


biological and medical physics,
biomedical engineering



biological and medical physics,
biomedical engineering

The fields of biological and medical physics and biomedical engineering are broad, multidisciplinary and dynamic. They
lie at the crossroads of frontier research in physics, biology, chemistry, andmedicine. The Biological andMedical Physics,
Biomedical EngineeringSeries is intended to be comprehensive, coveringa broad range of topics important to the study of
the physical, chemical and biological sciences. Its goal is to provide scientists and engineers with textbooks,monographs,
and reference works to address the growing need for information.

Books in the series emphasize established and emergent areas of science includingmolecular,membrane,andmath-
ematical biophysics; photosynthetic energy harvesting and conversion; information processing; physical principles of ge-
netics; sensory communications; automata networks, neural networks, and cellular automata. Equally important will be
coverage of applied aspects of biological and medical physics and biomedical engineering such as molecular electronic
components and devices, biosensors, medicine, imaging, physical principles of renewable energy production, advanced
prostheses, and environmental control and engineering.

Editor-in-Chief:
Elias Greenbaum, Oak Ridge National Laboratory,
Oak Ridge, Tennessee, USA

Editorial Board:
Masuo Aizawa, Department of Bioengineering,
Tokyo Institute of Technology, Yokohama, Japan

Olaf S. Andersen, Department of Physiology,
Biophysics & Molecular Medicine,
Cornell University,New York, USA

Robert H. Austin, Department of Physics,
PrincetonUniversity, Princeton, New Jersey, USA
James Barber, Department of Biochemistry,
Imperial College of Science, Technology
andMedicine, London, England

Howard C. Berg, Department of Molecular
and Cellular Biology, HarvardUniversity, Cambridge,
Massachusetts, USA
Victor Bloomfield, Department of Biochemistry,
University of Minnesota, St. Paul, Minnesota, USA

Robert Callender, Department of Biochemistry,
Albert Einstein College of Medicine,
Bronx, New York, USA
Britton Chance, Department of Biochemistry/
Biophysics, University of Pennsylvania,
Philadelphia, Pennsylvania,USA

Steven Chu, Department of Physics,
Stanford University, Stanford, California, USA

Louis J. DeFelice, Department of Pharmacology,
Vanderbilt University,Nashville, Tennessee, USA

Johann Deisenhofer, HowardHughes Medical Institute,
The University of Texas, Dallas, Texas, USA
George Feher, Department of Physics,
University of California, San Diego, La Jolla,
California, USA
Hans Frauenfelder, CNLS, MS B258,
Los Alamos National Laboratory, Los Alamos,
NewMexico, USA
Ivar Giaever, Rensselaer Polytechnic Institute,
Troy, New York, USA

Sol M. Gruner, Department of Physics,
PrincetonUniversity, Princeton, New Jersey, USA
Judith Herzfeld, Department of Chemistry,
Brandeis University,Waltham, Massachusetts, USA
Mark S. Humayun, Doheny Eye Institute,
Los Angeles, California, USA
Pierre Joliot, Institut de Biologie Physico-Chimique,
Fondation Edmond de Rothschild, Paris, France
Lajos Keszthelyi, Institute of Biophysics,
HungarianAcademy of Sciences, Szeged, Hungary
Robert S. Knox, Department of Physics and Astronomy,
University of Rochester, Rochester, New York, USA
Aaron Lewis, Department of Applied Physics,
HebrewUniversity, Jerusalem, Israel
Stuart M. Lindsay, Department of Physics
and Astronomy, Arizona State University, Tempe, Arizona,
USA
David Mauzerall, RockefellerUniversity,
New York, New York, USA
Eugenie V. Mielczarek, Department of Physics
and Astronomy, George Mason University, Fairfax,
Virginia, USA
Markolf Niemz, Medical Faculty Mannheim,
University of Heidelberg,Mannheim, Germany
V. Adrian Parsegian, Physical Science Laboratory,
National Institutes of Health, Bethesda, Maryland, USA
Linda S. Powers, NCDMF: Electrical Engineering,
Utah State University, Logan, Utah, USA
EarlW. Prohofsky, Department of Physics,
Purdue University,West Lafayette, Indiana, USA
Andrew Rubin, Department of Biophysics,
Moscow State University,Moscow, Russia
Michael Seibert,National Renewable Energy Laboratory,
Golden, Colorado, USA
David Thomas, Department of Biochemistry,
University of Minnesota Medical School,Minneapolis,
Minnesota, USA
Samuel J. Williamson, Department of Physics,
New York University,New York, New York, USA



Shiyi Shen · Jack A. Tuszynski

Theory and Mathematical Methods
for Bioinformatics

With 47 Figures and 59 Tables

123



Prof. Shiyi Shen
Nankai University
College of Mathematical Sciences
Tianjin 300071
China
syshen@nankai.edu.cn

Prof. Jack A. Tuszynski
University of Alberta
Department of Physics
Edmonton T6G 2G7, Alberta
Canada
jtus@phys.ualberta.ca

ISBN 978-3-540-74890-8

DOI 10.1007/978-3-540-74891-5

e-ISBN 978-3-540-74891-5

Biological and Medical Physics, Biomedical Engineering ISSN 1618-7210

Library of Congress Control Number: 2007939206

c© 2008 Springer-Verlag Berlin Heidelberg

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
for prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting and production: LE-TEX Jelonek, Schmidt & Vöckler GbR, Leipzig, Germany
Cover design: eStudioCalamar S.L., F. Steinen-Broo, Girona, Spain

Printed on acid-free paper

9 8 7 6 5 4 3 2 1

springer.com



Preface

Bioinformatics is an interdisciplinary science which involves molecular biol-
ogy, molecular chemistry, physics, mathematics, computational sciences, etc.
Most of the books on biomathematics published within the past ten years have
consisted of collections of standard bioinformatics problems and informational
methods, and focus mainly on the logistics of implementing and making use of
various websites, databases, software packages and serving platforms. While
these types of books do introduce some mathematical and computational
methods alongside the software packages, they are lacking in a systematic
and professional treatment of the mathematics behind these methods.

It is significant in the field of bioinformatics that not only is the amount
of data increasing exponentially, but collaboration is also both widening and
deepening among biologists, chemists, physicists, mathematicians, and com-
puter scientists. The sheer volume of problems and databases requires re-
searchers to continually develop software packages in order to process the
huge amounts of data, utilizing the latest mathematical methods. The in-
tent of this book is to provide a professional and in-depth treatment of the
mathematical topics necessary in the study of bioinformatics.

Although there has been great progress in bioinformatics research, many
difficult problems are still to be solved. Some of the most well-known include:
multiple sequence alignment, prediction of 3D structures and recognition of
the eukaryote genes. Since the Human Genome Project (HGP) was developed,
the problems of the network structures of the genomes and proteomes, as well
as regulation of the cellular systems are of great interest. Although there
is still much work to be done before these problems are solved, it is our
hope that the key to solving these problems lies in an increased collaboration
among the different disciplines to make use of the mathematical methods in
bioinformatics.

This book is divided into two parts: the first part introduces the muta-
tion and alignment theory of sequences, which includes the general models
and theory to describe the structure of mutation and alignment, the fast al-
gorithms for pairwise and multiple alignment, as well as discussion based on
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the output given by fast multiple alignment. Part I contains a fairly advanced
treatment, and it demonstrates how mathematics may be successfully used in
bioinformatics. The success achieved using fast algorithms of multiple align-
ment illustrates the important role of mathematics.

Part II analyzes the protein structures, which includes the semantic and
cluster analysis based on the primary structure and the analysis of the 3D
structure for main chains and side chains of proteins. The wiggly angle (di-
hedral angle) was used when analyzing the configuration of proteins, making
the description of the configuration more exact. Analyzing the configuration
differs from predicting the secondary or 3D structures. We collect all pockets,
grooves, and channels in a protein as configuration characteristics, analyze the
structure of these characteristics, and give the algorithms to compute them.

Parts I and II offer independent treatments of biology and mathematics.
This division is convenient, as the reader may study both separately. In each
part we include results and references from our own research experiences. We
propose some novel concepts, for example, the modulus structures, alignment
space, semantic analysis for protein sequences, and the geometrical methods to
compute configuration characteristics of proteins, etc. Study of these concepts
is still in its infancy and so there is much to still be explored. It is our hope
that these issues continue to be examined mathematically so that they remain
at the forefront, both in mathematics and bioinformatics.

We recognize the importance of considering the computational aspect
while introducing mathematical theories. A collection of computational ex-
amples have been included in this book so that our theoretical results may be
tested, and so that the reader may see the corresponding theories illustrated.
Additionally, some of these examples have implications which may be applied
to biology directly, and may be downloaded from the website [99] as the data
is too large to include in this book. (As an example, when examining the
alignment of the HIV gene, the size is m = 405, n = 10,000 bp.)

An understanding of the fundamentals of probability, statistics, combina-
torial graph theory, and molecular biology is assumed, as well as programming
ability. In order that the reader may solidify their understanding, problems
have been added at the end of each chapter, with hints to help get started, It
is our hope that this book will be useful in the field of bioinformatics both as
a textbook and as a reference book.
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Outline

This book discusses several important issues including mathematical and com-
putational methods and their applications to bioinformatics.

This book contains two parts. Part I introduces sequence mutations and
the theory of data structure used in alignment. Stochastic models of align-
ment and algebraic theory are introduced as a means to describe data struc-
ture. Dynamic programming algorithms and statistical decision algorithms for
pairwise sequence alignment, fast alignment algorithms, and the analysis and
application of multiple sequence alignment output are also introduced. Part II
includes the introduction of frequency analysis, cluster analysis and seman-
tic analysis of the primary sequences, the introduction of the 3D-structure
analysis of the main chains and the side chains, and the introduction of con-
figuration analysis.

Many mathematical theories are presented in this monograph, such as
stochastic analysis, combinational graph theory, geometry and algebra, infor-
matics, intelligent computation, etc. A large number of algorithms and corres-
ponding software packages make use of these theories, which have been devel-
oped to deal with the large amounts of biological and clinical data that play
such an important role in the fields of bioinformatics, biomedicine, and so on.

This book has three main goals. The first is to introduce these classical
mathematical theories and methods within the context of the current state of
mathematics, as they are used in the fields of molecular biology and bioinfor-
matics. The second is to discuss the potential mathematical requirements in
the study of molecular biology and bioinformatics, which will drive the devel-
opment of new theories and methods. Our third goal is to propose a framework
within which bioinformatics may be combined with mathematics.

Within each chapter, we have included results and references from our
own research experience, to illustrate our points. It is our hope that this book
will be useful as a textbook for both undergraduate and graduate students, as
well as a reference for teachers or researchers in the field of bioinformatics or
mathematics, or those interested in understanding the relation between the
two.



Part I

Mutations and Alignments
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Introduction

1.1 Mutation and Alignment

1.1.1 Classification of Biological Sequences

The term “biological sequence” is generally used to refer to DNA sequences,
RNA sequences and protein sequences. In the sense of molecular biology, a bio-
logical sequence is composed of many macromolecules, all with specific biolog-
ical functions under certain conditions. Furthermore, a macromolecule itself
can be divided into a large number of functional micromolecules in a cer-
tain way. Typically, a DNA sequence (or RNA sequence) is based on four
nucleotides, while a protein is based on 20 amino acids. If we consider the
nucleotides of a DNA sequence or the amino acids in a protein to be basic
units, then a biological sequence is simply a combination of these basic units.

Definitions and Notations for Biological Sequences

There are many ways in which to represent the structure of a biological se-
quence. The most popular is to describe the primary, secondary, and tertiary
(or three-dimensional) structures. For a protein, the primary structure de-
scribes the combination of amino acids making up the protein. In a DNA (or
RNA) sequence, the primary structure specifies the component nucleotides.
We generally use the following description of a biological sequence:

A = (a1, a2, · · · , ana) , B = (b1, b2, · · · , bnb
) , C = (c1, c2, · · · , cnc) ,

(1.1)
where the capital letters A,B,C represent the sequences, and ai, bi, ci repre-
sent the basic units of the sequence, at positions i, whose elements are obtained
from the set Vq = {0, 1, · · · , q − 1}. Typically, q = 4 and V4 = {a, c, g, t} (or
{a, c, g, u}) if A,B and C are DNA (or RNA) sequences. q = 20 and Vq is the
set of the 20 most common amino acids if A,B, and C are protein sequences.
In (1.1), na, nb, nc are the lengths of sequences A,B,C.
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Generally, a multiple sequence (or group of sequences) would be denoted
as:

A = {A1, A2, · · · , Am} , (1.2)

in which each As is a separate sequence defined on Vq, and its complete ex-
pression is

As = (as,1, as,2, · · · , as,ns) , s = 1, 2, · · · ,m , (1.3)

where ns is the length of the sequence As, and m is the number of sequences
in each group.

Classification of Biological Sequences

The primary structure of a biological sequence specifies its component
nucleotides or amino acids. The tertiary or three-dimensional structure of
a biological sequence describes the three-dimensional arrangement (position
coordinates) of the constituent atoms in the molecule. The secondary struc-
ture of a biological sequence describes its local properties. For example, the
secondary structure of a protein denotes the special structures (motifs) of each
protein segment, where a helix, strand or other structure might exist. Super-
secondary structure is also frequently used to describe an intermediate state
between the secondary structure and the tertiary structure, which consists of
some larger compact molecular groups (domains).

Modern molecular biology tells us that DNA (or RNA) sequences and
protein sequences are the basic units involved in special biological functions.
Their functional characteristics not only involve their primary structure, but
also their three-dimensional shapes. For example, the binding pockets of a pro-
tein play an important role in controlling its functions. Thus, the shape formed
by the amino acid sequences in three-dimensional space can become highly
relevant to the clinical treatment involving a serious genetic mutation present
in a disease. We will use the configuration of a protein to replace the shape
of the protein in three-dimensional space. Since the mutation of a biological
sequence changes its configuration and therefore may affect its function, and
since alignment is the most popular method for scanning the mutation posi-
tions, we begin by discussing the basic characteristics of mutations, as well as
alignment methods for biological sequences.

1.1.2 Definition of Mutations and Alignments

The success of cloning demonstrates that a DNA sequence contains the com-
plete information regarding the construction of a life form. However, there
are many complex processes that must occur when building structures from
DNA to RNA, RNA to protein, protein to organelle, organelle to cell and,
finally, from cell to organism. Some of these processes include transcription,
translation, and duplication. Within these processes, the mechanisms of recog-
nition, regulation, and control are still not entirely clear. There remain a great
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number of biological phenomena which cannot be explained at this time. For
example, the mechanism of mutation within biological sequences is yet to be
fully explored. Mutations can lead to the growth and death of cells, and may
also lead to disease. Sequence alignment is an important tool in the analysis
of the positions and types of mutations hidden in biological sequences, and
allows an exact comparison. The earliest evidence that mutations may cause
tumor growth was found in 1983, when it was shown that cancer is the re-
sult of uncontrolled cell growth in an organism and that this growth is often
due to a mutation. Sequence alignment is also important in that it can be
used to research genetic diseases and epidemics. For example, it is possible
to determine the origin, variety, variance, diffusion, and development of an
epidemic, and then find the viruses and bacteria responsible and appropri-
ate medication. Thus, sequence alignment is very important in the fields of
both bioinformatics and biomedicine due to its powerful predictive function.
In order to obtain better high-level alignment algorithms, more mathematical
theories are required.

Sequence alignment has many applications in bioinformatics besides its
direct use in comparing the structures of proteins. Some typical applications
are listed as follows:

Gene Positioning and Gene Searching

For a given gene in a certain organism, we must consider whether that same
gene (or a similar gene) may be found in another organism. These are the
basic problems of gene searching and gene positioning based on the GenBank
database. Gene positioning and gene searching is the basis of gene analysis.
A better method of gene searching would allow the development of a more ac-
curate alignment algorithm. Many alignment software packages have been de-
veloped based on the principles of gene searching and gene positioning, and are
used frequently in bioinformatics, such as BLAST [3,67] and FASTA [73–75].
According to some reports, BLAST is visited by more than 100,000 visitors
per day, lending credence to the statement that sequence alignment is widely
used in the study of bioinformatics.

Gene Repeating and Gene Crossing and Splicing

Gene repeating and gene splicing frequently occur within the same organ-
ism’s genome, which has become obvious as the genomes of various organisms
(including humans) are sequenced. Gene repeating refers to the repetition of
a long DNA segment within the same genome. The length of some segments
may be in the millions of base pairs (bp), and the number of repetitions may
also be in the millions. These repetitions may not be identical, but are typi-
cally similar. They may therefore be found through alignment algorithms.

A gene usually is composed of segments of several different genes. These
segments are called exons, and the intervals are called introns. When a gene



8 1 Introduction

translates into a protein, the introns are cut off, and the exons array in re-
verse order. This phenomenon is known as gene crossing, and its analysis also
depends on alignment algorithms.

Genome Splicing

In the process of gene sequencing, a long sequence of a chromosome is first
cut into pieces, the individual DNA segments are then sequenced indepen-
dently, and the segments will be assembled together. That is, the nucleotides
of the entire chromosome are not sequenced simultaneously. To assemble the
segments properly, many copies of a genome are cut into random segments,
which are then sequenced independently. The common information (found
through alignment) is then used to asemble a complete genome.

Other Applications

It is difficult to identify and search the introns and exons of a eukaryote while
identifying and searching the regulation genes. As a result, many identifica-
tion methods have emerged. Among these, alignment-based methods are very
significant.

In summary, it is important to note that mutations and alignments are not
used simply to study biological evolution but may also be used to study the
relationships among genes, proteins and biological macromolecular structure
in living systems.

1.1.3 Progress on Alignment Algorithms and Problems
to Be Solved

Researchers today are performing sequence alignments and database searches
billions of times per day. Due to their importance, alignment methods should
be familiar to all biologists and researchers in the field of bioinformatics. Align-
ment methods must also be continually updated to address new challenges as
they arise in the life sciences. We now briefly review the progress made in
sequence alignment algorithms, as well as the challenges involved.

Progress in Pairwise Sequence Alignment

The method of dynamic programming-based alignment was first proposed by
Needleman and Wunsch [69]. It involves drawing a graph with one sequence
written across the page and the other down the left-hand side, scoring matches
between the sequences (or penalties for mismatches) and linking with the in-
serted virtual symbol. The alignment with the highest (or lowest) possible
score is defined as the optimal alignment. In 1980s, Smith and Waterman [95]
developed an important modification of the dynamic programming-based al-
gorithm, referred to as the local optimal alignment or the Smith–Waterman
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algorithm. Segments of this local optimal alignment can be determined inde-
pendently, and a global optimal sequence alignment is obtained by connecting
the segments. Although both approaches are dynamic programming-based al-
gorithms, the Smith–Waterman algorithm greatly simplifies the Needleman–
Wunsch algorithm.

Following the development of the Smith–Waterman algorithm, sequence
alignment became a topic of great importance in bioinformatics. Many papers
were published, which not only improved the Smith–Waterman algorithm,
but also adapted it to apply to protein sequences. As a result, many types of
applied software based on the alignment algorithm were developed, and exist
today as powerful bioinformatics tools. The alignment of protein sequences is
more complex than the alignment of gene sequences because it is much more
difficult to develop scoring matrices (which quantify the similarities between
the sequences) for protein sequences. Researchers have proposed many types of
scoring systems to produce these scoring matrices, such as the PAM system
and the BLOSUM system. For the scoring matrix of the PAM system, the
probability of mutations based on the evolution time of the homologous family
is determined first, followed by the development of the scoring matrix. The
scoring matrix of the BLOSUM system finds the probability of mutations
based on the conservative regions of the homologous family, then develops
a scoring matrix. Therefore, depending on their requirements, users can choose
their scoring matrix based on either the PAM system or the BLOSUM system,
then combine the scoring matrix with a dynamic programming algorithm
to calculate the highest scoring functions. We will go into more detail later
regarding the scoring matrices of the PAM system and the BLOSUM system.
The reader is also referred to the literature [24, 40] for more information on
this topic.

Besides being adapted for use with proteins, there are many other applica-
tions of alignment algorithms. Nowadays, over ten types of software packages
exist for the purpose of database searching. Among them, BLAST and FASTA
are the most popular of those available as free downloads.

A dynamic programming-based algorithm needs to be aligned along both
the vertical axis and the horizontal axis. One must first assign the penalty
scores (or matching scores) at the crossed entries intersected by both the
vertical axis and horizontal axis, and the links optimized. Therefore, the com-
putational complexity of this algorithm can not be less than O(n2) (where
n is the length of the aligned sequence). For longer sequences, alignment and
searching are difficult tasks, although they are easily realized using the meth-
ods of computational science. For example, these alignment algorithms cannot
currently be performed on a PC if the length of the sequence exceeds 100 kbp.
For lengths exceeding 10Mbp, the alignment algorithms cannot be performed
by any computers currently in existence. In 2002, a probability and statistics-
based alignment algorithm was proposed by the Nankai University group,
called the super pairwise alignment algorithm (SPA algorithm for short) [90].
For homologous sequences, the computational complexity of SPA is only O(n),
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that is, linearly proportional to the length of sequence. This makes the algo-
rithm run much faster, and makes possible the alignment and searching of
super-long sequences.

It may seem as if the problems inherent in the method of pairwise align-
ment have all been addressed by dynamic programming-based algorithms and
statistical decision-based algorithms. However, there is much room for im-
provement, and for more applications to be developed. For example, the SPA
algorithm is a suboptimal algorithm, although it is able to deal with super-
long sequences. It still has the potential to be further improved, because its
accuracy is lower than that of the optimal solution within 0.1–1%. Addition-
ally, in order to process super-long sequences (i.e., when the length exceeds
100Mbp), an “anchor” must be incorporated into the algorithm.

Multiple Alignment Algorithms

Compared to pairwise alignment, multiple alignment is much more difficult.
The optimal solution of this problem was regarded as one of the unsolved
problems of computational biology and bioinformatics during the period be-
tween 2000 and 2002. It is sometimes referred to in the literature as the “NP-
complete problem” or the “NP-hard problem” [15,36,46,104,106]. The impor-
tance of multiple alignment has driven the development of software packages
that are able to handle multiple alignment algorithms. These software pack-
ages do not search for the optimal solution theoretically; rather, they make
comparisons based on some specific indices. In Chap. 5, we will examine the
following indices of multiple alignment:

1. The scope of multiple alignment. The same type of sequences can be
aligned using multiple alignments, i.e., nucleotide sequences are compared
with other nucleotide sequences, and amino acid sequences are compared
with other amino acid sequences. It is generally expected that there is
some further similarity among the sequences to be compared, as multiple
alignments are used to compare homologous sequences.

2. The scale of the multiple alignment. Let (m,n) denote the length
and number of the sequences to be aligned. The maximum size (m,n)
permitted by the multiple alignments is then referred to as the scope of
the multiple alignment. We will list several software packages concerned
with the scale of multiple alignment in Chap. 5.

3. The computational speed. The time required to determine the multiple
alignment of sequences of scale (m,n) is referred to as the computational
speed.

4. The optimizing indices. In the literature, some optimizing indices for
multiple alignments such as the “SP-scoring function” and “entropy func-
tion” are frequently mentioned. In Chap. 5, we introduce two new indices:
“similarity” and “rate of insertion.” We will discuss these indices in more
detail at that time.
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We will also introduce the super multiple alignment (SMA) [89] method in
Chap. 5. The computational complexity of SMA is just O(m · n), and its
scale, speed, and indices are superior to those of HMMER [78]. Based on
HIV-1, we compare the SMA method with both SMA and HMMER methods
for all indices and show the final results in Tables 5.1 and 5.2. HIV-1 is the
known genome of the AIDS virus, and according to GenBank, its scale is
(m,n) = (706, 10,000). It takes 40min to perform multiple alignment on a PC
using SMA, which is better and much faster than HMMER.

Analysis and Application of Multiple Alignment Results

As the results of a pairwise alignment or multiple alignment are produced, the
central problem both in theory and practice becomes the analysis and use of
those results. The most pressing problem is the analysis of multiple alignment
results, which we explain here.

We have mentioned that the purpose of multiple alignment is to determine
the relationships among mutational sequences. Thus, it is first necessary to
find common conservation regions, which is simplified by the use of multi-
ple alignment. Correlation among the mutations in different sequences then
becomes the key problem. The traditional method of analysis for determin-
ing the mutual relationship is called clustering analysis. The most classical
method is the “system evolutionary tree” or “minimum distance tree” (which
will be discussed in Chap. 6). The “system evolutionary tree” or “minimum
distance tree” method is a clustering relation established by the mutation dis-
tance determined by different aligned sequences. Thus, its structure is mea-
surable, and partly reflects the degree of being “far” or “near.” However, it
is not comprehensive, and some useful information is missed if the analysis
is based only on the “system evolutionary tree” and the “minimum distance
tree.”

Currently, in order to analyze the results of multiple alignment, we pro-
pose the “multiple sequence mutation network theory” (“mutation network”
for short). The theory is that we can replace the “topologically metric struc-
ture” by a “modulus structure” based on multiple alignment. This is an
effective method to describe the mutations, and is introduced in Chap. 3.
Determination of the modulus structure involves a series of algebraic opera-
tions. The “mutation network” is a combination of the “topological graph”
and “modulus structure,” and as such, it comprises a complete description
of the alignment. We can then endow the mutation network with opera-
tional laws such as decomposition, combination and so on. As a result, the
mutation network theory is an important tool for analyzing alignment re-
sults.
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1.1.4 Mathematical Problems Driven by Alignment
and Structural Analysis

With respect to modeling, computation, and analysis, pairwise alignment and
multiple alignment can be seen as typical mathematical problems, rather than
biological problems. Many mathematical theories and methods are involved,
some of which are listed below:

Stochastic Analysis

Stochastic analysis is the basis of the probability and statistics analysis and
stochastic processes used in alignment modeling, the creation of fast algo-
rithms, and analysis of the results. Following from the mechanism of mutation,
we know that mutations at each site in a sequence obey a Poisson flow. Thus,
the structure of different types of mutations should be a renewal process. We
can also say that type-I mutated structures obey a Poisson flow based on
observations of many sequences.

Stochastic analysis is the basis of mutation structure analysis, and it al-
lows us to understand the overall data character, based on all given sequences.
It also plays an important role in the development of the alignment algorithm
and computation of the indices (such as complexity estimation, error estima-
tion and the values of optimizing indices).

Algebraic Structure

To describe the structural character of mutation and sequence alignments,
in Chap. 3 we propose algebraic operations for the molecular structure. This
theory defines the types of various modulus structures, the equivalent repre-
sentation and the algebraic operations. The algebraic operations of modulus
structures are key in the development of fast multiple alignment algorithms
and analysis of the results.

Combinational Graph Theory

Combinatorial graph theory is an important tool, both when building fast
multiple alignment algorithms and when analyzing the alignment output. Us-
ing combinatorial graph theory, cluster analysis is made possible. This is the
basis for analyzing multiple alignment outputs to construct the systemic tree
and minimum distance tree, and also to construct the mutation networks.

Alignment Space Theory

Alignment space is a data space theory based on mutation error, and is a new
concept proposed by the Nankai University group. Alignment space is a non-
linear metric space, and is the theoretical basis for alignment. As a result, its
applications will be far-reaching.
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The mathematical problems mentioned above are essential for the con-
struction of alignment algorithms and analysis of the output. This combina-
tion of mathematics and biology is still in its infancy, and many problems
await deeper discussion. There is obviously much space for future develop-
ment.

1.2 Basic Concepts in Alignment
and Mathematical Models

For the sake of simplicity, we confine our discussion to DNA (or RNA) se-
quences unless otherwise specified. For protein sequences, we need only replace
V4 by V20 and then follow a similar argument. Let us begin by introducing
the basic problems and mathematical models that will be used in alignment
and the analysis of mutations.

1.2.1 Mutation and Alignment

Classification of Mutations

In molecular biology, some small molecules’ mutation of its sequence A will
cause A to change into sequence B. Sequence B is then referred to as the
mutation (sequence) of A. The mutation of DNA sequences can be classified
into four types as follows:

Type I: a mutation caused by a nucleotide changing from one into another,
i.e., “a” changing into “g.”

Type II: a mutation caused by a nucleotide segment permuting its position,
i.e., the segment “accgu” permutes into the segment “guacc.”

Type III: a mutation caused by inserting a new segment into an existing se-
quence, i.e., inserting “aa” into the middle position of segment “gguugg”
so that it becomes a new segment “gguaaugg.”

Type IV: a mutation caused by a segment of nucleotides being deleted from
an existing sequence, i.e., deleting the nucleotides “ag” from the segment
“acaguua,” we are left with the segment “acuua.”

Since types I and II do not change the positions of all the nucleotides, these
mutations are called substitution mutations. Types III and IV change the
positions of all the nucleotides, and so these mutations are called displace-
ment mutations. The basic problem of alignment is to search the mutated
sites and decide which regions are conserved and which have been changed.
The evolutionary relationship and the changes of both structure and function
in the evolution process can then be determined. Alignment is obviously an
important tool in this bioinformatics process.

Definition 1. If sequence B is a mutation sequence of sequence A, and they
have the same biological meaning, then they are homologous sequences.



14 1 Introduction

In sequence analysis, if we know that B is a mutation sequence of A but we
do not know whether or not they have the same biological meanings (i.e.,
whether the differences are caused by a metrical error), then we say that the
two sequences are mutually similar. The terms “homologous sequences” and
“similar sequences” are frequently used in the discussion of sequence analysis,
and note should be taken of the distinction.

Definition of Alignment

To confirm the relationship between the mutations, a common approach is to
compare the differences within a family of sequences, which can be viewed
as operations in the mathematical sense. This is referred to as sequence
alignment or alignment for short. The key to sequence alignment is decid-
ing on the displacement mutation. Let A,B be the two sequences defined
in (1.1). Inserting the virtual symbol “−” into A,B so that they become
two new sequences A′, B′, the elements of A′, B′ are then in the range of
V5 = {0, 1, 2, 3, 4} = {a, c, g, t,−} where, V4 and V5 are called the quaternary
set and the five-element set, respectively.

Definition 2.

1. Sequence A′ is the virtual expansion sequence (expansion, for short) of
sequence A, if the rest of A′ is just the old sequence A with the insertion
symbol “−” added.

2. Sequences A′ = (a′1, a′2, · · · , a′n′
a
), B′ = (b′1, b′2, · · · , b′n′

b
) are called the ex-

pansions of double sequences A,B, if A′, B′ are the expansions of A,B,
respectively.

3. Sequence group A′ = {A′
s, s = 1, 2, · · · ,M} is called the expansion of

multiple sequence A, if each A′
s of A′ is the expansion of As.

4. A is called the original sequence of A′ if the multiple sequence A′ is an
expansion of A. We then denote the sequence in A′ by

A′
s =

(
a′s,1, a

′
s,2, · · · , a′s,ns

)
, a′s,j ∈ V5 . (1.4)

In the expansion A′ of A, the data value 4 corresponds to the virtual
insertion data (or symbol) and the data values 0, 1, 2, 3 correspond to the
nucleotide data appearing in sequence A.

5. Sequence group A′ is called the alignment sequence group (alignment for
short) of A if the lengths of the sequences in A′ are the same, if they are
expansions of A and if a′1,j , a

′
2,j, · · · , a′M,j do not simultaneously equal 4

at each position j.

The definitions of decompression and compression of sequences will be given
in Sect. 3.1.
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Optimizing Principles of Alignment

The aim of sequence alignment is to find the expansion A′ of a given group
A so that all sequences in A′ have lower “difference” or higher “similarity.”
In bioinformatics, “difference” is usually quantified using a “penalty matrix”
or “scoring matrix.”

The basis of the penalty function is the penalty matrix. It stands for the
degree of difference of each molecular unit (such as a nucleotide or amino acid)
in a biological sequence. It is usually expressed in matrix form as follows:

D = (d(a, b))a,b∈V5
. (1.5)

In bioinformatics, the penalty matrix of DNA sequence alignment is usually
fixed by the Hamming matrix or the WT-matrix. The Hamming matrix on
V5 is defined as follows:

dH(a, b) =

{
0 , if a = b ∈ V5 ,

1 , otherwise ,
(1.6)

while the WT-matrix is

dW = [dW(a, b)]a,b∈V5 =

⎛

⎜
⎜
⎜⎜
⎝

0 0.77 0.45 0.77 1
0.77 0 0.77 0.45 1
0.45 0.77 0 0.77 1
0.77 0.45 0.77 0 1
1 1 1 1 0

⎞

⎟
⎟
⎟⎟
⎠

. (1.7)

The value of the scoring matrix is a maximum if a = b. Generally, the scoring
matrix is denoted by G = [g(a, b)]a,b∈V5 . The entries in the scoring matrix
are opposite in value to the corresponding values in the penalty matrix. For
example, the scoring matrix of the Hamming matrix is g(a, b) = 1 − dH(a, b),
a, b ∈ V5.

The penalty matrix (or scoring matrix) is used to optimize the results of
the alignment. Thus, both matrices are referred to as the optimizing matrix
and are denoted by W = [w(a, b)]a,b∈V5 .

The optimizing function measures the optimal value of the two sequences.
If

A′ = (a′1, a
′
2, · · · , a′n′) , B′ = (b′1, b

′
2, · · · , b′n′) ,

are two sequences on V5, then the optimizing function is defined as

w(A′, B′) =
n′
∑

j=1

w
(
a′j , b

′
j

)
, (1.8)

where w′(A′, B′) = 1
n′w(A′, B′) is the average optimal rate of (A′, B′). In

future, we will not distinguish between the optimizing function and average
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optimal rate, and the reader is expected to discern which one is implied ac-
cording to the context.

The most frequently used optimizing function in multiple alignment is
the SP-function. If A are multiple sequences given by (1.2), and A′ is the
expansion of A given in Definition 2, then the SP-function is defined by:

wSP(A′) =
m−1∑

s=1

∑

t>s

w (A′
s, A

′
t) =

m−1∑

s=1

∑

t>s

n′
∑

j=1

w
(
a′s,j , a

′
t,j

)
. (1.9)

Then, wSP(A′) denotes the optimizing function, or optimizing measurement,
to align the multiple sequences A′.

Definition 3. Optimal alignment of multiple sequences is the situation where,
for given multiple sequences A, the expansion A′

0 satisfies the optimizing func-
tion SP-function in (1.9). Alternatively, if we find the expansion A′

0 of A such
that

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

wSP(A′
0) = min {wSP(A′) : A′ is the multiple sequence of A

while W is the penalty matrix} ,
wSP(A′

0) = max {wSP(A′) : A′ is the multiple sequence of A
while W is the scoring matrix} .

(1.10)

A′
0 is then called the optimal alignment of A.

The optimal alignment A′
0 determined by the SP-function is called the SP-

optimal solution or the SP-function-based optimal solution. The process to
find this SP-optimal solution is known as the SP-method.

Pairwise alignment is the simplest case of multiple alignment. We will
discuss the optimal criteria for multiple alignment in Chap. 7.

Example 1. We discuss the following sequences:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

A = (00132310322) ,
B = (1323210322) ,
A′ = (400441323103422) ,
B′ = (144323421044322) ,
A′

0 = (001323410322) ,
B′

0 = (441323310322) .

We can see that B is a mutated sequence of A, and A′, B′ are expansions of
sequences A, B, respectively. Then

dH(A′, B′) = 12 > dH(A′
0, B

′
0) = 3 .

Therefore, the penalty of (A′
0, B

′
0) is smaller than that of (A′, B′).
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For the alignment of protein sequences, we usually adopt a scoring matrix.
Since the gene sequence of a protein is complex, the PAM and BLOSUM
matrices are used to obtain the required scoring matrix. We will discuss this
in the corresponding chapters for protein sequence alignment.

We should note that the optimal alignments may not be unique for a given
sequence (A,B) under a given optimal matrix W . This is demonstrated in
Example 2.

Example 2. If {
A = (000132) ,
B = (00132) ,

then
{
A′ = (000132) ,
B′ = (400132) ,

{
A′

1 = (000132) ,
B′

1 = (040132) ,

{
A′

2 = (000132)
B′

2 = (004132)

are the alignments of (A,B) with the minimum penalty scores. Since their
penalty scores are the same

dH(A′, B′) = dH(A′
1, B

′
1) = dH(A′

2, B
′
2) = 1 ,

it is obvious that we can not find an alignment with a smaller penalty score.

For simplicity, in the following, the term alignment always refers to the
minimum penalty-based alignment unless otherwise specified. Obviously, the
corresponding conclusions also apply to the maximum scoring-based align-
ment.

1.3 Dynamic Programming-Based Algorithms
for Pairwise Alignment

1.3.1 Introduction to Dynamic Programming-Based Algorithms

Dynamic programming-based algorithms represent the usual method for solv-
ing the optimal problem and are broadly applied in many fields. The validity
of the dynamic programming-based algorithm depends on whether or not the
problem to be solved has an optimal substructure. That is, it depends on
whether or not the problem satisfies the optimizing principle. The so-called
optimal substructures are those substructures for which every optimal solu-
tion of the entire optimal problem (restricted to these substructures) is also an
optimal solution. In the optimal problem for the alignment, this substructure
exists. For example, let

A′ = (a′1, a
′
2, · · · , a′n′) , B′ = (b′1, b

′
2, · · · , b′n′)
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be the optimal alignment of the given sequence pair

A = (a1, a2, · · · , ana) , B = (b1, b2, · · · , bnb
) .

Then the penalty score is defined (see (1.8))

w(A′, B′) =
n′
∑

i=1

w(a′i, b
′
i)

as a minimum, where w(a′i, b
′
i) is the penalty score of a′i and b′i given by the

penalty matrix. Typically, for a fixed position n0, the penalty is given by

w(A′, B′) =
n0∑

i=1

w(a′i, b
′
i) +

n′
∑

i=n0+1

w (a′i, b
′
i) .

Therefore, the pair of subsequences

A′
(0,n0) =

(
a′1, a

′
2, · · · , a′n0

)
, B′

(0,n0) =
(
b′1, b

′
2, · · · , b′n0

)

also represent an optimal alignment. Otherwise, the optimality of A′ and
B′ would not be true. Thus, we may use the dynamic programming-based
algorithm to search for the optimal alignment.

Dynamic programming-based algorithms have been successfully used in
bioinformatics to perform alignment for a long time. In 1970, Needleman
and Wunsch proposed the global alignment algorithm [69]. In 1981, Smith
and Waterman gave the mathematical proof [95] and improved the algorithm
to apply to local alignment. The time complexity and space complexity of
both are O(n2). Although the time complexity still cannot be reduced, many
improved algorithms have been proposed [16–19] that may greatly reduce the
space complexity, from O(n2) to O(n).

1.3.2 The Needleman–Wunsch Algorithm,
the Global Alignment Algorithm

The Needleman–Wunsch algorithm is a global alignment algorithm for a pair
of sequences. Its procedure is as follows:

Arrange the Two Sequences in a Two-Dimensional Table

If the sequences are

A = (a1, a2, · · · , an) , B = (b1, b2, · · · , bm)

then the two-dimensional table is constructed as in Table 1.1, in which the
element s(i, j) in the two-dimensional table is calculated in step 2.
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Table 1.1. Two-dimensional table of sequences A,B

a1 a2 . . . an

s(0, 0) s(1, 0) s(2, 0) . . . s(n, 0)
b1 s(0, 1) s(1, 1) s(2, 1) . . . s(n, 1)
b2 s(0, 2) s(1, 2) s(2, 2) . . . s(n, 2)
. . . . . . . . . . . . . . . . . .
bm s(0,m) s(1,m) s(2,m) . . . s(n,m)

Calculate the Elements s(i, j) of the Two-Dimensional Table

Each element s(i, j) of the two-dimensional table is determined by the three
elements; s(i−1, j−1) in the upper left corner, s(i−1, j) on the left side and
s(i, j − 1) on top. First of all, we determine the marginal scores s(i, 0) and
s(0, j). For simplicity, we assume that the penalty score of a string of virtual
symbols is d × |virtual symbol| if the penalty score of a virtual symbol is d,
where, |virtual symbol| is the length of the string of virtual symbols. Thus,
s(0, j) = −j × d, s(i, 0) = −i× d, letting s(0, 0) = 0.

Then, we calculate s(i, j) using the formula:

s(i, j) = max {s(i− 1, j − 1) + s(ai, bj), s(i− 1, j) − d, s(i, j − 1) − d} .
(1.11)

Figure 1.1 illustrates the computation of s(i, j).
While calculating s(i, j), we should also store the three neighbors of s(i, j),

which will be used to produce the backward pathway of the traceback algo-
rithm in the next step.

Traceback Algorithm

The last value s(n,m) is the maximum score of sequences (A,B) after be-
ing aligned and s(n,m) is the starting point of the backward pathway. For

Fig. 1.1. Calculation of S(i, j)
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each s(i, j), the backward pathway is recorded in the process of calculating
Table 1.1. For example, if s(i, j) = s(i−1, j−1)+s(ai, bj), then the backward
pathway is (i, j) −→ (i − 1, j − 1). Proceeding from s(n,m) back to the end
s(0, 0), we find the backward pathway. We may then recover the alignment of
the sequences according to the backward pathway as follows: For the element
s(i, j) on the backward pathway:

1. Record the corresponding pairs of nucleic acids ai, bi if the backward di-
rection is from ai, bi to its upper left corner.

2. Insert a virtual symbol in the vertical sequence and record (ai,−) if the
direction is horizontal.

3. Insert a virtual symbol in the horizontal sequence and record (−, bi) if the
direction is vertical.

4. Finally, we obtain the optimal alignment of the two sequences.

The reader should note that sometimes the backward pathway may not be
unique since the backward method itself may not be unique. In fact, it is
possible to have several optimal alignments with the same optimal score.

Example 3. Consider the sequences
{
A = aaattagc ,
B = gtatatact .

We will use the dynamic programming-based algorithm to obtain the align-
ment. If the penalty score is 5 for matching, −3 for not matching, and −7 for
inserting a virtual symbol, that is,

sai,bj =

{
5 , if ai = bj ,

−3 , otherwise ,

and d = 7, then:

1. Build a two-dimensional table and calculate the value of each element.
The values of the elements in the first row are defined by s(i, 0) = −i× d
and the values of the elements in the first column are defined by s(0, j) =
−j×d. According to the steps to calculate s(i, j), we may obtain the values
of all s(i, j) and record the backward direction. For example, s(1, 1) =
max(0-3,−7 − 7,−7 − 7) = −3 and the backward direction is (1, 1) −→
(0, 0). The results are shown in Table 1.2.
Following from Table 1.2, the value of the last element is 1, so the score
of the optimal alignment of sequences A,B is 1.

2. Traceback: We go backward from s(9, 8). As the value of s(8, 9) = 1 is
obtained from its top left element s(7, 8), s(8, 9) = s(7, 8) + s(c, t) =
4−3 = 1, we first backtrack to the top left element s(7, 8), (8, 9) −→ (7, 8).
This is repeated until the backtracking path reaches s(0, 0).
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Table 1.2. Two-dimensional table formed by the sequence A,B

Fig. 1.2. Backtracking path

The backward pathway is (8, 9) −→ (7, 8) −→ (6, 7) −→ (5, 6) −→
(4, 5) −→ (4, 4) −→ (3, 3) −→ (2, 2) −→ (1, 1) −→ (0, 0).
Figure 1.2 shows a schematic representation of the backtracking path.
According to the backward pathway, we can recover the result of the
alignment as follows:

A′ = (aaat-tagc) ,
B′ = (gtatatact) .

1.3.3 The Smith–Waterman Algorithm

In bioinformatics, the role played by global alignment is limited because of the
complexity of biological sequences. Since global optimizing algorithms always
ignore local properties, we sometimes are concerned not with global properties
but with whether or not the two sequences have similar conservation regions.
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For example, two sequences with low global similarity may have domains
which are highly homologous. Therefore, finding alignment algorithms that
target these “domains” with a minimal penalty score would be more useful in
practice.

The Smith–Waterman algorithm is a type of local alignment algorithm.
Although it may simply seem to be an improvement of the dynamic program-
ming-based algorithm which fits local alignment, it is widely useful in bioin-
formatics. For example, BLAST, a well-known software package, has been
developed based on this algorithm. The two aspects of the Smith–Waterman
algorithm which may still be improved are stated as follows.

Calculation of the Values in a Two-Dimensional Table

The Smith–Waterman algorithm adds a 0 while calculating s(i, j). Thus,
a negative score will never occur in the Smith–Waterman algorithm. The
advantage of this will become clear when constructing the backward pathway.

s(i, j) = max

⎧
⎪⎪⎨

⎪⎪⎩

0 ,
s(i− 1, j − 1) + s(xi, yj) ,
s(i− 1, j) − d ,
s(i, j − 1) − d .

(1.12)

Traceback Algorithm

The start and end points of the backtrace of the Smith–Waterman algorithm
are different from the global alignment algorithm. The starting point can be
chosen arbitrarily in theory and we usually choose elements with a higher
score. The end point is the first element with the value 0 in the process of
backtrace. If the purpose of alignment is to find the optimal alignment of two
sequences, the Smith–Waterman algorithm should backdate from the element
with the maximum score and should not end at the first element where the
value 0 appears rather than s(0, 0). The starting point with the maximal score
guarantees the maximal score of local sequence alignment, and the end point
is the first element with a value 0, ensuring that segment is not exceeded. At
this time, the segment corresponding to the backward pathway is the segment
with maximum penalty.

We use the same example
{
A = aaattagc ,
B = gtatatact ,

to find the optimal alignment subsequences. The penalty score is 5 for match-
ing, −3 for mismatching and d = 3. The construction of the two-dimensional
table and calculation of the alignment of two sequences is given as shown in
Fig. 1.3.
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Fig. 1.3. Backtracking path

The maximum score in this table is 13. Thus, we begin at the corresponding
element s(6, 7) and stop at s(2, 2) which is the first element with a value 0.
We then obtain the backward pathway as follows:

(8, 9) −→ (6, 7) −→ (5, 6) −→ (4, 5) −→ (4, 4) −→ (3, 3) −→ (2, 2) .

According to this backward pathway, we obtain the following alignment of
segments with maximal penalty score:

at-ta
atata

Discussion of Dynamic Programming-Based Algorithms

Some notes about the dynamic programming-based algorithms are given be-
low:

1. Different penalty matrices produce different alignments. So the choice of
an appropriate penalty matrix is very important to the dynamic program-
ming algorithm. Some penalty matrices are appropriate to global align-
ment and some to local alignment. In the extreme case where there is no
negative penalty and the virtual symbol also gives no penalty (choosing
the Hamming penalty matrix), the result of the local alignment algorithm
is almost the same as that of the global alignment algorithm.

2. For the pair of sequences whose lengths are n and m, respectively, we find
that the space complexity and time complexity are both O(nm). If the
lengths of the two sequences are approximately equal, then these complex-
ities are close to O(n2). Therefore, the complexity of computation is per-
missible if the sequences are shorter. However, for longer sequences, such
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as genome sequences, this computational complexity makes the problem
computationally intractble for present-day computers. If many pairwise
alignments must be performed while doing multiple alignments, the scope
of applications of the dynamic programming-based algorithm is restricted.
The fact that the time complexity would not be reduced is a huge dis-
advantage of the dynamic programming-based algorithm, although many
improved algorithms [16–19] may reduce the space complexity to as low
as O(n).

3. One of the purposes of this book is to show how to create an alignment
algorithm using stochastic analysis, so that the time complexity may be
reduced to as little as O(n) for pairwise alignment. Therefore, we will
not discuss dynamic programming-based algorithms further. The reader
is referred to the relevant literature for further insights.

1.4 Other Notations

There are some notations that arise frequently in this book when discussing
alignment, and we will address them specifically now.

1.4.1 Correlation Functions of Local Sequences

Local Sequences

Let A,B,C be the three sequences given in (1.1), and let na, nb, nc be their
lengths, respectively. Let Na = {1, 2, · · · , na} be a set of integers which is
the set of the subscripts of A. The subscript i ∈ Na of Na is a subscript (or
position for short) of sequence A. If the subset of Na is represented by α, β,
then

α = {i1, i2, · · · , ik} (1.13)

is a subset of Na arranged from the largest to the smallest number, 1 ≤ i1 <
i2 < · · · < ik ≤ N . Then,

aα = {ai1 , ai2 , · · · , aik} (1.14)

is a subsequence of A in the region α.
If Na and α are both given, then we denote αc = Na−α as the complement

of set α and αc as the subset of set Na. Thus, aαc is a subsequence of A and
A = (aα, aαc) is referred to as the decomposition of A. In the special case, let
α = [i, j], or (i, j), [i, j), (i, j], in which case,

[i, j] = (i, i+ 1, · · · , j) , (i, j) = (i+ 1, i+ 1, · · · , j − 1) ,

[i, j) = (i, i+ 1, · · · , j − 1) , (i, j] = (i+ 1, i+ 1, · · · , j) .
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These are the closed interval, open interval or half-open interval of Na, re-
spectively. The corresponding vectors are then

a[i,j] = (ai, ai+1, · · · , aj) , a(i,j) = (ai+1, ai+1, · · · , aj−1) ,

a[i,j) = (ai, ai+1, · · · , aj−1) , a(i,j] = (ai+1, ai+1, · · · , aj) . (1.15)

The subsequences of (1.15) are referred to as the local vectors defined on the
intervals [i, j], (i, j) or [i, j), (i, j]. We use the following notation for the local
vectors.

āi = ai = (ai+1, ai+2, · · · , ai+k) , (1.16)

where i denotes the first position of vector āi and k denotes the length of āi.
For simplicity, we consider these three symbols ā,a and a(k) to be equivalent.
The length of vectors ā and a is always k unless otherwise specified.

Correlation Functions

The local correlation function of sequences A,B based on a penalty matrix w
is defined as follows:

w(A,B; i, j, n) =
n∑

k=1

w(ai+k , bj+k), i+ n ≤ na , j + n ≤ nb . (1.17)

In the case B = A, the local correlation function in (1.17) becomes the local
autocorrelation function of A.

1.4.2 Pairwise Alignment Matrices Among Multiple Sequences

We have mentioned above that the minimum penalty algorithm for multiple
sequence alignment is an unsolved problem in bioinformatics, although the fast
algorithm of pairwise alignment has been determined. Therefore, we discuss
the pairwise alignment within multiple sequences before moving on to multiple
alignments. Let

B = {Bs,t, s, t = 1, 2, · · · ,M} = (Bs,t)s,t=1,2,··· ,m (1.18)

be the sequence matrix, in which, each Bs,t = (bs,t;1, bs,t;2, · · · , bs,t;ns,t) is
a five-dimensional vector. That is, for any s, t, j, there is a bs,t;j ∈ V5.

Definition 4.

1. The matrices B in (1.18) are referred to as the pairwise expansion of
multiple sequence A, if (Bs,t, Bt,s) is the expansion of the sequence pair
(As, At) for each s, t.
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2. Matrix Bo = (Bos,t)s,t=1,2,··· ,m of (1.18) is referred to as the pairwise min-
imum penalty alignment matrix for the multiple sequence A, if Bo is the
pairwise expansion matrix of A and (Bos,t, Bot,s) is the minimum penalty
alignment sequence of (As, At) for all s, t. Here,

w(Bos,t, B
o
t,s) = min{w(Bs;Bt) : (Bs, Bt) is the alignment of (As, At)}

(1.19)
is tenable and

w(Bs,t, Bt,s) =
N ′

s,t∑

j=1

w(bs,t;j , bt,s;j) . (1.20)

Following the fast pairwise alignment algorithm, we can determine the pair-
wise minimum penalty alignment matrices Bo for the multiple sequence A.
One of the purposes of this book is to demonstrate how to use Bo to construct
the minimum penalty alignment of A.

1.5 Remarks

The mathematical methods introduced in this book are suited for bioinformat-
ics and computational biology students. Additionally, this book also refers to
some important databases, such as GenBank [10], PDB [13], PDB-Select [41],
Swiss-Prot [8, 33]. The reader is assumed to be familiar with these databases
in the following aspects:

1. Know the Web sites that provide the databases and know the updating
situation of these databases.

2. Know the content of these databases. For example, representations of
primary structure, secondary structure, and 3D structure may be found
in the PDB database; representations of genes, introns, and exons are in
the GenBank, etc.

3. Know how to obtain the data required when using computers for analy-
sis, e.g., know how to use the computer to obtain the primary structure,
secondary structure, and space coordinates of a given atom based on the
PDB database.

4. Know how to use the corresponding databases for other requirements [99].

Besides databases, the reader should also know how to use some popular soft-
ware packages, for example, BLAST [3], FASTA [73–75] and other specialized
software packages (such as the software package for multiple alignment) that
will be referred to later. For visual software, we recommend RASWIN [83],
which may be used to find the 3D configurations of proteins. Its function
is superior to other packages in some aspects such as rotating, moving and
marking objects. It is available as a free download from its Web site [76].



1.6 Exercises, Analyses, and Computation 27

1.6 Exercises, Analyses, and Computation

Exercise 1. For the RNA sequences E.co and B.st given in Table 4.5, use
the dynamic programming-based algorithm to compute their minimal penalty
alignment based on the Hamming penalty matrix.

Exercise 2. For the RNA sequences Mc. vanniel and Mb. tautotr given in
Table 4.5, use the dynamic programming-based algorithm to determine the
optimal alignment sequences based on the following requirements:

1. Compute the minimal penalty alignment based on the Hamming penalty
matrix and the WT-penalty matrix, respectively.

2. If dH(a, b), a, b ∈ V5 is the Hamming penalty matrix, then gH(a, b) =
1 − dH(a, b), a, b ∈ V5 is the corresponding scoring matrix. Compute the
maximal score alignment.

3. Compare the computational results of the minimal penalty alignment and
the maximal score alignment.

Exercise 3. Continuing from Exercise 2, for RNA sequences Mc. vanniel and
Mb.tautotr, compute the optimal alignment by using the dynamic program-
ming-based algorithm, based on the three criteria of the Hamming penalty
matrix, the WT-penalty matrix and the Hamming scoring matrix, respec-
tively. Compare the corresponding results.

Exercise 4. For an arbitrary pair of sequences with different lengths, com-
pute the optimal alignment using the dynamic programming-based algorithm,
based on the penalty matrix and the scoring matrix, respectively.

Exercise 5. Test your dynamic programming-based algorithm for the optimal
pairwise alignment according to the following indices:

1. For data with length 1 kbp, such as the sequences Mc.vanniel and
Mb.tautotr given in Table 4.5, visually check whether they arrive at the
target.

2. For data with length 1–100kbp (such as sequences 1–10 given in Table
4.4), use your dynamic programming-based algorithm to test the relation-
ship between the length of the sequence and the CPU time required for
computation.

3. Analyze the relationship between similarity and the CPU time required
for computation.

Hint

1. Data for the two sequences Mc.vanniel and Mb.tautotr given in Table 4.5
may be downloaded from the Web site [99].
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2. The dynamic programming algorithm for the optimal alignment of se-
quence pairs should be done following Sect. 1.3. If this proves too diffi-
cult, the algorithm from our Web site [99] may be downloaded, and your
program may be based on it.
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Stochastic Models of Mutations

and Structural Analysis

The mathematical methods used to study mutation and alignment fall mainly
into three groups – stochastic analysis, modulus structure and combinational
graph theory. In this chapter we introduce stochastic analysis and show how
this theory is used to understand the characteristics of biological structures.
Stochastic analysis of mutations includes three aspects: the randomness of
sequence structure, the randomness with which mutation flows happen, and
the randomness with which each type of mutation occurs.

2.1 Stochastic Sequences and Independent
Sequence Pairs

At first glance, a DNA sequence may seem disorderly and unsystematic, and
the nucleotides at each position (or a group of positions) are not fixed. That
is to say that a biological sequence is a stochastic sequence. Statistically, we
may find that the frequency of observing small molecules or segments changes
based on a different benchmark dataset of biological sequences. Therefore, we
may use stochastic models to describe biological sequences.

2.1.1 Definitions and Notations of Stochastic Sequences

Random Vectors, Stochastic Sequences, and Stochastic Processes

Random variables, random vectors, stochastic sequences and stochastic pro-
cesses are the fundamental concepts of probability theory and stochastic pro-
cesses theory. For convenience, we briefly summarize their definitions, nota-
tions, and properties as follows.

ξ̃ = (ξ1, ξ2, · · · , ξnξ
) , η̃ = (η1, η2, · · · , ηnη ) (2.1)

or
A∗ =

(
a∗1, a

∗
2, · · · , a∗na

)
, B∗ =

(
b∗1, b

∗
2, · · · , b∗nb

)
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denote stochastic sequences, in which ξj , ηj or a∗j , b
∗
j are random variables

whose range is the integral set V4, and nξ, nη, na, nb are the lengths of the
corresponding sequences. In this book, these two kinds of symbols will be
used interchangeably.

In (2.1), Nξ = {1, 2, · · · , nξ}, Nη = {1, 2, · · · , nη} are sets of subscripts or
positions of sequences ξ̃ and η̃, respectively. If nξ, nη are large, we consider
Nξ = Nη = {1, 2, 3, · · · } to be the set of all natural numbers. Then ξ̃ and η̃
given in (2.1) are considered to be infinite stochastic sequences and we rewrite
them as follows:

ξ̃ = (ξ1, ξ2, ξ3, · · · ) , η̃ = (η1, η2, η3, · · · ) . (2.2)

Biological sequences are generally very long. Thus, the symbols defined in
(2.1) and (2.2) are frequently considered to be equivalent. In addition to the
stochastic sequence notation of ξ̃ in (2.2), we use the symbols {ξ1, ξ2, ξ3, · · · },
and therefore the sequence ξ̃ can be regarded as an ordered set.

Frequently, the DNA sequence to be processed is very long, e.g., the length
of the human genome is 3.2×109 bp. The sequence ξ̃ can then be regarded as an
isochronously sampled sequence drawn from a continuous stochastic process
with the same identified distribution. Therefore, the mother stochastic process
ξ̃ is denoted by

ξ̃ = {ξt, t ∈ (0,∞)} . (2.3)

If ξi is a component of the sequence in (2.2), then the corresponding random
variable in (2.3) is ξt = ξi/n0 . In this book, we will use (2.1)–(2.3) inter-
changeably. We can consider the other related notations in a similar fashion,
and hence we do not repeat them here.

The Family of Probability Distributions of a Stochastic Process

The structural characteristics of a stochastic sequence are determined by its
family of probability distributions. For an arbitrary k, ξ(k) = (ξ1, ξ2, · · · , ξk)
is a random vector that is a segment of ξ̃. For any given vector
a(k) = (a1, a2, · · · , ak), ai ∈ V4, the probability of ξ(k) = a(k) is defined as:
pξ(k)(a(k)) = Pr{ξ(k) = a(k)}. We denote the probability of ξ(k) by

Pξ(k) =
{
pξ(k)

(
a(k)

)
: a(k) ∈ V

(k)
4

}
(2.4)

in which V
(k)
4 is the set of a(k). Following from probability theory, we have

pξ(k)(a(k)) ≥ 0 for all a(k) ∈ V
(k)
4 and

∑
a(k)∈V (k)

4
pξ(k)(a(k)) = 1.

As k = 1, 2, 3, · · · is changing, we can obtain the probability distribution
family

Pξ̃ = {Pξ(k) , k = 1, 2, 3, · · · } (2.5)

which is referred to as the probability distribution family determined by the
stochastic sequence ξ̃.
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It is a necessary condition that the probabilities within the probability
distribution family determined by a stochastic sequence must satisfy compati-
bility. That is, the probability distribution Pξ(k) is a marginal distribution
Pξ(k′) for any positive integer k′ > k. It is equivalent to

pξ(k)

(
a(k)

)
=

∑

b(k′−k)∈V (k′−k)
4

pξ(k′)

(
a(k), b(k

′−k)
)
, (2.6)

for all a(k) ∈ V
(k)
4 , in which (a(k), b(k

′−k)) = a(k′) ∈ V4(k′).
Based on the famous Kolmogorov theorem, we may construct a stochastic

sequence derived from given probability distributions P , with compatibility
conditions. Moreover, we can build different kinds of stochastic sequences or
stochastic processes using this Kolmogorov theorem. The most typical stochas-
tic sequences or stochastic processes are: independently and identically dis-
tributed (i.i.d.) sequences, Markovian sequences, Poisson processes and re-
newal processes. In this book, we begin by discussing i.i.d. sequences. A DNA
sequence is frequently approximated as an i.i.d. sequence, if the sequence is
sufficiently long.

2.1.2 Independently and Identically Distributed Sequences

Definition of i.i.d Sequences

Let ξ̃ be a stochastic sequence. Then ξ̃ is referred to as:

1. An independent sequence if the probability distribution of the stochastic
vector ξ(k) satisfies

pξ(k)

(
a(k)

)
= Pr

{
ξ(k) = a(k)

}
=

k∏

i=1

pi(ai) , (2.7)

where pi(a) = Pr{ξi = a}.
2. An identically distributed sequence if pi(a) = p(a), a ∈ Vq is the same for

all k.
3. An i.i.d. sequence if it is both an independent sequence and an identically

distributed sequence, in which p(a) = Pr{ξi = a} is the probability dis-
tribution of ξi. For independently and identically distributed sequences,
(2.7) becomes

p
(
a(k)

)
= Pr

{
ξ
(k)
i = a(k)

}
=

k∏

i=1

p(ai) , (2.8)

and p(a), a ∈ V4 is called the generation distribution of ξ̃. If p(a) = 1/q
for all a ∈ Vq, then p(a), a ∈ Vq is a uniform distribution.
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Definition 5. If ξ̃ is an i.i.d. sequence and its generating distribution p(a) is
a uniform distribution, then ξ̃ is referred to as a perfectly stochastic sequence.

Therefore, a stochastic sequence ξ̃ is a perfectly stochastic sequence if and
only if pξ(k)(a(k)) = 1

4k holds for all k = 1, 2, 3, · · · , and a(k) ∈ V
(k)
4 .

Penalty Functions

For a given penalty matrix W = w(a, b), a, b ∈ V4 defined in (1.5), we define
two indices for this matrix as follows:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

w0 =
1
4

∑

a∈V4

w(a, a) ,

w1 =
1
16

∑

a,b∈V4

w(a, b) .
(2.9)

Definition 6. A penalty matrix W is called strongly symmetric if w(a, b) =
w(b, a), and w(a, a) = 0 holds for any a, b ∈ V4, if every row is the permutation
of another row, and if each column is the permutation of another column.

Obviously, the Hamming matrix and the WT-matrix are both strongly sym-
metric, with average penalties defined as follows:

{
(w0, w1) = (0, 3/4) , if W is the Hamming matrix ,
(w0, w1) = (0, 0.4975) , if W is the WT-matrix .

(2.10)

Theorem 1. If the penalty matrix W is strongly symmetric, then w0 = 0 and
Pr{w(a, ζ) = c} = ρ(c) for any uniformly random variable ζ defined on V4.

Proof. w0 = 0 follows directly because the matrix W is strongly symmetric.
To prove that Pr{w(a, ζ) = c} = ρ(c), we consider the number of elements of

Da,c = {b ∈ V4 : w(a, b) = c} .

It is invariant for different a due to symmetry. Consequently,

Pr{w(a, ζ) = c} =
‖ Da,c ‖

q

is constant if ζ is a uniform distribution on V4.

Locally Random Correlation Functions

Let ξ̃, η̃ be two stochastic sequences and let

ξ
(n)
i = (ξi+1, ξi+2, · · · , ξi+n) , η

(n)
j = (ηj+1, ηj+2, · · · , ηj+n) .
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be their local vectors. Their local correlation function is then defined as fol-
lows:

w
(
ξ̃; η̃; i, j;n

)
= w

(
ξ
(n)
i , ξ

(n)
j

)
=

n∑

k=1

w (ξi+k, ξj+k) . (2.11)

Since this w(ξ̃, η̃; i, j;n) is a random variable, it is called the locally random
correlation function. Specifically, it is known as the locally random autocor-
relation function if ξ̃ = η̃.

If ξ̃ is a perfectly stochastic sequence, then its locally random autocorre-
lation function satisfies:

E{w(ξ̃; i, j;n)} = E{w(ξi, ξj)} =

{
μ0 , if i = j ,

μ1 , otherwise .
(2.12)

Equation (2.12) is implied by the definitions of perfect sequences and
penalty functions, so we omit the proof. An important characteristic of a per-
fect sequence is that expressed by (2.12).

2.1.3 Independent Stochastic Sequence Pairs

Since independent stochastic sequence pairs are defined with respect to both
mutation and the structural analysis of alignment, we will discuss them in
more detail here.

Definition 7. Let ξ̃ = (ξ1, ξ2, · · · , ξnξ
), η̃ = (η1, η2, · · · , ηnη) be two sequences

defined on V4. These are referred to as independent stochastic sequence pairs,
if the following conditions are satisfied:

1. ξ̃ and η̃ are two perfectly stochastic sequences.
2. {(ξ1, η1), (ξ2, η2), (ξ3, η3), · · · } is an i.i.d. two-dimensional sequence.
3. There is a fixed ε > 0 such that for every pair (ξj , ηj), the joint probability

distribution satisfies the following:

Pr{ξj �= ηj} = ε , or Pr{ξj = ηj} = 1 − ε . (2.13)

If the two sequences are both mutated sequences resulting from type-I muta-
tion, then (η̃, ξ̃) is an independent sequence pair. Specifically, if ε = 0, then η̃
and ξ̃ are two identical sequences, and (η̃, ξ̃) is an independent sequence pair.
The following are basic characteristics of independent sequence pairs, and are
defined in the context of structure analysis.

Theorem 2. If (ξ̃, η̃) is an independent sequence pair and w(a, b) is a function
defined on V 2

4 which satisfies the strong symmetry condition, then

ζk = w(ξi+k , ηj+k) , k = 0, 1, 2, · · · (2.14)

is an i.i.d. sequence for all i, j ≥ 0.
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Proof. If i = j, the proof can be deduced from condition 2 of Definition 3 and
the characteristic of independent random variables (a function of an indepen-
dent random variable is itself an independent random variable).

Here we discuss the special condition of i �= j.
We begin with the probability distribution ζk = w(ξi+k , ηj+k). Let

pk(z) = Pr{ζk = z} = Pr{w(ξi+k, ηj+k) = z}
=

∑

a∈V4

Pr{ξi+k = a}Pr{w(ξi+k, ηj+k) = z|ξi+k = a}

=
1
4

∑

a∈V4

Pr{w(a, ηj+k) = z} =
1
4

∑

a∈V4

ρ(z) = ρ(z) . (2.15)

The fourth equation is deduced from the strongly symmetric character of
w(a, b) and Theorem 1. The third equation is deduced by i �= j and ξi+k is
independent of ηj+k. Consequently, the probability distribution of ζk does not
depend on k.

Now, we prove the independence of the sequence

ζk = w(ξi+k, ηj+k) ,

where k = 0, 1, 2, · · · . To do this, we calculate the probability distribution
of ζ̄ = (ζ1, ζ2, · · · , ζn). For simplicity, we only discuss the situation where
i = 1, j = 2, n = 4, so that

ζ1 = w(ξ1, η2) , ζ2 = w(ξ2, η3) , ζ3 = w(ξ3, η4) , ζ4 = w(ξ4, η5) .

Note that the random variables ξ1, {ξ2, ξ3, ξ4, η2, η3, η4}, η5 are independent.
We denote

p(z̄) = Pr{ζ̄ = z̄} = Pr{w̄∗ = z̄} ,
in which w̄∗ = (w∗

1 , w
∗
2 , w

∗
3 , w

∗
4) and w∗

j = w(ξj , ηj+1), j = 1, 2, 3, 4. If we
denote

ξ̄ = (ξ2, ξ3, ξ4) , η̄ = (η2, η3, η4) , d̄ = (a, b, c) ∈ V4 ,

then

p(z̄) =
∑

d̄∈Z3
4

Pr{ξ̄ = d̄}Pr{w̄∗ = z̄|ξ̄ = d̄} =
1
64

∑

d̄∈Z3
4

Pr{w̄∗ = z̄|ξ̄ = d̄}

=
1
64

∑

d̄∈Z3
4

Pr{w(ξ1, η2) = z1, w(a, η3) = z2, w(b, η4) = z3, w(c, η5) = z4|ξ̄ = d̄}

=
1
64

∑

c∈V4

∑

b∈V4

∑

a∈V4

[Pr{w(ξ1, η2) = z1|ξ2 = a}Pr{w(a, η3) = z2|ξ3 = b}

Pr{w(b, η4) = z3|ξ4 = c}Pr{w(c, η5) = z4}] . (2.16)
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In (2.16), the last equation is obtained from the independence of η5 and
(ξ2, ξ3, ξ4). The strong symmetry of the w(a, b) function turns (2.16) into

p(z̄) =
ρ(z4)
64

∑

d̄∈Z3
4

[
Pr{w(ξ1, η2) = z1, w(a, η3) = z2, w(b, η4) = z3|ξ̄ = d̄}]

i=
ρ(z4)
16

∑

ā,b∈V4

[
Pr{w(ξ1, η2) = z1, w(a, η3) = z2,

w(b, η4) = z3|ξ2 = a, ξ3 = b}]

ii=
ρ(z4)
16

∑

ā,b∈V4

[
Pr{w(ξ1, η2) = z1, w(a, η3) = z2|ξ2 = a, ξ3 = b}

Pr{w(b, η4) = z3}
]

iii=
ρz3ρ(z4)

16

∑

ā,b∈V4

Pr{w(ξ1, η2) = z1, w(a, η3) = z2|ξ2 = a, ξ3 = b}

iv=
ρz3ρ(z4)

4

∑

ā∈V4

Pr{w(ξ1, η2) = z1, w(a, η3) = z2|ξ2 = a}

v=
ρz3ρ(z4)

4

∑

ā∈V4

Pr{w(ξ1, η2) = z1|ξ2 = a}pr{w(a, η3) = z2}

vi=
ρz2ρz3ρ(z4)

4

∑

ā∈V4

Pr{w(ξ1, η2) = z1|ξ2 = a}

vii= ρz2ρz3ρ(z4)Pr{w(ξ1, η2) = z1} viii= ρz1ρz2ρz3ρ(z4) (2.17)

in which equations i, iv, vii are obtained using the relationship of joint prob-
ability distribution and marginal distribution respectively; equations ii, v are
obtained from the independence of η4, η3 and (ξ2, ξ3), ξ2; and equations iii, iv,
viii are obtained from

Pr{w(ξτ , ητ+1 = zτ} = ρ(zτ ) , τ = 3, 2, 1 .

Consequently, p(z̄) = ρ(z1) ·ρ(z2) ·ρ(z3) ·ρ(z4) holds. Since the joint prob-
ability distribution of ζ̄ = (ζ1, ζ2, · · · , ζn) is the product of the marginal dis-
tributions of ζ1, ζ2, · · · , ζn, it implies that ζ̃ is an i.i.d. sequence. The theorem
is thus proved.

From the proof of this theorem, we may find that independent stochastic
sequence pairs can be broadened. Typically, under the conditions of Defini-
tion 3, if requirement 1 were deleted, the conclusion of Theorem 2 holds as
well.
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2.1.4 Local Penalty Function and Limit Properties
of 2-Dimensional Stochastic Sequences

Based on Theorem 2, we can give the local penalty function and the limit
properties of two-dimensional stochastic sequences.

Definition 8. For a two-dimensional stochastic sequence (ξ̃, η̃) and a fixed
penalty function w(a, b), we define the local penalty function by

w(ξ̃, η̃, i, j, n) =
1
n
w(ξ̄i, η̄j) =

1
n

n−1∑

k=0

w(ξi+k , ηj+k) . (2.18)

It is the average of the penalty of local vectors ξ[i,i+n−1] and η[j,j+n−1], and is
simply referred to as the local penalty function.

Lemma 1. If (ξ̃, η̃) is a double independent stochastic sequence, then the local
penalty function is

μij = E{w(ξ̃, η̃, i, j, n)} =

{
μ0 , if i = j ,

μ1 , otherwise ,
(2.19)

in which
⎧
⎪⎪⎨

⎪⎪⎩

μ0 = E{w(ξ1, η1)} =
∑

a,b∈V4

w(a, b)pξ1,η1(a, b) ,

μ1 = E{w(ξ1, η2)} =
1
16

∑

a,b∈V4

w(a, b) .
(2.20)

If w(a, b) = dH(a, b) is the Hamming function, then μ0 = ε, μ1 = 3/4.

Theorem 3. If (ξ̃, η̃) is an independent stochastic sequence pair and the
penalty function w(a, b) is strongly symmetric, then the following limit the-
orems hold.

1. As n → ∞, following from the law of large numbers, we have the limit
formula as follows:

w
(
ξ̃, η̃, i, j, n

)
−→ μij , a.e., (2.21)

in which μij is given in (2.19) and a.e. is the abbreviation of almost ev-
erywhere convergence.

2. Central limit theorem: If n is large enough, then

1√
nσij

n−1∑

k=0

[w(ξi+k , ηj+k) − μij ] ∼ N(0, 1) , (2.22)
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in which N(0, 1) denotes a standard normal distribution and

σ2
ij = E

{[
w(ξ̃, η̃, i, j, n) − μij

]2}

=

⎧
⎪⎪⎨

⎪⎪⎩

∑

a,b∈V4

[w(a, b) − w0]2p(a, b) , if i = j ,

1
16

∑

a,b∈V4

[w(a, b) − μ1]2 , otherwise .
(2.23)

Proof. Following from Theorem 2, Lemma 1, the Kolmogorov law of large
numbers, and the Levy–Lindberg central limit theorem, when w(a, b) =
dH(a, b) is the Hamming function, then from Definition 3 of an independent
sequence pair, we calculate σij as follows:

1. While i = j,

σ2
ij =

∑

a,b∈V4

[w(a, b) − w0]2p(a, b) = (1 − ε)ε2 + (1 − ε)2ε = (1 − ε)ε .

2. While i �= j,

σ2
ij =

1
16

∑

a,b∈V4

[w(a, b) − w1]2 =
1
16

(
9
4

+
12
16

)
=

3
16

.

2.2 Stochastic Models of Flow Raised
by Sequence Mutations

A biological sequence is composed of many small molecular units, and se-
quence mutations most often result from the mutation of some of these units.
In stochastic processes, the structure of this type of mutation is usually dis-
cussed in two stages. First, we discuss how the mutations occur, and then
discuss the effects of these mutations. It is similar to describing the arrival of
customers at a shop, and then describing how much these customers spend.
These two stages happen randomly. The stochastic process which describes
the occurrence of these mutations is referred to as the random flow of muta-
tions or simply the flow of mutations. There are four kinds of mutation effects,
which may be described by the corresponding stochastic processes. Combining
the results from the two stages, we obtain the stochastic model of sequence
mutations.

2.2.1 Bernoulli Processes

Usually, random flow is described by the Bernoulli process or the Poisson pro-
cess in probability theory. The common characteristic of these two processes is
that a random flow is composed of many small probability independent events.
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For example, customers may arrive in a shop at different times, and the num-
bers of customers arriving at a given time are independent. Generally, this
characteristic coincides with the characteristic of mutation flow in a biologi-
cal sequence. Consequently, mutation flow can be described by the Bernoulli
process or the Poisson process. The corresponding symbols definitions and
properties are given below.

Definition and Notations of the Bernoulli Process

The Bernoulli process is a stochastic sequence whose time and state are dis-
crete. If we denote it by ζ̃ = (ζ1, ζ2, ζ3, · · · ), then it has the following charac-
teristics:

1. ζ̃ is an independent sequence and each element ζj is determined according
to the Bernoulli experiment. Here, each ζj has only the value 0 or 1, which
denotes whether or not the event happens at time j.

2. The probability distribution of ζj is

Pr{ζj = 1} = εj , Pr{ζ = 0} = 1 − εj . (2.24)

Here, ε̃ = (ε1, ε2, ε3, · · · ) is called the strength sequence of the Bernoulli pro-
cess. If the strength sequence ε̃ in (2.24) is a constant series ε, then ζ̃ is called
an homogeneous Bernoulli process and ε is the strength of the Bernoulli pro-
cess.

For simplicity, we will discuss only homogeneous Bernoulli processes. Since
the nonhomogeneous and nonindependent situations follow similar arguments,
we will omit them in this book.

Counting Process and Dual Renewal Processes Associated
with Bernoulli Processes

Let ζ̃ be a given homogeneous Bernoulli process, and let v∗n =
∑n

j=1 ζj be the
total number of mutations happening in region [1, n]. So ṽ∗ = {v∗1 , v∗2 , v∗3 , · · · }
is then referred to as the counting process. ṽ∗ is also referred to as the renewal
process of ζ̃ in the sense of stochastic processes. The following characteristics
hold:

1. Let ṽ∗ be a binomial, homogeneous, and independent increment process
and

Pr{v∗n′ − v∗n = k} = b(n′ − n, k; ε) =
(n′ − n)!

k! · (n′ − n− k)!
εk(1 − ε)n

′−n−k ,

(2.25)
hold for all 0 ≤ n ≤ n′ and all k = 0, 1, 2, · · · ; here v∗0 ≡ 0. The probability
distribution

b(n, k; ε) =
n!

k! · (n− k)!
εk(1 − ε)n−k , k = 0, 1, 2, · · · , n

is then a binomial distribution.
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2. ṽ∗ generates the dual renewal process of ṽ∗:

j∗k = sup{j : v∗j ≤ k} , (2.26)

in which j∗k denotes the time at which the kth renewal happens in renewal
process theory. In this book, j∗k denotes the position of the kth mutation.
Hence

j̃∗ = (j∗0 , j
∗
1 , j

∗
2 , · · · ) (2.27)

is referred to as the mutation point sequence. It is equal to the sequence
of the renewal position in the renewal process, in which j∗0 ≡ 0. A de-
tailed discussion about renewal sequences (or processes) and dual renewal
sequences (or processes) may be found in [25].

Characteristics of Dual Renewal Processes

The relationships and characteristics of the renewal process ṽ∗ and its dual
renewal process j̃∗ are stated as follows:

1. The sequence j̃∗ is a homogeneous and independent incremental process.
If we let �∗j = j∗k − j∗k−1, then �̃∗ = {�∗1, �∗2, �∗3, · · · } is an i.i.d. sequence and
each �∗j has a geometric distribution eε(n). That is,

Pr{j∗k − j∗k−1 = n} = e1−ε(n) = ε(1 − ε)n−1 , k, n = 1, 2, 3, · · · . (2.28)

2. Following from the property of geometric distribution, we have that j∗k is
a negative binomial distribution. That is,

Pr{j∗k = n} = Ck−1
n−1ε

k(1−ε)n−k =
(k − 1)!

(n− 1)!(k − n)!
εk(1−ε)n−k , k ≥ n .

(2.29)
3. Since the sequence ṽ∗ is the dual renewal process of j̃∗, it follows that

v∗n = sup{k : j∗k ≤ n} (2.30)

holds.

Consequently, the four sequences ζ̃, ṽ∗, j̃∗, �̃∗ can be determined from each
other. Moreover, ζ̃, �̃∗ are i.i.d. sequences that obey the Bernoulli distribu-
tion bε, and geometric distribution eε(k), respectively. Furthermore, ṽ∗ and j̃∗

are the renewal processes of ζ̃ and �̃∗ respectively, where,

v∗n =
n∑

j=1

ζj , j∗k =
k∑

i=1

�∗i .

Following from (2.26) and (2.30), we have that ṽ∗ and j̃∗ are the dual renewal
processes for each other.
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Fig. 2.1. The Bernoulli process, the counting process, and its dual renewal process

These properties also can be found in textbooks on the theory of stochas-
tic processes, for example, in Doob’s book [25]. The relationships among se-
quences ζ̃, ṽ∗, j̃∗, �̃∗ are described in Fig. 2.1.

In Fig. 2.1, ζ̃ is a Bernoulli process. The top line denotes the value of ζi
as 0 or 1, in which, j∗s , s = 1, 2, 3, · · · denotes the positions held by ζj = 1.
The lowest line denotes the relationship between ζi and ηn. Following from
the definition of the dual renewal process, we have

v∗s = sup{v : ηv ≤ s} = j∗s , s = 1, 2, 3, · · ·
and �∗s = j∗s − j∗s−1.

2.2.2 Poisson Flow

The Poisson process is one of the most basic and important stochastic pro-
cesses describing mutation flows. We recall its notations and properties below.

Definition and Generation of Poisson Flows

Poisson flow (also called the Poisson process) is a stochastic process with se-
quential time and discrete states. Poisson flow is a stochastic flow composed of
an accumulation of many small probability events. It has three main character-
istics: the stationary property, the nonbackward property and the sparseness
property. Let v∗s be the number of times that some event happens in interval
(0, s), then v∗(s, s+ t) and v∗s have the same distribution for all t > 0. Then
v∗(s1, s2) and v∗(s2, s3) are independent if 0 ≤ s1 < s2 < s3. The probability
of the event happening twice or more in the interval (0,Δs) is infinitesimal
in higher orders such that Δs is infinitesimal. The probability distribution of
v∗(s) is then defined by:

pλ,s(k) = Pr{v∗s = k} =
(λ s)k

k !
e−λ s , k = 0, 1, 2, · · · . (2.31)

The probability distribution in (2.31) is called a Poisson distribution, in which,
λ > 0 is the strength of the Poisson flow.
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Properties of Poisson Flows

1. The mean and variance of a Poisson flow are defined as follows:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

E{v∗s} =
∞∑

k=0

kpλ(k) = λs ,

D{v∗s} = E{(v∗s − λ)2} =
∞∑

k=0

(k − λ)2pλ(k) = λs .

(2.32)

2. In the interval (0, s), the probability that Poisson flow will happen at least
once following from (2.31) is computed as follows:

{
p0(s) = Pr{v∗s = 0} = e−λs ,
p1(s) = Pr{v∗s = 1} = (λs)e−λs ,

(2.33)

Therefore, this probability distribution obeys an exponential distribution.
3. If v∗j,s, j = 1, 2, · · · , k are k independent Poisson flows, the mixed Poisson

flow is defined as follows:

v∗s =
k∑

j=1

v∗j,s , s ≤ 0 . (2.34)

This is the total number of times that k Poisson flows happen in the
interval (0, s). v∗s is then also a Poisson flow with the strength parameter
λ =

∑k
j=1 λj .

Dual Renewal Process of Poisson Flows

Poisson flow is a kind of renewal process and its dual renewal process is defined
by

t∗k = sup{t : v∗(t) ≤ k} . (2.35)

t∗k is then the random variable for position renewal, that is, the random vari-
able describing the mutation at the kth position. It follows from (2.35) that
the stochastic sequence

t̃∗ = {t∗1, t∗2, t∗3, · · · } (2.36)

is a homogeneous and independently incremental process. �̃∗ = (�∗1, �
∗
2, �

∗
3, · · · )

is then an independently and identically distributed process and each �∗j obeys
an exponential distribution, in which �∗k = t∗k − t∗k−1:

Pr{�∗k ≤ t} = 1 − eλt , λ, t > 0 . (2.37)

Here t∗n =
∑n

j=1 �
∗
j . Consequently, t̃∗ is the renewal process of �̃∗.

Each one of the two processes ṽ∗ and t̃∗ is the dual renewal process of the
other one, determined by (2.26) and (2.30) if we replace j∗ by t∗ in the corres-
ponding formula. For this reason, we can get three alternative representations
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Fig. 2.2. The sample track function for a Poisson process

of Poisson flow: ṽ∗, t̃∗, �̃∗, in which the random variable v∗(t) of ṽ∗ means the
time of mutation happening in the position region (0, t). The random variable
t∗k of t̃∗ refers to the position of the kth mutation and the random variable �∗k
denotes the period between the (k − 1)th and the kth mutations.

The relationships among the three sequences ṽ∗, t̃∗, �̃∗ are illustrated in
Fig. 2.2.

From Fig. 2.2, we deduce that the sample track function of the Poisson
process is similar to the counting process. Its properties are as follows:

1. v = vs, s ≥ 0 is a jumping and increasing step function with continuous
time and discrete values. It is left continuous. That is, lim

t→s0−
vs = vs0

always holds. The left continuous points are denoted by solid dots and
the points that are not within the range of the function are denoted as
voids.

2. Following from the sparseness property of the Poisson process, the heights
at all jump points of the sample track function are at most 1.

3. Let {s1, s2, s3, · · · } be a set of jump points arranged in order, then s̃ =
(s1, s2, s3, · · · ) is called the renewal sequence of the function ṽ. Generally,
the renewal sequence satisfies the following condition:

vt+ − vt− =

{
0 , if s does belong to set {s1, s2, s3, · · · } ,
1 , if s ∈ {s1, s2, s3, · · · } ,

(2.38)

in which
vt− = lim

t′↑s0−
vt′ , vt+ = lim

t′↓s0+
vt′ .

4. In Poisson flow ṽ∗, the probability of all of these samples ṽ satisfying
the following conditions is 1: (a) 0 ≤ s1 < s2 < s3 < · · · holds and (b)
sk → ∞ if k → ∞.

The Relationship Between the Bernoulli Process
and the Poisson Process

We have mentioned that the Bernoulli process and the Poisson process can
both describe the mutation of sequences. Now, we further explain their prop-
erties and relationships as follows:
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1. The Bernoulli process ζ̃ applies to discrete stochastic sequences and each
component ζi = 1, 0 designates whether or not a mutation happened at
position i. Thus, it is easy to understand it intuitively.

2. The crucial disadvantage of the Bernoulli process is that the probability
of its counting sequence ηn =

∑n
i=1 ζi is difficult to compute directly if n

is too large, because in the binomial distribution b(n, k; ε), Cnk = n!
k!(n−k)!

and εk, and we are unable to calculate it exactly for large numbers. As
a result, Poisson flow is typically used to approximate Bernoulli processes.

3. When Poisson flow is used to approximate counting sequences, the chang-
ing of positions becomes continuous. A region is chosen with proper
length n0 as its unit. The position n can be replaced by t = n

n0
. Thus, the

discrete position region {1, 2, 3, · · · } becomes a continuous region (0,∞).
If n0ε = λ, then nε = λt and the binomial distribution

b(n, k; ε) = Cnk ε
k(1 − ε)n−k ∼ pλt(k) =

(λt)k

k!
e−λt

approximates the probability of the Poisson flow. This describes the prob-
ability of the number of times mutation occured in the integer region [1, n],
or a continuous interval (0, t).

2.2.3 Mutated Flows Resulting from the Four Mutation Types

The four types of mutation in biological sequences are defined in Sect. 1.2.1.
Consequently, there are four types of mutated flows corresponding to the four
mutation types. All four types of mutated flows can be denoted by Bernoulli
processes and Poisson processes.

Representation Using Bernoulli Processes

If we use a Bernoulli process

ζ̃τ = (ζτ,1, ζτ,2, ζτ,3, · · · ) , τ = 1, 2, 3, 4 , (2.39)

to represent the mutated flow, then ζ̃τ is also a Bernoulli process for each
τ = 1, 2, 3, 4. ζτ,j denotes the random variable that represents whether or not
the mutation type τ happened at position j. Let ετ denote the strength of the
mutation type τ , then

Pr{ζτ,j = 1} = ετ , Pr{ζτ,j = 0} = 1 − ετ . (2.40)

Based on many calculations, we know that ε2, ε3, ε4 � 1 and ε1 < 1/2 within
the homologous sequence family. Following from ζ̃τ , τ = 1, 2, 3, 4, we may
write the corresponding renewal process as follows:

v∗τ,n =
n∑

j=1

ζτ,j , τ = 1, 2, 3, 4 , (2.41)
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and
j∗τ (k) = sup{j : v∗τ,j ≤ k} , τ = 1, 2, 3, 4 . (2.42)

Then {ζ̃τ , ṽ∗τ , j̃∗τ , �̃∗τ} are the four equivalent representations of the mutation
type τ , in which

�∗τ,k = j∗τ,k − j∗τ,k−1 , k = 1, 2, 3, · · · . (2.43)

For each fixed τ = 1, 2, 3, 4, the four ζ̃τ , ṽ∗τ , j̃∗τ , �̃∗τ are determined according
to the relationships given in Sect. 2.1.

Representation Using Poisson Flow

The four different types of mutation flows resulting from the four mutation
types can also be represented using Poisson flow,

ṽ∗τ = {v∗τ (t), t ≥ 0} , τ = 1, 2, 3, 4 , (2.44)

and the corresponding strength of the Poisson flow is denoted by λτ .
For a fixed Poisson flow ṽ∗τ resulting from type τ mutation, we denote its

dual process by t̃∗τ , in which

t∗τ,k = sup{t : v∗τ (t) ≤ k} , τ = 1, 2, 3, 4 . (2.45)

With arguments similar to those used in Sect. 2.1, we find that ṽ∗ and t̃∗

are mutually determined for a fixed τ , and satisfy the relationships given in
Sect. 2.1.

Synthesis of Mutation Sequences

Based on the four kinds of mutated processes, we can have an addition of mu-
tations if we assume that the four types of mutations happen independently.
If we let ṽ∗τ , τ = 1, 2, 3, 4 denote Poisson flow resulting from the four mutation
types, their sum is defined as follows:

ṽ∗0 =
4∑

τ=1

ṽ∗τ =

{
4∑

τ=1

v∗τ,1,
4∑

τ=1

v∗τ,2,
4∑

τ=1

v∗τ,3, · · ·
}

. (2.46)

The term ṽ∗0 represents the mutated flow resulting from the four mutation
types happening within the same sequences. Following the properties of Pois-
son flow, we have:

1. ṽ∗0 = {v∗0(t), t ≥ 0} is also a Poisson flow, in which v∗(t) is the total
number of times the four types of mutation happen in the region (0, t)
altogether.

2. The strength of the Poisson flow ṽ∗0 is λ0 = λ1 + λ2 + λ3 + λ4.
3. Dual process of the Poisson flow ṽ∗0 is t̃∗. They are determined by each

other, and satisfy the relationships given in Sect. 2.1.
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2.3 Stochastic Models of Type-I Mutated Sequences

In the last section, we introduced the four types of mutated flows resulting
from the corresponding four mutation types. Based on these mutated flows,
we now discuss how to obtain the stochastic models for these mutated flows.
Since the effects of the four mutated flows are different, we analyze these mu-
tation types in detail and give the stochastic models of the mutated sequences
resulting from each of these mutation types.

2.3.1 Description of Type-I Mutation

The type-I mutation of a sequence is defined in Sect. 1.2.1, which is the first
kind of mutation. In comparison, a sequence η̃ mutated from a sequence ξ̃
resulting from a type-I mutation is simply called the type-I mutated sequence
(of ξ̃) in the following text. Although the wording of these two terms is sim-
ilar (type-I mutation and type-I mutated sequence), their meanings are very
different. We will discuss how to describe type-I mutated sequences and the
corresponding data structure in this subsection. Let ξ̃, η̃ be two stochastic
sequences defined on V4 as given in (2.1). Let

(ξ̃, η̃) = ((ξ1, η1), (ξ2, η2), (ξ3, η3), · · · ) (2.47)

be a two-dimensional sequence, in which ξj , ηj ∈ V4. This practice problem
requires mention of the fact that η̃ is the sequence (mutated from the se-
quence ξ̃) resulting from type-I mutation. For simplicity, η̃ is called the type-I
mutated sequence of ξ̃ in the following text. To construct the stochastic models
of (ξ̃, η̃), we must make the following two assumptions:

I-1 For the two-dimensional sequence (ξ̃, η̃), (ξj , ηj), j = 1, 2, 3, · · · is an i.i.d.
sequence of two-dimensional random vectors, in which ξ̃ is a perfectly
stochastic sequence.

I-2 For any j = 1, 2, 3, · · · , the joint probability distribution of the two-
dimensional random vector (ξj , ηj) satisfies the following condition:

Pr{(ξj , ηj) = (a, b)} =

⎧
⎨

⎩

1 − ε1
4

, if a = b ,
ε1
12
, otherwise ,

(2.48)

in which ε1 is the strength of the type-I mutation.

If a two-dimensional sequence (ξ̃, η̃) defined by (2.47) satisfies conditions I-1
and I-2, then η̃ represents the standard type-I mutated sequence of ξ̃.

Theorem 4.

1. If there is a stochastic sequence ϑ̃ = (ϑ1, ϑ2, ϑ3, · · · ) which satisfies the
following conditions:
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I-3 ϑ̃ is an independently and identically distributed sequence and it is
independent of ξ̃.

I-4 The probability distribution of each ϑj is defined as

Pr{ϑj = a} =

{
1 − ε1 , if a = 0 ,
ε1
3
, otherwise ,

(2.49)

then (ξ̃, η̃) satisfies the conditions I-1 and I-2, in which sequence
ηj = ξj + ϑj, j = 1, 2, 3, · · · .

2. If a two-dimensional sequence (ξ̃, η̃) satisfies conditions I-1 and I-2, then
there is a stochastic sequence ϑ̃ satisfying the conditions I-3 and I-4 such
that η̃ = ξ̃ + ϑ̃ holds and η̃ is a perfectly stochastic sequence.

Proof. We prove this theorem in several steps:

1. We first prove proposition 1 of the theorem. If the sequence ϑ̃ satisfies
conditions I-3 and I-4 and η̃ = ξ̃ + ϑ̃, then (ξj , ηj), j = 1, 2, 3, · · · is an
independently and identically distributed sequence and

Pr{(ξj , ηj) = (a, b)} = Pr{ξj = a}Pr{ηj = b|ξj = a}

=
1
4
Pr{ϑj = b− a} =

⎧
⎨

⎩

1 − ε1
4

, if b = a ,
ε1
12
, otherwise .

Consequently, (2.48) holds, and proposition 1 of the theorem is proved.
2. If (ξ̃, η̃) satisfies conditions I-1 and I-2, then we prove that η̃ is a per-

fectly stochastic sequence. Alternatively, we prove that ηj is a uniform
distribution, such that

Pr{ηj = b} =
∑

a∈V4

Pr{(ξj , ηj) = (a, b)}

= Pr{(ξj , ηj) = (b, b)} +
∑

a	=b
Pr{(ξj , ηj) = (a, b)}

=
1 − ε1

4
+
∑

a	=b

ε1
12

=
1 − ε1

4
+
ε1
4

=
1
4
.

Thus, we have proved that ηj is a perfectly stochastic sequence.
3. If (ξ̃, η̃) satisfies conditions I-1 and I-2 then we prove that there is

a stochastic sequence ϑ̃ satisfying I-3 and I-4 such that η̃ = ξ̃ + ϑ̃ holds.
Let ϑj = ηj − ξj , j = 1, 2, 3, · · · ; then following from condition I-1, we
have that ϑ̃ is an i.i.d. sequence. Thus, we need only prove that (2.49)
holds. In fact,

Pr{ϑj = c} = Pr{ηj − ξi = c} =
∑

b−a=c
Pr{(ξj , ηj) = (a, b)}

=
∑

a∈V4

Pr{(ξj , ηj) = (a, c+ a)} =

{
1 − ε1 if c = 0 ,
ε1
3
, otherwise .
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That is, (2.49) holds, and the proposition 2 holds. This completes the
proof of the theorem.

Theorem 5. A sequence ϑ̃ given in Theorem 4 can be decomposed as follows:

ϑj = ζj · ϑ′j , j = 1, 2, 3, · · · , (2.50)

with two components satisfying the following conditions:

I-5 ζ̃, ϑ̃′ are two i.i.d. sequences, and ζ̃ and ϑ̃′ are independent of each other.
Furthermore, both ζ̃ and ϑ̃′ are independent of ξ̃.

I-6 ζ̃ is a Bernoulli process with strength ε1, and the probability distribution
of ϑ̃′ is:

Pr
{
ϑ′j = a

}
=

⎧
⎨

⎩

0 , if a = 0 ,
1
3
, otherwise .

(2.51)

(ξ̃, η̃) then satisfies the conditions I-1 and I-2 if and only if there are two
stochastic sequences ζ̃ and ϑ̃ satisfying conditions I-5 and I-6 and which sat-
isfy the following:

ηj = ξj + ζjϑ
′
j , j = 1, 2, 3, · · · . (2.52)

Definition 9. In (2.52), sequence ζ̄ represents type-I mutated flow, and the
sequence ϑ̃′ represents random additive noise (or random interference).

In conclusion, a type-I mutated sequence can be decomposed into the sum
of a Bernoulli process and the product of a Bernoulli process and a random
noise term. We denote the model by

E∗
1 =

{
ξ̃, ζ̃1, ϑ̃1, η̃

}
, (2.53)

in which ξ̃, ζ̃1, ϑ̃1 are three independently stochastic sequences. Any one of
the three stochastic sequences is i.i.d., and the three common probability
distributions are the uniform distribution, the Bernoulli distribution and the
distribution given in (2.51). The mutated sequence is then determined by
(2.52).

2.3.2 Properties of Type-I Mutations

Reversibility of the Type-I Mutated Sequence

The so-called reversibility of the sequence is the fact that η̃ can be mutated
inversely to ξ̃ by type-I mutation if η̃ is the type-I mutated sequence of ξ̃.

Theorem 6. Under type-I mutation, if η̃ is the mutated sequence of ξ̃ with
strength ε1, then ξ̃ is also the mutated sequence of η̃ with strength ε1.
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Proof. For the theorem, we need only prove that sequence ϑ̃ and sequence η̃
are independent. To do this, we consider

Pr{(ηj , ϑj) = (b, c)} =
∑

a∈V4

Pr{(ξj , ηj , ϑj) = (a, b, c)}
∑

a∈V4

Pr{(ξjϑj) = (a, c)}Pr{ηj = b|(ξj , ϑj) = (a, c)} .

Since ηj = ξj + ϑj , we have

Pr{ηj = b|(ξj , ϑj) = (a, c)} =

{
1 , if b = a+ c ,

0 , otherwise ,

and

Pr{(ηj , ϑj) = (b, c)} = Pr{(ξjϑj) = (b− c, c)}
=

1
4
Pr{ϑjc} = Pr{η = b}Pr{ϑj = c} , (2.54)

in which the last two equations hold due to the fact that ξj , ηj both have
uniform distributions on V4.

Following from (2.54), we have that ηj , ϑj are two independent random
sequences. From the independently and identically distributed property of
(ξj , ηj , ϑj), j = 1, 2, 3, · · · , we show the independence between η̃ and ϑ̃. There-
fore, ξ̃ = η̃− ϑ̃ holds. That is, ξ̃ is the standard type-I mutated sequence of η̃
with strength ε1. The theorem is therefore proved.

Local Penalty Function of Type-I Mutated Sequences

Here, we discuss the local penalty function for a type-I mutated sequence. Let
(ξ̃, η̃) be a two-dimensional sequence which satisfies conditions I-1 and I-2,
and is therefore independent (definition in Sect. 2.1.2). If w(a, b), a, b ∈ V4 is
a strongly symmetric penalty function on V4, we have the following properties:

1. The mean of w(ξi, ηj) satisfies

wi,j = E{w(ξi, ηj)} =

⎧
⎪⎨

⎪⎩

ε1w
′

3
, if i = j ,

w′

4
, otherwise ,

(2.55)

in which w′ = w(0, 1) + w(0, 2) + w(0, 3). When i = j, we have

E{w(ξi, ηj)} =
∑

a,b∈V4

w(a, b)Pr{(ξi, ηj) = (a, b)}

=
∑

a	=b∈V4

w(a, b)Pr{(ξi, ηi) = (a, b)}

=
ε1
12

∑

a	=b∈V4

w(a, b) =
ε1
3

3∑

b=1

w(0, b) =
w′ε1

4
,
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and when i �= j, we have

E{w(ξi, ηj)} =
∑

a	=b∈V4

w(a, b)Pr{(ξi, ηj) = (a, b)}

=
1
16

∑

a	=b∈V4

w(a, b) =
1
4

3∑

b=1

w(0, b) =
w′

3
.

It follows that (2.55) holds.
2. The variance σi,j = D{w(a∗i+k, b

∗
j+k)} of w(ξi, ηj), where

σi,j =
∑

a,b∈V4

[w(a, b) − wi,j ]2Pr{(ξi, ηj) = (a, b)} . (2.56)

For any fixed (i, j), we calculate the value of σi,j as follows:

σi,j =
∑

a,b∈V4

[w(a, b) − wi,j ]2Pr{(ξi, ηj) = (a, b)}

=
∑

a,b∈V4

[
w2(a, b) − w2

i,j

]
Pr{(ξij , ηj) = (a, b)}

=
∑

a	=b∈V4

w2(a, b)Pr{(ξi, ηj) = (a, b)} − w2
i,j , (2.57)

in which

w2
i,j =

⎧
⎪⎪⎨

⎪⎪⎩

(
w′ε1

3

)2

, if i = j ,
(
w′

4

)2

, otherwise ,

and

∑

a,b∈V4

w2(a, b)Pr{(ξi, ηj) = (a, b)} =

⎧
⎪⎨

⎪⎩

w′′ε1
3

, if i = j ,

w′′

4
, otherwise ,

and w′′ = w(0, 1)2 + w(0, 2)2 + w(0, 3)2. Thus, we have

σi,j =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

w′′ε1
3

−
(
w′ε1

3

)2

=
ε1
3

[
w′′ − (w′)2ε1

3

]
, if i = j ,

w′′

4
−
(
w′

4

)2

=
1
4

[

w′′ −
(
w′

2

)2
]

, otherwise .

(2.58)

Example 4. If w(a, b) = dH(a, b) is the Hamming matrix, we have w′ =
w′′ = 3. Therefore, we have

wi,j =

⎧
⎨

⎩

ε1 , if i = j ,
3
4
, otherwise ,

σi,j =

⎧
⎨

⎩

ε1(1 − ε1) , if i = j ,
3
16
, otherwise .

(2.59)
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3. If w(a, b) = dWT(a, b) is the WT-matrix, we can see that: w′ = 1.99,
w′′ = 1.3883, then we have

wi,j =

{
0.66 × ε1 , if i = j ,

0.4975 , otherwise ,

σi,j =

{
ε1(0.4711− 0.044 × ε1) , if i = j ,

0.1058 , otherwise .
(2.60)

Using the calculation in Example 4, we obtain an overall impression of
the local penalty function for a type-I mutated sequence.

Limit Properties of the Local Penalty Function of a Type-I
Mutated Sequence

Following from Theorems 3 and 4, we obtain the limit properties of the local
penalty function of a type-I mutated sequence.

Theorem 7. If η̃ is a type-I mutated sequence of ξ̃ satisfying conditions I-1
and I-2, and if W is a strongly symmetric matrix, then the limit properties of
the local penalty function of ξ̃, η̃ are as follows:

1. As n→ ∞, the limitation

w(ξ̃, η̃; i, j, n) =
1
n

n∑

k=1

w(ξi+k , ηj+k) → wi,j a.e. (2.61)

in which wi,j is computed by (2.55).
2. The central limit theorem: if n is large enough,

1
σij

√
n

n∑

k=1

[w(ξi+k, ηj+k) − μij ] ∼ N(0, 1) , (2.62)

in which σi,j is given by (2.58). The results of (2.61) and (2.62) follow
from the Kolmogorov law of large numbers and the Levy–Lindberg central
limit theorem.

2.4 Type-II Mutated Sequences

We continue to discuss stochastic models for type-II, type-III, and type-IV
mutations. The description for these is similar to queuing theory – where we
consider a service station and the customers arriving as a representation of
the mutation flow. The time each customer spends at the station is analogous
to the lengths resulting from type-II, type-III, and type-IV mutations. In this
subsection, we consider the models that arise from type-II mutations.
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2.4.1 Description of Type-II Mutated Sequences

A type-II mutation (defined in Sect. 1.2) refers to the permutation of some
segments of a biological sequence A = (a1, a2, · · · , aN). For example,

{
A = (00201[332]0110203[01022]23101011[20]3321) ,
B = (00201[20]0110203[332]23101011[01022]3321) .

(2.63)

Then, in sequenceA the data [332], [01022], [20] in the square brackets permute
and turn into the segments [20], [332], [01022] of sequenceB. Data permutation
on more disconnected segments is very important in gene or protein analysis.
In recent years, bioinformatics has begun to solve these problems. We do not,
however, intend to address the subject in this book due to its complexity.

In this book, we confine our discussion to simpler cases. That is, we only
discuss data permutation of two coterminous segments. For example,
{
A = (00201{[332][0110](00201{[332][0110]}20301022231{[01011][20]}3321) ,
B = (00201{[0110][332]}20301022231{[20][01011]}3321) .

(2.64)
The sequence B results from the permutation of the data segments in large
brackets {[332][0110]}, {[01011][20]} of sequence A. After this, the new seg-
ments of sequence B are {[0110][332]}, {[20][01011]}, in which each large
bracket contains the permutation of two coterminous segments.

2.4.2 Stochastic Models of Type-II Mutated Sequences

The following assumptions are required in order to build models of type-II
mutated sequences:

II-1 The mutation sequence η̃ is determined by a stochastic sequence ξ̃, ζ̃2,
and (�̃∗1, �̃

∗
2). The explanation is as follows:

1. ξ̃ is a perfectly stochastic sequence on V4. It is an initial sequence
to be mutated.

2. ζ̃2 is a Bernoulli process with strength ε2. It is similar to the se-
quence defined in (2.38), to describe whether or not type-II muta-
tion happens.

3. (�̃∗1, �̃
∗
2) is a stochastic sequence to describe the permutation length

of the type-II mutation, in which

�̃∗τ = (�∗τ,1, �
∗
τ,2, �

∗
τ,3, · · · ) , τ = 1, 2 , (2.65)

are two independently and identically distributed stochastic se-
quences and each �∗τ,j obeys a geometric distribution:

Pr{�∗τ,j = k} = epτ (k) = pτ (1 − pτ )k−1 , τ = 1, 2 . (2.66)
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Here, (�∗1,j , �
∗
2,j) represent two segments with lengths �∗1,j , �

∗
2,j per-

mutated after the jth mutation. Thus, (�̃∗1, �̃
∗
2) is the length sequence

of the permutated segments in type-II mutation.
II-2 Suppose ξ̃, ζ̃2, �̃

∗
1, �̃

∗
2 are four independent stochastic sequences. Let

ã, z̃, �̃1, �̃2 denote the samples of the stochastic sequences ξ̃, ζ̃2, �̃∗1, �̃
∗
2

in which ⎧
⎪⎨

⎪⎩

ã = (a1, a2, a3, · · · ) ,
z̃ = (z1, z2, z3, · · · ) ,
�̃τ = (�τ ;1, �τ ;2, �τ ;3, · · · ) , τ = 1, 2 .

(2.67)

The construction of the type-II mutated sequence η̃ produced by
(ã, z̃, �̃1, �̃2) is then as follows:
1. The renewal processes ṽ∗2 and j̃∗2 are caused by ζ̃2.

v∗2,n =
n∑

j=1

ζ2,j , j∗2,k = sup{n : v∗2,n < k} , (2.68)

and their samples are respectively
{
ṽ2 = (v2,0, v2,1, v2,2, · · · ) ,
j̃2 = (j2,0, j2,1, j2,2, · · · ) ,

(2.69)

in which v2,n denotes the time of the type-II mutation in position
region {1, 2, · · · , n}. j2,k denotes the kth position occurrence of the
type-II mutation, in which v2,0 = j2,0 = 0. ṽ∗2 , j̃

∗
2 are then deter-

mined by ζ̃2. Consequently, ṽ2, j̃2 are determined by z̃2.
2. If ã, j̃2, �̃1, �̃2 are similar to that given in (2.67) and (2.69), then

sequence ã can be decomposed into several regions as follows:
⎧
⎪⎨

⎪⎩

δ2,0;k = [j2,k−1 + �1,k−1 + �2,k−1 + 1, j2,k] ,
δ2,1;k = [j2,k + 1, j2,k + �1,k] ,
δ2,2;k = [j2,k + �1,k + 1, j2,k + �1,k + �2,k] ,

(2.70)

in which k = 1, 2, 3, · · · , [i, j] = {i, i+1, · · · , j} is the set of positive
integers. [i, j] = Φ if i > j, and j2,0 = �1,0 = �2,0 = 0.
Formula (2.70) divides a long sequence V+ = (1, 2, 3, · · · ) into sev-
eral regions as follows:

V+ = (δ2,0,1, δ2,1,1, δ2,2,1, δ2,0,2, δ2,1,2, δ2,2,2, · · · ,
δ2,0,k, δ2,1,k, δ2,2,k, · · · ) . (2.71)

Then Δ2,0, Δ2,1, Δ2,2 represent the non-type-II mutation region
and type-II region mutation respectively, in which

⎧
⎪⎨

⎪⎩

Δ2,0 = (δ2,0;1, δ2,0;2, δ2,0;3, · · · ) ,
Δ2,1 = (δ2,1;1, δ2,1;2, δ2,1;3, · · · ) ,
Δ2,2 = (δ2,2;1, δ2,2;2, δ2,2;3, · · · ) .

(2.72)
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Equations (2.71) and (2.72) refer to the region structure of type-II
mutated positions. The region in the region structure of type-II mu-
tated positions is also random if ζ̃2, �̃1, �̃2 are stochastic sequences.
Hence, (2.70) becomes

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

δ∗2,0;k =
[
j∗2,k−1 + �∗1,k−1 + �∗2,k−1 + 1, j∗2,k

]
,

δ∗2,1;k =
[
j∗2,k + 1, j∗2,k + �∗1,k

]
,

δ∗2,2;k =
[
j∗2,k + �∗1,k + 1, j∗2,k + �∗1,k + �∗2,k

]
.

(2.73)

Correspondingly, (2.71) and (2.72) become stochastic regions, such
that

V+ = (δ∗2,0;1, δ
∗
2,1;1, δ

∗
2,2;1, δ

∗
2,0;2, δ

∗
2,1;2, δ

∗
2,2;2, · · · ) .

Similarly,

Δ∗
2,τ = (δ∗2,τ ;1, δ

∗
2,τ ;2, δ

∗
2,τ ;3, · · · ) , τ = 0, 1, 2 .

Consequently, these random variables satisfy the relationships
j∗2,k−1 < j∗2,k, �

∗
τ,k > 0 for any τ = 1, 2, k = 1, 2, 3, · · · .

3. Let b̃ = (b1, b2, b3, · · · ), bj ∈ V4 denote the samples of η̃, so that b̃ is
determined by the following steps:
(a) If j ∈ Δ2,0, then j is the position in the non-type-II mutated

region and bj = aj holds. This means the data are invariant.
(b) If j ∈ Δ2,1 ∪Δ2,2, then j is the position in the type-II mutated

region and the data segments in δ2,1 and δ2,2 are permutated.
Let the kth segment of Δ2,1 and Δ2,2 be
{
δ2,1;k = {jk + 1, jk + 2, · · · , jk + �1;k} ,
δ2,2;k = {jk + �1;k + 1, jk + �1;k + 2, · · · , jk + �1;k + �2;k} .

(2.74)
Then the permutated data of the kth type-II mutation is

bδ2,0;k = aδ2,0,k
, (bδ2,1,k

, bδ2,2,k
) = (aδ2,2,k

, aδ2,1,k
) , (2.75)

the notations of which are defined in (1.13) and (1.14).
4. Following from the above discussions, we will obtain the type-II

mutated sequence η̃ defined by ξ̃, ζ̃2, �̃1, �̃2. Hence, let

E∗
2 =

{
ξ̃, ζ̃2, �̃

∗
1, �̃

∗
2, η̃

}
(2.76)

be the stochastic model of the type-II mutated sequence, in which
each stochastic sequence satisfies conditions II-1 and II-2 and the
supplemental explanations. From (2.75), the type-II mutated se-
quence η̃ can be determined.
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Fig. 2.3. Relationships of type-II mutations

Relationships of the type-II mutated sequences are shown in Fig. 2.3.
In Fig. 2.3, η̃ is a type-II mutated sequence of ξ̃, in which, i∗k is the kth type-

II mutated position and �∗1,k, �
∗
2,k are the lengths of the permutated segments

of the kth type-II mutations.

2.4.3 Error Analysis of Type-II Mutated Sequences

The error analysis of type-II mutated sequences indicates the calculation of
penalty scores resulting from comparing a mutated sequence with the initial
sequence. If η̃ is a type-II mutated sequence of ξ̃, then the definition of the
local penalty function is the same as (2.55). Similarly, let

w
(
ξ̃, η̃; i, j, n

)
=

1
n
w
(
ξ̄i, η̄j

)
=

1
n

n∑

k=1

w(ξi+k, ηj+k) . (2.77)

We then discuss how to calculate or estimate the penalty scores.

Estimating the Lengths of Permutated Segments
of Type-II Mutated Sequences

To estimate the value of (2.77), we need to estimate the total length of the
permutated segments in the type-II mutated sequences. We begin by estimat-
ing the length of the permutated segment of type-II mutated sequences at the
kth position.

1. Denote the length of the permutated segment at the kth position by �∗0,k =
�∗1,k + �∗2,k. Following from the i.i.d. property of �̃∗τ , τ = 1, 2 individually,
and the independence between the two sequences, we have that

�̃∗0 = {�∗0,1, �∗0,2, �∗0,3, · · · }
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is an independent and identically distributed sequence, and the common
probability distribution of �∗0,k can be calculated as follows:

Pr{�∗0,k = �} = Pr{�∗1,k + �∗2,k = �}

=
	−1∑

	′=1

Pr{�∗1,k = �′}Pr{�∗2,k = �− �′}

=
	−1∑

	′=1

p1(1 − p1)	
′−1p2(1 − p2)	−	

′−1

=
p1p2

(1 − p1)(1 − p2)

	−1∑

	′=1

(1 − p1)	
′
(1 − p2)	−	

′
.

When p1 �= p2 we have

Pr{�∗2,j = �} =
p1p2(1 − p2)	

(1 − p1)(1 − p2)

	−1∑

	′=1

(
1 − p1

1 − p2

)	′

=
p1p2(1 − p2)	−1

1 − p2

⎛

⎜
⎝

1 −
(

1−p1
1−p2

)	−1

1 − 1−p1
1−p2

⎞

⎟
⎠

= p1p2
(1 − p2)	−1 − (1 − p1)	−1

p1 − p2
. (2.78)

If p1 = p2 = p, then (2.78) can be simplified as

Pr{�∗2,j = �} = (�− 1)p2(1 − p)	−2 , � = 2, 3, 4, · · · . (2.79)

For simplicity, the probability distribution of �∗0,k is denoted by p0(�) =
Pr{�∗0,k = �}.
Based on the expectation value formula and the variance of geometric
distribution given, we calculate the mean and variance of �∗2,j as follows:

⎧
⎪⎨

⎪⎩

E{�∗0,k} = E{�∗1,k} + E{�∗2,k} =
1
p1

+
1
p2
,

D{�∗0,k} = D{�∗1,k} +D{�∗2,k} =
1 − p1

p2
1

+
1 − p2

p2
2

.
(2.80)

2. Following from the definition of E∗
2 , we have that the counting process

of type-II mutated sequences from the Bernoulli process ζ̃2 is defined as
follows:

ṽ∗2,n =
n∑

i=1

ζ2,i , n = 1, 2, 3, · · · .

Then, let

ψ2,n =
v∗n∑

k=1

�0,k , n = 1, 2, 3, · · · (2.81)

be the compound renewal sequence of ζ̃2 and �̃∗0.
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3. Based on the property of the compound renewal process we can determine
the limit character of the sequence ψ2,n. Here

1
n
ψ2,n =

1
n

v∗n∑

k=1

ζ2,k ∼ ε2μ0 , (2.82)

in which μ0 = 1
p1

+ 1
p2
, and

E{ψ2,n} = E

⎧
⎨

⎩

v∗n∑

k=1

ζ2,k

⎫
⎬

⎭
= nε2μ0 . (2.83)

We can see that the central limit property is given by

1
σ2

√
n

[ψ2,n − nε2μ0] =
1

σ2
√
n

⎛

⎝
v∗n∑

k=1

ζ2,k − nε2μ0

⎞

⎠ ∼ N(0, 1) , (2.84)

in which

σ2
2 =

1
n
D{ψ2,n} = ε2

[
2 − ε2 − p1

p2
1

+
2 − ε2 − p2

p2
2

+
2(1 − ε2)
p1p2

]
. (2.85)

Equation (2.85) is obtained by the calculation of ψ2,n. We do not present
the derivations here.

Estimation of the Penalty Function w(ξ̃, η̃; i, j, n)

To estimate the penalty function of (2.84), the following must be considered:

1. We first discuss the calculation of w(ξi, ηj). Here w(a, b) is the penalty
matrix on V4 which satisfies the strongly symmetric condition.
The values of the type-II mutated sequence ηj in w(ξi, ηj) are just the
components ξk of ξ̃. Therefore,

E{w(ξi, ηj)} =

{
0 , if ηj = ξk , k = i

w1 , if ηj = ξk , k �= i ,
(2.86)

in which w1 = 1
4 [w(0, 1) + w(0, 2) + w(0, 3)].

2. We estimate the value of w(ξ̃, η̃; i, j, n) for the condition i = j. For uni-
versality, we set i = j = 0, and denote

Δ∗
2(n) = (Δ∗

2,1 ∪Δ∗
2,2) ∩N , (2.87)

in which the definition of Δ∗
2,1, Δ

∗
2,2 is in (2.72) and N = {1, 2, · · · , n}.

Here ||Δ∗
2(n)|| = ψv∗2,n

is established. If i is not in Δ∗
2(n), w(ξi, ηi) ≡ 0
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holds. It implies that

w(ξ̃, η̃; i, j, n) =
1
n

∑

k∈Δ∗
2(n)

w(ξk, ηk) ∼ 3
4n
E{ψv∗2,n

} =
3ε2
4

(
1
p1

+
1
p2

)

(2.88)
holds. Relation (2.88) can be proved by the Markov large number theorem.
We can regard the sum of {w(ξk, ηk), k ∈ δ∗n} as the sum of a group of
independent sequences

w∗
k =

∑

j∈δ∗2,1;k∪δ∗2,2;k

w(ξj , ηj) , k = 1, 2, 3, · · ·

so we can use the large number theorem to obtain (2.88).
3. If i �= j, we can also get

w(ξ̃, η̃; i, j, n) ∼ 1
4
[w(0, 1) + w(0, 2) + w(0, 3)] . (2.89)

Using the central limit theorem, we can accurately estimate the relation-
ship (2.89). Details of the calculation are omitted here.

2.4.4 The Mixed Stochastic Models Caused
by Type-I and Type-II Mutations

We have already described type-I and type-II mutated sequences. Now we
consider the combination of these two types.

The Mixed Stochastic Models for Both Type-I and Type-II
Mutated Sequences

The mixed stochastic models for both type-I and type-II mutated sequences
are described as follows. Here, the mixed stochastic model is denoted by

E∗
I,II = {ξ̃, ϑ̃1, ζ̃τ , �̃

∗
τ , η̃, τ = 1, 2} (2.90)

in which:

1. ξ̃ is the initial sequence, which is also a perfect sequence.
2. ζ̃τ , τ = 1, 2 are two Bernoulli processes representing the flows caused by

type-I and type-II mutations, respectively.
3. ϑ̃1 is the sequence added by all type-I mutated errors given in (2.49).
4. �̃∗τ , τ = 1, 2 are the sequences consisting of the lengths of the permutated

segments of type-II mutation, given by (2.65).

All stochastic sequences in E∗
I,II are therefore independent, and their mutation

types can be determined based on the regulations I-1, I-2, II-1, and II-2.
The mutated sequence η̃ is then produced by the following rules.
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5. Let ηj = ξj if ζ1,j = ζ2,j = 0.
6. Using the rules I-1 and I-2 to determine ηj if ζ1,j = 1 and ζ2,j = 0.
7. We follow the rules II-1 and II-2 to determine the values of ηΔ2,0 and
ηΔ∗

2,1∪δ∗2,2
if ζ1,j = 0 and ζ2,j = 1.

8. We assume that ζ1,j = 1, ζ2,j = 1 do not occur simultaneously.

Error Analysis of Type-I and Type-II Mutations

If η̃ is a sequence caused by type-I and type-II mutations, then the local
penalty functions w(ξ̃, η̃; i, j, n) about both η̃ and ξ̃ are estimated as follows:

1. If i = j, we can see from (2.61) and (2.88) that

w(ξ̃, η̃; i, j, n) ∼ ε1w

3
+
(

3
4
− wε1

3

)
ε2

(
1
p1

+
1
p2

)
, (2.91)

in which ε1, ε2 are the strengths of the Bernoulli processes, and ζ̃τ , τ = 1, 2
and p1, p2 are parameters of the geometric distribution of �̃∗τ , τ = 1, 2 and
w = w(0, 1) + w(0, 2) + w(0, 3).

2. If i �= j, from (2.77) and (2.89) we obtain

w(ξ̃, η̃; i, j, n) ∼ w′

4
. (2.92)

2.5 Mutated Sequences Resulting from Type-III
and Type-IV Mutations

Definitions of type-III and type-IV mutations are given in Chap. 1. They are
referred to as displacement mutations. We discuss the stochastic models of
type-III and type-IV mutated sequences below.

2.5.1 Stochastic Models of Type-III and Type-IV Mutated
Sequences

The definition of the stochastic model for type-III and type-IV mutated se-
quences is as follows:

{
E∗
3 = {ξ̃, ζ̃3, �̃∗3, ϑ̃3, η̃} ,

E∗
4 = {ξ̃, ζ̃4, �̃∗4, η̃} .

(2.93)

These satisfy the following conditions:

III-1 For a fixed τ = 3, 4, the three stochastic sequences ξ̃, ζ̃τ , �̃∗τ are i.i.d.
processes, in which:
1. ξ̃ is the initial process, which is a perfectly stochastic sequence

on V4.
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2. ζ̃τ is a Bernoulli process with strength ετ in which each ζτ,j de-
notes the random variable that describes whether or not the type-τ
mutation occurs.

3. �̃∗τ is a stochastic sequence obeying geometric distribution with the
parameter pτ . Each �∗τ,j then denotes the sequence of the lengths
of segments in the jth insertion or deletion.

4. ϑ̃3 is a perfectly stochastic sequence on V4. It is a type-III mu-
tated sequence. That is, it is mutated from the initial sequence by
insertion of some “−”.

III-2 For a fixed τ = 3, 4, the three stochastic sequences ξ̃, ζ̃τ , �̃∗τ are inde-
pendent, and ϑ̃3 is independent of ξ̃, ζ̃3, �̃∗3.
Let ṽ∗τ be the renewal process of ζ̃τ and let j̃∗τ be the corresponding
dual renewal process (definitions are given in Sect. 2.2). Let

{
E3 = {ã, z̃3, �̃3, ũ3} ,
E4 = {ã, z̃4, �̃4}

(2.94)

be the sample of E∗
τ . The procedure to determine E∗

τ based on E3 or E4

is stated as follows:
1. Determine the renewal sequence ṽτ and its corresponding dual re-

newal process j̃τ based on z̃τ . Then

1 ≤ jτ,1 < jτ,2 < jτ,3 < · · · (2.95)

divides the whole set of positive integers V+ = (1, 2, 3, · · · ) into
several segments.

2. The role of the type-IV mutation is to delete the segment

a(j4,k,j4,k+	4,k+1) = (aj4,k+1, aj4,k+2, · · · , aj4,k+	4,k
)

from the initial sequence ã = (a1, a2, a3, · · · ).
3. The role of the type-III mutation is to insert the segment

u(ψ4,k−1,ψ4,k+1) = (uψ4,k−1+1, uψ4,k−1+2, · · · , uψ4,k
)

into ã = (a1, a2, a3, · · · ) following aj3,k
in which ψ4,k =

∑k
i=1 �4,j

and uj ∈ V4 belongs to ã.

Consequently, we can find the type-III and type-IV mutated sequences from ξ̃
based on the various sequences and generation rules III-1 and III-2.

2.5.2 Estimation of the Errors Caused by Type-III and Type-IV
Mutations

We can estimate the local penalty function w(ξ̃, η̃; i, j, n) of the type-III and
type-IV mutated sequence η̃ as follows.
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Estimation of the Lengths of the Inserted or Deleted Segments
in Type-III and Type-IV Mutated Sequences

We can estimate the lengths of the inserted or deleted segments in type-III
and type-IV mutated sequences using renewal processes. Let ψτ,i,n be the
total number of inserted or deleted segments within the region [i+ 1, i+n] =
{i + 1, i + 2, · · · , i + n}, so that the probability of ψτ,i,n is independent of i
because of the homogeneous nature of stochastic models. Thus, it is enough
that we consider

ψτ,n =
v∗τ,n∑

j=1

�∗τ,j . (2.96)

Using the limitation property of the compound renewal process, we have

E{ψτ,n} = E{v∗τ,n}E{�∗τ,1} =
ετ
pτ
, τ = 3, 4 . (2.97)

Following from the law of large numbers for compound renewal processes, we
have

1
n
ψτ,n ∼ E{v∗τ,n}E{�∗τ,1} =

ετ
pτ
, τ = 3, 4 . (2.98)

ψ3,n is then the combined length of all inserted segments in the region
[1, n], and ψ4,n is the combined length of all deleted segments in region [1, n].

Estimation of Local Penalty Function w(ξ̃, η̃; i, j, n)

Without loss of generality, we discuss the estimation of the local penalty
function w(ξ̃, η̃; i, j, n) on type-III mutated sequences as follows:

1. In the case i = j = 1, let ζ̃3 be the dual renewal process of ṽ∗3 . If v∗3,1 =
v < n, then there is no mutation in the region δ1 = [1, v] = (1, 2, · · · , v)
but there is a displacement mutation in the region δ = [v+ 1, n] = (v+ 1,
v+2, · · · , n). Consequently, following from the large number law, we have

w(ξ̃, η̃; i, j, n|v∗3,1 = v) ∼ (n− v)w
4n

(2.99)

and

w(ξ̃, η̃; i, j, n) =
n∑

v=1

pr{v∗3,1 = v}w(ξ̃, η̃; i, j, n|v∗3,1 = v)

∼
n∑

v=1

ε3(1 − ε3)v−1 (n− v)w
4n

.

If n is large enough, we have the relationship

w(ξ̃, η̃; i, j, n) ∼ w

4

(
1 − 1

nε3

)
. (2.100)
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2. In the case where i < j, since η̃ is a type-III mutated sequence of ξ̃, we
find

w(ξ̃, η̃; i, j, n) ∼ w

4
. (2.101)

3. In the case where i > j, let ṽ∗3 be the dual renewal process of ζ̃3. If there
is a k > 0 such that v∗3,k = i− j, then following from (2.100), we have

w(ξ̃, η̃; i, j, n|v∗3,k = i− j) ∼ w

4

(
1 − 1

nε3

)
, (2.102)

otherwise (2.100) holds. Following from (2.100) and (2.101), we may ob-
tain an estimate of w(ξ̃, η̃; i, j, n). However, we omit this here because the
computation is far too complex.

2.5.3 Stochastic Models of Mixed Mutations

A stochastic model of mixed mutations is the stochastic model that results
when we have type-I, type-II, type-III, and type-IV mutations all occurring
at the same time.

Definition of Stochastic Model of Mixed Mutations

Stochastic models of mixed mutations can be described by the following rela-
tionship:

E∗ =
{
ξ̃, ζ̃τ , �̃

∗
τ , ϑ̃τ ′ , τ = 1, 2, 3, 4 ; τ ′ = 1, 3

}
(2.103)

satisfying the following conditions:

IV-1 Sequences of E∗ are homogeneous and i.i.d. processes, in which:
1. ξ̃ is a perfectly stochastic sequence on V4 as the initial sequence.
2. ζ̃τ is a Bernoulli process with strength ετ , in which, each ζτ,j is

a random variable describing whether or not type-τ mutation oc-
curs.

3. �̃∗τ is a stochastic sequence obeying a geometric distribution with
a parameter pτ , in which, �∗1,j, �

∗
2,j are the lengths of the per-

mutated segments if the jth mutation is type-II, while �∗3,j , �
∗
4,j

represent the length of the inserted or deleted segment if the jth
mutation is type-III or type-IV, respectively.

4. ϑ̃1 is the additional error sequence resulting from type-I mutations,
and is defined in I-3. ϑ̃3 is a perfectly stochastic sequence on V4,
which is the inserted sequence resulting from type-III mutation.

IV-2 All stochastic sequences in E∗ are independent. For any τ = 1, 2, 3, 4,
the sequence ṽ∗τ is the renewal process of the sequence ζ̃τ , and j̃∗τ is the
dual renewal process of ζ̃τ .
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IV-3 In the mixed stochastic model E∗, {ετ , pτ , τ = 1, 2, 3, 4} is the param-
eter set, in which, ετ , τ = 1, 2, 3, 4 represents the strengths of the four
types of mutations, p1, p2 are parameters of the geometric distribution
that describes the type-II mutated sequences, and p3, p4 are parameters
of the geometric distribution that describes the type-III and type-IV
mutated segments, respectively.

Samples of the Stochastic Model of Mixed Mutations

Let
E = {ã, z̃τ , �̃τ , ũτ ′, τ = 1, 2, 3, 4 ; τ ′ = 1, 3} (2.104)

be the sample of E∗, so that we may obtain the mutated sequences through
the following steps:

1. Determine the renewal sequence ṽτ and the dual renewal process j̃τ , based
on z̃τ .

2. Determine the type-I mutated sequence bj according to steps I-1–I-4 in
case z1,j = 1.

3. Determine the type-II mutated sequence b(j,j+	2,k), according to steps II-1
and II-2 in the case z2,j = 1, in which k = v2,j .

4. Determine the type-III or type-IV mutated sequences according to steps
III-1 and III-2 in the cases z3,j = 1 or z4,j = 1.

5. For the same j, we assume that there are no more than two types such
that the state of zτ,j, τ = 1, 2, 3, 4 is 1, which is based on the following.
Since

Pr{z1,j + z2,j + z3,j + z4,j ≥ 2} ≤
∑

i	=j∈{1,2,3,4}
εjεj

and ε1 + ε2 + ε3 + ε4 � 1, we have Pr{z1,j + z2,j + z3,j + z4,j ≥ 2} ∼ 0.

Estimation of Crossed Probability of Mixed Mutations

Since type-II, type-III, and type-IV mutations involve only a segment (if the
mutation does in fact occur), it implies that different mutation types could
happen in the same regions. This is what is meant by the term “crossed mu-
tations”. We can estimate the probability of this occurring, which is referred
to as the crossed probability of mixed mutations. Typically, the crossed prob-
ability of type-III and type-IV is

Pr{in region N , type-III and type-IV mutations both happen}
= Pr{Δ∗

3(n) ∩ δ∗4(n) �= φ} , (2.105)

in which φ is the empty set and Δ∗
τ (n), τ = 3, 4 are the same as that defined

in (2.87), then
Δ∗
τ (n) = Δ∗

τ ∩N , τ = 3, 4 , (2.106)
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Δ∗
τ = (δ∗τ,1, δ

∗
τ,2, δ

∗
τ,3, · · · ) and

δτ,k = (j∗τ,k + 1, j∗τ,k + 2, · · · , j∗τ,k + �∗τ,k) .

We compute the values of (2.104) as follows:

1. Let the value of (2.104) be Γ ; we then have

Γ ≤ Pr {there is a j ∈ Δ∗
3(n) , such that ζ4,j = 1}

+Pr {there is a j ∈ δ∗4(n) , such that ζ3,j = 1} . (2.107)

2. Let the two items on the left hand side of (2.107) be Γ1, Γ2, then we
estimate the values of Γ1, Γ2 as follows.
Using the limit property of compound renewal processes, we have that the
length of δ∗3,n is close to nε3

p3
. Consequently, the probability that ζδ∗3,n

is
the 0-vector is (1 − ε4)nε3/p3 . Then,

Γ1 = 1 − (1 − ε4)nε3/p3 = [1 − (1 − ε4)1/ε4 ](nε3ε4)/p3

∼ 1 − exp
(
−nε3ε4

p3

)
.

Similarly,

Γ2 ∼ 1 − exp
(
−nε3ε4

p4

)
.

Therefore,

Γ ≤ 2 − exp
(
−nε3ε4

p3

)
− exp

(
−nε3ε4

p4

)
. (2.108)

Based on (2.107), we can say that the combined probability of type-III and
type-IV mutations happening in the region [1, n] at the same time is very
small if n� 1

ε3ε4
. We do not give the proof here.

Semistochastic Models of Mutations

We have introduced the stochastic models of mutated sequences, which show
many factors affecting the mutations, as well as descriptions of the randomness
of these factors. Following from these descriptions, we find some character-
istics of the stochastic models of mutated sequences, as well as how to use
these stochastic analysis approaches in bioinformatics. Of course, there are
many problems still to be solved before these models can become useful in
practice.

In the model E∗ of (2.102), we still regard ξ̃ as a stochastic sequence and
let

T ∗ =
{
ζ̃τ , �̃

∗
τ , ϑ̃τ ′, τ = 1, 2, 3, 4, τ ′ = 1, 3

}
(2.109)
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be the stochastic model of E∗. If T is a fixed sample

T =
{
z̃τ , �̃τ , vτ ′ , τ = 1, 2, 3, 4, τ ′ = 1, 3

}
(2.110)

then E ′ = {ξ̃, T} is a hybrid model of the four types of mutations. We refer to
E ′ = {ξ̃, T} as the semistochastic model of mutated sequences. We will discuss
the structure and analysis of hybrid mutations T in the following chapters.

2.6 Exercises

Exercise 6. Explain the differences between the following terms: i.i.d. se-
quences, Bernoulli process, Poisson process, geometric distribution sequence,
additive sequence, Markov process, and renewal process. Explain the advan-
tages and disadvantages of using each of the above to describe biological se-
quences.

Exercise 7. Try to extend the application of the Bernoulli process and Pois-
son process to the case of nonhomogeneous sequences, and use it to describe
the model of type-III mutated sequences.

Exercise 8. List some of the important laws of large number and central limit
theorems in probability theory, and give examples showing how they apply to
biological sequences.

Exercise 9. Prove the following propositions:

1. Properties 1, 2, and 3 of the renewal process given in Sects. 2.2.1–2.2.3
2. Theorems 5 and 7.
3. Formulas (2.82), (2.86) (2.100), (2.101), and (2.102).

Exercise 10. For the stochastic sequences in model (2.103), perform a simu-
lation according to the following cases:

1. The range of the sequence lengths is 1 kbp–1Mbp (i.e., n = 1 × 103,
1 × 104, 1 × 105, 5 × 105, 1 × 106, etc.); the range of ε1 is 0.01–0.4 (i.e.,
ε1 = 0.01, 0.02, 0.05, 0.1, 0.2, 0.3, 0.4, etc.); the range of ε2, ε3, ε4 is 0.01–0.1
(i.e., 0.01, 0.02, · · · , 0.1 etc.); and the range of p1–p4 is 0.1–0.5 (i.e., 0.1,
0.2, 0.3, 0.4, 0.5, etc.).

2. For the sequence ξ̃ in (2.103), construct the i.i.d. sequence defined on V4

which obeys uniform distribution.
3. Create the stochastic sequences of model (2.103) according to the param-

eters given in case 1.

Exercise 11. Based on the simulation results from Exercise 10, align the mu-
tated sequences using the dynamic programming-based algorithm, and com-
pare the time taken by the CPU with the parameters listed as follows:
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1. For the parameter ε1–ε4, p1–p4, find the relationship between the length
of the sequences and the time taken by the CPU, where the length ranges
from 1 × 103 to 1 × 106.

2. For a sequence of fixed length (such as 1×104), compare the average error
of the model (2.103) defined in (2.108) with the time taken by the CPU.

Hint

The simulation of the stochastic sequence and mutated sequences is achieved
through the generation of a sequence of random numbers.
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Modulus Structure Theory

In Chap. 2, we presented the stochastic model of mutated sequences. If sam-
ples of a stochastic model are available, then we should be able to estimate
its characteristics. To do this, we introduce a new concept called modulus
structure, which is a powerful tool for describing the characteristics of these
stochastic models. The modulus structure may be determined in many ways,
and we will introduce three of these: by expanding or compressing a sequence
onto a new sequence; by sequence alignment, and by sequence mutation. The
usefulness of modulus structure will become clear after we have discussed
these methods. Alternate concepts, such as modulus structure and mode, will
also be involved.

3.1 Modulus Structure of Expanded and Compressed
Sequences

Expansion and compression are frequent occurrences in mutated sequences
and in aligned sequences. They have been defined in Sect. 1.1, and here we
give a more detailed description and discussion of their structures.

3.1.1 The Modulus Structures of Expanded Sequences
and Compressed Sequences

Definitions of Expansion and Compression

Let A and C be two sequences on V4 as defined in (1.1), and let Na =
{1, 2, · · · , na}, Nc = {1, 2, · · · , nc} be the sets of the positions of sequences A
and C, respectively. We begin with the definitions of expansion and compres-
sion as follows:

Definition 10. 1. If A is a subsequence of C, then C is an expansion of A.
Conversely, A is a compression of C. If A is a real subsequence of C, the
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corresponding expansion and compression are called the real expansion and
real compression, respectively.

2. Let A = {At, t = 1, 2, · · · ,m} be a set of sequences defined on V4. A then
represents the set of homologous expansions of A if all At, t = 1, 2, · · · ,m
are the expansions of A. A sequence D is called the core of the set A if D
is the common compression of all sequences in A. Similarly, for multiple
sequences A, a sequence C is called the envelope of A if each sequence in
A is a compressed sequence of C.

3. D0 is the maximal core of A if D0 is the core of A and any real larger
expansion of D0 is not the core of A. The longest maximal core is called
the maximum core. Similarly, a sequence C0 is the minimal envelope of
A if it is the envelope of A and any real compression of C0 will not be an
envelope of A. The smallest such envelope is called the minimum envelope.

If A is a subsequence of C, then there is a subset α = {j1, j2, · · · , jna} of Nc
such that 1 ≤ j1 < j2 < · · · < jna ≤ nc, and

cα = (cj1 , cj2 , · · · cjna
) = (a1, a2, · · · ana) = A . (3.1)

This set α represents the positions if A is embedded into C. Let αc = Nc −α
be the complementary subset of α, then B = cαc is nothing but the virtual
symbol “−” to get the expansion of A, in which, cαc = (cj , j ∈ αc). If α ⊂ Nc,
and C = (cα, cαc) = (A,B), then the binary (A,B) is a decomposition of
C, and they are both compressions of C. If sequence C is defined on V5 =
{0, 1, 2, 3, 4}, then the virtual expanded sequence C based on A is defined in
Definition 2.

Modulus Structure of Expanded Sequence
and Compressed Sequence

If A is a subsequence of sequence C, then the relationship between A and C
can be described by (3.1). However, (3.1) becomes too complex as the lengths
of sequences A and C increase. To simplify the description, we introduce some
definitions and notations as follows:

Kc = (j0, j1, j2, · · · , j2kc−1, j2kc) , (3.2)

in which 0 = j0 ≤ j1 < j2 < · · · < j2kc ≤ j2kc+1 = nc. Then Nc can be
subdivided into many smaller intervals as follows:

δ′k = [jk + 1, jk+1] = (jk + 1, jk + 2, · · · , jk+1) k = 0, 1, 2, · · · , 2kc . (3.3)

Based on these small intervals δ′k, we define
{
Δ′

1 =
(
δ′1, δ′3, · · · , δ′2kc−1

)
,

Δ′
2 =

(
δ′0, δ

′
2, · · · , δ′2kc

)
.

(3.4)
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Therefore, Nc = (Δ′
1, Δ

′
2). The binary (Δ′

1, Δ
′
2) is a decomposition of Nc and

is determined by K. It suffices to show that Δ′
1 ∩Δ′

2 = φ is an empty set and
Δ′

1 ∪Δ′
2 = Nc.

Definition 11. 1. If Kc is defined by (3.2) and the decomposition of Kc is
defined by (3.4), satisfying the following condition:

cΔ′
1

=
(
cδ′1 , cδ′3 , · · · , cδ′2kc−1

)
= A , (3.5)

then Kc is the expanded mode from A to C or the compressed mode from
C to A, where cδ′

k
= (cjk+1, cjk+2, · · · , cjk+1) is a subvector of C restricted

to the interval δ′k.
2. The pairwise sequence (A,B) in (3.4) is a decomposition of C and the

sequence C is an expansion of both A and B. K is a decomposition mode
of C related to (A,B), if (3.5) and (3.6) are satisfied.

cΔ′
2

=
(
cδ′2 , cδ′4 , · · · , cδ′2kc

)
= B (3.6)

3. If C is a sequence defined on V5 and A is a sequence defined on V4 such
that C = (A,B) and B = (4, 4, · · · , 4) is a sequence of virtual symbols,
then C is a virtual expansion of A, and K is the virtually expanded mode
for A virtually expanding to C.

Operations for Position-Shifting in Expanded
and Compressed Sequences

We add some new notations in (3.2) as follows:

�k = j2k+1 − j2k , Lk =
k−1∑

k′=1

�k′ , ik = j2k−1 − Lk . (3.7)

Then �k is the length of the kth inserted vector and Lk is the shifting func-
tion resulting from insertions. If the expanded mode Kc is known, then the
relationship between A and C will be determined by Kc, as shown by the
following theorem.

Theorem 8. If C is an expanded sequence of A under the expanded mode Kc,
then

A =
(
aδ1 , aδ2 , · · · , aδkc

)
=
(
cδ′1 , cδ′3 , · · · , cδ′2kc−1

)
(3.8)

in which aδk
= cδ′2k−1

and

δk = δ′2k−1 − Lk = [ik + 1, ik+1] = (ik + 1, ik + 2, · · · , ik+1) . (3.9)

Proof. Since C is an expansion of A, it suffices to prove that the second
equation of (3.6) and (3.8) hold. Changing A = (a1, a2, · · · , ana) into the
form of (3.8) gives aδk

= cδ′2k−1
. Since the distance between the intervals

δ′2k−1 and δ2k+1 is �k, it follows that (3.9) holds, which concludes the proof.
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Equation (3.9) is the position-shifting formula of expanded sequences in the
following text.

The Equivalent Representations of Modes

If Kc is given, then the function (ik, �k, Lk) is determined by (3.7). Let

Ha = {(ik, �k), k = 1, 2, · · · , kc} (3.10)

be the modulus structure expanding A to C. Ha is then the set of all orders
describing how to expand A. Typically, the order (ik, �k) means that we insert
a vector with length �k following the position ik. Notice how this is represented
in Kc and Ha. Here, Kc targets the positions of C, while Ha is targeting the
positions of A. Therefore, we use different subscripts to differentiate them in
the following.

Theorem 9. The expanded modes Kc and the modulus structureHa are equiv-
alent.

Proof. Following from (3.7) and (3.10), we know thatHa is determined ifKc is
given. Consequently, it is sufficient to show that Kc is also determined by Ha.
Lk is then determined by �k and the second equation of (3.7) if Ha is given.
Thus, it follows from (3.10) that j2k−1 is determined for all k = 1, 2, · · · , kc.
We can use the first equation of (3.7) to calculate all j2k using the formula
j2k = j2k+1 − �k for all k = 1, 2, · · · , kc. Therefore, each of Kc and Ha is
determined by the other, concluding the proof.

Let Ia = {ik : k = 1, 2, · · · , kc} be the set of all positions after which vectors
will be inserted. This is the set of inserting positions to get the expanded
sequence C. There is then an alternative expression of Ha as follows:

H ′
a = (γ0, γ1, γ2, · · · , γna) (3.11)

in which γi ∈ V0 = {0, 1, 2, · · · } and

γi =

{
�k if i = ik ∈ Ia ,

0 otherwise .

γj = 0 implies that there will be no virtual symbols inserted after j, and γj > 0
means there is a virtual symbol of length γj inserted after j. It is obvious
that Ha and H ′

a determine each other. Consequently, Kc, Ha and H ′
a are all

equivalent. The modulus structure of the expanded sequence is demonstrated
in Fig. 3.1. Due to their equivalence we do not need to distinguish these names.

In Fig. 3.1, C is the expanded sequence of A. The original part A and
the expanded part are represented by different line segments, where ik, δk are
positions and intervals of sequence A respectively, jk′ , δk′ are positions and
intervals of sequence C, respectively, and where �k = |δ′2k| is the length of δ′2k.
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Fig. 3.1. The modulus structure of the expanded sequence

The Modulus Structure of the Compressed Sequences

If C is the expanded sequence of A, then A is the compressed sequence of C.
Let

Hc = {(j′k, �′k), k = 1, 2, · · · , kc} , (3.12)

in which j′k = j2k, �′k = j2k+1 − j2k is determined by Kc of (3.2). It is then
referred to as the as compressed mode from C to A. This mode tells us how
to delete a vector of length �′k after position j′k of C.

3.1.2 The Order Relation and the Binary Operators on the Set
of Expanded Modes

Let A be a sequence defined on V4. There will exist many expanded sequences
based on A. These expanded sequences are quite different if the inserted vec-
tors or expanding modes are different. In this section, we illustrate how to
compare these modes, and give the binary operators on the set of expanding
modes.

The Order Relation and the Binary Operators Defined on the Set
of Modes

Let C and C′ be two expanded sequences based on A, and let

H = (γ0, γ1, γ2, · · · , γna) , H ′ =
(
γ′0, γ

′
1, γ

′
2, · · · , γ′na

)

be the two corresponding expanding modes. We can compare the two modes
by defining the “order relation” on the set of all modes as follows.

Definition 12. Denote a nonempty set of modes by H. We define an order
relation on H as follows: For any pair H,H ′ ∈ H, we can say that H ≤ H ′

or H ⊂ H ′ if and only if γj ≤ γ′j for all j ∈ {0, 1, 2, · · · , na}.
This order relation is quite natural. If we define this order relation “≤” on the
set H consisting of all modes resulting from a given sequence A, it becomes
a semiordered set. We will discuss the properties of order relations in the next
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subsection. Here, we continue to give definitions of binary operators. Similarly
to the ordinary binary operators used in set theory, we can also define the
corresponding binary operators between any pair of modes H,H ′ ∈ H, e.g.,
intersection, union, and subtraction, etc.

Definition 13. If we let H,H ′ ∈ H, and construct new expanding modes as
below

H ′′ =
(
γ′′0 , γ

′′
1 , γ

′′
2 , · · · , γ′′na

)
,

then we have the following cases:

1. If γ′′j = min{γj, γ′j} for all j, this mode H ′′ is called the intersection of H
and H ′, and is denoted by H ′′ = H ∧H ′.

2. If γ′′j = max{γj , γ′j} for all j, this mode H ′′ is called the union of H and
H ′, and denoted by H ′′ = H ∨H ′.

3. If γ′′j = γ′j−γj ≥ 0 for all j, then this mode H ′′ means that H ′ is subtracted
from H, and is denoted by H ′′ = H −H ′.

Based on these definitions, we may find thatH ≤ H ′ is the necessary condition
for H ′′ = H −H ′ to hold. Generally, subtraction for any pair of modes can
be defined as follows:

H ′′ = H ′ \H = H ′ − (H ∧H ′) .

Furthermore, we can define the symmetric subtraction of H and H ′ as follows:

H ′′ = HΔH ′ = H ∨H ′ −H ∧H ′ .

The Properties of Order Relation and the Binary Operators

Theorem 10. If H is the set of all expanded modes of A, the relationships
defined by Definitions 12 and 13, such as the order relations “≤”, and the three
operations: union, intersection, and subtraction, make H a Boolean algebra.

Before proving this theorem, let us first discuss some additional properties.
Let H,H ′, H ′′ ∈ H, so that we have the properties for the order relation “≤”
as follows:

1. Transmissivity If H ≤ H ′ and H ′ ≤ H ′′, then H ≤ H ′′.
2. Reflexivity If H ≤ H and H ≤ H ′, H ′ ≤ H, H = H ′. That is, H is

a semiordered set in this order relation.
3. Furthermore, the three operations: intersection, union, and subtraction,

satisfy the properties as follows:
(a) Closeness. For every H,H ′ ∈ H, the results of intersection, union

and subtraction are still in H. This is, H ∧H ′ ∈ H, H ∨H ′ ∈ H and
H \H ′ ∈ H.
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(b) Commutative law. For intersection and union, we have

H ∧H ′ = H ′ ∧H , H ∨H ′ = H ′ ∨H .

(c) Associative law for union and intersection. For intersection and
union, the properties are as follows:

(H ∧H ′)∧H ′′ = H ∧ (H ′ ∧H ′′) , (H ∨H ′)∨H ′′ = H ∨ (H ′ ∨H ′′) .

(d) Distributive law. When the two operations of intersection and union
occur at the same time, we have

(H ∨H ′) ∧H ′′ = (H ∧H ′′) ∨ (H ′ ∧H ′′) .

All six properties above can be easily validated using Definitions 12 and 13.
Theorem 10 is easily proved based on these properties, and consequently sat-
isfies the requirements of a Boolean algebra.

3.1.3 Operators Induced by Modes

The Operator Induced by Compressed Modes

Let C be an expanded sequence of A. Using (3.10) and (3.12), we obtain the
corresponding expanded mode Ha (from A to C), and the compressed mode
Hc (from C to A). If C and the compressed mode Hc are given, then A is
determined by (3.8). Consequently, A can be considered to be the result of
having C acted upon by an operator induced by Hc. We denote this induced
operator by Hc, and we then state that A = Hc(C). This operator Hc induced
by the compressed mode is called the compressed operator.

The Operator Induced by Expanded Modes

If the virtual expanded mode of A is given, then the virtual expanded se-
quence C is unique. Generally, if only A and its expanded modeHa are known,
then we may not be able to completely determine C because (3.8) can only
determine one part of C. If sequence B is the inserted part, we can induce an
operator Ha based on Ha as follows:

Ha(A,B) = C =
(
aδ1,1 , bδ2,1 , aδ1,2 , bδ2,2 , · · · , aδ1,ha

, bδ2,ha

)
(3.13)

in which δ1,k = δk is defined by (3.8) and (3.9), and bδ2,k
is the insertion vector

of length �2,k. Then

A =
(
aδ1,1 , aδ1,2 , · · · , aδ1,ka

)
, B =

(
bδ2,1 , bδ2,2 , · · · , bδ2,kb

)
(3.14)

follows from (3.13). That is, sequence C is determined by A,B, and Ha. The
operator Ha defined by (3.13) is called the expanded operator.
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Mutually Converse Operation Between the Expanded Mode
and the Compressed Mode

Theorem 11. If C is the virtual expanded sequence of A, and the expanded
mode and compressed mode Ha and Hc are defined in (3.10) and (3.12) sat-
isfying the following properties:

1. kc = ka, and �′k = �k for all k = 1, 2, · · · , ka.
2. j′k = ik + Lk for all k = 1, 2, · · · , ka,

then Hc[Ha(A)] = A and Ha[Hc(C)] = C will always hold.

This theorem can be proved using (3.8), (3.13), and (3.14) under condi-
tions (1–3).

Definition 14. If Ha, Hc are the modulus structures of A and C defined as in
(3.10) and (3.12), and if conditions 1–3 of Theorem 11 are satisfied, then Ha

is the inverse operator of the expanded operator and Hc is the inverse operator
of the compressed operator. That is, Ha = H−1

c , Hc = H−1
a .

Operators Induced by Union on Expanded Modes

For any H,H ′ ∈ H, let H ′′ = H ′ ∨ H . The relationships among the three
operators H,H′,H′′ induced by H,H ′, H ′′ are stated as follows: First, we
notice that

H′′(A,B) = H′[H(A,B)] (3.15)

does not hold because H(A,B) is not the same as the sequence A according to
(3.13), and the operator H′[H(A,B)] is much longer than H′′(A,B) according
to the definition of H,H′,H′′. Consequently, we must modify (3.13) to fit this
case. Without loss of generality, we may assume that all expanded positions
of H , H ′, and H ′′ are the same, that is,

⎧
⎪⎨

⎪⎩

H = {(ik, �k) , k = 1, 2, · · · , kc} ,
H ′ = {(ik, �′k) , k = 1, 2, · · · , kc} ,
H ′′ = {(ik, �′′k) , k = 1, 2, · · · , kc} ,

(3.16)

in which �′′k = max{�k, �′k} and 0 ≤ �k, �
′
k ≤ �′′k. In addition, we reiterate the

following notations:

1. In C = H(A,B), sequence B = (B1, B2, · · · , Bkc) is called the insertion
template. Each component Bk is a vector inserted after the component aik
of sequence A, and its length is �k.

2. B′ = (B′
1, B

′
2, · · · , B′

kc
) is called the expanded sequence of B if �k ≤ �′k for

all k. Importantly, B′
k is empty if �′k = �k. There is then a new sequence

formed as follows:

B′′ =
[
(B1, B

′
1) , (B2, B

′
2) , · · · ,

(
Bkc , B

′
kc

)]
.
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3. Let H ′
c = {(jk, �′′k − �k), k = 1, 2, · · · , kc}, in which jk = ik + Lk and Lk

is defined by (3.7). Then, H ′
c is an expanded mode of C = H(A,B).

With the above notations, we formulate the following theorem.

Theorem 12. If H,H ′ ∈ H and H ′′ = H ′ ∨H, then the expanded operators
induced by H,H ′, H ′′ satisfy the following relationship:

H′′(A,B′′) = H′
c[H(A,B), B′] . (3.17)

The proof of this theorem can be constructed using the definitions of H,H′
c,H

′′

and notations 1–3.

Definition 15. H′
c defined in (3.17) is called the second expanded operator

of A, and jk = ik + Lk is called the shift of the second expanded operator.

Theorem 13. For every pair H ′, H ∈ H, H ′′ = H ′ ∨H can be decomposed
into a second expanded operation. If both C and C′ are virtual expanded se-
quences of A, then the corresponding expanded modes can be simplified so that
B′′ = (B,B′) is composed of virtual symbols q alone.

Example 5. Comparing the three sequences
⎧
⎪⎨

⎪⎩

A = (010201032213020103211022301) ,
C = (01020[210]103221302[11]010321[03]1022301) ,
C′ = (01020[210]103221302[1100]010321[02231]1022301) ,

we can make the following observations:

1. Sequences C and C′ are both expanded sequences of A, their lengths are
respectively: nc = 34 and nc′ = 39, and their expanded modes are stated
as follows:
{
H = {(5, 3), (14, 2), (20, 2)} = (0000030000000020000020000000) ,
H ′ = {(5, 3), (14, 4), (20, 5)} = (0000030000000040000050000000) .

2. H ≤ H ′ and

H ′′ = H ′ −H = {(14, 2), (20, 3)} = (0000000000000020000030000000) .

C′ can be seen as a second expanded partition of A as follows:

A
H→ C

H′′
→ C′ .

3. The shifting function of the accumulated length of (A,C) is

L̄ = (0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0) .

Therefore,

Hc = H ′ −H = (000000[000]00000000[002]00000[0201]0000000)

in which all segments in the square brackets connected as 0000020201
comprise the second expanded mode of B.
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4. The virtual expanded mode Hc in observation 3 can be simplified as

Hc = H ′ −H = (000000[000]00000000[002]00000[003]0000000)

in which 000002003 composed from all segments in the brackets is just the
second expanded mode of B. This means that we must insert two virtual
symbols after position 5 and insert three virtual symbols after position 7.

3.2 Modulus Structure of Sequence Alignment

In Sect. 3.1, we mentioned that the result of a sequence alignment operation is
also a special sequence. For a set of sequences, the results of multiple alignment
are also special multiple sequences. We will elaborate on the description of
modulus structures for multiple alignment, since multiple alignment is an
important tool in analyzing sequence mutations.

3.2.1 Modulus Structures Resulting from Multiple Alignment

Let A be a set of sequences given in (3.1) and (3.2), defined on V4, and let A′

be a set of sequences defined on V5 similar to (1.4). Following the definition
of multiple alignment given in Definition 2, we have that A′

s is the virtual
expanded sequence of As for all s ∈M , and sequence a′s,j , s = 1, 2, · · · ,m has
no two connected virtual symbols for all j. Below, we discuss its structure in
detail.

Representation of Modulus Structures Resulting from Multiple
Alignment

Based on the representation of the modulus structures resulting from a single
expanded sequence, we generate a representation to fit multiple alignment.
The two modes of multiple alignment are stated as follows:

H = {Hs , s = 1, 2, · · · ,m} , H′ = {H ′
s , s = 1, 2, · · · ,m} , (3.18)

where

Hs = {(is,k, �s,k), k = 1, 2, · · · , ks} , H ′
s = (γs,0, γs,1, γs,2, · · · , γs,ns) .

(3.19)
The notations in (3.19) are explained as follows:

1. ns is the length of sequence As, and ks is the number of the inserted
vectors so that As becomes A′

s.
2. In Hs, is,k is the starting position of the kth inserted vectors so that As

becomes A′
s, and �s,k is the length of the kth inserted vector. In other

words, �s,k virtual symbols are inserted after position is,k in sequence As.
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3. In H ′
s, γs,i ≥ 0 means that we insert γs,i symbols after the ith position.

Typically, γs,i = 0 means that there is no symbol to be inserted, while
γs,i > 0 means that we will insert γs,i virtual symbols after position i.

4. Each of H and H′ can be determined by the other. Based on Hs, we can
define Is = {is,k , k = 1, 2, · · · , ks}. Then

γs,j =

{
�s,k , if i = is,k ∈ Is ,

0 , otherwise ,
(3.20)

and H determines H′. Conversely, H′ can determine H as follows:
{

Is = {i ∈ Ns+ , γs,i > 0} ,
�s,ik = γs,i , if i = ik ∈ Is,

(3.21)

where Ns+ = {0, 1, 2, · · · , ns, and ns is the length of sequence As. Follow-
ing from (3.20) and (3.21), H and H′ can be determined by each other.
H and H′ are therefore representations of the modulus structures based
on A.

Representation of Modes Resulting from Alignments

Since A′ is the expanded sequence of A, the alignment mode can be repre-
sented based on A′. In fact,

δ′s,k = [js,k + 1, js,k+1] = (js,k + 1, js,k + 2, · · · , js,k+1) , (3.22)

a′δ′s,k
=
(
a′s,js,k+1, a

′
s,js,k+2, · · · , a′s,js,k+1

)
. (3.23)

If we let
K = {Ks , s ∈M} , Ks = {js,1, js,2, · · · , js,2ks} (3.24)

then

1. For every Ks, we choose js,k + 1, js,k + 2, · · · , js,k+1 such that

1 = js,0 ≤ js,1 < js,2 < · · · < js,2ks ≤ js,2ks+1 = n′
s ,

where n′
s is the length of sequence A′

s.
2. Since A′

s is the expanded sequence As for all s, it means that all definitions
and properties and notations in Sect. 3.2 can be used here. For example,
the expanded sequence As may be represented by

As =
(
aδs,1 , aδs,2 , · · · , aδs,kc

)
=
(
a′δ′s,1

, a′δ′s,3
, · · · , a′δ′s,2kc−1

)
, (3.25)

where aδs,k
= a′δ′s,2k−1

and

δs,k = [is,k + 1, is,k+1] = (is,k + 1, is,k + 2, · · · , is,k+1)

are determined by (3.18).
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3. Relationships between the parameters of Hs and Ks are stated as follows:
⎧
⎪⎨

⎪⎩

�s,k = js,2k+1 − js,2k ,

Ls,k =
∑k−1
k′=1 �s,k′ ,

is,k = js,2k−1 − Ls,k .

(3.26)

The shifting formula of each position in sequence As and A′
s is stated as

follows:

δs,k = δ′s,2k−1−Ls,k = (js,2k−1+1−Ls,k, js,2k−1+2−Ls,k, · · · , js,2k−Ls,k) .
(3.27)

4. Vector

a′s,δ′
s,2k

= (

	s,k

︷ ︸︸ ︷
4, 4, · · · , 4)

is a virtual vector with length �s,k, and a′s,δ′s,2k−1
is a subvector of As.

5. Let ⎧
⎨

⎩

Δ′
s,1 =

(
δ′s,1, δ

′
s,3, · · · , δ′s,2hs−1

)
,

Δ′
s,2 =

(
δ′s,0, δ

′
s,2, δ

′
s,4, · · · , δ′s,2hs

)
,

(3.28)

whereΔ′
s,1,Δ

′
s,2 are the noninserted part and the inserted part of sequence

As, respectively. Since a′s,j , s = 1, 2, · · · ,m has no m connected virtual
symbols for every fixed j, we find that

m⋂

s=1

Δ′
s,2 = φ (3.29)

is an empty set.

Theorem 14. H,H′ and K are three equivalent representations of modes.

Proof. It follows from (3.4) and (3.5) that H and H′ can be determined from
each other. It also follows from (3.27) that H and K can be determined from
each other.

3.2.2 Structure Analysis of Pairwise Alignment

In the case m = 2, H and K are defined by (3.18) and (3.24), respectively,
and are referred to as the modes of pairwise alignment. We then represent
(A1, A2) and (A′

1, A
′
2) by (A,B) and (A′, B′), respectively. Since (A′, B′) is

the expanded sequence of (A,B), their modes are stated as follows:

H = (H1, H2) = (Ha, Hb) , K = (K1,K2) = (Ka,Kb) .

Following from (3.28) and (3.29), we have that Δ′
1,2 ∩ Δ′

2,2 = φ. Next, we
process (A′, B′) as follows:
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Make A′ and B′ the Same Length

In this process, we make A′ and B′ have the same length by inserting virtual
symbols into the shorter sequence, so that na′ = nb′ = n′ are the common
length of A′ and B′. Similarly, let Na′ = Nb′ = N ′ = {1, 2, · · · , n′} be the
regions of positions of A′ and B′.

Decomposition of the Region N ′ Resulting from Alignment

Definition 16. N ′ = (Δ′
0, Δ

′
1, Δ

′
2) is called the decomposition of region N ′,

in which

Δ′
1 = Δ′

1,2 , Δ′
2 = Δ′

2,2 , Δ′
0 = Na′ − (Δ′

1 ∪Δ′
2) , (3.30)

and Δ′
s,2 is defined in (3.28).

Details about the decomposition of N ′ = (Δ′
0, Δ

′
1, Δ

′
2) are stated below:

1. Since Δτ , τ = 0, 1, 2 are disjoint, we have Δ′
0 ∪Δ′

1 ∪Δ′
2 = N ′ and

Δτ ∩Δτ ′ = φ, τ �= τ ′ ∈ {0, 1, 2}.
2. Following the definitions of Δ′

1,2 and Δ′
2,2, we have that the values of A′

on region Δ′
1 and B′ on region Δ′

2 are both 4. In the region Δ′
0, there is no

virtual symbol in the sequences C and D. Therefore, the decomposition
of N ′ = (Δ′

0, Δ
′
1, Δ

′
2) actually classifies N ′ into three parts:

(a) Part 1 (Δ′
1): In this region, the sequence A′ is composed of virtual

symbols while B′ does not contain virtual symbols.
(b) Part 2 (Δ′

2): In this region, B′ is composed of virtual symbols while
A′ has no virtual symbols.

(c) Part 3 (Δ′
0): In this region, both A′ and B′ have no virtual symbols.

Definition 17. In the decomposition, Δ′
0 is called the noninserted region for

both A′ and B′, while Δ′
1 and Δ′

2 are referred to as the dual inserting regions
of A′ and B′. This means that Δ′

1 is the inserting region of A′ but not the
inserting region of B′, and Δ′

2 is the inserting region of B′ but not the inserting
region of A′.

Structure Analysis of Decomposition

Each of the three regions Δ′
τ , τ = 0, 1, 2 is composed of many smaller regions.

We denote them as follows:

Δ′
τ =

{
δ′τ,1, δ

′
τ ′,2, · · · , δ′τ,kτ

}
, τ = 0, 1, 2 . (3.31)

These smaller intervals are disjoint from each other, and their union is N ′.
Furthermore, we have δ′τ,k ∩ δ′τ ′,k′ = φ and

⋃2
τ=0

⋃kτ

k=1 δ
′
τ,k = N ′ for all

(τ ′, k′) �= (τ, k). Following (3.31), we can alternatively represent all the regions
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using smaller intervals as follows:

Δ′ = {Δ′
τ , τ = 0, 1, 2} = {δ′τ,k, k = 1, 2, · · · , kτ , τ = 0, 1, 2} . (3.32)

If we arrange them according to their size, they are disjoint with each other
and fill all the regions of N ′. Thus, we can decompose N ′ as follows:

N ′ =
(
δ′1, δ

′
2, · · · , δ′ka′

)
=
(
j1, j2, · · · , jka′

)
, (3.33)

in which ka′ = k0 + k1 + k2 and

j1 = 0 < j2 < j3 < · · · < jka′ ≤ jka′+1 = n′ ,

and
δ′k = [jk + 1, jk+1] = {jk + 1, jk + 2, · · · , jk+1}

Consequently, δ′j is included in Δ defined in (3.32), and satisfies the following
conditions:

1. δ′1 ∈ Δ′
0, and δ′1 may be empty.

2. For every j = 1, 2, · · · , ka′ , if δ′j ∈ Δ′
1 ∪ Δ′

2, we must have δ′j+1 ∈ Δ′
0.

Consequently, in the decomposition of (3.33), we have that

δ′2k−1 ∈ Δ′
0 , δ′2k ∈ Δ′

1 ∪Δ′
2

holds.
3. Let k0 = k1 + k2, ka′ = 2k0, then δ′2k0 may be an empty set. Then, (3.33)

is called the decomposition of region Na′ of (A′, B′). As well, we may
represent the mode of the alignment as follows:

K0 = {(δ′k, τk), k = 1, 2, · · · , ka′} = {(jk, �k, τk), k = 1, 2, · · · , ka′} ,
(3.34)

in which �k = jk+1 − jk, jk, and δ′k are defined by (3.33), and τk =
0, 1, 2 is determined by the fact that δ′2k belongs to one of ∈ Δ′

0, Δ
′
1

and Δ′
2. The vector τ̄ = (τ1, τ2, · · · , τka′ ) is called the structure model

of the aligned sequence. Following from (3.34), we have that K0 has an
alternative representation given by:

H0 = {(ik, �k), k = 1, 2, · · · , k0} , (3.35)

in which jk = i2k + Lk, and

�k =

{
||δ2k|| , if τ2k = 1 ,

−||δ2k|| , if τ2k = 2 .

It is easy to prove that H0 and K0 as defined in (3.34) and (3.35) are two
equivalent modes.
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3.2.3 Properties of Pairwise Alignment

If the alignment mode K0 of the aligned sequence (A′, B′) is given, then
(A′, B′) can be decomposed as follows:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

A′ =
(
a′δ′1 , a

′
δ′2
, · · · , a′δ′k

a′

)
,

B′ =
(
b′δ′1 , b

′
δ′2
, · · · , b′δ′k

a′

)
,

τ̄ =
(
τ1, τ2, · · · , τka′

)
,

(3.36)

in which τ ∈ {0, 1, 2} and the vector τ̄ is called the structure type of the
aligned sequence. More details are provided below. Let n = max{na, nb}, and
H ′
s = (γs,1, γs,2, · · · , γs,n), s = a, b, then the alignment mode of (Ha, Hb) can

be rewritten as

H0 = {(ih, �h), h = 1, 2, · · · , ha + hb} H ′
0 = (γ1, γ2, · · · , γn0) , (3.37)

where

γj =

⎧
⎪⎨

⎪⎩

0 , if γ1,j = γ2,j = 0 ,
γ1,j , if γ1,j > 0, γ2,j = 0 ,

−γ2,j , if γ1,j = 0, γ2,j > 0 .

Since γ1,j and γ2,j are not greater than 0 simultaneously, it follows that the
alignment modes (H1, H2) and H0 can be determined from each other. Let

I0 = {i ∈ Na : γi �= 0}
so that ih ∈ H0 implies ih ∈ I0. Next, let �h = γih if ih ∈ I0, and let

Ls(j) =
j−1∑

j′=1

γs,j′ , j = 1, 2, · · · , ns , s = 1, 2 . (3.38)

These are referred to as the inserted functions of the expanded sequence A′, B′.
Consequently, we define

L0(j) = L1(j) − L2(j) , L(j) = L1(j) + L2(j) , j = 1, 2, · · · , n0 , (3.39)

which are referred to as the relatively inserted length function and the ab-
solutely inserted length function of (A′, B′), respectively, in which, n0 =
max{n1, n2}.
Theorem 15. If H0 is the alignment mode defined by (3.38), then we have

L0(j) =
j−1∑

j′=1

γj′ , L(j) =
j−1∑

j′=1

|γj′ | , (3.40)

in which |�| is the absolute value of �. The alignment mode H0 and function
L0(j) can be determined from each other.
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Proof. Formula (3.40) follows from the definition ofH0, that is,H0 determines
L0(j). Conversely, γj = L0(j + 1) − L0(j) follows from (3.38). Thus, H0 is
determined. Therefore, each of H0 and L0(j) can be determined by the other.

Expression (3.36) decomposes (A′, B′) into three parts: the noninserting part,
the inserting part and the dual-inserting part. Their relationship is demon-
strated in Fig. 3.2 using a bold line, a normal line and a broken line.

In this figure, A′, B′ are the aligned sequences of sequences A and B,
respectively, where:

1. The alignment modes are:

Ha = {(ia,1, �a,1), (ia,2, �a,2)} Hb = {(ib,1, �b,1), (ib,2, �b,2)} .

2. One of the decompositions of A′ and B′ resulting from alignment is Δ′ =
{δ′1, δ′2, · · · , δ′9}, in which

δ′k = [jk + 1, jk] = (jk + 1, jk + 2, · · · , jk+1) .

3. In the decomposition Δ′,

Δ′
0 = {δ′1, δ′3, δ′5, δ′7, δ′9} and Δ′

3 = {δ′2, δ′4, δ′6, δ′8}

Fig. 3.2. The modulus structure of sequence alignment
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are the noninserted part and the inserted part of the alignment, respec-
tively, where δ′7 is an empty set, and Δ′

1 = {δ′4, δ′8}, Δ′
2 = {δ′2, δ′6} are the

common inserted part of both A′ and B′.

By using positive and negative signs, K0 can be expressed as follows:

K0 = (θ1, θ2, · · · , θna′ ) , (3.41)

where θj = τk ∈ {0, 1, 2} if j ∈ δk and (δk, τk) is determined by K0 in (3.35).
We then have

Δτ = {j ∈ Na′ , θj = τ} , τ = 0, 1, 2 ,

where Δτ is defined in (3.30).

Example 6. If
{
A = (11231003221000232103220121120) ,
B = (1123100323202100023210311200333) ,

the aligned sequences are
{
A′ = (112310032[444]21000232103[22012]1120[4444]) ,
B′ = (112310032[320]21000232103[44444]1120[0333]) ,

where the corresponding noninserted part, inserted part and the dual part are
indicated by brackets. The part whose value is 4 is the inserted part, the part
whose value is not 4 is the dual part, and the rest is the noninserted part. By
using the corresponding formula for alignment modes, the decompositions are
as stated as follows:

1. The length of sequence A is n1 = 29, and the length of sequence B is
n0 = n2 = 31.

2. Their alignment mode is
{
H1 = {(9, 3), (29, 4)} = (000000000300000000000000000004) ,
H2 = {(23, 5)} = (00000000000000000000000500000000) .

The alternative form is H0 = (0000000030000000000000(−5)00000400).
3. Following from (3.33) as ka′ = 6, we get the decompositions of K0 as

follows:

K0 = {(9, 0), (3, 1), (11, 0), (5, 2), (4, 0), (4, 1)}
= {(0, 0), (9, 1), (12, 0), (23, 2), (28, 0), (32, 1)}

These are the two alternative decompositions about K0 stated in (3.33).
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4. The corresponding decomposition function is
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

L̄1 = (00000000333333333333333333337) ,
L̄2 = (0000000000000000000000444444444) ,
L̄0 = (0000000033333333333333,−1,−1,−1,−1,−1,−1,−1,−1, 3) ,
L̄ = (000000003333333333333377777777, 11) ,

in which L̄z = (Lz(1), Lz(2), · · · , Lz(n0)). In the vector L̄z, we only use
the comma to separate the negative components and the components
whose values exceed 10.

5. The decomposition K0 can be written as:

K0 = (000000000111000000000002222200001111)

and

Δ0 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 13, 14, 15, 16, 17, 18, 19, 20,
21, 22, 23, 29, 30, 31, 32} ,

Δ1 = {10, 11, 12, 33, 34, 35, 36} ,
Δ2 = {24, 25, 26, 27, 28} .

These are the noninserted and inserted parts of both C and D, respec-
tively.

3.2.4 The Order Relation and the Operator Induced by Modulus
Structure

We can expand the order relation and the operator to apply to the modulus
structures induced by multiple alignments as follows:

1. Let H = (Ha, Hb) and H ′ = (H ′
a, H

′
b) be two modulus structures induced

by pairwise alignment. We can say that H ≤ H ′ if both Ha ≤ H ′
a and

Hb ≤ H ′
b hold.

2. The union operation between two modulus structures H,H ′ given in con-
dition 1 is defined as H ∨H ′ = (Ha ∨H ′

a, Hb ∨H ′
b).

3. Similarly, we can define other binary operations such as intersection and
subtraction between two modulus structuresH,H ′, such that the set of all
modulus structures obey Boolean algebra with these binary operations.

4. With a similar argument, we may find that corresponding operators can
also be induced by the modulus structure. Let (A,B) be a pair of sequences
and H = (Ha, Hb) be the corresponding modulus structure pair. There is
then a pair of aligned sequences (A′, B′), and the corresponding operators
H are induced as

(A′, B′) = H(A,B) = (Ha(A),Hb(B)) . (3.42)
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3.3 Analysis of Modulus Structures Resulting
from Sequence Mutations

We have noted in Chap. 1 that there are four types of biological mutations,
and we called them type-I, type-II, type-III, and type-IV mutations. Recall
that type-I and type-II mutations do not change the lengths of sequences, and
thus they are also called nonshifting mutations. On the other hand, type-III
and type-IV mutations necessarily change the lengths of sequences, so they
are referred to as shifting mutations. In this chapter, we focus on type III and
type IV mutations.

3.3.1 Mixed Sequence Mutations

Following the definitions of type-III and type-IV mutations, their mathemat-
ical representations are just a mixture of expanding and compressing opera-
tors. That is, the shifting mutations are mixed operations of expanding and
compressing operations. Since the cases in which mixed operations occur are
more complicated than the operations themselves, we discuss the possible sit-
uations in which mixed operations occur. From their definitions, we know
that type-I and type-II mutations are different from type-III and type-IV
mutations. However, it is possible to consider one type as the combination
of other types. This may at first seem counter-intuitive, but it is true. For
example:

Example 7. Assume a type-I mutation occurs at the second nucleotide of se-
quence acg, i.e, it changes acg into aug. This is a type-I mutation, but it can
be regarded as the combination of a type-IV mutation that deletes c so that
acg becomes ag, followed by a type-III mutation that inserts u into ag, mak-
ing ag become aug. This demonstrates that type-III and type-IV mutations
can be represented by type-I and type-II mutations, and vice versa. Next, we
consider the following cases:

1. At the same position, if a type-III mutation (insertion) occurs � times,
and a type-IV mutation (deletion) occurs � times, then all insertions and
all deletions will counteract each other, and there is no shifting.

2. At the same position, if a type-IV mutation occurs � times and a type-III
mutation occurs � times, but the inserted characters and deleted charac-
ters are different, it is as if a type-I mutation occurred. Above all, we may
conclude that for mixtures of the four types of mutations, type-III and
type-IV have no intersection, and intersection regions can be replaced by
type-I and type-II mutations.

Example 8. The shifting mutations from sequence A = (acccccuuuuu) to
A′ = (aggguuuuu) can be divided as follows: deleting five nucleotides c after
position 1 and then inserting three nucleotide g after position 1. The mixed
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mutation can be divided into a type-IV mutation and a type-III mutation
acting on the sequence A as follows:

acccccuuuuu IV−→ auuuuu III−→ aggguuuuu . (3.43)

The combined effect of the two mutations is the same as that of a type-I
mutation, ccc → ggg, and a type-IV mutation that deletes the cc at positions 5
and 6. The process is as follows:

acccccuuuuu I−→ agggccuuuuu IV−→ aggguuuuu . (3.44)

Based on this example, we can conclude that a pair of type-III and type-
IV mutations can be decomposed as a nonshifting mutation and a shifting
mutation if type-III mutation occurs in the region of the type-IV mutation.

Example 9. In Example 8, if type-III mutation occurs first and type-IV muta-
tion occurs later, then the effect of these two shifting mutations is as follows:

acccccuuuuu III−→ accccgggcuuuuu IV−→ aggcuuuuu . (3.45)

The effect is the same as inserting the nucleotide triplet ggg after position 5
and then deleting nucleotides ccccg at positions 2–6. The final result is the
same as: acccccuuuuu → aggcuuuuu. It is different from the result: aggguuuu,
which is given in Example 8.

Therefore, the results are related to the order in which the type-III mu-
tation and type-IV mutation occur if the regions of the type-III and type-IV
mutations intersect. Generally, a different ordering of the type-III and type-IV
mutations will lead to different results. On the other hand, the result of the
first mutation of (3.44) can be considered as a mixture of a type-I mutation
plus a type-IV mutation as follows:

acccccuuuuu I−→ agccccuuuuu IV−→ agccuuuuu . (3.46)

Basic Assumptions About Hybrid Mutation

If B is mutated from sequence A, then the type-III and type-IV mutation
regions do not intersect. This means that there is no type-III mutation occur-
ring in the interval [i + 1, i + �] if a type-IV mutation of length � occurs at
position i of sequence A. The inverse is also true.

Theorem 16. If a mixed mutation satisfies the basic assumptions, then it can
be decomposed into several single mutation types and the result is invariant
with respect to the mutation order.

The theorem will be proved later. Assuming that the sequence mentioned here
satisfies this basic assumption, the result of Theorem 16 will always hold. Since
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it is more difficult to deal with a case involving shifting mutation based on
the above mentioned sequence mutation theory, we will discuss hybrid mu-
tations without type-I and type-II mutations. This hybrid mutation is called
the purely shifting mutation.

Example 10. We begin by discussing the sequence

A = (00000 11111 11111 22222 22222 22222 33333 33333) .

We perform type-II, type-III, and type-IV mutations defined respectively as
follows: (1) type-II mutation – mutually exchanging the data within [11, 15]
to that within [16, 20], and mutually exchanging the data within [26, 30] to
that within [31, 35]; (2) type-III mutation – inserting the segment 00112233
after position 13; (3) type-IV mutation – deleting a segment with length 3
after position 27. We then have the following output for each stage:

1. On one hand, the type-II mutation mutates A to B,

B = (00000 11111 22222 11111 22222 33333 22222 33333) ,

and then type-III mutation and type-IV mutation continuously mutate B
to C,

C = (00000 11111 222[00 11223 3]2211 11122 22233 22222 33333) .

2. On the other hand, the type-III and type-IV mutations mutate A to D,

D = (00000 11111 111[00 11223 3]1122 22222 22222 33333 33333) ,

and then the type-II mutation continuously mutates D to E,

E = (00000 11111 112[23 11100 3]1122 22222 33333 22222 33333) .

Then C and E are different. As a result, we conclude that the action order
between type-II mutations and type-III and type-IV mutations do not gen-
erally permit an exchange. However, an exchange is permitted if there is no
type-II mutation in any region of insertion.

3.3.2 Structure Analysis of Purely Shifting Mutations

Decomposition of Shifting Mutations

If sequence B is mutated from A through purely shifting mutations, we then
denote the intermediate result as C = (c1, c2, · · · , cna′ ) mutated from A
through type-III mutation, and then to B through type-IV mutation. The
procedure is represented as follows:

A = (a1, a2, · · · , ana) III−→ C = (c1, c2, · · · , cnc)
IV−→ B = (b1, b2, · · · , bnb

) .
(3.47)

The sequence C is an envelope of (A,B), and we may decompose C as follows:
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1. Let Δ′
1 and Δ′

2 be the expanded part of sequence C related to sequences
A and B, respectively. Then, cNc−Δ′

1
= A, cNc−Δ′

2
= B. Following from

the basic assumption on shifting mutations, we have that Δ′
1 is disjoint

from Δ′
2, i.e., Δ′

1 ∩Δ′
2 = ∅.

2. Let Δ′
0 = {Nc −Δ′

1} ∩ {Nc −Δ′
2} = Nc −Δ′

1 −Δ′
2, then Δ′

0 and Δ′
1, Δ

′
2

are disjoint and Δ′
0 ∪ Δ′

1 ∪ Δ′
2 = Nc. We can then obtain the following

expressions: (
cΔ′

0
, cΔ′

1

)
= A ,

(
cΔ′

0
, cΔ′

2

)
= B . (3.48)

We call (Δ′
0, Δ

′
1, Δ

′
2) the decomposition of the shifting mutation procedure

A → C → B, in which, Δ′
0 is the nonshifting mutation region, Δ′

1 is the
inserting region and Δ′

2 is the deleting region.
3. Regions Δ′

0, Δ
′
1 and Δ′

2 can be decomposed into small intervals as follows:

Δ′
τ = {δτ,k, k = 1, 2, · · · , kτ} , τ = 0, 1, 2 . (3.49)

They are disjoint from each other. If we arrange these small intervals
according to their lengths, we then have

Δ′ = {δ′0, δ′1, δ′2, · · · , δ′ka′ } , (3.50)

where ka′ = k0 + k1 + k2. Since the nonshifting mutation and shifting
mutation occur in the small intervals Δ given in (3.49), it follows that

{
Δ′

0 = (δ′1, δ
′
3, · · · , δ′2k0−3, δ

′
2k0−1) ,

Δ′
1 ∪Δ′

2 = (δ′0, δ
′
2, · · · , δ′2k0−2, δ

′
2k0

) .
(3.51)

So, ka′ = 2k0, and δ′0 and δka′ may be empty sets. Similarly, we call (3.50)
and (3.51) the decomposition of the shifting mutations, so the sequence C
given in (3.47) satisfies cNc−Δ′

1
= A, cNc−Δ′

2
= B.

Modulus Structure of Shifting Mutation

If sequence B is mutated from A through shifting mutations, then we may
express (3.47) using a shifting mutation T , and denote this by A T−→ B, with
the associated mutation mode denoted as follows:

{
T = {(ik, �k), k = 1, 2, · · · , ka} , �k �= 0 ,
T ′ = (γ1, γ2, · · · , γna) , γi ∈ Z ,

(3.52)

where Z = {· · · ,−2,−1, 0, 1, 2, · · ·} is the set of all integers. More details
about (3.52) follow:

1. The ka in T is the total number of shifting mutations in sequence A. The
notation (ik, �k) represents the position and length of the kth shifting
mutation, where ik is the position of shifting mutation, and �k includes
the information of both the type and length of the kth shifting mutation.
Typically, it is a type-III mutation if �k > 0, and a type-IV mutation if
�k < 0. |�k| is the length of the inserted or deleted segment.
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2. Similarly, γi in T ′ includes information about the length and type of the
shifting mutation at position i. Typically, there is no shifting mutation
after ai if γi = 0. There is a type-III mutation occurring after ai if γi > 0,
i.e., a fragment with γi length is inserted after ai if γi < 0. There is a type-
IV mutation occurring after ai, i.e., a vector with |γi| length is deleted
after ai.

3. Let IT = {ik, k = 1, 2, · · · , ka} denote the set of all the positions of the
shifting mutations. We arrange them according to their values in increas-
ing order as follows:

i0 = 0 ≤ i1 < i2 < · · · < ika ≤ ika+1 = na . (3.53)

Since the regions of type-III mutation and type-IV mutation may not
overlap, we assume that

ik + |�k| < ik+1 , i = 1, 2, · · · , ka . (3.54)

4. Similarly, for the two mutation modes T, T ′ given in (3.54), one determines
the other. The corresponding expression is found as follows: If T is given,
then

γi =

{
�ik , if i = ik ∈ IT ,

0 , otherwise .
(3.55)

On the other hand, if T ′ is given, the variables in T are rewritten as
follows: {

IT = {i ∈ Na : |γi| > 0} ,
�k = γik , if i = ik ∈ IT ,

(3.56)

where set IT arranged in the order of increasing values. The expression
showing how T and T ′ determine each other is given in (3.55) and in
(3.56), with T and T ′ as the two equivalent mutation modes, with both
mutation modes relying on A.

Definition 18. With T and T ′ defined as in (3.52) and the mutations deter-
mined by the values of γi, ik, �k, we have T and T ′ as two equivalent modes of
shifting mutation. Because T and T ′ determine each other, we will use T and
T ′ interchangeably in the future. In addition, the final result B is not unique
if the mutation mode (A, T ) is given. This is because there is no restriction
on the insertion of nucleotides following from (A, T ), so we must add rules to
restrict the insertion data.

Definition 19. 1. Let T and T ′ be two shifting mutation modes of a sequence
based on A; sequence A is then called the initial data (or initial template)
of the corresponding type-III mutation.

2. For a type-III mutation with initial template A, if the inserted data is
selected from a fixed sequence A′ = (a′1, a′2, · · · ) in order, then A′ is called
the inserted data template.
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Example 11. In Example 6, letB be mutated from sequenceA, so the mutation
result B is uniquely determined if T along with the original and inserted data
templates are both known. By inserting 320 and 0333 and deleting 22012
in sequence A, we obtain sequence B. This mutation mode is described as
follows: T = {(9,+3), (20,−5), (29, 4)},

T ′ = (000000000300000000000,−5, 0000000004) .

Here the inserted data template is A′ = (320333).

The Decomposition of the Modulus Structure of Shifting Mutation

The mutation modes T and T ′ defined in (3.52) can be decomposed further
according to the signs of the parameters γi:

Tτ = {(iτ,k, �τ,k), k = 1, 2, · · · , kτ} , T ′
τ = (γτ,1, γτ,2, · · · , γτ,na) , (3.57)

where τ = +,−, and

γi =

{
γi , if γi > 0 ,
0 , otherwise ,

γ−,i =

{
−γi , if γi < 0 ,
0 , otherwise .

(3.58)

If {
θτ,i = 0 , if γτ,i = 0 ,
1 , if γτ,i > 0 ,

we can obtain the value of (iτ,k, �τ,k) restricted by

iτ,k = min

{

i :
i∑

i′=1

θτ,i′ ≥ k

}

, �τ,k = γτ,k . (3.59)

Therefore, γτ,i and (iτ,k, �τ,k) in (3.57) can determine each other according to
(3.58) or (3.59). The following relationships are also satisfied:

1. k+ + k− = ka, where ka, k+, k− are the number of mutations described in
mutation modes T , T+, T−.

2. In (3.57), (i+,k, �+,k) is the binary of the position and length of the type-
III mutation, while (i−,k, �−,k) is the position and length of the type-IV
mutation, satisfying the following relationship:

1 = iτ,0 ≤ iτ,1 < iτ,2 < · · · < iτ,kτ ≤ iτ,kτ+1 = na . (3.60)

3. Tτ and T ′
τ determine each other and the corresponding expressions are

similar to (3.55) and (3.56).

Definition 20. The pairwise (T+, T−) defined in (3.57) is called the decom-
position of mutation mode T . Conversely, T is called the combination of
(T−, T+). T+, T−, T are respectively called the mutation mode of the type-III
mutation (insertion), type-IV mutation (deletion), and the shifting mutation,
alternatively to T ′, T ′

+, T
′
−.
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The Decomposition of Modulus Structure of Purely Shifting
Mutation

The purely shifting mutation defined in Sect. 3.3.1 can be decomposed as
follows:

A =
(
cΔ′

0
, cΔ′

1

) I(cΔ2)−→ C =
(
cΔ′

0
, cΔ′

1
, cΔ′

2

) D(cΔ1)−→ B =
(
cΔ′

0
, cΔ′

2

)
, (3.61)

where I(cΔ2) is insertion sequence cΔ2 , D(cΔ1) is deletion cΔ1 . Next, we
discuss the relationship between this decomposition and the modulus structure
T = (T+, T−):

1. The region demonstrated in (3.50) can be decomposed as follows:

Δ′ = {j0, j1, j2, · · · , jka′ , jka′+1} , (3.62)

where Δ′ is defined by (3.50) and

j0 = 0 ≤ j1 < j2 < · · · < jka′ ≤ jka′+1 = na′ ,

δ′k = [jk + 1, jk+1] = (jk + 1, jk + 2, · · · , jk+1) . (3.63)

Since C is the expansion of D = cΔ′
0
, then the expanded mode from C to

D can be determined by (3.51) and is written as

H0 = {(i0,k, �0,k) , k = 1, 2, · · · , ka} , (3.64)

where ka is the number of mutations in sequence A and 2ka = ka′ +1. We
then have {

�0,k = j2k+1 − j2k ,

i0,k = j2k − Lk ,
(3.65)

where Lk =
∑k−1

k′=1 �d,k′ . In view of the theory of expanded sequences, we
infer that (3.50), (3.62), and H0 determine each other.

2. D is the compressed sequence from A; its compressed mode is the same as
the mode caused by type-IV mutation on sequence A. Let the expanded
mode from D to A be H1, then

H1 = (T−)−1 = {(i1,k, �1,k), k = 1, 2, · · · , k−} , (3.66)

where (T−)−1 is the inverse of T−. According to the definition of (3.7), we
have the formula for shifting mutation as follows:

�1,k = �−,k , i1,k = i−,k − L−,k , (3.67)

where L−,k =
∑k−1

k′=1 �−,k′ . The symbols in (3.63) and (3.67) are defined
as follows.
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3. C is the expanded sequence of A and its expanded mode is just the muta-
tion mode of the type-III mutation on A. Therefore, the expanded mode
from A to C is H2 = T+, and we can obtain the transformation relation-
ship of sequence A in C as follows: ai = cj if

j = i+ L+(i) , L+(i) =
∑

k:i+,k<i

�+,k . (3.68)

4. B is the compressed sequence of the intermediate sequence C. In fact,
there is a type-III mutation which mutatesA to C, and a type-IV mutation
which mutates C to B. Let H3 be the compressed mode from C to B, so
we have

H3 = {(i3,k, �3,k), k = 1, 2, · · · , k−} , (3.69)

where
�1,k = �−,k , i3,k = i−,k + L+,k (3.70)

and L+,k =
∑k−1
k′=1 �+,k′ . As a result, the decomposition of (3.50) and

(3.51) and mutation mode T = (T+, T−) determine each other.

Their transformation is described in Steps 1–4. Keeping in mind the above
notation, we note the difference between Lτ,k and Lτ (i), in which, Lτ,k is the
total length of the first k − 1 occurrences of type-τ mutations, but Lτ (i) is
the total length of all the mutation types τ that happened before position i.
The modulus structure is demonstrated in Fig. 3.3.

Sequence B is mutated from A, and the mutation mode is

T = {(i1, �1), (i2, �2)} ,
in which i1, i2 are the mutated positions. The mutation is a type-III mutation
if �1 > 0 and it is a type-IV mutation if �2 < 0. In light of Fig. 3.3, the

Fig. 3.3. The modulus structure of sequence mutation
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relationships are as follows: If we insert segment bδb,2 into A after position i1,
we obtain sequence C, which is just the envelope of sequences A and B. If we
delete the segment cδc,4 from C after position i2 + l1, we obtain B, which is
just is the output mutated from A directly. If we delete segment aδa,3 from A
after position i2, we get D, which is the core of sequences A and B.

3.3.3 Structural Representation of Mixed Mutation

If B is mutated from A by type-I, type-II, type-III, and type-IV mutations in
a hybrid, we must describe the procedure leading to the mutations. From the
basic assumption of shifting mutations, we begin to determine the modulus
structure of the shifting mutation, T = (T+, T−). Then,

A
T+−→ C

T−−→ D
T0−→ B , (3.71)

in which T = (T+, T−) is the shifting mutation, and T0 is the nonshifting mu-
tation. According to the decomposition expression for the modulus structure
of shifting mutations, we decompose sequence C into three parts as follows.
C = (cΔ′

0
, cΔ′

1
, cΔ′

2
), in which cΔ′

2
is directly drawn from B. Since cΔ′

1
is

deleted by the operation T−, it follows that mutations of type-I and type-II
only occur in cΔ′

0
. Therefore, the effect of a hybrid of four types of mutation is

equivalent to a hybrid of a purely shifting mutation and a nonshifting muta-
tion, and the type-I and type-II mutations only occur in Δ′

0. This illustrates
the data structural relationship of hybrid mutations.

3.4 The Binary Operations of Sequence Mutations

Operations of sequence mutations include all operators caused by the modulus
structure of the mutations and the transformations between the mutation
modes.

3.4.1 The Order Relationship Among the Modes of Shifting
Mutations

In Sect. 3.1, we mentioned the order relationship and binary operations for
expanded modes. Here, we expand it to the modes of the shifting muta-
tions.

The Order Relationship and Binary Operations for Shifting
Mutations

Let us begin with the definitions of relationships between and operations on
the modes caused by sequence mutations. Let T, T ′, T ′′ be three different
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mutation modes; following from (3.52) their expressions are as follows:
⎧
⎪⎨

⎪⎩

T = (γ1, γ2, · · · , γna) = {(ik, �k) , k = 1, 2, · · · , ka} ,

T ′ =
(
γ′1, γ

′
2, · · · , γ′na

)
= {(i′k, �′k) , k = 1, 2, · · · , k′a} ,

T ′′ =
(
γ′′1 , γ

′′
2 , · · · , γ′′na

)
= {(i′′k, �′′k) , k = 1, 2, · · · , k′′a} .

(3.72)

The notations γ′k, γ
′′
k , i

′
k, i

′′
k in T ′, T ′′ are similar to �′k, �

′′
k in T . Then T , T ′,

T ′′ satisfy the condition in (3.54) since they are shifting mutations. We can
then define the binary operations and order relationship.

Definition 21. Let T , T ′ be two shifting mutation modes based on the initial
template A. Then:

1. T and T ′ are consistent if for each i = 1, 2, · · · , na, γi > 0 implies γ′i ≥ 0,
and γi < 0 implies γ′i ≤ 0. The converse is also true.

2. We say that T is included in T ′ if T, T ′ are consistent and |γi| ≤ |γ′i|
for each i = 1, 2, · · · , na. In this case, we say that T is less than T ′, and
denote it by T ≤ T ′ or T ⊂ T ′.

Definition 22. Let T and T ′ be two consistent modes of shifting mutation.
We then define the binary operations as follows:

1. Union: The union operation is denoted by T ′′ = T ∨ T ′, and each term
of T ′′ is a new mode defined by

γ′′i =

{
max{γi, γ′i} , if γi, γ′i ≥ 0 ,
min{γi, γ′i} , if γi, γ′i ≤ 0 .

(3.73)

2. Intersection: The intersection operation is denoted by T ′′ = T ∧T ′, and
each term of T ′′ is defined by

γ′′i =

{
min{γi, γ′i} , if γi, γ′i ≥ 0 ,
max{γi, γ′i} , if γi, γ′i ≤ 0 .

(3.74)

3. Subtraction: Subtraction is denoted by T ′′ = T ′ � T , and each term of
T ′′ is defined by

γ′′i =

{
max{γ′i − γi, 0} , if γi, γ′i ≥ 0 ,
min{γ′i − γi, 0} , if γi, γ′i ≤ 0 .

(3.75)

Typically, if T ≤ T ′, then the expression γ′′i = γ′i − γi holds.
4. Symmetric subtraction: Symmetric subtraction is denoted by T ′′ =
T ′ΔT , and each term of T ′′ is defined by

γ′′i =

{
max{γi, γ′i} − min{γi, γ′i} , if γi, γ′i ≥ 0 ,
min{γi, γ′i} − max{γi, γ′i} , if γi, γ′i ≤ 0 .

(3.76)
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Remark 1. Binary operations on the modes for shifting mutations are different
from those on modes for expanding sequences. Here, the binary operations are
only defined on the set of all consistent modes for shifting mutations. It would
be more complicated if we removed this restriction.

Properties of the Binary Operations and Order Relationships
on the Set of Modes

1. The order relationship satisfies transferability and self-reflectivity proper-
ties described below. Transferability: If T ≤ T ′ and T ′ ≤ T ′′, then we
have T ≤ T ′′. Self-reflectivity: If T ≤ T ′ and T ′ ≤ T , then we have
T = T ′.

2. The operations of intersection and subtraction defined in Definition 22
are closed. In other words, for any pair of consistent modes T and T ′,
intersection and subtraction are still consistent modes.

3. The union operation defined in Definition 22 is not closed. For example,
let

T = {(3, 4), (10,−4)} T ′ = {(3, 2), (7,−5)} .
These satisfy the consistency condition of Definition 21, but their union

T ′′ = T ∨ T ′ = {(3, 4), (7,−5), (10,−4)}

does not satisfy the basic assumption of shifting mutation because

i′′2 + |�′′2 | = 12 > i′′3 = 10 .

4. If the modes T and T ′ of a shifting mutation are consistent and their
intersection, union and subtraction are closed, the following properties
are satisfied:
Commutative law of intersection and union:

T ∧ T ′ = T ′ ∧ T , T ∨ T ′ = T ′ ∨ T .

Associative law of intersection and union:

(T ∧ T ′) ∧ T ′′ = T ∧ (T ′ ∧ T ′′) , (T ∨ T ′) ∨ T ′′ = T ∨ (T ′ ∨ T ′′) .

Distributive law:

(T ∨ T ′) ∧ T ′′ = (T ∧ T ′′) ∨ (T ′ ∧ T ′′) .

These properties can be verified using Definition 22; we omit this discus-
sion here. As a result, we conclude that the set of all consistent modes
endowed with the operations of intersection, union and subtraction does
not form a Boolean algebra.
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3.4.2 Operators Induced by Modes of Shifting Mutations

In expression (3.71), we showed how A becomes B, and the corresponding op-
erators T,T+,T−,T0 induced by the modes T = (T+, T−, T0), respectively.
If B is mutated from A by a purely shifting mutation, then T0 is an iden-
tical operation. We discuss the data structural characteristics for these four
operators.

The Representation of Operators of Shifting Mutations

Since C is the expanded sequence of both A and B determined by shifting
mutation T , its decomposition is C = (cΔ′

0
, cΔ′

1
, cΔ′

2
) in Sect. 3.3.2, in which,

Δ′
τ is composed of several small intervals δτ,k. Then,

A =
(
aΔa,0 , aΔa,1

)
=
(
cΔ′

0
, cΔ′

1

)
, B =

(
bΔb,0 , bΔb,1

)
=
(
cΔ′

0
, cΔ′

2

)
. (3.77)

This relationship is described in expressions (3.61)–(3.70). The corresponding
operators are

{
C = T+(A,B) =

(
cΔ′

0
, cΔ′

1
, cΔ′

2

)
=
(
aΔa,0 , aΔa,1 , bΔb,2

)
,

B = T−(C) =
(
cΔ′

0
, cΔ′

2

)
=
(
bΔb,0 , bΔb,1

)
,

(3.78)

where aΔa,0 = bΔb,0 .

The Commutative Property of Operators of Shifting Mutations

In (3.71), the procedure that mutates A to B is chosen as follows: first ap-
ply T+ and then T−. An alternative procedure would be first apply T− and
then T+. The commutative property is that the result of B is independent
of the order. While discussing shifting mutations, we always assume that the
modulus structure T in (3.72) satisfies

ik+1 ≥ ik + |�k| , k = 1, 2, · · · , ka , (3.79)

where ika+1 = na.

Theorem 17. 1. Let T+, T− be the operators induced by type-III and type-
IV mutation based on the initial template A, and let T be the modulus
structure determined by (3.72). If T satisfies the condition of (3.79), the
operators are commutative.

2. The theorem can be expanded to address hybrid mutation. If shifting mu-
tations T+, T− of a hybrid mutation satisfy the conditions in expression
(3.72), then the operations of operators T+, T−, T0 are all commutative,
where T0 are operators induced by type-I or type-II mutations.
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Proof. Omitting the details of the proof, we use the following examples to
explain the theorem. Let k1 = k2 = 2, na = 20, and

T+ = {(4, 2), (12, 4)} , T− = {(7, 4), (16, 3)} .

Then, T = {(4, 2), (7,−4), (12, 4), (16,−3)}. It follows that T is a purely shift-
ing mutation from 12 > 7 + 4 = 11. The shifting mutation is decomposed as
follows:

A = (a1, a2, · · · , a20)
T+−→ C1 = (a1, a2, a3, a4, a

′
1, a

′
2, a5, a6, · · · , a12, a

′
3, a

′
4, a

′
5, a

′
6,

a13, a14, · · · , a20)
T−−→ B1 = (a1, a2, a3, a4, a

′
1, a

′
2, a5, a6, a7, a12, a

′
3, a

′
4, a

′
5, a

′
6,

a13, a14, a15, a16, a20) ,

where (a′1, a′2, a′3, a′4, a′5, a′6) are the inserted data. If we exchange the operation
order of T+ and T−, we find

A = (a1, a2, · · · , a20)
T−−→ C2 = (a1, a2, a3, a4, a5, a6, a7, a12, a13, a14, a15, a16, a20)
T+−→ B2 = (a1, a2, a3, a4, a

′
1, a

′
2, a5, a6, a7, a12, a

′
3, a

′
4, a

′
5, a

′
6,

a13, a14, a15, a16, a20) .

Thus, B1 = B2. That is, the mutation operations T+ and T− are commutative.
In addition, the operator T0 only acts on the region of Δ′

0, since it cannot act
on the region of Δ′

1 and is useless if it happens in the region of Δ′
2 because

its action will be deleted. Therefore, it is commutative with the operators of
T1,T2. The theorem is therefore proved.

As a consequence of this theorem, we find that the mode T of a shifting muta-
tion may be decomposed into several locally commutative shifting mutations
if T satisfies condition (3.79).

The Inverse of Shifting Mutation Operator T

If B is mutated from A by the shifting mutation operator Ta, then the operator
induced by the mode of the shifting mutation that mutates B to A is the
inverse of Ta. We denote this by Tb giving Tb = T−1

a .
If the shifting mutation operator T is defined by (3.72), then we have

Ta = (γ1, γ2, · · · , γna) = {(ik, �k) , k = 1, 2, · · · , ka} ,

where γi ∈ Z, �k �= 0 and ik is the mutation position of sequence A.
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Theorem 18. If the shifting mutation operator T defined by (3.72) satisfies
the basic assumption (3.79), then the operator Tb = T−1

a mutating B to A is
also a shifting mutation operator with the following properties:

1. The number of the shifting mutations from B to A are equal to the number
of the shifting mutations caused by Ta; hence, kb = ka.

2. Mutation positions in the sequence B are

i′k = ik + Lk , k = 1, 2, · · · , ka , (3.80)

where Lk =
∑k−1

k′=1 �k′ is the shifting function induced by the shifting mu-
tation operator Ta.

3. The i′k defined by (3.80) is strictly monotonic increasing, that is,

1 = i′0 ≤ i′1 < i′2 < · · · < i′ka
≤ i′ka+1 = nb ,

where nb = na + L0,ka+1.
4. The insertion operation of Tb = T−1

a simply corresponds to the deletion
operation of Ta. In other words, the insertion of T is the deletion of T−1,
and the deletion of T is the insertion of T−1. It can also be found that

T−1
a = {(i′k,−�k) , k = 1, 2, · · · , ka} . (3.81)

Proof. The proofs of propositions 1, 2, and 4 in Theorem 18 only involve
the decomposition expression (3.61). In fact, the decomposition expression
(Δ′

0, Δ
′
1, Δ

′
2) ofNc is determined if Ta is known. We then have (cΔ′

0
, cΔ′

2
) = B,

and obtain C by inserting cΔ′
1

into B. Obviously, this data fragment cΔ′
1

is
just the part deleted from A. On the other hand, to obtain A, we need only
delete the data fragment cΔ′

2
from sequence C. This fragment cΔ′

2
is inserted

into A to find Nc. Therefore, the mutation from B to A is just the inverse
of the mutation from A to B. Since cΔ′

1
and cΔ′

2
in C are disjoint, it follows

that T−1 is a purely shifting mutation, and expressions (3.79) and (3.80) hold.
Thus, the propositions 1, 2, and 4 of Theorem 18 are proved. To prove propo-
sition 3, we involve the conditions of shifting mutations and expression (3.79).
We then have

i′k+1 − i′k = (ik+1 + L0,k+1) − (ik + L0,k) = ik+1 − ik + �k > 0 .

Following from the conditions of purely shifting mutations, we have
ik+1 − ik + |�k| > 0 for every k = 1, 2, · · · , ka. Thus, proposition 3 holds,
and the theorem is proved.

Example 12. In Example 6, the shifting function is

L̄ = (L0,1, L0,2, L0,3, L0,4) = (0, 4, 1,−3,−1)
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and the mutation mode from B to A is

T−1 = {(7,−4), (17, 3), (21, 4), (26,−2)} .

Next, we let Tb = T−1
a be the inverse of Ta. Thus, B is completely determined

by B = Ta(A), if A′ = cΔ′
1

is given. However, A is determined by A =
T−1(B), if B′ = cΔ′

2
= aΔ2 is known.

Addition of Operators of Consistent Mutations

Let T 1, T 2 be two mutation modes based on the initial template A and satis-
fying the consistent condition, and let T 3 = T 2 ∨ T 1. The operators T1, T2,
T3 induced by T 1, T 2, T 3 are then shifting operators if T 3 satisfies the basic
assumption of shifting mutations. Their mutual relationships are described as
follows:

1. Following from the consistent conditions and the definition of T 3 =
T 2 ∨ T 1, we have that T 1, T 2 ≤ T 3. Therefore, all mutation positions of
A can be uniformly denoted by I3 = {i1, i2, · · · , ika}, and their modulus
structures can be also uniformly represented by

T θ = {(ik, �τk) , k = 1, 2, · · · , ka} , θ = 1, 2, 3 , (3.82)

where

�3k =

{
max

{
�1k, �

2
k

}
, when �1k, �

2 > 0 ,
min

{
�1k, �

2
k

}
, when �1k, �

2 < 0 .

2. T 1, T 2, T 3 can be decomposed as follows:

T 1 =
(
T 1

+, T
1
−
)
, T 2 =

(
T 2

+, T
2
−
)
, T 3 =

(
T 3

+, T
3
−
)
,

in which T 1
+, T

2
+, T

3
+ are the modulus structures induced by type-III mu-

tation, and T 1
−, T

2
−, T

3
− are the modulus structures induced by type-IV

mutation. The uniform expression is given as follows:

T θτ =
{(
iθτ,k, �

θ
τ,k

)
, k = 1, 2, · · · , kθτ

}
, θ = 1, 2, 3 , τ = +,− . (3.83)

3. The operator induced by T θ is denoted by Tθ and defined by

Tθ(A,Eθ) = Bθ , θ = 1, 2, 3 , (3.84)

in which Eθ = (Eθ1 , E
θ
2 , · · · , Eθkθ

+
), θ = 1, 2, 3 are templates of inserted

data. Since ||Eθk || = �θ+, we have ||E1
+||, ||E2

+|| ≤ ||E3
+||. As a result, we

have the following theorem.

Theorem 19. If T 1 and T 2 are two consistent modes based on the template A,
and T 3 = T 2 ∨ T 1 satisfies the basic assumption, then the three operators
T1,T2,T3 induced by T 1, T 2, T 3 are shifting operators and satisfy the prop-
erties as follows:
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1. Let E4 = (E4
1 , E

4
2 , · · · , E4

ka
), in which E4

k = E3
k − E1

k for each k and let
B1 = T1(A,E1). If E1

k is a subvector of E3
k for each k, then we have

B3 = T3(A,E3) = T2
1(B

1, E4) = T2
1[T

1(A,E1), E4] , (3.85)

in which T2
1 is a shifting operator on B1 and its modulus structure is

defined as follows:

T 2
1 =

{(
jk, �

2
k

)
, k = 1, 2, · · · , ka

}
, (3.86)

where �2k is defined in (3.82), and jk = i2k + L1
k, L

1
k =

∑k−1
k′=1 �

1
k′ is the

shifting function of T 1.
2. If E1

k∪E2
k = E3

k for each k, then let E5
k = E3

k−E2
k, E

5 = (E5
1 , E

5
2 , · · · , E5

ka
)

and B2 = T2(A,E2), we have

B3 = T3(A,E3) = T1
2(B

2, E5) = T2
1[B

1, E4] , (3.87)

in which T1
2 is the shifting operator on the sequence B2. Its modulus struc-

ture is defined by:

T 1
2 =

{(
j′k, �

1
k

)
, k = 1, 2, · · · , ka

}
, (3.88)

where �1k is defined by (3.82), j′k = i1k + L2
k and L2

k =
∑k−1
k′=1 �

2
k′ is the

shifting function of T 2. It follows from (3.88) that the multiplication of
shifting operators T1 and T2 is commutative.

The proof of this theorem follows from properties 1 and 2 above.

3.5 Error Analysis for Pairwise Alignment

If B is mutated from A, then (A′, B′) is the aligned sequence of (A,B). In
this section, we analyze the error problem. These four sequences A,B,A′, B′

transform into the uniform form as follows:

U = (u1, u2, · · · , unu) , U = A,B,A′, B′ , u = a, b, a′, b′ ,

where na′ = nb′ and ai, bi ∈ Vq, a′j , b
′
j ∈ Vq+1, and q ∈ Vq+1 is a virtual

symbol. For simplicity, we still assume q = 4.

3.5.1 Uniform Alignment of Mutation Sequences

Definition of the Uniform Alignment of Mutation Sequences

In Sects. 3.2 and 3.3, we mentioned mutation modes for both the sequence
alignment and mutation. If the mutation positions are just the inserting po-
sitions raised by the alignment, then the alignment is a uniform alignment.
The definition is as follows:

Definition 23. Let B be the sequence mutated from A, and (A′, B′) is the
alignment of (A,B). If the insertion part of A′ is caused by type-III mutation,
and the insertion part of B′ is caused by type-IV mutation acting on A, then
(A′, B′) is the uniform alignment of (A,B).
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Properties of Uniform Alignment

By Definition 23 we can determine the relationship between the modulus
structure induced by uniform alignment and the modulus structure induced
by mutations:

1. If B is mutated from A, and its mutation mode TA is defined by (3.53) or
(3.54), then the mutation mode from B to A is Tb = T−1

a . Modes Ta and
Tb can be decomposed as follows:

Ta = (Ta,+, Ta,−) , Tb = (Tb,+, Tb,−) ,

where Ta,+, Tb,+ are the modes induced by type-III mutation based on
the initial templates A and B, respectively, and Ta,−, Tb,− are modes re-
sulting from type-IV mutation based on the initial templates A and B,
respectively.

2. If (A′, B′) is the uniform alignment of sequence (A,B), the expanded
mode from A to A′ is Ha = Ta,+, and the expanded mode from B to B′

is Hb = Tb,+.
3. If B is mutated from A purely by shifting mutations, then the uniform

alignment can be represented using the core D and envelope C, where
C = (cΔ′

0
, cΔ′

1
, cΔ′

2
), D = cΔ′

0
, A = (cΔ′

0
, cΔ′

1
), and B = (cΔ′

0
, cΔ′

2
).

4. If (A′, B′) is the alignment of (A,B) and the following conditions are
satisfied:

a′j =

{
cj , if j ∈ Δ′

0 ∪Δ′
1 ,

4 , if j ∈ Δ′
2 ,

b′j =

{
cj , if j ∈ Δ′

0 ∪Δ′
2 ,

4 , if j ∈ Δ′
1 .

(3.89)

Then (A′, B′) is the uniform alignment of (A,B) and na′ = nb′ = nc.

Example 13. In Example 12, the modulus structures of A and B are given as
follows:

TA = {(7, 4), (13,−3), (20,−4), (29, 2)} ,
TB = {(7,−4), (17, 3), (21, 4), (26,−2)} .

If (A′, B′) is the uniform alignment of (A,B), it follows that the modulus
structures from A to A′ and from B to B′ are:

Ha = Ta,+ = {(7, 4), (29, 2)} , Hb = Tb,+ = {(17, 3), (21, 4)} .
Therefore, we find the representation of the uniform alignment (A′, B′),

{
A′ = (0000000444411111113330000333311111440000) ,
B′ = (0000000222211111114440000444411111220000) ,

and the core D and envelope C are
{
D = (000000011111133300003333111110000) ,
C = (000000022221111113330000433311111220000) .
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Fig. 3.4. The modulus structure of uniform alignment

The relationship between sequence mutation and uniform alignment is illus-
trated in Fig. 3.4.

In Fig. 3.4, (A′, B′) is the alignment of (A,B), and T = (T+, T−) is the
modulus structure, where

T+ = {i1, �1} , T− = {i2, �2} .

Thus, the modulus structure of uniform alignment is

Ha = {i1, �1} , Hb = {i2, �2} ,

with
�1 = ||δb,2|| = ||δc,2|| , �2 = ||δa,3|| = ||δd,4|| .

3.5.2 Optimal Alignment and Uniform Alignment

The definition of optimal alignment was presented in Chap. 1. In this section,
we study the relationship between optimal alignment and uniform alignment.
A uniform alignment is optimal if ε1 � 1/2. However, this is not generally
the case.

Example 14. We delete segment (23210) from the initial template
A = (11231003221000[23210]3221{}02112003), and insert a segment (11230)
into the large bracket of A between segments (3221) and (0211), and perform
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type-I and type-II mutations outside the insertion and deletion region. Let
the final output mutated from A be

B = (112310032210003220[11230]12112003) .

Then the uniform alignments of A,C are given as follows:
{
A′

1 = (11231(0)032210(0)0[23210]322(1)[44444](0)2112003) ,
B′

1 = (11231(2)032210(1)0[44444]322(0)[11230](1)2112003) ,

where the components in parentheses are caused by type-I and type-II mu-
tations, and components in square brackets are from type-III and type-IV
mutations. The Hamming matrix between them is dH(A′, B′) = 14 and the
optimal alignment is

{
A′

0 = (11231(0)032210(0)0[23210]322[4]1[444]0[4]2112003) ,
B′

0 = (11231(2)032210(1)0[44444]322[0]1[123]0[1]2112003) ,

where dH(C′, D′) = 12 < dH(A′, B′). Therefore, (A′, B′) is the uniform align-
ment of (A,B) but is not an optimal alignment. Making use of Example 8,
we find that a uniform alignment can be represented by a minimum penalty
alignment through a local modification. The local modification permutes the
insertion symbols with their nearest nucleotides. For example, (A′

0, B
′
0) is a lo-

cal modification of (A′
1, B

′
1). The details of local modification will be discussed

later.

It is worth noting that a uniform alignment may not be a minimal penalty
alignment even if ε1 = ε2 = 0; this corresponds to the cases where type-I and
type-II mutations do not work.

Example 15. If we delete the segment (0000) from the initial template A =
(1212000012121212001212) and insert the segment (121200) into A between
(01212) and (121200), then A and the output B mutated from A are compared
as follows: {

A = (1212[0000]12121212001212) ,
B = (12121212[121200]1212001212) .

The uniform alignment is given by:
{
A′

1 = (1212[0000]1212[444444]1212001212) ,
B′

1 = (1212[4444]1212[121200]1212001212) .

Therefore dH(A′
1, B

′
1) = 10, and we can construct a new alignment as follows:

{
A′

0 = (1212[00]001212[4444]1212001212) ,
B′

0 = (1212[44]121212[1200]1212001212) .

Hence, dH(A′
0, B

′
0) = 8 < dH(A′

1, B
′
1). It follows that an optimal alignment

(A′, B′) may not be the minimal penalty alignment.
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3.5.3 Error Analysis of Uniform Alignment

Let B∗ be a stochastic sequence mutated from the stochastic sequence A∗,
which is determined by expression (2.93). Let (C∗, D∗) be the uniform align-
ment of (A∗, B∗). The error analysis of (C∗, D∗) is then an estimate of the
absolute error

w(C∗, D∗) =
nc∗∑

j=1

w
(
c∗j , d

∗
j

)
. (3.90)

For simplicity, we assume the penalty matrix is the Hamming matrix; i.e.,
w(a, b) = 0 or 1, for a = b or a �= b:

1. We can decompose the expression (3.90) as follows:

w(C∗, D∗) =
∑

j∈Δ∗
0

w
(
c∗j , d

∗
j

)
+

∑

j∈Δ∗
3

w
(
c∗j , d

∗
j

)
+

∑

j∈Δ∗
2

w
(
c∗j , d

∗
j

)
. (3.91)

Since c∗j = 4, d∗j �= 4 in the second part, and d∗j = 4, c∗j �= 4 in the third
part, it follows that

∑

j∈Δ∗
3

w
(
c∗j , d

∗
j

)
= n∗

3 ,
∑

j∈Δ∗
2

w
(
c∗j , d

∗
j

)
= n∗

2 .

Therefore, expression (3.91) becomes

w(C∗, D∗) =
∑

j∈Δ∗
0

w
(
c∗j , d

∗
j

)
+ n∗

1 + n∗
2 , (3.92)

where n∗
1 and n∗

2 are the total lengths of the type-III and type-IV muta-
tions respectively. Both are random numbers.

2. The estimate of n∗
1 and n∗

2 in the expression (3.92). Since T ∗ = {(i∗k, �∗k),
k = 1, 2, · · · , k∗a} is a random modulus structure of random mutation, and
based on the assumptions of type-III and type-IV mutations and the large
number law, we estimate n∗

1, n
∗
2 as follows:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

n∗
1 =

∑

k:	∗k>0

�∗k ∼ na

(
1 +

ε3
p3

)
,

n∗
2 =

∑

k:	∗k<0

�∗k ∼ na

(
1 +

ε4
p4

)
.

(3.93)

3. To estimate the first term in expression (3.92), we begin with the following
notations:
(a) (c∗j , d

∗
j ) = (a∗j , a

∗
j + ζj) for all j ∈ Δ∗

0 is an i.i.d. sequence. a∗j is
a uniform distribution on V4, ζj is defined by (3.96), and ζ̃ and A∗ are
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independent. Therefore,
⎧
⎪⎨

⎪⎩

E
{
w(c∗j , d

∗
j )
}

=
∑
a,b∈V4

p(a, b)w(a, b) = ε ,

D
{
w(c∗j , d

∗
j )
}

=
∑
a,b∈V4

p(a, b)[w(a, b) − ε]2

=
∑
a,b∈V4

p(a, b)w2(a, b) − ε2 = ε(1 − ε) .
(3.94)

(b) For any pair j �= j′ ∈ Δ′
0, the two components of (c∗j , d

∗
j′ ) =

(a∗j , a
∗
j′ + ζj′ ) are independent and both are uniform distributions on

V4, therefore
⎧
⎪⎨

⎪⎩

E
{
w(c∗j , d

∗
j )
}

=
∑

a,b∈V4
p(a)p(b)w(a, b) = 3/4 ,

D
{
w(c∗j , d

∗
j )
}

=
∑

a,b∈V4
p(a, b)[w(a, b) − 3/4]2

=
∑

a,b∈V4
p(a, b)w2(a, b) − (3/4)2 = 3/16 .

(3.95)
(c) Based on the definition of Δ∗

0, we have that Δ∗
0 is composed of several

small intervals as illustrated in (3.59). Let

n∗
0,h = ||δ∗0,h||

be the length of the small interval δ∗0,h. In the event that n∗
0,h is large

enough, we may estimate using the law of large numbers:

1
n0,h

dw

(
c∗δ′0,h

, d∗δ∗0,h+L

)
∼
⎧
⎨

⎩

ε , if L = 0 ,
3
4
, if L �= 0 .

(3.96)

The central limit theorem yields

1
n∗

0,h

dw

(
c∗δ′0,h

, d∗δ′0,h+L

)
∼

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

N

(

ε,
ε(1 − ε)
n∗

0,h

)

, if L = 0 ,

N

(
3
4
,

3
16n∗

0,h

)

, if L �= 0 ,
(3.97)

where N(γ, S) is a normal distribution with the expectation of γ and
variance of S.

4. Using (3.93) and (3.96) and the properties of composite renewal processes,
we find that for the hybrid mutations, the error estimate of the uniform
alignment of the stochastic sequences is given by

1
na
w(C∗, D∗) ∼ ε1 + ε2

(
1
p1

+
2
p2

)
(1 − ε1) +

ε3
p3

+
ε4
p4

, (3.98)

where ετ , τ = 1, 2, 3, 4 are the strengths of the τ mutation stream, and
that pτ , τ = 1, 2, 3, 4 are the lengths of the type-II, type-III and type-IV
mutations, respectively. The reader is referred to Chap. 2 for more de-
tail.
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3.5.4 Local Modification of Sequence Alignment

In Examples 13 and 14, and in the proof of Theorem 16, we may find that
uniform alignment and the minimal penalty alignment are not perfectly com-
patible. There is a minor difference that can be addressed with a local mod-
ification. The basic purpose of sequence alignment is to find the mutation
relationship between different sequences, that is, to determine their uniform
alignments. However, we do not know whether the uniform alignment of two
sequences has been realized. Therefore, we instead determine the minimal
penalty alignment to approximate the uniform alignment because the min-
imal penalty alignment may be accurately computed. A local modification
allows us to estimate the uniform alignment since the minimal penalty align-
ment approximately determines the boundary of uniform alignment. Local
modification is a re-computation based on the output from sequence align-
ment in order to reduce the penalty. If (A′, B′) is the alignment output, the
local modification is stated as follows:

W-1 Permute the virtual symbols in A′ and B′ with the nearest nonvirtual
symbols.

W-2 Insert or delete one or more virtual symbols in both A′ and B′ simul-
taneously.

W-3 At the tails of the aligned sequences, we may insert or delete a number
of virtual symbols, in the hopes that this process reduces the magnitude
of the total error.

Example 16. The following shows three local modifications:

1. If {
C = (00231(444)312(0021)3200231) ,
D = (00231(221)130(4444)3200231) ,

then the alignment error is dH(A′, B′) = 10. If we perform local modifica-
tion W-2 such that the output (A′, B′) is

{
C′ = (00231312002(1)3200231) ,
D′ = (00231221130(4)3200231) ,

then dH(C′, D′) = 7 < dH(A′, B′).
2. If {

C = (00231(44444)3123200231) ,
D = (00231(22312)1303200231) ,

the alignment error is dH(A′, B′) = 8. If we perform local modification
W-1 such that (A′, B′) is

{
C′ = (00231(44)312(444)3200231) ,
D′ = (00231(22)312(130)3200231) ,

then dH(C′, D′) = 5 < dH(A′, B′).
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3. If {
C = (00231312002(1)32000231) ,
D = (00231221130(4)32002310) ,

the alignment error is dH(A′, B′) = 11. If we perform local modification
W-3 such that (A′, B′) is

{
C′ = (00231312002(1)3200(0)231(4)) ,
D′ = (00231221130(4)3200(4)231(0)) ,

then dH(C′, D′) = 9 < dH(A′, B′).

Based on these examples, we find that all of the local modification operations
can reduce alignment error. Through a modification, we can approximate
a uniform alignment by a minimal penalty alignment, and obtain the modulus
structure of type-III and type-IV mutations.

3.6 Exercises

Exercise 12. Describe the relationship between modulus structure theory
and random mutations. Give the modulus structure of the sequence obtained
in Exercise 11.

Exercise 13. Prove Theorems 9, 10, 11, 12, and 15.

Exercise 14. For the given sequences
⎧
⎪⎨

⎪⎩

A = 11010201032213020103211022301 ,
B = 110102021010322001302110103210311022301 ,
C = 1101033320210103220013021100010321022311022301 ,

complete the following tasks:

1. Show that B is the expanded sequence of A, and C is the expanded se-
quence of B, and therefore, that C is the expanded sequence of A.

2. Give the three expanded modes by which B mutated from A, C mutated
from B, and C mutated from A. Also give the corresponding shifting
functions.

3. Give the three different compressed modes by which B compressed into
A, C compressed into B, and C compressed into A.

4. Give the operators of the expanded modes by which B mutated from A,
C mutated from B, and C mutated from A, showing the computation
procedure.

5. Compute the minimum penalty alignments based on the Hamming penalty
matrix and the SP-function condition, and compute the value of the SP-
penalty.
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Exercise 15. For the pair of sequences
{
A = 110102021010322011101302110103210311023232301 ,
B = 1101033320210103220013021100010321022311022301 ,

answer the following questions:

1. If B is considered to be the sequence mutated from A, compute the three
different modes of type-II, type-III, and type-IV mutations, and write
down the corresponding shifting functions.

2. Find the optimal alignment (A′, B′) of (A,B) using the dynamic program-
ming-based algorithm.

3. Give the alignment modulus structures by which (A,B) mutates to
(A′, B′) and the corresponding function.

4. Analyze the relationship between the mutation mode and the alignment
mode of (A,B).



4

Super Pairwise Alignment

In Chap. 1, we introduced dynamic programming-based algorithms that are
used comprehensively in many fields. Next, we propose several modulus
structure-based and statistical decision-based algorithms. The key concept
giving rise to these algorithms was published in [90], and is referred to as
super pairwise alignment (SPA).

4.1 Principle of Statistical Decision-Based Algorithms
for Pairwise Sequences

In this section, we introduce pairwise alignment and the principle of SPA.

4.1.1 Uniform Alignment and Parameter Estimation
for Pairwise Sequences

The description of pairwise alignment was given in Chap. 1. The definitions
of minimum penalty alignment and uniform alignment were mentioned in
Sect. 1.2. The uniform alignment has been mentioned in Definition 23. In
this chapter, we focus on the solution for uniform alignment of pairwise se-
quences.

We continue to use the symbols given in (1.1). If sequence B is mutated
from A, and the mutation mode T is defined as in (3.55), then the solution for
uniform alignment of the pairwise sequence estimates the parameters {(ik, �k),
k = 1, 2, · · · , ka} and ka.

If we estimate the parameter set T , which denotes the positions and lengths
of the mutations based on sequence (A,B), then sequence (A′, B′) constructed
by Definition 23 is an estimate for the uniform alignment of sequence (A,B).
Therefore, the key to solving the uniform alignment of the pairwise sequence is



110 4 Super Pairwise Alignment

knowing how to estimate the parameters in the mutation mode T based on se-
quence (A,B). Then T in expression (3.55) is a group of statistical parameters
and

T̂ =
{(
îk, �̂k

)
, k = 1, 2, · · · , k̂a

}
(4.1)

is a set of statistics determined by (A,B), and an estimate of the parameter
set T . The vital problem of uniform alignment of pairwise sequences is the
estimate of the parameters in T . The approach to solving this problem is
outlined as follows:

Sequential Estimate of Parameter Set T

The so-called sequential estimate for the parameter set T is briefly described
below:

1. To estimate the parameters in T alternately, we estimate (ik, �k), k =
1, 2, · · · , ka one after the other, that is, we estimate (ik′ , �k′) based on
(ik, �k), k = 1, 2, · · · , k′ − 1.

2. To estimate each (ik, �k), we need not have the entire data of sequence
(A,B), but depend on only part of the data. Therefore, choosing the data
to use becomes one of the most important aspects of the statistical decision
algorithm.

3. The estimate of the parameter set T includes an estimate of the param-
eter ka.

Since this estimation procedure is identical to sequential estimation in statis-
tics, we call it the sequential estimation of the parameter set T .

The Locally Uniform Alignment of Sequence (A, B)

From the definition of uniform alignment in Definition 23, we generalize it to
formulate the definition of locally uniform alignment as follows:

Definition 24.

1. Let T be the shifting mutation mode given in expression (3.55), then

Tk′ = {(ik, �k), k = 1, 2, · · · , k′} , k′ ≤ ka , (4.2)

is called the local shifting mutation of T .
2. Let B be the sequence mutated from A through shifting mutation mode T

and type-I and type-II mutations. If sequence Bk′ is mutated from A
through shifting mutation Tk′ and type-I and type-II mutations, then Bk′

is called the local shifting mutation of A, and Tk′ is corresponding local
shifting mutation mode.

3. If (A′, B′), (Ck′ , Dk′) are two uniform alignmemt sequences of (A,B) and
(A,Bk′ ) respectively, then (Ck′ , Dk′) is the locally uniform alignment se-
quence of (A′, B′).
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The Outline of the Sequential Estimation for Parameter Set T

To estimate the parameter set T , we actually estimate (ik, �k) and the locally
uniform alignment alternately. If the sequence pair (A,B) is given, then the
sequential estimation for parameter set T is summarized as follows:

1. Letting ā0 = (a1, a2, · · · , an), b̄0 = (b1, b2, · · · , bn), we begin to estimate
(i1, �1), and let (̂i1, �̂1) denote the estimation. The methods to select n
and to compute (̂i1, �̂1) will be detailed later.

2. After obtaining the estimation of the local shifting mutation Tk′ , we denote
it by T̂k′ similarly to (4.1), and then obtain the local alignment sequence
(Ĉk′ , D̂k′) based on T̂k′ and (A,B). Computation of the local alignment
sequence (Ĉk′ , D̂k′) will be described later.

3. Select vectors c̄t = (ct+1, ct+2, · · · , ct+n) and d̄t = (dt+1, dt+2, · · · , dt+n)
from the local alignment sequence (Ĉk′ , D̂k′), so we can estimate
(̂ik′+1, �̂k′+1) of (ik′+1, �k′+1). The method to select c̄t and d̄t will be ex-
plained later in the block.

4.1.2 The Locally Uniform Alignment Resulting
from Local Mutation

Now, we detail the key steps 1–3 given in Sects. 4.1.1–4.1.3. We begin by
discussing the locally uniform alignment induced by a local mutation.

Let Tk′ be a known local shifting mutation mode, which is defined by
expression (4.2). We can then obtain its local alignment sequence following
from the local shifting mutation mode Tk′ discussed in Chap. 3. We recall
this process briefly, and comment on the specifics. For simplicity, we omit the
subscript k′ of Tk′ .

Some Symbols

The expansion or decomposition induced by a shifting mutation mode T are
addressed in Sect. 3.3.2. Here:

1. Let the decomposition of (C′, D′) expanded from (A,B) based on mode T
be

Δ′ = {Δ′
τ , τ = 0, 1, 2} =

{
δ′τ,k , k = 1, 2, · · · , k̂τ , τ = 0, 1, 2

}
. (4.3)

If we arrange the areas in Δ′ in order, then we obtain Δ′ = N ′ =
{1, 2, · · · , n′}, and the decomposition expression is:

Δ′ = {Δ′
0, Δ

′
1, Δ

′
2} = (δ′1, δ

′
2, · · · , δ′2k′ ) , (4.4)

where k′ is the number of times the shifting mutation occurred in T ,
n′ = na + L+, L+ =

∑
k:	k>0 �k. Then,

δ′2k−1 ∈ Δ′
0 , δ′2k ∈ Δ′

1 ∪Δ′
2 .
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2. The decompositions of Na and Nb are determined by the decomposition
of Δ′:

Δτ = {Δτ,0, Δτ,1} = (δτ,1, δτ,2, · · · , δτ,2k′τ ) , τ = a, b , (4.5)

where k′a, k
′
b are the numbers of times the type-IV and type-III mutations

occurred in the shifting mutation mode T . Thus, k′a + k′b = k′.
The intervals in (4.5) form a set produced by two steps: deletion Δ′

1, Δ
′
2

from Δ′, and then rearrangement of the rest of the intervals. If we denote
this set by

Δτ = {iτ,1, iτ,2, · · · , iτ,2k′τ , iτ,2k′τ+1} , τ = a, b , (4.6)

in which

iτ,1 = 0 ≤ iτ,2 < iτ,3 < · · · < iτ,2k′τ ≤ iτ,2k′τ+1 = nτ

and
δτ,k = [iτ,k + 1, iτ,k+1] = (iτ,k + 1, iτ,k + 2, · · · , iτ,k+1) ,

then by (3.78) and (3.82), we obtain the interrelationship between Δa, Δb,
and Δ′ as follows:

{
ia,2k−1 = j0,2k−1 − L1,k ,

ia,2k = j0,2k − j0,2k−1 ,

{
ib,2k−1 = j1,2k−1 − L2,k ,

ib,2k = j1,2k − j1,2k−1 ,
(4.7)

where
Lτ,k =

∑

k′′ :δ′
k′′∈Δ′

τ ,j1,2k′′−1<j0,2k−1

| δ′k′′ | , τ = 1, 2 . (4.8)

3. Moreover, we have

C′ = {aΔa,0 , aΔa,1 , bΔb,1} , D′ = {bΔb,0 , bΔb,1 , aΔa,1} , (4.9)

where the local vectors are arranged according to the order in Δ′, and
then {

Δτ,0 = {δτ,1, δτ,3, · · · , δτ,2k′−1} ,
Δτ,1 = {δτ,2, δτ,4, · · · , δτ,2k′} ,

where τ = 1, 2 and δτ,k = [iτ,k + 1, iτ,k+1].

Uniform Alignment Induced by the Shifting Mutation Mode T

From the shifting mutation mode T and sequence (A,B), we find the expanded
sequence (C′, D′), and we then obtain the alignment (A′, B′) of (A,B) through
the following steps:

1. Modify the sequence C′ to become sequence A′, by replacing each com-
ponent in the subvector aΔa,1 with virtual symbols.
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2. Modify the sequence D′ to become sequence B′, by replacing each com-
ponent in the subvector bΔb,1 with virtual symbols.

Therefore, (A′, B′) is the uniform alignment if T = T̂k′ is the uniform esti-
mation for the local mutation mode Tk′ , and then (Ĉk′ , D̂k′), created by the
above process, is the uniform estimation statistic of (A,B) according to the
local mutation Tk′ . We can estimate the next mutation position of (Ck′ , Dk′)
based on (Ĉδ2k′+1

, D̂δ2k′+1
).

4.1.3 The Estimations of Mutation Position and Length

We propose the statistical approach for estimating the mutation position and
length (ik, �k) in this subsection.

Sliding Window Function of Sequence

The sliding window function of sequence A,B is defined by

w(A,B; i, j, n) = w
(
a[i+1,i+n], b[j+1,j+n]

)
=

1
n

n∑

k=1

w (ai+k, bj+k) , (4.10)

where w(a, b) is the Hamming matrix. Similarly, the sliding window function
of the stochastic sequence A∗, B∗ is defined as

w(A∗, B∗; i, j, n) = w
(
a∗[i+1,i+n], b

∗
[j+1,j+n]

)
=

1
n

n∑

k=1

w
(
a∗i+k, b

∗
j+k

)
. (4.11)

We will see later that the sliding window function is the same as the local
penalty function.

If B∗ is mutated from A∗, we can use w(A∗, B∗; i, j, n) to estimate the
first mutation position of (A∗, B∗). Therefore, we can separate the random
variable pair (a∗i+k, b

∗
j+k) in expression (4.11) into two segments as follows:

The first segment: (a∗i+k, b
∗
j+k), k = 1, 2, · · · , n1 is the segment without shifting

mutations, here b∗j+k is the random variable mutated from a∗i+k after type-I
and type-II mutations. The joint probability distribution is

Pr
{
a∗i+k = b∗j+k

}
= 1 − ε , Pr

{
a∗i+k �= b∗j+k

}
= ε .

The second segment: (a∗i+k, b
∗
j+k), k = n1 + 1, n1 + 2, · · · , n is the segment

with shifting mutation, here mutations III and IV occur in front of b∗j+k and
a∗i+k. The joint probability distribution is

Pr
{
a∗i+k = b∗j+k

}
=

1
4
, Pr

{
a∗i+k �= b∗j+k

}
=

3
4
.

Let δ1 = [1, n1], δ2 = [n1 + 1, n]. Then we have

E{w(ai+k, bj+k)} =

⎧
⎨

⎩

ε , if (ai+k, bj+k) ∈ δ1 ,
3
4
, if (ai+k, bj+k) ∈ δ2 .

(4.12)
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If (A∗, B∗) are two independent stochastic sequences, then applying the
law of large numbers we have

w(A∗, B∗; i, j, n) ∼ εn1

n
+

3n2

4n
, (4.13)

where nτ = ||δτ || is the length of the interval δτ .

Statistics for the Sliding Window Function

From the computation formula for the sliding window function (4.13), we can
develop statistical estimates of (n1, n2). If the parameters ε, n are known,
following from (4.13) and n1 + n2 = n we can estimate (n1, n2) as:

⎧
⎪⎨

⎪⎩

n̂1 = n
3 − 4w
3 − 4ε

= n

(
1 − w − ε

0.75 − ε

)
,

n̂2 = n
w − ε

0.75 − ε
,

(4.14)

in which w = w(A∗, B∗; i, j, n) is calculated directly using (4.11) and (A∗, B∗).
Next, we discuss the estimate of (n1, n2) when the parameter n is known

while ε is still to be determined. Let (A,B) be a fixed sample. We then have:

1. We assume that δ1 and δ2 are two fixed intervals, say,

δ1 = [1, 2, · · · , n1] , δ2 = [n1 + 1, n1 + 2, · · · , n] ,

in which n2 = n − n1. Then, ai+δ1 and bj+δ1 are segments without the
shifting mutations, and ai+δ2 and bj+δ2 are segments with shifting muta-
tions. Let

δ = (δ1, δ2) = (1, 2, · · · , n) .

Then, (4.13) is also true and

w = w(A,B; i, j, n) = w(ai+δ , bj+δ) .

2. If we add a shifting parameter h to the penalty function, that is, if we
calculate

w′ = w(A,B; i+ h, j + h, n) = w(ai+h+δ, bj+h+δ) ,

in which 0 < h < n is a positive integer but not too large, then the
interval δ can be decomposed as:

δ = (δ′1, δ
′
2) = ((1, 2, · · · , n1 − h), (n1 − h+ 1, n1 − h+ 2, · · · , n)) .

If ai+h+δ′1 and bj+h+δ′1 are segments without shifting mutations, and
ai+h+δ′2 and bj+h+δ′2 are segments with shifting mutations, the formula
for w′ is found to be:

w′ = w(A,B; i + h, j + h, n) ∼ ε(n1 − h)
n

+
3(n2 + h)

4n
. (4.15)
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Therefore, following from (4.13) and (4.15) we obtain the following coupled
algebraic equations:

⎧
⎪⎨

⎪⎩

εn1

n
+

3n2

4n
= w ,

ε(n1 − h)
n

+
3(n2 + h)

4n
= w′ ,

(4.16)

in which n1 + n2 = n, and w,w′ are constants that can be directly calcu-
lated based on A,B, i, j, n, h. Therefore, the value of n1, ε can be solved
using (4.16).
The simultaneous equations of (4.16) can be reduced to the following form:

{
4n1ε+ 3(n− n1) = 4nw ,

4(n1 − h)ε+ 3(n− n1 + h) = 4nw′ .

Thus, we have ⎧
⎪⎨

⎪⎩

ε =
3
4

+
n

h
(w − w′) ,

n1 =
h

w′ − w

(
3
4
− w

)
.

(4.17)

If we specify w,w′ in (4.17) by w(A∗, B∗; i, j, n) and w(A∗, B∗; i + h,
j + h, n), respectively, then the results of (4.17) are denoted by ε̂, n̂1,
which is the estimate of ε, n1.

4.2 Operation Steps of the SPA and Its Improvement

Continuing from the above section, we introduce the SPA for pairwise align-
ment. Let us begin by introducing the operation steps of SPA.

4.2.1 Operation Steps of the SPA

Let (A,B) be two fixed sequences. Every algorithm has the goal of estimating
all the parameters in the mutation mode T . The SPA is no exception. Specifi-
cally, we first select the important parameters n, h, θ, θ′, τ . Here, n is selected
according to the convergence of the law of large numbers or the central limit
theorem. Typically, we choose n = 20, 50, 100, 150, etc. θ, θ′ are selected based
on the error rate of the type-I and type-II mutations and the error rate of two
independently random variables. Thus, we choose 0 < θ < θ′ < 0.75. For the
parameters h, τ as two local modifications, we choose them to be proportional
to n; typically, τ = αn, h = βn, 0 < α, β < 0.5, etc. The SPA is described
below:
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Step 4.2.1 Estimate the first mutation position i1 in T :
1. Initialize i = j = 0 and calculate w(A,B; i, j, n). If

w(A,B; i, j, n) = w ≥ θ′ ,

then let î1 = 0. This means the shifting mutation occurs at the
beginning of [1, n]. Otherwise, go to step 4.2.1-(2).

2. In Step 4.2.1, procedure 1, if w ≤ θ, meaning no shifting mutation
occurs in [1, n], we put the starting point forward and consider
i = j = n− τ . Next, we calculate the corresponding w(A,B; i, j, n).
If

w(A,B; i, j, n) = w ≤ θ ,

then let i = j = 2(n− τ) and repeat Step 4.2.1, procedure 2 until
w(A,B; i, j, n) > θ. Let k1 be the integer satisfying the following
requirements:

w(A,B; i, j, n) = w ≤ θ

if i = j = k1(n − τ), and w(A,B; i, j, n) = w > θ if i = j =
(k1 + 1)(n− τ). Proceed to Step 4.2.1, procedure 3 or procedure 4.

3. For i = j = (k1 + 1)(n − τ), if w(A,B; i, j, n) = w ≥ θ′, then set
î1 = (k1 + 1)(n− τ). Otherwise, go to Step 4.2.1, procedure 4.

4. Following Step 4.2.1, procedures 1–3, we have θ < w < θ′ if i =
j = (k1 + 1)(n − τ). Therefore, for the same n, compute w′ =
w(A,B; i+ h, j + h, n). If w′ > w, calculate î1 according to (4.17).
Otherwise, repeat Step 4.2.1, procedures 1–4 for the larger h and n,
until w′ > w.

Therefore, through the use of Step 4.2.1, we may estimate î1 of i1.

Step 4.2.2 Estimate �1 based on the estimation î1 of the first mutation po-
sition in T . Typically,

w
(
A,B; î1 + �, î1, n

)
, w

(
A,B; î1, î1 + �, n

)
, � = 1, 2, 3, · · · .

If pair (̂i1 + �, î1) or pair (̂i1, î1 + �) satisfies w ≤ θ = 0.3 or 0.4, where
w is its corresponding sliding window function, then this � is the length
of the shifting mutation. Specifically:
1. If w(A,B; î1 + �, î1, n) ≤ θ, we note that �̂1 = −� and we insert
� virtual symbols into sequence B following the position î1, while
keeping sequence A invariant.

2. If w(A,B; î1, î1 + �, n) ≤ θ, we note that �̂1 = � and we insert
� virtual symbols into sequence A following the position î1, while
keeping sequence B invariant.

Through the use of these two steps, we may estimate the local mutation
mode T1 = {(i1, �1)}, and its corresponding locally uniform alignment
(C1, D1). It is decomposed as follows:

C1 = (C1,1, A2,1) , D1 = (D1,1, B2,1) .
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Denote the length of vector C1,1 and D1,1 by î1 + |�̂1|. Since there is no
shifting mutation occurring in the first n positions of A2,1, B2,1, we let
L1 = î1 + |�̂1| + n be the starting point for next alignment.

Step 4.2.3 After obtaining the estimation (̂i1, �̂1), we continue to estimate i2
based on (C1, D1). We initialize i = j = L1 and calculate w(A,B; i, j, n)
by repeating Step 4.2.1, procedures 1–4 to obtain the estimation î2
for i2.

Step 4.2.4 Estimate �2 based on the estimations î1, �̂1, î2. Here, we calculate

w
(
C1, D1; î2 + �, î2, n

)
, w

(
C1, D1; î2, î2 + �, n

)
, � = 1, 2, 3, · · · .

We repeat Step 4.2.2 to get �̂2 and the local alignment (C2, D2).
Step 4.2.5 Continuing the above process, we find the sequence (̂ik, �̂k) and

the corresponding sequence (Ck, Dk) for all k = 1, 2, 3, · · · . The process
will terminate at some k0 such that Ck0 = (C1,k0 , A2,k0) and Dk0 =
(D1,k0 , B2,k0) have shifting mutations occurring in (A2,k0 , B2,k0). Let
Lk0 denote the length of sequence C1,k0 , D1,k0 and i = j = Lk0 . The
corresponding � is the length of the shifting mutation if pair (̂ik0 +�, îk0)
or pair (̂ik0 , îk0 + �) satisfies w ≤ θ, and then w(Ck0 , Dk0 ; i, j, n

′) ≤ θ in
which n′ is the shorter of the lengths of A2,k0 and B2,k0 .
Finally, we equalize the lengths of A2,k0 and B2,k0 . In other words, if
the length of A2,k0 is shorter than that of B2,k0 , we insert several virtual
symbols at the end of A2,k0 so that its length is same as that of B2,k0 .

Example 17. The following two RNA sequences are drawn from 195 sRNAs
in [77]. We show how to align them using SPA:(
E.co′ : ugccuggcgg ccguagcgcg guggucccac cugaccccau gccgaacuca gaagugaaa

B.st′ : ccuagugaca auagcggaga ggaaacaccc gucccauccc gaacacggaa guuaag

Here, na = 59, nb = 56. These two sequences seem disorderly and unsystem-
atic, but we can adapt them by inserting the virtual symbol “−” several times,
which is restricted so that the penalty functions of the two sequences are at
a minimum. By performing Steps 4.2.1–4.2.4, we obtain:(
E.co′ : ugccuggcgg ccguagcgcg guggucccac cugaccccau gccgaacuca gaagugaaa

B.st′ : —ccuaguga caauagcgga gaggaaacac ccgucc-cau cccgaacacg gaaguuaag

The specific computational procedure is detailed as follows:

1. Let i = j = 0, n = 15 and calculate the sliding window function of B.st
and E.co: w(A,B; i, j, n) = 14

15 = 0.933 > θ′ = 0.6. Thus, î1 = 0.
2. For fixed î1 = 0, let n = 20 and calculate the sliding window functions

w(A,B; 0, 1, n) =
13
20

= 0.65 , w(A,B; 0, 2, n) =
18
20

= 0.9 ,

w(A,B; 0, 3, n) =
15
20

= 0.75 , w(A,B; 0, 4, n) =
16
20

= 0.8 ,

w(A,B; 1, 0, n) =
16
20

= 0.8 , w(A,B; 2, 0, n) =
7
20

= 0.35 ,
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in which w(A,B; 2, 0, n) = 7
20 = 0.35 < 0.4 and the values of the other

functions are all greater than 0.6. Therefore, following from Step 4.2.2,
we have �̂1 = −2. We then insert two virtual symbols at the beginning of
sequence B, and we find the local aligned sequences (C1, D1) as follows:(
C1 : ugccuggcgg ccguagcgcg guggucccac cugaccccau gccgaacuca gaagugaaa

D1 : —ccuaguga caauagcgga gaggaaacac ccgucccauc ccgaacacgg aaguuaag

3. Aligning (C1, D1). If we put i = j = 22, n = 25 and calculate the sliding
window function, we get w = w(A,B; i, j, n) = 12

25 . Putting h = 10, we get
w′ = w(A,B; i + h, j + h, n) = 16

25 . We input w = 16
25 , w′ = 12

25 , n = 25,
h = 10 into (4.17), giving

î2 = L1 +
h

w′ − w

(
3
4
− w

)
= 20 +

250
4

(
3
4
− 12

25

)
∼ 20 + 17 = 37 .

4. Letting i = j = î2, n = 15, we calculate w(A,B; i + �, j, n) and
w(A,B; i, j + �, n). The results are

w(A,B; i, j + 1, n) =
12
15

= 0.8 > 0.6 ,

w(A,B; i+ 1, j, n) =
3
15

= 0.2 < 0.3 .

Thus, �̂2 = −1, and the local aligned sequences (C2, D2) are given as:(
C2 : ugccuggcgg ccguagcgcg guggucccac cugaccccau gccgaacuca gaagugaaa

D2 : —ccuaguga caauagcgga gaggaaacac ccgucc-cau cccgaacacg gaaguuaag

5. Let i = j = î2, n = 21, and calculate w(A,B; i+1, j, n) = 5
21 = 0.24 < 0.3.

We have aligned the entire sequences (C2, D2). Therefore, (C2, D2) is the
uniform alignment of sequences (A,B).

The implications of Example 17: We have performed the alignment of
the pair of E.co and B.st using the SPA, and obtained (C2, D2), in which
both sequences are of the same length 59. The total penalty is w(C2, D2) =
21
59 ∼ 0.356. This value is much less than 0.75, so we can declare that sequences
E.co and B.st are homologous.

4.2.2 Some Unsolved Problems and Discussions of SPA

Some Unsolved Problems

In the last subsection, we introduced the operation steps of the SPA. Because
of the complexity of biological data, some problems arise while running the
SPA. Therefore, the SPA does not represent the final word, as there are still
unsolved problems in the sense of both theoretical analysis and the design of
the program. For example:
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1. Selection of parameters. The parameters involved in the SPA are chosen
as: n, h, τ, θ, θ′, etc. This is a specific case. However, how are the parame-
ters selected, in general, from the parameter set? How may we adjust the
selected parameters automatically in the alignment? Which principle and
algorithm should be used to adjust these parameters?

2. What can be said about the validity of the statistic T̂ = {(̂ik, �̂k), k =
1, 2, · · · , k̂a}? What can be concluded about the stability of the algorithm,
and how could the algorithm be adjusted or modified if errors occur?

3. How might one estimate the computational complexity of the SPA? How
might one design a simpler, comprehensive algorithm?

4. How might one implement the minimum penalty alignment based on the
uniform alignment of sequences?

All the abovementioned problems (and many more) are important for the im-
provement of the SPA. Many of these issues involve probability and statistics.
In this section, we focus on these problems, which are essential for this kind
of algorithm.

Discussion of the Selection of Parameters

The principle of the selection of parameters n, θ, θ′ is the law of large num-
bers or the central limit theorem. Through statistical analysis based on the
benchmark dataset, the GenBank Database, we see the randomness of DNA
(or RNA) sequences. Therefore, for the cases in which those segments are
mutated by shifting mutations, we note that a∗i+t and b∗j+t are independent,
obey uniform distribution on V4, and have changes which are easily controlled.
These special properties play an important role in the following formula:

w
(
a∗[i+1,i+n], b

∗
[j+1,j+n]

)
=

1
n

n∑

t=1

w
(
a∗i+t, b

∗
j+t

)
.

Then

Pr

{

w
(
a∗[i+1,i+n], b

∗
[j+1,j+n]

)
<

3
4
− κ

√
3

16n

}

∼ φ(−κ) ,

in which φ(−κ) is the density function of the standard normal distribution.
Thus, following from the normal distribution table, we have

φ(−1.5) = 0.0668 , φ(−2) = 0.0228 , φ(−2.5) = 0.0062 ,
φ(−3.0) = 0.0013 , φ(−3.5) = 0.0002 , φ(−4.0) < 0.0001 .

Hence, 1− φ(κ) is considered the degree of confidence. Therefore, we can use
different κ’s to control the parameter

θ′ =
3
4
− κ

√
3

16n
.
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Table 4.1. The relationship table of the selection of parameters n, κ, �

κ �|n 15 20 25 30 40 50 75 100

1.0 0.8413 0.45505 0.43874 0.42761 0.41940 0.40787 0.40000 0.38777 0.38047
1.5 0.9332 0.58229 0.60476 0.62010 0.63141 0.64730 0.65814 0.67500 0.68505
2.0 0.9772 0.52639 0.55635 0.57679 0.59189 0.61307 0.62753 0.65000 0.66340
2.5 0.9938 0.47049 0.50794 0.53349 0.55236 0.57884 0.59691 0.62500 0.64175
3.0 0.9987 0.41459 0.45953 0.49019 0.51283 0.54460 0.56629 0.60000 0.62010
3.5 0.9998 0.35869 0.41111 0.44689 0.47330 0.51037 0.53567 0.57500 0.59845
4.0 >0.9999 0.30279 0.36270 0.40359 0.43377 0.47614 0.50505 0.55000 0.57679

The values of κ, �, and n are listed in Table 4.1, where � = 1 − φ(κ) is the
confidence level.
Based on this table we can draw the following conclusions:

1. If w(a∗[i+1,i+n], b
∗
[j+1,j+n]) < θ′(κ, n), then a∗i+k and b∗j+k are dependent

and b∗[j+1,j+n] is mutated from a∗[i+1,i+n] through type-I mutation with
a confidence level �, where pairs (a∗i+k, b

∗
j+k) correspond to the vectors

a∗[i+1,i+n] and b∗[j+1,j+n] for all k = 1, 2, · · · , n.
2. For the sequences without shifting mutations, we assume that

Pr
{
a∗i+t �= b∗j+t

}
<

1
3
.

We then have

Pr

{

w
(
a∗[i+1,i+n], b

∗
[j+1,j+n]

)
>

1
3

+ κ

√
2
9n

}

∼ φ(−κ) .

Therefore, we can use different κ to control the parameter

θ =
1
3

+ κ

√
2
9n

.

The values κ, �, and n are listed in Table 4.2.
Here, if w(a∗[i+1,i+n], b

∗
[j+1,j+n]) > θ(κ, n), we may conclude that type-III or

type-IV mutations occur in vector a∗[i+1,i+n] and b∗[j+1,j+n] with a confidence
level �.

Estimation of Parameter T

In the data of DNA sequences, the occurrence of type-I and type-II mutations
actually fluctuates, affecting the validity of the estimation of îk, �̂k, especially
the computation of (4.17). Consequently, there are still many problems to be
discussed when estimating îk, �̂k.

If the fluctuation of the error ε resulting from type-I or type-II mutations
is large, we may improve the val idity of the estimation of îk, �̂k in several
ways:
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Table 4.2. Relationship table of the selection of parameters n, κ, �

κ �|n 15 20 25 30 40 50 75 100

1.0 0.8413 0.62090 0.63820 0.65000 0.65871 0.67094 0.67929 0.69226 0.70000
1.5 0.9332 0.51591 0.49145 0.47475 0.46243 0.44514 0.43333 0.41498 0.40404
2.0 0.9772 0.57677 0.54415 0.52190 0.50547 0.48240 0.46667 0.44220 0.42761
2.5 0.9938 0.63762 0.59686 0.56904 0.54850 0.51967 0.50000 0.46942 0.45118
3.0 0.9987 0.69848 0.64956 0.61618 0.59153 0.55694 0.53333 0.49663 0.47475
3.5 0.9998 0.75934 0.70227 0.66332 0.63457 0.59421 0.56667 0.52385 0.49832
4.0 >0.9999 0.82020 0.75497 0.71046 0.67760 0.63148 0.60000 0.55107 0.52190

1. Enlarge n. As a result of our actual computational experience, we may
choose n: n = 20 if the fluctuation of the mutation error ε is not larger
than that seen in Example 17. We choose n = 40 if the fluctuation of
the mutation error ε is larger. If the fluctuation of the mutation error ε is
much larger, n may be chosen much greater than 40.

2. Improve the decision-making process in (4.17). Enlarging the parameter n
as mentioned in step 1 does improve the validity of the estimation, but the
effect is limited since the fluctuation of the statistic îk will increase as n
increases. Therefore, a more important improvement would be to refine the
discrimination in equations (4.17). In the next subsection, we introduce
the fluctuation range of the statistic of îk, and use other mathematical
methods, such as regression analysis, wavelet analysis, etc.

4.2.3 Local Modifications for Sequence Alignment

We have mentioned the procedure for the local modification for sequence align-
ment in Sect. 3.5.4. Its purpose is to modify the output sequences A′ and B′

by locally permutating the inserted virtual symbols so that the penalty score
of the alignment becomes smaller. The local modifications can be classified as
follows:

1. Permutation occurring in the neighborhood of the inserted region. For
example, if we obtain the locally aligned sequences:

(
ac———cg
guuuccaau

)
,

the local modification becomes
(

a—–cc—g
guuuccaau

)
,

while keeping the other segments unchanged. The penalty score of the
new alignment is then reduced.
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2. If there are almost the same number of inserted symbols in both sequences,
we may reduce the penalty by deleting the same number of virtual symbols
from both sequences simultaneously. For example, if the local alignment
sequence is: (

ac—cguua
aguuuc—a

)
,

we delete two “−” from both sequences to find
(

accguua
aguuuca

)
,

while keeping the other segments unchanged. The penalty score then falls
from 7 to 4, and the rate of the penalty score is reduced.

3. It is possible to reduce the penalty score by adding or deleting several
“−” symbols at the tail ends of the sequences. For example, if the initial
alignment is: (

aaccacg
acacgga

)
,

which is the tail of some pair, we insert the “−” symbols as follows:
(

aaccacg—
a–c–acgga

)
,

while keeping the other segments unchanged. The penalty score of this
local segment falls from 5 to 4. The insertions occur at the end of the
sequence, so they do not affect the alignment, while reducing the penalty
score.

The problem of how to standardize the local modifications is still unsolved.
We wish to use computational complexity as the measure of whether this goal
has been achieved, but it is also a valuable problem in its own right to be
studied further.

4.3 Index Analysis of SPA

For the most functional indices involved in the SPA, we analyze them theo-
retically or simulate them computationally. We detail this in the discussion
below.

4.3.1 The Statistical Features of Estimations

In (4.14) and (4.17), we presented the formulas for estimating the mutation
position s and mutation probability ε. Here, we discuss the statistical features
of these estimations.
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Statistical Model for the Estimation of Mutation Position s

In Chap. 2, we presented the stochastic and semistochastic models of the
random mutation induced by stochastic sequences. To estimate the mutation
position s is to make a statistical estimation based on its local sequences.
Therefore, this problem can be solved by the following model. Let

E∗(s) = {ā∗, b̄∗, s} , (4.18)

where
ā∗ =

(
a∗1, a

∗
2, · · · , a∗n+h

)
, b̄∗ =

(
b∗1, b

∗
2, · · · , b∗n+h

)

is a stochastic model with one shifting mutation. The mutation position is s.
We call this the single mutation stochastic model. Based on the discussion
in Chap. 2, we translate the stochastic models with shifting mutation into
stochastic sequences satisfying the following requirements:

1. If w(a, b) is the Hamming matrix, then the stochastic sequence

w
(
a∗j , b

∗
j

)
, j = 1, 2, · · · , n+ h

is an independent random vector sequence.
2. Each w(a∗j , b

∗
j ) is a Bernoulli test, and there exists a positive integer

s < n+ h such that:

w
(
a∗j , b

∗
j

) ∼
(

0 1
1 − ε ε

)
if j ≤ s ,

and

w(a∗j , b
∗
j ) ∼

(
0 1

1/4 3/4

)
if j > s .

This model is in fact a hybrid of the four types of mutations. The background
information and relevant definitions are discussed in Chap. 2. Here, the vectors
ā∗, b̄∗ are deemed to be the subvectors of the mutated sequences (A∗, B∗) re-
spectively, and the starting positions have no shifting mutations. Conditions 1
and 2 are therefore satisfied.

The Characteristic Property of the Estimations ŝ, ε̂

Let ā∗, b̄∗ be two random vectors defined by (4.18) and satisfying conditions 1
and 2 above; then the values of the parameter s are called mutation positions
and their penalty function is defined as follows:
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

w∗ = w [(a∗1, a
∗
2, · · · , a∗n) , (b∗1, b∗2, · · · , b∗n)] =

n∑

j=1

w
(
a∗j , b

∗
j

)
,

(w∗)′ = w
[(
a∗h+1, a

∗
h+2, · · · , a∗h+n

)
,
(
b∗h+1, b

∗
h+2, · · · , b∗h+n

)]

=
n∑

j=1

w
(
a∗j+h, b

∗
j+h

)
.

(4.19)

Using the above notations, we estimate the mutation position s as follows:
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1. If the parameter ε is known, then

ŝ∗ = n
3 − 4w∗

3 − 4ε
. (4.20)

2. If the parameter ε is unknown, then
⎧
⎪⎨

⎪⎩

ε̂∗ =
3
4

+
n

h
(w∗ − (w∗)′) ,

ŝ∗ =
h

(w∗)′ − w∗

(
3
4
− w∗

)
,

(4.21)

where h is given in Sect. 4.1.3.

Theorem 20. If the random vectors ā∗, b̄∗ satisfy conditions 1 and 2 above,
then the following properties are satisfied:

1. If the parameter ε is known, then the estimation ŝ∗ in expression (4.20)
is a uniformly unbiased estimation. Its lack of bias means that E{ŝ∗} = s
and its uniformity means that

lim
n→∞

ŝ∗

n
= λ a.e. (4.22)

holds for any fixed λ = s
n .

2. If the parameter ε is unknown, then ε̂∗ in expression (4.21) is a uniformly
unbiased estimation, and ŝ∗ is a uniform estimation.

Proof.

1. We attempt to prove conclusion 1. If ε is a known fixed constant, then

E{ŝ∗} = E

{
n

3 − 4ε
(3 − 4w∗)

}
=

n

3 − 4ε
E{3 − 4w∗}

=
n

3 − 4ε
(3 − 4E{w∗}) =

n

3 − 4ε

{
3 − 4

n

[
sε+

3
4
(n− s)

]}

=
1

3 − 4ε
[3n− 4sε− 3(n− s)] =

1
3 − 4ε

(3s− 4sε) = s .

It means that ŝ∗ is an unbiased estimation. Next, we prove it is also
a uniform estimation. Since

lim
n→∞

ŝ∗

n
= lim

n→∞

n
3−4ε (3 − 4w∗)

n
= lim
n→∞

1
3 − 4ε

(3 − 4w∗) ,

then using the law of large numbers, we have

lim
n→∞w∗ = lim

n→∞
1
n

⎡

⎣
s∑

j=1

w
(
a∗j , b

∗
j

)
+
n−s∑

j=1

w
(
a∗s+j , b

∗
s+j

)
⎤

⎦

= lim
n→∞

⎡

⎣λ
s

s∑

j=1

w
(
a∗j , b

∗
j

)
+

1 − λ

n− s

n−s∑

j=1

w
(
a∗s+j , b

∗
s+j

)
⎤

⎦

= λε+
3
4
(1 − λ) a.e.
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Therefore,

lim
n→∞

ŝ∗

n
=

1
3 − 4ε

{
3 − 4

[
λε+

3
4
(1 − λ)

]}

=
1

3 − 4ε
[3 − 4λε− 3(1 − λ)] =

1
3 − 4ε

(3λ− 4λε) = λ . a.e.

This concludes the proof of conclusion 1.
2. Secondly, we prove that the estimation ε̂∗ in expression (4.21) is uniformly

unbiased. Since

E{ε̂∗} =
3
4

+
n

h
E{w∗ − (w∗)′}

=
3
4

+
1
h

{[
sε+

3
4
(n− s)

]
−
[
(s− h)ε+

3
4
(n− s+ h)

]}

=
3
4

+
1
h

(
hε− 3h

4

)
=

3
4

+ ε− 3
4

= ε ,

it implies that ε̂∗ is an unbiased estimation of ε. To prove that ε̂∗ is the
uniform estimation of ε, we still must assume that λ = s

n , δ = h
n are fixed

as constants, and 0 < δ < λ < 1. Then

lim
n→∞ ε̂∗ =

3
4

+ lim
n→∞

n

h
[w∗ − (w∗)′] .

Drawing agian on the law of large numbers, we have
⎧
⎪⎨

⎪⎩

lim
n→∞w∗ = λε+

3
4
(1 − λ) ,

lim
n→∞(w∗)′ = (λ− δ)ε+

3
4
(1 − λ+ δ) .

(4.23)

Therefore,

lim
n→∞[w∗ − (w∗)′] = λε+

3
4
(1 − λ) −

[
(λ− δ)ε+

3
4
(1 − λ+ δ)

]

= δε− 3
4
δ . (4.24)

Since n
h = 1/δ, we find

lim
n→∞ ε̂∗ =

3
4

+
1
δ

(
δε− 3

4
δ

)
= ε ;

hence, the estimation ε̂∗ is uniform.
3. Finally, we prove that ŝ∗ in (4.21) is uniform. We let λ = s

n , δ = h
n , and

0 < δ < λ < 1, then

lim
n→∞

ŝ∗

n
= lim
n→∞

h

n[(w∗)′ − w∗]

(
3
4
− w∗

)
.
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We substitute the result of (4.23) and (4.24) for the above limit formula,
to arrive at

lim
n→∞

ŝ∗

n
=

1
3
4 − ε

[
3
4
− λε− 3

4
(1 − λ)

]

=
1

3
4 − ε

(
3λ
4

− λε

)
= λ .

Hence, ŝ∗ is the uniform estimation for s, and the theorem is proved.

Distributed Property of the Estimation ŝ∗

We discuss the case where ε is known. Using expression (4.20) and the central
limit theorem, we know that ŝ∗−s√

n
∼ N(0, σ2

n,s) is a normal distribution. Thus,
we need only estimate σ2

n,s, which is evaluated below.

σ2
n,s = D{ŝ∗} = E{(ŝ∗ − s)2} = E{(ŝ∗)2} − s2

= E

{[
n

3
4 − ε

(
3
4
− w∗

)]2
}

− s2 =
n2

(3
4 − ε)2

E

{(
3
4
− w∗

)2
}

− s2

=
n2

(
3
4 − ε

)2

[
9
16

− 3
2
E{w∗} + E{(w∗)2}

]
− s2 (4.25)

with the help of
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E{w∗} =
1
n

[
sε+

3
4
(n− s)

]
,

E{(w∗)2} = (E{w∗})2 +
1
n2

[
sε(1 − ε) +

3
16

(n− s)
]
,

=
1
n2

{

s2ε2 +
3
2
sε(n− s) +

9
16

(n− s)2

+
[
sε(1 − ε) +

3
16

(n− s)
]}

(4.25) leads to

σ2
n,s =

1
(

3
4 − ε

)2

[
sε(1 − ε) +

3
16

(n− s)
]
. (4.26)

It is known that the range of the estimation ŝ is controlled by the size of σ2
n,s

and that σ2
n,s is a function of ε, n and s. For example, let ε = 1/4, n = 36,

s = 18, then

σn,s =

√
1

(
3
4 − ε

)2

[
sε(1 − ε) +

3
16

(n− s)
]

= 3
√

3 ∼ 5.19615 .
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This means that the uncertainty in the estimation of ŝ∗ is comparatively large.
Therefore, we must improve the local modification operations or the algorithm
to reduce uncertainty in ŝ∗.

Discussion of the Models of Stochastic Mutation

In (4.18), we talked about the single mutation stochastic model E∗(s) =
{ā∗, b̄∗, s}, in which the mutation position s is a fixed value. Therefore, E∗

is a semistochastic mutation model. If the mutation position s∗ is a random
variable, then we let

E∗(s∗) = {ā∗, b̄∗, s∗} . (4.27)

This E∗(s∗) satisfies the following additional conditions:

1. E∗(s) is a single mutation stochastic model if s∗ = s and the corresponding
probability distribution satisfies conditions 1 and 2 as a single mutation
statistic model.

2. s∗ obeys the geometric distribution: Pr{s∗ = s} = δ(1 − δ)s−1, s =
1, 2, 3, · · · . Here, we also assume that the length of (ā∗, b̄∗) can be ex-
tended arbitrarily. We still discuss the properties of the estimation ŝ∗

of s∗ as follows:
(a) In (4.14) and (4.17), ŝ∗ and ε̂ do not depend on s∗. Therefore, (4.14)

and (4.17) can be also used to estimate ŝ∗, ε̂.
(b) If ε is known, the formula for the mean value of the estimation ŝ∗ of

s∗ is

E{ŝ∗} = E{E[ŝ∗|s∗]} = E{s∗} =
∞∑

s=1

sδ(1 − δ)s−1 =
1
δ
, (4.28)

where E[ŝ∗|s∗] is the conditional expectation, which is a function of s∗.
The first equation in (4.28) can be acquired from the property of
conditional expectation.
We can also calculate the variance as follows:

D{ŝ∗} = E{[ŝ∗ − E(ŝ∗)]2} = E{E[(ŝ∗ − Eŝ∗)2|s∗]}

= E

{
s∗ε(1 − ε) + 3

16 (n− s∗)
(

3
4 − ε

)2

}

∼ ε(1 − ε) + 3
16 (nδ − 1)

δ
(

3
4 − ε

)2 , (4.29)

in which n is large enough so that
∞∑

s=n+1

s2δ(1 − δ)s =
(
n+

1
δ

)2

(1 − δ)n+1 ∼ 0

holds.
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4.3.2 Improvement of the Algorithm to Estimate ŝ∗

In the SPA, we demonstrated that ŝ∗ is estimated based on the solution of
(4.14). This algorithm has two problems, namely:

Problem 1 The uncertainty in the estimation ŝ∗ based on the set of (4.14)
is too large as the parameter n increases.

Problem 2 The mutation position s∗ is a random variable, and the distance
between two adjacent mutation positions ik and ik+1 is also a random
variable. For example, in the Example 18, the distances between three
adjacent pairs are shown as follows:

i5 − i4 = 68 , i10 − i9 = 20 , i26 − i25 = 402 .

The operations on (4.17) have no self-adaptive property. In other words, it
cannot automatically search for the mutation positions with different separa-
tions.

To solve these two problems, we propose the regression analysis discrimi-
native algorithm as follows.

The Outline of Self-Adaptive Regression Analysis Discriminative
Algorithm

The statistical decision model we will discuss is still in the form E(s∗) =
{ā∗, b̄∗, s∗}, which satisfies the conditions of a single mutation stochastic
model. Here, the length n of vector ā∗, b̄∗ may be quite large, and the dis-
tribution of s∗ may be widely separated. The outline of the self-adaptive
regression analysis discriminative algorithm is presented next:

1. For a fixed sequence (ā, b̄), construct the self-adaptive window function

w(k, n0) = w
(
a[k+1,k+n0], b[k+1,k+n0]

)
=

n0∑

j=1

w(ak+j , bk+j) , (4.30)

where n0 is a fixed positive integer, for example, n0 = 15, 20, etc.
2. For the self-adaptive window function w(k, n0), k = 1, 2, 3, · · · , we analyze

the tendency. In other words, we perform trend analysis based on one part
of the data

w[k0+1,k1] = {w(k, n0), k0 < k ≤ k1} , (4.31)

and determine linear regression Γ[k0+1,k1]. Here we have several types of
linear regression Γ[k0+1,k1] such as:
(a) Type 1, where Γ[k0+1,k1] is a horizontal line of height y = ρ < 3/4. We

denote it by Γ1.
(b) Type 2, where Γ[k0+1,k1] is a horizontal line of height y = ρ′ ≥ 3/4.

We denote it by Γ3.
(c) Type 3, where Γ[k0+1,k1] is a monotonically increasing straight line.

We denote this straight line by Γ2.
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3. We choose the intersection point of the straight lines Γ2 and Γ3 as the
estimation of the mutation position s.

4. The value of (k0, k1) may be different. Therefore, straight-line regression
may also be different. For the selection of the straight line Γ2, we should
select the straight line with the largest slope as the solution in order to
minimize the penalty score.

The Outline of Self-Adaptive Regression Analysis Discriminative
Algorithm

We present the steps of the algorithm according to the outline of the self-
adaptive regression analysis discriminative algorithm. Steps 4.2.1–4.2.5 of the
SPA can continue to be used and we need only modify the corresponding
operations in Steps 4.2.1 and 4.2.3. We then have:

Step 4.3.1 We use the function wk = 1
n0
w(k, n0) to estimate the first mu-

tation position i1 in T :
1. Initialize k = 0 and calculate w(k, n0). If wk ≥ θ′(θ′ ∈ (0.6, 0.8)), set
î1 = 0. Otherwise, go to the next step.

2. If wk ≤ θ(θ ∈ (0.3, 0.5)), continue to calculate wk+1 for all k =
0, 1, 2, · · · . If there are several connected k such that

wk ≤ θ , wk+1 < θ ,

say, for k = 0, 1, · · · , k1, then perform regression analysis on these
points. The corresponding straight line of the regression analysis is
a horizontal line and Γ1 : y = ρ1, where the value of ρ1 is the solution
of equation

k1∑

k=0

(wk − ρ1)2 = min

{
k1∑

k=0

(wk − ρ)2 , ρ > 0

}

. (4.32)

Then

σ2
1 =

1
k1 + 1

k1∑

k=0

(wk − ρ1)2 (4.33)

is the regression error.
3. After the straight line Γ1 is determined, we continue to calculate
wk, k = k1 + 1, k1 + 2, k1 + 3, · · · , if there exist points k2, k3 such
that {

θ < wk < θ′ for any k2 < k ≤ k3 ,

θ′ < wk is true for any k3 < k .

We then perform regression analysis based on the data:

wk , k = k2 + 1, k2 + 2, · · · , k3 , k = k3 + 1, k3 + 2, k3 + 3 · · · .
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The corresponding straight lines in the regression analysis are
{
Γ2 : y = ρ2x+ ρ′2 ,
Γ3 : y = ρ3 ,

respectively, which satisfy the following conditions:
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

k3∑

k=k2

(wk − ρ2k − ρ′2)
2 = min

{
k3∑

k=k2

(wk − ρk − ρ′)2 , ρ, ρ′ > 0

}

,

n′
∑

k=1

(wk3+k − ρ3)2 = min

⎧
⎨

⎩

n′
∑

k=1

(wk3+k − ρ)2 , ρ > 0

⎫
⎬

⎭
,

(4.34)
where n0 ≤ n′ < na−k3. Both equations in (4.34) can be solved using
the least-squares method.

4. The intersection point of the straight lines Γ2 and Γ3 is the ŝ we need.
Replace Step 4.2.1 of the SPA by the new Step 4.3.1 we obtain for the
improved SPA, which is a self-adaptive regression analysis discrimina-
tive algorithm.

Example 18. For the two RNA sequences E.co and B.st given in Example 17,
we use the improved SPA to recalculate the corresponding results:

1. If we let n0 = 15, we have w0 = 14
15 = 0.933 > θ′ = 0.6 given in Exam-

ple 18. Therefore, î1 = 0.
2. As mentioned in Example 17, �̂ = −2 and (C1, D1) is(

C1 : ugccuggcgg ccguagcgcg guggucccac cugaccccau gccgaacuca gaagugaaa

D1 : —ccuaguga caauagcgga gaggaaacac ccgucccauc ccgaacacgg aaguuaag

3. Based on (C1, D1), we calculate the function wk, k = 2, 3, 4, · · · as follows:

k 2 3 4 5 6 7 8 9 10 11 12
wk 0.333 0.333 0.400 0.467 0.400 0.467 0.400 0.400 0.400 0.467 0.467

k 13 14 15 16 17 18 19 20 21 22 23
wk 0.400 0.400 0.400 0.400 0.467 0.467 0.467 0.400 0.400 0.333 0.400

k 24 25 26 27 28 29 30 31 32 33 34
wk 0.467 0.467 0.467 0.400 0.467 0.533 0.533 0.600 0.677 0.677 0.667

k 35 36 37 38 39 40 41 42 43
wk 0.733 0.800 0.800 0.800 0.800 0.733 0.733 0.733 0.733

4. Performing regression analysis based on these data, we get three straight
lines of regression as follows:
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⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Γ1 : y = ρ1 = 0.433 , k = 2, 3, · · · , 28 ,
Γ2 : y = 0.019× k + 0.087 , (ρ2 = 0.019, ρ′2 = 0.087) ,

k = 27, 28, · · · , 35 ,
Γ3 : y = ρ3 = 0.764 , k = 35, 36, · · · , 43 .

Then we solve equation 0.764 = 0.019 × k + 0.087, obtaining

î2 =
0.764− 0.087

0.019
= 35.63 ∼ 36 .

This is the estimation of the second mutation position.

We compare it with Example 17, in which the second mutation position may
be chosen as î2 = 35, 36, or 37, while the estimation in Example 18 is 35.63 ∼
36. Thus, their alignments are in fact the same, as both are the alignments of
sequences (A,B) with a minimum penalty score.

4.3.3 The Computational Complexity of the SPA

Let E∗(T ∗) = {A∗, B∗, T ∗} be the stochastic mutation model defined in
Sect. 3.3.3, where T ∗ is a composite renewal process with intensity {(ετ , pτ ), τ =
1, 2, 3, 4}. Now we discuss the computational complexity involved to align
E∗(T ∗) using the SPA.

Theorem 21. If the stochastic mutation model E∗(T ∗) satisfies similarity
conditions (see Definition 19), then the computational complexity of the SPA
is proportional to na.

Proof. Following from the definition of the SPA, the computational complex-
ity of the decision for each (ik, �k) is

O (ik+1 − ik) +O
(
n2

0�k
)
,

where n0, �k are fixed constants which are not too large. The second term of
the complexity does not depend on the length of sequence, and we may assume
that it is constant. Therefore, the total computational cost of the SPA can be
controlled by

ka∑

k=1

[
O (ik+1 − ik) +O

(
n2

0�k
)]

= O(na) .

Thus ends the proof.

Besides theoretical analysis, simulation analysis and comparison of algorithms
are also significant analysis methods to study the computational complexity
of the SPA. The relationship between computation time and sequence length
is shown in Fig. 4.1. We compare the result of the SPA with several popular
algorithms in Tables 4.3 and 4.4 and Fig. 4.1, which were obtained in 2002.
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Table 4.3. Comparison of alignment speed (CPU time, seconds) and similarity

Initial Alignment speed Similarity
sequences 1,2 3,4 5,6 7,8 9,10 1,2 3,4 5,6 7,8 9,10

SPA 0.07 0.03 0.07 0.01 0.05 0.8060 0.7624 0.7647 0.9945 0.7014
Band 0.96 0.35 1.63 0.25 0.18 0.8352 0.7868 0.8423 0.9945 0.7223
GlobalS 1.40 1.77 3.21 NA 1.49 0.8251 0.8078 0.8411 NR 0.7379
CDA 6.13 4.75 5.67 NA 5.05 0.8300 0.7600 0.7900 NR 0.7300

1 Toxoplasma gondii strain RH heat shock protein 70 (HSP70) gene, complete cds (ID
U85648.1);

2 Toxoplasma gondii heat shock protein 70 mRNA, complete cds (ID U82281.1);
3 Human CCAAT-box-binding factor (CBF) mRNA, complete cds (ID M37197.1);
4 Mus musculus putative CCAAT binding factor 1 (mCBF) mRNA, alternatively spliced

transcript mCBF1, complete cds (ID U19891.1);
5 Rattus norvegicus peripheral plasma membrane protein CASK mRNA, complete cds

(ID U47110.1);
6 Mus musculus mRNA for mCASK-B (ID Y17138.1);
7 Ca2+/calmodulin-dependent protein kinase IV kinase isoform (rats, brain, mRNA,

3429 NT) (ID S83194.1);
8 Mus musculus putative CCAAT binding factor 1 (mCBF) mRNA, alternatively spliced

transcript mCBF1, complete cds (ID U19891.1);
9 Mc.vanniel .757 1385 Methanococcus vannielii strain EY33. (ID M36507);
10 Mb.tautotr, RNA, Methanobacterium thermoautotrophicum strain Marburg.

(ID RDP-II);
NR No result

Table 4.4. Comparison table of alignment speed and similarity

Initial Speed ratio Average
sequences 1,2 3,4 5,6 7,8 9,10 speed ratio

Band/SPA 13.7 11.7 23.3 25.0 3.6 15.5
GlobalS/SPA 20.0 59.0 33.0 NA 29.8 35.5
CDA/SPA 87.6 158.0 81.0 NA 101.0 106.9

Aligned Similarity difference Average similarity
sequences 1,2 3,4 5,6 7,8 9,10 difference

Band-SPA 0.0292 0.0776 0.00 0.0209 3.6 0.0304
GlobalS-SPA 0.0191 0.0454 33.0 NA 0.0385 0.0449
CDA-SPA 0.0200 0.0000 81.0 NA 0.0300 0.0200

See Table 4.3 for an explanation of numbers 1–10.

4.3.4 Estimation for the Error of Uniform Alignment Induced
by a Hybrid Stochastic Mutation Sequence

We aim to estimate the error of the uniform alignment, but we begin by
outlining the simplest case of a hybrid stochastic mutation.
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Fig. 4.1. Relationship table of computation time of alignment of sequences with
different length

Estimate the Errors Resulting from a Uniform Alignment
or Hybrid Stochastic Mutation

The stochastic model of sequence mutation was presented in (2.99). We may
decompose E∗ into E∗ = {A∗, T ∗}, where A∗ = (a∗1, a

∗
2, · · · , a∗na

) is the ini-
tial sequence and a∗1, a∗2, · · · , a∗na

is independently and identically distributed.
Moreover, the common distribution is a uniform distribution on V4. The com-
plete form of T ∗ is:

T ∗ =
{
ζ̃τ , �̃

∗
τ , �̃τ ′ , τ = 1, 2, 3, 4 , τ ′ = 1, 2

}
, (4.35)

in which ζ̃τ is the set of mutation positions of mutation type-τ , and is also
a multiple Bernoulli test or Poisson flow for each fixed τ . �̃∗τ is the interval
length of type-II, type-III, and type-IV mutations, respectively. It obeys a geo-
metric or an exponential distribution. �̃1, �̃3 are superpositions of type-I mu-
tations and inserted stochastic sequences of type-III mutations, respectively.
Here, the original sequence A∗ can be considered as a fixed or stochastic se-
quence. If E∗ = {A∗, T ∗} is known, we find B∗ mutated from A∗ based on
the mode T ∗. We let (C∗, D∗) be the uniform alignment of (A∗, B∗), and es-
timating the errors resulting from the uniform alignment or hybrid mutation
is the alternative to estimating w(C∗, D∗) which is the error of (C∗, D∗) as
A∗, T ∗ are known.
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The Regions Determined by T ∗

In order to estimate the stochastic error w(C∗, D∗), we need to analyze the re-
gions determined by T ∗. We denote the regions including type-τ mutations by
Δ∗
τ , τ = 1, 2, 3, 4. Typically, Δ∗

1, Δ
∗
2, Δ

∗
3, and Δ∗

4 represent the regions includ-
ing type-I, type-II, type-III, and type-IV mutations, respectively. Therefore,
the value of C∗ on the region Δ∗

3 is the virtual symbol “−”, while the value
of D∗ on region Δ∗

4 is the virtual symbol “−”.

Estimation of the Length of the Mutation Region

Let
ψ∗
τ = |Δ∗

τ | , τ = 1, 2, 3, 4 , (4.36)

be the length of Δ∗
τ for τ = 1, 2, 3, 4, respectively. Below, we briefly recall the

properties and estimations presented in Chap. 2.

1. Each ψ∗
τ is a random variable obeying the law of large numbers:

1
na
ψ∗
τ

(a.e.)→

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

μ1 = ε1 , if τ = 1 ,

μ2 = ε2

(
1
p1

+
1
p2

)
, if τ = 2 ,

μτ =
ετ
pτ
, if τ = 3, 4 ,

(4.37)

where
(a.e.)→ shows convergence almost everywhere, ετ is the intensity of the

mutation flow ζ̃τ , and pτ is the intensity of the geometric distribution.
2. The random variable 1√

na
ψ∗
τ − naμτ obeys the normal distribution

N(0, σ2
τ ), in which

σ2
τ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ε1(1 − ep1) , if τ = 1 ,

ε2

[
2(1 − ε2)

(
1
p2
1

+
1
p2
2

)
−
(

1
p1

+
1
p2

+
2ε2
p1p2

)]
, if τ = 2 ,

ετ
p2
τ

(2 − pτ − ετ ) , if τ = 3, 4 .

(4.38)

Estimations of the Errors Resulting from Different Type
of Mutations

If we take the Hamming matrix as the penalty function of the alignment,
then different types of mutation will occur in different regions. Let w∗

τ for
τ = 1, 2, 3, 4 be the errors induced by type-τ mutation in region Δ∗

τ . The
estimations of these errors are computed as:

⎧
⎨

⎩

w∗
τ = naψ

∗
τ , τ = 1, 3, 4 ,

w∗
2 =

3na
4
ψ∗

2 .
(4.39)
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This is because these errors are proportional to the lengths of the muta-
tion regions for type-I, type-III, and type-IV mutations occuring in uniform
alignment, and the elements in the exchanged segments may coincide with
probability 1/4 for the case where type-II mutation occurs.

4.4 Applications of Sequence Alignment and Examples

4.4.1 Several Applications of Sequence Alignment

The motivation for developing alignment is to understand the homology of the
genome, and to discuss the evolutionary relationships among genes in different
organisms. However, as the field of investigations progresses, researchers find
that it is a very complicated problem involving many applied fields. Here, we
continue to discuss sequence alignment in a more advanced way than that
which we introduced in Chap. 1.

Gene Positioning

Gene positioning or gene localizing is what determines the position of a gene.
It includes two aspects; one determines the position of a short sequence within
a long sequence, and the other determines the mutual positions for two long
sequences.

The position of a short sequence within a long sequence means the region in
a long sequence B (i.e., a couple of million or tens or hundreds of million base
pairs) where the shorter segment A (i.e., a couple of thousand base pairs) is the
same as the short sequence. Its biological meaning is to search for the segment
in other organisms such that it is most similar to a known gene in the specific
organism. While deciding the mutual positions for a pair of long sequences
A,B that may come from different organisms (or species, or organs, or from
the same organism but different growth periods), we frequently compare the
order and condition of mutation of these segments in sequences A,B because
each sequence has many peculiar segments (such as gene, transcription factor,
etc.).

GenBank Searching

GenBank searches are actually an extension of gene positioning. In fact, it
extends the benchmark set as a database rather than a fixed long sequence.
If A is a fixed sequence, then we want to understand whether or not it is in
the GenBank. If A belongs to a specific GenBank, then we want to know the
location, similarity and mutation mode, etc. The most popular databases are
GenBank, cDNA, dbEST; specific biological databases, especially, the human
genome, etc. The common functional indices for searching a gene bank are
given below:
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1. Similarity: This index generally involves a threshold in a specific case.
For example, we may search for those sequences in a database Ω with
a similarity based on a comparison with sequence A that is greater than
70%. The value of 70% is considered a threshold.

2. Computational speed: The time to complete searching the database.
3. Sensitivity: The rate TP

TP+NF , in which TP is the total number of these
sequences that are very similar to a sequence A and the given algorithm
also declares them similar to A under a given similarity; TP +NF is the
total number of these sequences that are similar to A. A is a sequence
contained in the database Ω.

Computational speed and sensitivity are two critical indices for all alignment
procedures. With the development of sequencing technology, huge amounts
of data enter the databases all the time. For example, the size of GenBank
is doubling every 2–3 years. At the same time, the requirements, such as the
lengths of the query sequences, are also increasing. Therefore, the demand to
develop new alignment or to improve existing alignment is unending.

Gene positioning and gene searching are the basis of many types of large-
scale software packages. The quality of gene positioning and gene searching
required determines the function of the software. For example, BLAST and
FASTA software packages have both of these functions. SPA is an ultrafast
algorithm, and therefore it is especially suited to gene positioning and gene
searching. The corresponding software package based on the SPA is called
FLAG. Several functional indices of FLAG exceed those of BLAST or FASTA.

Repetition Searches and Gene Assembly

Repetition searches and gene assembly were introduced in Chap. 1. They
are essential techniques of sequencing technology. Improving the accuracy of
repetition searches and gene assembly will directly improve the quality of
sequencing technology. Of all the methods, sequence alignment is an important
tool for solving these two problems simultaneously. For example, the human
genome project is a good example showing that sequence alignment is an
important tool for solving these problems.

The General Method for Applying Sequence Alignment

In the overview of gene positioning, gene searching, gene assembly and repe-
tition searches mentioned above, the common procedure can be divided into
four steps to be processed as outlined below:

1. Choose a “seed” vector to search in the target sequence. That is, if we
know that sequence B is the target of A but do not know the position of A,
we frequently select one (or several) short vector(s) ā = (a1, a2, · · · , an)
from A, called the “seed” and whose length is often assigned as 8–13.
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2. Search for the same segments as in the “seed” ā in the target sequence B
thoroughly. In other words, we record all subvectors of B which are the
same as ā. Let

b̄k = (bjk+1, bjk+2, · · · , bjk+n) , k = 1, 2, · · · , k0 ,

in which b̄k = ā for all k = 1, 2, · · · , k0. These are the labels of all candidate
positions of A in B.

3. For each fixed k, start from the position of b̄k in B to extend b̄k to a new
sequence Bk such that its length is the same as or close to that of A.

4. Aligning (A,Bk). If Bk has the required similarity compared with A, then
that region of Bk is the position of A in B, otherwise we ignore it.

This is the basic procedure of gene positioning. The same procedure is also
suited to gene searching, gene assembly, and repetition searching with some
changes in skill and method for different software packages. Here, we omit
these minor differences.

4.4.2 Examples of Pairwise Alignment

In order to understand pairwise alignment better, we perform pairwise align-
ment based on two RNA sequences: Mc.vanniel and Mb.tautotr.

RNA Sequences: C.vanniel and Mb.tautotr

The data for RNA sequences Mc.vanniel and Mb.tautotr are downloaded
from [77]. Their lengths are 2977 bp and 3018bp, respectively. For simplicity,
we denote the two sequences by A and B, respectively. For convenience, we
list these data in Table 4.5.

The output obtained by the SPA is shown in Table 4.6.

Remark 2. In the alignment computation, we choose the parameters h = 5,
n = 50, θ = 0.45. For the output in Table 4.6, the upper row is A′, the lower
row is B′. A′ and B′ are the extensions of A and B, respectively, in which
“−” represent virtual symbols.

The computation of this algorithm is summarized as follows:

1. Computation takes 26 steps, the length of the aligned sequences is 3061bp.
2. The penalty function of the original sequences used here is

w(A,B; i, j, n) ∼ 0.75 , for each i, j, τ = |i− j| ≥ 50 ,

where n = na − max{i, j} if w(A,B; 1, 1, na) = 0.739, etc.
3. Penalty of the aligned sequences is: w(A′, B′; 1, 1, na′) = 0.331.
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Table 4.5. Data for two RNA sequences: Mc.vanniel and Mb.tautotr

1 uaucuauuac ccuacccugg ggaauggcuu ggcuugaaac gccgaugaag gacgugguaa gcugcgauaa gccuaggcga
ggcgcaacag ccuuugaacc uaggauuucc gaaugggacu uccuacuuuu guaauccgua aggauuggua acgcggggga

161 uugaagcauc uuaguacccg caggaaaaga aaucaacuga gauuccguua guagaggcga uugaacacgg aucagggcaa
acugaauccc uucggggaga ugugguguua uagggccuuc uuuucgccug uugagaaaag cugaaguuga cuggaacguc

321 acacuauaga gggugaaagu cccguaagcg caaucgauuc agguuugaag ugucccugag uaccgugcgu uggauaucgc
gcgggaauuu gggaggcauc aacuuccaac ucuaaauacg uuucaagacc gauagcguac uaguaccgcg agggaaagcu

481 gaaaagcacc cuuaacaggg uggugaaaag agccugaaac ccagguaggu auggaauggc guggccccaa aggcaacugu
ucugaaggaa accgucgcaa ggcggcugua cgaagaacag agccaggguu gcguccuccg uuucgaaaaa cgggccgggg

641 aguguauugu uguggcgagc uuaagaucuu cacgaucgaa ggcguaggga aaccaacaag uccgcagaau cuuuagggac
ggggucuuaa gggcccggag ucacagcaau acgacccgaa accgggcgau cuaggccggg gcaaggugaa gucccucaau

801 ugagggaugg aggccugcag aguuguugcc guucgaagca cucuucugac cucggucuag gggugaaagg ccaaucgagc
ccggagauag cugguucccc ucgaagugac ucucagguca gccagaguuc agguagucgg caggguagag cacugauaag

961 augguuaggg gaagaaauuc cucgcuguuu ugucaaacuc cgaaccuguc gucgccguag gcucugagug agggcauacg
ggguaagcug uauguccgag acgggaauag ccgagacuug gguuaaggcc ccuaaaugcc gauuaagugu gaacacgaag

1121 ggcguccuug gucuaagaca gcagggaggu uggcuuagaa gcagccaccc uuuaaagagu gcguaacagc ucaccugucg
agaucaaggg ccccgaaaau ggacggggcu aaaucggcug ccgagaccca aagggcaccg caaggugauc cccguagggg

1281 ggcguucugc gagggcagaa guucggcugu gaagucgagu ggaccucgua gaaaugaaga ucccgguagu aguaacagca
uaaguggggu gagaaucccc accgccgaag gggcaagggu uccacagcaa uguuugucag cuguggguaa gccgguccua

1441 acucucgagg uaacuccuuu gagaggaaag ggaaacaggu uaauauuccu gugccaucua gauacgcgug gcaacacaag
guuaguuucc aacgcuucug gguaggcuga guguucuugu cuggacauuc aagcuuauaa guccggggag aguuguaaua

1601 acgagaaccg gaugaaagag ugaugagcuc uccguuagga gaguucggcc gaucucugga gcccgugaaa agggaacuag
caaggauucu agauguccgu acccagaacc gacacuggug ccccuaggug aguauccuaa ggcguagcgg gaugaaucua

1761 gucgagggaa gucggcaaau ugguuccgua acuucgggag aaggagugcc agugaucuug uuuaaauaug ggaucgcugg
ucgcagugac cagggagguc cgacuguuua auacaaacau aggucuuagc gagccugaaa agguguguac uaaggccgac

1921 gccugcccag ugcugguacg ugaaccccgg uuccaaccgg gcgaagcgcc aguaaacggc ggggguaacu auaacccucu
uaagguagcg aaauuccuug ucgggcaagu uccgaccugc augaauggcg uaacgagacc uccacugucc ccgacuagaa

2081 uccggugaac cuaccauucc ggcgcaaagg ccggagacuu ccagugggaa gcgaagaccc cguggagcuu uacugcagcc
ugucguuggg gcaugguugu gaguguacag uguagguggg agccaucgaa accuuuucgc caggaaaggu ggaggcgauc

2241 cugggacacc acccucucau gaccauguuc cucacccuuu uaggggacac cgguaggugg gcaguuuggc uggggcggua
cccuccuaaa aaugcaucag gagggcccca aagguuggcu caagcggguc aggacuccgc uguugagugu aagggcaaaa

2401 gccagccuga cuuuguugcc aacaaaacgc aacgaagagg cgaaagccgg gccuaacgaa ccccugugcc ucacugaugg
gggccaggga ugacaaaaaa gcuaccccgg ggauaacaga guugucgcgg gcaagagccc auaucgaccc cgcggcuugc

2561 uaccucgaug ucgguuuuuc ccauccuggg ucugcagcag gacccaaggg uggggcuguu cgcccauuaa aggggaucau
gagcuggguu uagaccgucg ugagacaggu ugguugcuau cugcuggaug uguuaggcug ucugagggaa agguggcucu

2721 aguacgagag gaacgggccg ucggcgccuc uagucgaucg guugucugac aaggcacugc cgagcagcca cgcgccaaga
gccguuuccu ucgggaacga gaacucccgu agaagacggg uuugauaggc uaggggugua cgcaucaagg uucuuccgag

2881 auguucagcc cgcuaguacu aacaguucga gagauaauuu aggcauc

4. Based on the above output, we determine that the sequences Mc.vanniel
and Mb.tautotr are homologous. Following from the data of (A′, B′), we
know that this alignment is not the minimum penalty alignment, and we
use local modification operations to reduce the penalty.

5. In 1999, we performed this alignment using a Pentium 586 computer,
which took 0.679 s.

The Modulus Structure of this Sequence Alignment

Based on the initial data (A,B) in Table 4.5 and the aligned sequence (A′, B′)
in Table 4.6 using the SPA, we obtain the modulus structure from (A,B) to
(A′, B′) as follows:

1. The numbers of shifting mutations are ka′ = 19, kb′ = 9, and the length
of the aligned sequence is na′ = nb′ = 3061. The total error of the aligned
sequences is w(A′, B′) = 1013. The similarity of the aligned sequences is

r(A′, B′) = 1 − 1
na′

w(A′, B′) = 1 − 1013
3061

= 0.6690 .
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Table 4.5. (continued)

1 cuuuuuuaug ccgucugggg gauggcuugg cuugagucgc ugaugaaggc cguggcaagc ugcgauaagc ccaggggagg
agcagcaucc uuggauccug ggauugccga augggacuuc ccagccaacc cuucgggguu gugcuacucc cuguuauggg

161 gagggggaac ccgccgaacu gaaacaucuu aguaggcgga ggaagagaaa gcaaauugcg acugccguga guaauggcga
augaaagcgg ugcaggacaa acugaacccc uucgcaguga uguguugggg gauguggugu ugucgaucgg ugcguauggg

321 ggugccgggu gugugguguu gaacuugggc uggaaugccc gggccguaga ggguuaaagc cccguagaug cccaugcuug
gcucccugca ccuuuccuga guagcgucca uuggauauug ggcgugaagc ugggaggcau cgacuccuaa uccuaaacac

481 gucucaaguc cgauagcgaa cuaguaccgu gagggaaagc ugaaaaguac cccugauagg ggugugaaaa gugccugaaa
ccaggcggug acagcccggc acggcaugga aggaaugugg cugccccugu aagaaaccau gguaacaugg gaguaugugu

641 gggugguuga acagugucgu gucguccguc uugaaacacg ggccagggag uuuagugguu guggcgaggc uaagaagugu
gucgcuuugu agucguaggg aaaccgacag guccgcagca gccuuugugc ugugagggac ggggucuuaa uagggccugg

801 agucacagcu cuaaaacccg aagccggucg aucuagcccu ggguagggug aagucgcucu uacgagugau ggaggcccgc
agggguguug ucgugcgaaa cauuccucua accugggguu aguggugaaa ggccaaucaa ggccggugac agcugguucc

961 acccgaaaug gcucguaggc cagccugacu ggagauaggu ggcgggguag agcacuuauu ggguguuuag ggggagagau
cccucggcau ccuguaaaac uccgaacucg ucaccgucgu ugaagguugg agucaggggc gcgggguaag ccuguguccc

1121 gagagaggaa caacucagac ugggguuaag gucccuaaau gccggcuaag ucuaaggggg ucuuuggccc uagacaaugg
gaaggugggc uuagaagcag ccauccuuua aagaguucgu aacagaucac ccaucgaggu caaaggcacc gaaaauggag

1281 gggaauuaag ccggcuaccg auaccucaga gcaccacugg uguggugguc uuguagggug gcguccgguu gggguugaag
ugggggcgug agcuccugug gacccggcug gaaugaggau ccugguagua guagcagcga agugaggugu gaauccuuac

1441 cgccggaggg gcuaggguuc cuuggcaaug uucgucagcc aaggguuagu cgguccuaag gccgugggua auguccauuu
uggucgaaag gguaacgggu uaauauuccu guacggucca gguacuugcg gugacgcugg guugggcuuc ugacgcuuug

1601 ggguaggcug agcgggauuu ucguccuguu uaaggguuga agccugggga gagccguaau ggcgagaacc auggugaagg
ccugaauagc caucccuugu gggugguuug gcugugcccu ggaguccuug aaaagggagu ccuucuuggg auccuggauc

1761 gccguaccga gauccgacac uggugccccu agcugaguag gcuaaggugu guugggguaa ccuggcuaag ggaaaucggc
aaauuggccc cguaacuuug ggagaagggg ugccagccau gcggauggcu ggucgcagug acaggggggg cccgacuguu

1921 uaauaaaaac auagcuccua gcuagcccgu gagggugugu acugggggcg acaccugccc agugccggca cgugaagccc
ugguucaacg gggugaagcg ccgguaaacg gcggggguaa cuauaacccu cuuaagguag cgaaaugccu ugccggauaa

2081 guaccggccu gcaugaaugg uugaacgagg ucccuacugu cccuagccag gaccuaguga agcugcuguu cuggugcaca
agccagagac ucccaguggg aagcgaagac cccguagagc uuuacugcag ucugcuguug gggcuugguc auggguaugc

2241 aguguaggug ggaggcgucg augccauggu cgccaggcug ugguggaguc ggucaugaga caccaccuuc cugugacugu
gucucuaacc ccauguuugu gggggacauc gguagauggg caguuuggcu ggggcggcac gcgcuugaaa ugguaucaag

2401 cgcgcccuaa ggucggcuca ggcgggacag agauccgcug uagaguguaa gggcauaagc cggcuugacu gugcuccuac
uaguaggggg ugcaggugcg agagcagggc cuagcgaacc ccagaguccu cgucgguggg ggccugggau gacagaaaag

2561 cuaccucggg gauaacuggg uggucgcagg caagagccca uaucgacccu gcggcuugcu acuucgaugu cgguucuuuc
cauccugggu gugcagcagc acccaagggu gggguuguuc gcccauuaaa ggggaacgug agcuggguuu agaccgucgu

2721 gagacagguu gguugcuauc uacugggagu gugugguugc cugaggggaa ggugguucca guacgagagg aacggaccgu
cggcgccucu gguuuaccgg uuauccgagu ggguauugcc gggcggcuac gcgcuaugau uauaaaggcu gaaggcaucu

2881 aagccugagg uuuucccuga aaauaggugg cuuguggacu gcggguagaa gaccuguuug uuggggcggg ggugugagcu
ucgaggccug uuuugggccg aguuguuuag ccugccguuu ccaagguuuu uugucccu

2. The expanded modes of the aligned sequences are8>>>>>><
>>>>>>:

Ha′ = {(121, 20), (210, 2), (318, 20), (386, 1), (567, 4), (632, 3), (696, 3),
(766, 9), (781, 2), (1102, 1), (1331, 3), (1508, 2), (1591, 1),

(1676, 1), (1733, 3), (2288, 2), (2337, 5), (2541, 1), (2878, 1)} ,
Hb′ = {(0, 2), (1192, 7), (1421, 1), (1817, 1), (1887, 12),

(2418, 1), (2987, 8), (3040, 1), (3051, 10)} ,
(4.40)

where (jk, �k) are the position and length of insertion in sequence A′

(or B′), respectively.
3. We find the shifting function of sequence A′ (or B′) as

La′(k) , k = 1, 2, · · · , ka′ , Lb′(k) , k = 1, 2, · · · , kb′
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Table 4.6. Alignment output for Mc.vanniel and Mb.tautotr

1 uaucuauuac ccuacccugg ggaauggcuu ggcuugaaac gccgaugaag gacgugguaa gcugcgauaa gccuaggcga
--cuuuuuua ugccgucugg gggauggcuu ggcuugaguc gcugaugaag gccguggcaa gcugcgauaa gcccagggga
ggcgcaacag ccuuugaacc uaggauuucc gaaugggacu u--------- ---------- -ccuacuuuu guaauccgua
ggagcagcau ccuuggaucc ugggauugcc gaaugggacu ucccagccaa cccuucgggg uugugcuacu cccuguuaug

161 aggauuggua acgcggggga uugaagcauc uuaguacccg caggaaaaga --aaucaacu gagauuccgu uaguagaggc
gggaggggga acccgccgaa cugaaacauc uuaguaggcg gaggaagaga aagcaaauug cgacugccgu gaguaauggc
gauugaacac ggaucagggc aaacugaauc ccuucgggga gauguggugu uauagggccu ucuuuucgcc uguugaga--
gaaugaaagc ggugcaggac aaacugaacc ccuucgcagu gauguguugg gggauguggu guugucgauc ggugcguaug

321 ---------- --------aa agcugaaguu gacuggaacg ucacacuaua gagggugaaa gucccg-uaa gcgcaaucga
ggggugccgg guguguggug uugaacuugg gcuggaaugc ccgggccgua gaggguuaaa gccccguaga ugcccaugcu
uucagguuug aagugucccu gaguaccgug cguuggauau cgcgcgggaa uuugggaggc aucaacuucc aacucuaaau
uggcucccug caccuuuccu gaguagcguc cauuggauau ugggcgugaa gcugggaggc aucgacuccu aauccuaaac

481 acguuucaag accgauagcg uacuaguacc gcgagggaaa gcugaaaagc acccuuaaca ggguggugaa aagagccuga
acgucucaag uccgauagcg aacuaguacc gugagggaaa gcugaaaagu accccugaua ggggugugaa aagugccuga
aacccag--- -guagguaug gaauggcgug gccccaaagg caacuguucu gaaggaaacc gucgcaaggc gg---cugua
aaccaggcgg ugacagcccg gcacggcaug gaaggaaugu ggcugccccu guaagaaacc augguaacau gggaguaugu

641 cgaagaacag agccaggguu gcguccuccg uuucgaaaaa cgggccgggg agugua---u uguuguggcg agcuuaagau
gugggugguu gaacaguguc gugucguccg ucuugaaaca cgggccaggg aguuuagugg uuguggcgag gcuaagaagu
cuucacgauc gaaggcguag ggaaaccaac aaguccgcag aaucuu---- -----uaggg a--cgggguc uuaagggccc
gugucgcuuu guagucguag ggaaaccgac agguccgcag cagccuuugu gcugugaggg acggggucuu aauagggccu

801 ggagucacag caauacgacc cgaaaccggg cgaucuaggc cggggcaagg ugaagucccu caauugaggg auggaggccu
ggagucacag cucuaaaacc cgaagccggu cgaucuagcc cuggguaggg ugaagucgcu cuuacgagug auggaggccc
gcagaguugu ugccguucga agcacucuuc ugaccucggu cuagggguga aaggccaauc gagcccggag auagcugguu
gcaggggugu ugucgugcga aacauuccuc uaaccugggg uuagugguga aaggccaauc aaggccggug acagcugguu

961 ccccucgaag ugacucucag gucagccaga guucagguag ucggcagggu agagcacuga uaagaugguu aggggaagaa
ccacccgaaa uggcucguag gccagccuga cuggagauag guggcggggu agagcacuua uuggguguuu agggggagag
auuccucgcuguuuugucaa acuccgaacc ugucgucgcc guaggcucug agugagggca ua-cggggua agcuguaugu
aucccucggcauccuguaaa acuccgaacu cgucaccguc guugaagguu ggagucaggg gcgcggggua agccuguguc

1121 ccgagacgggaauagccgag acuuggguua aggccccuaa augccgauua agugugaaca cgaagggcgu ccuuggucua
ccgagagaggaacaacucag acugggguua aggucccuaa augccggcua agucuaaggg ggucuuuggc cc-------u

1281 agacagcagg gagguuggcu uagaagcagc cacccuuuaa agagugcgua acagcucacc ugucgagauc aagggccccg
agacaauggg aaggugggcu uagaagcagc cauccuuuaa agaguucgua acagaucacc caucgagguc aaaggcaccg
aaaauggacg gggcuaaauc ggcugccgag acccaaaggg caccgcaagg u---gauccc cguagggggg cguucugcga
aaaauggagg ggaauuaagc cggcuaccga uaccucagag caccacuggu gugguggucu uguagggugg cguccgguug

1441 gggcagaagu ucggcuguga agucgagugg accucguaga aaugaagauc ccgguaguag uaacagcaua agugggguga
ggguugaagu gggggcguga gcuccugugg acccggcugg aaugaggauc cugguaguag u-agcagcga agugaggugu
gaauccccac cgccgaaggg gcaaggguuc cacagcaaug uuugucagcu guggguaagc cgguccua-- acucucgagg
gaauccuuac cgccggaggg gcuaggguuc cuuggcaaug uucgucagcc aaggguuagu cgguccuaag gccgugggua

1601 uaacuccuuu gagaggaaag ggaaacaggu uaauauuccu gugccaucua gauacgcgug gcaacacaag g-uuaguuuc
auguccauuu uggucgaaag gguaacgggu uaauauuccu guacggucca gguacuugcg gugacgcugg guugggcuuc
caacgcuucu ggguaggcug aguguucuug ucuggacauu caagcuuaua
ugacgcuuug ggguaggcug agcgggauuu ucguccuguu uaaggguuga

1761 aguccgggga gaguuguaau aacgag-aac cggaugaaag agugaugagc ucuccguuag gagaguucgg ccgaucucug
agccugggga gagccguaau ggcgagaacc auggugaagg ccugaauagc caucccuugu gggugguuug gcugugcccu
gag---cccg ugaaaaggga acuagcaagg auucuagaug uccguaccca gaaccgacac uggugccccu aggugaguau
ggaguccuug aaaagggagu ccuucuuggg auccuggauc gccguaccga gauccgacac uggugccccu agcugaguag

1921 ccuaaggcgu agcgggauga aucuagucga gggaagucgg caaauugguu ccguaacuuc gggagaagga gugccaguga
gcuaagg-ug uguuggggua accuggcuaa gggaaaucgg caaauuggcc ccguaacuuu gggagaaggg gugccag---
ucuuguuuaa auaugggauc gcuggucgca gugaccaggg agguccgacu guuuaauaca aacauagguc uuagcgagcc
---------c caugcggaug gcuggucgca gugacagggg gggcccgacu guuuaauaaa aacauagcuc cuagcuagcc

2081 ugaaaaggug uguacuaagg ccgacgccug cccagugcug guacgugaac cccgguucca accgggcgaa gcgccaguaa
cgugagggug uguacugggg gcgacaccug cccagugccg gcacgugaag cccugguuca acggggugaa gcgccgguaa
acggcggggg uaacuauaac ccucuuaagg uagcgaaauu ccuugucggg caaguuccga ccugcaugaa uggcguaacg
acggcggggg uaacuauaac ccucuuaagg uagcgaaaug ccuugccgga uaaguaccgg ccugcaugaa ugguugaacg

2241 agaccuccac uguccccgac uagaauccgg ugaaccuacc auuccggcgc aaaggccgga gacuuccagu gggaagcgaa
aggucccuac ugucccuagc caggaccuag ugaagcugcu guucuggugc acaagccaga gacucccagu gggaagcgaa
gaccccgugg agcuuuacug cagccugucg uuggggcaug guugugagug uacaguguag gugggagcca ucgaaacc--
gaccccguag agcuuuacug cagucugcug uuggggcuug gucaugggua ugcaguguag gugggaggcg ucgaugccau
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Table 4.6. (continued)

2401 uuuucgccag gaaaggugga ggcgauccug ggacaccacc cucucau--- --gaccaugu uccucacccu uuuaggggac
ggucgccagg cuguggugga gucggucaug agacaccacc uuccugugac ugugucucua accccauguu ugugggggac
accgguaggu gggcaguuug gcuggggcgg uacccuccua aaaaugcauc aggagggccc caaagguugg cucaagcggg
aucgguagau gggcaguuug gcuggggcgg cacgcgcuug aaauggua-u caagcgcgcc cuaaggucgg cucaggcggg

2561 ucaggacucc gcuguugagu guaagggcaa aagccagccu gacuuuguug ccaacaaaac gcaacgaaga ggcgaaagcc
acagagaucc gcuguagagu guaagggcau aagccggcuu gacugugcuc cuacuaguag ggggugcagg ugcgagagca
gggccuaacg a-accccugu gccucacuga ugggggccag ggaugacaaa aaagcuaccc cggggauaac agaguugucg
gggccuagcg aaccccagag uccucgucgg ugggggccug ggaugacaga aaagcuaccu cggggauaac uggguggucg

2721 cgggcaagag cccauaucga ccccgcggcu ugcuaccucg augucgguuu uucccauccu gggucugcag caggacccaa
caggcaagag cccauaucga cccugcggcu ugcuacuucg augucgguuc uuuccauccu gggugugcag cagcacccaa
ggguggggcu guucgcccau uaaaggggau caugagcugg guuuagaccg ucgugagaca gguugguugc uaucugcugg
gggugggguu guucgcccau uaaaggggaa cgugagcugg guuuagaccg ucgugagaca gguugguugc uaucuacugg

2881 auguguuagg cugucugagg gaaagguggc ucuaguacga gaggaacggg ccgucggcgc cucuagucga ucgguugucu
gagugugugg uugccugagg ggaagguggu uccaguacga gaggaacgga ccgucggcgc cucugguuua ccgguuaucc
gacaaggcac ugccgagcag ccacgcgc-c aagagauaag agcugaaagc aucuaagcuc gaaauucauc cugaaaauaa
gaguggguau ugccgggcgg cuacgcgcua ugauuauaaa ggcugaaggc aucuaagccu gagguuuucc cugaaaauag

3041 gacagccguu uccuucggga acgagaacuc ccguagaaga cggguuugau aggcuagggg uguacgcauc aagguucuuc
guggcuugug gacugcgggu agaagaccug uuuguugggg cgggggugug agcuucg--- -----aggcc uguuuugggc
cgagauguuc agcccgcuag uacuaacagu cucgagagau aauuuaggca u
cgaguuguuu agccugccgu uuccaagguu -uuuuguccc u--------- -

as follows:

k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
� 20 2 20 1 4 3 3 9 2 1 3 2 1 1 3
La′(k) 0 20 22 42 43 47 50 53 62 64 65 68 70 71 72

k 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
� 2 5 1 1 2 7 1 12 1 8 1 1 10
La′(k) 75 77 82 83 84 0 3 10 11 23 24 32 33 43 53

in which La′(ka′ + 1) = La′ is the sum of the virtual symbols in se-
quence A′, and Lb′(kb′ + 1) = Lb′ is the sum of the virtual symbols in
sequence B′. Then

na′ = na + La′ = nb′ = nb + Lb′ .

It follows that the expanded mode of the sequences (A,B) has the follow-
ing form:
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Ka = {(121, 20), (190, 2), (296, 20), (344, 1), (524, 4), (585, 3), (646, 3),
(713, 9), (719, 2), (1038, 1), (1266, 3), (1440, 2), (1521, 1),
(1605, 1), (1661, 3), (2216, 2), (2263, 5), (2465, 1), (2797, 1)} ,

Kb = {(0, 2), (1189, 7), (1411, 1), (1806, 1), (1864, 12),
(2395, 1), (2963, 8), (3008, 1), (3018, 10)} .

(4.41)
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4. With the help of (4.41), we find that the mutation mode of sequences
(A,B) is of the form

H(a,b) = (Ha, Hb) =
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(0,−2), (121, 20), (190, 2), (296, 20), (344, 1), (524, 4), (585, 3),
(646, 3), (713, 9), (719, 2), (1038, 1), (1189,−7), (1266, 3), (1411,−1),
(1440, 2), (1521, 1), (1605, 1), (1661, 3), (1806,−1), (1864,−12),
(2216, 2), (2263, 5), (2395,−1), (2465, 1), (2797, 1), (2963,−8),
(3008,−1), (3018,−10) ,

(4.42)

in which type-III mutation occurs at position ik in sequence A if �k is
positive, and type-IV mutation occurs at position ik in sequence A if
�k is negative. Therefore, we obtain the mutation shifting function as in
Table 4.7.
Here the mutation mode of A from B is

K(b,a) =
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(0, 2), (119,−20), (208,−2), (316,−20), (384,−1), (565,−4),
(630,−3), (694,−3), (764,−9), (779,−2), (1100,−1), (1252, 7),
(1322, 3), (1470, 1), (1498,−2), (1581,−1), (1666,−1), (1723,−3),
(1871, 1), (1928, 12), (2268,−2), (2317,−5), (2454, 1), (2523,−1),
(2856,−1), (3023, 8), (3060, 1), (3069, 10) ,

(4.43)

where type-III mutation occurs at position ik in sequence B if �k is pos-
itive, and type-IV mutation occurs at position ik in sequence B if �k is
negative.

Table 4.7. The mutation shifting function

k 1 2 3 4 5 6 7 8 9 10
ik 0 121 190 296 344 524 585 646 713 719
�k −2 20 2 20 1 4 3 3 9 2
La,b 0 −2 18 20 40 41 45 48 51 60

k 11 12 13 14 15 16 17 18 19 20
ik 1038 1189 1266 1411 1440 1521 1605 1661 1806 1864
�k 1 −7 3 −1 2 1 1 3 −1 −12
La,b 62 63 56 59 58 60 61 62 65 64

k 21 22 23 24 25 26 27 28 29 30
ik 2216 2263 2395 2465 2797 2963 3008 3018
�k 2 5 −1 1 1 −8 −1 −10
La,b 52 54 59 58 59 60 52 51 41
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Local Modification Operations of Sequence Alignment

Sequence (A′, B′) in Table 4.6 is the output of the SPA. This result is not the
minimum penalty alignment, but we can use local modification operations to
reduce its penalty. The result after local modification operations is listed in
Table 4.8.

Using Table 4.8, we find that the overall penalty is reduced by 48. If we
denote the sequences after the local modification operation from (A′, B′) as
(C′, D′), then their similarity is

r(C′, D′) = 0.6690 +
48

3061
= 0.6690 + 0.0157 = 0.6847.

Several calculations indicate that the similarity can be increased by 1–3% af-
ter the local modification operation for the SPA. Therefore, we can implement
optimal alignment. The virtual symbols become dispersed after the local mod-
ification operation, so here, ka′ , kb′ are increased, while the absolute value of
�k is decreased.

Estimation of the Parameters of Sequence Mutation

We make the following estimation of the parameters of the mutation structure
of (A,B):

1. Based on the result (A′, B′), the probability of type-III or type-IV muta-
tions is: ⎧

⎪⎨

⎪⎩

ε3 =
ka′

na
=

19
2977

= 0.0064 ,

ε4 =
kb′

na
=

9
2977

= 0.0030 .

Then the average length of type-III or type-IV mutation and its parameter
of geometric distribution are:

μ3 =
84
19

= 5.421 , p3 =
1
μ3

= 0.2260 ,

μ4 =
53
9

= 5.889 , p4 =
1
μ4

= 0.1698 ,

respectively.
Based on the result (C′, D′), we find that the probability of type-III or
type-IV mutation increases slightly, but the average length of type-III or
type-IV mutation is reduced slightly (the parameter of geometric distri-
bution increases slightly). Therefore, the question of whether to base the
estimation on results (A′, B′) or on (C′, D′) should be analyzed further.
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Table 4.8. Local modification operations of the RNA sequences (A′, B′) shown in
Table 4.6

Beginning Original result Result of local Reduced
position of alignment modification operation penalty

1 uauc uauc 1
—cu –cu–

211 —aa aa— 2
aagc aagc

314 ugaga——– u–g–a–g—– 2
gcguaugggg gcguaugggg

326 ——————– aaag–cug–aag– 3
—–aaagcugaag ——————–
gccgggugugu gccgggugugu
gguguugaacuu gguguugaacuu

387 –ua ua– 2
uac uac

568 ——gua —gu–a– 3
cggugac cggugac

633 —-cu —cu– 1
gagua gagua

765 uu————–u —uu———u– 3
cuuugugcugug cuuugugcugug

782 —cg cg— 2
cggg cggg

1199 uaa uaa 2
–ua ua–

1329 gu—–g –gu–g– 3
uguggu uguggu

1509 —a a— 1
agg agg

1732 ag—–cc –ag–cc– 4
gaguccd gaguccd

1899 aaaua aaaua 2
–ccau ccau–

2290 –u u– 1
ug ug

2338 ——–gac gac——– 3
gacugugu gacugugu

2419 ucaggaggg ucaggaggg 4
–ucaagcgc ucaagcgc–

2532 –accccugug accccugug– 4
accccagagu accccagagu

2994 acgcau acgcau 3
—aggc aggc—

3049 uaauuuaggcauc uaauuuaggcauc 2
cu—————– ————–c–u–
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2. The statistical results for type-II mutation occurring in (A′, B′) are given
as follows:

(�1, �2) 1 2 3 4
1 23 11 4 4
2 9 3 5
3 5 2 1
4 1

(4.44)

where the figures in the square matrix indicate the number of type-II
mutations with mutation mode (�1, �2). The final is result that a type-II
mutation occurs 68 times. Thus, the intensity of type-II mutation is ε2 =
68/2977 = 0.023.
Based on (4.44), we find the joint probability distribution of (�∗1, �

∗
2) is:

pi,j 1 2 3 4
1 0.34328 0.16418 0.05970 0.05970
2 0.13433 0.04478 0.07463
3 0.07463 0.02985 0.01493
4 0.01493

(4.45)

where pi,j = Pr{(�∗1, �∗2) = (i, j)}. Therefore, the average length of (�∗1, �
∗
2)

and their parameters of geometric distribution are:

μ1 = 1.5075 , p1 =
1
μ1

= 0.6634 ,

μ2 = 1.6866 , p2 =
1
μ2

= 0.5929 .

Utilizing (4.45), we calculate their mutual information as

I(�∗1, �
∗
2) =

4∑

i=1

4∑

j=1

pi,j log
(
pi,j
piqj

)
= 0.0772 , (4.46)

where pi =
∑4

j=1 pi,j, qj =
∑4
i=1 pi,j . Since the value of I(�∗1, �∗2) is suffi-

ciently small in practice, we conclude that �∗1, �
∗
2 are independent random

variables.
3. Based on (A′, B′) and the statistical result of type-II mutation, we find

that the total error occurring in the region of type-II mutation is 162.
Therefore, the total error induced by type-I mutation is 1023− 84− 53−
162 = 724, where 84 is the error caused by the virtual symbols inserted
in sequence C, and 53 is the error caused by the virtual symbols inserted
in sequence D. Therefore, we get the intensity of type-I mutation: ε1 =
724/2977 = 0.2432.
In summary, we find estimations for the parameters of 4 types of mutations
acting on sequences (A,B) as shown below:

ε1 ε2 ε3 ε4 p1 p2 p3 p4

0.24 0.02 0.006 0.003 0.663 0.593 0.226 0.170 (4.47)
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Based on the above analysis, we find that the mutation structures of gene se-
quences Mc.vanniel and Mb.tautotr agree with the stochastic mutation modes
presented in Chap. 2. However, the issue of the statistical independence of the
variables must still be addressed. These results offer a reference for analyzing
the mutation and alignment of multiple sequences.

4.5 Exercises

Exercise 16. Choosing the Hamming matrix as the penalty matrix, write
down the computational program of the SPA, and do the following calcula-
tions:

1. Align the sequences given in Sect. 4.4.2.
2. For Sect. 4.4.2, compare the SPA with the dynamic programming algo-

rithm (introduced in Chap. 1) for the vital indices of alignment, such as
the similarity and CPU time.

Exercise 17. Use the SPA to align the sequences produced by the simulation
method in Chap. 2, and consider the following problems:

1. Analyze the relationship between the length of the sequences and the CPU
time using the SPA.

2. Compare the similarity between the aligned sequence obtained from the
SPA and that from using the dynamic programming algorithm, and give
the statistics of the difference of similarity, on average.

Exercise 18. Let (A,B) be the sequences given in Table 4.5, and let (A′, B′)
be the aligned sequences given in Table 4.6. Analyze and calculate the follow-
ing:

1. In (4.21), one kind of modulus structure of (A′, B′) is given. With a similar
argument, give two other forms of the modulus structure of (A′, B′).

2. Modify the results given in Table 4.6 using the local modification operation
given in Table 4.8, such that the final result is (A′′, B′′). Write down the
representation of (A′′, B′′).

3. Compare the similarity between sequences (A′′, B′′) and the sequences
obtained by a dynamic programming algorithm.

Exercise 19. State the differences between sequential decision and self-adap-
tive regression decision, and write a program for the improved SPA using
self-adaptive regression decision.

Exercise 20. According to the various types of local modifications given in
Table 4.8, give a computational program for local modification operation.
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Hints

For the SPA for pairwise alignment, it is better to write a program that
includes the steps presented in Sect. 4.2. If you have difficulties, you may use
the algorithm provided on our Web site [99], and then try programming by
yourself.
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Multiple Sequence Alignment

5.1 Pairwise Alignment Among Multiple Sequences

In previous chapters, the structural features of pairwise sequence alignment
and the features of mutations were discussed. Based on these features, dy-
namic programming-based algorithms and the statistical decision-based algo-
rithm (SPA) were presented. These algorithms are restricted to performing
alignments for a pair of sequences. However, to apply these alignment meth-
ods to bioinformatics, they must be able to process a family of sequences
(many more than two sequences) simultaneously. The alignment algorithms
that can accomplish this are called multiple sequence alignment, or simply
MA. When studying these alignments, pairwise alignment are the best refer-
ence. Therefore, we begin this chapter by discussing the structure resulting
from mutations, as well as the structure by alignment of multiple sequences.
As we attempt to develop MA, we discuss how to use pairwise alignment
to process multiple sequences, and we consider what types of problems this
raises.

5.1.1 Using Pairwise Alignment to Process Multiple Sequences

Both dynamic programming-based algorithms and statistical decision-based
algorithms for pairs of sequences are fast and programmable. Until true
MA are developed, researchers must use pairwise alignment methods to
process multiple sequences. Many current MA software packages, such as
Clustal-W [102] etc., are in fact based on pairwise alignment. That is, the
pairwise alignment is an important component of these software packages.
The use of pairwise alignment methods to process multiple sequences is im-
portant for a rough analysis of the common structure of multiple sequences.
For example, we can analyze affinity relationships and evolution between each
pair of sequences, based on pairwise alignment methods. This demonstrates
that pairwise alignment of multiple sequences is important enough to consider
specifically.
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Let m be the number of sequences in a multiple sequence set; the compu-
tational complexity then ranges from O(m2n) to O(m2n2) if we use pairwise
alignment methods to process the set of sequences. For example, if we use
the SPA, then the complexity is O(m2n), while the computational complexity
is O(m2n2) for a dynamic programming-based algorithm such as the Smith–
Waterman algorithm. Therefore, if the size of the benchmark set is not overly
large, pairwise alignment is acceptable in the sense of complexity. Of course,
the use of pairwise alignment methods to build the homologous family of
a sequence is only a stopgap measure, not the final goal.

5.1.2 Topological Space Induced by Pairwise Alignment
of Multiple Sequences

We maintain the notations in (1.1) and (1.2) such that

A = {As = (as,1, as,2, · · · , as,ns) , s = 1, 2, · · · ,m} (5.1)

is a multiple sequence in which As is the sth gene sequence whose length is
ns, and as,j ∈ V4 = {0, 1, 2, 3} is the state space of nucleotides in the gene
sequence, and m is its multiplicity. In addition, we still must introduce the
following notations and point out some problems.

The Matrices Induced by Pairwise Alignment
of Multiple Sequences

If A is a multiple sequence defined in (5.1), then for any s, t ∈ M =
{1, 2, · · · ,m}, we find the result of pairwise alignment of (As, At) as follows:

(Cs,t, Ct,s) = ((cs,t;1, cs,t;2, · · · , cs,t;ns,t), (ct,s;1, ct,s;2, · · · , ct,s;nt,s)) . (5.2)

Then, Cs,t, Ct,s is the expansion of (As, At) in which, cs,t;j , ct,s;j ∈ V5 and
ns,t = nt,s is the common length of the sequences (Cs,t and Ct,s).

We then obtain a matrix induced by pairwise alignment of multiple se-
quences as:

C̄ = (Cs,t)s,t=1,2,··· ,m , (5.3)

in which Cs,t is defined by (5.2). For simplicity, we refer to C̄ as the alignment
matrix induced by multiple sequences A, or the simpler alignment matrix.
It is easy to find that changing the order of the pairwise alignments for the
multiple sequences will result in a different matrix.

Definition 25. Let C̄ be the alignment matrix induced by the multiple se-
quences A. Let Ts,t be the shifting mutation mode from At to As, and let
W = {w(a, b), a, b ∈ V5} be the penalty function on V5. Then:

1. C̄ is the minimum penalty alignment matrix if the expansion (Cs,t, Ct,s)
of (As, At) has the minimum penalty score.
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2. C̄ is the uniform alignment matrix if (Cs,t, Ct,s) is the uniform alignment
of (As, At) based on the mode Ts,t for every pair s, t ∈M = {1, 2, · · · ,m}.

The definitions of the minimum penalty alignment and uniform alignment, as
well as the relationship between these two kinds of pairwise alignments, are
outlined in Chaps. 1 and 4, respectively. In this chapter, we focus on the case
of minimum penalty alignment. We will discuss the uniform alignment case
in Chap. 7.

Penalty Matrix Induced by Pairwise Alignment
of Multiple Sequences

Let C̄ be the alignment matrix induced by the multiple sequence A. If the
penalty function W = w(a, b) defined on V5 is given, then for any s, t ∈ M ,
we have two expansions Cs,t andCt,s based on the pair of sequencesAs and At.
The penalty score for the pair Cs,t and Ct,s is defined by:

ws,t(C̄) = w(Cs,t, Ct,s) =
ns,t∑

j=1

w(cs,t;j , ct,s;j) . (5.4)

Definition 26. Let C̄ be the alignment matrix induced by multiple sequences A,
and let W be the penalty function defined on V5. The matrix

W̄ (C̄) = [ws,t(C̄)]s,t=1,2,··· ,m (5.5)

is then the penalty matrix induced by pairwise alignment of multiple se-
quences A, where ws,t(C̄) is defined by (5.4). It is acceptable to simply call
this the penalty matrix.

A fixed penalty matrix W̄ o = (wos,t)s,t=1,2,··· ,m, is the minimum penalty ma-
trix if each wos,t is the score of the minimum penalty alignment of (As, At).

For the sake of simplicity, we use W̄ (C̄) to replace

W̄ = (ws,t)s,t=1,2,··· ,m .

Theorem 22. If the multiple sequence A and the penalty function W on V5

are given, then the minimum penalty matrix W̄ o is uniquely determined, and
denoted by W̄ o = W̄ o(A).

Proof. It is sufficient to prove that the score wos,t of the minimum penalty
alignment is uniquely determined for any sequence pair (As, At). To do this,
we check the definition

wos,t = min{ws,t = w(Cs,t, Ct,s) : (Cs,t, Ct,s) is the alignment of (As, At)}
(5.6)

in which the set at the right-hand side of expression (5.6) has a lower bound.
It follows that the minimum value is unique. Hence, the minimum penalty
matrix W̄ o is also unique.
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We then have the relationship

M = {A, W̄ o} .

This is called the minimum penalty representation of pairwise alignment of
multiple sequences. We will prove later that M forms a metric space.

Metric Space Defined on a Finite Set

The metric space is a fundamental concept in mathematics. To show that
M = {A, W̄ o} is a finite metric space, we present the general definition of
a metric space defined on a finite set.

Let M = {1, 2, · · · ,m} be a finite set, and let ws,t be a function defined
on M ×M = {(s, t) : s, t ∈M}.
Definition 27. A function ws,t defined on M ×M is a measure (or metric
or distance), if the following conditions hold:

1. Nonnegative property: ws,t ≥ 0 holds all s, t ∈ M and ws,t = 0 if and
only if s = t.

2. Symmetry property: ws,t = wt,s holds for all s, t ∈M .
3. Triangle inequality: ws,r ≤ ws,t + wt,r holds for all s, t, r ∈M .

If the distance function ws,t defined on a finite set M is given, then the M
endowed with this distance forms a metric space, and it is called a finite metric
space, or finite distance space.

The Fundamental Theorem of Minimum Penalty Alignment

Let M be the minimum penalty representation of pairwise alignment of mul-
tiple sequences defined as above. It is a finite metric space under the natural
distance induced by the minimum penalty matrix W̄ o, although this is not
obvious. In fact, we can not build the relationship among

w(Cs,t, Ct,s) , w(Cs,r , Cr,s) , w(Ct,r , Cr,t)

directly because the expansions Cs,t and Cs,r based on As and At, Ar are not
unique. The fundamental theorem of the minimum penalty alignment is that
the minimum penalty representation M is a finite metric space if the penalty
matrix W̄ o = [wos,t]s,t∈M satisfies the three conditions defined above.

Theorem 23. (Fundamental theorem of minimum penalty alignment.)
Let A be a multiple sequence and W̄ o = (wos,t)s,t∈M be the minimum penalty
matrix of the multiple sequences A defined by (5.5) under a given penalty
function W = w(a, b), a, b ∈ V5. Then, the M endowed with the natural
distance induced by W̄ o = (wos,t)s,t∈M is a finite metric space.
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Proof. For simplicity, let the penalty function w(a, b) be the Hamming matrix
on V5. Then, let W̄ o = (wos,t)s,t∈M be the minimum penalty matrix based on
the multiple sequences A defined by (5.5). We consider the natural distance
induced by this minimum penalty matrix as follows: d(As, At) = wo(s, t).
Using the definitions of the Hamming matrix and C̄, we find that d(·) sat-
isfies both the nonnegative and symmetry properties. Therefore, we need
only prove that d(·) satisfies the triangle inequality. Alternatively, we prove
that wos,r ≤ wos,t + wot,r holds for all s, t, r ∈ M . For an arbitrary three
s, t, r ∈ {1, 2, · · · ,M}, we may assume that these three subscripts are dif-
ferent from each other. For simplicity, we also omit the subscripts of the three
vectors As, At, Ar. Let

Z = (z1, z2, · · · , znz) , Z = A,B,C , z = a, b, c (5.7)

be the uniform representation of the three sequences, and let
(
A′

B′

)
,

(
A∗

C∗

)
,

(
Bo

Co

)
(5.8)

be the minimum penalty alignments of all possible combined pairs in A, B, C.
Thus, we alternatively prove that

w(Bo, Co) ≤ w(A′, B′) + w(A∗, C∗) (5.9)

holds, by using the steps outlined below:

1. Following from the definition in (5.7), we know that the sequences A′, A∗

are the expansions of A, B′, Bo are the expansions of B, and C∗, Co are
the expansions of C, with the corresponding expanded modes given as
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

H ′
a =

(
γ′a,1, γ

′
a,2, · · · , γ′a,na

)
=
{(
i′a,k, �

′
a,k

)
, k = 1, 2, · · · , k′a

}
,

H∗
a =

(
γ∗a,1, γ

∗
a,2, · · · , γ∗a,na

)
=
{(
i∗a,k, �

∗
a,k

)
, k = 1, 2, · · · , k∗a

}
,

H ′
b =

(
γ′b,1, γ

′
b,2, · · · , γ′b,nb

)
=
{(
i′b,k, �

′
b,k

)
, k = 1, 2, · · · , k′b

}
,

Ho
b =

(
γob,1, γ

o
b,2, · · · , γob,nb

)
=
{(
iob,k, �

o
b,k

)
, k = 1, 2, · · · , kob

}
,

H∗
c =

(
γ∗c,1, γ

∗
c,2, · · · , γ∗c,nc

)
=
{(
i∗c,k, �

∗
c,k

)
, k = 1, 2, · · · , k∗c

}
,

Ho
c =

(
γoc,1, γ

o
c,2, · · · , γoc,nc

)
=
{(
ioc,k, �

o
c,k

)
, k = 1, 2, · · · , koc

}
,

(5.10)
where na, nb, nc are the lengths of sequences A,B,C, respectively.

2. Let n′
a, n

∗
a, n

′
b, n

o
b , n

∗
c and noc be the lengths of the sequences A′, A∗, B′,

Bo, C∗ and Co respectively, where n′
a = n′

b, n
∗
a = n∗

c , n
o
b = noc. Then,

following from (H ′
a, H

∗
a , H

′
b, H

o
b , H

∗
c , H

o
c ), the decompositions of N ′

a, N
∗
a ,
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N ′
b, N

o
b , N

∗
c and No

c are as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N ′
a =

{
δ′a,1, δ′a,2, · · · , δ′a,2k′a+1

}
,

N∗
a =

{
δ∗a,1, δ∗a,2, · · · , δ∗a,2k∗a+1

}
,

N ′
b =

{
δ′b,1, δ

′
b,2, · · · , δ′b,2k′b+1

}
,

No
b =

{
δob,1, δ

o
b,2, · · · , δob,2ko

b+1

}
,

N∗
c =

{
δ∗c,1, δ∗c,2, · · · , δ∗c,2k∗c +1

}
,

No
c =

{
δoc,1, δ

o
c,2, · · · , δoc,2ko

c+1

}
,

(5.11)

where the intervals δ′.s are connected in order. If we let

Δ′
a,1 =

{
δ′a,1, δ′a,3, · · · , δ′a,2k′a+1

}
Δ′
a,2 =

{
δ′a,2, δ′a,4, · · · , δ′a,2k′a

}

Δ∗
a,1 =

{
δ∗a,1, δ∗a,3, · · · , δ∗a,2k∗a+1

}
Δ∗
a,2 =

{
δ∗a,2, δ∗a,4, · · · , δ∗a,2k∗a

}

Δ′
b,1 =

{
δ′b,1, δ

′
b,3, · · · , δ′b,2k′b+1

}
Δ′
b,2 =

{
δ′b,2, δ

′
b,4, · · · , δ′b,2k′b

}

Δo
b,1 =

{
δob,1, δ

o
b,3, · · · , δob,2ko

b+1

}
Δo
b,2 =

{
δob,2, δ

o
b,4, · · · , δob,2ko

b

}

Δ∗
c,1 =

{
δ∗c,1, δ∗c,3, · · · , δ∗c,2k∗c +1

}
Δ∗
c,2 =

{
δ∗c,2, δ∗c,4, · · · , δ∗c,2k∗c

}

Δo
c,1 =

{
δoc,1, δ

o
c,3, · · · , δoc,2ko

c+1

}
Δo
c,2 =

{
δoc,2, δ

o
c,4, · · · , δoc,2ko

c

}

(5.12)
then we have

a′Δ′
a,1

= a∗Δ∗
a,1

= A , b′Δ′
b,1

= boΔo
b,1

= B , c∗Δ∗
c,1

= coΔo
c,1

= C , (5.13)

and all components in the following vectors

a′Δ′
a,2
, a∗Δ∗

a,2
, b′Δ′

b,2
, boΔo

b,2
, c∗Δ∗

c,2
, coΔo

c,2

are the inserted symbol “−”.
3. Following from the union H ′′

a = H ′
a ∨H∗

a of the expanded modes H ′
a, H

∗
a ,

we may expand sequenceA toA′′ under the modeH ′′
a . Then, A′′ is actually

the virtual expansion of both A′ and A∗, whose extra regions are H ′′
a −H ′

a

and H ′′
a −H∗

a , respectively. Therefore, we get the expanded modes on A′

and A∗ as (H ′′
a −H ′

a)a′ and (H ′′
a −H∗

a)a∗ , respectively. (H ′′
a −H ′

a)a′ , (H ′′
a −

H∗
a)a∗ are then two different quadratic expansions of sequence A, whose

evolution process is given as:

A
H′

a−→ A′ (H′′
a −H′

a)a′−→ A′′ , A
H∗

a−→ A∗ (H′′
a −H∗

a)a∗−→ A′′ . (5.14)
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4. Since the lengths of sequences B′, C∗ are equal to the lengths of sequences
A′, A∗, respectively, the expansions of B′, C∗ under the expanded mode
(H ′′

a − H ′
a)a′ , (H ′′

a − H∗
a)a∗ are denoted by B′′, C′′, respectively. Then,

(H ′′
a −H ′

a)a′ , (H ′′
a −H∗

a)a∗ are the common expanded regions of pair A′′

and B′′ and pair A′′ and C′′ respectively. Hence, we find that

w(A′′, B′′) = w(A′, B′) , w(A′′, C′′) = w(A∗, C∗) . (5.15)

On the other hand, based on the definition of w(A′′, B′′) =
∑n′′

a

j=1 w(a′′j , b
′′
j ), we derive the following relationships:

w(A′′, B′′) + w(A′′, C′′) =
n′′

a∑

j=1

[
w
(
a′′j , b

′′
j

)
+ w

(
a′′j , c

′′
j

)]

≥
n′′

a∑

j=1

w
(
b′′j , c

′′
j

)
= w(B′′, C′′) , (5.16)

where the inequality holds due to the following expression:

w
(
a′′j , b

′′
j

)
+ w

(
a′′j , c

′′
j

) ≥ w
(
b′′j , c

′′
j

) ∀j = 1, 2, · · · , n′′
a ,

where w(a, b) is a measurement defined on V5, and n′′
a is the length of the

sequence A′′.
5. In view of (5.15) and (5.16), we have the following inequality:

w(Bo, Co) ≤ w(B′′, C′′) ≤ w(A′′, B′′) + w(A′′, C′′)
= w(A′, B′) + w(A∗, C∗) . (5.17)

Similarly, we can prove that

w(A∗, C∗) ≤ w(A′, B′) + w(Bo, Co) ,
w(A′, B′) ≤ w(A∗, C∗) + w(Bo, Co) .

Hence, the required triangle inequality relationship of W̄ o = (wos,t)s,t∈M
holds. This is equivalent to saying that W̄ is a distance function defined
on A. This ends the proof.

Next, we denote the finite metric space with a minimum penalty matrix
by M = {M,W}, and we may call it the metric space of pairwise
alignment for short, where M = {1, 2, · · · ,m} is the subscript of A, and
W = (ws,t)s,t=1,2,··· ,m is the minimum penalty matrix induced by the pair-
wise alignment of the multiple sequences A under a given penalty function.
This metric space M is useful in the clustering of multiple sequences, and
in the analysis of the evolution of multiple sequences. Clustering analysis is
useful in many aspects of sequence analysis. We will discuss this further in
later sections.
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5.2 Optimization Criteria of MA

5.2.1 The Definition of MA

Using pairwise alignment to process multiple sequences is not a true multiple
alignment approach, as several problems cannot be solved through use of this
strategy. For example:

1. To search for common stable regions of a family of sequences.
In other words, in determining the common region of many biological
sequences, the pairwise alignment methods do not work.

2. For an overview of the characteristics and trends of multiple
sequences. The stable regions of multiple sequences do not perfectly
coincide. Frequently, there are sequences in a multiple sequence set such
that the stable regions are different. This difference often cannot be found
through pairwise alignment, only by MA.

3. Analyze these types of mutation comprehensively. Structure of
the sequence before mutation and prediction problems. In the mutating
processes, many important mutation types will occur, for example, inde-
pendent mutation and transitional mutation, etc. To analyze these types
of mutation comprehensively, and to predict the trend of changes, we must
involve MA.

In conclusion, MA are vitally important tools in the analysis of the common
structure of a family of sequences, and their usefulness is not limited to the
research on mutations in and evolution of biological sequences. It is used
comprehensively to solve bioinformatics problems, for example, as a main
tool for predicting the secondary structure of proteins.

To create MA, we begin by building the optimization criteria of MA meth-
ods, and then attempt the optimization of MA.

5.2.2 Uniform Alignment Criteria and SP-Optimization Criteria
for Multiple Sequences

Definition of Uniform Alignment of Multiple Sequences

Uniform alignment of a pair of sequences was addressed when we discussed
mutation and pairwise alignment. We now generalize this concept to fit mul-
tiple sequences.

Let A = {A1, A2, · · · , An} be a multiple sequence and C = {C1,
C2, · · · , Cm} be the alignment of A. Typically,

As = (as,1, as,2, · · · , as,ns) , Ct = (ct,1, ct,2, · · · , ct,n′
t
) , s, t ∈M ,

as,j , ct,j are elements of V4, V5, respectively, and each Cs is virtual expansion
of As.
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Within the multiple sequence A, every pair As, At are mutated sequences
acted on by shifting and nonshifting mutations. Let Ts,t be the mutation mode
for As, At mutating to Cs, Ct, respectively, and let (C′

s, C
′
t) be the compressed

sequences of (Cs, Ct). If (csj , ctj) = (4, 4), then delete these two components
from Cs, Ct, respectively, so that the rest of (C′

s, C
′
t) is still the expansion of

(As, At).

Definition 28. Let C be the multiple expansion of A. Then C is the uniform
alignment of A, if for every s �= t ∈M, the following conditions are satisfied:

1. For every expansion C′
s of As, the added part just consists of the regions

resulting from type-III mutation so that As to At.
2. For every expansion C′

t of At, the added part just consists of the regions
resulting from type-III mutation so that At to As.

Calculation of Uniform Alignment of Multiple Sequences

In Sects. 3.1 and 3.2, we mentioned the mutation mode of multiple sequences
and their envelope. If a multiple sequence A has only shifting mutations, then
the uniform alignment C of A can be computed by the following steps:

1. Calculate the minimum envelope C0 of A.
2. For each s, since C0 is the expansion of As, we compare C0 and As. For

the extra coordinates of C0 relative to As, we replace them with “−”,
and then renew the sequence denoted by Cs. The collection of all renewed
sequences C = {Cs, s ∈ M} is the uniform alignment of the multiple
sequence.

3. If A is a multiple sequence involving both shifting and nonshifting muta-
tions, then the minimum envelope C0 involves type-I and type-II muta-
tions, and C0 relative to As can be divided into two parts, namely, the
expansion and nonexpansion parts as follows:

C0 =
(
cΔ′

s,0
, cΔ′

s,1

)
,

where cΔ′
s,0

is the expansion part and cΔ′
s,1

is the nonexpansion part of As.
4. The uniform alignment of a multiple sequence A is the result processed

the following way: replace the corresponding coordinates in the region of
cΔ′

s,0
by the elements of As, and replace the coordinates in the region of

cΔ′
s,1

by the virtual symbol “−”. The renewed multiple sequence is then
the uniform alignment of A.

Example 19. Let A be a triple of sequences given by:
⎧
⎪⎨

⎪⎩

A1 = aactg()ggga[tagat]gguuuaacgta{aauau}accgt ,
A2 = aactg(gta)ggga[]gguuuaacgta{aauau}accgt ,
A3 = aactg(gta)ggga[tagat]gguuuaacgta{}accgt .
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Comparing these three sequences, we find the following mutation relation-
ships:

Based on A1, we insert gta after position 5 and delete tagat after position 9,
so that A1 mutates to A2.

Also based on A1, we insert gta after spot 5 and delete aauau after posi-
tion 25, so that A1 mutates to A3.

Based on A2, we insert tagat after position 12 and delete aauau after
position 23, so that A2 mutates to A3.

Obviously, the triple sequence A has shifting mutations only. Therefore,
each sequence in A can be mutated from another sequence in A by type-III
and type-IV mutations.

The minimum envelope and maximum core are given by:
{
C0 = aactg(gta)ggga[tagat]gguuuaacgta{aauau}accgt ,
D0 = aactg()ggga[]gguuuaacgta{}accgt ,

in which the data in parentheses, brackets, or braces are the deleted segments
in A1, A2, A3, respectively. We set

⎧
⎪⎨

⎪⎩

C1 = aactg(- - - -)ggga[tagat]gguuuaacgta{aauau}accgt ,
C2 = aactg(gta)ggga[- - - - - - -]gguuuaacgta{aauau}accgt ,
C3 = aactg(gta)ggga[tagat]gguuuaacgta{- - - - - - -} accgt .

This renewed triple sequence is the uniform alignment of the triple se-
quence A.

IfA1, A2, A3 have nonshifting mutations, they have no unified envelope and
core. We construct an envelope and core with type-I and type-II mutations,
and then construct the corresponding uniform alignment. For example, if

⎧
⎪⎨

⎪⎩

A′
1 = aaatg()ggga[tagat]gguuuaacgta{aauau}accgt ,

A′
2 = aactg(gta)ggga[]gguaauucgta{aauau}accgt ,

A′
3 = aactg(gta)ggga[tagat]gguuuaacgtaaccgg .

then besides the shifting mutation like the one in A1, A2, A3, there are also
type-I and type-II mutations in A′

1, A
′
2, A

′
3.

At position 3 of A′
1, c was mutated to a, relative to A2. This is a type-I

mutation. At positions 16–19 of A′
2, aauu was mutated to uuaa, relative to A1.

This is a type-II mutation. At the last position of A′
3, the t was mutated to

t, relative to A1 and A2. This again is type-I mutation.
After this preprocessing, we denote the envelope and core of A′

1, A
′
2, A

′
3 by

C0, D0, and let the uniform alignment be:
⎧
⎪⎨

⎪⎩

C′
1 = aaatg(- - - -)ggga[tagat]gguuuaacgta{aauau}accgt ,

C′
2 = aactg(gta)ggga[- - - - - - -]gguaauucgta{aauau}accgt ,

C′
3 = aactg(gta)ggga[tagat]gguuuaacgta{- - - - - - -}accgg .
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Problems in Uniform Alignment of Multiple Sequences

Based on the definition of uniform alignment of multiple sequences, we know
that all of the shifting mutations among the multiple sequences can be deter-
mined by uniform alignment of multiple sequences, after which all the muta-
tions between every pair in the multiple sequence can be determined. Thus,
uniform alignment of multiple sequences is the ultimate goal. On the other
hand, there are several difficult problems involved in uniform alignment of
multiple sequences which must be solved, such as:

1. Example 19 is a special case that may be solved. For general cases, the
calculation of the uniform alignment is too complex; so we must still find
a systematic algorithm in order to solve it.

2. It is difficult to judge whether a MA is a uniform alignment or not. We
cannot establish a unified indexing system to judge uniform alignment.

This shows that the uniform alignment of multiple sequences is simply an
ideal optimization criterion, which is in reality difficult to perform. So, we
must still find other optimization criteria.

SP-Criterion of MA

The SP-penalty functions of MA presented in (1.9), are frequently involved
in current literature. The involved notations are stated as follows:

1. Let w(a, b), a, b ∈ V5 be the metric function defined on V5, which is also
called the difference degree, or penalty matrix. The most popular penalty
matrices for DNA (or RNA) are the Hamming matrix, the WT-matrix, etc.
The definition of the WT-matrix is presented in (1.7). Generally, a met-
ric function w(a, b), a, b ∈ V5 should satisfy the three axioms, namely,
nonnegativity, symmetry and the triangle inequality.

2. The SP-function is the function most frequently used as the penalty func-
tion for multiple sequences. The definition of the SP-function is presented
in (1.9).

3. A generalized form of the SP-function is the weighted WSP-function de-
fined as follows:

wWSP(C) =
n′
∑

j=1

∑

t>s

m−1∑

s=1

θs,tw(cs,j , ct,j) =
n′
∑

j=1

m−1∑

s=1

∑

t>s

θs,tw(cs,j , ct,j) ,

(5.18)
where θs,t is a weighting function.
The functions wSP(C) and wWSP(C) defined by (1.9) and (5.18) respec-
tively, are both called SP-penalty functions for multiple sequences. Thus,
multiple sequence alignment (MSA) may be formed as follows. For a mul-
tiple sequences A, search for its expansion C0 with the minimum penalty
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(or the maximum similarity) under the given penalty function. Alterna-
tively, solve the expansion C0 of A such that

wSP(C0) = min{wSP(C) : C is the expansion of A} . (5.19)

4. In addition, the SP-scoring function is also commonly used in current lit-
erature. We then let w(a, b), a, b ∈ V5 be a scoring function defined on V5.
Similarly, we have the scoring matrices for DNA (or RNA) sequences based
on the Hamming matrix, or the WT-matrix. The scoring matrix based on
the Hamming matrix is defined below:

W = [wWT(a, b)]a,b∈V5 =

⎛

⎜
⎜
⎜⎜
⎜
⎜
⎝

− a c g t(u)
− 0 −2 −2 −2 −2
a −2 1 0 0 0
c −2 0 1 0 0
g −2 0 0 1 0
t(u) −2 0 0 0 1

⎞

⎟
⎟
⎟⎟
⎟
⎟
⎠

, (5.20)

where −, a, c, g, t(u) are 4, 0, 1, 2, 3 respectively. The definition of the SP-
scoring function for multiple sequences is then the same as (1.9) or (5.18).
The corresponding optimization criterion is to find the maximum value in
(5.19).

5.2.3 Discussion of the Optimization Criterion of MA

Establishing the Optimization Criteria for Multiple Sequences

As presented above, the uniform alignment criterion is reasonable but difficult
to judge, while the index of the SP-criterion is easily calculated based on the
result C although its rationality is yet to be demonstrated. In fact, many
other optimization criteria for MA have been proposed. Therefore, we first
must understand how to find the fundamental rules for judging the quality of
specific optimization criteria. For this, we propose the following requirements:
rationality, decidability, comparability (with the optimization solution) and
helpfulness in calculating the optimization solution. We detail them as follows:

Requirement 1: rationality. Rationality here means whether or not the
proposed criterion is related to multiple alignments. We need to know
how to judge rationality.

Requirement 2: decidability. Decidability here means it directly and
quickly decides the quality of an optimization criterion based on the align-
ment output. Obviously, a good criterion should be decidable and easy to
calculate.

Requirement 3: comparability (with optimization solution).
Comparability here means that the alignment result determining the pro-
posed optimization criterion should be comparable with the optimization
solution, or should determine the difference between the alignment result
and the optimization solution.
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Requirement 4: usefulness in optimizing the solution.

Based on the definitions of a uniform alignment criterion and the SP-criterion,
we know that a uniform alignment criterion satisfies requirement 1, but it does
not satisfy requirements 2 and 3. The SP-criterion satisfies requirements 1
and 2, but does not satisfy requirement 3. Therefore, by using the SP-criterion,
we can only judge whether the alignment result is good or bad compared
with another result. We cannot calculate the difference between the alignment
result and the optimal solution. Later, we may find that the SP-criterion is
easily calculated, although it does not really satisfy requirement 1.

Rational Conditions of the Optimization Criteria of MA

As mentioned above, the optimization conditions of MA should relate to the
goal of MA. That is, to search for stable regions within multiple sequences
and to determine the trend of mutation. Therefore, we should use the “con-
centration” of alignment results as a basic index.

In mathematics, there are several methods for measuring the relationship
between various data. For example, distance, surface area and volume are
familiar measurements. As well, the uncertainty of a random variable is a basic
element in informatics. The probability distribution is an important factor
when determining the uncertainty.

Besides the expressions of metric relations between the data, we also should
consider their specific characteristics. For example, in the case of distance, it
includes not only the formulas in Euclidean space, but also the three character-
istics: nonnegativity, symmetry and the triangle inequality. For measurement,
its vital characteristic is its additivity. The uncertainty also has particular
characteristics that will be discussed later.

In order to establish the optimization conditions for MA, the concentration
is chosen as a candidate index. We add the following conditions on the penalty
function of MA.

Condition 5.2.1 Nonnegative property. For any MA C, we always have
w(C) ≥ 0, and the equality holds if and only if

C = A , and A1 = A2 = · · · = Am . (5.21)

Expression (5.21) means that there are no virtual symbols “−” in any
sequence.

Condition 5.2.2 Symmetry property. This means that the overall penalty
function is invariant if we permute the order of the sequences in C. Gen-
erally, let σ1, σ2 be two permutations defined on sets

M = {1, 2, · · · ,m} , N ′ = {1, 2, · · · , n′} ,
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respectively, and let
{
σ1(C) = {Aσ1(s) , s = 1, 2, · · · ,m} ,
σ2(C) = {σ2(As) , s = 1, 2, · · · ,m} , (5.22)

where
σ2(As) = (σ2(as,1), σ2(as,2), · · · , σ2(as,n′)) (5.23)

and σ2(as,j) = as,σ2(j). The symmetry property means that

w[σ1(C)] = w(C) , w[σ2(C)] = w(C) . (5.24)

Condition 5.2.3 Maximum–minimum condition. This condition is used to
describe the column without the virtual symbol “−”. It means that the
penalty score is maximum if a, c, g, and u occur in this column obeying
uniform distribution, and the penalty score is minimum if only one of a,
c, g, or u occurs in this column. Condition 5.2.3 reflects the requirement
for uniformity. We use this to find positions that are invariant for all
sequences.
Another requirement for uniformity is that the penalty score of the mixed
sequence produced by two multiple sequences should be greater than the
sum of the penalty scores of two single multiple sequences. For example,
if

A1 = {A1,1, A1,2, · · · , A1,m1} , A2 = {A2,1, A2,2, · · · , A2,m2} . (5.25)

These two multiple sequences have no common elements, where

Aτ ;s = (aτ ;s,1, aτ ;s,2, · · · , aτ ;s,nτ,s) , τ = 1, 2 , s = 1, 2, · · · ,mτ .
(5.26)

The mixed multiple sequence is

A0 = {A1,A2} = {A1,1, A1,2, · · · , A1,m1 , A2,1, A2,2, · · · , A2,m2} . (5.27)

We denote A0 = A1 ⊗ A2, and the operation ⊗ is called the row super-
position of multiple sequences.
Let Cτ be the alignments of the multiple sequences Aτ , τ = 1, 2, and
let C0 = C1 ⊗ C2 be defined in the same way as (5.27). Then, C0 is the
alignment of A0.

Condition 5.2.4 Convexity of row superposition. Let Cτ be the alignment of
multiple sequences Aτ , τ = 1, 2, then C0 = C1 ⊗ C2 satisfies the following
inequality:

w(C0) ≥ m1

m1 +m2
w(C1) +

m2

m1 +m2
w(C2) . (5.28)

If m1,m2 > 0, then the equality in (5.28) holds if and only if there is no
“−” in C0 and if the probabilities of finding a, c, g, t in each column of C1

and C2 are the same.
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Let the jth column vector of C0, C1, and C2 be

c0;·,j =
(
c1;·,j
c2;·,j

)
, cτ ;·,j =

⎛

⎜
⎜
⎜
⎝

cτ ;1,j
cτ ;2,j

...
cτ ;mτ ,j

⎞

⎟
⎟
⎟
⎠
, τ = 1, 2 . (5.29)

Then, the equality in Condition 5.2.4 holds if and only if there is no “−”
occurring in both c1;·,j and c2;·,j and the probabilities of finding a, c, g, t
are the same.

Conditions 5.2.1–5.2.4 are the basic requirements for uncertainty or concen-
tration. We should pay attention when comparing them with other relations
(i.e., distance, measurement, etc). These basic relations frequently form an ax-
iomatic system in the mathematical sense. Different axiomatic systems lead
to different branches of disciplines, and different branches which have differ-
ent data structure relations. For example, the difference between Euclidean
geometry and non-Euclidean geometry is the fifth postulate (the axiom of
parallels).

Besides the uncertainty requirements, we still have several additional re-
quirements. We add the following three conditions:

Condition 5.2.5 The invariance of the penalty function. This means the
“penalty function” for MA should be a penalty function for pairwise align-
ment if it was restricted to a pair of sequences. The popular penalty func-
tions for pairwise alignment include the generalized Hamming function,
the WT-matrix, etc.

Condition 5.2.6 The number of virtual symbols “−” is a minimum. If there
exists one row of C where all the elements are “−”, i.e., if

c·j =

⎛

⎜
⎜
⎜
⎝

c1,j
c2,j
...

cm,j

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

−
−
...
−

⎞

⎟
⎟
⎟
⎠

,

then C is definitely not the minimum penalty expansion of A.
The row superposition operation ⊗ for multiple sequences is defined in
expression (5.27). Similarly, we define the column superposition operation
for multiple sequences. Let

A1 = {A1,1, A1,2, · · · , A1,m} , A2 = {A2,1, A2,2, · · · , A2,m}
be two multiple sequences with the same multiplicity, where

Aτ,s = (aτ ;s,1, aτ ;s,2, · · · , aτ ;s,nτ,s) , τ = 1, 2 .

Then, the column superposition of two multiple sequences is defined as

A0 = A1 + A2 = (A0,1, A0,2, · · · , A0,m)T , (5.30)
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in which

A0,s = (A1,s, A2,s) = (a1;s,1, a1;s,2, · · · , a1;s,n1,sa2;s,1, a2;s,2, · · · , a2;s,n2,s) .
(5.31)

For the alignment C1, C2 of A1,A2, we can also define the column super-
position operation C0 = C1 + C2. If C1, C2 are the alignments of A1,A2,
then C0 is the alignment of A0.

Condition 5.2.7 Convexity of column superposition. If Cτ is the alignment
of the multiple sequence Aτ , τ = 1, 2, then C0 = C1 + C2 satisfies

w(C0) = w(C1) + w(C2) (5.32)

These additional conditions are also the natural requirement for MA.
We can easily verify that the SP-penalty function defined by expression

(1.9) does not satisfy the Conditions 5.2.4 and 5.2.7. Therefore, we may arrive
at some unreasonable results such as; for example,

CSP

⎛

⎜
⎜
⎜
⎜⎜
⎝

⎛

⎜
⎜
⎜
⎜⎜
⎝

−
−
...
−
a

⎞

⎟
⎟
⎟
⎟⎟
⎠

⎞

⎟
⎟
⎟
⎟⎟
⎠

= CSP

⎛

⎜
⎜
⎜
⎜⎜
⎝

⎛

⎜
⎜
⎜
⎜⎜
⎝

a
a
...
a
−

⎞

⎟
⎟
⎟
⎟⎟
⎠

⎞

⎟
⎟
⎟
⎟⎟
⎠

= m− 1 .

In addition, if

C0 =

⎛

⎜
⎜
⎝

a
a
c
c

⎞

⎟
⎟
⎠ , C1 =

(
a
c

)
, C2 =

(
a
c

)
, (5.33)

then following from Condition 5.2.4, the penalty functions of C0, C1, C2 must
be the same. Nevertheless, for the SP-function (wSP(a, b) is assumed to be the
Hamming matrix), we have

wSP(C0) = 4 , while wSP(C1) = wSP(C2) = 1 . (5.34)

Obviously, the conclusion in (5.34) does not satisfy Condition 5.2.7. Gener-
ally, which conclusion, that of the conclusion of the SP-function or that of
Condition 5.2.4, is more reasonable is a good question for discussion.

5.2.4 Optimization Problem Based on Shannon Entropy

The goal of alignment is to keep the corresponding components of multiple
sequences as consistent as possible while minimizing the number of virtual
symbols “−”. Using Conditions 5.2.1–5.2.7, we may find that the penalty
function of MA is actually a measure of the complexity or uncertainty of mul-
tiple sequences. Since Shannon entropy is a natural measurement to describe
the uncertainty, it allows us to use the concept of information to describe
the optimization criteria. We now introduce some pertinent notations and
properties.
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Notations for MA C
Let C be the alignment of the multiple sequence A, then we introduce the
following notation to describe the structure of C:

1. For simplicity, we may assume that the row lengths of A and C are the
same. Then

n1 = n2 = · · · = nm = n , n′
1 = n′

2 = · · · = n′
m = n′ .

Let a·,j , ai,· be the row vector and column vector of A, respectively, and
let c·,j , ci,· be the row vector and column vector of C, respectively.

2. Let

χz(cs,j) =

{
1 , if cs,j = z ,

0 , otherwise

be the indicator function, here cs,j , z ∈ V5, and let

fj,z(C) =
m∑

s=1

χz(cs,j) , j = 1, 2, · · · , n′ , z ∈ V5 (5.35)

be the frequency distribution function of the value of each component in
the column vector of the multiple sequence, then obviously we find that

fj,z ≥ 0 ,
4∑

z=0

fj,z(A) = m

holds for any z ∈ V5, j = 1, 2, · · · , n′.
3. Let θj(C) = fj,4(C), and let

pj,z(C) =
fj,z(C)
m

, j = 1, 2, · · · , n′ , z = 0, 1, 2, 3, 4 (5.36)

be the frequency distribution function of the jth column of the multiple
sequence, then

∑4
z=0 pj,z(C) = 1 holds; here fj,z(C)pj,z(C) are actually

functions of cj,z.
4. In the definitions of (5.35) and (5.36), we may omit the notation C some-

times, so
pj,·(C) = pj,· = (pj,0, pj,1, pj,2, pj,3, pj,4) .

We then define a function as follows:

wHG(C) =
n′
∑

j=1

HG(c·,j) =
n′
∑

j=1

[H(pj,·) +G(θj)] , (5.37)

where
HG(c·,j) = H(pj,·) +G(θj), j = 1, 2, · · · , n′

Then HG(c·,j) is called the HG function of C, and G(θj) is a strictly
monotonically increasing function with G(0) = 0.
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Definition 29. In the HG function of C, if

H(pj,·) = −
4∑

z=0

pj,z log pj,z (5.38)

is a Shannon entropy, then the function wHG(C) is called the S-function, or
information-based penalty function, and is denoted by wS(C).

As this is a very important penalty function, the reader should keep it in mind
as we will use it in the text below.

The Selection of the Monotonically Increasing Function G(θ)

There are several possible selections for the monotonically increasing function
G(θ), some of which are listed as follows:

1. Linear function: Gm(θ) = θ
g(m) , where g(m) is a nondecreasing function

of m (g(m) ≥ g(m′) if m > m′) which does not depend on θ. In particu-
lar, g(m) may be chosen as a constant with respect to m, and Gm(θ) is
a common linear function of θ for the multiple sequences.

2. Power law function: for example, G(θ) = θ2.
3. Logarithmic function: i.e., G(θ) = log(1 + θ), etc.

If we choose wS(C) as the penalty function to process the optimization prob-
lems for multiple sequences, then these types of optimal problems are called
information-based optimal problems. As well, the corresponding optimization
criteria are called information-based criteria.

Information-Based Criteria of Multiple Sequences

Theorem 24. If w(C) is an information-based function of MA given by (5.37)
and (5.38), then Conditions 5.2.1–5.2.7 hold.

Since the proof of this theorem is long, we will outline for the reader the
role played by this theorem, before providing the proof. It follows from this
theorem that the information-based penalty function defined by (5.37) and
(5.38) is a penalty function satisfying Conditions 5.2.1–5.2.7. That is, this
new penalty function is the best one among all penalty functions.

Proof. The proof of this theorem is divided into nine steps as follows:

1. Verifying that Conditions 5.2.1 and 5.2.2 are satisfied. This is trivial be-
cause H(pj·), G(θj) are nonnegative functions, and wS(C) = 0 holds if
and only if

H(pj·) = 0 , G(θj) = 0 , j = 1, 2, · · ·n′ (5.39)

holds. Furthermore, (5.39) holds if and only if (5.21) holds. In addition,
based on the definitions of wS(C) and H(pj·), θj , we know that they
are symmetric functions with respect to the subscripts s, j. Hence, the
symmetric Condition 5.2.2 is true.
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2. Verifying Condition 5.2.3. Condition 5.2.3 can be directly proved by the
properties of Shannon entropy. This is because H(pj·) is maximal if pj·
obeys uniform distribution, while it is minimum if pj· obeys binary distri-
bution (in other words,

pj,z =

{
1 , if z = z0 ,

0 , otherwise ,

for a fixed z0 ∈ V4).
3. Verifying Condition 5.2.4. Let C0 = C1 ⊗ C2, then both C1 and C2 are

subsets of C0. Following from (5.26) and (5.27), we have

Cτ = {Cτ,1, Cτ,2, · · · , Cτ,mτ } , τ = 0, 1, 2 , (5.40)

where m0 = m1 +m2, and

Cτ,s = (cτ ;s,1, cτ ;s,2, · · · , cτ ;s,n′) , τ = 0, 1, 2 , s = 1, 2, · · · ,mτ .
(5.41)

We then define ⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

fτ,j(z) =
mτ∑

s=1

χz(cτ ;s,j) ,

θτ,j = fτ,j(4) ,

pτ,j(z) =
fτ,j(z)
mτ

,

(5.42)

where τ = 0, 1, 2, z ∈ V5, j = 1, 2, · · · , n′. We then find that the equations
{

θ0,j = θ1,j + θ2,j ,

p0,j(z) = μ1p1,j(z) + μ2p2,j(z)
(5.43)

hold for all z = 0, 1, 2, 3, 4, and j = 1, 2, · · · , n, where μ1 = m1
m0

, μ2 = m2
m0

.
4. Verifying the convexity of G(θ). Following from formula (5.37) for the

S-penalty function for multiple sequences C0, and the property that G(θ)
is a monotonically increasing function, we obtain the inequality:

G(θ0,j) = μ1G(θ0,j) + μ2G(θ0,j) ≥ μ1G(θ1,j) + μ2G(θ2,j) . (5.44)

5. Verifying the inequality μ1wS(C1)+μ2wS(C2) ≤ wS(C0) in Condition 5.2.4.
Let h(p) = −p log p be the entropy density function, then h(p) = −p log p
is a convex function of the variable p ∈ (0, 1). In fact, μ1 + μ2 = 1 and

p0,j(z) = μ1p1,j(z) + μ2p2,j(z)

imply the inequality:

−p0,j(z) log p0,j(z) = −[μ1p1,j(z) + μ2p2,j(z)] log[μ1p1,j(z) + μ2p2,j(z)]
≥ −μ1p1,j(z) log p1,j(z) − μ2p2,j(z) log p2,j(z) .

(5.45)



168 5 Multiple Sequence Alignment

Taking the sum of z by the two sides of expression (5.45), we have

H(p0;j,·) = −
4∑

z=0

p0,j(z) log p0,j(z)

= −
4∑

z=0

[μ1p1,j(z) + μ2p2,j(z)] log[μ1p1,j(z) + μ2p2,j(z)]

≥ −
4∑

z=0

[μ1p1,j(z) log p1,j(z) + μ2p2,j(z) log p2,j(z)]

= μ1H(p1;j,·) + μ2H(p2;j,·) . (5.46)

Furthermore, using expressions (5.44) and (5.46), we find that the inequal-
ity

μ1[H(p1;j,·)+G(θ1,j)]+μ2[H(p2;j,·)+G(θ2,j)] ≤ H(p0;j,·)+G(θ0,j) (5.47)

holds for all j = 1, 2, · · · , n′. Again, taking the sum over j on both sides
of expression (5.47), we have the inequality

μ1wS(C1) + μ2wS(C2)

=
n′
∑

j=1

{μ1[H(p1;j,·) +G(θ1,j)] + μ2[H(p2;j,·) +G(θ2,j)]}

≤
n′
∑

j=1

[H(p0;j,·) +G(θ0,j)] = wS(C0) .

Hence, the inequality μ1wS(C1) + μ2wS(C2) ≤ wS(C0) in Condition 5.2.4
holds.

6. Verifying the sufficient condition for the equation in Condition 5.2.4. If
θ0,j = 0 and the relationship

p1,j(z) = p2,j(z) = p0,j(z) , ∀z ∈ V5 (5.48)

holds for all j = 1, 2, · · · , n′, then θ1,j = θ2,j = 0 and then G(θ1,j) =
G(θ2,j) = 0 holds. Furthermore, following from (5.48), we haveH(p1;j,·) =
H(p2;j,·) = H(p0;j,·). It implies that

H(p0;j,·) = μ1H(p1;j,·) + μ2H(p2;j,·) .

Thus,

H(p0;j,·) +G(θ0,j) = μ1[H(p1;j,·) +G(θ1,j)] + μ2[H(p2;j,·) +G(θ2,j)] .
(5.49)

If we sum over j on both sides of (5.49), then we have

wS(C0) = μ1wS(C1) + μ2ws(C2) ,

showing that the equality in expression (5.28) holds.
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7. Verifying the necessary condition for the equation in Condition 5.2.4. If the
equal sign in expression (5.28) holds and m1,m2 > 0, then we have θ0,j =
θ1,j = θ2,j = 0 and (5.48) hold. Since G(θ) is a strictly monotonically
increasing function and θ0,j = θ1,j + θ2,j , it follows that

G(θ0,j) ≥ μ1G(θ1,j) + μ2G(θ2,j)

holds. Furthermore, the equality holds if and only if θ0,j = 0. On the other
hand, following from the strictly convex property of function H(p0;j,·), we
have

H(p0;j,·) ≥ μ1H(p1;j,·) + μ2H(p2;j,·) .

The equality holds if and only if expression (5.48) is true. If the equal sign
in expression (5.28) holds and m1,m2 > 0, then θ0,j = 0 and expression
(5.48) holds. In conclusion, the function wS(C) satisfies Condition 5.2.4.

8. Verifying Conditions 5.2.5–5.2.7. Since Condition 5.2.7 can be directly
verified using the definition of the penalty function, we only check that
Conditions 5.2.5 and 5.2.6 hold. For Condition 5.2.6, we may assume that
the jth row of C is such that all the elements are “−” in the form

⎛

⎜
⎜
⎜
⎝

c1,j
c2,j
...

cm,j

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

−
−
...
−

⎞

⎟
⎟
⎟
⎠

.

We obtain a new multiple expansion C′ by deleting this purely “−” column
from C, and then we have CS(C) > CS(C′). Therefore, C is definitely
not the minimum penalty alignment, and Condition 5.2.6 holds. Since
verifying Condition 5.2.5 is a long process, we do this in the next step.

9. For verifying Condition 5.2.5, on the one hand, we begin by calculating
HG(c1,j , c2,j) defined in (5.37) in the case m = 2. We then have the
following subcases:
(a) If (c1,j , c2,j) = (−,−), then θj = 2. Therefore,

H(pj,·) = 0 , G(θj) = G(2) , HG(c1,j , c2,j) = G(2) .

(b) If (c1,j , c2,j) = (−, c) ∀c ∈ {0, 1, 2, 3}, then θj = 1. Therefore,

H(pj,·) = 0 , G(θj) = G(1) , HG(c1,j , c2,j) = G(1) .

(c) If (c1,j , c2,j) = (c, c′) ∀c = c′ ∈ {0, 1, 2, 3}, then θj = 0. Therefore,

H(pj,·) = 0 , G(θj) = G(0) = 0 , HG(c1,j , c2,j) = 0 .

(d) If (c1,j , c2,j) = (c, c′) ∀c �= c′ ∈ {0, 1, 2, 3}, then θj = 0, pj,0 = pj,1 =
1/2. Therefore,

H(pj,·) = 1 , G(θj) = G(0) = 0 , HG(c1,j , c2,j) = 1 .
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As a result, we find the penalty matrix of HG(c, c′), ∀c, c′ ∈ V5 as
follows:

w(c, c′) =

⎛

⎜
⎜⎜
⎜
⎜
⎜
⎝

a c g u −
a 0 1 1 1 G(1)
c 1 0 1 1 G(1)
g 1 1 0 1 G(1)
u 1 1 1 0 G(1)
− G(1) G(1) G(1) G(1) G(2)

⎞

⎟
⎟⎟
⎟
⎟
⎟
⎠

. (5.50)

On the other hand, to get the penalty matrix for multiple sequences,
we choose a function G(θ) such that G(2) ≥ G(1) ≥ 1. The penalty
matrix w(c, c′) coincides with the generalized Hamming penalty ma-
trix that is commonly used for pairwise alignment. This ends the proof
of this theorem.

Discussion of the Converse Theorem 24

In Theorem 24, we proved that the information-based criterion satisfies Con-
ditions 5.2.1–5.2.7 of the penalty function. We now consider the inverse propo-
sition: what kind of conditions will imply the information-based function de-
fined in (5.38). To solve this problem, we use the definition and properties of
Shannon entropy.

Condition 5.2.8 The penalty function w(C) is formed by HG defined by
(5.37), H(p0, · · · , p4) is a continuous function of (p1, · · · , p4), and G(θj)
is a strictly monotonically increasing function with G(0) = 0.

Condition 5.2.9 If C0 = C1⊗C2 is defined as in Condition 5.2.4, and function
H(·) satisfies:

H(p0;j,·) = H(μ1) + μ1H(p1;j·) + μ2H(p2;j,·) . (5.51)

where h(p) = −p log p− (1 − p) log(1 − p).

Theorem 25. If the penalty function w(C) satisfies Conditions 5.2.1–5.2.3,
5.2.8, and 5.2.9, then w(C) is definitely the information-based penalty function
defined by (5.37) and (5.38).

The proof of this theorem is detailed in many informatics books, for example,
[23,88], etc. Therefore, we omit it here and refer the reader to other literature
sources.

5.2.5 The Similarity Rate and the Rate of Virtual Symbols

Problems of the SP-Penalty (or Scoring) Function
and the Information-Based Penalty Function

In previous sections, we defined two important penalty functions: the SP-
penalty function and the information-based penalty function, which are fre-
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quently used to study MA. We also discussed their roles in the optimal anal-
ysis. However, these discussions were not in-depth enough for further study.
We must study these two functions with respect to the following:

1. The comparability of the minimum penalty solution must be solved. In
other words, we are unable to show a difference between the optimal so-
lution and the minimum penalty solution based on these two functions.

2. The rate of virtual symbols proportional to the length of a sequence.
Based on the results of MA, the optimization index for MA often involves
the rate of virtual symbols, which will be defined later. The value of the
SP-penalty function or the information-based function increases as the
rate of virtual symbols increases. Conversely, the value of the SP-penalty
function or information-based function decreases as the rate of the virtual
symbols decreases. Determining the exact relationship between the rate
of virtual symbols and the value of the penalty function is the problem to
be discussed.

3. These two functions are unable to construct an optimally fast alignment.
Therefore, the optimization criteria of MA similar to the fast MA still
need to be discussed further. In this subsection, we focus on finding more
optimization indices of MA besides the SP-penalty (or scoring) function
and the information-based penalty function.

Similarity Rate

Let A be a given multiple sequence, so that we may obtain the minimum
penalty matrix B = (Bs,t) based on A, and the output C = {C1, C2, · · · , Cm}.
Based on these three elements, we have the following results:

1. A scoring matrix W = (ws,t)s,t=1,2,··· ,m is induced by the matrix B =
(Bs,t) in the natural way: ws,t = w(Bs,t, Bt,s).

2. A scoring matrix of MA W ′ = (w′
s,t)s,t=1,2,··· ,m is induced by result C in

the natural way: w′
s,t = w(Cs, Ct).

We then define the similarity rate as follows:

R(C) =
1

m(m− 1)

m∑

s=1

∑

t	=s

w′
s,t

ws,t
. (5.52)

Since ws,t is the score of the minimum penalty alignment based on As, At, we
have that w′

s,t ≤ ws,t always holds. Hence, R(C) ≤ 1 holds. We define C as the
optimal (or suboptimal) alignment of A if R(C) = 1 (or R(C) ∼ 1). Therefore,
the similarity rate describes the closeness between the optimal alignment and
the minimum penalty alignment.
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Rate of Virtual Symbols

The so-called rate of virtual symbols is the proportion of all virtual symbols
“−” (or 4) in C, namely,

P (C) =
the total of virtual symbols “−” in C

m× n
, (5.53)

where m is the multiplicity of C, and n is the length of each sequence in C.
In conclusion, the challenge of the optimization problem of MA is how to

make the value wSP(C) and the similarity ratio R(C) as large as possible while
making the rate of virtual symbols P (C) as small as possible. Or, how to make
the rate of virtual symbols as small as possible while making the value wSP(C)
and the similarity rate R(C) as large as possible.

5.3 Super Multiple Alignment

With the above principle in mind, we developed a fast algorithm for MA known
as the super multiple alignment (SMA). The associated software package was
also developed by the Nankai University group, and is freely available to the
public on the website (see Table 5.1). Next, we introduce the relevant materials
of SMA.

5.3.1 The Situation for MA

In Sect. 1.1, we introduced the general situation for the algorithms of MA,
and we discuss this issue in more detail at this point.

Definition of the MA

In 1982, the pairwise alignment problem had been primarily solved as the
Smith–Waterman algorithm was validated. Since then, interest has turned to
the question of how to get MA and how to improve the existing pairwise
alignment. Almost all bioinformatics literature such as [64] involve MA.

MA is widely used in various fields. For example, to study biological evolu-
tion, researchers analyze structural changes based on the MA of special DNA
sequences or protein sequences (such as mitochondrial DNA, cytochrome,
C. intestinalis, etc.). To study the virus genome, MA is also used to get
the evolution processes of specific viruses (such as SARS, HIV-1, and various
tumors) [101]. As a result, Paguma larvata is identified as the source of the
SARS virus based on the MA of 63 SARS genome sequences. In contrast, the
article [101] used pairwise alignment rather than MA, and as a result, too
much information was lost.

Another feature of MA is that the sizes of both the multiplicity m and the
lengths of sequences are growing rapidly as work on this problem progresses.
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It is common for a MA to involve hundreds of sequences which are hundreds
of million base pairs in length. For example, there are 706 HIV-1 sequences in
the GenBank 2004 edition (release 43); hopefully, the total number of HIV-1
sequences in all databases combined will exceed 1000. Therefore, there is great
demand for fast algorithms of MA for the analysis of these large-scale data.

Progress of MA

The earliest MA algorithm is the MA software package [56], which extended
the dynamic programming-based algorithm for pairwise alignment to the mul-
tiple cases by changing the penalty matrix to the multiple penalty tensor.
The computational complexity of this algorithm is O(nm), so it is hard to
compute as m,n increase. As a result, the scale of this algorithm is only
(m,n) = (7, 300). Progress on the improvement of MA is very slow, so it does
not keep pace with the exponential speed of the data growth.

After this phase, the study of MA has been developing along two direc-
tions. One is to discuss the computational complexity of the solution with
minimum penalty, which many publications consider to be a very difficult
problem. It was called the first open problem in biological computing in [46],
while refs. [15,36,106] call it the NP-hard and Max-Snp hard problem. Hence,
it is difficult to achieve MA with minimum penalty theoretically. The MA
problems become problems of computational complexity, as described in these
publications.

On the other hand, interest in this problem is ongoing because of the
importance of MA. Many algorithms, software packages and alignment results
appear in the literature one after another. For example, BLAST and FASTA
are both able to perform MA. Several specialized software packages, such as
CLUSTAL-W/X, BioEdit, MulAlin, GCG, Match-Box, BCM, and CINEMA,
etc. are all specific algorithms for MA. The common feature of these algorithms
is that they are not concerned with minimum penalty solutions, but result
in an increased scale of alignment. These algorithms achieve the suboptimal
solutions to some degree, and get a large return for increasing the alignment
scale. The alignment scale and the performance indices are shown in Table 5.2.

With MA emerging, the question of how to judge the quality of an algo-
rithm becomes increasingly important. The four indices given in Sect. 1.1.3,
namely, the utility range, alignment size, computational speed, and optimiza-
tion index, are useful when judging the quality of an algorithm. In addition,
the SP-penalty function, information-based penalty function, similarity rate
and the rate of virtual symbols defined in (1.9), (5.37), (5.38), (5.52), and
(5.53), respectively, should also be comprehensively considered if we want to
judge the quality of a MA.
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Features of the SMA

The purpose of this section is to present a fast algorithm, the so-called super
MA (SMA) to fit large-scale MA. Several specific features of the algorithm
can be summarized here:

1. Wide applicability. This algorithm may still lead to good results if
the homology (similarity) between the multiple sequences is only slightly
larger than 50%. For instance, we may get good alignment of the DNA
sequences of the mitochondria of Primates, although the sequence homol-
ogy for these sequences ranges from 55 to 90%. In fact, the homology ratio
approaches 1, which exceeds our expectations.

2. Large-scale. Generally, the computational scale of the SMA is without
limitation if a super computer is used. Even running this algorithm on
a PC, the size limit of n × m is beyond 20 Mbp. We may get better
results if the size m×n is less than 20 Mbp and if the homology for these
sequences is larger than 80%.

3. Fast. On a PC with a 2.8GHz processor, the alignment of 118 × 30,000
SARS sequences, takes 21min; while the alignment of 706×8000 bp HIV-1
sequences takes 34min. This is much faster than other algorithms.

4. Highly superior to other algorithms based on three indices. We
compare this algorithm with others based on the following three optimiza-
tion indices: the SP-scoring function, similarity ratio and ratio of virtual
symbols. This algorithm is superior to the other algorithms in all three
cases.

The SMA has been published on the Nankai University website [99], and
computational service is also offered there. In addition, the alignments for the
SARS sequences and HIV-1 sequences are also included on the website. 1

5.3.2 Algorithm of SMA

For a given multiple sequence A, in order to get its MA, we must first con-
struct an algorithm. To construct an algorithm, we begin by formulating the
computational principles.

Principles of MA

Principles of MA include the following:

1. Pairwise alignment. The most popular pairwise alignment include dy-
namic programming-based algorithms (i.e., the Smith–Waterman algo-
rithm) and the statistical decision-based algorithm (i.e., SPA) [69,90,95].

1 http://mathbio.nankai.edu.cn/database/exe/sma/PerformanceofSMA/
SarsPredictbySMA.txt;
http://mathbio.nankai.edu.cn/database/exe/sma/PerformanceofSMA/
HivGeneMatchCompare/
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These two kinds of algorithms are easy to compute. Using a dynamic
programming-based algorithm, we get the minimum penalty alignment
with computational complexity O(n2), while we may get the subopti-
mal alignment with the computational complexity O(n) if we use sta-
tistical decision-based algorithms. Therefore, we may use the dynamic
programming-based algorithms if the lengths of the sequences are less
than 10 kbp.

2. Modulus structure. Let (Cs, Ct) be the alignment of (As, At); then we
describe all the virtual symbols in the sequence (Cs, Ct) by a mathe-
matical formula referred to as the modulus structure or alignment mode.
The modulus structure is a set of transformations and operations detailed
in [89].

3. Clustering analysis of multiple sequences A. Using the characteristics of
A such as length function ns = ||As||, s = 1, 2, · · · ,m, the scoring matrix
of pairwise alignment of A, etc., we construct the phylogenetic tree or
the minimum distance tree. Both the phylogenetic and minimum distance
trees are typical clustering methods in statistics and combination graph
theory [35].

Algorithm of MA

Using the principles of MA, we construct the MA as follows:

Step 5.3.1 Preprocess the relevant parameters and data:
1. Let M ′ = {A1,A2, · · · ,A2m−1} be the set of nodes in the clustering

tree, where each node As ∈M ′ is a subset of A = {A1, A2, · · · , Am}.
Specifically, As is a single-point set, namely, As = {As} if s =
1, 2, · · · ,m, and As is a set with at least two sequences if s > m.
In some cases, we may simply use the following form:

M = {1, 2, · · · ,m} , M ′ = {1, 2, · · · ,m′} , m′ = 2m− 1 .

2. Let G′ = {M ′, V ′} denote the graph associated with the clustering
tree, in which V ′ is the set of edges in the clustering tree, which will
be defined later.

3. Let w(s, t), s, t ∈M be the clustering function that may be chosen in
many ways, as follows:
(a) If Cs, Ct is the minimum penalty alignment of As, At, then choose

w(s, t) = w(Cs, Ct).
(b) Let Cs, Ct be the minimum penalty alignment of As, At, and let

n(Cs, Ct) be the total number of the virtual symbols in Cs, Ct. We
choose w(s, t) = n(Cs, Ct).

(c) If the sequencesAs, At are not the same length, we choosew(s, t) =
|na − nt|.

We now only show the algorithm based on the choice of Step 5.3.1, pro-
cedure 3a, leaving analysis of the remaining cases up to the reader.
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Step 5.3.2 With the notations defined in Step 5.3.1, we plant the clustering
tree based on the multiple sequence A = {A1, A2, · · · , Am} as follows:
1. Let M (k) = {s1, s2, · · · , sm−k+1} ⊂M ′ be the set of states at the kth

clustering. It then satisfies the following conditions:
(a) Each node si in M (k) corresponds to a subset of M , denoted by

A(k)
si , here sm−k+1 = m+ k.

(b) M (1) = M = {1, 2, · · · ,m} is the set of states at the initial clus-
tering. Thus, each node s corresponds to a single-point set {As}
if s ≤ m; and it corresponds to a set As with at least two points
if s > m.

(c) All the points of M (k) comprise a division of M . In other words,
these subsets are mutually disjoint, and the union of them is M .

2. If the M (k) is found, we calculate

w
(k)
s,t = min

{
w(s′, t′), s′ ∈ A(k)

s , t′ ∈ A(k)
t

}
, s �= t ∈M (k) .

(5.54)
Let s′0 ∈ A(k)

s , t′0 ∈ A(k)
t be the pair of points satisfying w(s′0, t

′
0) =

w
(k)
s,t , and let the pair s′0, t

′
0 be the closest nodes within A(k)

s and A(k)
t .

If there is a pair s0, t0 ∈M (k) such that

w
(k)
s0,t0 = min

{
w(k)(s, t) , s, t ∈M (k)

}
, (5.55)

then the set M (k+1) at the (k + 1)th clustering is defined by: Let
Am+k denote the union of A(k)

s0 and A(k)
t0 , and keep the rest of the

nodes invariant. Then, (s0,m + k), (t0,m + k) are two edges on the
clustering tree G′, and m+ k is the clustering point of s0, t0.

3. Continuing this procedure, we may get the structure for each point of
M ′ defined in Step 5.3.1, and we may also get all the edges in graph G′

defined by Step 5.3.2, procedure 2. Finally, we may find the graph of
clustering tree G′.

Step 5.3.3 Based on the clustering tree G′ = {M ′, V ′} obtained by Steps
5.3.1 and 5.3.2, we construct the MA of A as follows. If r is the clustering
point of s, t, then s, t correspond to the union of sets

As = {As,1, As,2, · · · , As,ps} , At = {At,1, At,2, · · · , At,pt} , (5.56)

in which Ar = As ∪At, As ∩ At = ∅, and As,At both are subsets of A.
If we found the MA for As and At, respectively, then we construct the
MA for Ar in the following way:
1. Let

Cs = {Cs,1, Cs,2, · · · , Cs,ps} , Ct = {Ct,1, Ct,2, · · · , Ct,pt} (5.57)

be the MA for As and At, respectively, and let

Hs = {Hs,1, Hs,2, · · · , Hs,ps} , Ht = {Ht,1, Ht,2, · · · , Ht,pt} (5.58)

be the expanded modes that As, At mutates to Cs, Ct, respectively.
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2. To cluster, let s′, t′ be the closest nodes within sets As and At, then
As′ , At′ ∈ A. Let (Cs′ , Ct′) be the pairwise alignment of (As′ , At′), and
let (Hs′ , Ht′) be the corresponding expanded mode such that (As′ , At′)
mutates to (Cs′ , Ct′).

3. Constructing the union modes based on Hs, Ht defined in (5.58) and
(Hs′ , Ht′) defined in Step 3.5.3, procedure 2, we have two modes as
follows:
{
Hs ∨Hs′ = {Hs,1 ∨Hs′ , Hs,2 ∨Hs′ , · · · , Hs,ps ∨Hs′} ,
Ht ∨Ht′ = {Ht,1 ∨Ht′ , Ht,2 ∨Ht′ , · · · , Ht,pt ∨Ht′} .

(5.59)

Furthermore, we construct the new mode

Hr = Hs ∨Hs′ ∪Ht ∨Ht′ . (5.60)

This Hr is then the expanded mode by which multiple sequences Ar

mutate to Cr.
Step 5.3.4 Repeating Step 5.3.3 for each clustering point on the tree G′

defined by Steps 5.3.1 and 5.3.2, we calculate the MA of each Ar, and
finally find the alignment C of the multiple sequence A.

Step 5.3.5 Generally, the MA C obtained by Steps 5.3.1–5.3.4 is a suboptimal
solution. In order to improve the optimization index of MA, we continue
to align C through the following steps:
1. For each given s′ ∈ {1, 2, · · · ,m}, let

Cs′ = {C1, C2, · · · , Cs′−1, Cs′+1, · · · , Cm} . (5.61)

This is a sequence with multiplicity (m − 1), where the general form
of the component is represented as follows:

Cs = (cs,1, cs,2, · · · , cs,nc) , (5.62)

where nc is the common length for all components. Next, let Ms′ =
{1, 2, · · · , s′ − 1, s′ + 1, · · · ,m} denote the set of subscripts of Cs′ , so
that it is a (m− 1)-ary set.

2. For each column in Cs′ , calculate its frequency distribution: f̄j =
(fj,c, c ∈ Vq+1), in which, fj,c is the number of the elements of c̄s′,j
whose value is c. Then, the transpose of this column c̄s′,j is

c̄Ts′,j = (c1,j , c2,j , · · · , cs′−1,j , cs′+1,j , · · · , cm,j) . (5.63)

The SP-penalty function of Cs′ is

wSP(Cs′) =
∑

s<t∈Ms′

nc∑

j=1

w(cs,j , ct,j) =
1
2

nc∑

j=1

∑

c 	=c′∈Vq+1

fj,cfj,c′w(c, c′)

(5.64)
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and the SP-penalty functions of Cs′ and C satisfy the following rela-
tionship:

wSP(C) =
∑

s<t∈M

nc∑

j=1

w(cs,j , ct,j) = wSP(Cs′) +
m∑

t=1

nc∑

j=1

w(cs′,j, ct,j) .

(5.65)
Let wSP(Cs′ , Cs′) =

∑m
t=1

∑nc

j=1 w(cs′,j, ct,j) and choose the s0 ∈ M
such that

wSP(Cs0 , Cs0) = max{wSP(Cs′ , Cs′) , s′ ∈M} . (5.66)

3. Delete these columns of Cs′ if they are purely “−” and let C′
s′ denote

the rest of the multiple sequence. If C′
s′ = (c′s′,1, c

′
s′,2, · · · , c′s′,n′) is

the expansion of As′ , we define the penalty function of Cs′ and C′
s′ as

follows:

w(C′
s′ , C′

s′) =
m∑

t=1

n′
c∑

j=1

w
(
c′s′,j, c

′
t,j

)
, (5.67)

in which n′
c = max{n′, nc}.

4. Compute the alignment of As0 and C′
s0 under the penalty function in

(5.67) with the dynamic programming-based algorithm. Let C′′ be the
output, then C′′ is united by C′′

s0 and C′′
s0 , where C′′

s0 is the expan-
sion of As0 , and C′′

s0 is the expansion of C′
s0 by inserting an (m − 1)-

dimensional vector consisting of “−”. According to (5.67), we can get
the corresponding penalty matrix:

w(c, c̄) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

4∑

c′=0

fc′w(c, c′) , if c̄′ is a column vector in C′
s0 ,

m− 1 , if c̄′ is an (m− 1)-dimensional vector
filled by virtual symbols, and c′ �= 4 ,

0 , if c′ = 4, and c̄′ is an (m− 1)-dimen-
sional vector filled by virtual symbols .

(5.68)
Under this penalty matrix, we may prove that C′′ is the optimal align-
ment of sequence As0 and C′

s0 , and

wSP(C) ≥ wSP(C′′) . (5.69)

5. Repeating Step 5.3.5, we continue until the SP-penalty score can no
longer be reduced.

Remark 3. The above steps form just the outline for the SMA. It still needs
to be adjusted according to specific cases of multiple sequences if we are
constructing a program.
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Table 5.1. Comparison of the size of multiple alignment

Software
package or

Multiplicity
restriction

Length
restriction

Web page

name of
algorithm

SMA No No http://mathbio.nankai.edu.cn
/eversion/align-query.php

HMMER No No http://hmmer.janelia.org/

POA No < 1 kbp http://www.bioinformatics.ucla.edu/poa

MLAGAN < 31 Unrestricted http://genome.lbl.gov/vista
/lagan/submit.shtml

ClustalW 1.8 < 500 Unrestricted http://www.ebi.ac.uk/clustalw/

MuAlin < 80 < 20 kbp http://bioinfo.genopole-toulouse.prd.fr
/multalin/multalin.html

MSA < 8 < 800 bp http://searchlauncher.bcm.tmc.edu
/multi-align/multi-align.html

Match-Box < 50 < 2 kbp http://searchlauncher.bcm.tmc.edu
/multi-align/multi-align.html

Table 5.2. Comparison of the optimization indices

Name of Scale of Software CPU SP-score Similarity Rate of
sequence alignment package time rate (%) virtual

or algorithm (min) symbols (%)

SARS 118 × 30 kbp ClustalW 1.8 4740 9.7 × 107 99.97 0.40

SARS Same HMMER 2.2 381 1.0 × 108 99.93 0.47

SARS Same SMA 21 1.0 × 108 99.99 0.53

HIV1 706 × 10 kbp HMMER 2.2 256 1.65 × 109 98.03 49.13

HIV1 Same SMA 34 1.68 × 109 98.58 31.23

5.3.3 Comparison Among Several Algorithms

To show how well the SMA performs, we compare it with some popular MA
with respect to the indices listed in Tables 5.1 and 5.2.

Remark 4. CPU time is defined as the time required for a PC with a 2.8GHz
processor to compute. The results in Tables 5.1 and 5.2 were obtained in 2004.

Following from Tables 5.1 and 5.2, we draw the following conclusions:

1. For size, SMA is the same as the HMMER 2.2 algorithm, but is far superior
to other algorithms.
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2. For speed, SMA is 8–18 times faster than the HMMER 2.2 algorithm, as
well as 230 times faster than the ClustalW 1.8 algorithm.

3. For the SP-score index and similarity ratio index, SMA is slightly better
than the HMMER 2.2 and ClustalW 1.8 algorithms.

4. For the ratio of virtual symbols index, SMA is far superior to the HMMER
2.2 algorithm if we consider the case of HIV1 because its rate of virtual
symbols is less 18%. SMA is slightly inferior to HMMER 2.2 algorithm
and ClustalW 1.8 if we use SARS as the benchmark set.

As a result we conclude that SMA is generally superior to other MA in terms
of size, CPU time, similarity rate and rate of virtual symbols since HMMER
2.2 and ClustalW 1.8 are both the best among existing MA.

5.4 Exercises, Analyses, and Computation

Exercise 21. The metric relations distance, measurement (or probability),
and uncertainty are frequently used in mathematics. Compare them, focusing
on the aspects of content, definition and difference. For example:

1. Write down the objects they act upon.
2. Construct the basic requirements (axiom system) for these metrics.
3. Write down the expressions of these metrics (i.e., the formula).
4. Write down the definitions of these metrics and indicate in which fields

they tend to be applied.

Exercise 22. Check whether or not the SP-penalty functions satisfy Condi-
tions 5.2.1–5.2.7.

Exercise 23. Check whether or not the criterion of similarity rate satisfies
Conditions 5.2.1–5.2.7.

Exercise 24. Download the data sets of SARS and HIV-1 from the Web [99],
obtain the pairwise alignment using a dynamic programming-based algorithm
and the SPA algorithm, respectively, and then analyze the results based on
CPU time for pairwise alignment. Compute the matrix consisting of similarity
rates based on the Hamming matrix.

Exercise 25. Download the ClustalW algorithm for MA from the Web [22].
Input the SARS and HIV-1 sequences, and compute the alignment output.

Exercise 26. According to the steps in Sect. 5.3, develop a program to obtain
the SMA algorithm, and align the SARS and HIV-1 sequences.

Exercise 27. Prove that the expansion Cr obtained by Step 5.3.3 is just the
alignment of the multiple sequence Ar.

Exercise 28. Continue Exercises 22 and 23 to analyze MA outputs for SARS
and HIV-1 according to the following indices:

1. CPU time and rate of virtual symbols.
2. The SP-penalty function, the information-based function.
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Hints

For SMA, we suggest that the reader write a program satisfying the steps
presented in Sect. 5.2. If this proves too difficult, the reader may use the
algorithm given on the Nankai University website [99], and then try to develop
a program independently.
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Network Structures of Multiple Sequences

Induced by Mutation

As fast multiple alignment (MA) algorithms become a reality, analysis and
application of their results becomes the central problem of genome research.
In this book, we discuss the network structure theory of the multi-sequences
induced by mutations.

6.1 General Method of Constructing
the Phylogenetic Tree

6.1.1 Summary

One of the main purposes of making multiple alignments is to construct the
phylogenetic tree. Looking at the MA results, we find that it is a set of se-
quences of the same length. If the result is correct, then this output is a kind of
family file of these multiple sequences, containing all the connections among
this family and the phylogenetic information on this family. Based on this
family file, we may determine the evolutionary state of each sequence in this
family. Generally, we use a topological tree to describe the connection among
the multiple sequences, which is called a phylogenetic tree.

Tree is a class of spacial point-line graphs. The point-line graph is given
by G = {M,V }, where M = {1, 2, · · · ,m} are the points of the graph, and
V is the set of all pairs of points in M . Each pair in V is seen as an arc.
A point-line graph G = {M,V } is called an undirected graph if the pairs
(s, t), (t, s) ∈ M are the same. Otherwise, it is a directed graph. These two
types of point-line graphs will frequently appear in the following text. The
point-line graphs theory is considered in many books, and it is not discussed
further in this book.

There are many methods for constructing the phylogenetic tree. We will
introduce these methods in this section as follows:

1. Distance-based methods (e.g., neighbor-joining). Any alignment result
may be used to compute a distance matrix between these sequences. Based
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on this distance matrix, we may produce the corresponding phylogenetic
tree. The most popular methods are called UPGMA and neighbor-joining.

2. Feature-based methods (e.g., maximum parsimony method). This kind
of method uses the features (characteristics) of the alignment outputs to
construct the phylogenetic tree.

3. Probability-based methods (e.g., maximum-likelihood method and Bayes
method). Using these methods to construct the phylogenetic tree, we
should begin by constructing a probability model for the sequence muta-
tion, and then construct the phylogenetic tree based on both the output
and the probability model.

6.1.2 Distance-Based Methods

There are many distance-based methods for constructing the phylogenetic
tree, and we only introduce two of these in this subsection, namely, UPGMA
and neighbor-joining.

Unweighted Pair Group Method with Arithmetic Mean

Unweighted pair group method with arithmetic mean (UPGMA) [63,96] is the
simplest of all clustering methods used to construct a phylogenetic tree. This
method requires that the substitution velocity of the nucleotides or amino
acids be uniform and unchanging through the entire evolution process. In
other words, the molecular clock hypothesis holds. At each parent node, the
branch lengths from the parent node to the two child nodes are the same.

The most intuitive clustering method used to construct the phylogenetic
tree is the system clustering method. This method assembles the two nearest
classes to a new class, into a cluster each time, until all the classes are assem-
bled into one class. The algorithm is trivially developed by following the steps
listed below:

1. Given an n-multiple nucleotide sequence or amino acid sequence, choose
a distance function (e.g., using the Hamming distance function) and com-
pute the evolution distance for every pair of sequences based on their
pairwise alignment result, producing a distance matrix.

2. Regard each sequence as a class, then use the n initial classes as the leaf-
nodes of the phylogenetic tree.

3. Using the distance matrix, search the two classes X,Y that are nearest,
and then assemble X,Y into a new class Z, which is then the parent node
of X,Y . The distances from node Z to X and to Y (that is, the branch
lengths from Z to X and to Y ) are the same, and equal to d(X,Y )/2.
The total number of classes is then n− 1.

4. Compute the distances from the new node Z to other nodes. Let K be the
query node for the distance to be computed from K to Z. Since d(X,K)
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and d(Y,K) are collected in the distance matrix, we compute the distance
d(Z,K) by one of the following ways:

⎧
⎪⎨

⎪⎩

d(Z,K) = min{d(X,K), d(Y,K)} ,
d(Z,K) = max{d(X,K), d(Y,K)} ,
d(Z,K) = (d(X,K) + d(Y,K))/2 .

We then find a new distance matrix.
5. Repeat steps 3 and 4 until all the classes are assembled into one.

This clustering method is easy to operate. In fact, this procedure is simply
a MA process, and the result involves making MA using the pairwise
alignment algorithm, based on the multiple sequences.

UPGMA is used to construct the phylogenetic tree in a way similar to the sys-
tem clustering method, the main difference being the formula used to compute
the distance of classes. Using step 4 above to compute the distance between
two classes, if the numbers of the sequences in the two classes are different,
we have to compute the distance from the new cluster to all other clusters as
a weighted average of the distances from its components:

d(Z,K) =
nX

nX + nY
D(X,K) +

nY
nX + nY

D(Y,K) ,

where nX and nY are the number of sequences in X and Y , respectively.

The Neighbor-Joining Method

The neighbor-joining method [81] is a distance-based method used to con-
struct a phylogenetic tree. This method does not depend on the molecular
clock hypothesis, and it can process large-size sequences quickly. It has there-
fore been a popular method for constructing phylogenetic trees up to now.

Neighbor-joining is also a clustering method. We can prove that the sum-
mation of all the branch lengths in the phylogenetic tree generated by this
method is the smallest. The phylogenetic tree with the smallest sum of branch
lengths is not unique, but this method produces only one.

The neighbor-joining method starts from a starlike structure, and collects
all “neighbors” together to form a tree without roots as the output. For a set
of N sequences, the computing steps are given as follows:

1. Compute the distance matrix of the N sequences with respect to some
chosen metric.

2. Regarding each sequence as a node, the initial topological structure is
starlike, as in the schematic representation shown in Fig. 6.1a.

3. For an arbitrary pair of nodes, we compute the sum of all branch lengths
if we combine this pair of nodes as a new node. Let Dij be the distance
between sequences i and j, and this distance can be obtained from step 1;
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Fig. 6.1a,b. Neighbor-joining. a Initial starlike structure. b Treelike structure after
nodes 1 and 2 have been joined. (From [81])

Lab is the length between node a and node b, then the sum of the branch
lengths of the starlike structure (Fig. 6.1a) is defined as follows:

S0 =
N∑

i=1

LiX =
1

N − 1

∑

i<j

Dij , (6.1)

where X is the only inner node at the center of the starlike structure. The
1

N−1 in formula (6.1) is due to the fact that each edge is counted N − 1
times. We may assume that nodes 1 and 2 are joined. As in Fig. 6.1b,
nodes 1 and 2 are seen as one class, and the other nodes as another class.
The inner nodes are X and Y and the branch length LXY between X and
Y is defined by

LXY =
1

2(N − 2)

(
N∑

k=3

(D1k +D2k) − (N − 2)(L1X + L2X) − 2
N∑

k=3

LiY

)

,

(6.2)
where the first term in parentheses is the sum of the lengths from the
other nodes to nodes 1 and 2. The latter two terms are irrelevant to LXY
and should be subtracted because LXY is counted 2(N − 2) times in the
first term in parentheses. Following Fig. 6.1b and the definition of the
branch length, we have

L1X + L2X = D12 ,
N∑

k=3

LiY =
1

N − 3

∑

3≤i<j
Dij (6.3)

and

S12 = LXY + (L1X + L2X) +
N∑

k=3

LiY . (6.4)

Making use of (6.2) and (6.3), we have

S12 =
1

2(N − 2)

N∑

k=3

(D1k +D2k) +
1
2
D12 +

1
N − 2

∑

3≤i<j
Dij , (6.5)
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in which Dij are known. Therefore, following from (6.5), we may compute
the sum of the branch lengths if nodes 1 and 2 are joined. Similarly, if an
arbitrary pair of nodes are joined, we can compute the corresponding sum
of the branch lengths.

4. Compare all sums of the branch lengths obtained in step 3, and choose
this pair of nodes as the “neighbor” in case it minimizes the sum of branch
lengths. We the find the topological structure shown in Fig. 6.1b if nodes
1 and 2 are joined. The branch lengths L1X and L2X are then computed
as follows:

L1X = (D12 +D1Z −D2Z)/2 , L2X = (D12 +D2Z −D1Z)/2 , (6.6)

in which D1Z =
N∑

i=3

D1i/(N − 2) and D2Z =
N∑

i=3

D2i/(N − 2).

5. Compute the distance between the new node and other nodes. We may
again assume that the new node is joined by nodes 1 and 2, and the
distance between the new node and the jth old node is defined as

D(1−2)j = (D1j +D2j)/2 , j = 3, 4, · · · , 8 . (6.7)

Therefore, the total number of outer nodes decreases from N to N − 1,
and inner nodes increase from 1 to 2.

6. Repeat steps 3–5 until the inner nodes become N−3. We then have a tree
without a root, as required. To help the reader understand this method
more easily, we give an example to illustrate how to use the neighbor-
joining method to construct a phylogenetic tree.

Example 20. Let the distance matrix of the five species A, B, C, D, and E be
⎛

⎜
⎜⎜
⎜
⎝

A B C D
B 7
C 8 5
D 11 8 5
E 13 10 7 8

⎞

⎟
⎟⎟
⎟
⎠

.

We construct its phylogenetic tree using the neighbor-joining method.
Let us compute the sum of all branch lengths when two nodes are joined

using formula (6.4). Then
⎛

⎜
⎜
⎜
⎜
⎝

(S) A B C D
B 19.33
C 20.67 20.67
D 21.00 21.00 20.33
E 21.00 21.00 20.33 19.67

⎞

⎟
⎟
⎟
⎟
⎠

.

From this matrix, we find that SAB = 19.33 is a minimum. Thus, A and B
are “neighbors” and we join A and B as a class, and then add an inner node
X . The topological structure of the tree is shown in Fig. 6.2b. Using formulas
(6.5) and (6.6), we find that LAX and LBX are 5 and 2, respectively. There are
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Fig. 6.2a–c. Constructing the phylogenetic tree using the neighbor-joining method.
a Initial starlike structure. b Treelike structure after nodes A and B joined. c The
complete tree without a root

then two inner nodes, so we continue the procedure. Following from formula
(6.7) we find a new distance matrix as follows:

⎛

⎜
⎜
⎝

A−B C D
C 6.5
D 9.5 5
E 11.5 7 8

⎞

⎟
⎟
⎠ .

Repeating the above process, we obtain a new matrix of the sums of branch
lengths: ⎛

⎜
⎜
⎝

(S) A−B C D
C 15.5
D 16 16
E 16 16 15.5

⎞

⎟
⎟
⎠ .

From the above matrix, we find that the sum of the branch lengths when
A−B and C are “neighbors” is the same as when D and E are “neighbors”.
If A−B is seen as a node, then the topological structures of the trees for both
cases are the same. Thus, let A − B and C be “neighbors”, and add a new
inner node Z. The tree then has three inner nodes, and the minimum distance
tree appears. Following from formulas (6.5) and (6.6), we get L(A−B)Y = 5.5,
LCY = 1, LDZ = 3 and LEZ = 5. Furthermore, the lengths of the other
branches are computed as:

LXY = L(A−B)Y − (LAX + LBX)/2 = 5.5 − 3.5 = 2 ,
LY Z = LCD − LCY − LDZ = 1 .

This ends the procedure to construct the phylogenetic tree; the process is
shown in Fig. 6.2.

6.1.3 Feature-Based (Maximum Parsimony) Methods

Feature-based methods often use the discrete features of data, for example,
using alignment outputs for DNA or protein sequences to construct the phy-
logenetic tree. The most popular method is the maximum parsimony method,
which uses features of DNA sequences to construct the phylogenetic tree.
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These features of DNA sequences include the positions where the nucleotides
differ. For positions where the nucleotides are the same for all sequences, the
position does not join to construct the required phylogenetic tree if we use
feature-based methods. However, they do join to construct the tree if we use
distance-based methods. This is a major difference between feature-based and
distance-based methods.

The Outline of the Maximum Parsimony Method

1. Perform the MA of the given multiple sequences, and obtain an output in
which every sequence has the same length.

2. Based on the alignment output, we look for the informative positions.
A position is defined as the informative position if at least two kinds of
nucleotides occur with a high frequency in the column corresponding to
this position. Otherwise, this position is a noninformative position. In the
following example, the fifth, seventh, and ninth positions are informative
positions marked with an asterisk, and the other positions are noninfor-
mative.

1 2 3 4 5∗ 6 7∗ 8 9∗
1 A A G A G T G C A
2 A G C C G T G C G
3 A G A T A T C C A
4 A G A G A T C C G

3. Construct the maximum parsimony phylogenetic tree based on the infor-
mative positions. We begin by giving all topological structures of possible
phylogenetic trees for the sequences. For each of these trees, we let the
informative positions be the leaf nodes, and we then predict their parent
nodes based on the information of the leaf nodes, as well as giving the
statistics of the differences between nucleotides within the neighbor nodes
and computing the sum of the difference of nucleotides on the whole tree,
which is called the length of the tree. We choose the tree with the min-
imum length as the estimation of the phylogenetic tree. For the above
example, these four sequences may result in three possible trees without

Fig. 6.3a–c. Using the maximal parsimony method to construct phylogenetic tree.
a The topological structure of the first tree, whose length is 4. b The topological
structure of the second tree, whose length is 5. c The topological structure of the
third tree, whose length is 6
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a root as shown as Fig. 6.3. For every possible tree, we compute the num-
ber of substitutions at the informative positions. We find the lengths of
the three trees to be 4, 5, and 6, respectively. Therefore, we choose the
tree in Fig. 6.3a as the estimation of the phylogenetic tree.

Calculation Using the Fitch Algorithm

In the above case, the parent nodes are easy to identify, as is the length of
the tree. For the complex case where the tree has roots, then the length of
the tree is calculated using the Fitch [30] algorithm as follows:

1. Give the range of each node. We define the range of the successor node as
all the nucleotides occurring in the column corresponding to the successor
node. For the inner nodes, the range is defined as the intersection of the
ranges of the two successor nodes if it is not empty, or the union of the
ranges of two successor nodes if their intersection is empty. Therefore, we
may get the ranges of all the inner nodes and successor nodes.

2. Determine the value of each node. This process is opposite to the one
above. We start from the value of the parent nodes to get the value of
the successor nodes. For the root node, we choose an arbitrary value from
its range as the value of the root node. For an inner node, if its range
includes the value of its parent node, then this common value is defined
as the value of this inner node. Otherwise, we select a value randomly
from the range of this inner node as its value.

3. Determine the substitution times of the tree. The substitution times for
the tree are defined as the total number of times the intersection set of the
ranges of all the successor nodes generated in the first step is not empty.

Therefore, for a given tree with roots, we obtain the substitution times at
each informative position according to the above three steps. The sum of the
substitution times is the length of the tree.

We have outlined the process of constructing a phylogenetic tree using
the maximum parsimony method. However, there remain some questions to
be answered. First, if the number of species is too large, then the topological
structures of the phylogenetic tree will generally be too high in number. For
example, in trees with roots, when the number of species is n ≥ 2, the num-
ber of trees with roots is NR = (2n−3)!

2n−2(n−2)! . Therefore, the number increases
exponentially. Typically, the number of trees with roots is about 3.4 × 107

if n = 10; and the number of trees with roots is about 8.2 × 1021 if n = 20.
This number is too large to compute the minimum length of a tree. Therefore,
we must attempt to decrease the search times. For example, the branch and
bound algorithm ensures a minimum length tree will be found. However, the
time complexity of the algorithm is close to that of an exhaustive search al-
gorithm in the worst case scenario. It is a time-consuming method. Heuristic
search algorithms are another option. They highly reduce the search times
but do not ensure the optimal solution will be found. Therefore, we consider
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using exhaustive search algorithms or the branch and bound algorithm only as
long as the number of species is not excessive. It may be worth using heuristic
search algorithms if the number of species is high. In addition, repeating this
algorithm as the order of species changes will be helpful towards improving
the quality of the result.

The second question is in regard to the probability of different nucleotide
substitution in a true evolution process. For example, the number of transver-
sion mutations is larger than the number of transition mutations in the real
evolutionary process. This reminds us that the transition and transversion
mutations are not equal. This question was not addressed in Fitch’s algo-
rithm, However, Sankoff’s algorithm [82] offers a solution to this problem.
The algorithm can deal with multiple features, and discusses the difference in
probability corresponding to different features.

The maximum parsimony method uses the information on all the nu-
cleotides at the informative positions to construct the phylogenetic tree. The
advantages of this method are as follows: It uses the information on the align-
ment output completely. It obtains the information of ancestor sequences, and
it does not show the difference between the nucleotides as is the case with the
distance-based method. However, its disadvantages are also significant in that
it does not use the information on the noninformative positions, its speed is
much longer than that of distance-based methods, and the phylogenetic tree
does not offer information about branch lengths. These weaknesses limit its
applications.

6.1.4 Maximum-Likelihood Method and the Bayes Method

Among all the methods for constructing the phylogenetic tree, the maximum-
likelihood method and the Bayes method are currently the most popular [2,28,
44,108,110,112]. These two methods are based on the use of probability theory
to estimate the most probable topological structure of the phylogenetic tree.
It allows different positions of sequences and different periods with evolution
rate. It is the most credible method for constructing the phylogenetic tree. The
well-known system analysis software programs PAML and MrBayes utilize the
maximum-likelihood-based method and the Bayes inference-based method,
respectively.

The Probability Models for Evolution

In Chap. 1, we introduced types-I, type-II, type-III, and type-IV mutations.
For the conservation sequences, the probability that type-II, type-III, and
type-IV happen in these sequences is small enough that we may ignore it.
In other words, we will not consider this position if there is an insertion or
deletion happening at this position. We consider type-II mutations to have the
same effect as a type-I mutation occurring twice. For simplicity, we assume
that only type-I mutations are occurring in these sequences.
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We focus the discussion on DNA sequences and let the DNA sequence be
of the following form:

At = (at1 , at2 , · · · , atm) , t ∈ R, atj ∈ Z4 , (6.8)

where m is the length of the sequence. Let A0 be the ancestor sequence and
let At be the state that the ancestor sequence evolves to at the time t. The
state at the jth position of At is considered a random variable ξtj . For a given
position j, the sequence {atj , t ∈ [0,+∞]} is seen as a trail of the stochastic
process {ξtj , t ∈ [0,+∞]}. We assume that the evolutions of the sequence
are independent; in other words, that ξtj is independent of j. That is to say
that we only consider evolution at the jth position. For simplicity, we write
{ξtj , t ∈ [0,+∞]} as {ξt, t ∈ [0,+∞]}.

We assume that the evolution process is a homogeneous Markov process,
i.e., for any t ≥ 0, the conditional probability

pYX(t) = P{ξt+s = Y | ξs = X} (6.9)

does not depend on s(s ≥ 0) where pYX(t) is the transition probability of ξ
from state X to state Y after time t. Note that events at time t and at time s
are independent, and following from the C-K equation, we obtain

pYX(t+ s) =
∑

z∈Z4

pY Z(t)pZX(s) . (6.10)

If we know the ancestor sequence of the Markov process, i.e., if ξ0 is given, the
process is unique if we get the transition probability matrix of the Markov
process P (t) = (pY X(t))4×4 where this transition probability matrix is the
so-called substitution matrix. For example, to analyze the evolution of a pro-
tein, the PAM matrix and BLOSUM matrix are well-known, and these are
the transition probability matrices we will discuss. The identifier numbers 0,
60, and 250 following the letters PAM in the matrices PAM0, PAM60, and
PAM250 simply correspond to the t in the transition probability matrix P (t),
which is the evolution time.

To obtain P (t), we assume that the following relationship holds:

lim
t→0+

pYX(t) = δ(Y,X) =

{
1 , Y = X ,

0 , Y �= X .
(6.11)

This assumption indicates the probability that ξ was substituted in a very
short time is 0, i.e., P (0) = I, where I is a 4 × 4 unit matrix. Let Q be the
right derivative matrix of P (t) at t = 0, then

Q = P ′(0) = lim
t→0+

P (t) − I

t
, (6.12)

namely,
P (dt) = Qdt+ I . (6.13)
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From (6.13) we get
P (t+ dt) = P (t)P (dt) . (6.14)

From (6.14), we replace P (dt) with Qdt+ I on the right side, to get

P (t+ dt) − P (t) = P (t)Qdt ,

namely,
P ′(t) = QP (t) . (6.15)

Solving the differential equation, we find

P (t) = etQ = I +
∞∑

n=1

Qntn

n!
. (6.16)

This is the transition probability matrix we require. Using this formula, we
find that the transition probability matrix is uniquely determined by the right
derivative matrix Q of P (t) at t = 0 where Q is the so-called instantaneous
transition probability matrix. If Q is symmetrical, then P is also symmetrical.
This means the evolution process is reversible. If Q is an arbitrary matrix,
then the formula (6.16) can be difficult to compute.

In practice, homogeneity, stationarity, and reversibility of Markov pro-
cesses are all required. Homogeneity in the evolution process is equivalent to Q
being independent over time. Stationarity in the evolution process means that
the percentage of the nucleotides in the sequence is unchanged. Reversibility is
obeyed when πXΠXY (t) = πYΠYX(t) holds, where πX is the percentage of the
nucleotide X in the sequence. This means that in theory we cannot distinguish
a forward process from a reverse process. In a reversible process, we can diag-
onalize the matrix Q, i.e., it can be decomposed as U ·diag{λ1t, . . . , λ4t}·U−1,
where {λ1, . . . , λ4} is the characteristic vector of Q. Thus, the formula (6.16)
may be readily computed as follows:

P (t) = etQ = I +
∞∑

n=1

Qntn

n!
= U · diag{eλ1t, . . . , eλ4t} · U−1 . (6.17)

The whole evolution process is determined with the computation of P (t).
This probabilistic model is supported by the three following suppositions:

1. This evolution process only involves type-I mutations.
2. The evolution processes at every pair of positions are independent.
3. The evolution process is an homogeneous, stationary, and reversible

Markov process at each position.

In practice, the evolution process is not so ideal; insertions and deletions
may happen although the sequences are conserved. These assumptions have
little effect on the result.

The above evolution model is idealized, which tells us that the evolution
process is determined by its initial state. In other words, the evolution process
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is determined by Q which is the right derivative of the transition probability
matrix at time 0, or the instantaneous transition probability matrix. The
matrix Q depends on the ancestor sequence. In practice, however, we know
the present sequences, not the ancestor sequences. If we have the instantaneous
transition probability matrix Q and the present sequence, we may predict the
ancestor sequence and construct the entire phylogenetic tree.

Maximum-Likelihood Method for Constructing
the Phylogenetic Tree

On one hand, the whole evolution process is determined by the instantaneous
transition probability matrixQ according to the probabilistic evolution model.
On the other hand, the probabilities of the phylogenetic tree may be computed
if the topological structure of a phylogenetic tree is given. Therefore, for mul-
tiple sequences, we may use a maximum-likelihood method to get a maximum
probability phylogenetic tree. This can be considered the maximum likelihood
estimate of the true phylogenetic tree.

We assume that the probability of substitutions happening over an in-
finitesimal time interval Δt is λΔt. Let the probability that the nucleotide
mutates to X be pX . Then, within Δt, the probability that X mutates to Y
is

pXY (Δt) =

{
1 − λΔt , if X = Y ,

λΔtpY , otherwise .
(6.18)

Following from the definition of δ(Y,X) given in the last section, we have

pXY (Δt) = (1 − λΔt)δ(Y,X) + λΔtpY . (6.19)

Since the number of substitutions obeys the Poisson distribution, for a small
t, e−λt is the probability that there is no substitution happening within (0, t).
Thus, the above formula can be corrected as follows:

pXY = e−λtδ(Y,X) + (1 − e−λt)pY . (6.20)

Generally, the distribution p is the stationary distribution of the Markov pro-
cess if it is stationary. Based on the alignment output for multiple sequences,
we may use the percentage of each nucleotide as the estimation of the sta-
tionary distribution. We may then evaluate the probability that nucleotide X
mutates to Y within an interval (0, t).

In conclusion, if multiple sequences are given, we can obtain the alignment
output. At each position, we choose a proper parameter λ, and choose a topo-
logical structure of the tree and the sum of branch lengths, and then we may
find the probability to generate the phylogenetic tree at this position. This
routine is shown in Fig. 6.4.

There are four species on the phylogenetic tree without roots. The length
of the branches is measured by the average numbers of nucleotides substituted
at this position {vi, i = 1, 2, 3, 4, 5}.
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Fig. 6.4. The topological structure of a phylogenetic tree for four species.
(From [108])

We may assume that the length of the alignment output for the four
species is n where we ignore the insertion and deletion, i.e., neither type-
III nor type-IV mutations happen. If there is an insertion or deletion at one
position, the column corresponding to this position will be deleted. Let the nu-
cleotides at the hth position of the MA output be xh = {x1, x2, x3, x4}T and
let {πi, i = 1, 2, 3, 4} be the stationary distribution of nucleotides, which can
be approximated by the percentage of each nucleotide. Therefore, to generate
the phylogenetic tree as in Fig. 6.4, the probability at position h is computed
in the following way:

P (xh, v) =
4∑

x5=1

4∑

x6=1

πx5 (Px5x1(v1)Px5x2(v2)Px5x6(v5) × Px6x3(v3)Px6x4(v4)) .

(6.21)
If the molecular clock supposition holds, then the formula for the probability
to construct the phylogenetic tree holds for any position. However, in most
cases, the molecular clock supposition does not hold. The evolution speeds
are different as the position is changed. That is, at different positions, the
same branch length may not represent the same evolution time or the same
substitution numbers. Therefore, λ is connected with the positions. As a re-
sult, Yang [108] proved that the distribution of λ is approximated by a Γ
distribution. Let the value of λ at position h be λh so that the above formula
can be written as

P (xh, v|λh) =
4∑

x5=1

4∑

x6=1

(
πx5(Px5x1(v1λh)Px5x2(v2λh)Px5x6(v5λh)

×Px6x3(v3λh)Px6x4(v4λh))
)
, (6.22)

where P can be obtained from formula (6.22).
Furthermore, we assume that evolutions at different positions are inde-

pendent. The probability that the whole sequence generates Fig. 6.4 is then
computed by following formula:

P (X |T ) = Πn
h=1E(P (xh, v|λh)) , (6.23)
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where the expectation value at the right side of the equation is under the
condition λh, T is the phylogenetic tree including branch length information.
This equation is called the likelihood equation. Taking the logarithm of both
sides of the equation, we get the following logarithm likelihood equation:

l =
n∑

h=1

log(E(P (xh, v|λh))) . (6.24)

In the above equation, we find the maximum value of T , and the maximum
likelihood estimate of the phylogenetic tree.

Generally, nucleotide substitution involves not only stationary distribu-
tion, but also the percentages of transverse/transition mutations, and synony-
mous/nonsynonymous mutations. Currently, instantaneous transition proba-
bility matrices are commonly used. For example, the Jukes–Cantor model [49],
F81 model, K2P model [52], HKY model, GTR model [100, 109], etc. all in-
volve this matrix.

The maximum-likelihood method to construct a phylogenetic tree gives
a probabilistic view of evolution. This model is superior to others. Especially
in simulation research, this method is better than feature-based methods and
distance-based methods. In different regions, we can choose different instan-
taneous transition probability matrixes. For example, in the region that code
a protein, we may use the substitution model of a codon to construct the
phylogenetic tree [34], while maximum likelihood methods would be time-
consuming. For large size data, this method takes too long, or may not work
at all.

The Bayes Method of Constructing the Phylogenetic Tree

The Bayes method of constructing the phylogenetic tree is based on the pos-
terior probability distribution. We use the phylogenetic tree with the maxi-
mum posterior probability as the estimation of the true phylogenetic tree. Of
course, we can use the Bayes formula to compute the P (X |T ) that is used in
the maximum likelihood method as follows:

P (Ti|X) =
P (X |Ti)P (Ti)

P (X)
=

P (X |Ti)P (Ti)∑
Ti
P (X |Ti)P (Ti)

, (6.25)

where Ti is the topological structure and the branch lengths of some tree, X is
a multiple sequence, and P (X |Ti) is the conditional probability computed by
formula (6.23).

Obviously, the posterior probability shown as (6.25) cannot be obtained
through analytical approaches. The Monte Carlo method is a better tool
to solve this problem. A popular method is the the Metropolis-Hastings
method [37, 39, 62]; this is a Monte Carlo Markov chain (MCMC) method.
It is outlined as follows:
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1. Let T be the current state of the Markov chain. For the initial state, the
selection of T is random.

2. Select a new state T ′ based on the transition probability matrix of the
Markov chain. Generally, this state transition probability matrix is sym-
metrical. The probability from state T to T ′ is equal to that from state
T ′ to T .

3. The probability that the new state is acceptable is computed as follows:

R = min
(

1,
P (X |T ′)
P (X |T )

× P (T ′)
P (T )

× q(T, T ′)
q(T ′, T )

)
, (6.26)

where q is the transition probability matrix of the Markov chain, and
q(T,T ′)
q(T ′,T ) = 1 if q is symmetric.

4. Generate a random number U in the open interval (0, 1). Then let T = T ′

if U ≤ R, and keep the state T unchanged if U > R.
5. Repeat steps 2–4.

The distribution of T obtained from the above steps is the distribution of T
in (6.25). We choose the maximum probability tree as the Bayes estimation
of the real phylogenetic tree. Additionally, (6.26) is easy to compute because
the large denominator is canceled. Therefore, in order to construct the phy-
logenetic tree, we choose this method when processing large-sized sequences.

6.2 Network Structure Generated by MA

The network structure generated by the MA outputs was proposed as a gen-
eralization of graphs and trees. We show that general theory of graphs and
trees is perfectly suited to the analysis of the network structure generated by
MA.

6.2.1 Graph and Tree Generated by MA

As above, let A = {A1, A2, · · · , Am} be a multiple sequence, and let C =
{C1, C2, · · · , Cm} be the alignment output. We then analyze the network
structure generated by C.

The Data Structure Generated by MA

The various data structures generated by the MA output C are defined as
follows:

1. The distance matrix generated by MA is defined as:
Let D = (ds,t)s,t=1,2,··· ,m, where ds,t = d(Cs, Ct) =

∑n′

j=1 d(cs,j , ct,j)
and d(c, c′), c, c′ ∈ Vq+1 be the distance function defined on Vq+1. Then
M̂ = {M,D} is a metric space.
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Remark 5. The definition involves the alignment output C, while it is not
necessary for C to be the optimal alignment of A.

2. Stable and unstable regions: A given j is the stable position if c1,j =
c2,j = · · · = cm,j holds. Otherwise, this position is an unstable position.
A region is stable if all positions in this region are stable, and a region is
unstable if all the positions in this region are not stable. Let Δ0 and Δ1

be the stable region and unstable region of C, respectively.
The definition of a stable region and an unstable region can be gener-
alized to the partial alignment case. Let M0 be a subset of M , then
C0 = {Cs, s ∈ M0} is the partial sequence of C. With this new set, we
may divide N ′ = {1, 2, · · · , n′}, the set of positions of C, into three parts
as follows:
⎧
⎪⎨

⎪⎩

Δ0(M0) = {j ∈ N, cs,j = cs′,j �= q, ∀s, s′ ∈M0} ,
Δ1(M0) = {j ∈ N, there is a pair s �= s′ ∈M0, such that cs,j �= cs′,j} .
Δ2(M0) = {j ∈ N, cs,j = q, ∀s ∈M0} ,

(6.27)
then Δ0(M0), Δ1(M0) and Δ2(M0) are the stable region, unstable region
and the insertion region of C0, respectively. Next, we let

g(M0) = ||Δ0(M0)|| , d(M0) = ||Δ1(M0)|| (6.28)

be the lengths of the stable region and unstable region, respectively, for
the partial alignment C0.

3. In the stable region Δ0(M0) and insertion region Δ2(M0),
{
H0(M0) = {(j, cj), j ∈ Δ0(M0)} , cj �= q ,

H2(M0) = {(j, cj), j ∈ Δ2(M0)} , cj = q
(6.29)

are the modulus structures of the stable region and insertion region, re-
spectively.

4. In the unstable region Δ1(M0),

H1(M0) = {(j, cM0,j), j ∈ Δ1(M0)} (6.30)

is the modulus structure of the unstable region, where cM0,j = {cs,j,
s ∈M0}.

These parameters reflect the data structure characteristics of mutation gener-
ated by multiple sequence alignments in different aspects. We can alternatively
describe these structure characteristics using the network language. Let

{
Δ̃ = {(Δ0(M0), Δ1(M0), Δ2(M0)) : M0 ⊂M} ,
H̃ = {(H0(M0), H1(M0), H2(M0)) : M0 ⊂M} (6.31)

be the modulus structure of MA.
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The Topological Tree Generated by MA

Above, we have shown that M̂ = {M,D} generated by MA is a metric space.
Following from the discussion of Sect. 6.1, we can generate different types of
trees according to different data structures, as follows.

Minimum distance clustering tree, minimum distance tree, k-order tree,
average minimum distance clustering tree, average minimum distance binary
tree, average minimum distance binary colored arcs phylogenetic tree. The
details of these trees can be found in [35].

The Phylogenetic Tree Generated by a Stable Region
and an Unstable Region

In a phylogenetic tree T ′ = {M ′, V ′}, let e = 2m − 1 be its root, let Tt =
{M ′

t, V
′
t } be the branch with root t(m < t ≤ 2m− 1), and let w(e, t′) be the

sum of the lengths of all arcs from e to t. T ′ is then called the phylogenetic tree
generated by a stable region and an unstable region of a multiple sequence if
w(e, t′) = ||Δ0(Mt)||+ ||Δ2(Mt)||, where Mt is the set of all leaves in Tt, and
t′ is the dual point of t.

For the phylogenetic trees generated by a stable region and an unstable
region of multiple sequences, some properties can easily be found, namely:

1. For any s ∈ M , we always have that w(e, s′) = n holds, where n is the
length of the MA output C.

2. For any t ∈ {m+ 1,m+ 2, · · · , 2m− 1} and s ∈Mt, we always have that

w(e, t′) = ||Δ0(Mt)|| + ||Δ2(Mt)|| , w(t′, s′) = ||Δ1(Mt)||
hold, where Δ0(Mt) and Δ1(Mt) are, respectively, the stable region and
unstable region of multiple sequences Mt.

3. w(e, e′) = ||Δ0(M)|| is the total length of the common stable region of the
MA output. Let t1, t2 be the two successors of node e, the two branches
generated by t1, t2 be Tt1 , Tt2 , and Mt1 , Mt2 be the sets of leaf nodes of
Tt1 , Tt2 . The length of the arcs is then given as

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

w(t1, t′1) = ||Δ0(Mt1)|| + ||Δ2(Mt1)|| − w(e, e′)
= ||Δ0(Mt1)|| − ||Δ0(M)|| ,

w(t2, t′2) = ||Δ0(Mt2)|| + ||Δ2(Mt2)|| − w(e, e′)
= ||Δ0(Mt2)|| − ||Δ0(M)|| .

(6.32)

Similarly, we get the lengths of arcs w(t, t′) of all t ∈ {m+ 1,m+ 2, · · · ,
2m− 1} in the phylogenetic tree T ′.

4. If s1, s2 ∈M are the two leaf nodes on the phylogenetic tree T ′, and they
have the same ancestor, then their arc lengths are the penalty function of
the alignment sequences Cs1 , Cs2 . That is,

w(s1, s′1) = w(s2, s′2) = ||Δ1(s1, s2)|| = d(Cs1 , Cs2) . (6.33)
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5. The triplet T ′(w) = {M ′, T ′, w} is called the colored arc graph of the
phylogenetic tree T ′, where w(t, t′) or w(s, s′) are defined as in (6.33) or
(6.32).

6. In the colored arc graph T ′(w) of the phylogenetic tree T ′, if we use
the stable region and unstable region Δ0(Mt), Δ1(Ms) or the modulus
structure of the stable region and unstable region H0(Mt), H1(Ms) to
replace w(t, t′) and w(s, s′), this colored arc graph turns to the following
two forms:
The colored arc graph of the stable region and unstable region is T ′(Δ) =
{M ′, T ′, Δ} if we use Δ0(t, t′) or Δ1(s, s′) defined as in (6.31) or (6.30).
The colored arc graph of the stable region and unstable region is T ′(H) =
{M ′, T ′,H} if we use the modulus structure H defined by (6.31), and
H0(t, t′) or H1(s, s′) is defined by (6.29) or (6.28).

Minimum Unstable Region Phylogenetic Tree

In the above section, we have given the phylogenetic tree T ′ generated by the
stable region and unstable region. It is simply called the phylogenetic tree T ′

of the stable region and unstable region. Let w(T ′) =
∑

s∈M w(s, s′); then it
is the sum length of the unstable region of the phylogenetic tree T ′.

Definition 30. T ′
0 is called the minimum unstable region phylogenetic tree, if

w(T ′
0) ≤ w(T ′) holds for all other phylogenetic trees T ′.

The method of producing a minimum unstable region phylogenetic tree is
similar to that for generating the minimum distance clustering tree. It can be
clustered based on the length of the unstable region of the MA output. We
will show this later with examples.

6.2.2 Network System Generated by Mutations of Multiple
Sequences

Among the various topological trees generated from MA outputs, we use
graphs and trees to express the connections between mutations and evolu-
tion. The modulus structure of the colored arc graph of the stable region and
unstable region T ′(H) = {M ′, T ′,H} reflects the information of the MA out-
put. However, some points are less clear for the description of these trees. For
example, the combination relations of different sequences within the mutation
region are still too complicated to be immediately understood. Therefore, we
discuss them further. A network system generated by the mutations of mul-
tiple sequences is used to describe the mutation structure of the MA output
through the colored arcs graph. To do this, we introduce the following nota-
tions.
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Network System of Mutation

Let M = {1, 2, · · · ,m} be the subscript set of a MA output C, that is, each
i ∈ M corresponds to a sequence Ci. Then, graphs G = {M,V } and G′ =
{M ′, V ′} are generated by MA output C, in which, V is the arc set generated
by the point pairs of M , and {M ′, V ′} is the extension of {M,V } similar to
that given by phylogenetic tree T ′ = {M ′, V ′}. The network system generated
by the MA output colors both points and arcs of the graph G or G′. Following
from the metric relation w of MA output, two types of network structures
may be generated respectively by the mutation region Δ and the modulus
structure H as follows:

1. Topological network system generated by MA output:G(W ) = {M,V,W},
in which w is the penalty function of the MA output defined by (6.33).

2. Mutation region network system: G(Δ) = {M,V,Δ}, in which Δ is the
mutation region function of the multiple alignment output defined by
(6.31).

3. Network system of mutation mode generated by multiple alignment out-
put: G(H) = {M,V,H}, in which H is the modular function of the multi-
sequence alignment given by (6.31).

These three network systems are called the network systems generated by the
MA output, or simply the mutation networks. In the same way, we can define
the graph G′. The purpose in researching the mutation network is to analyze
the evolution relations of multiple sequences.

The Basic Mutation Types of Triple Sequences

Definition 31. Let C1, C2, C3 be a triple sequence in the MA output C. Its
basic types are stated as follows:

1. Orthogonal: Let δ12 and δ23 be the mutation regions induced in C1, C2, C3.
Then, H12 and H23 are orthogonal if δ12 ∩ δ23 = ∅. We use the simpler
form H12⊥H23 to represent the orthogonal relationship.

2. Overlapping: The triple sequences C1, C2, C3 overlap if their mutations
regions satisfy the following: δ12 = δ13 = δ23 and c1j , c2j , c3j are different
from each other for all j ∈ δ12.

Theorem 26. 1. The orthogonal type is symmetric. Namely, if H12⊥H23

holds, then both H23⊥H12 and H21⊥H23 hold.
2. H12⊥H23 holds if and only if δ12 ∩ δ23 = ∅, in which δij is the mutation

region of Hij .
3. If C1, C2, C3 are overlapping, then w12 = w13 = w23 holds.

It is easy to prove these three propositions, so we omit the proofs here.
The orthogonal type and overlapping type are the two extreme cases for

mutations. In general, we frequently face mixed modes. Thus, we need the
following decomposition theorem:
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Fig. 6.5a,b. The decomposition of the mutation region of a triple alignment output

Theorem 27. (The decomposition theorem of the triple alignment output.)
Let C1, C2, C3 be the alignment output of the triple sequence A1, A2, A3. There
is a new triple sequence C1′ , C2′ , C3′ satisfying the following properties:

1. C1′ , C2′ , C3′ are overlapping.
2. Mutation modes H11′ , H22′ , H33′ are orthogonal to each other. As well,
H11′ and H1′2, H1′3, H22′ and H2′1, H2′3, H33′ and H3′1, H3′2 are all or-
thogonal.

Remark 6. 1. In Fig. 6.5a, C1, C2, C3 represent the alignment output of the
triple sequence A1, A2, A3, where N − δ is the stable region, in which the
values of these three sequences are the same. δ is the unstable region,
which can be decomposed to four subregions δ1, δ2, δ3, and δ0 as shown in
(6.34).

2. Figure 6.5b shows sequences C1′ , C2′ , C3′ defined by (6.35).

Proof. Maintaining the notation given in Fig. 6.5,C1, C2, C3 are the alignment
output of triple sequences A1, A2, A3 and the mutation region is δ. N ′ − δ
is then the stable region. The unstable region can be decomposed into δ12,
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δ23, δ13. These are the mutation regions of (C1, C2), (C2, C3), (C1, C3). Let
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

δ = δ12 ∪ δ13 ∪ δ23 ,
δ0 = {j ∈ δ : c1j , c2j , c3j are not the same as each other } ,
δ1 = {j ∈ δ : c1j = c2j �= c3j} ,
δ2 = {j ∈ δ : c1j = c3j �= c2j} ,
δ3 = {j ∈ δ : c2j = c3j �= c1j} ,

(6.34)

then δ0, · · · , δ3 are four mutually disjoint regions. We denote the lengths of
the four regions by wτ = ||δτ ||, where τ = 0, 1, 2, 3, respectively. Based on this
decomposition, we construct new sequences C1′ , C2′ , C3′ as follows. Let

c1′j =

{
c2j , if j ∈ δ3 ,

c1j , otherwise ,
c2′j =

{
c1j , if j ∈ δ2 ,

c2j , otherwise ,

c3′j =

{
c1j , if j ∈ δ1 ,

c3j , otherwise .
(6.35)

Then, the components of sequences C1′ , C2′ , C3′ are different from each other
in the region δ0 but the same in the remaining regions. Therefore, it is the
overlapping type. In addition, we analyze the mutation regions of sequences
C1, C2, C3 and C1′ , C2′ , C3′ as follows. Since we then have

δ11′ = δ3 , δ2′2 = δ2 , δ33′ = δ1 ,

and since regions δ1, δ2, δ3 are mutually disjoint, it follows that {H11′ , H22′ ,
H33′} are orthogonal modulus structure. With the same reasoning, we may
prove that the three groups of modes H11′ andH1′2, H1′3; H22′ andH2′1, H2′3;
H33′ and H3′1, H3′2 are orthogonal, respectively. Thus ends the proof.

Figure 6.6 shows the mutation relations between sequences C1, C2, C3 and
C1′ , C2′ , C3′ . The process by which C1 mutates to C2, C3 can be decomposed,
to where C1 mutates to C1′ , and then C1′ mutates to C2, C3. Therefore,
Fig. 6.6 is called the network structure graph of the triple alignment output.

In Theorem 27, the triangle Δ(C1′ , C2′ , C3′) shrinks to a point if δ0 is an
empty set. If C1′ = C2′ = C3′ = C0 are the same sequences, then

H10⊥H20 , H10⊥H30 , H20⊥H30 (6.36)

hold. The inverse proposition is also true, i.e., if there is a point C0 making
(6.36) true, then δ0 must be an empty set.

Definition 32. 1. Under the conditions of Theorem 27, C1′ , C2′ , C3′ are the
orthogonal decomposition of the triple alignment output (C1, C2, C3) if se-
quences C1′ , C2′ , C3′ satisfy the theorem.
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Fig. 6.6. The mutation network decomposition of a triple alignment output

2. If there is a sequence C0 such that (6.36) holds, then we say that C0

makes the triangle (C1, C2, C3) perfectly orthogonal. The triple sequences
(C1, C2, C3) can be made perfectly orthogonal if and only if C1′ = C2′ =
C3′ holds, where the mutation relationship of C1, C2, C3 can be decomposed
to the mutation relationship between C1, C2, C3 and C1′ , C2′ , C3′ .

The Mutation Network Tree Generated by a Binary Tree

In any book on graph theory, the reader can find the terms graph, tree, di-
rected tree, node, arc, the extreme points of an arc, the starting point and end
point of the directed arc, the root of a tree, and leaf all well-defined. There-
fore, we do not repeat the definitions here. However, several new concepts are
directly involved in the discussions presented in this book, which are defined
as follows:

Definition 33. 1. For a mutation network E, if each overlapping triangle is
seen as a point, then the renewed mutation network E ′ is the reduction
of E.

2. A directed mutation network tree is a directed orthogonal mutation tree if
any two arcs starting from any node are orthogonal.

3. An undirected mutation network tree is a perfectly orthogonal mutation
tree if any two arcs with a common node are orthogonal.

Theorem 28. (The orthogonalization theorem of a mutation network tree.)
For a given directed mutation network tree, there are some nodes such that the
mutation network E, which is generated by adding these nodes into the given
tree, satisfies the following conditions:

1. If there are triangles in E, they are overlapping triangles.
2. Let E ′ be the network induced by E in the case where each overlapping

triangle is seen as a point, then E ′ is an orthogonal mutation tree.
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3. Let Δ(a, b, c) be an overlapping triangle in the mutation network E. Each
arc with an extreme point a is then orthogonal to arcs ab, ac. Also, the
same holds true for both b and c.

Proof. For clarity, we follow Fig. 6.7 to give the proof as follows:

1. Figure 6.7a is the original undirected tree, where G(0)
1 = {M (0), V (0)} and

M (0) = {a, b, c, d, e}, V (0) = {(a, b), (a, c), (b, d), (b, e)}. The virtual lines
are 2-order arcs.

2. The orthogonalization starts from leaves a, c. Following from Theorem 27,
there is an overlapping triangle Δ(a′, b′, c′) which orthogonalizes (a, b, c).
The modes Haa′ , Hbb′ , Hcc′ are orthogonal to each other. If we reduce the
network graph such that ab, ac, bc are seen as 2-order arcs, then we get
Fig. 6.7b, and its mutation network tree is G(1)

1 = {M (1), V (1)}, where
{
M (1) = {a, b, c, d, e, a′, b′, c′} ,
V (1) = {(a, a′), (b, b′), (c, c′), (a′, b′), (a′, c′), (b′, c′), (b, d), (b, e)} .

Fig. 6.7a–d. The orthogonalization procedure of a mutation network
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3. Similarly to step 2, we orthogonalize triangle (b, b′, e) in G(1)
1 . If this trian-

gle is perfectly orthogonal, then Fig. 6.7c is obtained. Its mutation network
tree is then G(2)

1 = {M (2), V (2)}, where
⎧
⎪⎨

⎪⎩

M (2) = {a, b, c, d, e, a′, b′, c′, f} ,
V (2) = {(a, a′), (b, b′), (c, c′), (a′, b′), (a′, c′), (b′, c′), (b′, f), (b, f),

(f, e), (b, d)} .

4. Continuing this procedure, we can do the orthogonalization procedure on
G

(2)
1 . Finally, we get G(3)

1 as shown by Fig. 6.6d, where
⎧
⎪⎨

⎪⎩

M (3) = {a, b, c, d, e, a′, b′, c′, f, f ′, b′′, d′} ,
V (3) = {(a, a′), (b, b′), (c, c′), (a′, b′), (a′, c′), (b′, c′), (b′, f), (f, f ′),

(b′′, f ′), (f ′, d′), (b′′, d′), (d′, d), (b, b′′), (f, e)} .

The graph G(3) satisfies all the conditions in the theorem. Thus ends the
proof.

We have introduced the mutation network of a MA output, with the intention
that we may easily obtain the mutation relations of data structures among
a multiple sequence by viewing these graphs. For example, viewing Fig. 6.7d,
we find that the mutation process from sequence a to d, e can be decomposed
as follows: {

a→ a′ → b′ → f → e ,

a→ a′ → b′ → f → f ′ → d′ → d ,

in which, a → a′ → b′ → f are perfectly the same type, and f → e and
f → f ′ → d′ are mutually orthogonal. Typically, the mutation process of
each smaller segment is orthogonal. Following from this, we can deduce the
relations of the mutation network of any multiple sequences.

6.3 The Application of Mutation Network Analysis

MA and the application of mutation network analysis can be used in many
fields of biological research. We discuss the evolution and development of
epidemics in the following.

6.3.1 Selection of the Data Sample

To examine the evolution of biosomes on a molecular level, we should be-
gin with the proper selection of data. We always use DNA, RNA, or protein
databases. The requirement for the use of these databases is that a sequence
should have many homologous sequences in different biosomes. Research in



6.3 The Application of Mutation Network Analysis 207

biology indicates that many genes and proteins recur in many species. For
example, chondriosome, cytochrome and cathepsin are found in many bio-
somes. In the process of selecting data samples, besides using existing data
that may be obtained directly from databases such as GenBank, some spe-
cial databases may also need to be tracked. Therefore, we need to design the
data collection scheme before starting the sequencing. For example, to analyze
the development of some epidemic or disease, we must design a good scheme
for collecting the required data. Next, we choose chondriosome, SARS, and
HIV-1, respectively, as examples to illustrate the procedure used to analyze
the data. The explanation for the corresponding results is given below:

The Data Sample of Chondriosome

Biology research has revealed that chondriosome occurs in many biosomes. In
GenBank, there are thousands of homologous sequences of chondriosome. To
analyze the mutations, we select the ND1 gene coding region of 20 species of
mammals as follows:

1. Bos taurus complete mitochondrial
2. Balaenoptera physalus mitochondrial, complete
3. Balaenoptera musculus mitochondrial DNA, complete
4. Phoca vitulina mitochondrial DNA, complete
5. Halichoerus grypus complete mitochondrial
6. Felis catus mitochondrion, complete
7. Equus caballus mitochondrial DNA, complete sequence
8. Rhinoceros unicornis complete mitochondrial
9. Rattus norvegicus mitochondrial

10. Homo sapiens mitochondrial DNA, complete sequence
11. Pan troglodytes mitochondrial DNA, complete sequence
12. Pan paniscus mitochondrial DNA, complete sequence
13. Gorilla gorilla mitochondrial DNA, comlete sequence
14. Pongo pygmaeus mitochondrial DNA, complete sequence
15. Pongo pygmaeus abelii mitochondrial
16. Hylobates lar complete mitochondrial DNA sequence
17. Didelphis virginiana complete mitochondrial
18. Macropus robustus complete mitochondrial
19. Ornithorhynchus anatinus mitochondrial DNA, complete
20. Mus musculus mitochondrial

SARS Sequences

In the spring of 2003, a SARS epidemic broke out in China. Research on the
SARS virus has become an important problem in the fields of biology and
medicine. In the GenBank database, new DNA sequences of SARS were con-
tinually announced. In September of 2003, an article published in Science [101]
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involved 63 DNA sequences of the SARS virus. As a result, this paper ana-
lyzed the evolution of the SARS epidemic from its onset to the metaphase and
then to the mature phase. After September 2003, more new DNA sequences
of the SARS virus were constantly being sequenced. As of September 2004,
the total number of SARS virus sequences uploaded in the GenBank was 118.
Their names and sources are shown in Table 6.1.

Remark 7. Under the “name” rubric, we only give the simpler name of the
SARS coronavirus. For example, in number 4, we only use the name Sin850,
while its full name is SARS coronavirus Sin850. Pagumalarvata is the Chinese
southern Pagumalarvata. The CDC is CDC-200301157, Pagu. is Pagumalar-
vata, SH stands for Shanghai.

HIV-1 Virus Genome

The HIV-1 virus genome is the main type of AIDS virus. Besides HIV-1, there
is HIV-2 along with other virus genomes of animals. Since HIV-2 appears
in local districts, most studies of the AIDS virus genome focus on how to
analyze the HIV-1 virus genome. In edition 2004/9 (release 43), the GenBank
announced 706 sequences of HIV-1. The lengths of these sequences vary from
7,000 to 9,000bp. Similarly to the SARS sequences, HIV-1 data contain both
incomplete regions and nonsequenced regions. Therefore, we cannot adopt
them mechanically. The nations and districts of origin for these 706 sequences
of HIV-I are listed in Table 6.2.

6.3.2 The Basic Steps to Analyze the Sequences

The data samples we collected are a group of multiple sequences. Therefore,
we process them by using various types of software packages to obtain a MA
output. Let A be the multiple sequences consisting of the data samples, and
let A′ be its MA output.

The Procedure to Analyze the MA Output

1. Based on A′, we compute the penalty (or scoring) matrix W = (ws,t),
modulus structure matrix H = (Hs,t) and mutation region matrix Δ.
Because the modulus structure matrix and the mutation region matrix H,
Δ are very complex, they may be considered to be parameters.

2. Based on the penalty matrix W = (ws,t) to cluster the multiple sequences,
we construct the minimum distance tree G1, and then construct the k-
order graph Gk and k-order mutation network Gk(W ).

3. Based on the minimum distance tree G1 and mutation region matrix Δ,
we orthogonalize the network, and give the corresponding graph for the
orthogonal decomposition of the network.
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Table 6.1. The names and numbered list of the 118 SARS sequences

No. GenBank Name Nation or No. GenBank Name Nation or
number district number district

1 NC-004718 Toronto 2 AY714217 CDC USA
3 AY559097 Sin3408L Singapore 4 AY559096 Sin850 Singapore
5 AY559095 Sin847 Singapore 6 AY559094 Sin846 Singapore
7 AY559093 Sin845 Singapore 8 AY559092 SinP5 Singapore
9 AY559091 SinP4 Singapore 10 AY559090 SinP3 Singapore

11 AY559089 SinP2 Singapore 12 AY559088 SinP1 Singapore
13 AY559087 Sin3725V Singapore 14 AY559086 Sin849 Singapore
15 AY559085 Sin848 Singapore 16 AY559084 Sin3765V Singapore
17 AY559082 Sin852 Singapore 18 AY559081 Sin842 Singapore
19 AY654624 TJF Beijing 20 AY595412 LLJ-2004 Beijing
21 AY394850 WHU Wuhan 22 AY274119 Tor2 Toronto
23 AY323977 HSR 1 Italy 24 AY291315 Frankfurt1 Germany
25 AY502932 TW9 Taiwan 26 AY502931 TW8 Taiwan
27 AY502930 TW7 Taiwan 28 AY502929 TW6 Taiwan
29 AY502928 TW5 Taiwan 30 AY502927 TW4 Taiwan
31 AY502926 TW3 Taiwan 32 AY502925 TW2 Taiwan
33 AY502924 TW11 Taiwan 34 AY502923 TW10 Taiwan
35 AY291451 TW1 Taiwan 36 AY390556 GZ02 Guangdong
37 AY395003 ZS-C Guangdong 38 AY395002 LC5 Guangdong
39 AY395001 LC4 Guangdong 40 AY395000 LC3 Guangdong
41 AY394999 LC2 Guangdong 42 AY394998 LC1 Guangdong
43 AY394997 ZS-A Guangdong 44 AY394996 ZS-B Guangdong
45 AY394995 HSZ-Cc Guangdong 46 AY394994 HSZ-Bc Guangdong
47 AY394993 HGZ8L2 Guangdong 48 AY394992 HZS2-C Guangdong
49 AY394991 HZS2-Fc Guangdong 50 AY394990 HZS2-E Guangdong
51 AY394989 HZS2-D Guangdong 52 AY394987 HZS2-Fb Guangdong
53 AY394986 HSZ-Cb Guangdong 54 AY394985 HSZ-Bb Guangdong
55 AY394983 HSZ2-A Guangdong 56 AY394982 HGZ8L1-B Guangdong
57 AY394981 HGZ8L1-A Guangdong 58 AY394979 GZ-C Guangdong
59 AY394978 GZ-B Guangdong 60 AY508724 NS-1 Guangdong
61 AY463059 SH-QXC1 Guangdong 62 AY313906 GD69 Guangdong
63 AY310120 FRA Italy 64 AY461660 SoD Russia
65 AY485278 Sino3-11 Beijing 66 AY485277 Sino1-11 Beijing
67 AY345988 CUHK-AG03 Hong Kong 68 AY345987 CUHK-AG02 Hong Kong
69 AY345986 CUHK-AG01 Hong Kong 70 AY282752 CUHK-Su10 Hong Kong
71 AY357076 PUMC03 beijing 72 AY357075 PUMC02 Beijing
73 AY350750 PUMC01 Beijing 74 AY304495 GZ50 Hong Kong
75 AY304486 SZ3 Pagu. 76 AY427439 AS Italy
77 AY283798 Sin2774 Singapore 78 AY278491 HKU-39849 Beijing
79 AY278489 GD01 Beijing 80 AY362699 TWC3 Taiwan
81 AY362698 TWC2 Taiwan 82 AY283797 Sin2748 Singapore
83 AY283796 Sin2679 Singapore 84 AY283795 Sin2677 Singapore
85 AY283794 Sin2500 Singapore 86 AY278741 Urbani USA
87 AY351680 ZMY 1 Guangdong 88 AP006561 TWY Taiwan
89 AP006560 TWS Taiwan 90 AP006559 TWK Taiwan
91 AP006558 TWJ Taiwan 92 AP006557 TWH Taiwan
93 AY278554 CUHK-W1 Hong Kong 94 AY348314 TaiwanTC3 Taiwan
95 AY338175 Taiwan TC2 Taiwan 96 AY338174 TaiwanTC1 Taiwan
97 AY321118 TWC Taiwan 98 AY279354 BJ04 Beijing
99 AY278490 BJ03 Beijing 100 AY278487 BJ02 Beijing

101 AY297028 ZJ01 Beijing 102 AY278488 BJ01 Beijing
103 AY304488 SZ16 Pagu. 104 AY559083 Sin3408 Singapore
105 AY286320 ZJ01 Hangzhou 106 AY395004 HZS2-Bb Guangdong
107 AY394988 JMD Guangdong 108 AY394984 HSZ-A Guangdong
109 AY394980 GZ-D Guangdong 110 AY394977 GZ-A Guangdong
111 AY463060 SH-QXC2 Shanghai 112 AY304494 HKU-66078 Hong Kong
113 AY304493 HKU-65806 Hong Kong 114 AY304492 HKU-36871 Hong Kong
115 AY304491 GZ60 Hong Kong 116 AY304490 GZ43 Hong Kong
117 AY304489 SZ1 Pagu. 118 AY304487 SZ13 Pagu.

CDC CDC-200301157, Pagu. Pagumalarvata, SH Shanghai
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Table 6.2. The nations and districts for the 706 sequences of HIV-I

A B A B A B A B A B A B

Botswana 72 Tanzania 41 Cameroon 82 South Africa 46 DR Congo 11 Senegal 7
Ethiopia 8 Nigeria 3 Zambia 2 Rwanda 1 Benin 1 Uganda 58
Kenya 45 Gabon 2 Central African 5 Chad 3 Niger 3 Mali 2
Finland 3 Belgium 11 France 23 Sweden 15 Greece 4 Belarus 2
Russia 3 Spain 14 Netherlands 14 Estonia 2 Britain 2 Germany 2
Ukraine 1 Norway 1 Taiwan 1 South Korea 2 China 17 Israel 1
India 15 Thailand 59 Ghana 3 Japan 4 Myanmar 9 Cyprus 2
Brazil 7 Uruguay 4 Argentina 26 Bolivia 2 Colombia 5 Australia 16
USA 43 Others 1

A denotes the nation or district, B denotes the numbers of the sequenced genes

Analyzing the Biological Meaning of the Final Results

Based on the graph of the orthogonal decomposition of the network, we can
construct a relationship of the mutations among sequences, and analyze the
biological meaning. For the same biosome, there are many methods to collect
the data sample, and for different data samples we may get different results.
Therefore, we should analyze the biological meaning from several different
angles.

Using the above general procedure, we next discuss several examples in
biology and medicine. We will detail the content involved within the discus-
sions.

6.3.3 Remarks on the Alignment and Output Analysis

The Mutation Analysis of Mammalian Mitochondrial Genome

1. The length of the mammalian mitochondrial genome is about 18 kbp. The
length of the coding region ND1 is 900bp. The length of its alignment
output is 961bp, as shown in [99].

2. The total length of the stable region of the multiple alignment output
is ||N0|| = 404, the percentage is 404

961 = 42.04%, proportional to the to-
tal length of the output. While we can readily produce the list of their
modulus structure, we have omitted it for brevity.

3. Let w(a, b) be the Hamming matrix, and let the penalty matrix be ws,t =∑n
i=1 w(cs,i, ct,i), where s, t = 1, 2, · · · , 20 as shown in Table 6.3.

4. Based on the penalty matrix, we find the system clustering tree as shown
in Fig. 6.8.

The Analysis of the SARS Virus Gene

1. The lengths of the 118 SARS sequences are about 18 kbp. We select
103 sequences which are well-sequenced. The length of the MA output
is 29,908bp. The result is shown in [99].
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Table 6.3. The penalty matrix for the ND1 coding region

180
178 72
198 195 178
192 192 175 29
189 191 183 152 153
184 192 186 174 173 180
178 201 181 182 177 192 157
250 243 238 255 255 246 246 258
256 259 247 251 256 251 248 239 274
256 262 245 270 267 265 246 243 269 94
263 267 254 267 268 269 245 247 265 99 44
257 264 251 259 256 258 251 237 279 103 111 116
247 254 243 247 248 260 244 234 257 145 156 154 150
248 259 244 250 250 267 249 232 253 146 157 156 156 60
261 260 249 261 251 257 242 233 270 156 157 152 142 145 141
264 257 244 270 267 253 261 254 286 300 292 299 298 308 304 325
249 245 239 251 249 228 231 240 261 272 277 268 268 263 270 263 234
259 285 265 259 261 265 263 260 307 306 312 304 302 309 304 316 273 246
255 252 244 242 245 249 251 241 193 275 271 263 286 270 264 277 271 281 288

2. The SARS virus genome has high similarity because of the short time the
disease has taken to develop and evolve. Except for a few sequences which
may have sequencing errors, the sequence homology for most sequences is
over 95%. In these 103 SARS sequences, we have determined their com-
mon stable region (at whose positions the nucleotides are invariant). The
number of the positions in the common stable region is 26,924, which is
90.023% of the length of the sequence alignment output (29,908).

3. Analyze the unstable region of the MA output from different angles, in-
cluding the head and tail of the SARS sequences. For the MA output, we
can determine that the head comprised 20 positions and the tail comprised
43 positions. The percentages are 0.07% and 0.144%, respectively. In the
head and tail part, the structure changes a great deal. The reason is that
the start point and end point are both selected differently in sequencing.
The distribution of the nucleotides in unstable positions can be denoted by
f̄i = (fi(0), fi(1), · · · , fi(4)), where fi(z) is the number of nucleotides or
inserting symbols z at position i. For example, f19 = (1, 86, 0, 1, 15) means
that that number of times that “a, c, g, t, and −” occur at position 19 of
the 103 SARS sequences are 1, 86, 0, 1, and 15, respectively.

4. The penalty matrix W = (ws,t)s,t=1,2,··· ,103 follows from the multiple
alignment output (shown in [99]), where ws,t = dH(As, At) is the Ham-
ming distance between As and At.

5. Following from the penalty matrix W , we generate the phylogenetic tree,
the minimum distance graph and the second-order structure graph. Con-
struction of the network graph follows directly from these graphs.
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Fig. 6.8. The cluster tree generated by the multiple sequence alignment of the ND1
gene coding region of 20 sorts of mammals

The Network Graph Based on the SARS Sequences
in Different Stages

In clinics, a disease is divided into many stages. SARS, as a particular disease,
is also divided into an initial stage, a middle stage and a final stage. The SARS
sequences change due to mutations as the stage or other conditions change.
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Fig. 6.9. The network graph based on the SARS sequences

To search the variance, we discuss the network graph based on the sequences
collected at different stages. The discussion is detailed as follows:

1. For some sequences, for example, numbers 42, 50, and 51, the differences
among them are very minor. They always come from the same district.
It is useful to track their evolution processes (e.g., the time point for the
onset, the development of the epidemic process, etc.).

2. Some sequences, e.g., numbers 5, 28, 76, and 93, form local clustering
centers in the graph. These centers can be seen as sources of SARS in
some districts.

3. Sequence 75 is the sequence of Pagumalarvata SZ3 (GenBank number:
AY304486) (see [101]), the prevalent conclusion (including the conclusion
in [101]) is that Pagumalarvata is the source of the SARS virus. However,
based on the structure in Fig. 6.9, this conclusion can be challenged. If
sequences 75, 36, and 47 were sequenced correctly, then 75 → 36 → 47,
and double mutations happened at positions 48 and 68. If this conclusion is
right, then the double mutations are the key causes of the SARS outbreak
in 2003.
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Mutation Network Structure of Ealy SARS Sequences

We compare the SZ16 (a) and SZ3 (b) of Pagumalarvata with SARS sequences
HSZ-Bc (AY394994), GZ02 (AY390556), HSZ-Cc (AY394995), HSZ-Cb (AY394986)

in the early period with the HZS2-E (AY394990) in the metaphase, respec-
tively. We number the seven sequences as SZ16 (a), SZ3 (b), HSZ-Bc (c), GZ02
(d), HZS2-E (e), HSZ-Cb (u), HSZ-Cc (v), respectively. We then analyze their
mutation network structure, and obtain the following result:

1. From the MA output of the SARS sequences, we find that

wac = 50 , wau = 87 , wcu = 37 , wcv = 6 ,
wav = 56 , wac + wcu = wau , wac + wcv = wav .

This implies that arc ac is orthogonal to cu, cv. We conclude that the
SARS virus starts from SZ16 (a) (Pagumalarvata), to HSZ-Bc (c), then
from HSZ-Bc to HSZ-Cb (u) and HSZ-Cc (v), respectively. i.e., the source
of HSZ-Bc is SZ16, while the cause of both HSZ-Cb and HSZ-Cc is SZ16.

2. In the infection process where the SARS virus progresses from SZ16 to
HSZ-Bc and then to HSZ-Cb and HSZ-Cc, the number of times mutations
occur is 50, 37, and 3, respectively, and the mutation modes are also
determined by the MA output.

3. The source of HSZ-Cb (u) and HSZ-Cc (v) is determined, we need only
discuss the mutation structure of SZ16 (a), SZ3 (b), HSZ-Bc (c), GZ02
(d) and HZS2-E (e). This discussion is given below.

Remark 8. 1. Points a, b, c, d, e represent the five SARS sequences in the
initial stage. Points f, g, h are the transitional sequences in orthogonal
decomposition.

2. In the distance graph constructed by a, b, c, d, e, f, g, h nodes; thick lines
are first-order arcs, and thin straight lines are second-order arcs. The
numbers written on the sides of the lines represent the mutation errors.

The Analysis of the Network Structure Graph – Fig. 6.10

1. The triangles in the network structure, first-order arcs and second-order
arcs are orthogonal. For example, in triangle Δ(a, b, h), the formula

|ab| = |ag| + |bg| , |ah| = |ag| + |gh| , |bh| = |bg| + |gh|

holds.
2. For the 1st-order arcs in Fig. 6.10, the modulus structures are orthogonal

to each other. For example, Hag, Hbg, Hhg are mutually orthogonal.
3. In the SARS virus genome of Pagumalarvata, there are 20 mutation differ-

ences, and the mutation mode is Hab. It may be decomposed orthogonally
as Hab = Hag +Hbg.
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Fig. 6.10. The mutation network decomposition of SARS sequences in the initial
stage

Table 6.4. The structural representation of the mutation mode Hgh

Mutation gh Mutation gh Mutation gh Mutation gh Mutation gh
position position position position position

1899 TG 3664 TC 6455 GA 69 CT 13882 TC
22216 AC 22317 AC 22615 CT 22974 AT 22997 GC
23356 CT 23531 CT 23641 TC 23768 GA 23802 TC
24221 GA 25340 AT 25562 AT 25598 TC 25682 GT
26464 AG

4. When the SARS virus of Pagumalarvata infects human beings, the muta-
tions of the genome consist of three parts: the first part is the mutation
differences (i.e., Hag, Hbg) of different Pagumalarvatas; the second part is
the mutation differences (i.e., Hhf , Hhc) of different human beings; and
the third part is the common mutation differences (i.e., Hgh) of human
beings and Pagumalarvatas. We believe that the particular mutation Hgh

is the key to how Pagumalarvata infects human beings. The mutation
mode is shown in Table 6.4.

Remark 9. The mutation position in the table is where the mutation hap-
pens. The capital letters are the nucleotides which mutate, e.g., 1899 TG
means that the nucleotides in sequences g and h at the 1899th position of
the alignment output are T and G, respectively.

5. After the SARS virus of Pagumalarvata infected human beings, many
cases emerged. However, the SARS disease may break out only if the
HZS2-E(e) virus occurs. Therefore, the mutationHfe is the key to a SARS
outbreak. The mutation modes are as shown in Table 6.5.

Remark 10. The data in Table 6.5 are defined the same way as those in Ta-
ble 6.4.
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Table 6.5. The structural representation of the mutation mode Hfe

Mutation fe Mutation fe Mutation fe Mutation fe Mutation fe
position position position position position

1196 CT 9406 CT 9481 CT 14606 CT 20884 AG
23873 GT 25028 GA 27945 CA 27946 C− 27947 T−
27948 A− 27949 C− 27950 T− 27951 G− 27952 G−
27953 T− 27954 T− 27955 A− 27956 C− 27957 C−
27958 A− 27959 A− 27960 C− 27961 C− 27962 T−
27963 G− 27964 A− 27965 A− 27966 T− 27967 G−
27968 G− 27969 A− 27970 A− 27971 T− 27972 A−
27973 T− 27974 A−

Remark 11. The results listed in Tables 6.4 and 6.5 are mathematical results.
They may be used as a reference for biology and medicine. Whether or not
these results are correct must still be proved through observations and exper-
iments.

The Alignment Output of the Sequences of HIV-1

Amongst the 706 HIV-1 sequences, we select 704 better sequences to be
aligned. The lengths of the 704 HIV-1 sequences are within 7000–9000bp.
We produce the alignment output which is a 704 × 11,364 matrix. Because
the 704 HIV-1 sequences refer to many nations or districts over a long time,
we omit discussion of the alignment output.

6.4 Exercises, Analyses, and Computation

Exercise 29. Construct the phylogenetic tree and graph based on the penalty
matrix in Sect. 6.3.3, according to the requirements listed below:

1. Minimum distance phylogenetic clustering tree, and the average minimum
distance phylogenetic clustering tree

2. Directed and undirected minimum distance tree
3. Minimum distance two-order tree

Exercise 30. The ND1 gene coding region sequences of 20 species of mam-
mals, and the MA outputs for 103 SARS sequences and 706 HIV-1 sequences
are included on our Web site [99]. Construct the mutation network based
on these datasets. Compute the stable and unstable regions for them, and
represent them using modulus structure.

Exercise 31. Compute the similarity matrices of the MA outputs of the
SARS sequences and HIV-1 sequences, and analyze the phylogenetic tree
based on them. Also compute the following results:
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1. Construct the phylogenetic clustering tree under the minimum distance.
2. Construct the first-order and second-order minimum distance undirected

and directed topological distance trees, and represent the topological dis-
tance using colored arcs.

3. For the SARS sequences, construct phylogenetic trees using the maximum-
likelihood method first, followed by the Bayes method.

Exercise 32. Perform MA based on the 8–12 earliest SARS sequences. Then,
analyze the network structure based on the alignment output. Compute the
following results:

1. Determine the stable and unstable regions, and express these using the
modulus structure.

2. Construct the phylogenetic trees using minimum distance.
3. Construct first-order and second-order minimum distance undirected and

directed topological distance trees, and express the topological distance
using colored arcs.

4. Based on the first-order and second-order minimum distance undirected
topological distance trees, perform orthogonal mutation network decom-
position, and construct the graph of the orthogonal mutation network
structure.

5. Based on the graph of the orthogonal mutation network structure, and
using Pagumalarvata as the source of the disease gene, explain the gene
mutation process and the path of the disease infection.

Exercise 33. Based on the MA outputs for the ND1 gene coding region se-
quences of 20 mammals, construct the phylogenetic tree according to the
following typical requirements:

1. Using the characteristic value of the stable regions of MA outputs, con-
struct the phylogenetic tree using the parsimony method.

2. Construct the phylogenetic tree using the maximum-likelihood method
and the Bayes method.

Hint

Construct the phylogenetic tree for the maximum-likelihood method and the
Bayes method, using the software packages Phylip [29], Paml [111], and Mr-
Bayes [44].
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Alignment Space

In sequence alignment issues, the basic problem is the computation of the
mutation error distance between two different sequences (minimum penalty or
maximum score). In this chapter, we discuss the spaces created by alignment,
called alignment space, in the sense of bioinformatics (although this view is
applicable to many other fields, e.g., computer science, information and coding
theory, cryptography, DNA computing, etc.). We do not discuss these other
cases here, as they require expert knowledge in these fields.

7.1 Construction of Alignment Space
and Its Basic Theorems

7.1.1 What Is Alignment Space?

Alignment space is a metric space of generalization errors. The generalization
errors include the substitutions, insertions and deletions of symbols. These
happen often in our daily life, for example, when writing, we may misspell
a word, add an unnecessary word, or miss a word in a sentence. Therefore,
generalization errors are frequently encountered in computer science, infor-
mation theory and bioinformatics. The definitions and their consequences are
different in different fields.

Alignment space is a very complicated nonlinear metric space. It differs
from the common Euclidean space or Hamming space. The main characteristic
of these two spaces is the measurement of the distance between two vectors
of same length. They only measure the errors generated by substitutions.
Therefore, these two spaces are linear and easy to process.

The earliest studies on generalization errors appeared in 1963, in which
Levenshtein [55] defined several types of distances between two different
sequences. One of them is the difference between the sum length of the
two sequences and twice the length of the largest common subsequence.
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We call this the L2-distance. Another is defined by the minimal inser-
tion/deletion/substitution operations that transform one sequence into an-
other. In computer science, these data operations are called edit operations.
We call this minimum number of operations the Levenshtein distance [68], the
L1-distance for short.

In 1974, Peter H. Sellers [85] employed the method of expansion sequences
to define the evolutionary distance of two sequences, and to show that the
space of sequences forms a metric space under evolutionary distance. Since
the equivalence of evolutionary distance and Levenshtein distance [68] is not
hard to prove, it may appear that the problem of the metric of generaliza-
tion errors has been solved. However, one can find that in the proof [85] the
triangle inequality of evolutionary distance is not strict. Since the structure
of expansion sequences is complicated, it is difficult to describe clearly in
several sentences. In this chapter, we introduce the modulus structure the-
ory of augmented sequences and some different equivalent expressions. The
modulus structure theory describes the relations and operations of different
expansion sequences and shows that the operations form a Boolean algebra.
Therefore, a stricter proof of Theorem 23 [85] is given. The data structure of
sequences with generalization errors can then be characterized more clearly
by the modulus structure theory.

Generalization errors are considered mutation errors in bioinformatics.
This is one of the basic problems in bioinformatics, and we have described
and discussed its function in the above text. We can say without exaggeration
that the research on mutation errors is the central and essential problem in
current molecular biology and bioinformatics.

In bioinformatics, the operation of seeking the mutation site is called the
alignment operation on a sequence. The essential operation is to seek the min-
imum penalty alignment or maximum score alignment of different sequences.
We call the penalty value of the minimum penalty alignment, the alignment
distance of the two sequences. Alignment distance is equivalent to the evolu-
tionary distance, so they are equivalent to Levenshtein distance. In this book,
we explain the minimum penalty alignment and maximum score alignment of
two nonequivalent sequences.

Because of the importance of mutations in biology, the alignment problem
has been considered by many researchers from various angles; e.g., the Smith–
Waterman algorithm is the dynamic programming-based method [95], the SPA
algorithm is the statistic decision-based method [90], etc. The computational
complexities are O(n)−O(n2). Following this research, we may quickly obtain
the minimum penalty alignment of long sequences. The space consisting of all
sequences with different lengths endowed with an alignment distance is called
in this book an alignment space. We will then analyze its properties.

In this chapter, our intention is to discuss the data structure from the more
popular and general points of view. For example, we discuss the properties and
applications of the alignment space in the framework of general topological
space.
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7.1.2 The Alignment Space Under General Metric

Now we discuss how to measure the problem of generalization errors. There
are many types of metric for measuring generalization errors; e.g., the Lev-
enshtein distance, evolutionary distance, etc. The sequence alignment theory
is very well-established, and its application in bioinformatics is very broad.
Therefore, in this chapter we discuss in detail alignment distance and the cor-
responding alignment space. We also discuss the properties and applications
of the alignment space under general conditions.

General Metric Space

Let V be a finite or infinite set. Let V+ = V ∪ {−} be an expansion of V ,
which includes V and a virtual symbol “−”.

Definition 34. Let V+ be the expansion of V and let d+(a, b) and d(a, b) de-
note the distance functions defined on V+ and V , respectively. If their distance
functions are consistent, i.e., d(a, b) = d+(a, b) holds for all a, b ∈ V , then V is
called the topological subspace of V+, alternatively, V+ is called the topological
expansion of V .

The main types of metric expansion space are as follows:

1. The finite set (discrete). In this case, V = Vq = {0, 1, · · · , q−1} is a finite
set, V+ = Vq+1 = {0, 1, · · · , q−1, q}. As q changes, the finite set has a dif-
ferent meaning. Typically, for q = 4, Vq = {a, c, g, t} or Vq = {a, c, g, u}
form the familiar nucleotide table; and for q = 20, Vq is the familiar amino
acid table.
On a finite set V , the distance function d(a, b) is represented by a distance
matrix D = (d(a, b))a,b∈V , e.g., the Hamming matrix of (1.6), or the WT-
matrix of (1.7), etc. In this case, {V,D} is a metric space.

2. The bounded infinite set. For example, V = [0, q], q > 0 is a bounded
interval, and a continuous set. There are many ways to express the distance
between pairs of elements. For example, the mean square error (MSE)
distance is: d(a, b) = (b − a)2, absolute error distance is: d(a, b) = |b − a|,
etc. Endowed with any one distance, {V,D} is a metric space. Using any
one of the above mentioned distance functions, the expansion distance
function defined on the expansion space V+ can be extended as follows:

d+(a, b) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

d(a, b) , if both a, b �= “−”,
0 , if both a, b =“−”,
q , if only one of a, b is “−”, while d(a, b) is the

absolute error distance,
q2 , if only one of a, b is “−”, while d(a, b) is the

mean square error distance,
(7.1)

then {V+, D+} is a metric space.
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3. The unbounded infinite set. For example, V = (0,∞) is an unbounded
interval. Then the mean square error (MSE) distance, absolute error dis-
tance, etc., can be employed as the distance d(a, b) on V . The extended
distance on the expansion space V+ can be defined as follows:

d+(a, b) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

d(a, b) , if both a, b �= “−”,
0 , if both a, b = “−”,
δ + d(a, 0) , if a ∈ V and b = “−”,
δ + d(0, b) , if b ∈ V and a = “−”,

(7.2)

where δ > 0 is a constant. Under this distance, we know that {V+, D+} is
a metric space.

The Problem of Sequence Alignment and the Definition
of Alignment Space

The definition of pairwise alignment in this section is the same as that in
Sect. 1.4.2. The slight difference is that here, V, V+ are general metric spaces.
For any two sequences A = (a1, a2, · · · , ana) and B = (b1, b2, · · · , bnb

) whose
range of values is in V , the corresponding terms involved in pairwise alignment
are stated as follows.

Definition 35. 1. If A and A′ are two sequences in V and V+, respectively,
A′ is the expansion of A if A remains after all the “−” in A′ are deleted.

2. If A,B are two sequences ranging into V , (A′, B′) is the alignment of
(A,B) if A′ and B′ are the expansions of A and B, respectively, and their
lengths are the same n′.
If (A′, B′) are the alignment of (A,B), and d+(a, b), a, b ∈ V+ is the dis-
tance function on V+, then d+(A′, B′) =

∑n′

i=1 d+(ai, bi) is defined as the
distance between A′ and B′.

3. Given a distance function d+, (A′, B′) is the minimum penalty align-
ment of (A,B) if (A′, B′) are the alignment sequences of (A,B), and
d+(A′, B′) ≤ d+(A′′, B′′) holds for any other alignment (A′′, B′′).
dA(A,B) = d+(A′, B′) is called the alignment distance of (A,B). It is
also referred to simply as the A-distance.

Based on Definition 35, we find the alignment distance uniquely for any
pair A,B with values ranging on V , and this is a perfectly computational
method for evaluating the distance in bioinformatics. For discrete or con-
tinuous bounded metric spaces, we may use the Smith–Waterman dynamic
programming-based algorithm directly to compute the distance. For con-
tinuous unbounded metric space, the computation principle of the Smith–
Waterman dynamic programming-based algorithm still may be used with
a minor revision if we adapt the distance function defined by (7.2). Thus
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the corresponding software used in bioinformatics may still be used, albeit
with revisions.

The elements in alignment space are the sequences with values ranging in
V with different lengths. Let V n be the set of all sequences with length n and
whose values range in V , so that the alignment space V ∗ may be represented
by V ∗ =

⋃∞
n=1 V

n. Typically, following from Definition 35, we know that for
any A,B ∈ V ∗

q , the A-distance is determined, and (V ∗
q , dA) is an alignment

space or an A-space for short.

The Levenshtein Distance of Generalization Errors

We have mentioned the Levenshtein distance and evolutionary distance in the
context of the alignment distance. In most cases, they are not equivalent. To
understand how to process the generalization errors, we show the correspond-
ing definitions and discuss their relationships. There are many ways to define
the Levenshtein distance. Let A,B be two sequences with values ranging in
V .

Definition 36. 1. (s, i, j) is an operation on A, which means that we change
s many symbols in A, insert i many components, and delete j many com-
ponents.

2. B is an output of A under the operation (s, i, j) if A turns into B via the
operation (s, i, j). Then (s, i, j) is called an operation from A to B.

3. (s0, i0, d0) is a minimum operation from A to B if (s0, i0, j0) is an opera-
tion from A to B, and s0 + i0 + j0 ≤ s+ i+ j holds for any other operation
(s, i, j) from A to B. Let dL1(A,B) = s0 + i0 + j0 be the L1-distance
of A,B, which is also called the evolutionary distance (or E-distance for
short).

The L1-distance can be also extended to the case where (s, i, j) has a different
weight. If V is a general metric space with distance function d(a, b), then the
L1-distance dL1(A,B) involves both the errors caused by s, i, j and the symbol
of s, i, j.

The definition of L2-distance for a sequence pair (A,B) is as follows:
Let W = (w1, w2, · · · , wnw) be a sequence; if there is a subsequence 1 ≤

i1 < i2 < · · · < inw ≤ na such that aij = wj , j = 1, 2, · · · , nw holds, then W
is a subsequence of A. Then let

ρ(A,B) = max{|W | : W is the common subsequence of A,B} , (7.3)

where |W | is the length of sequence W . If W0 is the common subsequence
of A,B and |W0| = ρ(A,B), then W0 is the largest common subsequence of
A,B. The L2-distance is defined as follows:

dL2(A,B) = |A| + |B| − 2 · ρ(A,B) . (7.4)
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The evolutionary distance is equivalent to the alignment distance, however,
we discuss them in different ways. For the L-distance and the A-distance, we
can describe their simple properties as follows:

If the penalty matrix d+ is given, then for every pair of sequences A,B
with values ranging on V , their L1-distance, L2-distance, and A-distance are
uniquely determined. However, both the largest common subsequence W0 of
(A,B) and the minimum penalty alignment sequences (A′, B′) of (A,B) are
not unique, and the minimum operation from A to B is not unique either.

The L1-distance is equivalent to the A-distance. Nevertheless, the L2-
distance may not be equivalent to the A-distance. We illustrate this with
the following example.

Example 21. If {
A = 00000111 ,
B = 11111000 ,

and if the penalty matrix is the Hamming matrix, we have

dA(A,B) = 8 , ρ(A,B) = 3 , dL(A,B) = 16 − 2 × 3 = 10 �= 8 .

The Generalization of the Basic Theorem About the A-Distance

In Theorem 23, we proved that {V ∗, DA} is a metric space if {V+, D+} is
a general metric space. The conclusion can be extended to the more general
topological metric space.

Theorem 29. If {V+, D+} is a general metric space, then {V ∗, DA} is a met-
ric space, where the definitions of set V ∗ and the A-distance dA(A,B) are the
same as Definition 35. dA(A,B) is the distance function defined on V ∗, which
means dA(A,B) satisfies the three conditions of a distance function: nonneg-
ativity, symmetry, and the triangle inequality.

The proof is the same as that of Theorem 23. We can easily extend the proof
of Theorem 23 to the general topological metric space {V+, D+}, so we do not
need to repeat it here.

7.2 The Analysis of Data Structures in Alignment Spaces

For any pair of sequences A,B ∈ V ∗
q , we may discuss structures beyond the

A-distance. We will describe these other structures gradually.

7.2.1 Maximum Score Alignment and Minimum Penalty
Alignment

The definitions of the maximum score alignment and the minimum penalty
alignment have been mentioned before this section. We have explained that
the maximum score alignment and the minimum penalty alignment are not
the same in the general case. We now explain this in more detail.
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The Uniqueness Problem of Optimal Alignment

In Example 2 we have shown that the minimum penalty alignment is not gen-
erally unique. The same example can also be used to explain the nonunique-
ness of the maximum score alignment. Here, we explain why the minimum
penalty alignment as well as the lengths of the alignment sequences may not
be generally unique.

Example 22. If {
A = 00000111 ,
B = 11111000 ,

and if the penalty matrix is the Hamming matrix, then we have dA(A,B) = 8.
If we construct the sequences
{
A1 = 200000111 ,
B1 = 111110002 ,

{
A2 = 2200000111 ,
B2 = 1111100022 ,

{
A3 = 22200000111 ,
B3 = 11111000222 ,

then
dH(A,B) = dH(A1, B1) = dH(A2, B2) = dH(A3, B3) = 8 .

All of these are minimum penalty alignment sequences of (A,B), and their
corresponding lengths are found as follows:

|A| = |B| = 8 , |A1| = |B1| = 9 , |A2| = |B2| = 10 , |A3| = |B2| = 11 .

Thus, the lengths of minimum penalty alignment sequences may not be
unique.

For a fixed pair (A,B), let n0(A,B) be the smallest length among the optimal
alignment of (A,B), and we denote by n1(A,B) the largest length of the
optimal alignment sequences of (A,B).

The Relationship Between the Maximum Score Alignment
and the Minimum Penalty Alignment

Based on Definitions 3, we introduce the definition of the maximum score
alignment sequence if gH(a, b) = 1 − dH(a, b), a, b ∈ V5. Following from Ex-
ample 22, we find that the maximum score alignment and minimum penalty
alignment are not the same. For example, here, (A1, B1) and (A2, B2) are the
minimum penalty alignment sequences of (A,B), which do not represent its
maximum score alignment sequences. (A3, B3) are both the minimum penalty
and maximum score alignment sequences of (A,B).

Lemma 2. The propositions below hold under the Hamming penalty and scor-
ing matrix condition.
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1. The minimum penalty alignment sequences (A′, B′) of sequences (A,B)
are the maximum score alignment sequences of (A,B) if and only if the
length n′ of (A′, B′) is the largest length of the minimum alignment se-
quences of (A,B).

2. The maximum score alignment sequences (A∗, B∗) of sequences (A,B)
are the minimum penalty alignment sequences of (A,B) if and only if the
length n∗ of (A∗, B∗) is the smallest length of maximum score alignment
sequences of (A,B).

Proof. Under the Hamming penalty and scoring matrix condition, for any
alignment sequences (A′, B′) of (A,B) such that the equation n′ = dH(A′, B′)
+ gH(A′, B′) holds; if (A′, B′) are the minimum penalty alignment sequences,
then only if n′ is the maximal value do we have that (A′, B′) are the max-
imum score alignment sequences of (A,B). Proposition 1 of the lemma is
correct.

Proposition 2 can be proved similarly.

Lemma 2 gives a necessary condition under which the minimum penalty align-
ment sequences are the maximum score alignment sequences. The following
example expresses this: the maximum score alignment sequences are not al-
ways the minimum penalty alignment sequences.

Example 23. If {
A = 00001011 ,
B = 10111000 ,

then A′ = A, B′ = B are the minimum penalty alignment sequences,
dA(A,B) = dH(A′, B′) = 5, while the maximum score alignment sequences
are {

A∗ = 000010211222 ,
B∗ = 222210111000 ,

maximum score g(A∗, B∗) = 4(g(A′, B′) = 3). However, dH(A∗, B∗) = 8, so
(A∗, B∗) are not the minimum penalty alignment sequences of (A,B).

7.2.2 The Structure Mode of the Envelope of Pairwise Sequences

The definitions of the envelope and core of multiple sequences, minimal
(minimum) envelope and maximal (maximum) core, are given in Sect. 3.1.
They are closely related to the data structure of alignment space. Let
A = (a1, a2, · · · , ana), B = (b1, b2, · · · , bnb

) be two sequences with values
ranging in Vq ; let C = (c1, c2, · · · , cnc), D = (d1, d2, · · · , dnd

) be the enve-
lope and core of A,B. We now discuss the relationship between their struc-
tures.
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The Structure Mode of the Envelope

If sequence C is the envelope of sequencesA,B, then there must be two subsets
Δ′
a and Δ′

b in Nc such that cΔ′
a

= A and cΔ′
b

= B hold. Δ′
a, Δ

′
b are the sets

of envelope sites. We discuss them as follows:

1. Let

Δ′
0 = Δ′

a ∩Δ′
b , Δ′

1 = Δ′
a −Δ′

0, Δ
′
2 = Δ′

b −Δ′
0 ,

Δ′
3 = Nc − (Δ′

a ∪Δ′
b) = Nc − (Δ′

0 ∪Δ′
1 ∪Δ′

2) .

Then Δ′
0, Δ

′
1, Δ

′
2, Δ

′
3 are four disjoint sets and their union is Nc.

2. If C is the minimal envelope of A and B, then Δ′
3 must be an empty set.

We now discuss the structure under the minimal envelope condition.
3. For each i ∈ Nc, we define the structure functions τi = 0, 1, 2, if i ∈
Δ′

0, Δ
′
1, Δ

′
2 of sequence C. Obviously, the envelope C and the structure

function τ̄ = (τ1, τ2, · · · , τnc) determine each other uniquely if sequences
A and B are determined.

The structure function τ̄ is called the structure mode of the envelope C.

The Permutation of the Envelope

Let C be the envelope of sequences A and B. For any positions i < j ∈ Nc,
permutated by ci and cj , sequence C becomes:

C′ = (c1, c2, · · · , ci−1, cj , ci+1, ci+2, · · · , cj−1, ci, cj+1, · · · , cnc) .

Let C′ = σi,j(C). If C′ is also the envelope of A and B, then the permuta-
tion σi,j is called an isotone permutation. Then C and C′ are the equivalent
envelopes of A and B.

Lemma 3. In the structure mode τ̄ of the envelope C, if τi �= τi+1 ∈ {1, 2},
the permutation σi,i+1 must be the isotone permutation of C.

The proof is obvious.

The Standard Structure Mode of the Envelope C

Definition 37. If the structure mode τ̄ of the envelope C satisfies the fol-
lowing conditions, we may say that the envelope C has a standard structure
mode:

1. Vector τ̄ can be decomposed into several alternating subvectors, let

τ̄ = ((ē0,1, ē0,2, ē0,0), (ē1,1, ē1,2, ē1,0), · · · , (ēkc,1, ēkc,2, ēkc,0)) , (7.5)

where ēk,τ = (
	k,τ

︷ ︸︸ ︷
τ, τ, · · · , τ ) is a vector with a value τ ∈ {0, 1, 2} and length

�k,τ .
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2. In formula (7.5), the inequalities

�0,1 + �0,2 + �0,0 > 0 and �kc,1 + �kc,2 + �kc,0 > 0

hold. For any k = 0, 1, · · · , kc,

�k,3 > 0 , �0,1, �k,2, �k,0 ≥ 0 (7.6)

holds. If �k,τ = 0, then vector ēk,τ does not exist.

Example 24. The following mode is a standard structure mode of an envelope.

τ̄ = (11, 222, 0, 1111, 22, 00000, 2222, 0000000, 11111, 000, 111, 22, 0000, 111) ,

where kc = 5, and the value of �k,τ is assigned as follows:

�0,1 = 2 , �0,2 = 3 , �0,0 = 1 , �1,1 = 4 , �1,2 = 2 , �1,0 = 5 ,
�2,1 = 0 , �2,2 = 4 , �2,0 = 7 , �3,1 = 5 , �3,2 = 0 , �3,0 = 3 ,
�4,1 = 3 , �4,2 = 2 , �4,0 = 4 , �5,1 = 3 , �5,2 = 0 , �5,0 = 0 .

Using Lemma 3, we may conclude that all envelopes of sequences A and B
must be equivalent to an envelope with a standard structure mode.

In the standard structure mode of the envelope, the sequence C may always
be denoted by:

C = (cδ0 , cδ1 , · · · , cδkc
) , (7.7)

where δk = (δk,1, δk,2, δk,3), and each δk,τ is an integer vector of length �k,τ .
These were arranged in order. Then, cδk

= (cδk,1 , cδk,2 , cδk,3) is called a struc-
ture segment of envelope C.

In the structure segment cδk
, cδk,3 is called the last half-part of the struc-

ture segment, and (cδk,1 , cδk,2) is called the first half-part of the structure
segment.

The length of the last half-part of the structure segment cδk
in envelope C

is �k,1 + �k,2, where �k,1 components are selected from A, and �k,2 components
are selected from B. Thus, the number of different selection methods is

(
(�k,1 + �k,2)!
�k,1!�k,2!

)
.

The number of the envelopes which are equivalent to envelope C is

M(C) =
kc∏

k=1

(
(�k,1 + �k,2)!
�k,1!�k,2!

)
. (7.8)
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Properties of the Minimal (Minimum) Envelope

Let C be an envelope of multiple sequences A and let ᾱ = (α1, α2, · · · , αm)
be the set of generation positions of envelope C, here cαs = As, where s =
1, 2, · · · ,m holds. If Δ is a subset of Nc, let αs(Δ′) = αs ∩Δ′, then cαs(Δ′)
must be a subsequence of As.

Lemma 4. If C is a minimal (minimum) envelope of A and B, then cΔ′ must
be a minimal (minimum) envelope of cαs(Δ′), s = 1, 2, · · · ,m.

Proof. We prove this proposition by reduction to absurdity. If cΔ′ is not a min-
imal envelope of cαs(Δ′), where s = 1, 2, · · · ,m, then there exists a j ∈ Δ′

such that cΔ′′ is an envelope of c̄(Δ′), here Δ′′ = Δ′ − {j}. There now is
a subset βs ⊂ Δ′′ such that cβs = cαs(Δ′), where s = 1, 2, · · · ,m.

Since C is an envelope of (A,B), then c(Δ′)c must be an envelope of

c̄((Δ′)c) =
{
cα1((Δ′)c), cα2((Δ′)c), · · · , cαm((Δ′)c)

}
,

where αs((Δ′)c) = αs ∩ (Δ′)c, while (Δ′)c = Nc −Δ′. On the other hand, we
obtain

As = cαs =
(
cαs(Δ′), cαs((Δ′)c)

)
=
(
cβs , cαs((Δ′)c)

)
. (7.9)

If we let N ′
c = {1, 2, · · · , j− 1, j+ 1, · · · , nc}, then βs ∪ (Δ′)c ⊂ N ′

c. Following
from (7.9), we find that cN ′

c
= (c1, c2, · · · , cj−1, cj+1, · · · , cnc) is an envelope

of (A,B). This contradicts the definition that C is a minimal envelope of
(A,B). Therefore, the lemma is proved.

Theorem 30. If C is a minimum envelope of A,B with a standard structure
mode, and cδk

is a structure segment of C, then in the first half-part of the
structure segment, any component in vector cδk,1 is different from that in cδk,2 .

Proof. We prove this proposition by reduction to absurdity. For a standard
structure mode in (7.7), let

1 = j0,1 ≤ j0,2 ≤ j0,0 ≤ j1,1 ≤ j1,2 ≤ j1,0 ≤ · · ·
≤ jkc,1 ≤ jkc,2 ≤ jkc,0 ≤ jkc+1,1 = nc , (7.10)

where �k,τ = jk,τ+1 − jk,τ , τ = 1, 2, 3. We denote jk,4 = jk+1,1. Then �k,τ
satisfies formula (7.6).

If there is a structure segment cδk
such that the conclusion of the theorem

is wrong, then there must be a 0 ≤ k ≤ kc such that a component in cδk,1 is
the same as that in cδk,2 . Let j1, j2 satisfy cj1 = cj2 and let jk,1 < j1 ≤ jk,2 <
j2 ≤ jk+1,0 hold. We construct a new sequence C′ as follows:

C′ = (c1, c2, · · · , cj1−1, cjk,2+1, cjk,2+2, · · · , cj2−1, cj , · · · , cnc) , (7.11)
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where j = j1 − 1 − jk,1 + j2 − 1 − jk,2. C′ is also the envelope of sequences A
and B with a standard structure mode as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δ′k′,τ = δk,τ , k′ = 0, 1, · · · , k − 1 , τ = 1, 2, 3 ,
δ′k,1 = [jk,1 + 1, j1 − 1] ,
δ′k,2 = [jk,2 + 1, j2 − 1] ,
δ′k,0 = {j} = {j1 − 1 − jk,1 + j2 − 1 − jk,2} ,

δ′k+1,1 = [j + 1, j + jk,2 − j1] ,
δ′k+1,2 = [j + jk,2 − j1 + jk,0 − j2] ,
δ′k+1,0 = δ′k,0 ,
δ′k+k′,τ = δ′k+k′,τ , k′ = 2, 3, · · · , kc − k + 1 , τ = 1, 2, 3 .

(7.12)

However, the length of C′ is nc − 1. This contradicts the definition that C is
the minimum envelope of A,B. The theorem is therefore proved.

7.2.3 Uniqueness of the Maximum Core and Minimum Envelope
of Pairwise Sequences

The following example tells us that the maximum core and minimum envelope
of pairwise sequences are not generally unique.

Example 25. 1. Let {
A = (11111011111)
B = (11110111111) ,

then their maximum cores are as follows:

D = (1111011111) , D′ = (1111111111) .

Then |D| = |D′| = 10, and they are both the largest subsequence of A
and B. In other words, they are both the maximum core of A and B. It
follows that the maximum core of pairwise sequences is not always unique.
In this example the minimum envelope C = (111110111111) of A and B
is unique.

2. Let {
A = (11111011110)
B = (111101111111) ,

then the maximum core: D = (1111011110) is unique, but the minimum
envelopes are not unique, which is stated as follows:

C1 = (11111011110111) , C2 = (11111011111011) ,
C3 = (11111011111101) , C4 = (11111011111110) .

These two examples show that maximum core and minimum envelope of pair-
wise sequences are not always unique. They are unable to determine each
other.
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7.2.4 The Envelope and Core of Pairwise Sequences

The Core Generated by the Envelope

If sequence C is the envelope of sequences A and B, then there are two subsets
Δ′
a and Δ′

b in Nc such that cΔ′
a

= A, and cΔ′
b

= B. Moreover, the following
properties hold:

1. Let

Δ′
0 = Δ′

a ∩Δ′
b , Δ′

1 = Δ′
a −Δ′

0 , Δ′
2 = Δ′

b −Δ′
0 ,

Δ′
3 = Nc − (Δ′

a ∪Δ′
b) = Nc − (Δ′

0 ∪Δ′
1 ∪Δ′

2) .

Then Δ′
0, Δ

′
1, Δ

′
2, Δ

′
3 are four disjoint sets, and their union is Nc.

2. If sequence C is the minimal envelope of sequences A and B, then Δ′
3

must be an empty set.
In the following discussions, we always assume that C is the minimal
envelope.

3. Let D = cΔ′
0

be the core of sequences A and B, it is referred to as the
core of A and B generated by envelope C.

4. If sequenceD is the core of A and B generated by the minimal envelope C,
then nd = na + nb − nc holds.

The Modulus Structure of Core

If sequence D is the core of sequences A and B, then sequences A and B are
both expansions of D. The modulus structures of expansions are denoted by

Kτ = {iτ,0, iτ,1, iτ,2, · · · , iτ,2kτ−1, iτ,2kτ , iτ,2kτ+1} , τ = a, b . (7.13)

They satisfy the condition

0 = iτ,0 ≤ iτ,1 < iτ,2 < · · · < iτ,2kτ−1 < iτ,2kτ ≤ iτ,2kτ+1 = nτ . (7.14)

This can generate small intervals

δτ,k = [iτ,k + 1, iτ,k+1] , k = 0, 1, 2, · · · , kτ .

If we let Δτ =
⋃kτ

k=1 δτ,2k−1, then aΔa = bΔb
= D holds. Therefore,

||Δa|| =
ka∑

k=1

(ia,2k − ia,2k−1) = ||Δb|| =
kb∑

k=1

(ib,2k − ib,2k−1) . (7.15)
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The Envelope Generated by the Core

Without loss of generality, we may construct the envelope C of A and B in
the way shown in Fig. 7.1 based on the augmented mode Ha and Hb (from D
to A and B, respectively) given in (7.15):

1. In Fig. 7.1, ka = kb = 1, hence

Ha = {(ia,1, �a,1)} , Hb = {(ib,1, �b,1)} .
2. We now begin to compare the lengths of all small intervals. Let �τ,k =
iτ,k+1 − iτ,k, τ = a, b, k = 0, 1, in which, iτ,0 = 1, iτ,2 = nτ , and τ =
a, b. The lengths of all small intervals in Fig. 7.1 satisfy the following
relationship:

�a,0 < �b,0 < �a,0 + �a,1 < �b,0 + �b,1 < �b,0 + �b,1 + �b,2 = �a,0 + �a,1 + �a,2 .

3. In view of the above relationship, we cut the small intervals δτ,k where
τ = a, b and k = 1, 3, 5. Let

id,0 = 0 < id,1 = ia,1 < id,2 = ib,1 < id,3 = nd .

Then we construct sequence C, letting

j0 = 0 , j1 = ia,1 , j2 = ia,1 + �a,1 , j3 = ib,1 + �a,1 ,

j4 = ib,1 + �a,1 + �b,1 , j5 = nc = na + �b,1 = nb + �a,1 .

4. We then let
{
δd,k = [id,k + 1, id,k+1] , k = 0, 1, 2 ,
δc,k = [jk + 1, jk+1] , k = 0, 1, 2, 3, 4 ,

Fig. 7.1. Data relationship to find the envelope based on the core
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and also ⎧
⎪⎨

⎪⎩

cδc,2k
= dδd,k

, k = 0, 1, 2 ,
cδc,1 = [aia,1+1, aia,1+	a,1 ] ,
cδc,3 = [bib,1+1, bib,1+	b,1 ] .

Then the sequence C is the envelope of sequences A and B generated by
the core D.

The Theorem for the Relationship Between the Maximum Core
and the Minimum Envelope

Based on the above discussion, we may prove a theorem that reflects the
relationship between the maximum core and the minimum envelope.

Theorem 31. 1. If sequence D is the core of sequences A and B generated
by minimum envelope C, then D must be the maximum core of sequences
A and B.

2. If sequence C is the envelope of sequences A and B generated by maximum
core D, then C must be the minimum envelope of sequences A and B.

Proof. We prove proposition 1 by reduction to absurdity. If D is not the
maximum core of sequences A andB then there must be a coreD′ of sequences
A and B such that nd′ > nd.

On the other hand, the envelope C′ = C(A,B;D′) of sequences A and
B can be generated by core D′, so the lengths of sequences A,B,C′, and D′

satisfy the expression

nc′ = na + nb − nd′ < na + nb − nd = nc .

This contradicts the definition that C is the minimum envelope of sequences A
and B. Consequently, D = D(A,B,C) must be maximum core. Proposition 1
is proved.

Since proposition 2 can be proved similarly, we omit it here.

7.2.5 The Envelope of Pairwise Sequences and Its Alignment
Sequences

The Alignment Sequences Generated by the Envelope
of Pairwise Sequences

We discuss the sequences A,B,C, and D, where D is the core of A and B
generated by envelope C of A and B, or C is the envelope of A,B generated
by core D. The standard structure modes are given in (7.7), in which δk =
(δk,1, δk,2, δk,3). Thus, the alignment sequences (A′, B′) may be obtained based
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on (A,B) in the following way:

a′j =

{
cj , when j ∈ Δa = Δ1 ∪Δ3 ,

q , when j ∈ Δ2 ,

b′j =

{
cj , when j ∈ Δb = Δ2 ∪Δ3 ,

q , when j ∈ Δ1 ,
(7.16)

in which Δτ =
⋃kc

k=0 δk,τ , where τ = 1, 2, 3. Then, (A′, B′) are obviously the
alignment sequences of (A,B), but not the optimal alignment sequences.

If sequence C is the minimum envelope of sequences A,B, then we con-
struct the alignment sequences (A′, B′) of (A,B) as follows:

1. In the standard modulus structure (7.7) of the envelope of sequences A,B
with C, we define

{
�k,4 = max{�k,1, �k,2} , k = 0, 1, · · · , kc ,
�k,5 = min{�k,1, �k,2} , k = 0, 1, · · · , kc .

(7.17)

Furthermore, we find the interval sequence:

0 = j′0 ≤ j′1 < j′2 < · · · < j′2kc
≤ j′2kc+1 = nc′ , (7.18)

in which nc′ =
∑kc

k=0 (�k,0 + �k,3) and
{
j′2k+1 − j′2k = �k,0 , k = 0, 1, · · · , kc ,
j′2k − j′2k−1 = �k,3 , k = 1, 2, · · · , kc .

We then let δ′k = [j′k + 1, j′k+1], where k = 0, 1, · · · , kc.
2. Based on δ′k = [j′k + 1, j′k+1] and sequence C, we construct the segments
a′δ′2k,δ

′
2k+1

, b′δ′2k,δ
′
2k+1

of A′ and B′ for k = 0, 1, · · · , kc − 1 in turn. Let

a′δ′2k+1
= b′δ′2k+1

= cδk,3 , (7.19)

and also

a′δ′2k
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

cδk,1 , if �k,0 = �k,1 ,⎛

⎜
⎝cδk,1 , (

	k,0−	k,1
︷ ︸︸ ︷
4, 4, · · · , 4)

⎞

⎟
⎠ , if �k,0 > �k,1 ,

and

b′δ′2k
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

cδk,2 , if �k,0 = �k,2 ,⎛

⎜
⎝cδk,2 , (

	k,0−	k,2
︷ ︸︸ ︷
4, 4, · · · , 4)

⎞

⎟
⎠ , if �k,0 > �k,2 .

(7.20)
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Obviously, the sequences (A′, B′) induced by (7.19) and (7.20) are the
alignment sequences of (A,B), and are called the alignment sequences
generated by envelope C.

Theorem 32. Under the Hamming score matrix, if sequence C is the mini-
mum envelope of (A,B), then the alignment sequences (A′, B′) generated by
envelope C must be the optimal alignment sequences of (A,B).

Proof. We show this using reduction to absurdity. If the alignment sequences
(A′, B′) generated by envelope C are not the optimal alignment sequences of
(A,B), then there must be a pairwise sequences (A′′, B′′) such that (A′′, B′′)
are the alignment sequences of (A,B) and gH(A′′, B′′) > gH(A′, B′). We de-
note

Δ′′
3 = {j |a′′j = b′′j ∈ V4, j ∈ N ′′} , Δ′

3 = {j |a′j = b′j ∈ V4, j ∈ N ′} .
Then the sequence D = a′Δ′

3
= b′Δ′

3
is the core of A and B generated by C,

and
nd′′ = ||Δ′′

3 || = gH(A′′, B′′) > gH(A′, B′) = ||Δ′
3|| = nd .

Now D′′ = a′′Δ′′
3

= b′′Δ′′
3

is the subsequence of A and B. If we denote D′′ as the
core, and construct the envelope C′′ of A and B, then

nc′′ = na + nb − nd′′ < na + nb − nd = nc .

This contradicts the definition that C′ is the minimum envelope of (A,B).
Therefore, (A′, B′) must be the optimal alignment sequences of (A,B). The
theorem is proved.

The Envelope Generated by Pairwise Alignment Sequences

If (A′, B′) are the alignment sequences of (A,B), then we define

Δ′
0 = {i ∈ N ′ |a′i = b′i ∈ V4} , (7.21)

and the region Δ′
3 can be decomposed to small regions. We denote

0 = i0 ≤ i1 < i2 < i3 < · · · < i2k′ ≤ i2k′+1 = n′ , (7.22)

and Δ′
0 = (δ′1, δ′3, · · · , δ′2k′−1), where

δ′k = [ik + 1, ik+1] , k = 0, 1, 2, · · · , 2k′ . (7.23)

Therefore, we can use the alignment sequences (A′, B′) of (A,B) to construct
the envelope C of (A,B). The computational steps are as follows:

1. We denote by �k, where k = 0, 1, 2, · · · , 2k′, the length of the interval δ′k,
and construct the sequence

C′ =
(
a′δ′0 , b

′
δ′0
, a′δ′1 , a

′
δ′2
, b′δ′2 , a

′
δ′3
, · · · , a′δ′

2k′−2
, b′δ′

2k′−2
, a′δ′

2k′−1
, a′δ′

2k′ , b
′
δ′
2k′

)
.

(7.24)
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The length of sequence C′ is then nc′ = 2
∑k′

k=0 �
′
2k+

∑k′

k=1 �
′
2k−1, in which

�′k = ||δ′k|| = ik+1 − ik.
2. Deleting all of the components of C′ whose value is 4, the rest of sequence
C is the envelope of sequences (A,B), and C is generated by the alignment
sequences (A′, B′). In this case, the length of C is nc = nc′ −2n′+na+nb.

Theorem 33. Under the Hamming scoring matrix, if (A′, B′) are the opti-
mal alignment sequences of (A,B), then the envelope of (A,B) generated by
(A′, B′) must be the minimum envelope of (A,B).

Proof. We use reduction to absurdity to prove this. If envelope C is not the
minimum envelope of (A,B), then there must be an envelope C′ of (A,B)
such that nc′ < nc and C′ has the standard structure mode as in (7.7). We
denote this by

C′ =
(
c′δ′0 , c

′
δ′1
, · · · , c′δ′

k′
c

)
,

in which, δ′k = (δ′k,1, δ
′
k,2, δ

′
k,3), and each δ′k,τ is a subscript set with the

length �′k,τ . Following from (7.17) and (7.18), the core D′ and alignment se-
quences (A′′, B′′) can be generated by envelope C′. The expression

nd′ = na + nb − nc′ > na + nb − nc = nd (7.25)

holds, where nd is the length of the core of A and B generated by envelope C.
Since

gH(A′′, B′′) = ||D′|| = nd′ > nd = ||D|| = gH(A′, B′) ,

this contradicts the supposition that (A′, B′) are the maximum score align-
ment sequences of (A,B). This contradiction shows that the theorem is true.

The Relationship Between the L2-Distance and the A-Distance

Theorem 34. Under the condition of Theorem 33, the inequality

dL2(A,B) ≤ |A| + |B| − 2n′(A,B) + 2dA(A,B)

holds for any A,B ∈ V ∗
2 . The necessary and sufficient condition for the equal-

ity sign is that the length of the maximum score alignment (A∗, B∗) of (A,B)
be n∗ = n′(A,B), in which n′(A,B) is the largest length of the minimum
penalty alignment sequences of (A,B).

Proof. The proof can be extended by the conclusions of Theorem 29 and
Lemma 2. Since

dL2(A,B) = |A| + |B| − 2ρ(A,B) = |A| + |B| − 2ρ∗(A,B)
≤ |A| + |B| − 2ρ′(A,B) = |A| + |B| − 2n′ + 2dH(A′, B′)
= |A| + |B| − 2n′ + 2dA(A,B) , (7.26)

in which the equality sign is obtained from (7.12), the necessary and sufficient
condition for the equality sign holding follows from Theorem 31. Thus the
theorem is proved.
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In Example 23 we had dA(A,B) = 5, n′(A,B) = |A| = |B| = 8, ρ(A,B) = 4.
Thus,

dL2(A,B) = |A| + |B| − 2ρ(A,B)
= 8 < |A| + |B| − 2n′(A,B) + 2dA(A,B) = 10 .

The inequality in Theorem 32 is strictly true, thus, the sequences (A,B) do
not satisfy the necessary and sufficient condition in Theorem 32.

7.3 The Counting Theorem of the Optimal Alignment
and Alignment Spheroid

Above, we have mentioned that the optimal alignment sequences are not gen-
erally unique. The counting theorem of the optimal alignment is intended
to determine the number of all the optimal alignments for a fixed sequence
A and B. The alignment spheroid is the set of all the sequences whose A-
distances arriving at a fixed sequence A are less than or equal to a constant.

7.3.1 The Counting Theorem of the Optimal Alignment

With the same notations as those used in the above section, for a fixed se-
quence A and B, let C be the minimum envelope, and let D be the maximum
core. Then, C and D may be mutually determined. The structure mode of C
is given in (7.7). Let

�̃ =
(
�̄1, �̄2, · · · , �̄kc

)
(7.27)

denote the lengths of every vector in (7.7), in which �̄k = (�k,1, �k,2, �k,3), and
�k,τ is the length of vector δk,τ . We conclude the following:

1. The minimum envelope C may be generated if sequences A,B and their
maximum core D are given. There are M(C) envelopes equivalent to the
minimum envelope C. The calculation of M(C) is given by (7.8).

2. The minimum penalty alignment sequences (A′, B′) may be generated if
sequences A,B and their maximum core D are given. Its standard mode
is given by (7.18) and (7.19).

3. In the standard mode given by (7.18) and (7.19), each region (a′δ′2k
, b′δ′2k

),
undergoes the permutation of virtual symbols. The new sequences are also
the maximum penalty alignment sequences of (A,B), and are called the
equivalent sequences of (A′, B′). The counting formula of the equivalent
sequences of (A′, B′) is:

M(A,B;D) =
kc∏

k=1

(
�k,4!

�k,5!(�k,4 − �k,5)!

)
, (7.28)

in which �k,4, �k,5 are defined by (7.17).
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4. The maximum score alignment sequence of A and B (or the modulus
structure of the maximum core) is not generally unique. If there are
many maximum cores D1, D2, · · · , Dh in A and B, then the number
of the maximum score alignment sequences for A and B is M(A,B) =∑h

h′=1M(A,B;Dh′).

Example 26. In Example 17, the minimum penalty alignment sequences of two
RNA sequences are

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

A′ : ugccuggcgg ccguagcgcg guggucccac cugaccccau gccgaacuca
gaagugaaa ,

B′ : —ccuaguga caauagcgga gaggaaacac ccguccc-au cccgaacacg
gaaguuaag ,

where the total penalty and the total score are 21 and 38, respectively. The
maximum score alignment sequences are

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

A′′ : ugccuggcgg ccguagcgcg -gugguccca ccugacccca ugccgaacuc
agaagugaa a .

B′′ : —ccuaguga caauagcg-g agaggaaaca cccguccc-a ucccgaacac
ggaaguuaa g .

In sequences (A′′, B′′), the maximum core is

D = ccuag gcuag cgggg caccg cccau cccga accga aguaa ,

and the total penalty and the total score are 22 and 39, respectively. Following
from (7.28), it is easy to compute the number of maximum score alignment
sequences as follows:

1. Based on (A′′, B′′), we find that the maximum core D is unique, but the
modulus structure of maximum score alignment sequences is not unique.

2. We may obtain five modulus structures of maximum score alignment se-
quences of (A,B). Besides (A′′, B′′), we need only perform permutations
of virtual symbols to get the others.

3. Following from (7.28), we uniquely obtain one equivalent pairwise se-
quence for each maximum score alignment sequence of (A,B). Thus, the
total number of maximum score alignment sequences of (A,B) is 5.

7.3.2 Alignment Spheroid

To any sequence A ∈ V ∗
q , we define the alignment spheroid with the center A

and radius r as the following

OA(A, r) = {B ∈ V ∗
q : dA(A,B) ≤ r} (7.29)
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and let SA(A, r) = {B ∈ V ∗
q : dA(A,B) = r} denote the sphere of alignment

spheroid OA(A, r). If the alignment spheroid is the Hamming matrix, then
we call it the Hamming spheroid and denote it OH(A, r). Without loss of
generality, we discuss the alignment spheroid under the condition q = 2.

As is well known in informatics, in a large n-dimensional vector space the
properties of the Hamming spheroid are difficult to derive. An example, in
space V (n)

2 , would be seeking the Hamming spheroidOH(Ai, k), i = 1, 2, · · · ,m
disjoint with maximum m and so on. Such problems still remain open in math-
ematics and informatics. Therefore, the properties of the alignment spheroid
are difficult to analyze at present. In this book we only examine some simpler
proteins.

The Run Decomposition of the Sequence

If A is a sequence on V ∗
2 , then A must be composed of vector segments with

component values at either 0 or 1. These vector segments are called runs. A run
is a 1-run if all components of the run are 1, and a 0-run if all components
of the run are 0. The number of the runs is the run number; and the length
of a run is the run length. A sequence expressed by runs is called the run
decomposition of the sequence.

For example, the sequence A = 001110111110000000110 may be decom-
posed as a 0-run and a 1-run, and the run number is 7. There are four 0-runs
and three 1-runs amongst the seven runs and their corresponding run lengths
are as follows:

�1 = 2 , �2 = 3 , �3 = 1 , �4 = 5 , �5 = 7 , �6 = 2 , �7 = 1 .

Then na =
∑ka

k=1 �k, in which, ka is the run number and �k is the length of
the kth run.

The Construction and Computation of an Alignment Spheroid
with Radius r = 1

For a given sequence A ∈ V ∗
2 and r = 1, the alignment spheroid is composed

of those sequences satisfying

OA(A, 1) = {A} ∪ SH(A, 1) ∪ SD(A, 1) ∪ SI(A, 1) , (7.30)

in which SH(A, 1), SD(A, 1), SI(A, 1) are the Hamming spheroid with radius 1,
a deletion sphere, and an insertion sphere, respectively, and are defined as
follows:
⎧
⎪⎨

⎪⎩

SD(A, 1) = {Ai = (a1, a2, · · · , ai−1, ai+1, · · · , ana) | i = 1, 2, · · · , na} ,
SI(A, 1) = {Ai(τ) = (a1, a2, · · · , ai, τ, ai+1, · · · , ana) | i = 0, 1, · · · , na,

τ = 0, 1} ,
(7.31)
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in which A = (a1, a2, · · · , ana) is a fixed sequence. We explain the spheres
SD(A, 1), SI(A, 1) as follows:

1. The numbers of the sequences in SD(A, 1) vary as sequence A changes.
For example, the number ka = 2 if A = (11111000), especially SD(A, 1) =
{(1111000), (1111100)}. Generally, ||SD(A, 1)|| = ka holds.

2. The maximum of ||SI(A, 1)|| is 2na. Note that ||SI(A, 1)|| varies as se-
quence A changes. For example, in the case A = 11111000, we have

SI(A, 1) = {011111000, 101111000, 110111000, 111011000,
111101000, 111110000, 111111000, 111110100,
111110010, 111110001}

3. Based on the definition of SD(A, 1), we know that

||SD(A, 1)||

reaches the maximum na if the lengths of 0-runs and 1-runs are less than 2
in sequence A. For example, for the case A = 010101, we find that

SD(A, 1) = {10101, 00101, 01101, 01001, 01011, 01010} .

Therefore, ||SD(A, 1)|| reaches na = 6.
4. The definition of SI(A, 1) allows us to compute ||SI(A, 1)|| as follows:

||SI(A, 1)|| = ka + 2 +
ka∑

k=1

(�k − 1) = na + 2 . (7.32)

Therefore, ||SI(A, 1)|| = 8 + 2 = 10 if A = 11111000; and ||SI(A, 1)|| =
6 + 2 = 8 if A = 010101. Then

SD(A, 1) = {0010101, 0100101, 0101001, 10101010, 1010101, 0110101,
0101101, 0101011} .

5. It is easy to prove that SH(A, 1) = na. Thus, we have

||OA(A, 1)|| = 1 + ||SH(A, 1)||+ ||SD(A, 1)||+ ||SI(A, 1)|| = 3 + 2na + ka .
(7.33)

SH(A, 1), SD(A, 1), SI(A, 1) are three disjoint sets because the lengths of
the sequences in sets SH(A, 1), SD(A, 1), SI(A, 1) are different.

The Recursion Construction and Computation
of the Alignment Spheroid

If the alignment spheroid with radius r = k is known, then we obtain the
recursion construction and computation formula for the alignment spheroid
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with radius r = k + 1 as follows:

OA(A, k + 1) =
⋃

A′∈OA(A,k)

OA(A′, 1) = OA(A, k)
⋃

⎡

⎣
⋃

A′∈OA(A,k)

SA(A′, 1)

⎤

⎦ .

(7.34)
Obviously, the sets OA(A′, 1) for two different centers may overlap with each
other as A′ ∈ OA(A, k) ranges. The recursion is hard to compute, but may
subsequently reduce the level of difficulty for the construction and computa-
tion of the alignment spheroid.

The Decomposition of the Alignment Spheroid According
to the Lengths of Sequences

In the alignment sphere SA(A, k), the lengths of the sequences may range
over [na − k, na + k]. Therefore, it might be decomposed as: SA(A, k) =∑na+k

n=na−k S(A, k;n), in which

SA(A, k;n) = {A′ ∈ S(A, k) | |A′| = n} ,
n = na − k, na − k + 1, · · · , na, na + 1, · · · , na + k , (7.35)

where SA(A, k;na − k) is the set generated by deleting the k components of
sequence A, SA(A, k;na + k) is the set generated by inserting k components
of sequence A, and the other sets SA(A, k;n) are generated by substituting,
deleting and inserting the components of sequence A.

7.4 The Virtual Symbol Operation
in the Alignment Space

In the previous two sections, we referred to the permutation operation of the
virtual symbol in alignment sequences. We now discuss it further. If sequences
(A′, B′) are the alignments of (A,B), then A′ and B′ are defined on set V+.
If we perform the operation on the virtual symbols of A′ and B′, then we can
get the virtual symbol operator. To understand alignment space in detail, we
next analyze the virtual symbol operator.

7.4.1 The Definition of the Virtual Symbol Operator

The Virtual Symbol Operation on a Single Sequence

Let A′ = (a′1, a′2, · · · , a′n′) be the expansion of sequence A = (a1, a2, · · · , an′).
Based on A′, we may obtain A by deleting all the virtual symbols of A′. We
obtain a new expansion of A if we continue to insert or delete some virtual
symbols in A′. This operation is called the virtual symbol operation on A′.
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If A′′ is generated by sequence A′ through the virtual symbol operation,
we can also represent the relationship by modulus structure. Here, let

H∗ = {(jk, �∗k), k = 1, 2, · · · , ka′} (7.36)

be the modulus structure of the virtual symbol operation from A′ to A′′, in
which �∗k �= 0, and (jk, �∗k) means that we insert or delete �∗k components after
the jkth component of A′, in which

0 = j0 ≤ j1 < j2 < j3 < · · · < jk−1 ≤ jk = na′ . (7.37)

The inserting or deleting operations depend on whether �∗k > 0 or < 0. In
addition, in the case �∗k < 0, the a′jk+1, a

′
jk+2, · · · , a′jk+	∗k

are virtual symbols
required to keep (7.36) well-defined. Let A′′ = H∗(A′), where H∗ is the virtual
symbol operator of A′, with the following properties:

1. If A′ is an expansion of A, and H∗ is the virtual symbol operator of A′,
then A′′ = H∗(A′) is still an expansion of A.

2. If A′ and A′′ both are expansions of A, then there is a virtual symbol
operator H∗ of A′ such that A′′ = H∗(A′).

The proofs of the two propositions are obvious, and hence we omit them here.

Example 27. In the set V2, the components of value 2 are virtual symbols. The
modulus structures of virtual symbol operation on the following sequences are
shown as follows:

1. If {
A′ = (11111 22200 00000)
A′′ = (11111 00000 00) ,

then H∗ = {(5,−3)}.
2. If {

A′ = (11111 00000 00)
A′′ = (11111 22200 00000) ,

then H∗ = {(5, 3)}.
3. If {

A′ = (11111 21111 11111)
A′′ = (11111 11112 11111) ,

then H∗ = {(5,−1), (10, 1)}.

The Virtual Symbol Operation on Alignment Sequences

Let (A′, B′) be the alignments of (A,B), and H∗
a,H

∗
b be the virtual symbol

operators of A′ and B′ to A and B, respectively. Let their modulus struc-
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tures be ⎧
⎨

⎩

H∗
a =

{(
ja,k, �

∗
a,k

)
, k = 1, 2, · · · , ka′

}
,

H∗
b =

{(
jb,h, �

∗
b,h

)
, h = 1, 2, · · · , kb′

}
.

(7.38)

It should be noted that the fact that H∗
a,H

∗
b are the modulus structures of

the virtual symbol operators of A′ and B′, respectively, does not imply that
(H∗

a,H
∗
b) are always the modulus structures of the virtual symbol operators

of (A′, B′). We add special conditions that are defined as follows.

Definition 38. (H∗
a,H

∗
b) are the virtual symbol operators on the alignment

sequences (A′, B′) of (A,B) if their modulus structures satisfy the following
conditions:

1. H∗
a , H

∗
b are the modulus structures of the virtual symbol operators of A′

and B′, and satisfy the expression L∗
a = L∗

b , where

L∗
a =

ka′∑

k=1

�∗a,k , L∗
b =

kb′∑

k=1

�∗b,k . (7.39)

2. In (ja,k, �∗a,k), all a′ja,k+1, a
′
ja,k+2, · · · , a′ja,k,	a,k

are not virtual symbols if
�∗a,k > 0. Similarly, all b′jb,h+1, b

′
jb,h+2, · · · , b′jb,h+	b,h

are not virtual sym-
bols if �∗b,h > 0.

3. All a′ja,k+1, a
′
ja,k+2, · · · , a′ja,k+	a,k

are virtual symbols if �∗a,k < 0. All
b′jb,h+1, b

′
jb,h+2, · · · , b′jb,h+	b,h

are virtual symbols if �∗b,h < 0.

The Properties of Virtual Symbol Operation of Alignment
Sequences

For the virtual symbol operation (H∗
a,H

∗
b) on the alignment sequences (A′, B′)

of (A,B), the following properties also hold:

1. If (A′, B′) is the alignment of (A,B), and (H∗
a,H

∗
b) are the virtual sym-

bol operators on (A′, B′), then (A′′, B′′) = (H∗
a(A′),H∗

b(B
′)) is also the

alignment of (A,B).
2. If (A′, B′), (A′′, B′′) are all the alignment sequences of (A,B), then

there must be a virtual symbol operator (H∗
a,H

∗
b) of (A′, B′) such that

(A′′, B′′) = (H∗
a(A

′),H∗
b(B

′)).

The proofs of these two propositions are obvious and hence are omitted here.

7.4.2 The Modulus Structure of the Virtual Symbol Operator

In Chap. 3, we introduced the modulus structure theory for sequence muta-
tions and alignments. Also, in the above section, we introduced the modulus
structure for the virtual symbol operator. Now, we discuss the relationships
between them.
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The Properties of the Modulus Structure of the Virtual Symbol
Operator for a Single Sequence

If A′ is an expansion of A, then based on the discussion in Chap. 3, we in-
fer that the transformation from A to A′ is uniquely determined by modulus
structure H = {(ik, �k), where k = 1, 2, · · · , ka}. Furthermore, if A′′ is gener-
ated by the virtual symbol operation on A′, then with the same discussion as
in the above section, we find that the transformation from A′ to A′′ is deter-
mined by the modulus structure H∗ = {(jk, �∗k), where k = 1, 2, · · · , ka′}. The
operators H, H′ induced by the modulus structures H,H∗ satisfy A′ = H(A),
and A′′ = H′(A′).

On the other hand, based on the proposition (2) of the virtual symbol
operation for a single sequence, we conclude that A′′ is the expansion of A.
Therefore, there is a modulus structure H ′′ and its corresponding operator H′′

such that A′′ = H′′(A). The properties of the modulus structure of the virtual
symbol operator for a single sequence are mainly the relations between H,H∗

and H ′′. We discuss them below:

1. In the definitions of H,H∗ and H ′′, we first note that H and H ′′ are
the modulus structures of the sequence determined by A, while H∗ is the
modulus structure of the virtual symbol determined by A′. Here, posi-
tion jk in H∗ has values in {1, 2, · · · , na′}. Therefore, a′jk ∈ V+ means a′jk
can be valued in V or valued as “−”.

2. Following from the relationship between A and A′, we define

i′k = jk − Ljk = jk −
jk−1∑

j=1

κ−
(
a′j
)

(7.40)

where

κ−
(
a′j
)

=

{
1 , if a′j is the virtual symbol “−”,
0 , otherwise .

Based on this, we define the modulus structure as follows:

H ′ = {(i′k, �′k) , k = 1, 2, · · · , ka′} (7.41)

in which i′k is defined by (7.40), and �′k = �∗k.
3. Let H ′′ = {(i′′k, �′′k), k = 1, 2, · · · , k′′a} be the modulus structure from A to

its expansion A′′, and I, I ′, I ′′ be the position sets of H,H ′ and H ′′, then
we define set I ′′ = I ∪ I ′ = {i′′1 , i′′2 , · · · , i′′k′′}, where

�′′k′′ =

⎧
⎪⎨

⎪⎩

�k , when i′′k′′ = ik ∈ I but i′′k′′ is not in I ′ ,
�′k , when ik′′ = ik ∈ I but ik′′ is not in I ′ ,
�k + �′k′ , when i′′k′′ = ik = i′k′ ∈ I ∩ I ′ .

(7.42)
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4. From the definitions of H ′ and H∗ we see in (7.42) that �′k > 0 must apply
to the second case and �k+ �′k′ > 0 must apply to the third case; so �′′k ≥ 0
is always true. Their relation is as follows:

A′ = H(A) , A′′ = H′′(A) = H∗(A′) . (7.43)

The Properties of the Modulus Structure of the Virtual Symbol
Operator for Alignment Sequences

The properties of the modulus structure of the virtual symbol operator for
a single sequence can be easily extended to the case of alignment sequences.
We elaborate on it below.

If sequences (A′, B′) are the alignment sequences of (A,B), the modulus
structures of the virtual symbol operations and the operators of (A′, B′) are
(H∗

a , H
∗
b ), (H∗

a,H
∗
b) respectively, then

(A′′, B′′) = (H∗
a,H

∗
b)(A

′, B′) = (H∗
a(A

′),H∗
b(B

′)) . (7.44)

We discuss the following properties:

1. The modulus structure of the alignment sequence (A′, B′) of (A,B)
is: (Ha, Hb). The modulus structure of the virtual symbol operator for
(A′′, B′′) with (A′, B′) is (H∗

a , H
∗
b ). Here, (A′′, B′′) given in (7.44) are also

the alignment sequences of (A,B). Their modulus structure is denoted by
(H ′′

a , H
′′
b ).

2. Using the properties (7.41) of the modulus structure for the virtual symbol
operator of a single sequence we can transform the modulus structure of
(A′, B′) into the modulus structure (H ′

a, H
′
b) of (A,B), where

⎧
⎨

⎩

H ′
a =

{(
i′a,k, �

′
a,k

)
, k = 1, 2, · · · , k∗a′

}
,

H ′
b =

{(
i′b,k, �

′
b,k

)
, k = 1, 2, · · · , k∗b′

}
,

(7.45)

and
{
i′τ,k = jτ,k − L∗

τ,jk
= jτ,k −

∑jτ,k

j=1 κ−(τ ′j) , τ = a, b ,

�′τ,k = �∗τ,k , τ = a, b ,
(7.46)

where

κ−
(
τ ′j
)

=

{
1 , when τ ′j is valued “−”,
0 , otherwise .

3. Similar to expression (7.42), we find the relation between (Ha, Hb),
(H ′

a, H
′
b), and (H ′′

a , H
′′
b ), so that the expression

{
(A′, B′) = (Ha,Hb)(A,B) = (Ha(A),Hb(B)) ,

(A′′, B′′) = (H′′
a(A),H′′

b (B)) = (H∗
a(A

′),H∗
b (B))

(7.47)

holds.
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The Basic Types of Modulus Structure of the Virtual Symbol
Operator for Alignment Sequences

Following from the definition of the modulus structure (H∗
a , H

∗
b ) of the virtual

symbol operator for alignment sequences, we can determine its basic type
as: Ija,jb;±	, where � is a nonnegative integer. This is the simpler form of
H∗
a = {(ja,±�)}, H∗

b = {(jb,±�)}, where ja �= jb. It means that after the sites
ja, jb of sequences A′, B′, we insert or delete � virtual symbols “−”.

Obviously, any virtual symbol operator of alignment sequences can be
decomposed to the product of several single symbol insertion and deletion
types.

Example 28. Let {
A = (11111 00000 11111) ,
B = (00111 11000 0011) ,

and let
{
A′ = (11111 22000 00111 11) ,
B′ = (00111 11000 00222 11) ,

{
A′′ = (22111 11000 00111 11) ,
B′′ = (00111 11000 0011222) ,

then {
Ha = {(5, 2)} ,
Hb = {(12, 3)} ,

{
H∗
a = {(0, 2), (5,−2)} ,

H∗
b = {(12,−3), (17, 3)} .

Furthermore,
{
H ′
a = {(0, 2), (5,−2)} ,

H ′
b = {(12,−3), (14, 3)} ,

{
H ′′
a = {(0, 2)} ,

H ′′
b = {(14, 3)} .

Then the decomposition of (H∗
a,H

∗
b) is shown as follows:

I0,17;2

(
A′

B′

)
=
(

221111 12200 00011 111
00111 11000 00222 1122

)
=
(
A′

1

B′
1

)
,

I7,12;−2

(
A′

1

B′
1

)
=
(

22111 1100 00011 111
00111 11000 0021 122

)
=
(
A′

2

B′
2

)
,

I14,15;1

(
A′

2

B′
2

)
=
(

22111 11000 00112 111
00111 11000 00211 222

)
=
(
A′

3

B′
3

)
,

I14,12;−1

(
A′

3

B′
3

)
=
(

22111 11000 00111 11
00111 11000 00112 22

)
=
(
A′′

B′′

)
.

Finally, we have
(
A′′

B′′

)
=
(
H∗
a(A)

H∗
b(B)

)
= I14,12;−1I14,15;1I7,12I7,12;−2I0,17;2

(
A
B

)
.

Therefore, the decomposition

(H∗
a,H

∗
b) = I14,12;−1I14,15;1I7,12;−2I0,17;2

holds.
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7.4.3 The Isometric Operation and Micro-Adapted Operation
of Virtual Symbols

For the sake of simplicity, we assume that for any case involving the matrix,
we use the Hamming matrix.

The Definitions of the Isometric Operator and Micro-Adapted
Operator for Virtual Symbols and Their Properties

Definition 39. Let (A′, B′) be the alignment of (A,B), and (H∗
a , H

∗
b ) be the

virtual symbol operators on (A′, B′) such that

(A′′, B′′) = (H∗
a(A

′),H∗
b(B

′)) .

Then, (H∗
a , H

∗
b ) is an isometric operator on (A′, B′) if d+(A′′, B′′) =

d+(A′, B′), and (H∗
a , H

∗
b ) is a micro-adapted operator on (A′, B′) if

d+(A′′, B′′) < d+(A′, B′).

Next, we discuss the properties of the isometric operator. Let (A′, B′) be
the alignment, and the virtual symbol operator (H∗

a,H
∗
b). We introduce the

following notations:
{
j∗m = min{j∗a,k, k = 1, 2, · · · , ka′ , j∗b,k′ , k′ = 1, 2, · · · , kb′} ,
j∗M = max{j∗a,k + �∗a,k, k = 1, 2, · · · , ka′ , j∗b,k′ + �∗b,k′ , k

′ = 1, 2, · · · , kb′} .
(7.48)

(j∗m, j∗M ) is the value range of the virtual symbol operator. Based on (j∗m, j∗M ),
we can determine the subsequences of A′ and B′ as follows:

⎧
⎨

⎩

A′
mM =

(
a′j∗m+1, a

′
j∗m+2, · · · , a′j∗M

)
,

B′
mM =

(
b′j∗m+1, b

′
j∗m+2, · · · , b′j∗M

)
.

(7.49)

Let L0 =
∑ka′
k=1 �a,k =

∑kb′
k=1 �b,k be the total number of insertions or dele-

tions of the virtual symbol operator of the alignment sequences. Based on
these notations, we can formulate the basic property theorem for the isomet-
ric operator as follows.

Theorem 35. If (A′, B′), (A′′, B′′) are both the optimal alignments of (A,B),
then there is an isometric operator (H∗

a,H
∗
b) such that A′′ = H∗

a(A
′), B′′ =

H∗
b(B

′).
On the other hand, if (A′, B′) are the optimal alignment sequences of

(A,B), and (H∗
a,H

∗
b) is the isometric operator on (A′, B′), then (H∗

a,H
∗
b)

is also an optimal alignment, in which A′′ = H∗
a(A′) and B′′ = H∗

b(B
′).

Proof. The proof of the theory is obvious. Because (A′, B′), (A′′, B′′) are both
the alignment sequences of (A,B), then making use of the properties of the
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virtual symbol operator of alignment sequences, we find the isometric operator
(H∗

a,H
∗
b) such that A′′ = H∗

a(A
′), B′′ = H∗

b(B
′). Since (A′, B′), (A′′, B′′) are

both the alignments of (A,B), this implies that d+(A′′, B′′) = d+(A′, B′)
holds, meaning that (H∗

a , H
∗
b ) is an isometric operator on (A′, B′).

The converse proposition is obtained using the optimal alignment (A′, B′)
and the definition of the isometric operator (H∗

a,H
∗
b).

The Basic Types of Isometric Operators

In Sects. 7.4.2 and 7.4.3, we have stated the basic types Ija,jb;	 of isometric
operators. We now discuss their properties.

Theorem 36. In order for the basic type Ija,jb;	 to be an isometric operator,
the necessary and sufficient conditions in different cases are stated as follows:

1. In the case where � > 0 and ja < jb − �, then Ija,jb;	 is an isometric
operator if and only if

dH

(
a′ja,jb , b

′
ja,jb

)
= dH

(
a′ja,jb−	, b

′
ja+	,jb

)
+ 2� , (7.50)

in which c′i,j = (c′i+1, c
′
i+2, · · · , c′j), and c = a, b.

By symmetry, in the case where jb < ja−�, Ija,jb;	 is the isometric operator
if and only if

dH

(
a′jb,ja , b

′
jb,ja

)
= dH

(
a′jb+	,ja , b

′
jb,ja−	

)
+ 2� . (7.51)

2. In the case where � < 0 and ja < jb + �, Ija,jb;	 is an isometric operator
if and only if

dH

(
a′ja+	,jb

, b′ja+	,jb

)
= dH

(
a′ja−	,jb−	, b

′
ja,jb

)− 2� . (7.52)

By symmetry, in the case where jb < ja+�, Ija,jb;	 is the isometric operator
if and only if

dH

(
a′jb−	,ja , b

′
jb−	,ja

)
= dH

(
a′jb,ja , b

′
jb−	,ja−	

)− 2� . (7.53)

Proof. The proof of this theorem follows from Fig. 7.1. For the case � > 0 and
ja < jb − �, the proof is demonstrated below.

In Fig. 7.2, (A′, B′) are the alignment sequences of (A,B). Operation
Ija,jb;	 inserts � virtual symbols after position ia of A′ to obtain A′′, and in-
serts � virtual symbols after position jb of B′ to obtain B′′. Then A′′, B′′ just
act in the region (ja, jb + 1) and do not involve the other regions. Therefore,

d(A′′, B′′) = d
(
a′′0,ja , b

′′
0,ja

)
+ d

(
a′′ja,jb+	, b

′′
ja,jb+	

)
+ d

(
a′′jb+	,n′′ , b′′jb+	,n′′

)

holds, in which case n′′ = n′ + �. We then have

d(A′′, B′′) = d
(
a′0,ja , b

′
0,ja

)
+ d

(
a′′ja,jb+	, b

′′
ja,jb+	

)
+ d

(
a′jb,n′ , b′jb,n′

)
. (7.54)
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Fig. 7.2. Ija,jb;�. The isometric operator

Thus,

d
(
a′′ja,jb+	, b

′′
ja,jb+	

)
= d

(
a′′ja,ja+	, b

′′
ja,ja+	

)
+ d

(
a′′ja+	,jb

, b′′ja+	,jb

)

+ d
(
a′′jb,jb+	, b

′′
jb,jb+	

)
.

Since both a′′ja,ja+	 and b′′jb,jb+	 are virtual symbol vectors, following from Def-
inition 38 we know that not every component in vectors b′′ja,ja+	 and a′′jb,jb+	
is a virtual symbol. Thus, we obtain the expression

d
(
a′′ja,ja+	, b

′′
ja,ja+	

)
= d

(
a′′jb,jb+	, b

′′
jb,jb+	

)
= �

and
d
(
a′′ja+	,jb , b

′′
ja+	,jb

)
= d

(
a′ja,jb−	, b

′
ja+	,jb

)
.

Therefore, we have

d
(
a′′ja,jb+	, b

′′
ja,jb+	

)
= �a + �b + d

(
a′ja,jb−	, b

′
ja+	,jb

)
.

Substituting this result into (7.54), we find that (7.50) holds.
With the same arguments, we may prove the other cases, so that the

theorem is proved in its entirety.

Remark 12. For the isometric operator, we should note that the product U1U2

may be an isometric operator, although both U1 and U2 are not isometric
operators. For instance, in example 28, I14,15;1, I14,12;−1 are both not isometric
operators, but their product is an isometric operator. In fact, I14,12;−1I14,15;1
is the same as the permutation below:

I7,12;−1I14,15;1

(
A′

2

B′
2

)
= I14,12;−1

(
22111 11000 00112 111
00111 11000 00211 222

)

=
(

22111 11000 00111 11
00111 11000 00112 22

)

We define another type of virtual symbol operation as follows.
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Definition 40. In sequence A′ or B′, if just one of the two connected com-
ponents is a virtual symbol, then we exchange the positions of the two compo-
nents, for example, positions 1 and 2 are exchanged to become 2 and 1. This
kind of exchange is called a transposition operation for virtual symbols.

Let IIA′,i+ denote the transposition operation acting on components (a′i, a
′
i+1)

of A′ such that the output is (a′i+1, a
′
i); and let IIA′,i− denote the transposi-

tion operation acting on components (a′i−1, a
′
i) of A′ such that the output is

(a′i, a
′
i−1). For the two operations, the component a′i = 2 must be the virtual

symbol. Similarly, we may define the operations IIB′,j+ and IIB′,j−.

Theorem 37. The operation IIA′,j± is an isometric operator if and only if
b′j = b′j±1. Similarly, the operation IIB′,j± is an isometric operator if and
only if a′j = a′j±1.

The proof of this theorem is obvious.

7.5 Exercises, Analyses, and Computation

Exercise 34. Prove the following propositions:

1. Give an example showing that Lemma 3 holds.
2. Prove Theorem 29 and proposition 2 of Theorem 31.
3. Prove formula (7.8).
4. Prove propositions 1–4 in Sect. 7.2.4.

Exercise 35. Based on Example 26, perform the following computations:

1. Compute the maximum core D of (A′′, B′′) and discuss its uniqueness.
2. Give the alignment modulus structure of (A′′, B′′) and the other four types

of modulus structures.
3. Compute the five maximum scoring alignments of (A,B).

Exercise 36. For the pairwise alignment in Exercise 13 in Chap. 3:

1. Construct the maximum core and minimum envelope, and give the mod-
ulus structure.

2. Determine the standard mode of the minimum envelope generated by
the modulus structure of the maximum core (may not be unique) and
construct all the minimum envelopes from this.

3. Use the counting theorem of the minimum envelope to explain the en-
velopes generated by task 2 and all the minimum envelopes of these se-
quences.

4. Use the minimum envelope of the pairwise sequences to construct their
minimum penalty alignment sequences.
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Exercise 37. Based on the minimum penalty alignment sequences in the Ex-
ercise 3 in Chap. 1 with the Hamming matrix, construct the maximum core
and minimum envelope of the pairwise sequences.

Exercise 38. Based on Exercise 35, discuss the counting problem of the op-
timal alignment sequences of pairwise sequences. That is to say, estimate the
number of all the optimal alignment sequences of the pairwise sequences.



Part II

Protein Configuration Analysis



8

Background Information Concerning

the Properties of Proteins

Proteins are among the most significant biological macromolecules which per-
form the key functions involved in life processes. The activity of a protein
is not only related to its chemical components, but is also affected by its
three-dimensional configuration. Our main focus in this chapter is the topic
of protein configuration analysis. First, we introduce some background con-
cerning the physical properties of proteins.

8.1 Amino Acids and Peptide Chains

Proteins are formed by different amino acids, of which 20 types are commonly
found in nature. Different amino acids are arranged in a specific sequence to
form the primary structure of proteins, and their three-dimensional configu-
ration defines the three-dimensional structure of the protein. Parts of these
segments are called chains. Some specific motifs formed by peptide chains (for
example, α-helices, β-sheets) determine what is called the secondary struc-
ture of the proteins. We introduce first the chemical components and related
notations of these 20 commonly occurring amino acids.

8.1.1 Amino Acids

Amino acids are the basic structural units of proteins. The chemical compo-
nents of an amino acid refer to the types, amounts, and interactional structure
of the atoms that it consists of. Therefore, different amino acids have distinct
chemical components, three-dimensional configurations and physical chem-
istry characteristics. To properly analyze protein structures, we need some
basic information on amino acids.

Fixed Parts and Movable Parts of Amino Acid Components

The chemical components of an amino acid comprise two parts: the “fixed
part” and the “movable part.” The “fixed part” is the common part of the 20
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Fig. 8.1. The fixed part and the movable part of amino acid components

amino acids, consisting of an amine group (NH2), a carboxyl group (COOH),
and a carbon atom (CA). When several carbon atoms are contained in an
amino acid, where Cα is a specific one, it is called an α-carbon in molecular
biology, and is denoted by A in this book.

The “movable part” of an amino acid refers to the various component
elements of different amino acids. In molecular biology, the “fixed part” of an
amino acid is denoted by L while the “movable part” (also called the “side
chain” of the amino acid) is denoted by R. Here, L is formed by fixed elements,
while the formation of R is not fixed, or distinctive for different amino acids
(Fig. 8.1).

Names, Codes, and Chemical Components of Amino Acids

The names, codes, chemical structures, and physical chemistry characteristics
of the 20 commonly occurring amino acids will be used frequently in this book.
These are summarized in the following figures and tables.

The names, three-letter codes, and one-letter codes of the 20 commonly
occurring amino acids are shown in Table 8.1.

In a database, we usually denote Gln and/or Glu by a three-letter code
Glx, or a one-letter code Z; similarly for Asn and/or Asp we use Asx or a one-
letter code B; and undetermined amino acids are given the symbol X.

Physical Chemistry Characteristic Indices of the Commonly
Occurring 20 Amino Acids

The physical chemistry properties of an amino acid include: chemical type,
molecular weight, volume, frequency, hydrophobicity, polarity, electron prop-
erty, specific volume, dissociation degree, etc. Some key properties of the 20
commonly occurring amino acids are listed in Table 8.2.
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Table 8.1. Names, three-letter codes, and one-letter codes of the 20 commonly
occurring amino acids

No. Name Three- One- No. Name Three- One-
letter letter letter letter
code code code code

1 Alanine Ala A 11 Leucine Leu L
2 Arginine Arg R 12 Lysine Lys K
3 Asparagine Asn N 13 Methionine Met M
4 Aspartic acid Asp D 14 Phenylalanine Phe F
5 Cysteine Cys C 15 Proline Pro P
6 Glutamine Gln Q 16 Serine Ser S
7 Glutamic acid Glu E 17 Threonine Thr T
8 Glycine Gly G 18 Tryptophane Trp W
9 Histidine His H 19 Tyrosine Tyr Y
10 Isoleucine Ile I 20 Valine Val V

8.1.2 Basic Structure of Peptide Chains

Figure 8.2 shows the common expression of the protein/peptide chain struc-
ture. The horizontal line is called the “backbone,” while the sequence

R = {R1,R2, · · · ,Rn} , (8.1)

is called the “side chain” of the peptide chain, and Rj is the movable part of
the jth amino acid. If Rj is the name of an amino acid, then R in (8.1) is the
primary structure sequence of the protein.

Furthermore, an oxygen atom is preserved in each amino acid residue, so
an oxygen atom sequence exists within a peptide chain:

O = {O1,O2, · · · ,On} . (8.2)

In this book, we call oxygen sequences O the oxygen chains of the peptide
chains, where Oj is the oxygen atom of the jth amino acid. Apart from side

Fig. 8.2. Structural connection of backbone and side chains in common peptide
chains
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chain Rj and oxygen chain Oj , the remaining part

L = {(N1,A1,C1), (N2,A2,C2), · · · , (Nn,An,Cn)} , (8.3)

is the backbone of the peptide chain, where (Nj ,Aj ,Cj) is an α-carbon and
carbon atom in the fixed part of the jth amino acid, which appear alternately.
In Fig. 8.2, Bi is the CB atom of the ith amino acid.

We see from the above that proteins are made up of one or more peptide
chain(s), while peptide chains are sequences composed of amino acids. This
is the primary structure of the proteins. Within peptide chains, every amino
acid and its atoms have a relevant three-dimensional configuration and form
various geometrical structures. This is the tertiary structure or high level
structure, called in general the three-dimensional structure of the proteins.
The target of this book is to investigate the characteristics of the primary,
secondary (motifs), and three-dimensional structures of proteins.

8.2 Brief Introduction of Protein Configuration Analysis

In this section, we introduce briefly the research status on protein config-
uration analysis, including protein structure databases, related issues in the
study of three-dimensional structures of proteins and the bioinformatics issues
emphasized in this book.

8.2.1 Protein Structure Database

There are many types of protein structure databases, which can be classified
as follows.

Database of Protein Common Information

Protein common information databases involve information on primary struc-
ture sequence, and other information concerned with the commentary. The
commentary deals with other aspects of the proteins, such as the origin, class,
function, domain, key words and the connection to other databases, etc. The
most popular ones are:

• PIR (Protein Information Resource) [9]: http://pir.georgetown.edu/
• Swiss-Prot [8]: http://expasy.org/sprot/

By December 2005, the number of proteins collected in PIR and Swiss-Prot
exceeded 100,000 each.
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Databases of Protein Structures

The main characteristic of protein structure databases is that they contain
information regarding the three-dimensional structure of proteins. It can be
as specific as providing the three-dimensional location of each atom. The most
popular ones are:

• PDB (Protein Data Bank) [13]: http://www.rcsb.org/pdb/
• CSD (Cambridge Structural Database) [1]:

http://www.ccdc.cam.ac.uk/prods/csd.html

Other Types of Databases

There are many other types of protein database. According to incomplete
statistics, there are 120 well-known ones, of many types, including:

1. Databases concerning proteins together with peptides, such as
TrEMBL [71] and GenPept database [11]. These are databases of pro-
teins translated by nucleic acids.

2. Databases that derive from the original databases (such as PIR [9], Swiss-
Prot [8], PDB [13]), such as a database of the similar proteins, for instance,
PIR-ASDB is a database of similar proteins in PIR. PIR-ALN contains
the sequence pairs whose similarity error is below 55% after sequence
alignment [97].

3. Protein secondary structure databases and structure classification data-
bases. For instance, the DSSP database [50] is a protein secondary struc-
ture database built upon PDB, while the SCOP (Structural Classification
of Proteins) database [59] contains the protein domains, and classifies
protein structure by seven hierarchies.
The database used frequently in this book, the PDB-Select database [41],
is obtained by deleting homologous proteins (or peptide chains) from the
PDB database. Its characteristic is that each individual protein then has
more independence.

4. Relatively specialized databases, such as a database of protein functions,
classifications, enzymes, etc., which are not elaborated on here.

8.2.2 Brief Introduction to Protein Structure Analysis

For protein structure analysis, we mainly discuss the following topics in
this book: sequence alignment of the protein primary structure and three-
dimensional structure; prediction of protein secondary structure; in-depth
analysis of protein three-dimensional particle systems; configuration analy-
sis of the protein three-dimensional structure, and semantic analysis of the
protein primary structure. We briefly introduce these topics here:
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Sequence Alignment of the Protein Primary Structure
and Three-Dimensional Structure

The sequence alignment of the protein primary structure and three-dimen-
sional structure is an extension of Part I of this book. In the primary structure
sequence alignment, the main difference between DNA sequences and protein
sequences is that the data set is not V4 but V20, which represents the set of the
20 commonly occurring amino acids. As well, the penalty (or scoring) matrix
between the 20 amino acids and the dummy notations is represented in terms
of the PAM or BLOSUM matrix series.

In the protein three-dimensional structure sequence alignment, we mostly
adopt in this book the sequence alignment represented by the protein back-
bone torsion angle. From these, we give a series of definitions and calculations
concerned with protein three-dimensional structure similarity.

Prediction of Protein Secondary Structure

Many methods are used in the prediction of protein secondary structures,
while in this book we mainly introduce only those concerning informatics
and statistics. From this, we can see the difficulties which lie in the protein
secondary structure commonly predicted using the PDB database. This re-
stricts the accuracy of predicting the protein secondary structure, in view of
informatics and statistics issues. Furthermore, in this chapter we discuss the
relationship between the protein secondary structure and the torsion angles
resulting from a particular sequence.

In-Depth Analysis of the Protein Three-Dimensional Particle
System

If we take the atoms in a protein as a three-dimensional particle system, then
a series of geometric calculations can be done on these particles, including an
in-depth analysis of each particle in the system. Many approaches are appli-
cable to the depth calculation of particles within proteins, such as hydropho-
bicity maps that are useful in biology, etc. In this book we use mathematical
(originating from statistics) calculations. At the same time we discuss biolog-
ical consequences of these calculations.

Calculations and Analysis of the Protein Three-Dimensional
Configuration Structure

The discussion in this part forms the centrepiece of this book. Protein three-
dimensional structure is tightly related to its functions. Therefore, the study
of protein functions, such as virus analysis, rational drug design, etc. are all
key problems investigated in bioinformatics.
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Protein three-dimensional structure analysis covers many issues and struc-
ture types. For instance, in the SCOP database [5, 60, 66], the 7-hierarchy
classification from the secondary structure jumping-off point i, is a discus-
sion of protein structure and characteristics in view of the existing structure
types. The emphasis in this book is on: protein secondary structure predic-
tion, three-dimensional configuration alignment, analysis and calculations of
the depth function and three-dimensional structure characteristics. These top-
ics address the various properties of protein structures using different points
of view, which will be helpful when further investigating structure-to-function
relationships for proteins.

Characteristic Analysis of the Protein Three-Dimensional
Structure Configuration

In recent years, much attention has been paid to characteristic analysis of
the protein three-dimensional structure configuration [14, 42]. This problem
mainly arose from the study of virus analysis and rational drug design. These
two issues can be generalized to the ligand-receptor interaction, including the
configuration characteristics and the causal requirements for interactions ac-
companied by configuration characteristics. Ligands can be represented by
viruses, micromolecular and macromolecular drug entities that bind to re-
ceptors. Their interactions include ligand adsorption and penetration upon
receptors, the analysis of which has to do with the interaction of molecules
and atoms and the geometrical configuration. For instance, for a ligand to
penetrate a receptor (such as those present in cell membranes), both the
possibility and the driving force for binding are required. The possibility for
binding refers to whether the ligand will be able to find its way to the receptor
site, while the driving force refers to the free energy reduction upon binding
of the ligand to the receptor.

Apart from three-dimensional structure prediction, many methods and ap-
proaches are conducted in protein three-dimensional structure investigations,
which we generalize in this book to the following problems:

1. The comparison of the protein three-dimensional structural homology.
This is to what extent the protein three-dimensional configurations could
be called homologous; how to measure this similarity, and the definition
of their comparison.

2. The in-depth analysis of the protein three-dimensional particle system. If
we take the amino acids (or atoms of the amino acids) in a protein as
spatially distributed particles, we can do depth calculations upon these
particles. The definition of the depth varies and some of the problems
there can be reduced to geometric calculations.

3. Characteristic analysis of protein three-dimensional configuration. This
characteristic analysis has different aims, whether analyzing ligands or
receptors. For ligands, we need only know the spatial configuration. The
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characteristic structure needed for the analysis of receptors is relatively
complicated. It requires the knowledge of voids and structural motifs in-
side the protein, types and sizes of cavities and grooves on the surface
of the protein, etc. From these characteristic structures, the potential for
a ligand-receptor interaction can be further evaluated.

These characteristic structural analyses involve a series of problems in geo-
metric calculation, which will be discussed in detail in the following chapters.

8.3 Analysis and Exploration

Exercise 39. Describe the similarities and differences between the formation
of bonds between different amino acids in in vitro experiments in the chemistry
laboratory, and in vivo within living organisms.

Exercise 40. There is a relationship between crystallized proteins and pro-
teins in living organisms (proteins in water or a buffer solution). The protein
three-dimensional data in the PDB database refer to crystallized proteins.
Does this have an impact on the analysis of protein function?

Exercise 41. The four-dimensional structure of a protein refers to its dy-
namic (or changing) three-dimensional structure when the protein is under
different conditions. How can four-dimensional protein structural data be col-
lected and studied?

Exercise 42. The genetic code table demonstrated how amino acids are en-
coded by triples of nucleotides. It shows a connection between two types of
biological molecules. The biological process involved in producing amino acids
requires a series of functions involving mRNA, tRNA, and rRNA, and as such
is very complicated. Explain this process from the point of view of molecular
movement.

Exercise 43. Protein three-dimensional structure analysis is the first step in
investigating protein functions. The interactions between different proteins de-
pend first on whether or not their configurations match, and also on whether
different amino acids in the matched configurations can give rise to biochemi-
cal bonds and how strongly they may react. Discuss the effects that molecules
of a drug and viruses may have on the function of proteins.
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Informational and Statistical Iterative Analysis

of Protein Secondary Structure Prediction

9.1 Protein Secondary Structure Prediction
and Informational and Statistical Iterative Analysis

9.1.1 Protein Secondary Structure Prediction

The Anfinsen Principle of Protein 3D Structure Prediction

The Anfinsen (1972, 1973) principle [6] is the foundation of protein 3D struc-
ture prediction. It claims that all the information about a protein’s 3D struc-
ture is contained in its primary structure (sequence). The main experimental
basis for this is the fact that heating proteins in solution to deform their 3D
structures causes these proteins to lose activity. However, when the tempera-
ture is lowered to its original value, the primary structures remain; and the 3D
structure configuration resumes its original state. This experiment indicates
that the primary structure of a protein determines its 3D structure.

In recent years, the Anfinsen principle for the protein 3D structure
has been challenged [27, 84, 113]. Some experiments showed that the same
primary structure may form diverse 3D structures under different condi-
tions [27, 84, 113]. In other words, the same primary structure may lead to
different 3D phase structures.

The Basic Problem of Protein Secondary Structure Prediction

As early as 1951, Pauling et al. proposed that protein partial segments can
form special α-helix and β-sheet structures, which are examples of protein
secondary structures. Thus the basic problem of protein secondary structure
prediction (PSSP) is estimating from the primary structure which partial
segments can form these special α-helix and β-sheet structures. Since then, it
has been discovered that these secondary structures not only exist in proteins
in great amounts, but are also closely related to the protein function. Thus,
prediction of the secondary structure has been an important topic in protein
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structure investigation in the last two decades of the twentieth century. Since
large amounts of data on protein 3D structure had been compiled, the study
of this issue tends to diversification, and has led to a great deal of research (see
the literature review in [79]). In this book we do not discuss these results again,
but analyze the informational and statistical characteristics of this problem,
to illustrate its current status.

General Status of the Protein 3D Structure Prediction

Protein 3D structure prediction is classified into several types. They are sec-
ondary structure prediction, secondary structure component prediction, and
3D structure prediction.

Secondary structure component prediction refers to the prediction of the
α-helix and β-sheet proportions within a protein.

Protein 3D structure prediction aims to predict the 3D structure from the
protein’s primary structure. The key is the long-distance folding problem, and
the commonly used methods are folding pattern classification, molecular dy-
namics calculations, partial peptide domain structure analysis, etc. Folding
pattern classification aims to classify the types of protein 3D folding patterns,
and make predictions based on these folding types. Molecular dynamics cal-
culations determine the interactions between the atoms within proteins and
build their potential of mean force; the stable 3D configuration is the state
corresponding to the energy minimum of the potential field. The domain struc-
ture method builds corresponding databases and weight coefficients for longer
(containing ten amino acids and above) peptide configurations, and then uses
these coefficients to predict protein 3D configuration.

In recent years, although many papers on protein structure prediction have
been published and much progress has been made, the overall effect is not
ideal. Over the past 20 years, many methods of PSSP have been developed,
but the accuracy rates have always been around 70% at best. The accuracy
rate for 3D structure prediction has been even worse. For instance, in the
most commonly used 3D structure classification, for which there is not a single
preferred calculation method, the variance in 3D folding pattern estimation
is huge. Because of the complexity of protein molecular structures, and since
the atoms contained in a protein range in number from hundreds to tens
of thousands, and the interaction force they produce is of many types (the
van der Waals force, electrostatic, hydrogen bonds, etc.), the computational
complexity of the interactions between atoms grows exponentially. Even if
a massive supercomputer is used, it still cannot successfully deal with even
the smallest peptide (such as one containing only 20 amino acids). Therefore,
protein 3D structure prediction still has a long way to go before it can be
considered reliable. In this chapter, we first analyze the statistical information
characteristics of protein primary and secondary structure. The prediction
algorithm is also involved.
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Table 9.1. Primary and secondary structure sequences of protein 12E8H

EVQLQQSGAE VVRSGASVKL SCTASGFNIK DYYIHWVKQR PEKGLEWIGW IDPEIGDTEY VPKFQGKATM TADTSSNTAY
ooSSSSoooS SSSooooSSS SSSSSoooHH HSSSSSSSSo ooooSSSSSS SSoooooSSS oHHHoooSSS SSSooooSSS
4211110011 2113211111 1112331123 3111111110 3210111111 1133121111 1332333112 1113312111
LQLSSLTSED TAVYYCNAGH DYDRGRFPYW GQGTLVTVSA AKTTPPSVYP LAPGSAAQTN SMVTLGCLVK GYFPEPVTVT
SSSooooHHH oSSSSSSSSS oooooooooo oooSSSSSSo ooooooSSSS Sooooooooo ooSSSSSSSS SSoooooSSS
1113111332 2011121201 3210212321 1111111212 1011111111 2111212121 3112111123 2130321121
WNSGSLSSGV HTFPAVLQSD LYTLSSSVTV PSSTWPSETV TCNVAHPASS TKVDKKIVPR D
SHHHoooooS SSoooSSSoo SSSSSSSSSS oHHHoooooo SSSSSSHHHo SSSSSSoooo o
0002323321 1111111002 1121111120 1332333112 1111113312 1111112034 4

9.1.2 Data Source and Informational Statistical Model of PSSP

Data Source of Secondary Structure Prediction

The data source is the foundation of structure prediction. Protein structure
databases are commonly used in secondary structure prediction, such as the
PDB database, in which primary and secondary structure information for ev-
ery classified protein is given, along with the 3D coordinates of each atom com-
prising the protein. Using this information, models and algorithms of PSSP
can be established.

Data on more than 20,000 proteins and 70,000 peptide chains are con-
tained in the PDB database version 2005. Because of the large numbers of
homologous proteins in the PDB database, it is not suitable to use statistical
analysis. Statistical analysis on the PDB database usually uses PDB-Select
database, in which excess homologous sequences in the PDB database are
deleted, and 3265 sequences are kept. Hence, it is a simplification of the PDB
database.

The PDB database gives a clear indication of primary and secondary struc-
ture of every protein, which we express in an alternateive manner in dual-
sequence form, as detailed below. For instance, for protein 12E8H (which has
221 amino acid residues), the primary and secondary structure sequences are
shown in Table 9.1.

In the second line, the letters H, S, and o denote α-helix, β-sheet, and
other structures, respectively. The third line expresses the torsion angle value
of the protein backbone triangle, which will be further discussed later.

The Random Model of Secondary Structure Prediction

Secondary structure prediction is the prediction of the secondary structure
status of each amino acid from the primary structure of the protein. In many
protein databases, the relation between the primary and secondary structure
is random, so we give their random relationship model as follows:

Let ξ(n) = (ξ1, ξ2, · · · , ξn) be the primary structure sequence of a protein,
where each ξτ , τ = 1, 2, · · · , n, represents the primary structure status viz. the
name of the τth amino acid. Thus, the value of ξτ is in set V20 = {0, 1, · · · , 19},
and n is the length of the protein.
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Similarly, we set η(n) = (η1, η2, · · · , ηn) to be the secondary structure of
the protein, and the value of ηi is in set {1, 2, 3} = {H, S, o}, then we call

(
ξ(n), η(n)

)
= ((ξ1, η1), (ξ2, η2) · · · , (ξn, ηn)) (9.1)

the protein primary–secondary joint structure random model (or joint struc-
ture random sequence), where τ = 1, 2, · · · , n represents the order location
of the sequence, ξτ , ητ represent the primary and secondary structure sta-
tus, respectively, at site τ of the protein. Hence the value of (ξτ , ητ ) is in
V20 ⊗ V3, where V3 = {0, 1, 2} = {H, S, o} is the set of protein secondary
structure status. For ease of discussion, we introduce the following notations
and terminologies:

1. In protein primary–secondary structure sequence (ξ(n), η(n)), we denote
as (

ξ(3)τ , η(3)
τ

)
= ((ξτ , ητ ), (ξτ+1, ητ+1), (ξτ+2, ητ+2)) (9.2)

a tripeptide chain, which begins at site τ , and whose value is in the range
{1, 2, · · · , n− 2}.

2. Set a(3) = (a1, a2, a3), and b(3) = (b1, b2, b3) to be the primary and sec-
ondary structure status vector of a protein of length 3, and aτ ′ ∈ V20,
bτ ′ ∈ V3, τ ′ = 1, 2, 3. Its corresponding dual-vector is denoted by

(
a(3), b(3)

)
= ((a1, a2, a3), (b1, b2, b3))

= (s, t, r; i, j, k) , s, t, r ∈ V20 , i, j, k ∈ V3 . (9.3)

We call this the status vector of the tripeptide chain its primary–secondary
structure.

3. The primary–secondary structure status vector of a tripeptide chain
(a(3), b(3)) can be considered to be a sample of a random vector (ξ(3)τ , η

(3)
τ );

thus, we can define its probability distribution as follows:

p(s, t, r; i, j, k) = Pr

{(
ξ(3)τ , η(3)

τ

)
= (s, t, r; i, j, k)

}
,

s, t, r ∈ V20 , i, j, k ∈ V3 . (9.4)

These probability distributions can be obtained from the PDB or PDB-
Select databases.

4. From the joint probability distribution in (9.4), we can obtain the con-
ditional probability distribution, boundary distribution and conditional
boundary distribution. For instance, the boundary distribution is

p(s, t, r) =
2∑

i,j,k=0

p(s, t, r; i, j, k) , p(i, j, k) =
19∑

s,t,r=0

p(s, t, r; i, j, k) .

(9.5)
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The corresponding conditional probability distributions are

p[(i, j, k)|(s, t, r)] = p(s, t, r; i, j, k)/p(s, t, r) , (9.6)

etc.
5. From these probability distributions, all types of Shannon entropies and

interaction information can be obtained, for instance, the joint Shannon
entropy of (ξ(3), η(3)) is

H
(
ξ(3), η(3)

)
= −

2∑

i,j,k=0

19∑

s,t,r=0

p(s, t, r; i, j, k) log p(s, t, r; i, j, k) . (9.7)

The conditional entropy of η(3) on ξ(3) is

H
(
η(3)|ξ(3)

)
= −

2∑

i,j,k=0

19∑

s,t,r=0

p(s, t, r; i, j, k) log p[(i, j, k)|(s, t, r)] .

(9.8)
The conditional mutual information of (η1, η3) on (ξ(3), η2) is

I(η1; η3|ξ(3), η2)

=
19∑

s,t,r=0

3∑

i,j,k=1

p(s, t, r; i, j, k) log
p(i, k|s, t, r, j)

p(i|s, t, r; j)p(k|s, t, r; j) , (9.9)

where p(i, k|s, t, r, j), p(i|s, t, r; j), p(k|s, t, r; j) are conditional probabili-
ties derived from p(s, t, r; i, j, k).

9.1.3 Informational and Statistical Characteristic Analysis
on Protein Secondary Structure

Informational Characteristic Calculation on Protein Primary
and Secondary Structure

We aim to predict a protein’s secondary structure from its primary struc-
ture, thus we first analyze the conditional informational characteristics of the
secondary structures on the primary structures. Our results are shown in Ta-
bles 9.2 and 9.3.

The data in Table 9.2 are results from conditional entropy, where data
at the intersection of the first line and the first column represents
H(η3|(ξ1, ξ2, ξ3, η1, η2)) = 0.5798, and data at the intersection of the second
line and the first column represents H(η3|ξ1, ξ2, η1, η2) = 0.6807.

The data in Table 9.3 are results from conditional mutual infor-
mation, for instance, data in the first line, first column represents
I(η1; η2|(ξ1, ξ2, ξ3, η2)) = 0.31831, while data in the second line, first column
represents I(η1; η2|(ξ1, ξ2, η3)) = 0.31782.



270 9 Protein Secondary Structure Prediction

Table 9.2. Conditional entropy of protein primary and secondary structures

H k|(i, j) j|(i, k) i|(j, k) (j, k)|i (i, k)|j (i, j)|k
(s, t, r) 0.5798 0.2564 0.5451 1.1617 1.1712 1.1197
(s, t) 0.6807 0.3314 0.6293 1.2239 1.2559 1.2785
(s, r) 0.6636 0.3383 0.6363 1.2501 1.2965 1.3153
(t, r) 0.6564 0.3250 0.6670 1.2773 1.3042 1.3264

H j|i k|i i|j k|j i|k j|k
(s, t, r) 0.5819 0.9054 0.5914 0.6261 0.8634 0.5746
(s, t) 0.6845 1.0338 0.6659 0.7101 0.9877 0.6899
(s, r) 0.6692 0.9944 0.6444 0.6910 0.9311 0.6732
(t, r) 0.6482 0.9796 0.6214 0.6850 0.9318 0.6664

H i j k (i, j, k)

(s, t, r) 1.2917 1.2822 1.3336 2.4534
(s, t) 1.3667 1.3925 1.4534 2.7319
(s, r) 1.3945 1.4000 1.4120 2.7273
(t, r) 1.4146 1.3671 1.3927 2.7192

Table 9.3. Conditional mutual information of protein primary and secondary struc-
tures

I (i; j)|k (i; k)|j (j; k)|i (i; j) (i; k) (j; k)

(s, t, r) 0.31831 0.04626 0.32556 0.70031 0.42826 0.70757
(s, t) 0.31782 0.02939 0.35310 0.70805 0.41962 0.74333
(s, r) 0.34064 0.02736 0.33083 0.73081 0.41754 0.72101
(t, r) 0.33446 0.02866 0.32325 0.71890 0.41310 0.70769

Informational Characteristic Analysis on Protein Primary
and Secondary Structure

Based on the above, we analyze the information transferring characteristics
of each variable in protein primary and secondary structure as follows:

1. Hidden Markov property holds for the tripeptide chain sequences. We
define tripeptide chain sequences as

ζτ = (ξτ , ξτ+1, ξτ+2) , τ = 1, 2, · · · , n− 2 , (9.10)

where (ξ1, ξ2, · · · , ξn) is the primary structure sequence of the protein. For
its conditional mutual information,

I(ζ1; ζ3|ζ2) = I[ξ1; ξ4|(ξ2, ξ3)] = 0.0087 ≈ 0 .

This indicates that when ζ2 is fixed, ζ1 and ζ3 are nearly independent
of each other. Thus the hidden Markov property holds for the tripeptide
chain sequences.
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2. Hidden Markov property holds for the tripeptide chain secondary struc-
ture. From the results in Table 9.2, we have

I[i, k|(s, t, r, j)] = I[η1; η3|(ξ1, ξ2, ξ3, η2)] = 0.04626 .

This indicates that when (ξ1, ξ2, ξ3, η2) is fixed, η1 and η3 are nearly in-
dependent of each other. Thus, the hidden Markov property holds.

3. We see from the conditional entropy Table 9.2 that

H [η1|(ξ1, ξ2, ξ3)] = 1.2917 , H [η2|(ξ1, ξ2, ξ3)] = 1.2822 ,
H [η3|(ξ1, ξ2, ξ3)] = 1.3336 .

Hence, out of the predictions of secondary structures η1, η2, η3 separate
from the primary structure (ξ1, ξ2, ξ3) for the tripeptide chain, the best
result is in η2.

4. From
H [η2|(ξ2, ξ3)] = 1.3671 , H [η2|(ξ1, ξ2, ξ3)] = 1.2822 ,

we see that the result of the prediction can be improved by increasing the
number of primary structures, but the effect will be minimal. From

H [η2|(ξ1, ξ2, ξ3)] = 1.2822 , H [η2|(ξ1, ξ2, ξ3, η3)] = 0.5746 ,
H [η2|(ξ1, ξ2, ξ3, η1, η3)] = 0.2564 ,

we see that the conditional entropy decreases sharply if we use more
secondary structure information; specifically, the prediction of η2 from
(ξ1, ξ2, ξ3, η1, η3)), is bound to be much better than using only η2 for the
prediction.

9.2 Informational and Statistical Calculation Algorithms
for PSSP

9.2.1 Informational and Statistical Calculation for PSSP

To establish informational and statistical calculation algorithms for PSSP,
we must first classify the data of protein secondary structure, and build cor-
responding statistical calculation tables of prediction information. Related
discussions follow.

Data Classification

We base our discussion of the prediction problem on the PDB-Select database.
We denote its protein sequences as set Ω. This set can be divided in two
subsets, Ω1, Ω2, called the training set and the validation set, respectively.
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Their protein primary–secondary structures are denoted respectively by
{
Ω1 = {(A1, B1), (A2, B2), · · · , (Am1 , Bm1)} ,
Ω2 = {(C1, D1), (C2, D2), · · · , (Cm2 , Dm2)} ,

(9.11)

where As, Ct are the primary structure sequences of the two proteins, re-
spectively, in databases Ω1, and Ω2, and Bs, Dt are the secondary structure
sequences of the above two proteins s and t in databases Ω1, and Ω2. We then
denote

Zs = (zs,1, zs,2, · · · , zs,ns) , Z = A,B,C,D , z = a, b, c, d ,

for their sequence expression. Using the PDB-Select database, we take m1 =
2765, m2 = 500.

Table of Conditional Probability Distribution

From the training set Ω1, we calculate its conditional probability distribution
table, the types of which are

⎧
⎪⎨

⎪⎩

Model I: p[i|(s, t, r)], p[j|(s, t, r)], p[k|(s, t, r)] ,
Model II: p[i|(s, t, r, j)], p[j|(s, t, r, i)], p[j|(s, t, r, k)], p[k|(s, t, r, j)] ,
Model III: p[i|(s, t, r, j, k)], p[j|(s, t, r, i, k)], p[k|(s, t, r, i, j)] ,

(9.12)
where the tables of Model I are conditional probability distribution tables of
primary structures on secondary structures, while the tables of Models II and
III are conditional probability distribution tables of primary structures and
some secondary structures on other secondary structures. The sizes of Mod-
els I, II, and III are 8000×3, 24,000×4, and 72,000×3 matrices, respectively.
When Ω1 is given, the joint probability distribution p(s, t, r; i, j, k) is deter-
mined, and all these conditional probability distributions can be determined
by the joint probability distribution p(s, t, r; i, j, k).

Maximum Likelihood Estimate Prediction

1. Maximum likelihood estimate (MLE) prediction uses the tables of Model I,
for instance, in p[i|(s, t, r)], for every fixed (s, t, r) ∈ V

(3)
20 , calculate the

max p[i|(s, t, r)] on i = 1, 2, 3, denoted by i(s, t, r). Then

p[i(s, t, r)|(s, t, r)] = max{p[1|(s, t, r)], p[2|(s, t, r)], p[3|(s, t, r)]} . (9.13)

If the primary structure of the protein is A = (e1, e2, · · · , en), then its
predicted secondary structure is
(
f̂2, f̂3, · · · , f̂n−2

)
(9.14)

= (i(e1, e2, e3), i(e2, e3, e4), · · · , i(en−3, en−2, en−1), i(en−2, en−1, en)) ,
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where (e1, f1), (e2, f2), · · · , (en, fn) are the protein primary–secondary
structures, f̂τ is the prediction result of fτ .

2. The most significant disadvantage of MLE prediction is that the joint
information of primary and secondary structure in Table 9.2 is not used
comprehensively. If each conditional distribution in (9.13) takes the values:

p[1|(s, t, r)] = 0.3 , p[2|(s, t, r)] = 0.3 , p[3|(s, t, r)] = 0.4 ,

then the result predicted from (9.13) is i(s, t, r) = 3. This type of predic-
tion leads to large errors.

Using only the table of Model I in MLE prediction, the correct rate will not
exceed 55%.

Threshold Series Prediction

In order to overcome the disadvantages of MLE prediction, we can adapt from
statistics the threshold series prediction. Its essentials are listed below:

1. Choose the parameters θ1, θ2, θ3 properly. The prediction can only be
determined if the conditional probability distributions in Models I, II,
and III are respectively greater than these parameters.

2. Using threshold series prediction, it is impossible to predict all the sec-
ondary structures at one time. Therefore, we need to use the threshold
series prediction on conditional probability distributions in Models I, II,
and III repeatedly, to reach the goal of predicting all the secondary struc-
tures. We present the algorithm in the next section.

9.2.2 Informational and Statistical Calculation Algorithm
for PSSP

If E = (e1, e2, · · · , en) is the primary structure sequence of a protein, then
we perform a recursive calculation using the table of conditional probability
distributions (9.12) and threshold series prediction. We denote the secondary
structure by F = (f1, f2, · · · , fn), and the corresponding recursive algorithm
as follows:

Step 9.2.1 Choose parameters θ1, θ2, θ3 > 0.5, and predict the secondary
structure F from the primary structure E for the first time using the
table of conditional probability distributions in (9.12). The main steps
are:
1. For the fixed (ep, ep+1, ep+2), calculate

p[fτ |(ep, ep+1, ep+2)] , fτ = 0, 1, 2 , τ = p, p+ 1, p+ 2 .

2. If there exists τ ∈ {p, p + 1, p + 2}, fτ ∈ {0, 1, 2}, such that:
p[fτ |(ep, ep+1, ep+2)] > θ1, then fτ is the secondary structure pre-
diction result of (ep, ep+1, ep+2) on the site τ .
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3. We know from the characteristics of the conditional probability dis-
tribution that, for the same τ ∈ {p, p + 1, p + 2}, there cannot be
two fτ �= f ′

τ ∈ {0, 1, 2}, such that p[fτ |(ep, ep+1, ep+2)] > θ1, and
p[f ′ + τ |(e′p, ep′+1, ep′+2)] > θ1 hold at the same time.

4. For the same τ ∈ {p, p+ 1, p+ 2}, there may be two p �= p′, such that

p[fτ |(ep, ep+1, ep+2)] > θ1 ,

and
p[f ′ + τ |(ep′ , ep′+1, ep′+2)] > θ1

hold for both, where fτ , f ′
τ ∈ {0, 1, 2}. If

p[fτ |(ep, ep+1, ep+2)] ≥ p[f ′ + τ |(ep′ , ep′+1, ep′+2)] ,

then we have f̂τ = fτ as the prediction result for the first time.
5. Set N1 to represent all the sites in the secondary structure prediction

for the first time, that is

N1 = {τ ∈ N : Exists p ∈ N, fτ ∈ {0, 1, 2}, such that
|p− τ | ≤ 2, and p[fτ |(ep, ep+1, ep+2)] > θ1} . (9.15)

Then, for every site p ∈ N1, there is a secondary structure prediction
value fp. We call the set

N1 = {(p, fp) : p ∈ N1} (9.16)

the first-time prediction result of the protein secondary structure pre-
diction.

Step 9.2.2 Based on the result obtained in Step 9.2.1, N1 is considered to be
a known result, so we go on to the prediction for the sites in N c

1 = N−N1.
We denote one form of the conditional probability distributions of Models
II and III as
⎧
⎪⎨

⎪⎩

Model II: p[fτ |(ep, ep+1, ep+2, fτ ′)] , τ �= τ ′ ∈ {p, p+ 1, p+ 2} ,
Model III: p[fτ |(ep, ep+1, ep+2, fτ ′, fτ ′′)] , τ, τ ′, τ ′′ different from

each other, sphere τ, τ ′, τ ′′ ∈ {p, p+ 1, p+ 2} .
(9.17)

For site τ in set N c
1 , there exists p ∈ N, τ ′, τ ′′, such that:

1. There exists a conditional probability distribution for Model II, in
(9.17) p[fτ |(ep, ep+1, ep+2, fτ ′)] > θ2, or conditional probability distri-
butions for Model III p[fτ |(ep, ep+1, ep+2, fτ ′ , fτ ′′)] > θ3.

2. In conditional probability distributions of Models II and III in
Step 9.2.2, procedure 1, τ ′, τ ′′ ∈ N1.
Here, the combination that Step 9.2.2, procedures 1 and 2 both hold is
denoted as (τ, fτ ), and we refer to it as the second-time prediction re-
sult. Following (9.16), we can get all the second-time prediction results
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of the protein secondary structures similarly; N2 = {(p, fp), p ∈ N2},
where N2 is the collection of sites of the second-time prediction result
of protein secondary structure.

Step 9.2.3 Based on the results of Steps 9.2.1 and 9.2.2, N1N2 are considered
to be known data, so we go on to the prediction for the sites in N−N1−N2.
The corresponding steps are the same as those of Step 9.2.2, and the
prediction result is N3.
Continuing like this, we arrive at a series of prediction results N4,N5, · · ·
etc. This operation continues until there is a k > 0, such that Nk is an
empty set. If we denote N0 =

⋃k
k′=1Nk′ , then for every p ∈ N0, there is

a prediction result fp.
Step 9.2.4 For the sites in N c

0 = N−N0, we use the MLE prediction table in
(9.13) to determine the prediction results for every p ∈ N c

0 . The secondary
structure prediction result of all the sites in the protein is then obtained.

Step 9.2.5 Make predictions for all the proteins in the validation set Ω2. We
thus find the prediction result for every site p ∈ Ω2, denoted by fp.
In the PDB-Select database, the secondary structure measurement result
for all the amino acids in each protein is contained, denoted here by qp.
Prediction results such as the correct rate (or error rate) can then be
compared. Obviously, the results are related to the parameters θ1, θ2, θ3;
so we denote its error rate by e(θ1, θ2, θ3).

Step 9.2.6 Adjust the parameters θ1, θ2, θ3 to minimize the error rate
e(θ1, θ2, θ3). The whole process of protein secondary structure prediction
is then carried out. When the parameters θ1, θ2, θ3 are fixed, the algo-
rithm of protein secondary structure prediction (which is now fixed) is
formed. We call this algorithm the informational and statistical threshold
series prediction algorithm of protein secondary structure.

This algorithm is said to be ISIA.

9.2.3 Discussion of the Results

Prediction Results

For the m = 3265 proteins listed in the PDB database version 2005, there
are 741,186 coterminous amino acids involved. We set the number of proteins
in Ω1, Ω2 to be m1 = 2765, m2 = 500, containing 631,087 and 110,099
amino acids, respectively. We then consider Ω1, Ω2 to be two two-dimensional
sequences of lengths 631,087 and 110,099 respectively, which is denoted by

Ωτ = ((eτ,1, fτ,1), (eτ,2, fτ,2), · · · , (eτ,nτ , fτ,nτ )) , τ = 1, 2 , (9.18)

where n1 = 631,087 and n2 = 110,099. For Ω1, Ω2 in (9.18), we distinguish the
different proteins by list separators. Discussions on the calculations of these
data follow:
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1. From the training set Ω1, we can find the joint frequency and joint fre-
quency distribution table p(s, t, r; i, j, k) of (9.4). The corresponding con-
ditional probability distribution, the table of Models I, II, and III in (9.12)
is then obtained.

2. If the above informational and statistical threshold series prediction is
used, when θ1 = θ2 = θ3 = 0.70, the correct rate can be 4–5% higher
than that obtained using MLE prediction. If the values of θ1, θ2, and θ3
are adjusted constantly, the correct rate may be increased still further.
However, the best prediction results have not yet been obtained. An over-
all introduction to the other algorithms in protein secondary structure
software packages may be found in [79].

3. Secondary structure prediction is a complicated problem in the area of
informational statistics. In the algorithms above, it is not only related to
the choice of the parameters θ1, θ2, and θ3, but also to the division Ω1

and Ω2 of the database Ω. Some sources in the literature set Ω1 and Ω2

to be the same as Ω, which will greatly increase the nominal prediction
accuracy. However, in view of statistics, this is unreasonable, and therefore
having it extended is meaningless.

4. Some of the secondary structure predictions add other protein information
besides that contained in the PDB-Select database (such as information on
the biological classification) in order to improve prediction accuracy. For
example, the jackknife testing and multiple sequences alignment methods
are used for this reason.

The Jackknife Test

The jackknife test uses a statistical testing method where:

1. Ω = {1, 2, · · · ,m} is the PDB-Select database, in which i = Ai = (Ei, Fi),
where

Ei = (ei,1, ei,2, · · · , ei,ni) , Fi = (fi,1, fi,2, · · · , fi,ni) (9.19)

are the primary and secondary structure of protein i, respectively.
2. Ω1 and Ω2 are two sets of proteins, where Ω2 = {i}, and Ω1 = Ω − Ω2.
Ω1 is the training set, and Ω2 is the testing set.

3. We consider the set Ω1, and give a two-dimensional sequence

Ω1 = ((e1,1, f1,1), (e1,2, f1,2), · · · , (e1,n0 , f1,n0)) , (9.20)

where n0 = ||Ω1||.
4. Using the calculations on Ω1, the primary structure of protein Ω2, and

the predicted secondary structure of Ω2, the prediction result of ISIA is

F̂i =
(
f̂i,1, f̂i,2, · · · , f̂i,ni

)
. (9.21)
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The error of the secondary structure prediction is

d
(
Fi, F̂i

)
=

ni∑

i=1

1
ni
dH

(
fi,j , f̂i,j

)
, (9.22)

where dH is the Hamming distance.
5. Using the jackknife testing method for all i ∈ Ω, one obtains prediction

results forΩ2 = {i}, i ∈ Ω. The error in the secondary structure prediction
under the jackknife test is then

dJ(Ω) =
m∑

i=1

ni
n0
d
(
Fi, F̂i

)
. (9.23)

Multiple Sequence Alignment

If we obtain a multiple sequence alignment (MSA) for F̂i and

Ω1,F = {F1, F2, · · · , Fi−1, Fi+1, Fi+2, · · · , Fm} .

is the MSA result of F̂ ′
i , we then obtain the error of the secondary structure

prediction under jackknife testing and MSA is dJ,MSA(Ω), given similarly by
(9.22) and (9.23).

The error of the secondary structure prediction is dJ,MSA(Ω) = 76.8%,
when θ1 = 0.70, θ2 = 0.85, and θ3 = 0.92.

9.3 Exercises, Analyses, and Computation

Exercise 44. Obtain the protein secondary structure database Ω from PDB-
Select at [99], and perform the following calculations:

1. Divide the databaseΩ into a training setΩ1 and a validating set randomly,
and set m1:m2 = 5:1.

2. On the training set Ω1, calculate the statistical frequency and frequency
distribution n(s, t, r; i, j, k) and p(s, t, r; i, j, k) of the tripeptide chain
primary–secondary structure.

3. Calculate the conditional probability distribution of Models I, II, and III
in (4.19) from the frequency distribution p(s, t, r; i, j, k).

4. Calculate the MLE estimation table from the conditional probability dis-
tribution of Models I, II, and III.

Exercise 45. Based on Exercise 44, use the conditional probability distribu-
tion of Model I to do MLE on the protein sequences in Ω2, then calculate the
correctness rate.
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Exercise 46. Based on Exercise 44, use the conditional probability distribu-
tion of Models I, II, and III and choose proper θ1, θ2, and θ3 values to do
threshold series estimation on the protein sequences in Ω2, and then calculate
the correctness rate.

Exercise 47. Changing the parameters θ1, θ2, and θ3, compare the prediction
results in Exercise 46, thereby determining the choosing of the best parameters
and the correctness rate of the best prediction.
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Three-Dimensional Structure Analysis

of the Protein Backbone and Side Chains

It is known that the backbone of a protein consists of the atoms N, Cα,
and C alternately, and any three neighboring atoms form a triangle. These
coterminous triangles are called triangle splicing belts. We now discuss the
structure and transformations of these triangles.

10.1 Space Conformation Theory of Four-Atom Points

The space conformation theory of four-atom points is the foundation of pro-
tein structure quantitative analysis. Atomic conformations of such clusters
have been described in many ways in chemistry and biology. However, these
descriptions have not yet been abstracted into mathematical language. In this
chapter, we use geometry to abstract the theory into geometric relations of
common space points, so that we may give the correlations and resulting for-
mulas.

10.1.1 Conformation Parameter System of Four-Atom Space
Points

The common conformation of four-atom space points refers to the structural
relationship between the four discrete points a, b, c, and d in space. Their
space locations are shown in Fig. 10.1. We now discuss their structural char-
acteristics.

Basic Parameters of Four-Atom Points Conformation

For the four space points a, b, c, and d denote their coordinates in the Carte-
sian system of coordinates by

r∗
τ = −→oaτ = (x∗τ , y

∗
τ , z

∗
τ ) = x∗τ i + y∗τj + z∗τk , τ = 1, 2, 3, 4 , (10.1)
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Fig. 10.1. Four-atom points conformation

where o is the origin of the coordinate system and i, j, k are the orthogonal
basis vectors of the rectangular coordinate system. We introduce the following
notations:

1. The vectors generated from the four space points a, b, c, and d are
−→
ab,−→

bc,
−→
cd, −→ac, −→

bd,
−→
ad, etc., denoted by r1, r2, · · · , r6, respectively. Their

coordinates as determined by (10.1) are

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

rτ = (xτ , yτ , zτ ) = (x∗τ+1 − x∗τ , y
∗
τ+1 − y∗τ , z

∗
τ+1 − z∗τ ) , τ = 1, 2, 3 ,

rτ ′ = (xτ ′ , yτ ′ , zτ ′) = (x∗τ ′−1 − x∗τ ′−3, y
∗
τ ′−1 − y∗τ ′−3, z

∗
τ ′−1 − z∗τ ′−3) ,

τ ′ = 4, 5 ,
r6 = (x6, y6, z6) = (x∗4 − x∗1, y∗4 − y∗1 , z∗4 − z∗1) .

(10.2)
Their lengths are denoted by r1, r2, · · · , r6, where

rτ = |rτ | = (x2
τ + y2

τ + z2
τ )

1/2 , τ = 1, 2, 3, 4, 5, 6 . (10.3)

2. We denote the angle between the vectors
−→
ab and

−→
bc by φ1, and between

the vectors
−→
bc and

−→
cd by φ2. We call φ1 and φ2 the turn (bend) of the

atomic points, and the formulas are obtained from the cosine theorem as

φ1 = cos−1

(
r24 − r21 − r22

2r1r2

)
, φ2 = cos−1

(
r25 − r22 − r23

2r2r3

)
, (10.4)

where cos is the cosine function, which has the domain [0, π].
3. The triangles generated by the vectors

−→
ab,

−→
bc and

−→
bc,

−→
cd are denoted by

δ(abc), δ(bcd), and the corresponding planes are denoted by π(abc), π(bcd),
respectively. The normal vectors determined by planes π(abc), π(bcd) are
denoted by

b1 = (x7, y7, z7) , b2 = (x8, y8, z8) ,
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and their formulas are

b1 = r1 × r2 =

∣
∣∣
∣
∣
∣

x1 y1 z1
x2 y2 z2
i j k

∣
∣∣
∣
∣
∣
, b2 = r2 × r3 =

∣
∣∣
∣
∣
∣

x2 y2 z2
x3 y3 z3
i j k

∣
∣∣
∣
∣
∣
, (10.5)

where r1 × r2 is the outer product of vectors r1, r2, while
∣
∣
∣
∣∣
∣

x1 y1 z1
x2 y2 z2
i j k

∣
∣
∣
∣∣
∣

is the third-order determinant.
4. The line of intersection of the planes π(abc), π(bcd) is bc, and the angle

between them is denoted by ψ. We call ψ the torsion angle of the atom
points. The formula describing it is readily found as

ψ = cos−1

( 〈b1, b2〉
b1b2

)
, (10.6)

where b1 and b2 are the lengths of the normal vectors b1 and b2, respec-
tively. The formula is the same as (10.3), while

〈b1, b2〉 = x7x8 + y7y8 + z7z8 (10.7)

is the inner product of vectors b1, b2. ψ is also defined on the domain
[0, π].

5. The mixed product of vectors r1, r2, r3 is defined as

[r1, r2, r3] = 〈r1 × r2, r3〉 =

∣
∣
∣
∣∣
∣

x1 y1 z1
x2 y2 z2
x3 y3 z3

∣
∣
∣
∣∣
∣
. (10.8)

6. We denote
ϑ = ϑ(abcd) = sgn ([r1, r2, r3]) (10.9)

as the mirror value (or chirality value) of r1, r2, r3, where

sgn (u) =

{
+1 , if u ≥ 0 ,
−1 , otherwise

is the sign function of u.
The mirror value (or chirality value) is a reflection of the chirality char-
acteristics of vectors r1, r2, r3. That is, when ϑ > 0, the three vectors
r1, r2, r3 make a right-handed system, while if ϑ < 0, r1, r2, r3 make
a left-handed system.
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Correlation of the Basic Parameters

From formulas (10.2)–(10.9), we obtain the parameter space for four-atom
points:

E = {r1, r2, · · · , r6, φ1, φ2, ψ, ϑ} . (10.10)

We denote

E1 = {r1, r2, r3, r4, r5, ψ, ϑ} , E2 = {r1, r2, r3, φ1, φ2, ψ, ϑ} (10.11)

to be the basic parameter space of the atom points, with the following prop-
erties:

1. Parameter systems E1 and E2 determine each other, since in the cosine
theorem in (10.4), r1, r2, r3, r4, r5 determines r1, r2, r3, φ1, φ2, and vice
versa.

2. Each parameter in parameter space E is invariant with respect to the coor-
dinate system {o, i, j,k}. That is, when the coordinate system undergoes
a translation or rotational transformation, the value of each parameter
in E remains the same. When the coordinate system undergoes a mir-
ror reflection transformation, ϑ in E changes sign, while other parameters
remain the same.

3. When the parameters in parameter space E1 or E2 are given, the con-
figuration of the four-atom points is completely determined. That is, for
two groups of four-atom points, if their parameters in parameter space E1

or E2 are the same, then after rigid transformations, the two groups of
four-atom points are superposed.

Other Parameters in the Four-Atom Space of Point Configurations

We know from geometry that, in the four-atom space of point configurations,
there are other parameters apart from the basic ones. For instance:

1. The area formula for the triangle determined by points a, b, c:
S = S(abc) = 1

2r1r2 sinφ1, or S = [s(s − r1)(s − r2)(s − r3)]1/2, where
s = 1

2 (r1 + r2 + r3).
2. The volume formula of the tetrahedron determined by points a, b, c, d:

V = V (abcd) =
1
6
|[r1, r2, r3]| .

3. The formula for the relationship of the volume, surface area, and height
of the tetrahedron determined by points a, b, c, d:

V (abcd) =
1
3
S(abc)h(abc) ,

where h(abc) is the height from the bottom face δ(abc) to point d.

The formulas may vary under different conditions, which will not be described
here.
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10.1.2 Phase Analysis on Four-Atom Space Points

In the protein 3D structure parameter space E1, the values of r1, r2, r3, r4,
and r5 are relatively constant; thus, the main parameters affecting protein 3D
structure configuration are ψ, ϑ. We focus our the analysis on these parame-
ters.

Definition of the Phase of the Four-Atom Space Points

In parameter space E1, we have already given the definition of the mirror
value ϑ. We call (ϑ, ϑ′) the phase of a set of four-atom space points, where

ϑ′ =

{
+1 , if 0 ≤ ψ < π/2 ,
−1 , if π/2 < ψ ≤ π .

The definition of phase is actually the value of the angle ψ in the four quad-
rants of the plane rectangular coordinate system. Here, when (ϑ, ϑ′) takes
the values (−1, 1), (−1,−1), (1,−1), (1, 1), the values of the angle ψ in the
four quadrants of the plane rectangular coordinates system are 0, 1, 2, 3,
respectively.

Definition of Types E and Z for Four-Atom Points

In the parameters of the four-atom points phase, we know that the mirror (or
chirality) value is determined by parameter ϑ. We now discuss the definition
of the parameter ϑ′. In biology and chemistry, the structural characteristics
of four-atom points are usually distinguished by types E and Z, which are
mathematically expressed as follows.

Let d′ represent the projection of point d on plane π(abc), then the four
points a, b, c, and d′ lie in the same plane. Let �(bc) denote the line determined
by points b and c.

Definition 41. For the four space points a, b, c, d, if a and d′ are on the same
side of line �(bc), we say that the four points a, b, c, d are of type E; while if a
and d′ lie on two different sides of the line �(bc), then we say the four points
a, b, c, d are of type Z.

The type E and type Z structures of four-atom point configurations are shown
in Fig. 10.2.

In Fig. 10.2, d′ is the projection of d on plane ABC. In Fig. 10.2a, points
a, d′ are on the same side of line �(bc); while in Fig. 10.2b, a, d′ are on different
sides of line �(bc). They form type E and type Z, respectively.
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Fig. 10.2a,b. Types E and Z for four-atom point configurations

Determination of Type E and Type Z

We use geometry to determine the type E and type Z configuration of four-
atom points. Let π1 and π2 represent planes determined by the three points
a, b, c and b, c, d, respectively. Their normal vectors are b1 and b2, where the
direction of the vectors is determined by the right-handed coordinate system,
that is, their mixed product

[r1, r2, b1] , [r2, r3, b2] > 0 .

Using the correlation of the normal vectors b1 and b2, we obtain the determin-
ing relationship for the structure type of the four-atom points conformation:

Theorem 38. The determining relationship of the type E and Z structures
of the four-atom points configuration is as follows: If 〈b1, b2〉 < 0, then the
conformation of the four-atom points a, b, c, d is of type E, if 〈b1, b2〉 > 0, then
the conformation of the four-atom points a, b, c, d is of type Z.

Proof. We take the following steps to prove this proposition:

1. Because point d′ is the projection of point d in plane Π1, we set vector
r′

3 =
−→
cd′ to be the projection of r3 =

−→
cd in plane Π1. If we denote the

normal vector of plane c, d′ d by n = b1 × r2, then n is in plane Π1 and
upright to r2, b1. At this time, r1, r2, r

′
3, and n are all in plane Π1,

{
Iff (r1 · n)(r′

3 · n) > 0 , then d, d′ are on the same side of r2 ,

Iff (r1 · n)(r′
3 · n) < 0 , then d, d′ are on different sides of r2 ,

(10.12)
where r1 · n = 〈r1,n〉 is the inner product of the two vectors.

2. In (10.12), r′
3 · n = r3 · n, and

(r1 · n)(r3 · n) = 〈r1, b1 × r2〉〈r3, b1 × r2〉 . (10.13)

Then, from

b1 =
r1 × r2

|r1 × r2|
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and the outer product formula (10.5), we obtain

b1 × r2 =
1

|r1 × r2| (r1 × r2) × r2 =
1

|r1 × r2|
[
(r1 · r2)r2 − r22r1

]
.

Therefore,

(r1 · n)(r3 · n) =
1

|r1 × r2|2
[
(r1 · r2)2 − r22r

2
1

]

· [(r1 · r2)(r2 · r3) − r22(r1 · r3)
]
.

Since for any two vectors r1 and r2, (r1 · r2)2 ≤ r21r
2
2 always holds true,

sgn [(r1 · n)(r′
3 · n)] = sgn [(r1 · n)(r3 · n)]

= sgn
[
r22(r1 · r3) − (r1 · r2)(r2 · r3)

]
(10.14)

always holds.
3. On the other hand, we can also calculate (b1, b2). The definition of bτ

yields
(b1, b2) = α(r1 × r2, r2 × r3) ,

where
α =

1
|r1 × r2| · |r2 × r3| > 0 .

Then from the outer product formula, we obtain

(b1, b2) = α
[
(r1, r2) · (r2, r3) − r22(r1, r3)

]
;

therefore,
sgn (b1, b2) = −sgn [(r1 · n)(r′

3 · n)] . (10.15)

From formula (10.15), we know that the conclusion of the theorem stands.
Hence this theorem is proved.

Theorem 39. The structure types E and Z of the four-atom points conforma-
tion can be determined by the value of the torsion angle ψ, by the relationship:
⎧
⎪⎪⎨

⎪⎪⎩

If |ψ| ≤ π

2
then the conformation of the four-atom points a,b,c,d

is of type Z ,

If |ψ| > π

2
then the conformation of the four-atom points is of type E ,

(10.16)
where 0 ≤ |ψ| ≤ π.

Proof. From the definition of the torsion angle (10.6), and comparing formula
(10.16) with Theorem 39, we see that this theorem holds.
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The Transformation Relationship for the Four-Atom Points
Torsion Angle and Phase

In the definition of torsion angle (10.6), ψ is in the domain [0, π]. If it is
combined with the mirror reflection value ϑ, ψ can be defined on [0, 2π]. We
then take

ψ′ =

{
ψ , if ϑ = −1 ,
2π − ψ , if ϑ = 1 .

(10.17)

At this time, ψ′ is defined on [0, 2π], and the value of ψ′ in the four quadrants
of the plane rectangular coordinate system coincides with the definition of
(ϑ, ϑ′).

10.1.3 Four-Atom Construction of Protein 3D Structure

In the construction of protein atoms, we have already introduced the structure
of their backbones and side chains, from which various four-atom points of
different types can be obtained. The important types that will be discussed
are as follows.

The Types of Four-Atom Points Obtained from the Protein
Backbones

1. Four-atom points obtained from the three atoms N, A, C in turn are of
the three types: N, A, C, N′; A, C, N′, A′; C, N′, A′, C′, where N, A, C,
N′, A′, C′ are the N, A, C atoms of two neighboring amino acids.

2. A series of four-atom points can be obtained by choosing an atom point in
each amino acid, for example, At, At+1, At+2, At+3 where t = 1, 2, 3, · · · .

Four-atom points obtained from the side chains of the backbones are of the
type N, A, C, O; N, A, C, B, etc.

Statistical Calculation for the Protein Backbone Four-Atom Points

There are 3190 proteins in the PDB-Select database (version 2005), on which
we may perform statistical calculations for all the four-atom points of the
linked amino acids. The results are as follows:

1. There are 739,030 linked amino acids in the 3190 proteins in the PDB-
Select database (version 2005), and every amino acid consists of differ-
ent atoms. The PDB-Select database gives the space coordinates of all
the non-hydrogen atoms, and the total number of non-hydrogen atoms is
about 5,876,820.
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2. For the atoms N, A, C, N′, A′, C′, we denote r1, r2, r3, r4, r5, r6 to be
the lengths of the vectors

−→
NA,

−→
AC,

−−→
CN′,

−−→
NC′,

−−→
AN′,

−−→
CA′ ,

respectively. We denote the torsion angle between plane π(NAC) and
plane π(ACN′) by ψ1, the torsion angle between plane π(ACN′) and plane
π(CN′A′) by ψ2, and the torsion angle between plane π(CN′C′) and plane
π(N′A′C′) by ψ3.
We calculate the mean, variance and standard deviation of each of the pa-
rameters r1, r2, r3, r4, r5, r6, ψ1, ψ2, ψ3 for the 739,030 linked amino acids
in the 3190 proteins in the PDB-Select database (version 2005). The re-
sults are given in Table 10.1.
We see from Table 10.1 that the values of the parameters r1, r2, r3, r4,
r5, r6, and ψ2 are quite constant, where the mean of ψ2 is μ = 3.14716 =
180.320◦. This indicates that the four points A, C, N′, A′ are almost on
the same plane.

3. The edge lengths of the four-atom points A1, A2, A3, A4 in the backbone
are

r1 = A1A2 , r2 = A2A3 , r3 = A3A4 , r4 = A1A3 , r5 = A2A4 .

The results of our statistical calculations for the torsion angle Ψ are shown
in Table 10.2, where the torsion angle Ψ is the angle between the triangle
δ(A1A2A3) and δ(A2A3A4), defined on [0, 2π].

4. The phase distribution of ψ1, ψ2, ψ3 and Ψ is shown in Table 10.3.

In the next section, we will analyze the four-atom structure of protein side
chains. In the statistical analysis presented in this book, we include compre-
hensive statistics of all the amino acid parameters. If we analyzed each indi-
vidual amino acid, the values of the related parameters would differ slightly,
which we do not discuss here.

Table 10.1. Parameter characteristics of four-atom points N, A, C, N′, A′, C′ in
different amino acids

r1 r2 r3 r4 r5 r6

Mean (μ) 1.46215 1.52468 1.33509 2.45624 2.43543 2.43633
Variance (σ2) 0.00018 0.00014 0.00021 0.00258 0.00070 0.00068
Standard deviation (σ) 0.01325 0.01198 0.01455 0.05080 0.02651 0.02608

ψ1 ψ2 ψ3

Mean (μ) 3.52116 3.14716 4.15748
Variance (σ2) 3.77901 0.03136 1.84675
Standard deviation (σ) 1.94397 0.17709 1.35895
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Table 10.2. Parameter characteristics of the four-atom points A1,A2,A3,A4 in dif-
ferent amino acids

r′1 r′2 r′3 r′′4 r′′5 ψ

Mean (μ) 3.81009 3.81007 3.80852 6.02735 6.02492 2.56770
Variance (σ2) 0.00301 0.00308 0.00520 0.39028 0.39149 2.68689
Standard deviation (σ) 0.05490 0.05552 0.07210 0.62473 0.62569 1.63917

Table 10.3. Phase distribution table of ψ1, ψ2, ψ3, and Ψ

Phase value 1 2 3 4

ψ1 0.1625 0.3507 0.1926 0.3942
ψ2 0.0014 0.5107 0.4863 0.0015
ψ3 0.1155 0.0697 0.3156 0.4993
Ψ 0.3971 0.1937 0.2928 0.1164

10.2 Triangle Splicing Structure of Protein Backbones

There are two types of protein backbone structures. There are chains formed
by three atoms N, A, C alternately, and chains made up of atoms A1, A2,
A3, · · · . They are denoted respectively by

{
L1 = {(N1,A1,C1), (N2,A2,C2), · · · , (Nn,An,Cn)} ,
L2 = {A1,A2,A3, · · · ,An} ,

(10.18)

where n is the length of the protein sequence, that is, the number of amino
acids. We now discuss the structural properties of the protein backbone.

10.2.1 Triangle Splicing Belts of Protein Backbones

We can generally denote the sequences in (10.18) by

L = {Z1, Z2, Z3, · · · , Zn′−1, Zn′} , (10.19)

where n′ is 3n or n, when L is L1 or L2, respectively. We denote the space
coordinates of each point Zj by (x∗j , y

∗
j , z

∗
j ), and L is the space structure

sequence of protein backbones.

Parameter System for Protein Backbone 3D Structures

Similar to the structure parameter theory of four-atom points, we can con-
struct the structure parameter for sequence L. We introduce the relevant
notations as follows:
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1. If the three neighboring atoms in L are considered to form a triangle, then
L would be formed from a series of conjoined triangles. These triangles
are denoted by

Lδ = {δ1, δ2, δ3, · · · , δn′−2} , (10.20)

where δi = δ(ZiZi+1Zi+2) is the triangle with vertices Zi, Zi+1, Zi+2, and
δi and δi+1 are joined and have a common edge Zi+1Zi+2. We call Lδ the
triangle splicing belt of protein backbones.

2. For the triangle splicing belts of protein backbones, we introduce the pa-
rameter system as follows:
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ri = |ZiZi+1|, i = 1, 2, · · · , n′ − 1 ,
r′i = |ZiZi+2|, i = 1, 2, · · · , n′ − 2 ,
φi angle between

−−−−→
ZiZi+1 and

−−−−−−→
Zi+1Zi+2, i = 1, 2, · · · , n′ − 2 ,

ψi torsion angle of triangle δi and δi+1, i = 1, 2, · · · , n′ − 3 ,
ϑi mirror value of the four points Zi, Zi+1, Zi+2, Zi+3 .

(10.21)
This yields the parameter system of the triangle splicing belts of protein
backbones:

Eδ = {ri, r′i′ , φi′ , ψi′′ , ϑi′′ , i ∈ N ′
1, i

′ ∈ N ′
2, i

′′ ∈ N ′
3} , (10.22)

where N ′
τ = {1, 2, · · · , n′ − τ}, τ = 1, 2, 3.

3. For the parameter system Eδ, similarly, we can divide it into two sets:
{
E(1)
δ = {ri, r′i′ , ψi′′ , ϑi′′ , i ∈ N ′

1, i
′ ∈ N ′

2, i
′′ ∈ N ′

3} ,
E(2)
δ = {ri, φi′ , ψi′′ , ϑi′′ , i ∈ N ′

1, i
′ ∈ N ′

2, i
′′ ∈ N ′

3} .
(10.23)

At this time, parameter systems E(1)
δ and E(2)

δ determine each other, and
the 3D configuration of the protein backbone can be completely deter-
mined.

Phase Sequences of the Protein Backbone 3D Structure

Similar to the four-atom points, we can define the phase sequences of the
protein backbone 3D structure. Here we take

ϑ̃ = {(ϑ1, ϑ
′
1), (ϑ2, ϑ

′
2), · · · , (ϑn′−2, ϑ

′
n′−2)} , (10.24)

where ϑi is defined in formula (10.22), while

ϑ′i =

{
+1 , if |ψi| ≤ π/2 ,
−1 , otherwise , i ∈ N ′

3 .
(10.25)

Using (ϑi, ϑ′i) and formula (10.17), similarly, the value of ψi can be extended to
[0, 2π], and its values in the four quadrants of the plane rectangular coordinate
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system can be determined. At this time, we take

ϑ′′ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 , if ϑ = −1, ϑ′ = 1 ,
1 , if ϑ = −1, ϑ′ = −1 ,
2 , if ϑ = 1, ϑ′ = −1 ,
3 , if ϑ = 1, ϑ′ = 1 .

(10.26)

Table 9.1 gives the primary structure, secondary structure, and phase sequence
of protein 12E8H, where the phase sequence of the protein is in the third line.

Plane Unwinding of the Triangle Splicing Belts of Protein
Backbones

If the triangle splicing belt Lδ of a protein backbone is given, its parameter
system E(0)

δ will be determined by formula (10.23). We denote the parame-
ter system of the plane unwinding formula of the protein backbone triangle
splicing belt by

E(0)
δ =

{
ri, r

′
i′ , ψ

0
i′′ , ϑi′′ , i ∈ N ′

1, i
′ ∈ N ′

2, i
′′ ∈ N ′

3

}
, (10.27)

where ψ0
1 = ψ0

2 = · · · = ψ0
n′−2. The triangle splicing belt is then determined

by E(0)
δ

L′ = {Z ′
1, Z

′
2, · · · , Z ′

n′} or L′
δ =

{
δ′1, δ

′
2, · · · , δ′n′−2

}
, (10.28)

where Z ′
1, Z

′
2, · · · , Z ′

n′ are points in the fixed plane π(Z1Z2Z3),

δ′i = δ
(
Z ′
iZ

′
i+1Z

′
i+2

)
,

and satisfy the conditions below:

1. Initial condition: (Z ′
1, Z

′
2, Z

′
3) = (Z1, Z2, Z3).

2. Arc length condition: |Z ′
1Z

′
2| = r1, |Z ′

2Z
′
3| = r2, |Z ′

3Z
′
4| = r3, |Z ′

1Z
′
3| = r4,

|Z ′
2Z

′
4| = r5.

At this time, every protein backbone triangle splicing belt Lδ can be unwound
into a plane triangle belt L′

δ by rigid rotations between the triangles δi and
δi+1. Conversely, a plane triangle splicing belt L′

δ, using a rigid rotation be-
tween triangles δ′i and δ′i+1 can become a protein backbone triangle belt Lδ.
Rigid rotation occurs between δi and δi+1 (or δ′i and δ′i+1), while the parame-
ter structures of the other parts of the backbone triangle splicing belt Lδ (or
plane triangle splicing belt L′

δ) stay the same. The plane triangle splicing belt
of the protein backbone is shown in Fig. 10.3.
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Fig. 10.3. Plane triangle splicing belt of the protein backbones

10.2.2 Characteristic Analysis of the Protein Backbone Triangle
Splicing Belts

The Length and Width of the Protein Backbone Triangle Splicing
Belts

If Lδ is a fixed protein backbone triangle splicing belt, its parameter space
will be E(1)

δ . We can then define the edges and width of this triangle splicing
belt as follows:

1. From vector groups
{
L1 =

{
r′

1, r
′
3, · · · , r′

2n′′−1

}
,

L2 = {r′
2, r

′
4, · · · , r′

2n′′} , (10.29)

where n′′ is the integral value of n′/2. At this time, L1, L2 is formed by
two groups of conjoined vectors, and they are parallel. They are named the
upper edge and lower edge of the triangle splicing belts. Here we denote

�1(n′) =
n′′
∑

i=1

r′2i−1 , �2(n′) =
n′′
∑

i=1

r′2i (10.30)

as the lengths of the upper and lower edge.
2. In triangle δi = δ(ZiZi+1Zi+2), we denote by hi the height from the vertex
Zi+1 to edge ZiZi+2; its formula is:

hi = 2S[δ(ZiZi+1Zi+2)]/|ZiZi+2| = 2Si/r′i , (10.31)

where Si, S[δ(ZiZi+1Zi+2 )] are both the area of triangle
δi = δ(ZiZi+1Zi+2), while r′i = |ZiZi+2| is the length of the line ZiZi+2.

3. We obtain from the calculation on the PDB-SEL database that the values
of hi are quite constant. In the calculation of triangle belts L1,L2, we
obtain the means and variances of hi as

S1 S2 S3 S′ h1 h2 h3 h′

Mean (μ) 1.03572 0.90677 0.82643 6.64234 0.84362 0.74411 0.67951 2.24859
Variance(σ2) 0.00074 0.00031 0.00048 0.72640 0.00134 0.00034 0.00047 0.22056
Standard deviation (σ) 0.02714 0.01768 0.02188 0.85229 0.03663 0.01835 0.02171 0.46964

where S1, S2, S3, S
′ are the areas of triangles δ(NAC), δ(ACN′), δ(CN′A′)

and δ(A1A2A3A4), respectively, while h1, h2, h3, and h′ are relevant
heights of these triangles.



292 10 3D Structure of the Protein Backbone and Side Chains

4. The lengths of �1(n′), �2(n′) follow from the limit theorem:

limn′→∞
�τ
n′ =

{
μ , when L = L1, here n′ = 3n− 2 ,
μ′ , when L = L1, here n′ = n− 2 ,

(10.32)

where τ = 1, 2, while
⎧
⎪⎨

⎪⎩

μ =
1
2
μ(r4 + r5 + r6) =

1
2
(2.45624 + 2.43543 + 2.43633) = 3.664 ,

μ′ =
1
2
μ(r′′4 ) =

6.02735
2

= 3.0137 .

Here, the data of μ(r4), μ(r5), μ(r6), μ(r′′5 ) are given by Tables 10.1
and 10.2.
Using the central limit theorem, the values of �1(n′) and �2(n′) can be
estimated more precisely. We have validated these conclusions with a great
amount of calculations on proteins.

The Relation Analysis of the Phase of the Protein Backbone
Triangle Splicing Belt Between Secondary Structures

It has been mentioned above that the value of the protein backbone triangle
splicing belt phase ϑ′′i is closely correlated to the protein secondary structure.
When ϑ′′i = 0, 3, four-atom points Ai, Ai+1, Ai+2, Ai+3 form a Z type, while
when ϑ′′i = 1, 2, four-atom points Ai, Ai+1, Ai+2, Ai+3 form an E type.
An appendix posted on the Web site [99] gives phase values and secondary
structure sequences of all the proteins in the PDB-Select database. If we
denote by M1 the number of the amino acids in the database which take the
secondary structure H or S, denote by M2 the number of amino acids in the
database which take the secondary structure H and phase value ϑ′′i = 0, 3,
and denote by M3 the number of amino acids in the database which take the
secondary structure S and phase value ϑ′′i = 1, 2, then M2+M3

M1
= 88.25%. From

this, we conclude that the phase of the protein backbone triangle splicing belt
is closely correlated to the secondary structures.

10.3 Structure Analysis of Protein Side Chains

We have stated in Chap. 7 that, for different amino acids, the component
structure of the side chains may vary. We now discuss their configuration
characteristics. We have pointed out before that the backbone of a protein
consists of atoms N, Cα, C alternately, and they form a space triangle belt.
Thus, the side chains of proteins can be considered to be components localized
in this space triangle belt. We discuss first the configuration structure of an
oxygen atom O and an atom CB on the backbones, where the oxygen atom
O is present in all amino acids, while atom CB is present in all amino acids
except the glycines.
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10.3.1 The Setting of Oxygen Atom O and Atom CB

on the Backbones

Relevant Notation

1. We maintain the notation

L = {Z1, Z2, · · · , Z3n} = {N1,A1,C1,N2,A2,C2, · · · ,Nn,An,Cn}
(10.33)

for the backbone of the protein, so the oxygen atom sequences and the
side chain groups sequences are denoted by

{
ā = {O1,O2, · · · ,On} ,
ā = {R1,R2, · · · ,Rn} ,

(10.34)

where Oi, Ri are the oxygen atom and the side chain group of the ith
amino acid, respectively.

2. In the side chain group R, except for glycines, all the other amino acids
contain CB atoms, which are denoted by B atoms. Here, the tetrahedrons
formed by the four-atom vertices N, A, C, O and N, A, C, B are VO, VB.
Their shapes are shown in Fig. 10.4.
Figure 10.4 presents the structural relation of the atoms N, A, C, O, B,
N′, where N′ is the nitrogen atom of the next amino acid. They form
different tetrahedrons separately. For instance, VO = {N,A,C,O}, VB =
{N,A,C,B}, where point B is usually on one side of the plane N A C,
while point O can be on different sides of the plane N A C.

3. For the atom points N, A, C, O, B, N′, their coordinates are denoted
separately by

r∗
τ = (x∗τ , y

∗
τ , z

∗
τ ) , τ = 1, 2, 3, 4, 5, 6 . (10.35)

We have already given the structural relations of the atom points N, A, C,
N′ in the previous section, so we now discuss the relation between atoms
O, B and atom points N, A, C, N′. We denote

{
rτ = r∗

4 − r∗
τ = (xτ , yτ , zτ ) ,

r′
τ ′ = r∗

5 − r∗
τ = (x′τ ′ , y′τ ′ , z′τ ′) ,

(10.36)

and their lengths are rτ , r′τ , τ = 1, 2, 3.
4. In proteins, the tetrahedrons of different amino acids with regard to O, B

atoms are denoted by Vi,O and Vi,B. Similarly, we can define the relevant
atom vectors ri,τ , r′

i,τ , τ = 1, 2, 3 to represent the vectors from atoms
Ni, Ai, Ci to atom Oi and atom point Bi. Similarly to the definition in
(10.36) {

ri,τ = ri,4 − ri,τ = (xi,τ , yi,τ , zi,τ ) ,
r′
i,τ = ri,5 − ri,τ =

(
x′i,τ ′ , y′i,τ ′ , z′i,τ ′

)
,

(10.37)

their lengths are ri,τ , and r′i,τ , τ = 1, 2, 3, i = 1, 2, · · · , n.
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Fig. 10.4. Tetrahedrons VO, VB

Structural Analysis on Tetrahedrons VO, VB

When the protein backbone L is given, the locations of Oi are uniquely de-
termined by the parameters {r2i, r4i, r6i, ϑi}, where ϑi is the mirror reflection
value of the four-atom points A, C, N′, O, which has been defined in Chap. 8.
Here we have the following formulas:

1. Formula for the volume of tetrahedron VO:

VO =
1
6

∣∣
∣
∣
∣
∣

x1 y1 z1
x2 y2 z2
x3 y3 z3

∣∣
∣
∣
∣
∣
, its absolute value . (10.38)

2. Formula for the area of triangle δ(NAC) has been given in Sects. 10.1 and
10.2, which is denoted as S = S(NAC). Here we introduce

hO = 3
VO

S
, hB = 3

VB

S
(10.39)

the height of tetrahedrons VO and VB, respectively, and VO and VB in
(10.39) the volumes of the tetrahedrons. If we denote by ϑO, ϑB the mirror
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reflection values of the tetrahedrons VO, VB, then we have

HO = ϑOhO , HB = ϑBhB , (10.40)

representing the directional volumes of tetrahedrons VO and VB, respec-
tively. The formulas for the mirror reflection value ϑO of the four-atom
points N, A, C, O are

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϑO = sgn
[(−→

NO,
−→
AO,

−→
CO

)]
= sgn

⎛

⎜
⎝

∣
∣
∣
∣
∣
∣∣

x1 y1 z1

x2 y2 z2

x3 y3 z3

∣
∣
∣
∣
∣
∣∣

⎞

⎟
⎠ ,

ϑB = sgn
[(−→

NB,
−→
AB,

−→
CB

)]
= sgn

⎛

⎜
⎝

∣
∣
∣
∣∣
∣
∣

x′1 y′1 z′1
x′2 y

′
2 z

′
2

x′3 y
′
3 z

′
3

∣
∣
∣
∣∣
∣
∣

⎞

⎟
⎠ ,

(10.41)

where x1, · · · , z3 and x′1, · · · , z′3 are defined in (10.36), while

(r1, r2, r3) = 〈r1 × r2, r3〉 =

∣∣
∣
∣
∣
∣

x1 y1 z1
x2 y2 z2
x3 y3 z3

∣∣
∣
∣
∣
∣

is the mixed product of the three vectors r1, r2, r3.

10.3.2 Statistical Analysis of the Structures
of Tetrahedrons VO, VB

The statistical analysis of the structures of the tetrahedrons VO, VB refers to
the statistical analysis of the structural parameters of atoms O, B and N, A,
C, N′. Using the PDB-Select database, we may perform statistical analysis on
these structural parameters (Table 10.4).

Structure Analysis of the Type L and Type D Tetrahedron VB

1. Among the 696,637 amino acids analyzed, the numbers of tetrahedrons
of mirror value +1 or −1 are 37,682 and 658,955 respectively, thus the
proportion of those with mirror reflection value +1 is 5.41%.

2. In the PDB-Select database, for tetrahedron VB, the numbers of type L
and type D tetrahedrons are 653,969 and 141, respectively, hence the
proportion is about 10,000:2. Thus, type D tetrahedrons are rare.
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10.4 Exercises, Analyses, and Computation

Exercise 48. Attempt the following calculation on the atoms of all the pro-
tein backbones in the PDB-Select database:

1. For every atomic sequence in the protein backbone L1 (see the defini-
tion in formula (10.18)), calculate the parameter sequences. The relevant
parameters are defined in formula (10.21).

2. For every atomic sequence in the protein backbone L2 (see the defini-
tion in formula (10.18)), calculate the parameter sequences. The relevant
parameters are defined in formula (10.21).

3. For every atomic sequence in the protein backbone L2 (see the definition
in formula (10.18)), where Ai are replaced by Ni or Ci separately, calculate
the parameter sequences. The relevant parameters are defined in formula
(10.21).

Exercise 49. Based on the calculation in Exercise 48, provide the following
discussion and analysis:

1. Analyze the stability of each parameter, and calculate its mean, variance
and standard deviation.

2. In the protein backbone L2, when the atomic sequences are Ai, Ni, and
Ci, respectively, compare the correlation of each parameter sequence.

3. It can been seen from the above analysis that the torsion angle se-
quences ψi and mirror sequences ϑi are unstable. Attempt a histogram
analysis of the torsion angle sequences ψi and attempt to perform fre-
quency analysis on the mirror sequences ϑi.

Exercise 50. From the calculation in Exercise 48, task 3, we obtain the tor-
sion angle sequence ψi and mirror sequence ϑi for the atomic sequence Ai, and
therefore obtain the phase sequence ϑ′′i (see the definition in formula (10.26)).
Perform the following calculations:

1. Compare the statistical properties of the phase sequence ϑ′′i with the sec-
ondary structure sequence (see the definition and explanation in formula
(9.1) and Table 9.1). For instance, the joint distribution of (ϑ′′i , ηi), prop-
erties such as the interprediction between ϑ′′i and ηi.

2. For the phase sequence ϑ′′i , there is also the problem of predicting ϑ′′i from
the primary structure sequence ξi. Attempt to calculate the informational
statistics table of the primary structure ξi and the phase sequences ϑ′′i
using the method in Chap. 9, and predict the phase sequences from the
primary structure sequences.

Exercise 51. Attempt the following calculations on the atoms of all the pro-
tein side chains in the PDB-Select database:

1. For each amino acid in the database, calculate each parameter for the
tetrahedron structure VB = {N,A,C,B}.
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2. For the pairs of conjoined amino acids in the database, calculate each
parameter for the five-atom structure {N,A,C,O,N′}, where N′ is the
nitrogen atom of the next amino acid.

3. For the pairs of conjoined amino acids in the database, calculate each
parameter for the six-atom structure {N,A,C,B,O,N′}, where N’ is the
nitrogen atom of the next amino acid.

4. For the pairs of conjoined amino acids in the database, calculate each
parameter for the eight-atom structure {N,A,C,B,N′,A′,C′,B′}, where
N′, A′, C′, B′ are the corresponding atoms of the next amino acid.

5. For different amino acids and dipeptide chains, calculate the structural
data for the atomic distances.

Exercise 52. Based on the calculation in Exercise 51, provide the following
discussion and analysis:

1. Analyze the stability of each parameter, and calculate its mean, variance,
and standard deviation. Also, discuss the similarities and differences be-
tween distinct amino acids.

2. From this, determine the structural characteristics of the related atoms,
e.g., four points on the same plane, the unicity of the tetrahedron
phase VB.

Exercise 53. Based on the calculation in Exercises 51 and 52, provide the fol-
lowing discussion and analysis for different amino acids and dipeptide chains:

1. For different dipeptide chains, based on the calculation in Exercise 51,
task 4, construct the second-rank topological structure map for eight-atom
points {N,A,C,B,N′,A′,C′,B′}.

2. For different amino acids and dipeptide chains, based on the calculation in
Exercise 51, task 4, construct the second-rank topological structure map
for all the atom points.

3. Together with the classification in Table 10.4, discuss the similarities and
differences between the second-ranked topological structure map.



11

Alignment of Primary and Three-Dimensional

Structures of Proteins

In the previous chapter, protein three-dimensional structures and a method
for predicting protein secondary structures using informatics and statistics
have been introduced. In this chapter, we focus on the issues of alignment
algorithms for the three-dimensional structure of proteins.

11.1 Structure Analysis for Protein Sequences

In biology, sequence analysis refers to analyzing DNA (or RNA) sequences and
protein sequences. In the above, we mainly focused our discussion on DNA
(or RNA). Here we introduce structure analysis for protein sequences.

11.1.1 Alignment of Protein Sequences

Structure analysis for proteins is a huge area of active research. It can be
divided into the following aspects.

Research on Protein Primary Structures

It is known that proteins are formed by binding different amino acid residues,
and protein primary structures are the sequences consisting of different per-
mutations of these amino acids. Thus, the study of protein primary structures
concerns the sequence structures of these different amino acids’ permutations.
The issues are:

1. Structure analysis and alignment of protein sequences. Problems such as
mutation and reorganization, etc. are relevant to our understanding of pro-
tein structures, and the evolution and classification of protein structures
are also related. Thus, sequence alignment is still a basic problem.
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2. Grammar and word-building analysis for protein sequence structures. If
protein sequences are disassembled, many small protein sequence segments
result. These segments are called characteristic chains in biology. If peptide
chains are considered to be the basic building blocks for protein structure
and function, they would correspond to words and phrases of a book. In
order to get an overview of the structure and functions of proteins, one
approach is to study the grammar and syntax. That is, to set up special
databases (databases of grammar and syntax) of the peptide chains whose
structure and function is known, and then search and compare the general
structures of proteins in these databases, so that the general structures
and functions of these proteins can be determined. This problem is still
related to sequence alignment, where the segments are usually short in
length and large in number.

Research on Protein Three-Dimensional Structures
and Their Functions

Protein three-dimensional structure includes secondary structure and other
higher level structures. From biological research, we know that the activity and
function of a protein is related to its three-dimensional structure. If a protein
is heated, it will be denatured and thus lose its activity. It is found biologically
that, for the proteins whose primary structures are different, if they have the
same three-dimensional structures, their functions may be similar. Therefore,
the research on protein three-dimensional structures is closely related to that
of their functions.

The topic of protein three-dimensional structures covers many aspects.
They are:

1. Research on protein secondary structures. In biology, peptide chains with
special structural characteristics are called secondary structures, such as
α helices and β sheets. These structures are common units of protein
general three-dimensional structures, and their combinations determine
the functions of the proteins they make up. Therefore, the research on
protein secondary structures is essential to that of the three-dimensional
structures. The analysis of protein secondary structures focuses on their
prediction, which is to confirm protein secondary structure characteristics
according to their primary sequences.
Many mathematical tools and methods have been used in the research on
protein secondary structure prediction, while so far, the accuracy of the
predictions is far from satisfactory. In the past ten years, the accuracy
of the predictions of α helices and β sheets remained at around 70%. For
some fixed proteins whose types are known, the accuracy of the prediction
has improved. However, because the types are fixed, their definition of the
prediction accuracy is not as good.

2. The main unresolved difficulty present in the analysis of protein three-
dimensional structures is the long distance folding of the three-dimensional
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structures. That is, under what condition will the protein three-dimen-
sional structures begin to fold back, and to which part of the protein
will they join. Although there is much research involved in studying this
problem, no efficient method has yet been found.

3. Research on the relationship between protein three-dimensional structures
and their functions. This problem has always been both of great interest
and fraught with difficulties in bioinformatics. Since the formulation of the
proposal of the proteome project, the research on the relationship between
protein three-dimensional structures and their functions has focused on
the interactions between different proteins and the relationship between
these interactions and protein three-dimensional structures.

Generally speaking, the research on protein three-dimensional structures and
the relationship between protein three-dimensional structures and their func-
tions is still in an early stage of development. So far, large amounts of data
have been accumulated and relevant information for medicine and biology is
being drawn upon. However, there is still a long way to go and many concepts
need to be developed until mature applications are carried out. These are the
areas where mathematics will play an important role, although we will not
discuss them in detail in this book.

11.1.2 Differences and Similarities Between the Alignment
of Protein Sequences and of DNA Sequences

Above, we specified some of the problems in protein structure research. We
know from existing methods that although some are just in the early stages,
many are related to sequence alignment, and especially to multiple sequence
alignment which plays an important role. However, some differences lie be-
tween the alignment of protein sequences and that of DNA sequences; thus
the discussion in the above chapters does not directly translate to the com-
putation of the alignment of protein sequences. The differences between the
alignment of protein sequences and that of DNA sequences are described next.

Differences Between the Constitution of Protein Sequences
and that of DNA Sequences

1. Proteins usually consist of the 20 commonly occurring amino acids, thus
they are more complex than DNA which consists of only four kinds of nu-
cleotides. In the alignment of DNA sequences, we assume the distributions
of sequences follow a uniform distribution. This assumption is suitable for
DNA sequences, but not for protein sequences. According to our statistical
analysis and computation, even in the Swiss-Prot database, the statistics
of single amino acids does not follow a uniform distribution. For the statis-
tics on polypeptide chains, the differences between their distributions are
even greater.



302 11 Alignment of Primary and Three-Dimensional Structures of Proteins

2. The length of a protein sequence is usually not large. For some long protein
sequences, the lengths are in the thousands of residues. Thus in the pair-
wise alignment of sequences, an increase in the computational complexity
will not be the main issue. Therefore, the advantages of using the SPA
algorithm over the dynamic programming algorithm will not be immedi-
ately obvious. However, when it comes to multiple sequence alignment,
the design of fast algorithms will still be a key issue.

3. The penalty functions for the alignment of DNA sequences are simpler,
either in the Hamming matrix or the WT-matrix as they both involve the
strong symmetry condition. The penalty functions used in the alignment
of protein sequences are the PAM matrix series and BLOSUM matrix
series, neither of which involves the strong symmetry condition, or even
the symmetry condition. Therefore, it must be further examined whether
the series of limit theorems given in this book will hold for the alignment
of protein sequences.

Similarities Between the Alignment of Protein Sequences
and that of DNA Sequences

The main similarity between the alignments of protein sequences and of DNA
sequences is that the theory of their modulus structure analysis still applies.
Therefore, the definition and algorithm of uniform alignment remains effective.
These will be discussed in the following text.

11.1.3 The Penalty Functions for the Alignment of Protein
Sequences

The penalty functions used in the alignment of protein sequences are the
PAM and BLOSUM matrix series. We describe their origin and properties as
follows.

Origin of the PAM and BLOSUM Matrix Series

In the alignment of DNA sequences, the Hamming matrix and the WT-matrix
used as the penalty functions are relatively simple, and the settings are easy
to understand. They both have the same characteristic of strong symmetry.
In the Hamming matrix, the errors of the nucleotides occurring in the align-
ment are given the same penalty, while in the WT-matrix, a, g and c, u are
differentiated by giving smaller penalties due to the errors. This is related to
the double helix structure of DNA and the central dogma.

Because of the differences in protein sequences as compared to DNA se-
quences, the determination of their penalty function is more complex. In the
PAM matrix series and the BLOSUM matrix series, it can usually be de-
termined by statistical computation methods. Their values are the negative
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values of the penalty functions; the closer the amino acids are, the higher the
score will be. Thus, we call them scoring matrices. The related steps of the
computation are outlined below:

1. Choose the known homologous sequences to be statistical samples whose
homologies have a specific biological definition. The PAM matrix series
and BLOSUM matrix series are the results of the statistics applied to
different types and scales.

2. Alignment with the selected homologous sequence samples and the result
is constructed for a group of pairwise sequences.

3. Based on the statistics of the selected pairwise sequences, we compute
their joint frequency distribution p(a, b), a, b ∈ Vq, where q is equal to 20,
23 or else. The symbol p(a, b) denotes the frequency of a, b occurring in
the same position of the pairwise sequences after alignment.

4. According to the frequency distribution p(a, b), a, b ∈ Vq, we calculate
their mutual entropy density function:

k(a, b) = log
p(a, b)
p(a)q(b)

, a, b ∈ Vq , (11.1)

where
p(a) =

∑

b∈Vq

p(a, b) , q(b) =
∑

a∈Vq

p(a, b) .

5. Properly magnify the mutual entropy density function k(a, b), and make
it an integer, to obtain the scoring matrix.

Properties of the Relative Entropy Density Functions

In informatics, it is known that the average of the relative entropy density
function is the Kullback–Leibler divergence.

D0 =
∑

a,b∈Vq

p(a, b)k(a, b) =
∑

a,b∈Vq

p(a, b) log
p(a, b)
p(a)q(b)

, (11.2)

where D0 ≥ 0 definitely holds, and the equality holds if and only if

p(a, b) = p(a)q(b)

holds for any a, b ∈ Vq.
Besides theD0 index, another function is frequently used in bioinformatics,

namely,

D1 =
∑

a,b∈Vq

p(a)q(b)k(a, b) =
∑

a,b∈Vq

p(a)q(b) log
p(a, b)
p(a)q(b)

. (11.3)
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For D1, the relationship

D1 = −
∑

a,b∈Vq

p(a)q(b) log
p(a)q(b)
p(a, b)

holds. Moreover, it is clear that D1 ≤ 0 holds.
This shows that D0, and D1 are two important indices that can be used

to assess protein similarity. If we denote (A′, B′) as the alignment sequences
for (A,B), then

(A′, B′) = ((c1, d1), (c2, d2), · · · , (cnc , dnc)) .

We denote as pA,B(c, d), where c, d ∈ Vq, the frequency of (cj , dj) taking the
value (c, d), and then compute

{
KL(C|D) =

∑
c,d∈Vq

pC,D(c, d)k(c, d) ,
HL(C|D) =

∑
c,d∈Vq

pC(c)pb′(d)k(c, d) ,
(11.4)

where k(c, d) is determined by the data of the PAM or BLOSUM scoring table,
and

pC(c) =
∑

d∈Vq

pC,D(c, d) , pb′(d) =
∑

c∈Vq

pC,D(c, d) .

If KL(A|B) approaches or exceeds D0, (A,B) can be considered similar. If
HL(A|B) is close to or less than D1, (A,B) can be considered not similar.

However, in the sequence alignment, the scores for the segments of the
aligned sequences should be raised in local areas. This will be further explained
later in the book.

Several Typical Scoring Matrices in the Alignment
of Protein Sequences

The following typical scoring matrices in the alignment of protein sequences
are commonly used in various bioinformatics resources and websites. We enu-
merate them as follows:

1. PAM 70 matrix. The following is the PAM 70 matrix [“pam” version 1.0.6
(July 28, 1993)]. The main parameters are

D0 = 1.60 , D1 = −2.77 , Max = 13 , Min = −11 ,

where Max and Min are, respectively, the maximum value and the mini-
mum value of the matrix.
The letters are the one-letter codes of the amino acids, “−” is a virtual
symbol. B represents N or D; Z represents Q or E; X represents all kinds
of amino acids.

2. BLOSUM 45 matrix. The data of the statistical samples is obtained
from the following: blocks Database = /data/blocks-5.0/blocks.dat,D0 =
0.3795, D1 = −0.2789.
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A R N D C Q E G H I L K M F P S T W Y V B Z X -
A 5 -4 -2 -1 -4 -2 -1 0 -4 -2 -4 -4 -3 -6 0 1 1 -9 -5 -1 -1 -1 -2 -11
R -4 8 -3 -6 -5 0 -5 -6 0 -3 -6 2 -2 -7 -2 -1 -4 0 -7 -5 -4 -2 -3 -11
N -2 -3 6 3 -7 -1 0 -1 1 -3 -5 0 -5 -6 -3 1 0 -6 -3 -5 5 -1 -2 -11
D -1 -6 3 6 -9 0 3 -1 -1 -5 -8 -2 -7 -10 -4 -1 -2 -10 -7 -5 5 2 -3 -11
C -4 -5 -7 -9 9 -9 -9 -6 -5 -4 -10 -9 -9 -8 -5 -1 -5 -11 -2 -4 -8 -9 -6 -11
Q -2 0 -1 0 -9 7 2 -4 2 -5 -3 -1 -2 -9 -1 -3 -3 -8 -8 -4 -1 5 -2 -11
E -1 -5 0 3 -9 2 6 -2 -2 -4 -6 -2 -4 -9 -3 -2 -3 -11 -6 -4 2 5 -3 -11
G 0 -6 -1 -1 -6 -4 -2 6 -6 -6 -7 -5 -6 -7 -3 0 -3 -10 -9 -3 -1 -3 -3 -11
H -4 0 1 -1 -5 2 -2 -6 8 -6 -4 -3 -6 -4 -2 -3 -4 -5 -1 -4 0 1 -3 -11
I -2 -3 -3 -5 -4 -5 -4 -6 -6 7 1 -4 1 0 -5 -4 -1 -9 -4 3 -4 -4 -3 -11
L -4 -6 -5 -8 -10 -3 -6 -7 -4 1 6 -5 2 -1 -5 -6 -4 -4 -4 0 -6 -4 -4 -11
K -4 2 0 -2 -9 -1 -2 -5 -3 -4 -5 6 0 -9 -4 -2 -1 -7 -7 -6 -1 -2 -3 -11
M -3 -2 -5 -7 -9 -2 -4 -6 -6 1 2 0 10 -2 -5 -3 -2 -8 -7 0 -6 -3 -3 -11
F -6 -7 -6 -10 -8 -9 -9 -7 -4 0 -1 -9 -2 8 -7 -4 -6 -2 4 -5 -7 -9 -5 -11
P 0 -2 -3 -4 -5 -1 -3 -3 -2 -5 -5 -4 -5 -7 7 0 -2 -9 -9 -3 -4 -2 -3 -11
S 1 -1 1 -1 -1 -3 -2 0 -3 -4 -6 -2 -3 -4 0 5 2 -3 -5 -3 0 -2 -1 -11
T 1 -4 0 -2 -5 -3 -3 -3 -4 -1 -4 -1 -2 -6 -2 2 6 -8 -4 -1 -1 -3 -2 -11
W -9 0 -6 -10 -11 -8 -11 -10 -5 -9 -4 -7 -8 -2 -9 -3 -8 13 -3 -10 -7 -10 -7 -11
Y -5 -7 -3 -7 -2 -8 -6 -9 -1 -4 -4 -7 -7 4 -9 -5 -4 -3 9 -5 -4 -7 -5 -11
V -1 -5 -5 -5 -4 -4 -4 -3 -4 3 0 -6 0 -5 -3 -3 -1 -10 -5 6 -5 -4 -2 -11
B -1 -4 5 5 -8 -1 2 -1 0 -4 -6 -1 -6 -7 -4 0 -1 -7 -4 -5 5 1 -2 -11
Z -1 -2 -1 2 -9 5 5 -3 1 -4 -4 -2 -3 -9 -2 -2 -3 -10 -7 -4 1 5 -3 -11
X -2 -3 -2 -3 -6 -2 -3 -3 -3 -3 -4 -3 -3 -5 -3 -1 -2 -7 -5 -2 -2 -3 -3 -11
- -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 1

A R N D C Q E G H I L K M F P S T W Y V B Z X -
A 5 -2 -1 -2 -1 -1 -1 0 -2 -1 -1 -1 -1 -2 -1 1 0 -2 -2 0 -1 -1 0 -5
R -2 7 0 -1 -3 1 0 -2 0 -3 -2 3 -1 -2 -2 -1 -1 -2 -1 -2 -1 0 -1 -5
N -1 0 6 2 -2 0 0 0 1 -2 -3 0 -2 -2 -2 1 0 -4 -2 -3 4 0 -1 -5
D -2 -1 2 7 -3 0 2 -1 0 -4 -3 0 -3 -4 -1 0 -1 -4 -2 -3 5 1 -1 -5
C -1 -3 -2 -3 12 -3 -3 -3 -3 -3 -2 -3 -2 -2 -4 -1 -1 -5 -3 -1 -2 -3 -2 -5
Q -1 1 0 0 -3 6 2 -2 1 -2 -2 1 0 -4 -1 0 -1 -2 -1 -3 0 4 -1 -5
E -1 0 0 2 -3 2 6 -2 0 -3 -2 1 -2 -3 0 0 -1 -3 -2 -3 1 4 -1 -5
G 0 -2 0 -1 -3 -2 -2 7 -2 -4 -3 -2 -2 -3 -2 0 -2 -2 -3 -3 -1 -2 -1 -5
H -2 0 1 0 -3 1 0 -2 10 -3 -2 -1 0 -2 -2 -1 -2 -3 2 -3 0 0 -1 -5
I -1 -3 -2 -4 -3 -2 -3 -4 -3 5 2 -3 2 0 -2 -2 -1 -2 0 3 -3 -3 -1 -5
L -1 -2 -3 -3 -2 -2 -2 -3 -2 2 5 -3 2 1 -3 -3 -1 -2 0 1 -3 -2 -1 -5
K -1 3 0 0 -3 1 1 -2 -1 -3 -3 5 -1 -3 -1 -1 -1 -2 -1 -2 0 1 -1 -5
M -1 -1 -2 -3 -2 0 -2 -2 0 2 2 -1 6 0 -2 -2 -1 -2 0 1 -2 -1 -1 -5
F -2 -2 -2 -4 -2 -4 -3 -3 -2 0 1 -3 0 8 -3 -2 -1 1 3 0 -3 -3 -1 -5
P -1 -2 -2 -1 -4 -1 0 -2 -2 -2 -3 -1 -2 -3 9 -1 -1 -3 -3 -3 -2 -1 -1 -5
S 1 -1 1 0 -1 0 0 0 -1 -2 -3 -1 -2 -2 -1 4 2 -4 -2 -1 0 0 0 -5
T 0 -1 0 -1 -1 -1 -1 -2 -2 -1 -1 -1 -1 -1 -1 2 5 -3 -1 0 0 -1 0 -5
W -2 -2 -4 -4 -5 -2 -3 -2 -3 -2 -2 -2 -2 1 -3 -4 -3 15 3 -3 -4 -2 -2 -5
Y -2 -1 -2 -2 -3 -1 -2 -3 2 0 0 -1 0 3 -3 -2 -1 3 8 -1 -2 -2 -1 -5
V 0 -2 -3 -3 -1 -3 -3 -3 -3 3 1 -2 1 0 -3 -1 0 -3 -1 5 -3 -3 -1 -5
B -1 -1 4 5 -2 0 1 -1 0 -3 -3 0 -2 -3 -2 0 0 -4 -2 -3 4 2 -1 -5
Z -1 0 0 1 -3 4 4 -2 0 -3 -2 1 -1 -3 -1 0 -1 -2 -2 -3 2 4 -1 -5
X 0 -1 -1 -1 -2 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 -2 -1 -1 -1 -1 -1 -5
- -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 1

3. BLOSUM 62 matrix. The data of the statistical samples are obtained
from the following: blocks Database = /data/blocks-5.0/blocks.dat,D0 =
0.6979, D1 = −0.5209.

4. BLOSUM 80 matrix. The data of the statistical samples are obtained
from the following: blocks Database = /data/blocks-5.0/blocks.dat,D0 =
0.9868, D1 = −0.7442.

5. PAM 30 matrix. The following is “pam” version 1.0.6 (28 July 1993). The
main parameters are D0 = 2.57, D1 = −5.06, Max = 13, Min = −17.
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11.1.4 Key Points of the Alignment Algorithms
of Protein Sequences

Using the scoring matrix of the protein sequence alignment, the alignment of
protein sequences can be carried out. The dynamic programming algorithm,
SPA (which is based on statistical judgment), and the algorithms for multi-
ple sequence alignment given above, are all based on the data for DNA (or
RNA). Therefore, corresponding complementarity and modification should be
made for protein sequences. The main points of modification of the related
algorithms are illustrated as follows.

Dynamic Programming Algorithm for the Alignment
of Protein Sequences

The basic steps of the dynamic programming algorithm remain the same. We
compute with the PAM or BLOSUM matrix directly, following the discussion
in Sect. 1.3.

Illustration of the SPA Algorithm

The key point of SPA is the computation of sliding window functions and the
statistical estimations based on them. The sliding window functions are given
by (4.10). They are

w(A,B; i, j, n) = w
(
a[i+1,i+n], b[j+1,j+n]

)
=

1
n

n∑

k=1

w(ai+k , bj+k) . (11.5)

In the alignment of protein sequences, we only need to change the w(a, b) func-
tion into the corresponding scoring function v(a, b). In the statistical estimate
formulas (4.14) and (4.16) used in SPA, the lack of bias and the consistency of
these estimates can not be ensured, since complete randomness does not hold
in the structure of protein sequences. This shows that SPA can still be used in
the alignment of protein sequences, while more modifications and computa-
tions are needed to determine the position of the displacement mutation after
the parameter estimation. Moreover, in SPA, further analysis is needed for
the selection of parameters n, h, θ, θ′, τ . The key problems in the alignment
of protein sequences are: how to make use of the probability model and the
limit properties of the stochastic sequence, and how to combine the origin
of the PAM and BLOSUM scoring matrix series to achieve more systematic
results.

Illustration of the Algorithm of the Alignment of Multiple Protein
Sequences

The theory of sequence segments and module structures has nothing to do
with the value of q in Vq , thus the definition of the uniform alignment and the
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algorithm for multiple sequence alignment can also be used in the alignment
of multiple protein sequences.

Since the multiple sequence alignment given in this book is based on pair-
wise sequence alignment, and protein sequences are relatively short, the dy-
namic programming of their pairwise alignment is comparatively mature, and
many websites and software packages can be used directly. Therefore, the
alignment of multiple protein sequences can be implemented. First we get the
pairwise sequence alignment by the dynamic programming algorithm, and
then the sequence matrix and the module structure matrix of their pairwise
sequence alignment are obtained. Finally, the alignment of multiple protein
sequences can be implemented through the use of Steps 5.3.2 and 5.3.4 in the
algorithm for multiple sequence alignment.

Further discussions are needed concerning whether the theory of the
stochastic model of DNA sequences and performance analysis (such as the the-
ory of complexity analysis and error analysis) can be used in the alignment
and analysis of protein sequences. Some assumptions such as the complete
randomness of the sequences, the limit properties of pairwise independent se-
quences, the characteristics of stochastic mutation flows, etc., need further
demonstration and inspection. All of them require more discussion and study
for the future development of the theory.

11.2 Alignment of Protein Three-Dimensional Structures

How to determine the similarity of the three-dimensional structures of different
proteins, whether the method is reasonable and whether the expression of the
similarity is valid are problems to be discussed and solved in the alignment of
protein three-dimensional structures.

11.2.1 Basic Idea and Method of the Alignment
of Three-Dimensional Structures

Alignment of Protein Three-Dimensional Structures

The traditional method of studying the homology of protein three-dimensional
structures uses space movement and rotation [21, 51] to achieve the optimal
fitting of every atom’s point. This method is efficient for comparatively short
local polypeptide chains (such as domain structures), but not so efficient for
longer protein sequences. As movement and rotation are simple rigid transfor-
mations, they are not suitable for the complex comparison of protein three-
dimensional structures. In this book, we try to use the sequence alignment
algorithm to discuss the similarity of protein three-dimensional structures.
Our main idea is outlined as follows:
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1. The key to discussing protein three-dimensional structures is the three-
dimensional structure of their backbones. Protein backbones can be con-
sidered to be spliced by a series of triangles, which are called the triangle
splicing belts of protein backbones.

2. In the triangle splicing belt of a protein backbone, the length of each
edge is relatively constant. The key to determining the configuration of
a protein backbone is the dihedral angle between two neighboring trian-
gles, and the value of the dihedral angle ranges within the interval [−π, π)
(or [0, 2π)). Thus the key to determining the configuration of a protein
backbone is the sequence of the dihedral angles between two neighboring
triangles. This sequence is called the dihedral angle sequence of a protein
three-dimensional structure.

3. Homology alignment of protein three-dimensional structures can be car-
ried out using the dihedral angle sequences of the protein three-dimensional
structures, from which the determination of the homology of different
protein three-dimensional structures can be obtained. Using these cal-
culations, the homology of protein three-dimensional structures can be
classified and searched.

We have illustrated above that the key to the determination of protein three-
dimensional structures is the three-dimensional structure of their backbones,
while the three-dimensional structure of the backbones can be spliced by a se-
ries of triangles. In the triangle splicing belt, the key to determining the con-
figuration of the protein backbone is the dihedral angle sequence between two
neighboring triangles, which are denoted as Ψ = {ψ1, ψ2, · · · , ψn−2}, where ψi
is the angle between triangles Δi and Δi+1, whose values range in the interval
V = [−π, π) (or V = [0, 2π)). We call Ψ the torsion angle sequence of this
protein three-dimensional structure. In this chapter, the alignment of protein
three-dimensional structures represented by their torsion angle sequences. We
denote it as V+ = V ∪ {−} and call it the expanding set of V .

Penalty Function of the Torsion Angle Sequences

Let Ψ = (ψ1, ψ2, · · · , ψn1), and Φ = (φ1, φ2, · · · , φn2) be the torsion angle
sequences of two proteins, where ψi and φi are the radian angles whose values
range in (−π, π). We now give the definition of the penalty functions of the
radian angle and the insertion symbol in ψ′, φ′ ∈ V+. We divide them into two
types, discrete and consecutive. The definitions of their penalty functions are
given as follows:

1. Penalty function of the discrete type. If the set V is divided into four
parts [0, π/2), [π/2, π), [−π,−π/2), [−π/2, 0), these would be the four
phases of Cartesian coordinates. If the value of angle ψ is determined by
its phase, its range is given by V4 = {0, 1, 2, 3}. The penalty function on
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set V5 = {0, 1, 2, 3,−} will then be

d(ψ′, φ′) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

|ψ′ − φ′|(mod 2) , if ψ′, φ′ ∈ V4 ,

2 , if one of ψ, φ contains virtual symbol “−”,
but the other does not contain virtual
symbol “−”,

0 , if both of the angles ψ, φ contain virtual
symbol “−”.

(11.6)
2. Penalty function of the consecutive type. If the values of angles ψ′, φ′

range within V+, the penalty function will be

d(ψ′, φ′) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

|ψ′ − φ′| , if neither of the angles ψ, φ contains virtual
symbol “−”,

π , if one of the angles ψ, φ contains virtual
symbol “−”,
and the other does not contain virtual
symbol “−”,

0 , if both of the angles ψ, φ contain virtual
symbol “−”.

(11.7)
3. Denote by Ψ ′

s = {ψ′
s,1, ψ

′
s,2, · · · , ψ′

s,n′}, s = 1, 2, two sequences whose
lengths are the same and whose values range within either V5 or V+. The
total value of the penalty function of Ψ ′

1, Ψ
′
2 is then defined as

d (Ψ ′
1, Ψ

′
2) =

n′
∑

i=1

d
(
ψ′

1,i, ψ
′
2,i

)
, (11.8)

where d(ψ′
1,i, ψ

′
2,i) is defined in (11.6) or (11.7) according to the discrete

or consecutive type.
The definitions in (11.6) and (11.7) can be easily rewritten for scoring
functions. For example,

w(ψ′, φ′) =

{
2 − d(ψ′, φ′) , if ψ′, φ′ ∈ V5 ,

π − d(ψ′, φ′) , if ψ′, φ′ ∈ V+ .
(11.9)

Minimum Penalty Alignment of the Torsion Angle Sequences

We denote by Ψs = {ψs,1, ψs,2, · · · , ψs,ns−2}, s = 1, 2 the torsion angle se-
quences of two protein three-dimensional structures, where ns, s = 1, 2 are
the lengths of these two proteins. Here, Ψ ′

1 and Ψ ′
2 are two sequences whose

values range within V5 or V+. We call (Ψ ′
1, Ψ

′
2) the alignment sequences of
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(Ψ1, Ψ2) if sequences Ψ ′
1 and Ψ ′

2 are the same in length and they change into
sequences Ψ1, Ψ2 after deleting symbols “−”.

We call (Ψ∗
1 , Ψ

∗
2 ) the minimum penalty alignment sequences (or minimum

penalty alignment) of (Ψ1, Ψ2), if (Ψ∗
1 , Ψ

∗
2 ) are alignment sequences of (Ψ1, Ψ2)

and d(Ψ∗
1 , Ψ

∗
2 ) ≤ d(Ψ ′

1, Ψ
′
2) holds for any (Ψ ′

1, Ψ
′
2) which are the alignment

sequences of (Ψ1, Ψ2).
For the penalty functions of fixed torsion angle sequences (Ψ1, Ψ2) and

(11.8), their minimum penalty alignment sequences (Ψ∗
1 , Ψ

∗
2 ) can be obtained

by the Smith–Waterman dynamic programming algorithm.

Measurement Index for the Homology of Protein
Three-Dimensional Structures

From the minimum penalty alignment sequences (Ψ∗
1 , Ψ

∗
2 ) of torsion angle

sequences (Ψ1, Ψ2), the measurement index for their similarity can be obtained.
It is defined as follows:

1. Denote the total homology measurement index by the total value of the
minimum penalty alignment d(Ψ∗

1 , Ψ
∗
2 ) for the torsion angle sequences

(Ψ1, Ψ2).
2. The total homology measurement index d(Ψ∗

1 , Ψ
∗
2 ) can be decomposed as

follows. Denote by k∗ the total number of inserted symbols in sequences
(Ψ∗

1 , Ψ
∗
2 ), and define

d0(Ψ∗
1 , Ψ

∗
2 ) = d(Ψ∗

1 , Ψ
∗
2 ) − k∗π (11.10)

to be the measurement index of the local homology of the three-dimen-
sional structures of proteins 1 and 2.

3. It is known from the alignment algorithm that the minimum penalty align-
ment (Ψ∗

1 , Ψ
∗
2 ) of torsion angle sequences (Ψ1, Ψ2) may be nonexclusive.

We then take the maximum value k∗ of the total number of inserted
symbols in the minimum penalty alignment sequences, and d0(Ψ∗

1 , Ψ
∗
2 ) in

formula (11.8) would be the maximum value of the local similarity mea-
surement indices.

From this, we find that [k∗, d0(Ψ∗
1 , Ψ

∗
2 )] are the two measurement indices for

the homology of protein three-dimensional structures. They are the decompo-
sition of the total homology measurement index d(Ψ∗

1 , Ψ
∗
2 ).

11.2.2 Example of Computation in the Discrete Case

Analysis of Protein Three-Dimensional Structures
with Multiple Models

In the PDB database, because of different measurements performed for its
structure determination, a protein may have multiple models. For example,
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Table 11.1. Spatial phase characteristic alignment for protein PDB1BF9

Model Stable region of the torsion Phase Atom site of origin
angles of amino acids and terminus of the

stable region

1 222 020120111213333301133333300 11013223000 33–404
2 131 000320111233333201133220300 13013223020 607–979
3 122 020120111213333201133333300 11011203011 1181–1552
4 010 000120111213333201133333300 13011203011 1755–2126
5 010 020120111213333301133333300 11003203000 2329–2700
6 131 020120111213333201133333300 30101223012 2903–3274
7 113 020130111213333301133333300 31003223010 3477–3848
8 133 020130111213333201133333300 31011223013 4051–4422
9 001 020120111213333201133333300 13011223011 4625–4996

10 220 020120111233332301133332300 13013223020 5199–5570
11 111 000120111213333201133333300 13013223022 5773–6144
12 303 020120111213333301133333300 31011223030 6347–6718
13 303 020120111213333311123220300 13013223031 6921–7292
14 022 000120111213333301133333300 31011223032 7495–7866
15 201 020120111213333201133333300 11101223001 8069–8440
16 021 020130111213333201133333300 11011203021 8643–9014
17 002 020120111213333201133333300 30101223011 9217–9588
18 011 000130111233333201133333300 31011223001 9791–10162
19 000 020120111213333301133333300 11101203010 10365–10736
20 220 000120111213333201133333300 11011203021 10939–11310
21 102 020120111213333301133333300 31013223020 11513–11884
22 103 020130111233332300133333300 31001223002 12087–12458
23 202 020130 11121| {z }

β-sheet

3333301133333300| {z }
Down α-helix| {z }

Bonding region

30101223 12661–13032

protein PDB1BF9 has 23 models, and each model consists of 41 amino acids.
All of their primary structures are the same, while their spatial coordinates
are different (see file PDB1BF9, PDB database). For the backbones of these
23 models, we compute the value of their phase characteristics, shown in
Table 11.1.

In Table 11.1, it is obvious that the phase characteristic sequences have
bonding regions and β sheet regions. The bonding regions and α-helix regions
of these 23 models can be visualized using Pymol, Rasmol, and other software
on the data file PDB1BF9. We can see that the three-dimensional structures
of their backbones are similar, especially in the stable regions.

In Table 11.2, the values of torsion angles range in the interval V = [0, 2π).
We can see that at sites 3–30, stable regions are formed.
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Table 11.2. Torsion angle data for the 23 models of protein PDB1BF9

1 3.9 4.6 4.9 5.4 4.4 5.8 1.7 3.1 4.9 2.5 5.6 1.1 3.4 1.8 2.4 3.1 2.3 3.2 1.7 5.6
2 6.2 2.7 1.1 5.6 5.0 5.7 2.2 3.1 4.7 2.9 5.4 1.0 3.5 2.0 2.3 2.7 2.5 3.6 1.9 5.5
3 1.7 3.7 3.3 5.5 3.9 5.8 1.8 3.0 4.8 2.9 5.4 0.9 3.6 2.4 2.1 2.5 2.7 3.3 1.9 5.6
4 4.1 1.3 5.5 5.8 4.9 5.6 2.1 3.0 5.0 3.1 5.3 0.8 3.8 2.4 2.3 2.6 2.6 3.3 1.9 5.6
5 1.5 5.0 0.4 5.6 4.6 5.9 1.8 3.0 4.7 2.6 5.6 1.1 3.4 1.9 2.3 2.8 2.5 3.3 1.9 5.6
6 0.7 2.3 0.9 5.5 4.6 5.9 1.9 2.9 4.6 2.7 5.6 1.1 3.5 2.0 2.3 2.7 2.6 3.4 1.8 5.6
7 1.2 1.1 2.4 5.4 4.2 6.2 1.3 2.9 4.9 3.0 5.3 1.0 3.6 2.1 2.2 2.9 2.6 3.3 1.9 5.6
8 1.2 2.0 2.4 5.4 4.1 6.0 1.4 2.9 4.8 2.7 5.5 1.0 3.5 2.1 2.3 2.7 2.7 3.3 2.0 5.5
9 4.9 4.7 1.4 5.6 4.6 5.8 1.8 3.1 4.8 2.9 5.4 1.0 3.5 2.2 2.2 2.7 2.7 3.4 1.9 5.5

10 4.4 3.6 5.0 5.4 4.1 5.9 1.6 3.1 4.6 2.3 5.9 1.0 3.5 1.9 2.2 3.0 2.5 3.1 2.1 5.4
11 5.2 2.5 1.2 5.8 4.7 5.8 2.0 2.8 4.9 2.9 5.4 0.7 3.8 2.3 2.3 2.6 2.6 3.3 2.0 5.6
12 2.2 5.3 2.6 4.7 4.5 5.6 2.0 3.0 5.0 3.1 5.3 0.8 3.7 2.3 2.2 2.7 2.5 3.3 1.8 5.5
13 2.8 4.9 2.7 4.9 4.8 5.4 2.1 3.1 4.9 2.8 5.3 0.8 3.7 2.2 2.4 2.5 2.6 3.5 1.0 0.3
14 0.3 3.4 3.8 5.3 4.7 5.7 2.0 2.8 5.0 3.0 5.3 0.8 3.8 2.4 2.2 2.6 2.7 3.3 1.9 5.6
15 4.0 5.1 1.6 5.7 4.5 5.6 1.8 3.2 4.7 2.7 5.6 1.0 3.5 2.1 2.2 2.8 2.6 3.3 2.0 5.6
16 5.9 3.3 2.1 5.1 4.1 5.9 1.7 2.8 5.1 3.1 5.4 0.8 3.7 2.2 2.3 2.9 2.6 3.4 1.9 5.6
17 5.0 0.5 3.1 5.3 3.9 6.0 1.5 2.9 4.6 2.7 5.6 1.0 3.6 2.3 2.1 2.7 2.5 3.6 1.9 5.5
18 5.0 1.8 0.6 5.5 4.7 6.0 1.8 2.9 5.2 2.7 5.2 1.1 3.2 2.1 2.4 2.8 2.3 3.5 1.9 5.6
19 5.9 4.8 1.0 5.5 4.6 5.6 2.1 3.0 4.9 3.0 5.4 0.8 3.6 2.2 2.4 2.6 2.5 3.2 2.0 5.5
20 4.5 4.4 5.3 5.7 5.0 5.4 2.0 3.2 4.9 2.9 5.3 0.8 3.7 2.4 2.1 2.7 2.5 3.6 1.8 5.5
21 0.4 4.5 4.3 5.3 3.8 5.8 1.6 3.1 4.9 2.9 5.4 1.0 3.6 2.4 2.0 2.7 2.4 3.4 1.8 5.7
22 0.2 5.1 2.6 5.5 3.7 0.1 1.1 2.9 4.6 2.8 5.5 1.0 3.5 2.0 2.2 2.8 2.7 3.4 2.2 5.4
23 4.4 5.3 4.3 5.3 4.3 5.9 1.7 2.9 4.8 2.9 5.4 1.0 3.6 2.2 2.1 2.9 2.5 3.2 1.9 5.5

|4 Stable region |20
1 1.0 1.0 2.6 2.6 2.5 2.9 1.8 1.6 5.2 5.9 2.7 5.1 1.3 5.9 1.9 3.8 5.1 3.0
2 1.2 1.2 2.8 2.6 2.8 3.2 1.1 1.5 5.1 5.8 3.2 4.9 0.9 6.1 2.1 3.9 4.9 2.8
3 0.9 1.4 2.7 2.5 2.6 3.0 1.7 1.4 5.2 5.8 3.0 4.8 1.3 6.1 1.8 3.8 5.2 3.0
4 0.9 1.4 2.7 2.6 2.7 3.0 1.7 1.4 5.2 5.8 3.0 4.9 1.1 6.1 1.7 3.9 5.2 2.8
5 1.0 1.2 2.7 2.5 2.5 2.9 1.8 1.5 5.1 5.8 2.7 5.1 1.4 5.8 1.9 3.8 5.2 3.0
6 0.9 1.4 2.7 2.5 2.5 2.9 1.6 1.5 5.2 5.8 3.2 4.3 1.7 5.8 1.8 4.0 5.1 2.8
7 0.9 1.4 2.6 2.6 2.4 3.0 1.8 1.5 5.2 5.7 2.9 4.7 1.6 5.9 1.8 4.0 4.9 2.9
8 1.0 1.5 2.8 2.4 2.5 3.0 1.6 1.5 5.1 5.7 3.0 4.7 1.6 5.9 1.8 4.0 4.9 2.9
9 1.2 1.3 2.6 2.5 2.6 3.1 1.7 1.5 5.2 5.9 3.0 4.8 1.2 5.9 1.8 3.9 5.1 2.7

10 0.5 1.9 2.6 2.7 3.0 2.8 1.0 1.3 5.1 5.7 3.2 4.9 0.9 6.1 2.0 3.9 4.7 2.8
11 1.0 1.5 2.8 2.6 2.7 3.3 1.6 1.4 5.1 5.7 3.0 5.1 0.9 6.1 2.1 3.8 4.7 2.6
12 1.2 1.0 2.7 2.6 2.6 3.1 1.6 1.4 5.2 5.7 3.0 4.6 1.4 6.2 1.6 4.0 5.1 2.9
13 5.5 2.5 2.6 2.7 2.9 3.2 1.1 1.4 5.1 5.7 3.2 5.0 0.7 6.2 2.0 3.8 4.7 2.6
14 0.9 1.5 2.7 2.6 2.6 3.1 1.7 1.4 5.2 5.7 3.0 4.7 1.4 6.1 1.6 3.9 5.1 3.0
15 1.0 1.4 2.8 2.5 2.4 3.0 1.8 1.6 5.1 5.9 2.7 5.1 1.3 5.8 1.9 3.9 5.1 3.0
16 1.0 1.3 2.8 2.6 2.6 3.0 1.8 1.4 5.2 5.8 2.9 4.7 1.3 6.1 1.6 3.9 5.2 2.9
17 1.2 1.2 2.9 2.4 2.4 3.0 1.7 1.4 5.2 5.7 3.1 4.5 1.8 5.7 1.9 3.9 5.0 2.9
18 1.1 1.0 2.7 2.6 2.6 3.1 1.5 1.5 5.2 5.7 3.0 4.7 1.6 6.0 1.8 3.9 5.1 2.9
19 1.1 1.1 2.8 2.5 2.6 3.1 1.7 1.5 5.2 5.7 3.2 4.7 1.4 5.8 1.8 3.9 5.1 2.8
20 1.1 1.1 2.7 2.6 2.6 3.1 1.7 1.4 5.3 5.7 3.0 4.9 1.1 6.1 1.7 3.9 5.1 2.8
21 0.9 1.2 2.7 2.4 2.4 3.0 1.8 1.5 5.2 5.8 3.0 4.7 1.4 6.0 1.8 4.0 4.9 2.9
22 0.4 2.2 2.8 2.4 2.4 3.0 1.5 1.5 5.2 5.7 3.0 4.5 1.6 6.0 1.7 4.1 5.0 2.9
23 1.1 1.0 2.7 2.4 2.4 3.1 1.7 1.4 5.2 5.7 3.1 4.4 1.7 5.9 1.7 4.1 4.8 2.8

|21 Stable region |30

Remark 13. Table 11.3 is a statistical table for the homology of the alignment
of total spatial torsion angle phase sequences (all the torsion angles of each
model) using the first 15 models of protein PDB1BF9. It was computed with
the scoring function in formula (11.9).

Remark 14. Table 11.4 is the statistical table for the homology on the align-
ment of stable regions of the spatial torsion angle phases using the first 15
models of protein PDB1BF9. It was computed with the scoring function in
formula (11.9).
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Table 11.3. Statistical table for the homology of the alignment of total torsion
angle phase sequences of protein PDB1BF9

Model 1 2 3 4 5 6 7 8 9 10 11 12 13 14

2 0.71
3 0.85 0.68
4 0.76 0.71 0.88
5 0.88 0.66 0.80 0.83
6 0.73 0.68 0.80 0.76 0.73
7 0.83 0.66 0.78 0.73 0.85 0.80
8 0.78 0.68 0.85 0.78 0.73 0.85 0.88
9 0.80 0.73 0.88 0.90 0.78 0.83 0.76 0.83
10 0.85 0.76 0.73 0.73 0.78 0.66 0.73 0.68 0.76
11 0.80 0.83 0.80 0.85 0.78 0.80 0.78 0.78 0.85 0.78
12 0.85 0.66 0.80 0.76 0.80 0.78 0.85 0.85 0.83 0.76 0.76
13 0.73 0.73 0.68 0.68 0.68 0.61 0.68 0.66 0.76 0.71 0.71 0.78
14 0.85 0.66 0.83 0.80 0.78 0.78 0.78 0.80 0.80 0.73 0.80 0.88 0.68
15 0.83 0.66 0.83 0.78 0.80 0.85 0.76 0.78 0.88 0.71 0.78 0.80 0.68 0.76

Table 11.4. Statistical table for the homology of the alignment of stable regions of
the torsion angle phases of protein PDB1BF9

Model 1 2 3 4 5 6 7 8 9 10 11 12 13 14

2 0.74
3 0.96 0.78
4 0.93 0.81 0.96
5 1.00 0.74 0.96 0.93
6 0.96 0.78 1.00 0.96 0.96
7 0.96 0.70 0.93 0.89 0.96 0.93
8 0.93 0.74 0.96 0.93 0.93 0.96 0.96
9 0.96 0.78 1.00 0.96 0.96 1.00 0.93 0.96
10 0.89 0.74 0.85 0.81 0.89 0.85 0.85 0.81 0.85
11 0.93 0.81 0.96 1.00 0.93 0.96 0.89 0.93 0.96 0.81
12 1.00 0.74 0.96 0.93 1.00 0.96 0.96 0.93 0.96 0.89 0.93
13 0.81 0.78 0.78 0.74 0.81 0.78 0.78 0.74 0.78 0.74 0.74 0.81
14 0.96 0.78 0.93 0.96 0.96 0.93 0.93 0.89 0.93 0.85 0.96 0.96 1.00
15 0.96 0.78 1.00 0.96 0.96 1.00 0.93 0.96 1.00 0.85 0.96 0.96 0.78 0.93

We can see from Table 11.3 that the homologies between Model 1 and Model 2
or Model 5 are 0.71 and 0.88, respectively. It tells us that the homology
between Model 1 and Model 5 is higher than that between Model 1 and
Model 2.
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Analysis of the Three-Dimensional Structures of Proteins
Within the Same Family

The above three-dimensional structure analysis can be carried out within the
same family. For example, in the analysis of the serpin ensemble, there is
only one super-family in this fold, with only one family in this super-family,
whose ID numbers in PDB are given as 7apiA, 8apiA, 1hleA, 1ovaA, 2achA,
9apiA, 1psi, 1atu, 1ktc, 1athA, 1antI, 2antI. These are from antitrypsin, elas-
tase, inhibitor, ovalbumin, antichymotrypsin, and antitrypsin, antithrombin,
respectively, in humans, horses, and cattle.

The result of their three-dimensional structure alignment is shown in
Table 11.5. Except for protein pdb1ktc, the characteristic sequences of the
three-dimensional structures of other protein backbones show comparatively
high homologies.

Remark 15. Table 11.6 shows the multiple alignment result of the three-
dimensional structure characteristic sequences of each serpin ensemble pro-
tein. Because of the complexity of the structure of protein PDB1KTCA, it is
not listed in this table. Also, the value 4 stands for the virtual symbol “−”.

Remark 16. In Table 11.7, A, B stand for the alignment result of the torsion
angle phase sequences of the serpin ensemble protein PDB1ATHA and protein
PDB8APIA, where 4 and − stand for the virtual symbol “−”. The inserted
symbols in the primary structures are determined by the corresponding posi-
tions of the insert symbols of the three-dimensional structure alignment.

Remark 17. We can see from Tables 11.7 and 11.8 that for the proteins
PDB1ATHA and PDB8APIA, in the regions where the three-dimensional
structures are homologous (such as sites 5–28, sites 32–67, etc.), the corre-
sponding primary structures are quite different. It shows that, in proteins
or peptide chains, primary structures which are quite different may generate
similar three-dimensional structures.

11.2.3 Example of Computation in Consecutive Case

If the torsion angle ψ is considered a variable whose value ranges in the in-
terval (−π, π), Ψ1 and Ψ2 are two vectors who take values in (−π, π). Their
alignment can also be implemented by the dynamic programming algorithm.
The statistical table of the average absolute deviation alignment of the torsion
angle of the protein PDB1BF9 backbone is shown in Tables 11.9 and 11.10.

Remark 18. In Tables 11.9 and 11.10, each value is in radians. They are both
statistical tables of the average absolute deviation alignment of the torsion
angles for the first 15 models of protein PDB1BF9, where Table 11.9 shows the
average absolute deviation of the torsion angles of all models, while Table 11.10
shows the average absolute deviation of the stable region of the torsion angle
phase (from the fourth amino acid to the 31st amino acid) of each model.
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We see from the data in Tables 11.9 and 11.10 that the homology of the spa-
tial phase characteristic sequences and the average absolute deviation of the
torsion angles of the two protein backbones are generally consistent in the ho-
mology measurement index. That is, if the homology of spatial phase charac-
teristic sequences is high, the average absolute deviation of the torsion angles
would be low. For example, the homology of the characteristic sequences of
the alignment between Model 1 and other models, and the average absolute
deviation of their torsion angles are

Homology 0.71 0.85 0.76 0.88 0.73 0.83 0.78 0.80 0.85
Torsion angle deviation 0.365 0.264 0.328 0.222 0.293 0.230 0.269 0.242 0.298

Homology 0.80 0.85 0.73 0.85 0.83
Torsion angle deviation 0.351 0.245 0.339 0.262 0.183

.

The homology of the characteristic sequences of the alignment between
Model 1 and other models in the stable region (from the fourth amino acid
to the 31st amino acid) and the average absolute deviation of their torsion
angles are given below

Homology 0.74 0.96 0.93 1.00 0.96 0.96 0.93 0.96 0.89
Torsion angle deviation 0.316 0.185 0.199 0.104 0.140 0.144 0.142 0.140 0.292

Homology 0.93 1.00 0.81 0.96 0.96
Torsion angle deviation 0.263 0.141 0.361 0.172 0.151

.

Based on these data, we may find that the homology and the average
absolute deviation are inversely correlated. In most cases, the average absolute
deviation would be low if the homology is high.

Table 11.11 contains the error of pairwise alignment of the average absolute
deviation of the backbone torsion angles of the 23 models of protein PDB1BF9.

11.3 Exercises, Analyses, and Computation

Exercise 54. Find the data on the atomic spatial coordinates of the proteins
whose ID numbers in the PDB database are 7apiA, 8apiA, 1hleA, 1ovaA,
2achA, 9apiA, 1psi, 1atu, 1ktc, 1athA, 1antI, 2antI. Compute the torsion
angle sequences Ψs = (ψs,1, ψs,2, · · · , ψs,nb

) for the atomic sequences in the
backbone L1, where s = 1, 2, · · · , 12 refer to the 12 proteins listed in this
exercise.

Exercise 55. Decompose the torsion angle sequence Ψs into phase sequences
ϑ̄s = (ϑs,1, ϑs,2, · · · , ϑs,nb

). Implement the pairwise alignment by the dynamic
programming algorithm, with the measure function given in formula (11.6),
to obtain the pairwise minimum penalty alignment and the homology matrix
of the pairwise alignment of these sequences.
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Exercise 56. For the torsion angle sequences Ψs, implement the pairwise
alignment by the dynamic programming algorithm with the measure func-
tion given in formula (11.7), to find the pairwise minimum penalty alignment
and the homology matrix of the pairwise alignment of these sequences.

Exercise 57. Visualize the 3D structure of each protein in Exercise 54 using,
for example, the Rasmol software package, and compare the relationship be-
tween the homologies and the configurations of different proteins. Visualize
the 3D structures of the 15 models of protein PDB1BF9 in the same way, and
compare the homology with Table 11.4.



12

Depth Analysis of Protein Spatial Structure

12.1 Depth Analysis of Amino Acids in Proteins

The depth of amino acids in a protein has been defined in many ways. For
example, in biology, the amino acids, which come in contact with water
molecules, form the surface of protein (zero depth) [54], so we may use this to
determine the hydrophobic property of amino acids. Although these biologi-
cal definitions have a clear physical sense, they lack a uniform computational
methodology. For example, the concept of the hydrophobic factor of amino
acids has been defined in many ways.

In mathematics, there are a series of definitions and calculational methods
for the depth in a spatial particle system. How to apply these results and
methods to the research of protein spatial structure will be discussed in this
section.

12.1.1 Introduction to the Concept of Depth

We begin by introducing the basic mathematical concepts, definitions and
generalization of depth in spatial particle systems.

Two Kinds of Definitions

There are two kinds of definitions of depth in mathematics, one is the gener-
alization of the Tukey depth [103] in statistics, and the other is the accessible
radius function theory in spatial particle systems:

1. The definition of Tukey depth comes from statistical theory. The median is
a typical concept of “the deepest point” which is very important to statis-
tics. The generalization of the median is the depth of one-dimensional
data and high-dimensional data, and the definition of two-dimensional
data is shown in the figure below. For one-dimensional data, they are well
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Fig. 12.1a,b. Depth of one-dimensional and two-dimensional data points

ordered, which implies that their depth can be quickly determined. How-
ever, for high-dimensional cases, the data are only semiordered. There-
fore, we need methods to describe the depth. In modern statistical theory,
there are a series of studies on both the definition and calculation of
depth [58,72,80,103,114–116]. Since the concept of depth determines the
relative position of the points in space, we can use it to analyze protein
spatial structure.
Figure 12.1a shows the depth of one-dimensional data; where a, b, · · · , k,
are the points on a straight line, and the corresponding numbers are their
depth. Figure 12.1b represents two-dimensional data, where we can see
both interior points and exterior points, whose depth cannot be deter-
mined directly, but requires further statistical analysis.
In Fig. 12.1b, solid points represent all the points in a spatial particle
system. L1 and L2 are straight lines passing through the point a, and
these lines separate the set A into two parts. While rotating the line
around point a, the corresponding fewest number of points that lie on one
side of the line is the depth of point a in set A.

2. The accessible radius function theory in spatial particle systems is a bio-
logical concept of depth represented through the language of mathematics.
It shows the largest possible radius within which each particle in A is in
contact with the exterior. We will discuss this theory in detail below.

Protein Depth in Spatial Particle Systems

If we consider all proteins (or select parts of atoms) as a spatial particle
system, then the spatial location of these atoms in the particle system can be
used to analyze depth. In this book, we discuss the following issues:

1. On the basis of calculating depth, we can build a depth database of pro-
teins. It means that we can calculate the depth of the amino acids (or
Cα atoms) of all proteins (or peptides) in the PDB database, and build
a depth database of proteins.

2. On the basis of the above depth database, we can do statistical depth
analysis for different amino acids, such as depth tendency factor analysis,
hierarchical analysis, and depth analysis of the peptide chain.
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3. On the basis of depth analysis, we can do further analysis for special shapes
of proteins, such as calculating the accessible radius function, calculating
the interior structure of protein, and so on. We will discuss these issues in
detail in the following text.

Mathematical Tools for Finding the Depth in Spatial Particle
Systems

To analyze the depth of a spatial particle system, we use a variety of mathe-
matical tools, such as the depth function algorithm, the geometric theory of
convex polygons and hypergraph theory. We apply large-scale knowledge of
analytic space geometry in the calculations.

12.1.2 Definition and Calculation of Depth

Before analyzing protein structure, we introduce the general theory of depth.
In order to analyze protein structure, we give further discussion about both
the calculation and properties of depth.

Definition of the Depth of a Discrete Set in 3D Space

Let
A = (a1, a2, · · · , an) , (12.1)

be a set of points in 3D space R3, and denote the three-dimensional coordinate
of each point ak by rk = (xk, yk, zk). Let π be a plane that contains the
point a. Then, the plane cuts the set A into two parts, respectively denoted
by A1(π, a) and A2(π, a), which are located on two different sides of π. Let
nτ (π, a) be the number of elements contained in the set Aτ (π, a), τ = 1, 2.
We always assume that n1(π, a) ≤ n2(π, a).

Definition 42. For a fixed point a and set A, we have the following defini-
tions:

1. The depth of point a in set A is defined as

sA(a) = min{n1(π, a) : π ∈ Π̃(a)} , (12.2)

in which Π̃(a) is a plane that contains point a.
2. Let π0 be a plane that contains point a such that n1(π0, a) = sA(a), then

we call π0 a depth cut plane that contains point a.
3. If π0 is a depth cut plane that contains point a, we call the side which

contains A1(π0, a) the outside of the depth cut plane. We call the other
side the inside of the depth cut plane.
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Fast Calculation of Depth

In Definition 42, since Π̃(a) is an infinite set, there is actually no way to
calculate sA(a) in (12.2). Therefore, we first give some easily applied formulas
for calculating depth.

Let π(a; i, j) be a plane that contains three points (a, ai, aj), where
ai, aj ∈ A. Then, the plane π(a; i, j) cuts the set Aτ [π(a; i, j)], τ = 1, 2
into two parts, respectively denoted by A1 and A2, located on two differ-
ent sides of plane π(a; i, j). Let nτ [π(a; i, j)], τ = 1, 2 be the number of
elements contained in set Aτ [π(a; i, j)], τ = 1, 2, and always assume that
n1[π(a; i, j)] ≤ n2[π(a; i, j)].

For a given point a, and ai, aj ∈ A that may change, let s′A(a) denote the
minimum of n1[π(a; i, j)]. Then the depth sA(a) of the point a in set A is just
s′A(a).

Theorem 40. The formula to compute the depth of point a in set A is given
as follows:

sA(a) = min{n1[π(a; i, j)] : ai �= aj ∈ A, and a, ai, aj are noncollinear} .
(12.3)

We will prove this theorem in Sect. 12.1.3. Thus, calculating the depth of
point a can be simplified into calculating n1[π(a; i, j)], where ai, aj ∈ A. There-
fore, the computational complexity is no more than O(n2), and we obtain the
fast calculation of the depth of point a in set A.

The depth cut plane of point a can be restricted to a triangular area which
is constructed by point a and two other points ai, aj in set A. Let π(a, ai, aj)
be a depth cut plane that contains point a. We then call triangle δ(a, ai, aj)
the depth cut triangle of point a. Definitions of both the outside and inside
of the depth cut triangle are determined by the corresponding outside and
inside of the depth cut plane.

We can generalize the definition and fast calculation of depth to two-
dimensional or higher dimensional point sets in the same way, so we will not
repeat these here. Set A in Fig. 12.1 represents two-dimensional data. There
might be many lines like L1 and L2 passing through point a, and they all cut
the set A into two parts. The corresponding number of points are n1(L1) = 2,
n2(L1) = 19, n1(L2) = 7, n2(L2) = 15, where L1 is a cutting line. So the
depth of a is sA(a) = 2.

Remark 19. For the formula in Theorem 40, a may not be a point in set A.
This means that for any point a ∈ R3, formula (12.2) holds.

Several Properties of Depth

According to the definition of depth and the formula in Theorem 40, we im-
mediately obtain the following properties:
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Fig. 12.2. The convex hull, groove, and cavity of a two-dimensional particle. The
thick line is the convex closure Ω(A) of set A (their depths are zero), and the thin
lines represent the interior groove and cavity of the convex closure Ω(A)

1. If A is a fixed finite set and a is an arbitrary point in space R3, then sA(a)
is uniquely determined, and 0 ≤ sA(a) ≤ int(n/2) is true, where n = ||A||,
and int(n/2) is the integral part of n/2.

2. If all points in A are coplanar, then the depth of each point in A is zero.
3. If Πk is a depth cut plane of ak, and a ∈ A is in the plane Πk, then
sA(a) ≤ sA(ak) holds. If a ∈ A is in outside of Πk (namely, it is in
n1(Πk)), then sA(a) < sA(ak) holds.

4. Let Ω(A) be a convex closure of the setA; then sA(a) = 0 if and only if
ak is on the boundary plane of Ω(A).

These properties can be easily deduced from Figs. 12.1 and 12.2.

Theorem 41. Let sA be the maximum of sA(a), a ∈ A. Then, sA is called
the deepest depth of set A. Denote by SA the set of points in R3 whose depth
is sA. Then, SA is definitely a convex set, and this convex set does not contain
any four points which are not coplanar in set A.

We will prove this theorem in Sect. 12.1.4.

12.1.3 Proof of Theorem 40

Part One: Preliminary Nature

To prove Theorem 40, we must discuss the property of a plane turning around
a straight line. We use the following symbols:

1. π is a plane in 3D space, whose normal vector is denoted by b, with b and
plane π being vertical. We denote by � a directed line which lies in plane
π; the direction of � is arbitrarily selected, with its direction denoted by
the vector c.



330 12 Depth Analysis of Protein Spatial Structure

Fig. 12.3. Y-axis of the coordinate system is determined by the right-hand screw
rule

2. Let a be a point which is not in plane π. We project a on to both plane
π and line �, and obtain two projective points denoted by d, e. Denote
b =

−→
da, d =

−→
ed.

3. Let 〈a, b〉 be the inner product of a and b; here the sign of 〈a, b〉 may be
negative or positive. Define sgn(〈a, b〉), where

sgn (u) =

{
1 , if u ≥ 0 ,

−1 , if u < 0 ,

is the sign function of u.
4. Let ψ = 	 aed be the angle between a and d, then −π/2 < ψ ≤ π/2. We

provide the following rules: if e = d, which means that ae is perpendicular
to plane π, then we let ψ = ±π/2. if sgn (〈a, b〉) = +1, ψ > 0; otherwise
we let ψ < 0.

5. When plane Π is turning around line �, we create a new plane Π ′, whose
normal vector is denoted by b′. The rotating dihedral angle, namely the
angle θ between b′ and b, has range |θ| ≤ π/2. Its sign (positive or nega-
tive) is determined by the right-hand rule. We have the following proper-
ties.

Lemma 5. If |θ| < |ψ|, then

sgn (〈b,a〉) = sgn (〈b′,a〉) . (12.4)

Proof. We begin to determine a rectangular coordinate system E . Let e be
the origin, and the X-axis and Z-axis are determined by vector

−→
ed and b. The

Y-axis is determined by the right-hand screw rule (Fig. 12.3).
Point a is in the plane XZ, ψ = 	 aed; without loss of generality, let

b = (0, 0, 1), |ea| = 1 then, a = (cosψ, 0, sinψ) and 〈b,a〉 = sinψ.
When plane Π is turning around line � with angle θ, then b′ = (sin θ, 0,

cos θ).
〈b′,a〉 = sin θ cosψ + sinψ cos θ = sin(ψ + θ)
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Since |θ| < |ψ| if 0 < ψ ≤ π
2 , −ψ < θ < ψ and 0 < ψ + θ < 2ψ ≤ π,

we get sgn (sinψ) = sgn [sin(ψ + θ)]. If −π
2 ≤ ψ < 0, ψ < θ < −ψ and

2ψ < ψ + θ < 0, we also find that sgn (sinψ) = sgn [sin(ψ + θ)] holds. Thus,
the theorem is proved.

Properties of a Plane Turning Around a Point

Lemma 5 suggests that the inner product changes if a plane is turning around
a line. To discuss this in detail, we introduce the following notations.

Let b, b′, and r be three arbitrary vectors whose inner products are 〈b, r〉,
〈b′, r〉. Let θ, ψ be the angle between b and b′, r, respectively, in which 0 ≤ θ,
ψ ≤ π.

Lemma 6. If θ and ψ satisfy either of the following conditions, then

sgn (〈b, r〉) = sgn (〈b′, r〉) . (12.5)

Condition 1 If 0 ≤ ψ ≤ π/2, and 0 ≤ θ ≤ π/2 − ψ ≤ π/2.
Condition 2 If π/2 ≤ ψ ≤ π, and 0 ≤ θ ≤ ψ − π/2 ≤ π/2.

Proof. For the sake of simplicity, in a rectangular coordinate system, we take

b = (0, 0, 1) , r = (0, sinψ, cosψ) , b′ = (cosφ sin θ, sinφ sin θ, cos θ) ,

in which, φ is from (0, 2π). Then

sgn (〈b, r〉) = sgn [cosψ] =

{
+1 , if 0 ≤ ψ ≤ π/2 ,
−1 , if π/2 < ψ ≤ π

We calculate the value of sgn (〈b′, r〉). Here

〈b′, r〉 = sinψ sinφ sin θ + cosψ cos θ . (12.6)

To finish the proof of the lemma, we discuss the following two steps:

1. If 0 ≤ ψ ≤ π/2, 0 ≤ θ ≤ π/2 − ψ ≤ π/2 (Fig. 12.4a), then cosψ ≥ 0.
Therefore, we need only prove 〈b′, r〉 ≥ 0. Following from (12.6), we have

〈b′, r〉 ≥ cosψ cos θ − sinψ sin θ = cos(ψ + θ) ≥ 0

and since sinψ, sin θ ≥ 0, sinφ ≥ −1, 0 ≤ ψ + θ ≤ π/2. This implies that
〈b′, r〉 ≥ 0 holds. Thus the lemma is true under condition 1.

2. If π/2 ≤ ψ ≤ π, 0 ≤ θ ≤ ψ − π/2 ≤ π/2 (Fig. 12.4b), then cosψ ≤ 0, so
we need only prove 〈b′, r〉 ≤ 0. Following from (12.6), we have

〈b′, r〉 ≤ cosψ cos θ + sinψ sin θ = cos(ψ − θ) ≤ 0 .

Since sinψ, sin θ ≥ 0, sinφ ≤ 1, π/2 ≤ ψ − θ ≤ π, we find that 〈b′, r〉 ≤ 0
holds. Additionally, cosψ = 0 implies that cos(ψ − θ) = 0. Thus the
lemma is true under condition two, and the lemma is shown to be true in
its entirety.
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Fig. 12.4a,b. Proof of Lemma 6

Part Two: Proof of Theorem 40

Let s′A(a) be the depth defined by (12.3); obviously, we have that s′A(a) ≥
sA(a). Thus, we need only prove that s′A(a) ≤ sA(a) holds.

According to the definition of sA(a), we realize that, for an arbitrary
point a, there must be a plane π0 ∈ Π̃(a), such that n1(π0, a) = sA(a).
Three cases may occur on plane π0:

1. Case 1. There are two points ai �= aj ∈ A such that a, ai, aj are not
collinear.
In this case, Π0 ∈ Π̃0(a) implies n1(π0, a) = sA(a) ≥ s′A(a); thus we have
that sA(a) = s′A(a) holds.

2. Case 2. There is one point in plane π0 such that ai �= a ∈ π0, while the
remaining points in A are neither in plane π0, nor on line �aai , where �aai

is a line determined by points a and ai.
Line �aai must be in plane Π0, so we denote the set of points which are
in A, while not in plane π0, by A′.
If an ∈ A′, let en and dn denote the projection of an onto the line �aai and
plane π0, respectively, and let the sign of ψn = 	 anendn be determined
by the sign of 〈an, b〉. Moreover, let

ψ0 = min{|ψn| : an ∈ A′}

and aj0 ∈ A′ such that |ψj0 | = ψ0. We then have the following conclusions:
(a) ψ0 > 0, otherwise aj0 ∈ Π0, which contradicts the definition of A′.
(b) Point aj0 must be in AΠ0,2. Otherwise, we assume that point aj0 is

in AΠ0,1, when Π0 is rotating around line �aai with angle ψ0, and we
create a new plane Π ′ which is also through points a, ai and point aj0 .
Several cases may arise according to the points in A′:
i. ψn = ψ0, as shown in Fig. 12.5a, enan and ej0aj0 have the same

direction, so point an falls in plane Π ′.
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Fig. 12.5a,b. Proof of Theorem 40

ii. ψn = ψ0, as shown in Fig. 12.5b, the angle formed by enan and
ej0aj0 is π − 2ψ0.
Let the direction of dnan and endn be the direction of the z-axis
and x-axis, and let the origin be en. We then form a right carte-
sian coordinate system, and without loss of generality, we may set
b = (0, 0, 1), |enan| = 1. This implies an = (cosψ0, 0, sinψ0) b′ =
(sinψ0, 0, cosψ0), in which 0 < ψ0 ≤ π

2 . We then have

〈ban〉 = sinψ0〈b′an〉 = 2 sinψ0 cosψ0

Thus, we have that sgn 〈ban〉 = sgn 〈b′an〉 holds.
iii. In the case where ψn = −ψ0, the situation is similar to that in

case 2; two cases may occur and we have the same discussion.
iv. |ψn| > ψ0. In this case, we may follow from Lemma 5 to get (12.4).

Therefore, we have

n1(π′, a) < n1(π0, a) = sA(a) .

This contradicts the definition of sA(a). Thus, point aj0 must be-
long to Aπ0,2.

v. If aj0 belongs to AΠ0,2, then with the same arguments used in
case 2, rotating Π0 around line �aai with angle ψ0, we get a new
plane Π ′. Here points a, ai are still in plane Π ′, and the sphere
is through point aj0 . This is similar to case 2, the point an in A′

may either fall in plane Π ′, or keep (12.5) stable, thus, we get

s′A(a) ≤ n1(Π ′, a) ≤ n1(Π0, a) = sA(a) .

As a result, we find that s′A(a) = sA(a) holds.
3. Case 3. The remaining points in A are not in Π0. We denote an = aan,

and denote the angle between an and b0 by ψn, where 0 ≤ ψn ≤ π, and
b0 is the normal vector of π0. We now denote

ψ′
n =

{
ψn , if 0 ≤ ψn < π/2 ,
π − ψn , if π/2 ≤ ψn ≤ π ,

(12.7)
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and define
θ0 = min{π/2 − ψ′

n, j �= k} (12.8)

and j0 �= k, such that π
2 − ψ′

j0 = θ0. We then have the following:
(a) θ0 > 0, otherwise aj0 ∈ Π0; this contradicts the condition that there

is only one point a in Π0.
(b) Point aj0 must be in AΠ0,2. Otherwise, we assume that point aj0 is

in AΠ0,1, then rotate Π0 around point a with angle θ0 = π/2 − ψ′
0,

such that vector aj0 falls in the rotated new plane Π ′. We denote the
normal vector of planeΠ ′ by b′, and denote the angle between sphere b
and sphere b′ by θ0. For any j �= k, j0, we have θ0 ≤ π/2 − ψ′

n. Now,
following from Lemma 6 and aj0 ∈ Π ′, we get NΠ′,1 < NΠ0,1 = sA(a),
which contradicts the definition of sA(a). It follows that point aj0 must
belong to AΠ0,2.

(c) If aj0 is in AΠ0,2, then similarly to the discussion above, we rotate Π0

around point a with angle θ0 = π/2−ψ′
0, such that vector aj0 falls in

the rotated new plane Π ′.

By Lemma 6, we get

n1(π′, a) ≤ n1(π0, a) = sA(a) .

π is then also the depth cut plane of a, which comes back to case 2 and case 3.
Therefore

s′A(a) ≤ n1(Π ′, a) ≤ n1(Π0, a) = sA(a)

and s′A(a) = sA(a) is true. The theorem follows.

12.1.4 Proof of Theorem 41

We prove this theorem in four steps:

1. Step 12.1.1. If SA = {a} is a set of a single point, then Theorem 41 is
obviously true.

2. Step 12.1.2. If SA = {a, b}, a �= b is a set of dual points, then for an
arbitrary point c on the line segment ab, we have sA(c) = sA. We will
prove this proposition by contradiction.
Suppose sA(c) = sA is not true; then by the definition of sA, we get
a, b �= c, and sA(c) < sA. By the definition of depth, we realize that there
must be a plane Πc that is through point c, such that n1(Πc) = sA(c).
Then two cases as follows may happen:
(a) Line segment ab is in plane Πc. By the definition of depth, we get

sA(a), aA(b) ≤ n1(Πc) < sa, which contradicts the definition of points
a, b, so this case will not happen.

(b) Line segment ab is not in plane Πc, then points a, b lie on both sides of
plane Πc. Without loss of generality, we let point a lie outside of plane
Πc. By the property of depth, we realize that sA(a) ≤ n1(Πc) < sa is
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true, which contradicts the definition of point a, so this case will not
happen either.

This shows that sA(c) < sA is not true, so for any c ∈ ab, sA(c) = sA is
true.

3. Step 12.1.3. Similar to the proof in Step 12.1.2, we can prove that SA
must be a convex set. Thus, for any a, b ∈ SA, and any point c on line
segment ab, sA(c) = sa must be true. So SA must be a convex set.

4. Step 12.1.4. By the properties in Sect. 12.1.2, it is impossible to find any
noncoplanar four points of set A in SA. We do not give a detailed proof
here. Thus, the theorem is proved.

12.2 Statistical Depth Analysis of Protein Spatial
Particles

Statistical depth analysis of protein spatial particle requires the application
of statistical analysis for depth indicators of spatial structure on all proteins
in the PDB database. There are many types of depth indicators of protein
spatial structure. In this book we choose several specific depth indicators for
the statistical analysis.

12.2.1 Calculation for Depth Tendency Factor of Amino Acid

Depth Database of Protein

Using the method in Theorem 40 for the PDB database, we can build a depth
database of proteins. Several important symbols are defined as follows:

Let
A = {A1, A2, · · · , Am} (12.9)

be all the protein sequences in the PDB database. For the sake of simplicity,
we only discuss the proteins whose lengths (number of amino acids) are larger
than 50. Here m is the number of proteins. Ai is the ith protein in the PDB
database. We denote the primary structure sequence of protein Ai by

bi = (bi1, bi2, · · · , bini) , bij ∈ Z20 ,

in which Z20 = {1, 2, · · · , 20} represents the 20 common amino acids. We also
denote the spatial structure sequence of protein Ai by

ai = (ai1, ai2, · · · , aini) ,

in which aij = (xij , yij , zij) represents the coordinate of Cα of the jth amino
acid in protein Ai.

The data of sequence bi and ai, i = 1, 2, · · · ,m, can both be obtained
from the PDB database. Using these data, we can calculate the depth of each
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point in the sequence, and we denote si = (si1, si2, · · · , sini), where sij =
sAi(aij) is the depth of jth aminio acid (jth Cα atom) of the ith protein. We
refer to

S = {(bi,ai, si), i = 1, 2, · · · ,m} (12.10)

as the depth database of protein. This database is available on our Web
site [99].

Definition of Depth Tendency Factor of Amino Acids

Through analysis of the depth database of protein, we realize that in protein
spatial structures, distributions of the depths of different amino acids are
obviously different. We call this phenomenon the depth tendency factor
of the amino acid. There are various ways of defining the tendency factor.
They will be discussed below:

1. Zero depth tendency factor of amino acids. The zero depth tendency
factor of an amino acid is the proportion of each amino acid which appears
on the surface of the protein (zero depth). We distinguish this proportion
into two classes: absolute zero depth tendency factor and relative zero
depth tendency factor:
(a) Absolute zero depth tendency factor: This is the proportion of a cer-

tain amino acid in all the zero depth amino acids.
(b) Relative zero depth tendency factor: For a certain amino acid, this is

its proportion on the protein surface (zero depth).
2. Deepest depth tendency factor of protein. For each protein, there is

one amino acid (sometimes several amino acids) whose depth is the largest.
We call this (these) amino acid(s) the deepest point of the protein.
The deepest depth tendency factor is defined as follows: the proportion
of different amino acids in all of these amino acids that have the deepest
depth.

3. Average depth of amino acids. This means the average depth of all
the amino acids in the database. We refer to it as the average depth ten-
dency factor of amino acid. We perform statistical calculations on protein
chains (whose lengths are greater than or at least equal to 50) in the PDB
database, and obtain their tendency factors as given in Table 12.1.

Remark 20. The symbols in Table 12.1 are explained as follows:

1. i is the sequence number of the amino acid, a(i) is the total number of
ith amino acids with zero depth, n0 =

∑20
i=1 a(i) is the total number of

amino acids in zero depth, n(i) is the total number of ith amino acids,
n =

∑20
i=1 n(i) is the total number of amino acids, m =

∑20
i=1 c(i) is the

total number of the deepest amino acids.
2. Thus, we have the following statistics:

(a) 100n(i)/n: percentage of frequency distribution of the amino acids
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(b) 100a(i)/n0: in all amino acids with zero depth, the percentage of ith
amino acid (absolute zero depth tendency factor)

(c) 100a(i)/n(i): for the ith amino acid, percentage of zero depth (relative
zero depth tendency factor)

(d) 100c(i)/m: in all the deepest points of amino acids, the percentage of
the ith amino acid (absolute deepest tendency factor)

Properties of Depth Tendency Factor

Based on Table 12.1, we can see that the depth tendency factor of an amino
acid has the following characteristics:

1. In the view of the frequency and relative frequency of zero depth, the
proportions of different amino acids on the surface of a protein are obvi-
ously different. The highest proportion is for the glutamic acid (E), whose
proportion is as high as 32.66%, and the lowest proportion is for cysteine
(C), whose proportion is only 4.47%.

2. Amino acids can also be classified by zero depth relative frequency. For
example, the amino acid whose relative frequency is more than 20% (or
10–20%, or less than 10%) is said to be of the high (h) (or middle (i), or
low (b)) surface tendency class, as shown in the table.

3. We can also use the depth frequency of the deepest point to classify amino
acids. The amino acid whose depth frequency is above 10% (or 5–10%, or
below 5%), is said to be of the high (h) (or middle (i), or low (b)) deepest
point tendency class, as shown in the table.

12.2.2 Analysis of Depth Tendency Factor of Amino Acid

Relationship Between Depth Tendency Factors
and Other Chemical and Physical Indices

We found that the depth tendency factors are comprehensively related to
chemical and physical indices such as charge, polarity, chemical compound
class, hydrophobicity, etc. (shown in Table 12.1). Correlative data are shown
in Table 12.2.

The second row shown in Table 12.2 is the frequency of amino acids in
the PDB database. The data of hydrophobicity comes from [26, 53, 61, 107].
The symbol +1 indicates electropositivity, −1 indicates electronegativity, and
0 indicates neutrality. In the column “Polarity” for dielectric polarity, +1 and
−1 indicate polar and nonpolar properties, respectively.

In the column “Chemical compound class”, (−1,−1), (1,−1), (1, 1) indi-
cate the acyclic hydroxyl, alkaline, and acidic categories, respectively, (0, 0)
indicates the hydroxy and sulfur-containing category, and (−1, 1) indicates
the aromatic, and acclaimed category.

Using the data in Table 12.2, we can do data fitting on both the depth
factor and the tendency factor. Let Y be the relative zero depth tendency
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Table 12.3. Table of data fitting of relative zero depth tendency factor of amino
acid

Code Act. val. Reg. est. Fit. err.

A 16.861 18.7888 −1.92777
R 18.553 19.0889 −0.53587
N 27.033 29.1475 −2.11446
D 31.179 30.6515 0.527526
C 4.474 6.92408 −2.45008
Q 24.209 22.7095 1.49953
E 32.661 32.2877 0.373308
G 27.190 25.1997 1.99029
H 15.237 10.1557 5.08133
I 5.261 5.41785 −0.156846
L 6.014 5.56178 0.452215
K 29.296 29.9323 −0.636279
M 9.211 12.3288 −3.1178
F 5.368 0.85603 4.51197
P 25.867 23.9452 1.92178
S 25.886 22.831 3.05504
T 19.424 20.0725 −0.648528
W 5.652 15.427 −9.775
Y 6.979 13.2924 −6.31337
V 7.060 7.57195 −0.511953

act. val. = actual value, reg. est. = regression
estimate, fit. err. = fitting error

factor (in the 12th column), x1, x2 be the electric property and polarity (in
the third and fourth columns), (x3, x4) be the data in the fifth column, and
let x5, · · · , x9 be hydrophobicity (in the sixth to tenth columns).

Thus, we can get their linear regression relationship through the formula:

Ŷ = 17.1434− 9.68877x1 − 0.714291x2 − 5.64749x3

− 3.19165x4 − 3.25787x5 − 13.4022x6 − 4.85877x7

+ 1.92445x8 + 1.05084x9 . (12.11)

This fitted result is given in Table 12.3.
Furthermore, we obtain the mean square error, standard deviation, and

mean error of fitting as follows:
⎧
⎪⎨

⎪⎩

mean square error σ2 =
∑20

i=1 pi(yi − ŷi)2 = 6.29797 ,
standard deviation σ =

√
σ2 = 2.50958 ,

mean error e =
∑20

i=1 pi|yi − ŷi| = 1.74419 .
(12.12)

The errors in (12.12) are defined by percentage, where yi is the actual zero
depth tendency factor, ŷi is the result which is fitted by chemical and physical
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indices of amino acid, and pi is the frequency distribution of the amino acid
in the PDB database.

Following from these data fitting results, we can see that the fitting error
is not too large. Moreover, from fitting formula (12.12), we realize that the
chemical and physical indices of amino acids have different effects on the
relative zero depth tendency factor. For example, x1, x6 (charge of amino
acids and the hydrophobic factor obtained from F-P and Eisenberg) have
large effects, while x2, x8, x9 (polarity of amino acids and the hydrophobic
factor obtained from Wolfenden) have smaller effects. This differs from the
conclusions in some publications which suggest that polarity is the major
factor influencing the depth of amino acids in proteins.

Statistical Analysis of Both Length and Depth Indicators
of Proteins

From the protein-depth database, we can perform statistical analysis of both
length and depth indicators of proteins. The so-called depth indicators of
proteins include:

1. The number of amino acids on the surface of a protein. For each protein,
it is the total number of amino acids in zero depth.

2. The deepest depth of a protein, this means the depth of the deepest point
in a protein.

3. Average depth of a protein, this means the average depth of all amino
acids in a certain protein.

These three indicators relate to the length of the protein. We denote the length
of the ith protein by X(i) = ni, and denote three depth indicators of the ith
protein by Yτ (i), τ = 0, 1, 2. In the PDB database, these indicators of proteins
with different length are listed in [92]. Using the observation data Yτ (i) and
X(i), we can perform regression analysis. Using the least-squares estimation,
we get the linear regression equation of these data:

Ŷτ (i) = ατX(i) + βτ , τ = 0, 1, 2 , (12.13)

in which the values of the regression coefficients ατ and βτ are defined by

τ 0 1 2
ατ 0.05628 0.39897 0.06580
βτ 31.80478 −11.82391 −2.30257

(12.14)

The regression errors of (12.14) are defined as follows:

τ 0 1 2
mean square error

(
σ2
τ

)
45.2454 97.0313 1.3734

standard error (στ ) 6.7265 9.8504 1.1719
absolute error (δτ ) 5.1237 7.2439 0.8046

(12.15)
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Fig. 12.6. The fitting relationship between protein length and depth map

where the definitions of mean square error, standard error, and absolute error
are ⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

σ2
τ =

1
m

m∑

i=1

(
Ŷτ (i) − Yτ (i)

)2

,

στ =
√
σ2
τ ,

δτ =
1
m

m∑

i=1

∣∣
∣Ŷτ (i) − Yτ (i)

∣∣
∣ .

Following from formulas (12.13)–(12.15), we realize that the fitting error of
the average depth is very small. Therefore, we propose the following formula:
the sum of the depths of all the amino acids in a protein, −2.30257, is in
proportion to the square of the length of the protein. Also,

n∑

j=1

sj ∼ 0.06580× n2 + 2.30257× n , (12.16)

in which n is the length of protein, and sj is the depth of jth amino acid. The
fitting relationship of formula (12.11) is shown in Fig. 12.6.

12.2.3 Prediction for Depth of Multiple Peptide Chains
in Protein Spatial Structure

Using the protein depth database, we can predict the depth of each amino
acid in a protein. In Table 12.1, the relative frequency of the zero depth is
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the probability of finding the amino acid on the surface of the protein. From
Table 12.1, we can see that the probability that glutamic acid (E) is on the
surface of a protein is 32.66%. To improve the accuracy of our forecasts, we
can use multiple polypeptide chains on the surface of a protein.

Prediction of Tripeptide Chain

Let ABC be three linked amino acids. If one of them is on the surface of a pro-
tein, then we say that tripeptide chain ABC is on the surface of the protein. Let
n(A,B,C) be the number of tripeptides ABC on the surface of proteins in the
PDB database, let n0(A,B,C) be the number of all tripeptides on the surface
of proteins in the PDB database. Then f0(A,B,C) = n0(A,B,C)/n(A,B,C)
is the zero depth tendency factor of the tri-peptide ABC on the surface of the
protein. Table 12.4 shows all the tripeptide chains whose zero depth tendency
factor satisfies f0(A,B,C) > 75%.

Each tripeptide chain (for example, RED) consists of three amino acids.
Frequency is the number of of tripeptides in the entire amino acid sequence
whose length is greater than or at least equal to 50 in the PDB database, and
the zero depth tendency factor has the value of f0(A,B,C).

Prediction of Tetrapeptide

The definition of the zero depth tendency factor of tetrapeptide ABCD on
the surface of a protein is similar to the definition for a tripeptide. We list in
Table 12.5 the tetrapeptides whose zero depth tendency factors are greater
than 95%.

Following from Tables 12.4 and 12.5, we can get the probability of both
tripeptides and tetrapeptides appearing on the surface of the protein. For
example, from Table 12.5, we realize that tetrapeptide VYQR appears on the
surface of the protein with probability 97.142%. Therefore, we can determine
that the tetrapeptide VYQR must appear on the surface of the protein.

Remark 21. In Table 12.5, the zero depth tendency factor of a tetrapeptide
has been given under two conditions, namely, the zero depth tendency factor
of tetra-peptide must be more than 95%, and their frequency in the PDB
database must be more than 200. We list those tetrapeptides whose zero
depth tendency factors is more than 95%, with no restriction on frequency
in [99].

We can also calculate the zero depth tendency factor of polypeptide chains in
the PDB-Select database, for this may exclude the influence of homologous
sequences. Since the result is similar, we do not list these.
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12.2.4 The Level Function in Spatial Particle System

Based on the definition and calculation of depth in the last section, we present
the definition and calculation of the level function in a spatially distributed
particle system. We denote the particle system by A, and denote all the zero-
depth points in A by A0. Let Ω(A) = Ω(A0) be the convex closure of the space
particle system, and let its whole boundary plane be ω(A0). Then, ω(A0) can
eventually be decomposed into a number of interconnected triangles. We call
ω(A0) the zero hierarchical plane of A, and A0 is the point set on the zero
hierarchical plane of A.

Let A1 = A−A0, and denote by A10 all zero depth points of the particle
system A1, where its corresponding convex closure is denoted by Ω(A1) =
Ω(A10). We also denote its whole boundary plane by ω(A1) = ω(A10), which
is called a first level plane of A, and A10 is the point set on a one level plane
of A.

Similarly, we define Ak = Ak−1 −Ak−1,0, and denote all zero depth points
in the particle system Ak by Ak,0. Its convex closure is denoted by Ω(Ak) =
Ω(Ak,0), and its whole boundary plane is denoted by ω(Ak) = ω(Ak,0), which
we call the k-level plane of A. Ak,0 is a point on the k-level plane of A. Finally,
we can get a k0, such that Ak0 = Ak0,0, and we call k0 the largest level in the
particle system A.

Using the notations above, if a ∈ Ak,0, then the level function at point
a is k. Obviously, the definitions of level function and depth function are
different. Level function has the following properties:

1. The group of set Ak,0, k = 0, 1, · · · , k0 is a subdivision of set A, they are
disjoint, and their union is A, where A0,0 = A0.

2. For any k = 0, 1, · · · , k0−1, the relationship Ω(Ak−1,0) ⊂ Ω(Ak,0) always
holds.

Following the level function in a particle system, we may determine the struc-
tural characteristics of the particle system.

12.2.5 An Example

We use E. coli OmpF porin as an example to show the calculation process.

Depth and Level Function

This protein consists of 340 amino acids. Its primary structure, the coordinates
of the Cα atom of amino acids, as well as their depth and level function, are
shown in Table 12.6.

Remark 22. Coordinate (x, y, z) in Table 12.6 is the coordinate of the Cα atom
of each amino acid.
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Table 12.7. Distribution of depth of each amino acid in protein E. coli OmpF porin

D 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
F 51 21 23 28 7 12 16 13 12 9 9 12 8 11 5 7

D 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
F 6 4 6 8 5 2 2 4 2 3 0 1 2 0 3 0

D 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
F 3 1 1 0 1 1 2 0 1 1 0 0 0 1 1 0

D 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
F 1 0 0 1 1 2 2 0 1 0 0 2 1 1 0 0

D 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
F 0 0 3 1 0 0 0 1 1 0 0 0 1 0 1 0

D 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
F 0 1 0 0 0 1 1 1 0 2 0 0 0 0 1 1

D 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
F 2 0 2 0 0 0 0 0 0 0 0 0 0 0 0 1

D 112 113 114 115 116 117 118 119
F 0 0 1 0 0 0 0 1

D depth, F frequency

Statistical Distribution of Depth

According to the discussion in Chap. 11, we can calculate the depth of all
particles in the space particle system. Its distribution function describes the
number of points with different depth, for example, for protein E. coli OmpF
porin, its statistical distribution function is shown in Table 12.7.

In Table 12.7, the value of the depth ranges from 0 to 119. The number of
points with different depths are listed in the table; for example, there are 51
zero-depth points, 21 one-depth points, and so on.

12.3 Exercises

Exercise 58. In the case of a plane, generalize the essential theorems and
formulas presented in this chapter. For example:

1. For the plane particle system A, write out the definition of depth, then
describe Theorem 40 and prove it.

2. Write a program for calculating the depth and level function of a point in
plane particle system A.

3. Discuss the essential properties of the depth of the plane particle systemA.

Exercise 59. Write a program for calculating the depth of three atoms N,
Cα, C on the main chain of proteins in the PDB-Select database, and perform
the following calculations:



354 12 Depth Analysis of Protein Spatial Structure

1. Build three depth databases of the above three atoms: ΩN, ΩA, ΩC. You
may use the template of Table 12.6 and append depth indices for each
amino acid.

2. Use these three depth databases of the above three atoms to calculate
the depth tendency factor of different amino acids, such as the average
depth tendency factor, the absolute zero depth tendency factor, the rela-
tive depth tendency factor and the deepest tendency factor, and so on.

3. Write out the forecast result for both tripeptides and tetrapeptides on the
surface of a protein: write out the tripeptides on the surface of the protein
with a probability of more than 75%, and the tetrapeptides on the surface
of the protein with a probability of over 95%.

Exercise 60. Using the depth program in the plane particle system (Exer-
cise 58), for the atoms N, Cα, C in the main chain of proteins in the PDB-
Select database, write out the depth and level function of its projection on
plane XY, XZ, YZ, and do the following statistical analysis:

1. Build a plane depth database of different amino acids and calculate their
depth tendency factors, such as average depth tendency factor, absolute
zero depth tendency factor, relative zero depth tendency factor and the
depth tendency factor of the deepest point, and so on.

2. For both a tripeptide and a tetrapeptide, write out the forecast result of its
projection on plane XY, XZ, YZ, write out the tripeptide whose projection
on plane XY, XZ, YZ is on the surface of a protein with a probability of
more than 75%, and the tetrapeptide whose projection on plane XY, XZ,
YZ is on the surface of protein with a probability of more than 95%.

Exercise 61. On the basis of the calculation in task 1 of Exercise 58, compare
the results for three atoms N, Cα, C, and discuss their relationships:

1. Compare the relationship of the depth tendency factors among different
amino acids, such as the relationship among the depth tendency factors
of atoms N, Cα, C.

2. Compare the relationship for predictions of polypeptide chains on the
surface of a protein, for example, for atoms N, Cα, C, the data structure
of the tetrapeptide which is on the surface of a protein with a probability
of more than 95%.

Exercise 62. On the basis of task 1 in Exercise 58, calculate the depth and
level database Ω′

N, Ω′
A, Ω′

C, where Ω′
N, Ω′

A, Ω′
C is the database obtained by

appending the level indices of each amino acid to the original database ΩN,
ΩA, ΩC.

Exercise 63. Prove properties 1–4 in Sects. 12.1.2 and 12.1.3.
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Analysis of the Morphological Features

of Protein Spatial Structure

13.1 Introduction

13.1.1 Morphological Features of Protein Spatial Structure

As mentioned in the previous chapter, there are a number of methods for
studying protein spatial structure. In this chapter, we discuss the analysis of
the morphological features of proteins. The morphological features of proteins
include basic morphological features, such as sphericity, cylindricity, coffin
shapes, umbrella shapes, etc., and interior features of proteins, such as interior
cavities, grooves, channels, etc. In the area of drug design and virus analysis,
these features have been redefined. We introduce the relevant issues as follows.

Interaction Between Ligands and Receptors

In the fields of drug design and virus analysis, a key issue is how to determine
the interaction between a receptor and a ligand. This issue can be divided
into two subissues, namely:

1. Morphological matches between ligands and receptors, such that the lig-
and can be bound, enter or transit through the receptor, and where these
functions take place.

2. Whether they react if the ligand and receptor are matched; that is,
whether they can be chemically bonded, and whether the biochemical
functions of the protein are affected after they bond.

For the above two issues, the first one is a geometrical issue, while the second
is a biological and chemical issue. For the first issue, there is an abundance of
data for spatial locations of the atoms comprising the protein. This provides
us with the basis for geometrical analysis. In this book we discuss only the
first issue.
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Geometrical Calculations of Ligands and Receptors

Geometrical calculations are routinely involved in many types of research,
especially in the combinatiorial design of the shapes of objects manufactured
in industrial production, which has led to the development of an integrated
theory and computational algorithm [93, 98]. Many functions of biological
macromolecules (such as proteins) relate to their morphology, which leads to
research of the morphology of biological macromolecules becoming more and
more important.

As we have mentioned above, proteins consist of large numbers of amino
acids, and each amino acid consists of many different atoms, so that we may
consider a protein as a spatially distributed particle system. This particle
system can be described and researched from several angles, such as the sec-
ondary structure and spatial structure mentioned in the last three chapters of
this book, as well as the morphological features which will be discussed below.

The essential morphological feature of a protein is that the particles which
comprise the protein have a large scale and irregular distributions, and the
known results are often too imprecise to be readily useful in drug design
and virus analysis. Traditional geometric computational methods (such as
the spline method, and particle distribution method) are not always effective.
Therefore, we must explore new methods. The main goal of this chapter is to
study the morphological features of protein spatial structures and to explore
new mathematical theories, tools and methods. The involved issues include
mathematical and geometric calculation:

1. The spatial polyhedron is a familiar geometrical object. If a polyhedron
consists of large numbers of boundary planes, we need to use certain math-
ematical formulas and computations to describe and construct these poly-
hedrons. The concept of the hypergraph is the generalization of a graph
with points and lines. It uses a family of sets to replace the arcs defined
in graph theory. Using the hypergraph, we can describe the spatial poly-
hedron exactly.

2. In the previous chapter, we have discussed in detail the concept of depth,
which is based on geometry. It combines the three concepts of the spatial
polyhedron, the hypergraph and depth, which can create an essential tool
for the study of a spatial particle system.

3. In the study of protein structures, in order to analyze their morphological
features, the method of the small rolling sphere has already been used.
We develop this method to a universal geometric calculation method and
present several new concepts, such as the γ-accessible radius in a spatial
particle system, which provides the biological concepts such as hydropho-
bicity with more precise mathematical definitions.

4. The question of how to effectively calculate and search the structural fea-
tures of proteins which have different sizes and morphologies (Figs. 13.1,
13.2) is a new issue in geometrical calculations.
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Fig. 13.1a–d. Spatial structure of the protein space

Fig. 13.2a,b. The rugged surface of a protein

Figure 13.1a represents a “cavity” in a protein, Fig. 13.1b represents
the relationship between a ligand and a receptor, where the receptor
has the structure of a “pocket” into which the ligand can enter, and
Fig. 13.1c represents a “channel” in a protein, a tube-shaped structure
in space. Figure 13.1d represents a protein consisting of a number of
polymers forming autonomous domains.
In Fig. 13.2a, the bold lines represent the actual morphology of the surface
of a protein; thin lines and broken lines represent the convex hull of the
protein. Figure 13.2b shows grooves on the surface of the protein.

13.1.2 Several Basic Definitions and Symbols

In Chap. 12, we presented the definition and calculation of depth in a particle
system, as well as the computation of both the convex hull and level. In this
chapter, we add several new definitions and symbols.

Topological Structure of Spatial Set

We denote the one-dimensional, two-dimensional, and three-dimensional Eu-
clidean spaces by R1, R2, R3, respectively. Being very familiar with the con-
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cepts of point, line (line segment, straight line or curve), and surface (plane
or curved surface) in geometry, we do not need to introduce them here. Re-
gions in R1, R2, R3 will be denoted by �, σ,Σ, respectively, and defined as
follows:

1. We denote the coordinate of a in R1, R2, R3 by x, r = (x, y), r = (x, y, z),
respectively. The distance between point a and the origin e is the modulus
of point a, which we denote by |ea| = r = |x|,

√
x2 + y2,

√
x2 + y2 + z2,

where a is a point in R1, R2, R3, respectively.
Region Σ is bounded if there exists a constant K > 0, for any (x, y, z) ∈ Σ
such that x2 + y2 + z2 < K. The bounded region �, σ is defined in the
same way.

2. In region �, σ, Σ, we can define interior points and boundary points.
Point a is called an interior point of σ if a ∈ σ and there exists ε > 0 such
that circle o(a, ε) belongs to σ entirely. Point a is an exterior point of Σ if
there exists ε > 0, such that spheroid O(a, ε) does not intersect with Σ. If
a point is not an interior or an exterior point, then it is a boundary point.
We denote the circle with center a and radius ε by o(a, ε), and denote the
spheroid with center a and radius ε by O(a, ε).
All boundary points of σ form the boundary line of σ, and all boundary
points of Σ form the boundary surface.

3. Point a is a cluster point of region Σ, if there exists a sequence an ∈ Σ,
n = 1, 2, · · · , such that an → a as n → ∞, an → a means |rn − r| → 0,
where rn, r is the corresponding coordinate vector of points an, a.
Region Σ is closed if all its cluster points are in Σ.

4. Region Σ is connected, if for any two points a, b ∈ Σ, they can be con-
nected with a curve C, C ⊂ Σ.

Region Σ is nondegenerate, if for any point a in Σ and any ε > 0, there always
exists a point b ∈ O(a, ε), such that b is an interior point of Σ.

A bounded, nondegenerate, closed connected region is called a natural
region. For the case of a one-dimensional and two-dimensional region �, σ, we
can define its bounded, nondegenerate, closed connected and natural regions
in a similar way.

Polygons and Polyhedrons

Obviously, the one-dimensional natural region is a line segment. We will now
discuss the cases where σ, Σ are two-dimensional and three-dimensional nat-
ural regions, respectively:

1. In the two-dimensional natural region σ, if its boundary line consists of
several line segments, we call this region a planar polygon.

2. In the three-dimensional natural region Σ, if its boundary surface consists
of several planar polygons, we call this region a spatial polyhedron.
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Based on Euclidean geometry, we can identify the following properties:

1. For any planar polygon σ, we can decompose it into several triangles
δ1, δ2, · · · , δk. These triangles have no common interior points, and their
union is σ. We can easily explain that this decomposition is not unique.

2. For any polyhedron Σ, its boundary surface consists of several poly-
gons, so this boundary surface can be decomposed into several triangles
δ1, δ2, · · · , δk. These triangles have no common interior points, and their
union is the corresponding boundary surface. We call these triangles the
boundary triangles of the polyhedron. Intersection lines of a noncoplanar
boundary triangle are the edges of the polyhedron, and the endpoints of
the edges are the vertices of the polyhedron.

Convex Polyhedron and Its Convex Hull

We continue discussing the natural region Σ (σ can be discussed in a similar
way):

1. The spatial region Σ is a convex region, if for any a, b ∈ Σ, such that
ab ⊂ Σ holds, where ab is a line segment with endpoints a, b.

2. The intersection of any convex regions is still a convex region. The in-
tersection of all convex regions that contain Σ is the convex hull of Σ,
denoted by Ω(Σ).
If Σ is closed, then its convex hull Ω(Σ) must be closed, and we call Ω(Σ)
the convex closure of Σ.
If Ω(Σ) is a polyhedron, then Ω(Σ) is a convex polyhedron.

3. If A = {a1, a2, · · · , an} is a spatial particle system, the convex hull which
is formed by set A is denoted by Ω(A). Obviously,Ω(A) is a spatial convex
polyhedron.

4. If Ω is a spatial convex polyhedron, then its boundary surface is the convex
hull of this polyhedron. This convex hull can be decomposed into several
triangles, and these boundary surfaces can generate the edges and vertices
of the polyhedron.

Hypergraph Determined by Polyhedron

The concept of the hypergraph is the generalization of a graph with points
and lines [31]. If A is a point set, V = {V1, V2, · · · , Vk} is a group of subsets,
and we call G = {A, V } a hypergraph, the elements of A are the vertices of
hypergraph G, and the elements of V are the arcs of hypergraph G, or simply
the hyperarcs. Obviously, when Vi is a dual set, the hypergraph has become
a common graph with points and lines. If we denote ||Vi|| = r, then we call Vi
the r-order arc. We denote all r-order arcs of G by V (r). If ⊂pr=1 V (r) = A,
then we call G a p-order hypergraph. Here we denote it by

G = {A, V } =
{
A, V (1), V (2), · · · , V (p)

}
, (13.1)
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which is called the decomposition of hypergraph G. A spatial polyhedron Ω
can be represented by a hypergraph. In this case,

G =
{
A0, V

(2), V (3)
}

satisfies:

1. A0 represents all the vertices of the spatial polyhedron, while V (2), which
comprises the whole edges, is set of pair points.

2. V (3) are all the boundary triangles of the spatial polyhedron, where each
Vi = {ai, bi, ci}, ai, bi, ci ∈ A0 is a third-order subset of A0.

Definition 43. If hypergraph G = {A, V (2), V (3)} satisfies the above condi-
tions 1 and 2, then the hypergraph G is determined by the polyhedron Ω. Thus
G is a third-order hypergraph.

An important polyhedron is the convex polyhedron. If Vi ∈ V (3), and the
spatial plane determined by Vi is denoted by πi, then Ω is a convex polyhedron
if and only if for each Vi ∈ V (3) all points in A0 are on the same side of πi (or
on πi).

Symbols Used in this Part

1. δ is a spatial triangle, and o(δ), o(δ), r(δ) represent the circumcircle of
triangle δ, circumcenter, and circumradius, respectively.

2. If a, b, c are three points in space, and δ(a, b, c) is the triangle determined
by three vertices a, b, c, the corresponding circumcircle, circumcenter and
circumradius are o(a, b, c), o(a, b, c), r(a, b, c), respectively.

3. π(δ) or π(a, b, c) represents the plane determined by triangle δ or the three
points a, b, c.

4. O = O(o, r) represents a sphere with center o, radius r; O(r) or O(ε)
represent a rolling sphere with radius r or ε.

5. If Δ = Δ(a, b, c, d) represents a tetrahedron with four vertices a, b, c, d,
then O(a, b, c, d) represents a circumscribed sphere determined by a, b,
c, d, o(a, b, c, d) represents the center of that circumscribed sphere, and
r(a, b, c, d) represents the radius of that circumscribed sphere.

13.1.3 Preliminary Analysis of the Morphology of Spatial Particle
System

Let Ω = Ω(A) = Ω(A0) be the convex hull of a spatial particle system A. A0

is the set of all zero-depth points, and A∗
0 is the set of vertices of Ω(A). These

are determined by the method mentioned in Defintion 43. We first conduct
a preliminary analysis of the morphology of the spatial particle system.
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Basic Morphology of Protein

It is very useful to study the basic morphology of a protein, and its charac-
teristic features include:

1. Long axis. We call ab the long axis of Ω, if a, b ∈ A0, and for any a′, b′ ∈
A0, such that |a, b| ≥ |a′, b′| holds, where |a, b| is the distance between
points a, b. Then �z = |a, b| are the lengths of the particle system. We call
the straight line determined by ab straight line OZ.

2. Middle axis. If c, c′ ∈ A0, we denote their projection to the long axis ab by
o, o′, and we call co the middle axis of Ω, if for any c′ ∈ A0, |c, o| ≥ |c′, o′|
holds. We call �y = |c, o| the width of the particle system. We call point o
the center of the particle system. It must be on line segment ab, and the
four points o, a, b, c are coplanar, with the plane denoted by π.

3. Normal axis and a natural coordinate system. The normal axis is a straight
line through point o and perpendicular to plane π. With o as the origin;
long axis, middle axis and normal axis as coordinate axes, and determined
by right-hand rules, we find a coordinate system which is the natural
coordinate system of the spatial particle system.

From the length and width of a particle system, we can roughly determine the
basic morphology of the particle system. If the length and width are similar,
this particle system is a sphere. If the length is clearly longer than the width,
then the particle system is a cylinder. Upon further analysis, we can also
analyze the projection or section of the convex closed hull Ω(A), which will
not be discussed in detail.

Example 29. For the protein E. coli OmpF porin in Sect. 12.2, calculate the
basic morphology of the protein:

1. Length of the long axis is �z = |a, b| = 62.969, the coordinates of a, b are
given as follows:

a = (110.318, 53.037, 29.738) , b = (55.901, 24.460, 16.054) ,
k = (−0.864,−0.454,−0.217)

2. Length of the middle axis is �y = |c, o| = 32.418, the coordinates of c, o
are given as follows:

c = (85.685, 39.332, 56.668) , o = (91.604, 43.209, 25.032) ,
i = (−0.183,−0.120, 0.976) .

Then λ = 0.344 is the division of point o on line segment ab.
3. Normal axis is j = i × k = (0.469,−0.883,−0.021).

Therefore, we find the natural coordinate system of the particle system: E =
{o, i, j,k}, in which, o, i, j and k are given by the above formulas.
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Data Structure of the Circumcircle of the Surface

We have shown that the surface of convex closure in a spatial particle system
is a convex hull, formed by a series of triangles. Each triangle has a circumcir-
cle, and each circumcircle has an identified radius and center. These are the
preliminary features of the morphology of a protein.

The data for the protein E. coli OmpF porin are listed in Tables 12.6
and 12.7, where the coordinates of the Cα atoms in the amino acids of the
protein are listed in Table 12.6. Using this data, we can calculate their cir-
cumradii and the coordinates of the circumcenter. The result is shown as
follows.

13.1.4 Example

In Table 12.6, we present the depth and level of each Cα atom in the pro-
tein E. coli OmpF porin. Then, the spatial particle system A is divided into
eight levels, which we denote by Ak, k = 0, 1, · · · , 7. Let Ω(Ak) denote the
convex closure of Ak, then all boundary triangles of Ω(Ak), which we de-
note by V

(3)
k , form the convex hulls of different levels. We list them in Ta-

ble 13.1.
Cα atoms in this protein can be divided into eight levels. The number

of atoms in each level and the number of boundary triangles are given in
Table 13.1.

Boundary triangles on each level are shown in Table 13.2.

Remark 23. Each lattice in Table 13.2 represents the data of a boundary tri-
angle on the same level. (i, j, k) represents the serial number of the Cα atom
of vertices of triangles on the convex hull, and the amino acids denoted by
serial number (i, j, k) are given in Table 12.6.

Table 13.1. Distributed table of the number of atoms in the convex hull and the
number of boundary triangles (NBT)

Level 0 1 2 3 4 5 6 7 Total

No. of atoms 51 66 69 65 43 20 17 9 340
NBT 98 128 134 126 86 36 30 12 646

NBT = number of boundary triangles
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Table 13.2. Data structure of convex hulls on each level

No. (i, j, k) No. (i, j, k) No. (i, j, k) No. (i, j, k) No. (i, j, k)

1 3,6,71 2 3,6,304 3 3,71,303 4 3,303,304 5 6,7,72
6 6,7,266 7 6,71,72 8 6,266,267 9 6,267,304 10 7,51,52

11 7,51,162 12 7,52,53 13 7,53,266 14 7,72,73 15 7,73,164
16 7,162,164 17 25,26,267 18 25,26,320 19 25,267,315 20 25,315,319
21 25,319,320 22 26,70,71 23 26,70,303 24 26,71,72 25 26,72,244
26 26,244,321 27 26,267,303 28 26,320,321 29 51,52,172 30 51,160,162
31 51,160,172 32 52,53,93 33 52,93,172 34 53,93,147 35 53,147,183
36 53,183,266 37 70,71,303 38 72,73,245 39 72,244,245 40 73,164,202
41 73,202,245 42 93,147,209 43 93,172,209 44 147,148,183 45 147,148,282
46 147,208,209 47 147,208,282 48 148,182,183 49 148,182,187 50 148,187,282
51 160,162,198 52 160,172,198 53 162,164,198 54 164,198,202 55 172,198,209
56 182,183,187 57 183,187,218 58 183,218,288 59 183,220,223 60 183,220,288
61 183,223,266 62 187,218,288 63 187,282,287 64 187,287,288 65 198,202,209
66 202,207,208 67 202,207,285 68 202,208,209 69 202,245,285 70 207,208,285
71 208,282,285 72 220,223,261 73 220,261,288 74 223,225,261 75 223,225,263
76 223,263,265 77 223,265,266 78 225,261,263 79 244,245,321 80 245,285,321
81 261,263,273 82 261,273,317 83 261,288,317 84 263,265,273 85 265,266,267
86 265,267,297 87 265,273,297 88 267,297,315 89 267,303,304 90 273,297,315
91 273,315,317 92 282,285,287 93 285,287,321 94 287,288,321 95 288,317,319
96 288,319,321 97 315,317,319 98 319,320,321

1 3,6,7 2 3,6,19 3 3,7,25 4 3,25,162 5 3,162,69
6 3,19,23 7 3,23,24 8 3,24,69 9 6,7,285 10 6,285,315

11 6,315,19 12 7,25,147 13 7,72,93 14 7,72,147 15 7,73,93
16 7,73,183 17 7,183,187 18 7,187,282 19 7,282,285 20 25,147,209
21 25,162,209 22 26,71,148 23 26,71,57 24 26,148,69 25 26,24,57
26 26,24,69 27 51,52,53 28 51,52,317 29 51,53,70 30 51,70,71
31 51,71,57 32 51,317,9 33 51,9,57 34 52,53,54 35 52,317,55
36 52,54,55 37 53,70,71 38 53,71,148 39 53,148,160 40 53,160,297
41 53,297,50 42 53,37,50 43 53,37,54 44 72,93,147 45 73,93,182
46 73,182,183 47 93,147,207 48 93,164,182 49 93,164,218 50 93,202,207
51 93,202,218 52 147,207,208 53 147,208,209 54 148,160,162 55 148,162,69
56 160,162,209 57 160,209,265 58 160,265,297 59 164,182,218 60 172,182,183
61 172,182,273 62 172,183,187 63 172,187,198 64 172,198,223 65 172,223,245
66 172,245,273 67 182,218,220 68 182,220,261 69 182,261,273 70 187,198,223
71 187,223,244 72 187,225,244 73 187,225,282 74 202,207,218 75 207,208,263
76 207,218,261 77 207,261,263 78 208,209,263 79 209,263,265 80 218,220,261
81 223,244,245 82 225,244,282 83 244,245,303 84 244,282,285 85 244,285,287
86 244,287,288 87 244,288,303 88 245,273,321 89 245,303,321 90 261,263,266
91 261,266,273 92 263,265,266 93 265,266,267 94 265,267,297 95 266,267,4
96 266,273,4 97 267,297,4 98 273,321,4 99 285,287,8 100 285,315,317

101 285,317,319 102 285,319,8 103 287,288,304 104 287,304,320 105 287,320,8
106 288,303,304 107 297,4,5 108 297,5,50 109 303,304,320 110 303,320,321
111 315,317,9 112 315,9,57 113 315,19,23 114 315,23,24 115 315,24,57
116 317,319,55 117 319,8,55 118 320,321,5 119 320,5,8 120 321,4,5
121 5,8,36 122 5,36,37 123 5,37,50 124 8,27,36 125 8,27,54
126 8,54,55 127 27,36,54 128 36,37,54
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Table 13.2. (continued)

No. (i, j, k) No. (i, j, k) No. (i, j, k) No. (i, j, k) No. (i, j, k)

1 3,6,7 2 3,6,164 3 3,7,25 4 3,25,93 5 3,26,93
6 3,26,90 7 3,164,319 8 3,319,27 9 3,27,90 10 6,7,72

11 6,72,164 12 7,25,148 13 7,72,148 14 25,93,148 15 26,93,147
16 26,147,37 17 26,36,37 18 26,36,90 19 51,52,71 20 51,52,75
21 51,71,147 22 51,147,37 23 51,37,75 24 52,53,70 25 52,53,147
26 52,70,69 27 52,71,147 28 52,69,74 29 52,74,75 30 53,70,288
31 53,147,148 32 53,148,288 33 70,288,57 34 70,57,69 35 72,73,162
36 72,73,164 37 72,148,160 38 72,160,162 39 73,162,164 40 93,147,148
41 148,160,182 42 148,182,202 43 148,202,297 44 148,288,297 45 160,162,182
46 162,164,207 47 162,182,207 48 164,172,183 49 164,172,207 50 164,183,187
51 164,187,319 52 172,183,208 53 172,198,208 54 172,198,223 55 172,207,223
56 182,202,207 57 183,187,208 58 187,208,265 59 187,209,218 60 187,209,267
61 187,218,265 62 187,267,319 63 198,208,220 64 198,220,223 65 202,207,244
66 202,244,245 67 202,245,297 68 207,223,225 69 207,225,245 70 207,244,245
71 208,220,287 72 208,265,285 73 208,285,304 74 208,287,304 75 209,218,267
76 218,265,282 77 218,266,267 78 218,266,282 79 220,223,287 80 223,225,287
81 225,245,263 82 225,263,287 83 245,261,297 84 245,261,5 85 245,263,5
86 261,297,5 87 263,287,303 88 263,303,5 89 265,282,285 90 266,267,273
91 266,273,317 92 266,282,315 93 266,315,317 94 267,273,319 95 273,317,319
96 282,285,304 97 282,304,8 98 282,315,8 99 287,303,304 100 288,297,5

101 288,5,55 102 288,55,57 103 303,304,5 104 304,5,8 105 315,317,4
106 315,4,9 107 315,8,9 108 317,319,321 109 317,321,19 110 317,4,19
111 319,320,24 112 319,320,27 113 319,321,23 114 319,23,24 115 320,24,27
116 321,19,23 117 4,9,19 118 5,8,57 119 5,55,57 120 8,9,69
121 8,57,69 122 9,19,69 123 19,23,54 124 19,54,69 125 23,24,54
126 24,27,37 127 24,37,50 128 24,50,54 129 27,36,37 130 27,36,90
131 37,50,75 132 50,54,74 133 50,74,75 134 54,69,74

1 3,6,70 2 3,6,73 3 3,53,147 4 3,53,57 5 3,70,147
6 3,73,208 7 3,208,23 8 3,23,57 9 6,70,71 10 6,71,72

11 6,72,73 12 7,25,52 13 7,25,54 14 7,52,55 15 7,54,55
16 25,26,51 17 25,26,50 18 25,51,160 19 25,52,160 20 25,24,50
21 25,24,54 22 26,51,160 23 26,160,304 24 26,304,37 25 26,36,37
26 26,36,50 27 52,53,148 28 52,53,57 29 52,148,160 30 52,55,57
31 53,147,148 32 70,71,160 33 70,147,160 34 71,72,160 35 72,73,93
36 72,93,160 37 73,93,162 38 73,162,164 39 73,164,208 40 93,160,187
41 93,162,187 42 147,148,160 43 160,187,225 44 160,223,225 45 160,223,315
46 160,304,315 47 162,164,182 48 162,182,198 49 162,183,187 50 162,183,198
51 164,172,182 52 164,172,208 53 172,182,198 54 172,198,202 55 172,202,245
56 172,207,208 57 172,207,261 58 172,245,261 59 183,187,225 60 183,198,244
61 183,225,244 62 198,202,220 63 198,220,244 64 202,220,245 65 207,208,209
66 207,209,218 67 207,218,261 68 208,209,263 69 208,263,285 70 208,285,23
71 209,218,263 72 218,261,266 73 218,263,266 74 220,244,267 75 220,245,267
76 223,225,244 77 223,244,267 78 223,267,317 79 223,315,317 80 245,261,273
81 245,267,273 82 261,266,273 83 263,265,266 84 263,265,285 85 265,266,288
86 265,282,285 87 265,282,288 88 266,273,288 89 267,273,303 90 267,303,317
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Table 13.2. (continued)

No. (i, j, k) No. (i, j, k) No. (i, j, k) No. (i, j, k) No. (i, j, k)

91 273,288,297 92 273,297,320 93 273,303,320 94 282,285,287 95 282,287,288
96 285,287,5 97 285,321,4 98 285,321,23 99 285,4,5 100 287,288,5

101 288,297,320 102 288,320,5 103 303,304,317 104 303,304,319 105 303,319,8
106 303,320,8 107 304,315,317 108 304,319,8 109 304,8,9 110 304,9,37
111 320,5,8 112 321,4,19 113 321,19,36 114 321,23,36 115 4,5,9
116 4,9,19 117 5,8,9 118 9,19,37 119 19,36,37 120 23,24,27
121 23,24,55 122 23,27,36 123 23,55,57 124 24,27,50 125 24,54,55
126 27,36,50

1 3,6,7 2 3,6,73 3 3,7,183 4 3,53,70 5 3,53,73
6 3,70,160 7 3,160,164 8 3,164,172 9 3,172,183 10 6,7,25

11 6,25,52 12 6,52,73 13 7,25,183 14 25,51,52 15 25,51,288
16 25,183,288 17 26,51,287 18 26,51,288 19 26,273,287 20 26,273,288
21 51,52,73 22 51,72,73 23 51,72,287 24 53,70,71 25 53,71,73
26 70,71,148 27 70,148,162 28 70,160,162 29 71,73,147 30 71,147,148
31 72,73,218 32 72,209,218 33 72,209,263 34 72,263,287 35 73,93,147
36 73,93,187 37 73,187,218 38 93,147,187 39 147,148,187 40 148,162,187
41 160,162,208 42 160,164,202 43 160,202,207 44 160,207,208 45 162,187,198
46 162,198,208 47 164,172,182 48 164,182,267 49 164,202,220 50 164,220,261
51 164,261,267 52 172,182,183 53 182,183,273 54 182,267,273 55 183,273,288
56 187,198,218 57 198,208,225 58 198,209,218 59 198,209,265 60 198,225,265
61 202,207,220 62 207,208,225 63 207,220,225 64 209,263,265 65 220,223,225
66 220,223,261 67 223,225,245 68 223,245,261 69 225,244,245 70 225,244,265
71 244,245,265 72 245,261,266 73 245,265,266 74 261,266,267 75 263,265,287
76 265,266,282 77 265,282,285 78 265,285,287 79 266,267,273 80 266,273,282
81 273,282,287 82 282,285,287

1 3,6,51 2 3,6,93 3 3,51,52 4 3,52,172 5 3,93,182
6 3,172,182 7 6,7,26 8 6,7,93 9 6,26,52 10 6,51,52

11 7,25,26 12 7,25,160 13 7,71,72 14 7,71,160 15 7,72,73
16 7,73,93 17 25,26,52 18 25,52,53 19 25,53,160 20 52,53,147
21 52,147,172 22 53,147,148 23 53,148,160 24 70,72,160 25 70,72,162
26 70,160,162 27 71,72,160 28 72,73,182 29 72,162,182 30 73,93,182
31 147,148,162 32 147,162,164 33 147,164,172 34 148,160,162 35 162,164,172
36 162,172,182

1 3,6,7 2 3,6,70 3 3,7,25 4 3,25,26 5 3,26,52
6 3,52,53 7 3,53,70 8 6,7,160 9 6,70,93 10 6,93,147
11 6,147,160 12 7,25,160 13 25,26,160 14 26,51,52 15 26,51,162
16 26,148,160 17 26,148,162 18 51,52,53 19 51,53,71 20 51,71,73
21 51,73,162 22 53,70,71 23 70,71,72 24 70,72,162 25 70,93,162
26 71,72,162 27 71,73,162 28 93,147,162 29 147,148,160 30 147,148,162

1 3,6,7 2 3,6,70 3 3,7,25 4 3,25,70 5 6,7,52
6 6,51,52 7 6,51,70 8 7,25,52 9 25,26,51 10 25,26,52

11 25,51,70 12 26,51,52
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13.2 Structural Analysis of Cavities and Channels
in a Particle System

A cavity is one of the basic features of the morphology of a particle system,
which we will discuss first. The main method of calculation is the rolling
sphere method.

13.2.1 Definition, Classification and Calculation of Cavity

For a fixed spatial particle system A, its convex closure is Ω(A). We denote
the sphere with center o and radius r by O(o, r), and denote a rolling sphere
with radius r by O(r).

Definition of Empty Sphere

Definition 44. 1. If O(r) ∩ Ω(A) is not an empty set, and O(r) does not
contain any points of A, then O(r) is a hollow (or empty) sphere with
radius r in particle system A.

2. If a, b, c, d are four points in A, their circumscribed sphere is O(a, b, c, d),
If O(a, b, c, d) is an empty sphere in particle system A, then we call
O(a, b, c, d) an empty sphere generated by the four points a, b, c, d.

Classification of Cavities

There are many methods for classifying the relationship between a cavity and
the particle system A. First, we present the following four types of relation-
ships between O(r) and Ω(A):

1. Sphere O(r) is entirely in Ω(A), we call it an I-0-class cavity of particle
system A. In an I-0 class cavity, the cavity with the largest radius is the
largest cavity in particle system A.

2. If sphere O(r) is partly in Ω(A), then sphere O(r) must intercept several
boundary surfaces of Ω(A). If there exists a boundary surface π that
intercepts most of the sphere O(r) on the same side of Ω(A), then we
call this cavity a I-1-class cavity of particle system A, otherwise, we call
it a I-2-class cavity. I-1 and I-2 class cavities are also called spheroidal
grooves of particle system A.

3. In addition, we can provide a classification using circumscribed sphere
O(a, b, c, d). Thus, the relationship between a, b, c, d ∈ A and set A0 is
stated as follows: For a, b, c, d ∈ A, if there exist zero, one, two, three, or
four points in set A0, then the corresponding O(a, b, c, d) is a II-0, II-1,
II-2, II-3, or II-4 class sphere, respectively. Since we do not define the
concept of II-4 class spheres in this chapter, we only discuss the first four
types of cavities. For a II-0 class cavity, we can define the largest cavity
of the particle system A similarly.
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4. If sphere O is both a I-1-class and a II-3-class sphere, then a boundary
triangle δ = δ(a, b, c) of Ω must be on the surface of the sphere. We call O
a I-1(r)-class sphere, where r = r(δ) is the circumradius of the boundary
triangle δ.

Search and Calculation of a Cavity

Searching and calculating the cavity can be executed in two steps, namely:

1. For any four points a, b, c, d in set A, we can determine a circumscribed
sphere O(a, b, c, d) by the four-point-determined-sphere method, with the
corresponding formulas given in Sect. 13.5. We denote the center and
radius of the sphere by o = o(a, b, c, d), r = r(a, b, c, d), respectively.

2. Let A(a, b, c, d) = A − {a, b, c, d}, if for any e ∈ A(a, b, c, d), e is not in
sphere O(a, b, c, d), then O(a, b, c, d) is a cavity of A.

3. For a protein with length n, the computational complexity of finding all
its cavities is n5. Hence it is easily computed. For a protein with length
400, it takes 5 h to compute all the cavities on a 1 GHz PC. If we develop
a proper algorithm, the computational complexity can be reduced. We do
not discuss this further here.

Remark 24. The left object and the right object in Fig. 13.3 are the spatial
structure of yeast hexokinase PII and E. coli OmpF porin, respectively. Each
small sphere represents an atom; the two larger spheres are the “pocket” and
the “center cavity.”

Fig. 13.3. A protein’s “cavity” and the “pockets” of the surface
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13.2.2 Relationship Between Cavities

Connected Cavities

If two known cavities O(r), O′(r′) intersect, then they are called connected
cavities. The intersected curve of the surfaces of connected cavities O(r),
O′(r′) must be a circle. Below, we provide the following discussion.

1. Let o, o′ be the centers of cavities O(r), O′(r′), respectively. We de-
note the distance between the two centers by h = |oo′|, and denote
a point on the intersected curve of the surface of the cavities by a.
Point a′ is the projection of point a on line oo′. Thus, a′ divides the
line oo′ into two parts: oa′, a′o′, whose lengths are x, y, respectively.
Their geometrical relationship and computational result are shown in
Fig. 13.4.

2. x, y satisfy equations:
{

x+ y = h ,

r2 − x2 = (r′)2 − y2 .

Solving these equations, we have that
⎧
⎪⎨

⎪⎩

x =
h

2
+
r2 − (r′)2

2h
,

y =
h

2
− r2 − (r′)2

2h
.

(13.2)

Therefore, the values of x, y are independent of the selection of point a,
and we denote a′ by o′′.

Fig. 13.4. Computation map of the radius of section between connected spheres
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3. Let the intersected curve of the surface of O(r), O′(r′) be L, then the
distance between any point a on L and o′′ is computed as follows:

r′′ = (r2 − x2)1/2 =

[

r2 −
(
h

2
+
r2 − (r′)2

2h

)2
]1/2

=
1
2

{
2[r2 + (r′)2] − h2 r

4 − 2r2(r′)2 + (r′)4

h2

}1/2

. (13.3)

Obviously, the values of r′′ and point a are independent. So the intersected
curve of the surface of O(r), O′(r′), which we denoted by L, is a circle
with center o′′ and radius r′′. The corresponding formulas are presented
in (13.2) and (13.3). We call r′′ in (13.3) the radius of the section between
the two connected spheres.

Basic Properties of Connected Empty Spheres

If O(r1), O′(r2) are two connected empty spheres of set A, and r′′ is their
radius of section, then we say that the two empty spheres form a sphere pair,
denoted by (r1, r2, r′′). The following properties hold:

1. r′′ ≤ min{r1, r2}.
2. For any sphere O(r) such that r < r′′ holds, the sphere can move freely

within the connected empty spheres without encountering any points of
set A.

3. If O(a, b, c, d), O′(a′, b′, c′, d′) are two connected empty spheres, then
a, b, c, d, a′, b′, c′, d′ cannot be interior points of region

O(a, b, c, d) ∪O′(a′, b′, c′, d′) .

Connected Empty Spheres Map Generated by Particle System

For a fixed particle system A, we denote its entire connected empty spheres
map by GA = {OA,VA, rO, r(O,O′)}, where
{
OA = {O(a, b, c, d) : a, b, c, d ∈ A, and O(a, b, c, d) is empty sphere of A} ,
VA = {(O,O′) : O, O′ ∈ QA, and (O,O′) is connected sphere of A} ,

(13.4)
where rO is the radius of sphere O, and rO,O′ is the radius of the section
of connected empty spheres (O,O′). Then GA is the connected empty sphere
map generated by particle system A, where OA contains all the vertices of
the map, and VA contains all the arcs of the map, while rO, r(O,O′) are the
coloring functions of the vertices and arcs, respectively.
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Fig. 13.5. Channel network map

The Threshold Subgraph

The threshold subgraph can be determined by the connected empty spheres
map GA. If we let r∗ be a fixed constant, we define the threshold subgraph of
GA by GA(r∗) = {OA(r∗),VA(r∗), rO, r(O,O′)}, where

{
OA(r∗) = {O ∈ OA : rO ≥ r∗} ,
VA(r∗) = {(O,O′) ∈ VA : rO,O′ ≥ r∗} . (13.5)

Therefore, in graph GA(r∗), rO, r(O,O′) ≥ r∗ always holds.

Definition 45. In the threshold subgraph of the connected empty sphere
OA(r∗), the path is a channel in particle system A.

If L is a path in graph GA(r∗), then for any sphere O(r) such that r < r′′

holds, the sphere can move freely through the path without encountering any
points of set A.

To analyze a channel, we use the same definitions and symbols as in graph
theory, such as the start vertex and end vertex, cycle, and so on. Several
special definitions are listed as follows:

1. Channel L is connected with the exterior of particle system A, if the
beginning sphere O of channel L is connected with another sphere O′,
the radius of sphere O′ and the connected radius are rO, rOO′ ≥ r∗, and
if sphere O′ = O(δ) is a circumscribed sphere of a boundary triangle of
Ω(A). Then we also say that one end of the channel is connected with the
exterior of particle system A.

2. Channel L is penetrable according to particle system A, if both endpoints
of channel L are connected with the exterior of particle system A.

3. If two channels L1, L2 have common points, then we say that they cross.
Several crossed channels compose a channel network. See Fig. 13.5 for an
illustration. Finding and characterizing a channel network is simply grid
computing in graph theory, which we will not discuss here.
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13.2.3 Example

We analyze the empty cavity and channel of protein E. coli OmpF porin. The
data of the spatial structure of Cα atoms are given in Table 12.6. We continue
our discussion based on these data:

1. In particle system A, the total number of cavities is 2033, where the radii
range from 20.0 to 60.0, and the number of cavities whose four vertices
are all in Ω(A) is 42. These are shown in Table 13.3.

2. Among these 42 cavities, let GA(r∗) = {OA(r∗),VA(r∗), rO, r(O,O′)} de-
note the channel network map constructed by the connected sphere pairs
such that the radius of section r∗ > 20 holds, where OA(r∗), rO are the
parameters given in Table 13.3, and V(r∗), rO,O′ are given in Table 13.4:

3. From Table 13.4, we can identify a series of channels as follows:

35 → 26 → 23 → 24 → 2 → 25 → 31 → 22 → 29
15 → 24 → 23 → 26 → 35 → 22 → 31 → 25 → 12 ,

and so on. A small sphere with radius r < 20 can move through these
channels freely, without encountering any points in set A.
If these channels are connected with the circumscribed sphere of the
boundary surface, then they are penetratable in convex closure Ω(A).
We do not discuss this further at this point.

13.3 Analysis of γ-Accessible Radius in Spatial Particle
System

13.3.1 Structural Analysis of a Directed Polyhedron

In order to calculate and analyze spatial particle systems, we will first in-
troduce the theory of the structure of a directed polyhedron. In Sect. 13.1,
we have introduced the hypergraph which is used to represent the spatial
polyhedron; now we introduce the structure of the directed polyhedron.

In differential geometry, the theory of exterior differentiation is used to
describe the direction of boundary surfaces of spatial regions. We do not use
the theory here, but instead focus on the structure of the polyhedron. We
explain using the structure of the directed polyhedron as follows.

Directed Triangle

The triangle δ which has been given a normal direction is a directed triangle,
denoted by δ. It divides the space into two sides: inside and outside. The
direction of δ of the boundary triangle on a convex polyhedron is defined:
such that one side, in which set Ω lies, is the inside, and the other is the
outside.
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Definition 46. 1. Plane π is called a directed plane, if this plane divides the
space into two sides: the inside and the outside. We denote the directed
plane by π.

2. Triangle δ is called a directed triangle, if the plane π(δ) determined by
this triangle is a directed plane. We denote a directed triangle by δ. The
direction of a directed triangle δ is defined by the normal line through
point o(δ), where its orientation is from outside to inside.

Directed Polyhedron

In Sect. 13.1, we have introduced the bounded, closed, connective and non-
degenerate properties of a spatial polyhedron Ω, and its representation using
a hypergraph G = {A0, V

(3)}, where A0 contains all the vertices of the spatial
polyhedron Ω, and V (3) contains all the boundary triangles. We now discuss
the direction of the boundary triangle δ ∈ V (3) as follows.

Theorem 42. Let Ω be a spatial polyhedron, δ be one of its boundary trian-
gles, and o(δ) its circumcenter. Let � = �(δ) be a line through point o = o(δ)
and perpendicular to triangle δ; then point o divides line � into two rays: �1
and �2, and we have the following propositions:

1. There exists a point a on ray �1 or �2 such that the tetrahedron Δ(δ, a) ⊂ Ω.
2. Without loss of generality, we suppose that point a in proposition (1) is

on �1; then for any points b �= o on �2, tetrahedron Δ(δ, b) must not be
in Ω.

Proposition 1 can be proved by the nondegenerate condition of the polyhe-
dron Ω, and proposition 2 can be proved by the condition that δ is a boundary
triangle. We do not detail these proofs here.

Definition 47. The spatial polyhedron Ω is a directed polyhedron, if each
boundary triangle of V (3) is a directed triangle, and its direction is defined
as follows: The inside is the side such that the tetrahedron Δ(δ, a) ⊂ Ω
in Theorem 42, and the outside is then the other side. Here, we denote by
G = {A,V (3)} the directed hypergraph, where each δ ∈ V (3) is a directed
triangle.

If a directed polyhedron is a convex polyhedron, then we call it a convex
directed polyhedron.

Envelope and Retraction of a Directed Polyhedron

Definition 48. A directed polyhedron G′ = {A′,U (3)} is the envelope of an-
other directed polyhedron G = {A,V (3)}, if it satisfies the following:

1. Both U (3), V (3) are sets of boundary triangles, where the triangles in them
are either completely coincident or have no common interior points of
plane. We denote the set of coincident triangles by V (3)

0 .



13.3 Analysis of γ-Accessible Radius in Spatial Particle System 375

2. If δ ∈ V (3) −V
(3)
0 , a, b, c are three vertices of triangle δ, then there always

exists a point d ∈ A′, such that the triangle δ1 = δ(a, b, d), δ2 = δ(a, c, d),
δ3 = δ(b, c, d) ∈ U (3). Δ = Δ(δ, d) = Δ(a, b, c, d) forms a spatial tetrahe-
dron such that triangles δ1, δ2, δ3 are in U (3), but not in V (3).

3. The directions of the triangles in U (3) and V (3) are defined as follows:
(a) If δ ∈ V

(3)
0 , then the directions of the triangles in both {U (3)} and

V (3) are consistent.
(b) The direction of the four surfaces δ, δ1, δ2, δ3 of tetrahedron Δ =

Δ(a, b, c, d) in condition 2 are defined as follows:
i. For triangle δ, the side in which the tetrahedron Δ lies is the

inside, and the other side is the outside.
ii. For triangles δ1, δ2, δ3, the side in which tetrahedron Δ lies is the

outside, the other side is the inside.

The definitions for polyhedron G′ and G are given as follows.

Definition 49. 1. If the directed polyhedron G′ is the envelope of another
directed polyhedron G, then the directed polyhedron G is the retraction
of G′.

2. Polyhedron Δ(δ, d) is called the retracting polyhedron between directed
polyhedron G and its envelope G′. Then, δ is called the retracting tri-
angle in Δ(δ, d), and d is called the retracting point.

3. If the directed polyhedron G is the retraction of G′, then we denote the
entire retracting tetrahedrons by

Δ̃(G,G′) = {Δi = Δ(δi, di), i = 1, 2, · · · , k} . (13.6)

It called as the retracting set of G′ about G.

Definition 50. If A is a spatial particle system, G is a directed polyhedron,
and all the vertices of G are in A, then the directed polyhedron G is called the
directed polyhedron of set A. If G, G′, and G′′ all are directed polyhedrons of
set A, then we have the following definitions:

1. If G′ is the envelope of G, and for any retracting tetrahedron Δ(δ, d)
between G′ and G, it does not contain any points in A, then G′ is called
a simple envelope of G about set A, and G is called a simple retraction
of G′ about set A.

2. If G is a directed polyhedron, we denote all of its simple retractions by
GA, called the retracting range of G on set A.

The directed polyhedron and its envelope are shown in Fig. 13.6. Fig-
ure 13.6a shows a schematic diagram of the directed polyhedron, where the
arrow is the direction of the directed triangle. Figure 13.6b shows the relation
figure of the directed polyhedron, where graph G = {A, V } is

A = {1, 2, · · · , 15} , V = {(1, 2), (2, 3), · · · , (14, 15), (15, 1)} .
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Fig. 13.6a,b. A directed polyhedron and its envelope

Graph G′ = {A′, V ′} is
⎧
⎪⎨

⎪⎩

A′ = {1, 2, 3, 4, 6, 7, 8, 9, 11, 13, 15} ,
V ′ = {(1, 2), (2, 3), (3, 4), (4, 6), (6, 7), (7, 8), (8, 9), (9, 11),

(11, 13), (13, 15), (15, 1)} .
The direction of each tetrahedron in the envelope is shown in Fig. 13.6.

Structural Analysis of a Directed Polyhedron

Theorem 43. A directed polyhedron has the following basic properties:

1. A directed polyhedron is a convex directed polyhedron if and only if its
envelope is itself.

2. An envelope of a directed polyhedron may not be convex, but after envel-
opments, it must become a convex directed polyhedron.

Theorem 44. Let the directed tetrahedron G′, G′′ be the retraction of G;
their corresponding polyhedrons are Ω,Ω′, Ω′′, and we denote their retracting
sets by

{
Δ̃(G′,G) = {Δ′

i = Δ(δ′i, d
′
i), i = 1, 2, · · · , k′} ,

Δ̃(G′′,G) = {Δ′′
i = Δ(δ′′i , d

′′
i ), i = 1, 2, · · · , k′′} . (13.7)

We then identify the following properties:

1. If there are no common points between set {Δ′
i, i = 1, 2, · · · , k′} and set

{Δ′′
i , i = 1, 2, · · · , k′′}, the polyhedron is the retraction of Ω′ ∩ Ω′′, and

it is also the retraction of Ω, then its retracting set is

Δ̃(G′∩G′′,G) = {Δ′
i, i = 1, 2, · · · , k′}∪{Δ′′

j , j = 1, 2, · · · , k′′} . (13.8)

2. If there are no common points between set {δ′
i, i = 1, 2, · · · , k′} and set

{δ′′
i , i = 1, 2, · · · , k′′}, then the polyhedron Ω′∩Ω′′ is the second retraction

of Ω, the first retraction is from Ω to Ω′, and the second retraction is from
Ω′ to Ω′ ∩Ω′′.
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We do not prove this in detail here. In general, if both Ω′ and Ω′′ are retrac-
tions of Ω, then Ω′ ∩ Ω′′ is still a directed polyhedron, but may not be the
retraction of Ω.

As we have mentioned above, the biological definition of the surface of
a protein is predicted on the basis of whether or not the amino acids of a pro-
tein are solvent accessible (especially by water). We now extend this definition
using mathematical language by using the γ-accessible radius to describe it.

13.3.2 Definition and Basic Properties of γ-Accessible Radius

Definition of γ-Accessible Radius

If A is a spatial particle system, Ω(A) is its convex closure and a is a point
in space, then O(a, γ) denotes a small sphere with center a and radius γ, and
O(γ) denotes a rolling sphere with radius γ.

Definition 51. For a fixed spatial particle system A and any point a in Ω(A),
we say that point a is γ-accessible, if there is a broken line L which satisfies:

1. Point a is an endpoint of the broken line L, and the other endpoint b is
outside of the region Ω(A).

2. Denote by d a moving point on broken line L; for any d ∈ L. There are
no points of set A in the small sphere O(d, γ).

Then, we call the broken line L the γ-accessible path of the point a about A.

Definition 52. For a fixed spatial particle system A and any point a in Ω(A),
a point a has the γ-maximal accessible radius, if for all γ′ < γ, point a
is always γ′-accessible about A, and for any γ′′ > γ, point a is always γ′′-
inaccessible.

Therefore, the concept of a γ-maximal accessible radius is the maximal radius
of a small sphere which can touch other molecules in the protein. By Defini-
tion 47, for a fixed spatial particle system A, the γ-maximal accessible radius
of any point a in Ω(A) is uniquely determined. We denote it by γA(a), and
call it the γ-accessible radius or the γ-function of point a (about A).

Computational Terms of γ-Accessible Radius

For a fixed spatial particle system A, in order to compute the γ-function of
each point in A, we introduce the following terms, which are used frequently
in the following text:

1. For a fixed triangle δ or triangle δ(a, b, c), we denote the cirumcenter and
the circumradius of this triangle by o(δ), r(δ), respectively. We denoted
the circumcircle of this triangle by o(δ), and denote the plane determined
by this triangle by π(δ).
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2. A small sphere O(r) moves freely in region Σ. This means there are no
points of setA in regionΣ, and the small sphereO(r) can move in regionΣ
without encountering any points of set A.

3. A small sphere O(r) can access triangle δ, this means γ[o(δ)] ≥ r, where
γ[o(δ)] is the γ-function of circumcenter o(δ) of triangle δ. We call γ[o(δ)]
the accessible radius of triangle δ.

4. A small sphere O(r) can traverse triangle δ, this means the small sphere
O(r) can access triangle δ, and r(δ) ≥ r, where r(δ) is the circumra-
dius of triangle δ. We call min{r(δ), γ[o(δ)]} the traversable radius of
triangle δ.

5. A small sphere O(r) can access point a through triangle δ, meaning the
small sphere O(r) first accesses triangle δ, then continues moving and
finally reaches the point a. In this moving process, we can choose an
appropriate path without encountering any points of set A. Clearly, in
later moving processes after the small sphere O(r) reaches the trian-
gle δ, it is possible that only a part of the small sphere traverses tri-
angle δ and encounters the point a, while it is also possible that the whole
small sphere has entirely traversed triangle δ and then encountered the
point a.

For computation of the γ-function of each point in the spatial particle sys-
tem A, we should choose an appropriate path for the small rolling sphere O(r)
in particle system A, such that the small sphere does not encounter any points
of set A. Then, the small sphere may traverse the triangle formed by several
points in the particle system and finally access the point a.

Basic Properties of the Calculation of γ-Accessible Radius

We formulate some basic properties of the γ-accessible radius as follows:
By the definition of the γ-accessible radius, we find a series of basic prop-

erties, such as if we denote γ0 = min{|ab| : a �= b ∈ A}, then for any d ∈ A,
γ(d) ≥ γ0/2 always holds.

Theorem 45. a ∈ A is a zero-depth point of A if and only if for any γ > 0,
point a is always γ-accessible about set A. So for any point a on a convex hull
Ω(A), γ(a) = ∞ always holds.

The proof of this theorem is shown in Sect. 13.5.1.

13.3.3 Basic Principles and Methods of γ-Accessible Radius

Symbols and Terms in the Calculation of γ-Accessible Radius

As shown above, to calculate the γ-function for each point in set A, we must
choose an appropriate path, such that a rolling sphere traverses the triangle
formed by several points in the particle system A, and finally arrives at the
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point a. Therefore, we need to discuss the case of an arbitrary spatial particle
system A1 traversing a fixed triangle δ = δ(a, b, c) and arriving at A1. Its
strict definition is presented as follows:

Definition 53. For an arbitrary fixed spatial particle system A1 and a fixed
triangle δ = δ(a, b, c), we say that r is the accessible radius of set A1 about δ, if
there exists a small rolling sphere O(r), such that in the process of traversing
triangle δ (namely, not encountering three points a, b, c) and finally arriving
at set A1 (namely arriving at a point d in set A1), the small sphere does not
encounter any points in A1.

The maximal accessible radius of set A1 about δ is called the assessible radius
of set A1 about δ, in which, we denote by γδ(A1).

To calculate γδ(A1), we introduce the following symbols:

1. For a fixed triangle δ = δ(a, b, c), we denote a sphere with center o(δ) and
radius r(δ) by O(δ).

2. For a fixed triangle δ = δ(a, b, c) and a point d, we denote by O(δ, d) =
O(a, b, c, d) the circumscribed sphere determined by four points a, b, c, d,
and the corresponding center and radius are denoted by o(δ, d), r(δ, d),
respectively.

3. For a fixed set A1 and a triangle δ, we can construct a series of spheres:

O(δ, d) , d ∈ A1 . (13.9)

Here, r(δ, d) ≥ r(δ) always holds, and the equal sign is true if and only if
point d is on the face of sphere O(δ).

4. For a fixed setA1 and a triangle δ, let set A1(δ) = A1∩O(δ). If A1(δ) is not
an empty set, then let d0 be the point in set A1(δ) such that |o(δ)o(δ, d)|,
d ∈ A1(δ) is the maximum, and d′0 be the point such that radius of sphere
r(δ, d), d ∈ A1(δ) is the maximum. Next, we will prove d0 = d′0.

5. Let Q(δ) be a cylinder, then the underside of this cylinder o(δ) is the
circumcircle of triangle δ and its long axis is perpendicular to plane π(δ).
Let L0 be a straight line through point o(δ) and perpendicular to plane
π(δ); then q(δ) is the cylindrical face of the cylinder.

6. If Q(δ, A1) = Q(δ) ∩ A1 is not an empty set, then for each d ∈ Q(δ, A1),
its projection on plane π(δ) is denoted by d′. Let d′′ be the intersection
point between line segment dd′ and sphere O(δ), then calculate |dd′′| (the
length of line segment dd′′), and let d1 be the point such that |d1d

′′
1 | is the

minimum of |dd′′|, d ∈ Q(δ, A1).
7. If Q(δ, A1) = Q(δ) ∩ A1 is an empty set, then let d2 ∈ A1 be the point

in A1 such that the distance between d2 and straight line L0 is the
minimum.

Relationships among d0, d1, d2 and the small sphere O(r), set A1 are shown
in Fig. 13.7.
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Fig. 13.7a–c. Relationship among d0, d1, d2 and small sphere O(r), set A1

Thus, the definitions of d0, d
′
0, d1, d2 are given as follows:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

|o(δ)o(δ, d0)| = max{|o(δ)o(δ, d)| : d ∈ A1(δ)} ,
|o(δ)d′0| = max{r(δ, d) : d ∈ A1(δ)} ,
|o(δ)d1| = min{|dd′| : d ∈ Q(δ, A1), d′ is intersection point

of line segment dd′′ and sphere O(δ)} ,
|o(δ)d2| = min{|dd′| : d ∈ A1, d

′ is projection of d out to line L0} ,
(13.10)

where d′′ is the projection of point d on plane π(δ).
Thus, we can distinguish the three cases to calculate the γ-function of

points in set A1, namely, where A1(δ) is not an empty set; where A1(δ) is an
empty set, but Q(δ, A1) is not an empty set; and where Q(δ, A1) is an empty
set.

Basic Theorem to Calculate γ-Accessible Radius

For a fixed particle system A1 and triangle δ, let r(δ) be the circumradius
of δ, and let γ(δ) be the γ-accessible function. The basic theorem is given as
follows.

Theorem 46. 1. If A1(δ) is not an empty set, then for d0 and d′0 defined
in (13.10), d0 = d′0 is always true, and the γ-function of point d0 is
γδ(A1) = min{r(δ), r(δ, d0)}, where the definitions of r(δ), r(δ, d0) were
given in Sect. 13.3.2.

2. If A1(δ) is an empty set and Q(δ, A1) is not an empty set, then γδ(A1) =
r(δ).

The proof of this theorem is given in Sect. 13.5.1.
From Fig. 13.8, we let the small sphere move upwards along the vertical

direction if Q(δ, A1) is an empty set, and then move along the horizontal
direction. In the process of moving upwards along the vertical direction, the
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Fig. 13.8a,b. If Q(δ,A1) is an empty set, this is an illustration of a changing figure
of the small rolling sphere

small sphere will not encounter any points in set A; thus, we can only consider
the case that the small sphere moves along the horizontal direction.

Let O′ = O(o′, r(δ)) be a small sphere whose center moves upwards from
point o(δ) along the vertical direction. If the moving distance |oo′| is larger
than r(δ), this small sphere can move along the horizontal direction without
encountering any points of δ = δ(a, b, c). Let d′2 be the projection of point d2

on plane π(δ), if h = |d2d
′
2| ≥ r(δ), the small sphere O(r), r = min{r(δ), γ(δ)}

can move upwards along the vertical direction with distance h, and then move
along the horizontal direction with distance |d2d

′′
2 | − r without encountering

any points in A. Therefore, γ(d2) = r(δ).
Similarly, for the small sphere O′ = O(o′, r(δ)) which moves upwards along

the vertical direction, if |oo′| is small, then the small rolling sphere O′ may
encounter three vertices a, b, c of triangle δ in the process of moving along the
horizontal direction, as shown in Fig. 13.7b, so further calculation is needed.
We build a rectangular coordinate system E , using o(δ) as the origin. We use
line L0 as the z-axis of E , with its direction pointing to the side in which
point d2 lies; and we use

−→
dd2 as the Y-axis of E , where d is the projection

of d2 on line L0. Then, the x-axis of E is the normal vector of the YZ-plane
which is through point o, and its direction can be determined by the right-
hand screw rule. We denote the coordinates of the four points d2, a, b, c by
rτ = (xτ , yτ , zτ ), τ = 0, 1, 2, 3. Here, x0 = z1 = z2 = z3 = 0, let y0 − r = �,
z0 = h.

In a rectangular coordinate system E , if the rolling small sphere O(r)
moves upwards along z-axis a distance z, and then moves along the direc-
tion of d2 a distance y, then if there exists a pair (y, z) such that the small
sphere can arrive at point d2 without encountering points a, b, c, γ(d2) = r
holds.
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To determine whether (y, z) exists or not, we denote by d′ the intersection
point between line segment dd2 and the cylindrical face q(δ), and denote by d′′

the projection of d′ on plane π(δ). Thus, d′′ must be on the circumference of
o(δ). Without loss of generality, we suppose the radian of d′′ and a is closed,
and then we need only determine whether there exists a pair (y, z) such that
the small sphere arrives at point d2 without encountering point a. Then (y, z)
must satisfy the following condition:

y = � , z = h , x2
1 + (y − y1)2 + (z − z1)2 ≥ r2 . (13.11)

Solving this system of equations, we have that γ(d2) = r holds if

h ≥ [r2 − x2
1 − (�− y1)2]1/2 . (13.12)

If there does not exist a corresponding value (h, �) such that equations (13.11)
hold for a fixed point d2, we reduce the value of r to r0 such that the equal
sign of (13.12) holds. Here, k, �, x1, y1 are constants, hence r0 exists.

In conclusion, we state the following theorem.

Theorem 47. If Q(δ, A1) is an empty set:

1. If h ≥ r, or h satisfies inequality (13.12), then γ(d2) = r holds.
2. If h < r, and h satisfies inequality (13.12), then γ(d2) ≥ r0 holds, where
r0 is the solution when (13.11) is an equality.

In proposition 2 of Theorem 47, the estimate of the lower bound of γ(d2) may
not be optimal.

Definition 54. Following from Theorems 44 and 45, we get the points d0, d1,
d2 ∈ A1 which are the first-meeting points of set A1 after traversing triangle δ
under three cases: A1(δ) is not empty; A1(δ) is empty but Q(δ, A1) is not
empty; and Q(δ, A1) is empty. We denote by γδ(dτ ) = γδ(A1), τ = 0, 1, 2 the
accessible radius of dτ about triangle δ.

13.4 Recursive Algorithm of γ-Function

In the previous section, we have obtained the γ-function of each point a on
the boundary surface of Ω(A). From calculations based on Theorem 44, we
found the γ-function of some of the points of set A1. Therefore, we continue
discussing the γ function of the other points of set A1, by introducing a re-
cursive algorithm.

13.4.1 Calculation of the γ-Function Generated
by 0-Level Convex Hull

In order to calculate the γ-function of the points of set A, we first realize that
γ(a) = ∞ holds for any points in A0, by Theorem 45. We now calculate the
γ-function of the other points.
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Fig. 13.9. Recursive calculation

We have presented the notation of V
(3)
0 for the representation of a 0-level

directed convex hull, where each δ ∈ V
(3)
0 is a directed boundary triangle of

convex closure Ω(A). We now perform the following calculations:

1. For a fixed directed triangle δ = δ(a, b, c) ∈ V
(3)
0 , let A1 = A − {a, b, c}.

For any d ∈ A1, let O(δ, d) be a sphere and let

B(δ) = {d ∈ A1, O(δ, d) inside of spheroid containing no points of A1} .
(13.13)

Set B(δ) must be a nonempty set, but may not be unique; there may
be three cases for d, i.e., d ∈ A0, or d ∈ O(δ), or d is not in the
sphere O(δ).

Theorem 48. For the γ-function of the points in set B(δ), we find the
following properties.
a) If d ∈ A0, then γδ(d) = ∞.
b) If d ∈ O(δ), then γδ(d) = r(δ, d), where r(δ, d) is defined in Sect. 13.3.2.

We find its properties via Theorem 46.
c) If point d is not in sphere O(δ), then γδ(d) = r(δ), where r(δ) is

defined in Sect. 13.3.2.

Proof. We can easily prove properties 1 and 2 by Theorems 45 and 46.
The proof of property 3 is shown in Fig. 13.9.
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Based on the diagram in Fig. 13.9, if point d is not in O(δ), and sphere
O(δ, d) does not contain any points in A1, then the small sphere O[r(δ)]
can enter from the triangle δ and arrive at point d without encountering
any points in A1. So γδ(d) ≥ r(δ) holds. On the other hand, γδ(d) cannot
be greater than r(δ), therefore, γδ(d) = r(δ) holds. Thus ends the proof
of the theorem.

2. For a fixed convex hull V (3)
0 , and for each boundary triangle with δ ∈ V

(3)
0 ,

we can get set B(δ) by (13.13). These sets might intersect, so:
(a) Let B =

⋃
δ∈V (3)

0
B(δ), so for each d ∈ B there always exists

a group
Vd = {δ1, δ2, · · · , δk} ⊂ V

(3)
0 , k ≥ 1

such that for any δ ∈ Vd, d ∈ S(δ) holds, and for any δ ∈ V
(3)
0 − Vd,

point d is not in B(δ).
(b) Based on point d and Vd in condition (a), we get γi(d) = γδi(d),

i = 1, 2, · · · , k, thus

γ(d) = max{γi(d), where i = 1, 2, · · · , k} (13.14)

is the γ-function of point d.
(c) By condition (b), for any point d in B, there exists a δd in (13.14), such

that d ∈ B(δd), and γ(d) = γδd
(d) holds. We call δd the approaching

triangle of point d.

13.4.2 Recursive Calculation of γ-Function

In above section, we have calculated the γ-function of all points in set B by
the 0-level convex hull V (3)

0 . To calculate the γ-function of other points, we
introduce the following recursive steps:

1. We consider each triangle δ on a 0-level convex hull V (3)
0 as a directed

triangle. For each d ∈ B, we denote its approaching triangle by δd =
δ(ad, bd, cd), and denote a tetrahedron with four vertices ad, bd, cd, d by
Σ(ad, bd, cd, d). Sphere O(ad, bd, cd, d) does not contain any points in A−
{ad, bd, cd, d}; this implies that Σ(ad, bd, cd, d) does not contain any points
in A − {ad, bd, cd, d}. Thus we can retract the directed polyhedron V

(3)
0

according to (d, δd), d ∈ B, to get a new directed polyhedron V
(3)
1 .

2. For each boundary triangle δ ∈ V
(3)
1 in the directed polyhedron V

(3)
1 , we

can define set B′(δ) as in (13.13) and the γ-function of each point in this
set about this triangle.

3. Similar to (13.14), we can calculate the γ-function of each point in set
B′(δ). We repeat this to get the γ-function of each point in set A.
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13.4.3 Example

We still use the protein E. coli OmpF porin as an example. On the basis of
Tables 12.6, 13.1, and 13.2, we calculate the γ-function of the Cα atoms in
each amino acid, and finally find the values of the γ-function of all Cα atoms
in this protein, which are shown in Table 13.5.

13.5 Proof of Relative Theorems and Reasoning
of Computational Formulas

13.5.1 Proofs of Several Theorems

Proof of Theorem 43

If a ∈ A is a zero-depth point in A, then there exists a plane Π through
point a such that all points in A lie on the same side of Π . Draw a tangent
sphere of plane Π through point a. If this tangent sphere lies on the other
side of plane Π , and is outside of Ω(A) for any radius γ > 0, point a is always
the γ-accessible radius point of A for any γ > 0.

Conversely, if point a is always the γ-accessible radius point of A for any
γ > 0, then a must be the zero-depth point in A. We prove this using contra-
diction; if a is not the zero-depth point in A, then there always exist points of
A on both sides of plane Π which is through point a. The following properties
would then hold:

1. Let E be a rectangular coordinate system where origin a, k is the unit
vector, its polar angle is (ψ, θ). Here (ψ, θ) changes by region:

Ψ × Θ = {(ψ, θ) : 0 ≤ ψ ≤ 2π, 0 ≤ θ ≤ π} . (13.15)

Denote a neighborhood of (ψ, θ) by

k(ψ, θ) = {k′ = (ψ′, θ′) : (ψ′−ψ)2 +(θ′−θ)2 < ε(k), ε(k) > 0} . (13.16)

2. LetNk be a normal plane which is through point a, with k as its vector.Nk

separates set A into sets, which we denote by A1(k), A2(k), respectively.
Both sets are nonempty sets. Without loss of generality, we always adopt
1 ≤ ||A1(k)|| ≤ ||A1(k)||.
From geometric properties, we realize that there must exist a sufficiently
small ε(k) > θ > 0, for any k′ ∈ k(ψ, θ), the two sets divided by its normal
plane Nk′ are denoted by A1(k), A2(k). There also exists a sufficiently
large γ(k) > 0 such that the normal plane Nk is a tangent plane and a
is a tangent point. If the spheroid with radius γ(k) is on the two sides of
the normal plane Nk, they contain set A1(k) and A2(k), respectively.
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3. Ψ ×Θ is covered by all the small regions k(ψ, θ) if k is changing in Ψ ×Θ.
Since Ψ × Θ is a compact region in Euclidean space, it follows from the
theorem of limited coverage in topological space that there must exist
finite spheres as follows:

k1 = (ψ1, θ1) , k2 = (ψ2, θ2) , · · · ,km = (ψm, θm) , (13.17)

such that corresponding neighborhoods

k(ψ1, θ1),k(ψ2, θ2), · · · ,k(ψm, θm) (13.18)

cover the region Ψ ×Θ.
4. By property 2, for each ki, i = 1, 2, · · · ,m, there exists a sufficiently large
γ(ki) > 0 such that the sphere with radius γ(ki) is tangent to the normal
plane Nki

at point a, and this sphere contains the set A1(ki). Let

γ0 = max{γ(k1), γ(k2), · · · , γ(km)} (13.19)

5. For an arbitrary sphere through point a with radius γ > γ0, we denote it
by O(a, γ). Let Π be its tangent plane through point a and let k be its
normal vector. Then, there is a i ∈ {1, 2, · · · ,m} such that Π ∈ k(ψi, θi)
and sphere O(a, γ) contains set A1(ki) or set A2(ki). Therefore, point a
could not be the γ-accessible radius point. Hence, the theorem holds.

Proof of Theorem 44

For the first proposition in Theorem 44, we consult Fig. 13.10 and prove
it. In this figure, the bold straight line represents triangle δ, the bold circle
represents the sphere O(o(δ), r(δ)) generated by triangle δ. d, d0 are the points
in O(o(δ), r(δ)), on the same side of the triangle δ, and o, o0 represent the

Fig. 13.10. Proof of Theorem 44, proposition 1
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centers of O(δ, d), O(δ, d0), respectively. To prove that d0 = d′0, we must
prove:

1. If |o0o(δ)| ≥ |oo(δ)|, then |d0o0| ≥ |do| holds.
2. Conversely, if |d0o0| ≥ |do|, then |o0o(δ)| ≥ |oo(δ)| holds.

Without loss of generality, we may assume that points d and d0 lie in two
semispheres of O(o(δ), r(δ)). Following from the definition of o, o0, we realize

|oa| = |ob| = |od| , |o0a| = |o0b| = |o0d0| .
We compare the two triangles δ(a, o(δ), o0) and δ(a, o(δ), o). Both of them are
right triangles, having the common edge ao(δ). The edge of sphere o(δ)o and
the edge of o(δ)o0 are collinear, thus, |o0o(δ)| ≥ |oo(δ)| holds if and only if

|ad0| = |d0o0| ≥ |ao| = |do| .
Therefore, |o0o(δ)| ≥ |oo(δ)| is equivalent to |o0d0| ≥ |od|; namely, the defini-
tions of d0 and d′0 are equivalent, and d0 = d′0 holds. The first proposition in
Theorem 44 has been proven.

We consult Fig. 13.10 to prove the second proposition in Theorem 44.
We compare the two triangles δ(a, o, o0) and δ(d, o, o0). Since oo0 is their
common edge, and |od| = |oa| holds, it follows that these two triangles have
two equivalent edges. On the other hand, following from the definition of
o(δ), o, o0 and the inequality 	 doo0 > 	 aoo0, we have that |do0| > |ao0| (in
a triangle, a larger angle corresponds to a larger edge). Thus, point d must
be outside of the sphere O(a, b, cd0). Proposition 1 in Theorem 44 is now
proven.

To prove proposition 2 in Theorem 44 as shown in Fig. 13.11, we can
project each point in Q(δ, A1) to π(δ) if A1(δ) is convex and Q(δ, A1) is

Fig. 13.11. Illustration of the proof of Theor. 44 (2)
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a nonempty set. Furthermore, if d1 is the point such that |d1d
′′
1 | is the min-

imum of |dd′′|, d ∈ Q(δ, A1), we only need to move the small sphere O(δ)
vertically upwards. If the moving distance is |d1d

′′
1 |, then the small sphere

encounters point d1 but does not encounter any points in Q(δ, A1); thus, it
does not encounter any points in A1. Therefore, γ(d1) = r(δ) holds, and the
theorem has been proven.

13.5.2 Reasoning of Several Formulas

Circumcircle of Three Arbitrary Particles in Space

If a, b, c are three points in space, we now resolve their circumcenter and
circumradius. We denote their coordinates by

r1 = (x1, y1, z1) , r2 = (x2, y2, z2) , r3 = (x3, y3, z3) .

The circumcenter of three points a, b, c is the intersection point of plane
Π1, Π2, Π3, where Π1 is the perpendicular plane intersecting midpoint of line
segment AB, Π2 is the perpendicular plane intersecting midpoint of line seg-
ment AC, and Π3 is the plane determined by a, b, c. Hence, circumcenter o
must be on the perpendicular plane intersecting the midpoint of line seg-
ment ab, ac. The four points a, b, c, o are on same circle, so the coordinate
r = (x, y, z) of point o satisfies equations
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(x − λ1)(x1 − x2) + (y − λ2)(y1 − y2) + (z − λ3)(z1 − z2) = 0 ,
(x − λ4)(x1 − x3) + (y − λ5)(y1 − y3) + (z − λ6)(z1 − z3) = 0 ,∣

∣
∣
∣∣
∣
∣

x− x1 y − y1 z − z1

x2 − x1 y2 − y1 z2 − z1

x3 − x1 y3 − y1 z3 − z1

∣
∣
∣
∣∣
∣
∣
= 0 ,

(13.20)

where

λ1 =
x1 + x2

2
, λ2 =

y1 + y2
2

, λ3 =
z1 + z2

2
, λ4 =

x1 + x3

2
,

λ5 =
y1 + y3

2
, λ6 =

z1 + z3
2

.

To simplify,
⎧
⎪⎨

⎪⎩

θ1 = x(x1 − x2) + y(y1 − y2) + z(z1 − z2) ,
θ2 = x(x1 − x3) + y(y1 − y3) + z(z1 − z3) ,
θ3 = x(y1z2 − z1y2) + y(x2z1 − x1z2) + z(x1y2 − x2y1) ,

(13.21)

in which
⎧
⎪⎨

⎪⎩

θ1 =
(
x2

1 + y2
1 + z2

1 − x2
2 − y2

2 − z2
2

)
/2 ,

θ2 =
(
x2

1 + y2
1 + z2

1 − x2
3 − y2

3 − z2
3

)
/2 ,

θ3 = x1(y1z2 − z1y2) + y1(x2z1 − x1z2) + z1(x1y2 − x2y1) .
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Thus, the coordinate ρo of center oa,b,c can be computed as follows:

(xo, yo, zo) = (Δ1/Δ0, Δ2/Δ0, Δ3/Δ0) , (13.22)

in which

Δ0 =

∣∣
∣
∣
∣
∣

x1 − x2 y1 − y2 z1 − z2
x1 − x3 y1 − y3 z1 − z3

y1z2 − z1y2 x2z1 − x1z2 x1y2 − x2y1

∣∣
∣
∣
∣
∣
,

Δ1 =

∣∣
∣
∣
∣
∣

θ1 y1 − y2 z1 − z2
θ2 y1 − y3 z1 − z3
θ3 x2z1 − x1z2 x1y2 − x2y1

∣∣
∣
∣
∣
∣
, Δ2 =

∣∣
∣
∣
∣
∣

x1 − x2 θ1 z1 − z2
x1 − x3 θ2 z1 − z3

y1z2 − z1y2 θ3 x1y2 − x2y1

∣∣
∣
∣
∣
∣
,

Δ3 =

∣
∣∣
∣
∣
∣

x1 − x2 y1 − y2 θ1
x1 − x3 y1 − y3 θ2

y1z2 − z1y2 x2z1 − x1z2 θ3

∣
∣∣
∣
∣
∣
.

The radius of the circle is then

ρa,b,c = |oa| =
√

(x − x1)2 + (y − y1)2 + (z − z1)2 . (13.23)

Let Oa,b,c and oa,b,c be the circle with center oa,b,c, radius ρa,b,c, and it lies
in the plane Π(a, b, c).

Circumscribed Sphere of Four Arbitrary Particles in Space

Four points determine a sphere. If a, b, c, d are four noncoplanar points, then
these four points determine a sphere, denoted byO(a, b, c, d). If the rectangular
coordinates of the four points a, b, c, d are (xτ , yτ , zτ ), where τ = 1, 2, 3, 4, then
the center of the sphere determined by the four points must be an intersection
point of the perpendicular plane intersecting the midpoint of line segments
ab, ac, ad, therefore, its coordinate satisfies the equations

⎧
⎪⎨

⎪⎩

(x2 − x1)(x− λ1) + (y2 − y1)(y − λ2) + (z2 − z1)(z − λ3) = 0 ,
(x3 − x1)(x− λ4) + (y3 − y1)(y − λ5) + (z3 − z1)(z − λ6) = 0 ,
(x4 − x1)(x− λ7) + (y4 − y1)(y − λ8) + (z4 − z1)(z − λ9) = 0 ,

(13.24)
where λ1, · · · , λ6 is given by (13.20),

λ7 =
x1 + x4

2
, λ8 =

y1 + y4
2

, λ9 =
z1 + z4

2
.

If we denote the coordinates of the four points a, b, c, d by

o(a, b, c, d) = (x0, y0, z0) ,

then the radius of the sphere is the solution of (13.24):

r(a, b, c, d) = |ao| = |bo| = |co| = |do|
=
[
(x0 − x1)2 + (y0 − y1)2 + (z0 − z1)2

]1/2
.



392 13 Morphological Features of Protein Spatial Structure

Simplifying (13.24), we know it is equivalent to the equations
⎧
⎪⎨

⎪⎩

x5x+ y5y + z5z = θ1 ,

x6x+ y6y + z6z = θ2 ,

x7x+ y7y + z7z = θ3 ,

in which x4+τ = x1+τ − x1, y4+τ = y1+τ − y1, z4+τ = z1+τ − z1, where
τ = 1, 2, 3 and

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

θ1 =
1
2
(
x2

2 + y2
2 + z2

2 − x2
1 − y2

1 − z2
1

)
,

θ2 =
1
2
(
x2

3 + y2
3 + z2

3 − x2
1 − y2

1 − z2
1

)
,

θ3 =
1
2
(
x2

4 + y2
4 + z2

4 − x2
1 − y2

1 − z2
1

)
.

The coordinates (x, y, z) of the radius of the sphere are x = Δ1/Δ0, y =
Δ2/Δ0, z = Δ3/Δ0, in which

Δ0 =

∣∣
∣
∣
∣
∣

x5 y5 z5
x6 y6 z6
x7 y7 z7

∣∣
∣
∣
∣
∣
, Δ1 =

∣∣
∣
∣
∣
∣

θ1 y5 z5
θ2 y6 z6
θ3 y7 z7

∣∣
∣
∣
∣
∣
,

Δ2 =

∣∣
∣
∣
∣
∣

x5 θ1 z5
x6 θ2 z6
x7 θ3 z7

∣∣
∣
∣
∣
∣
, Δ3 =

∣∣
∣
∣
∣
∣

x5 y5 θ1
x6 y6 θ2
x7 y7 θ3

∣∣
∣
∣
∣
∣
.

Projection of a Point on a Plane Determined
by Three Other Points

We resolve the coordinate of d′, which is the projection of point d on the plane
determined by three points a, b, c. We then denote the coordinates of d′ by
r = (x, y, z). The following properties hold true:

1. Let r4 = r2 − r1, r5 = r3 − r1; then the normal vector n = r4 × r5 =
(xn, yn, zn) of plane Π(a, b, c) is
(∣∣
∣
∣
y4 z4
y5 z5

∣
∣
∣
∣ , −

∣
∣
∣
∣
x4 z4
x5 z5

∣
∣
∣
∣ ,

∣
∣
∣
∣
x4 y4
x5 y5

∣
∣
∣
∣

)
= (y4z5 − z4y5, x5z4 − x4z5, x4y5 − x5y4) .

(13.25)
2. Points a, b, c, d′ are coplanar, satisfying

〈r − r1, rn〉 = (x− x1)xn + (y − y1)yn + (z − z1)zn = 0 , (13.26)

where 〈r, r′〉 is the inner product of vector r and vector r′.
3. Let r0 = (x0, y0, z0) be the coordinate of d, then r − r0 is parallel to the

normal vector rn. Thus, r − r0 = λrn holds, where λ is an undetermined
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coefficient. We obtain the equations
⎧
⎪⎨

⎪⎩

x− x0 = λxn = λ(y4z5 − z4y5) ,
y − y0 = λyn = λ(x5z4 − x4z5) ,
z − z0 = λzn = λ(x4y5 − x5y4) .

(13.27)

From (13.25) and (13.27), we find λ = θ1/θ2, where θ1 = 〈r1 − r0, rn〉,
θ2 = r2n = 〈rn, rn〉. So we obtain formula (13.27) to compute the coordinates
r = (x, y, z) of the projection d′.

Intersection Point Between the Line Through Two Points
and the Plane Through Three Points

We solve for the coordinates of the intersection point d′′ between the line
L = dd′ (determined by two points d, d′) and the plane Π(a, b, c) (determined
by three points a, b, c). Denote the coordinates of d, d′, d′′ by r = (x, y, z),
r′ = (x′, y′, z′), r′′ = (x′′, y′′, z′′), respectively, where r′′ is an undetermined
coefficient. We have the following properties:

1. If the four points a, b, c, d′′ are coplanar, then we obtain (13.26), where
the undetermined variable (x, y, z) is replaced by (x′′, y′′, z′′).

2. If three of the points d, d′, d′′ are collinear, then we get r′′−r = λ(r′−r),
and (x′′ − x, y′′ − y, z′′ − z) = λ(x′ − x, y′ − y, z′ − z) holds.

3. By properties 1 and 2, we get

〈r′′ − r1, rn〉 = 〈r′′ − r + r − r1, rn〉〈r′′ − r, rn〉 + 〈r − r1, rn〉 = 0 .

Therefore, λ = 〈r1−r,rn〉
〈r′−r,rn〉 . Since r, r′ are known vectors, we have that r′′

can be determined.

Projection of a Point on a Line Determined by Two Arbitrary
Points in Space

To resolve the coordinates of the point c′, which is the projection of point c
onto the line �(a, b) determined by two points a, b, we denote the coordinates
of c′ by r = (x, y, z). We find the following properties:

1. Let r4 = r2 − r1 be the coordinate of vector
−→
ab; then, point r = (x, y, z)

satisfies the equations
⎧
⎪⎨

⎪⎩

x− x1 = λx4 = λ(x2 − x1) ,
y − y1 = λy4 = λ(y2 − y1) ,
z − z1 = λz4 = λ(z2 − z1) ,

(13.28)

and
(x − x3)x4 + (y − y3)y4 + (z − z3)z4 = 0 . (13.29)



394 13 Morphological Features of Protein Spatial Structure

2. To solve (13.28) and (13.29), substitute (13.29) into (13.28), so that

(x1 − x3 + λx4)x4 + (y1 − y3 + λy4)y4 + (z1 − z3 + λz4)z4 = 0 .

To solve
λ = 〈r5, r4〉/r24 , (13.30)

in which r5 = r3−r1, we substitute (13.30) into (13.28), and the solution
r = (x, y, z) is the coordinate of d′.

13.6 Exercises

Exercise 64. In the 2D case, generalize the main theorems and computa-
tional formulas presented in this chapter as follows:

1. Write down the definition and properties of the γ-accessible radius of the
particles in the plane particle system A, and elaborate on Definitions 43
and 44, and prove Theorems 43–45 in the 2D case.

2. Write down the recursive algorithm of the γ-accessible radius in the plane
particle system A.

3. Write down the computational algorithm for the cavity in the plane parti-
cle system A, and write down the definition and computational algorithm
of channel network (including connected circle and connected radius).

Exercise 65. Let a, b, c be three points on a plane, and let their coordinates
be rs = (xs, ys), s = 1, 2, 3. Obtain formulas for the following objects:

1. Circumcenter and circumradius of three points a, b, c.
2. Coordinates of the projection of point c onto the line segment ab.
3. Rectangle such that the points a, b, c are on its edges.

Exercise 66. For the plane particle system A formed by the first 80 atoms
in Table 12.6 on the XY-plane, calculate the following properties:

1. Depth function and level function of each particle in particle system A.
2. All boundary line segments and vertices of convex closure Ω(A).
3. γ-function of all points in set A.

Exercise 67. For the plane particle system A formed by the first 80 atoms
in Table 12.6 on the XY-plane, calculate:

1. Depth function and level function of each particle in particle system A.
2. All boundary triangles, edges, and vertices of convex closure Ω(A).
3. γ-function of all points in set A.
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Semantic Analysis for Protein Primary

Structure

14.1 Semantic Analysis for Protein Primary Structure

14.1.1 The Definition of Semantic Analysis for Protein Primary
Structure

Semantic analysis refers to analyzing grammar, syntax, and the construtction
of words. Semantic analysis for common languages (such as English, Chinese,
etc.) is what we are familiar with. If protein primary structure is considered
to represent a special kind of biological language, then a protein structure
database would be a kind of biological language library, and semantic analysis
should aim to analyze the grammar, syntax, and semantics based on such
a library.

Differences and Similarities Between Semantic Analysis
for Protein Primary Structure and that for Human Languages

There are many similarities between protein primary structures and human
languages. There are also significant differences. We list the similarities below:

1. Protein primary structures have the same language structure as human
languages, especially English, French, and German. They are both com-
posed of several basic symbols as building blocks. For example, English is
composed of 26 letters, while proteins are composed of 20 common amino
acids. A protein sequence can be considered to represent a sentence or
a paragraph, and the set of all proteins can be considered to represent the
whole language. Therefore, the semantic structure is similar to a language
structure which goes from “letters” to “words,” then to “sentences,” to
“chapters,” “books,” and finally to a “language library.”

2. There are abundant language libraries to be studied and analyzed both
for protein primary structures and human languages. Some of them have
already been standardized, as in several kinds of language libraries in
English, the PDB-Select database of protein, etc. These language libraries
provide us with an information basis for the semantic analysis.
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3. The goals of semantic analysis for protein primary structure and that for
human languages are basically the same. That is, to find the basic words
they are composed of, the meanings of these words and the role they
play in the whole language system. It then goes on to the analysis of the
structure of grammar, syntax and semantics.

4. Protein primary structure and human languages are both evolving. Two
types of problems also occur in protein structures; problems when trans-
lating between different languages, and how the same language engenders
differences between its regional dialects; adding difficulties to the semantic
analysis for protein primary structure.

The vital difference between the semantic analysis for protein primary struc-
ture and that for human languages is that we are familiar with the semantics,
grammar, syntax and word origin for human languages. The meanings of
nouns, verbs and adjectives are clear, thus the semantic analysis for human
languages is straightforward. Semantic analysis for protein primary structure
is to find these kinds of words and to determine their meaning and grammar,
syntax and word-building structures. Thus it is much harder to analyze the
semantics of protein primary structure than it is to analyze the semantics of
human languages.

Basic Methods of Semantic Analysis

The basic methods of semantic analysis for protein primary structure and
those for human languages can be derived from information and statistics,
together with methods based on permutation and combination operations.
Statistical methods used in the semantic analysis for human languages are
frequently used nowadays in computer semantic analysis. For example, the
statistics-based analyses for single letters, double letters and multiple letters,
those for letters and words, and those for the millennium evolution rate of
important words are all results of statistical computation.

Information-based analysis methods rely on the information found in
databases. For example, we use the relative entropy density theory to achieve
systematic analysis and a series of results is obtained. Permutation and
combination methods are commonly used in biology. This is called sym-
bolic dynamics in some publications [7]. In this book, we use the cryp-
tography analysis method for our computation, which has a definitive ef-
fect.

Moreover, in some commonly used small-molecule databases, such as the
biological molecule and drug molecule libraries in combinatorial chemistry,
peptide libraries and non-peptide small-molecule libraries (a general intro-
duction of several libraries may be found in [86]), conformational libraries; in
addition to the illustrations of their chemical composition, three-dimensional
structures and biological functions [70] are given. They play an important role
in drug design. A typical example from the area of biomedical materials is the
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synthesis of anti-HIV-1 protease inhibitors which was performed according
to the molecular combination theory (a general introduction may be found
in [20]).

Databases Used in Semantic Analysis

In semantic analysis for protein primary structures, the database we mainly
use is the Swiss-Prot database. As of 19 September 2006 [8, 33], there were
232345 proteins (or polypeptide chains) and 85,424,566 amino acids stored in
this database.

14.1.2 Information-Based Stochastic Models in Semantic Analysis

We begin with the introduction of the method using probability, statistics
and information for our analysis. To give a clear description of semantics for
protein primary structure sequences, we provide unified definitions for the
related terms and elements.

Symbol, Vector, and Word

In human languages, symbols, words, and sentences are the basic elements of
semantic analysis. They are also the basic elements of semantic analysis for
biological sequences:

1. Symbols, also called single letters, are the basic unit of semantic structure
analysis. The set of all possible symbols used is called the alphabet. In
English, the basic alphabet is composed of 26 letters, while in a computer
language, the alphabet of English text is the ASCII alphabet. In protein
primary structure analysis, the 20 commonly occurring amino acids are
considered to be single letter codes forming the alphabet. Their single
letter codes were given in Chap. 8, and are

Vq = {A, R, N, D, C, Q, E, G, H, I, L, K, M, F, P, S, T, W, Y, V} .

If each single letter code in Vq is denoted by a number, then the corre-
sponding alphabet would be Vq = {1, 2, · · · , q}, q = 20. In the PDB or
Swiss-Prot databases, codes B, Z, X, and other amino acids that are not
common sometimes do occur, but will not be introduced here.

2. Vectors and words. Several symbols arranged in a certain order are collec-
tively called a vector, and we denote it by b(k) = (b1, b2, · · · , bk), bj ∈ Vq,
where each component represents one amino acid and k is the length of
this vector, called the rank of the vector. The collection of vectors b(k) is
denoted by V (k)

q .
In the English language, a vector is not usually a word, unless it has
a specific meaning. Therefore the vectors of specific biological significance
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are called biological words. In protein primary structure sequences, we
will discuss what kinds of combinations of amino acids can represents
words, what their structures and meanings are, and how to determine
their properties.

3. Local words. In the English language, besides their meaning, words have
some special properties in the aspect of symbol structure relationships.
For instance, in English words, the letter q must be followed by u, and
the frequency of the three letters ordered to form the word “and” must
be much higher than that of adn, nad, nda, dan, dna. Thus, vectors with
these special statistical properties are called local words.
Local words and biological words are different concepts, but many biolog-
ical words may be or contain local words. For instance, “qu” has a special
mathematical structure, hence it is a local word, but is not an English
word. It can be a component of many English words (for example, “queen”
contains local word “qu” and “and” is both a local word and an English
word). Local words can be found by mathematical means, while biological
words should be given definite biological content, which is the fundamen-
tal purpose of semantic analysis. Our point is that the analysis and search
for local words will promote the search and discovery of biological words.

4. Phrases. They are composed of several words arranged in a certain order.
They may be the superposition of several words or a new word. In math-
ematics, a phrase can be considered to be a compound vector composed
of several vectors. Normally, idioms can be regarded as special words or
phrases.

Databases and the Statistical Distribution of Vectors

Lexical analysis on biological sequences begins with statistical computation
on a database of protein primary structures. We construct the following math-
ematical model for this purpose:

1. Mathematical description of the database. We denote Ω to be a database
of protein primary structures, such as the Swiss-Prot database, etc. Here
Ω consists of M proteins. For instance, in the Swiss-Prot database version
2000, M = 107,618. Thus, Ω can be denoted by a multiple sequence: Ω =
{As, s = 1, 2, · · · ,M}, where As = (as,1, as,2, · · · , as,ns) is the primary
structure sequence of a single protein, its component as,i ∈ Vq are amino
acids, and ns is the length of the protein sequence.

2. Frequency numbers and frequencies determined by a database. If Ω is
given, the frequency numbers and frequencies of different vectors occurring
in this database can be obtained.

In the following, we denote by b(k) the fixed vector of rank k in V
(k)
q . The

number of times it occurs in the database Ω is the frequency number, denoted
by n(b(k)). Denote by n0 the sum of the frequency numbers of all the vectors of
rank k. Then p(b(k)) = n(b(k))

n0
will be the normalized frequency or probability
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Table 14.1. Frequency numbers and probabilities of the commonly occurring amino
acids

A R N D C Q E G

n(b) 3010911 2049696 1707483 2067196 641622 1551221 2549016 2706769
p(b) 0.07629 0.05193 0.04326 0.05238 0.01626 0.03930 0.06458 0.06858

H I L K M F P S

n(b) 888197 2302697 3761963 2345725 932473 1612406 1928666 2780793
p(b) 0.02250 0.05834 0.09532 0.05943 0.02363 0.04085 0.04887 0.07046

T W Y V

n(b) 2190245 476445 1240969 2608996
p(b) 0.05549 0.01207 0.03144 0.06610

with which vector b(k) occurs in database Ω. For instance, when k = 1, in
the Swiss-Prot database, the frequency numbers and probabilities of the 20
common amino acids are as given in Table 14.1.

n0 = 39,467,963 is the total number of the amino acids (except B, Z, X)
occurring in database Ω, and n(b) is the frequency number of amino acid b

occurring in Ω. Then, p(b) = n(b)
n0

is the probability of amino acid b occurring
in Ω.

We can also obtain the frequency number and frequency distribution of
k = 2, 3, 4 ranked vectors in database Ω. See [99].

Characteristic Analysis for Words

In human languages, if vector b(k) is a word, then normally it has the following
characteristics:

1. The occurrence of each component in vector b(k) has certain dependence
on the context. For instance, in English words, q must be followed by u,
and the possibility of letter f, or t following an i must be higher than that
of any other two-letter combinations among these three. This statistical
characteristic of words is called the statistical correlation between letters.

2. Changing the order of the components in vector b(k) may influence their
frequency of occurrence. For instance, in English, the frequency of the
three letters “and” is much higher than that of “nad,” “nda,” “nad,” or
“dan.” This statistical characteristic of words is called the statistical order
preservation between letters.
Statistical correlation and statistical order preservation are the two char-
acteristics of word-building. Hence, they are an important factor in the
determination of local words.
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14.1.3 Determination of Local Words Using Informational
and Statistical Means and the Relative Entropy Density Function
for the Second and Third Ranked Words

Principle of the Analysis of Local Words Using Informational
and Statistical Means

To determine local words, the information-based and statistics-based ap-
proaches can be used. In this analysis we use the probability distribution of
the vectors and their relative entropy density function. In informatics, relative
entropy is also called Kullback–Leibler entropy. Its definition is as follows:

1. If p(b(k)) and q(b(k)) are two frequency distributions of V (k)
q , then we

define

k
(
p, q; b(k)

)
= log

p
(
b(k)

)

q
(
b(k)

) (14.1)

to be the relative entropy density function of the frequency distribution q
concerning p, or the relative entropy density function for short, where
b(k) ∈ V

(k)
q is the independent variable of the function. The relative en-

tropy density function is the measurement of the differences between dis-
tribution functions p and q. In informatics, many discussions are presented
on the properties of the Kullback–Leibler entropy [23, 88]). In this book,
we mainly discuss the relative entropy density function defined by for-
mula (14.1), as it possesses a much deeper meaning than that of Kullback–
Leibler entropy.

2. The mean (or expectation), variance and standard deviation of the relative
entropy density function are denoted respectively by: μ(p, q), σ2(p, q) and
σ(p, q) =

√
σ2(p, q). Here

μ(p, q) =
∑

b(k)∈V (k)
q

p
(
b(k)

)
k
(
p, q; b(k)

)

is the Kullback–Leibler entropy which is common in informatics. In infor-
matics, it has been proved that μ(p, q) ≥ 0 always holds, and the equality
holds if and only if p(b(k)) ≡ q(b(k)) holds.

3. The frequency number distribution of the relative entropy density func-
tion. In addition to the eigenvalue, the relative entropy density function
has another property, namely the frequency distribution function. We de-
note by F(p,q)(x) the set {a(k) ∈ V

(k)
q : k(p, q; a(k)) ≤ x}. Then, from

F(p,q)(x), a histogram can be drawn. This is a common method in statis-
tics.

Relative Entropy Density Function

When using the relative entropy density function k(p, q; b(k)) in formula (14.1),
frequency distributions p, q can be chosen by different methods. The value of
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the relative entropy density function k(p, q; b(k)) then reflects different aspects
of the different internal structure characteristics of vector b(k) in database Ω.
Then p, q can be chosen as follows:

1. Let q(b(k)) = p(b1)p(b2) · · · p(bk). The value of the relative entropy den-
sity function k(p, q; b(k)) then reflects the “affinity” of each amino acid in
vector b(k) = (b1, b2, · · · , bk). The concept of “affinity” reflects “correla-
tion” or “cohesion” and “attraction” between the amino acids in vector
b(k). That is, k(p, q; b(k)) > 0, k(p, q; b(k)) < 0, or k(p, q; b(k)) ∼ 0, express
that each amino acid in vector b(k) is in a relation of cohesion, exclusion
or neutral reaction (in which case it is neither cohesion nor exclusion),
respectively.

2. If γ represents a permutation in set {1, 2, · · · , n}, we denote as

γ
(
b(k)

)
=
(
bγ(1), bγ(2), · · · , bγ(n)

)
, (14.2)

the permutation on the position of each amino acid in vector b(k). If we
take q(b(k)) = p[γ(b(k))], then the value of the relative entropy density
function k(p, q; b(k)) reflects the “order orientation” of the order of each
amino acid in vector b(k).

3. “Conditional affinity.” We take k = 3 as an example. Here we denote
b(3) = (a, b, c), and take

k(p, q; a, c|b) = log
p(a, b, c)p(b)
p(a, b)p(b, c)

= log
p(a, c|b)

p(a|b)p(c|b) , (14.3)

which denotes the affinity of a and c on the condition when b is given.
Here k(p, q; a, b|c) > 0, k(p, q; a, b|c) < 0, and k(p, q; a, b|c) ∼ 0, denote,
respectively that amino acids a, c are of cohesion, exclusion or neutral
reaction on the condition of the given b. If amino acids a, c are of neutral
reaction on the condition of the given b, then we say the tripeptide (a, b, c)
is a Markov chain.

The three different types of relative entropy density functions above reflect the
stability of the protein primary structure in three different aspects. Normally,
if q(b(k)) is considered to be the replacement of the polypeptide chain struc-
ture p(b(k)), then k(p, q; b(k)) > 0, expresses the fact that the stability of the
original polypeptide chain b(k) is higher than that of the other replacements.

The Generation of Local Words

It has been shown in the above text that there are eigenvalues and distribution
functions of the relative entropy density function k(p, q; b(k)). For different
choices of p, q, the relative entropy density function may reflect the stability
of the protein primary structure in different aspects. Thus we refer to the
conditions of k(p, q; b(k)) � 0, or k(p, q; b(k)) � 0 as the “strong stability”
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state or “strong nonstability” state, respectively. The “strong stability” state
or “strong unstability” state is often assessed by τσ determination in statistics.
That is,

{
k
(
p, q; b(k)

)− μ(p, q) ≥ τkσ(p, q) , b(k) is said to be τk stable ,
k
(
p, q; b(k)

)− μ(p, q) ≤ −τkσ(p, q) , b(k) is said to be τk nonstable ,
(14.4)

where b(k) is a polypeptide chain, τk is taken to be constant and μ(p, q),
σ(p, q) are the mean and standard deviation of k(p, q; b(k)), respectively. The
determination of local words using the formula (14.4) is called the (p, q, τ)
determination, or (τ, σ) determination for short. It is a common method in
statistics, while the theories of data analysis and data mining do not commonly
employ several types of relative entropy density functions.

14.1.4 Semantic Analysis for Protein Primary Structure

As stated above, protein primary structures are the sequence structures com-
posed of amino acids. Their structure characteristics are similar to human
languages we use, thus the research on protein primary structures can be con-
sidered a branch of research on semantic structures. We now use the determi-
nation of local words given above and the Swiss-Prot database to construct
a table of relative entropy density functions of protein primary structures and
the local words of second, third, and fourth rank. The computation process is
described below.

Table of Relative Entropy Density Functions of Dipeptides

Tables of relative entropy density functions of dipeptides can come in one of
two types. When k = 2, for the fixed distribution p(a, b), a, b ∈ Vq, we take
q1(a, b) = p(a)p(b), q2(a, b) = p(b, a), and the corresponding relative entropy
density functions are, respectively,

k0(a, b) = log
p(a, b)
p(a)p(b)

, k1(a, b) = log
p(a, b)
p(b, a)

. (14.5)

In the Swiss-Prot database, the computational results of k0(a, b), k1(a, b) are
listed as in Tables 14.2, 14.3, 14.4, and 14.5.

From Tables 14.4 and 14.5, the eigenvalues of k0, k1 are obtained, and are
shown in Table 14.6.

Searching for the Second Ranked Local Words

When k = 2, from Tables 14.4, 14.5, and 14.6 we can find the second ranked
local words. For example, when we take τ = 2, the dipeptides of the sec-
ond ranked local words and their types can be obtained, and are listed in
Table 14.7.
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In Table 14.7, type 1 is the affinitive type, where the dipeptides are at-
tractive. Type 2 is the repulsive type, where the dipeptides are repulsive.
Type 3 is the ordered type, where the probability of the dipeptides occurring
is obviously related to the order.

k1(p, q; a, b) = −k1(p, q; b, a) is antisymmetric; for example, if

k1(p, q;M,W ) = 0.3535 ,

then
k1(p, q;W,M) = −0.3535 .

Thus the probability of dipeptide MW occurring is much higher than that of
WM.

Determination of the Third Ranked Local Words

The determination of the third ranked local words is generally the same as
that for the second ranked ones. This is discussed as follows.

From database Ω, we can determine the frequency distribution p(a, b, c)
of the third ranked vector b(3) = (a, b, c), a, b, c ∈ Vq, and compute its first
and second ranked marginal distributions p(a, b), p(b, c), p(a), p(b), and p(c).
From this, eight types of relative entropy density functions can be generated:

k0(a, b, c) = log
p(a, b, c)

p(a)p(b)p(c)
, k1(a, b, c) = log

p(a, b, c)
p(a)p(c, b)

,

k2(a, b, c) = log
p(a, b, c)
p(b)p(a, c)

, k3(a, b, c) = log
p(a, b, c)
p(c)p(a, b)

,

k4(a, b, c) = log
p(a, b, c)
p(b, a, c)

, k5(a, b, c) = log
p(a, b, c)
p(c, b, a)

,

k6(a, b, c) = log
p(a, b, c)
p(a, c, b)

, k7(a, b, c) = log
p(a, b, c)
p(b, c, a)

,

k8(a, b, c) = log
p(a, b, c)
p(c, a, b)

.

(14.6)

Their eigenvalues are given in Table 14.8, where the number of the local words
of type I refers to the number of tripeptide chains following kτ (a, b, c) >
μτ + 3.5στ , and the number of the local words of type II refers to the number
of tripeptide chains which follow kτ (a, b, c) < μτ − 3.5στ .

We comment on the following aspects for Table 14.9:

1. In this table, the capital letter is the tripeptide and the number is function
k3. When k3 > 0, it is a chain of peptides of type I, which attract each
other, and when k3 < 0, it is a chain of peptides of type II, which repel
each other. There are in total 54 local words in Table 14.9.

2. Data in this table are obtained on the condition of τ = 3.5. If we lower
the value of τ , there will be an increase in the number of local words.

3. For each type of dynamic function k0 − k8, we can also obtain the vocab-
ulary of local words in tripeptide chains, which will not be listed here.
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Table 14.6. The eigenvalues of relative entropy density function k0, and k1

Mean (μ) Variance
(σ2)

Standard
deviation
(σ)

Maximum
(μM )

Minimum
(μm)

μ− 2σ μ+ 2σ

k0 −0.00633 0.01879 0.13708 0.71381 −0.41384 0.28049 −0.26783
k1 0.00441 0.01274 0.11289 0.56669 −0.56669 0.23019 −0.22137

Determination of Fourth and Higher Ranked Local Words

The search for fourth ranked local words is similar to that of the second
and third ranked ones, while their relative entropy density functions are more
complex. For example, there are 11+18 = 29 relative entropy density functions
of fourth rank. We can also find local words by choosing a proper value of τ .
Because of the amount of statistical data, local words with a rank higher than
fourth cannot be processed by the statistical methods used for the second and
third ranked ones. They must be processed by permutation and combination
methods or the method of combining lower ranked words. Permutation and
combination methods will be discussed in detail in the next section.

14.2 Permutation and Combination Methods
for Semantic Structures

In the previous section, informational and statistical analysis methods for the
semantic structure of protein primary structure have been given. In using this
method, we notice that the basis of the informational and statistical methods
is the computation of frequency numbers and probabilities for polypeptide
chains. However, if the lengths of the polypeptide chain vectors increase, the
number of combinations (20n of the polypeptide chain vector b(k)) will increase
rapidly. For example, 206 = 6.4×107. This exceeds the total number of amino
acids in the Swiss-Prot database (version 2000); hence the informational and
statistical methods no longer work. Therefore, other methods must be used
to analyze the semantic structures of higher ranked words.

In this section, we continue to analyze the semantic structure of protein
primary structures with combinatorial graph theory methods, and give the
definition of the key words and core words as well as their characteristic
parameters for protein primary structures in the Swiss-Prot database. The
concept of the key words and core words refers to a special type of polypep-
tide chains, which exist uniquely in a protein database (i.e., in nature). Hence
the key words and core words are actually special kinds of biological signa-
tures [91].

The concept of a biological signature occurs commonly in biological se-
mantic analysis. Besides the small-molecule library and conformation theory
mentioned above, many research institutions are building their own annotated
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databases, such as PROSITE, Pratt, EMOTIF, etc. [43, 45, 47, 48, 94]. They
use different methods; for example, Pratt and EMOTIF are index databases
analyzing the structures and functions of the polypeptide chains directly, and
PROSITE is an index database of homologous protein classes obtained by the
alignment of homologous proteins using PSI-BLAST [4]. Therefore, it is mean-
ingful to compare the relationships between these different types of databases.

The core of the combinational graph theory method is the vector segment
of the sequence data. When its length reaches a certain level, data structures of
the long sequences may form a recursive relation. This characteristic is widely
used in the analysis of shift register sequences and codes. Theoretically, its
scope makes it applicable by means of the complexity theory of sequence data
and the theory of Boolean function or the de Bruijn–Good graph of data struc-
tures. Therefore, many theories and tools used in the analysis of shift register
sequences and codes can be brought in. However, the purpose of the research
on biological sequences is different from that of the code analysis. The former
aims to find the relationship between words and the language of biological
sequences, while the latter aims to construct the pseudorandomicity of the
sequences. In-depth discussion on combinatorial graph theory can be found
in the literature [35]. Combinatorial graph theory methods can also be used
to discuss the complexity, classification, cutting and regulation of databases.
In this book, we only discuss the use of core words for the classification and
prediction of homologous proteins.

14.2.1 Notation Used in Combinatorial Graph Theory

The mathematical model and involved definitions and notation used for the
protein primary structures can readily be found in the literature [89], and
hence it will not be repeated in detail. The theory of Boolean functions and
that of the de Bruijn–Good graph can also be found in the literature [35].

Combination Space and Database

Let Vq = {1, 2, · · · , q} be a set of integers, which represents an alphabet for
biological sequences. In the database of protein primary structures, we take
q = 20 to denote the 20 commonly occurring amino acids. For the sake of con-
venience, in this book we set q = 23, and take 21 to be the zero element. Here
Vq is a finite field, in which addition and multiplication are integer operations
modulo 23.

Let V (k)
q be the kth ranked product space of Vq, whose element b(k) =

(b1, b2, · · · , bk) ∈ V
(k)
q is the kth ranked vector on Vq. V

(k)
q is also called the

kth ranked combination space of Vq.
As mentioned in Sect. 14.1.2,Ω is a database of protein primary structures,

which is composed of M proteins. Here

Ω = {Cs, s = 1, 2, · · · ,M} , (14.7)
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where Cs = (cs,1, cs,2, · · · , cs,ns) is the primary structure sequence of a single
protein and ns is the length of the sth protein sequence, whose components
cs,i ∈ Vq are the commonly occurring amino acids. If Cs is the primary struc-
ture sequence of a protein, then we denote

c[i,j]s = (cs,i, cs,i+1, · · · , cs,j) , 1 ≤ i ≤ j ≤ ns , (14.8)

to represent a polypeptide chain of protein Cs, whose length is k = j − i+ 1.
Here c[i,j]s ∈ V

(k)
q is a vector in kth ranked combination space.

Boolean Functions on a Combination Space

If V (k)
q is a combination space and f(b(k)) is a single-valued mapping on

V
(k)
q → Vq, then we say f is a kth ranked Boolean function with q elements

on Vq. In mathematics, the Boolean functions can have several representa-
tions, such as the listing representation, combination representation, function
representation, graph representation, etc. They are described in detail in the
literature [35], and here we only introduce the related notation.

1. Combination representation. The listing representation is what we are fa-
miliar with. The combination representation can be represented by a group
of subsets of V (k)

q

Af = {Af,1,Af,2, · · · ,Af,q} , (14.9)

where

Af,j =
{
b(k) ∈ V (k)

q : f
(
b(k)

)
= j

}
, j ∈ Vq , (14.10)

then Af is called the combination representation of the Boolean function.
Here Af is a division of V (k)

q .
2. Function representation. If f is a mapping on V (k)

q → Vq, then f is a func-
tion whose domain is V (k)

q and takes values in Vq. If Vq is a finite field,
the Boolean function can be calculated by addition and multiplication
operations on a finite field. The formula is

f
(
b(k)

)
=

q−1∑

j1,j2,··· ,jk=0

(

αj1,j2,··· ,jk
k∏

i=1

bjii

)

, (14.11)

where αj1,j2,··· ,jk ∈ Vq, and the addition, multiplication and power oper-
ations in formula (14.11) are operations on field Vq.

3. Graph representation. The definition of graph is given in [12, 35]. In this
section, we denote it by G = {A, V }, where A is a vertex set, V is the
dual point set of A, which is called the edge set in graph theory. In the
following, we denote the vertices in A as a, b, c, etc., and the edges in V as
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(a, b), (a, c), (b, c), etc. The definitions of graphs fall into the categories of
finite graphs, directed graphs, undirected graphs, subgraphs, supergraphs,
plot graphs, etc. In this section we only discuss finite graphs and directed
graphs.

The Theory of the de Bruijn–Good Graph

One of the important graphs is the de Bruijn–Good graph (which is called
the DG graph for short). We denote a kth ranked DG graph by Gq,k =
{Bq,k, Vq,k}, where

Bq,k = V (k)
q , Vq,k = V (k+1)

q . (14.12)

Here the elements in Bq,k, Vq,k can be denoted respectively by
{

b(k) = (b1, b2, · · · , bk) ,
b(k+1) = ((b1, b2, · · · , bk), (b2, b3, · · · , bk, bk+1)) .

(14.13)

Then, b(k+1) can be considered to be dual points in Bq,k, or edges in Gq,k.
When q is fixed, we denote Gq,k = {Bq,k, Vq,k} as Gk = {Bk, Vk} for short.

In the following, the subgraph of a DG graph is also called a DG graph.
The Boolean graph is an important DG graph. If f is the Boolean function
on V

(k)
q → Vq, then we call Gf = {B, Vf} the Boolean graph determined by

f , where
B = V (k)

q , Vf =
{
(b(k), f(b(k))), b(k) ∈ B

}
. (14.14)

Here Gf is a subgraph of graph Gk. Boolean graphs and Boolean functions
determine each other. In graph theory, DG graphs can have several specific
representations, which will not be introduced here.

Properties of the Boolean Graph

The definitions of edge, path and tree in graph theory have been given in
Chap. 6. Detailed properties of the Boolean graph in the DG graph can be
found in the literature [35]. In this section, we only introduce the basic prop-
erties. We know from the definition of a Boolean graph that a DG graph is
a Boolean graph if and only if there is at most one outer-edge coming from
each vertex. From this we arrive at the following conclusions:

1. There must be several cycles in a Boolean graph. We call the cycle
with only one vertex a trivial cycle. There is no common vertex in
different cycles. We denote all the cycles in a Boolean graph Gf by
OG = {O1, O2, · · · , Om}, where each cycle is

Os = {bs,0 → bs,1 → · · · → bs,ks−1 → bs,ks} , s = 1, 2, · · · ,m , (14.15)

where bs,0 = bs,ks .
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2. In the vertex set B of a Boolean graph, each vertex b arrives at a cycle Os
in the end. In B, we denote all vertices arriving at cycle Os by Ws.

3. Sets W1,W2, · · · ,Wm are disjoint with each other, and their combination
is set B.

DG Boolean Graph Generated by Sequences

Let C(c1, c2, · · · , cn) be a sequence of length n in Vq, where cj ∈ Vq . The
subvector of sequence C is denoted as

c
(k)
i = (ci, ci+1, · · · , ci+k−1) , 1 ≤ i ≤ n− k + 1 . (14.16)

Let

Bk(C) =
{
c
(k)
i = (ci, ci+1, · · · , ci+k−1) , i = 1, 2, · · · , n− k + 1

}
, (14.17)

then we call Bk(C) the kth ranked vector family determined by sequence C.

Definition 55. If C is a sequence in Vq, for any positive integer k, we define
the kth ranked DG Boolean graph determined by sequence C as follows:

Gk(C) = {Bk(C), Bk+1(C)} , (14.18)

where the elements in Bk+1(C) are

c
(k+1)
i = (ci, ci+1, · · · , ci+k) = ((ci, · · · , ci+k−1), (ci+1, · · · , ci+k)) ,

which are dual points in Bk(C). Thus Gk(C) is a DG Boolean graph deter-
mined by C.

Graph Gk(C) has the following properties:

1. Sequence C is a path in graph Gk(C), and its terminus is c(k)n−k+1.
2. For the fixed sequence C, if vertices in Bk(C) are different from each

other, we denote C′ = (c1, c2, · · · , cn, c1), where vector (c1, c2, · · · , cn) is
given in C. Then, the graph Gk(C′) is a Boolean graph, and sequence
C′ comprises a maximum cycle of Gk(C′), which traverses each vertex
in Bk(C) once and only once. We call it the Boolean cycle. Here graph
Gk(C) is a trunk tree (this tree does not have inner nodes).

3. If sequence C can generate a Boolean function, then we take

f(ci, ci+1, · · · , ci+k−1) = ci+k , i = 1, 2, · · · , n− k + 1 , (14.19)

to be the Boolean function which generates sequence C. This will be called
the generating function of sequence C for short in the following. In general,
the solution of formula (14.19) is not unique. We denote by F(k)(C) all
the solutions that hold for formula (14.19), which are called the Boolean
function family that generates C.
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4. If there is a vertex occurring in Ak(C) more than once, then graph Gk(C)
contains a cycle. If c(k)i = c

(k)
j , i < j, then

c
(k)
i → c

(k)
i+1 → · · · → c

(k)
j−1 → c

(k)
j = c

(k)
i (14.20)

comprise a cycle. To have graph Gk(C) contain no cycle, the value of k
must be increased. This is to be solved by nonlinear complexity theory.

14.2.2 The Complexity of Databases

To discuss under what conditionGk(C) would be a Boolean graph, we examine
the problem of the sequence complexity in cryptography.

The Complexity of a Sequence

In sequence analysis used in cryptography, complexity can be associated with
three different definitions: linear complexity, nonlinear complexity and non-
singular complexity. These concepts are frequently cited in the combinatorial
analysis of semantics, and we begin with these definitions.

Definition 56. If C is a given sequence, several definitions of complexity can
be formulated as follows:

1. We call k = KN(C) the nonlinear complexity of C, if DG graph Gk(C) is
a Boolean graph while Gk−1(C) is not a Boolean graph.

2. We call k = KL(C) the linear complexity of C, if Gk(C) is a Boolean
graph while its generating function f is a linear function on V

(k)
q → Vq.

3. We call k = KS(C) the nonsingular complexity of C, if the generating
function f of C is a nonsingular function on V

(k)
q → Vq.

Nonsingular functions are an important class of Boolean function. We define
them as follows: in formula (14.19), when (ci+1, · · · , ci+k−1) is fixed, each ci
corresponds to ci+k.

In the literature [87], a series of properties and formulas for these three
complexities are given. For instance, they follow formula KS(C) ≤ KN (C) ≤
KL(C) etc., which will not be discussed here in detail.

The Complexity of a Database

In Definition 55, the related definitions of the graph generated by a sequence
and the complexity can be expanded to those of a database. In the database
of protein primary structures given in Sect. 14.1.2, graphs generated by each
protein primary structure sequence Cs, are defined in formula (14.18) to be

Gk(Cs) = {Bk(Cs), Vk(Cs)} , s = 1, 2, · · · ,m . (14.21)
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We define Gk(Ω) = {Ak(Ω),Vk(Ω)} as the graph generated by database Ω,
where

Ak(Ω) =
m⋃

s=1

Bk(Cs) , Vk(Ω) =
m⋃

s=1

Vk(Cs) .

From graph Gk(Ω), the linear complexity, nonlinear complexity and nonsin-
gular complexity of database Ω can be defined similarly. They follow from
Definition 56, and are not repeated here.

The Biological Significance of Complexity

The essential significance of the sequence complexity is to discuss under what
conditions in the same sequence, segments of different vectors lead to recursive
relations and how the recursive relations express themselves and change. Thus,
it is closely related to the concepts of the regulation and splicing of biological
sequences.

We find in the calculation of biological sequences that, the computation
of sequence complexity is effective for single protein sequences, but not as
effective for the analysis of databases Ω.

Example 30. Trichosanthin is a kind of pharmaceutical protein extracted from
Chinese herbs. It was an abortion-inducing drug [105], and in recent years, it
was found to have an inhibition effect on several types of cancer and AIDS;
attracting much attention. In the Swiss-Prot database, two homologous pro-
teins RISA-CHLPN and RISA-CHLTR have the primary structures, given in
Fig. 14.1.

We denote these two sequences by C,D. Their nonlinear complexity and
nonsingular complexity are found to be, respectively,

KN(C) = KN(D) = 3 , KN(C,D) = 94 ,
KS(C) = KS(D) = 4 , KS(C,D) ≥ 95 . (14.22)

It shows that the nonlinear complexity of databaseΩ can become very high (in
the Swiss-Prot database, the nonlinear complexity can be higher than 3000).
The reason for this increase is that there are many mutually homologous se-
quences and self-homologous sequences in database Ω. Therefore, complexity
analysis is useful in the database searches, mutation predictions and the gen-
eral analysis of homologous sequences.

14.2.3 Key Words and Core Words in a Database

The Definitions of Key Words and Core Words

In order to analyze the database of protein primary structures efficiently using
a combinatorial method, we set up the theory of key words and core words in
a database.
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Definition 57. 1. We call vector b(k) the τ th ranked key word in database Ω,
if the frequency number nΩ(b(k)) of b(k) occurring in Ω follows
nΩ(b(k)) = τ , where nΩ(b(k)) denotes the number of times vector b(k)

occurs in database Ω.
2. We call b(k) the τ th ranked core word in database Ω, if b(k) is the τ th

ranked key word in Ω, and nΩ(b(k−1)) > τ , nΩ(b(k−1)
+ ) > τ both hold,

where

b(k−1) = (b1, b2, · · · , bk−1) , b
(k−1)
+ = (b2, b3, · · · , bk)

are subvectors with (k− 1) elements before or after b(k), respectively. The
first ranked key word and core word are called for short the key word and
core word, respectively.

Key words and core words are “labels” for protein primary structure se-
quences. That is, if b(k) is a core word in Ω, then there is one and only
one sequence Cs in Ω that contains this vector.

Key words and core words can also serve as a “classification” method
for proteins. If b(k) is the τth ranked key word in Ω, contained in proteins
Csi , i = 1, 2, · · · , k, then proteins s1, s2, · · · , sk contain the same key word
b(k). They can be considered to be homologous (or locally homologous) pro-
teins.

A protein Cs may contain several core words, thus protein primary struc-
ture sequences have multiple “labels” or characteristics.

Example 31. In the trichosanthin RISA-CHLPN and RISA-CHLTR given in
Example 30, the core words of length 6 are

C: RFLVFS, PYERKL, YERKLY, TLPGSQ, TNVYVM, NVYVMG, VYVMGY,

YVMGYR, VMGYRA, NGQFET, GQFETP, FETPVV, NMAAID, MAAIDD,

AAIDDD, DVPMAQ, VPMAQS, PMAQSF, MAQSFG, AQSFGC.

D: IRFLVL, TLFLTT, LPNERK, YIMGYR, VFKDAM, FKDAMR, KDAMRK,

NNMAAM, NMAAMD, MAAMDD, VPMTQS, PMTQSF, MTQSFG, TQSFGC.

Properties of Key Words and Core Words

If b(k), c(k
′) are two vectors, and there exist 1 ≤ i < j ≤ k′, and j − i+ 1 = k

such that b(k) = c[i,j] holds, then we say that vector c(k
′) contains b(k), and

c(k
′) is an extension of b(k), while vector b(k) is a contraction of c(k

′). Key
words and core words have the following properties:

1. If b(k) is a key word in the protein sequence Cs, then any extension b(k
′)

in protein Cs is a key word and its frequency number recursively declines
such that nΩ(b(k)) ≥ nΩ(b(k

′)).
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2. In database Ω, different core words do not contain each other. They occur
once and only once in database Ω.

3. When the vector of a core word contracts, this core word changes into the
τth ranked key word and the τth ranked core word, thereby generating
the homologous structure tree of the protein. The homologous structure
tree is significant for long core words.

Searching for the Core Words in a Database

Searching for core words in a database is similar to that in a sequence. Here the
database is considered a long sequence of joined proteins and each protein is
distinguished by list separators. Thus the definition of core words in a database
requires the absence of the list separators in the core words. Hence we denote
by

Ω = {c1, c2, · · · , cn} , ci ∈ Vq+1 , (14.23)

the sequence generated by the database, where the list separator 0 is added
to set Vq = {1, 2, · · · , 20}, giving Vq+1. The search for the core words in
a database is implemented by the following recursive computation.

Step 14.2.1 Take a positive integer k0, which follows the conditions below:
1. Any vector b(k0) in V (k0)

q occurs at least twice in database Ω. That is,
nΩ(b(k0)) ≥ 2 always holds.

2. In V
(k0+1)
q , there is a vector b(k0+1) that occurs in database Ω only

once. That is, nΩ(b(k0+1)) = 1 holds.
We call k0 the original rank of the recursive computation.

Step 14.2.2 Take k = k0 + 1, k0 + 2, · · · , and compute recursively. Here

c
(k)
i = (ci, ci+1, · · · , ci+k−1) , i = 0, 1, · · · , n− k + 1 . (14.24)

From this, integers in the set Nk = {0, 1, 2, · · · , n − k + 1} are classified
into two classes by c(k)i . They are:
1. We define

Nk,1 =
{
i ∈ Nk : nΩ

(
c
(k)
i

)
= 1

}
,

which is the subscript set of c(k)i which occurs only once in Ω.
2. We define

Nk,2 =
{
i ∈ Nk : nΩ

(
c
(k)
i

)
> 1

}
,

which is the subscript set of c(k)i which occurs more than once in Ω.
Then set

Ωk =
{
c
(k)
i , i ∈ Nk,1, i ∈ Nk−1,2

}
(14.25)

will be the collection of the kth ranked core words in database Ω.
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Step 14.2.3 The subscript set of set Nk,2 given in Step 14.2.2 can also be
classified. Here, we take Nk,2,i1 , Nk,2,i2 , · · · , Nk,2,ip to be a group of sub-
sets of Nk,2. We denote the set Dk = {i1, i2, · · · , ip}, which follows the
conditions below:
1. If ij �= ij′ , then c(k)ij

�= c
(k)
ij′

must hold.

2. If i′ ∈ Nk,2,ij , then c
(k)
i′ = c

(k)
ij

must hold. Therefore, sets Nk,2,i1 ,
Nk,2,i2 , · · · , Nk,2,ip are disjoint with each other.

3.
⋃p
j=1Nk,2,ij = Nk,2. Thus, sets Nk,2,i1 , Nk,2,i2 , · · · , Nk,2,ip are a divi-

sion of set Nk,2.
From the classification Nk,2,i1 , Nk,2,i2 , · · · , Nk,2,ip of Nk,2, the recursive
computation can be continued as follows:
4. With every subscript in set Nk,2 as a starting point, construct k + 1

dimensional vectors. That is, take vectors c(k+1)
i , i ∈ Nk,2 and repeat

Step 14.2.2, to obtain two subsetsNk+1,1 andNk+1,2 of setNk,2, whose
definitions are the same as that ofNk,1 andNk,2 in Step 14.2.2, classifi-
cations 1 and 2, respectively. At this time, Ωk+1 = {c(k+1)

i , i ∈ Nk+1,1}
is the collection of the (k + 1)th ranked core words in database Ω.
For the elements in Nk+1,2, we can repeat the computation in Steps
14.2.2 and 14.2.3 to construct the set Nk+2,1 and Nk+2,2. Recurring
in this way, the collection of the core words in database Ω can be
obtained.

5. In the previous computation (4), the comparison of vectors c(k+1)
i , i ∈

Nk,2 can only be implemented in the divided set Nk,2,i1 , Nk,2,i2 , · · · ,
Nk,2,ip of Nk,2. Here, each Nk,2,ij is divided into two sets Nk+1,1,ij ,
Nk+1,2,ij , where the vectors c(k+1)

i corresponding to subscript i in
Nk+1,1,ij occur only once in c

(k+1)
i′ , i′ ∈ Nk,2,ij , while the vectors

c
(k+1)
i corresponding to subscript i in Nk+1,2,ij occur more than once

in c(k+1)
i′ , i′ ∈ Nk,2,ij .

The amount of computation can be greatly reduced in this way, which makes
the complexity of searching and computation for all core words in database Ω
a linear function of |Ω|. We refer to the above algorithm as recursive compu-
tation for nonlinear complexity and core words of a database.

With the discussion on the nonlinear complexity of databases, key words
and core words, proteins can be classified and aligned. In this book, we will
not discuss this problem; instead we focus on some special problems in the
next section.

14.2.4 Applications of Combinatorial Analysis

Besides what was mentioned in Sect. 14.1 (the application of analysis on pro-
tein structure using information and statistics, and the application of relative
entropy density dual theory), there are many applications of protein structure
analysis using combinatorial analysis. We discuss these as follows.
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Run Analysis on Databases of Protein Primary Sequences

We see from Sect. 14.1 that, several amino acids, such as A, R, N, etc., are
of very high affinity. Thus we assume that, vectors consisting of single letters
may form long polypeptide chains. If we name vectors consisting of single
letters as runs, then analysis on these special polypeptide chains will then be
called run analysis.

Suppose c(s,t) is a local sequence of sequence C. If cs = cs+1 = · · · = ct =
c ∈ Vq, c(s,t) is to be called a run vector and t− s+ 1 is to be called the run
length of this vector. We do statistical analysis on these run vectors in the
database Ω, and some results are summarized as follows:

1. The differences between the maximum run lengths of different amino acids
are quite significant. In the Swiss-Prot database, the maximum run lengths
of different amino acids are shown in Table 14.10.

2. We see from the computation in the Swiss-Prot database that I and W
are two special amino acids. The affinity of peptide chains with double I is
neutral, k(I, I) = log p(I,I)

p(I)p(I) = 0.0964, while the affinity of peptide chains

with triple I is repulsive, k(I, I, I) = log p(I,I,I)
p(I,I)p(I) = −0.0926. The affinity of

peptide chains with double W or triple W is attractive, while the affinity
of peptide chains with W of four runs is repulsive. Here

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

k(W,W) = log
p(W,W)
p(W)p(W)

= 0.5663 ,

k(W,W,W) = log
p(W,W,W)
p(W,W)p(W)

= 0.5075 ,

k(W,W,W,W) = log
p(W,W,W,W)
p(W,W,W)p(W)

= −0.8316 .

3. Amino acids with long runs are often of high ranked Markovity. Here

k(c1, c2, · · · , ck+2) − k(c1, c2, · · · , ck+1)

= log
p(c1, c2, · · · , ck+2)
p(c1, c2, · · · , ck) − log

p(c1, c2, · · · , ck+1)
p(c1, c2, · · · , ck)

= log
p(c1, c2, · · · , ck)p(c1, c2, · · · , ck+2)
p(c1, c2, · · · , ck+1)p(c1, c2, · · · , ck)

= log
p(c1, ck+2|c2, · · · , ck+1)

p(c1|c2, · · · , ck+1)p(ck+2|c2, · · · , ck+1)
∼ 0 .

Table 14.10. The maximum run lengths of different amino acids

One-letter code A R N D C Q E G H I
Maximum run length 21 14 50 44 11 40 31 24 14 7

One-letter code L K M F P S T W Y V
Maximum run length 19 10 7 10 50 42 18 4 12 8
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4. We see from the computation in the Swiss-Prot database that, for run
sequences of different amino acids, when the run lengths reach a certain
number, their transferences have a great propensity for orientation. For
example, when the run length of amino acid A reaches 12, the possibility
of its state transferring to A, G, S, V is very high, higher than 85%. This
characteristic is similar to the English word structure. For instance, in
English, what follows “qu” will always be one of the four letters a, e, i, o.

5. We can see from the fact that different amino acids have relatively long
runs, that the lexical structure of protein primary structure is quite differ-
ent from that of English and Chinese. In English or Chinese vocabularies,
the maximum run of single letters are often only 2, while that of single
letters in protein primary structure sequences may reach 50 (e.g., amino
acid P).

Search and Alignment of Homologous Proteins

We have stated in the above text that, if b(k) is a core word, it occurs in the
database Ω once, and only once. If vector b(k) is contracted back and forth,
then key words of different ranks can be formed in database Ω. Proteins with
these key words consist of the same peptide chains in considerably longer seg-
ments, where the corresponding homologous proteins and their stable regions
can be found.

Example 32. In Swiss-Prot version 2000, we have a core word with length 29:

GREFSLRRGDRLLLFPFLSPQKDPEIYTE .

The protein it locates and its starting site are CAML-MOUSE, 373. Its seg-
ments with length 7 and the serial number and sites of the segments occurring
in other proteins are

1 Segment Serial no. 2 Serial no. 2 Serial no. 2 Serial no. 2

4 RGDRLLL CAMG-MOUSE 379 CAML-HOMAN 379 CAML-MOUSE 380 CAML-RAT 380
4 GDRLLLF CAMG-MOUSE 380 CAML-HOMAN 380 CAML-MOUSE 381 CAML-RAT 381
4 LLLFPFL CAMG-MOUSE 383 CAML-HOMAN 383 CAML-MOUSE 384 CAML-RAT 384
4 LLFPFLS CAMG-MOUSE 384 CAML-HOMAN 384 CAML-MOUSE 385 CAML-RAT 385
4 LFPFLSP CAMG-MOUSE 385 CAML-HOMAN 385 CAML-MOUSE 386 CAML-RAT 386
3 FSLRRGD CAMG-MOUSE 375 CAML-MOUSE 376 CAML-RAT 376
3 PQKDPEI CAMG-MOUSE 391 CAML-MOUSE 392 CAML-RAT 392
3 SLRRGDR CAMG-MOUSE 376 CAML-MOUSE 377 CAML-RAT 377

Therefore, “1” is frequency number and “2” is location. The vector segment
GREFSLRRGDRLLLFPFLSPQKDPEIYTE is a marker of the homology of
gene CAML-MOUSE, CAMG-MOUSE, and CAML-RAT. We can also search
for several core words in the same protein, and thereby obtain its homologous
proteins.
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The Cutting of Protein Sequences and the Prediction
of Homologous Proteins

We analyze the cutting of protein sequences and the prediction of homologous
proteins by using protein RISA-CHLPN and RISA-CHLTR in Example 30. We
denote these two protein sequences as C and D respectively. Their nonlinear
complexity and nonsingular complexity are both 4. Thus, the fourth ranked
DG graph G4(C), G4(D) generated by C and D are antitrunk trees with two
branches. We can then discuss the cutting of these proteins:

1. We compare the primary structure of proteins C and D given in Exam-
ple 30. The lengths of these two sequences are both n = 289, where the
amino acids differ in ten sites and stay the same in the remaining sites.
The differing sites are 7, 18, 50, 63, 94, 123, 139, 234, 272, and 280. We
call these cutting sites.

2. As is shown in Fig. 14.2, we draw proteins C and D into two parallel lines.
In these parallel lines, the lines present the same amino acids, while the
sites corresponding to the hollow points and solid points present differ-
ent amino acids. If we hold the lines presenting the same amino acids
and randomly choose amino acids from sequence C or D to the sites
where the amino acids are different in C and D, this operation is called
the cutting operation of homologous proteins. This operation actually di-
vides two homologous proteins into several segments and then combines
them in the original order. If the original proteins C and D are denoted
by

C = S1,10S1,20S1,30S1,40S1,50S1,60S1,70S1,80S1,90S1,100S1,11 ,

and

D = S2,11S2,21S2,31S2,41S2,51S2,61S2,71S2,81S2,91S2,101S2,11 ,

then the cutting sequence generated by this is

C′ = S1,10S1,21S2,31S2,41S2,50S1,60S1,70S1,81S2,91S2,100S1,11 .

Fig. 14.2. Primary structure relationship between protein RISA-CHLPN and pro-
tein RISA-CHLTR
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3. We reach the following conclusion: If there are k cutting points in two
proteins, then there would be 2k different combinations for this cutting
procedure. All of these combinations of cutting may generate new homol-
ogous proteins.

From this we can predict that, there may be 210 ∼ 1000 kinds of homologous
trichosanthin structures. Biological experimentation is required to demon-
strate and illustrate whether these homologous proteins exist and what their
function and characteristics are. One particularly significant role of bioin-
formatics is to provide the scope, content and direction of experiments for
biologists, thereby greatly decreasing the number of the possible experiments.
The cutting of sequences provides a tool for this.

Semantic analysis for biological sequences is an important problem that
combines mathematics and biology. We see from the above discussion that
the corresponding analysis is related to the essential problems of the life sci-
ences. Thus, a close relationship exists between the life sciences and biological
engineering. Both the depth and breadth of the discussions in this book are
preliminary. If the theories and methods in biology, mathematics and biologi-
cal computation are further combined and different types of databases, such as
databases of protein three-dimensional structures, protein functions, special
(such as enzyme, antibody, virus, etc.) databases, GenBank, cDNA database,
genome database are synthetically analyzed, its development and applications
will lead to significant progress in biology and the related sciences. These in-
clude the core problems in genometics, proteomics theory, the applications of
biological engineering and drug design, etc. We hope this book can stimulate
further research using a synergistic combination of mathematics and biology.

14.3 Exercises, Analyses, and Computation

Exercise 68. Explain the biological significance of “local words,” “key words,”
and “core words.”

Exercise 69. Explain the meaning of “relative entropy density function” in
protein primary structure.

Exercise 70. Perform the following computation for bacteria or archaebac-
teria (see the data given in [99]):

1. Take k = 9. Compute the probability distribution p(b(9)) of b(9) ∈ V
(9)
4 ,

and the marginal distribution p1(b(3), p0(b1)).
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2. For

q0

(
b(9)

)
= p0(b1)p0(b2)p0(b3)p0(b4)p0(b5)p(b6)p0(b7)p0(b8)p(b0) ,

q1

(
b(9)

)
= p0(b1, b2, b3)p0(b4, b5, b6)p0(b7, b8, b0) ,

q2

(
b(9)

)
= p0(b4, b5, b6)p0(b7, b8, b9)p0(b1, b2, b3) ,

q3

(
b(9)

)
= p0(b7, b8, b9)p0(b1, b2, b3)p0(b4, b5, b6) ,

compute the relative entropy density functions

ks

(
b(9)

)
= log2

p
(
b(9)

)

qs
(
b(9)

) , s = 0, 1, 2, 3 ,

and give the table of their relative entropy density functions.
3. Based on task 2, compute the mean, variance, and standard deviation of
ks(b(9)).

4. For τ = 2.5, find the “local words” generated by ks(b(9)).

Exercise 71. Find the “key words” and “core words” generated by these
bacteria or archaebacteria.



Epilogue

In this book, we introduced the stochastic models for DNA (or RNA) mu-
tations, the theory of modulus structure used for gene recombination, gene
mutation and gene alignment, the fast alignment algorithms for pairwise and
multiple sequences, and the topological and graphical structures on the set
of outputs induced from multiple alignments, respectively. These new con-
cepts illustrate the large number of approaches for analyzing the structures
of biosequences, many of which strongly rely on mathematics. We hope that
the theory of the modulus structure will lead to new advances in algebra the-
ory and will play an important role in the study of gene recombination and
mutation.

On the other hand, this book is only the first step in what we expect will
become a long history of applying mathematics to improve both the depth
and meaning within the study of biology. Rather than developing the math-
ematical theory and methods in a vacuum, it is far more interesting when the
mathematics evolves in order to solve problems in biology, biomedicine, and
biomedical engineering.

Currently, we are in an ideal period for advancement in the life sciences,
and many scientists from disciplines other than biology are facing the chal-
lenge of working in this field. Incorporating mathematics into the life sciences
can only enhance the quality and accuracy of research in the life sciences. The
question of how to ideally incorporate these two disciplines is of great im-
portance, and it is our hope that this book will contribute towards this goal.
Although every attempt was made to ensure correctness and accuracy in this
edition before publication, the authors welcome comments and suggestions so
that any remaining errors or omissions may be addressed in future editions.
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