.1, describing the fringe pattern in
Young’s experiment in quasi-monochromatic approximation by (2.68).

Considering a real observing situation with two telescopes, the complex visibil-
ity can be determined directly, e.g., with the ABCD method as contrast and position
(phase) of the white-light fringe, as discussed in Sect. 2.4.2, when only a small
fraction of the intensity – that in the white-light fringe – would contribute to the
measurement. If more than two telescopes are combined simultaneously, this direct
measurement becomes increasingly difficult, as illustrated by Fig. 3.13. Alterna-
tively, the visibility at each baseline can be determined individually in the uv-plane
after Fourier transforming the complete fringe pattern, as discussed in Sect. 2.4.3
for Young’s experiment.

Starting from (2.78) but now with real apertures instead of pinholes, we integrate
the image intensity spectrum (3.71) over the elongated area of OTFpc , given by
OTFa.R/ � GB .R/, the interferometric peak, (see Fig. 3.18) and divide it by the
integral over OTFa around R D 0, the photometric peak, yielding the estimator for
the complex visibility function �.R0;B/ in quasi-monochromatic approximation as

�.R0;B/
R

OTFa.R/ �GB .R/ dR

2�.0/
R

OTFa.R/ dR
D �.R0;B/

2
; (3.73)

using �.0/ D 1 and
R
GB.R/dR D 1.

Calculating the power spectrum j OI .R/j2 of the fringe pattern, we obtain an
estimator for the squared modulus of the visibility function j�.R0;B/j2 as

j�.R0;B/
R

OTFa.R/ �GB .R/ dRj2
j2�.0/ R OTFa.R/ dRj2 D j�.R0;B/j2

4
: (3.74)

The power spectrum provides an unbiased measure for the visibility function in
case of noisy measurements [224], at the price of losing the phase 
.R0;B/ of the
visibility function (see Sect. 6.1.1).
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A Wide Binary Star

Applying the convolution of the object brightness distribution with the polychro-
matic PSF (3.67) to an extended object, it is obvious that with distinct Airy disks
the fringe patterns within the Airy disks will not overlap. Discussing the case of a
wide binary in the following subsection we will see in detail what this means.

We call a binary star a wide binary if the separation is much larger than the
Airy disk of an individual telescope, PSFa. Its brightness distribution and visibility
function are

Ob.˛/ D I0

2

�
•
�
j˛ � ˛0

2
j
�

C •
�
j˛ C ˛0

2
j
��

and

�.R/ D F�1
˛ .Ob.˛//

I0
D cos

�
2�R � ˛0

2

�
: (3.75)

The separation of the binary is ˛0 D j˛0j and the period length of the cosine is 2=˛0.
Figure 3.19 illustrates the imaging process for the binary’s orientation parallel to the
interferometer baseline ˛0kB.

The Fourier transform of the two •-functions yields a cosine function for the
visibility function �.R/. This must not be confused with the intensity distribution
of the fringe pattern in the image plane, which is also described by a cosine function.

The polychromatic image intensity distribution is calculated by inserting the
binary’s brightness distribution into the convolution in (3.67), writing

I.˛/ D I0

2
PSFa

�
˛ � ˛0

2

� �
1C gB .˛/ cos

�
2�R0;B �

�
˛ � ˛0

2

���

C I0

2
PSFa

�
˛ C ˛0

2

� �
1C gB .˛/ cos

�
2�R0;B �

�
˛ C ˛0

2

���
: (3.76)

This is the sum of two Airy disks, one with its fringe pattern centred at ˛0=2 and the
second one at �˛0=2. The Fourier transform gB .˛/ of the spectrum acts as envelope
of each fringe pattern.

With PSFa much narrower than the separation of the binary, we have two distinct
Airy disks, each like in Fig. 3.17, that do not overlap at all. The fringe patterns in
each Airy disk have a visibility of 1 like that of an individual point source.

NB 7. Rather than discussing the visibility of the fringe pattern we could also deter-
mine directly the binary’s separation ˛0 by measuring the distance between the
fringe packages in the image, see Fig. 3.19. This type of measurement determining
the angular distance between celestial bodies is called astrometry. The precise mea-
surement of star and planet positions is one of the oldest disciplines in astronomy.
When this is done with single telescopes the accuracy is limited, amongst other fac-
tors, by the width of the Airy disk. The position of the Airy disk can be determined to
a fraction of its width achieving an accuracy of about 1/100 of the diameter of the
Airy disk.



3.3 Propagation Through Interferometers 127

=

μ(
R

)
O

T
F

pc
(R

)

=

I(
α
)

O
b(

α
)

P
SF

pc
(α

)

1/
R

0,
B
 =

 λ
0/
B

2/
α

0

α
0

R
0,

B

R

I(
R

)
^

–1 α
–1 α

F
ig

.
3.

19
Il

lu
st

ra
ti

on
of

th
e

im
ag

in
g

pr
oc

es
s

of
a

w
id

e
bi

na
ry

st
ar

in
an

in
te

rf
er

om
et

er
in

po
ly

ch
ro

m
at

ic
il

lu
m

in
at

io
n

w
it

h
˛
0
kB

.
T

he
to

p
ro

w
di

sp
la

ys
th

e
co

nv
ol

ut
io

n
of

th
e

ob
je

ct
br

ig
ht

ne
ss

di
st

ri
bu

ti
on
O
b
.˛
/

w
it

h
th

e
po

ly
ch

ro
m

at
ic

PS
F

of
th

e
in

te
rf

er
om

et
er

yi
el

di
ng

th
e

im
ag

e
in

te
ns

it
y
I
.˛
/,

(3
.6

7)
.T

he
se

pa
ra

ti
on

of
th

e
bi

na
ry

is
la

rg
er

th
an

th
e

A
ir

y
di

sk
so

th
at

tw
o

A
ir

y
di

sk
s

fo
rm

th
e

im
ag

e.
T

he
bo

tt
om

ro
w

sh
ow

s
th

e
si

tu
at

io
n

in
th

e
uv

-p
la

ne
:

T
he

vi
si

bi
li

ty
fu

nc
ti

on
�
.R
/

of
th

e
bi

na
ry

st
ar

is
a

co
si

ne
fu

nc
ti

on
,w

it
h

pe
ri

od
le

ng
th
R

D
2
=
˛
0
,t

ha
th

as
m

an
y

pe
ri

od
s

ov
er

th
e

O
T

F.
T

hi
s

ca
n

be
se

en
in

th
e

sp
at

ia
lf

re
qu

en
cy

sp
ec

tr
um

O I.R
/,

w
hi

ch
is

th
e

pr
od

uc
to

f
�
.R
/

w
it

h
th

e
po

ly
ch

ro
m

at
ic

O
T

F.
O I.R

/
is

re
la

te
d

to
th

e
im

ag
e

in
te

ns
it

y
th

ro
ug

h
a

Fo
ur

ie
r

tr
an

sf
or

m
(3

.6
9)

.T
he

O
T

F
is

sl
ig

ht
ly

el
on

ga
te

d
ar

ou
nd

R
D

˙R
0
;B

du
e

to
th

e
po

ly
ch

ro
m

at
ic

il
lu

m
in

at
io

n



128 3 Imaging Process: Propagation Through Optical Systems

Using an interferometer for astrometry, the angular distance – or rather the dif-
ferential OPD which is related to the angular distance by OPD D ˛0 � B – between
the white-light fringes provides the projection of the separation vector onto the base-
line vector. The accuracy of this measurement, depending now on the width of the
fringe instead of the Airy disk, is improved by a factor of about B=D compared to
the observation through a single telescope. The absolute values depend on a number
of parameters that will be discussed in Sect. 6.2.2.

Having distinct Airy disks, we cannot determine a single visibility value that is
related to the binary’s separation as we did for small objects. If one is only interested
in its separation one should measure the distance between the fringe packages in the
image, i.e. do astrometry. Here, we regard the binary as an example for an extended
object, and we move the discussion into the uv-plane (see Fig. 3.19).

The spatial frequency spectrum of the image intensity, which we obtain by
Fourier transforming the image intensity, is the product of �.R/ and the polychro-
matic interferometer OTF, (3.70):

OI .R/ D I0 cos
�
2�R � ˛0

2

�

�
�

OTFa.R/ � �GB .R/C 2•.R/CGB .�R/
��
: (3.77)

For a wide binary with a separation ˛0 much larger than the FWHM, �0=D, of
the PSF of an individual aperture (and much larger than the fringe package), the
cosine function of its visibility function cos.2�R � ˛0=2/ (3.75) has a periodicity
R D 2=˛0 that is much smaller thanB=lcC2D=�0, the width of the elongated parts
of the optical transfer function, so that many periods of the cosine are transferred by
the OTF. If, for instance, the separation is ˛0 D 5�0=D there are 5 periods of the
visibility’s cosine function across OTFa. This is displayed in Fig. 3.19.

In general, the visibility function of a large object of size ˛0 – large compared
to the PSF – shows significant variation over OTFa on a scale of 1=˛0 that needs
to be considered in order to form the image so that we cannot replace the visibility
function by a single value as in the quasi-monochromatic approximation. For our
example of a binary separation of ˛0, the cosine function of its visibility function
has a periodicity of 2=˛0, so that a resolution of 1=˛0 is required in order to properly
sample the cosine and to form an image of size ˛0.

3.3.5 Considerations on the Interferometric Field of View

Throughout this section, we have discussed the imaging process in interferome-
ters in Fizeau configuration with, in principle, unlimited field of view. Here, we will
investigate some limitations on the field of view that are related to the level of detail
in the visibility function. Restrictions on the field of view that are determined by the
interferometer configuration, for instance by the Michelson configuration, will be
discussed in Sect. 5.1.2.
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The question of maximum object size or field of view of an interferometer is
linked to the level of detail in the visibility function. If the visibility function is
invariant over the elongated optical transfer function, OTFa.R/�GB .R/, the object
is smaller than the fringe package (and much smaller than the Airy disk), the visibil-
ity is represented by a single value at R0;B . If the visibility function varies over the
width of the elongated parts of the optical transfer function, OTFa.R/�GB .R/, the
object is larger. Or, turning this argument around, the form of the visibility function
inside the OTF needs to be measured in order to determine an object or a field of
view that is much larger than the Airy disk. If the object is smaller than an Airy
disk, one value of the visibility function is sufficient to characterise the object at the
given baseline.

One should note that even a very large object can have visibility values at very
long baselines if the object has fine structure with a spatial frequency according to
that baseline. Thus, the size of an object does not determine the extension of the
visibility function in the uv-plane but its structure, i.e. the object’s spatial frequency
content does. If the object shape is so smooth that its visibility function is zero
beyond the limit given by the optical transfer function of an individual telescope, this
means simply that the object details are fully resolved with an individual telescope.
But then observations with an interferometer are not required.

Step by step we have moved the discussion from determining the visibility of
the fringe pattern to regarding the visibility, and the visibility function, as a quantity
that is transferred by an optical system. It is not even required that a single fringe
pattern forms in the image plane in order to determine the object shape with an
interferometer. Thus, image formation in an interferometer is completely described
by the characteristics of the optical transfer function in the uv-plane.

Having point-spread functions with fringes, the image might not resemble the
object too much if the uv-plane is not well covered with values. A wide spectral band
helps increasing the uv-plane coverage and, thus, reducing the number of fringes in
the PSF. However, a wide spectrum puts a constraint on the object size and on the
assumption that the object brightness distribution is invariable with wavelength.

One has to find a compromise between the width of the spectral band and the
characteristics of the source to be studied. While for the measurement of a stellar
diameter the assumption of a wavelength independent shape is usually fulfilled over
a wide spectral band, other measurements require a spectral resolution that limits the
width of the spectral band considerably. In fact, the most interesting astronomical
results have been obtained with a medium to high spectral resolution, i.e. with rather
narrow spectral bands.

Thus, the arbitrary increase of the spectral bandwidth is not an option to improve
the OTF coverage of spatial frequencies, and we have to combine observations with
different baselines B – different in length and orientation – to have a good coverage
of the uv-plane and therefore a point-spread function without fringes, resembling a
point again.

It is exactly this last point, filling the uv-plane to synthesize a large aperture, that
is one of the key issues of stellar interferometry. Before we will discuss this in detail
in Sect. 3.4, we have a look at the Large Binocular Telescope.
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The optical design of the Large Binocular Telescope (LBT) on Mt. Graham in
Arizona [101] is very close to the layout with masked apertures, the Fizeau configu-
ration, that we have used so far (see Fig. 3.14). The LBT design is unique in having
two 8.4-m primary mirrors mounted on the same telescope structure. The centre-to-
centre distance of the two mirrors, i.e. the baseline is B D 14:4m so that the OTF is
similar to the one in Fig. 3.19. The result of the computation of the image intensity
distribution is displayed in Fig. 3.20, illustrating the large field of view in Fizeau
configuration by using a crowded field with stars of varying intensities instead of a
binary. This large field has a visibility function that requires many data points across
OTFa, similar to the visibility function of the wide binary in Fig. 3.19. All the data
points in the image spectrum OI .R/ across OTFa need to be considered in modulus
and phase, i.e. in fringe contrast and position, in order to reconstruct an image of
this size.

Most interferometers have a baselineB that is much larger than the diameterD of
the individual telescopes, and the telescopes are not mounted on the same mechani-
cal structure. These interferometers are usually operated in Michelson configuration
and not in Fizeau configuration, i.e. they cannot be modelled by masked apertures.
The consequence is that the stars in a large field of view like in Fig. 3.20 would only

Fig. 3.20 Simulated intensity distribution in the image of the Large Binocular Telescope (LBT) on
Mt. Graham in Arizona. The parameters are: telescope aperture D D 8:4m, baseline B D 14:4m,
� D 2:2 ˙ 0:2 
m (K-band). The first minimum of the PSF is at 1:22�0=D D 66mas and the
fringe spacing is 32 mas. Each star in this crowded field shows an Airy disk with fringes. The inset
displays an individual PSF. Due to the combination of values for D and B , there are only about
three visible fringes across the Airy disk, and the loss of contrast due to the width of the spectral
band is barely visible. (Courtesy T. Herbst)
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show fringes if they are very close to a line that is parallel to the fringes and that is
passing through the image centre. The usable field of view as the permitted distance
from this line could be as small as the central core of an Airy disk of an individual
telescope. While the impact of the beam combination on the usable field of view
will be investigated in Sects. 5.1 and 5.2, we will discuss the interferometric field of
view under very general assumptions in the following.

Content of Information

The interferometric field of view can also be discussed regarding the visibility func-
tion as a signal that is scanned at individual points in the uv-plane, leaving out
all considerations of wavelength bands and aperture size. Assuming that we scan
a regular pattern of N � N uv-plane values at multiples of the shortest baseline
RBmin D Bmin=�, we would find that the interferometric field4 ˛max is limited by
1=RB , the reciprocal of the shortest baseline [123]. A larger object would not only
have visibility values at baselines shorter than RBmin that we cannot detect, but it
would also create a variation of the visibility function on scales smaller than�RBmin

elsewhere in the uv-plane, to which we are blind when scanning only a regular
pattern spaced by RBmin .

It should be emphasised that it is not so much the smallest baseline that imposes
this blindness but it is the fact that nowhere in the uv-plane there is a spacing smaller
thanRBmin

between two measurements. For instance, regarding again a binary with
a cosine visibility function, we cannot distinguish if we scan the first, second etc
maximum of the cosine – for a binary separation smaller than 1=RBmin – or if it
is the second, fourth etc maximum – for twice the separation. This effect is called
aliasing.

With the angular resolution given by 1=RBmax D �=Bmax and Bmax D NBmin,
the ratio (field of view/angular resolution) is given by RBmax=RBmin D N . Thus,
the number of resolution elements to the field of view in the image plane is N 2.
This is sometimes called the crowding limit since it corresponds to the number
of sources that can be distinguished unambiguously within the field of view. This
also corresponds to the Shannon theorem stating that the number of measurements,
i.e. the content of information, and the number of independent points in the image
are identical [116].

However, observing with real interferometers, the situation is not quite that sim-
ple. First, the spacing of the baselines in the uv-plane, after observations of several
hours, is never regular, and we scan the uv-plane also in finer steps than given by the
smallest baseline. In Sect. 3.4.2 (see Fig. 3.24), we shall discuss a typical example.
Thus, visibility variations on a scale corresponding to the smallest distance between
two measured values in the uv-plane affect the observations. Second, as illustrated
in Fig. 3.19, the small scale variations of the visibility function over an individual

4 In Sect. 5.4 discussing the situation for a variety of interferometer designs we will introduce the
term clean field of view for this quantity.
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aperture can be detected since the interferometer OTF does not only scan individual
points in the uv-plane.

This does not mean that we create a content of information that is larger than
the number of measured values, but it means that we cannot simply assume that
there is a square (or circular) field of view that is composed of independent diffrac-
tion limited resolution elements. The resolution elements in the larger field of view,
larger than 1=RB , are not independent but they are linked through missing spatial
frequencies that are not measured in the uv-plane. This reduces the content of infor-
mation in the image in a more subtle way than simply assuming that every pixel
within the field of view is an independent piece of information. Thus, the answer
to the question about the interferometric field of view is highly dependent on the
object morphology.

3.3.6 Masked Field of View

While the Fizeau configuration with its large field of view is very desirable, most
of today’s interferometers are operated with a very limited field of view almost
exclusively in Michelson configuration. For a number of reasons related to the opto-
mechanical combination of individual telescopes with a long baseline (see Sect. 5.1),
the field of view is reduced to substantially less than the Airy disk of an individual
telescope and the quasi-monochromatic approximation applies.

Observing through turbulence, it is then advantageous to mask the image inten-
sity distribution, a process called spatial filtering. This will be discussed in Sect. 6.1.
The size of the mask is about the diameter of an Airy disk. In the following, we
investigate the effect on the imaging process.

Usually, the images of the individual telescopes are masked before the beam
combination. For the time being we assume perfect pointing of the telescopes so that
the individually masked fields of view on a potentially large object match perfectly.

The masks are either pinholes with the diameter of an Airy disk [186], or
so-called monomode optical fibres with a Gaussian transmittance function that
is matched to the diameter of the Airy disk [75, 210]. Formally the masking is
described by multiplying the image intensity distribution I.˛/ by a mask M.˛/
with rectangular or Gaussian shape and with the size of the Airy disk, about �=D,
writing

Im.˛/ D M.˛/I.˛/: (3.78)

Moving into the uv-plane, we introduce the spatial frequency spectrum of the
mask as OM.R/ and of the masked intensity as OIm.R/. The Fourier transform of
the productM.˛/I.˛/ is then the convolution of the individual Fourier transforms,
yielding

OIm.R/ D OM.R/ � OI .R/: (3.79)
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Choosing a mask with a diameter of an Airy disk means that its spatial frequency
spectrum OM.R/ has dimensions similar to the OTF of an individual telescope,
OTFa, which has a width of 2D=�. The convolution with the intensity spectrum
OI .R/ then averages out the details of the spectrum on a scale smaller than about
2D=�.

What is the field of view with a mask the size of an Airy disk? If the mask were
put directly on the object, it is straightforward that the field of view would be directly
determined by the mask size. The image intensity distribution after diffraction at the
telescope aperture would then be slightly wider than the mask. Applying the mask
in the image plane, the image intensity distribution is limited by the mask size, and
the unobscured field of view is smaller than the mask since Airy disks of all object
points that are not exactly on-axis are truncated by the mask.

In the uv-plane, replacing the intensity spectrum OI .R/ by the product of visibility
function �.R/ and polychromatic OTF, (3.70), we write

OIm.R/ D I0 OM.R/ � �.R/OTFpc.R/: (3.80)

Although the convolution of OM.R/ has to be done with the product of �.R/ with
OTFpc.R/, we restrict the convolution to the visibility function defining the masked
visibility function as:

�m.R/ WD OM.R/ � �.R/; (3.81)

which is equivalent to masking the object instead of the image. This facilitates the
description of the imaging process in the following.

With the polychromatic OTF in (3.70) we write the masked image intensity
spectrum as

OIm.R/ D I0�m.R/OTFpc.R/

D I0�m.R/
�

OTFa.R/ � �GB .R/C 2•.R/CGB .�R/
��
: (3.82)

Regarding first a monochromatic spectrum with GB .˙R/ D •.R � RB/ the
convolution is reduced to OTFa centred at the positions of the •-functions yielding

OIm.R/ D I0�m.R/

� �OTFa.R � RB/C 2OTFa.R/C OTFa.R C RB /
�
: (3.83)

We argued above that the masked visibility function would not vary over the
width of OTFa. Therefore, we can replace �m.R/ by its value at the centre RB of
the respective OTFa, writing the masked image intensity distribution as the Fourier
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transform of the product of the masked visibility function and the interferometer
OTF (3.69) as

Im.˛/ D I0

Z �
�m.RB/OTFa.R � RB/C 2�m.0/OTFa.R/

C�m.�RB/OTFa.R C RB/
�
e�i2�R�˛dR

D 2I0PSFa.˛/
�
1C j�m.RB/j cos

�

.RB/� 2�RB � ˛

��
; (3.84)

with �m.�RB / D ��
m.RB/. Thus, the fringe pattern of a masked image has a

constant visibility given by j�m.RB/j enveloped by an Airy disk. In Sect. 3.3.2,
discussing small objects we found exactly the same result, with the value of the
visibility function at RB determining the visibility of the fringe pattern, (3.57).

This is not very surprising since for small objects we took the visibility function
as approximately invariant over the width of OTFa, as we did here as a consequence
of masking the image.

However, there is one significant difference between a small object and a masked
large object. While the visibility of the small object is determined by its shape,
the visibility of the masked field of view of the large object is biased, depending
on the object shape inside the intersection of the masked images of the individ-
ual telescopes. The term modal visibility is sometimes used for the biased visibility
[153]. The masked images can differ in the individual telescopes due to their point-
ing errors. This is illustrated by Fig. 3.21. In the extreme case, completely different
parts of the object are observed and the modal visibility is zero although the visi-
bility of the object is not zero. One has to carefully determine the average overlap
following from the pointing error and calibrate the visibility.

In the polychromatic case the fringe pattern in the PSF cannot be described by
a single visibility value since the visibility of the fringes varies over the Airy disk.
The visibility is reduced from its maximum value at the white-light fringe to zero
with the total number of fringes in PSFpc being determined by the value of �0=��
(see Fig. 3.17). Depending on the width of the fringe package with respect to the
masked field of view, the object points within the field of view can produce partially
overlapping or even distinct fringe packages. The variation of the visibility values is
then due to a mix of spectral bandwidth and object shape.

The difference to the monochromatic case can be discussed in the uv-plane,
regarding the polychromatic OTF, (3.82), with a spectral band given by GB .R/.
Individual OTFa at different wavelengths overlap to form OTFpc (see Fig. 3.18).
The elongated areas around R0;B are wider than the area 2D=�0 over which the
masked object brightness spectrum is invariant. Thus, we have to determine the vis-
ibility function with a spacing of 2D=�0 and we cannot replace �m.R/ by a single
value like in the monochromatic case. Unless we assume that the object is smaller
than the half-width of the fringe package, which is lc=B . In this case, the visibility
function is invariant over the elongated areas of OTFpc and a single value of the
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Fig. 3.21 Illustration of the effect of masking different parts of a densely crowded object. The cir-
cles indicate the mask diameters of Airy disk size. The visibility should be determined by the
intensity distribution in the intersection of the two circles. However, the intensity in the non-
intersecting parts of the circles contributes to the background intensity in the fringe pattern,
increasing the total flux and, thus, reducing the measured visibility. Depending on the point-
ing stability of the individual telescopes these circles move with respect to each other, further
complicating any attempt to calibrate this effect

visibility function at R0;B is sufficient to characterise the visibility function. This
will be discussed in the following section.

If the object is larger than the fringe package in PSFpc , the averaging over OTFpc
cannot be applied. There, a large number of values across OTFpc has to be consid-
ered in order to determine the intensity distribution of the object. Replacing the
visibility function nonetheless by a single value the reconstructed image will be dis-
torted. This effect is known as bandwidth smearing and has been studied extensively
in radio astronomy [21, 47].

Propagation Through Interferometers: Summary

We regard a stellar interferometer as an optical system consisting of two or
more telescopes forming a joint image of an object after recombination of
the light from the individual telescopes. Our general assumption is that the
object brightness distribution Ob.˛/, the shape of the object, is independent
of wavelength over the observed spectral band.

Observing a point source at a large distance, the fringe pattern of a stellar
interferometer with two telescopes is like that in Young’s experiment but with
the Airy disk of a single telescope as an envelope. We call this fringe pattern
the interferometer point-spread function (PSF) since we observe it in the focal
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plane of the interferometer, which is the image plane for an object at a very
large distance (Sect. 3.3.2).

The monochromatic interferometer PSF reads like

PSF.˛/ D 2PSFa.˛/
�
1C cos.2�RB � ˛/

�
; (3.53)

with PSFa the Airy disk of an individual telescope, called the primary beam
in radio interferometry. The FWHM of the Airy disk is �=D, withD the aper-
ture diameter, and the fringe spacing is 1=jRB j D �=jBj, with B the baseline
vector. The PSF is displayed in Fig. 3.15.

We assume that the interferometer is operated in the Fizeau configuration
so that the combination of the individual telescopes can be treated like a large
aperture masked by two small sub-apertures.

The optical transfer function (OTF) of the interferometer aperture is
given by

OTF.R/ D OTFa.R/ � �•.R � RB/C 2•.R/C •.R C RB/
�
; (3.52)

with R D .u; v/ the coordinate vector in the uv-plane. The interferometer
OTF is the sum of optical transfer functions of the sub-aperture, OTFa, at
positions RB , 0 and �RB , with RB D B=�.

The PSF and the OTF are linked by a Fourier transform. Therefore, the
multiplication of PSFa with the fringe pattern 1Ccos(.) in (3.53) is replaced
by the convolution of OTFa with the •-functions in (3.52).

Observing an object with brightness distribution Ob.˛/, the intensity dis-
tribution in the focal plane of the interferometer is the convolution of its
brightness distribution with the interferometer PSF:

I.˛/ D 2Ob.˛/ � �PSFa.˛/
�
1C cos.2�RB � ˛/

��
: (3.54)

If the object is smaller than the Airy disk, PSFa, the observation with a single
telescope does not reveal any object detail. Observing with an interferometer,
the contrast of the fringes is affected by detail as fine as the fringe spacing.
Eventually, after measuring the fringe contrast for many different baselines, a
real image can be reconstructed when the angular resolution is determined by
the fringe spacing. This illustrates the advantage in angular resolution of the
interferometer over a single telescope.

This effect is best discussed by regarding the situation in the uv-plane, with
R D .u; v/, when the convolution (3.54) transforms into the product of�.R/,
which is the visibility function of the object brightness distribution, and the
interferometer OTF reading
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OI .R/ D
Z
I.˛/ ei2�R�˛d˛ (3.55)

D I0�.R/
�
OTFa.R/ � .•.R � RB/C 2•.R/C •.R C RB//

�
:

An object that is smaller than the Airy disk PSFa has a visibility function
�.R/, which is basically invariant over the width of the sub-aperture trans-
fer function OTFa. Then, the visibility function can be replaced by the value
of �.R/ at the centre of the respective OTFa since �.R/ contains no signif-
icant information over the width of OTFa, and the convolution in (3.54) is
simplified to

I.˛/ D 2PSFa.˛/ .1C j�.RB/j cos .
.RB /� 2�RB � ˛// : (3.57)

The visibility of the fringe pattern is now given by a single function value
of the visibility function � at RB , with the contrast being determined by its
modulus, and the fringe position by its phase. This is very similar to the result
of Young’s experiment (3.46).

Moving on to polychromatic objects (Sect. 3.3.3) – still with wavelength
independent shape, for instance a uniform disk – we obtain the polychromatic
point-spread function, PSFpc , as

PSFpc.˛/ D 2PSFa.˛/
�
1C gB .˛/ cos.2�R0;B � ˛/

�
; (3.61)

with R0;B D B=�0 the baseline vector at the mean wavelength �0, and with
gB .˛/ the Fourier transform of the spectrum GB .R/, in the dimensionless
notation GB.R/ D GB .B=�/ D GB.

B
c
�/.

Thus, the fringe pattern within PSFa has the Fourier transform of the spec-
trum as an envelope, reducing the contrast of the fringes after �0=�� D
�0=�� fringe periods, with �� the spectral bandwidth, as displayed in
Fig. 3.17.

The polychromatic OTF incorporates the spectrum GB .R/, yielding

OTFpc.R/ D OTFa.R/ � �GB .R/C 2•.R/CGB .�R/
�
: (3.64)

As a result of this convolution, the OTF is elongated around R0;B D B=�0
where GB.R/ is centred, see Fig. 3.18. We can attach the object spectrum to
the OTF since we assume that the object brightness distribution Ob.˛/ and,
thus, its spatial frequency spectrum OO.R/ are independent of wavelength over
the observed spectral band��.

Then, the convolution of the object brightness distribution with the poly-
chromatic PSF (3.61) forms the image intensity distribution of an extended
object as
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I.˛/ D Ob.˛/ � PSFpc.˛/

D 2Ob.˛/ � �PSFa.˛/ .1C gB .˛/ cos.2�R0;B � ˛//
�
: (3.67)

If the object is larger than the PSF, for example a stellar cluster with many
individual stars, the convolution results in individual fringe patterns all over
the image plane as shown in Fig. 3.20 when observing in Fizeau configuration.
In Michelson configuration, only those objects that are close to the image
centre display fringes. In any case, one cannot attribute a single visibility value
reflecting the object morphology to this extended intensity distribution.

In general, an object of size ˛0 shows a variation in its visibility func-
tion �.R/ on a scale of 1=˛0 that needs to be accounted for in the uv-plane
(Sect. 3.3.4). According to the number of individual fringe patterns of the
extended object one has to process an equivalent number of values in the
image intensity spectrum OI .R/.

Masking an object with a mask of Airy-disk size (Sect. 3.3.6) – a process
called spatial filtering – smoothes the spatial frequency spectrum on a scale
of about 2D=�, the diameter of the telescope OTF. This is the same effect as
observing a small object. However, masking small parts of a large object with
different telescopes, one has to ensure that the masked patches of the object
match perfectly, see Fig. 3.21. Otherwise the visibility will be reduced until –
in the extreme case of pointing at completely separate parts of the object – it
goes to zero.

Restricting the observation to objects smaller than PSFa and addition-
ally smaller than the half-width of the fringe package, i.e. smaller than
.�0=��/=R0;B D .�0=��/�0=B D lc=B , with lc the coherence length,
brings back the quasi-monochromatic approximation as in Sect. 2.3.4.

In this approximation, the visibility function in (3.55) is replaced by its
individual values at ˙R0;B , the spatial frequency at the mean wavelength �0,
and at jRj D 0 since �.R/ is invariant over the elongated OTF due the source
that is smaller than the half-width of the fringe package, yielding

OI .R/ D I0

�
�.R0;B/OTFa.R/ �GB .R/ (3.71)

C 2�.0/OTFa.R/ � •.R/C �.�R0;B/OTFa.R/ �GB .�R/
�
;

with �.�R0;B/ D ��.R0;B/.
Under these conditions, the quasi-monochromatic approximation provides

an expression for the intensity distribution of the fringe pattern, as

Iqm.˛/ D 2I0 PSFa.˛/

�
�
1C gB .˛/j�.R0;B /j cos

�

.R0;B/� 2�R0;B � ˛

��
; (3.72)
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with the visibility function, �.R0;B/, given as the Fourier transform of the
object brightness distribution,Ob.˛/, as described by the van Cittert-Zernike
theorem, (3.24).

The visibility can be measured in the fringe pattern by applying the ABCD
method (2.70) or by deriving it from the Fourier spectrum (3.71) in the
uv-plane, obtaining an estimator for �.R0;B/ as

�.R0;B/
R

OTFa.R/ �GB .R/ dR

2�.0/
R

OTFa.R/ dR
D �.R0;B/

2
; (3.73)

using �.0/ D 1 and
R
GB .R/dR D 1.

Calculating the power spectrum j OI .R/j2 of the fringe pattern, we obtain an
estimator for the squared modulus of the visibility function j�.R0;B/j2 as

j�.R0;B/
R

OTFa.R/ �GB .R/ dRj2
j2�.0/ R OTFa.R/ dRj2 D j�.R0;B/j2

4
: (3.74)

The power spectrum provides an unbiased measure for the visibility function
in case of noisy measurements [224], at the price of losing the phase 
.R0;B/

of the visibility function.

3.4 The uv-Plane

In the preceding sections, we have investigated spatial frequency spectra and fringe
patterns for individual baselines. Here, we will discuss the combination of obser-
vations with different baselines and their impact on the imaging process using the
LBT and the VLTI as examples. Aspects of the layout of interferometric arrays will
be treated in Sect. 5.4.

The quality of the reconstructed image is governed by the number of observations
with different baselines filling the uv-plane. The more baselines are used, the less
prominent will be the fringe structure in the image so that the reconstructed point-
spread function eventually resembles a point again. It is important to keep in mind
that the field of view cannot be increased by adding more observations with different
baselines.

In the preceding discussion on the imaging process, we have always assumed
that the interferometer baseline RB D B=� is perpendicular to the optical axis and
that the object coordinates, the aperture plane and the image coordinates are fixed
with respect to each other.
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Sky Coordinates

Observing celestial objects with a telescope or an interferometer, the object coordi-
nates, as seen from the ground, are in permanent motion called diurnal motion due
to the rotation of the Earth. Therefore, a celestial coordinate system is used, nor-
mally the equatorial reference frame with the coordinates declination ı for the angle
of latitude above the celestial equator, and right ascension RA, for the longitude.
Usually, relative coordinates are used, defined with respect to the line of sight point-
ing at the object. The unit vector along the line of sight is called s. A difference in
position is given by �s that is also denoted by � . We use ˛0 D .�RA;�ı/ as the
coordinate of the sky plane that is tangential to the celestial sphere and orthogonal
on s, as illustrated in Fig. 3.22.

The visibility �.R/, as the Fourier transform of the object brightness distribution
Ob , is calculated with respect to object coordinates ˛0. This means that the uv-plane
is defined with respect to the sky coordinates independent of the rotation of the
Earth. The uv-plane is no longer parallel to the ground but it is orthogonal to the
line of sight s.

Consequently, the physical baseline B of an interferometer with independent
telescopes on the ground has to be replaced by the effective baseline Beff, which
is the projection of the baseline vector onto the uv-plane, orthogonal on s. It is
jBeffj D jBj sin.�/, with � the angle between B and s. Depending on the object
position, the effective baseline and therefore the OTF rotate during the observation.
The baseline RB that is defined in the uv-plane thus equals Beff=�.

s(t+Δt)

Δδ
ΔRA

Beff (t)

α' = (ΔRA,Δδ)

OPD(t) = s(t) . B

s(t)

B

Beff (t+Δt)

OPD(t+Δt)

Δs

Fig. 3.22 Sky coordinates and the effective baseline Beff. We define a local coordinate system
�RA;�ı, approximately a plane, that is centred on the object. This plane is orthogonal on the unit
vector s pointing at the object. The effective baseline, as seen from the object, is the projection of
B onto a plane that is orthogonal on s. The situation observing the same object at t C�t is shown
in grey. The cover page illustrates this effect. While the sky coordinates are fixed, we see the object
at a different position, s C�s and the effective baseline changes in orientation and in length
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The OPD is given by s � B. The difference of the OPD of an object at s and at
s C �s is given by �s � B. Note that �s is a vector in three-dimensional space.
Projecting�s onto the sky plane, parallel to ˛0, the OPD difference is computed as
scalar product with Beff. Staying within the local coordinate system ˛0 we find that
the additional OPD of individual objects at ˛0

0 is given by ˛0
0 � Beff.

In the following, we will investigate aspects of filling the uv-plane, using two
examples of interferometers, the LBT in Fizeau configuration and the VLTI in
Michelson configuration, and we will discuss basic principles of aperture synthe-
sis. We shall assume the ideal case that the visibilities are known in modulus and
phase.

3.4.1 Large Apertures, Short Baseline: The LBT

We first regard the LBT that, with a baseline of B D 14:4m and a telescope diame-
ter ofD D 8:4m, shows only three fringes across the PSF. This means that the three
OTFa – the optical transfer function of the individual sub-apertures – at 0, B=� and
�B=�, forming the interferometer OTF, slightly overlap since their spacings ofB=�
are slightly smaller than their widths of 2D=�. In Fig. 3.23, interferometer OTF for
three different orientations of the effective baseline are displayed for the K-band.

Due to the ratio baseline/telescope diameter, the elongation of the OTF around
R0;B D B=�0 is relatively small (see Fig. 3.18). With the K-band spectral band-
width of �� D 0:4 
m, a mean wavelength of �0 D 2:2 
m, and a coherence
length of lc D �20=�� D 12
m we find that the OTF is elongated by a factor of
1C B=lc

2D=�0
D 1:16.

For the LBT, the length of the effective baseline Beff is the same as that of the
physical baseline B since the baseline, defined by the two primary mirrors that are
on the same telescope structure, is always perpendicular to the line of sight.

This combination of aperture diameter and baseline permits us to fill the uv-
plane reasonably well with three measurements using baselines rotated by 60ı as
displayed in Fig. 3.23. This can be achieved by observing at three distinct moments
in time after rotation of the sky coordinates by 60ı with respect to the baseline.

We discuss mainly the properties of the combined OTF and its Fourier trans-
form, the reconstructed PSF OTF – as if observing a point source – keeping in mind
that the reconstructed image of an extended object results from combining the mea-
sured visibilities of each observation, which is equivalent to multiplying the object
visibility with the OTF.

Combining the OTFi of the individual LBT observations in Fig. 3.23 by simply
adding them, we have a situation that is equivalent to adding the intensity distri-
butions PSFi of the fringe patterns of the three individual observations. However,
although there is a central peak, the reconstructed intensity will not display a first
minimum of zero due to the different orientations of the added fringe patterns. This
means also that the reconstructed PSF is slightly wider than the central fringe of the
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individual fringe patterns, reducing the image quality and, for instance, the ability
to detect very faint objects in the immediate vicinity of the source.

In the uv-plane, this can be attributed to the central OTFa, at R D 0, to which
each fringe pattern contributes individually, so that in sum its share is overestimated,
and too much weight is given to the contribution of PSFa in the reconstructed image
and too little to the high-frequency content at RBi

. We can improve the situation by
adjusting the weight of OTFa.0/.

We introduce the calibration parameter xcal and write the combined interfero-
meter OTF as

OTFpc.R/ D
3X

i

OTFa.R/ �
�

GBi
.R/C 2•.R/

xcal
CGBi

.�R/

�

: (3.85)

Without any weighting, i.e. xcal D 1, we simply add the OTF and the PSF of the
individual observations as discussed above. This can be demonstrated by a simple
experiment as described in [133].

Reducing the central OTFa too much means to reduce the contribution from
PSFa, so that the first minimum has negative values that cannot be interpreted as
a reconstructed intensity.

In general, it is reasonable to put a positivity constraint on the reconstructed PSF
and, thus, on the reconstructed image intensity since they are linked by Irec.˛/ D
Ob.˛/ � PSFrec.˛/.

One finds that in the case of the LBT a calibration parameter of xcal D 2 corre-
sponds to a reconstructed PSF with a first minimum of zero between the central peak
and the six side-peaks – like the first minimum in the individual fringe patterns – as
displayed in Fig. 3.23. This reconstructed PSF is real and positive representing the
intensity distribution in the image.

Combining more apertures, the emphasis moves from the weighting of the central
OTFa to processing the complete distribution of baselines, involving more complex
considerations as will be discussed in Sect. 3.4.3.

It is interesting to look at the positivity constraints from another point of view,
picking up the discussion on the autocorrelation theorem in Sect. 3.1.1 (illustrated
in Fig. 3.3). There, we argued that a real and positive function, like the reconstructed
PSF, has a Fourier transform, like the combined OTF, that is itself the autocorrelation
of another function [17, 102, 119].

While this is straightforward in an optical system with a well defined aperture,
the autocorrelation of which forms the OTF, what does this mean for our com-
bined interferometer OTF? The basic mathematical principle remains the same but
lacking a physical aperture that can be used to calculate the combined OTF, we
define a virtual aperture that we call the meta-aperture. Then, the reconstructed PSF
would have the same form as the PSF of an interferometer with multiple apertures
distributed like the meta-aperture, with simultaneous combination of all beams.

Thus, by definition there always exists a meta-aperture as long as the recon-
structed PSF is positive.
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In our scenario of three distinct visibility measurements with two telescopes, with
baselines rotated by 60ı, displayed in Fig. 3.23, the combined OTF with a calibration
parameter of x D 2, and its Fourier transform, the reconstructed PSF, corresponds
to the PSF of a three-aperture interferometer – the three apertures being placed on
an equilateral triangle with a side length ofB D 14:4m forming the meta-aperture –
with simultaneous combination of all three apertures.

This meta-aperture is particularly simple. Combining observations with many
baselines, it is not straightforward to find a suitable meta-aperture. We will come
back to this point in Sect. 3.4.3.

Combining more than three LBT observations, with smaller angles between the
baseline vectors the distinct side peaks that show up in the reconstructed PSF in
Fig. 3.23 would add up, forming an annulus. The reconstructed PSF would then
become similar to the PSF of an annular aperture, see Fig. 2.8.

Additionally taking advantage of the particular OTF shape of the two LBT aper-
tures without zero points between the individual OTFa, one could amplify the areas
of the OTF with low values – and, thus, the measured visibility function – so that
the combined OTF resembles that of a filled aperture with a diameter of 22.8 m, and
the reconstructed PSF is very similar to the corresponding Airy disk.

The optical design of the LBT permits the operation as a Fizeau interferometer
with a large field of view. This requires, as discussed in Sect. 3.3.4, to determine
many complex visibility values across each interferometer OTF. Combining many
observations with different baseline orientations, the uv-plane can be filled with
visibility values while the field of view ˛0 is determined by the spacing 1=˛0 of
the visibility values in the uv-plane. The individual values of the spatial frequency
spectra then fill a virtual aperture with a diameter of 22.8 m. While the image
reconstruction from this combined visibility function is straightforward in principle,
we will see later that aspects like atmospheric turbulence and measurement noise
require some sophisticated data processing methods [160, 169] to obtain visibility
measurements with a good signal-to-noise ratio.

3.4.2 Large Apertures, Long Baselines: The VLTI

The LBT is a special case since it combines large apertures on the same telescope
structure with a rather short baseline. Most interferometers combine individual
telescopes on the ground with aperture diameters much smaller than their baselines.
Then, filling the uv-plane requires many observations. This will be investigated in
the remainder of this section.

If the field of view is limited to about an Airy disk – which is still the most com-
mon observing situation – the visibility function is invariant over OTFa, and there
is only one single complex visibility point per baseline to be accounted for. This
situation will be discussed in the following using illustrations by F. Millour [159].

We regard four scenarios of binary star observations displayed in Fig. 3.24, evolv-
ing from single-baseline monochromatic (a), to multi-baseline polychromatic (d)
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observations. The separation of the binary is 3.65 mas – with each of its com-
ponents assumed to be a point source – and the separation vector ˛0 is slightly
tilted with respect to the sky coordinate axes as is the visibility function, �.R/ D
cos.2�R � ˛0=2/, with a period length of 2=˛0 D 548 arcsec�1, the modulus
of which is displayed in Fig. 3.24. Keep in mind that these stripes are not the
interferometric fringes but the visibility function of the binary!

The interferometric OTF for a single baseline is shown in Fig. 3.24a. The cone-
like shape of the OTF of an individual aperture, OTFa, is displayed by a colour
gradient in the circles for the central wavelength �0 D 1:1 
m of the J -band (1:1˙
0:15
m). The radius of OTFa for an 8-m telescope is then D=�0 D 35 arcsec�1
and the corresponding FWHM of the Airy disk is 28 mas. The separation of the
binary is about eight times smaller than the diameter of the Airy disk so that we can
use a spatial filter with the size of an Airy disk to observe the binary. The visibility
function �.R/ is approximately invariant over the diameter of OTFa – as can be
seen in Fig. 3.24a – and the visibility can be represented by a single value.

Observing at zenith, the effective baseline length jBeffj is identical to the physical
baseline jBj, and its orientation in the uv-plane is determined by the layout of the
interferometer on the ground with respect to the sky coordinates.

two telescopes three telescopes
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–100–500 500100
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0 0
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v [arcsec–1]

u [arcsec–1]

1/α0

R0,B

a b

Fig. 3.24 Modelled uv-plane coverage for four different interferometer setups observing a binary
star at zenith with a separation of 3.65 mas. The modulus of the visibility function, cos.2�R �
˛0=2/, is shown by slightly tilted black and white stripes. The separation of its maxima is 1=˛0 D
274 arcsec�1 as displayed. The coloured circles indicate the interferometer OTF, like in Fig. 3.16.
Up to four 8-m telescopes are used. The telescopes are arranged like at the VLTI. In (a), the
monochromatic OTF of two 8-m telescopes with a separation of B D 102m and a wavelength
of �0 D 1:1
m is displayed, resulting in a uv-plane baseline of R0;B D B=�0 D 450 arcsec�1

and a diameter of OTFa of 2D=�0 D 70 arcsec�1 . In (b), the same is shown for three telescopes
separated by 102 m, 130 m and 62 m. Parts (c) and (d) of this figure are displayed on the following
page. (Courtesy F. Millour [159])
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four telescopes, four nights four telescopes, four nights,
three spectral bands (J, H, K)
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c d

Fig. 3.24 Observations over four nights, each combining three out of four 8-m telescopes, in (c)
with the same parameters as in Fig. 3.24a and b. Due to the rotation of the Earth the physical
baseline rotates with respect to the uv-plane providing different effective baselines in the uv-plane.
Measuring one visibility point per hour, a 6-h observation results in six distinct OTF indicated
by distinct circles of equal colour. In (d), the measurements of three different spectral bands, J,
H and K, are combined for the same mix of effective baselines and telescopes as in (c). Now,
the OTF has elongated areas as displayed in Figs. 3.18 and 3.19. For clarity, the OTF in (d) are
displayed by narrow lines instead of circles as in (c). The visibilities are determined with moderate
spectral resolution so that many visibility values are measured along the elongated OTF. (Courtesy
F. Millour [159])

The two-telescope observation of a binary in Fig. 3.24a shows the typical situa-
tion of a single baseline measurement. Here, the orientation of the separation vector
˛0 with respect to the effective baseline vector R0;B is such that the visibility is
only slightly reduced since we are still close to the central maximum of the visibility
function. If the two vectors were perfectly orthogonal the observation of the binary
could not even be distinguished from that of a single star. And in case the baseline
and separation vectors were parallel, we would measure a visibility beyond the sec-
ond zero of the visibility, close to the second maximum. It is obviously impossible
to determine unambiguously the separation and the orientation of the binary with a
single measurement.

Combining three telescopes for a single observation as in Fig. 3.24b provides
three baselines so that the two parameters of the binary can be determined. However,
due to the periodicity of the visibility function one could still encounter situations
when the unambiguous measurement of the binary parameters is not possible.

The uv-plane coverage in Fig. 3.24b represents the interferometer OTF, which is
the autocorrelation function of the three apertures. Note that the central OTFa (the
blue dot) has a value that is three times larger than that of the six OTFa (the red
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dots) of the three baselines, which all have the same value. A similar case, for three
pinholes instead of three telescopes, was discussed in Sect. 3.3.1. Figure 3.13 shows
the interferometer OTF and the subsequent PSF that is positive since the OTF is
the autocorrelation of the three pinholes. Computing the PSF of the interferometer
OTF in Fig. 3.24b also yields a positive function but still with too many sidelobes
to reconstruct a good quality image of the binary and to determine its parameters.
This is still better being done by fitting the parameters of the binary directly to the
visibilities.

In Fig. 3.24c we regard the situation when observations last several hours and the
coordinate plane in the sky rotates with respect to the baselines on the ground. Four
8-m telescopes are combined in different combinations of three with each triplet
observing over 6 h. It is assumed that every hour one set of three visibility points
can be determined. Observations over four nights are combined. The colour indices
give an idea, which area in the uv-plane is covered during the observation. Here, the
binary parameters can be determined unambiguously.

In Sect. 3.3.5, discussing the interferometric field of view and the content of
information, we stated that it is required to have visibility measurements spaced
by less than 1=˛0 to obtain a field of view larger than ˛0 so that the binary separa-
tion of ˛0 can be determined unambiguously. We stated also that it is less important
that the shortest baseline vector is smaller than 1=˛0.

Figure 3.24c illustrates that the shortest baselines, creating a gap around R D 0,
are not very important for determining the binary parameters since the uv-plane
is densely filled at larger R. However, the situation would be different if we were
not observing a binary composed of point sources but of extended sources. Then
the visibility function would fall off at larger R and the visibility measurements at
shorter spatial frequencies become more important.

The uv-plane coverage in Fig. 3.24c represents the combined OTF that can no
longer be expressed as the autocorrelation of another function, a meta-aperture (see
Sect. 3.4.1). Therefore, the Fourier transform of the combined OTF, the PSF, is
not necessarily positive. However, the visibility measurements filling the uv-plane
rather well, the PSF is now reasonably point-like. We will come back to this point
in Sect. 3.4.3.

The first three scenarios that are shown in Fig. 3.24a-c assumed narrow band
observations in the J -band. Combining observations with three spectral bands, J ,
H 5 and K , covering a wavelength range between 0:95 and 2:4
m, the elongation
of each polychromatic OTF, (3.64), is enormous, displayed as long narrow lines in
Fig. 3.24d. Comparing the length of these lines to the cosine of the visibility function
�.R/, it is obvious that the cosine varies over the area covered by OTFpc . Therefore,
one cannot use a single visibility value for this polychromatic observation.

Usually, the light is spectrally dispersed before the beam combination, produc-
ing multiple narrow-band fringe patterns. The corresponding multiple narrow-band
OTF, forming subdivisions of the elongated OTFpc , cover narrow areas of the

5 The H -band is the atmospheric window between 1:475 and 1:825 
m, see Appendix A.2.
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visibility function each with approximately constant values. Thus, instead of a single
wide-band visibility value there are many narrow-band fringe pattern and visibility
values.

While the uv-plane coverage is defined by the shape of the combination of elon-
gated OTFpc , defining the quality of the reconstructed image, the subdivision in
several narrow-band OTF increases the field of view from the width of the white-
light fringe to the diameter of the Airy disk of an individual telescope as discussed
in Sect. 3.3.6.

Discussing polychromatic observations we have assumed that the visibility func-
tion �.R/ is independent of wavelength, which in this case of a binary means that
the separation is wavelength independent and that both stars are of the same spectral
type so that the intensity ratio is also wavelength independent. For a more complex
object, e.g. the surface of a star, this might not be true any more. We would then
have to treat every spectral channel individually – the width of which is defined by
the actual variation of object shape with wavelength – finally combining the recon-
structed object features in a polychromatic image. Each spectral channel would have
a narrow-band uv-plane coverage similar to Fig. 3.24c.

Thus, we determine a distribution of visibility points each centred at the cor-
responding coordinate R0;Bi

that can be represented by �.R0;Bi
/•.R � R0;Bi

/.
Before processing this distribution of visibility peaks to reconstruct the image, we
can convolve each •-peak with the optical transfer function of an individual aperture
OTFa, processing �.R0;Bi

/OTFa.R �R0;Bi
/. This is equivalent to multiplying the

reconstructed image by the point-spread function PSFa of an individual telescope.
This was done in the PSF reconstruction in Fig. 3.25. These observations were

performed as a demonstration for the achievable interferometric point-spread func-
tion for a given uv-plane coverage. One can see that, while modelling the real

Fig. 3.25 Observing Achernar in the K-band with the VLTI, on September 15/16 and 16/17,
2002, pairwise combining four 8-m telescopes. The uv-plane coverage is shown on the left, and
the reconstructed point spread function (PSF) on the right. The width of the central fringe, i.e.
the angular resolution limit, is about 3 by 15 mas due to the distribution of baselines used during
these observations. On the largest scale, the image is enveloped by the Airy disk of a single 8-m
telescope, called the primary beam in radio interferometry. Its first minimum with a radius of
57 mas can be clearly seen
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imaging process, the convolution with OTFa is not strictly required if the observed
object is well within the central maximum of the Airy disk of the 8-m aperture,
i.e. smaller than about 20 mas in this case. Then it is sufficient to deal with the
distribution of •-peaks representing the visibility measurements.

3.4.3 Image Reconstruction: General Principles

Assuming that we have measured the complex visibilities for a number of baselines,
for instance like in Figs. 3.24 or 3.25, how do we reconstruct an image?

The problem of synthesis imaging, or aperture synthesis, has been treated in
radio interferometry during the last decades, and there is a huge body of litera-
ture (see e.g. [228, 232]). The straightforward process of Fourier transforming the
measured visibility distribution, �.R0;Bi

/•.R � R0;Bi
/, has its limitations in the

achievable image quality. We have to keep in mind, that the distribution of baselines
after several hours of observations (Fig. 3.24c) is distinctly different from the instan-
taneous distribution (Fig. 3.24b) for a snapshot observation. Filling the uv-plane by
combining observations of several hours is called Earth rotation synthesis.

Depending on the number of baselines, their distribution and the weighting of
the visibility at jRj D 0, the reconstructed image is full of sidelobes and possibly
negative values. In radio interferometry, this image is called the dirty map, and the
reconstructed PSF, the Fourier transform of the interferometer OTF given by the
distribution of •.R � R0;Bi

/, is called the dirty beam [22].
Using the OTF of the individual apertures by processing the distribution

�.R0;Bi
/�OTFa.R �R0;Bi

/ instead of the •-peaks does not affect the image qual-
ity as long as the object is much smaller than the PSF of an individual aperture – the
primary beam – since the PSF only acts as an envelope for the reconstructed image.

Both the dirty map and the dirty beam are real functions since we set
�.�R0;Bi

/ D ��.R0;Bi
/. If the chosen distribution of baselines were such that the

combined OTF could also be expressed by an autocorrelation of a meta-aperture (see
Sect. 3.4.1), then the dirty map would be positive by definition [102]. Unfortunately,
the combination of measured baselines does not usually correspond to the autocor-
relation of a multi-aperture interferometer, so that positivity can only be ensured by
the image reconstruction process.

Figure 3.26 shows an example of a dirty beam and a dirty map combining mea-
surements of 90 visibility values. It is interesting to see that even this apparently
large number of visibilities does not permit us to identify the rather simple object
consisting of seven point sources.

The appearance of the sidelobes and negative values can be affected by applying
weighting functions, for instance the computed OTF of a filled aperture with the
diameter of the longest baseline Bmax. This OTF has a cone-like shape dropping to
zero at Bmax=�0. In image space, this would be equivalent to convolving the dirty
beam with the corresponding PSF, an Airy disk with a FWHM of �0=Bmax. Then,
any information in the fringe pattern of the longest baseline – corresponding to the
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dirty beam dirty map CLEAN image

Fig. 3.26 Simulation of an image reconstruction with CLEAN, modelling observations with four
8-m telescopes measuring 18 baselines in the K-band. The K-band is subdivided into 5 spectral
channels so that a total of 90 visibility values are processed. The dirty beam on the left and the
dirty map in the middle still show a large number of sidelobes, and the reconstructed image on the
right displays the enormous improvement. (Courtesy T. Paumard [179])

highest spatial frequency – would be eliminated by putting the visibility to zero. For
instance a faint companion of a bright star at a distance of �=2Bmax that could be
detected in the fringe pattern of the longest baseline would simply be obscured by
the convolution with this PSF.

The shape of this OTF is determined by the imaging process with a filled aper-
ture. Here, low frequencies, corresponding to short baselines, are over-emphasised
since they appear many times in the telescope aperture, while the longest baselines
measuring the highest spatial frequency and, thus, the finest detail, do not contribute
much to the imaging process.

By contrast, interferometric observations with individual apertures, measuring
the visibility with each baseline only once, are non-redundant (unless there are
redundant baselines) so that all visibility measurements should have the same
weight. Forcing down the visibilities at long baselines does not make proper use
of these measurements.

On the other hand, applying a much wider weighting function does not do much
to improve the apparent image quality of the dirty map. The choice of weighting
function depends entirely on the imaging task, and more sophisticated functions are
sometimes useful [22], applying for instance a weighting function consisting of the
reciprocal of the variance of each measured visibility.

However, none of these linear methods of applying weighting functions to the
measured visibilities can fundamentally improve the dirty map since the sparse
distribution of the visibilities in the uv-plane is not affected. Other, non-linear
methods are required, extrapolating the measured visibilities in the unmeasured
regions of the uv-plane reducing sidelobes and artefacts [169]. If the resulting distri-
bution of visibilities then corresponds to the autocorrelation of a meta-aperture, the
reconstructed image intensity would be positive by definition. Thus, the reduction of
sidelobes and artefacts, improving the image quality, is linked to forcing positivity
without, however, reaching either goal perfectly.
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A novel approach was presented in 1974 by J. A. Högbom [102]. He introduced
the image reconstruction method CLEAN that has been enormously successful [42].
CLEAN basically performs a deconvolution in image space extracting the dirty
beam from the dirty map.

Another method, reconstructing the image by fitting its visibility function to
the measured visibilities in the uv-plane is the maximum entropy method, MEM,
described by J.G. Ables [1] in 1974, based on mathematical research by E.T. Jaynes
[108].

Both methods will be discussed in the following. A more detailed discussion
can be found in the proceedings of the NRAO summer school [228] and, there, in
particular in the contribution by T. Cornwell [42].

CLEAN

CLEAN is an iterative process, starting with the dirty map. Convolving the dirty map
with an appropriately chosen PSF – for instance an Airy disk or a Gaussian and the
corresponding OTF as weighting function as discussed above – can be advantageous
to smooth the noise in the intensity distribution. The dirty beam is then convolved
with the same PSF. Due to their appearance we still call the convolution products
dirty map and dirty beam.

Based on the assumption that the brightest intensity value in the dirty map is
due to an object feature, the first step consists in subtracting the dirty beam from
the dirty map, centring the dirty beam at the position of the brightest intensity. The
value and the coordinates of this brightest point are stored.

The second step repeats the first step but now subtracting the dirty beam from the
maximum of the dirty map remaining after step one. One will find another maximum
and subtract again the properly positioned dirty beam from the dirty map, store its
value and coordinates, and so on. The iteration ends when the remaining dirty map
seems to contain only noise and no real object features.

The image is then reconstructed by adding all previously determined PSF – with
proper values and coordinates – to the dirty map remaining after the last iteration,
presumably only containing noise. This process ensures that the reconstructed image
is positive, apart from remaining negative bits in the dirty map indicating the noise
level of the reconstruction. Recipes for the numerical implementation of CLEAN
can be found in [31] and [43].

The reconstructed image in Fig. 3.26 displays an impressive quality, free of side-
lobes compared to the dirty map. This corresponds to a much denser uv-plane
coverage that one obtains by Fourier transforming the reconstructed image. Thus,
applying CLEAN in the image plane implies that visibility values are extrapolated
in unmeasured parts of the uv-plane. This is the desired result but without being able
to establish criteria on how to extrapolate the data in the uv-plane and, in particu-
lar, on how to consider measurement noise CLEAN does not make the best use of
the data.
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Without a clear rule when to stop the iteration in the presence of noise there is an
element of arbitrariness in it since the treatment of noise depends on the experience
of the user, on the complexity of the object and on the weighting function smoothing
the intensity distribution. Continuing the iteration for too long, i.e. picking maxima
in the dirty map that are effectively noise, eventually produces fake object detail
[42,102]. The inherent problem is that by working with the dirty beam in the image
plane the signal quality of the individual visibility measurements in the uv-plane
cannot be taken into account.

Maximum Entropy Method, MEM

In contrast to the procedure described by CLEAN, without a connection between the
visibility data and the reconstruction process, MEM directly fits the data providing
a link between the data quality and the reconstructed image [42, 169].

MEM is based on the mathematical principle that amongst the infinite number of
possible images all agreeing with the visibility measurements, one should choose
that image that contains the least amount of information (hence, the maximum
entropy), and therefore also the least amount of false information. Here, information
is defined in analogy to entropy in thermodynamics.

While this seems to be a fundamental physical principle it has created a lot of
confusion on how exactly to define entropy in this context and there are many sug-
gestions [169]. The most commonly used definition for this information entropy is
given [42] as

H D �
X

k

Ik ln.Ik=Ok/; (3.86)

with Ik the reconstructed image intensity at pixel k and Ok the image prior, for
instance a low resolution image providing a starting point for the reconstruction.
This is very similar to the quantity to be maximised using Bayesian statistics [169].

The maximization of the entropy is constrained by the measured visibilities. In
the case of noisy measurements this constraint can be expressed by attempting to
set the �2 sum equal to the number of degrees of freedom ˝ , which is the number
of independent data [1, 169]. It is

�2 D
X

i

j�rec.R0;Bi
/� �.R0;Bi

/j2
�2�.R0;Bi

/
	 ˝ ; (3.87)

with � the measured visibilities, �rec the reconstructed visibilities, and �2� the
variance of the visibility measurement at baseline R0;Bi

.
We then have to maximize a linear combination of the entropy and of the

constraints,

H 0 D H ��.�2 �˝/ ; (3.88)
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with � the Lagrange multiplier that, in practice, has to be adjusted so that the
residuals have the expected level [169].

Setting the reconstructed visibilities exactly to the measured values is almost
always incompatible with the positivity constraint since the reconstructed image
would then be identical to the dirty map. Enforcing positivity by maximizing H 0
can provide artefacts in the image that are related to the fact that the entropy is
insensitive to spatial information [42] so that the extrapolation of visibility points in
the uv-plane is somewhat random. One should note that the extrapolation of visibil-
ity points is not restricted to the region within the longest baseline but it can also go
beyond, i.e. beyond the diffraction limited. This super-resolution is not undesirable
but it has to be treated carefully.

There have been numerous attempts to improve this method using the entropy
[45, 216] or Bayes Theorem [185].

In the optical domain, problems of image reconstruction i.e. blind deconvolution
were first treated in speckle interferometry (see Sect. 4.4) with single telescopes
[50, 126]. A generalized approach, applicable to interferometry, was presented by
E. Thiébaut [230, 231]. He regards the entropy H only as one of the quantities
to be optimized, adding other positivity and field size constraints that are linearly
combined as in (3.88).

Positivity could also be enforced by searching for a meta-aperture so that the
image is positive by definition. However, first attempts treating one-dimensional
problems [119] could not be extended to two-dimensional images [169].

Starting in 2004, the optical interferometric community arranged Imaging Beauty
Contests at the biannual SPIE conferences [46, 131, 132]. The contestants used the
methods mentioned above with the maximum entropy method BSMEM [25] and
with the MIRA method [230] displaying the best performance over the years. How-
ever, since this field is still developing [136] this only presents a snapshot of the
current state of the art.

Last but not least, the simple method of fitting model parameters – for instance
the orientation and relative brightness of a binary star – to the measured visibilities
has been the bread-and-butter of optical interferometrists for many years. Regarding
this as an image reconstruction with extremely limiting constraints, it provides the
desired parameters with a much higher accuracy than a less constrained general
image reconstruction can do. Running against the trend to produce pretty pictures,
model fitting provides valuable scientific insight that should not be dismissed.

The uv-Plane: Summary

Discussing astronomical observations, the uv-plane is defined with respect to
the celestial coordinate system. Using the equatorial reference frame with the
declination ı for the angle of latitude above the celestial equator, and the right
ascension RA, for the longitude, we define ˛0 D .ı; RA/ as the coordinate
vector of the sky plane that is tangential to the celestial sphere and perpen-
dicular to the line of sight pointing at the object. Processing interferometric
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data, relative coordinates can be used, with the line of sight defining the zero
position.

The uv-plane is defined with respect to these sky coordinates and is, thus,
parallel to the sky plane, independent of the rotation of the Earth. We have to
replace the physical baseline B on the ground by the effective baseline Beff,
which is the projection of the baseline vector onto the uv-plane, perpendicular
to the line of sight. It is jBeffj D jBj cos.�/, with � the angle between the
baseline vector and the coordinate vector ˛0. Depending on the object position,
the effective baseline and therefore the OTF rotate during the observation.

The quality of the reconstructed image depends on the density of the data
points, the measured visibilities, in the uv-plane. Depending on the number of
telescopes, their apertures and their baselines, different strategies can be used
to fill the uv-plane.

A rather short baseline combined with large apertures – like on the LBT –
permits us to fill the uv-plane smoothly with as little as three observations
(see Fig. 3.23). The weighting of the individual measurements, reducing the
overemphasis of the central OTF, determines the appearance of the recon-
structed image. The weighting can be used as a simple measure to control the
positivity in the reconstructed image.

The case of an interferometer composed of individual telescopes on the
ground is the most common situation in interferometry. Here, the effective
baselines change in length and orientation as a function of the position of
the celestial object and of the duration of the observation. Combining several
nights of observations with a small number of telescopes – with baselines
much longer than the telescope diameter – can provide a reasonable uv-plane
coverage (see Fig. 3.24).

Synthesizing images of these measurements largely relies on methods that
have been developed in radio interferometry (see e.g. [228, 232]). Simply
Fourier transforming the measured distribution of visibilities in the uv-plane
usually provides an image full of sidelobes and negative values, called the
dirty map in radio interferometry [22].

Trying to improve the dirty map by applying weighting functions in the
uv-plane is only of limited effect since the fundamental problem of a patchy
distribution of visibilities in the uv-plane is not addressed [22].

Two other, non-linear, methods permit us to extrapolate the visibilities
into regions of the uv-plane without measurements, even beyond the longest
baselines providing superresolution beyond the diffraction limit [169]. The
first approach is called CLEAN performing basically a deconvolution of the
dirty map and the related PSF in the image plane [102]. This method has been
enormously successful but has its pitfalls when treating noise [42].

The second approach is called the maximum entropy method, MEM, using
the fundamental physical principle that amongst the infinite possible recon-
structions that with the least amount of information is the most probable one
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[1]. Fitting the reconstructed visibilities to the measured visibilities weighted
by the measurement variance, the entropy can be maximized providing a
positivity constraint through its definition [169].

Here the problems arise from the lack of spatial sensitivity of the image
entropy so that artefacts can spoil the reconstructed image [42]. Adding more
constraints to this process, eventually can make the entropy obsolete [230].
Combining MEM and image reconstruction methods that were developed for
speckle interferometry seems to be a promising path for aperture synthesis in
optical interferometry [231].

Having only few baselines it is often impossible to reconstruct an image of
useful quality. One can then resort to fitting model parameters to the measured
visibilities. Stellar diameters, when the star is modelled as a circular disk and
the diameter is the only unknown parameter, or binary stars, with parameters
relative brightness and separation vector, are the simplest examples for model
fitting. Although not as spectacular as real images, model fitting can provide
valuable scientific insight at an angular resolution that cannot be reached by
single telescopes.



Chapter 4
Atmospheric Turbulence

The imaging process that we have described in Chap. 3 suffers from atmospheric
turbulence perturbing the incoming wave front by random index of refraction fluc-
tuations. This effect is caused by turbulent mixing of air with different temperature
so that the image quality in large telescopes is far from the diffraction limit but cor-
responds to telescopes with a few 10 cm diameter. Operating interferometers on the
ground, the fringe pattern is wiped out unless the integration times are limited to a
about 100 ms.

In this chapter, we will discuss the statistics of atmospheric turbulence as derived
by Kolmogorov [117, 118]. Following from the index of refraction fluctuations, we
will investigate the statistical properties of the electromagnetic wave, assuming thin
horizontal turbulent layers. Basic temporal and spatial parameters, like the Fried
parameter, are given in the second section.

Observing through turbulence – with a single telescope or with an interferome-
ter – the imaging process is determined by the statistics of the turbulence inside the
apertures. The random process is affected by the averaging over the apertures when
proceeding into the image plane, and we will derive the statistical quantities as a
function of turbulence and instrumental parameters in the third section.

We will provide the statistics for OPD fluctuations and for differential OPD fluc-
tuations, affecting differential fringe motion when observing two separate object,
for the wave front tilt, and for the perturbed wave front, using Zernike polynomials
for the description of Kolmogorov turbulence. In Chap. 6, the derived quantities will
be used to investigate the limitations of observing through turbulence.

Finally, the twinkling of the stars, the scintillation will be investigated with the
same methods, and speckle interferometry, as one of the early attempts to beat
atmospheric turbulence, will be discussed in the last section.

A. Glindemann, Principles of Stellar Interferometry, Astronomy and Astrophysics
Library, DOI 10.1007/978-3-642-15028-9 4,
c� Springer-Verlag Berlin Heidelberg 2011
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4.1 Kolmogorov Turbulence

4.1.1 First Principles

The statistics of the spatial and temporal structure of atmospheric turbulence deter-
mines the propagation of light through the atmosphere. Following from the theory
of fluid motion, the flow of air becomes turbulent, i.e. unstable and random, if the
Reynolds number Re D L0v0=kv exceeds a critical value. L0 is the characteristic
size of the flow, v0 is the characteristic velocity and kv is the kinematic viscos-
ity. With typical values for these parameters, L0 	 22m, v0 	 10m s�1 and
kv D 15 � 10�6 m2 s�1, it is Re 	 107 which corresponds to fully developed
turbulence.

A.N. Kolmogorov assumed that the kinetic energy in the largest structures of the
turbulence is transferred successively to smaller and smaller structures [117, 118,
225]. He also presumed that the motion of the turbulent structure is both statisti-
cally stationary and isotropic, implying that the second and higher order statistical
moments of the turbulence depend only on the distance between any two points in
the structure.

If the product of the characteristic size L0 of the small structure and its velocity
v0 is too small to keep the Reynolds number in the turbulent regime, the break up
process stops and the kinetic energy is dissipated as heat by viscous friction.

In a stationary state, the energy flow from larger structuresL to smaller structures
l must be constant, i.e. the amount of energy that is being injected into the largest
structure must be equal to the energy that is dissipated as heat. It is E.l/dl the
kinetic energy in a volume element with size dl between l and l C dl . If the typical
transfer time of E.l/dl through a structure of size l is given by l=v, then the energy
flow rate, �0, can be written as

�0 D E.L/dL

t.L/
D E.l/dl

t.l/
D

1
2
�v2

l=v
D const ; (4.1)

and it is

v / �
1=3
0 l1=3 : (4.2)

The kinetic energy OE.k/dk in the interval k and k C dk of spatial wave numbers is
proportional to v2. With the spatial wave number k / 2�=l one obtains

OE.k/dk / k�2=3 or OE.k/ / k�5=3 : (4.3)

For isotropic turbulence, the kinetic energy spectrum OEp.k/ can be computed by
integrating over the unit sphere:
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OE.k/ D 4�k2 OEp.k/ ) OEp.k/ / k�11=3 ; (4.4)

with k the three-dimensional spatial wave vector, k D jkj and k / 2�=l .
This relationship expresses the Kolmogorov spectrum. It holds in the inertial

range of turbulence for l0 � 2�=k � L0 whereL0 is the outer scale of turbulence,
generally the size of the largest structure that moves with homogeneous speed, and
l0 is the inner scale at which the viscous dissipation starts. The outer scale of tur-
bulence varies between a few metres close to the ground where the largest structure
is determined by the height over the ground, and a few hundred metres in the free
atmosphere, which is the thickness of the turbulent layer [33, 98, 226]. The inner
scale of turbulence is in the range of a few millimetres near the ground to about
1 cm near the tropopause [194].

4.1.2 Index of Refraction Fluctuations

Light travelling through the atmosphere is affected by fluctuations of the index
of refraction (or refractive index). The physical source of these fluctuations are
temperature inhomogeneities produced by turbulent mixing of air. The refractive
index of dry air as a function of wavelength, pressure and temperature is in good
approximation [18]

n.r ; �/ D 1C
�

77:49C 0:435

.�=
m/2

�
P=mbar

T=K
10�6 ; (4.5)

with � in 
m, P the pressure in millibar and T the temperature in Kelvin.
For the refractive index of moist air, the following corrective term has to be

applied:

nf .r ; �/� n.r ; �/ D � f

mbar

�

3:73� 0:040

.�=
m/2

�

10�8 ; (4.6)

with f the partial pressure of water vapor in mbar.
These empirical formulae are based on the Edlén formula from 1966 [66]. Over

the years, they have been improved by Owens [175], by Birch and Downs [18]
and more recently by Ciddor [29, 30]. The modifications improved the accuracy of
the formulae with respect to measurements to below 10�7. However, these authors
mostly concentrated on the visible and the near-infrared.

In the mid-infrared, there are only few experimental results and the extrapolation
of these expressions beyond 2
m is accordingly uncertain. An analytical approach
computing the effect of absorption bands by accumulating oscillator strengths was
presented by Mathar [152]. His results fit the available experimental data up to
20
m and confirm that in the mid-infrared refractive index fluctuations depend
heavily on variations of water vapor.
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Fig. 4.1 The refractive index of dry air at 0, 15 and 30ıC and 1,000 mbar as given by the Edlén
formula (4.5). The dependence on temperature is modelled by approximating the refraction as
a sum of temperature and wavelength dependent terms. This figure illustrates that temperature
variations affect all wavelengths in the same way

The refractive index at different temperatures is displayed in Fig. 4.1. n.r ; �/ is a
function of the three-dimensional position vector r because of the temperature and
pressure inhomogeneities in the atmosphere. The variation of the refractive index
with wavelength, n.�/, is called dispersion. It is mainly determined by the second
term, 0:435=�2, in (4.5). The dispersion is much smaller than the variation of the
refractive index due to pressure and temperature changes under typical conditions
in the atmosphere that is mainly governed by the first term, 77:49, in (4.5). Thus,
the three curves in Fig. 4.1 have approximately identical shape but different absolute
values.

This approximation has the consequence that the shape of the wave front in a
turbulent layer depends mainly on the local temperature and pressure, and not on
the wavelength. Effects that show a wavelength dependence in the image plane of a
telescope, like the different number of speckles in the optical and in the infrared, are
caused by the different relative impact of the same wave front distortion at different
wavelengths.

However, the dispersion, the wavelength dependence of the index of refraction,
does have an influence on the imaging process. The apparent angular position of a
star depends on the refractive index due to the refraction at the Earth’s atmosphere
that to a first approximation can be regarded as a thick coplanar plate. Thus, the
image of a star is slightly elongated, coloured like a rainbow, unless the star is at
zenith. This effect is called transversal dispersion.

In interferometers, the position of the white-light fringe that is related to an opti-
cal path difference (OPD) of zero varies with wavelength because the optical paths
through the two telescopes do not have equal shares of travel in vacuum and in the
atmosphere. Unless the star is at zenith, the optical path difference eventually is a
difference between an optical path in vacuum and an optical path in the atmosphere.
Due to the dispersion, the OPD then varies with wavelength. This longitudinal dis-
persion will be discussed in Sect. 6.2.1. The size of these effects does not depend on
the actual turbulence but only on the invariable dispersion.
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Kolmogorov and von Kármán Spectrum

It can be shown that the refractive index as a passive, conservative additive, i.e. a
quantity that does not affect atmospheric turbulence and that is not affected by the
motion of the air, also follows Kolmogorov statistics [172]. Then, the power spec-
trum ˚n.k/ of n.r/ that is called the Kolmogorov spectrum has the same spatial
frequency dependency as the kinetic energy (4.4) and can be expressed as

˚n.k/ D 0:033C 2n k
�11=3 Œ1=m�3�; (4.7)

with k the three-dimensional spatial wave vector, k D jkj and k / 2�=l . The
dimension of ˚n.k/, the power spectrum or, more precisely, the power spectral
density, is power per volume element dk, i.e. per m�3. Following common practice,
we use the term power spectrum keeping in mind that it is always the power per
spatial (or temporal) frequency that we refer to.

The quantity C 2n is called the structure constant of the refractive index fluctua-
tions and has units of m�2=3 so that ˚n.k/ has units of 1/m�3. C 2n characterises the
strength of the fluctuations of n. Measurements of C 2n have shown a good agree-
ment with the Kolmogorov theory within the inertial range [32, 106], and with the
von Kármán spectrum [235].

Like the statistical distribution of velocity discussed in Sect. 4.1.1, the refractive
index distribution is isotropic and homogeneous as long as the spatial frequencies
involved are in the inertial range, with l0 � 2�=k � L0. The Kolmogorov theory
predicts a mathematical form for ˚n.k/ only inside the inertial range.

An extension beyond this regime is given by the von Kármán spectrum [107],
reading as

˚n;vK.k/ D 0:033C 2n
�
k2L0

C k2
��11=6

e�k2=k2
l0 Œ1=m�3�; (4.8)

with kl0 D 5:92=l0 and kL0
D 2�=L0. Compared to the Kolmogorov spectrum,

the power is reduced outside the inertial range (see Fig. 4.2), which is a reasonable
assumption. For practical purposes the outer scale is of larger interest than the inner
scale since it reduces the pole at k D 0 to finite values.

So far, only the power spectrum ˚n.k/ of the refractive index fluctuations has
been discussed. The power spectrum of n.r/ is related to its (dimensionless) auto-
correlation 	n.r/ D< n.r 0/n.r 0 C r/ > by the Wiener–Khinchine theorem (see
also Sect. 3.1.1):

	n.r/ D
Z
˚n.k/e�ik�rdk : (4.9)

The consequence of the form of the power spectrum with its pole at k D 0 is that the
variance	n.0/ D< n2.r/ > of the refractive index fluctuations is infinite. However,
if the von Kármán spectrum is used there is a large but finite value for the variance
of n.r/.
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Fig. 4.2 The Kolmogorov spectrum (dashed line), valid inside the inertial range of turbulence,
and the von Kármán spectrum (solid line) for an outer scale of turbulence of L0 D 22m and an
inner scale of l0 D 5mm, and for C2

n D 10�16 m�2=3, a typical value for atmospheric turbulence

Structure Function

Introducing the structure function of the refractive index, which is the mean-
square difference of the refractive index at two points separated by r and, thus,
dimensionless, the discussion of the inertial range can be avoided, yielding

Dn.r/ D < jn.r 0/� n.r 0 � r/j2 >
D 2.< n.r 0/2 > � < n.r 0/n.r 0 � r/ >/

D 2.	n.0/� 	n.r// : (4.10)

While this looks like yet another statistical function we will see in the next section
how the structure function helps computing the correlation function of a light wave
travelling through atmospheric turbulence.

The structure function for Kolmogorov turbulence was derived by Obukhov
[172]:

Dn.r/ D C 2n r
2=3 : (4.11)

Like the power spectrum (4.7), the structure function only depends on r D jrj
because the turbulence is isotropic.

This form of the structure function of the refractive index is known as Obukhov’s
law. Together with the Kolmogorov spectrum (4.7) it completely characterizes
atmospheric turbulence.
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Kolmogorov Turbulence: Summary

Refractive index fluctuations in the atmosphere that are caused by natural tem-
perature and pressure fluctuations can be described in good approximation by
Kolmogorov statistics. The power spectrum – more precisely the power spec-
tral density – ˚n.k/ of the fluctuations of the refractive index n.r/ is called
the Kolmogorov spectrum [172], given by

˚n.k/ D 0:033C 2n k
�11=3 Œ1=m�3�; (4.7)

with k the three-dimensional spatial wave vector, k D jkj and k / 2�=l . The
dimension of ˚n.k/ is power per volume element dk, i.e. per m�3.

The quantityC 2n is called the structure constant of the refractive index fluc-
tuations and has units of m�2=3. It characterises the strength of the fluctuations
of n.

The Kolmogorov spectrum only holds within the inertial range of turbu-
lence with 2�=k, i.e. the distances in the turbulence, smaller than the outer
scale of turbulence L0 and larger than the inner scale of turbulence l0.

An extension beyond this regime is given by the von Kármán spectrum
[107] reading as

˚n;vK.k/ D 0:033C 2n
�
k2L0

C k2
��11=6

e�k2=k2
l0 Œ1=m�3�; (4.8)

with kl0 D 5:92=l0 and kL0
D 2�=L0. The outer scale of turbulence is of

larger practical interest than the inner scale since it reduces the pole of the
power spectrum at k D 0 to finite values.

The structure function Dn.r/ of the refractive index variations is the sec-
ond important function characterizing Kolmogorov turbulence. It is defined
by

Dn.r/ D< jn.r 0/� n.r 0 � r/j2 >
D 2.< n.r 0/2 > � < n.r 0/n.r 0 � r/ >/ : (4.10)

For Kolmogorov turbulence its functional form was derived by Obukhov
[172], yielding

Dn.r/ D C 2n r
2=3; (4.11)

with r D jrj. The Kolmogorov spectrum and its structure function form the
basis for the description of wave propagation through turbulence.
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4.2 Statistical Properties of the Perturbed Complex Wave

For the sake of simplicity, only horizontal monochromatic plane waves are con-
sidered, propagating downwards through atmospheric turbulence. Light from an
unresolved, i.e. point-like star at zenith approximately fulfils this assumption. The
fluctuations of the amplitude are calculated assuming that the turbulence follows
Kolmogorov statistics.

4.2.1 Thin Layer Turbulence Model

Using the thin screen approximation [194], the layer thickness is assumed to be large
compared to the correlation scale of the fluctuations but small enough to neglect
diffraction effects within the layer. Also, the layer is non-absorbing and its statistical
properties depend only on its altitude h, i.e. the structure constant C 2n does not vary
in the horizontal direction.

After propagation through a thin turbulent layer at altitude h, the phase is related
to the distribution of the refractive index through

'h.�/ D 2�

�

Z hC•h

h

n.�; z/dz ; (4.12)

where •h is the thickness of the layer and � D .�; �/ denotes the horizontal coor-
dinate vector. This definition of the phase ensures that it has the same statistical
properties as the refractive index n.

The amplitude of a plane wave immediately after propagation through a layer at
altitude h can be written as

V';h.�/ D V.�/ei'h.�/ ; (4.13)

with V.�/ D V0 exp.ikz/ the amplitude of the incoming plane wave from a point-
like star at zenith. Discussing horizontal layers, we set V.�/ D V0 D 1 in the
following. V';h.�/ depends on � through 'h.�/, which is a function of wave-
length, (4.12). To describe the statistical properties of the complex wave we need
the correlation function of the amplitude V';h.�/.

In Sect. 2.3, we calculated the mutual coherence function (MCF) as the time aver-
age of optical disturbances. There, the optical disturbances were random variables
due to the random emission process of thermal light sources. Here, propagating
through atmospheric turbulence the amplitude has a random phase 'h.�/ varying
with time.

We assume that averages over one turbulent layer (as one possible realization of
the random process) are the same as temporal averages at a given point waiting a
“long” time. Thus, the process is regarded as ergodic, like the emission process
of thermal light in Sect. 2.3. The definition of a “long” period is related to the
typical time span of fluctuations of the turbulence, which is of the order of a few
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milliseconds. This means that – unlike for the fluctuations of the light emitted by
an incoherent source – detectors are fast enough to take snapshots of atmospheric
turbulence. We will come back to this in Sect. 4.4.

Thus, we calculate the correlation function 	';h.�/ for atmospheric turbulence,
equivalent to the MCF, as time average:

	';h.�/ D < V';h.�
0/V �

';h.�
0 � �/ >

D
D
eiŒ'h.�

0/�'h.�
0��/


E
: (4.14)

In principle, the correlation of the amplitudes has to be computed not only at two
different points but also at two different moments in time, like the MCF. However,
for all practical purposes in the context of imaging through turbulence, the time
difference is much smaller than the typical time span of the fluctuations. We assume
the two amplitudes to be taken at the same moment, with zero time difference,1 so
that 	';h.�/ is only a function of coordinate difference �, like the visibility function,
which is the MCF for time difference � D 0, see (2.51).

Discussing coherence functions in Sect. 2.3, the optical disturbance was the ran-
dom variable with a Gaussian random process. Here, in the context of atmospheric
turbulence, the refractive index and, subsequently, the phase 'h.�/ are the ran-
dom variables. Following the central-limit theorem [176] it is reasonable to assume
Gaussian statistics with zero mean for the phase. The average of the amplitude
exp.i'h.�// can then be calculated using the characteristic function that – for an
arbitrary random variable g – reads as

< eig >D
Z

eigp.g/dg D e� 1
2<g

2> ; (4.15)

where p.g/ denotes the Gaussian probability density function of the random vari-
able g. Setting g D 'h.�/ we find that the average amplitude is < exp.i'h.�// >D
exp.�1

2
< '2

h
.�/ >/. The statistical properties of the phase being the same as those

of the refractive index (4.12), the variance of the phase < '2
h
.�/ > is also infinite,

and the averaged amplitude is zero.
Regarding a turbulent layer with a finite outer scale of turbulence L0 and, thus,

with finite variance, the averaged amplitude has values slightly larger than zero. This
is in contrast to the case of the random amplitude emitted by a thermal source when
the amplitude itself follows a Gaussian distribution and its average is always zero.

Returning to Kolmogorov turbulence, the difference 'h.� 0/ � 'h.�
0 � �/ also

follows a Gaussian distribution with zero mean and we can calculate the correlation
function in(4.14)using thecharacteristic function(4.15)withgD 'h.�

0/�'h.�0��/.
	';h.�; �/ can now be written as

	';h.�/ D
D
eiŒ'h.�

0/�'h.�
0��/


E
D e� 1

2<Œ'h.�
0/�'h.�

0��/
2> : (4.16)

1 Note that, despite the time difference between the amplitudes being zero, the temporal average is
taken over a long time.
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In consequence of the Gaussian distribution of the phase difference having zero
mean, 	';h.�/ is a real function.

Phase Structure Function

With the phase structure functionD';h.�/ D< Œ'h.�0/�'h.�0 � �/�2 >, we obtain

	';h.�/ D e� 1
2
D';h.�/ : (4.17)

Thus, the problem of determining the correlation function 	';h.�/ of the amplitude
is shifted to calculating the phase structure functionD';h.�/.

The relation between the three-dimensional distribution of the refractive index
n.�; z/ and the two-dimensional distribution of the phase is given by (4.12). A sim-
ilar reasoning leads from the structure functionDn.r/ of the refractive index (4.11)
to that of the phase D';h.�/, which is a function of the two-dimensional vector �

since we use the approximation of a thin layer. Assuming also that •h is much larger
than the correlation scale of the fluctuations, one can show that for a horizontal wave
front entering the layer i at altitude hi , the phase structure function at the exit of the
layer is [72]

D';hi
.�/ D 2:91

�
2�

�

�2
•hiC

2
ni
�5=3 Œrad2�; (4.18)

with � D j�j.
Inserting this phase structure function into (4.17) we find the correlation function

of the monochromatic plane wave after propagating through a turbulent layer. The
finite width of 	';h.�/, as a consequence of the shape of D';h.�/, means that the
correlation width of the amplitude is now limited while the unperturbed plane wave
before entering the turbulent layer was perfectly correlated. A suitable correlation
length that is determined by the parameters of the turbulence will be defined in the
next section.
D';hi

is the structure function of the phase in rad2. If the phase is given in the
dimension of metre it describes the physical shape of the turbulent wave front. It is
Dm
';hi

D D';hi
�. �

2�
/2 D 2:91•hiC

2
ni
�5=3. Thus, the structure function of the phase

in m2, i.e. the shape of the phase, is approximately independent of wavelength.
Therefore a wave front sensor can be operated in the visible determining the shape
of the wave front and steering the deformable mirror for observations in the infrared.

4.2.2 Multiple Layers, the Fried Parameter

The real atmosphere can be regarded as a composition of many turbulent layers, each
of them fulfilling the thin screen approximation. The distance between the layers,
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the typical size of the turbulence cell and the strength of the turbulence are such that
the propagation of the amplitude can be described by Fresnel diffraction [79, 194].

A simple model for weak turbulence gives an impression of the effects [194].
We regard the turbulent layer i at altitude hi that gives rise to a Fresnel diffraction
pattern on layer i C 1 at altitude hiC1, with hiC1 < hi . If the phase is regarded
as sufficiently weak, 'hi

.�/ � 1, we use an approximation for the amplitude,
Vhi

.�/ D exp.i'hi
.�// 	 1C i'hi

.�/, and the Fresnel diffraction between layer i
and layer i C 1 is approximately given by [155]:

V �
';hiC1

.�/ 	 V';hi
.�/ � i

�hi

2k

@2V';hi
.�/

@�2

	 1C i'hi
.�/C �hi

2k

@2'hi
.�/

@�2
; (4.19)

with V �
';hiC1

.�/ the amplitude of the Fresnel diffraction pattern entering layer i C 1

and �hi D hi � hiC1.
The imaginary part of the amplitude, i'hi

.�/, is unaffected by Fresnel diffraction,
and the real part has an additional term proportional to the curvature of the phase
@2'hi

.�/=@�2 and to the distance �hi between the layers. This additional term
causes intensity fluctuations called the scintillation. We will come back to this in
Sect. 4.3.4.

The curvature of the phase affecting the real part also affects the resulting phase
of the amplitude V �

';hiC1
.�/. Thus, the phase of the wave entering layer i C 1 is

sightly different from the perturbation 'hi
.�/ in layer i , modifying also its statistical

properties like the phase structure function and the power spectrum [194].
Usually the curvature terms are neglected in the near-field approximation

assuming that the distance �hi between the turbulent layers is very small. Then,
the phase of the originally plane wave, being perturbed by the first turbulent layer in
its propagation path, remains unaffected until it hits the next turbulent layer. After
passage through multiple layers the phase can be approximated by the sum of the
individual perturbations. For very weak turbulence this is intuitively understandable.

While this seems like a rather crude approximation – given that scintillation
is an observable and measurable effect – the derived quantities, in particular the
correlations functions, provide a very good description of the real process.

The amplitude V';hiC1
.�/ at the exit of a layer at altitude hiC1 is related to that at

the entrance of that layer, V �
';hiC1

.�/, by multiplication with the phase disturbance
of layer i C 1,

V';hiC1
.�/ D V �

';hiC1
.�/ei'hiC1

.�/
; (4.20)
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and, the correlation function can be determined by

< V';hiC1
.�0/V �

';hiC1
.�0 � �/ > D < V �

';hiC1
.�0/V ��

';hiC1
.�0 � �/ >

� < eiŒ'hiC1
.�0/�'hiC1

.�0��/

> (4.21)

D < V �
';hiC1

.�0/V ��
';hiC1

.�0C�/>e� 1
2
D';hiC1

.�/
:

In near-field approximation, the correlation function of V �
';hiC1

.� 0/ is the same as

that of V';hi
.�0/, unaffected by Fresnel diffraction.

Thus, the propagation of the correlation function through the atmosphere is
reduced to a simple product of the correlation functions of the single layers, since
they are statistically independent [194].

Calculating the correlation function iteratively for all layers, one obtains the
correlation function on the ground after propagation throughN turbulent layers as

< V'.�
0/V �

' .�
0 � �/ > D e� 1

2D'.�/;with

D'.�/ D 2:91

�
2�

�

�2 NX

iD1
•hiC

2
ni
�5=3 : (4.22)

In the more realistic case of a continuous distribution of turbulence and of a
source at a distance � D j�j from zenith one obtains

D'.�/ D 2:91

�
2�

�

�2
.cos �/�1

Z
C 2n .h/dh �

5=3 Œrad2�: (4.23)

Fried simplified the expression by introducing the correlation length r0, called
the Fried parameter [71], which is defined by

r0 WD
 

0:423

�
2�

�

�2
.cos �/�1

Z
C 2n .h/dh

!�3=5
: (4.24)

The numerical parameter, 0.423, defines r0 such that the variance of the phase over
a circle with a diameter of r0 is about 1 rad2. In this sense, the Fried parameter
defines the size of a turbulence cell. The wavelength dependence of r0 is given by
r0 / �6=5 and the dependence on zenith angle is r0 / .cos �/3=5. Typical values of
r0 are 0.6 m in the K-band and, correspondingly, 0.11 m in the visible.

The phase structure function, which is the mean-square difference of the phase
at two points on the wave front separated by �, can now be expressed by

D'.�/ D 6:88

�
�

r0

�5=3
Œrad2�; (4.25)
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with � D j�j, and the correlation function of the amplitudes is

	'.�/ D< V'.� 0/V �
' .�

0 � �/ >D e�3:44
�

�
r0

�5=3

: (4.26)

Note that 	'.�/ is a real function since we made the assumption that the phase
difference follows a Gaussian distribution with zero mean.

Very often the power spectrum of the phase fluctuations is needed for analysis.
Similar to the calculation that relates the structure function of the refractive index
(4.11) to the Kolmogorov spectrum of refractive index fluctuations (4.7) for three-
dimensional coordinates, the phase structure function (4.25) as a function of the
two-dimensional coordinate � can be used to compute the Kolmogorov spectrum of
the phase fluctuations [40, 107, 194], yielding

˚.�/ D 0:033 .2�/�2=3
�
2�

�

�2
.cos �/�1

Z
C 2n .h/dh �

�11=3

D 0:0229 r
�5=3
0 ��11=3 Œrad2=m�2�; (4.27)

with � D j�j and � the two-dimensional spatial frequency vector. Therefore, the
dimension of ˚.�/, as power per surface element d�, is rad2/m�2.

Outer Scale of Turbulence

Note that the Kolmogorov spectrum of the phase fluctuations ˚n.k/, (4.7), was
given as a function of the spatial wave vector k / 2�=r, while, here, for the power
spectrum of the phase fluctuations we use the spatial frequency vector � / 1=�.

The integral over the Kolmogorov spectrum (the power spectrum) provides the
variance of the phase. As noted above, the integral over ˚.�/ / ��11=3 is infi-
nite. This means, that the variance of the turbulent phase is infinite, which is a well
known property of Kolmogorov turbulence [225]. However, this is only true in the
theoretical limit of an infinite outer scale of turbulence. For a finite outer scale, L0,
the von Kármán spectrum of the phase fluctuations can be derived from (4.8) (see
also Fig. 4.2),

˚.�/vK D 0:0229 r
�5=3
0 .L�2

0 C �2/�11=6 Œrad2=m�2�: (4.28)

The inner scale of turbulence (see Fig. 4.2) does not need to be considered for our
purposes [145]. Integrating over˚.�/vK yields a finite value for the phase variance.

According to (4.26), the correlation between two amplitudes V' goes to zero if
their distance � is much larger than the Fried parameter r0. This could be regarded
as a complete loss of coherence of the originally plane wave by the process of
propagation through turbulence.

However, the terms coherence and coherence function, defined in Sect. 2.3,
should be reserved for statistical effects related to the nature of the light source.



170 4 Atmospheric Turbulence

The correlation function 	'.�/, which is defined as a time average (4.14) over time
scales that are much longer than the typical time scale of atmospheric turbulence, is
independent of the nature of the illuminating light.

To illustrate the consequence we regard again Young’s Experiment. Light that
has passed through atmospheric turbulence is used to illuminate the two pinholes
that are separated by a distance larger than r0. An exposure time of several seconds
would show a homogeneous intensity distribution without any interference pattern.
If the exposure time were shorter than a few milliseconds the turbulence would be
quasi frozen creating a random but fixed phase difference between the pinholes, and
we would find fringes.

The presence of fringes with a non-zero visibility indicates that the light has
a non-zero degree of coherence. A sequence of snapshots would show fringes at
varying positions depending on the random phase difference. Thus, after passing
through turbulence the measured fringe visibility depends on the exposure time and
not only on the coherence of the light. This deterioration of the measured visibility
due to atmospheric turbulence will be discussed in great detail in Chap. 6.

Turbulence Profile

The atmospheric turbulence profile is the distribution of turbulence with altitude,
given by C 2n .h/. Based on measurements, Hufnagel together with Valley [106, 247]
suggested a model for the turbulence profile called the Hufnagel–Valley model (HV-
model). This was later modified [178] yielding

C 2n .h/ D 1:9 � 10�15e�h=0:1 C 3:02 � 10�17e�h=1:5 (4.29)

C 8:16 � 10�24h10e�h;

with h in km. This profile corresponds to an r0 of 0.18 m at � D 0:5 
m. It is
displayed in Fig. 4.3.

The three terms describe the strength of the turbulence in three altitude regimes.
The first exponential term affects the turbulence in the ground layer a few hundred
metres above the ground. In the HV-model, the structure constant C 2n .h/ has val-
ues about 100 times larger than at higher altitudes. The second exponential term
dominates the turbulence in the first few kilometres, and the third term describes a
general increase of the turbulence at about 9–12 km altitude due to the jet stream.
Investigating this in more detail, one finds distinct layers of turbulence between 6
and 18 km that are about 1 km thick [250].

Recent measurements using a variety of methods [236] show a good agreement
at altitudes below 1,000 m, confirming the exponential law as in the first and second
term in (4.29). The numerical constants are different depending not only on r0 but
also on random fluctuations of the turbulence profile.

There is no detailed model for the variation of the outer scale of turbulence L0
with altitude. While the integrated value is about 20–50 m [260], L0 varies between
a few metres in the ground layer and a few hundred metres above [33, 98, 226].
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Fig. 4.3 Turbulence profiles as a function of altitude in km corresponding to an integrated r0
of 0.18 m at � D 0:5
m. The solid line displays the modified Hufnagel–Valley model (4.29).
The individual points (marked by times, plus and circle) show median values and the lowest and
highest quartiles of C2

n measurements at each altitude. The measured profiles represented by the
three dashed curves, all result in an overall r0 of 0.18 m. This large variance of 50–100% of the C2

n

values has to be kept in mind when using the turbulence profiles for numerical simulations

Figure 4.3 displays the modified HV-model together with measurements of C 2n at
individual altitudes. These measurements were collected at ESO’s VLT Observatory
on Cerro Paranal, Chile, in 58 nights between 2005 and 2007, combining a total of
1851 measurements of 10-min averages [141]. Here, only profiles with an overall r0
of 0.18 m at � D 0:5
m are accounted for.

The altitudes of the individual C 2n values do not correspond to any particular
turbulent layer but they are determined by instrumental constraints. For numerical
simulations of propagation through turbulence and of the performance of adaptive
optics systems, the continuous turbulence profile is represented by these indi-
vidual C 2n values at discrete altitudes, weighted by the layer thickness that they
represent.

The spread of C 2n profiles in Fig. 4.3 represents profiles for the low and high
quartiles of the measured C 2n values in the ground layer below 500 m (Kolb, 2009,
Private communication). Thus, if due to random fluctuations the C 2n values in the
ground layer are smaller than the median value, the corresponding values at higher
altitudes are larger since, for this comparison, we only regard profiles with the same
integrated r0.

This means, that there is no typical profile that is simply scaled according to the
value of the overall r0 but there are fluctuations of 50–100% of the C 2n values at
individual altitudes. The turbulence profiles vary from moment to moment and from
site to site, and any model can only give a rough idea about the profile structure to
expect for a given observation.
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4.2.3 Anisoplanatic and Temporal Effects

The discussions in the last two sections were about turbulent layers of unlimited
extent, describing general statistical properties of atmospheric turbulence. Observ-
ing with a telescope through atmospheric turbulence, only a subsample of each layer
contributes to the image. The shape of the wave front in the telescope aperture,
observing a star at position s, is determined by the sum of the subsamples of all
turbulent layers in a cylindrical volume in this direction.

The light of a star at a slightly different angular position s C�s travels through
a slightly different volume of the atmosphere – the more different the higher the
contributing layers are – and displays a wave front of slightly different shape. Thus,
the instantaneous wave front in the telescope aperture depends on the position of
the star.

Observing two stars with an interferometer, the random optical path difference
(OPD) of the light from the star at position s will be slightly different from the OPD
of the star at s C�s for the same reason.

Long time averages of the random phase distribution, like the phase structure
function, are the same for both star positions s and s C�s if statistical parameters
do not change. This means that long exposure images look the same.

However, we are now interested in the resemblance of the instantaneous wave
fronts coming from the two stars. This is important for adaptive optics and fringe
tracking systems that rely on the measurement of a reference star to correct for the
aberrations and the fringe motion of the scientific object. These techniques will be
discussed in detail in Chap. 6.

The acceptable angular distance between the scientific object and the reference
star – still ensuring a good resemblance between the aberrations – is called the iso-
planatic angle. Another important quantity, which describes the temporal evolution
of the atmosphere and, thus, the permitted time difference between measuring the
wave front and applying this information, is given by the typical time scale of the
decorrelation, the atmospheric coherence time. These two quantities are the most
important limiting factors for the performance of adaptive optics and fringe tracking
systems.

Isoplanatic Angle

Simplifying atmospheric turbulence by replacing the turbulence profile by a single
layer permits a simple computation for the isoplanatic angle. We write 's.�/ for the
phase in the observing direction s, and 'sC�s.�/ in direction sC�s. The difference
angle �s can be replaced by the lateral displacement �s h of the single layer at
altitude h [194], writing

's.� ��s h/ D 'sC�s.�/ : (4.30)
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The average resemblance of the phase values can be quantified by rewriting the
phase structure function for the phase distribution in the directions s and s C �s,
which is a function of coordinate difference�s only:

D'.�sh/ D< Œ's.�/� 's.� ��sh/�2 >D 6:88

�
�s h

r0

�5=3
: (4.31)

Note that, as customary, we will denote the difference vector �s by � when
discussing variations of the apparent star position due to turbulence.

If the isoplanatic angle is defined such that the rms phase difference between two
points at � and at � � �h is 1 rad, we write the isoplanatic angle as �0 D 0:314 r0=h

so that we obtain

D'.�h/ D
�
�

�0

�5=3
: (4.32)

The influence of different layers or of a continuous turbulence distribution can be
accounted for by replacing r0 in �0 D 0:314 r0=h by its definition (4.24) and then
by weighting C 2n by h5=3 (compare to 4.23). We introduce the effective altitude, Nh,
as [74]

Nh D
 R

C 2n .h/h
5=3dh

R
C 2n .h/dh

!3=5

; (4.33)

ensuring that turbulence at high altitudes turbulence has more weight than at low
altitudes, and we write the isoplanatic angle as [73]

�0 D 0:314

 

0:423

�
2�

�

�2 Z
C 2n .h/h

5=3dh

!�3=5
D 0:314

r0
Nh : (4.34)

If the effective altitude is Nh D 2:5 km and r0 D 0:6m – a typical value in the
K-band – it is �0 D 16 arcsec. Since the isoplanatic angle scales with r0 it also
depends on wavelength / �6=5.

This definition of the isoplanatic angle is based on the comparison of individual
points on the wave front. In practical cases, the value is often larger due to averaging
effects over the telescope aperture. For adaptive optics systems, the position of the
deformable mirror, the correction degree and the acceptable error affect the value
[28,234], and for interferometers, correcting the OPD fluctuations due to turbulence,
the required performance determines the value of the isoplanatic angle.

However, the definition in (4.34) is still useful as a lower value of the isoplanatic
angle independent of telescope and instrumental parameters.
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Atmospheric Coherence Time

Using the Taylor hypothesis of frozen turbulence the temporal evolution can be esti-
mated in perfect analogy [194]. The assumption is that a static piece of turbulence
moves with constant speed jvj in front of the telescope aperture, which is a good
approximation as long as the observed time differences are small. Then the phase at
point � at time t C � can be written as

'tC�.�/ D 't .� � v�/ ; (4.35)

and the temporal phase structure function is

D'.v�/ D< Œ't .�/� 't .� � v�/�2 >D 6:88

�
v�

r0

�5=3
: (4.36)

The temporal difference is thus transformed to a difference in spatial coordinates
with the difference being v� . A simple estimate of the correlation time similar to
the isoplanatic angle above yields the coherence time �0 D 0:314 r0=v [24] and the
temporal phase structure function

D'.v�/ D
�
�

�0

�5=3
: (4.37)

Multiple layers with different wind speeds are considered equivalently to the case
of anisoplanacy by applying individual wind speeds v5=3 to individual layers with
structure constants C 2n , defining the effective wind speed, Nv, as

Nv D
 R

C 2n .h/v
5=3dh

R
C 2n .h/dh

!3=5

; (4.38)

so that the atmospheric coherence time is written as

�0 D 0:314

 

0:423

�
2�

�

�2 Z
C 2n .h/v

5=3dh

!�3=5
D 0:314

r0

Nv : (4.39)

We then obtain a coherence time of �0 D 19ms for an effective wind speed of
Nv D 10m s�1 and a Fried parameter of r0 D 0:6m. Often, the coherence time is
given for the visible when, with r0 / �6=5, it is r0 D 0:11m, obtaining �0 D 3:8ms.

As for the isoplanatic angle, this definition of the coherence time is based on
the bare atmosphere, comparing the phase at a single point on the wave front at
two moments in time with a fixed time difference, permitting a root-mean-square
difference of these two values of 1 rad.

In interferometry, a suitable measure for the coherence time is the variance of
the fringe motion. Regarding the two sub-apertures of an interferometer, one has to
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compute the mean-square phase difference of two points separated by the baseline
and not of a single point as in (4.36), taking not only the temporal but also the spa-
tial correlation into account. Simply assuming that the two points are separated far
enough so that they are spatially uncorrelated, the variances add and the value of the
phase structure function doubles so that the constant has to be set at 2� 6:88. Then,
equivalent to (4.37), the interferometric coherence time can be defined as [38]

�0;2 D 0:207
r0

Nv : (4.40)

This definition of the coherence time is related to the phase variance for a spec-
ified time difference � , (4.37). The situation is different if a temporal integration
is performed, for instance during a limited exposure time, when the phase variance
during the exposure is of interest. One might be interested in the average smear-
ing of the fringes during the exposure time – resulting in a loss of fringe contrast –
or in the residual fringe motion when stabilising the fringe position on a close by
reference star. And one might use real apertures instead of pinholes performing an
averaging process over the apertures. For this type of analysis, the power spectrum
of the phase fluctuations is a more suitable tool than the phase structure function.

Temporal Power Spectrum

The temporal power spectrum of the phase fluctuations can be calculated from the
spatial power spectrum ˚.�/ (4.27). With v being e.g. parallel to the � axis, one
sets �� D f=v and performs an integration over �� to obtain the temporal power
spectrum ˚t .f / [24],

˚t .f / D 1

Nv
Z
˚

�
f

Nv ; ��
�

d�� D 0:077

� Nv
r0

�5=3
f �8=3 Œrad2=Hz� : (4.41)

It is important to note that, unlike the spatial power spectra, we define temporal
power spectra from 0 to C1. If for some reason it is required to define them from
�1 to C1, the constant 0:077 has to be replaced by half its value.

The variance of the temporal phase fluctuations is the integral over ˚t .f /. As
there is a pole at f D 0 this integral is infinite as in the case of spatial phase
fluctuations (4.27). Using the von Kármán spectrum with finite outer scale L0 (4.8)
the integration provides a finite value for the variance.

In this section, we had an observing situation in mind, discussing the resemblance
of wave fronts in different directions, but we regarded the bare wave front without
taking telescope apertures or averaging processes over apertures and baselines into
account. This will be done in the following section computing power spectra of
quantities that are derived from the phase, like for instance the fringe motion or the
image motion. We shall see that the variances of these quantities – the integrals over
their power spectra – are finite, and that atmospheric coherence times can be defined
according to individual performance criteria.
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Statistical Properties of the Perturbed Complex Wave: Summary

The Fried parameter r0 [71] provides the diameter of a circular patch of the
wave front in atmospheric turbulence that has a phase variance of about 1 rad2.
It is defined as

r0 D
 

0:423

�
2�

�

�2
.cos �/�1

Z
C 2n .h/dh

!�3=5
: (4.24)

r0 is proportional to �6=5 and to .cos �/3=5, with � the zenith angle.
The phase structure function D'.�/ D< Œ'.� 0/ � '.�0 C �/�2 >, which

is the mean-square difference of the phase at two points on the wave front
separated by �, reads as

D'.�/ D 6:88

�
�

r0

�5=3
Œrad2�; (4.25)

with � D j�j, and � the two-dimensional coordinate vector.
Assuming a plane wave – originating from a point-like star at a very large

distance – enters the turbulent atmosphere, the correlation function of its
amplitude V'.�/ D exp.i'h.�// on the ground is given by

	'.�/ D< V'.�0/V �
' .�

0 � �/ >D e� 1
2
D' .�/ D e�3:44

�
�

r0

�5=3

; (4.26)

assuming the near-field approximation, and neglecting scintillation. 	';h.�/ is
a real function since we made the assumption that the phase difference follows
a Gaussian distribution with zero mean.

Thus, the correlation goes to zero if the positions of two amplitudes are sep-
arated by more than r0. This could be regarded as a complete loss of coherence
of the originally coherent plane wave.

However, with the typical time scale of atmospheric turbulence of a few
milliseconds, snapshot images of the fringe pattern in an interferometer would
still provide very high visibility values, preserving the coherence of the light,
and, thus, the opportunity to measure visibilities and derive high-angular
resolution images.

Very often the power spectrum of the phase fluctuations is needed for anal-
ysis. Using the phase structure function (4.25), the Kolmogorov spectrum of
the phase fluctuations can be computed [40, 171], reading

˚.�/ D 0:0229 r
�5=3
0 ��11=3 Œrad2=m�2�; (4.27)

with � the two-dimensional spatial frequency vector, � D j�j and, hence,
˚.�/ in units of power per surface element d�, i.e. rad2/m�2.
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For a finite outer scale L0, the von Kármán spectrum of the phase
fluctuations can be derived from (4.8), yielding

˚.�/vK D 0:0229 r
�5=3
0 .L�2

0 C �2/�11=6 Œrad2=m�2�: (4.28)

The inner scale of turbulence (see Fig. 4.2) does not need to be considered for
our purposes [145].

The isoplanatic angle indicates the angular distance of two sources in the
sky for which the rms phase fluctuations on the ground are about 1 rad, and
the atmospheric coherence time is the time difference when the rms phase
fluctuations at a single point have a value of 1 rad. The two quantities are
derived in perfect analogy [194] using the phase structure function (4.25).

We define an isoplanatic angle �0 [73] such that it is

D'.� Nh/ D
�
�

�0

�5=3
; (4.32)

with

�0 D 0:314
r0
Nh D

 

2:91

�
2�

�

�2 Z
C 2n .h/h

5=3dh

!�3=5
: (4.34)

and Nh D �R
C 2n .h/h

5=3dh=
R
C 2n .h/dh

�3=5
the effective altitude defined in

(4.33) [74].
In analogy, we define the atmospheric coherence time �0 [24] so that

D'.v�/ D
�
�

�0

�5=3
; (4.37)

with

�0 D 0:314
r0

Nv D
 

2:91

�
2�

�

�2 Z
C 2n .h/v

5=3dh

!�3=5
; (4.39)

and Nv D �R
C 2n .h/v

5=3dh=
R
C 2n .h/dh

�3=5
the effective wind speed defined

in (4.38).
The atmospheric coherence time for interferometry is based on the mean-

square phase difference of two points taking not only the temporal but also
the spatial correlation into account. Equivalent to (4.39) we define [38]

�0;2 D 0:207
r0

Nv : (4.40)
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The temporal power spectrum of the phase fluctuations can be computed
from the spatial power spectrum ˚.�/ (4.27). With v being e.g. parallel to the
� axis, one sets �� D f=v and performs an integration over �� to obtain the
temporal power spectrum ˚t .f / [24],

˚t .f / D 0:077

� Nv
r0

�5=3
f �8=3 Œrad2=Hz�: (4.41)

It is important to note that, unlike the spatial power spectra, we define
temporal power spectra from 0 to C1.

4.3 Propagation Through Optical Systems

In the previous section, the statistical properties of the propagating turbulent wave
front were described. When it comes to analysing the impact of turbulence on the
imaging process in telescopes and interferometers, some assumptions have to be
made about the phase distribution in the telescope aperture. We assume that the tur-
bulent atmosphere can be represented by a single thin layer in the telescope aperture
neglecting Fresnel diffraction, as discussed in Sect. 4.2. This is called the near-
field approximation [194, 255]. Only when discussing scintillation in Sect. 4.3.4,
the Fresnel diffraction will be considered.

We will start discussing fringe motion, differential fringe motion and image
motion employing the Taylor hypothesis of frozen turbulence as in Sect. 4.2.3.
Anisoplanatic effects will also be discussed under this hypothesis. For the sake of
simplicity, we will always use the effective altitude, Nh, of turbulence (4.33) and the
effective wind speed, Nv, (4.38) to avoid bulky integrals in the formulae. For accurate
results, however, it is required to compute the integrals using measured turbulence
profiles and wind speeds (and directions). Since these are often not available or, as
discussed following Fig. 4.3, highly variable so that a conclusion is difficult to reach,
the simplifications permit to understand the principle interrelation of the parameters
and to obtain useful numerical estimates.

For the interpretation of the results one always has to be aware not only of its
approximative character but also of the natural variability of atmospheric turbulence
that evades accurate predictions.

4.3.1 Fringe Motion

The fringe motion in an interferometer is caused by random OPD variations between
the apertures. These fluctuations reduce the measured visibility if the exposure time
is longer than the atmospheric coherence time. Freezing the fringe motion with a
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fringe tracker using a bright reference star permits us to integrate a long time and,
thus, to observe fainter sources in the vicinity of the reference star.

In order to specify the performance parameters of a fringe tracker, the power
spectrum of the fringe motion needs to be known. In addition, we have to discuss
the differential fringe motion between the reference star and the faint object so that
we can quantify the isoplanatic angle.

The first quantity to be investigated is the variance of the phase difference �'
between two points – for instance the pinholes in Young’s experiment – separated
by the baseline B, < j'.�/ � '.� � B/j2 >, which is the phase structure function
D'.B/, (4.25).

In order to arrive at the power spectrum of the phase difference, we write this
difference as a convolution of the phase '.�/ with the two •-functions representing
the pinholes,

�'.�/ D '.�/ � .•.� � B=2/� •.� C B=2// ; (4.42)

with B, the baseline of the interferometer.
In Fourier space, the convolution on the right hand side transforms into the

product of the individual Fourier transforms, yielding

F�.�'.�// D F�.'.�// � F� .•.� � B=2/� •.� C B=2// : (4.43)

The power spectrum of the phase difference fluctuations is the square ofF�.�'.�//.
Computing the square of the right hand side of the equation, we have the power
spectrum F2

�
.'.�// D j O'.�/j2 D ˚.�/ of the phase fluctuations, (4.27), and

4 sin2.�B � �/, the square of the Fourier transform of •.� � B=2/� •.� C B=2/.
Since we are interested in the OPD in m, we use �'.�/�=.2�/, forming the

power spectrum ˚OPD.�/ of the OPD fluctuations as2

˚OPD.�/ D �2

4�2
0:0229 r

�5=3
0 ��11=34 sin2.�B � �/ Œm2=m�2�; (4.44)

with � D j�j. The power spectrum is no longer radial-symmetric but it depends on
the orientation of the baseline vector B. At low spatial frequencies, in the direction
parallel to B, the square of the sine-function can be approximated by �2B2�2 so
that ˚OPD.�/ is proportional to ��5=3. At high frequencies – the equivalent of very
small values of � – sin2.�B � �/ can be replaced by 0.5, its average value, so that
the proportionality to ��11=3 remains as in the power spectrum of the phase ˚.�/.
In the orthogonal direction, ˚OPD.�/ is always proportional to ��11=3.

The spatial power spectrum ˚OPD.�/ will be used in the following to derive the
temporal power spectrum. We can also use it to compute the variance �2OPD of the

2 The notation of the dimension as m2/m�2 is chosen since we describe the power in m2 per surface
element in frequency space, d�, in m�2.
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OPD fluctuations by integrating ˚OPD.�/ from �1 to C1 although it is easier to
determine its value directly through the phase structure function D'.B/ that, by
definition, gives the variance of the phase difference. Then, the OPD variance for a
baseline length of B is given by [194]

�2OPD D �2

.2�/2
D'.B/ D 0:17 �2

�
B

r0

�5=3
Œm2�; (4.45)

displayed in Fig. 4.4. Due to the definition of the Fried parameter (4.24), r0 scales
with wavelength / �6=5 and it is �2 r�5=3

0 D 16:7
R
C 2n .h/dh so that the optical

path length fluctuations are independent of wavelength and scale linear with the
integral over C 2n .

However, the impact of path length fluctuations on observations is determined
by the phase fluctuations, i.e. by �OPD

2�
�

, so that, at short wavelengths the fringe
visibility is more heavily affected than at long wavelengths.

Outer Scale of Turbulence

With baselines from several 10 up to a few hundred metres, the phase structure func-
tion has to be corrected for the outer scale of turbulence, L0, that is of the order of
several 10 m [26,260]. Useful estimates for the phase structure function,D';vK.B/,
based on the von Kármán spectrum (4.28), can be found in [41,246]. The OPD vari-
ance with finite outer scale can be computed as �2OPD;vK D �2=.2�/2D';vK.B/
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Fig. 4.4 The rms OPD fluctuations �OPD for Kolmogorov turbulence with infinite outer scale (solid
line), and �OPD;vK for finite outer scales of 25 and 50 m (dotted and dashed lines) using the phase
structure function D';vK.B/ of the von Kármán spectrum. r0 is set to 0.6 m for the K-band
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and we obtain

�2OPD;vK D 0:00876 �2
�
L0

r0

�5=3  

1 �
�
2�B

L0

�5=6
K5=6

�
2�B

L0

�!

; (4.46)

withK5=6.:/ the Macdonald function. This formula provides a useful approximation
of the real situation although it is based on the assumption that the outer scale is
constant at all altitudes, which is not confirmed by measurement [33, 98, 226].

The important conclusion is that the outer scale has a very strong influence on the
OPD fluctuations, as displayed in Fig. 4.4. If the baseline is comparable in length to
the outer scale of turbulence, the fluctuations are reduced by a factor of about five (!).
For a 50-m baseline and infinite outer scale for instance, the rms OPD fluctuations
�OPD are about 37
m, according to (4.45) for an r0 of 0.6 m in the K-band. If the
outer scale is L0 D 50m, the rms OPD fluctuations are reduced to about 8
m,
using (4.46). The order of magnitude of this effect is confirmed by measurements
[52, 57].

Differential Fringe Motion

The differential fringe motion can be derived in the same way as in (4.42). We write
the difference in fringe positions of an object at s and an object at position s C�s

as
�
'.�/� '.� � B/

�� �
'.� ��s Nh/� '.� ��s Nh� B/

�
when the difference in

angular position is represented by a linear shift of the turbulent layer at the effective
altitude Nh as in (4.30).

Then, the convolution in (4.42) reads as

�'�s.�/ D '.�/ �
 

•

�
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2

� B

2
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� •
�
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2

�
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� C �s Nh
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2
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� C �s Nh
2
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�!

: (4.47)

As in (4.44) we move to the power spectrum ˚dOPD.�/ of the differential OPD
fluctuations, dOPD, transforming the convolution of the phase with the •-functions
into the product of the power spectrum ˚.�/ of the phase, (4.27), with their Fourier
transforms – in this case 4 sin2.�B � �/4 sin2.� Nh�s � �/ – yielding

˚dOPD.�/ D �2

4�2
0:0229 r

�5=3
0 ��11=3

�16 sin2.�B � �/ sin2.� Nh�s � �/ Œm2=m�2�: (4.48)

Like ˚OPD in (4.44), this power spectrum is not radial-symmetric, but it depends
on the orientation of the baseline vector B and on the separation �s. There are



182 4 Atmospheric Turbulence

now three regimes to be distinguished: At low frequencies, in the direction par-
allel to B and to �s, the sine-functions can be approximated by �2B2�2 and
by �2�s2 Nh2�2 so that ˚dOPD.�/ is proportional to �1=3. At medium frequen-
cies, making the assumption that �s Nh is much smaller than the baseline B , the
sine-function of B can be regarded as constant while �2�s2 Nh2�2 remains so that
˚dOPD.�/ / ��5=3, and at high frequencies, both sine functions are effectively con-
stant and the dependency on ��11=3 remains. In the orthogonal direction, ˚dOPD.�/

is proportional to ��11=3 as ˚.�/. We will come back to these properties when
discussing the temporal evolution.

Finite Apertures

Moving on to real apertures with diameter d , we express the interferometer aperture
as in Sect. 3.3.2, by a convolution of the individual telescope aperture a.�/ with two
•-functions, putting the centres of the apertures at �B=2 and B=2.

We investigate the difference of the phases that are averaged over each individual
sub-aperture. First, we look at the average phase in a single aperture that can be
written as a convolution of a.�/ with the phase,

'd .�/ D 1

a0

Z
'.�0/a.� � �0/d�0 ; (4.49)

with a0 the area of the sub-aperture and the superscript d indicating the averaged
quantity.

The power spectrum of the averaged phase, F2
�
.'d .�//, can now be computed

as the product of F2
�
.'.�// D ˚.�/ and of F2

�
.a.�// D Besinc2.�d�/, yielding

˚d�'.�/ D 0:0229 r
�5=3
0 ��11=3Besinc2.�d�/ Œrad2=m�2�: (4.50)

The squared Besinc function, that – as squared Fourier transform of the telescope
aperture – has the form of an Airy disc, acts as a low pass filter on the power
spectrum ˚.�/ of the phase fluctuations. The contributions at high frequencies
corresponding to small distances in the turbulent wave front are reduced, as the
averaging process smooths the gradients. At low frequencies, i.e. for distances larger
than the aperture diameter the effect of the pupil averaging is much reduced and the
power spectrum is approximately unaffected.

Combining the averaging of the phase over a single sub-aperture and the phase
difference between two sub-apertures, we write the spatial power spectrum of OPD
fluctuations between two apertures of diameter d and separated by the baseline B as

˚dOPD.�/ D �2

4�2
˚d�'.�/4 sin2.�B � �/ Œm2=m�2�; (4.51)
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and finally, by forming the product with 4 sin2.� Nh�s � �/, the power spectrum of
the differential OPD fluctuations can be written as

˚ddOPD.�/ D �2

4�2
˚d�'.�/

�16 sin2.�B � �/ sin2.� Nh�s � �/ Œm2=m�2�: (4.52)

Computing the OPD variance of the phase fluctuations from (4.51) yields a
slightly smaller value than in the case of point-like sub-apertures given in (4.45)
since ˚dOPD.�/ is filtered by Besinc2.�d�/. This reflects the averaging effect over
the individual sub-apertures. However, the effect is rather small since most of the
power is at low frequencies due to the proportionality to k�11=3, (4.50), so that the
OPD variance in (4.45) can be used as a good, conservative approximation.

Temporal Evolution of Fringe Motion

The Taylor hypothesis of frozen turbulence is used again to estimate the effect of
moving turbulence. The temporal power spectrum of the OPD fluctuations can be
calculated similar to the one of the phase (4.41) by integrating over the direction
perpendicular to the wind speed.

First, we discuss the case of two pinhole sized apertures with the power spectrum
˚OPD.�� ; �� /, (4.44). Assuming that the effective wind direction is parallel to the
�-axis, we set �� D f= Nv, obtaining

˚OPD;t .f / D 1

Nv
Z
˚OPD.f= Nv; �� /d�� Œm2=Hz�: (4.53)

This integral cannot be solved in closed form but one can use approximations for
low and high frequencies, averaged for all orientations Nv vs. B [37, 224] as

˚OPD;t .f / D 0:096 �2
� Nv
r0

�5=3 �
B

Nv
�2
f �2=3 f � 0:2 Nv=B

˚OPD;t .f / D 0:00392 �2
� Nv
r0

�5=3
f �8=3 f � 0:2 Nv=B ; (4.54)

when the numerical values are averaged with respect to wind direction [139]. Note
that temporal power spectra are defined for positive frequencies.

Compared to the temporal power spectrum˚t .f / of the phase, (4.41), we see the
same f �8=3 proportionality of the power spectrum at high frequencies but a rather
flat spectrum / f �2=3 at low frequencies. Converting the high frequency approx-
imation of ˚OPD;t to the power spectrum of the phase difference by multiplying it
by 4�2=�2, we obtain 0:154. Nv=r0/5=3f �8=3, which is twice the temporal power
spectrum, 2˚t .f /, of the phase (4.41).
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This can be explained by assuming a very long baseline with very small transient
frequency 0:2 Nv=B so that the power spectrum is almost completely described by
the high frequency approximation. Computing the variance of the phase difference
from this power spectrum, we find a value that is twice as large as the variance of the
phase since the phases that are separated by B are no longer correlated and, in order
to compute the variance of the phase difference, twice its individual variance has to
be taken. A similar argument was used when deriving the atmospheric coherence
time �0;2 in Sect. 4.2.3.

For shorter baselines the variance of the phase difference is smaller than twice
that of the phase alone since the phases are more and more correlated. Formally this
is expressed by the small frequency approximation taking more and more effect.

Using the power spectrum, we can calculate the OPD variance that we measure
during a time period T . This describes the fringe jitter – and the related loss in
visibility – during an observation.

The effect of the rectangular time window of width T is considered in frequency
space by its Fourier transform, sinc.�Tf /. Since we are interested in the variance
< .�' � �'/2 >, with �' the average OPD during time T , we have to compute
the integral of ˚OPD;t .f / filtered by .1 � sinc2.�Tf //, to obtain the OPD variance
[224]. For very long integration times, the OPD averages to zero as discussed in
Sect. 4.2. Sometimes, this computation is simplified by integrating the power spec-
trum from f D 1=T to 1, ignoring the contribution of frequencies smaller than
1=T . However, due to the exponentially increasing power, the contribution of the
small frequencies – the slow fringe motion – is substantial and cannot be neglected,
as illustrated by Fig. 4.5.

Applying the filter function to the power spectrum in (4.54), we obtain an approx-
imation for the rms OPD variations for integration times shorter than a few 100 ms
as [224]

�OPD;T D 0:19 �

� Nv
r0

�5=6
T 5=6 Œm�: (4.55)

Writing �OPD;T as a function of atmospheric coherence time, we replace Nv=r0 by
0:314=�0 (4.39) or, if the interferometric coherence time �0;2 (4.40) is preferred, by
0:207=�0;2.

Under typical conditions, for instance an r0 of 0.6 m, at a wavelength of 2.2
m
and an effective wind speed of Nv D 10m s�1, we find that the rms OPD variations
over 100 ms are about �OPD;T D 600 nm.

Note that due to the scaling of r0 with �6=5, OPD variations are indepen-
dent of wavelength and the product �r�5=6

0 could be replaced, see (4.24), by
4:09.

R
C 2n .h/dh/

1=2 if the turbulence profile is available.
It should be noted that this approach, regarding the OPD variations during a time

period T , is different from the one used to define the atmospheric coherence time
�0;2 in (4.40). There, we investigated the mean-square phase difference of two points
in time, at t and at t C � , and in space, separated by the baseline, and we found that
an rms phase difference of 1 rad, corresponding to an OPD of �=.2�/, was obtained
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Fig. 4.5 Temporal power spectrum of the OPD fluctuations for an interferometer with baseline
B D 100m, pinhole sized apertures and an effective wind speed Nv D 10m s�1, using the approxi-
mation given in (4.54). The dashed lines represent the two asymptotes / f �2=3 and / f �8=3 with
transient frequency ft1 D 0:2 Nv=B , and the dotted line shows the filter function .1� sinc2.�Tf //
for an integration time of T D 50ms. The filtered power spectrum is displayed by the dashed-
dotted lines in the respective frequency regimes. The OPD variance over time T is computed
by integrating the filtered power spectrum. The substantial contribution of the frequencies below
f D 1=T D 20Hz is readily apparent

for a time difference of �0;2. Here, we integrate over a time period T and compute
the accumulated OPD variations so that T can be much longer than �0;2 before the
rms OPD variations are �=.2�/. Using (4.55), we find that after an integration time
of T0 D 0:81 r0= Nv we have OPD variations of �=.2�/, thus about four times longer
than �0;2 [224].

Finite Apertures

Expanding the discussion to sub-apertures with diameter d , we use the spatial
power spectrum of OPD fluctuations, ˚dOPD, in (4.51) that is reduced at high spa-
tial frequency due to the averaging over the sub-aperture. We apply the same
integration perpendicular to the wind speed as for the power spectrum of pinhole
sized apertures in (4.54), obtaining a third asymptote for frequencies larger than
0:3 Nv=d as

˚dOPD;t .f / D 0:000105�2
� Nv
r0

�5=3 �
d

Nv
��3

f �17=3 f � 0:3 Nv=d : (4.56)
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Fig. 4.6 Temporal power spectrum of the OPD fluctuations for an interferometer with baseline
B D 100m, sub-aperture diameter d D 1m, effective wind speed Nv D 10m s�1, and an r0 of
0.6 m in the K-band. One can distinguish three regimes indicated by dashed lines: / f �2=3 for
f � ft1 D 0:2 Nv=B , / f �8=3 for ft1 � f � ft2 D 0:3 Nv=d , and / f �17=3 for f � ft2.
Approximative formulae for the three asymptotes are given in (4.54) and in (4.56)

The effect of the finite aperture diameter is, thus, that beyond 0:3 Nv=d the power
spectrum has reduced values, dropping with the power of �17=3 instead of �8=3.
However, the OPD variance is still dominated by the asymptote / f �8=3, due to
the filtering with .1� sinc2.�Tf // as illustrated in Fig. 4.5 so that �OPD;T in (4.55)
provides a good, conservative estimate for the OPD variance.

The temporal power spectrum ˚dOPD;t with its three regimes is displayed in
Fig. 4.6.

Measurements of OPD power spectra show in general the same behaviour as the
theoretical models. The power spectrum can be subdivided in regimes with differ-
ent asymptotes, and the proportionality to f �8=3 has been found, with the tendency
to have a smaller exponent, between �7:5=3 [26, 52] and �6:5=3 (Gitton, 2009,
Private communication). The sharp decay / f �17=3, however, has not been con-
firmed by measurements yet. Fitting measured spectra by asymptotes, one finds that
especially the areas around the transient frequencies display deviations as shown in
Fig. 4.7. Thus, the theoretical models and the derived approximations provide a gen-
eral understanding of the effects, when it comes to details however, measurements
have to be used.
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Fig. 4.7 Example of a measured power spectrum of OPD fluctuations, with interferometer base-
line B D 16m, sub-aperture diameter d D 0:4m and effective wind speed Nv D 20m s�1. Two
asymptotes, / f �2=3 and / f �8=3, with transient frequency ft1 D 0:25Hz, are displayed by
dashed lines. While at low and at high frequencies the asymptotes fit the curve rather well, there
are substantial deviations around ft1. Courtesy E. di Folco [57]

Outer Scale of Turbulence

For a finite outer scale of turbulenceL0 and for Nv k B, the following approximation
[37] can be used for f � 0:2 Nv=B

˚
L0

OPD;t .f / D 0:8˚OPD;t .f /

 

1C
� Nv
f L0

�2!�4=3
Œm2=Hz�: (4.57)

This power spectrum is proportional to f 2, thus, dropping drastically towards lower
frequencies. However, for typical wind speeds of 10 m s�1 and baselines of 100 m,
this approximation is valid at frequencies below f D 0:02Hz, i.e. for time differ-
ences longer than 50 s. It is questionable if the turbulence remains frozen over this
period of time [52, 139], so that in practice, the turbulence decorrelates faster and
the power spectrum is not reduced that much.

For the case of a wind direction perpendicular to the baseline, Nv ? B, one obtains
a flat spectrum, that can be used to define the spectrum averaged for wind directions
as / f 0 and / L

2=3
0 [37]. The flattening at very low frequencies has been confirmed

by measurements, indicating at outer scales of turbulence of the order of 50 m [26,
52, 57].

One should note, that while the outer scale of turbulence has a large effect on the
long term OPD variance (see Fig. 4.4), it has no effect on the OPD variance over a
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few seconds. This is not only intuitively understandable but also expressed by the
correction to the power spectrum, (4.57), that only applies to low frequencies.

Temporal Evolution of Differential Fringe Motion

We use again the integral of the spatial power spectrum over the direction perpen-
dicular to the wind speed as in (4.53) to compute the temporal power spectrum. A
detailed analysis for all possible combinations of baseline B, wind speed Nv and sep-
aration vectors�s can be found in [51]. In the following, we will present the results
when all directions are averaged [139].

We will discuss the case when the separation of beams �s Nh in the turbulent
layer is much smaller than the baseline. For a baseline ofB D 50m and an effective
altitude of Nh D 2:5 km, this means that the separation has to be much smaller than
about 50 arcmin. This regime is referred to as very narrow angle regime [212].

Starting with very small apertures, the spatial power spectrum of differential
OPD fluctuations, ˚dOPD.�/ is given in (4.48) and, integrating over �� as in (4.53),
one obtains three asymptotes for different frequency regimes of the temporal power
spectrum of differential fringe motion as

˚dOPD;t .f / D 0:628�2
� Nv
r0

�5=3 
�s Nh

Nv

!2 �
B

Nv
�2=3

�
 

1C 4:84 f 4=3
�
B

Nv
�4=3!

f � 0:12
Nv
B

˚dOPD;t .f / D 0:193�2
� Nv
r0

�5=3 
�s Nh

Nv

!2

f �2=3 0:12
Nv
B

� f � 0:2
Nv

�s Nh

˚dOPD;t .f / D 0:0078�2
� Nv
r0

�5=3
f �8=3 0:2

Nv
�s Nh � f : (4.58)

At very low frequencies the power spectrum is basically constant, slightly increasing
with f 4=3 towards the transient frequency 0:12 Nv=B . At medium and high frequen-
cies, there is the same dependency / f �2=3 resp. f �8=3 as for fringe motion (4.54),
but now the transient frequency between the two regimes is 0:2 Nv=.�s Nh/ instead of
0:2 Nv=B .

Using the spatial power spectrum of differential OPD fluctuations (4.48) with the
two sine functions of B � � and of Nh�s � �, the function of B can be regarded as
constant for �� D f= Nv � 0:12=B , and only sin2.� Nh�s ��/ takes effect. Therefore,
in this regime, the effect of the separation vector for differential fringe motion is
the same as that of the baseline for fringe motion, which is the consequence of
computing the difference of phase differences.
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Finite Apertures

Considering the effect of finite sub-apertures, we use the spatial power spectrum
˚ddOPD in (4.52) to compute the temporal power spectrum. Similar to the power
spectrum for fringe motion, we can keep the low frequency approximations and
replace the asymptote for high frequencies that is / f �8=3 in (4.58) by two asymp-
totes, assuming that �s Nh is much smaller than the sub-aperture diameter d , i.e. �s
is of the order of some 10 arcsec. Then, the two high frequency asymptotes of the
temporal power spectrum read as

˚ddOPD;t .f / D 0:00263�2
� Nv
r0

�5=3 �
d

Nv
��3

�
 
�s Nh

Nv

!2

f �11=3 0:24
Nv
d

� f � 0:28
Nv

�s Nh

˚ddOPD;t .f / D 0:00021�2
� Nv
r0

�5=3 �
d

Nv
��3

f �17=3 f � 0:28
Nv

�s Nh : (4.59)

The high frequency approximation / f �17=3 is the same as that for fringe
motion (4.56). However, the values are twice as large since we compute the differen-
tial fringe motion, so that, with no correlation between the individual phase values
contributing to the differences at high frequencies, we have to add up the phase vari-
ances. We found the same behaviour for the high frequency approximation of fringe
motion compared to phase fluctuations as discussed following (4.54).

The variance of the differential fringe motion is very important when dis-
cussing fringe tracking (see Sect. 6.2.1). Assuming that we keep the fringe position
of one object stable, the fringe motion of the second object at distance �s is given
by the variance of the differential fringe motion. Thus, this permits to quantify the
isoplanatic angle and to identify temporal effects of the turbulence on the visibility
measurement.

Using again the filter function .1 � sinc2.�Tf // to consider the limited inte-
gration time T – as for �OPD;T in (4.55) – we integrate the filtered temporal power
spectrum ˚ddOPD;t to obtain the variance over time T . The two asymptotes in (4.59)
provide approximations for 1=T � 0:24 Nv=d , which means that T should be shorter
than 1 s. Since power spectra / f �17=3 have not been confirmed by measurements
yet , we use only the asymptote / f �11=3, obtaining a conservative estimate for the
variance.

Then, the approximation for rms fluctuations of the differential fringe motion
reads as

�ddOPD;T D 0:1 �r
�5=6
0 Nv8=6 Nh d�3=2�s T 4=3 Œm�: (4.60)

Apart from the atmospheric parameters r0, Nv and Nh, the differential fringe motion
decreases with increasing telescope diameter, d�3=2, it is linear with separation of
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the objects �s and it is almost linear with exposure time, T 4=3, within the range
of validity of this approximation, which is �s � d= Nh and T � 4:17 d= Nv. If we
go to longer integration times, the asymptote / f �2=3 in (4.58) has to be used
additionally so that the further increase of the variance with exposure time is slower
but the linearity with �s remains.

For atmospheric parameters of r0 D 0:6m at � D 2:2 
m, (remembering that
the product �r�5=6

0 is independent of wavelength), Nv D 10m s�1, Nh D 2:5 km, and
assuming that the telescope aperture has a diameter of d D 2m, that the objects are
separated by �s D 10 arcsec and that the exposure time is T D 1 s, we obtain a
value of �ddOPD;T D 310 nm for the differential fringe motion.

The differential OPD variance for infinite exposure time has to be computed with
the complete power spectrum adding the contributions of all asymptotes. The result
shows that the fluctuations saturate at about 10 s integration time reaching about
four times the value for a 1 s integration [51]. For the atmospheric parameters that
we used above, the rms fluctuations are of the order of 1.2
m.

4.3.2 Image Motion

The average gradient of the phase distribution in the telescope aperture determines
the position of the image in the telescope focus. The fluctuations of the image
position are also referred to as angle of arrival fluctuations. The image motion deter-
mines the requirements for wave front sensors like the Shack-Hartmann sensor, see
Sect. 6.3.1 that rely on reconstructing the wave front from gradient measurements
in the sub-apertures.

First we discuss the statistical properties of the gradient r' of the wave front
without averaging over the telescope aperture. The two components r'� and r'�
as a function of the horizontal coordinate � D .�; �/ are [194, 224]

r'�.�; �/ D � �

2�

@

@�
'.�; �/ and r'� .�; �/ D � �

2�

@

@�
'.�; �/ : (4.61)

Instead of computing the first derivative, we use its Fourier transform, �i2���;� O'.�/,
with O'.�/ the Fourier transform of '.�/. We denote the Fourier transforms of the
gradients by cr'�.�/ and cr'� .�/.

Then, the power spectra of the vector components of the two gradients,˚r;�.�/D
jcr'�.�/j2 and ˚r;� .�/ D jcr'� .�/j2, are related to the power spectrum of the
phase ˚.�/ D j O'.�/j2, (4.27), by

˚r;�.�/ D �2�2�˚.�/ and ˚r;� .�/ D �2�2�˚.�/ ; (4.62)
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and the power spectrum of the phase gradient ˚r.�/ is obtained by adding ˚r;�
and ˚r;� , yielding

˚r.�/ D 0:0229 �2
�
�2� C �2�

�
r

�5=3
0 ��11=3 D 0:0229 �2r

�5=3
0 ��5=3; (4.63)

with � D j�j.
Averaging the gradient over the telescope aperture provides the angular coordi-

nate � of the image centroid. The averaging process is accounted for by convolving
the gradient in (4.61) with the aperture function A.�/, writing

�.�/ D 1

A0

Z
r'.� 0/A.� � � 0/d�0 ; (4.64)

withA0 the surface area of the aperture. �.�/ is also referred to as tip-tilt of the wave
front. For a point like aperture the averaging process collapses yielding � D r'.�/.

As for (4.50) when we computed the averaged phase, we replace the convolu-
tion by a multiplication of the individual Fourier transforms in Fourier space, using
F�.r'.�// D br'.�/ and F�.A.�// D Besinc.�D�/.

The power spectrum of the phase gradient after averaging with the telescope
aperture can then be written as the product of ˚r.�/ D jbr'.�/j2, (4.63), and
Besinc2.�D�/ [40, 151], yielding

˚
 .�/ D 0:0229 �2r
�5=3
0 ��5=3Besinc2.�D�/ Œrad2=m�2�: (4.65)

This is also referred to as the power spectrum of the image motion or of the tip-tilt.
As in (4.50), the Besinc function acts as a low pass filter on the power spectrum.

Since we are now regarding the phase gradient, the power spectrum decreases with
��5=3, slower than the power spectrum of the phase that is / ��11=3. But as for the
power spectrum of the averaged phase, the averaging process only affects the small
distances – the high spatial frequencies � – and not the long distances.

The variance � 2
� of the image motion, i.e. of the angle of arrival, can be com-

puted as the integral over the power spectrum ˚
 .�/. Half of this value yields the
one-axis variance of the position � of the image centroid as [243]

�2
 D 0:17

�
�

D

�2 �
D

r0

�5=3
Œrad2�: (4.66)

If �=D, the FWHM of the Airy disk, is given in arcsec, one obtains the variance in
arcsec2. The two-axis variance is 2�2



.

NB 8. The relationship between the variance of the phase, �2tt , over the telescope
aperture and the variance of the tip-tilt, �2



, can be computed fairly simple, yielding

�2tt D �2

4

�2



.�=D/2
Œrad2�: (4.67)
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Using the value for the variance of the image motion in (4.66), we obtain
the variance of the aberrations in the telescope aperture due to one-axis image
motion as

�2tt D 0:419

�
D

r0

�5=3
Œrad2�: (4.68)

We will come back to this point in the Sect. 4.3.3 discussing Zernike polynomials.

For a numerical example, we use again an 8-m telescope and the K-band (� D
2:2 
m). With a typical value of r0 D 0:6m at � D 2:2 
m, we find the one-axis
rms image motion as 0.2 arcsec, or 3.6 times the Airy disk diameter.

The dependence of �2



onD�1=3 means that the image motion in terms of arcsec
decreases with increasing telescope diameter. However, the variance of the relative
image motion – relative to the size of the diffraction limited PSF – increases with
D5=3.

It is important to note that, due to r0 / �5=6, the product �2 r�5=3
0 in (4.66) and,

thus, �2



is independent of wavelength; the image motion in arcsec – like the OPD
fluctuations in m – is the same at all wavelengths. Thus, wave front sensors like the
Shack-Hartmann sensor measuring the wave front gradient can be operated in the
visible for corrections at all wavelengths.

In (4.45), the variance of the OPD between two apertures was given. Converting
the OPD of two points separated by B D D into a tilt angle of the wave front,
� D OPD=B , we see that it is exactly �2



D �2OPD=B

2. Thus, the one-axis variance
of the image motion in a telescope with diameter D corresponds to the variance of
the OPD fluctuations of an interferometer with baseline B D D.

The influence of the outer scale of turbulence L0 on image motion can be
estimated by computing the power spectrum of the phase gradient (4.65) by using
the von Kármán spectrum of the phase fluctuations (4.28). As for fringe motion,
the impact of L0 on image motion can be substantial if the telescope diameter
approaches the outer scale of turbulence. If the two quantities are about the same,
the image motion is reduced by more than 80%, and even if the telescope is 100
times smaller than L0 the reduction on the rms image motion is still about 15%
[207]. These results are comparable to those for fringe motion using (4.46).

For our numerical example, this means that on an 8-m telescope with an outer
scale of approximately 25–50 m, [260], the image motion is reduced by about 50%,
while for larger telescopes of e.g 42 m diameter, the reduction of image motion
can be as much as a factor of 8–10. Then the image motion can be as small as the
diameter of the diffraction limited Airy disk in the K-band, which is 11 mas on a
42-m telescope.

Temporal Evolution of Image Motion

Using the Taylor hypothesis of frozen turbulence as for the previous computations of
temporal power spectra, we determine the temporal power spectrum of the averaged
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phase gradient as

˚
;t .f / D 1

Nv
Z
˚
 .f= Nv; �� /d�� Œrad2=Hz�: (4.69)

Tyler [243] gave low and high frequency approximations for this integral that can
be simplified by using the effective wind speed Ov [81]. Then, the one-axis power
spectrum of the image motion in the two regimes is

˚
;t .f / D 0:096 �2 Nv�2
� Nv
r0

�5=3
f �2=3 Œrad2=Hz� f � 0:24 Nv=D (4.70)

˚
;t .f / D 0:0013 �2 Nv�2
�
D

Ov
��3 � Nv

r0

�5=3
f �11=3 Œrad2=Hz� f � 0:24 Nv=D :

The value of the transient frequency, ft D 0:24 Nv=D, agrees well with the value
given by Conan [40]. ˚
;t .f / is displayed in Fig. 4.8. Note that the temporal power
spectrum is defined from 0 to C1.

In the low frequency domain the power spectrum decreases with f �2=3, and
it is independent of the size of the aperture D. Compared to the low frequency
approximation for OPD fluctuations (4.54), we have exactly the same formula con-
sidering that the tilt angle � is converted into an OPD by OPD D � � B, so that it is
˚OPD;t .f / D B2˚
;t .f /.

In the high frequency domain the spectrum is proportional to f �11=3 and toD�3,
decreasing for increasing telescope diameter. This illustrates the influence of the
Bessel function as a low pass filter that leaves the low frequency domain unaffected
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f [Hz]

0.001
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10–5

∼f –2/3 
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∼f –11/3
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Fig. 4.8 One-axis power spectrum of the image motion defined for positive frequencies. The
dashed lines show the approximations for the low frequency domain (/ f �2=3) and the high
frequency domain (/ f �11=3). The transient frequency is approximately ft D 0:24 Nv=D. The
solid curve shows the exact calculation. The parameters are D D 8m and Ov D 8m s�1, so that
ft D 0:24Hz
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by the aperture and that takes effect as soon as the frequency is beyond the transient
frequency ft .

Using the von Kármán spectrum to account for a finite outer scale of turbulence
L0, the power spectrum (4.70) is reduced at low frequencies so that the variance
of the image motion is reduced, too. The consequence is that the seeing disk has a
smaller FWHM, as discussed in Sect. 4.3.5 (4.88).

However, one has to be careful when applying the Taylor hypothesis at very low
frequencies, corresponding to very long times [139]. The turbulence might not be
frozen any more. For many applications it is more important to properly model the
high frequency behaviour since these frequencies remain after correction of the low
frequencies e.g. with adaptive optics.

Because of the steep slope (/ f �11=3) of the power spectrum at frequencies
beyond ft the contributions to the image motion are small, only 10% of the power is
at frequencies larger than ft . However, adaptive optics systems have to be operated
at substantially larger bandwidth if a good correction is to be achieved. One should
note, too, that the outer scale of turbulence, affecting the low frequencies only, has
no effect on the performance of adaptive optics systems working with a bandwidth
larger than ft . In Chap. 6, the bandwidth requirements will be discussed in more
detail.

4.3.3 Zernike Representation of Atmospheric Turbulence

We introduced Zernike polynomials in Sect. 3.1.2 discussing optical aberrations.
Their convenience lies in the property that, following from the Kolmogorov statis-
tics, one can determine individually the power in every single mode like tip-tilt,
astigmatism or coma. One can then immediately calculate the residual aberration
after correcting a specified number of modes with an adaptive optics system. This
computation was done by R.J. Noll [171]. The variance of the residual aberration
is expressed as the variance of the difference between the uncorrected phase and of
the removed modes. If the aberration – as a function of polar coordinates �; � – that
is due to the first J Zernike polynomials is written as

'J .�; �/ D
JX

iD1
aiZi .�; �/; (4.71)

the variance of the remaining aberrations can be expressed as

�2J D
ZZ

aperture
< Œ'.�; �/ � 'J .�; �/�

2 > �d�d�: (4.72)

As already noted, the variance of the phase fluctuations< '2.�; �/ > is infinite. The
analysis in terms of Zernike polynomials shows that the infinity lies in the piston
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Table 4.1 The residual variances �j of Kolmogorov turbulence after the first j Zernike modes
are removed. The difference in the right column illustrates the strength of the single modes
demonstrating that modes of equal radial order contribute the same amount to the variance

�1 D 1:030.D=r0/
5=3

�2 D 0:582.D=r0/
5=3 �2 ��1 D 0:448.D=r0/

5=3

�3 D 0:134.D=r0/
5=3 �3 ��2 D 0:448.D=r0/

5=3

�4 D 0:111.D=r0/
5=3 �4 ��3 D 0:023.D=r0/

5=3

�5 D 0:0880.D=r0/
5=3 �5 ��4 D 0:023.D=r0/

5=3

�6 D 0:0648.D=r0/
5=3 �6 ��5 D 0:023.D=r0/

5=3

�7 D 0:0587.D=r0/
5=3 �7 ��6 D 0:0062.D=r0/

5=3

�8 D 0:0525.D=r0/
5=3 �8 ��7 D 0:0062.D=r0/

5=3

�9 D 0:0463.D=r0/
5=3 �9 ��8 D 0:0062.D=r0/

5=3

�10 D 0:0401.D=r0/
5=3 �10 ��9 D 0:0062.D=r0/

5=3

�11 D 0:0377.D=r0/
5=3 �11 ��10 D 0:0024.D=r0/

5=3

�12 D 0:0352.D=r0/
5=3 �12 ��11 D 0:0024.D=r0/

5=3

Table 4.2 Covariance matrix between the first 11 Zernike modes as given by N. Roddier [199].
For an optimal reconstruction of the turbulent wave front the covariance matrix should be diagonal

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

0:448 0 0 0 0 0 �0:0141 0 0 0 0

0 0:448 0 0 0 �0:0141 0 0 0 0 0

0 0 0:0232 0 0 0 0 0 0 �0:0039 0

0 0 0 0:0232 0 0 0 0 0 0 0

0 0 0 0 0:0232 0 0 0 0 0 �0:0039

0 �0:0141 0 0 0 0:0062 0 0 0 0 0

�0:0141 0 0 0 0 0 0:0062 0 0 0 0

0 0 0 0 0 0 0 0:0062 0 0 0

0 0 0 0 0 0 0 0 0:0062 0 0

0 0 �0:0039 0 0 0 0 0 0 0:0024 0

0 0 0 0 �0:0039 0 0 0 0 0 0:0024

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

term. Removing the piston term gives a finite value for the variance of the residual
aberration. The residual variances in Table 4.1 are given in terms of .D=r0/5=3 as
the Zernike polynomials are defined in the telescope aperture D. The right column
of the table shows the differential improvement. It shows that the differences are
constant for the same radial degree n.

In Sect. 4.3.2, discussing image motion, we found the variance of the phase in
the telescope aperture due to one-axis image motion as 0:419 .D=r0/5=3, (4.68).
This value, based on the gradient of the wave front, is slightly smaller than that of
the Zernike tip-tilt, �2 � �1, of 0:448.D=r0/5=3 in Table 4.1. This is due to the
fact that higher order Zernike modes like coma, Z7;8 are balanced by a linear term
(see Sect. 3.1.2) so that the contribution of this aberration to the overall aberration
is minimized. The consequence is that the phase gradient is not only determined by
the linear tip-tilt mode but it is also sensitive to coma. In Table 4.2, one finds that
the covariance between tip-tilt and coma has a negative value, so that the variance
of the phase gradient is smaller than the variance of the pure tip-tilt [187, 243].
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For the removal of higher orders, Noll [171] gave the approximation for the phase
variance as

�J 	 0:2944J�p
3=2 .D=r0/

5=3 Œrad2� : (4.73)

Expressing the wave front as a Zernike polynomial the covariance matrix of the
expansion coefficients < aiai 0 > plays an important role. This matrix can be cal-
culated using the power spectrum of the phase fluctuations [171, 199]. It turns out
that the covariance matrix is not perfectly diagonal. This means that when describ-
ing Kolmogorov turbulence with Zernike polynomials the Zernike modes are not
statistically independent with the consequence that the wave front reconstruction
from the wave front sensor data is sub-optimal. Karhunen-Loève functions are more
appropriate as they have a diagonal covariance matrix. They cannot be obtained in
closed form, but there is an approximation for Zernike polynomials [199].

Temporal Evolution of Zernike Modes

Using the same formalism as for the analysis of the temporal characteristics of the
image motion (Sect. 4.3.2) the temporal evolution of Zernike modes can be calcu-
lated [40,171,198]. The results are important for the specification of the bandwidth
requirements of adaptive optics systems.

In the last section, the covariance matrix of the Zernike coefficients < aiai 0 >

was calculated. Now we are interested in the temporal correlation of single Zernike
coefficients < ai .t

0/ai .t 0 C t/ >. Thus, equivalent to the calculation of the power
spectrum of the image motion (Sect. 4.3.2) we determine a Zernike coefficient as
the convolution

ai .�; �/ D
Z

aperture
'.�0; � 0/Zi .� � �0; � � � 0/�d�0d� 0 : (4.74)

At � D 0 and � D 0 this equation is identical to the calculation of the Zernike
coefficient ai (3.19) that can be used, [171], to calculate the variance of the Zernike
modes (see Table. 4.1). The temporal covariance follows from the spatial covariance
< ai .�

0; � 0/ ai .�0 C �; � 0 C �/ > by using the frozen turbulence hypothesis similar
to the calculation of the image motion (4.69).

The resulting power spectra cannot be given in closed form but numerical results
were discussed in [40, 198]. The spectra show a dependence on the radial degree
of the Zernike polynomial at low frequencies and a high frequency behaviour
proportional to f �17=3 that is independent of the Zernike mode. In the low fre-
quency domain, polynomials with a radial degree of n D 1, Zernike tip and tilt,
decrease with f �2=3. Higher order polynomials have a slightly different characteris-
tic depending on their azimuthal dependence; all radially symmetric polynomials go
with f 0, all others with f 0, with f 4=3 or with f 2 depending on the wind direction.
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The transient frequency between the high and the low frequency domains can be
approximated by

f nt 	 0:3.nC 1/ Ov=D; (4.75)

where n is the radial degree of the Zernike polynomials. The transient frequency is
approximately equal to the bandwidth required to correct for the Zernike mode in
an adaptive optics system.

Averaging the Zernike spectra for a given radial degree shows the mean behaviour
for this degree. This behaviour can also be modelled when using a multi layer model
with different wind directions that is more realistic than the single layer approach
[40]. The curves are displayed in Fig 4.9. It shows that for n > 1 the power spectra
are all proportional to f 0 at low frequencies. The curves are scaled in order to give
the proper variance of the single modes (see Table 4.1). It is interesting to note that at
high frequencies the power spectra increase only very slowly with n. The increase
in transient frequency ft , and thus in bandwidth is partially compensated by the
decrease in variance at higher radial degrees. For a given degree of correction all
modes have to be corrected with approximately the same bandwidth [40].

f 1
 t

f 3 f 9

f 0

f 0

f –2/3

f [Hz]

f –17/3
n = 9

n = 3

n = 1

ΦZn,t [rad2/Hz]
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Fig. 4.9 Zernike polynomial mean temporal power spectrum in a given radial degree n for n D 1,
3, 9. The spectra are normalised to the turbulence variance of one polynomial of the considered
radial degree: Ov=D D 10Hz. The asymptotic power laws and the cutoff frequencies are indicated.
(Courtesy J.-M. Conan [40])
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4.3.4 Scintillation

The scintillation, the twinkling of the stars, is easily observable with the naked eye.
These intensity variations are due to random focussing effects of atmospheric tur-

bulence that depend on the local curvature @2'.�/

@�2 of the phase. We will see that the
scintillation is strong when observing with the naked eye, averaging the intensity
over the small aperture of the eye’s pupil, and it is very weak when using large tele-
scopes. An exhaustive summary of scintillation effects and measurements was given
by Dravins et al. [61–63].

The intensity variations are caused by Fresnel diffraction at the turbulent layer
at some altitude above the telescope. Thus, we cannot apply the near-field approxi-
mation assuming that the Fresnel diffraction is negligible and that the atmospheric
turbulence is placed in the telescope aperture, as we did in the previous sections, but
we have to investigate the Fresnel diffraction between the layer and the ground.

In Sect. 4.2.2, we discussed the propagation of the wave front through individual
turbulent layers, using the Fresnel approximation. We modify (4.19) to obtain the
amplitude V'.�/ on the ground for a layer at altitude h as approximately 1Ci'.�/C
h�=.4�/

@2'.�/

@�2 . The intensity can then be written as

I.�/ 	 1C h�

2�

�
@2'.�; �/

@�2
C @2'.�; �/

@�2

�

; (4.76)

neglecting quadratic terms like '2.�/ and
�
@2'.�/

@�2

�2
.

The second derivative of '.�/ transforms into the product �i4�2�2
�;�

O'.�/, with
O'.�/ the Fourier transform of '.�/, and we can write the Fourier transform of the
intensity variations as

OI .�/ D �i
h�

2�

�
4�2�2� O'.�/C 4�2�2� O'.�/

�

D �i 2� h� �2 O'.�/: (4.77)

Using the power spectrum of the phase ˚.�/ D j O'.�/j2, (4.27), we proceed
to the power spectrum of the scintillation. If we extend the discussion from a sin-
gle layer at altitude h to a continuous distribution of turbulence, C 2n .h/, we have
to compute the integral over C 2n weighted by h2, obtaining the power spectrum
˚I .�/ D j OI.�/j2 of the scintillation as

˚I .�/ D 4�2 �2 Nh22�4 0:0229 r�5=3
0 ��11=3 D 0:904 �2 Nh22 r�5=3

0 �1=3; (4.78)

with the effective altitude Nh2 defined by Nh2 D �R
C 2n .h/h

2dh=
R
C 2n .h/dh

�1=2
.

Unlike the power spectra of fringe motion, ˚OPD (4.44), and of image motion,
˚r (4.63), that decrease with �, ˚I is proportional to �1=3, slightly increasing with
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spatial frequency. This means that there is more power, i.e. larger intensity fluctu-
ations, on small scales than on large scales, whereas the fringe and image motion
have smaller values on small scales.

Computing the variance of the scintillation requires to integrate over the power
spectrum. The Fresnel approximation for small phase variations that we have used
to derive ˚I is not sufficiently accurate for large spatial frequencies. Roddier [194]
presents an approximation that is valid over the complete frequency space, yielding
the intensity variance as

�2I D 19:12��7=6
Z
C 2n .h/h

5=6dh

D 1:145 r
�5=3
0 .� Nh5=6/5=6 : (4.79)

Here, the effective altitude is defined by Nh5=6 D �R
C 2n .h/h

5=6dh=
R
C 2n .h/dh

�6=5
.

�2I is the variance of the scintillation on the ground without any optical systems.
Observing through small apertures this approximation can be used as long as the
apertures are smaller than .� Nh5=6/1=2. With Nh5=6 typically several kilometres, (4.79)
is valid for apertures of some cm.

For larger apertures with diameter D, the power spectrum ˚I in (4.78) has to
be multiplied by Besinc2.�D�/ – the equivalent of the convolution in the aperture
plane – as we did computing the power spectrum of image motion, ˚Dr (4.65). If
D is much larger than .� Nh5=6/1=2, the filtering effect of the aperture is sufficiently
strong so that the approximation leading to the power spectrum in (4.78) is appro-
priate [194], and we obtain the intensity power spectrum in the focal plane of a
telescope as

˚DI .�/ D 0:904 �2 Nh22 r�5=3
0 �1=3 Besinc2.�D�/: (4.80)

The slightly increasing power / �1=3 in ˚I .�/ is turned into a decreasing func-
tion ˚DI .�/ for larger spatial frequencies due to the averaging effect over spatial
frequencies larger than 1=D.

The intensity variance in the focal plane of telescopes with diameter D is then
given by

�2I;D / D�7=3
Z
C 2n .h/h

2dh

/ D�7=3 r�5=3
0 .� Nh2/2 : (4.81)

The expression for �2I;D can also be derived from geometrical optics [191]. It is

valid for telescope apertures larger than .�� Nh2/1=2. For telescope apertures of sev-
eral metres the scintillation is extremely small since �2I;D decreases strongly with
increasingD.
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Like the variances of image motion and fringe motion, the variance of the scintil-
lation �2I;D is independent of wavelength, whereas the expression �2I for very small
apertures, (4.79), decreases with longer wavelengths.

It is interesting to note that the effective altitude Nh2, which affects the intensity
variance (4.81) when observing through a telescope, is more sensitive to high alti-
tude turbulence than Nh5=6 that determines the intensity variance (4.79) in very small
apertures. This can be explained by considering that small scale intensity variations
of low altitude turbulence are reduced due to the averaging over a large aperture so
that high altitude turbulence is relatively more important.

Temporal Evolution of Scintillation

The Taylor hypothesis of frozen turbulence is used again to determine the temporal
power spectrum of scintillation that we obtain by integrating over the component of
the spatial frequency vector � that is perpendicular to the wind direction, yielding

˚I;t .f / D 1

Nv
Z
˚DI .f= Nv; �� /d�� ; (4.82)

obtaining a temporal power spectrum that is constant, / f 0, for frequencies up to
about 0:4 Nv=D and decreasing / f �5=3 for larger frequencies [40].

4.3.5 Speckle Pattern and Seeing Disk

Assuming a point source at infinity, a plane wave, V.�/ D V0 exp.ikz/ from
a point-like star at zenith enters the atmosphere. After passage through atmo-
spheric turbulence we find the amplitude in the telescope aperture as V'.�/ D
V.�/ exp.i'.�//, with random phase '.�/. Usually, we set V.�/ D V0 D 1, and
we write the instantaneous amplitude V.˛/ in the image plane of a telescope, as in
(2.22), as the Fourier transform of V'.�/ in the telescope aperture,

V.˛/ D 1

i�F

Z
A.�/V'.�/e

�i 2�
�

��˛d� ; (4.83)

with A.�/, the telescope aperture.
The image intensity distribution in the image plane is given by I.˛/ D jV.˛/j2

and it shows the characteristic speckle pattern that is displayed in Fig. 4.10. There
are approximately as many speckles in the image as there are turbulence cells of
diameter r0 in the telescope aperture.

Thus, after passage through atmospheric turbulence, the instantaneous image of
a point-like star is scattered into a speckle cloud when each speckle has the size of
an Airy disk.
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Fig. 4.10 Speckle images of a single point-like star in the visible (on the left) and in the mid
infrared at 10
m (on the right) under identical atmospheric conditions on an 8-m telescope. In the
10
m image, parts of the first diffraction ring can be seen. The envelope of the speckle image has
about the size of the seeing disk. A simulation for atmospheric turbulence was used to produce the
images

Fig. 4.11 Speckle pattern in
the image plane of an
interferometer when
observing a point-like star
through atmospheric
turbulence. The interference
fringes are now distributed
irregularly due to the random
phase distribution in the
interferometer aperture

Observing with an interferometer through turbulence, the speckle pattern dis-
plays irregular fringes due to the interference of the turbulent wave fronts, see
Fig. 4.11. The presence of fringes with non-zero visibility illustrates that atmo-
spheric turbulence does not extinguish the coherence of the light from the point-like
star. As long as the exposure time is short the fringes can be observed and, in prin-
ciple, the visibility can be determined by processing the Fourier transform of the
speckle pattern as discussed in Sect. 2.4.3.

Seeing Disk

If the exposure time of the speckle image is longer than the time scale of the evolu-
tion of the speckles, i.e. longer than the coherence time of atmospheric turbulence,
the speckle start to smear until they merge into the so-called seeing disk for an
exposure time of some seconds.
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We write the time averaged image intensity as

< I.˛/ > D <
1

.�F /2

Z
A.�1/V'.�1/e�i 2�

�
�1 �˛d�1

�
Z
A�.�2/V �

' .�2/e
i 2�

�
�2�˛d�2 >

D 1

.�F /2

ZZ
A.�1/A

�.�1 � �/

� < V'.�1/V
�
' .�1 � �/ > d�1 e�i 2�

�
��˛d� :

D 1

.�F /2

ZZ
A.�1/A

�.�1 � �/d�1 	'.�/ e�i 2�
�

��˛d� ; (4.84)

with � D �1 � �2.
The time averaging process is applied to the amplitude V' in the turbulent layer

only since the aperture function A is time-invariant. Using (4.26), we write the cor-
relation of the amplitude as 	'.�/ D exp.�1

2
D'.�// D exp.�3:44.�=r0/5=3/, with

D'.�/ the phase structure function (4.25).
In Sect. 3.1.1, discussing Fourier Optics, we defined the telescope OTF as the

autocorrelation of the aperture function A.�/ in the notation with spatial frequen-
cies R D �=�, (3.6). Introducing spatial frequencies into (4.84), we obtain the
point-spread function3 PSF' after passage through turbulence as

PSF'.˛/ D< I.˛/ > D
Z

OTF.R/	'.R�/e�i2�R�˛dR ; (4.85)

introducing the atmospheric transfer function OTF' for imaging through turbulence
as

OTF'.R/ D OTF.R/	'.R�/ ; (4.86)

with R D .u; v/, the coordinate vector in the uv-plane (see Sect. 3.1.1).
The same argument applies to observations with an interferometer (see Sect. 6.1)

when the optical transfer function is composed of three transfer functions of the
individual telescope apertures, OTF, centred at jRj D 0 and at R D ˙RB (3.52).

If r0 is larger than the telescope aperture D but smaller than the baseline B ,
then 	'.R�/ is much wider than the central OTF.R/, but zero at RB�, so that
OTF' is dominated by the central telescope OTF, and the resulting image is very
similar to the Airy disk of an individual telescope, without fringes. This is typical
in the mid-infrared, displayed on the right hand side of Fig. 4.10, when r0 is about

3 The PSF as dimensionless quantity requires to divide the intensity by V0 (3.3). Since we set
V0 D 1 this will not be noted explicitly.
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10 m – larger than most telescopes – so that diffraction rings can be seen already in
short time exposures.

In the near-infrared, r0 is typically< 1m, much smaller than the telescope diam-
eter and than the interferometer baseline. Then, 	'.R�/ is much narrower than the
OTF of an individual telescope so that the influence of the OTF on OTF' can be
neglected, and the size of the seeing disk is determined by the Fourier transform of
	'.R�/ alone.

Using (4.26) and � D R�, we obtain the seeing disk, i.e. the point-spread
function PSF' , for r0 < D as

PSF'.˛/ D
Z
	'.�/e�i 2�

�
��˛d�

D
Z

e�3:44
�

�
r0

�5=3

e�i 2�
�

��˛d� (4.87)

The seeing disk is displayed in Fig. 4.12. The seeing disk is usually many times
larger than the Airy disk of an individual telescope and than the fringe spacing of
an interferometer, so that the angular resolution of long exposure images is limited
to the diameter of the seeing disk.

A Gaussian function models the seeing disk reasonably well, using the approxi-
mation .�=r0/5=3 	 .�=r0/

2 in (4.87). However, with the Gaussian approximation
the seeing disk converges to zero faster than measured seeing profiles that are better
described by the Kolmogorov model. The full width at half maximum (FWHM)
of the seeing disk is 0:98�=r0 corresponding in good approximation to a telescope
with diameter r0.4 With r0 / �6=5 the seeing is �=r0 / ��1=5, i.e. it is decreasing
slowly with increasing wavelength.

Fig. 4.12 The intensity
distribution in a seeing disk
computed from the phase
structure function

D'.�/ D 6:88
�
�

r0

�5=3
. The

full width at half maximum
(FWHM) is 0:98�=r0. The
dashed line shows a Gaussian
function for comparison

1

0.6

0.4

0.2

α

PSFϕ

0.49 λ/r0

0.8

4 One should note that it was Fried’s original intention to define r0 as the equivalent telescope
diameter, [71].
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Outer Scale of Turbulence

The above computation of the seeing disk relied on an infinite outer scale L0. For
finite L0 values, an empirical formula, approximating the FWHM of the seeing disk
in a large telescope for the regime L0=r0 > 20, is given by [233]

FWHMvK 	
s

1 � 2:183

�
r0

L0

�0:356
0:98

�

r0
; (4.88)

with the subscript vK indicating that the von Kármán spectrum with outer scale L0
was used.

Assuming an outer scale of L0 D 22m and an r0 of 0.6 m, corresponding to
0.76 arcsec seeing at 2.2
m, the FWHM of the seeing disk is 38% smaller than the
Kolmogorov seeing disk, i.e. 0.48 arcsec instead of 0.76 arcsec. In the visible, with
r0 D 0:11m under the same seeing conditions, the FWHM is reduced by 19%. Thus,
deriving r0 values from measurements of the FWHM of the seeing disks on large
telescopes leads to substantially wrong results if the outer scale of turbulence is not
considered or cannot be estimated reliably. Therefore, dedicated seeing monitors
with smaller apertures that are less prone to the outer scale are used to measure
r0 [206].

Propagation Through Optical Systems: Summary

The impact of atmospheric turbulence on the imaging process in interferom-
eters and telescopes can best be described by the spatial and temporal power
spectra of the disturbance, e.g. fringe or image motion, since they are related
to their variances. Their mean values approach a constant value after a few
seconds and do not affect the imaging process.

Fringe Motion

The fringe motion in an interferometer is caused by random OPD variations
between the apertures. The OPD variance for two point-like sub-apertures and
a baseline of length B is given by

�2OPD D 0:17 �2
�
B

r0

�5=3
Œm2�: (4.45)

For a finite outer scale of turbulence, L0, the fringe motion is reduced
substantially if the baseline is comparable or larger thanL0. A useful estimate
for the OPD variance is based on the von Kármán spectrum (4.28), [41, 246],
and reads as
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�2OPD;vK D 0:00876 �2
�
L0

r0

�5=3  

1 �
�
2�B

L0

�5=6
K5=6

�
2�B

L0

�!

; (4.46)

with K5=6.x/ the Macdonald function.
For a 50-m baseline and infinite outer scale for instance, the rms OPD

fluctuations �OPD are about 37
m, according to (4.45) for an r0 of 0.6 m in
the K-band. If the outer scale is L0 D 50m, the rms OPD fluctuations are
reduced to about 8
m, using (4.46).

Using temporal power spectra we can compute the OPD variance of fringe
motion for a given exposure time and estimate the requirements for fringe
trackers.

The spectra can be approximated by asymptotes for different frequency
domains. The temporal power spectrum of fringe motion for pinhole sized
apertures is

˚OPD;t .f / D 0:096 �2
� Nv
r0

�5=3 �
B

Nv
�2
f �2=3 Œm2=Hz� f � 0:2 Nv=B

˚OPD;t .f / D 0:00392 �2
� Nv
r0

�5=3
f �8=3Œm2=Hz� f � 0:2 Nv=B: (4.54)

Moving to sub-apertures of diameter d , we have to add a third asymptote
/ f �17=3 for frequencies larger than 0:3 Nv=d (4.56).

The variance of the OPD variations for short exposure times can be com-
puted using (4.54), yielding an approximation for the rms fluctuations during
time period T of

�OPD;T D 0:19 �

� Nv
r0

�5=6
T 5=6 Œm�: (4.55)

The differential fringe motion, dOPD, describes the difference in fringe
positions of two objects separated by �s. This quantity is essential to esti-
mate anisoplanatic and temporal effects of turbulence in a fringe tracker. If
the fringes of one object are kept stable the second object displays a fringe
motion that is described by the differential fringe motion.

The temporal power spectrum of differential OPD fluctuations with pinhole
sized apertures reads as

˚dOPD;t .f / D 0:628�2
� Nv
r0

�5=3  
�s Nh

Nv

!2 �
B

Nv
�2=3

�
 

1C 4:84 f 4=3
�
B

Nv
�4=3!

f � 0:12
Nv
B
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˚dOPD;t .f / D 0:193�2
� Nv
r0

�5=3  
�s Nh

Nv

!2

f �2=3 0:12
Nv
B

� f � 0:2
Nv

�s Nh

˚dOPD;t .f / D 0:0078�2
� Nv
r0

�5=3
f �8=3 0:2

Nv
�s Nh � f; (4.58)

when the high frequency asymptote / f �8=3 has to be replaced in case of
finite apertures with diameter d by two additional asymptotes / f �11=3 and
/ f �17=3 (4.59) for frequencies larger than 0:3 Nv=d .

For short exposure times T � 4:17 d= Nv and small separations �s �
d= Nh, the approximation for rms variations of the differential fringe motion is
expressed by

�ddOPD;T D 0:1 �r
�5=6
0 Nv8=6 Nh d�3=2�s T 4=3 Œm�: (4.60)

Image Motion

The average gradient of the phase distribution in the telescope aperture deter-
mines the position of the image in the telescope focus, also referred to as angle
of arrival.

The one-axis variance of the image motion, i.e. of the position � of the
image centroid is given by [243]

�2
 D 0:17

�
�

D

�2 �
D

r0

�5=3
Œrad2�: (4.66)

If �=D, the FWHM of the Airy disk, is given in arcsec, one obtains the
variance in arcsec2. The two-axis variance is 2�
 .

For a numerical example, we use again an 8-m telescope and the K-band
(� D 2:2 
m). For a typical value of r0 D 0:6m at � D 2:2 
m we find the
one-axis rms image motion as 0.2 arcsec, or 3.6 times the Airy disk diameter.

Converting the tilt angle of the wave front into the OPD of two points sepa-
rated byB D D, using � D OPD=B , we see that it is exactly �2



D �2OPD=B

2.
Thus, the one-axis variance of the image motion (4.66) in a telescope with
diameter D corresponds to the variance of the OPD fluctuations (4.45) of an
interferometer with baseline B D D.

In analogy to the reduction of OPD variance if the length of the baseline
approaches the outer scale of turbulence, L0, the image motion is reduced
by more than 80% if the telescope diameter is comparable to the outer
scale of turbulence. However, this reduction is due exclusively to the lower
contribution at low frequencies.

For the one-axis power spectrum of the image motion we obtain
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˚
;t .f / D 0:096 �2 Nv�2
� Nv
r0

�5=3
f �2=3Œrad2=Hz� f � 0:24 Nv=D (4.70)

˚
;t .f / D 0:0013 �2 Nv�2
�
D

Ov
��3� Nv

r0

�5=3
f �11=3 Œrad2=Hz� f � 0:24 Nv=D

Note that the temporal power spectrum is defined from 0 to C1.

Scintillation

The twinkling of the stars, the scintillation, is rather strong when observing
with small apertures like the naked eye, and very weak for telescopes larger

than 1 m in diameter. It is related to the curvature of the wave front @
2'.�/

@�2 .

The variance of the scintillation in the image plane of telescopes smaller
than .� NhI5=6

/1=2, typically a few cm, is given by [194]:

�2I D 1:145 r
�5=3
0 .� NhI5=6

/5=6: (4.79)

The effective altitude NhI5=6
is defined by Nh5=6I5=6

D R
C 2n .h/h

5=6dh=
R
C 2n .h/dh.

For apertures,D of several 10 cm and larger, the intensity variance is given
by [191, 194]

�2I;D / D�7=3r�5=3
0 .� NhI2

/2; (4.81)

displaying a steep decrease with increasing telescope diameter. The effective
altitude NhI2

is defined by Nh2I2
D R

C 2n .h/h
2dh=

R
C 2n .h/dh. Both NhI2

and
NhI5=6

have values of typically several kilometres.

Like the variances of fringe motion, �2OPD, and image motion, �2˛ , the
variance of the scintillation �2I;D is independent of wavelength, whereas
the expression �2I for very small apertures, (4.79), decreases with longer
wavelengths.

The temporal power spectrum ˚I;t .f / is proportional to f 0 for frequency
smaller than 0:4 Nv=D and / f �5=3 for larger frequencies [40].

Speckle Pattern and Seeing Disk

Observing through atmospheric turbulence, the image intensity distribution
of a point-like star at zenith shows the characteristic speckle pattern that is
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displayed in Fig. 4.10. Increasing the exposure time, the speckles smear,
merging eventually into the seeing disk.

The time averaged intensity of the seeing disk, PSF' is written as

PSF'.˛/ D
Z

OTF.R/	'.R�/e�i2�R�˛dR; (4.85)

with OTF.R/ the optical transfer function either of an individual telescope
or of an interferometer, and 	'.R�/ is the correlation of the amplitude, with
	'.�/ D exp.�1

2
D'.R�//, andD'.R�/ the phase structure function (4.25).

Then, the atmospheric transfer function OTF' for imaging through turbu-
lence is given by

OTF'.R/ D OTF.R/	'.R�/: (4.86)

R D .u; v/ is the coordinate vector in the uv-plane (see Sect. 3.1.1).
In the near-infrared, r0 is typically< 1m, much smaller than the telescope

diameter. Then, 	'.R�/ is much narrower than the OTF so that the influence
of telescope and interferometer OTF on OTF' can be neglected, and the size
of the seeing disk is determined by the Fourier transform of 	'.R�/ alone,
yielding

PSF'.˛/ D F�
�

e� 1
2
D'.�/

�
D
Z

e�3:44
�

�
r0

�5=3

e�i 2�
�

��˛d�; (4.87)

The seeing disk is displayed in Fig. 4.12, reasonably well modelled by a
Gaussian function.

The full width half maximum (FWHM) of the seeing disk is 0:98�=r0
corresponding in good approximation to a telescope with diameter r0. For a
finite outer scale L0, an empirical formula , approximating the FWHM of the
seeing disk in a large telescope for the regime L0=r0 > 20, is given by [233]

FWHMvK 	
s

1 � 2:183

�
r0

L0

�0:356
0:98

�

r0
: (4.88)

4.4 Speckle Interferometry

Speckle interferometry was originally proposed by A. Labeyrie in 1970 [120] for
single telescopes. Although formally computing the correlation of intensities like in
the intensity interferometer (see Sect. 2.5) the motivation and the formalism are very
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different. The motivation was driven by the desire to overcome the degradation of
the angular resolution by atmospheric turbulence and to reach the diffraction limit
of the telescope.

After passage through atmospheric turbulence the image of a point-like star is
scattered into a speckle cloud when each speckle has the size of an Airy disk as
displayed in Fig. 4.10. The exposure time for a speckle image has to be shorter than
the time scale of the evolution of the speckles, i.e. shorter than the atmospheric
coherence time (4.39), that is in the millisecond range. Exposure times of a few
seconds merge the individual speckle images into the seeing disk with a diameter
of approximately the envelope of the speckle image in Fig. 4.10. The seeing disk is
usually many times larger than the Airy disk. The angular resolution is then limited
to the diameter of the seeing-disk.

The principle of speckle interferometry is based on the fact that two close-by
objects, e.g. a binary star, form two identical speckle images, slightly shifted with
respect to each other, if the distance between the two objects is much smaller than
the size of a speckle image. The intensities add up, displaying a new speckle image
that, to the naked eye, is indistinguishable from the speckle image of a single point
source. Thus, one cannot decide if a single star or a binary are observed.

However, calculating the autocorrelation function of the intensity pattern one
finds a peak, i.e. a strong correlation, symmetrically at plus and minus the difference
coordinate corresponding to distance and orientation of the objects. Due to the sym-
metry of the autocorrelation function one cannot determine, which one of the two
stars is the brighter one. Unfortunately, there can be many more peaks due to random
correlations of the speckle pattern. Their random positions average out when cal-
culating the mean autocorrelation function of many instantaneous speckle images.
The advantage of using the autocorrelation function is illustrated in Fig. 4.13 by
displaying the Fourier transforms of the speckle images.

Computing the autocorrelation of intensities in the image plane after imaging
through turbulence requires to deal with two different correlation widths and times
since we have two random processes. The first process is the emission process of
a thermal light source introduced in Sect. 2.3 that is characterised by the coherence
function as a function of the form of the light source and its spectrum. The second
one is determined by the statistics of atmospheric turbulence. The most important
difference between the two processes is the temporal scale at which changes take
place. While the coherence time as the reciprocal of the spectral bandwidth is of the
order of 10�12 � 10�14 sec, the correlation time of atmospheric turbulence is in the
millisecond range.

The measured intensity is the result of an averaging process over a time span
that is limited by the temporal resolution of the detector, which is of the order of
10�9 s and, thus, considerably longer than the coherence time. If we choose the
averaging time to be shorter than the atmospheric coherence time we take snapshots
of speckle images. The image intensity I.˛; t/ is then a function of time taking a
different speckle image at every exposure.
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Fig. 4.13 Illustration of the averaging process of individual speckle images and of their autocor-
relations. The effect of the averaging process is discussed by regarding the Fourier transform of
the intensities. In (a), one-dimensional slices through the real parts of image intensity spectra – the
Fourier transforms – of two speckle images are displayed (solid line and dashed line), and in (b),
their power spectra – the Fourier transforms of the autocorrelation functions. The scale of the rather
small values in (b) is enhanced by a factor of 10. It is R D .u; v/ and jRmaxj D D=� with D the
aperture diameter. With random positive and negative values the average of many intensity spectra
like in (a) averages to zero beyond the central peak. The remaining central peak is the Fourier
transform of the seeing disk. The power spectra (b) having only positive values by definition add
up constructively. The theoretical limit for this averaging process is shown in Fig. 4.14

In analogy to (3.4) in Sect. 3.1.1, we write down the monochromatic intensity
distribution in the image plane of a telescope as

I.˛; t/ D O.˛/ � PSF'.˛; t/ ; (4.89)

with O.˛/ the object intensity distribution that is convolved with the time depen-
dent, instantaneous speckle pattern PSF'.˛; t/ displayed in Fig. 4.10.

The instantaneous image intensity spectrum OI .R; t/, which is the Fourier trans-
form of I.˛; t/ (3.10), can be expressed (3.11) as

OI .R; t/ D OO.R/OTF'.R; t/ D I0 �.R/OTF'.R; t/; (4.90)

with OTF'.R; t/, the instantaneous atmospheric transfer function and OO.R/ the
spatial frequency spectrum of the object intensity. This is the common notation in
the literature on speckle interferometry. In the monochromatic case, we can replace
OO.R/ by the product of average intensity I0 and visibility function �.R/ (3.28). In

the following, we will only use the visibility function �.R/, to emphasise the com-
mon formal basis of the imaging process in speckle and amplitude interferometry,
using OO.R/ D I0 �.R/ as given by (3.28).

First, we look at the time average of the speckle image using the formalism above.
We stated that the long time average of the speckle pattern produces the seeing disk
PSF'.˛/ (4.85) that can be many times wider than the diffraction limited Airy disk.
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Accordingly, transforming this into Fourier space, we find that the time averaged
atmospheric transfer function, OTF'.R/, is narrower than the diffraction limited
OTF.

Denoting the time average by < : >, we obtain

< I.˛/ > D O.˛/ � PSF'.˛/

< OI .R; t/ > D I0 �.R/OTF'.R/ ; (4.91)

with OTF'.R/ D OTF.R/	'.R�/ (4.86), and 	' the correlation function of the
amplitude due to turbulence (4.26).

Depending on the atmospheric parameters and on the properties of the observed
object, the autocorrelation function of atmospheric turbulence can go to zero much
faster, i.e. the time averaged OTF'.R/ can be narrower, than the diffraction limited
OTF, so that OTF'.R/ 	 	'.R�/. Then the seeing disk is wider than the diffraction
limited Airy disk. This occurs frequently even at good observing sites. Figure 4.14a
displays examples for time averaged OTFs.

Thus, the result of (4.91) is the time averaged image intensity spectrum as the
product of the visibility function, �.R/, which is the coherence function of the
incoming light, with OTF'.R/ 	 	'.R�/, which is the correlation function of
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Fig. 4.14 The squared modulus of the time averaged atmospheric transfer function, OTF' , (a)
and the time average of the squared OTF' (b) for a variety of seeing conditions. The transfer func-
tions in (a) correspond to the long time average of the image intensity i.e. the seeing disk that is
many times wider than the diffraction limited Airy disk. The size of the seeing disk increases with
the strength of the turbulence and the corresponding transfer function becomes narrower. Curves
for three different seeing conditions are given. For comparison the diffraction limited OTF is also
shown (top curve). In (b) speckle transfer functions are displayed when the Fourier transform of
the image correlation, the power spectrum, is averaged. Here, atmospheric turbulence also causes
a rapid drop of the transfer function but there is slowly decreasing part almost up to the diffrac-
tion limit at R=Rmax D 1 that allows to determine the square of the visibility function j�.R/j2,
i.e. the square of the spatial frequency spectrum j OOb.R/j2, of the object at large spatial frequencies
recovering the information on small detail in the object



212 4 Atmospheric Turbulence

atmospheric turbulence in the telescope aperture. The two random processes – due
to coherence and due to atmospheric turbulence – are cleanly separated as a product
of their respective correlation functions.

Power Spectrum

Discussing now the spatial autocorrelation of speckle images we transform the cal-
culation again into Fourier space, replacing the autocorrelation of I.˛; t/ by the
square of the individual Fourier transforms �.R/OTF'.R; t/ yielding the power
spectrum of the individual speckle image,

F�1
˛

�Z
I.˛0; t/I�.˛0 � ˛; t/d˛0

�

D j OI .R; t/j2

D I 20 j�.R/j2 jOTF'.R; t/j2 : (4.92)

The autocorrelation of an individual speckle image does not reveal too much about
the observed object since there are many random correlations in the image. The
time average of the autocorrelation or of the power spectrum reduces the random
contributions replacing them by their mean values.

We write the amplitude in the aperture as V'.�/ D exp.i'.�//. For the sake of
simplicity, we omit the aperture function A.�/, and we keep in mind that the phase
'.�/ is a time varying function without explicitly mentioning it.

Then, in analogy to the time averaged intensity (4.84), the time averaged power
spectrum is written as

< j OI .R; t/j2 > D I 20 j�.R/j2 < jOTF'.R; t/j2 >
D I 20 j�.R/j2

� <

ZZ
V'.�1/V

�
' .�1 � R�/V �

' .�2/V'.�2 � R�/d�1d�2 >

D I 20 j�.R/j2 (4.93)

�
ZZ

< V'.�1/V
�
' .�1 � R�/V �

' .�2/V'.�2 � R�/ > d�1d�2 :

The fourth order moment of the amplitude V'.�/ can be reduced to groups of second
order moments like for the optical disturbances in intensity interferometry. Similar
to the result of intensity correlations in (2.84) we obtain two main groups of func-
tions. The first group contains mainly correlation functions like in (4.91) that are
narrower than the diffraction limited OTF. The second group consists of integrals
over correlation functions < V'.�1/V

�
' .�2/ >;< V �

' .�1 � R�/V'.�2 � R�/ >

that are independent of R and provide a slowly decreasing value up to the diffraction
limit.

While the first group represents the seeing limited transfer function, the second
group provides the required non-zero values of the transfer function, increasing
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the angular resolution beyond the seeing limit up to the diffraction limit. Exam-
ples of time averaged power spectra, also called the speckle transfer function, under
different seeing conditions are given in Fig. 4.14b.

Thus, averaging the power spectra of a large number of speckle images, the
square of the visibility function, j�.R/j2, can be recovered up to the diffraction
limit. However, the exact form of the visibility function can only be determined if the
speckle transfer function is known. The speckle transfer function can be measured
by observing a source, the reference source, that is smaller than the diffraction limit
of the telescope so that the spatial frequency spectrum is approximately constant
up to diffraction limit Rmax D D=�. Computing its time averaged power spec-
trum < j OIref.R; t/j2 > yields a good estimator for the speckle transfer function
< jOTF'.R; t/j2 >, assuming that atmospheric turbulence is a stationary random
process. The power spectrum of the object of interest can now be determined in
detail by dividing its averaged power spectrum by the averaged power spectrum of
the reference source, obtaining the squared visibility function as

j�.R/j2 D < j OI .R; t/j2 >
< j OIref.R; t/j2 >

D < j OI .R; t/j2 >
< jOTF'.R; t/j2 > : (4.94)

Thus, the power spectrum of the speckle pattern – just as the power spectrum of
the fringe pattern in Sect. 2.4.3 – yields j�.R//j2, loosing the phase 
.R/ of the
visibility function and with it all the information on the asymmetric content of the
intensity distribution. Binary stars appear as triple stars with a bright central “star”
properly reflecting the correlation of a binary but not very helpful when determining
which star might be the brightest of the two.

In the following, we will present a technique – triple correlation, or bispectrum –
that permits to reconstruct the phase of the visibility function eliminating the effects
of atmospheric turbulence through the usage of the closure phase. In Sect. 6.2.3, we
will discuss the equivalent formalism for stellar interferometry.

Bispectrum

In analogy to the autocorrelation of the speckle pattern (4.92), G. Weigelt suggested
to compute the time average of the triple correlation of the intensity distribution
[140,252]. We regard its four-dimensional Fourier transform, called the bispectrum,
reading

< F�1
˛1;˛2

�Z
I.˛; t/I.˛ � ˛1; t/I.˛ � ˛2; t/d˛

�

>

D< OI .R1/ OI .R2/ OI .�R1 � R2/ >

D I 30�.R1/�.R2/�
�.R1 C R2/

� < OTF'.R1; t/OTF'.R2; t/OTF�
'.R1 C R2; t/ > : (4.95)
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As a triple product of complex functions, the bispectrum is a complex function, too.
Its phase,  .R1;R2/, is determined by the sum of phases of the visibility function,

 .R1;R2/ D 
.R1/C 
.R2/� 
.R1 C R2/; (4.96)

which is called the closure phase since it is the sum of phases around a closed loop
of uv-plane vectors Ri . There is a large variety of methods to reconstruct the phase
distribution 
.R/ from the bispectrum closure phase [7, 9, 84, 115].

The phase of the triple product of transfer functions OTF'.Ri / is in good approx-
imation zero [140]. This can be understood when writing each Ri as a difference of
spatial frequencies Ri D �i=� � �j =� and expressing the phase of the OTF by the
difference '.�i / � '.�j / of phase values in the aperture plane (see Sect. 4.3.5) so
that the sum of the phases at R1 and R2 is identical to the phase at R1 C R2 and
the total sum cancels.

In amplitude interferometry, this technique is also used albeit for individual com-
binations of three telescopes so that the three baselines Ri form a closed loop and
a single closure phase can be determined (see Sect. 6.2.3). Formally, these methods
are identical.

Speckle vs. Intensity Interferometry

At first glance, both methods seem to be very similar, since both use intensity corre-
lations to provide the square of the visibility function. However, despite this formal
similarity the methods have nothing in common.

In intensity interferometry – as discussed in Sect. 2.5 – the correlation of two
instantaneous intensities i.�/ at two different points in the aperture plane is com-
puted. For practical reasons, these intensities are measured in the foci of individual
telescopes that are being used as light buckets, averaging over the telescope aper-
tures, to collect more photons. The distance vector between the two aperture centres
is the baseline vector B, and the correlation function permits to determine the square
of the visibility function, j�.RB/j2, for that particular baseline vector. The instan-
taneous intensities need to be measured with extreme temporal resolution (10�9 s)
using a very narrow spectral bandwidth in order to be sensitive to the coherence
function of the amplitudes. Atmospheric turbulence has a negligible effect on this
procedure. The triple correlation of intensities is a real function containing the real
part of the product of visibility functions when the closure phase appears in the
cosine term (2.87).

In speckle interferometry, we compute the correlation function of the image
intensity distribution I.˛; t/, which is a function of t due to atmospheric turbu-
lence. Thus, firstly, we do this computation in the image plane instead of the aperture
plane, and secondly, we investigate the intensity and not the instantaneous intensity.
Therefore, we do not determine the visibility function, i.e. the coherence func-
tion of the fast varying amplitudes, in the image plane. However, the relatively
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slowly fluctuating effects of atmospheric turbulence on the amplitude are temporally
resolved and affect the correlation function.

Instead of investigating the correlation function in the image plane, we move into
the aperture plane by Fourier transforming the intensity correlation, yielding the
square of the image intensity spectrum, the power spectrum j OI .R; t/j2. Due to the
imaging process, the visibility function in the aperture plane is directly available,
since the Fourier transform, OI .R; t/, of the image intensity is the product of the
visibility function, �.R/, in the aperture plane multiplied by the optical transfer
function, OTF'.R; t/. The time averaged power spectrum is then the product of
j�.R/j2 with the speckle transfer function < jOTF'.R; t/j2 >. The latter has non
zero values up to the diffraction limit permitting to recover the visibility function up
to the diffraction limit. The Fourier transform of the triple correlation of intensities,
the bispectrum, is a complex function when the phase is given by the closure phase
(4.96).

Thus, in intensity interferometry, the visibility function is determined by the
correlation of the intensities, whereas in speckle interferometry, we determine the
speckle transfer function by processing the image intensity correlation, more pre-
cisely by computing the time average of the power spectrum. Here, the visibility
function is always available as the Fourier transform of the image intensity, indepen-
dent of the temporal averaging process. The effect of speckle interferometry is that,
by applying the speckle transfer function, the visibility function can be determined
up to the diffraction limit, improving the angular resolution accordingly.

The formal similarity between the two methods is limited to the fact that both
compute the second order moment of intensities and, thus, the fourth order moments
of amplitudes. In intensity interferometry, determining the instantaneous intensities
in the aperture plane with maximum temporal resolution and a very narrow spectral
bandwidth, this is the fourth order moments of the fast varying amplitudes providing
the visibility function. In speckle interferometry, measuring the image intensities
with sufficient temporal resolution to freeze atmospheric turbulence, we determine
the fourth order moments of the slowly varying amplitudes providing the speckle
transfer function.

Returning to amplitude interferometry, we can combine two telescopes separated
by the baseline vector RB , and we will find a speckle pattern with irregular fringes
(see Fig. 4.11). This speckle pattern can be treated like that of individual telescopes,
providing the visibility function �.RB/ eventually. We will come back to this in
Sect. 6.1.



Chapter 5
Instrumental Techniques

The beam combination scheme and the layout of the interferometer array determine
the characteristics of the interferometer. If the reimaged telescope apertures in the
beam combining instrument are a downscaled replica of the interferometer array,
i.e. if they are mapped homothetically, the interferometer can be treated like a single
telescope with a masked aperture, as discussed in Sect. 3.3.2, and the interferometric
field of view is as large as that of the individual telescopes, limited by the optical
design only. This is called the Fizeau configuration, after Hippolyte Fizeau who was
one of the first to publish the idea of stellar interferometry in 1868 [69].

While the Fizeau configuration permits to discuss the imaging process in close
analogy to single aperture systems, there is another configuration playing a major
role in interferometry, which is called Michelson configuration after Albert A.
Michelson who together with Francis G. Pease was the first to measure stellar diam-
eters with an interferometer on Mount Wilson, California, in 1920 [158]. In contrast
to the Fizeau configuration, the telescope apertures are no longer mapped homotheti-
cally but their distances in the beam combining instrument are chosen independently
of the interferometer baseline. The consequence is that the interferometric field of
view in Michelson configuration is limited in size to less than the Airy disk of the
individual apertures.

If the telescope apertures are projected even parallel to and on top of each other
with a beam splitter – the so-called co-axial combination – then, unlike all configu-
rations with separate exit pupils, Airy disks without fringes form in the image plane.
By temporally modulating the optical path length in one of the two beams, construc-
tive and destructive interference can then be produced, “switching” the Airy disk on
and off. Thus, instead of a fringe pattern as a function of diffraction angle ˛ there is
a fringe pattern as a function of OPD or of time difference � .

The term Michelson configuration is often restricted to co-axial combination (see
Fig. 5.3), since the optical layout is similar to the classical Michelson interferom-
eter [157]. However, this restriction leaves out those configurations with separate
telescope apertures in the exit pupil that are still not a Fizeau configuration. Given
that Michelson in his experiment on Mount Wilson did not use co-axial combination
but had the apertures projected side by side in the beam combining instrument, we
apply the term Michelson configuration to all designs without homothetic mapping
of the telescope apertures.

A. Glindemann, Principles of Stellar Interferometry, Astronomy and Astrophysics
Library, DOI 10.1007/978-3-642-15028-9 5,
c� Springer-Verlag Berlin Heidelberg 2011
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So far, we have centred the discussion on fringe patterns, their visibilities and
on forming images through aperture synthesis, having a rather modest number of
telescopes – typically fewer than 10 – in mind. However, combining a very large
number of telescopes simultaneously and homothetically, we could produce a PSF
with a narrow central core and few bumps and sidelobes, similar to an Airy disk,
so that we instantaneously have a usable image. This is a straightforward process in
Fizeau configuration, forming an image with a field of view that is limited by the
optical design of the telescopes only.

Combining many telescopes in Michelson configuration by maximising the re-
imaged telescope apertures in the exit pupil so that the gaps are minimised, we
form a densified pupil providing a PSF with a bright central core. This concept
was proposed by A. Labeyrie in 1996 [122] who called it Hypertelescope. While it
has advantages over the Fizeau configuration, its field of view is severely limited,
deteriorating very quickly when going off-axis.

Rearranging the telescope apertures similar to the Hypertelescope but forming
an image by projecting the apertures (!) on top of each other was suggested by
F. Vakili in 2004 [245]. The acronym for this configuration is IRAN, for Interfero-
metric Remapped Array Nulling. The IRAN concept is intriguing since the image is
formed in the pupil plane, apparently contradicting all principles of classical image
formation. The field of view is similar to that of the Hypertelescope, but its PSF is
of constant quality over the field of view.

Last but not least, we will discuss the concept of the Nulling interferometer [20]
that was developed for a very specific scientific programme, that of searching for
extra-solar planets. Here, the number of telescopes is modest but the very faint com-
panion of the star can be detected by extinguishing, nulling, the light of an on-axis
point source.

In Sect. 3.4 we investigated the impact of given interferometric arrays on the
imaging process. Here, we will discuss criteria for their design based on the studies
that have been performed for radio interferometry in the last decades [104]. While
the underlying theory is the same as in the optical some practical issues drive us to
different conclusions when it comes to designing an array.

5.1 Combination of Two Telescopes

In this section, we discuss basic aspects of telescope combination taking into
account the reimaging of the telescopes apertures, the entrance pupil, into the exit
pupil inside the beam combining instrument.

5.1.1 Fizeau Configuration

In Fizeau configuration, the exit pupil, i.e. the image of the telescope apertures inside
the beam combining instrument, is a downscaled replica of the interferometer array
so that the telescope apertures and their distances are reduced by the same factor,
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a'0

a0

Fig. 5.1 Principle of the Fizeau configuration. The two lenses represent the optical system,
reimaging the telescope apertures from the entrance pupil into the exit pupil. In Fizeau config-
uration it is B=D D B 0=D0 so that the interferometer behaves like a masked aperture and fringes
are found everywhere in the image plane. This figure illustrates also that downscaling the entrance
pupil corresponds to an angular magnification ˛0=˛0

0 > 1

as sketched in Fig. 5.1.1 Therefore, the imaging process can be computed like that
of a large telescope, with an aperture mask containing sub-apertures according to
size and position of the individual telescopes. Like in a single telescope, the object-
image relationship is given by a convolution between the object intensity and a PSF
that now consists of the Airy disk of an individual sub-aperture with a narrow fringe
pattern. This was discussed in great detail in Sect. 3.3 for the case that both entrance
and exit pupil are a 1:1 image of the telescope apertures. Here, we will concentrate
on the impact of downscaling the telescope apertures in the exit pupil.

We write the convolution product in the image plane as in (3.54), relating the
object brightness distributionOb.˛0/ to the image intensity by

I.˛/ D Ob.˛=mp/ � PSF.˛/

D 2Ob.˛=mp/ � .PSFa.˛/ .1C cos.2�RB � ˛/// (5.1)

D 2

Z
Ob.˛

0/PSFa.˛ �mp˛0/
�
1C cos.2�RB � .˛ �mp˛0//

�
d˛0;

1 This figure, as well as Figs. 5.2, 5.3 and 5.7 were inspired by illustrations in the PhD Thesis of R.
Wilhelm [253].
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with mp the angular magnification factor and ˛ D mp˛0. PSFa is the point-spread
function of an individual sub-aperture with diameter D in the exit pupil, called the
primary beam in radio interferometry . The extension to the polychromatic case can
be done as in (3.67) by multiplying the cosine function by gB .˛/ D F.GB.R//, the
Fourier transform of the spectrum.

The imaging process can be discussed in the uv-plane, too, when the convolution
transforms into the product of the visibility function and of the interferometer OTF.
Following elementary optics, the demagnification factorD0=D, by which we down-
scale the interferometer array, is identical to the angular magnification factor mp in
the image.

The distribution of telescope apertures of the interferometer array is now called
the entrance pupil of the interferometer –mp times larger than the exit pupil – using
the coordinate R0 in the entrance pupil. We will neglect the fact that, observing off-
zenith the telescope apertures on the ground are not in a plane perpendicular to the
line of sight – and not in a plane perpendicular to the optical axis in the exit pupil –
since this has no consequence for our discussion except for an additional optical
path that will be treated separately.

Starting in the entrance pupil, we write the interferometer OTF (3.52) as

OTF.R0/ D OTFa0.R0/ � �•.R0 � R0
B0/C 2•.R0/C •.R0 C R0

B0/
�
; (5.2)

when OTFa0 is the monochromatic optical transfer function of a single telescope
with apertureD0.

The OTF is multiplied by the visibility function �.R0/, the Fourier transform
of the object brightness distribution Ob.˛0/, and by I0, the integral over the object
brightness, obtaining the image intensity spectrum OI .R0/, (3.55), as

OI .R0/ D I0�.R
0/

� �OTFa0.R0/ � �•.R0 � R0
B0/C 2•.R0/C •.R0 C R0

B0/
��
: (5.3)

Replacing R0 bympR yields the downscaled image intensity spectrum in the exit
pupil,

OI .R/ D I0�.mpR/

� �OTFa0.mpR/ � �•.mpR � R0
B0/C 2•.mpR/C •.mpR C R0

B0/
��

D I0�.mpR/ (5.4)

� .OTFa.R/ � .•.R � RB /C 2•.R/C •.R C RB /// ;

with OTFa the optical transfer function of a reimaged telescope aperture with diame-
terD D D0=mp, and the baseline in the exit pupil of RB D R0

B0=mp. The visibility
function in the exit pupil is also downscaled by mp, so that, at R D RB , we have
the visibility �.mpRB/ D �.R0

B0/, i.e. the visibility determined by the baseline in
the entrance pupil.
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In Sect. 3.3.4, the polychromatic case was discussed providing the polychromatic
OTF in (3.64) when the individual •-functions at ˙RB are replaced by the spectra
GB .R/. All discussions and conclusions on the imaging process in Sect. 3.3.4 apply
here.

The Fourier transform of the image intensity spectrum in the exit pupil, OI .R/,
provides the image intensity distribution, I.˛/, which is the convolution product of
the individual Fourier transformsOb.˛=mp/ and the interferometer PSF, as given in
(5.1). There is no fundamental limit for the field of view and the convolution holds
for any object size.

A true Fizeau configuration is difficult to build since, observing a celestial source
with telescopes on the ground, the effective baselines – the projections of the base-
line vector onto the sky plane perpendicular to the line of sight – are moving
constantly due to the rotation of the Earth so that the projected telescope apertures
in the entrance pupil are in permanent motion, both laterally and longitudinally (see
Sect. 3.4). Providing homothetic mapping of the entrance pupil, the exit pupil also
undergoes permanent baseline changes so that the fringe pattern has variable fringe
spacing.

This poses considerable practical problems [11]. First, one has to ensure that
the optical systems reimaging the telescope apertures in the exit pupil place them
dynamically in exactly the correct lateral and longitudinal position to properly
define the baseline as RB D R0

B0=mp. Second, scanning the fringe pattern in order
to measure the visibility requires a pixel scale that is suitable for all baselines during
the observation. This means that the smallest pixel scale, suitable for the narrowest
fringe pattern of the longest baseline, is not optimal for shorter baselines since mea-
suring the visibility, the wider fringes of the shorter baselines are scanned with more
pixels than necessary so that the sensitivity is reduced. Therefore, to date there has
been no serious effort to build a Fizeau interferometer with separate telescopes.

Both problems are alleviated using aperture masks on single telescopes when
the optical layout ensures the proper reimaging of the entrance pupil, and when the
baselines are fixed. This technique is also known as sparse aperture masking.

The advantage of sparse aperture masking over observations with the full aper-
ture lies in the fact that the individual spatial frequencies defined by the baselines
are measured with much higher accuracy than when they are part of the spatial fre-
quency spectrum of the Airy disk of the full aperture [99, 242]. The advantages of
observations with sparse aperture masking were demonstrated very impressively by
P. Tuthill [241].

Almost like an aperture mask, albeit with only two apertures, the Large Binocular
Telescope (LBT), [101], with its two 8.4-m primary mirrors mounted on the same
telescope structure, comes very close to a Fizeau configuration because the baseline
is by design perpendicular to the line of sight so that only static aperture remapping
is required.
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5.1.2 Michelson Configuration

The unrestrained arrangement of the telescope apertures in the exit pupil charac-
terizes the Michelson configuration, named after Michelson’s original experiment
[158]. Then, the telescope apertures are not mapped homothetically, and, in general,
the object-image relationship can no longer be described by a convolution since the
positions of the Airy disks in the field no longer coincide with equal optical path
lengths in the interferometer (see Fig. 5.2). On axis, the PSF is an Airy disk with
fringes while elsewhere in the field of view, the PSF does not show fringes. This
means that the PSF is no longer shift-invariant. This argument applies to all realis-
tic cases when the spectral bandwidth is finite. However, in strictly monochromatic

B
D

l/D

l/2B

a'0

a0,p

OPD = a0,p ·B 
 

OPD' = a'0 ·B'

~ l/D

mpa'0 mba'00

D' B'

Fig. 5.2 Principle of the Michelson configuration in multi-axial combination. For simplicity, the
telescope apertures of diameter D0 are reimaged by a periscope so that D D D0 and mp D 1, as
in the original Michelson experiment [158]. This figure illustrates that, in the entrance pupil, the
OPD for an object at position ˛0

0, OPD D ˛0

0 � B 0, is larger than the OPD corresponding to the
center of the Airy disc, ˛0;p � B, due to the downscaled baseline B. While the image is at position
˛0;p D mp˛0

0, the white-light fringe is at position ˛0;b D mb˛
0

0, for ˛0

0jjB , when the OPD in the
entrance pupil and that in the exit pupil cancel. Then, the fringe package is no longer at the center
of the Airy disk, mp˛0

0, unless mb D mp as in Fizeau configuration
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illumination with extremely long coherence length, fringes can be found everywhere
in the field of view.

We base our definition of the Michelson configuration on the imaging process.
If the PSF is shift-invariant, a convolution describes the imaging process, requiring
homothetic mapping as in Fizeau configuration. In Michelson configuration, without
homothetic mapping, the PSF is not shift-invariant and, without further assumptions,
the imaging process cannot be described by a convolution.

As in Fizeau configuration, we call mp the demagnification factor of the tele-
scope apertures, and we introduce the demagnification factor mb D R0

B0=RB for
the baselines.

Therefore, we have to write the interferometer PSF as a function not only of
the image coordinate ˛ but also of the object coordinate ˛0 since it varies with the
object position. For an object at position ˛0

0, we have the point-spread function of
an individual aperture, PSFa , centred at position ˛0;p D mp˛0

0 in the image plane,
as in (5.1).

Withmp ¤ mb, the white-light fringe, i.e. the position of zero OPD, is at position
˛0;b D mb˛

0
0 ¤ ˛0;p. Then, the OPD in the entrance pupil, ˛0

0 �B0, is identical to the
OPD in the exit pupil, ˛0;b � B D mb˛

0
0 � B D ˛0

0 � B 0, as displayed in Fig. 5.2. This
case of separate apertures in the exit pupil is also called multi-axial combination.

Starting with the monochromatic case and using (3.53), the resulting interferom-
eter PSF in Michelson configuration reads as

PSFM .˛;˛0/ D 2PSFa.˛ �mp˛0/
�
1C cos.2�RB � .˛ �mb˛

0//
�
; (5.5)

and the image intensity distribution is

I.˛/ D
Z
Ob

�
˛0�PSFM .˛;˛0/d˛0 (5.6)

D 2

Z
Ob

�
˛0�PSFa.˛ �mp˛0/

�
1C cos.2�RB � .˛ �mb˛

0//
�

d˛0 :

Due to different demagnification factors mp for the telescope aperture and mb for
the baseline PSFM is not shift-invariant and the integral cannot be written as a con-
volution. However, in the monochromatic case this does not restrict the imaging
capabilities even for large objects since fringes are found for any coordinate ˛ in
the image plane, and the object brightness distribution can be recovered from the
visibility in the image intensity spectrum [221].

Small Objects

Preparing the case of polychromatic objects, we restrict the object size to the diameter
of the Airy disk of an individual telescope, PSFa, as discussed in Sect. 3.3.2, so
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that we can extract PSFa from the integral and the integral describes a convolution
again:

I.˛/ D 2 PSFa.˛/
Z
Ob.˛

0/
�
1C cos.2�RB � .˛ �mb˛0//

�
d˛0

D 2 PSFa.˛/
�
Ob.˛=mb/ � .1C cos.2�RB � ˛//

�
: (5.7)

Thus, the image intensity distribution of small objects is described by the convolu-
tion of the object brightness distribution with the fringe pattern, similar to the Fizeau
configuration, (5.1).

Note that the scale factor of the object brightness distribution is given bymb since
the object position is defined by the position of the white-light fringe at zero OPD
so that the object size for the application of a convolution (5.7) is limited to

mb˛
0
max �mp˛0

max � �

D

˛0
max � �

mbD �mpD : (5.8)

Usually, combining apertures smaller than 10 m in diameter that are much smaller
than their baselines of several 10 m, the demagnification factormb of the baselines is
much stronger than that of the apertures, mp, in order to have a compact exit pupil.
In this approximation, we can set mb �mp 	 mb , so that the object size is limited
to ˛0

max � �=.mbD
0=mp/, which is the FWHM of the Airy disk, demagnified by

mb=mp.
In the uv-plane, we take the subsequent assumption that the visibility function

�.R0/ is invariant over the width of the OTF of an individual aperture since Ob.˛0/
is much smaller than PSFa as discussed in Sect. 3.3.2.

The image intensity spectrum in the entrance pupil is given by the product of the
visibility function with the interferometer OTF, as in Fizeau configuration, (5.3).
However, with the visibility function invariant over OTFa0 , we can replace �.R0/
by its values at R0 ˙ R0

B0 as in (3.57), yielding

OI .R0/ D I0OTFa0.R0/ � ��.R0/.•.R0 � R0
B0/C 2•.R0/C •.R0 C R0

B0//
�

D I0OTFa0.R0/ (5.9)

���.R0
B0/•.R

0 � R0
B0/C 2�.0/•.R0/C �.�R0

B0/•.R
0 C R0

B0/
�
;

with �.�R0
B0/ D ��.R0

B0/.
The image intensity spectrum in the exit pupil is obtained by rescaling the coor-

dinates, using mp for the OTF of the individual apertures and mb for the baseline
R0
B0 , as



5.1 Combination of Two Telescopes 225

OI .R/ D I0OTFa0.mpR/

���.R0
B0/•.mbR � R0

B0/C 2�.0/•.mbR/C ��.R0
B0/•.mbR C R0

B0/
�

D I0OTFa.R/ (5.10)

���.mbRB/•.R � RB /C 2�.0/•.R/C ��.mbRB /•.R C RB/
�
;

OTFa is the OTF of aperture D0=mp, and the baseline in the exit pupil is RB D
R0
B0=mb.
Moving into the image plane by Fourier transforming OI .R/, we simplify the con-

volution in the image intensity distribution in (5.7) by using the visibility �.mbRB/
to obtain

I.˛/ D 2PSFa.˛/I0
�
1C j�.mbRB/j cos.
.mbRB/� 2�RB � ˛/

�
; (5.11)

with 
.mbRB/ the phase of the visibility function. The contrast of the fringe pattern
with fringe spacing 1=RB is given by the modulus of the visibility function � for
the baseline mbRB D R0

B0 in the entrance pupil.
Thus, whatever the demagnification of the baseline, the visibility is always deter-

mined by the baseline in the telescope array and not by the baseline in the exit
pupil.

Observing in Polychromatic Light

Observing with finite spectral bandwidth, we found that the contrast of the fringes
decreases with increasing OPD. This is accounted for by multiplying the cosine
function in (5.7) by gB .˛/, the Fourier transform of the spectrum, GB.R/, yielding
the polychromatic PSF as in (3.61), as

PSFpc.˛/ D 2PSFa.˛/
�
1C gB .˛/ cos.2�R0;B � ˛/

�
:

The half-width of the fringe package in the image plane is .�0=��/�0=B D lc=B ,
with lc the coherence length, as displayed in Fig. 3.17. We assume in the following,
that the fringe package is narrower than the Airy disk, �=D. Thus, if the off-axis
distance ˛0

0 D j˛0
0j of the object, with ˛0jjB, is so large that the coordinate differ-

ence between the centre of the Airy disk and the white-light fringe at mb˛0
0 �mp˛0

0

is larger than lc=B (see Fig. 5.2), the fringe patterns of an on-axis object and of an
object at ˛0

0 no longer overlap as discussed in Sect. 3.3.3.
Therefore, we write the field of view in Michelson configuration as [222]

mb˛
0
max �mp˛0

max � lc

B

˛0
max � lc

mbB �mpB
	 lc

B 0 ; (5.12)
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using the approximationmb�mp 	 mb (see 5.8) andmbB D B 0, the baseline in the
entrance pupil, we find that the object size is limited to the half-width of the fringe
package, lc=B 0, which we assumed to be smaller than the Airy disk.

Quasi-Monochromatic Approximation

The field of view in (5.12) is exactly the same as in the quasi-monochromatic
approximation (Sect. 3.3.4) when the limitation was motivated by representing the
fringe package by a single visibility value determined by the object shape through
the van Cittert–Zernike theorem (2.50).

With an object size, smaller than the half-width of the fringe package – and
smaller than the Airy disk – the visibility function is invariable not only over
OTFa but also over the width of the polychromatic optical transfer function that
is elongated due to the convolution of OTFa with the spectrum GB .R/. This
was investigated in detail in Sect. 3.3.4 when discussing small objects and the
quasi-monochromatic approximation.

Similar to (3.71), the polychromatic image intensity spectrum is now written as

OI .R/ D I0OTFa.R/ (5.13)

���.mbR0;B/GB.R/C 2�.0/•.R/C ��.mbR0;B/GB .�R/
�
;

with �.mbR0;B/ the visibility function at the mean baseline mbR0;B D R0
0;B0 D

B 0=�0, andGB .R/ the spectrum as a function of spatial frequency, centred at B=�0,
(3.64).

Proceeding into the image plane, we obtain the image intensity distribution (see
3.72), as

Iqm.˛/ D 2I0 PSFa.˛/ (5.14)

� �1C gB .˛/j�.R0
0;B0/j cos.
.R0

0;B0/ � 2�R0;B � ˛/
�
;

with R0
0;B0 D mbR0;B .

The contrast of the fringe pattern around the white-light fringe is determined by
the modulus of the visibility at the entrance pupil baseline R0

0;B0 , and the position
of the fringe pattern with respect to the position of zero OPD, j˛j D 0, provides its
phase 
.R0

0;B0/.

5.1.3 Co-Axial Combination

In the limiting case of a Michelson configuration when the individual telescope
apertures are imaged on top of each other, it is jRB j D 0 and mb ! 1. The exit
pupil appears as a single aperture, and the PSF is an Airy disk without fringes.
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Fig. 5.3 Principle of coaxial beam combination with a beam splitter cube (a) and a plane-parallel
plate with semi-reflective coating (b), assuming a 50:50 split of the incoming intensities. We denote
the incoming intensities by 2V 2

1 and 2V 2
2 , and assume 2V 2

1 D 2V 2
2 . The exit pupils are represented

by single lenses in each output arm of the beam splitter. The phase shift of �=2 of the transmitted
beams in the beam splitter cube (a) is indicated by i in the sum of the amplitudes. For OPD D 0

between the input beams, the total intensity in each output arm is equal to the intensity in each
input. For the plane-parallel plate (b), the reflection of beam 2 at the optically denser medium
causes a phase shift of � , so that the intensity in the right output arm of (b) is zero. In the left
output arm, the intensity is maximum, equal to the sum of the intensities in beam 1 and 2. The
additional plane-parallel plate in incoming beam 2 is required to compensate for the optical path
of beam 1 in the beam splitter

This is called the co-axial combination. The Airy disk is either bright if the phase
difference between the beams from the two telescopes is zero, or it is dark if the
phase difference is � . Thus, there is no spatial fringe pattern in the image plane but
an Airy disk with an intensity that varies with the OPD.

Figure 5.3 displays the principle of co-axial combination, when the single lens
in each output of the beam splitter represents the exit pupil where the superimposed
images of the telescope apertures form. The intensities of the Airy disks, drawn in
the focal planes of the lenses, depend on the phase differences between the beams
that are determined by the OPD in the input beams and by beam splitting schemes.

In the case of a beam splitter cube (Fig. 5.3a), the intensity split of the incoming
intensities is based on an effect called frustrated total internal reflection, when the
gap between two prisms forming the cube is so narrow that the total reflection at the
optically thinner medium filling the gap is disturbed and a fraction of the light, as a
function of the thickness of the gap, passes through.

Then, the phase of each transmitted beam is shifted by �=2 so that, for an optical
path difference of zero between the incoming beams, the phase difference between
the amplitudes V1 and V2 of the exiting beams is �=2 in one output arm of the
beam splitter and ��=2 in the other arm. It can be shown that in symmetric beam
splitters, the symmetry of phase shifts occurs for fundamental reasons [143, 257],
independent of the material of the beam splitter. The intensity in each output arm is
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I D V 21 C V 22 so that the sum of both outputs is the same as the sum of intensities,
2V 21 C 2V 22 , of the incoming beams maintaining the energy conservation principle
for lossless beam splitters.

The same principle applies to a technique based on monomode optical fibres. As
discussed in Sect. 3.3.6, optical fibres can be used for masking the image in each
telescope. Optical fibres can also serve as waveguides, and it is possible to design
a symmetric fibre beam combiner, a so-called X-coupler, with monomode fibres by
squeezing them gently together so that light leaks into the neighbour fibre.

The first application in astronomy, using fluoride glass fibres for theK-band, was
presented by V. Coudé du Foresto and S. Ridgway [48,49] in the instrument FLUOR
at the IOTA2 interferometer. This technique was also used for VINCI, the first-light
instrument of the VLTI [111]. Moving from individual fibres to fully integrated
optics, beam splitters can be part of the on-chip design [110] permitting a large
flexibility for the number of input and output beams [12].

The case of a plane-parallel plate is shown in Fig. 5.3b when one surface has a
semi-reflective coating to provide the split of the intensities. The reflection of beam
2 at the optically denser medium causes a phase shift of � while the transmitted
beam 1 undergoes no phase shift, so that for zero OPD in the incoming beams –
and assuming V1 D V2 – there is zero intensity in the right output of the beam
splitter. In the left output, both the reflection of beam 1 and the transmission of
beam 2 do not suffer from a phase shift so that we have constructive interference,
and the intensity is I D .V1 C V2/.V1 C V2/

� D V 21 C 2V1V2 C V 22 D 4V 2, using
V D V1 D V2, which is the same as the sum of the incoming intensities so that the
energy is conserved.

We can account for the phase shifts in the individual output arms of the beam
splitters by adding the appropriate phase 'bs in the interferometer OTF, yielding
the image intensity spectrum in the exit pupil as in (5.10), for objects substantially
smaller than PSFa, now for jRB j D 0,

OI .R/ D I0OTFa.R/ (5.15)

� ��.R0
B0/•.R � 0/e�i'bs C 2�.0/•.R/C ��.R0

B0/•.R C 0/ei'bs
�
;

with R0
B0 the baseline in the entrance pupil.

Assuming that the OPD between the incoming beams is zero, we have 'bs D
˙�=2 in the outputs of the beam-splitter cube, and 'bs D 0 and � in the outputs of
the plane-parallel plate [209].

Temporal Modulation

Modulating the optical path length in one arm of the interferometer is equivalent
to introducing a time varying optical path difference OPD.t/ between the incoming

2 IOTA is the Infrared-Optical Telescope Array on Mt. Hopkins in Arizona, USA.
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beams so that the phase in the interferometer OTF is  .t/ D 2�
�

OPD.t/C'bs. This
provides the time dependent image intensity spectrum as

OI .R; t/ D I0OTFa.R/ �
�
�.R0

B0/•.R � 0/e�i .t/

C 2�.0/•.R/C ��.R0
B0/•.R C 0/ei .t/

�
: (5.16)

The image intensity distribution, I.˛; t/ D FR. OI .R; t// is now also a function of
time t . The quantity that is usually discussed is the integral of the image intensity
Imod.t/ D R

I.˛; t/d˛, obtaining

Imod.t/ D
Z
2PSFa.˛/I0

�
1C j�.R0

B0/j cos.
.R0
B0/ �  .t//�d˛

D 2I 0
0

�
1C j�.R0

B0/j cos.
.R0
B0/�  .t//

�
; (5.17)

with I 0
0 D I0

R
PSFa.˛/d˛.

We have, thus, a signal that oscillates between its maximum value 1C j�.R0
B0/j

and its minimum 1 � j�.R0
B0/j, displaying a complete fringe for a modulation of

OPD D �, i.e. of  D 2� . Restricting the modulation to � usually is sufficient if
only the fringe position is of interest, for instance for a fringe tracker. If the ampli-
tude of the modulation is larger than the coherence length lc , we scan the complete
fringe package, as displayed in Fig. 5.5, and the visibility is derived from the Fourier
spectrum of Imod.t/ as discussed in Sect. 2.4.3.

With 'bs D C�=2 and ��=2 in the two output arms of the beam splitter cube, as
well as with 'bs D 0 and � in the outputs of the plane-parallel plate, the phases of
the fringe patterns in the two outputs differ by � in both cases, sometimes referred
to as fringes in anti-phase, so that if one arm displays maximum intensity the other
arm has zero intensity.

Spatial Modulation

Instead of a temporal modulation of the OPD to cover a phase shift range of 2� ,
it is possible to provide this range instantaneously by spatial phase modulation.
Introducing in one of the incoming beams of the beam splitter cube an achromatic
phase shift of �=2 between the orthogonal p and s polarization, the phase shift in
the output beams of the beam splitter is now polarization dependent. For one of
the polarization components we still have phases 'bs D ˙�=2 in the two output
arms, but for the second component we find 'bs D �=2 C �=2 D � and 'bs D
��=2 C �=2 D 0. Disentangling the s and p polarization in the exiting beams
by polarizing beam splitters provides four signals with 0; �=2; � and 3�=2 phase
difference between the interfering beams as displayed in Fig. 5.4.
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Fig. 5.4 Principle of spatial phase modulation. The achromatic phase shifter in one of the input
arms provides a phase shift of �=2 for the p polarization with respect to the s polarization.
Then, the phase shifts between beams 1 and 2 in the output arms are different for s and p. The
polarizing beam splitters separate the s and p polarization and we find the indicated phase shifts
between the beams in the four output arms. This scheme instantaneously provides four phase shifts,
��=2; 0; �=2 and � so that the ABCD method can be applied to measure the visibility

In astronomy, spatial phase modulation was implemented for the first time for
the fringe tracker of the PRIMA3 facility of the VLTI [204].

Integrating over the Airy disk eliminates all information on the spatial distribu-
tion of the image intensity and yields the same value as the integral of the intensity
in the exit pupil. Therefore, co-axial combination is sometimes also labelled pupil
plane combination. However, one has to be aware that the fringe pattern does not
form in the pupil plane – although this could be done by slightly tilting one of the
reimaged telescope apertures and observe the fringes in the exit pupil as will be dis-
cussed in Sect. 5.3.3 – but that a single value of the intensity is used, and fringes
form exclusively through OPD modulation, modulating the PSF intensity.

Quasi-Monochromatic Approximation

In co-axial combination, we write the modulated intensity (5.17) in quasi-mono-
chromatic approximation (compare to 5.14) as

Imod;qm.t/ D 2I 0
0

�
1C gp. .t//j�.R0

0;B0/j cos.
.R0
0;B0/�  .t//

�
; (5.18)

3 PRIMA (Phase Referenced Imaging and Micro-arcsecond Astrometry) is the dual-feed facility of
the VLTI.
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Fig. 5.5 The first fringe pattern of the VLTI observing Sirius on March 17, 2001. The spectral
band is the K-band (2.2˙0.2
m), and �=�� D 5:5 . The finite spectral bandwidth allows for
about 11 fringes similar to Fig. 2.16

with I 0
0 D I0

R
PSFa.˛/d˛ and gp. .t// D g. .t/=.2��0// D g.�/ so that the

time delay � between the interfering beams is replaced by the dependence on the
modulated phase, using � D OPD=c D  .t/=.2��0/.

For the case of the K-band, with �=�� D 5:5 we find that g.�/ drops to zero
if the OPD is larger than the coherence length of 5:5�, i.e. after 5.5 fringes. If the
modulation  .t/ of the fringe pattern is larger than ˙5:5 � 2� we will see the
complete fringe package, as displayed in Fig. 5.5. This relates the properties of g.�/
to those of the phase modulation. Using the notation gp. .t// we can write the
intensity distribution as function of time for a given modulation  .t/.

The contrast of the white-light fringe is determined by j�.R0
0;B0/j when gp. .t//

is basically constant and the ABCD method can be used to determine both modulus
and phase of the visibility.

Regarding the Fourier spectrum of the modulated intensity distribution, we
should note that Imod; qm.t/ is formally identical to the fringe pattern in Young’s
experiment (2.63). Discussing its Fourier transform in Sect. 2.4.3, we can apply the
result to obtain the image intensity spectrum as

OImod; qm.�/ D I 0
0

�

2•.�/CG.�/�

�
B 0

c
�0

�

CG.��/��
�

�B 0

c
�0

��

; (5.19)

when the spatial frequency R0
0;B0 is written as B0

c
�0.

Due to the integration over the PSF, there is no longer a convolution with OTFa
as in (5.16), and we obtain the Fourier spectrum as a function frequency � due to
Imod;qm being a function of time.
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Co-axial combination in the instrument VINCI was used for the first measure-
ment of stellar fringes in theK-band with the VLTI, displayed in Fig. 5.5, observing
Sirius with siderostats of 40 cm diameter and a baseline of 16 m. Sirius has a diam-
eter of about 6 mas resulting in a visibility of about 0.9 for the given baseline. The
envelope of the fringe pattern is determined by the spectrum, here theK-band, going
to zero beyond 11 fringes. The measurement of j�j2 was performed after Fourier
transforming the fringe pattern and processing the power spectrum as discussed in
Sect. 2.4.3 [111].

Combination of Two Telescopes: Summary

The homothetic mapping of the Fizeau configuration, when the distribution
of apertures in the beam combining instrument is a downscaled replica of the
interferometer array, provides the intensity distribution in the image plane as
a convolution of the object brightness distribution Ob.˛0/ with the interfer-
ometer point-spread function, which is the Airy disk with fringes. The image
coordinate ˛ is related to the object coordinate by ˛0 D ˛=mp, yielding the
image intensity distribution as

I.˛/ D 2Ob.˛=mp/ � .PSFa.˛/ .1C cos.2�RB � ˛/// : (5.1)

The image intensity spectrum is formed by the Fourier transform of the
image intensity distribution, which is the product of the visibility function
�.mpR/ with the interferometer OTF. The spatial frequency vectors in the
entrance and exit pupil are related by R0 D mpR, so that the baseline in the
interferometer array R0

B0 is downscaled bymp to RB in the exit pupil, and we
find the image intensity spectrum in the exit pupil as

OI .R/ D I0�.mpR/ (5.4)

� .OTFa.R/ � .•.R � RB /C 2•.R/C •.R C RB/// ;

with OTFa the optical transfer function of a downscaled telescope aperture
with diameterD D D0=mp.

The visibility function in the exit pupil is also demagnified by mp, so that,
at R D RB , we have the visibility �.mpRB / D �.R0

B0/, i.e. the visibility is
determined by the baseline in the entrance pupil.

Note that the effective baselines – the projections of the baseline vectors
onto the sky plane perpendicular to the line of sight – are moving constantly
due to the rotation of the Earth so that the projected telescope apertures in
the entrance pupil are in permanent motion, both laterally and longitudinally.
Thus, in Fizeau configuration, one has to ensure that the reimaged telescope
apertures in the exit pupil are placed dynamically in exactly the correct lateral
and longitudinal position to properly define the baseline as RB D R0

B0=mp.
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In Michelson configuration, there is no homothetic mapping of the interfer-
ometer array, i.e. the distance and size of the apertures in the exit pupil do not
form a downscaled replica of the entrance pupil. The demagnification factor
mp is now used for the demagnification of the apertures only, and we intro-
ducemb for the demagnification of the baseline. This implies that the position
of zero OPD no longer coincides with the centre of the Airy disk, PSFa of an
individual aperture (see Fig. 5.2), and the field of view is restricted. PSFa is
also called the primary beam. Therefore the convolution only holds for objects
smaller than the central core of the Airy disk, writing

I.˛/ D 2 PSFa.˛/
�
Ob.˛=mb/ � .1C cos.2�RB � ˛//

�
: (5.7)

Note that the demagnification of the object is now determined by mb .
Consequently, the image intensity spectrum consists of the optical transfer

functions of the individual apertures, OTFa, convolved with the product of the
visibility functions �.mbRB/ with the •-peaks at ˙RB and 0, yielding

OI .R/ D I0OTFa.R/ (5.10)

� ��.mbRB/•.R � RB/C 2�.0/•.R/C ��.mbRB/•.R C RB/
�
:

In polychromatic light, the field of view is restricted [222] such that fringe
package remains within PSFa, to

˛0
max � lc

mbB �mpB
	 lc

B 0 ; (5.12)

with mbB D B 0, the baseline in the entrance pupil.
Restricting the object size to ˛0

max we can apply the quasi-monochromatic
approximation, writing the image intensity distribution as

Iqm.˛/ D 2I0 PSFa.˛/ (5.14)

� �1C gB .˛/j�.R0
0;B0/j cos.
.R0

0;B0/� 2�R0;B � ˛/
�
;

with R0
0;B0 D mbR0;B , and gB .˛/ – the Fourier transform of the spectrum,

GB .R/ – is the envelope function of the fringe package. gB .˛/ is a function
of delay � between the beams, using gB .˛/ D g.˛ � B=c/ D g.�/.

In co-axial combination, we write the modulated intensity as

Imod;qm.t/ D 2I 0
0

�
1C gp. .t//j�.R0

0;B0/j cos.
.R0
0;B0/ �  .t//�; (5.18)

with I 0
0 D I0

R
PSFa.˛/d˛, gp. .t// D g.  .t/

2��0
/ D g.�/, and  .t/ the

temporal phase modulation, related to the OPD modulation through �0

2�
 .t/.
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The image intensity spectrum is

OImod;qm.�/ D I 0
0

�

2•.�/CG.�/�

�
B0

c
�0

�

CG.��/��
�

�B 0

c
�0

��

;

(5.19)

when the spatial frequency R0
0;B0 is written as B0

c
�0.

5.2 Multi-Aperture Combination: Michelson Configuration

Observing with more than two apertures, one can follow two strategies. Either the
light from all homothetically mapped apertures is combined in a single beam com-
biner, directly forming an image – hence called direct imaging – or the beams are
combined such that the visibilities of individual baselines can be determined indi-
vidually. The latter will be discussed in this section while direct imaging will be
treated in Sect. 5.3.

The determination of visibilities of individual baselines is not limited to the
pairwise combination of apertures but can also be done all-in-one, simultaneously
combining all apertures. For this all-in-one combination it is not necessarily required
that the apertures in the exit pupil are mapped homothetically if a restricted field of
view is acceptable. While the interference fringe of many apertures is an increas-
ingly indistinguishable mix of fringe spacings and orientations (see for instance
Fig. 5.12), we can discern the individual visibilities in the image intensity spectrum
in the uv-plane.

5.2.1 Multi-Axial and Co-Axial Combination

Combining several telescopes, it is advantageous to ensure a non-redundant baseline
distribution in the telescope array since – still discussing a moderate number of
apertures – we want to maximize the number of baselines for a given number of
telescopes. This means that there is only one telescope pair per baseline vector.

In a redundant distribution, different telescope pairs with the same distance and
orientation would contribute to the visibility of the same baseline vector, i.e. to the
same fringe, so that the independent visibility measurement of each telescope pair
is replaced by the averaged visibility. OPD inaccuracies due to turbulence or to
instrumental effects could result in destructive interference between telescope pairs
and subsequently in errors in the measured visibility.

Taking this argument further to the highly redundant combination of baselines
in individual apertures of single telescopes – when “baseline” refers to all possible
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difference vectors between points in the aperture – there is a substantial influence of
the phase errors between redundant baselines, which are determined by the aber-
rations of the imaging process. The result of these aberrations is a PSF that is
irregularly shaped so that the features of the PSF cannot be distinguished from the
structure of extended objects.

However, having the freedom in Michelson configuration to arrange the base-
lines in the exit pupil as suitable for the measurement process, one could provide
a non-redundant baseline distribution in the exit pupil even if the telescope array
has redundant baselines. The advantage of the independent measurement of visi-
bilities of redundant baselines lies in the individual averaging and calibration of
visibility modulus and phase that can be done in post-processing, not suffering
from possibly destructive interference when averaging the complex amplitudes from
identical baseline vectors in the fringe pattern [166, 182].

The interferometer OTF is the autocorrelation of the distribution of all apertures
in the array (3.6), as in (5.2) for two-telescope combination. For a non-redundant
distribution of NT telescopes, there are NB D NT .NT � 1/=2 baselines, and we
have replica of the optical transfer functions, OTFa0 , of the individual apertures at
positions ˙R0

B0j as displayed in Fig. 5.6. The central OTFa0 at jR0j D 0 has a
value that is NT times larger than the value at the positions R0

B0j since, due to the
autocorrelation process, all telescopes contribute to the value at the origin.

Reimaging the telescope apertures in the exit pupil, the closest packing of the
apertures is given by twice the aperture diameter D, i.e. the width of OTFa as dis-
played in Fig. 5.7. Arranging the reimaged apertures linearly in a row, we write the

-R'B'j

R'B'j

OTFma'(R' )

OTFa'(R')

Fig. 5.6 Multi-aperture OTF in the entrance pupil for six randomly distributed telescopes resulting
in 15 baselines. The cones represent the optical transfer function OTFa0 of the individual apertures,
with the cone at jR0j D 0 six times larger than the values at R0

B0

j
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PSFma

OTFma

B12 B23 B13-B13 -B23 -B12 0

–1

α

Fig. 5.7 Concept of a Michelson configuration with three beams and all-in-one combination. The
three baselines B12, B23 and B13 in the exit pupil are fixed and lined-up in a row, independent
of the real baselines in the entrance pupil. The shortest baseline has a length of 2D, and their
lengths are related like 1:2:3. On the right, the fringe pattern PSFma , (5.21), and OTFma, (5.20), are
displayed containing the three spatial frequencies B12=�, B23=� and B13=�. Barely recognizable,
the envelope of the fringe pattern is the Airy disk of an individual aperture given by the diameter
D of the individual beams

multi-aperture interferometer OTF in the exit pupil as

OTFma.R/ D OTFa.R/

�
�
NT •.R/C

NBX

jD1

�
•.R � jRB0

/C •.R C jRB0
/
��
; (5.20)

with RB0
D .2D; 0/ the shortest baseline with a length corresponding to the width

of OTFa. Note that the baseline demagnification factor mb is now different for each
baseline.

The point-spread function of the multi-aperture interferometer is given by the
Fourier transform of OTFma, yielding

PSFma.˛/j˛0D0 D PSFa.˛/
�
NT C

NBX

jD1

�
ei2�jRB0

�˛ C e�i2�jRB0
�˛��

D PSFa.˛/
�
NT C

NBX

jD1
2 cos.2�jRB0

� ˛/
�
; (5.21)
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describing the interferometer PSF as the product of the Airy disk of an individual
aperture in the exit pupil, PSFa, with the fringe pattern. The validity of (5.21) is
limited explicitly to on-axis objects at ˛0 D 0, reminding us that due to different
demagnification factorsmp for the aperture andmb for the baselines, the PSF is not
shift-invariant, as discussed in Sect. 5.1.2.

Therefore, we have to reduce the field of view to the half-width of the fringe
package (5.12), much smaller than PSFa so that we can write the image intensity
distribution as a convolution of the object brightness distribution Ob.˛0/ with the
fringe pattern, as in (5.7), yielding

I.˛/ D PSFa.˛/
�
Ob.˛=mp/ � �NT C

NBX

jD1
2 cos.2�jRB0

� ˛/
��

(5.22)

D PSFa.˛/I0
�
NT C

NBX

jD1
2j�.R0

B0

j

/j.cos.
.R0
B0

j

/ � 2�jRB0
� ˛/

��
;

in the first line in the notation as convolution, and in the second line as the sum
of products of the visibility function with the cosine functions at individual spatial
frequencies R0

B0j , as in (5.11). 
.R0
B0j / is the phase of the visibility function.

The image intensity spectrum in the exit pupil is the Fourier transform of the
image intensity distribution as in (5.10), reading

OI .R/ D I0OTFa.R/ (5.23)

�
�
NT�.0/•.R/C

NBX

jD1

�
�.R0

B0

j

/•.R�jRB0
/C��.R0

B0

j

/•.RCjRB0
/
��
:

Unlike in Fizeau configuration, there is no fixed relationship between the base-
lines in the exit pupil jRB0

and those in the entrance pupil R0
B0j for which we

determine the visibility. Formally, we could also project baselines that are identi-
cal in the entrance pupil but that are realised by separate telescope pairs with the
same separation and orientation, on different baselines in the exit pupil so that the
visibilities can be determined independently.

Figure 5.7 shows an example of a multi-axial three-beam combination. The
fringe pattern shows a mix of three different spatial frequencies – according to
the three baselines – in the image. In the image intensity spectrum, the Fourier
spectrum of the fringe pattern with the contributions of the three baselines can be
disentangled, providing the visibilities of the entrance pupil baselines (5.23).

The linear arrangement of the reimaged apertures has the advantage that the sig-
nals can be dispersed spectroscopically in the direction orthogonal to the line of
apertures as displayed in Fig. 5.8. This has the additional advantage that differential
phase, i.e. the phase differences between the spectral channels can be measured,
providing valuable information for the image reconstruction [184].
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Fig. 5.8 Principle of spectral dispersion in a three-beam Michelson configuration as implemented
in the instrument AMBER at the VLTI [184]. A cylindrical lens in the exit pupil forms the inter-
ference pattern that is then dispersed by a spectrograph providing narrow band fringe patterns (IF)
as a function of � on the detector. Fractions of the light from each beam are sent into the spec-
trally resolved photometric channels Pi that are required to calibrate the raw visibility (Courtesy
F. Millour)

We will see in Sect. 6.2.3 that the combination of three apertures is interesting
in the case of atmospheric turbulence. Usually, the fringe position is not stable but
subject to random motion due to random phase variations caused by turbulence.
Thus, the phase of the visibility function cannot be determined in the fringe pat-
tern without, for instance, measuring the phase of a reference star with known
phase simultaneously (see Sect. 6.2.1). However, the sum of the phases of three
baselines, when the three baseline vectors in the entrance pupil form a closed trian-
gle, is independent of phase disturbances at each aperture. This technique is called
closure phase and will be discussed in Sect. 6.2.3. It is also applied in intensity
interferometry, see Sect. 2.5, and in speckle interferometry, see Sect. 4.4.

Combining several telescopes co-axially can be done by choosing different tem-
poral modulation frequencies fj to disentangle the contributions of the different
baselines in the temporal Fourier spectrum of the modulated signal. Similar to (5.17)
we obtain the multi-aperture intensity distribution as

Imod.t/ D
Z
2PSFa.˛/I0

�
NT C

NBX

jD1
2j�.R0

B0/j cos.
.R0
B0/� 'modfj

.t//
�

d˛

D 2I 0
0

�
NT C

NBX

jD1
2j�.R0

B0/j cos.
.R0
B0/� 'modfj

.t//
�
; (5.24)

with I 0
0 D I0

R
PSFa.˛/d˛.
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5.2.2 Aspects of Beam Combination

In practice, the simultaneous, all-in-one combination of a large number of tele-
scopes that we have discussed in this section can pose considerable problems both
in multi-axial and in co-axial combination since it becomes increasingly difficult
to distinguish the visibilities of the individual baselines. In multi-axial combination
the baselines in the exit pupil become very long very quickly if non-redundancy is
to be ensured, and in co-axial combination very high frequencies with increasing
modulation amplitudes are required to safely distinguish the visibilities.

On the other hand, pairwise combining the telescopes of an interferometer array
has other disadvantages since the stable relationship between the fringe positions of
different baselines is lost due to the limited optomechanical stability of the beam
combiners. Then, techniques like closure phase could not be applied. However, if
one is interested exclusively in the relative position of the fringes, to freeze their
motion, and if a separate reference star is used to define the zero phase position (see
Sect. 6.2.1), the pairwise combination is a viable solution.

A schematic layout for pairwise combination of three beams in a plane is shown
in Fig. 5.9. This layout can be expanded for more telescopes but is then restricted to
adjacent beam pairs, like AB, BC, CD, DE, etc.

Another scheme by E. Ribak [192], providing pairwise combination of all beams,
combinesN linearly arranged beams in anN �N matrix of interferograms between
all N.N � 1/=2 beam pairs. The diagonal elements contain the interference of each
beam with itself which is the intensity of each beam that can be used for calibration
of the visibility. After a first demonstration in the laboratory this scheme needs still
to be tested on the sky.

One should note, that the signal-to-noise ratio (SNR) of all-in-one and of pair-
wise combination of all beams is not very different. Regarding the visibility of a
single pair of telescopes, we find that the signal is proportional to the amplitude of
the cosine of the fringe pattern, 2 I0j�j, with the intensity I0 giving the number of
photons per telescope (see for instance 5.22). The background signal on the detector
is given by 2 I0, contributing a photon noise proportional to

p
2 I0. We then have

an SNR for the measurement of the visibility of j�jp2 I0, or, in the notation of vis-
ibility V D j�j and number of photonsNph in the fringe pattern, the SNR of bright
objects is VpNph [211, 224].

CombiningNT telescopes pairwise, the light from each telescope has to be com-
bined with NT � 1 other telescopes reducing the intensity of the fringe pattern to
2 I0=.NT � 1/, and we obtain

SNRpw D j�j
s

2 I0

NT � 1 : (5.25)

In simultaneous all-in-one combination, the visibility of each individual baseline
is determined by an individual pair of telescopes. The signal, in this case the fringe
amplitude, is 2 I0j�j, but all NT telescopes contribute to the background signal,
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Fig. 5.9 Schematic layout of pairwise beam combination for three telescopes. The top beam
splitter distributes the light to a single mirror on the left and to an arrangement of two mirrors
on the right, permuting the beams from ABC to BCA, so that the pairwise combination appears
in the exits of the bottom beam splitter. The phase difference between the beams in each pair is 0
in the left output and � in the right output. Inserting a phase shifter in the light path, as in Fig. 5.4,
the s and p polarization components in the output arms would display phase differences of 0 and
�=2 in the left arm, and of � and 3�=2 in the right arm, providing spatial phase modulation. More
telescopes can be accommodated by enlarging M1 and M2, maintaining the permutation of beams
by M3 so that pairs of adjacent beams (AB, BC, CD, DE etc.) are formed

NT I0, with noise contribution
p
NT I0. We then find [24]

SNRsim D 2j�j
s
I0

NT
: (5.26)

Thus, the advantage for all-in-one over pairwise combination is a factor of
p
2

whenNT becomes large. Given that pairwise combination can hardly be done with-
out beamsplitters, creating two sets of outputs as in Fig. 5.9, the light from one
telescope is distributed to 2.NT � 1/ fringe pattern – thus, to 4 in Fig. 5.9 – and
SNRpw is reduced by another factor of

p
2.

However, if pairwise combination is used for fringe tracking, the minimum num-
ber of combinations is AB, BC, CD, DE... – since this provides a “chain” between
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all telescopes – so that the light from each telescope is only distributed to two fringe
patterns. Then, the SNR is j�jpI0, which is a factor of

p
NT =2 larger than in all-in-

one combination, albeit for the price of having only NT instead of NB baselines. It
is an open question if NT baselines are sufficient for fringe tracking since losing the
fringes on one baseline interrupts the process. Experience with fringe trackers like
CHAMP4, using a scheme as in Fig. 5.9 expanded to six telescopes and providing
six beam pairs [14], will help to determine the best solution. Thus, there are many
issues to consider before choosing a beam combination scheme.

To date, in the laboratory a maximum of six beams has been combined all-in-
one with the instrument MIRC using optical fibres [163]. MIRC, the Michigan
InfraRed Combiner, was designed and built for the CHARA interferometer5 on
Mount Wilson, California. So far, four telescopes of the interferometer have been
combined with MIRC, obtaining excellent astronomical results [114] and demon-
strating the advantage that even as few as four telescopes with six baselines provide
over observations with two telescopes.

Arranging the fibres in MIRC side by side in a silicon V-groove array – as
customary for integrated optics applications [15] – a non-redundant baseline distri-
bution can be arranged and, due to the flexibility of the setup, modified if necessary
(see Fig. 5.10). Although this technique is applicable to more than six beams,
there is a limit, and for a very large number of telescopes the concept of a hybrid
beam combiner could be applied, grouping the telescope beams in manageable
quantities [165].

The Michelson configuration is by far the most common choice for interferomet-
ric instruments. Although the field of view is restricted, depending on the diameter

silicon V-groove array

microlens arraysingle-mode fibres

slit

Fig. 5.10 Michelson beam combination in the instrument MIRC at the CHARA interferometer.
The monomode optical fibres in the silicon V-groove array are arranged such that the baselines are
non-redundant. The microlenses form the exit pupil providing collimated beams that are focused
on a slit with a cylindrical lens (Courtesy J. Monnier [162])

4 CHAMP was built for the CHARA interferometer on Mt. Wilson, California.
5 CHARA is the Center for High Angular Resolution Astronomy at the Georgia State University,
Georgia, USA.
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of the individual telescopes, down to a few 10 mas (5.12), this disadvantage is out-
weighed by far by the stable opto-mechanical configuration in the instrument –
no need to permanently adjust baselines as in the Fizeau configuration – and by
the possibility to implement spectrography. The direct access to the visibility of
each baseline, and the possibility to calibrate the visibilities individually adds a fur-
ther advantage, arguably outperforming even direct imaging techniques for a large
number of apertures if field of view is not an issue [166].

Multi-Aperture Combination: Summary

We call NT the number of telescopes in the array and NB the number of
baselines with NB D NT .NT � 1/=2 if the distribution of telescopes is non-
redundant.

In Michelson configuration, we write the image intensity distribution of an
object that is smaller than the Airy disk, PSFa , of an individual aperture as a
convolution of the object brightness distribution Ob.˛0/ with the interference
pattern:

I.˛/ D PSFa.˛/
�
Ob.˛=mp/ � �NT C

NBX

jD1
2 cos.2�jRB0

� ˛/
��
; (5.22)

when the exit pupil baselines are multiples of the shortest baseline RB0
, lined-

up linearly (see Fig. 5.7). The linear arrangement is not required for the
Michelson configuration but it has the advantage that spectroscopy can be
implemented easily (see Fig. 5.8).

Accordingly, the image intensity spectrum, the Fourier transform of I.˛/,
is the convolution of the OTF of an individual aperture with the distribution
of •-peaks weighted by the visibility function �:

OI .R/ D I0OTFa.R/ (5.23)

�
�
NT�.0/•.R/C

NBX

jD1

�
�.R0

B0

j

/•.R � jRB0
/C ��.R0

B0

j

/•.R C jRB0
/
��
:

Unlike in Fizeau configuration, there is no fixed relationship between the base-
lines in the exit pupil jRB0

and those in the entrance pupil R0
B0j

for which
we determine the visibility. Therefore, the separate telescope pairs, which
contribute to the same baseline if they have the same distance and orienta-
tion, could be projected onto different baselines in the exit pupil, and their
visibilities could be determined independently.

In co-axial combination, different temporal frequencies fj can be used to
disentangle the contributions of the different baselines in the temporal Fourier
spectrum of the modulated signal, writing
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Imod.t/ D 2I 0
0

�
NT C

NBX

jD1
j�.R0

B0/j cos.
.R0
B0/� 'modfj

.t//
�
; (5.24)

with I 0
0 D I0

R
PSFa.˛/d˛.

The actual beam combination can be done all-in-one as in Fig. 5.7, form-
ing a single fringe pattern mixing fringes of different period 1=RBj

, or in
pairwise combination as in Fig. 5.9, forming as many pairs as baselines. The
signal-to-noise ratio for the visibility measurement for both options differs
only by a factor of

p
2, see (5.25) and (5.26).

In all cases, the visibility is determined for each baseline and an image is
formed by processing the visibilities, i.e. by aperture synthesis.

5.3 Multi-Aperture Combination: Direct Imaging

Direct imaging instead of visibility measurement is very appealing but it completely
depends on the ability to phase the telescope array, i.e. to ensure that the phase dif-
ferences between all apertures in the exit pupil are very small, ideally zero. This is
the equivalent of a single telescope with very small aberrations and, thus, a diffrac-
tion limited image. While this can be done in principle, it adds complexity to the
interferometer so that the seeming simplicity of direct imaging is gone.

Direct imaging is also substantially different from aperture synthesis since we
rely on the instantaneous interference of the amplitudes in the image plane to
provide the image intensity, while in aperture synthesis the image is formed by pro-
cessing the measured and calibrated visibilities, combining them in the uv-plane and
applying image reconstruction methods to obtain the image intensity as discussed
in Sect. 3.4.3.

The Fizeau configuration, in direct analogy to a masked telescope, provides a
straightforward direct imaging mode with large field of view, with the possibility of
processing the image intensity distribution instead of visibilities. Unless the inter-
ferometer array is completely and seamlessly filled with apertures, the resulting
point-spread function, which is the interference pattern of the ensemble of aper-
tures, consists of fringes and sidelobes with a narrow central core with a diameter
/ 1=Bmax. This interference pattern is enveloped by the PSF of an individual
telescope, with a diameter / 1=D, as displayed in Fig. 5.11.

For some applications, it is desirable to increase the intensity that goes into the
central core by reducing the intensity in the halo of sidelobes accordingly. The
Hypertelescope and the IRAN configuration provide methods to improve the peak
intensity albeit at the cost of field of view. These will be discussed in Sects. 5.3.2
and 5.3.3.
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Fig. 5.11 Profile of PSFma in Fizeau configuration withNT D 10 randomly distributed apertures.
The dashed line shows the Airy disk, PSFa , of an individual aperture in the exit pupil. The longest
baseline Bmax is about 10 times longer than the diameter D of an individual aperture so that the
core peak is about 10 times narrower than PSFa . The average intensity in the halo of sidelobes
around the core is proportional to NT while the peak intensity is proportional to N2

T , in this case
10 times larger

5.3.1 Fizeau Configuration

Combining several telescopes in Fizeau configuration, we develop the formalism by
expanding the two-telescope case discussed in Sect. 5.1.1 to many apertures.

Unlike in Michelson configuration, apertures and baselines are demagnified by
the same factor mp in order to obtain a downscaled image of the interferometer
array in the exit pupil. This is called homothetic mapping. Then, the multi-aperture
interferometer OTF in the exit pupil is the downscaled OTF of the telescopes array
displayed in Fig. 5.6, reading

OTFma.R/ D OTFa.R/

�
0

@NT •.R/C
NBX

jD1

�
•.R � RBj

/C •.R C RBj
/
�
1

A ; (5.27)

with RBj
D R0

B0j
=mb the baseline vectors in the exit pupil. In case of a partially

redundant configuration, the number of baselines NB would be reduced, and the
weight at the redundant baselines would be increased accordingly.

Similar to (5.21), we write the multi-aperture PSF in Fizeau configuration as

PSFma.˛/ D PSFa.˛/
�
NT C

NBX

jD1

�
ei2�RBj

�˛ C e�i2�RBj
�˛��

D PSFa.˛/
�
NT C

NBX

jD1
2 cos.2�RBj

� ˛/
�
: (5.28)
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Combining many telescopes, the point-spread function displays a narrow core
with diameters between �=.

p
2Bmax/ and �=Bmax, depending on the distribution

of telescopes. If the telescopes are distributed on a circle with diameter mpBmax,
the core is

p
2 times narrower than in case of a homogeneously filled circle with

diameter mpBmax (compare to Fig. 2.8). The envelope of the interference pattern
is given by PSFa the Airy disk of an individual aperture in the exit pupil with an
FWHM of �=D, as displayed in Fig. 5.11. If the telescopes are distributed on a
regular grid, the point-spread function has a regular distribution of peaks as will be
discussed in Sect. 5.4.

One should note that (5.28) describes the multi-aperture PSF for perfectly phased
apertures. In addition to requiring dynamic homothetic mapping of all apertures as
discussed at the end of Sect. 5.1.1, any kind of influence by atmospheric turbulence
or by instrumental effects, perturbing the plane wave, has to be corrected so that the
phase differences between the apertures in the exit pupil are minimised, ideally to
zero. Adding coherently the contributions from all perfectly phased apertures, the
intensity on axis, at j˛j D 0, is then / N 2

T . The intensity level in the halo, within
PSFa, is / NT � PSFa.˛/ modulated by the sum of cosine functions.

In case that the apertures are not perfectly phased, we have to add random phase
terms to all cosine functions, so that the peak intensity on axis does not add up toN 2

T

but to considerably smaller values, and the central core is possibly broadened. We
have the equivalent situation on a single telescope when the aberrations of the wave
front reduce the peak intensity of the point-spread function and eventually widen
the diffraction limited core.

In Fizeau configuration, we obtain the image intensity distribution as a convolu-
tion of the object brightness distributionOb.˛0/ with the shift-invariant interferom-
eter PSF, writing

I.˛/ D Ob.˛=mp/ �
�

PSFa.˛/
�
NT C

NBX

jD1
2 cos.2�RBj

� ˛/
��
; (5.29)

with ˛=mp D ˛0, and, accordingly, the baselines in the exit pupil mp times smaller
than the baselines in the entrance pupil, RBj

D R0
B0

j

=mp.

The Fourier transform of the image intensity provides the spectrum in the exit
pupil, OI .R/, as given by (5.4), now with the multi-aperture interferometer OTF
(5.27) as

OI .R/ D I0�.mpR/OTFma.R/

D I0�.mpR/ (5.30)

�
�

OTFa.R/ �
�
NT •.R/C

NBX

jD1

�
•.R � RBj

/C •.R C RBj
/
���

:
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If the large field of view is not exploited and the object brightness distribution is
smaller than PSFa, then the visibility function �.mpR/ is invariant over OTFa and
we can replace the product�.mpR/� OTFma by the products�.mpRBj

/ � •.RBj
/

inside the sum.
Using �.mpRBj

/ D �.R0
B0j /, the visibility is determined by the baseline vec-

tors R0
B0j in the interferometer array, the entrance pupil. Thus, the image intensity

spectrum contains the visibilities at the individual baselines in the array.
For large telescopes, and consequently a wide optical transfer function OTFa, the

visibility of an extended object varies over OTFa as discussed in Sect. 3.3.5. Then
we have to consider the shape of the visibility function inside all NB OTFa centred
at positions RBj

instead of processing a single value for each baseline. For the two
apertures of the LBT, this was discussed in detail in Sect. 3.4.1.

5.3.2 Hypertelescope

Labeyrie’s proposal [122] of a Hypertelescope is based on the idea of a densified
pupil, enlarging the individual apertures in the exit pupil of the interferometer so
that the enveloping Airy disk, PSFa, shrinks while the interference pattern, forming
the fringes and sidelobes, keeps its shape.

Starting from the Fizeau configuration (5.28), we write the PSF for an on-axis
object as

PSFma.˛/j˛0D0 D PSFa0.˛=mp/
�
NT C

NBX

jD1
2 cos.2�RBj

� ˛/
�
; (5.31)

with PSFa0.˛=mp/ D PSFa.˛/, the point-spread function of the aperture with diam-
eter D in the exit pupil. The demagnification factorsmp for the telescope apertures
and mb for the baselines define the diameter of the enveloping PSFa and of the dis-
tribution of baselines RBj

independently. For telescope diameter D0, we have an
aperture diameter of D D D0=mp in the exit pupil, and baselines R0

B0j
are down-

scaled in the exit pupil, with RBj
D R0

B0j
=mb. Figure 5.12 displays the impact of

differentmp on the interferometric PSF.
The central core of PSFa, the Airy disk of the individual aperture in the exit

pupil, has the diameter �=D, so that a smaller demagnification factor mp – leading
to a largerD – provides a narrower Airy disk.

We see from (5.31) that the interference pattern only depends on the distribution
of baselines RBj

, and that any modification of the pupil demagnification factor,mp,
affects the width of PSFa and, thus, the width of the envelope only.

As discussed for the Fizeau configuration and following from (5.31), the peak
intensity in the central core is / N 2

T , and the intensity level in the interference
pattern surrounding the peak is / NT . With a peak diameter of about �=Bmax, the
intensity in the central core is / N 2

T =B
2
max, and the integrated intensity in the halo is
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Fig. 5.12 Random distribution of apertures in the exit pupil on the left, and the resulting point-
spread functions on the right. The central core of the PSF is surrounded by a halo with irregular
fringes and sidelobes. The envelope of the interference pattern is given by the Airy disk of an
individual aperture. Doubling the diameter of the individual apertures decreases the enveloping
PSF and with it the diameter of the halo without affecting the distribution of sidelobes inside the
halo. Then, the central core obtains a larger share of the total intensity

/ NT =D
2 for a PSFa diameter of �=D. Assuming that the number of telescopes is

moderate, e.g. limited to 12 telescopes each 12 m in diameter, and if the maximum
baseline is 1 km, we find about 2/1,000 of the total intensity in the core of the PSF.

Enlarging the aperture diameter D in the exit pupil by decreasing mp, the frac-
tion of light in the central core increases quadratically, by NTD2=B2max. This is
illustrated in Fig. 5.12: Doubling the diameter of the individual apertures decreases
the diameter of PSFa by a factor of two so that the area containing the interference
pattern is reduced quadratically. Thus, the relative intensity of the central core is
increased by a factor of four.

We introduce a densification factor �d D mb=mp , with �d D 1 in case of a
Fizeau configuration when it is mp D mb , i.e. without densification of the pupil,
and with �d > 1 if the aperture diameter in the exit pupil is increased [122]. For
instance, doubling the aperture diameter in the exit pupil with respect to the Fizeau
configuration, it is mp D mb=2 and �d D 2, so that the fraction of light in the core
is increased by �2

d
D 4 compared to the Fizeau configuration. We call this increase
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the gain, g, with

ghype D �2d D
�
mb

mp

�2
: (5.32)

As discussed for the Michelson configuration in Sect. 5.1.2, the object-image
relationship cannot be described by a convolution if the telescope array is not
mapped homothetically into the exit pupil. A densified pupil, when the telescope
apertures are downscaled by a factor mp that is different from the demagnification
factor mb of the baselines, has to be described by the formalism of the Michelson
configuration.

We adopt (5.5) for the case of a densified pupil by writing the position dependent
point-spread function as

PSFhype.˛;˛
0/ D PSFa

�
˛ �mp˛0�

�
�
NT C

NBX

jD1
2 cos.2�RBj

� .˛ �mb˛
0//
�
: (5.33)

For an object at ˛0
0, PSFa is centred at ˛0;p D mp˛0

0 and the sum of cosine func-
tions forming the narrow core of the interference pattern is centred at ˛0;b D mb˛

0
0

as discussed for Michelson configuration in (5.12) and as displayed in Fig. 5.13.
This means in particular that the peak intensity of the central core is reduced by the
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Fig. 5.13 Profile of the image intensity distribution of a binary star with separation ˛0

0 in Fizeau
configuration (left) and with a four-fold densified pupil (right) withNT D 10 randomly distributed
apertures using (5.33). The dashed line shows the point-spread function, PSFa , of an individual
aperture in the exit pupil. In Fizeau configuration with mp D mb (left), the PSF is shift-invariant,
and the peaks of PSFa and of the interference pattern are at the same position for each component
of the binary. With a pupil densification of �d D mb=mp > 1 (right), PSFa is narrower and has
its peak at a different position than the interference pattern when moving off-axis (compare to
Fig. 5.2). As a consequence, the peak intensity of the interference pattern of the component at ˛0

0

is reduced
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multiplication with PSFa by the value of PSFa.mb˛0
0 � mp˛0

0/ D PSFa0.�d˛0
0 �

˛0
0/ 	 PSFa0.�d˛0

0/ for strong densification �d � 1.
For circular apertures, PSFa0 is given by a Besinc function with an FWHM of

�=D0. Thus, for ˛0
0 D 1

2
�=.�dD

0/ off-axis, the peak intensity is at half of its
on-axis value. Assuming a pupil densification of �d D 10 and 8-m telescopes in
the K-band, we find that the peak intensity is reduced to half its value if the object
in the sky is 2.8 mas off-axis.

The restriction of the field of view is identical to that in Michelson configuration
discussed in Sect. 5.1.2, when it was requested (5.8) that the field of view is limited
to ˛0

max � �=.mbD
0=mp/ D �=.�dD

0/.
We write the image intensity distribution for small objects as a convolution of the

object brightness distributionOb.˛0/ with the interference pattern,

I.˛/ D PSFa.˛/

�Ob.˛=mb/ � �NT C
NBX

jD1
2 cos.2�RBj

� ˛/
�
: (5.34)

The image formation can be discussed as well as a function of the object coordinate
˛0 in the sky [4].

Observing with polychromatic light in Michelson configuration leads to a fur-
ther reduction of the field of view, down to the width of the fringe package, lc=B 0,
(5.12). Determining visibilities, we relied on an overlap of the central part of the
fringe package for all objects in the (very small) field of view, so that the visibility
of the common fringe pattern was determined by the object shape.

Here, in the case of a Hypertelescope, the imaging process is barely affected
since, processing the image intensity distribution, the overlap of the interference
patterns is of no interest. Each object point forms an interference pattern with narrow
core, the ensemble of which forming the image. The only effect of polychromatic
light is its influence on the diameter, / �=Bmax, of the core, and the smearing of
the sidelobes in the halo, as given by PSFhype in (5.31) when using a finite spectral
bandwidth.

The densification of the pupil is only one aspect of the Hypertelescope and
of direct imaging in general. The other important aspect is the distribution of
the telescopes in the array. Using a regular grid for the telescope positions pro-
vides point-spread functions with interesting characteristics as will be discussed in
Sect. 5.4.

5.3.3 Interferometric Remapped Array Nulling: IRAN

Starting from masked apertures, the formation of the intensity distribution in the
image plane was an intuitively comprehensible process, displaying fringes or, as we
saw in the preceding sections, a point-spread function with a narrow central core.



250 5 Instrumental Techniques

fx = x/l

z

fz = z/l

x = fx l

F2

fx, p1fx, p2

bz'

bx'

x' =  b F2

F2F1F1

L1

Exit Pupil Reimaged Pupil

spatial coordinates:

L2

D

x = a F1

ax

ay

Image Plane

Fig. 5.14 The geometry of the imaging process in IRAN configuration for two telescopes. The exit
pupil is in the front focal plane of two lenses L1 with focal length F1, centred on each individual
aperture with diameter D. They form point-spread functions in the image plane with separation
and orientation exactly like the apertures in the exit pupil. The lens L2 with focal length F2 is
placed such that the image plane is in its front focal plane, and the reimaged pupil plane at distance
F2 behind the image plane so that an image of the exit pupil forms at distance F2 behind the lens.
Due to the process of forming individual PSF in the image plane – instead of a single PSF with
fringes – all sub-apertures are superposed in the reimaged pupil plane forming a single image of
the aperture with fringes

The fascinating idea of F. Vakili [245] to form an image in the pupil plane of
an interferometer takes more imagination to grasp, but we will see that it can be
explained in a formally similar way to other direct imaging methods.

The idea is based on forming individual images behind each aperture in the exit
pupil, so that the image plane is filled with point-spread functions that show the
same distribution as the apertures in the exit pupil (see Fig. 5.14). Adding a large
lens behind the image plane, all apertures are reimaged in one common position.

Starting with two apertures and a point source at infinity as in Fig. 5.14, we write
the aperture in the exit pupil as the sum of individual aperture functions – circular
apertures with diameter D – at positions �p1 and �p1. Using spatial frequencies
in the pupil plane, with f � D �=�, we express the sum as a convolution of the
individual aperture function a.f �/ with •-functions at spatial frequency positions
f �;pj

D �pj
=�,

A.f �/ D a.f �/ � �•.f � � f �;p1/C •.f � � f �;p2/
�
: (5.35)

Individual images form behind each of the lenses L1, and we denote the ampli-
tudes of individual point-spread functions on the individual optical axes by aPSF.˛/.
Using (2.23), the aperture in the exit pupil, a.f �/, in the front focal plane of
the lenses and aPSF.˛/ in the back focal plane are connected through a Fourier
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transform,

aPSF.˛/ D �

iF1

Z
a.f �/e

�i2�f� �˛ df � ; (5.36)

omitting the factor �=.iF1/ in the following.
The amplitude V.˛/ of the propagating wave in the image plane is now the sum

of all aPSF.˛/, multiplied by the constant amplitude V0 of the incoming plane wave
(see Sect. 3.1), reading

V.˛/ D V0 aPSF.˛/ � �•.˛ � ˛p1/C •.˛ � ˛p2/
�
: (5.37)

It is ˛pj D f �;pj�=F1 the position of the PSF in the image plane so that the
spatial coordinates, ˛pjF1, of the PSF in the image plane and those, f �;pj�, of the
apertures in the exit pupil are identical.

Placing the ensemble of point-spread functions in the front focal plane of a large
lens, we find the amplitude in its back focal plane as the Fourier transform of V.˛/.
Since, eventually, we want to measure polychromatic intensities in the reimaged
pupil plane, the spatial frequency f 0

�
is a bad choice as a coordinate because the

shape of the aperture function and of the intensity would then be wavelength depen-
dent as discussed in Sect. 3.1. With the spatial coordinate �0 D f 0

�
� in the reimaged

pupil, we introduce the angle coordinate ˇ D �0=F2, obtaining

V.ˇ/ D V0 a.ˇ/ �
�

e�i2�f�;p1�ˇ C e�i2�f�;p2 �ˇ
�
; (5.38)

when the convolution of aPSF.˛/ with the •-functions in (5.37) becomes a multi-
plication of the reimaged aperture function a.ˇ/ with exponential functions. The
diameter of the reimaged aperture isDF2=F1, which, expressed as angular coordi-
nate, is Ď D D=F1. For F1 D F2, the diameter is identical to the aperture diameter
in the exit pupil.

The intensity in the reimaged pupil plane is the modulus squared of the ampli-
tude, yielding

I.ˇ/ D V 20 ja.ˇ/j2 ˇˇe�i2�f�;p1�ˇ C e�i2�f�;p2 �ˇˇˇ2

D V 20 ja.ˇ/j2
�
2C ei2�RB �ˇ C e�i2�RB �ˇ

�

D V 20 ja.ˇ/j2 2�1C cos.2�RB � ˇ/
�
; (5.39)

with RB D f �;p1 � f �;p2 the baseline vector.
Thus, reimaging the individual apertures on top of each other, the wave fronts

interfere under slightly different angles, f �;p1�=F2 and f �;p2�=F2, forming the
familiar fringe pattern / 1C cos.:/. Here the fringe pattern is confined to ja.ˇ/j2,
which has the same shape as the aperture itself, ja.ˇ/j2 D ja.ˇ/j, independent of
telescope aberrations.
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Comparing the result in (5.39) to that of two apertures forming fringes in the
image plane (3.53), we found the same fringe pattern with fringe spacing 1=RB , but
the envelope was the Airy disk of an individual aperture while it is the aperture
function in (5.39). Thus, the Fourier transform of two separate apertures form-
ing fringes in the image plane has been replaced by the Fourier transform of two
separate point-spread functions forming fringes in the reimaged pupil plane.

Off-Axis Object

If we regard a point source at angular position ˛0 instead of on-axis, the ensemble
of point-spread functions in the image plane is shifted accordingly, but the baseline
and the spacing of the fringe pattern in the reimaged pupil plane do not change.

We have to consider the off-axis object position and the subsequently tilted plane
wave by adding a phase term in the exit pupil,

A˛0
.f �/ D A.f �/e

i2�˛0�f� : (5.40)

This transforms into a shift of ˛0 of all point-spread functions in the image plane,
and into phase delays 2�˛0 � f �;pj at each position ˛pj D f �;pj�=F1, reading

V˛0
.˛/ D V0 aPSF.˛/ (5.41)

�
�
•.˛ � ˛0 � ˛p1/ei2�˛0�f�;p1 C •.˛ � ˛0 � ˛p2/ei2�˛0�f�;p1

�
:

Now, the Fourier transform into the reimaged pupil plane yields

V.ˇ; ˛0/ D V0 a.ˇ/ ei2�˛0 �ˇF1=�
�

ei2�f�;p1 �.ˇ�˛0/ C ei2�f�;p2 �.ˇ�˛0/
�
; (5.42)

when the phase delays of the point-spread functions convert into a simple linear
shift of the exponential functions by ˛0. The shift of the ensemble of PSF creates
the overall phase delay 2�˛0 � ˇF1=� in the reimaged pupil plane – describing a
tilted plane wave – that is identical to that in the exit pupil if F1 D F2.

Computing the intensity in the reimaged pupil plane, this overall phase term
disappears, obtaining

I.ˇ;˛0/ D V 20 ja.ˇ/j2 2�1C cos.2�RB � .ˇ � ˛0/
�
: (5.43)

Thus, the fringe pattern in the reimaged pupil plane is shifted by ˛0 , exactly like
the fringe pattern in an image plane when combining two apertures. If the baselines
in the interferometer array are downscaled by a factor mb, the angular position ˛0

0

in the sky converts into a shift of the fringe pattern by ˛0 D mb˛
0
0.

The shift by mb˛0
0 is due to the phase delays, exp.i2�˛0 � f �;p1/, of the point-

spread functions in (5.41). The actual phase delay that we have to consider is
determined by the product ˛0

0 � f 0
�;p1

in the entrance pupil. Using the coordinates
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in the exit pupil we find ˛0
0 � f 0

�;p1
mb=mb D mb˛

0
0 � f �;p1 so that ˛0 is replaced

by mb˛0
0. A similar argument lead to the shift of the fringe pattern in Michelson

configuration (5.5).
The envelope of the fringe pattern is given by the individual aperture function

ja.ˇ/j2 with diameter Ď D D=F1. If the telescope apertures are downscaled by
mp, the diameter of the apertures in the exit pupil is D D D0=mp, and that of
ja.ˇ/j2 in the reimaged pupil plane is Ď D D0=.mpF1/.

Multi-Aperture Combination

The combination of NT apertures is now straightforward, describing the exit pupil
as the sum of •-functions

A.f �/ D a.f �/ �
NTX

jD1
•.f � � f �;pj

/;

and the distribution of PSF amplitudes in the image plane by

V.˛/ D V0 aPSF.˛/ �
NTX

jD1
•
�
˛ � ˛pj

�
:

In the reimaged pupil plane we find the amplitude as Fourier transform of V.˛/ as

V.ˇ/ D V0 a.ˇ/ �
NTX

jD1
ei2�f�;pj

�ˇ
:

The intensity distribution is the modulus squared of V.ˇ/ when the sum over allNT
apertures is replaced by the sum over all NB baselines as in (5.27), reading

I.ˇ/ D V 20 ja.ˇ/j2
�
NT C

NBX

jD1
2 cos.2�RBj

� ˇ/
�
: (5.44)

We have the sum of a constant term, NT , and of the sum of cosine functions
exactly like in (5.28) at the beginning of this section when discussing the point-
spread function in Fizeau configuration. There, the shape of the PSF of many
randomly distributed apertures displayed an irregular distribution of fringes and
sidelobes with a narrow core that is created by the sum of cosine functions, and
the PSF of an individual aperture as an envelope.

For the IRAN configuration in (5.44), we find precisely the same distribution with
a narrow core, now inside an envelope that is given by ja.ˇ/j2 the reimaged aper-
ture function. This intensity distribution can, thus, be regarded as the point-spread
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function of the system, since it is the response of the system to a point source. The
only difference to the Fizeau configuration is that the IRAN PSF is a function of ˇ,
the angle coordinate in the reimaged pupil plane.

We now use the general object coordinate ˛0 in the sky, and we assume the case
that apertures and baselines are downscaled bymp andmb , respectively. Using (3.3),
the PSF in IRAN configuration is introduced by dividing the intensity distribution
by V 20 , yielding

PSFIRAN.ˇ;˛
0/ D ja.ˇ/j2

�
NT C

NBX

jD1
2 cos.2�RBj

� .ˇ �mb˛
0//
�
: (5.45)

Therefore, the angle coordinate ˇ can be regarded as an image coordinate, mapping
each point in the sky onto the position mb˛0.

In contrast to the PSF in Fizeau configuration, (5.28), and to the PSF of the
Hypertelescope, (5.33), we have an envelope function ja.ˇ/j2 with a diameter of
Ď D D0=.mpF1/ that is independent of wavelength and object position, but that

depends on the pupil demagnification factor mp and on the focal length F1 of the
pupil reimaging system displayed in Fig. 5.14. Thus, the primary beam has the shape
of the aperture function. Using an aperture with central obscuration would obviously
create zero intensity in the center of the reimaged aperture but, moving the object
off-axis, would not change the general principle of the method.

For a numerical example, we assume an observing wavelength of � D 2:2 
m,
a maximum baseline of B 0

max D 130m and an aperture diameter of D0 D 8m.
Downscaling the array bymb D 2;000 and the aperture bymp D 8;000, it isBmax D
65mm andD D 1mm in the exit pupil. For the reimaging system we choose F1 D
2:4m, so that the diameter of the narrow core is �=Bmax D 7 arcsec and the diameter
of the envelope ja.ˇ/j2 is D=F1 D 86 arcsec, i.e. 12.3 times wider than the core.
This situation is displayed in Fig. 5.15.

The imaging process is now described by the convolution of the object brightness
distributionOb.˛0/ with PSFIRAN as

I.ˇ/ D Ob.˛
0/ � PSFIRAN.ˇ; ˛

0/

D ja.ˇ/j2 �
�
Ob.ˇ=mb/ � �NT C

NBX

jD1
2 cos.2�RBj

� ˇ/
��
: (5.46)

The convolution holds inside the envelope of diameter D=F1. Thus, an increase
of the aperture diameter in the exit pupil increases the field of view, while for the
Hypertelescope the enveloping PSFa, (5.33), shrinks with increasing aperture diam-
eter. However, the idea behind the IRAN concept was not to have a large field of
view – this is provided in Fizeau configuration already – but to increase the intensity
in the central core as for the Hypertelescope.

We find an increase of the intensity in the central core compared to the Fizeau
configuration if the size D=F1 D D0=.mpF1/ of the envelope ja.ˇ/j2 is smaller
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Fig. 5.15 Profile of PSFIRAN, (5.45), with NT D 10 randomly distributed apertures. The dashed
line shows the envelope, ja.ˇ/j2, which is the reimaged aperture of width Ď D D=F1. The longest
baseline Bmax determines the width of the narrow central core, which in this case is 12.5 times
narrower than the envelope. The average intensity in the halo of sidelobes around the core is propor-
tional toNT while the peak intensity is proportional toN2

T , in this case 10 times larger. This figure
should be compared to Figs. 5.11 and 5.13 for Fizeau configuration and for the Hypertelescope

than the equivalent width �=D of the Airy disk which is the envelope in Fizeau
configuration [127]. Considering, that in Fizeau configuration, pupil and baselines
are downscaled by the same factormp D mb, we write the width of the Airy disk as
�mb=D

0. The gain of the peak intensity of the IRAN over the Fizeau configuration
is determined by the area of the envelope functions and we obtain

gIRAN D
�

�mb=D
0

D0=.mpF1/

�2
D
�
mbmp�F1

D02

�2
: (5.47)

For the numerical example above that is displayed in Fig. 5.15 the gain is 1.75,
since for the chosen parameter set, the equivalent width �=D of the PSF is about
30% wider than the aperture diameter D=F1. Modifying the parameters in (5.47)
one can adjust the instrumental setup for the needs of the particular observing
situation.

Before we will investigate the characteristics of the PSF when the telescopes are
distributed on a regular grid in Sect. 5.4, we finish this section by discussing the
optical transfer function of the IRAN configuration.

NB 9. Despite the fact that we do not have an image plane in the classical sense of
geometrical optics, we can define an optical transfer function as the Fourier trans-
form of the point-spread function PSFIRAN (5.45). The coordinate of this optical
transfer function is the spatial frequency R since OTFIRAN describes the spatial
frequency content of the point-spread function. We formally set ˛0 D 0 in (5.45)
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since we restrict the field of view to the diameter D=F1 of the aperture function
when the PSF is shift invariant.

OTFIRAN as Fourier transform of PSFIRAN is then the convolution of the Fourier
transform of ja.ˇ/j2 with the Fourier transform of the sum of cosine functions,
which is the sum of •-peaks. Considering that ja.ˇ/j2 D ja.ˇ/j is the aperture
function of an individual telescope, its Fourier transform is the amplitude of the
PSF of the individual aperture, aPSF, so that we have replica of aPSF at all RBj

, as
displayed in Fig. 5.16, writing

OTFIRAN.R/ D aPSF.R/

�
0

@NT •.R/C
NBX

jD1

�
•.R � RBj

/C •.R C RBj
/
�
1

A: (5.48)

Restricting the field of view to D=F1 is equivalent to having a visibility function
that is invariant over aPSF.R/ so that in the image intensity spectrum the indi-
vidual •-peaks in OTFIRAN are multiplied by �.mbRBj

/ similar to the Michelson
configuration (5.23).

However, increasing the field of view by using a very large aperture D, we find
that aPSF.R/ is a very narrow function so that eventually, the OTF is described in
good approximation by the sum of •-functions. One would obtain exactly the same
OTF in a standard interferometric setup if the aperture array consisted of pinholes.

As displayed in Fig. 5.6, the interferometer OTF in Fizeau configuration con-
sists of replica of optical transfer functions, OTFa, of the individual apertures. The

RBj
−RBj

OTFIRAN(R)

aPSF(R)

Fig. 5.16 Multi-aperture OTF for six randomly distributed telescopes in IRAN configuration,
composed of replica of the PSF amplitude aPSF. In the image intensity spectrum, each PSF
amplitude is multiplied by the appropriate visibility function, �.RBj /
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PSF of this array displays an interference pattern with a narrow central core and
with a rather narrow envelope, PSFa, increasing the relative intensity in the central
core for larger apertures. A narrow envelope reduces the background in the image
and helps to reduce the confusion when imaging complex objects. This can also be
interpreted as due to the increasing number of visibility values inside the wider
OTFa for larger apertures.

In the IRAN configuration with large apertures, we have a very wide envelope,
but we have the same interference pattern with a narrow central core since the
latter is determined by the distribution of the •-functions only. The relative intensity
in the central core is lower than in the Fizeau configuration, and the background
level in the image is higher so that the image has a higher degree of confusion and a
lower content of information. The latter is related to the form of OTFIRAN permitting
only a single visibility values at each frequency RBj

independent of the size of the
aperture.

Thus, the peculiar imaging process with reversed roles of image and pupil plane
leads to inverse effects when increasing the aperture size and the field of view.

However, both the Hypertelescope and the IRAN configuration were not devel-
oped for large fields of view but for rather small fields with well defined properties.

5.3.4 Nulling Interferometer

The basic principle of the Nulling interferometer is very simple, introducing an
achromatic phase shift of � in one of the two arms of an interferometer so that the
fringe pattern of an on-axis object has a “black” instead of a bright fringe on-axis.
Thus, the fringe pattern is inverted.

R. Bracewell suggested this observing mode for the specific purpose of searching
for extra-solar planets [20] when it is required to detect extremely faint objects in
the immediate vicinity of a star. The contrast ratio between planet and parent star is
as low as 10�6–10�10, depending on wavelength [23], and the angular separation is
about 100 mas for Earth-like planets around nearby stars.

How does the inversion of the fringe pattern help us detecting a faint planet? In
the monochromatic case, the fringe pattern is just shifted by half a fringe period
and the characteristics are the same as without a phase shift. We have to regard
observations in polychromatic light to see the effect, as illustrated in Fig. 5.17 for
two telescopes. We assume that the telescope diameter is very small compared to
the baseline so that the enveloping point-spread function, PSFa, is rather wide and
does not affect the fringe pattern of the central fringes.

Combining the light in the standard way, i.e. without explicit phase shifts in the
interferometer arms, the fringe pattern of the on-axis point source has a bright fringe
on axis at ˛ D 0 (see for instance Fig. 2.3). The first minima are at 1=.2RB/ D
�=.2B/ so that for a spectral band like theK-band with �0=�� D 5:5 the positions
of the minima vary by ˙10% and the resulting polychromatic fringe (shown as a
black line) does not go down to zero intensity.
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Fig. 5.17 Principle of the Nulling interferometer for two telescopes. On the left, the polychromatic
PSF for an on-axis source as in Fig. 2.3 is displayed. In this example, five monochromatic fringes
add up to the polychromatic PSF (in black) with diminishing contrast. In addition, one can see the
PSF of an off-axis point source at ˛0 with 1/30 of the intensity of the on-axis source. The baseline
is chosen such that the white-light fringe of the off-axis source at position ˛0 is exactly at the
position of the first minimum of the on-axis object. On the right, applying an achromatic phase
shift of � in one of the interferometer arms, the on-axis point source produces a PSF with null
intensity for all wavelengths at position ˛ D 0. The off-axis object displays an achromatic null at
˛0 but its first maximum is now at ˛ D 0

Writing the intensity in the first minimum at ˛min D �0=.2B/ as

I.˛min/ D 2 I0
�
1C cos.2�RB � ˛min/

�D 2 I0
�
1C cos.��0=�/

�

/ �2

4

.�0 � �/2

�2
;

we compute the integrated polychromatic intensity in the first minimum for small
�� as about �

2

48
.��=�0/

2. Then, for the K-band the minimum intensity is about
1/140 of the intensity of the white-light fringe.

A point-source with 1/30 of the intensity of the on-axis source is also displayed
in Fig. 5.17. The position of the off-axis source is chosen to be exactly at the first
minimum of the fringe pattern of the on-axis source so that for our example of the
K-band, the maximum of the fringe pattern of the faint object is still five times
larger than the minimum of the on-axis source, but it is obvious that planets that are
many orders of magnitude fainter than their parent star cannot be detected like this.

Introducing the achromatic phase shift of � in one arm, there is an achromatic
null in the intensity distribution of an on-axis source at ˛ D 0. Consequently, the
off-axis source displays a null at position ˛0 but the first maximum of its fringe
pattern is now visible at ˛ D 0 as displayed in Fig. 5.17.
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We write the point-spread function, the fringe pattern of an on-axis point source,
in the Nulling interferometer as

PSFnull.˛/ D 2
�
1C cos.2�RB � ˛ � �/

�

D 2
�
1 � cos.2�RB � ˛/

�
; (5.49)

using PSFa.˛/ 	 1, since we assume that the individual apertures are small
compared to the baseline.

For a point source at position ˛0 we find

I.˛/j˛0
D I0•.˛ � ˛0/ � PSFnull.˛/

D 2 I0
�
1 � cos.2�RB � .˛ � ˛0/

�
: (5.50)

Thus, a source at position ˛0 D �=.2B/ has a fringe pattern with its first maximum
at ˛ D 0 as displayed in Fig. 5.17. In the ideal case, the light from the star is
completely extinguished on axis and we can detect the faint planet. One should note
that the baseline is a free parameter and we can choose it such that the angular
distance of the planet is such that its first maximum is on axis.

The position of the maximum, �=.2B/, is wavelength dependent so that the
polychromatic intensity at ˛ D 0 is slightly reduced. However, the detectability
of the faint source is not affected by this slight reduction of the intensity since it is
negligible compared to the advantage of completely extinguishing the star light.

Sometimes, the intensity in (5.50) at ˛ D 0 is written as a function of the off-axis
source position ˛0, called the transmission map of the Nulling interferometer since
we are primarily interested in the signal that an off-axis source provides when the
on-axis source is extinguished. It is easy to see that I.0/˛0

is identical to PSFnull.˛0/

in (5.49).
Searching for planets around nearby stars, the stars have an extension of several

milliarcseconds. Given that the expected angular distance of Earth-like planets is
some 100 mas, we need a baseline of 10 m when observing at a wavelength of 10
m
in order to place the planet at the first maximum of the star’s fringe pattern, as in
Fig. 5.17. If we approximate the transmission map of the Nulling interferometer,
normalized to unity, for small ˛0 by

Irel;null.˛0/ D 1

2

�
1 � cos.2�RB � ˛0/

� 	 �2
jBj2
�2

j˛0j2; (5.51)

we find that, integrating over the stellar disk, about Irel;null.˛0/=4 	 6 � 10�5 of
the light from the star with 1 mas radius leaks through. Although this signal is likely
larger than the planet’s signal, the calibration of the interferometer should help since
the signal is deterministic [2].

Considering that the product j˛0jjBj in (5.51) describes the OPD between the
beams, we find that OPD variations at the nm level cause a leak of about 10�7.
This gives an impression to which level of accuracy other random error sources
– OPD variations due to vibrations or due to atmospheric turbulence, polarization
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effects with different OPD for s and p polarization, to name a few – have to be
controlled in order to obtain a sufficient rejection of the star light [135]. The best
experimental results achieved to date in the laboratory show a null of about 10�5 in
the mid-infrared at 10
m with a bandwidth of about 4
m [77, 183].

The signal detection can be improved by rotating the interferometer around the
line-of sight, with the star on axis, so that the intensity at ˛ D 0 oscillates between
a maximum when ˛0 is parallel to RB and a minimum of zero when the vectors
are orthogonal. Note that for a rotation frequency of !, the signal from the planet
oscillates at 2!. This was already suggested by Bracewell in his original paper [20]
for an interferometer in space.

Combining more than two telescopes, the transmission map can be made wider,
for instance proportional to j˛0j4 [5], so that the leaks are smaller, but at the price of
increasing the number of optical components and paths to be controlled. Choosing
an odd number of telescopes, one can distinguish in the oscillating signal the con-
tribution by the planet on one side of the star – hence, an asymmetric component –
from the contribution by symmetric components like zodiacal light, since the signal
of the latter oscillates at twice the frequency of that of the planet [137].

Coronagraphy

Apart from applying interferometric techniques to the planet search, there is a
wealth of concepts for coronagraphic methods on single telescopes [91] rejecting
the star light by placing aperture masks for amplitude or phase in the image or in the
pupil plane. One concept, the achromatic interference coronagraph [78] combines
interferometry with single telescope observations by splitting the light from a single
telescope into two interferometric arms when in one arm an achromatic phase shift
of � is performed by passing through an intermediate focus (see also Sect. 2.2.3).

Having started this section with questions of the visibility in Michelson config-
uration, we are now at the other extreme, trying to detect the signal in the image
intensity distribution that signifies an extra-solar planet. Thus, combining light from
separate telescope interferometrically opens many possibilities not necessarily lim-
ited to improved angular resolution but also enhancing the detectability of faint
sources.

Direct Imaging: Summary

We call NT the number of telescopes in the array and NB the number of
baselines with NB D NT .NT � 1/=2 if the distribution of telescopes is non-
redundant.

In Fizeau configuration, we obtain the image intensity distribution as a con-
volution of the object brightness distribution Ob.˛0/ with the shift-invariant
interferometer PSF, writing
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I.˛/ D Ob.˛=mp/ �
�

PSFa.˛/
�
NT C

NBX

jD1
2 cos.2�RBj

� ˛/
��
; (5.29)

with ˛=mp D ˛0, and, accordingly, the baselines in the exit pupil mp times
smaller than the baselines in the entrance pupil, RBj

D R0
B0j =mp. Down-

scaling apertures and baselines by the same factor mp ensures homothetic
mapping.

For a large number of baselines (10 and more), the interferometer PSF
consists of a narrow central core with diameter 1=RBmax that is surrounded
by a halo of fringes and sidelobes. The envelope of the interference pattern is
given by the Airy disk of an individual aperture in the exit pupil, PSFa, the
primary beam, with an FWHM of �=D. The field of view is limited by the
optical design of the telescope only.

A. Labeyrie pursued the idea of a densified pupil when the baselines
and the individual apertures are not reimaged homothetically but when the
apertures are relatively larger than in the entrance pupil [122]. In this Hyperte-
lescope, we have the same interference pattern as in the Fizeau configuration
but the enveloping PSF is much narrower. The price to pay is the restric-
tion of the field of view, which is identical to that in Michelson configuration
discussed in Sect. 5.1.2. We call mb the demagnification factor of the base-
lines and mp that of the apertures obtaining the maximum field of view as
˛0

max � �=.mbD
0=mp/ D �=.�dD

0/, when �d D mb=mp is the densification
factor.

We have to use the small object approximation to write the image intensity
distribution as a convolution of the object brightness distributionOb.˛0/ with
the interference pattern,

I.˛/ D PSFa.˛/
�
Ob.˛=mb/ � �NT C

NBX

jD1
2 cos.2�RBj

� ˛/
��
: (5.34)

Due to the multiplication with PSFa, the peak intensity of the central core is
reduced for off-axis objects. For instance an 8-m telescope and a pupil densi-
fication of �d D 10 show a reduction in peak intensity by a factor of two for
an object at 2.8 mas off-axis.

Unlike all other combination schemes forming an interference pattern in
the image plane, the IRAN configuration provides an image in the pupil plane.
This idea of F. Vakili [245] is based on forming individual images directly
behind each aperture in the exit pupil, maintaining the distribution of the
apertures (see Fig. 5.14). Adding a large lens behind the image plane, all
apertures are reimaged in one common position and an interference pattern
forms inside the reimaged aperture. The distribution of fringes and sidelobes
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in the interference pattern is the same as in Fizeau configuration and in the
Hypertelescope but the envelope now has the rectangular form of the aperture
function.

The angle coordinate ˇ in the pupil plane is related to the angle coordinate
in the sky by ˛0 D ˇ=mb, and to the physical coordinate by �0 D ˇf , with f
the focal length of the lens reimaging the apertures in one common image.

The imaging process is now described by the convolution of the object
brightness distributionOb.˛0/ with PSFIRAN (5.45) as

I.ˇ/ D ja.ˇ/j2 �
�
Ob.ˇ=mb/ � �NT C

NBX

jD1
2 cos.2�RBj

� ˇ/
��
: (5.46)

The distribution of fringes and sidelobes in the interference pattern is the same
as in Fizeau configuration (5.24) and in the Hypertelescope (5.34) but the
envelope now has the rectangular form of the aperture function.

The limit on the field of view imposed by the aperture diameter is
comparable to the limit in the Hypertelescope.

The Nulling interferometer is a specialised facility to detect the very faint
(10�6–10�10) signal of an extra-solar planet, or any faint source, in the imme-
diate vicinity (about 100 mas) of its parent star. It is based on inverting the
fringe pattern by introducing an achromatic phase shift of � in one of the
interferometer arms, producing an achromatic null instead of a bright fringe
on axis. Choosing the baseline such that half of the fringe spacing corresponds
to the angular separation of the planet, we find the first maximum of the planet
in the null of the bright star.

One can write the image intensity on axis as a function of the angular coor-
dinate ˛0 of the planet, also called the transmission map of a two-telescope
Nulling interferometer as

Irel;null.˛0/ D 1

2

�
1 � cos.2�RB � ˛0/

� 	 �2
jBj2
�2

j˛0j2: (5.51)

Given that nearby stars have an angular diameter of a few milliarcseconds, we
find that the star is not completely extinguished but that – using a wavelength
of 10
m and baseline of 10 m – about 6 � 10�5 of its light leaks through.
While this deterministic leak can be calibrated, other random errors cannot
and have to be controlled so that the subsequent residual OPD are at the nm
level.

Using more than two telescopes, the transmission map can be made wider
(proportional to j˛0j4) so that the leaks are smaller, but at the price of
increasing the number of optical components and paths to be controlled.
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5.4 Layout of Interferometer Arrays

The design of interferometer arrays is driven by the available number of telescopes,
and by the preference either for high angular resolution, preferring long baselines,
or for a dense coverage of the uv-plane, preferring a more densely populated array.
While a diluted array with long baselines has a point-spread function with a narrow
core and a large number of fringes and sidelobes, a densely populated array has
fewer sidelobes, making it easier to observe complex objects.

We will distinguish the two cases of many and of few apertures, when the divid-
ing line is at about ten apertures. Here, few apertures means a sparsely populated
array, i.e. rather small telescopes on rather long baselines. The number of telescopes
has an impact on the beam combination scheme, and we will give examples of direct
imaging for the case of many apertures. With few apertures, instantaneous direct
imaging is not the preferred solution and the rotation of the Earth is exploited to
improve the uv-plane coverage with observations over several hours, as discussed
in Sect. 3.4.2.

5.4.1 Many Apertures

In radio interferometry when usually many apertures are available, a lot of research
in the last decades went into determining the optimal configuration providing the
best uv-plane coverage for a given number of telescopes [104]. We will summarise
the main results and compare them to the situation in optical interferometry.

Uniformly Filling the uv-Plane

One goal of the optimisation procedure is to fill the uv-plane uniformly without
redundant baselines. In one of the first studies by M. Golay in 1970 [86] an iterative
method was used to build up the number of apertures. The result was an apparently
irregular distribution of apertures in the array, but a regular periodic grid – either
square or hexagonal – of points in the uv-plane. The problem with a periodic grid
is that its Fourier transform, the PSF, is a periodic distribution of peaks as well,
each peak representing the Fourier transform of the overall support of the array (see
Appendix A.1). In addition, an image with this type of PSF consists of replica of
the object at each peak in the grid due to the convolution of the object brightness
distribution with the PSF. In Fig. 5.18, an example of an interferometer array with
periodic but non-uniform coverage of the uv-plane is displayed that – despite the
lack of uniformity – illustrates the impact of a periodic grid on the PSF. If we denote
by Bmin the grid period in the uv-plane, which is the shortest baseline in the array,
we find the object replica spaced by �=Bmin. With this kind of regular repetition of
the object in the image plane, the unambiguous field of view is limited to �=Bmin,
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interferometer array uv-plane image plane

Fig. 5.18 Example of an interferometer array of 22 telescopes with non-redundant baselines. The
periodic grid in the uv-plane with grid constant Bmin, the shortest baseline, converts into a periodic
grid in the PSF with grid constant �=Bmin. Computing the image of a model galaxy we find replica
at each peak as displayed on the right. The envelope of the image intensity distribution is given by
the Airy disk of an individual telescope, the primary beam (Courtesy C. Aime [4])

sometimes called the clean field of view [127], so that the replica of the objects are
clearly separated.

It should be noted that the clean field of view depends entirely on the distribution
of points in the uv-plane. In case of a random instead of a periodic uv-plane coverage
as discussed in Sect. 5.3, we find random sidelobes in the PSF (see Fig. 5.12) that
would add to random noise but not to an identifiable replica of the object.

Optimising the distribution of telescopes in the array by employing numerical
methods, the optimisation procedure showed a tendency to place the telescopes on
regular geometric curves, either on the perimeter of a circle, T.J. Cornwell [44], or
of a Reuleaux triangle, which is a triangle with rounded sides, E. Keto [113]. The
regularity of the distribution of telescopes transforms into a regular and uniform
uv-plane coverage so that despite achieving the goal of a good uniformity, side-
lobes are also distributed regularly and therefore not suppressed satisfactorily (see
Fig. 5.19).

As a remedy, both Cornwell and Keto suggested to slightly perturb the regular
distribution of apertures – for instance by modifying their equidistant positions on
a circle – so that the sidelobes are scattered irregularly forming an almost homo-
geneous background. This suppresses the peaks in the halo of the interferometric
point-spread function, the primary beam, so that mainly the narrow central core
remains with a diameter of about �=.

p
2Bmax/ and Bmax the longest baseline in the

array.
Using a fairly large number of telescopes the narrow central core displays diffrac-

tion rings like an Airy disk of an annular aperture (see Fig. 2.8). This is not very
surprising when placing the telescopes on an approximately circular array. The prob-
lem is the rather high intensity level of the first diffraction ring of about 15% of the
peak intensity. This can make the image reconstruction more difficult.
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interferometer array uv-plane interferometric PSF

Bmin

λ/Bmin

Fig. 5.19 Example of a circular interferometer array with equidistant spacing Bmin of 39 tele-
scopes. The uv-plane is filled uniformly with points spread over multiple regularly spaced, nested
rings. The polychromatic PSF shows a regular pattern that is slightly smeared due to the spectral
bandwidth with �=�� D 5. The spacing Bmin determines the radius �=Bmin of the central circle
with homogeneous and low background, called the clean field of view. The narrow central core has
rather prominent diffraction rings like the Airy disk of an annular aperture in Fig. 2.8 (Courtesy O.
Lardière [127])

Emphasising Short Baselines

This problem is inherent in the goal of a uniform uv-plane coverage resulting in
the approximately circular distribution of telescopes [104]. If, instead, we attempt
a uv-plane coverage that is more dense for shorter baselines so that the density
of points in the uv-plane decreases with increasing baseline length, we find the
uv-plane coverage – more exactly the density of points – to be similar to the OTF of
a single aperture. Then the narrow central core has diffraction rings that are lower
in intensity, comparable to those of an Airy disk of a circular aperture.

A typical design of this type of array consists of several nested rings providing
higher weighting for short baselines, as displayed in Fig. 5.20. The shortest baseline
Bmin determines the radius of the area in the centre of the uv-plane without points,
the “hole”, where no values of the visibility function can be measured. This converts
into the clean field of view with radius �=Bmin that has particularly low background
before the distribution of sidelobes provides an elevated background. Here, the same
perturbation of the perfect symmetry can be applied as for circular and Reuleaux
arrays so that sidelobes are distributed irregularly [104].

While the shortest baseline limits the clean field of view it does not impose
an absolute limit to the object size as in the case of a periodic array displayed in
Fig. 5.18. This was already discussed in the paragraph on the content of information
in Sect. 3.3.5. Despite the lack of information on the visibilities for baselines shorter
than Bmin, we can observe large objects as indicated by the PSF in Fig. 5.20, albeit
not with the highest fidelity.
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interferometer array uv-plane interferometric PSF

Bmin
λ/BminBmin

Fig. 5.20 Example of an interferometer array with three nested rings of a total of 39 telescopes.
The uv-plane displays a higher concentration of points for short than for long baselines, and a hole
in the centre with radius Bmin. The polychromatic PSF with �=�� D 5 shows diffraction rings
around the narrow central core. Due to the wider spacing Bmin of the telescopes in this example the
clean field of view is smaller than in Fig. 5.19 (Courtesy O. Lardière [127])

Direct Imaging

Having discussed possible layouts of the interferometer array, we now look into the
beam combination schemes. Assuming a large number of telescopes, we can apply
direct imaging methods. In contrast to the situation in radio interferometry, direct
imaging in the optical relies on the instantaneous cophasing of all telescopes with
extremely high precision. In particular for a large number of telescopes, this is a
daunting task.

We use the interferometer array displayed in Fig. 5.20 to illustrate the different
properties of the beam combination schemes – Fizeau, Hypertelescope and IRAN –
that were discussed in Sect. 5.3.

The Fizeau configuration, computing the point-spread functions as Fourier trans-
form of the uv-plane coverage, was used in Figs. 5.19 and 5.20. The wide envelope
is given by the Airy disk, PSFa, of an individual telescope, and the clean field
of view is depicted by the small dark circle around the narrow central core. The
PSF is shift-invariant and is simply reproduced at each object position ˛0, as is
shown in Fig. 5.21. Then, the image forms as a convolution of the object brightness
distribution with the PSF.

In Sect. 5.3, we discussed the Hypertelescope and the IRAN configuration for
a random telescope distribution. The same formalism as in (5.33) and (5.45) will
be applied here for the interferometer array in Fig. 5.20. The instrumental parame-
ters of the configurations are chosen in order to have the same field of view that
is given by the central core of the Airy disk, PSFa, of an individual telescope
in the Hypertelescope, and by the pupil diameter in the IRAN configuration. The
diameter of the clean field of view, given by �=Bmin, is independent of the type of
beam combination. The envelope PSFa of the Hypertelescope is smaller than that in
Fizeau configuration due to the pupil densification with larger apertures in the exit
pupil than in Fizeau configuration (compare to Fig. 5.12).
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Fizeau Hypertelescope IRAN

α0 = λ/Bmin

α0 = λ/D

α0 = 0

Fig. 5.21 Comparison of the imaging properties of beam combination in Fizeau configuration,
in the Hypertelescope and in IRAN configuration, using an interferometer array as in Fig. 5.20.
Point-spread functions for three different object positions ˛0 are displayed. The clean field of view
is depicted in each PSF by a small dark circle with diameter �=Bmin around the narrow central core.
The shift-invariant PSF in Fizeau configuration moves with ˛0. The shape of the Hypertelescope
PSF varies with object position since PSFa moves much slower than the interference pattern inside
with its narrow core. In IRAN configuration, the interference pattern is inside the telescope pupil
that is fixed in position (Courtesy O. Lardière [127])

The PSF of both the Hypertelescope and the IRAN configuration depend on the
object position ˛0 as shown in Fig. 5.21 and are not shift-invariant. The PSF of the
Hypertelescope is given by (5.33), describing the behaviour that we find in the fig-
ure: the enveloping Airy disk, PSFa, is shifted at a different rate than the interference
pattern with its narrow central core. The consequence is that the intensity of the cen-
tral peak is reduced according to its position inside the Airy disk, as displayed in
Fig. 5.13.

In the IRAN configuration, the enveloping pupil function does not move with the
object position but the narrow central core does, as described by (5.45), so that the
field of view is also limited. However, the central peak inside the field of view has
constant intensity unlike in the Hypertelescope.

Although the field of view in Fizeau configuration is unlimited in principle, one
could argue that the conditions for good image quality are better when restraining
the object size to the small clean field of view. Even a weak companion of a bright
star could be detected inside the clean field of view while it might be undetectable
outside of it due to the higher background. However, the advantage of a Fizeau
configuration is the large field of view and not the sensitivity for weak companions.
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For the Hypertelescope and for the IRAN configuration, the size of the clean
field of view is much closer to the limit that is imposed by the principle of the two
configurations so that it could be interesting to consider it by adjusting the smallest
baseline Bmin to the other parameters of the configuration.

Masking the aperture of a single large telescope, the required phasing of the
sub-apertures can be achieved by an adaptive optics system providing a diffrac-
tion limited point-spread function. Then, direct imaging can be done in Fizeau,
Hypertelescope or IRAN configuration as described here. However, the advantage
of aperture masking to be able to calibrate the visibilities of each individual baseline
as discussed in Sect. 5.1.1 would then be lost, so that it seems to be wiser to use the
full aperture when aiming at direct imaging.

5.4.2 Few Apertures

All the considerations of uv-plane coverage in Sect. 5.4.1 are valid for instanta-
neous, snapshot imaging when the Earth’s rotation has not moved the effective
baselines. For a large number of telescopes, these snapshots provide a sufficiently
good uv-plane coverage and a good point-spread function.

In practice, optical interferometers of today combine less than 10 telescopes, with
six – in Michelson configuration – being the highest number to date [162], and it is
almost inevitable exploiting the rotation of the Earth to improve the uv-plane cover-
age as discussed in Sect. 3.4. The uv-plane coverage varies with the sky coordinates
and with the duration of the observation, and any particular interferometer layout
with sophisticated distribution of telescopes will then present different properties
than those that drove the design. Therefore, other more practical considerations
become more important.

One type of layout that has been used for several interferometers is the so-called
Y layout when the telescopes are placed along a three-arm structure like a Y . The
practical advantage of this design is the efficient use of the required pipes or under-
ground tunnels in which the light is transported from the telescopes to the delay
lines and to the beam combiner since all telescopes in one arm send their light down
the same pipe.

The telescopes can be distributed on the Y according to the requirements of
the uv-plane coverage, trying to take the Earth rotation into account. An addi-
tional boundary condition might be the need to subdivide long baselines into several
short, or even redundant, baselines that can be used for fringe tracking. Tracking the
fringes on all short baselines with potentially larger visibility values, the fringes on
the long baseline are stabilized, too. This technique is called baseline bootstrap-
ping and will be discussed in Sect. 6.2.1. Combining very few telescopes only, it is
difficult to apply this method.

In Fig. 5.22, the CHARA interferometer is displayed as an example of a Y layout
[229]. Being integrated in the existing observatory on Mt. Wilson, California, there
were very practical aspects to be considered for the interferometer design. Aiming
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CHARA array uv-plane

S1
S2

E2
W2

E1
W1

Fig. 5.22 The layout of the CHARA interferometer on Mt. Wilson as an example for a non-
redundant Y layout with six telescopes. The autocorrelation of the interferometer array provides
the instantaneous uv-plane coverage on the right that should be compared to Fig. 5.23

Fig. 5.23 Coverage of the uv-plane of the CHARA array when observing over 6 h for declinations
�15ı (left), C30ı (middle) and C75ı (right), displaying the very different characteristics of the
uv-plane coverage (Courtesy T.A. ten Brummelaar [229])

at a maximum baseline of 330 m the array had to be compatible with the existing
infrastructure keeping also ecological aspects in mind. Thus, the final layout was a
compromise between all these aspects.

Six telescopes are combined non-redundantly, with physical baselines varying
between 34 and 330 m, resulting in a uv-plane coverage that is rather sparse (see
Fig. 5.22) since the emphasis is put on long baselines – and, thus, high angular reso-
lution – instead of on a densely filled array. However, observing over several hours,
the uv-plane is covered much better displaying remarkably different distributions
for different sky coordinates, as shown in Fig. 5.23.

The Y layout is simple and efficient but once the decision on telescope position
is taken it is difficult to modify the design. Another approach was pursued at ESO’s
VLTI, see Fig. 5.24, by building an array of 30 stations for movable 1.8-m telescopes
(AT) with a maximum baseline of 200 m, and an array of four 8-m telescopes (UT)
with a maximum baseline of 130 m [82]. Placing the observatory in the middle of
the Atacama desert on top of Cerro Paranal, there were no particular constraints for
the layout of the array.
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Fig. 5.24 The layout of the VLTI on Cerro Paranal. The four 8-m Unit Telescopes (UT) and the
stations for the 1.8-m Auxiliary Telescopes (AT) are displayed. The AT stations are connected by
rail tracks on which the AT can be relocated. Also shown are the delay line tunnel and the beam
combination laboratory. The delay line tunnel has room for eight delay lines allowing the operation
of eight AT and a total of 28 baselines. To date, four AT are in operation. The longest baseline with
two AT is 200 m (indicated by the dotted circle with 200 m diameter), and the longest baseline with
two UT is 130 m

The AT can be moved on rails to individual telescope stations. They can be placed
on any telescope station – with no more than one per rail track – and a maximum
number of eight AT could in principle be combined simultaneously. The number is
limited by the number of delay lines that can be accommodated in the delay line
tunnel. This leaves almost complete freedom to adopting the array, and the uv-plane
coverage, to the observing situation. To date, six delay lines and four AT are in
operation, and the largest number of beams that can be combined in an instrument
is three with AMBER. Thus, there is a lot of room to fully exploit this facility with
future instrumentation, keeping in mind that the advantage of combining four (and
soon six) beams has been demonstrated impressively by CHARA [114].

The 8-m telescopes (UT) are placed on a fixed, rather dense pattern with a max-
imum baseline of 130 m. In Fig. 5.25 the uv-plane coverage for eight hours of
observations is displayed. Due to the large diameter of the individual UT, and their
rather wide OTF, the uv-plane seems to be filled rather densely. However, we must
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Fig. 5.25 Computed
uv-plane coverage of the
VLTI combining the four 8-m
Unit Telescopes observing an
object at �15ı declination
over eight hours. In Fig. 3.24
a similar result is given for
different parameters

not forget that all beam combining instruments are operating in Michelson configu-
ration so that the visibility function inside the OTF is represented by a single value.
This is the equivalent of limiting the field of view to the Airy disk of an individual
telescope. This was discussed in Sect. 3.4.2 with respect to observing a binary star.

Although the infrastructure of the VLTI permits the installation of a beam com-
biner for direct imaging in Fizeau configuration there are no plans to implement
this mode in the foreseeable future, and the LBT will be the only interferometer
operating in Fizeau configuration.

In Sect. 3.4.2 we discussed the impact of Earth rotation synthesis on the image
reconstruction process in general. Instantaneous combination in direct imaging pro-
vides a PSF that is positive by definition, and image processing methods like those
for individual telescopes are suitable. In Michelson configuration, we combine val-
ues in the uv-plane that were accumulated by the rotation of the Earth so that the
PSF, the dirty beam, is the Fourier transform of the synthesized uv-plane distribu-
tion. Then the PSF has different characteristics, and image reconstruction methods
as presented in Sect. 3.4.3 can be applied, processing the visibility values in the
uv-plane instead of the image intensity.

5.4.3 Delay Lines

So far, we have ignored the fact that with telescopes based on the ground, we
have to compensate for an additional optical path when observing objects that are
not in the zenith. This optical path can be almost as long as the baseline when
observing objects close to the horizon, and its compensation requires a substan-
tial investment in terms of infrastructure and opto-mechanical systems. Figure 5.26
illustrates the situation and shows how the introduction of a delay line compen-
sates for the additional path. Remember that interferometers like the LBT with
telescopes on a common mount do not require a delay line since their baseline is
always perpendicular to the pointing direction.

The position of the object in the sky is given by the unit vector s, defining the
line of sight when pointing at the object. In Sect. 3.4, we introduced sky coor-
dinates, the equatorial reference frame, and we defined a local coordinate system
˛0 D .�RA;�ı/ with offset coordinates for right ascension, RA, and declination,
ı, centred at the object and orthogonal on s.
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Fig. 5.26 Observing an object at position s with two telescopes on the ground with baseline B.
The additional optical path, s�B, is compensated for by a delay line in the light path of the telescope
on the right. Due to the Earth’s rotation the position vector s moves with time, and the delay line
has to move, too, with up to 10 mm/s for baseline around 130 m

Given that the object position s moves with time due to the Earth’s rotation, the
additional optical path, s �B, is also time dependent so that the delay line has to track
the varying path difference, like the telescopes have to track the object by pointing
at s.t/. Ideally, the delay line perfectly compensates for the additional optical path
so that the optical path difference, the OPD, is always zero, and the white-light
fringe of a point source is at ˛ D 0 in the image plane. This is the case that we
have assumed so far when discussing the properties of beam combination in the
preceding sections.

Since tracking with the delay lines is never perfect, there will always be an
uncompensated OPD affecting the fringe position. This has to be compared to the
OPD variations due to atmospheric turbulence that were discussed in Sect. 4.3.1.
A straightforward requirement for the performance of the delay line tracking is that
the residual OPD should add less than 10% to the atmospheric OPD variance. Using
(4.55), we found that under typical atmospheric conditions the rms OPD variations
are about 640 nm over 100 ms. Under the same conditions, the atmospheric OPD
variations are 360 nm over 50 ms, and 95 nm over 10 ms. Thus, the residual OPD
should be smaller than 30 nm over 10 ms, 110 nm over 50 ms and 200 nm over
100 ms.

This gives an idea of the range of performance values that are required for the
residual OPD if the delay line shall not add noticeably to the OPD variations of the
atmosphere. To assess the maximum rate of the OPD variations, we assume an east-
west baseline of 100 m and an object at zenith, and we find that the OPD moves at a
maximum rate of @s

@t
� B D 7:3mm/s close to zenith.
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Thus, the requirement for the delay line is to move with a speed of 7:3
2

mm/s
and to maintain this motion with an accuracy better than 110

2
nm over 50 ms. The

division by 2 has to be applied to convert the optical path length into mechanical
position, as illustrated by Fig. 5.26.

Keeping in mind that the delay line can be almost as long as the baseline, it
is clear that these are challenging requirements for a moving optical system [103].
Usually, optical cat’s eye retroreflectors on rails are employed and the position of the
retroreflectors is controlled by laser metrology [103, 213]. Since this kind of high-
technology control equipment was unavailable in the 1920s, stellar interferometry
had been abandoned until the 1970s when modern interferometry started [121,215].
The noticeable exception is intensity interferometry when the requirement on OPD
accuracy is in the many centimetre range, so that the first successful tests were
performed in the early 1960s, as discussed in Sect. 2.5.

Layout of Interferometer Arrays: Summary

The design of interferometer arrays is driven by the number of telescopes and
by the preferences for the coverage of the uv-plane. Aiming at high angu-
lar resolution with few telescopes inevitably ends up with a sparsely covered
uv-plane. And a densely covered uv-plane with a good instantaneous image
quality in direct imaging has only limited angular resolution unless a large
number of telescopes are available.

In radio interferometry, when the combination of a large number of aper-
tures does not pose particular problems, a lot of research went into investigat-
ing how to distribute the apertures for different criteria of uv-plane coverage
[104]. Aiming at filling the uv-plane homogeneously avoiding redundant
baselines, one can end up with regular periodic grid in the uv-plane [86] and,
subsequently, with a periodic grid of object replica in the image plane (see
Fig. 5.18).

Another result of the optimisation towards a homogeneous uv-plane was
the distribution of the apertures on circles [44] or on the perimeter of the
Reuleaux triangle [113]. While this avoided the periodic replica in the image
plane the regular distribution of apertures on these geometric curves still
produced a less prominent but regular distribution of sidelobes (see Fig. 5.19)
disturbing the image reconstruction. Perturbing the regularity in the uv-plane
provided an interferometric PSF that has a rather smooth distribution of
sidelobes without particular peaks.

Distributing a fairly large number of apertures on a circle, the PSF is similar
to an Airy disk of an annular aperture. This PSF has a first diffraction ring that
raises up to 15% of the peak intensity (see Fig. 2.8).

Therefore, the optimal solution was a uv-plane coverage that has a higher
density of points at short baselines so that the overall shape is more like that
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of the OTF of a single aperture, resulting in a PSF with a conveniently low
first diffraction ring (see Fig. 5.20).

A particular feature of all these designs is an area around the narrow central
core that is free of sidelobes and has particularly low background. This area
is sometimes called the clean field of view [127] and has a radius of �=Bmin

with Bmin the shortest baseline in the array. While objects that are confined to
the clean field of view would be imaged with very good quality, the permitted
field of view is larger although the image quality of large objects would go
down due to the peculiar form of the PSF.

Populating an interferometer array with few (less than 10) apertures, the
uv-plane coverage and hence the instantaneous PSF is rarely good enough
for direct imaging, and aperture synthesis has to be applied. This implies
Michelson beam combiners to measure the visibility of each baseline directly.
The rotation of the Earth is exploited to fill the uv-plane so that image
reconstruction methods as in Sect. 3.4.3 have to be applied.

Amongst the designs of interferometers with few apertures, the Y layout
is very popular since – with all telescopes placed on a three-arm structure
like a Y – the required facilities transporting the light in pipes or tunnels
can be shared in each of the three arms. The CHARA array is an example
of an interferometer with six apertures in Y layout. In Fig. 5.23 the uv-plane
coverage due to Earth rotation synthesis is shown. The VLTI is an example
of an interferometer with less than 10 telescopes abandoning the Y layout.
Here, movable 1.8-m telescopes can be placed on 30 stations within a circle
of 200 m, with almost unlimited freedom to cover the uv-plane in the preferred
distribution. Four 8-m telescopes on a fixed pattern are also available and their
uv-plane coverage is displayed in Fig. 5.25.

Interferometers with telescopes on the ground require delay lines to com-
pensate for the additional optical path when observing objects off zenith.
Figure 5.26 illustrates the principle. Due to their required lengths – almost
as long as the baseline when observing close to the horizon – and due to the
required performance for tracking the OPD due to Earth rotation – typically
about 50 nm accuracy over 50 ms while tracking at about 4 mm/s – this is
high-technology equipment that requires a substantial effort when building
interferometers.



Chapter 6
Observing Through Atmospheric Turbulence

Astronomical observations from the ground are limited in sensitivity – not so much
in performance – by atmospheric turbulence. Removing the sensitivity limit by
observing a reference star close to the object of interest, to freeze the turbulence
and to permit long integration times, one is then restricted to a small field of less
than 1 arcmin around the reference star.

The statistics of atmospheric turbulence was discussed in great detail in Chap. 4.
In this chapter, we will apply the results to the analysis of the performance of
interferometers when observing through turbulence. We will first describe the mea-
surement of visibility and phase, investigating accuracy and sensitivity limits in the
uncorrected case, and then, in Sect. 6.2, we will discuss the improvements when
using a reference star for fringe tracking.

The measurement of the phase of the visibility function suffers in particular from
atmospheric turbulence since its reference point, the zero OPD position, cannot be
determined without a point-like reference star. Simultaneously observing object and
reference star, with a dual-feed system, we can measure the phase of the visibility
function of individual baselines, as described in Sect. 6.2.2. Adding the phases of
three baselines, from three telescopes forming a closed loop, the sum of the phases
that is called the closure phase, is not affected by turbulence, see Sect. 6.2.3. The
measurement of the closure phase does not require a dual-feed system but, akin to
speckle interferometry, exposure times have to be sufficiently short to freeze the
turbulence.

We will restrict the discussion to the Michelson configuration with a field of view
much smaller than the Airy disk. This is not only the most common interferometer
configuration, but it is also straightforward to extend the main conclusions to any
other interferometer configuration.

Interferometers with large telescopes require adaptive optics on each telescope
to increase the sensitivity and to improve the measurement accuracy. The formalism
is very similar to fringe tracking, and we will discuss the basic principles in the last
section.

A. Glindemann, Principles of Stellar Interferometry, Astronomy and Astrophysics
Library, DOI 10.1007/978-3-642-15028-9 6,
c� Springer-Verlag Berlin Heidelberg 2011
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6.1 Visibility Measurement Through Atmospheric Turbulence

Our starting point is the intensity distribution of the fringe pattern formed by two
telescopes in quasi-monochromatic approximation, as given by (5.14) for multi-
axial combination in Michelson configuration. This means mainly the restriction to
small objects with wavelength independent shape.

Observing through turbulence, the fringes are in permanent motion due to ran-
dom OPD variations between the apertures as discussed in Sect. 4.3.1. The fringe
motion is considered by the random phase difference�' at the mean frequency �0,
that varies with time, writing the instantaneous fringe pattern as

I.˛/ D 2I0 PSFa.˛/ (6.1)

�
�
1C gB .˛ � ˛'/j�.RB/j cos

�

.RB/� 2�RB � ˛ C�'

��
;

when gB , the Fourier transform of the spectrum GB , is the envelope function of the
fringe package, centred at ˛' so that ˛' � RB D �'=.2�/.

Compared to (5.14), the notation is simplified for clarity, writing RB instead of
R0
0;B0 , but keeping in mind that in quasi-monochromatic approximation the visi-

bility � is taken at R0
0;B0 , the effective baseline at the mean frequency �0 in the

entrance pupil.
The reduction of fringe contrast �V=V due to turbulence is derived by regard-

ing the propagation of a monochromatic plane wave from a point-like star at zenith.
Assuming that the incoming plane wave has the amplitude V0 D 1 and that the inter-
ferometer has two apertures a.�/ separated by B, we write the turbulence induced
random amplitude in the aperture plane as V'.�/ D exp.i'.�//, with '.�/ denoting
the random phase.

The time averaged intensity of the monochromatic fringe pattern, the interfero-
meter PSF, then reads as
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with B
�

D RB .
As in Sect. 4.3.5, discussing the speckle pattern, the time averaged PSF is denoted

by the subscript ' and the averaging process is applied to the product of amplitudes
V' only, since the aperture function a.�/ is time-invariant. Using (4.26), we write
the correlation of the amplitude1 as 	'.B/ D exp.�1

2
D'.B//, with D' the phase

1 Note that the time average is replaced by the ensemble average since the random process is
ergodic as discussed in Sect. 4.2.
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structure function (4.25). Thus, the contrast of the fringe pattern of the PSF is deter-
mined by D' . The phase of the averaged fringe package remains unaffected by
turbulence since the phase difference �' has zero mean, so that 	'.B/ is a real
function.

With (4.45), the loss of contrast can also be expressed through the OPD variance,
�2OPD, yielding

�V
V D 	'.B/ D e� 1

2
D' .B/ D e� 1

2

�
2�
�

�2

	2
OPD : (6.3)

Computing �2OPD with (4.45), we find rms fluctuations of the order of 5–100
m,
for baselines longer than about 10 m, depending on r0 and on the outer scale of
turbulence (see Fig. 4.4). This reduces the contrast in very long integration times
to less than 10�3 at observing wavelengths up to 10
m. That means practically a
complete loss of contrast for long time exposures.

For exposure times up to a few hundred milliseconds we use �2OPD;T , (4.55), that
was derived in Sect. 4.3.1, writing the average reduction of contrast as

�V
V T

D e� 1
2

�
2�
�

�2

	2
OPD;T D e�0:71

�
Nv

r0

�5=3

T 5=3

: (6.4)

Note that for short exposure times, the contrast loss is approximately independent
of baseline.

Taking a sequence of short time exposures, one finds that each exposure shows a
different fringe contrastV – on average reduced by�V=VT – and a different average
fringe position�'.

If on average a contrast loss of 10% is acceptable, i.e. �V=V D 0:9, we find
that the integration time T should be shorter than 0:31r0= Nv – typically 20 ms in the
K-band – which is approximately the atmospheric coherence time �0 (4.39) that
was defined in a different context in Sect. 4.2.3, discussing the rms fluctuations of
the phase in the turbulent layer.

Moving from a point source at zenith to extended objects, we have to convolve
PSF'.˛/ with the object brightness distribution Ob.˛/ as discussed in Sects. 3.3.2
and 4.4, yielding the time average of the fringe pattern in (6.1) as

< I.˛/ > D Ob.˛/ � PSF'.˛/

D 2I0 PSFa.˛/ (6.5)

�
�
1C gB .˛/	'.RB�/j�.RB/j cos

�

.RB/� 2�R � ˛

��
;

when the envelope function gB .˛/ is centred like the fringe pattern, since the long
time average of �' is zero.

Thus, the contrast of the fringe pattern is given by the product of object visibility
j�j and 	' when the latter can be expressed by �2OPD for long integration times, as
in (6.3), and for shorter integration times by �2OPD;T , as in (6.4).
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Observing through turbulence, short time exposures display speckle patterns in
each telescope, which replace the point-spread function PSFa of the individual aper-
tures in (6.5), as discussed in Sect. 4.3.5. The resulting fringe pattern looks like a
speckle pattern with fringes as displayed in Fig. 4.11. The average reduction in
fringe contrast would still be given by 	' but it is difficult to measure the visibility
with an accuracy better than 10% [49, 164].

Discussing the fringe pattern in quasi-monochromatic approximation, the field
of view is limited to less than an Airy disk, so that spatial filtering can be applied
without any further loss in field of view (see Sect. 3.3.6). Normally, monomode
optical fibres are used that do not only filter the intensity but can also serve as
waveguides as discussed in Sect. 5.1.3.

Injecting the Airy disk into the monomode fibre, only the fundamental mode is
transmitted so that the beam at the exit of the fibre has a wave front without aber-
rations and usually a Gaussian shape. Injecting a speckle pattern into the fibre, the
aberrations due to atmospheric turbulence transform into intensity fluctuations at the
exit of the fibre since the speckle pattern is highly variable, and only if the random
position of a speckle coincides with the optical fibre, intensity is injected. This does
not only mean that the injection is a random event but that only a fraction of the total
intensity is injected. Correcting the speckle pattern with adaptive optics, providing
a much more stable Airy disk, the intensity fluctuations are largely reduced, and the
injected signal is much stronger.

The interference pattern of the light exiting from two fibres is a clean fringe pat-
tern with varying fringe position�' due to OPD fluctuations. But now, the contrast
values, V , of a sequence of short time exposures vary more than predicted by the
OPD fluctuations alone, due to the intensity fluctuations in each beam, see (2.60).
It is easier, however, to determine the visibility with varying intensities after spatial
filtering than with random fringes in the speckle image [49]. With spatial filtering,
accuracies below 1% for the measurement of �2 can be achieved [111, 227].

There is an additional effect, increasing the speed of OPD fluctuations due to the
wave front phase of the speckle pattern [239]. Regarding the amplitude instead of
the intensity of the speckle pattern, we find that the phase of the image amplitude
is not plane but that it has a random distribution, as in the aperture plane, so that
each speckle has a different phase as illustrated by Fig. 6.1. These individual values
fluctuate faster than the overall phase since the speckle distribution is determined
by higher order Zernike modes, and each speckle is due to a random composition
of high order modes so that the variances of their fluctuations add, when each indi-
vidual mode has a variance at high frequencies that is comparable to low orders like
piston, as discussed in Sect. 4.3.3. Injecting the light of an individual speckle into
the optical fibre we do not only have to account for the overall OPD variance as
given by (6.3) but also for the additional random phase variations in the individual
speckles.

This effect can reduce the exposure time for a given contrast loss up to a factor
of 5 unless adaptive optics is used. Only when employing high order adaptive optics
with a Strehl ratio above 30% can this effect be neglected [239].
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Fig. 6.1 Phase of the light amplitude in monochromatic speckle images. The circle in the lower
right defines the colour scheme with respect to the phase in degrees. The three speckle images
show that the phase in a speckle pattern is completely random. (Courtesy R. Tubbs)

Thus, if the telescopes are so large that a speckle pattern develops, adaptive optics
is mandatory not only to improve the injected intensity but also to restrict the fringe
motion to the level of small telescopes without speckles. We will discuss the basic
concept of adaptive optics in Sect. 6.3.

Co-Axial Combination

In co-axial combination, the fringe pattern is a function of time due totemporal OPD
modulation, as discussed in Sect. 5.1.3. Then, atmospheric OPD fluctuations do not
only cause a loss of contrast as in multi-axial combination but, as we shall see, affect
also the fringe spacing.

Using (5.18), we write the instantaneous fringe pattern in co-axial combination as

Imod.t/ D 2I 0
0

�
1C gp

�
 .t/ ��'

�j�.RB/j cos
�

.RB/C�' �  .t/

��
; (6.6)

with I 0
0 D I0

R
PSFa.˛/d˛ and �' the random phase difference. The temporal

modulation of the OPD inside the instrument is expressed as a phase modulation
 .t/ at the average wavelength �0 through  .t/ D 2�

�0
OPD.t/. The envelope
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Fig. 6.2 Fringe patterns of Achernar observed with the instrument VINCI at the VLTI in co-axial
combination. Each horizontal line shows a K-band fringe pattern displaying about 11 fringes as a
succession of maxima and minima. The total scan length is about five times as long as the fringe
package. The average position, �'j , of the white-light fringe is different for each scan j , and
the fluctuations of fringe positions are much smaller than the width of the fringe package due to
coherencing, i.e. slow fringe tracking. Varying intensities of the scans are due to fluctuations of the
injected light into the fibre

function of the fringe package gp. .t/ ��'/, centred at �', is written as a func-
tion of phase modulation, using the relation gp. .t// D g. .t/=.2��// D g.�/ so
that the time delay � between the interfering beams is replaced by the dependence
on the modulated phase.

If the phase is modulated with an OPD amplitude larger than the coherence
length lc then one scan displays the complete fringe package, as shown in Fig. 6.2.
Due to the limited integration time, the average fringe position of each fringe
package has varying values�'j with j indicating the numbering of the scans.

The average phase of the fringe pattern, which is the position of the white-light
fringe with respect to zero OPD,  .t/ D 0, is denoted by


0
j D 
.RB/C�'j ; (6.7)

so that, in the absence of atmospheric turbulence, the phase of the object visibility
determines the position of the white-light fringe.
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Usually the phase modulation is slower than the fringe motion given by the tem-
poral variation of �' and the fringes will move during the integration. One can
separate different regimes of the fringe motion: if the phase is practically stable
during one scan, with constant value �'j for scan j , then the phase fluctuations
result in different fringe positions for a succession of scans. This is the obvious
effect in Fig. 6.2. If the fringe motion is faster, moving steadily during one scan,
the resulting fringe package is compressed (or decompressed) displaying a smaller
(or wider) fringe spacing. This is equivalent to a fringe pattern of a smaller wave-
length so that the Fourier transform of the signal shows the spectrum at a different
frequency, and the spectrum is slightly wider if the fringe package is compressed.
And if the fringe motion is accelerated during the scan, we even find different fringe
spacings in the fringe package, deforming the spectrum [111, 181].

The impact on the fringe contrast can also be classified in these categories: If the
fringes are basically frozen during the integration, there is no contrast loss in each
individual scan. Linearly or non-linearly moving fringes, however, cause a loss of
contrast according to the OPD variance during that time span T when  moves by
about �=2 corresponding to moving through one maximum (or minimum) of the
fringe.

Observing through turbulence, all these effects mix and affect the measurement
of both modulus and phase of the visibility. We write the intensity distribution of
the fringe pattern of scan j as

Imod;j .t/ D I1;j .t/C I2;j .t/C 2

q
I1;j .t/I2;j .t/ (6.8)

�gp
�
 .t/ ��'j

� �V
VT;j j�.RB/j cos

�

.RB/C�'j �  .t/�;

when I1;j , I2;j are the intensities in each beam (compare to 2.60), and �V=VT;j is
the contrast reduction during scan j , (6.4), with T the time it takes to scan a distance
�=4, i.e. one maximum of the fringe pattern. The average position of the white-light
fringe is 
0

j D 
.RB/C�'j . The fluctuation of the latter usually is a much more
prominent effect than the contrast loss as illustrated by Fig. 6.2.

The succession of scans displayed in Fig. 6.2 were taken with the instrument
VINCI at the VLTI observing Achernar [111]. The fluctuations of the fringe posi-
tions are smaller than the width of the fringe package since after each scan VINCI
provides a feed-back of the fringe positions to the delay lines. This slow fringe
tracking is also called coherencing since the position of the fringe package varies
less than the coherence length, which is given by the width of the fringe package.
We will come back to fringe tracking in Sect. 6.2.1.

The Need of a Reference Star

Taking a large number of measurements and computing the average of all fringe
positions 
0

j and of the fringe contrast, it is still impossible to derive absolute values
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for modulus j�.RB/j and phase 
.RB/ of the object visibility function with any
useful accuracy. First, the absolute position of zero OPD cannot be identified so
that each 
0

j is determined with respect to an assumed zero OPD. Thus, the fringe

positions are not only affected by phase fluctuations�'j due to atmospheric turbu-
lence – which should average to zero over a long time – but also by a random bias.
Dispersing the light into different spectral channels one can only measure the differ-
ential phase so that despite the lack of a zero OPD reference point, the variation of
the phase with wavelength can be determined [184].

Second, there are too many error sources, for instance variation of turbulence
parameters, tracking accuracy of delay lines and telescopes, opto-mechanical stabil-
ity etc, that make it practically impossible to compute the average contrast reduction
�V=VT based on (6.4) and then derive j�.RB/j from the fringe contrast [24].

Therefore, one has to rely on unresolved reference stars that have a visibility
modulus of 1 and a phase of 0. Measuring the fringe contrast of the reference star,
any reduction of fringe contrast to values below 1 is only due to turbulence and to
instrumental effects so that we can determine the overall contrast loss.

Observing the object of interest – the science object – in quick succession to the
observation of the reference star, the statistical parameters of the atmosphere and
the instrumental parameters normally vary so little that the visibility of the science
object on average suffers the same loss of fringe contrast as the reference star. Since
it is only required that the average values are stable, there is no particular require-
ment for the reference star to be very close to the object. This procedure permits to
determine the modulus j�.RB /j of the visibility function of the science object, as
will be discussed in Sect. 6.1.1.

Regarding the phase 
.RB/ of the visibility function, it is not enough to compare
the averages of 
0

j of successive observations of science object and reference star
since the opto-mechanical stability of the interferometer is not sufficient to maintain
the absolute position of zero OPD with adequate accuracy. It is necessary to measure
object and reference simultaneously requiring dedicated additional hardware in the
interferometer, usually referred to as a dual-feed system, so that the position of zero
OPD can be determined.

For the simultaneous measurement of the difference of fringe positions, the dif-
ferential OPD, the requirement is not on the statistical parameters of turbulence
(like the average), but on the correlation of the instantaneous random values of �'
so that the fringes on both objects move as synchronously as possible. This limits
the permitted distance between object and reference star to some 10 arcsec as dis-
cussed in Sect. 4.3.1 The rms fluctuations of the differential fringe motion is given
in (4.60) as a function of angular distance �s between object and reference, so that
the isoplanatic angle as the maximum separation for a sufficient correlation can be
quantified. This will be discussed in Sect. 6.2.2.

Having discussed the necessity of a reference star for measurements of the vis-
ibility function, we have to note that combining three telescopes and adding the
phases of the three fringe patterns, the three phase differences �'i , i D 1, 2, 3,
cancel and we obtain the closure phase as the sum of three phases 
.RBi

/ of
the visibility function. Formally identical, this technique is applied in speckle
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interferometry, see Sect. 4.4, and in intensity interferometry, see Sect. 2.5. We will
discuss it for amplitude interferometry in Sect. 6.2.3.

6.1.1 Power Spectrum of the Fringe Pattern

The general principle of the visibility measurement in the Fourier spectrum was
introduced in Sect. 2.4.3. Here, we will first discuss the Fourier transform of the
multi-axial fringe pattern (6.1), and then we will look in more detail at the fringes
in co-axial combination.

The image intensity spectrum of the instantaneous fringe pattern in multi-axial
combination is given in (5.13) and is now extended by the influence of atmospheric
turbulence as in (6.1), yielding

OI .R/ D I0OTFa.R/ (6.9)

� ��.RB/GB .R/ei2�˛' �R C 2•.R/C ��.RB/GB .�R/e�i2�˛' �R�;

when the random phase shift�' transforms into a linear phase2 in the uv-plane. For
R D RB D B=�0 where the spectrum GB .R/ is centred, the phase has the value
2�˛' � RB D �'.

The long time average that is given by (6.5) for the monochromatic fringe pattern
converts to the following Fourier spectrum for polychromatic light:

< OI .R/ > D I0OTFa.R/ (6.10)

� ��.RB/GB .R/	'.B/C 2•.R/C ��.RB/GB .�R/	'.�B/
�
;

with B D RB�.
Writing the contrast reduction 	'.B/ D �V=V as a function of OPD variance in

(6.3), we find that the fringe contrast of the long term average practically disappears
under normal atmospheric conditions. Accordingly, the peak in the spectrum around
RB , the interferometric peak, is reduced to very small values so that only the central
OTF remains, representing the spectrum of a PSF without fringes.

Computing the average of the power spectrum< j OI.R/j2 > instead, the interfer-
ometric peak does not disappear and we can derive the squared visibility as the ratio
of the integrals over the interferometric peak and over the central OTF as given by
(3.74). We will discuss this in more detail for co-axial combination in the following.
This procedure can also be applied to interferograms with speckles [164].

2 Note that the linear increase of �' with R D B=� means that the atmospheric OPD, �' �
2�

, is
independent of wavelength, as discussed in Sect. 4.2.
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Co-Axial Combination

Processing the fringe pattern in co-axial combination as given in (6.8), including all
disturbances, the first step is to remove the influence of the different intensities I1;j ,
I2;j on the fringe pattern [49], yielding the varying part, proportional to cos(.), of
the corrected interferogram as

Icor;j .t/ D Imod;j .t/ � I1;j .t/ � I2;j .t/
2
p
I1;j .t/I2;j .t/

(6.11)

D gp
�
 .t/ ��'j

�
TFj .RB /j�.RB/j cos

�

.RB/C�'j �  .t/

�
;

with TFj .RB/ the interferometric transfer function during scan j that combines the
contrast reduction �V=VT;j due to turbulence, with instrumental effects reducing
the contrast, for instance tracking errors of delay lines or telescopes, vibrations,
polarization mismatch etc.

Writing down (6.11), this correction looks simple. The intensity measurement
could be provided by means of a beam splitter, distributing the light into a photo-
metric and into an interferometric channel. It is mandatory, however, to precisely
know the splitting ratio of the beam splitter over the observed wavelength range,
requiring an elaborate calibration procedure. Thus, (6.11) would have to be replaced
by more complex data processing [49].

Finally, we compute the difference signal between the two outputs A and B ,
removing the correlated noise and all the background, and amplifying the fringe
patterns, which are in anti-phase as discussed in Sect. 5.1.3, yielding

Irec;j .t/ D IAcor;j .t/ � IBcor;j .t/: (6.12)

Figure 6.3 gives an example of a measurement with VINCI, the VLTI test cam-
era, showing the raw fringe patterns in both exits of the beam splitter and the two
photometric signals of the two telescopes. The impressive fluctuations of the pho-
tometric signals demonstrate the necessity to correct for the individual intensities.
The reconstructed interferogram, the top curve in Fig. 6.3, serves as input for the
Fourier spectrum that is used to compute the visibility [49, 111, 181].

Sometimes the fringe pattern in co-axial combination is expressed as a func-
tion of OPD instead of time t . Then the distance between two maxima, the fringe
spacing, corresponds to an OPD of �0 and its Fourier transform is a function of
wavenumber 1=�.

We will keep the notation as a function of t , and we compute the Fourier spec-
trum as a function of frequency � as given by (5.19). Fourier transforming Irec;j .t/

only has contributions around ˙�0 and not around � D 0 because we removed the
constant term in (6.11). Since the part of the spectrum at ��0 is the complex con-
jugate of the part at positive frequencies we will only consider the latter without
losing any information, writing
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Fig. 6.3 Fringe patterns of an individual scan j in co-axial combination with VINCI, the VLTI
test camera. The curves are shifted vertically for clarity only. From bottom to top, the curves show
the photometric signals from the two telescopes, I1;j and I2;j , the raw interferograms, IAmod;j and

IBmod;j , from the two exits, A and B , of the beam combiner (therefore in anti phase), and, at the top,
the corrected interferogram. (Courtesy P. Kervalla [111])

OIrec;j .�/ D G.�/TFj .RB/�.RB/ei�'j �=�0 ; (6.13)

when, observing only small objects in quasi-monochromatic approximation, the vis-
ibility function � over the spectrum G.�/ is represented by a single value at the
average frequency �0 with RB D B

c
�0.

This notation of the Fourier spectrum ignores the effects of squeezing the fringes
due to fringe motion during the scan that we discussed in the previous section.
Considering this effect we would have to introduce varying spectra G.�/ shifted
to higher or lower frequencies depending on the amount of fringe compression or
decompression. In good approximation, it can be assumed that this effect adds to
the noise only [49], and we maintain our notation.

The average of < OIrec;j > over many scans is zero due to the random fringe
position �'j so that we compute the average of the power spectrum < j OIrec;j j2 >
as in speckle interferometry, Sect. 4.4.

The measurement of the visibility function in the Fourier spectrum was dis-
cussed under general aspects without atmospheric turbulence in Sect. 2.4.3. There
the visibility was derived as the ratio between the integral of the Fourier spectrum



286 6 Observing Through Atmospheric Turbulence

around �0, the interferometric peak, and the integral around � D 0, the photometric
peak, based on the idea of F. Roddier and P. Léna [196]. Here, we proceed directly
to the power spectrum computing the average of the squared visibility to obtain an
estimator of V2 that is unbiased by detector or photon noise [224].

Processing the corrected interferogram in (6.13), the constant term and, thus,
the photometric peak is removed so that we integrate the interferometric peak only,
writing the average of the integral of the power spectrum over many scans as

< V2 > D <

Z ˇ
ˇG.�/TFj .RB/�.RB/

ˇ
ˇ2 d� >

D < jTFj .RB/j2 > j�.RB/j2; (6.14)

when the averaging process is only applied to the square of the transfer function
since the object visibility function does not vary with time. One has to assure, how-
ever, that the changes of the effective baseline do not alter the visibility values during
the observation.

In case of noisy measurements, the noise variance has to be subtracted from each
measured power spectrum to obtain the unbiased estimator for V2 [49].

Repeating the same procedure with a reference star with � D 1, or with a
precisely known value �ref, we obtain the squared visibility of the science object as

j�ob.RB /j2 D j�ref.RB/j2< V2ob >

< V2ref >
: (6.15)

We have to remember that this procedure of determining the transfer function with
a reference star relies on the temporal stability of the transfer function during both
the observations of object and reference star. Observing sequences like: reference
star – object – reference star, the transfer function can be monitored, for instance by
comparing the reference star observations at the beginning and at the end, improving
the accuracy of the measurement.

Faint Objects

Observing faint objects, when the photon noise
p
Nph is no longer negligible, we

then find the variance of the V2 measurement in one exit of the beam combiner
as [35]

�2V2;ph
D 8

N 2
ph

.1CNphV2/; (6.16)

with Nph the number of photons contributing to the measurement, and V2 the
measured squared visibility, with < V2 >D< jTFj2 > j�obj2.

Using both exits of the beam combiner, the signal-to-noise ratio, SNR D V2=�V2 ,
for the visibility measurement after M scans is given by [224]
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SNR.V2/ D NphV2
2

p
M
�
1CNphV2

��1=2
: (6.17)

With the variance of the measurement being reduced linearly by M , the SNR
improves proportional to

p
M .

Thus, in the limit of very faint objects, in the photon-starved regime with
Nph < 1 on average, the SNR is proportional to NphV2, while for brighter objects,
in the photon-rich regime with Nph > 1, the SNR goes with

p
NphV as dis-

cussed in Sect. 5.2.2. Note that for background limited observations, the SNR in
the photon-rich regime is proportional to NphV [211].

Since it is the product of number of photons and visibility that determines the
SNR we find that an object that is partially resolved with a visibility smaller than 1,
needs to be brighter than an unresolved object in order to have the same SNR.
Therefore, bright objects might not provide the best SNR if they are fairly large.

In the presence of detector read noise or background noise, �r , we can use the
following approximation in the photon-starved regime, [38]:

SNR.V2/ D N 2
ph
V2

2.Nph C �2r /

p
M; (6.18)

so that, as expected, in the case of very few photons the read noise is more dominant,
while we arrive at the same result as above for faint objects if the read noise is
negligible.

6.1.2 ABCD Method

In analogy to Michelson’s definition of visibility, the ABCD method relies on
intensity measurements at four different points of an individual fringe to deter-
mine modulus and phase of the visibility function. The principle was described in
Sect. 2.4.2. Here, we will extend the discussion to co-axial combination including
atmospheric turbulence.

Discussing the power spectrum in the preceding section, the scan of the fringe
pattern was much longer than the coherence length so that the complete fringe pack-
age was scanned. Here, it is required to scan an individual fringe only, so that the
OPD modulation is reduced to an amplitude of �. Assuming a sawtooth modulation
of the path length with amplitude �, exactly one fringe is scanned and Imod;j .t/,
(6.8), describes a complete cosine fringe during the scan interval T as displayed in
Fig. 6.4.

The intensity is measured in intervals of T=4 as displayed in Fig. 6.4, and the
maximum exposure time per measurement is T=4 [214]. Applying (2.70), we deter-
mine the visibility modulus V of the fringe pattern which is the product of the
modulus of the object visibility j�j and the interferometric transfer function TF. The
phase 
0 of the fringe pattern is determined by the sum of the phase of the object
visibility function 
 and the random phase �', due to atmospheric turbulence, as
given by (6.7).
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Fig. 6.4 Example of temporal modulation in co-axial combination. The phase is modulated by
2� over time T so that one complete fringe is scanned. Measuring the intensity in four bins, each
integrated over T=4, provides the four signals that are required for the ABCD method. Individ-
ual photon counts are marked by crosses, and the fitted cosine fringe is sketched in. (Courtesy
R. Wilhelm [253])

If we label the four intensities after integration over T=4 by IA, IB , IC and ID ,
and their sum by Itot we write

V D �p
2

p
.IA � IC /2 C .IB � ID/2

Itot


0 D tan�1
�
IA � IC
IB � ID

�

: (6.19)

The factor �=
p
2 has to be replaced by a factor 2 if the intensity values are measured

at individual points spaced by �=4 on the fringe pattern.
Unless observing monochromatic light, the visibility of the fringe depends on

its distance from the white-light fringe as discussed in Sect. 3.3.3 and as illustrated
for instance by Fig. 6.2. Since the rms fluctuations of the uncorrected fringe motion
are of the order of 5–100
m, it is possible that the scanned fringe is far from the
white-light fringe so that the measured visibility is much smaller than the object
visibility. This contrast loss is difficult to calibrate so that it has to be assured that
the white-light fringe is scanned, usually requiring fringe tracking [167].

In any case, the ABCD method requires the observation of a reference star to
derive the object visibility j�obj from the fringe visibility Vob. As for the power
spectrum, processing the squared visibility V2ob permits to define an unbiased esti-
mator, and the procedure given by (6.15) can be used to compute the squared object
visibility j�obj2.

Even with a reference star, the phase of the visibility 
ob cannot simply be derived
from the fringe phase 
0, as we discussed in Sect. 6.1, unless a dual-feed system with
a fringe tracker is available. The ABCD method is particularly well suited for fringe
tracking since scanning only individual fringes, the phase of the fringe pattern can be
measured at a much higher rate than when scanning the complete fringe package to
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compute the power spectrum. As we shall see in Sect. 6.2.1, this enables stabilizing
the fringe motion to a fraction of a fringe.

Spatial Modulation

All issues of temporal modulation, e.g. fringe motion during a scan, that we dis-
cussed in Sect. 6.1 have to be considered here, too. These problems are avoided
when doing spatial phase modulation as discussed in Sect. 5.1.3 and illustrated by
Fig. 5.4. Then, the two outputs of the beam combiner are split into two orthogonal
polarization components each, and the four signals display phase shifts of 0, �=2, �
and 3�=2. This is equivalent to measuring the intensities at four points of the fringe
pattern and we can apply (6.19) replacing the factor �=

p
2 by the factor 2.

Comparing the measured intensities of both temporal and spatial modulation we
assume the same time T for measuring one fringe. If we call I0 the total intensity
that is available at the entrance of the beam combiner during the time T , we find that
each output in spatial modulation receives I0=4. Applying temporal modulation,
the intensity I0=2 in each output of the beam combiner is scanned in bins of T=4
so that the signal in each bin is I0=8. Adding the measured signals of both beam
combiner outputs we have I0=8 C I0=8 per bin, thus, the same signal level as in
spatial modulation, but we have to add their variances so that the SNR in temporal
modulation is

p
2 lower than in spatial modulation.

However, this difference is negligible since there are other issues in spatial mod-
ulation that do not appear in temporal modulation, like: injection into four optical
fibres vs. one fibre, non ideal phase shifts vs. precisely subdividing the scan in T=4,
response of four pixels vs. one pixel, all requiring careful calibration [204], so that
the two methods are basically equivalent.

Faint Objects

For the ABCD method, the unbiased estimator for the visibility measurement of
faint objects reads as [35, 213]

< V2 >D �2

2

< .N 0
A �N 0

C /
2 C .N 0

B �N 0
D/
2 � �2N >

< N 0
ph
>2

; (6.20)

with �2N the sum of the noise variances of photon and of read noise, N 0
A to N 0

D are
the photon counts in each bin corrected for background, andN 0

ph
is the total number

of photons contributing to the measurement with the background noise subtracted.
The estimator for the phase is similar to (6.19), writing


0 D tan�1
�
N 0
A �N 0

C

N 0
B �N 0

D

�

: (6.21)
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The signa-to-noise ratio of the ABCD measurement afterM scans is as in (6.17)
but with a different constant due to the measurement method [35], yielding

SNR.V2/ D 2NphV2
�2

p
M

�

1C 4

�2
NphV2

��1=2
; (6.22)

with Nph the number of photons contributing to the measurement, and V2 the
measured squared visibility, with < V2 >D< jTFj2 > j�obj2.

The SNR of visibility and phase measurement are identical [211], so that for faint
objects with, Nph > 1 we obtain the phase variance for a single measurement as the
reciprocal of the SNR as [214]

�2ph D �4

4N 2
ph
V4

�

1C 4

�2
NphV2

�

Œrad2�; (6.23)

with the limiting cases of �2=.NphV2/ in the photon-rich regime [214], and �4=
.4N 2

ph
V4/ in the photon-starved regime. Thus, the phase variance, like the SNR,

improves proportional to the product of number of photons and visibility.
We should not forget that even when perfectly determining the fringe phase 
0

we still have the influence of atmospheric turbulence so that we cannot not directly
derive the phase 
ob of the object visibility function. We need a fringe tracker and a
dual-feed system that we will discuss in the following section.

Visibility Measurement Through Atmospheric Turbulence – Summary

We discuss the fringe pattern formed by two telescopes in quasi-mono-
chromatic approximation, i.e. for small objects with wavelength indepen-
dent shape. The same formalism can be applied when combining several
telescopes.

Observing through turbulence, the instantaneous fringe pattern in multi-
axial combination is given by

I.˛/ D 2I0 PSFa.˛/ (6.1)

�
�
1C gB .˛ � ˛'/j�.RB/j cos

�

.RB/ � 2�RB � ˛ C�'

��
;

when the fringe motion is considered by the random phase difference �'
varying with time. gB is the envelope function of the fringe package, centred
at ˛' so that ˛' � RB D �'=.2�/.

Then, the time averaged fringe pattern is written as

< I.˛/ > D 2I0 PSFa.˛/ (6.5)

�
�
1C gB .˛/	'.RB�/j�.RB/j cos

�

.RB/� 2�R � ˛

��
:
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The envelope function gB .˛/ is now centred like the fringe pattern, since the
long time average of �' is zero.

The contrast reduction �V=V of the fringe pattern is given 	' when the
latter can be expressed by �2OPD;T for exposure times up to a few 100 ms,
writing the average reduction of contrast as

�V
V T

D e� 1
2

�
2�
�

�2

	2
OPD;T D e�0:71

�
Nv

r0

�5=3
T 5=3

: (6.4)

The instantaneous fringe pattern in co-axial combination reads as

Imod.t/ D 2I 0
0

�
1C gp

�
 .t/ ��'

�j�.RB/j cos
�

.RB/C�' �  .t/

��
;

(6.6)

with I 0
0 D I0

R
PSFa.˛/d˛.

The temporal modulation of the OPD inside the instrument is expressed
as a phase modulation  .t/ at the average wavelength �0 through  .t/ D
2�
�0

OPD.t/. The envelope function of the fringe package gB is now written
as a function of phase modulation, gp. .t/ ��'/. Modulating the OPD by
more than the coherence length, the complete fringe package is scanned.

Taking all effects into account, we write the intensity distribution of the
fringe pattern of scan j as

Imod;j .t/ D I1;j .t/C I2;j .t/C 2

q
I1;j .t/I2;j .t/ (6.8)

� gp
�
 .t/ ��'j

��V
V T;j

j�.RB/j cos
�

.RB/C�'j �  .t/�;

when I1;j , I2;j are the varying intensities in each beam. The average position
of the white-light fringe is 
0

j D 
.RB/C�'j . The fluctuation of the latter
usually is more obvious than the contrast loss as illustrated by Fig. 6.2.

Discussing the Fourier spectrum of the fringe pattern, the influence of the
varying intensities I1;j , I2;j and the constant term are removed from (6.8),
before Fourier transforming the fringe pattern, so that only the interferometric
peaks remain. We write the contribution at positive frequency as

OIrec;j .�/ D G.�/TFj .RB/�.RB/e
i�'j �=�0 ; (6.13)

with TFj .RB/ the interferometric transfer function during scan j , which
combines the contrast reduction�V=VT;j due to turbulence, with instrumen-
tal effects.
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Observing only small objects in quasi-monochromatic approximation, the
visibility function � over the spectrum G.�/ is constant, represented by a
single value at the average frequency �0 with RB D B

c
�0.

Processing the power spectrum to obtain an estimator for V2 that is unbi-
ased by noise we write the average of the integral over the interferometric
peak as

< V2 > D<
Z ˇ
ˇG.�/TFj .RB/�.RB /

ˇ
ˇ2 d� >

D< jTFj .RB/j2 > j�.RB/j2: (6.14)

If we repeat the same procedure with a reference star with � D �ref, the
squared visibility of the science object is obtained as

j�ob.RB/j2 D j�ref.RB /j2< V2ob >

< V2ref >
: (6.15)

The ABCD method relies on measuring the intensity of a single fringe at
four points separated by �=4. If we label the four intensities after integration
over one quarter of the fringe, or over T=4 in temporal modulation, by IA, IB ,
IC and ID , and their sum by Itot we write

V D �p
2

p
.IA � IC /2 C .IB � ID/2

Itot


0 D tan�1
�
IA � IC
IB � ID

�

: (6.19)

The observation of a reference star is required to derive the object visibility
j�obj from the fringe visibility Vob. As for the power spectrum, processing
the squared visibility V2ob permits to define an unbiased estimator, and the
procedure given by (6.15) can be used to compute the squared object visibility
j�obj2.

Observing faint objects, the variance of a single phase measurement with
the ABCD method is

�2ph D �4

4N 2
ph
V4

�

1C 4

�2
NphV2

�

Œrad2�; (6.23)
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6.2 Beating Atmospheric Turbulence

The rapid fringe motion does not only wipe out the fringes after some hundred
milliseconds, but it also makes it impossible to determine the phase 
ob of the object
visibility function, as discussed in Sect. 6.1.

These limitations can be removed by using a reference star. Then, faint objects
can be observed, reducing the fringe motion by measuring and stabilizing the fringes
on a nearby reference star with a fringe tracking system. The residual fringe motion
of the faint object is determined by the ability of the fringe tracker to stabilize the
fringe pattern on the reference star, and by the isoplanatic angle, i.e. the differential
optical path fluctuations between the two objects that we discussed in Sect. 4.3.1.

If the residual fringe motion is much smaller than the fringe spacing, ensuring a
good fringe contrast, the integration time on the faint science object can be increased
to tens of seconds, instead of some 10 ms, so that the sensitivity is improved by upto
7 stellar magnitudes (see Appendix A.2).

Using a dual-feed system with laser metrology to monitor all internal optical
paths, the white-light fringe positions of the reference star and of the science object
can be identified so that the phase 
ob of the object visibility is determined in
addition to its modulus, providing an imaging mode for faint objects.

In this section, we will first investigate principles and requirements of a fringe
tracking system and then we will discuss dual-feed systems with their applica-
tion to phase referenced imaging and to astrometry. Finally, we will also regard
the principle of closure phase as a passive method to determine the phase through
turbulence.

6.2.1 Fringe Tracking

The principle of fringe tracking relies on stabilizing the fringe motion by rapidly
scanning the fringe pattern and feeding the information on the white-light fringe
position into a servo loop. After each scan, the OPD is adjusted with the delay line
or with a dedicated actuator in the optical path, so that the fringe motion is reduced
to a fringe jitter ideally much smaller than the fringe spacing.

In Sect. 6.1, we discussed fringe patterns in co-axial configuration that are dis-
played in Fig. 6.2. Applying a slow fringe tracking, the fringe package is centred
with a residual motion smaller than the coherence length. Therefore, this is called
coherencing. The scan rate that was applied was apparently too slow to reduce the
residual fringe motion to the level of an individual fringe spacing.

If we want to quantify the scan rate that is required to achieve a given resid-
ual motion, we have to regard the power spectrum of OPD fluctuations given in
(4.54). We used the power spectrum in Sect. 4.3.1 to determine the variance of the
fringe motion during a limited observing time T , by applying a filter function and
computing the variance as the integral of the product.



294 6 Observing Through Atmospheric Turbulence

A fringe tracking servo loop can also be described by a filter function that is
applied to the power spectrum of OPD fluctuations. Given that we reduce the fringe
motion by tracking the fringes but that we are left with some high frequency fringe
jitter, we expect that the form of the filter function is such that low frequencies
are reduced, or rejected, considerably but that there is only little effect at high
frequencies.

Control theory provides the tools to describe servo loops like the fringe tracker
and we find the rejection transfer function, S.f /, as [90]

S.f / D .f=f3dB/
2

1C .f=f3dB/2
; (6.24)

with f3dB the 3 dB servo bandwidth which is about ten times smaller than the scan
rate, depending on the parameters of the closed loop algorithm. Thus, if a servo
bandwidth of 10 Hz is required, the scan rate has to be 100 Hz, scanning a fringe in
T D 1=.10f3dB/ D 10ms.

The exact shape of the transfer function depends on many parameters of the
control loop and of the hardware. For the ideal case in (6.24) it is assumed for
instance that the measured fringe position is transferred without delay to the actuator
correcting the OPD. If there is a delay in the signal transport or a limited response
time of the actuator, it is possible that there is an amplification of the disturbance,
with S.f / > 1 around f=f3dB D 1, as illustrated by the dashed curve in Fig. 6.5.
The shape of the transfer function can be tuned by the gain of the system. The gain
is the fraction of the measured signal that is applied to the actuator. While it seems
to be logical to correct the OPD exactly by the measured fringe position – a gain of
1 – the gain has to be reduced to avoid the overshoot around f=f3dB D 1. However,
applying a lower gain, the rejection at lower frequencies deteriorates as displayed
by the dotted curve in Fig. 6.5. Thus, the servo loop needs to be carefully designed
to optimize the performance.

In the following we will provide performance estimates for the transfer function
in (6.24) keeping in mind that a precise estimate is only possible when considering
all parameters of the system.

Applying the transfer function S.f / to the power spectrum of OPD fluctua-
tions in (4.54) we obtain the corrected power spectrum. We have to be aware that
we consider the atmospheric power spectrum only, ignoring any contribution, like
vibrations, from the interferometer. In practice, mechanical vibrations in the optical
system often pose a bigger problem than atmospheric turbulence. At sharply defined
frequencies, the contribution from vibrations can easily be a factor of 10 larger than
the contributions from turbulence especially at frequencies beyond 10 Hz when the
rejection by the closed loop system is weak. The parameters of the control system
can be tuned to reject individual frequencies but only to a limited extent, and one
should take measures to avoid mechanical vibrations as far as possible.

We multiply the temporal power spectrum ˚OPD;t .f / (4.54) of the OPD fluctu-
ations with the transfer function S.f / to obtain the corrected power spectrum. It
should be emphasised that the corrected power spectrum still has contributions at
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Fig. 6.5 Rejection transfer functions for different parameters of the servo loop. The solid line
represents the transfer function given in (6.24). The dashed lines incorporate the effect of the finite
bandwidth of the actuator correcting the OPD, where the curve with the highest peak at f=f3dB

represents the system with the highest gain. Lower gain results in a lower peak, but the properties
at low frequencies are deteriorated

frequencies smaller than the servo bandwidth f3dB, as illustrated by the shape of the
rejection transfer function, reducing but not eliminating low frequencies.

The variance of the residual fringe jitter, �2OPD;FT , is given by the integral of the
corrected power spectrum, obtaining the residual rms fringe motion for a bandwidth
f3dB larger than 10 Hz as

�OPD;FT D 0:7 �

� Nv
r0

�5=6
T 5=6 Œm�; (6.25)

with T the exposure time as the reciprocal of the scan rate of 10f3dB, i.e. T < 10ms.
Writing �OPD;FT as a function of atmospheric coherence time, we replace Nv=r0

by 0:314=�0 (4.39) or, if the interferometric coherence time �0;2 (4.40) is preferred,
by 0:207=�0;2.

For a wavelength of 2.2
m, an r0 of 0.6 m, typical in the K-band, an effective
wind speed of Nv D 10m/s, and a scan rate of 250 Hz, corresponding to a servo
bandwidth of about f3dB D 25Hz, we find that the residual rms fringe motion
are about �OPD;FT D 160 nm, i.e. about �=15 in the K-band. Thus, under typical
conditions, scan rates of a few hundred Hertz are required to arrive at a residual
fringe motion of a few hundred nanometer.

Scanning the complete fringe package with some hundred Hertz means that each
pixel – assuming about 250 pixels per scan as in Fig. 6.2 – has an exposure time of
some microsecond. It is clear that there are only very few reference stars that are
sufficiently bright to provide a useful signal.
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Therefore, the ABCD method is used, taking four measurements per scan, so
that the exposure time per bin is about 1 ms. We measure the phase 
0 of the fringe
pattern using (6.19) when the variance �2

ph
of the phase measurement due to photon

noise was given in (6.23).

Limiting Magnitude

Determining the residual fringe motion of a fringe tracker one has to take both
the variance due to limited bandwidth, �2OPD;FT , and due to photon noise, �2

ph
, into

account, since it is the sum of the variances that determines the performance, writing

�2�0 D �2OPD;FT C �2ph Œrad2�: (6.26)

For a complete analysis, other variances, for instance due to detector read-noise,
have to be considered as well.

With �2OPD;FT / T 5=3 and �2
ph

/ 1=Nph in the photon-rich regime, we reduce
the bandwidth variance by a factor of 3.17 when doubling the bandwidth and we
increase the photon noise variance by a factor of two since we only have half the
number of photons if the bandwidth is doubled. Therefore, the sum of the variances
decreases – the fringe motion is reduced – when increasing the scan rate. However,
when entering the photon-starved regime, the variance due to photon noise goes
with 1=N 2

ph
so that �2

ph
increases by a factor of four when doubling the scan rate,

and the net effect is an increase of the overall variance, increasing the residual fringe
motion.

This permits a simple assessment of the required brightness of the reference star,
the limiting magnitude. If we want to reduce the fringe motion to a few hundred
nanometer a scan rate of a few hundred Hertz is required and we have to ensure that
the number of photons per scan, contributing to the measurement is well above the
photon-starved regime, i.e. Nph > 100 in order not to increase the overall variance.
Assuming that about 2% of the photons in the telescope aperture are fed into the
monomode fibre and are registered at the detector – taking transmission and injec-
tion losses and quantum efficiency into account – we need about 5,000 photons in
the telescope aperture per scan of a few milliseconds. If the telescope diameter is
1.8 m and we observe in the K-band, the limiting magnitude is aboutmK D 9 (see
Appendix A.2) to reduce the fringe motion to a few hundred nanometer. Despite the
simple assumptions leading to this result, the magnitude of this value is confirmed
by observations [204, 249], and presents a good indication of the requirements.

Scanning an individual fringe with the ABCD method does not provide the infor-
mation on the distance of the fringe from the white-light fringe since the phase is
measured modulo 2� . We discussed the impact on the visibility measurement in
Sect. 6.1.2. For fringe tracking, we need to know the position of the white-light
fringe – identifying the position of zero OPD when observing a point source – since
we want to stabilize the fringes at zero OPD. Only then can we determine the phase
of the visibility function of a nearby object as we will discuss in Sect. 6.2.2.
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Fig. 6.6 The K-band fringe package (top) and its distribution into five spectral channels as a
function of OPD, with arbitrary vertical shifts for clarity. For a point source, the white-light fringe,
at the centre of the fringe package envelope, is centred at zero OPD. The four stripes at an OPD
of 0 and of 5�3 indicate two OPD positions where the fringe phase is measured with the ABCD
method. At zero OPD, the fringes in all channels have a phase of zero. For an OPD of 5�3 the
phase is zero only for �3. In the other channels, the phases depend linearly on the wavelength,
with the dotted line marking the measured phase in each channel. The tilt of the dotted line, i.e. the
variation of phase with wavelength, indicates the group delay �g , and �gc is the distance between
the white-light fringe and the OPD position of the measurement

Group Delay

Distributing the light into several spectroscopic channels, we can measure the group
delay providing the information on the distance of the scanned fringe from the
white-light fringe position. Figure 6.6 depicts the principle.

If the measurement is taken at zero OPD, the phases at all wavelengths are zero
as displayed, unless there is dispersion. Moving to another, unknown OPD, which
might be the situation that one encounters when starting the observation, the fringe
patterns all show different phase. An OPD larger than � cannot be determined by
individual phase measurements, each limited to ˙� , but we can measure the differ-
ential phase between the channels that is indicated by the dotted line in Fig. 6.6,
when the tilt of the dotted line provides the information on the position of the
white-light fringe.

The phase 
0 at each wavelength, 2�
�j

OPD, is determined with respect to the
centre of the ABCD measurement, which is at 5�3 in Fig. 6.6. Writing 
0 as a
function of frequency,
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0.�/ D 2�

��
� OPD D 2��

OPD

c
D 2���; (6.27)

with � the time delay corresponding to the optical path difference, also called the
phase delay, we define the group delay as

�g D d
0.�/
d�

1

2�
: (6.28)

Note that the group delay as a time delay is related to an optical path difference
through OPD D �gc.

In our example in Fig. 6.6, the derivative of 
0 is given by the tilt of the dot-
ted line, which is constant over the displayed wavelength range. If �g is zero, for
instance at zero OPD, we are at the white-light fringe. The distance of the measured
fringes from the white-light fringe is given by �gc.

The advantage of the group delay measurement is that it is linear up to the coher-
ence length �2=��. This is plausible when writing the intensity of the individual
bins as a function of wavelength, regarding for instance bin A at an OPD of 5�3 in
Fig. 6.6. It is apparent, that IA.�/, sometimes called the channelled spectrum [218],
shows a decline of intensity when moving from �1 to �5. For an OPD as long as the
coherence length we would see that the intensity follows the full cycle of a cosine
function, like a fringe pattern with a period length of �5 � �1. This corresponds to
a jump of 2� of the phase at wavelengths �1 and �5 so that the group delay cannot
be computed unambiguously beyond an OPD of the coherence length.

Using the notation IA.�/ for each bin, the group delay can be computed by a
somewhat more elaborate procedure, performing a two dimensional Fourier trans-
form of the function I.�; x/ with x indicating the OPD corresponding to bins A
to D [38, 128].

Comparing the group delay to the measurement of the phase delay, which is
defined as 
0=.2��/, we find that the variance of the group delay measurement is
by a factor of 12.�=��/2 larger than that of the phase delay [130], which means a
factor of 360 for the K-band with �=�� D 5:5.

Once the white-light fringe is identified we centre the ABCD measurement at this
position – by moving the delay line accordingly – and track the fringes around zero
OPD by measuring the phase 
0 in a single spectroscopic channel or on the white-
light fringe. In the ideal case, the group delay measurement is no longer required.
However, occasionally there are sudden phase jumps of more than 2� in the atmo-
spheric phase so that the fringe tracker may jump by exactly one fringe since this
phase jump is invisible for the ABCD measurement of 
0. Measuring the group
delay, phase jumps would be recognised but the prohibitive variance of the group
delay measurement pushes the limiting magnitude to very bright objects.

In practice, one seeks a compromise by reading the fringes at the extreme wave-
lengths at a slower rate and sending most of the light into the central channel, which
provides the phase delay at the required scan rate. The group delay is used only to
ensure that fringe jumps are recognised [204]. Then, the larger variance of the group
delay measurement does not affect the performance of the fringe tracker.
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Dispersion

So far, we have completely ignored the dispersion in air. While this is a reasonable
approximation for the effects that we have discussed in the preceding sections, we
have to consider the dispersion when discussing astrometry and measurements of
the visibility phase [223]. Observing sources off zenith, the optical path difference
that we correct with delay lines is due to an additional optical path above the atmo-
sphere in vacuum. In air-filled or partially evacuated delay lines, tiny variations of
the refractive index n.�/ over the spectral band, provide a measurable variation of
the optical path n.�/L, with L being the path length. This is called longitudinal
dispersion.3

Comparing the path, L, in vacuum with the optical path, n.�/L, in air, we find
the OPD as .n.�/ � 1/L. We choose the central wavelength of the observed spec-
tral band to define the position of zero OPD, as displayed in Fig. 6.7 with �3 as
reference wavelength. For normal dispersion, the refractive index n.�/ increases
with frequency, so that at longer wavelengths the fringe patterns are shifted to neg-
ative OPD and at shorter wavelengths to positive OPD. The situation is displayed in
Fig. 6.7 assuming a linear increase of n with frequency. Then the shifts are linear
with wavelength as indicated by the tilted line.

Measuring the phase at an OPD of 5�3, we find that the dotted line, marking
the phase in each channel, has a smaller tilt than in the case without dispersion in
Fig. 6.6, and, accordingly, the group delay is reduced. This geometrical illustration
of the effect of longitudinal dispersion can be replaced by the computation of the
derivative of 
0 in (6.28) when the OPD, .n.�/ � 1/L, is a function of frequency.

According to the smaller group delay, we find that the white-light fringe, more
precisely the centre of the fringe package envelope, is now closer to the OPD posi-
tion, here at 5�3, of the phase measurement. This means, that due to dispersion, the
envelope of the fringe package has moved from zero OPD closer to the OPD posi-
tion of the measurement. It should be kept in mind that the group delay is measured
with respect to the position where the measurement is performed. Thus, determining
the group delay at zero OPD, �g would provide the distance of the envelope from
zero OPD.

In general, we denote the distance between the position of zero OPD for the
central wavelength and the centre of the envelope function by OPDGD, and it is

OPDGD D L�
dn.�/

d�
: (6.29)

The group delay depends on the dispersion and on the optical path L in vacuum. To
reduce this effect, delay lines can be put in vacuum pipes. Then, the optical path in
air is shorter and the formula has to be corrected accordingly.

3 The dispersion also affects the shape of the Airy disk that is elongated when observing objects off-
zenith. This is called transversal dispersion and is usually corrected by an atmospheric dispersion
corrector.
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Fig. 6.7 The K-band fringe package (top) and its distribution into five spectral channels as a
function of OPD, as in Fig. 6.6, but in the presence of dispersion. We use the central wavelength
�3 to define the position of zero OPD. Due to the dispersion the phases at zero OPD vary with
wavelength, and OPDGD indicates the distance between zero OPD and the centre of the envelope
function. Measuring the group delay at position 5�3, we determine the distance �gc with respect
to the centre of the envelope function. As indicated by the tilt of the dotted line, this group delay is
smaller than without dispersion in Fig. 6.6 and the centre of the envelope function is closer to the
position 5�3

Regarding the situation when fringes are tracked at zero OPD and the object is
at zenith with L D 0, we find that the group delay is zero and the fringe package
is centred at zero OPD, with OPDGD D 0. In the course of the observation, L
increases and – while the fringes at the central wavelength are kept stable with a
fringe tracker – it is the envelope of the fringe package that moves, so that the
tracked fringe at zero OPD is no longer at the centre of the envelope.

Thus, having the choice to track either the fringe phase, i.e. the phase delay, or the
group delay one has to be aware, that the fringe pattern moves within its envelope
so that tracking the group delay, the fringes would smear in a long time integration.
In the K-band for example, the refractive index n varies by 10�7 so that OPDGD

increases by one wavelength for a path length of L D 4m, i.e. after about 10 min
of observations. This means, tracking the group delay would completely wipe out
the fringe pattern after a 10 min exposure, while tracking the phase delay keeps the
fringe pattern stabilized.
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The dispersion has to be considered in particular when, for instance, tracking
fringes in the K-band and observing in the N -band4 [154]. It is possible, that the
envelope function moves so far off the zero OPD position that the measurement of
the visibility at zero OPD is affected by the reduced contrast. One has to compensate
for this effect in the N -band beam combiner.

6.2.2 Dual-Feed System

The measurement of the phase of the object visibility function requires to observe
additionally a point-like reference star with zero visibility phase. Unless an interfer-
ometer in Fizeau configuration is available – with a large field of view so that we
can pick two stars with arbitrary separation – we face the restrictions in Michelson
configuration reducing the field of view to less than an Airy disk.

Measuring the phase of object and reference star, we rely on the correlation of
the differential fringe motion that requires an angular distance smaller than some
10 arcsec as discussed in Sect. 4.3.1. Since we are interested in exploiting the max-
imum separation to increase the chance of finding a sufficiently bright reference
star – estimated in Sect. 6.2.1 to have at least a magnitude of mK D 9 – the field
of view in Michelson configuration is not sufficient and one has to operate two
Michelson beam combiners in parallel. Then, the light from the two objects is fed
into separate beam trains via a periscope system in each telescope focus. This is
called a dual-feed system.

In general, a fringe tracker runs in one feed of the system so that the integration
time for the science object in the other feed can be increased considerably without
losing fringe contrast. Thus, we do not only enable the phase measurement with a
dual-feed system, but we also increase the sensitivity by several stellar magnitudes.

In Sect. 6.2.1, we discussed how to measure the zero OPD position when observ-
ing a point source and how to use this signal to operate a fringe tracker. How do
we explore this knowledge to determine the position of zero OPD in a second beam
combiner?

Additional Sub-Systems

The calibration of the zero OPD position on the second detector is done by first
observing the reference star simultaneously in both beam combiners – hence the
periscope is sometimes called a star separator – so that the measured phase of the
fringe pattern marks the position of zero OPD on both detectors. Then, moving
the periscope in the telescope focus from the reference object to the science object
at distance �s, while the reference star in the other feed is still being observed, we

4 The N -band is the atmospheric band at � D 10:2˙ 2:5
m, see Appendix A.2.



302 6 Observing Through Atmospheric Turbulence

Ds

B

d

BeffDs · B

Fig. 6.8 Principle of dual-feed operation. The differential delay d of the white-light fringe posi-
tions is determined by the differential OPD �s � B, by internal optical path differences, dOPDint,
by the random differential fringe motion due to atmospheric turbulence dOPDturb, and by the phase
of the visibility function 
.RB/ D 
.Beff=�/

can relate the phase measurement of the science object to the zero OPD position
that was determined with the reference star, as illustrated by Fig. 6.8.

However, this procedure relies on the stability of all optical paths so that any shift
of the phase of the science object fringe pattern is due to the object phase and not
to any random internal path length variation. It is impossible to guarantee this down
to a level of a few hundred nanometer without monitoring the optical paths. A laser
metrology system is required to measure all internal optical path lengths from the
beam combiners through the star separator to the telescope mirrors so that we can
determine the differential internal optical path difference, dOPDint, contributing to
the shift of the fringe pattern. This puts an additional constraint on the star separator
since the laser beam must not be interrupted when the periscope moves from the
reference object to the science object.

For a maximum distance between object and reference star of �s D 1 arcmin,
and a baseline ofB D 200m, we have a differential OPD of about�s �B D 60mm.
If the main delay line is used to set the OPD of the reference star to zero, we have
to compensate for the differential OPD in the second beam combiner. This requires
another, relatively short delay line, the differential delay line, that is used to place
the fringe package at the zero OPD position that was determined previously with
the reference star.

The differential delay line is the third additional sub-system, after star separator
and laser metrology system, that is required for a dual-feed facility [38].

Compensating for the additional optical path difference �s � B with the differ-
ential delay line, the angular separation �s needs to be known precisely to move
the fringe pattern exactly to the zero OPD position of the second beam combiner.
Any deviation of the real separation from the nominal separation, which we apply
to the differential delay line, shows in the phase measurement of the fringe pattern
as an additional shift with respect to zero OPD. Thus, measuring the phase of the
fringe pattern, we determine both the precise separation �s and the phase 
ob.RB/

of the object visibility function, so that the dual-feed system can not only be used
for phase referenced imaging but also for astrometry.
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Finally, observing through atmospheric turbulence, the fringe patterns are affec-
ted also by random differential fringe motion dOPDturb, as discussed in Sect. 4.3.1.
We call the sum of all contributions the differential delay, d , written as

d D �s � B C dOPDint C dOPDturb C �

2�

ob.RB/ Œm�: (6.30)

Tracking fringes with the reference star, the fringe pattern of the science object
shows the differential delay d , with a fast jitter due to dOPDturb and, additionally,
due to the residual fringe motion of the fringe tracker (6.25), causing a contrast loss
in long time exposures.

In Sect. 4.3.1, the rms fluctuations of the differential OPD were given by (4.60) as

�ddOPD;T D 0:1 �r
�5=6
0 Nv8=6 Nh d�3=2�s T 4=3 Œm�:

D 88 d�3=2�s T 4=3 Œnm�; (6.31)

with the separation �s in radians in the first line and in arcsec in the second line.
The numerical value summarizes the parameters of average atmospheric conditions,
r0 D 0:6m at � D 2:2 
m, Nv D 10m/s and Nh D 2:5 km. Note that these parameters
can vary considerably so that the formula only gives an indication of the order of
magnitude of the effect.

The overall OPD variance is given by the sum of differential OPD variance
�d 2dOPD;T and the residual fringe motion �2�0 , (6.26) in the fringe tracker. For a
separation of �s D 10 arcsec and an exposure time of T D 1 s, we find the rms
fluctuations of dOPDturb to be about 310 nm. The contrast reduction due to OPD
fluctuations was given in (6.3) as �V=V D exp.�2�2=�2�2OPD/ so that, observing
in the K-band, we have a contrast reduction to 67%. The additional residual fringe
motion of the fringe tracker of 150 nm reduces the contrast additionally by a factor
of 0.9 so that in total the contrast is reduced to 60%.

If the contrast loss is the metric to define the isoplanatic angle and if a reduction
to 60% is acceptable, the isoplanatic angle for interferometry is 10 arcsec in the
K-band. Smaller angular separations reduce the rms fluctuations linearly, and the
computation of the contrast loss is straightforward.

The gain in sensitivity is given by the increase of exposure time over the uncor-
rected case. Using (4.55), we find that uncorrected fringe motion shows fluctuations
of 300 nm over 40 ms. With a dual-feed system we can integrate 1 s before reaching
this level of fringe motion so that we can observe objects, that are 3.5 magnitudes
fainter at a distance of 10 arcsec from the reference star.

Reducing the exposure time, the fluctuations are smaller and we could observe
at a larger angular distance from the reference star. However, the object has to be
brighter to provide the same number of photons during the integration.

In Sect. 4.3.1 we discussed that the OPD fluctuations saturate for very long inte-
gration times at about four times the value of a 1-s integration, i.e. at �ddOPD;1 	
1
m. Since this value lowers the contrast to a few percent, we have to reduce the
separation �s so that the fluctuations are at least in the range of 500 nm with a
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contrast of 30%. This means that the angular distance between object and refer-
ence star has to be smaller than 10 arcsec for very long exposure times reaching the
maximum sensitivity improvement.

Thus, the sensitivity of an interferometer can be improved as a function of the
angular distance between object and reference star. For an improvement of 3–4 mag-
nitudes, the science object has to be at about 10 arcsec from the reference star. The
maximum improvement of about seven magnitudes in the K-band, corresponding
to integration times of about 30 s, requires a reference star within considerably less
than 10 arcsec.

For astrometric measurements, with both objects usually sufficiently bright for
short exposure times, the maximum theoretical separation of many arcminute is
given by the very narrow angle regime [212]. We will see in the following, (6.33),
that the achievable accuracy is linear with the separation so that, in practice, the
maximum angular distance is about 1 arcmin.

Regarding the phase measurement of the fringe pattern of the science object,
we are interested in the average value, Nd , of the difference of fringe positions
after a long exposure time in order to determine the angular separation, �s and
the phase, 
ob.RB /, of the visibility function. The accuracy of this measurement
depends mainly on the optical path fluctuations due to atmospheric turbulence and
we will discuss these first before setting the requirements on the other subsystems.

Ideally, the optical path fluctuations average to zero since atmospheric turbu-
lence has zero mean, as discussed in Sect. 4.2. For finite observing time, however,

the average, dOPDturb, is larger than zero. The variance < dOPD
2
turb > for an

integration time of T can be computed in frequency space, by applying a filter
function sinc.�Tf / – the Fourier transform of the rectangular time window – to
the power spectrum of differential OPD fluctuations, ˚dOPD;t .f /, (4.58), just like
when discussing the fringe motion in Sect. 4.3.1. However, there the variance of
the fringe motion during individual measurements was computed while we are now
interested in the variance of the average fringe position after time T . Averaging
M measurements of duration T , we have to consider the overall integration time
TM D M � T .

The variance is then the integral of the product of ˚dOPD;t .f / with the sinc func-
tion. For long integration times TM , it is sufficient to consider only the constant part
at low frequencies [212], yielding

�2
dOPDturb;TM

D 0:628 �2
� Nv
r0

�5=3  
�s Nh

Nv

!2 �
B

Nv
�2=3

T �1
M Œm2�: (6.32)

Thus, the variance of the average fringe position decreases with observing time TM ,
as expected.

For astrometry, it is more convenient to express the fluctuations for the average
separation�s D dOPDturb=B , writing the rms fluctuations [212] as
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��s;TM
D �dOPDturb;TM

B
D 0:79 �r

�5=6
0 Nv�1=2 NhB�2=3�s T �1=2

M Œarcsec�:

D 2100B�2=3�s T �1=2
M Œ
arcsec�; (6.33)

with the baseline B in m and the separation �s in arcsec. The numerical value,
2100, summarizes the parameters of average atmospheric conditions, r0 D 0:6m
at � D 2:2
m, Nv D 10m/s and Nh D 2:5 km, so that we obtain a manageable
expression with a numerical value that is within the range of values computed with
detailed data for C 2n profiles and wind speeds for observatory sites [34, 212].

Assuming integration times of a few hours and a separation of �s D 10 arcsec,
the rms fluctuations have a value of 10
arcsec for a 100-m baseline – corresponding
to dOPD fluctuations of 5 nm – under average atmospheric conditions.

It should be noted, that the phase of the visibility function is likely to vary when
observing over several hours since the effective baseline moves. Thus, depending
on object morphology and position, there are restrictions for the duration of the
measurement. For an astrometric measurement, the restrictions are less rigid since
the phase measurement is determined by �s � B, and the sidereal motion shows in
the separation vector�s that rotates slowly with respect to the baseline. As a linear
effect, its calibration is straightforward.

If we set 5 nm OPD fluctuations as a goal for the accuracy of the measurement of
the differential delay d , the errors that are contributed by the other sub-systems have
to be of the same order of magnitude. This means that the laser metrology system
has to achieve an accuracy better than 5 nm, which is achievable with state-of-the-art
systems.

The accuracy for the baseline length can be derived from�s �B, and we find that
ı�s=�s 	 ıB=B . If we want to determine the separation vector with an accuracy of
10
 arcsec for a 10 arcsec separation, the length of the baseline vector, e.g. 100 m,
needs to be known to about 100
m. The average baseline can be determined to
this accuracy level by observing calibrator stars with known diameter. However, it
is more difficult to ensure the dynamic stability since this requires that the shape
of the telescope entrance pupils – their separation defining the baseline – has to be
stable to this level while tracking a star.

At this extreme level of accuracy, the spectra of object and reference star also
affect the measurement. Discussing dispersion in Sect. 6.2.1, the zero OPD position
was defined for the central wavelength of the spectral band, indirectly assuming a
rectangular spectrum. Even it the spectrum is not perfectly rectangular this does not
affect the measurement as long as object and reference star have the same spectrum.
Observing stars of different spectral type, however, the zero OPD positions are dif-
ferent and we have to consider this effect when moving from the reference star to
the object.

An astrometric accuracy of 100
arcsec was achieved with the Palomar Testbed
Interferometer (PTI) with a baseline of 110 m, measuring the angular separation of
the two components in 61 Cyg with �s D 31 arcsec, [125]. Also at PTI, binaries
with a separation of some 100 mas – within one Airy disk and not requiring a dual-
feed system – were measured with an accuracy of 20
arcsec, [168].
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So far, we have concentrated on the error sources, but how do we disentangle
the impact of the separation vector �s from that of the visibility phase, 
.RB/,
in the differential delay d? Taking a large number of measurements with different
baselines one can separate the distance term that is linear with the baseline,�s � B,
from the phase of the visibility function that can have almost any shape as a function
of baseline RB D Beff=�.

The measurement of the phase 
ob.RB / of the object visibility function provides
the last piece of information that is required to form images of celestial objects with
an interferometer using the reconstruction procedures described in Sect. 3.4.3.

6.2.3 Closure Phase

Apart from the complex operational scenario of the dual-feed system, the phase
of the visibility function can also be determined when combining three telescopes
simultaneously eliminating the influence of the turbulence by adding up the phases
of all three baselines. This technique has been applied successfully in speckle
interferometry, see Sect. 4.4, but it is restricted to rather bright objects.

If we regard the random phase differences�'ij for each baseline Rij as the dif-
ference of the random phases 'i in each telescope, we find that the sum of three
measured phases ' 0

ij around a closed loop of three telescopes amounts to zero,
R12 C R23 C R31 D 0.

If the observed object has a non-zero phase, the measured phase for each base-
line is the sum of the object phase 
.Rij / plus the random phase difference, �'ij .
Adding up the measured phases of the three baselines then eliminates the random
OPD fluctuations, obtaining the closure phase as 
.R12/C 
.R23/C 
.R31/.

With 
0
i the phase of the each fringe pattern, we write


0
12 D 
.R12/C�'12 D 
.R12/C '1 � '2;


0
23 D 
.R23/C�'23 D 
.R23/C '2 � '3;


0
31 D 
.R31/C�'31 D 
.R31/C '3 � '1;


0
12 C 
0

23 C 
0
31 D 
.R12/C 
.R23/C 
.R31/: (6.34)

That means that the random phase terms disappear in the sum, the closure  .R12;

R21/, that is written as

 .R12;R21/ D 
.R12/C 
.R23/� 
.R12 C R23/; (6.35)

with R12 C R23 D �R31. Note that the linear term of the phase, determining the
source position, is also removed in the closure phase.

The number of closure phases for a different number of telescopes is given in
Table 6.1. For a small number of telescopes, the phase measurement with a dual-
feed system, determining one visibility phase for each baseline, provides more
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Table 6.1 Number of baselines and closure phases for different number of telescopes

No. of telescopes NT 2 4 6 8
No. of baselines NT .NT � 1/=2 1 6 15 28
No. of closure phases .NT � 1/.NT � 2/=2 0 3 10 21

information than the limited number of closure phases. With growing number of
telescope, however, the initial disadvantage disappears and the number of baselines
and of closure phases are both approximately / N 2

T .
Combining closure phases of observations with different baselines, the phases

of the individual baselines 
.Rij / can be recovered using methods developed for
the phase reconstruction from the bispectrum in speckle interferometry [7, 9, 84,
115], see Sect. 4.4. In intensity interferometry (Sect. 2.5) the closure phase can be
employed also to recover the object phase.

Although the random phase disappears in the closure phase we are not indepen-
dent of turbulence since it has to be assured that the exposure times are sufficiently
short to measure the phase on each baseline. Using (6.4) we find that after about
100 ms the contrast is reduced to 20%. Increasing the exposure time makes the
phase measurement less accurate since, as given by (6.23) it is the product of mea-
sured visibility V and number of photons Nph that determines the variance of the
measurement. The signal to noise ratio of the closure phase measurement is given
by [211]

SNR D
 

3

�
2

NphV2
�

C 6

�
2

NphV2
�2

C 4

�
2

NphV2
�3!�1=2

: (6.36)

If the zero OPD position in each phase measurement is not precisely known, a bias
is introduced. However, this can be calibrated by observing a point source. Using
all-in-one beam combiners as shown in Fig. 5.7, combining three telescopes, the
phases can be measured without a bias.

The closure phase technique was first applied to masked apertures [8, 100].
The first demonstration with an interferometer of independent apertures was given
by J.E. Baldwin [68] presenting the first image reconstruction with the COAST
interferometer.

Beating Atmospheric Turbulence – Summary

A reference star for fringe tracking is required when observing through turbu-
lence, unless, combining three telescopes, the three visibility phases are added
up providing the closure phase that is independent of turbulence.

The principle of fringe tracking relies on stabilizing the fringe motion by
rapidly scanning the fringe pattern and feeding the information on the white-
light fringe position into a servo loop.
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The residual rms fringe jitter, �OPD;FT , for a servo loop bandwidth f3dB

larger than 10 Hz, is given by

�OPD;FT D 0:7 �

� Nv
r0

�5=6
T 5=6 Œm�; (6.25)

with T the exposure time as the reciprocal of the scan rate of 10f3dB, it is
T < 10ms.

The limiting magnitude, i.e. the required brightness of the reference star, is
aboutmK D 9 on 2-m class telescopes, so that the phase variance �2

ph
, (6.23),

due to photon noise is smaller than �2OPD;FT .
The identification of the white-light fringe of the fast moving fringe pattern

requires to measure the group delay defined as

�g D d
0.�/
d�

1

2�
; (6.28)

with 
0.�/ the measured phase as function of frequency. The group delay is
related to an optical path difference through OPD D �gc.

Unlike the phase measurement that suffers from a 2� ambiguity, and is
therefore blind to fringe jumps of �, the group delay is linear up to the
coherence length, i.e. over the complete fringe package.

Observing objects off-zenith, the compensation of the additional optical
pathL by delay lines in air makes the OPD a function of wavelength owing to
the dispersion of air. Computing the group delay, we find that the distance
OPDGD between the centre of the envelope of the fringe package and the
position of zero OPD is given by

OPDGD D L�
dn.�/

d�
: (6.29)

The group delay depends on the dispersion and on the optical path L in
vacuum. For evacuated delay lines, the optical path in air is shorter and the
formula has to be corrected accordingly.

Using a dual-feed system, an object in the vicinity of a bright reference star
benefits from the fringe stabilization on the reference star. The differential
delay d , which is the overall OPD difference between object and reference
star is given by

d D �s � B C dOPDint C dOPDturb C �

2�

ob.RB/ Œm�; (6.30)
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when �s � B is due to the angular separation �s between object and ref-
erence star, dOPDint is the differential internal OPD due to imperfections of
the opto-mechanics, dOPDturb is the differential OPD due to turbulence and

ob.RB/ is the phase of the object visibility function. The differential delay
is the measured quantity that – by monitoring dOPDint and by averaging (see
below) dOPDturb – is determined by�s and 
ob.RB/, providing an astrometry
and a phase referenced imaging mode.

The differential fringe motion during exposure time T is determined by the
differential OPD yielding the rms fluctuations as

�ddOPD;T D 0:1 �r
�5=6
0 Nv8=6 Nh d�3=2�s T 4=3 Œm�:

D 88 d�3=2�s T 4=3 Œnm�; (6.31)

with the separation�s in the second line in arcsec, and the numerical param-
eter summarizing the parameters of average atmospheric conditions. Note
that these parameters can vary considerably so that the formula only gives
an indication of the order of magnitude of the effect.

Measuring the phase, we are interested in the average value dOPDturb after
a long time TM . The variance of the average value is given by the variance of
the individual measurement divided by the overall duration TM of the mea-
surement. For astrometry, it is more convenient to express the fluctuations
for the average separation �s D dOPDturb=B , writing the rms fluctuations
[212] as

��s;TM
D 0:79 �r

�5=6
0 Nv�1=2 NhB�2=3�s T �1=2

M Œarcsec�:

D �dOPDturb;TM

B
D 2100B�2=3�s T �1=2

M Œ
arcsec�; (6.33)

with the baseline B in m, the separation �s in arcsec, and the numerical
parameter summarizing the parameters of average atmospheric conditions.

Assuming integration times of a few hours and a separation of �s D
10 arcsec, the rms fluctuations have a value of 10
 arcsec for a 100-m
baseline – corresponding to dOPD fluctuations of 5 nm – under average atmo-
spheric conditions. This sets the accuracy limits for the other contributions to
the differential delay in (6.30).

Regarding the random optical path difference fluctuations, OPDturb, on
each baseline Rij as the difference of the individual optical paths to each
telescope, we find that the sum of the three OPDturb.Rij / around a closed
loop of three telescopes, amounts to zero.

If the observed object has a non-zero phase, the measured phase on
each baseline is the sum of the object phase 
.Rij / plus a random term,
OPDturb.Rij /. Adding up the measured phases of the three baselines then
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eliminates the random OPD fluctuations obtaining the closure phase as

 .R12;R21/ D 
.R12/C 
.R23/� 
.R12 C R23/: (6.35)

Combining closure phases of observations with different baselines permits us
to reconstruct the phases of the individual baselines 
.Rij /.

6.3 Adaptive Optics

Interferometers with large telescopes require adaptive optics on each telescope to
increase the sensitivity and to improve the measurement accuracy, as discussed in
Sect. 6.1.

Adaptive optics relies on measuring the aberrations in the telescope pupil with
a wave front sensor using a reference star. The signal is then applied to an actua-
tor, a deformable mirror, forming a servo loop like a fringe tracker. The principle
is depicted in Fig. 6.9. In contrast to tracking the fringe position and correcting a
single parameter, adaptive optics requires measuring optical aberrations in a two
dimensional plane and correcting many parameters.

In the following, we will briefly discuss the concept of adaptive optics providing
sufficient detail to understand the basic principle, but we will not treat technical
developments of deformable mirrors and detectors. More detailed information can
be found in the books by F. Roddier [200], by M.C. Roggemann and B.M. Welsh
[201], and by R.K. Tyson [244].

Discussing optical aberrations, Zernike polynomials were introduced in
Sect. 3.1.2, and we investigated their properties in the case of atmospheric turbu-
lence in Sect. 4.3.3. These properties will be used in the following to determine the
performance of adaptive optics systems.

Deformable
Mirror

Wavefront-
sensor

Corrected
Focus

Fig. 6.9 The main elements of an adaptive optics system. The wave front sensor measures the
aberrations and sends the information to the deformable mirror to flatten the wave front. A camera
in the corrected focus takes the corrected image
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We will first introduce the Shack–Hartmann sensor as an example for wave
front sensing and then we will discuss the requirements and the performance of
an adaptive optics servo loop.

6.3.1 Wave Front Sensing

There are mainly three types of wave front sensors in adaptive optics: the Shack–
Hartmann sensor [202], the curvature sensor [195], and the pyramid sensor [190].
The Shack–Hartmann sensor being conceptually the simplest, will serve to discuss
general principles of wave front sensing.

The Shack–Hartmann sensor divides the telescope aperture into an array of
smaller sub-apertures, and a lenslet array is used to produce multiple images (see
Fig. 6.10). The centroid displacement of each of these sub-images gives an estimate
of the average wave front gradient over the sub-aperture [187] that can be calculated
using (6.37). The Shack–Hartmann sensor is achromatic – the image movement is
independent of wavelength – and extended sources can be used as long as they fit
into the sub-image boundary.

In practice, a Shack–Hartmann sensor is built by putting a lenslet array in the
reimaged telescope pupil. The sub-images from each sub-aperture are imaged onto
a detector.

The measurement of the image intensity centroid after the light has passed
through a sub-aperture in a Shack–Hartmann sensor provides an estimate of the
wave front slope. The centroid, or first-order moment M , of the image intensity

Dx

Dy

Fig. 6.10 Measurement principle of a Shack–Hartmann sensor. The incoming aberrated wave is
subdivided by the lenslet array and the image centroid in every sub-image is shifted according to
the average wave front slope over the sub-aperture formed by the lenslet
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I.˛x; ˛y/ with respect to the ˛x-direction in the image, is given by the averaged
gradient �� (4.64), the tip-tilt of the wave front in the sub-aperture as [187]

M˛x
D
RR

image I.˛x; ˛y/ ˛x d˛xd˛y
RR

image I.˛x; ˛y/ d˛xd˛y

D �

2�

ZZ

sub�aperture

@'.�; �/

@�
d�d�: (6.37)

Zernike polynomials as introduced in Sect. 3.1.2 are a set of orthogonal poly-
nomials defined on the unit circle, here on the telescope aperture (see Sect. 3.1.2).
Computing the gradient over a sub-aperture we have to precisely define the position
of the sub-aperture within the aperture. Then, we can calculate the interaction matrix
�sh linking the centroid positions to the modes ai of the Zernike polynomial. How-
ever, this information might be difficult to obtain. Therefore, instead of calculating
the sub-image centroid positions for the Zernike modes the deformable mirror is
driven to form these modes and the sub-image centroids are then measured.

As an example a 2�2 Shack–Hartmann sensor is modelled, subdividing the aper-
ture into four quarter circles. The integration in (6.37) has to be performed over the
sub-apertures, i.e. for � D 0 to 1 and � D 0 to �=2 for the first sub-aperture. The
centroid displacement in x for the first sub-aperture therefore becomes

M˛x1
D �

2
a2 C 4p

3
a4 C 2

3

p
6.a5 C a6/C 3

2

p
2.a7 C a9/C �p

2
a8 C : : : :

As each lenslet yields two measurements, one in ˛x and one in ˛y , one obtains a
total of eight gradients. Usually this system of eight equations is written in matrix
form
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; (6.38)

with M the vector containing the measured gradients, a the vector containing the
coefficients of the Zernike polynomial and �sh the interaction matrix. The optimal
number of Zernike coefficients estimated from a 2�2 Shack–Hartmann sensor is not
8 but 6 because the Zernike coefficients are not statistically independent. The non-
diagonal covariance matrix (Table 4.2) shows their interdependency. As discussed
in Sect. 4.3.3, with Karhunen-Loève functions this increase is less severe, however,
with increased computational effort.
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Faint Objects

For low light levels, the variance of the tip-tilt measurement in an individual sub-
aperture can be found in [187,202]. Assuming that the seeing disk is approximately
Gaussian and that it is centred, the related variance of the wave front phase over the
sub-aperture is given by

�2ph D �2

2

1

Nph

�
d

r0

�2
Œrad2�; (6.39)

when Nph is the number of photons contributing to the measurement and d the
diameter of the aperture. The connection between the variance of the phase and that
of the tip-tilt is given by (4.67).

In the seeing limited case, with r0 � d the phase variance is independent of the
sub-aperture size since the number of photonsNph is proportional to the area d 2 of
the sub-aperture. In the diffraction limited case, when the sub-apertures are smaller
than r0, the quotient d=r0 is set equal to 1 and the variance is directly proportional
to 1=Nph.

Measuring the centroid in a large number of sub-apertures, the reconstruction
of the phase is computed by a linear process and the noise of each sub-aperture
measurement propagates linearly with

�2noise D P.J /�2ph; (6.40)

where P.J / is the error propagation coefficient as a function of the number J of
corrected modes. It depends on the properties of the system, like sensor and mirror
geometry, number of sensors and actuators etc. For Zernike modes an approximation
is given by [193]

P.J / 	 0:34 ln.J /C 0:10: (6.41)

The error propagation coefficientP.J / of the curvature sensor goes linear with J
so that the curvature sensor is particularly suited for low order correction [197].

6.3.2 Closed Loop Operation

In analogy to fringe tracking, we measure the wave front aberrations at a high rate
and feed the signal to the deformable mirror, correcting the aberrations in a closed
loop. The residual aberrations as function of frame rate can be computed by apply-
ing the rejection transfer function, S.f / as given by (6.24), to the power spectra,
˚Zn;t .f /, of the individual Zernike modes that are displayed in Fig. 4.9.

Since the power spectra are not available in closed form, the integrals have to be
computed numerically. For a first estimate, Greenwood [90] presented a simplified
approach, applying the rejection transfer function to the power spectrum ˚t .f / of
the phase fluctuations of the wave front (4.41). This implies a servo loop that, for
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infinite bandwidth, corrects the wave front perfectly, and all aberrations are caused
by the finite bandwidth of the servo system only.

The bandwidth that he defined was subsequently called the Greenwood frequency
that, by using the single layer approximation, is simplified yielding

fG D 0:43
Nv
r0
: (6.42)

The Greenwood frequency is defined such that a servo bandwidth f3dB equal to fG
provides a residual variance of 1 rad2, writing.

�2G D .fG=f3dB/
5=3 Œrad2�: (6.43)

For a better performance, the bandwidth has to be increased and other error terms
due to the limited number of corrected Zernike modes and due to photon noise have
to be considered as well.

The performance of an adaptive optics system is usually given by the Strehl ratio,
S , defining the relative peak brightness of the corrected PSF with the diffraction
limited Airy disk having a Strehl ratio of 1. A residual variance of 1 rad2 corresponds
to a Strehl ratio of S D exp.��2G/ D 35%, using (3.15).

The performance is not only determined by the bandwidth of the servo loop but
also by the residual phase variance �2J , (4.72), after correcting J Zernike modes and
by the photon noise �2noise, (6.40).

The residual phase variance after correction of J Zernike modes is listed in
Table 4.1 for J< 12, and an approximation for large J is given in (4.73), writing

�2J D �J 	 0:2944J�p
3=2 .D=r0/

5=3 Œrad2� for large J ;

with D the diameter of the telescope aperture. �J is also called the fitting error.
We can now write the sum of the variances as

�2' D �2G C �2J C P.J /�2ph Œrad2�; (6.44)

listing the fundamental error sources. For the complete analysis of a given sys-
tem, other error sources of the hardware in use, like detector read noise, have to
be considered as well.

Using again average atmospheric conditions with r0 D 0:6m at � D 2:2 
m,
and Nv D 10m/s on an 8-m telescope, we sketch the requirements and the limiting
magnitude for an adaptive optics system.

Assuming that we correct 100 Zernike modes, we find the residual variance of
the uncorrected modes as �2J D 0:4 rad2 corresponding to a Strehl ratio of 67%.

The Greenwood frequency is 7 Hz, under the given atmospheric conditions,
corresponding to a residual variance of 1 rad2, substantially larger than the fit-
ting error �2J . If we want to add not more than 0.15 rad2 to �2J , we have to
set the servo bandwidth f3dB to 3fG D 20Hz so that the residual variance is
�2G D .1=3/5=3 D 0:15 rad2, reducing the Strehl ratio by only 14%, from 67% to
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58%. The frame rate of the wave front sensor is about ten times larger than the
bandwidth, i.e. we have to read out 200 frames per second, and the exposure time
per frame is about 5 ms.

We found a similar bandwidth requirement for fringe tracking. Concluding on
the limiting magnitude, we assumed that 2% of the photons arrive at the detec-
tor. Here, without long optical beam trains and without single mode fibres to feed,
we estimate that 10% of the photons contribute to the measurement. Assuming a
square grid of 10�10 sub-apertures, i.e. about 80 subapertures inside the circular
aperture are sufficient to determine 100 Zernike modes, the diameter of each sub-
apertures on an 8-m telescopes is 0.8 m. Then, using (6.39), we find that the read
noise per subaperture is �2ph D 9=Nph and, using (6.41), the correcting factor for
error propagation is P.J / D 1:7, so that we have �2noise D 15=Nph.

If less than 0.15 rad2 shall be added to the overall variance, we need 100 photons
on the detector and 1,000 photons per 5 ms in the sub-aperture, corresponding to
a magnitude of mK D 9 (see Appendix A.2) for a Strehl ratio of 50%. The same
computation for a wave front sensor in the visible shows that the limiting magnitude
improves by 1–2 magnitudes to mV D 10� 11.

One parameter that has not been treated so far is the isoplanatic angle that deter-
mines the maximum distance between object and reference star. For adaptive optics,
this depends heavily on the degree of correction and on the layer structure of the
atmosphere. In general, the requirement is less restrictive than for fringe tracking,
and in the near-infrared separations of about 30 arcsec are permitted reducing the
Strehl ratio to about 37% of the on-axis value.

A limiting magnitude around mV D 10 and a maximum separation of 30 arcsec
means that the fraction of the sky that can be observed, the sky coverage is very low.
The situation improves drastically if artificial reference stars, laser guide stars, are
used that can be placed anywhere in the sky [85]. Then, only the tip-tilt, invisible
with a laser guide star, needs to be determined. Using the full aperture, the limiting
magnitude for the natural tip-tilt reference star on an 8-m telescope improves by
�m D 5 to mV D 15 � 16.

For interferometry, the concept of a laser guide star does not work, since the
fringe motion – being the tip-tilt of the wave front across the array – is invisible
with an artificial reference star launched from the ground. Unfortunately, to date,
there is no valid concept for an artificial reference star in interferometry.

Not required for interferometry but very useful for single telescope imaging,
multi-conjugate adaptive optics (MCAO) increases the size of the corrected field
of view to a few arcminutes. Here, several deformable mirrors are placed in planes
that are conjugate to the most turbulent layers in the atmosphere, correcting the
layers individually [10, 59]. Several wave front sensors are needed to provide the
required information and the reference stars have to be distributed over the entire
field of view. Ideally, several laser guide stars are used. Objects that are placed off-
axis but within the field of view defined by the reference stars are then corrected
with equal quality, avoiding the instant drop of image quality in an adaptive optics
system with a single deformable mirror. First tests of MCAO systems were very
promising [16, 149].



Chapter 7
Modern Interferometers

Following Labeyrie’s successful demonstration of stellar interferometry with inde-
pendent apertures [121], founding the era of modern interferometry, there were
several projects in the 1980s and 1990s, at the Observatoire de la Côte d’Azur in
France (Grand Interféromètre à 2 Télescopes, GI2T) [124, 164], in the US, Mark
I - III [213–215] at Mt. Wilson, California, the Palomar Testbed Interferometer
(PTI) [38] at Palomar, California, and the Infrared-Optical Telescope Array (IOTA)
at Mt. Hopkins [238], Arizona that, in the meantime, have all been taken out of
operation.

In addition, there are the Navy Prototype Optical Interferometer (NPOI) [6] in
Flagstaff, Arizona, the Sydney University Stellar Interferometer (SUSI) [53, 54] in
Narrabri, Australia, the Cambridge Optical Aperture Synthesis Telescope (COAST)
[68] in Cambridge, UK, and the Mitaka optical InfraRed Array (MIRA) [170] at
the Mitaka Campus of the National Astronomical Observatory of Japan. All these
interferometers, with apertures between 0.4 and 1.5 m and baselines ranging from
2 to 640 m, have operated in the visible or in the near-infrared.

The noticeable exception is the Infrared Spatial Interferometer (ISI) at Mt.
Wilson, a three-telescope interferometer using heterodyne detection at an observing
wavelength between 9 and 12
m (N -band) with a maximum baseline of 56 m [92].

The Mark I interferometer was the first to demonstrate active fringe tracking
[215], and the PTI had the first dual-feed system in operation [38]. The first closure
phase image was produced by COAST [68].

The scientific success of these interferometers was sufficient motivation to equip
some of the world’s largest telescopes with an interferometric mode. The Keck
observatory with two 10-m telescopes at Mauna Kea, Hawaii, and ESO’s Very Large
Telescope (VLT) observatory with four 8-m Unit Telescopes (UT) at Paranal, Chile,
combine the advantage of large apertures with that of long baselines. Since the tele-
scope apertures are substantially larger than r0, the Fried parameter, they are all
equipped with adaptive optics systems.

The Keck Interferometer has a single baseline of 85 m, while the six baselines
of the VLT Interferometer (VLTI) range from 47 to 130 m. In addition, the VLTI
has four 1.8-m Auxiliary Telescopes (AT) that can be moved on a grid providing
baselines from 8 to 203 m. The layout of the VLTI is displayed in Fig. 5.24.
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Both the Keck Interferometer and the VLTI had first fringes with siderostats
within 4 weeks early in 2001 [39, 83]. Very quickly thereafter, a number of instru-
ments were deployed in the near- and mid-infrared producing scientific results
[36, 112].

In the same year, the CHARA interferometer on Mt. Wilson, California, also had
first fringes [229]. CHARA combines six 1-m telescopes arranged in a Y layout,
shown in Fig. 5.22. With a maximum baseline of 330 m and the MIRC instrument
combining four (and soon six) beams simultaneously [163], CHARA has produced
very interesting results despite its rather small apertures [114].

The VLTI has to wait for the second generation of instruments to see the com-
bination of four telescopes. The planning foresees MATISSE in the mid-infrared,
[142], and GRAVITY in the near-infrared [67]. GRAVITY will provide narrow
angle astrometry and phase referenced imaging with an astrometric accuracy of
10
 arcsec on the UT for objects separated up to 2 arcsec. The prime scientific
goal is the Galactic Center, studying motions to within a few times the radius of the
event horizon and potentially testing General Relativity in its strong field limit.

All these interferometers are operated in Michelson configuration so that the
field of view is reduced to less than an Airy disk. Only the Large Binocular Tele-
scope (LBT) will use the Fizeau configuration providing 20 arcsec field of view.
First Fizeau fringes were achieved in October 2010.
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2.1.2 Young’s Experiment

page 11:
With Imin D 0 and Imax D 1, the contrast of the fringe pattern is V D 1.

instead of
With Imin D 0 and Imax D 1, the contrast of the fringe pattern is V D 1.

3.1.2 Optical Aberrations: The Zernike Polynomials

page 84:

ai D
Z

aperture
'.�; �/Zi .�; �/�d�d�: (3.19)

Here, we will discuss only two examples, the Zernike polynomials for the classi-
cal aberrations astigmatism, Z5 with m D 2 and n D 2, and coma, Z8 with m D 1

and n D 3, that are displayed in Fig. 3.6.
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instead of

ai D
Z

aperture
�.�; �/Zi .�; �/�d�d�: (3.19)

Here, we will discuss only two examples, the Zernike polynomials for the classi-
cal aberrations astigmatism, Z8 with m D 2 and n D 2, and coma, Z5 with m D 1

and n D 3, that are displayed in Fig. 3.6.
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Appendix A

A.1 The Fourier Transform

We call f .x/ the Fourier transform of a function F.s/, if it is

f .x/ D
Z 1

�1
F.s/ e�i2�xsds; (A.1)

with x; s 2 R, and we write the Fourier back-transform as

F.s/ D
Z 1

�1
f .x/ ei2�xsdx: (A.2)

In our notation the back-transform has a plus sign in the exponential.1

f .x/ and F.s/ form a Fourier pair. They can both be complex functions. We
denote the Fourier transform by F using subscript x or s to indicate the coordinate,
and the superscript �1 to note the back-transform. Thus, the back-transform of a
function of x would be abbreviated by F�1

x .f .x//. While this looks a bit artificial
for a function of one variable, it is important in the case of several variables.

The translation of a function by s0, F.s � s0/, yields the Fourier transform
Fs .F.s � s0// D f .x/e�i2�xs0 (compare for instance to (2.62)), and the derivative

of the function F.s/, dF.s/
ds yields Fs

�
dF.s/

ds

�
D f .x/i2�x.

The Fourier transform can be generalised to two and more dimensions, if both f
and F are defined on R2.

If f is a function of time, with x D t , then F represents the spectrum of
temporal frequencies, s D �, and we call f .t/ the temporal Fourier transform
of F.�/. Similarly, going to two dimensions, assuming that f .˛/ is a function of
the two dimensional vector ˛, we find that f .˛/ is the spatial Fourier transform
of F.R/, representing the spatial frequency spectrum, which is a function of the
spatial frequency vector R.

1 This choice of sign is arbitrary since there is no fixed sign convention for Fourier transforms.
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Table A.1 Symmetry properties of Fourier pairs. We call even functions symmetric with f .x/ D
f .�x/, and odd functions anti-symmetric with f .x/ D �f .�x/

f .˛/ F.R/

real C even real C even
real C odd imaginary C odd
imaginary C even imaginary C even
real C arbitrary real part even, imaginary part odd
real C positive C arbitrary modulus even, phase odd

Starting with Sect. 2.3, we denoted two-dimensional integrals by a single integral
sign, and integration boundaries are assumed to be ˙1 unless noted otherwise, so
that we write the two-dimensional Fourier transform as

f .˛/ D
Z
F.R/ e�i2�R�˛dR: (A.3)

f .R/ is the spatial frequency spectrum that can be computed as Fourier back-
transform of f .˛/.

It is interesting to remember that, in Sect. 2.2, replacing ˛ for small angles by x=z
one yields 2�R � ˛ D 2�� � x=.�z/ D k� � x=z as argument in the exponential like
in (2.22). Thus, the Fourier coordinate pairs are either angle ˛ and spatial frequency
R, or the spatial coordinates � and x weighted by wavelength � and distance z,
respectively.

The symmetry properties in Table A.1 can be derived from (A.3), writing the
complex exponential as a sum of cosine and sine function, and expressing the
function F.R/ as the sum of even and odd functions.

The example in the last line is particularly important since for instance the
intensity I.˛/ or the point-spread function, PSF, are functions that are real, pos-
itive and arbitrary in shape. Their Fourier transforms, the visibility function �,
(3.24), or the OTF, (3.7), have exactly the properties of having an symmetric func-
tion in the modulus, jF.R/j D jF.�R/j and an anti-symmetric function in the
phase, 'F .R/ D �'F .�R/. Functions with these symmetry properties are called
Hermitian.

Often, we use the Dirac •-function to represent a point-like distribution, for
instance a pinhole. The •-function is defined such that it is

R
•.x/dx D 1 ,

•.0/ ! 1 and •.x/ D 0 if x ¤ 0. The integral of the product of the •-function
with another function g.x/ is

R
•.x � x0/g.x/dx D g.x0/, yielding the function

value g.x0/ at the position of the peak of the •-function.
Thus, the Fourier transform of the •-function is

Z
•.R � R0/e�i2�R�˛dR D e�i2�R0�˛;

or, for R D 0, a constant.
Regarding the sum of two •-functions as in Young’s experiment, we obtain the

Fourier transform f .˛/ as
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Table A.2 Examples of Fourier pairs

f .˛/ or f .˛/ (1D) F.R/ or F.R/ (1D)

1D: sinc.2�˛D=2/ rect. R
D
/

P
1

jD�1
•.˛ � j˛0/

P
1

jD�1
•.R � 2�j=˛0/

2D: Besinc.2�j˛jD=2/ circ. jRj

D=2
/

R
•.R � R0/ei2�R�˛dR D e�i2�R0�˛ •.R � R0/

cos.2�˛ � R0/
1
2
.•.R � R0/C •.R C R0//

sin.2�˛ � R0/ �i 1
2
.•.R � R0/� •.R C R0//

P.1;1/

j D.�1;�1/ •.˛ � j˛0/
P.1;1/

jD.�1;�1/ •.R � 2�j=˛0/

e�j˛j
2=.2˛20/ 2�˛20 e�2�2˛20 jRj

2 D 1

2�R20
e�jRj

2=.2R20/

with R0 D 1
2�˛0

f .˛/ D
Z 1

�1
.•.R � R0/C •.R C R0//e�i2�R�˛ dR

D cos.2�˛ � R0/ � i sin.2�˛ � R0/C cos.�2�˛ � R0/ � i sin.�2�˛ � R0/

D 2 cos.2�˛ � R0/;

describing the amplitude in the plane of observation if the •-functions represent the
two pinholes.

In order to become familiar with the Fourier transforms of the some typical func-
tions, Table A.2 summarises a variety of one- and two-dimensional functions and
their Fourier transforms.

The one-dimensional rectangular function, rect.R=D/, describes a rectangular
spectrum with bandwidth ��, i.e. G.�/ D rect.�=��/. Its Fourier transform is
g.�/ D sinc.����/, with its first zero at � D 1=��. Shifting the spectrum to the
average frequency �0, its Fourier transform is sinc.����/e�i2���0 , see (2.63).

A two-dimensional circular function, circ. jRj
D=2

/, describes a circular aperture
with diameterD, and its Fourier transform is the amplitude V.˛/ in the image plane
as given by (2.24).

An infinite distribution of •-functions, equally spaced by R0 on a two-
dimensional grid, is called a Dirac comb. Its Fourier transform is a replica of itself
with grid constant 1=˛0. This was discussed in Sect. 5.4.1.

The last line in Table A.2 displays the Fourier transforms of a two-dimensional

Gaussian functions. For a one-dimensional Gaussian, one has to take
q
2�˛20 as

coefficient.
Very often, we discuss the convolution product of two functions, defined as

f .x/ D
Z
g.x0/h.x � x0/dx0 D g.x/ � h.x/; (A.4)

with � denoting the convolution.
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The Fourier back-transform of f .x/ is then written as

F.s/ D
Z
f .x/ ei2�xsdx

D
Z 	Z

g.x0/h.x � x0/dx0



ei2�xsdx

D
ZZ

g.x0/h.x � x0/ei2�x0sei2�.x�x0/sdx0dx

D
Z
g.x0/ ei2�x0sdx

Z
h.x00/ ei2�x00sdx with x00 D x � x0

D G.s/ �H.s/; (A.5)

so that the Fourier transform of a convolution F�1 .g.x/ � h.x// is the product of
the individual Fourier transforms, G.s/ and H.s/. The imaging process provides
an example of a convolution when the object intensity distribution O.˛/ is con-
volved with the PSF to obtain the image intensity distribution (3.4) as discussed in
Sect. 3.1.1. The Fourier transform of the convolution product is the product of the
object intensity spectrum with the OTF, OO.R/ � OTF.R/, (3.11).

The convolution of a an aperture function with two •-functions represents the
interferometer aperture. Its Fourier transform is then the product of the Fourier trans-
form of the individual aperture and the Fourier transform of the two •-functions,
yielding the fringe pattern enveloped by an Airy disk.

A convolution with a Dirac comb is particularly interesting since its Fourier trans-
form is again a sum of •-functions (see Table A.2). The Fourier transform of the
product of this function with a visibility function then yields a convolution of the
Fourier transform of the visibility function, i.e. the object intensity, with a sum of
•-functions as displayed in Fig. 5.18. Thus, the image shows replica of the object at
each peak of the Dirac comb.

Regarding the Fourier transform of an autocorrelation
R
g.x0/g�.x0 � x/dx0 we

apply the same computation as in (A.5), now for g�.x0 � x/ instead of h.x � x0/,
yielding the Fourier transform of the autocorrelation as the product of G.s/ and its
complex conjugate G�.s/. This is also known as the Wiener-Khinchine theorem.
We compute the image intensity I.˛/ as the product of the amplitude V.˛/ with
its complex conjugate. For a point source this provides the PSF, and its Fourier
transform is the OTF (3.6), which is the autocorrelation of the aperture function.
This is illustrated by Fig. 3.2.

A.2 Atmospheric Transmission Bands

The atmosphere is transparent only at certain wavelengths. Table A.3 lists frequently
used photometric bands from the V -band in the visible to the Q-band in the mid-
infrared.
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Table A.3 Frequently used astronomical filter passbands, with central wavelength and bandwidth,
and reference flux densities "0 defining stellar magnitude zero in each band. The number of photons
per circular aperture with D D 1m for a magnitude 10 star are given, both per second and nm,
and per msec and integrated over the band, assuming a rectangular shape

Band �c [
m] �� [
m] "0 [W m�2 nm�1] Photons Photons per band
per 1-m aperture per 1-m aperture
[ph s�1 nm�1] [ph msec�1]

V 0.55 0.09 3:44 
 10�11 7470 670

R 0.70 0.22 1:76 
 10�11 4870 1070

I 0.90 0.24 8:3
 10�12 2950 710

J 1.25 0.30 3:01 
 10�12 1490 450

H 1.65 0.35 1:18 
 10�12 767 270

K 2.20 0.40 4
 10�13 350 140

L 3.40 0.55 7:3 
 10�14 98 54

M 5.00 0.30 2:2
 10�14 43 13

N 10.20 5.00 1:23 
 10�15 5 25

Q 21.00 8.00 6:8
 10�17 0:6 5

A scale for the brightness of stars is given by the stellar magnitude system
providing a relative measure for the brightness. A difference of one magnitude cor-
responds to a factor of 100:4 D 2:512. The zero point of the magnitude scale is
given by the flux density "0 in Table A.3 [138] and http://jcmtarchive.jach.hawaii.
edu/UKIRT/astronomy/utils/conver.html. Its value is chosen so that a star of spec-
tral type A0 has the same magnitude in each band. Note that a brighter star has a
smaller magnitude withm D �2:5 log."="0/. An increase by a factor of 100 is then
a difference of �5 magnitudes.

The number of photons collected by a telescope is often needed for performance
estimates. This number is given in Table A.3 for each band for an m D 10 star and
for a telescope with a 1-m aperture.

http://jcmtarchive.jach.hawaii.edu/UKIRT/astronomy/utils/conver.html
http://jcmtarchive.jach.hawaii.edu/UKIRT/astronomy/utils/conver.html
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49. V. Coudé de Foresto, S. Ridgway, J.-M. Mariotti, Deriving object visibilities from inter-
ferograms obtained with a fiber stellar interferometer. Astron. Astrophys. Suppl. Ser. 121,
379–392 (1997)

50. J.C. Dainty, F.R. Fienup, Phase retrieval and image reconstruction for astronomy. In Image
Recovery: Theory and Application (Academic, New York, USA, 1987) pp. 231–274

51. L.A. D’Arcio, Selected aspects of wide-field stellar interferometry. PhD thesis, TU Delft
(1999)

52. J. Davis, P.R. Lawson, A.J. Booth, W.J. Tango, E.D. Thorvaldson, Atmospheric path varia-
tions for baselines up to 80 m measured with the Sydney University Stellar Interferometer.
Mon. Not. R. Astron. Soc. 273, L53–L58 (1995)

53. J. Davis, W.J. Tango, A.J. Booth, T.A. ten Brummelaar, R.A. Minard, The Sydney University
stellar interferometer – I. the instrument. Mon. Not. R. Astron. Soc. 303, 773–782 (1999)

54. J. Davis, W.J. Tango, A.J. Booth, E.D. Thorvaldson, J. Giovannis, The Sydney University
stellar interferometer – II. commissioning observations and results. Mon. Not. R. Astron.
Soc. 303, 783–791 (1999)

55. A. Domiciano de Souza, P. Kervella, S. Jankov, L. Abe, F. Vakili, E. di Folco, F. Paresce, The
spinning-top Be star Achernar from VLTI-VINCI. Astron. Astrophys. 407, L47–L50 (2003)

56. A.J. den Dekker, A. van den Boos, Resolution: a survey. J. Opt. Soc. Am. A 14, 547–557
(1997)

57. E. di Folco, B. Koehler, P. Kervella, M. Sarazin, V. Coudé du Foresto, M. Schöller,
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Index

ABCD method, see Visibility measurement
Achromatic phase shift, 258
Airy disk, 19–22, 25, 75

polychromatic, 23
Aliasing, 131
Amplitude, 8

spectral, 8
Amplitude interferometry, 3
Angle of arrival fluctuations, 190, 206
Angular resolution, 21–22

coherent imaging, 97
FWHM, 22, 81
Rayleigh criterion, 22, 82

Annular aperture, 22, 264
Aperture masking, 221, 268
Aperture plane, 15, 45, 74
Aperture synthesis, 104, 149, 243
Aperture, off-axis, 77
Array layout

disturbed regularity, 264
emphasising short baselines, 265
periodic grid, 263
Reuleaux triangle, 264
uniformly filling the UV-plane, 263

Astrometry, 126
Atmospheric coherence time, 174, 177, 184

interferometric, 174, 177
Atmospheric transmission bands, 322
Autocorrelation theorem, 78, 143, 322

Back focal plane, 90
Bandwidth smearing, 135
Baseline, 45, 104

accuracy, 305
effective, 140, 154

Baseline bootstrapping, 268
Bayesian statistics, 152
Beam combination

all-in-one, 234, 239
pairwise, 239

Beam splitter
cube, 227
plane-parallel plate, 228

Beat frequency, 69, 70
Besinc-function, 20
Bessel function, 20
Binary star observations, 145
Binary star, coherent imaging, 97, 98
Bispectrum, 213
Blind deconvolution, 153

Channelled spectrum, 298
CHARA interferometer, 241, 268, 318
Characteristic function, 165
CLEAN, 151–152
Clean field of view, 264–266
Closure phase, 66, 214, 238, 282, 310
Co-axial combination, 111, 217, 227, 238

spatial modulation, 229
temporal modulation, 228

COAST – Cambridge Optical Aperture
Synthesis Telescope, 307, 317

Coherence, 11, 30
definition of, 31
degree of, 28
partial, 99
perfect, 30
spatial, 30
temporal, 13, 30

Coherence function
of coherent light, 30–31
of incoherent light, 31–32
of partially coherent light, 41

Coherence length, 30, 48, 117
Coherence properties in the image plane,

99–101

337
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Coherence properties of the fringe pattern,
108–110

Coherence time, 13, 30
atmospheric, see Atmospheric coherence

time
Coherence width, 38
Coherencing, see Fringe tracking
Coherent imaging, 92–94
Content of information, 131
Convolution, 76, 87

theorem, 76, 321
Coronagraphy, 260
Correlated flux, 50
Correlation function, 27
Correlation, autocorrelation, 76, 87
Covariance function, 27
Cross spectral density function, 29
Crowding limit, 131
Curvature of the wave front, 198

Degree of coherence, 28
Delay lines, 271

in vacuum, 299
requirement, 273

•-function, 17, 320
Densification factor, 247
Densified pupil, 218, 246
Detection

heterodyne, 3, 7
homodyne, 3

Differential delay, sum, 303, 308
Differential phase, 237, 282
Diffraction formula

Fresnel-Kirchhoff, 14
Rayleigh-Sommerfeld, 14

Diffraction pattern, 18
in the focal plane, 18, 74, 87
Young’s experiment, 46, 60

Dirac •-function, 17
Dirac comb, 321
Direct imaging, 234, 243

comparison, 266
Dirty beam, 149, 271
Dirty map, 149
Dispersion

longitudinal, 160, 299
transversal, 160

Diurnal motion, 140
Double Fourier spatio-spectral interferometry,

55
Dual-feed system, 282, 288

differential delay line, 302
laser metrology, 302

phase measurement, 302, 304
sensitivity increase, 303
star separator, 301

Earth rotation synthesis, 149
Edge image, 94
Edlén formula, 159
Effective altitude, Nh, 173
Effective wind speed, Nv, 174
Ensemble average, 28
Equatorial reference frame, 140, 153
ESO – European Southern Observatory, 2, 171
Extra-solar planets, 257

F-number, 20
Field of view, 128–132

Michelson configuration, 224
polychromatic, 225, 233

hypertelescope, 248
IRAN, 254

Fizeau configuration, 111, 130, 217, 243
Flux, 7

correlated, 50
total, 50

Flux density, 9
Focal length, F , 17
Fourier back-transform, 319
Fourier optics , 74–86
Fourier pair, 319
Fourier transform

– spatial, 319
– temporal, 319

Fourth order moment, 65, 212
Fraunhofer approximation, 17
Fraunhofer diffraction, 17, 24
Fresnel approximation, 16, 33
Fresnel diffraction, 16
Fried parameter, 168, 176
Fringe package, envelope, 299
Fringe pattern, 11, 112, 136

averaged through turbulence, 277, 290
co-axial combination, 230, 233

averaged through turbulence, 281, 291
multi-aperture, 238, 242
through turbulence, 279, 291

envelope, 48, 52, 117
Fizeau configuration, 219, 232
Michelson configuration, 223

multi-aperture, 237, 242
quasi-monochromatic approximation,

226, 233
small objects, 224, 225, 233
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of narrow binary, 114
of small objects, 115, 137
of venus, 48
of wide binary, 127
polychromatic, 13, 47, 49, 60, 122, 137
power spectrum, 54, 125, 139
small objects

quasi-monochromatic approximation,
125, 138

through turbulence, 276, 290
Fringe pattern spectrum, 51, 112, 136

averaged through turbulence, 283
co-axial combination, 231, 234

averaged through turbulence, 284, 291
Fizeau configuration, 220, 232
Michelson configuration

multi-aperture, 237, 242
quasi-monochromatic approximation,

226
small objects, 224, 233

polychromatic, 52, 124
quasi-monochromatic approximation, 124,

138
through turbulence, 283

Fringe tracker, 179
Fringe tracking, 288

coherencing, 281
isoplanatic angle, 303

Fringe visibility, V , 11, 49
Full width at half maximum, see FWHM
FWHM, 22, 25, 81

Gabor’s analytic signal, 9
Gain, closed loop, 294
Gaussian Schell-model source, 41, 100
Greenwood frequency, 314
Ground layer, 170
Group delay, 297–298, 308

dispersion, 299, 308
zero OPD, 299

tracking, 300
Guide star, see Reference star

Helmholtz equation, 14
Hermitian function, 39, 78, 320
Heterodyne detection, see detection
Homothetic mapping, 111, 244
Hufnagel-Valley model of atmospheric

turbulence, 170
Huygens and Kirchhoff integral theorem, 14
Huygens-Fresnel principle, 10, 15
Hybrid beam combiner, 241

Hypertelescope, 218, 246
gain, 248

Ideal detector, 12
Image centroid, 311
Image intensity

coherent imaging, 93
hypertelescope, 249, 261
interferometric, see Fringe pattern
IRAN, 254, 262
multi-aperture Fizeau configuration, 245,

260
nulling interferometer, 259, 262
polychromatic, 91

Image intensity spectrum, multi-aperture
Fizeau configuration, 245

Image reconstruction
BSMEM, 153
CLEAN, see CLEAN
MEM, see MEM
MIRA, 153
non-linear methods, 150
weighting functions, 149

Imaging beauty contests, 153
Imaging process, 78
Incoherence, 31

definition of, 32
Incoherent source, 34–35
Index of refraction, see Refractive index
Inertial range of turbulence, 159, 162
Information entropy, 152
Intensity, 8

instantaneous, 62
polychromatic, 9, 29
spectral, 9, 29
spectral, in the image plane, 90, 102
spectral, of incoherent source, 34, 89, 102
white-light, 29

Intensity covariance, 65
of a binary, 70

Intensity interferometry, 3, 62–72
binary star, 67
comparison with amplitude interferometry,

71–72
Interferometric peak, 52, 53, 61, 125, 286
Interferometric transfer function, 284, 291
IOTA – Infrared-Optical Telescope Array, 228,

317
IRAN – Interferometric Remapped Array

Nulling, 218, 249
gain, 255

Irradiance, 7
Isoplanatic angle, 75, 172, 177, 189
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fringe tracking, 303

Jansky, 9

Karhunen-Loève functions, 196
Keck interferometer, 317
Kolmogorov spectrum, 159

of phase fluctuations, 169, 176
of refractive index fluctuations, 161, 163

Laser guide star adaptive optics, 315
LBT – Large Binocular Telescope, 130, 139,

141, 271, 318
Lens in quadratic approximation, 17
Lens law, 90
Limiting magnitude

adaptive optics, 315
fringe tracking, 296

Line of sight, s, 140
Loss of contrast, 277

during time T , 277, 291

Magnification factor, mp , 74, 220
Maximum entropy method, see MEM
MCAO, 315
MCF, 27–28, 42
MEM, 152–153
Meta-aperture, 143, 147, 149, 153
Michelson configuration, 111, 217

definition, 223
Model fitting, 153
MSDF, 28–29, 42

in the aperture plane, 89, 102
coherent source, 92

in the plane of observation, 35
in the source plane, 35, 88, 102

coherent source, 92
propagation of, 32

Multi conjugate adaptive optics, see MCAO
Multi-axial combination, 223
Mutual coherence function, see MCF
Mutual spectral density function, see MSDF

Near-field approximation, 167, 178
Nulling interferometer, 218, 257

transmission map, 259

Object brightness distribution, 88, 91, 102

Obukhov’s law, 162
OPD, 11
OPD modulation

spatial, 229
temporal, 228

Optical aberrations, 19, 77
astigmatism, 84
coma, 84

Optical disturbance, 7, 13
Optical fibres, 132, 228, 278
Optical path difference, see OPD
Optical transfer function, see OTF
OTF, 76–82, 87

Fizeau configuration
multi-aperture, 244

for atmospheric turbulence, 202, 208
interferometric, 104, 111, 136

combined, 141
multi-aperture, 235
polychromatic, 117–120, 137
three apertures, 106

IRAN, 256
Michelson configuration

multi-aperture, 236
Outer scale of turbulence, L0 , 159

Paraxial approximation, 90
Peak, photometric and interferometric, 52
Perfect incoherence, 31
Phase delay, 298
Phase structure function, 166, 168, 176

as a function of r0, 168
temporal, 174

Phased array, 245
Photometric peak, 52, 53, 61, 125, 286
Pinhole, 15
Plane wave, 14

monochromatic, 6, 8
Point source, 31, 47
Point-spread function, see PSF
Polarization

s and p, 6, 229
circular, 6
linear, 6

Polychromatic intensity, 43
Polychromatic light, 36
Positivity constraint, 143, 153
Power spectral density, 9, 161
Power spectrum of

average phase fluctuations in aperture d ,
182

differential OPD fluctuations, 181
OPD fluctuations, 179



Index 341

OPD fluctuations with apertures d , 183
scintillation, 198
scintillation with aperture D, 199, 207

Power spectrum, temporal, see temporal
power spectrum

Poynting vector, 6
Primary beam, 112, 136, 148, 149, 220, 233,

254, 261
PSF, 19, 21, 25, 75, 78, 87

averaged through turbulence, 276
coherent imaging, 93
first dark ring, 21
Fizeau configuration

multi-aperture, 244
Hypertelescope, 248
interferometric, 106, 111, 136

polychromatic, 116–117, 137
three apertures, 106

IRAN, 251
multi-aperture, 254

Michelson configuration, 223
multi-aperture, 236

reconstructed, 141
PTI – Palomar Testbed Interferometer, 305,

317
Pupil plane combination, 230
Pupil, entrance and exit, 74, 220

Quasi-monochromatic approximation, 37–39,
43, 49, 53, 124–127, 226, 230, 276,
290

Random process
circular Gaussian, 65
ergodic, 26
stationary, 26, 213
ergodic

of atmospheric turbulence, 164
Rayleigh criterion, 22, 25
Rayleigh-Sommerfeld diffraction formula, 33
Redundant baselines, 234–235
Reference star, 281

fringe tracking, 301
Refractive index, n, 159
Rejection transfer function, S.f /, 294
Reuleaux triangle, see array layout
Reynolds number, 158

Scintillation, 167, 198
Second order moment, 27
Seeing disk, 201, 209

FWHM, 203
FWHM, finite outer scale of turbulence,

204, 208
Self-coherence function, 29–30
Servo bandwidth, 294
Shack-Hartmann sensor, 311–312
Shannon theorem, 131
Shift-invariant, 75, 222, 245, 266
Signal-to-noise ratio, see SNR
Sky coordinates

declination, ı, 140
right ascension, RA, 140

Sky coverage, 315
Small objects with wavelength dependent

shape, 121–122
SNR of

closure phase measurement, 307
visibility measurement

faint objects, 286, 290
intensity interferometry, 67
visibility measurement

multi-aperture, 239
Source brightness distribution, see Object

brightness distribution
Source spectrum, G.�/, 34, 88, 102, 117
Source spectrum, GB.R/, 119
Sparse aperture masking, 221, 268
Spatial coherence, 30
Spatial filtering, 132, 278
Spatial frequency, 74
Spatial frequency spectrum, OO.R/, OI .R/, 78
Spatial frequency vector, R, 76
Speckle pattern, 200, 210

power spectrum, 212
Speckle transfer function, 213
Spectral bandwidth, 12
Spectral bandwidth, ��, 48
Spectral bandwidth, ��, 30
Spectral dispersion, 237
Spherical wave, 10, 14
Stellar magnitudes, 323
Strehl ratio, 82, 314
Structure constant, C2

n , 161, 163
Structure function

of phase fluctuations, see Phase structure
function

of refractive index fluctuations, 162, 163
Super-resolution, 153
Synthesis imaging, 149, 154

Taylor hypothesis of frozen turbulence, 174
Temporal coherence, 13, 30
Temporal power spectrum of
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differential OPD fluctuations, 188, 205
differential OPD fluctuations with apertures

d , 189
image motion, 193, 206
OPD fluctuations, 183, 205

von Kármán spectrum, 187
OPD fluctuations with apertures d , 185
phase fluctuations, 175, 178
scintillation with aperture D, 200

Thin lens, 17, 74
Thin mirror, 17
Tip-tilt of the wave front, 191
Total flux, 50, 135
Triple correlation, 213
Triple correlation of intensities, 66
Turbulence profile, 170

Uniform disk, 55
Unresolved star, 19
uv-plane, 90
uv-plane coverage, 145

few apertures, 269
many apertures, 264

Van Cittert-Zernike theorem, 37, 43, 89
generalised, 34, 43

Variance of
astrometric measurement, 304, 309
average differential fringe motion, 304
differential fringe motion after time T , 303,

309
differential OPD fluctuations after time T ,

189, 206
group delay, 298
image centroid measurement, 313
image motion, 191
OPD fluctuations, 180, 204

finite outer scale of turbulence, 181, 204
OPD fluctuations after time T , 184, 205
phase for tip-tilt, 191
residual fringe motion, 295, 308
residual fringe motion and photon noise,

296
residual wave front phase, 314

residual wave front phase due to bandwidth,
314

scintillation, 199, 207
scintillation with aperture D, 199
Shack-Hartmann measurement, 313
uncorrected Zernike modes, 314
visibility measurement

faint objects, 286, 290, 292
Very narrow angle regime, 188, 304
Vibrations, 294
Visibility function, 89, 91

complex, 38, 44
modulus, 46
of Venus, 39–40, 101
phase, 38, 46
symmetry of, 39
uniform disk, 39, 55

Visibility measurement
ABCD method, 50–51, 61, 125, 288, 292

unbiased estimator, 289
power spectrum, 54

calibration, 286, 292
unbiased estimator, 286

Visibility, modal, 134
VLTI – Very Large Telescope Interferometer,

2, 139, 144, 230, 269, 284, 317
Von Kármán spectrum, 180

of phase fluctuations, 169
of refractive index fluctuations, 161, 163

Water vapor, 159
Wave front, 15
Wavelength dependent shape, 148
Weak turbulence model, 167
White-light fringe, 12, 49, 58
White-light intensity, 43, 47
Wiener-Khinchine theorem, 78, 161, 322

Y layout, 268
Young’s experiment, 9–13, 44–50

with a lens, 104–108

Zernike polynomials, 82–86, 194
reconstruction, 312
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