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Chapter 1
Recent Advances in Statistical and Scaling
Analysis of Earth and Environmental Variables

Shlomo P. Neuman, Alberto Guadagnini, Monica Riva, and Martina Siena

Abstract Many earth and environmental variables appear to be self-affine
(monofractal) or multifractal with Gaussian or heavy-tailed distributions. The
literature considers self-affine and multifractal types of scaling to be fundamentally
different, the first arising from additive and the second from multiplicative random
fields or processes. Recent work by the authors demonstrates theoretically and
numerically that square or absolute increments of samples from truncated fractional
Brownian motion (tfBm) exhibit apparent multifractality at intermediate ranges of
separation lags, with breakdown in power-law scaling at small and large lags as
is commonly exhibited by data. The same is true of samples from sub-Gaussian
processes subordinated to tfBm with heavy-tailed subordinators such as lognormal
or Lévy, the latter leading to spurious behavior. It has been established empirically
that, in numerous cases, the range of lags exhibiting power-law scaling can be
enlarged significantly, at both ends of the spectrum, via a procedure known as
extended self-similarity (ESS). No theoretical model of the ESS phenomenon has
previously been proposed outside the domain of Burger’s equation. Our work
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demonstrates that ESS is consistent, at all separation scales, with sub-Gaussian
processes subordinated to tfBm. This makes it possible to identify the functional
form and estimate all parameters of corresponding models based solely on sample
structure functions of the first and second orders. The authors’ recent work also
elucidates the well-documented but heretofore little-noticed and unexplained
phenomenon that whereas the frequency distribution of log permeability data often
seems to be Gaussian (or nearly so), that of corresponding increments (as well as
those of many other earth and environmental variables) tends to exhibit heavy tails,
which sometimes narrow down with increasing separation distance or lag.

1.1 Introduction

The literature indicates (Neuman and Di Federico 2003 and references therein) that
hydrogeologic variables exhibit isotropic and directional dependencies on scales of
measurement (data support), observation (extent of phenomena such as a dispersing
plume), sampling window (domain of investigation), spatial correlation (structural
coherence), and spatial resolution (descriptive detail). Attempts to explain such scale
dependencies have focused in part on observed and/or hypothesized power-law
behaviors of structure functions of variables such as permeability or log perme-
ability (e.g., Neuman 1990, 1994; Painter 1996; Liu and Molz 1997a, 1997b;
Tennekoon et al. 2003); space-time infiltration (Meng et al. 2006); river runoff
(Koscielny-Bunde et al. 2006) and streamflows (Movahed and Hermanis 2007;
Zhang et al. 2008, 2009); raindrop sizes and positions (Lilley et al. 2006); soil
properties (Caniego et al. 2005; Zeleke and Si 2006, 2007); electrical resistance,
natural gamma ray, and spontaneous potential (Yang et al. 2009); sediment transport
(Ganti et al. 2009; Singh et al. 2011); and precipitation (Paschalis et al. 2012). Let

Sq
N(s) =

1
N(s)

N(s)

∑
n=1

|ΔYn(s)|q (1.1)

be an order q sample structure function of a random function Y (x) defined on a
continuum of points x in space or time (for simplicity, we limit our discussion here
to one dimension) where ΔYn(s) = Y (xn + s)−Y (xn) is a sampled increment of the
function over a separation distance (lag) s between two points on the x axis and
N(s) the number of measured increments. Then Y (x) is said to exhibit power-law
scaling if

Sq
N(s) ∝ sξ (q), (1.2)

where the power or scaling exponent, ξ (q), depends solely on the order q. When
the scaling exponent is linearly proportional to q, ξ (q) = Hq, Y (x) is said to form
a self-affine (monofractal) random field (or process) with Hurst exponent H; when
ξ (q) is a nonlinear function of q, Y (x) has traditionally been taken to be multifractal
(Frisch 1995; Turcotte 1997; Rodriguez-Iturbe and Rinaldo 1997; Mandelbrot and
Hudson 2004; Molz et al. 2003).
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The literature considers self-affine and multifractal modes of scaling to be funda-
mentally different, the first arising from additive and the second from multiplicative
random fields or processes. However, there is no known universally valid expression
for ξ (q) in the multifractal context (Monin and Yaglom 1975; Lovejoy and
Schertzer 1995; Qian 2000; Nikora 2005; Veneziano et al. 2006; Fraysse 2007).
Analogy to Richardson’s (1922) concept of multiplicative energy cascades in
turbulence (Frisch 1995) has led Schertzer and Lovejoy (1987) to write ξ (q) =
qH − K(q) and express K(q) explicitly in terms of H, a Lévy index α and a
“codimension” proportional to the variance of the normal distribution when α =
2 and to the width of the zero-mean symmetric Lévy stable distribution when
0 < α < 2. Their multiplicative cascade model, termed universal by the authors,
suggests that H = ξ (1); others approximate H by dξ/dq near q = 0. Nonlinear
variation of ξ (q) with q is also reproduced by a model of fractional Laplace motions
due to Meerschaert et al. (2004; see Kozubowski et al. 2006, and Ganti et al. 2009).

Power-law scaling is typically inferred from measurements by the method of
moments. This consists of calculating sample structure functions (1.1) for a finite
sequence, q1, q2,. . . , qn, of q values and for various separation lags. For each order
qi, the logarithm of Sqi

N is related to log s by linear regression and the power ξ (qi)
set equal to the slope of the regression line. Linear or near-linear variation of log Sqi

N
with log s is typically limited to intermediate ranges of separation scales, sI < s< sII ,
where sI and sII are theoretical or empirical lower and upper limits, respectively
(Stumpf and Porter 2012). Breakdown in power-law scaling is attributed in the
literature to noise at lags smaller than sI and to undersampling at lags larger than
sII (Tessier et al. 1993). Benzi et al. (1993a, 1993b) discovered empirically that
the range sI < s < sII of separation scales over which velocities in fully developed
turbulence (where Kolmogorov’s dissipation scale is assumed to control sI) scale
according to (1.2) can be enlarged significantly, at both small and large lags,
through a procedure they called extended self-similarity (ESS). ESS arises from
the observation that structure functions of different orders, q and p, computed for
the same separation lag are related by

Sq
N(s) ∝ Sp

N(s)
β (q,p), (1.3)

where β (q, p) = ξ (q)/ξ (p) is a ratio of scaling exponents. Benzi et al. (1996)
introduced, and Nikora and Goring (2001) employed, a modified version of the
same. Chakraborty et al. (2010) cite the success of ESS in extending observed
scaling ranges, and thus allowing more accurate empirical determinations of the
functional exponent ξ (q) for turbulent velocities. ESS has been reported to achieve
similar results for diffusion-limited aggregates, natural images, kinetic surface
roughening, fluvial turbulence, sand wave dynamics, Martian topography, river mor-
phometry, gravel-bed mobility and atmospheric barometric pressure, low-energy
cosmic rays, cosmic microwave background radiation, metal-insulator transition,
irregularities in human heartbeat time series, turbulence in edge magnetized plasma
of fusion devices, and turbulent boundary layers of the Earth’s magnetosphere (see
Guadagnini and Neuman 2011 and references therein).
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In almost all cases where sufficient data are available to compute sample structure
functions of several orders in excess of 2, whether by the method of moments or
ESS, ξ (q) has been found to vary in a nonlinear fashion with q. The literature
has interpreted this to imply that the corresponding data represent multifractals
or, in a few cases, fractional Laplace motions. We note, however, that neither of
these mathematical constructs (a) reproduces the ubiquitous breakdown in power-
law scaling at small and large lags observed on the majority of data that exhibit
power-law scaling, regardless of disciplinary origin, or (b) provides a rationale for
the ability of ESS to extend power-law scaling to such lags.

Spatial and/or temporal increments of earth and environmental data often
exhibit sample frequency distributions that are heavy tailed (Kumar and Foufoula-
Georgiou 1993; Painter 1996; Yang et al. 2009). In some cases, these distributions
transition from heavy tailed at small lags (separation distances or scales) to near-
Gaussian at larger lags (Liu and Molz 1997a; Painter 2001; Ganti et al. 2009; Riva
et al. 2013), a phenomenon also observed in fully developed turbulence (Boffetta
et al. 2008). Liu and Molz (1997b) analyzed spatial increments of log hydraulic
conductivities measured with a borehole flowmeter at Columbus Air Force Base,
Mississippi. They considered the increments to have a Lévy- or α-stable distribution
and used the quantile method of Fama and Roll (1971), as well as characteristic
function-based methods (Press 1972), to estimate their Lévy or stability index, α .
Regardless of which estimation method they had used, the authors found α to
increase monotonically with lag toward an asymptotic value close to 2, the Gaussian
distribution being characterized by α = 2. Higher moment analyses of the same data
and of incremental log mini-air permeability data from a vertical Berea sandstone
core due to Goggin et al. 1989), conducted by Lu and Molz (2001), showed power-
law tails with indices α > 2 that did not vary significantly with lag.

Painter (2001) analyzed incremental log electrical resistivity data from an
Alaskan petroleum reservoir and permeability data from the Kuparuk River field
in Alaska Gaynor et al. (2000), the Hawkesbury sandstone in Australia (Liu
et al. 1996), and the Page formation in Utah (Goggin et al. 1992). The Kuparuk
River data include minipermeameter and plug measurements on a single core, the
Hawkesbury sandstone data consist of laboratory measurements on plugs from
several cores, and the Page data are closely spaced minipermeameter measurements
on one intact core. The frequency distributions of all incremental data exhibited
heavy tails at small lags, some of which decayed toward the Gaussian with
increasing lag. Treating the data as if they were subordinated to fractional Brow-
nian motion through a lognormal subordinator, the author was able to reproduce
frequency distributions of increments associated with any lag without, however,
transitioning automatically from one such distribution to another with changing
lag. A model that does transition automatically from heavy tailed to Gaussian
with increasing lag is that based on fractional Laplace motions due to Meerschaert
et al. (2004) and Kozubowski et al. (2006). Their model generates double or
stretched exponential tails which are lighter than Lévy but heavier than Gaussian.
Meerschaert et al. (2004) cite examples of log hydraulic conductivity data from four
sites (including those from the Columbus Air Force Base) and from the fields of
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finance and turbulence to which the fractional Laplace model provides acceptable
fits at intermediate ranges of lags; an application to sediment transport data was
described in Ganti et al. (2009).

Riva et al. (2013) pointed out a well-documented but heretofore little-noticed
and unexplained phenomenon that whereas the frequency distribution of log
permeability data often seems to be Gaussian or nearly so (e.g., Ricciardi et al. 2005;
Paleologos and Sarris (2011), that of corresponding increments tends to exhibit
heavy tails which decay with separation distance or lag. Riva et al. illustrated the
phenomenon on 1 m scale log air permeabilities from pneumatic tests in 6 vertical
and inclined boreholes completed in unsaturated fractured tuff near Superior,
Arizona (Guzman et al. 1996). Whereas fractional Laplace motions reproduce such
behavior for data increments, the corresponding model (Meerschaert et al. 2004;
Kozubowski et al. 2006) says nothing about the distribution of the data themselves.

It is thus clear that no previously known model reproduces in a consistent manner
all of the following statistical and scaling behaviors exhibited by many earth and
environmental data: nonlinear power-law scaling in a midrange of lags, breakdown
in power-law scaling at small and large lags, extension of power-law scaling to all
lags via ESS, apparent lack of compatibility between sample frequencies of data
and their increments, and decay of increment sample frequency tails with increased
separation scale or lag.

In this chapter, we summarize and expand upon recent work by the authors
that reconciles all of these behaviors within a single theoretical framework. The
framework builds on the concept of truncated fractional Brownian motion (tfBm)
introduced by Di Federico and Neuman (1997) and Di Federico et al. (1999) on
the basis of earlier work by Neuman (1990). It rests on the notion of sub-Gaussian
fields (or processes) subordinated to tfBm, with heavy-tailed subordinators such
as lognormal or Lévy, described and explored by Neuman (2010a, 2010b, 2011),
Guadagnini et al. (2012), and Riva et al. (2013). These authors have demonstrated
theoretically and numerically that square or absolute increments of samples from
such fields exhibit all symptoms of multifractal scaling (most notably nonlinear scal-
ing and intermittency) at intermediate ranges of separation scales, with breakdown
in power-law scaling at small and large lags as is commonly exhibited by data. In the
case of Lévy subordinators the behavior is spurious. As tfBm is a truncated version
of additive, self-affine, monofractal fBm, multifractal scaling of samples derived on
its basis must be apparent rather than real; in fact, it is an artifact of sampling. Our
earlier work (Siena et al. 2012) and this chapter demonstrate that ESS is consistent,
at all separation scales, with sub-Gaussian processes subordinated to tfBm. This
makes it possible to identify the functional form and estimate all parameters of such
models based solely on sample structure functions of the first and second orders
(Siena et al. 2012; Riva et al. 2013). The work of Riva et al. resolves the apparent
lack of compatibility between sample frequencies of data and their increments,
showing how samples from certain sub-Gaussian processes subordinated to tfBm
cause increment sample frequency tails to decay with increased lag. We illustrate
some of these findings below.



6 S.P. Neuman et al.

1.2 Sub-Gaussian Random Fields Subordinated
to Truncated Fractional Brownian Motion

The following developments build on a multidimensional scaling theory of
anisotropic and/or lacunary truncated fBm due to Di Federico and Neuman (1997)
and Di Federico et al. (1999). In this section, we present a brief summary of
its extension to sub-Gaussian random fields (or processes) subordinated to tfBm
introduced by Neuman (2010a, 2010b, 2011) and Guadagnini et al. (2012). Though
the extension is valid for anisotropic and/or lacunary sub-Gaussian fields, for
simplicity, we limit its discussion below to one spatial (or temporal) dimension as
did the latter authors.

Let Y (x;λl ,λu) = 〈Y (λl ,λu)〉+ Y ′(x;λl ,λu) be a random field defined on a
continuum of points x in space (or time) with constant ensemble mean (statistical
expectation) 〈Y (λl ,λu)〉 and zero-mean random fluctuation Y ′(x;λl ,λu) about the
mean. The parameters λl and λu are lower and upper cutoff integral (autocorrelation)
scales, respectively, the first proportional to a lower measurement support or
resolution limit on data and the second to an upper domain or window size beyond
which data are not sampled. We represent the random fluctuations in sub-Gaussian
form

Y ′(x;λl ,λu) =W 1/2G′(x;λl ,λu), (1.4)

where W is an α/2−stable random variable, totally skewed to the right of zero with

width parameter σW =
(
cos πα

4

)2/α
, unit skewness, and zero shift (Samorodnitsky

and Taqqu 1994; Adler et al. 2010) independent of the zero-mean Gaussian random
field G′(x;λl ,λu). The latter has variance

σ2(λl ,λu) = σ2(λu)−σ2(λl), (1.5)

autocovariance

σ2(λl ,λu)− γ2
i (s;λl ,λu), (1.6)

truncated power variogram (TPV)

γ2
i (s;λl ,λu) = γ2

i (s;λu)− γ2
i (s;λl), (1.7)

and integral autocorrelation scale

I(λl ,λu) =
2H

1+ 2H

λ 1+2H
u −λ 1+2H

l

λ 2H
u −λ 2H

l

(1.8)

where, for m = l,u,

σ2(λm) = Aλ 2H
m /2H, (1.9)



1 Recent Advances in Statistical and Scaling Analysis of Earth. . . 7

γ2
i (s;λm) = σ2(λm)ρi(s/λm) i = 1 or 2, (1.10)

ρ1 (s/λm) =

[
1− exp

(
− s

λm

)
+
(

s
λm

)2H
Γ
(

1− 2H, s
λm

)]
0 < H < 0.5,

(1.11)

ρ2 (s/λm) =

[
1− exp

(
− π

4
s2

λ 2
m

)
+
(

π
4

s2

λ 2
m

)H
Γ
(

1−H, π
4

s2

λ 2
m

)]
0 < H < 1,

(1.12)

and Γ (·, ·) is the incomplete gamma function. For λu < ∞, spatial (or temporal)
increments ΔY (x,s;λl ,λu) = Y (x;λl ,λu)− Y (x+ s;λl ,λu) = W 1/2ΔG(x,s;λl ,λu)
are stationary zero-mean symmetric Lévy stable characterized by 1 < α ≤ 2 and
scale or width function (Samorodnitsky and Taqqu 1994, p. 89)

σα (s;λl ,λu) =
[
γ2

i (s;λl ,λu)
]α/2

, (1.13)

ΔG(x,s;λl ,λu) = G(x;λl ,λu) − G(x+ s;λl,λu) being stationary Gaussian incre-
ments.

In the limits λl → 0 and λu → ∞, the TPV γ2
i (s;λl ,λu) in (1.10) converges to

a power variogram (PV) γ2
i (s) = Ais2H , where A1 = AΓ (1− 2H)/2H and A2 =

A(π/4)2H/2Γ (1− 2H/2)/2H. Correspondingly, σα(s;λl ,λu) in (1.13) converges
to an α−order PV γ α

i (s) = AisαH , where A1 = AΓ (1−αH)/αH and A2 =

A(π/4)αH/2Γ (1−αH/2)/αH. The resultant nonstationary fluctuation G′(x;0,∞)
thus constitutes fBm, its stationary increments ΔG(x,s;0,∞) forming fGn; the
nonstationary fluctuation Y ′(x;0,∞) constructed from increments ΔY (s;0,∞) =
W 1/2ΔG(x,s;0,∞) constitutes fractional Lévy motion (fLm; fBm when α = 2), the
increments forming sub-Gaussian fractional Lévy noise (fLn or fsn for fractional
stable noise; Samorodnitsky and Taqqu 1994, p. 367; Samorodnitsky 2006).

It is possible to select a subordinator W 1/2 ≥ 0 having a heavy-tailed distribution
other than Lévy; we consider below the lognormal case obtained upon setting
W 1/2 = eV with 〈V 〉= 0 and 〈V 2〉= (2−α)2.

1.3 Extended Power-Law Scaling of Sub-Gaussian Random
Fields Subordinated to tfBm

The extended power-law scaling (ESS) expression (1.3) is obtained from (1.2)
simply upon rewriting the latter as Sq(s) =C(q)sξ (q) and Sp(s) =C(p)sξ (p), solving
the first of these expressions for s and substituting into the second. Whereas (1.2)
implies (1.3), the reverse is generally not true, (1.3) being equivalent instead to

Sq(s) ∝ f (s)ξ (q), (1.14)
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where f (s) is some, possibly nonlinear, function of s (Kozubowski and Molz 2011;
Siena et al. 2012). Consider subordinatorsW 1/2 ≥ 0 that have finite moments 〈W q/2〉
of all orders q, such as the lognormal subordinator mentioned earlier. Then, in
analogy to Siena et al. (2012), one can show that central qth-order moments of
absolute increments ΔY (x,s;λl ,λu) are given by

Sq = 〈|ΔY (s; λl ,λu)|q〉=
〈

W q/2
〉[√

2γ2
i (s; λl ,λu)

]q

(q−1)!!

{√
2
π i f q is odd

1 i f q is even
q = 1,2,3 . . . (1.15)

where !! indicates double factorial defined as q!! = q(q− 2)(q− 4). . . 2 if q is even
and q!! = q(q− 2)(q− 4). . . 3 if q is odd. It follows that the ratio between structure
functions of order q+ 1 and q is

Sq+1

Sq = g(q)

⎧
⎨

⎩

√
π q!!

(q−1)!!

√
γ2

i (s; λl ,λu) i f q is odd

2√
π

q!!
(q−1)!!

√
γ2

i (s; λl ,λu) i f q is even
q = 1,2,3 . . .

(1.16)
where g(q) depends on the choice of subordinator but not on s. In the
lognormal case 〈W q/2〉 = exp[q2(2−α)2/2] and g(q) = 〈W (q+1)/2〉/〈W q/2〉 =
exp[(1+ 2q)(2−α)2/2]. Using (1.15) to express γ2

i (s; λl ,λu) as a function of Sq

and substituting into (1.16) yields, after some manipulation,

Sq+1 = g(q)

⎧
⎪⎨

⎪⎩

√π
2

[√π
2

1
(q−1)!!

] 1
q q!!
(q−1)!! [S

q]1+
1
q i f q is odd

√
2
π

[
1

(q−1)!!

] 1
q q!!
(q−1)!! [S

q]1+
1
q i f q is even

q = 1,2,3 . . .

(1.17)

This makes clear that Sq+1 is linear in Sq on log–log scale, in accord with the ESS
expression (1.3), regardless of the choice of subordinator or the functional form of
the TPV γ2

i (s; λl ,λu). The slope of this line decreases asymptotically from 2 at q= 1
to 1 as q → ∞. Equation (1.17) and its asymptotic behavior follow from the fact that

(1.15) is equivalent to the ESS expression (1.14) in which f (s) =
[√

2γ2(s; λl ,λu)
]
.

It shows that extended power-law scaling, or ESS, at all lags is an intrinsic property
of sub-Gaussian processes subordinated to tfBm with subordinators, such as the
lognormal, which have finite moments of all orders.

We noted earlier that, in the limits λl → 0 and λu → ∞, the TPV γ2
i (s;λl ,λu)

converges to a PV γ2
i (s) = Ais2H and so (1.15) reduces to a power law

Sq =
〈

W q/2
〉
(q− 1)!!

[√
2Ai

]q
sqH

{√
2
π i f q is odd

1 i f q is even
q = 1,2,3 . . .

(1.18)
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In this case, a log–log plot of Sq versus s is linear, with constant slope qH, at all lags.
Consider now subordinators W 1/2 ≥ 0 that have divergent moments

〈
W q/2

〉

of all orders q ≥ 2α , as does the previously discussed Lévy subordinator with
stability index α . Let Δy(xmn,s;λl ,λu) = y(xmn + s;λl ,λu) − y(xmn;λl ,λu), n =
1,2 . . .Nm(s)< ∞, be one among m = 1,2 . . .M < ∞ independent sets of increments
of sampled Y (xmn;λl ,λu) values, y(xmn;λl ,λu). Examples may include a temporal
sequence of M independent storm events or a spatial sequence of M permeability
profiles measured in different boreholes or along different transects, as in the
Topopah Spring tuff sample discussed in this chapter. Each sample y is subordinated
to a tfBm sample g. Whereas samples g corresponding to different m values may
be mutually correlated, subordination destroys such correlation among associated
non-Gaussian y samples, rendering them virtually independent of each other. Here,
instead of (1.1), one can compute a sample structure function according to

Sq
|ΔY |,N,M(s;λl ,λu) =

1
M

M

∑
m=1

1
Nm(s)

Nm(s)

∑
n=1

|Δy(xmn,s;λl ,λu)|q q = 1,2,3 . . .

(1.19)

Writing Δy(xmn,s;λl ,λu) = w1/2
m Δg(xmn,s;λl ,λu) where wm and Δg(xmn,s;λl ,λu)

represent samples of W and ΔG(s; λl ,λu), respectively, allows rewriting (1.19) as

Sq
|ΔY |,N,M(s;λl ,λu) =

1
M

M

∑
m=1

wq/2
m

Nm(s)

Nm(s)

∑
n=1

|Δg(xmn,s;λl ,λu)|q q = 1,2,3 . . .

(1.20)

Since order q ≥ 2α moments of w1/2
m diverge while all moments of Δg(xmn,s;λl ,λu)

converge, one can approximate (1.20) for sufficiently large sample sizes Nm(s) by

Sq
|ΔY |,N,M(s;λl ,λu) ≈

(
1
M

M

∑
m=1

wq/2
m

)

〈|ΔG(s; λl ,λu)|q〉

=

(
1
M

M

∑
m=1

wq/2
m

)[√
2γ2

i (s; λl ,λu)

]q

(q−1)!!

{√
2
π i f q is odd

1 i f q is even

q = 1,2,3 . . . (1.21)

which, for finite M, is always finite. From (1.21), it follows that the ratio between
sample structure functions of order q + 1 and q is

Sq+1
|ΔY |,N,M(s;λl ,λu)

Sq
|ΔY |,N,M(s;λl ,λu)

≈

M
∑

m=1
w(q+1)/2

m

M
∑

m=1
wq/2

m

⎧
⎨

⎩

√
π q!!

(q−1)!!

√
γ2

i (s; λl ,λu) i f q is odd

2√
π

q!!
(q−1)!!

√
γ2

i (s; λl ,λu) i f q is even
q = 1,2,3 . . .

(1.22)
or, in analogy to (1.17),
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Fig. 1.1 Comparison of Sq computed at q =1, 2, 3 by means of (1.15) (solid) using TPV
γ2

2 (s; λl ,λu) having parameters A = 1, H = 0.3, λl = 1, and (a) λu = 103, (b) λu = 104 with (1.18)
(dashed) using a corresponding PV for lognormal subordinator W 1/2 with α = 1.5. All quantities
are in consistent units

Sq+1
|ΔY |,N,M(s;λl ,λu)

≈

M
∑

m=1
w(q+1)/2

m

M
∑

m=1
wq/2

m

⎧
⎪⎨

⎪⎩

√ π
2

[√ π
2

1
(q−1)!!

] 1
q q!!
(q−1)!!

[
Sq
|ΔY |,N,M(s;λl ,λu)

]1+ 1
q

i f q is odd
√

2
π

[
1

(q−1)!!

] 1
q q!!
(q−1)!!

[
Sq
|ΔY |,N,M(s;λl ,λu)

]1+ 1
q

i f q is even

q = 1,2,3 . . . (1.23)

The analogy makes clear that extended power-law scaling, or ESS, at all lags is
an approximate property of samples from sub-Gaussian processes subordinated to
tfBm with subordinators, such as Lévy, which have divergent moments of orders
q ≥ 2α . In the limits λl → 0 and λu → ∞, (1.23) becomes a power law

Sq ≈
(

1
M

M

∑
m=1

wq/2
m

)

(q− 1)!!
[√

2Ai

]q
sqH

{ √
2
π i f q is odd

1 i f q is even
q = 1,2,3 . . .

(1.24)

Like (1.18), this renders a log–log plot of Sq versus s linear, with constant slope qH,
at all lags.

Figure 1.1 compares Sq of three different orders computed by means of (1.15)
using TPV γ2

2 (s; λl ,λu) having parameters A= 1, H = 0.3, λl = 1, and λu = 103,104

(all quantities are in consistent units) with (1.18) using a corresponding PV (the
limit of the former as λl → 0 and λu → ∞). The comparison is based on a lognormal
subordinator W 1/2 with α = 1.5. In each case, the slopes of TPV- and PV-based
curves coincide in a midrange of lags (labeled Zone II in Fig. 1.1) but not in the
outer ranges of small and large lags (labeled Zones I and III, respectively). This
breakdown in power-law scaling at small and large lags is due entirely to lower and
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Fig. 1.2 Comparison of Sq computed at q = 1, 2, 3 by means of (1.21) (solid) using TPV
γ2

2 (s; λl ,λu) having parameters A = 1, H = 0.3, λl = 1, and λu = 103 with (1.24) (dashed) using a
corresponding PV based on M = 50,000 samples, wm, from α/2-stable subordinators W with (a)
α = 1.2 and (b) 1.8. All quantities are in consistent units

upper cutoffs λl and λu, respectively, unrelated to noise or oversampling which play
no role in our computation of the curves in Fig. 1.1. Yet according to (1.17), log
Sq+1 is linear in log Sq for all q, in accord with ESS expression (1.3).

Figure 1.2 compares Sq of three different orders computed by means of (1.21)
using TPV γ2

2 (s; λl ,λu) having parameters A = 1, H = 0.3, λl = 1, and λu = 103

with (1.24) using a corresponding PV. The comparison is based on M = 50,000
samples, wm, from α/2-stable subordinators W with α = 1.2 and 1.8. Here again,
the slopes of TPV- and PV-based curves coincide in the central Zone II but not in
the outer Zones I and III. Like before, the phenomenon is due entirely to cutoffs,
noise and oversampling playing no role in our computation of the curves in Fig. 1.2.
Yet according to (1.23), log Sq+1 is linear in log Sq for all q, in accord with ESS
expression (1.3).

Curves based on TPV and PV at intermediate scales (Zones II) in Figs. 1.1 and
1.2 are consistent with both power-law scaling (1.2) and ESS expression (1.14).
Hence, the definition of β (q, p) in ESS expression (1.3), derived from (1.2), applies
and allows one to compute the power-law scaling exponents ξ (q) for all q uniquely
and unambiguously if ξ (p) is known for any p. Siena et al. (2012) applied this
approach to measured log air permeability data from a block of Topopah Spring
tuff. Tidwell and Wilson (1999) measured air permeabilities, k, on six faces of the
block by means of a multisupport permeameter (MSP) at intervals of Δ =0.85 cm on
a grid of 36×36 points along each face using four tip-seal sizes. Siena et al. (2012)
computed directional increments, ΔY , of Y = ln k at various lags (taken to be integer
multiples of grid spacing, Δ, for each tip size) parallel to the x, y, and z coordinates
on five faces of the cube. Figure 1.3 depicts log Sq

N(sx) computed according to (1.1)
as function of log sx (lag in the x direction) for 0.1 ≤ q ≤ 2.5 and tip size 1.27 cm.
The range of lags within which these relationships are linear, identified in Fig. 1.3
by dashed vertical lines, is seen to be quite narrow. Setting ξ (1.1) equal to the
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slope of this relationship at q = 1 and using it to compute ξ (q) for other orders
in the above manner shows ξ (q) to be a nonlinear concave function of q (Fig. 1.4).
Though such behavior would typically be interpreted to imply that increments of
ln k are multifractal, Siena et al. note that the data are in several other respects
consistent with tfBm, suggesting that multifractality in this case is apparent rather
than real. Replotting the data in Fig. 1.3 as log Sq

N versus log Sq−1
N for 2.0 ≤ q ≤ 5.0

(at intervals of 0.5) reveals much less ambiguous power-law scaling over a much
wider range of lags in Fig. 1.5. The slopes of the lines, representing β (q,q− 1) in
ESS expression (1.3), decrease asymptotically with q toward unity in accord with
the above theory.

Siena et al. (2012) concluded from their analysis of the Topopah Spring tuff
data that ESS is generally a more reliable method of inference than the method of
moments. For this reason, we shall use ESS in all examples given in the rest of this
chapter.
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N versus Sq−1

N for 2.0 ≤ q ≤ 5.0 and tip size 1.27 cm along x axis on five block faces.
Linear regression equations and relative regression coefficients (R2) are included

1.4 Generation of Sub-Gaussian Random Fields
Subordinated to tfBm

To generate a sample y′(xmn;λl ,λu) of Y ′(xmn;λl ,λu) for any m, one may:

(a) Generate a random sample g′(xmn;λl ,λu), n = 0,1,2, . . .Nm(smin), where smin is
the smallest lag of interest, representing a discrete realization of G′(x;λl ,λu);
we do so using SGSIM, a sequential Gaussian simulation code due to Deutsch
and Journel (1998), modified to accommodate TPVs (1.7); all our subsequent
examples utilize a TPV with exponential modes and parameters A = 1.0, H =
0.25, λl = 10−4, and λu = 1. Samples associated with diverse m values may, but
need not, be mutually correlated.

(b) Draw a random number wm from the distribution of W and multiply its square
root by g′(xmn;λl ,λu), n = 0,1,2, . . .Nm(smin), to generate a random sample

y′(xmn;λl ,λu) = w1/2
m g′(xmn;λl ,λu). This destroys correlations between such

non-Gaussian samples, rendering them virtually independent of each other.
(c) Compute a sequence of increments Δy(xmn,s;λl ,λu) = y′(xmn;λl ,λu) −

y′(xmn + s;λl ,λu) for any lag s = ksmin, k = 1,2, . . .N(smin).

We generate a collection of M such samples mutually independent. In the case
of tfBm, a single sample, M = 1, may suffice; otherwise, M must be large
enough to provide a statistically meaningful sample, wm, m = 1,2, . . .M, of random
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Fig. 1.6 Sequences of (a) y′(xmn;λl ,λu) generated with lognormal subordinator, α = 1.5, N =
10,000, M = 100, and corresponding Δy(xmn, s;λl ,λu) for lags (b) s = 10 smin, (c) s = 100 smin,
and (d) s = 1,000 smin where smin = 10−4

subordinator W values. Figures 1.6 and 1.7 depict sequences of lognormal and Lévy
y′(xmn;λl ,λu), respectively, generated with α = 1.5, N = 10,000, M = 100, and
corresponding Δy(xmn,s;λl ,λu) for lags s = 10 smin,100 smin, and 1,000 smin where
smin = 10−4.

Figure 1.8 depicts frequency distributions of the increments in Fig. 1.6 generated
with a lognormal subordinator. The distributions are seen to broaden and flatten
with increasing lag. This is similar to behavior exhibited by a model subordinated
to fBm (as compared to our tfBm), with a lognormal subordinator, considered by
Painter (2001, Fig. 1.5). The latter author shows that the behavior is caused by an
increase in the semivariance of the increments with lag.

Figure 1.9 compares frequency distributions of y′(xmn;λl ,λu) generated with
Lévy subordinator, α = 1.5, N = 10,000, M = 100, and 1,000. Also shown are
maximum likelihood (ML) fits of Lévy distributions to these increments, estimates
of corresponding parameters, and the generating probability density function (pdf).
Increasing the number, M, of samples in the realization from 100 to 1,000 is seen
to reduce skewness (reflected in a decrease in the estimated skewness parameter, β ,
from 0.197 to 0.047, the generating value of which was 0), lighten the tails of the
distribution (reflected in an increase in the estimated Lévy index, α , from 1.363 to
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Fig. 1.7 Sequences of (a) Lévy y′(xmn;λl ,λu) generated with α = 1.5, N = 10,000, M = 100, and
corresponding Δy(xmn, s;λl,λu) for lags (b) s = 10 smin, (c) s = 100 smin, and (d) s = 1,000 smin
where smin = 10−4

1.412, the generating value of which was 1.5), and cause it to broaden and flatten
(reflected in an increase in the estimate C of the scale parameter from 0.93 to 0.99,
the generating value of which was 1.0). It is evident that parameter estimates are
sensitive to the number of samples contributing to a realization. The estimated pdf
exaggerates the tails (underestimates α) which is clearly seen to be undersampled.

Figure 1.10 depicts frequency distributions, ML estimates, and the generating pdf
of sequences of Δy(xmn,s;λl ,λu) corresponding to a Lévy subordinator, α = 1.5,
N = 10,000, and M = 100 for lags s = 10 smin, s = 100 smin, and s = 1,000 smin

where smin = 10−4. ML estimates of the Lévy index α vary from 1.37 for lag s =
10 smin through 1.36 for s = 100 smin to 1.39 for s = 1,000 smin, the generating value
being 1.5. The estimated pdf again exaggerates the tails (underestimates α) due to
conspicuous undersampling. The same happens when M is increased from 100 to
1,000, yielding corresponding α estimates 1.403, 1.388, and 1.389. The estimates
are clearly sensitive to sample size.

Figure 1.11 provides a close-up look on log–log scale at the tails of frequency
distributions, their ML estimates based on the entire distribution, and generating
models of sequences of Δy(xmn,s;λl ,λu) corresponding to a Lévy subordinator,
α = 1.5, N = 10,000, and M = 1,000 for lags s = 10 smin,s = 100 smin, and
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Fig. 1.9 Frequency distributions (dots), ML estimates (solid), and generating model (dashed) of
sequences of y′(xmn;λl,λu) generated with Lévy subordinator, α = 1.5, N = 10,000, M = 100
(left), and 1,000 (right). α = ML estimate of Lévy index, β = ML estimate of skewness parameter,
and C = ML estimate of scale parameter

s = 1,000 smin. The fitted portions of the tails are power laws characterized by Lévy
index estimates α that are lower than the generating value, 1.5. Indeed, power laws
corresponding to the generating distributions are steeper than their ML counterparts.
The extreme tails of the sample distributions die off at relatively rapid rates that are
a clear indication of undersampling.
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Fig. 1.10 Frequency distributions (dots), ML estimates (solid), and generating model (dashed)
of sequences of Δy(xmn, s;λl ,λu) corresponding to Lévy subordinator, α = 1.5, N = 10,000,
and M = 100 for lags s = 10smin, 100 smin, and 1,000 smin where smin = 10−4. α = ML estimate
of Lévy index and C = ML estimate of scale parameter

Figure 1.12 compares ML estimate C of the scale parameter as function of lag
(at s = 1 smin, 10 smin, 100 smin, 1,000 smin, 5,000 smin, and 9,000 smin) with
theory (1.13) for sequences of Δy(xmn,s;λl ,λu) corresponding to Lévy subordinator,
α = 1.5, N = 10,000, and M = 100. The estimates correspond closely to theory.
Their increase with lag causes the distributions of increments to broaden and flatten
with increasing lag in a way reminiscent of that seen earlier in Fig. 1.8. In the case
of relatively small data sets, this would cause the tails of the distribution to be
increasingly undersampled in comparison to the center of the distribution as lag
increases, giving the appearance of approach to Gaussianity with increasing lag as
is often observed in practice.
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1.5 Apparent Multifractality of Sub-Gaussian Random
Fields Subordinated to tfBm

In the Gaussian case M = 1 and W = 1 so that (1.20) simplifies to

Sq
|ΔG|,N(s;λl ,λu) =

1
N(s)

N(s)

∑
n=1

|Δg(xn,s;λl ,λu)|q. (1.25)

The autocorrelation between ΔG(xn,s;λl ,λu) and ΔG(x0,s;λl ,λu) is (Neuman
2010b; Guadagnini et al. 2012)

ρΔG(ns;λl ,λu) =
γ2

i [(n+1)s;λl ,λu]−2γ2
i (ns;λl ,λu)+ γ2

i [(n−1)s;λl ,λu]

2γ2
i (s;λl ,λu)

n > 0.

(1.26)

In the limits λl → 0 and λu → ∞, this converges to the classical autocorrelation
ρΔG(ns) = (|n+ 1|2H − 2|n|2H + |n− 1|2H)/2 of fGn. A necessary condition for
ΔG(x,s;λl ,λu) to be mean ergodic within the finite range s ≤ Lu, i.e., for its sample
mean to approximate 〈ΔG(s;λl ,λu)〉, is that its integral scale be much smaller
than the size, Lu, of the sampling domain. Ergodicity of order q, i.e., the ability
to approximate 〈ΔG(s;λl ,λu)

q〉 by the sample mean of ΔG(x,s;λl ,λu)
q, requires

that the integral scale of the latter satisfy this same condition (e.g., Papoulis 1984,
pp. 250–251). The higher is q the more do sample statistics depart from their
ensemble counterparts. Correspondingly, Sq

|ΔG|,N(s;λl ,λu) in (1.25) approximates

〈|ΔG(s;λl ,λu)|q〉 to a lesser and lesser degree as q increases. By the same token,
Sq
|ΔY |,N(s;λl ,λu) in (1.1) approximates 〈|ΔY (s;λl ,λu)|q〉 to a lesser and lesser degree

as q goes up.
Sq
|ΔG|,N(s;λl ,λu) being finite and proportional to the sum of autocorrelated quanti-

ties raised to powers dependent on q, setting Sq
|ΔG|,N(s;λl ,λu) ∝ (s/λu)

ξ (q) generally

renders ξ (q) nonlinear in q as is the case with multifractals (Neuman 2010a).
By the same token, Sq

|ΔY |,N(s;λl ,λu) being finite for any given set of data, setting

Sq
|ΔY |,N(s;λl ,λu) ∝ (s/λu)

ξ (q) renders ξ (q) nonlinear in q. The same is true of

Sq
|ΔY |,N,M(s;λl ,λu) in (1.20); setting Sq

|ΔY |,N,M(s;λl ,λu) ∝ (s/λu)
ξ (q) renders ξ (q)

nonlinear in q. One should therefore expect the relationship between ξ (q) and q

to deviate from linearity more and more as N decreases; since wq/2
m in (1.20) are

statistically independent and identically distributed, one should not expect the same
to be true of M. Indeed, Figs. 1.13 and 1.14 illustrate how ξ (q) may vary with q
when ESS is applied to Lévy sequences y′(xmn;λl ,λu) generated with α = 1.5,
N = 100, 1,000, and 10,000 and M = 10 and 100, respectively. One observes in
these figures a tendency of ξ (q) to be nonlinear (concave or convex) in q when N is
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generated with α = 1.5, M = 10, and N = 100, 1,000, and 10,000. Broken line has slope identical
to that of ξ (q) near q = 0

0

0.5

1

1.5

2

0 1 2 3 4 5 6

x (q)

N=100
M=100

ESS x =0.36 q

q

0

0.5

1

1.5

2

0 1 2 3 4 5 6

x (q)

N=1000
M=100

ESS
x =0.28 q

q

0

0.5

1

1.5

2

0 1 2 3 4 5 6

x (q)

N=10000
M=100

ESS

x=0.27 q

q

Fig. 1.14 Variation of ξ (q) with q obtained upon applying ESS to a Lévy sequence y′(xmn;λl ,λu)
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relatively small, regardless of M, and to approach linearity as N increases. Variations
in M do not appear to influence this tendency in any consistent way.

1.6 Conclusions

Recent work by the authors and new analyses in this chapter demonstrate that:

1. Many earth and environmental (including hydrologic) data scale in ways
that are consistent with samples from truncated (monofractal, self-affine)
fractional Brownian motion (tfBm) or from sub-Gaussian random fields or
processes subordinated to tfBm. Whereas tfBm and its increments are Gaussian,
the distributions of sub-Gaussian processes subordinated to tfBm, and their
increments, may be heavy tailed (e.g., lognormal or Lévy).

2. Square or absolute increments of such samples exhibit apparent multifractality
at intermediate ranges of separation lags, with breakdown in power-law scaling
at small and large lags. In the case of Lévy processes, the corresponding scaling
behavior is spurious.

3. In many cases, the range of lags exhibiting power-law scaling can be enlarged
significantly, at both ends of the spectrum, via a procedure known as extended
self-similarity (ESS). No theoretical basis for ESS has previously been pro-
posed except in the special case of Burger’s equation which has limited earth
and environmental applications. Our work is the first to demonstrate that ESS
is consistent, at all separation scales, with sub-Gaussian processes subordinated
to tfBm.

4. ESS provides a more reliable way to infer linear or nonlinear power-law scaling
from data than does the more common method of moments.

5. The consistency between ESS and sub-Gaussian processes subordinated to
tfBm allows inferring the functional form, and estimating all corresponding
parameters, of such processes solely from sample structure functions of the
first and second orders.

6. In this chapter, we have introduced a way to generate realizations of sub-
Gaussian processes subordinated to tfBm, and their increments, as collections
of mutually independent tfBm samples each of which is ascribed a random
variance. A collection may represent a temporal sequence of independent storm
events or spatial data collected along various boreholes or transects spanning a
multi-dimensional domain, as in our Topopah Spring tuff example. If the data
are Gaussian (as in the Topopah case), they may be correlated among storms,
boreholes or transects. If they are non-Gaussian, subordination to tfBm destroys
such correlations and renders data associated with different storms, boreholes
or transects virtually independent of each other. Our generation scheme is
rigorously consistent with theory.

7. The smaller is the size of each sample generated in this manner, the more pro-
nounced is the nonlinear scaling behavior of the entire realization (i.e., the more
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it resembles a multifractal even though it is not). The number of samples mak-
ing up the realization does not influence scaling behavior in any consistent way.

8. Heavy tails of increment frequency distributions exhibited by some published
data tend to decay as lag increases, giving the appearance of approach to
Gaussianity. Our results suggest that this may be due to a theoretical broadening
and flattening of these distributions with increasing lag, which may cause the
tails of the distribution to be increasingly undersampled in comparison to the
center of the distribution with growing lag.

9. Riva et al. (2013) have shown that similar behavior is also consistent with
synthetic data generated through selective sampling from a collection of the
above type. Either approach may explain the well-documented but heretofore
little-noticed and unexplained phenomenon that whereas the frequency
distribution of log permeability data often seems to be Gaussian (or nearly so),
that of corresponding increments tends to exhibit heavy tails that sometimes
decay with increasing lag.

10. The above suggests that probability distributions of earth and environmental
variables should be inferred jointly and consistently from measured values of
these variables, and their increments, in a manner consistent with theory.

11. Nonlinear power-law scaling inferred from data must not be interpreted to
imply multifractality unless one has compelling reasons to do so. We are not
aware of any published example, regardless of discipline, in which this has
been the case.
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Chapter 2
An Advanced Constitutive Law in Multiphase
Flow Model for Simulations in Compressible
Media

C.H. Tsai and G.T. Yeh

Abstract The purpose of this investigation is to implement a new constitutive law
of saturation–capillary pressure into a fractional flow-based multiphase flow model
to simulate compressible subsurface flow problems. Using the new constitutive law
to describe the saturation–capillary pressure relations alleviates an undue constraint
on pressure distributions inherent in a widely used law. This makes the present
model able to include all possible solutions of pressure distributions in subsurface
flow modeling. Finite element methods (FEM) are used to discretize the three
governing equations for three primary variables—saturation of water, saturation of
total liquid, and total pressure. Four examples with different pressure distributions
are presented to show the feasibility and advantage of using the new constitutive law.
The results verify the feasibility and capability of the present model for subsurface
flow systems to cover all possible pressure distributions.

2.1 Introduction

In general, it is challenging to simultaneously measure degrees of saturation
and capillary pressures in subsurface flow systems. Therefore, a complete and
possible analytic model of constitutive law is essential for the multiple-phase flow
simulation. A widely used saturation–capillary pressure relationship for three-phase
flow was proposed by Parker et al. (1987a). Since the closed-form expression of the
saturation–capillary pressure relationship is quite simple, the model has been widely
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used in systems of two- and three-phase flows (e.g., Parker and Lenhard 1987b;
Kaluarachchi and Parker 1989; Celia and Binning 1992; White and Oostrom 1996;
Guarnaccia and Pinder 1997; Binning and Celia 1999; Suk and Yeh 2007; Suk and
Yeh 2008; Khoei and Mohammadnejad 2011).

An undue constraint in Parker et al.’s model, the product of the scaling factor
and capillary pressure between nonaqueous phase liquid (NAPL) and air must
be less than or equal to that between water and NAPL (Tsai and Yeh 2012).
This constraint has not been supported theoretically or experimentally. To our
knowledge, this constraint has not been discussed in the literature. Moreover,
due to the widespread use of Parker et al.’s model, many available multiphase
flow simulations may be incomplete. For problems with pressure distributions
that do not satisfy the constraint, negative saturations might be obtained and
thus leads the simulations stymied using fractional flow-based approaches (e.g.,
Binning and Celia 1999; Guarnaccia and Pinder 1997; Suk and Yeh 2007; Suk
and Yeh 2008). Possible solutions will be excluded without physical justifications
using the variable-switch technique (White and Oostrom 1996) in pressure-based
approaches (e.g., Kaluarachchi and Parker 1989; Celia and Binning 1992), i.e.,
the variable-switch algorithm implemented in those models would exclude some
prescribed conditions due to the use of Parker’s constitutive law. For example,
simulations with those models will exclude initial and boundary conditions that
might otherwise be possible.

A new constitutive relation between the degree of saturation and capillary
pressure was proposed to overcome the undue constraint (Tsai and Yeh 2012).
The main objective of this chapter is to implement the new constitutive law in a
compressible multiple-phase flow model using fractional flow-based approaches.
The implementation yields solutions even when the initial and boundary pressure
distribution does not satisfy the constraint. Had it been implemented in a pressure-
based approach numerical model, it will not have to exclude some possible
solutions.

In multiphase flow simulations, the fractional flow-based approach is widely
used due to two advantages. First, the primary variables in the fractional flow-
based approach are degrees of saturation and total pressure. Therefore, the change
of phase configuration, phase appearance, and phase disappearance are automated.
For example, the number of simulated phases in a three-phase flow problem can
degenerate from three to two or one and conversely extend from one to two or three
(Suk and Yeh 2008). Second, for incompressible three-phase flow problems, one
solves an elliptic-type equation for total pressure and two hyperbolically dominant
types of transport equations for degrees of saturation with the fractional flow-based
approach, instead of solving three strongly coupled nonlinear mixed hyperbolic and
parabolic-type equations with the pressure-based approach. Although this requires
an extra task of iterating boundary conditions, only two or three iterations will
suffice (Suk and Yeh 2008). From the viewpoint of numerical computation, the
fractional flow-based approach is quite efficient (Suk and Yeh 2008).

In this investigation, the fractional flow-based approach is employed to simu-
late compressible multiphase flow problems. The primary variables of the three
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governing equations are the saturation of water, the saturation of total liquid, and
the total pressure. Because the compressibility of each flow phase is considered, we
simulate one parabolic-dominant equation for total pressure and two hyperbolic-
dominant equations for degrees of saturation. Three governing equations and
compressibility are presented in Sect. 2.2. In Sect. 2.3, both Parker et al.’s and
Tsai and Yeh’s constitutive models are presented and discussions are made on
why the former results in the undue constraint while the latter does not. The
numerical discretizations with FEM for three governing equations are given in
Appendix A. The standard Galerkin FEM is used to discretize the governing
equation for total pressure, and either the standard Galerkin FEM or the upstream
FEM are used to discretize two equations for saturations of water and total liquid.
The resulting matrix is solved with the Bi-CGSTAB (vant der Vorst 1992). In
Sect. 2.4, four numerical examples are used to verify the feasibility and capability of
the present numerical model to include all possible conditions that are prescribed.
The conclusions are made in Sect. 2.5.

2.2 Problem Formulations

The present multiphase flow model is assumed to consist of a compressible media
and three compressible fluid phases consisting of water, NAPL, and air The porosity
is assumed constant in the simulation. Each phase is assumed to have an average
property, since each phase contains one component in this investigation. These
assumptions do not alter the key points to be addressed in this chapter. However, a
model without these assumptions is under development to make it more applicable
to real-world problems.

2.2.1 Governing Equations

The mass conservation equation for each phase in porous media is given as follows
(Yeh et al. 2010):

∂ (φρiSi)

∂ t
+∇ · (Mi)+∇ · (ρiφSiVs) = Qi, i = 1,2,3.

∂ρs (1−φ)
∂ t

+∇ · [ρs (1−φ)Vs] = 0, (2.1)

in which

Mi = ρiVi =−ρikrik
μi

· (∇Pi +ρig∇z) , i = 1,2,3, (2.2)
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where i is the subscript index relating to Phase 1 for water, Phase 2 for NAPL and
Phase 3 for air; φ is the effective porosity; t is the time, [T]; ρi is the density for

phase i,
[
M/L3

]
; ρs is the density for solid phase,

[
M/L3

]
; Qi is the source or

sink for phase i,
[
M/

(
L3T

)]
; Si is the degree of saturation for phase i;Mi is the

Darcy’s mass flux,
[
M/

(
L2T

)]
; vi is the Darcy’s velocity for phase i, [L/T]; vs is

the velocity for solid phase, [L/T]; k is the intrinsic permeability tensor,
[
L2
]
; kri

is the relative permeability for phase i; μi is the dynamic viscosity for phase i,

[M/L/T]; Pi is the pressure for phase i
[
M/L/T2

]
; g is the gravitational constant

[
L/T2

]
; and z is the elevation, [L].

With some manipulations, Eq (2.1) becomes

φ
∂ (ρiSi)

∂ t
+ρiSi (∇ ·Vs)+∇ · (Mi) = Qi, i = 1,2,3. (2.3)

With small and vertical displacement (Yeh et al. 2010), Eq (2.3) becomes

φ
∂ (ρiSi)

∂ t
+ρiSi

(

αp

3

∑
j=1

∂ (S jPj)

∂ t

)

+∇ · (Mi) = Qi, i = 1,2,3, (2.4)

where αp is the compressibility parameter of the medium,
[(

T2L
)
/M
]

Substituting Eq (2.2) into Eq (2.4) and summing the resulting equations over
three phases one obtains the following equation for the total pressure:

Cpt
∂Pt

∂ t
+Cs1

∂S1

∂ t
+Cst

∂St

∂ t
−∇ ·κκκ · (∇Pt +ρg∇z) = Qt

− [(ρ1 −ρ2)S1 +(ρ2 −ρ3)St +ρ3] [αp ((P1 −P2)S1 +(P2 −P3)St +P3)] , (2.5)

in which

κκκ = k(ρ1kr1/μ1 +ρ2kr2/μ2 +ρ3kr3/μ3) , (2.6)

ρ̄ = κ1ρ1 +κ2ρ2 +κ3ρ3, (2.7)

κi = ρikri/μi
/ 3

∑
j=1

ρ jkrj/μ j, for i = 1,2 and 3, (2.8)

Pt =
P1+P2+P3

3

+
1
3

⎛

⎝
PC12∫

0

(κ1−κ2)dη+
PC13∫

0

(κ1−κ3)dη+
PC23∫

0

(κ2 −κ3)dη

⎞

⎠ , (2.9)
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Cpt = φS1
∂ρ1

∂P1
+φS2

∂ρ2

∂P2
+φS3

∂ρ3

∂P3
+(ρ1S1 +ρ2S2 +ρ3S3)αp, (2.10)

Cs1 = φS1
∂ρ1

∂P1
(1−κ1)

dPC12

dS1
−φS2

∂ρ2

∂P2
κ1

dPC12

dS1

−φS3
∂ρ3

∂P3
κ1

dPC12

dS1
+φ (ρ1 −ρ2)

+(ρ1S1 +ρ2S2 +ρ3S3)αp

[
PC12 +(S1 −κ1)

dPC12

dS1

]
, (2.11)

Cst = ϕS1
∂ρ1

∂P1
κ3

dPC23

dSt
+φS2

∂ρ2

∂P2
κ3

dPC23

dSt

−φS3
∂ρ3

∂P3
(1−κ3)

dPC23

dSt
+φ (ρ2 −ρ3)

+(ρ1S1 +ρ2S2 +ρ3S3)αp

[
PC23 +(St − 1+κ3)

dPC23

dSt

]
(2.12)

Qt = Q1 +Q2 +Q3 (2.13)

St = S1 + S2 = 1− S3 (2.14)

where κκκ is the total mobility, [T]; ρ is the mobility weighted average fluid density,[
M/L3

]
; κ1, κ2, and κ3 are, respectively, the fractional mobility for water, NAPL

and air; Pt is the total pressure,
[
M/T2/L

]
; S1, S2, S3, and St are, respectively

the saturation of water, NAPL, air, and total liquid; PC12 ≡ P1 −P2 is the capillary
pressure of waterNAPL; PC13 ≡P1−P3 =−PC31 is the capillary pressure of waterair;
and PC23 ≡ P2 −P3 is the capillary pressure of NAPLair Substituting Eq (2.2) with
Phases 1 and 3 into Eq (2.4) and with some manipulations, the transport equations
for the saturation of water S1 and the saturation of total liquid St , respectively, are
given as

(
φS1

∂ρ1

∂P1
−κ1Cpt +ρ1S1αp

)
∂Pt

∂ t
+

⎛

⎝
φS1

∂ρ1
∂P1

(1−κ1)
dPC12
dS1

+ρ1φ −κ1Cs1

+ρ1S1αp

[
PC12 +(S1 −κ1)

dPC12
dS1

]
∂S1
∂ t

⎞

⎠

+

(
φS1

∂ρ1

∂P1
κ3

dPC23

dSt
−κ1Cst +ρ1S1αp

[
PC23 +(St − 1+κ3)

dPC23

dSt

])
∂St

∂ t

+Mt · dκ1

dS1
∇S1 +Mt · dκ1

dSt
∇St

=−κ1Qt +∇ ·κ1κκκ ·
(
(1−κ1)

dPC12

dS1
∇S1 +κ3

dPC23

dSt
∇St +(ρ1 −ρ)g∇z

)
+Q1

(2.15)
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and

−
(

φS3
∂ρ3

∂P3
−κ3Cpt+ρ3S3αp

)
∂Pt

∂ t
+

⎛

⎜
⎝

φS3
∂ρ3

∂P3
κ1

dPC12

dS1
+κ3Cs1

−ρ3S3αp

[
PC12+(S1−κ1)

dPC12
dS1

]

⎞

⎟
⎠

∂S1

∂ t

+

(
φS3

∂ρ3

∂P3
(1−κ3)

dPC23

dSt
+κ3Cst +ρ3φ −ρ3S3αp

×
[

PC23 +(St − 1+κ3)
dPC23

dSt

])
∂St

∂ t

−Mt · dκ3

dS1
∇S1 −Mt · dκ3

dSt
∇St

=+κ3Qt +∇ ·κ3κκκ ·
(

κ1
dPC12

dS1
∇S1 +(1−κ3)

dPC23

dSt
∇St − (ρ3 −ρ)g∇z

)
−Q3,

(2.16)

in which

Mt = M1 +M2 +M3, (2.17)

where Mi is the total mass flux,
[
M/

(
L2T

)]

These three equations must be supplemented with the constitutive laws for the
relative permeability versus degree of saturation and the degree of saturation versus
capillary pressure.

2.2.2 Compressibility of Three Fluid Phases

The equations of state for water and NAPL are individually given as

∂ρ1

∂P1
= β1ρ0

1 , (2.18)

∂ρ2

∂P2
= β2ρ0

2 , (2.19)

where β1 and β2 are compressibility of water and NAPL, respectively,
[
T2L/M

]
and

ρ0
1 and ρ0

2 are the reference densities of water and NAPL, respectively,
[
M/L3

]
. In

addition, the compressibility of air is given as

∂ρ3

∂P3
=

M
RT

(2.20)

where M is the mole weight of air,
[
Mmole−1

]
; R is the gas constant,[

ML2T−2mole−1K−1
]
; and T is the absolute temperature, [K].
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2.3 The Constitutive Laws

The constitutive law relating the capillary pressure to the degree of saturation can
be derived based on the fundamental Young–Laplace equation (Laplace 1806).
The equation relating the relative hydraulic conductivity to the degree of saturation
can be derived based on the theory proposed by Mualem (1976).

2.3.1 Parker et al.’s Model for Three-Phase Fluids

Parker et al.’s three-phase model is an extension of the renown two-phase model
proposed by van Genuchten (1980).

2.3.1.1 The Relations of Saturation and Capillary Pressure

Based on the assumption that fluid wettability follows the sequence water →
NAPL → air, Parker et al. (1987a) extended the saturation–capillary pressure
relationship (van Genuchten, 1980) from two-phase fluids to three-phase fluids.
With the definition of the accumulated liquid saturation, a straightforward extension
of van Genuchten’s model results in the following relationship (Parker et al. 1987a):

S1 = 1 for hC21 ≤ 0 and S1 = [1+(α21hC21)
n]−m for hC21 > 0;

St = 1 for hC32 ≤ 0 and St = [1+(α32hC32)
n]−m for hC32 > 0;

S2 = St − S1; and S3 = 1− St (2.21)

in which

m = 1− 1/n, (2.22)

where m and n are the curve shape parameters; α32 is the scaling factor of capillary
pressure head between air and NAPL, [1/L]; α21 is the scaling factor of capillary
pressure head between NAPL and water [1/L]; hC32 is the capillary pressure head
between air and NAPL, [L]; and hC21 is the capillary pressure head between NAPL
and water [L].

From Eq. (2.21), it is seen that as the degree of saturation increases, the
scaled capillary pressure decreases. According to the definition of the total liquid
saturation, St is greater than or equal to S1. Thus, one can conclude that capillary
pressure between NAPL and air must be less than or equal to that between water
and NAPL as

(α32hC32)≤ (α21hC21) . (2.23)



34 C.H. Tsai and G.T. Yeh

Obviously, Parker et al.’s model implies that the closed-form expression in Eq.
(2.21) is workable only if the products of the scaling factor and capillary pressure
head, (α32hC32) and (α21hC21), satisfy the constraint in Eq. (2.23). This constraint
seems to have little physical relevance. In other words, some possible distributions
of pressure head among phase fluids are excluded due to the constitutive law by
Parker et al., not due to physical justifications. To our knowledge, no literature exists
confirming the validity of Inequality (2.23).

2.3.1.2 The Relations of Relative Permeability and Saturation

In Parker et al.’s model, the relative permeability as a function of the degree
of saturation is proposed by Parker et al. (1987a), which is the modified van
Genuchten’s model of two-phase flow (van Genuchten 1980):

kr1 = S
1/2
1

[
1−

(
1− S

1/m
1

)m]2
, (2.24)

kr2 =
(
S̄t − S̄1

)1/2
[(

1− S̄1/m
1

)m −
(

1− S̄1/m
t

)m]2
, (2.25)

kr3 =
(
1− S̄t

)1/2
(

1− S̄1/m
t

)2m
, (2.26)

in which

S̄1 = (S1 − S1r)/(1− S1r), (2.27)

S̄t = (S1 + S2 − S1r)/(1− S1r), (2.28)

where S1 is the effective degree of saturation for water, S1r is the irreducible
saturation of water and St is the effective degree of saturation for total liquid.

2.3.2 Tsai and Yeh’s Model for L-Phase Fluids

Because of the undue constraint in Parker et al.’s model, a new model was proposed
to alleviate this constraint. The model was derived based on two hypotheses (Yeh
and Tsai 2011): (1) the capillary pressure function is homogeneous, i.e., it is
independent of phases and (2) the capillary pressure function is a function of the
accumulated degrees of saturation of two neighboring phases only, i.e. the capillary
pressure function is of degree 1. Then, it was postulated that the capillary pressure
is a unique function of a single variable defined as the ratio of the two total
accumulated degree of saturation (Tsai and Yeh 2012).
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2.3.2.1 The Relations of Saturation and Capillary Pressure

Specifically, analogous to the van Genuchen’s model (van Genuchten 1980),the
model proposed by Tsai and Yeh (2012) is given as follows:

St,i

St,i+1
≡Θi =

{
1 for hCi+1,i ≤ 0

[1+(αi+1,ihCi+1,i)
n]−m for hCi+1,i > 0,

i = 1,2, . . . ,L− 1;Θ0 = 0;ΘL = 1, (2.29)

where St,i is the total degree of saturation accumulated up to the i−th phase, St,i+1 is
the total degree of saturation accumulated up to the (i+ 1)−th phase, Θi is the ratio
of the total accumulated degree of saturation of the relatively wetting phase (i−th
phase) to that of the relatively non-wetting phase ((i+ 1)−th phase), αi+1,i is the
scaling factor between the (i+ 1)−phase and i−phase and hCi+1,i ≡ hi+1 −hi is the
capillary pressure head between the (i+ 1)−phase and i−phase, [L].

For three-phase flow (water-NAPL-air) problems, the expression of saturation–
capillary pressure head relationship (2.29) is given as follows:

Θ1 ≡ S1

St
= 1 for hC21 ≤ 0 and Θ1 ≡ S1

St
= [1+(α21hC21)

n]−m for hC21 > 0;

Θ2 ≡ St

1
= 1 for hC32 ≤ 0 and Θ2 ≡ St

1
= [1+(α32hC32)

n]−m for hC32 > 0;

S2 = St − S1; and S3 = 1− St , (2.30)

Examining Eq. (2.30), we see that both the numerator and denominator in the second
line are greater than or equal to those in the first line. Hence, it is not necessary that
(α32hc32) must be less than or equal to (α21hc21), i.e., Inequality (2.23) does not
have to hold The unjustified constraint on capillary pressures is therefore alleviated.

2.3.2.2 The Relations of Relative Permeability and Saturation

Based on Mualem’s model 1976), the relative permeability as a function of the
degree of saturation in this model is derived by modifying van Genuchten’s model
of two-phase flow (van Genuchten 1980):

kr1 = S̄1/2
1

{
S̄t

[
1−

(
1− S̄1/m

1

)m]}2
, (2.31)

kr2 =
(
S̄t − S̄1

)1/2
[(

1− S̄1/m
1

)m −
(

1− S̄1/m
t

)m]2
, (2.32)

kr3 =
(
1− S̄t

)1/2
(

1− S̄1/m
t

)2m
. (2.33)
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Equations (2.32) and (2.33) are identical to Eqs (2.25) and (2.26) in formality,
though they are derived from different relations of saturations and capillary
pressures.

2.4 Numerical Results and Discussion

Four numerical examples are presented to show the feasibility and advantage of the
present model. In Example 1, the initial and boundary pressure distributions satisfy
the constraint (α21hC21 ≥ α32hC32), and thus these two constitutive models (Parker
et al. 1987a; Tsai and Yeh 2012) are both executable. In the remaining examples
(Examples 2, 3, and 4), however, the initial and prescribed boundary pressure
distributions do not satisfy the constraint. Therefore, many available multiphase
flow models which used Parker et al.’s model (e.g., Suk and Yeh 2007; Suk and
Yeh 2008) either cannot yield solutions using fractional flow-approach or exclude
possible solutions without physical justifications using variable-switch technique in
pressure-based approach. In contrast, the present model yields simulations without
excluding possible solutions, showing the advantage and capability of using the
present model.

2.4.1 Example 1: Water Infiltration Problem

In this three-phase flow problem, water is infiltrated into a 40 cm long soil column
shown in Fig. 2.1. The initial pressure distributions among three phases in the
column satisfy the constraint, α21hC21 > α32hC32. The initial conditions are the
water pressure P1 = 7.156× 1015g/cm/day2, the NAPL pressure P2 = 7.415×
1015g/cm/day2, and the air pressure P3 = 7.465×1015g/cm/day2. Water infiltrates
into the top of column with a constant mass flux of 10 g/cm2/day and zero NAPL
and air mass fluxes. At the bottom of the column, the pressure distributions of
three phases are in equilibrium with the initial state. The boundary conditions are
thus specified as follows. At the top, the mass fluxes of water, NAPL, and air are
n ·M1 = −10g/cm2/day, n ·M2 = 0, and n ·M3 = 0, respectively. At the bottom,
the pressure of water is P1 = 7.156×1015g/cm/day2, the pressure of NAPL is P2 =
7.415× 1015g/cm/day2, and the pressure of air is P3 = 7.465× 1015g/cm/day2.
The fluid and material properties are given in Fig. 2.1 as well. The initial time-step
size is 5.0×10−5day, and each subsequent time-step size is increased by 10% until
a maximum time-step size of 1.0× 10−3day is reached.

The product of the capillary pressure and the scaling factor between NAPL and
water and that between air and NAPL satisfy the constraint (α21hC21 ≥ α32hC32).
Therefore, both the employments of Tsai and Yeh’s model and Parker et al.’s model
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n ⋅ M1= −10 g/cm2/day

n ⋅ M2= 0
n ⋅ M3 = 0

P1=7.156×1015 g/cm/day2

P3=7.465×1015 g/cm/day2

P2=7.415×1015 g/cm/day2

P1=7.156×1015 g/cm/day2

P3=7.465×1015 g/cm/day2

P2=7.415×1015 g/cm/day2

Initial condition
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Finite element discretization 

Total number of nodes=82
Total number of elements=40

 

0
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0
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0
2=1.4 g/cm3

Fluid properties

1=841.0828 g/cm/day

3=15.81 g/cm/day
2=690.0828 g/cm/day

β2=4.086×10−21 cm day2/g
β1=6.162×10−21 cm day2/g

=1.557×10−19 day2/cm2M

RT

p=2.057×10−21 cm day2/g

Satisfying the constraint in
Parker et al.'s constitutive laws.

Remark

Material properties

=0.25

32=0.099 cm−1
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21h21>  32h32

31=0.044 cm−1

n=2.2
Sir=0

k= 4.27×10−8cm2

ρ
ρ
ρ
μ
μ
μ

α

α
α
α

α α

φ

Fig. 2.1 The problem description and relevant parameters of Example 1

yield solutions. Figure 2.2 shows the solutions for saturations of water, NAPL,
and air, as simulated with the present model and Parker et al.’s model. Since the
expressions of saturation–capillary pressure relations in the present model and those
in Parker et al.’s model are different, it is seen that the degrees of saturation for
all three phases are similar in trend but quite different in magnitudes. The present
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Fig. 2.2 Distributions of the degrees of saturation for Example 1: (a) water saturation (Tsai and
Yeh’s model), (b) NAPL saturation (Tsai and Yeh’s model), (c) air saturation (Tsai and Yeh’s
model), (d) water saturation (Parker et al.’s model), (e) NAPL saturation (Parker et al.’s model),
and (f) air saturation (Parker et al.’s model)

model yields more smoothly evolutional simulations than Parker et al.’s model.
As to which model yields more reasonable results, only extensive calibrations and
validations can resolve the question, which is beyond the scope of, and certainly is
not the objective of, this investigation. In addition, Fig. 2.3 shows the distributions
of density of air. The variation of air density providing a demonstration that
compressibility is considered in the present simulator.



2 An Advanced Constitutive Law in Multiphase Flow Model for Simulations... 39

40a

b

20

t=0.002 days

t=0.128 days
t=0.086 days
t=0.022 days

H
ei

gh
t (

cm
)

0

Air Density (g/cm3)

1.01x10−39.90x10−49.70x10−49.50x10−4

40

20

t=0.002 days

t=0.128 days
t=0.086 days
t=0.022 days

H
ei

gh
t (

cm
)

0

Air Density (g/cm3)

1.01x10−39.90x10−49.70x10−49.50x10−4

Fig. 2.3 Distributions of the
density of air for Example 1:
(a) Tsai and Yeh’s model;
(b) Parker et al.’s model

2.4.2 Example 2: Water Infiltration Problem

This example is similar to Example 1 except for the initial and bottom boundary
conditions. The main differences are the initial and boundary pressure distributions
do not satisfy the constraint (α21hC21 ≥ α32hC32) in this example while they do in
Example 1. This example is presented to demonstrate the feasibility and advantage
of using the Tsai and Yeh’s model over that of Parker et al.’s model for the multiple
flow problems of more than two fluid phases.

In many currently available pressure-based three-phase flow models that used
Parker et al.’s law, negative degrees of saturation are obtained with these prescribed
initial and boundary conditions. The variable-switch algorithm implemented in
those models would reject these prescribed conditions. It is obvious that the rejection
is due to Parker’s constitutive law used, not based on any physical grounds. There-
fore, simulations with those models will exclude initial and boundary conditions
that might otherwise be possible. On the other hand, in many currently available
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fractional flow-based three-phase flow models, the occurrence of negative degrees of
saturation would have stymied the simulation. In other words, an otherwise feasibly
prescribed initial and boundary pressure distribution would not produce simulations.

In this example, were Parker’s model used, negative degree of saturation for
NAPL would have resulted. On the other hand, the use of present model will
not result in negative degrees of saturation, and thus, the prescribed initial and
boundary pressure distribution would not stymie the simulation as demonstrated
in this example.

Figure 2.4 shows the domain of interest. Similar to Example 1, water infiltrates
into the top of the soil column with a constant mass flux of 10g/cm2/day and zero
NAPL and air mass fluxes. At the bottom of the column, the pressure distributions
of three phases are maintained at their initial values. The pressure distributions
are specified such that they do not satisfy the constraint (α21hC21 > α32hC32).
The initial and bottom boundary values are given as follows. The pressure of water
is 7.156× 1015g/cm/day2, the pressure of NAPL is 7.235× 1015 g/cm/day2, and
the pressure of air is 7.465× 1015g/cm/day2. The boundary conditions at the top
are the same as that in Example 1: the mass fluxes of water, NAPL, and air are
n ·M1 = −10g/cm2/day, n ·M2 = 0, and n ·M3 = 0, respectively. The fluid and
material properties are given in Fig. 2.4. The initial time-step size is 5.0×10−5day,
and each subsequent time-step size is increased by 10% until a maximum time-step
size of 1.0× 10−3day is reached.

Plausible solutions are obtained with the present model. The solution for degrees
of saturation in each phase is depicted in Fig. 2.5. It is seen that NAPL and air
are displaced downward from the top of the soil column, while water infiltrates
into the column, as expected. Additionally, because NAPL is squeezed by the
constant infiltration of water, it is observed that the peak of NAPL saturation moves
downward with increasing simulation times, as expected. The variations in air
density are shown in Fig. 2.6. It is seen that the air density increases while water
constantly infiltrates into the system, as expected.

The initial and prescribed boundary pressure distributions in Example 2 do
not satisfy the constraint inherent in Parker et al.’s model. Therefore, for such
pressure distributions, using Parker et al.’s model either will not yield solutions using
fractional flow-based models or may generate wrong solutions using pressure-based
models due to the switch of primary variables. In contrast, with the use of Tsai and
Yeh’s model, the present multiphase flow model is more physically realistic and is
capable of simulating the problems which cover all possible pressure distributions.

2.4.3 Example 3: NAPL Infiltration Problem

In Example 3, NAPL constantly infiltrates into a 165 cm long by 65 cm high soil
block shown in Fig. 2.7. The initial conditions of three phases are the following:
the water saturation is S1 = 0.1, the NAPL saturation is S2 = 0.1, and the air
saturation is S3 = 0.8. Since a 10g/cm2/day NAPL mass flux, zero water, and air
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Fig. 2.4 The problem description and relevant parameters of Example 2

mass fluxes infiltrate into an opening on the top, the boundary conditions therein are
specified as the mass flux of water is n ·M1 = 0, the mass flux of NAPL is n ·M2 =
−10g/cm2/day, and the mass flux of air is n ·M3 = 0. On the left side of the block,
the pressure distributions are specified as follows: the pressure of water is P1 =
7.234× 1015 g/cm/day2, the pressure of NAPL is P2 = 7.336× 1015 g/cm/day2,
and the pressure of air is P3 = 7.611× 1015 g/cm/day2. On the right side, the
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pressure distribution is the pressure of water is P1 = 7.087 × 1015 g/cm/day2,
the pressure of NAPL is P2 = 7.189× 1015 g/cm/day2, and the pressure of air is
P3 = 7.465× 1015 g/cm/day2. On the bottom, the boundary condition is specified
as the water saturation is S1 = 0.1, the NAPL saturation is S2 = 0.1, and the air
saturation is S3 = 0.8. The block is pumped with a flux rate −50cm3/day at five
well points 0.2 days after the infiltration began. The fluid and material properties
are given in Fig. 2.7 as well. The initial time-step size is 1.0× 10−4day, and each
subsequent time-step size is increased by 10% until a maximum time-step size of
1.0× 10−3day is reached.

The distributions of NAPL, water, and air saturation through time are given in
Figs. 2.8, 2.9, and 2.10, respectively. It is seen that the water and NAPL saturations
approximate to zero around the well due to the effect of pumping. In Fig. 2.8, the
pumping affects the distributions of NAPL contour obviously at 0.284 and 0.984
days but has little effects at 2.984 days. The continuous pumping leads the NAPL
saturation near well points to approximate zero and hence reduces its conductivity.
Therefore the infiltrated NAPL will not flow to the well. As a result, the pore space
near the well is occupied mostly by the air phase (Fig. 2.10) via its high conductivity.
Figure 2.9 indicates that the water saturation changes little through the entire domain
of interest except for a small region near the well. This example implies that a pump
and treat strategy of NAPL removal would not work for this particular case.

2.4.4 Example 4: NAPL Infiltration Problem

In this example, NAPL infiltrates into a 165 cm long by 65 cm highly unsaturated
block with zero mass fluxes of water and air shown in Fig. 2.11. The majority of the
block is filled with sands. Three additional materials are included in small portions
of the domain, which are clay, silt, and gravel. The initial conditions of three phases
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are: the water saturation is S1 = 0.2, the NAPL saturation is S2 = 0.1, and the air
saturation is S3 = 0.7. Since a 10g/cm2/day NAPL mass flux, zero water, and air
mass fluxes infiltrate into an opening on the top, the boundary conditions therein
are specified as: the mass flux of water is n ·M1 = 0, the mass flux of NAPL is
n ·M2 = −10g/cm2/day, and the mass flux of air is n ·M3 = 0. On the left and
right sides, the pressure distributions of three phases are specified as follows: the



2 An Advanced Constitutive Law in Multiphase Flow Model for Simulations... 45

0 15

−13

0

−26

−39

−52

N

−65
30 60 90 105 120 135 150 16575

X
45

0 15

−13

0

−26

−39

−52

N

−65
30 60 90 105 120 135 150 16575

X
45

0 15

−13

0

−26

−39

−52

N

−65
30 60 90 105 120 135 150 16575

X
45

0 15

−13

0

−26

−39

−52

N

−65
30 60 90 105 120 135 150 16575

X
45

Fig. 2.8 Distributions of the degrees of saturation of NAPL for Example 3



46 C.H. Tsai and G.T. Yeh

0 15

−13

0

−26

−39

−52

N

−65
30 60 90 105 120 135 150 16575

X
45

0 15

−13

0

−26

−39

−52

N

−65
30 60 90 105 120 135 150 16575

X
45

0 15

−13

0

−26

−39

−52

N

−65
30 60 90 105 120 135 150 16575

X
45

0 15

−13

0

−26

−39

−52

N

−65
30 60 90 105 120 135 150 16575

X
45

Fig. 2.9 Distributions of the degrees of saturation of water for Example 3



2 An Advanced Constitutive Law in Multiphase Flow Model for Simulations... 47

0 15

−13

0

−26

−39

−52

N

−65
30 60 90 105 120 135 150 16575

X
45

0 15

−13

0

−26

−39

−52

N

−65
30 60 90 105 120 135 150 16575

X
45

0 15

−13

0

−26

−39

−52

N

−65
30 60 90 105 120 135 150 16575

X
45

0 15

−13

0

−26

−39

−52

N

−65
30 60 90 105 120 135 150 16575

X
45

Fig. 2.10 Distributions of the degrees of saturation of air for Example 3



48 C.H. Tsai and G.T. Yeh

pressure of water is P1 = 7.351× 1015 g/cm/day2, the pressure of NAPL is P2 =
7.420× 1015 g/cm/day2, and the pressure of air is P3 = 7.611× 1015 g/cm/day2.
On the bottom, the boundary condition is specified as: the water saturation is S1 =
0.2, the NAPL saturation is S2 = 0.1, and the air saturation is S3 = 0.7. The fluid
properties are also given in Fig. 2.11. The initial time-step size is 1.0× 10−4day,
and each subsequent time-step size is increased by 10% until a maximum time-step
size of 1.0× 10−3day is reached.

The distributions of degrees of saturation for NAPL, water, and air are depicted in
Figs.2.12, 2.13, and 2.14, respectively. Two liquid phases (water and NAPL) behave
similarly in this highly heterogeneous system of media. When they reach the gravel,
they flow through it quickly because the permeability of gravel is much higher than
that of the sand. When they reach the silt, they flow on its surface and move sideway
and flow down with a small portion going through the silt. When they reach the very
impermeable clay, they almost completely float on its surface and flow sideway then
downward, with very little going through the clay. It is seen from Fig. 2.14 that as
NAPL infiltrates, air is to first move to both sides and then upward because of its
low density. As the air moves up, it bypasses the relatively impermeable silt and clay
but goes through the very permeable gravel quickly. The results show the capability
of the present model to generate reasonable simulations for the NAPL infiltration
problem.

2.5 Conclusions

In this investigation, the constitutive law proposed by Tsai and Yeh is successfully
implemented in a fractional flow-based multiphase flow model to simulate com-
pressible subsurface flow problems with different possible pressure distributions. To
demonstrate the feasibility and advantage of the developed model, four examples are
presented. The results clearly show the feasibility and advantage of implementing
the new constitutive law to simulate compressible flow problems, especially with
the cases that prescribed pressure distributions do not satisfy the constraint required
by Parker et al.’s model. With the implementation of the new saturationcapillary
pressure relationship, plausible solutions are obtained with all possible initial and
boundary pressure distributions. In summary, the implementation of the advanced
constitutive law makes the present multiphase flow model complete and physically
realistic to simulate the compressible flow problems with all possible pressure
distributions.

Acknowledgements Research is supported by National Science Council under Contract No. NSC
99–2116-M-008–020 with National Central University.
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Fig. 2.13 Distributions of the degrees of saturation of water for Example 4

Appendix A: Numerical Discretizations with FEM

The governing equation for the total pressure, Eq. (2.5), is discretized with the
standard Galerkin FEM as follows:

[Cp]

{
∂Pt

∂ t

}
+
[
Cp

s1

]
{

∂S1

∂ t

}
+
[
Cp

st

]
{

∂St

∂ t

}
+[DDp]{Pt}=

{
fp
}
, (A.1)
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Fig. 2.14 Distributions of the degrees of saturation of air for Example 4

in which

[Cp]i, j =

∫

Ω

(Cpt)∇Ni·∇NjdR, (A.2)
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[
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Ω

(Cs1)∇Ni·∇NjdR, (A.3)

[
Cp

st

]
i, j =

∫

Ω

(Cst)∇Ni·∇NjdR, (A.4)

[DDp]i, j =

∫

Ω

∇Ni·∇NjdR, (A.5)

{
fp
}

i = −
∫

Ω

∇Ni• [ρg∇z]dR−
∫

B

n• [Ni (Mt)]dB+
∫

Ω

Ni [Qt ]dR, (A.6)

where [Cp] is the mass matrix associated with total pressure, [Cp
s1] is the mass

matrix associated with water saturation for total pressure, [Cp
st ] is the mass matrix

associated with total liquid saturation for total pressure, [DDp] is the dispersion-
diffusion matrix associated with Pt in the governing equation for total pressure, and
{ fp} is the flux due to advection, dispersion-diffusion, and gravity in the governing
equation for total pressure.

The governing equations for the saturations of water and total liquid, Eqs. (2.15)
and (2.16), are discretized by the standard Galerkin and the upstream FEMs. The
optimized weighting parameters for the upstream FEM are found in the literature
(e.g., Carrano and yeh 1995; Christie et al. 1976). Other more robust numerical
discretization methods may be employed, but that will not alter the key points
addressed in this chapter. The formulations are given as follows:

[
Cp

1

]
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∂Pt

∂ t

}
+[Cw

1 ]
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∂ t
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+
[
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1
]
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+[DDT1]{St}+[DST1]{S1}= { f1} , (A.7)

and
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in which
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{ f2}i = −
∫

B

Nin• [κ3Mt ]dB+
∫

B

Nin• [M3]dB+
∫

B

Nin• [κ3κκκ • (ρ3 −ρ)g∇z]dB, (A.26)

where [Cp
1 ] is the mass matrix associated with total pressure for water saturation;

[Cw
1 ] is the mass matrix associated with water saturation; [Ct

1] is the mass matrix
associated with total liquid saturation for water saturation; [ADW1] is the advection
and gravity matrix associated with water saturation; [ADT1] is the advection and
gravity matrix associated with total liquid saturation; [DDW1] is the dispersion-
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diffusion matrix associated with water saturation; [DDT1] is the dispersion-diffusion
matrix associated with total liquid saturation; [DST1] is the matrix from the sink
or source; { f1} is the flux due to advection, dispersion-diffusion, and gravity; [Cp

2 ]
is the mass matrix associated with total pressure for total liquid saturation; [Cs

2] is the
mass matrix associated with water saturation for total liquid saturation; [Ct

2] is the
mass matrix associated with total liquid saturation; [ADW2] is the advection and
gravity matrix associated with water saturation; [ADT2] is the advection and gravity
matrix associated with total liquid saturation; [DDW2] is the dispersion-diffusion
matrix associated with water saturation; [DDT2] is the dispersion-diffusion matrix
associated with total liquid saturation; [DST2] is the matrix from the sink or source;
{ f2} is the flux due to advection, dispersion-diffusion, and gravity; Wi is the
upstream weighting function; Ni is the Galerkin interpolation function; n is the
outward normal vector; Ω is the region of interest; and B is the boundary. Note that
the subscripts 1 and 2 in the definitions of all matrices denote the first and second
equation of two saturation equations, respectively. By assembling Eqs. (A.7) and
(A.8), the resulting coupled matrix for saturations of water and total liquid is given
as follows:

[
Cw

1 Ct
1

Cw
2 Ct

2

]{ ∂ S1
∂ t

∂ St
∂ t

}

+

[
DDW1 +ADW1 +DST1 DDT1 +ADT1

DDW2 +ADW2 DDT2 +ADT2 +DST2

]{
S1

St

}

=

{
f1

f2

}

−
{

Cp
1

∂ Pt
∂ t

Cp
2

∂ Pt
∂ t

}

.

(A.27)

To obtain the solutions for the total pressure, saturations of water, and total liquid,
we use the Bi-CGSTAB method proposed by vant der Vorst (1992).
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Chapter 3
Fluid Pressure Redistribution Events
Within a Fault: Impact of Material Property
Correlation

Sean A. McKenna and Darin Q. Pike

Abstract Cellular automata (CA) models employ local rules to simulate large-scale
behavior. A previously developed CA model of fluid pressure redistribution events
within a 2D planar fault system undergoing compression is used to model the size
distribution of these events over time. Local fluid pressures exceeding a threshold
value cause a rupture (failure) of the surrounding rock, and the fluid pressure is
redistributed to surrounding cells. Spatial correlation of the fault compressibility
(β ) is varied over a range of nearly three orders of magnitude in a model domain
of 106 cells. The size distribution of all pressure redistribution events changes
from a power-law exponential form with a single slope when β is uncorrelated
to a power-law exponential form with two slopes at increasing correlation lengths
and then back to a single power-law exponential distribution that approximates a
uniform distribution as correlation lengths exceed the ergodic limit. The spatially
and temporally uniform pattern of events seen in the uncorrelated model rapidly
evolve to exhibit emergent behavior as the correlation length increases beyond
the grid cell size. Increasing spatial correlation leads to delays in the time to first
failure and decreases the time necessary for the ruptures to coalesce and span the
fault domain. The resulting spatial pattern of events demonstrates deviations from
the random point process associated with uncorrelated β towards increased spatial
clustering of events with increasing correlation of the β field. Vertical effective
permeability of the fault system at the point where connected failures span the
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domain shows that effective permeability is a nonlinear function of the correlation
length and is strongly controlled by the size (area) of the domain-spanning failed
cluster.

3.1 Introduction

The coupled processes of fluid flow and mechanical behavior of rocks in the
Earth’s crust are important in a number of geologic processes including earth-
quakes (Claesson et al. 2007; Sarr and Manga 2003; Rojstaczer et al. 1995),
geysers (Ingebritsen and Rojstaczer 1993), and crustal-scale fluid flow (Rojstaczer
et al. 2008; Miller et al. 2004). Coupled hydromechanical processes are also the
focus of a number of research areas driven by engineering applications including
CO2 sequestration (e.g., Rutqvist et al. 2007; Lucier et al. 2006), enhanced
geothermal energy production (Majer et al. 2007), and deep borehole injection of
fluids (Hsieh and Bredehoeft 1981; Healy et al. 1968; Zoback and Harjes 1997;
Rutledge et al. 2004). Here, we examine coupled hydromechanical processes in
a fault using a cellular automata model with a focus on the impact of spatially
correlated material properties on the evolution of fault system behavior.

The “toggle-switch” permeability model developed by Miller and Nur (2000)
considers permeability to be either zero or infinite, and changes between these
two extreme states, due to hydraulic fracturing and then resealing, are essentially
instantaneous. The fault is conceptualized as a fluid-saturated, two-dimensional
planar feature with spatially heterogeneous rock compressibility β . As compressive
normal stress is applied to the fault, the spatially heterogeneous β transforms the
stress into locally varying amounts of strain as exhibited by changes in the fluid
pressure within the fault. If the local fluid pressure exceeds a threshold rupture
pressure at any cell, the pressure is redistributed to the surrounding cells; the new
pressure is recalculated and again compared to the threshold rupture pressure. The
pressure redistribution continues until pressure in all cells is below the threshold
pressure. The normal stress continues and the strain is updated at the next time
step and the process continues. Miller and Nur (2000) used this model to study
how simple small-scale processes can describe the evolution of pore pressures in
a fault and lead to the development of large-scale fluid flow networks. Wang and
Manga (2010) postulated a process analogous to the toggle-switch idea for rapid
changes in the permeability and pore pressure redistribution of a magmatic melt due
to earthquake-induced fracturing. Claesson et al. (2007) observed rapid, earthquake-
induced changes in ground water flow systems followed by a less rapid fault-sealing
process.

To paraphrase the definition of a CA proposed by Mitchell (2009) in the context
of the pressure redistribution problem, a CA is a grid of cells, where each cell is
in one of two states (e.g., closed/open) depending on the current states of cells
within its local neighborhood. The two key components of a CA model are the
definition of the local neighborhood and the cell update rule. The cell update rule
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defines the state of the cell in the next time step as a function of the states within the
neighborhood at the current time step. The cell update rule is identical for all cells
at all times (i.e., spatially and temporally stationary). Taken as a whole, CA models
have large numbers of simple components that respond to conditions in the local
environment without any centralized or hierarchical controller. From these simple
cells, having limited intercell communication and all following the same simple,
local rule, complex behavior can arise at the macroscale (hundreds of thousands of
cells) that is not predictable from consideration of the cell update rule on its own.
The resulting macroscale behavior, which is unpredictable given the simple rule set
and the initial conditions, is termed “emergent behavior” (Mitchell 2009). We use
the toggle-switch model of permeability to demonstrate the evolution of emergent
behavior as a function of the spatial correlation length of β .

The CA model of Miller and Nur (2000) is analogous to many statistical physics
models that are characterized by initial localized failures that lead to a cascading
failure that spans the system (e.g., spring and block models of fracturing; sandpile
models of cascading failures; percolation processes for domain-spanning features).
We examine behavior of the cellular automata model under the condition of spatially
correlated material properties within the fault. This approach expands on previous
application of this model where only uncorrelated material properties were studied
(Miller and Nur 2000). This approach is contrary to the majority of applications
of cellular automata models and studies of self-organized criticality across a wide
variety of applications that rely on random uncorrelated properties, perturbations,
or failure thresholds (e.g., Ferer and Smith 2011; De Menech et al. 1998; Cowie
et al. 1993, 1995; Miller et al. 1996). There are notable exceptions to this assumption
of uncorrelated property fields including work on percolation networks with corre-
lation (e.g., Sahimi and Mukhopadhyay 1996). Our approach can be summarized as
local (quasi-independent) rules acting on connected (correlated) properties.

In this chapter, we define the CA model and the model of spatial correlation of
β within the fault. These two models are used to examine the impact of β spatial
correlation on the resulting timing, location, and size distribution of the pressure
redistribution events. The size distributions are fit with power-law models having
exponential decay at the largest sizes. Changes in the β spatial correlation lead
to complex spatial-temporal patterns of events that exemplify emergent behavior.
Insights on the impact of β spatial correlation on event initiation and fluid flow
patterns within the fault are summarized.

3.2 Cellular Automata Model

A previously developed CA model is used here (Miller and Nur 2000). Conceptu-
ally, a two-dimensional fault plane within the Earth’s crust is modeled as a lattice of
cells. Each cell has a different value of rock compressibility, and normal stresses
orthogonal to the fault plane place the fault in compression. The evolution of
the fluid pressure within each cell is the quantity of interest. The toggle-switch
permeability model is used, meaning that if the pressure in a cell is below a critical
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value, it is impermeable with respect to fluid flow (k∼0, where k is permeability).
Above the critical value, the cell is at failure and fluid can immediately migrate into
neighboring cells (k∼∞). This process results in the fluid pressure of all connected
cells being equilibrated to the same value. When the pressure of a cell falls below
the critical value, it has healed and is again impermeable until a future rupture (see
details in Miller and Nur 2000).

The relationship between the change in fluid pressure, Pf , and the plastic
deformation or fluid source causing the change is

∂Pf

∂ t
=

1
φ(βφ +β f )

[
k
v

∇2Pf − (φ̇plastic − Γ̇)
]
, (3.1)

where Γ̇ is the time-varying fluid source, φ̇plastic is the time-dependent porosity
reduction, k is the permeability, ν is the fluid viscosity, and φ is the porosity. The
compressibility of the rock matrix and the fluid are βφ and β f , respectively. Further
details on this pressure diffusion model are given in Segal and Rice (1995) and
Walder and Nur (1984).

The “toggle-switch” model of Miller and Nur (2000) limits the permeability
values to k = 0 and k ∼= ∞ depending on the local fluid pressure. Under the zero
permeability mode (k = 0), pressure redistribution by diffusion does not occur and
the following simplified pressure differential is used:

∂Pf

∂ t

∣∣
∣
∣
noflow

=
(Γ̇− φ̇plastic)i

φiβi
, (3.2)

where Pf is the pressure in the ith cell at time t and βi is the sum of matrix and fluid
compressibility for cell i. In the calculations to follow, (Γ̇ − φ̇plastic)i is constant
throughout time and space. A constant φ is employed and β is varied across the
domain making the spatial correlation of β the focus in the remainder of the chapter.

Prior application of the toggle-switch model to pressure redistribution considered
either (Γ̇− φ̇plastic)i or φiβi within each cell to be independently drawn from a uni-
form or Gaussian distribution (Miller and Nur 2000). Here, we follow this approach
by drawing βi from a Gaussian distribution while adding spatial correlation between
the cells defined through a Gaussian kernel (see below).

At each time step, a constant compressional strain increases Pf by decreasing
φplastic within each cell through Eq. (3.2). When Pf in a cell reaches a threshold
pressure, Pthresh, the cell “fails,” permeability suddenly increases from 0 to infinity,
and the pressure is redistributed to the four adjacent cells. Each cell within this
neighborhood (m = 4) is then assigned the same weighted average pressure,
computed as

P̄ =
∑m

i=1 (φβ )iPi

∑m
i=1 (φβ )i

. (3.3)
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Equation (3.3), coupled with the threshold pressure, is the cell update rule for the CA
model. Here, the local neighborhood for the CA model is defined as the 4 adjacent
(non-diagonal) cells in the grid. After the pressure redistribution, if all cells are
below the critical pressure, the system proceeds to the next time step via Eq. (3.2).
If, on the other hand, there are still cells with Pf > Pthresh, the pressure redistribution
process is repeated until Pf≤ Pthresh in all cells. The size of a pressure redistribution
event is measured as the number of cells involved in the pressure redistribution
starting from a single cell with Pf > Pthresh until all cells are below Pthresh. Many
of the cells involved in the redistribution event never reach failure; they are only
involved in the redistribution of the fluid pressure. These “event clusters” differ
from the definition of failure clusters of Miller and Nur (2000), where all cells in
the cluster must have reached failure at some point. The event cluster plots have the
same behavior as the failure cluster plots, but with larger sizes. Event clusters are
used here to be consistent with fluid pressure as the primary object of study.

3.3 Spatial Correlation

Statistical physics models typically apply local rules to fields of uncorrelated
properties. From application of these rules, a spatial correlation in the resulting state
arises. A classic example of this behavior is the standard percolation model (Stauffer
and Aharony 1994). The probability of any cell in the domain being conductive is a
random variable with correlation length equal to that of the grid spacing leading to
an uncorrelated random field. As the probability threshold for turning any cell in the
domain to being conductive increases, a point is reached where a connected path of
conducting cells spans the domain. At this point, the domain is said to “percolate”
and the correlation length of the percolating cells relative to the domain size is now
infinite.

Here, we examine the impact of another correlation length, that of the material
properties on which the CA rules operate, on the overall results of the CA model.
Spatial correlation is imposed on β by averaging a white-noise (uncorrelated)
multivariate Gaussian field with a kernel. Here the kernel, G(x,y), also has a
Gaussian shape and the resulting correlated fields are also multivariate Gaussian:

G(x,y) =
1

2π |Σ | 1
2

exp

(
−1

2
dΣ−1dT

)
, (3.4)

where d is the Euclidean distance vector (dx,dy) from any point to the origin of the
Gaussian function. For the isotropic fields considered here, the covariance matrix
Σ = σ2I, where I is the identity matrix and σ is the standard deviation of the
Gaussian kernel, is diagonal because the kernel is aligned with the grid axes. The
measure of the correlation length of the resulting field is the full width at half
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maximum, δ , defined as δ = σ
√

8ln(2). This is the width of the Gaussian kernel
used to create the correlated field at one-half the maximum kernel height. For each
δ , 15 individual realizations of the β field are created and used as input to the CA
model.

3.4 Results

Calculations were conducted on a grid of 1.0×106 (1,000×1,000) cells. Although
no explicit scale is assigned here, this model domain could be considered represen-
tative of a fault domain of tens to hundreds of meters on a side. The initial pressure
of each cell was independently set to a random number between 15 and 16 MPa—
an elevation-dependent starting pressure is not considered. The failure condition
was set to 28 MPa, an overburden pressure representative of an approximate 1.5 km
depth. The time step used was dt = 0.1 year, and the numerator of Eq. (3.2)
(Γ̇− φ̇plastic) was set to 1×10−5 year −1 for all cells. The values of βi had a mean of
0.01MPa−1 and standard deviation of 0.0025MPa−1 where φ = 0.02 and all spatial
variation is due to β .

Calculations were run with the following full width at half maximum values: δ =
0.39, 2.35. 4.71, 9.42, 18.8, 23.5, 47.1, 94.2 188, 235, and 471 grid cells. The lowest
δ value, 0.39, represents the uncorrelated case where the value of βi at each cell
is independent of its neighbors. The uncorrelated case is consistent with each cell
encompassing 99.7% of the full width (±3σ ) of the Gaussian kernel. Four example
β fields are shown in Fig. 3.1.

For each of the 165 input β fields (15 realizations for each of 11 values of δ ), the
CA model simulations were run from the initial pressure conditions until a domain-
spanning cluster of failed cells was reached. At every time step, the coordinates of
the centroid of the pressure redistribution event and the event (cluster) size in terms
of grid cells are recorded. Additionally, the final spatial distribution of the failed and
intact rock as well as the failed rock that is connected to the domain-spanning cluster
is recorded. Figure 3.2 shows example results from compressibility fields with three
correlation lengths: 0.39, 9.4, and 94 units. The spatial-temporal distribution of
the events is summarized in a two-dimensional plot by only showing the vertical
(y-dimension) location of each event as a function of time (Fig. 3.2). The time in
these plots has been normalized between the start of the simulation and the onset of
the domain-spanning cluster.

The domain-spanning clusters in the left column of Fig. 3.2 show that as δ
increases, the nature of the clusters changes substantially. At the lowest δ value
(Fig. 3.2, upper left), the cluster is rough-edged and surrounds isolated regions
of intact rock with a range of sizes. The black region is not at all continuous,
containing within it many intact (white) regions of various size as well as other
smaller, disconnected regions of failed rock (grey). In general, the domain-spanning
cluster and the regions of contained intact and failed rock occurring at multiple
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Fig. 3.1 Example of four realizations of the β field showing four different correlation lengths.
The values of δ are 0.39 (upper left), 9.4 (upper right), 94 lower left, and 235 (lower right). The
color scale is in units of 1/MPa

scales resemble a fractal object. Results from the next largest δ shown in Fig. 3.2
(9.4 cells) similarly show the domain-spanning cluster surrounding regions of white
and grey, with less variability in the size distribution of these surrounded regions.
Notably, there are no small white regions mixed evenly within the black as seen
in the upper image. Finally, at the largest δ value (94 cells), the domain-spanning
cluster is almost completely uninterrupted, with the exception of a single enclosed
area of intact (white) rock. There are only a few grey regions in the entire image.
The perimeter to area ratio of the domain-spanning cluster decreases as δ increases.

The spatial-temporal evolution of the events is summarized in the right column
of Fig. 3.2. For the uncorrelated case (upper image), there are 10–12 locations that
fail repeatedly over time plus additional events that occur at apparently random
locations. The intensity of these randomly located events increases with increasing
time until the domain-spanning cluster is formed. In general, the events appear
to remain local and have little impact on the formation of events in surrounding
locations. As δ increases to 9.4 cells (middle image), the pattern is similar to the
uncorrelated case with more locations (25–30) having early failures that repeat
continuously through time along with a more abrupt increase in the density of the
randomly located events at late times relative to the uncorrelated case. Additionally,
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Fig. 3.2 For three different values of δ (0.39,9.4, and 94, top to bottom) the images on the left
show the areas of rupture in black and grey at the time when the domain-spanning ruptured region
is reached. Cells within the domain-spanning cluster are black, other ruptured cells are grey, and
intact rock is white. On the right, the y-coordinate of the centroid of each rupture event is plotted
vs. normalized time, where time ranges from the start of the simulation to the point where the
ruptured material spans the domain, as illustrated in the images on the left
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the size of the neighborhood of locations where the failures are nearly continuous
from early time grows as time increases indicating an outward growth of the failure
locations from an original single nucleation point. At the largest δ (94 cells) in the
lower image, the pattern changes markedly such that there are a relatively small
number (10–12) of locations with repeating failures. A halo of failure locations
moves outward from these repeating locations as time increases and all failures
occur within one of these halos—there is no random component of failure locations
outside of these halos. There is a significant delay in the time to first failure relative
to the results from the smaller δ values; in this example, the first failure does not
occur until 20% of the simulation time has passed. These unexpected complex
patterns arising from operation of simple local rules on increasingly correlated
material property fields signify emergent behavior in fluid pressure redistribution
events.

Figure 3.3 plots the time to first failure, the first point when any cell has a pressure
above the failure threshold (28 MPa), and the time to reach the domain-spanning
(bottom to top) cluster. Since all cells start with similar pressures, the cells with the
smaller values of βi fail first. Increasing spatial correlation acts to increase the time
to the first rupture and decrease the time to reach the domain-spanning cluster. These
results show that correlated fields of rock compressibility can accommodate more
strain before failing than can uncorrelated fields, but once failure is initiated, there
is a more rapid progression to domain-spanning failure relative to the uncorrelated
case.

For δ values up to 10.0 units, the initial failure occurs nearly instantaneously
as the strain begins and there is no variation in this value between realizations.
Above a δ of 10.0, the initial failure is delayed to times beyond the initiation of
strain. Additionally, the variability in this time to initial rupture is nearly ±200 years
across the realizations for each δ . The variability in the results between realizations
becomes considerable as δ reaches one-tenth of the domain length (δ = 100). As a
rule of thumb, a correlation length of one-tenth the domain size is the ergodic limit.
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As correlation lengths go beyond this limit, the statistics (e.g., the mean β ) are no
longer constant from one realization to the next creating increased inter-realization
variability as seen here (see additional details on ergodic limits in Zhang 1999).

At each time step, each percolation cluster is recorded with its size. For each
value of δ , the number of clusters of each size is counted, summing over all time
steps up to the point of domain-spanning cluster formation. All 15 realizations are
aggregated, and these results are used to produce curves of the complementary
cumulative distribution function (1—CDF) in log–log space. Similar curves were
produced by Miller and Nur (2000), but their failure clusters were used instead of
event clusters, as noted previously. The event cluster curves are nearly identical to
failure cluster curves in terms of slope; they are merely shifted to the right. In the
case of uncorrelated values of β , the cluster size distribution value as a function of
cluster size, D(S), can be fit to (Miller and Nur 2000):

D(S) = S−α exp

(
− S

L

)
, (3.5)

where S is the cluster size, α is the power-law exponent, and L is a correlation
length distinct from δ . Both α and L are fit to the data. The best fit is obtained with
f (α,L) = log(D) using the Matlab function nlinfit (MATLAB 2011). To accurately
fit results with Eq.(3.5), the data must first exhibit linear behavior on the log-log
plot with slope of -α followed by an exponential decay at the largest sizes. This
equation does not provide the best fit to the data from correlated fields, especially at
larger values of δ . A noticeable deviation between these data and Fig. 3.8 of Miller
and Nur (2000) is that approximately 30%–50% of their clusters have size S = 2.
Here, there are no clusters of size S = 2 due to the redefinition of clusters and only
a negligible amount of them have size S = 3 or S = 4 (due to edge artifacts), and the
most frequently observed size is S = 5 consistent with the 5-point star pattern used
in the pressure redistribution process.

The results in Fig. 3.4 show the size distribution of the rupture events. As
δ increases, this distribution changes from a power-law model with exponential
roundoff at the largest sizes to a double power law with exponential roundoff and
finally back to the original single power law with exponential roundoff, but a much
shallower slope than the models for smaller δ values. Especially at higher values
of δ , it can be seen that the slope of the linear section changes prior to the onset of
exponential decay.

In order to better fit the results across the range of δ values, a piecewise function
with two power-law slopes prior to the exponential decay was constructed:

D(S) =

{
cS−α1 exp

(− S
L

)
exp

(
1
L

)
if S ≤ γ,

cS−α2γα2−α1 exp
(

S
L

)
exp

(
1
L

)
if S ≥ γ.

(3.6)

Compared to Eq. (3.5), α has been split into α1 and α2, and additional dependent
variables, c and γ , have been introduced. γ is the value of S where the change in
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Fig. 3.4 Distributions of
cluster sizes for each δ value.
The size distribution curves
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Table 3.1 Variables c, α1, α2, L, and γ from Eq. (3.6) are fit to match the cluster size data
produced. The coefficient of determination, R2, is included for each δ . Also included is the
characteristic size of the compressibility field calculated as the area of a circle with diameter
δ : π(δ/2)2

δ c α1 α2 L γ π(δ/2)2 R2

0.392 2.25 – 1.22 370,000 0 0.121 0.9996
2.35 6.38 – 1.29 144,000 0 4.36 0.9990
4.71 3.26 0.972 1.35 111,000 150 17.4 0.9997
9.42 2.63 0.717 1.41 103,000 266 69.7 0.9998
18.8 2.30 0.525 1.39 99,100 710 279 0.9995
23.5 2.29 0.482 1.40 110,000 1,010 436 0.9996
47.1 2.32 0.386 1.30 150,000 3,350 1,740 0.9983
94.2 1.71 0.273 1.14 384,000 8,120 6,970 0.9926
188 0.778 0.145 0.427 147,000 14,600 27,900 0.9917
235 0.756 0.128 0.481 151,000 42,400 43,600 0.9974
471 0.230 0.0481 5.81 227,000 582,000 174,000 0.9941

slope from α1 to α2 occurs. The factor exp(1/L) has been added to ensure D(1) = c.
While the actual data will always be D(1) = 1, there are very few data points at
S = 1 and not restricting the model to go through this point by introducing the
variable c improves the overall fit. However, the model should be used for S ≥ 5,
the size of the pressure redistribution stencil, to avoid spurious results. When S ≤ γ
the log-log plot yields a slope of -α1. When S ≥ γ the slope changes to -α2 and
then decays exponentially for the largest S. The function is continuous, but there is
a discontinuity in the slope at S = γ . This function is recast using an approximation
of the Heaviside function for parameter estimation using the Matlab nlinfit function
(MATLAB 2011). The resulting fits of Eq. (3.6) to the size distributions are shown
in Fig. 3.4. The parameters used to fit the size distributions are shown in Table 3.1.
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Equation (3.6) provides excellent fits (R2 > 0.99) to the observed size distribution
for all values of δ . Up to the point of reaching the ergodic limit (δ ∼ 100), the
quantity π(δ/2)2 provides a reasonable lower bound on the estimated value of
γ; however, decreasing the number of estimated parameters by replacing γ with
π(δ/2)2 decreased the goodness of fit. The values of α1 define a decreasing negative
slope with increasing δ . The values of α2 remain above 1.0 and are relatively
constant up to the ergodic limit where they begin to decrease (a less negative
slope). The value of α2 at δ = 471 is somewhat of an outlier as it does not take
effect until the curve is already into the exponential decay region. In all cases, the
piecewise curve fits the data better than the single power-law function (3.5). The
curves produced from the data in Table 3.1 are plotted in Fig. 3.4 along with the
original data. The maximum cluster size for each realization is highlighted.

Figure 3.4 shows that for the uncorrelated case (δ = 0.39), 99% of all events
have a size of 100 cells or less, whereas for a correlation length of δ = 94, 99% of
the events have a size of 10,000 cells or less. This result shows the size distribution
moving from a power-law distribution ranging over multiple orders of magnitude to
a distribution closer to uniform with an exponential decay at the highest end. This
behavior is indicative of a wide range of cluster sizes merging to create a domain-
spanning cluster in an uncorrelated field and a much more uniformly sized set of
clusters joining to create the domain-spanning cluster at larger values of δ .

The spatial patterns of the event centroids are compared to a completely random
spatial point process using the distribution of nearest neighbor distances between
events at each time step. Specifically, the event locations are compared to the case
of complete spatial randomness (CSR). To satisfy CSR, data points must be an
uncorrelated random sample from a uniform distribution. When this is the case,
the nearest neighbor distance from a data point, r, on average is (Diggle 2003)

μ = 0.5(n−1A)
1
2 +(0.051+ 0.042n−

1
2 )n−1P, (3.7)

where μ is the expected value of r, n is the number of data points, A is the area of
the region considered, and P is its perimeter. As soon as observed patterns emerge,
CSR is no longer present.

Figure 3.5 shows the results of this analysis for three example simulations, with
the right image of Fig. 3.5 showing a closer look at the last half of the simulation
time. The y-axis shows the difference between the mean observed r and μ . In the
uncorrelated case, the difference is near zero for the majority of the simulation.
At 95% of the simulation time, there is a slight deviation towards negative values
indicating a slight clustering of the events. Results with a δ of 9.4 show moderate
spatial clustering of the events throughout the simulation until very near the end
when they become more spatially random. With a δ of 94, the spatial clustering is
extreme for the first 50% of the simulation and then moves towards a more random
pattern at the end. The results with δ = 94 show considerable variability with large
increases and decreases in the difference throughout time. Only events created under
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the uncorrelated case fit the pattern of complete spatial randomness throughout the
simulation.

The failure patterns within the fault at the point of domain-spanning percolation
are used to examine the effective permeability (vertical) of the fault. Steady-state,
single-phase, isothermal flow is simulated across the fault in the vertical direction
and the applied gradient and resulting flux are used to calculate the effective
permeability. The permeability of the failed regions is set to be four orders of
magnitude higher than that of the intact regions and the effective permeability of the
fault domain is normalized by the permeability value assigned to the failed regions
(Fig. 3.6). The connected high-permeability path across the fault ensures that all
mean effective permeability values are at least 60% of the maximum permeability
assigned to the failed regions.

For the uncorrelated case, the mean effective permeability is just over 70% of the
failed region permeability. The minimum mean effective permeability value occurs
at δ = 9.42 before rising again to a maximum of near 80% of the failed region
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permeability for δ = 492. This behavior is controlled by the proportion of the fault
domain that is contained within the spanning cluster, which also reaches a minimum
at δ = 9.42. At lower δ values, the spanning cluster is larger and complex with
multiple continuous pathways connecting the top and bottom boundaries as well
as many intact rock fragments contained within, or surrounded by, the spanning
cluster (e.g., Fig. 3.2, top left image). At δ values of 9.42, the number of pathways
connecting the top and bottom boundaries of the fault decreases to near 1 (e.g.,
Fig. 3.2, center left image) causing decreased mean effective permeability. For larger
values of δ , a single connected pathway remains, but it is larger and less complex,
containing less intact material, than at lower values of δ (e.g., Fig. 3.2, bottom left
images). Emergence of a single dominant flow path at larger correlation lengths
is consistent with results of Pyrak-Nolte and Morris (2000) in a study of fracture
stiffness and fluid flow.

3.5 Conclusions

Geologic media are commonly observed to have spatially correlated material
properties. In particular, within a fault, prior movement along the fault and a
changing stress history will lead to zones of preferential strength and weakness.
Simulation of pressure redistribution events within a fault using a CA model clearly
shows the impact of rock compressibility (β ) spatial correlation on both the size
distributions and the spatial and temporal patterns of the pressure redistribution
events.

Increasing the spatial correlation (δ ) of β leads to a field that can sustain larger
amounts of strain prior to the first failure. Higher δ values also decrease the time
until a fault-spanning cluster of failed material is achieved. As δ increases, the more
uniform distribution of event sizes leads to higher numbers of larger events and
faster connection of failed regions across the fault relative to the uncorrelated case.
Once a location ruptures, the surrounding area, having a similar compressibility,
is already at a similar fluid pressure and therefore the excess pressure is quickly
redistributed to the edge of this region and new ruptures occur in material with a
higher compressibility (more compliant material). This process results in the “halo”
effect of a central rupture location surrounded by a ring of associated failures (see
Fig. 3.2 center and bottom right images). The final pattern of intact and failed
regions within the fault results in an effective permeability for the fault that is a
nonlinear function of δ . At small to moderate δ , the failed region is complex and
more poorly connected than for the uncorrelated case leading to a minimum value of
the effective permeability. At the largest δ , a dominant, uninterrupted failed region
emerges that maximizes the fault effective permeability.

In almost all applications of CA models and other studies of self-organized
criticality, the material properties are represented as uncorrelated random fields.
This study demonstrates that local rules in a CA model operating on correlated
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properties lead to emergent behavior. This behavior is significantly different from
that seen on the standard uncorrelated fields. The emergent behavior identified here
is the evolution of increasingly complex spatial-temporal patterns of failure within
the fault as exemplified in the right-hand side of Fig. 3.2. As the amount of spatial
correlation increases, the event size distribution changes from a single power law
to a double power law and then back to a single power-law distribution. The slope
for the initial power law in the cases with double power-law behavior is always
shallower than for the case of uncorrelated material properties. In all cases, the
largest events fit a distribution model with exponential tailing.

The simulations done here are for rock compressibility fields with isotropic
spatial correlation. Future simulations will look at the impact of anisotropic
correlation patterns as may result from normal or strike-slip displacement along
the fault. The multivariate Gaussian model adopted here for the random fields is
parametrically and computationally efficient, but other, non-Gaussian, field models
may better represent aspects of observed faults. This study uses a CA model
with several simplifying assumptions to evaluate the impact of material property
correlation on fluid pressure redistribution. Some of those assumptions including
conceptualization of permeability as only being zero or infinite and the closed
boundary conditions should be reevaluated in future studies. Field observations of
earthquake activity in faults with high fluid pressures and microseismic activity at
subsurface injection sites should be able to provide information that can distinguish
between the independent and correlated property field models examined here.
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Chapter 4
Sparsity-Promoting Solution of Subsurface
Flow Model Calibration Inverse Problems

Behnam Jafarpour

Abstract Identification of heterogeneous hydraulic aquifer properties from limited
dynamic flow measurements typically leads to underdetermined nonlinear inverse
problems that can have many solutions, including solutions that are geologically
implausible and fail to predict future performance of the system. The problem
is usually regularized by incorporating implicit or explicit prior information to
stabilize the solution techniques and to obtain plausible solutions. A meaningful
regularization must be informed by the physics of the problem, distinct properties
of the formation under investigation, and other available sources of information
(e.g., outcrop, well logs, and seismic). This chapter proposes sparsity as an intrinsic
property of spatially distributed aquifer hydraulic properties that can be used to
regularize the solution of the related ill-posed inverse problem. Inspired by recent
advances in sparse signal processing, formalized under the compressed sensing
paradigm, proper sparsifying bases are introduced to describe aquifer hydraulic
conductivity distribution. Such descriptions give rise to a sparse reconstruction
formulation of the subsurface flow model calibration inverse problem, which can
be efficiently solved following recent algorithmic developments in sparse signal
processing. The compressed sensing paradigm specifies the conditions under which
unique solutions to underdetermined linear system of equations exist and can be
computed efficiently. Sparsity is a fundamental notion in compressed sensing, and
is often present in many natural images. In particular, sparsity is prevalent in
describing many spatially correlated aquifer properties. The practical implications
of compressed sensing are as far reaching as the solution of underdetermined system
of equations is in science and engineering. This chapter introduces the guidelines set
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forth by sparse reconstruction techniques and the compressed sensing paradigm and
incorporates them to formulate and solve ill-posed groundwater model calibration
inverse problems.

4.1 Groundwater Model Calibration

Development of underground hydrological, environmental, and energy resources
relies on accurate modeling and prediction of fluid flow and transport in these
heterogeneous and anisotropic porous environments. However, understanding sub-
surface physical, chemical, and biological rock properties and the related trans-
port processes is severely complicated by our inability to “see into the earth”.
Determination of rock hydraulic properties and the underlying flow and transport
processes inherently involves significant uncertainty because we can neither observe
nor easily access these properties from the surface (National Research Council
2000; Yeh et al. 2008). Data limitation results in extensive interpolation and
interpretation efforts that lead to the introduction of a significant level of uncertainty
and bias in characterizing subsurface flow property distributions.

To reduce the uncertainty in describing the subsurface flow and transport
properties, it is common to calibrate subsurface models against dynamic perfor-
mance data such as pressure and flow rates. Model calibration is accomplished by
formulating and solving an inverse problem where limited dynamic data is used
to infer a large number of unknown parameters. Since the number of unknowns
to identify is often overwhelmingly greater than the available data, the resulting
inverse problems tend to be severely ill-posed and have non-unique solutions.
In general, however, the true dimensionality of subsurface flow and transport
models is far less than the size of the discretized numerical models used to
describe them. This is attributed to the intrinsic geologic continuity that leads
to extensive spatial correlations in the rock physical property distributions. An
obvious way to improve the solution of ill-posed inverse problems is to collect
more independent data. However, data acquisition is an expensive endeavor that
is limited by economic constraints. In addition to increasing the data, advanced
computational tools may be used to reduce the number of unknown parameters
in the model calibration inverse problem. Several explicit and implicit parameter
reduction (parameterization) techniques are available to perform this. In this chapter,
a novel model calibration approach is proposed based on recent developments in
sparse signal processing and approximation theory, formalized as the compressed
sensing paradigm (Donoho 2006).

4.1.1 Flow Equations and Inverse Modeling Formulation

Mathematical modeling of multiphase fluid flow in porous media is widely used
to quantify and predict fluid displacement patterns in the subsurface environment.
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The general form of the governing equations for two-phase immiscible flow in
porous media can be derived from the mass conservation principle and Darcy’s law
as (Aziz and Settari 1979; Bear and Verruijt 1987)

∇ ·
(

λw

Bw
u(∇Pw − γw∇Z)

)
=

∂
∂ t

(
φ

Sw

Bw

)
+ qw

∇ ·
(

λn

Bn
u(∇Pn − γn∇Z)

)
=

∂
∂ t

(
φ

Sn

Bn

)
+ qn, (4.1)

where subscripts w and n indicate wetting and non-wetting phases, λ represents
the phase mobility, B the volume of a phase as a function of pressure relative to
its volume at standard pressure, u the intrinsic permeability, φ the porosity of the
medium as a function in space, P the phase pressure, γ the phase density, Z the
gravity potential, S the phase saturation, and q sink and source fluxes.

The partial differential equations (PDEs) in (4.1) contain four unknown state
variables, i.e., Pw, Pn, Sw, Sn. For a given set of model inputs, the system is closed
by the following two constitutive equations that account for capillary pressure and
the physical saturation constraint in a fully saturated medium:

Pn −Pw = Pc (Sw)

Sn + Sw = 1. (4.2)

Forward integration of Eqs. (4.1) and (4.2) is used to compute pressure and
saturation solutions in time, as a function of model inputs.

Solutions to (4.1) and (4.2) are only reliable and meaningful when accurate
model inputs are used. Since direct measurement of rock hydraulic properties is
difficult, we frequently need to estimate these parameters by inverting scattered
point measurements and indirect data. An estimate for the unknown parameter
vector u can be obtained by minimizing a suitable objective function, such as

min
u∈RN

J (u) = (dobs − g(u))T C−1
d (dobs − g(u))+Reg(u)

s.t. f(u,x(u),z) = 0. (4.3)

Here, J is the objective function, u denotes the unknown parameters such as
permeability, dobs represents a vector of observed quantities, g(u) is the pre-
dicted observations, Cd refers to the covariance of measurement errors, f is a
constraint vector containing the conservation Eqs. (4.1) and (4.2), x(u) refers to
the dependent state variables, and z represents a vector containing other known
model input parameters. Note that in the above notation, ‖dobs − g(u)‖2

C−1
d

=

(dobs − g(u))T C−1
d (dobs − g(u)), and the term Reg(u) is used to represent a general

regularization term that will be discussed later. A major issue encountered when
solving the resulting inverse problem is the choice of parameterization. The standard
grid-based descriptions for the unknown field u often result in ill-posed inverse



76 B. Jafarpour

problems that have more unknowns than can be uniquely estimated from available
data. As a result, multiple solutions can be found that reproduce the observed
flow and pressure data but provide different predictions of the flow and transport
behavior in the future. In the last decade, however, significant progress has been
made in conditioning numerical groundwater and hydrocarbon reservoir models
to flow and transport data (see Kitanidis and Vomvoris 1983; McLaughlin and
Townley 1996; Carrera et al. 2005; Hill and Tiedeman 2007; Oliver et al. 2008).
Deterministic and stochastic inversion algorithms with varying levels of complexity
have been developed and applied to solve subsurface flow inverse problems. Two
common approaches for mitigating instability and non-uniqueness issues in solving
ill-posed inverse problems are (a) reducing the number of unknown parameters, i.e.,
parameterization (e.g., Jacquard and Jain 1965; Doherty 2003; Gavalas et al. 1976),
and (b) incorporating prior information in the form of constraints, i.e., regularization
(e.g., Tikhonov and Arsenin 1977; Tonkin and Doherty 2005; Hill and Tiedeman
2007; Oliver et al. 2008).

4.1.2 Parameterization and Regularization

Parameterization methods can be broadly classified into spatial and transform-
domain methods. Spatial parameterization methods were introduced to subsurface
inverse modeling as early as 1965 in the form of zonation (Jacquard and Jain 1965)
and have evolved into adaptive multiscale estimation methods (e.g., Chavent and
Bissell 1998; Grimstad et al. 2003; Aanonsen 2008). The general objective of this
approach is to identify spatial regions (zones) in the aquifer model that can be
aggregated and assigned a single constant property value for the inversion purpose.
The main difficulties in implementing zonation are related to the identification
of zones with similar properties and the non-geologic sudden discontinuities
at the boundaries of the identified regions. Transform-domain parameterization
methods reduce the redundancy in grid-based property descriptions by recognizing
that geologic features exhibit strong spatial correlations. Hence, adopting high-
resolution grid-based spatial descriptions for inverse modeling is inefficient since
the goal is to estimate spatially correlated geologic features from low-resolution
flow data. Several transform-domain parameterization techniques have been applied
to subsurface flow and transport inverse problems including principle component
analysis (PCA) (Gavalas et al. 1976), discrete cosine transform (DCT) (Ahmed et al.
1974; Jafarpour and McLaughlin 2009a,b), and discrete wavelet transform (DWT)
(Mallat 2008; Jafarpour et al. 2010; Sahni and Horne 2005). These methods attempt
to provide a compact representation of the parameters to substantially reduce the
number of unknowns in the inverse problem. A key issue in implementing these
techniques is identifying the significant basis components that explain the main
variability in the parameter fields. This issue has been elegantly addressed by the
recent developments in sparse signal processing, which is the central topic of this
chapter.
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Regularization of ill-posed subsurface inverse problems can also be carried out
by constraining the solution to honor explicit prior models, available static data,
and/or some global attributes of the parameter field such as smoothness (e.g.,
Tikhonov and Arsenin 1977; Constable et al. 1987; Tonkin and Doherty 2005). In
general, regularization serves two primary purposes: it (a) stabilizes the solution of
an ill-posed inverse problem and (b) constrains the solution to adequately reproduce
the observed data without generating unjustifiably complex artifacts (Constable
et al. 1987). By using prior information about the parameters, directly or indirectly,
regularization is applied to mathematically improve the behavior of the inverse
modeling objective function and/or implicitly reduce the dimensionality of the
parameter search space. Several regularization methods with varying levels of
sophistication have been applied to subsurface characterization inverse problems
(e.g., Tikhonov and Arsenin 1977; Portniaguine and Zhdanov 1999; Tonkin and
Doherty 2005; Hill and Tiedeman 2007; Oliver et al. 2008). In some cases (Jafarpour
et al. 2010), a combination of parameterization and regularization may prove
more effective as certain solution attributes (e.g., sparsity) may only be realized
and effectively exploited in a properly selected transform domain. An instance
of this combined case is discussed in more detail next. To motivate the use of
sparse reconstruction for model calibration, the fundamental concept and practical
implications of compressed sensing paradigm are briefly introduced first, followed
by a simple illustrative example.

4.2 Sparse Reconstruction and Compressed Sensing

Consider the problem of solving the system of equations ΦΦΦv = u, where ΦΦΦ ∈
R

M×N . In many realistic applications M � N, rendering the problem severely
underdetermined. From classical linear algebra for M < N, this system of equations
does not yield a unique solution. When the solution vector v is known to be
sparse (i.e., many of its components are zero), however, one may hope to find a
unique solution by taking advantage of the knowledge about the solution sparsity.
This situation is illustrated with a simple example in Fig. 4.1. In this figure, an
underdetermined linear system of equations with M = 4 equations and N = 20
unknowns is sketched. In this case, the true solution vector v has only S = 4
nonzero components. Without exact knowledge of its sparsity (i.e., the number
and location of its nonzero elements), v cannot be identified from the available
measurements. As shown on the bottom part of Fig. 4.1, if the sparsity structure
of the solution v is perfectly known in advance, the system can be reduced to
an even-determined M = N = 4 linear system of equations. For many sparse
vectors, an apparently underdetermined problem often may be reduced to an (even-)
overdetermined problem if the sparsity structure is known. However, in reality, exact
a priori knowledge about the sparsity structure in the solution is not available. That
is, while it may be known that a given problem is likely to have sparse solutions,
the exact sparsity structure is usually unknown. When the solution is sufficiently
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Fig. 4.1 Schematic illustration of how knowledge of solution sparsity can lead to finding a unique
solution of underdetermined linear system of equations: a key unknown is the sparsity structure,
which must be estimated along with the value of the nonzero (active) elements

sparse, with increasing number of independent measurements, it is less likely to find
solutions that are sparser than the true solution and that satisfy the measurement
constraints. In the limit, as the number of independent measurements exceeds a
certain threshold, the true solution becomes the sparsest solution that satisfies the
linear measurement equations. Compressed sensing (Donoho 2006) formalizes the
conditions under which unique solutions to sparse underdetermined linear systems
of equations exist and can be computed efficiently. A general approach to finding a
sparse solution to ΦΦΦv = u is to formulate and solve a minimization problem of the
form

(PJ) : min
v

J (v) s.t. u = ΦΦΦv (4.4)

in which J (v) promotes solution sparsity. A good choice for J (v) is the number of
nonzero elements of the solution vector v. This leads to the sparse reconstruction
problem

(P0) : min
v

‖v‖0 s.t. u = ΦΦΦv, (4.5)

where ‖v‖0 counts the number of nonzero components of v. Solving (P0) leads to
a combinatorial problem that requires an exhaustive search over all possible sparse
subsets of v, which is NP-hard (Natarajan 1995). There is a vast literature concerned
with finding a reliable, efficient, and robust solution approach to (P0). It can be
shown (Donoho and Elad 2003) that a solution v with the number of nonzero entries

‖v‖0 <
1
2

(
1+

1
μ (ΦΦΦ)

)
, (4.6)
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where

μ (ΦΦΦ) = min
1≤k, j,≤m,k �= j

∣∣φT
k φ j

∣∣

‖φk‖2

∥∥φ j
∥∥

2

(4.7)

is the mutual coherence of ΦΦΦ and φ j is the jth column of ΦΦΦ, is necessarily the
sparsest solution.

From Eqs. (4.6) and (4.7), the (nearly) orthogonal sensing matrix ΦΦΦ has low
mutual coherence; thus, the solution of �p-norm optimization (p ≤ 1) is equivalent
to that of �0-norm optimization. Examples of sparse sampling matrices with low
mutual coherence that are frequently used in sparse reconstruction literature are
the Gaussian and Bernoulli random matrices. Compressive bases such as DCT and
DWT also have incoherent columns and are examples of possible candidates for
sparse reconstruction.

Efficient approximate solutions known as pursuit algorithms have been devel-
oped to solve (P0). The main practical algorithms are classified as the greedy
algorithms (GA), also known as matching pursuit (MP) (Tropp and Gilbert 2007;
Mallat and Zhang 1993; Couvreur and Bresler 2000), and the convex relaxation
techniques (Santosa and Symes 1986; Chen et al. 1998; Rao and Kreutz-Delgado
2003; Karlovitz 1970; Gorodnitsky and Rao 1997). A greedy strategy for finding a
solution is to avoid the exhaustive combinatorial search by taking locally optimal
steps (Tropp and Gilbert 2007). In this approach, starting with an initially empty
matrix and v0 = 0, iterative construction of a k-term approximation vk is obtained
by maintaining a set of active columns and adding an additional column at each step.
The added column is chosen to maximally reduce the residual �2 error in approxi-
mating u with currently active columns (Tropp and Gilbert 2007). This procedure
is continued until a stopping criterion, usually an error threshold, is reached. The
computational complexity of the above greedy algorithm is significantly better than
an exhaustive search; however, the variants of this method mainly suffer from a lack
of robustness and guaranteed convergence to a sparse solution.

Convex relaxation methods (Chen et al. 1998; Donoho 2006) try to make the
problem more tractable by replacing the highly discontinuous �0-norm with a more
continuous sparsity-promoting penalty function. The �p-norm, i.e., J(v) = ‖v‖p =

(∑N
i=1 |vi|p)

1
p , with p ∈ (0,1], and J(v) = ∑ j v2

j/
(

β 2 + v2
j

)
, with β → 0 (referred

to as compactness constraint), are possible choices that behave similarly to the �p-
norm, for small p values (see Fig. 4.2). When the �p-norm with p ∈ (0,1] is used to
promote sparsity, a popular class of approximate algorithms to find a solution is the
iteratively reweighted least-squares (IRLS) technique (Chartrand and Yin 2008).
Note that although for p < 1 the norm definition is violated, the term �p-norm is
commonly used in the literature.

For p = 1, the problem reduces to a convex optimization problem of the form

(P1) : min
v

‖v‖1 s.t. u = ΦΦΦv, (4.8)

which is widely studied in the literature and recently formalized under compressed
sensing paradigm.
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Fig. 4.2 Behavior of |x|p for different values of p: (a) as p → 0, larger penalties are given to small
values of x (the function is convex for p ≥ 1). (b) Behavior of compactness constraint for different
values of β and as β → 0

For sufficiently sparse solutions when enough measurements are available and
the columns of ΦΦΦ are incoherent, the solution to the convex �1-norm minimization
problem is equivalent to the original problem in (P0). The main advantage of the
above convexification over other approximate solution techniques is mainly related
to the well-established efficient linear programming techniques (such as interior
point method) that can be used to solve the resulting optimization problem (Chen
et al. 1998). Several efficient methods have also been recently introduced for solving
the (P1) problem, including iteratively reweighted least-squares (Daubechies et al.
2004), iterated shrinkage algorithms (Daubechies et al. 2004; Figueiredo and
Nowak 2003; Elad et al. 2007), and step-wise algorithms such as least angle re-
gression (LARS) (Efron et al. 2004). Some of these greedy-type methods have been
applied to the general linear inverse problems in imaging applications (Daubechies
et al. 2004, 2008).

4.2.1 Illustrative Example

Let us now consider M direct observations of a parameter field u with dimension
N = 100. Under matrix transformation ΦΦΦ, the vector v is a S = 10-sparse repre-
sentation of u. Figure 4.3 displays the compressed sensing solutions for different
values of M. As can be verified from this figure, with inadequate observations, the
solutions are sparse, match the observed values perfectly, and have smaller �1-norm
than the reference vector. As M increases, it becomes more difficult to match the
increased number of measurements without increasing the �1-norm. At some value
of M, perfect reconstruction of the reference model is obtained because no solutions
with lower �1-norm can be found to reproduce the observations. Three observations
regarding this example are given as follows. First, replacing �0-norm with �1-
norm introduces a shrinkage property that, under equal observation match quality,
gives preference to solutions with underestimated coefficients. This implies that
the shrinkage property can lead to underestimated solutions in realistic problems
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Fig. 4.3 Compressed sensing solution of a simple underdetermined linear system of equations for
a S = 10-sparse parameter for different values of M; perfect reconstruction is achieved for M = 40;
top row shows the spatial representation of the reference (red) and estimated parameters (black);
the M observed elements are shown with blue dots; bottom row shows the reference (red) and
reconstructed (black) sparse solutions in the transform domain
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where perfect reconstruction is impossible due to observations noise. Second, the
convex nature of the problem implies that the identified solutions in each case
are the global minima. Third, the number of measurements required for perfect
reconstruction depends on the specifics of the problem, including the measurement
matrix and the measured components of the parameters. For Bernoulli and Gaussian
random measurements and sufficiently spare solutions, perfect reconstruction can
be achieved with a very high probability for M > O(S log(N/S)). For the example
shown in Fig. 4.3, the cumulative probabilities of perfect reconstruction over 1,000
trials with different number of random measurements are shown in Fig. 4.4 for both
S = 5 and S = 10. Perfect reconstruction with smaller number of measurements is
possible with lower probability, depending on the measured components.

While compressed sensing provides theoretical guarantees for solving under-
determined linear problems when the solution is sufficiently sparse, such general
conditions cannot be specified for nonlinear subsurface flow model calibration
problems. Nonetheless, the important guidelines derived from the linear case can be
used to facilitate the solution of nonlinear inverse problems. The most remarkable
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feature of the above sparsity-promoting algorithms is the selection property of the
�p-norm (for p ∈ (0,1]) that can identify the significant components of the solution.
This norm can be exploited to regularize nonlinear inverse problems where limited
observations are used to identify, from a large set of components with potentially
many irrelevant elements, a small subset with significant contribution in reproducing
the observations. In the next section, typical subsurface flow model calibration is
reformulated as a selection problem in which the sparsity-promoting nature of the
�p-norm is invoked to find the solution.

4.3 Sparsity-Promoting Groundwater Model Calibration

To formulate groundwater model calibration as a sparse reconstruction problem, a
sparse representation (approximation) of the unknown model parameters must be
available. An important step in this direction is to recognize that spatially correlated
features often have sparse representations in a properly designed transform domain.
In particular, geologic formations are piecewise continuous and exhibit strong
spatial correlations. Hence, a proper choice of decorrelating basis functions can
be applied to remove the spatial correlation, thereby substantially decreasing the
dimension of the parameter field. Such low-dimensional representations give rise
to reduced-order approximations that tend to preserve the most salient features of a
given geologic model while compromising insignificant details.

4.3.1 Sparse Representations of Aquifer Properties

Physical properties of geologic formations exhibit strong spatial correlations. This
strong correlation implies that the underlying physical property maps are amenable
to highly sparse or compact representations in a properly designed decorrelating
transform domain. Preconstructed compression bases and empirically learned
sparsifying transforms can be used to sparsely represent spatially variable aquifer
properties. While generic compressive bases can compactly approximate any given
image (property map), they are not as effective as sparse dictionaries that are
learned from reliable prior information for a particular application, e.g., subsurface
modeling. Sparse geologic dictionaries can be learned from reliable prior training
data and are more effective in capturing the expected variability in the formation of
interest.

4.3.1.1 Preconstructed (Generic) Sparsifying Transforms

Among notable preconstructed compression transforms are the discrete cosine
transform (DCT) that is used in the JPEG image compression (Ahmed et al. 1974;
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Britanak et al. 2006) and the discrete wavelet transforms (DWT) that is the basis
for the JPEG2000 compression standard (Daubechies 1988; Mallat 2008; Jafarpour
2011). In both methods, the property image is decomposed into its frequency
content. For most natural images, after transformation, only a fraction of the basis
components have significant contributions to reconstructing the original image,
implying that most natural images have sparse approximations in the DCT or DWT
domains.

The Discrete Cosine Transform

The DCT is a unitary linear transform that is widely used for image compression
because of its well-known near-optimal energy compaction and signal decorrelation
power. The one-dimensional forward DCT v(k),0 ≤ k ≤ N − 1, of a signal uN of
length N and its inverse transform can be expressed as (Britanak et al. 2006)

v(k) = α(k)
N−1

∑
n=0

u(n)cos

[
π (2n+ 1)k

2N

]
(4.9)

u(n) =
N−1

∑
k=0

α(k)v(k)cos

[
π (2n+ 1)k

2N

]
, (4.10)

where α(k1:N−1) =
√

2α(0) =
√

2
N . The DCT can be interpreted as a real-valued

case of the discrete Fourier transform (DFT) and inherits many of the properties of
the DFT. For an image with strong spatial correlation, the first few low-frequency
modes often adequately explain the main variability in the image. For example,
Fig. 4.5a shows the application of the DCT basis in compressing a channelized
permeability field. The DCT parameterization has recently been applied to inversion
of rock flow properties from flow data (Jafarpour and McLaughlin 2009a,b, 2008).
Extension of the DCT to more realistic three-dimensional problems with irregular
boundaries and unstructured grid systems is discussed in Bhark et al. (2011).

The Wavelet Transform

A wavelet is a function ψ(x) such that an orthonormal basis of wavelets ψ jk(x) =
2− j/2ψ(2− jx − k) can be generated by dilating and translating this function
(Daubechies 1988; Mallat 1989). The idea of the wavelet transform is to represent
any measurable, square-integrable 1-D function f (x) ∈ L2(R) as a limit of succes-
sive approximations, i.e.,

f = ∑
j,k

〈 f ,ψ jk〉ψ jk. (4.11)
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Fig. 4.5 Compression power of the discrete cosine transform (a) and the discrete wavelet
transform (b). In each case, the first row shows the spatial representations, while the second row
displays the transformed coefficients; the first columns are related to the original images, while
the remaining columns show approximations with increasing number of retained coefficients (left
to right). The number on top of the plots in the second row shows the percentage of coefficients
retained in the approximated expansion. The DCT coefficients are usually clustered around the low-
frequency basis components (top-left corner), and the DWT coefficients have space localization
property. Both of these properties will be exploited to incorporate prior information in our sparse
reconstruction framework

Moreover, for j ∈ [1,2, . . .], ∑k∈Z〈 f ,ψ jk〉ψ jk expresses the difference between the
approximations of f with resolutions 2 j and 2 j−1. This leads to a multiresolution
analysis of L2(R) consisting of a ladder of spaces · · · ⊂ V2 ⊂ V1 ⊂ V0 ⊂ V−1 ⊂
V−2 ⊂ ·· · and the existence of a function φ ∈ V0 such that φ0n(x) = φ(x − n)
constitute an orthonormal basis of V0.

Since φ generates a multiresolution analysis, it is called a scaling function. The
wavelet and scaling functions ψ and φ are related by

ψ(x) = ∑
n∈Z

(−1)nc(−n+ 1)φ(2x− n). (4.12)

For computation of the wavelet coefficients, a convolution followed by a “down-
sampling” is performed (Daubechies 1988) 〈 f ,ψ jk〉:

〈 f ,ψ jk〉= ∑
n

g(n− 2k)〈 f ,φ j−1n〉, 〈 f ,φ jk〉= ∑
n

h(n− 2k)〈 f ,φ j−1n〉, (4.13)

where h(n) = c(n)/
√

2,g(n) = (−1)nc(−n+ 1)/
√

2. Similarly, the scaling coeffi-
cients are

〈 f ,φ j−1m〉 = ∑
k

[h(m− 2k)〈 f ,φ jk〉+ g(m− 2k)〈 f ,ψ jk〉]. (4.14)
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Compared to Fourier-type methods, the DWT has the benefit of space-frequency
localization. This property is seen by comparing the first columns in Fig. 4.5a, b,
where, unlike the DCT coefficients, the wavelet coefficients reveal local spatial
information about the underlying features in the original spatial map. In inverse
problems, this localization benefit may be realized when sufficiently high-resolution
data is available to identify and resolve the local features in the solution (Jafarpour
2011). Nonetheless, this spatial localization may be exploited in the inversion to
incorporate prior sparse structures and/or to implement adaptive multiresolution
inversion.

4.3.1.2 Learned Sparse Geologic Dictionaries

As an alternative to generic compression bases, one can construct application-
specific sparse dictionaries from a training database. That is, using a training
database as prior knowledge, one can construct a matrix ΦΦΦ such that the projection
of the features in the training database onto ΦΦΦ becomes sparse. This approach is
widely used in computer vision and object recognition where a training database of
a specific object is available (e.g., face or fingerprint features). A learned dictionary
is more efficient for reconstructing an object that is similar to those in the training
database. In many subsurface characterization applications, such databases can be
readily constructed from prior knowledge using geostatistical simulation (Deutsch
and Journel 1998).

A relatively simple technique for learning sparse dictionaries from a prior
database is the K-SVD algorithm (Kreutz-Delgado et al. 2003; Aharon et al. 2006).
Suppose that a database of images containing L samples ũl=1:L is available. Either
of the following optimization problems can be solved to find a dictionary that yields
a sparse approximation to the samples in the database (Kreutz-Delgado et al. 2003;
Aharon et al. 2006):

min
ΦΦΦ,vl |Ll=1

‖vl‖0 s.t. ‖ũl −ΦΦΦvl‖2 ≤ ε, or (4.15)

min
ΦΦΦ,vl |Ll=1

‖ũl −ΦΦΦvl‖2 s.t. ‖vl‖0 = l0. (4.16)

Although there is no known practical algorithm for efficient solution of these equa-
tions, heuristic methods such as the method of directions (MOD) and K-SVD, have
been shown to perform reasonably well in finding an empirically learned dictionary
(Tropp and Gilbert 2007; Aharon et al. 2006). Unfortunately, the computational
complexity of these methods for large-scale problems is considerable. In image
processing application this issue is addressed through image segmentation to reduce
the dimension of the sparse dictionary.

A main difficulty in using learned dictionaries is that their efficiency depends on
the quality and representativeness of the prior database. Generic compression bases
such as DWT and DCT may be combined with learned sparse dictionaries to gener-
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ate hybrid dictionaries that are robust against errors in the prior model (khaninezhad
and Jafarpour 2012). When the presumed prior information is incorrect, generic
bases with strong compression power are available to approximate the solution
of the inverse problem, an important advantage of the hybrid parameterization
approach.

4.3.1.3 Sparsity for Identification of Geologic Continuity

The selection property of the sparsity-promoting regularization is the fundamental
concept behind sparse inversion algorithms. A sparse reconstruction formulation
of an inverse problem is warranted if one expects the solution to be sparse.
Sparsifying transforms that were discussed above can be used to justify solution
sparsity. Another application in which solution sparsity is expected is when the
prior model of geologic continuity (e.g., variogram model) is unknown or uncertain,
resulting in very diverse datasets, with many irrelevant content. Figure 4.6 illustrates
a scenario where variogram model uncertainty can result in distinctly different
model realizations, to the extent that the continuity in most of the realizations
becomes irrelevant for reconstruction of the true property distribution. The diversity
(uncertainty) in the prior training dataset leads to a geologic dictionary with many
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elements that have little or no contributions in reconstructing the true solution.
As a result, the problem is reduced to selection of very few relevant elements
from a diverse geologic dictionary, which can be achieved by sparsity-promoting
solution methods. Figure 4.7 shows an example diverse geologic dictionary obtained
by treating the variogram model parameters as uncertain random variables. This
geologic dictionary can be used to sparsely represent a property field with a given
continuity structure.

4.3.2 Sparse Model Calibration Formulation

In groundwater model calibration inverse problems, the relation between measur-
able quantities (e.g. flow rate and hydraulic head) and unknown parameters (e.g.,
permeability and porosity) is often nonlinear. While rigorous treatment of the
convergence behavior in nonlinear systems is nontrivial, new problem formulation
can still be developed to exploit sparsity and regularize the solution. Gradient-
based techniques may be used with nonlinear models to search for a sparse solution
by minimizing a sparsity-promoting regularized least-squares objective function as
discussed next.
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4.3.3 Nonlinear Model Calibration Using Sparse
Reconstruction

A sparsity-promoting version of the nonlinear inverse problem in (4.3) can be
expressed as

min
v

J (v) = ‖dobs − g(ΦΦΦv)‖2
C−1

d
+ γ2 ‖v‖p

p , (4.17)

where γ is a regularization parameter, u = ΦΦΦv, and an �p-norm approximation to
the �0-norm is used. Since ΦΦΦ is a known dictionary, one can compactly express the
problem as

min
v

J (v) = ‖dobs − g(v)‖2
C−1

d
+ γ2‖v‖p

p . (4.18)

When needed, the relation u = ΦΦΦv can be used to readily compute the spatial
parameter field (e.g., permeability distribution) u for any instance (iterate) of v.
This formulation of the model calibration inverse problem amounts to finding
sufficiently sparse solutions in the linear expansion functions ΦΦΦ. Gradient-based
optimization methods can be used to solve the above minimization, for example,
by using iteratively reweighted least-squares algorithm (Li and Jafarpour 2010).
However, care must be exercised when solving this minimization problem since
for p ≤ 1, the derivative of the �p-norm sparsity-promoting term is not defined for
zero components of v, a condition that is given the sparse nature of the solution. A
simple practical way to avoid this issue is to place a lower bound on the magnitude
of the components of v, i.e., |vi| ≥ ε .

4.3.4 Example Applications of Sparse Reconstruction

4.3.4.1 Example 1: Travel-Time Tomography

Consider a simple straight-ray cross-well tomography example to demonstrate the
effectiveness of sparse reconstruction for solving ill-posed subsurface characteri-
zation inverse problems. A simple straight-ray cross-well travel-time tomography
setup is shown in Fig. 4.8a. A uniformly spaced system of 10 sources is located
on the left end of the domain, and a symmetric array of 10 receivers is placed
on the right end of the interval. The resulting 100 arrival-time measurements are
used to infer the slowness structure of the medium (see Jafarpour and McLaughlin
2009c for additional details). The true slowness used to generate the synthetic
inversion data is shown in Fig. 4.8b. Denoting the spatial description of the medium
slowness as u and the travel-time tomography observations as dobs, the measurement
equations for this example can be written as dobs100×1 = ΨΨΨ100×2025u2025×1. Given
the compression property of the DCT basis for correlated spatial images (Jafarpour
and McLaughlin 2009a,b), the sparse reconstruction problem can be solved in a
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Fig. 4.8 Travel-time tomography example using compressed sensing reconstruction algorithm
in a 465-dimensional low-frequency DCT basis: (a) experimental setup with 10 transmitters
and 10 receivers resulting in a total of 100 measurements, (b) reference model with large-scale
continuity structure, (c) spatial representation of reconstruction results with increasing role of
sparsity regularization, and (d) reconstructed sparse solution corresponding to the results shown
in (c)

subspace defined by 465 low-frequency DCT basis components. That is, we write
the spatial description of the slowness as u2025×1 =ΩΩΩ2025×465v465×1, where v stands
for the DCT coefficients representing the slowness map and ΩΩΩ2025×465 denotes
the DCT forward transformation matrix (Jafarpour and McLaughlin 2009a,b). For
simplicity, the dimension subscripts are dropped hereafter, and the relation between
the unknown DCT parameters and arrival-time measurements is expressed as y =
ΨΨΨu = ΨΨΨΩΩΩv. Adopting the notation ΦΦΦ = ΨΨΨΩΩΩ, this equation is further simplified to
y = ΦΦΦv. The �1-norm regularization can now be applied to select and combine the
significant DCT components to construct a solution with the best match (in norm-2
sense) to the data. The convex �1 relaxation sparsity-promoting formulation of the
problem can be expressed as

min
v

J (v) = ‖u−ΦΦΦv‖2
2 + γ2‖v‖1 . (4.19)
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In Fig. 4.8c, the spatial representations of the inversion solutions with increasing
(from left to right) value of the regularization parameter, γ , are shown. The
corresponding DCT coefficients are depicted in Fig. 4.8d. The increasing trend
in the regularization parameter (left to right) results in increased sparsity of the
solution and in turn relatively larger data mismatches. It can be observed from
this example that promoting sparsity in the transform-domain appears to selectively
retain the relevant DCT coefficients and estimate their value to match the observed
data. It is this selection property of the sparsity penalty that can be exploited to
trim irrelevant components that may otherwise remain in the solution and generate
artifacts without affecting the data mismatch. When the regularization parameter
is too large, the shrinkage property of �1-norm regularization can lead to solution
underestimation (last column of Fig. 4.8c), which is an unintended by-product of
approximating �0-norm with �1-norm. In our recent publications (Li and Jafarpour
2010; Mohammad-khaninezhad et al. 2012a,b), some of the practical implications of
this approximation are discussed, and modified implementations are introduced to
mitigate this effect. The above example was used to illustrate how generic transform
domain sparse representations of subsurface features can be used to formulate and
solve regularized subsurface characterization inverse problems. Next, solution of
a nonlinear subsurface flow model calibration inverse problem is presented using
geologic dictionaries and a gradient-based minimization method.

4.3.4.2 Example 2: Groundwater Flow Model Calibration

The sparse nonlinear model calibration formulation in Eq. (4.18) is applied to
the top layer of the SPE10 model in this section. The model is two-dimensional
and has 60 × 220 = 13,200 grid blocks. The prior model realizations in this
case are constructed using the sgsim (Deutsch and Journel 1998) algorithm with
highly uncertain variogram model parameters to account for the uncertainty in
anisotropy direction. In this case, 3600 realizations are used to construct K = 500
K-SVD dictionary elements with a sparsity level of S = 50 (10%) (Mohammad-
khaninezhad et al. 2012a,b). This implies that all model realizations that are similar
to those in the prior library are expected to have S-term approximations in this
dictionary. Sample realizations from the prior model are shown in Fig. 4.9a. These
realizations have very different continuity structures with many patterns that are
not relevant to the reference model. The diverse geologic dictionary is used to
reflect the significant level of uncertainty that exists in the direction of continuity
in this example. As discussed in Mohammad-khaninezhad et al. (2012a,b), the
diversity of the dictionary provides additional support for solution sparsity as many
of the dictionary elements will have little or no contribution to the solution. For
this example, a two-phase (oil/water) simulation with 13 water injectors and 2 oil
producers is considered.

A gradient-based iteratively reweighted algorithm is used to solve the opti-
mization problem. The adjoint method is implemented for efficient computation
of the required gradients of the objective function with respect to the permeability
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Fig. 4.9 Sparse reconstruction solution of subsurface flow model calibration inverse problem
using the top layer of the SPE10 model as an example: (a) samples from the initial realizations
with diverse continuity structure, (b) experimental simulation setup with 15 observation points
(wells), (c) reference log-permeability field, and (d) reconstructed log-permeability model

parameters. Since the permeabilities are linearly related to the K-SVD coefficients
(u = ΦΦΦv), the chain rule of differentiation can be conveniently applied to convert
the gradients with respect to the permeability field to the required gradients with
respect to the K-SVD coefficients. For brevity, only the final results are presented
in here; interested readers are referred to Mohammad-khaninezhad et al. (2012a,b)
for additional details about the K-SVD implementation, the problem setup, and
the algorithm used to solve the optimization problem. Figure 4.9b shows the
well configuration for this example, while Fig. 4.9c depicts the reference log-
permeability model. Figure 4.9d displays the log-permeability reconstruction results
from dynamic flow measurements collected every 15 days for a total of one year,
using the ell1-norm sparsity-promoting approach. The solution in this case uses
a small number of relevant elements from the dictionary to identify the large-
scale continuity trends in the reference log-permeability model. The estimated map
captures the general permeability trends in the field, with higher accuracy at the
vicinity of the observation points (well locations). The performance of the proposed
sparsity-promoting model calibration approach is also investigated in several other
examples (Jafarpour and McLaughlin 2009c; Jafarpour et al. 2010; Li and Jafarpour
2010; Mohammad-khaninezhad et al. 2012a,b). The preliminary results suggest that
sparsity-promoting model calibration methods hold significant potential to improve
the solution of ill-posed subsurface model calibration inverse problems. Additional
research is underway to explore some of the important properties of this approach
and its applicability to realistic field-scale problems.
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4.4 Conclusion

A novel subsurface flow model calibration workflow using recent advances in
sparse signal processing, known as compressed sensing, was presented. Since its
introduction, compressed sensing has received increasing attention in several fields
of science and engineering. Here, an overview of the approach and example applica-
tions of it were presented. Sparsity is a rich concept and is ubiquitous in subsurface
applications. Sparsity-promoting solution of model calibration inverse problems
can be achieved by taking advantage of the sparsity in properly designed/selected
transform-domain description of aquifer properties (e.g., in DCT and DWT bases
and in geologically learned sparse dictionaries). The selection property of the
sparsity-promoting inversion implies that the reconstruction results are less sensitive
to presence of inconsistent elements in a prior geologic dictionary since these
elements are typically given a zero coefficient (contribution) and are removed from
the reconstruction. In fact, the diversity of the prior geologic dictionary helps to
realize the sparsity of the solution since many of the existing dictionary elements
are likely to have little or no contributions to the solution. Overall, sparse model
calibration is a promising novel approach for improving the solution of ill-posed
subsurface inverse problems that is likely to attract further research attention to
develop more effective formulations and efficient implementations algorithms.
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Chapter 5
Analytic Modeling of Transient Multilayer Flow

Mark Bakker

Abstract An approach is presented for the semi-analytic simulation of transient
flow in systems consisting of an arbitrary number of layers. Storage in both aquifer
layers and leaky layers is taken into account. Flow in the system is generated by
wells and line-sinks. Wells and line-sinks may be open to an arbitrary number
of layers, which allows for the simulation of multi-aquifer wells, abandoned
wells, partially penetrating streams, and linear fractures that provide a hydraulic
connection between aquifer layers.

5.1 Introduction

The objective of this chapter is to present an analytic element approach for the
simulation of transient groundwater flow in multilayer systems. The approach
allow for the simulation of transient flow in systems consisting of an arbitrary
number of layers. The storage in both aquifer layers and leaky layers is taken
into account. In this chapter, the flow system may contain an arbitrary number
of wells and line-sinks. Wells and line-sinks may be open to an arbitrary number
of layers, which allows for the simulation of multi-aquifer wells, abandoned
wells, partially penetrating streams, and linear fractures that provide a hydraulic
connection between aquifer layers.

Application of an analytic approach has three major benefits over the application
of commonly used grid-based models. First, the model domain does not have to
be discretized areally in, for example, triangles or rectangles. This means that
the accuracy of the solution does not depend on the size of the computational
grid, hydrogeological features do not have to be fitted to the computational grid
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or vice versa, and the hydraulic head may be computed at any location in the
aquifer. Second, the head may be evaluated at any time while the accuracy does not
depend on a selected time step. And third, the model domain is infinite, avoiding
the problem of selecting boundary conditions along the boundaries of the model
domain, which is often difficult in the phreatic aquifer and almost impossible in
deeper aquifers. Meaningful results are obtained only when significant head changes
do not extend beyond hydrogeologic features that are not included in the model.

The approach for transient multilayer modeling presented in this chapter is a
culmination and extension of a number of techniques. It applies the theory for
transient multi-aquifer flow of Hemker and Maas (1987) and uses concepts of
the analytic element method for single aquifer flow (Strack 1989, 2003; Haitjema
1995) and multi-aquifer flow (Bakker and Strack 2003) and the Laplace-transform
analytic element method (Furman and Neuman 2003; Kuhlman and Neuman 2009;
Bakker and Kuhlman 2011). Analytic element solutions are computed in the Laplace
domain. A solution in the physical domain is obtained through numerical Laplace
inversion using the algorithm of De Hoog et al. (1982). The presented approach has
been implemented in the computer program TTim (ttim.googlecode.com). Several
benchmark problems are discussed, and a detailed example of a pumping well near
a meandering river in a multilayer setting is discussed at the end of this chapter.

5.2 Main Approximations

Aquifer systems are conceptualized as consisting of two types of horizontal layers:
aquifer layers and leaky layers. The Dupuit approximation is adopted for flow in
aquifer layers which means that the resistance to flow in the vertical direction
is neglected within an aquifer layer (e.g., Strack 2003), but flow is still three-
dimensional (Strack 1984). Flow in leaky layers is approximated as vertical. Each
layer is approximated as homogeneous. Changes in the transmissivity due to
unconfined conditions are not taken into account, as the transmissivity is constant
within an aquifer layer in both space and time. The presented approach is applicable
to systems that may be approximated as linear. Nonlinear conditions such as streams
that carry water only part of the year are not simulated.

5.3 Previous Work

Several approaches have been developed for the analytic solution of specific
problems of transient flow in multilayer systems (i.e., no time stepping or areal
discretization). Notwithstanding the elegance of many of these solutions, they are
not reviewed here. Only a few general approaches have been published that allow
for the analytic simulation of transient flow to wells in multilayer systems. Hemker
and Maas (1987) and Hemker (1999a,b) present a series of solutions for flow

ttim.googlecode.com
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to wells with different types of boundary conditions using a Laplace-transform
approach. Superposition of these solutions is allowed as long as the boundary
conditions do not interfere with each other. Application of the approach of Hemker
and Maas (1987) for the simulation of abandoned wells (multi-aquifer wells with
a net zero discharge) is presented in Cihan et al. (2011). Veling and Maas (2009)
presented a solution strategy for three-dimensional flow in multilayer systems, i.e.,
the Dupuit approximation is not adopted and the head varies horizontally and
vertically within a layer. In all these papers, the inverse Laplace transform was
carried out numerically using either the Schapery or Stehfest algorithms (Schapery
1962; Stehfest 1970). Nordbotten et al. (2004) presented an analytic approximate
approach for the simulation of pumping wells and abandoned wells in aquifers
that are separated by aquicludes. Strack (2009) presented the generating analytic
element approach, which may also be used for the simulation of transient flow
(Strack 2006). Fitts (2010) developed a multilayer analytic element approach for
the simulation of transient flow that approximates both the areal leakage between
aquifers and the release from storage with radial basis functions but relaxes some
of the approximations adopted in this chapter, including a transmissivity that
varies with the head in unconfined aquifers and horizontal anisotropy. Furman and
Neuman (2003) and Kuhlman and Neuman (2009) developed the Laplace-transform
analytic element method for single-aquifer flow, which allows for the general
simulation of transient flow, and present examples of pumping wells near circular
inhomogeneities. Bakker and Kuhlman (2011) apply the Laplace-transform analytic
element method to simulate transient flow around impermeable walls in a single
aquifer and transient flow between a well and a stream in a two-aquifer system. The
cited papers on the Laplace-transform analytic element method compute the inverse
Laplace transform numerically with the algorithm of De Hoog et al. (1982), which
is also used in this chapter. Some advantages of this algorithm over, for example,
Stehfest and Schapery, are discussed later on in this chapter.

5.4 Mathematical Model

The governing system of differential equations in the Laplace domain is derived
here. The derivation is given in term of potentials and essentially follows the
derivation in terms of heads given in Hemker and Maas (1987). Consider aquifer
layer n sandwiched between leaky layers n on top and n+1 at the bottom (Fig. 5.1).
Three-dimensional Dupuit flow in aquifer layer n is governed by

Tn∇2hn = Sn
∂hn

∂ t
+ qb,n − qt,n+1 (5.1)

where hn(x,y) [L] is the head in aquifer layer n, Tn [L2/T] and Sn [−] are the
transmissivity and storage coefficient of aquifer layer n, qb,n [L/T] is the upward
leakage through the bottom of leaky layer n, qt,n+1 is the upward leakage through
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the top of leaky layer n+1, ∇2 is the two-dimensional horizontal Laplacian, and t is
time. The horizontal components of the specific discharge vector, qx,n and qy,n, may
be obtained with Darcy’s law and do not vary vertically within an aquifer layer:

qx,n =−kn
∂hn

∂x
qy,n =−kn

∂hn

∂y
(5.2)

where kn is the horizontal hydraulic conductivity of layer n. The vertical component
of the specific discharge vector varies linearly within an aquifer layer between qt,n+1

at the bottom and qb,n at the top (see Fig. 5.1).
The discharge vector in layer n, with components Qx,n and Qy,n, is the vertically

integrated horizontal specific discharge vector. Qx,n and Qy,n may be written as

Qx,n = Hnqx,n =−∂φn

∂x
Qy,n = Hnqy,n =−∂φn

∂y
(5.3)

where φn = Tnhn is the discharge potential, Hn is the thickness of aquifer layer n,
and Tn = knHn. Equation (5.1) may now be written as

∇2φn =
1

Dn

∂φn

∂ t
+ qb,n− qt,n+1 (5.4)

where Dn = Tn/Sn is the aquifer diffusivity. Laplace transformation of (5.4) gives

∇2φ̄n =
p

Dn
φ̄n + q̄b,n − q̄t,n+1 (5.5)

where Laplace-transformed variables are indicated with a bar and p is the complex
Laplace-transform parameter.
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Once a solution is obtained for the Laplace-transformed potential, a solution for
the potential in the physical domain is obtained through solution of the Bromwich
contour integral (e.g., Sneddon 1972):

φn = L−1{φ̄n}= 1
2π i

∫ γ+i∞

γ−i∞
φ̄neptdp (5.6)

where γ is chosen to the right of any singularities in φ̄n. Integration of the Bromwich
integral is carried out numerically in the complex plane using the algorithm of
De Hoog et al. (1982).

5.5 Flow Between Aquifer Layers

An equation is derived for the upward flux from aquifer layer n through leaky layer
n to aquifer layer n− 1 by considering one-dimensional vertical flow through leaky
layer n (Fig. 5.1); this derivation closely follows (Hemker and Maas 1987). Flow in
the leaky layer is governed by

∂ 2η
∂ z2 =

σn

κn

∂η
∂ t

(5.7)

where η is the head in leaky layer n and κn [LT−1] and σn [L−1] are the vertical
hydraulic conductivity and specific storage of leaky layer n, respectively. The head
at the top and bottom of the leaky layer are equal to the head in the overlying and
underlying aquifers:

η(z = 0) = hn η(z = Bn) = hn−1 (5.8)

where Bn is the thickness of leaky layer n (see Fig. 5.1). Laplace transformation of
the differential equation and boundary conditions leads to the ordinary differential
equation and boundary conditions:

d2η̄
dz2 = α2

n η̄ (5.9)

η̄(z = 0) = h̄n η̄(z = Bn) = h̄n−1 (5.10)

where αn =
√

pσn/κn. The solution for η̄ is straightforward (e.g., Strack 1989)

η̄ =
h̄n−1 sinh(αnz)+ h̄n sinh[αn(Bn − z)]

sinh(αnBn)
(5.11)

so that
dη̄
dz

=
αnh̄n−1 cosh(αnz)−αnh̄n cosh[αn(Bn − z)]

sinh(αnBn)
(5.12)
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The Laplace-transformed vertical flux q̄t,n at the top of leaky layer n is obtained with
Darcy’s law as

q̄t,n =−κn
dη̄
dz

(z = Bn) =− κnαnh̄n−1

tanh(αnBn)
+

κnαnh̄n

sinh(αnBn)
(5.13)

The following new variables are introduced:

an =
αnBn

tanh(αnBn)
bn =

αnBn

sinh(αnBn)
(5.14)

The flux at the top of leaky layer n (5.13) may now be written as

q̄t,n =
−anh̄n−1 + bnh̄n

cn
(5.15)

where cn = Bn/κn is the resistance to vertical flow of leaky layer n. Similarly, the
flux at the bottom of leaky layer n is

q̄b,n =
−bnh̄n−1 + anh̄n

cn
(5.16)

For the special case that the top of the leaky layer is impermeable, a similar
derivation gives for η̄ and its derivative:

η̄ =
cosh[αn(Bn − z)]

cosh(αnBn)
h̄n (5.17)

dη̄
dz

= −αn sinh[αn(Bn − z)]
cosh(αnBn)

h̄n (5.18)

so that the vertical flux at the bottom of the leaky layer is

q̄b,n = dn
h̄n

cn
(5.19)

where
dn = αnBn tanh(αnBn) (5.20)

When aquifer layers n and n+ 1 are not separated by a leaky layer, the vertical
flux between aquifer layers is computed with a standard finite difference scheme.
The resistance to vertical flow cn between aquifer layers n and n−1 is computed as

cn =
Hn

2kv,n
+

Hn+1

2kv,n+1
(5.21)
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where kv,n and Hn are the vertical hydraulic conductivity and thickness of aquifer
layer n, respectively. The vertical flux between the aquifer layers is now computed as

q̄t,n = q̄b,n =
−h̄n−1 + h̄n

cn
(5.22)

Comparison with (5.15) and (5.16) shows that for this case, an = bn = 1.

5.6 System of Differential Equations

Consider once again the differential equation for aquifer layer n (5.5). Use of (5.15)
and (5.16) for the flux through the bottom and top of the aquifer layer, respectively,
gives

∇2φ̄n =
p

Dn
φ̄n − bn

h̄n−1

cn
+ an

h̄n

cn
+ an+1

h̄n

cn+1
− bn+1

h̄n+1

cn+1
(5.23)

or in terms of the transformed discharge potential

∇2φ̄n =−bnφ̄n−1

cnTn−1
+

(
an

cnTn
+

an+1

cn+1Tn
+

p
Dn

)
φ̄n − bn+1φ̄n+1

cn+1Tn+1
(5.24)

This differential equation is valid for any aquifer layer, except for the top layer
(n = 1) and the bottom layer (n = N).

The differential equation for aquifer layer 1 is obtained by substituting n = 1 into
Eq. (5.24). Three options are considered for the top of aquifer layer 1. First, aquifer
layer 1 may be bounded on top by an impermeable layer in which case the vertical
resistance of leaky layer 1 may be specified as c1 = ∞ and division by ∞ gives zero.
Second, aquifer layer 1 may be covered by a leaky layer, which is bounded on top
by a fixed water level equal to zero, in which case φ̄0 = 0. And third, aquifer layer 1
may be covered by a leaky layer, which is bounded on top by an impermeable layer,
in which case q̄b,1 reduces to (5.19) and the differential equation for aquifer layer 1
becomes

∇2φ̄1 =

(
d

c1T1
+

a2

c2T1
+

p
D1

)
φ̄1 − b2φ̄2

c2T2
(5.25)

Finally, the bottom aquifer layer is considered to be bounded at the bottom by an
impermeable layer (although the other two conditions as applied to the top aquifer
layer may be incorporated as well), which means that cN+1 = ∞ in the differential
equation for aquifer layer N.

The system of differential equations (5.24) for n = 1, . . . ,N may be written as a
matrix differential equation

∇2φ̄φφ = Aφ̄φφ (5.26)
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where φ̄φφ is a vector of which component n is φ̄n. As may be seen from (5.24), matrix
A is a tri-diagonal N by N matrix. For complex Laplace parameters p, A has N
complex eigenvalues wn (n = 1, . . . ,N) and N corresponding complex eigenvectors
vn (n = 1, . . . ,N) and may be factorized as

A = VWV−1 (5.27)

where column n of V is formed by eigenvector vn and W is a diagonal matrix with
corresponding eigenvalue wn on the diagonal of row n. Substitution of (5.27) for A
in (5.26) and multiplication of both sides with V−1 gives

∇2f = Wf (5.28)

where
f = V−1φ̄φφ . (5.29)

Equation (5.28) represents a system of N uncoupled differential equations, which
may be written as

∇2 fn = fn/λ 2
n n = 1, . . . ,N (5.30)

where λ 2
n = 1/wn is introduced for convenience. This differential equation is

referred to as the modified Helmholtz equation. The problem has now been reduced
to the solution of N uncoupled modified Helmholtz equations.

Once a solution for all fn is determined, a solution for φ̄φφ is obtained as a linear
combination

φ̄φφ =
N

∑
n=1

βn fnvn (5.31)

where βn are coefficients that are chosen to meet desired boundary conditions.

5.7 Laplace-Transformed Potential for Multilayer Wells
and Line-sinks

Two types of analytic elements are used in this chapter: wells and line-sinks.
Equations are discussed here for elements with either a unit impulse discharge or
a unit step discharge screened in layer s. The function fn for a well with discharge
Q(t) (positive for taking water out of the aquifer) and radius rw that fulfills (5.30) is
(e.g., Strack 1989)

fn =− Q̄
2π

λnK0(r/λn)

rwK1(rw/λn)
(5.32)

The Laplace transform of a unit impulse discharge at t = 0 is

Q̄ = 1 (5.33)
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while the Laplace transform of a unit step discharge at t = 0 is

Q̄ =
1
p

(5.34)

For a well with an infinitely small radius, (5.32) reduces to

fn =− Q̄
2π

K0(r/λn) (5.35)

The function fn for a line-sink is obtained through integration of the function for a
point sink with infinitely small radius along a line. This integration may be carried
out analytically near the line-sink using an infinite series expansion of K0(r/λn)
(Gusyev and Haitjema 2011), even when λn is complex (Bakker and Kuhlman
2011). Farther away from the line-sink, accurate results are obtained with Gaussian
quadrature integration, as the series expansion does not converge on a computer
with commonly used finite precision arithmetic (Bakker and Kuhlman 2011).

For both wells and line-sinks, the potential in the Laplace domain may be written
as (5.31). The coefficients βn need to be chosen such that the well or line-sink is
screened in the desired layer s by making sure that

Vβββ = es (5.36)

where βββ is a vector of which component n equals βn and es is a unit vector with all
zeros except for component s, which is equal to 1. To show that this does indeed give
the desired result, consider, for example, the behavior of (5.35) for r approaching
zero (Digital Library of Mathematical Functions, 2012, Eq. 10.30.3):

− Q̄
2π

K0(r/λn)∼ Q̄
2π

ln(r) for r → 0 (5.37)

Substitution of (5.37) for fn in (5.31) and application of (5.36) gives

φ̄φφ ∼ Q̄
2π

ln(r)
N

∑
n=1

βnvn =
Q̄
2π

ln(r)es for r → 0 (5.38)

so that near the well φ̄φφ indeed behaves as a well in layer s and not in the other layers.

5.8 Analytic Element Solution

In the previous section, equations were presented for the Laplace-transformed
potential for a well and line-sink with unit impulse or step discharge screened in one
layer. A solution in the Laplace domain is obtained though superposition of these
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potentials. The discharge of each potential is a free parameter. The free parameter
may be specified (e.g., the discharge of a well) or may be computed to meet a certain
boundary condition (e.g., the inflow into a stream segment is computed so that the
head at the center of a stream segment has a certain value). All free parameters
are determined simultaneously as, for example, the inflow of one stream segment
influences the head at another stream segment and vice versa. The construction
of the system of linear equations that needs to be solved to determine the free
parameters of an analytic element model is discussed elsewhere (e.g., Strack 1989).
Alternatively, a solution may be obtained iteratively by computing the parameters of
one element at a time while keeping the parameters of the other elements fixed and
by looping through all elements until the solution converges (Janković and Barnes
1999).

Multilayer wells and line-sinks may be used to model a variety of boundary
conditions, including the following five:

1. A well or stream with a head that is fixed through time.
2. A well or stream with a head that varies through time.
3. Wells or stream segments that are screened in a single layer for which the total

discharge is known.
4. A well that is screened in an arbitrary number of layers and for which only the net

discharge is specified. The discharge of the well in each screened layer needs to
be determined such that the head at the well screen is the same in each screened
layer. For an abandoned well, the net discharge is zero.

5. A linear fault with a negligible resistance to vertical flow that cuts through
multiple aquifer layers. Such a fault may be simulated with a string of line-sinks.
Each line-sink is open to multiple layers and has a zero net discharge.

Once an analytic element solution is obtained in the Laplace domain, it is con-
verted back to the physical domain through numerical integration of the Bromwich
integral (5.6) using the algorithm of De Hoog et al. (1982). One of the major
advantages of using this algorithm is that an accurate solution may be obtained for
one base-10 log cycle of time using a single set of M optimal Laplace parameters
p, where M is commonly between 30 and 40. This means that M analytic element
solutions need to be computed for each log cycle. Once these M solutions are stored,
the potential can be evaluated for any time within the log cycle. It is pointed out
that this is a major benefit of the De Hoog et al. algorithm. Most other commonly
used algorithms, including Stehfest and Schapery, require a solution in the Laplace
domain for a different set of p values for each time t, although Schapery only uses
1 real value of p and Stehfest uses on the order of 10–15 real p values.

Stepwise variation of the specified discharge or head of an element through time
is simulated using superposition. It is noted that the function fn for flow to a well
(5.35) may be evaluated for any Laplace-transformed discharge Q̄. However, back
transformation for a step function that starts at an arbitrary time t0 is difficult for
most if not all existing algorithms for inverse Laplace transformations, including
the ones mentioned in this chapter.
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Superposition through time is fast, however, when the De Hoog et al. algorithm
is used. The Laplace-transform solution needs to be computed for a few log
cycles after which superposition through time only requires the repeated back
transformation of a different linear combination of the Laplace-transform solution.

5.9 Benchmarking

The presented approach has been implemented in the free and open-source computer
program TTim, which is written in Python using the packages NumPy and SciPy
(Oliphant 2007; Pérez et al. 2011), among others. Some computationally demanding
functions are written in FORTRAN and compiled into Python extensions using f2py.
The design of TTim is based on the object-oriented design for analytic element
models developed by Bakker and Kelson (2009).

Implementation of transient multilayer wells in TTim was benchmarked against
results from MLU Lite, the free two-layer version of the commercial MLU code
(www.microfem.com/products/mlu.html), which is an implementation of the papers
by Hemker referred to earlier. Single layer and multilayer well solutions were also
benchmarked against numerical solutions (Louwyck et al. 2011). The line-sink
solution has been benchmarked against a row of wells and against a high-resolution
numerical solution obtained with MODFLOW (Harbaugh 2005). These benchmarks
are presented in the TTim manual (Bakker 2010). Two benchmark problems are
presented here. First, TTim is benchmarked against a solution for transient three-
dimensional flow in an unconfined aquifer by Neuman (1972), which shows the
delayed response of the water table. Second, TTim is benchmarked against an
analytic solution for periodic pumping in a multi-aquifer system, which tests the
capabilities of TTim for wells with a time-varying discharge in aquifer-aquitard
systems.

5.10 Benchmark Against Pumping Well in an Unconfined
Aquifer

Consider transient three-dimensional flow to a pumping well in an unconfined
aquifer. The well penetrates the aquifer fully, and the inflow is uniform over the
thickness of the aquifer. An analytical solution was presented by Neuman (1972),
who approximates the aquifer thickness as constant, which is reasonable when the
drawdown is small compared to the saturated thickness. Phreatic storage is taken
into account through the boundary condition at the top of the aquifer.

Neuman’s problem is solved with TTim by also using a constant transmissivity.
An unconfined aquifer is divided into ten model layers each with a thickness of
1 m, a hydraulic conductivity of 1 m/d, and elastic storage. A thin eleventh layer of

www.microfem.com/products/mlu.html
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Fig. 5.2 Dimensionless drawdown vs. dimensionless time at one aquifer thickness from a well in
an unconfined aquifer. σ = Selastic/Sphreatic. Black lines are copied from Fig. 2 of Neuman (1972),
while the crosses are computed with TTim. The dashed line is for the case σ = 10−3 when the well
drawdown is uniform rather than the inflow

1 cm thickness is added on top of the aquifer and has phreatic storage S = 0.1. Five
different values of the elastic storage coefficient are considered (see Fig. 5.2). The
ratio of elastic and phreatic storage is called σ .

In the TTim model, one well is screened in layers 2–11. The discharge is specified
for each layer to be 1 m3/d for a total of 10 m3/d. This facilitates comparison
with the solution of Neuman, who specifies a uniform inflow along the well face.
A comparison between the TTim solution and the Neuman solution is made for
the curves of Fig. 2 in Neuman (1972). This graph (shown in Fig. 5.2) shows
dimensionless drawdown vs. dimensionless time, both on a log scale, at the bottom
of the aquifer at a distance of one aquifer thickness from the well for an isotropic
aquifer. The effect of the delayed response of the water table is clearly visible in
Fig. 5.2, but it is noted that this effect is much less pronounced when the curves are
plotted on a linear scale rather than a log scale. The curves represent different values
of σ . The crosses in Fig. 5.2 represent the drawdown computed with TTim in the
bottom layer of the model; they compare well to the Neuman solution. The dashed
line is for the case that σ = 10−3 when the well drawdown is uniform (computed
with TTim) and only differs slightly from the uniform inflow case. The difference
between uniform head and uniform inflow may be larger for partially penetrating
wells, especially near the well.
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5.11 Benchmark Against Periodic Pumping
in a Multi-aquifer System

Consider periodic pumping in a system of three aquifers separated by two leaky
layers (aquitards). All aquifer layers are 10 m thick and all leaky layers are 2 m thick.
Aquifer and leaky layer properties are given in Table 5.11; the storage coefficient
of the leaky layer is set to zero to facilitate comparison with an exact solution. A
well is screened in aquifer 1 and has a discharge that varies periodically on a daily
basis as

Q = 1,000cos(2πt) (5.39)

In TTim, each day is divided into 100 equal intervals with constant discharge. The
head variation computed with TTim at a distance of five aquifer thicknesses from
the well is shown by the solid line in Fig. 5.3; the largest amplitude represents
aquifer 1, while the smallest amplitude represents aquifer 3. The exact solution for
this problem is obtained through application of matrix functions, as described by
Maas (1986), and is shown with dashed lines in Fig. 5.3. The exact solution is for
a well that has been pumping with a periodic discharge forever, while the well in
TTim starts pumping at time t = 0. Within a day, the effect of the different initial
conditions is negated and TTim matches the exact periodic solution closely.

Table 5.1 Aquifer data for
periodic pumping benchmark

Layer T (m2/d) Ss (m−1) c (d)

Leaky layer 1 – 0 ∞
Aquifer layer 1 200 1e-4 –
Leaky layer 2 – 0 100
Aquifer layer 2 100 1e-4 –
Leaky layer 3 – 0 200
Aquifer layer 3 100 1e-4 –

Fig. 5.3 Head vs. time at five
aquifer thicknesses from
periodic well. TTim solution
(solid) vs. exact solution
(dash). TTim well starts at
t = 0. Largest amplitude is
aquifer 1; smallest amplitude
is aquifer 3
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Fig. 5.4 Head vs. time in all
three aquifers at
(x,y) = (−50,0); drawdown
decreases with depth (upper
graph). Head along y = 0 at
t = 200 days for all three
aquifers; drawdown decreases
with depth. Dots represent
same case but with properly
sealed abandoned well (lower
graph)

The same aquifer system is used to demonstrate the effect of an abandoned multi-
aquifer well near a pumping well with a variable discharge. The pumping well is
located at (x,y) = (0,0) in layer 1. The discharge is 100 m3/d for 100 days, followed
by 100 days with a discharge of 200 m3/d, after which the pump is turned off. An
abandoned multi-aquifer well with a radius of 0.1 m is located at (x,y) = (50,0)
and is screened in all three aquifers. The head in the aquifer at (x,y) = (−50,0) is
shown as a function of time in the upper graph of Fig. 5.4; the drawdown is smaller
in deeper aquifers. In the lower graph of Fig. 5.4, the head is shown along the line
y= 0 at the end of pumping (t = 200 days). The drawdown is again smaller in deeper
aquifers. Note that the head is equal in all three aquifers in the abandoned well at
(x,y) = (50,0). The dotted line represents the same situation for the case that the
abandoned well is properly sealed.

5.12 Drawdown and Stream Depletion for a Well Pumping
near a Meandering River

The hypothetical problem of a pumping well near a meandering river is solved to
demonstrate some of the capabilities of the method (Fig. 5.5). Consider a stratified
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river
h=0m

well
Q=100 m3=d

k=2m/d S=0:11

k=1m/d S=0:00022

k=5m/d S=0:00043

k=10m/d S=0:00044

k=4m/d S=0:00025

×A

well

Fig. 5.5 A pumping well and an observation well near a meandering river (left). A cross section
along the dotted line (right)

aquifer that consists of 5 layers, each with a thickness of 2 m. The aquifer properties
of the five layers are given in Fig. 5.5. The top layer contains the phreatic surface and
has phreatic storage. The vertical hydraulic conductivity is 10% of the horizontal
one. The river is narrow and penetrates the top 4 m of the aquifer. The water level in
the river is constant, and there is no leaky bed, which means that along the river the
head in aquifer layers 1 and 2 equals the river level. The well is screened from 4 to
8 m below the top. The well starts pumping with a discharge 100 m3/d at time t = 0.
The head is uniform along the well bore and the radius of the well is 0.3 m.

The change of the head in the aquifer caused by the pumping well is simulated.
The aquifer is discretized vertically in 5 model layers. The river is modeled with
25 line-sinks that are screened in layers 1 and 2. The modeled part of the river is
continued (straight) for another 300 m south and 350 m north of the section shown
in Fig. 5.5. The outflow is uniform along each line-sink but varies with time such
that the head is zero at the centers of the line-sinks at all times. The well is screened
in layers 3 and 4, and the discharge in each layer varies such that the head is the
same at the well screen in both layers at all times.

The head change at point A is shown vs. time for all layers in Fig. 5.6. The
horizontal axis represents the time since pumping started and has a log scale. The
delayed response of the water table is clearly visible. The head decrease in layers
2–5 seems to plateau after about an hour, but the head decrease continues again after
the water table at point A starts to decrease. It seems that a steady-state situation is
approached after 1 year of pumping.
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Fig. 5.6 Head vs. time at
point A

Fig. 5.7 Head contours in layer 1 (left) and layer 3 (right) after 100 days of pumping

Contour plots of the head in layers 1 and 3 after 100 days of pumping are
shown in Fig. 5.7. In the left contour plot of Fig. 5.7, it may be seen that there is
drawdown on both sides of the river in layer 1. The maximum drawdown in layer 1
is approximately 55 cm and occurs slightly southeast of the well rather than exactly
above the well. The maximum drawdown in layer 1 on the opposite side of the river
is slightly more than 20 cm. The drawdown in layer 3 is shown in the right contour
plot of Fig. 5.7 and extends well beyond the river, which is screened in layers 1 and
2 only. The drawdown at the well is 2.5 m after 100 days of pumping. Head contours
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Fig. 5.8 Head contours in cross-section along part of the dotted line shown in Fig. 5.5 after 100
days of pumping. Horizontal and vertical scale are equal. Layer discretization is shown on left and
right axes

Fig. 5.9 Stream depletion vs.
time

after 100 days of pumping in a cross-sectional view along part of the dotted line in
Fig. 5.5 are shown in Fig. 5.8. The lines are created by contouring the heads at the
centers of the aquifer layers. The contour lines clearly show the drawdown below
the river and around the well screen.

The stream depletion, the induced recharge from the modeled river segment into
the aquifer, is shown vs. time in Fig. 5.9. In addition to the total river recharge, the
river recharge into layers 1 and 2 is shown separately. It takes approximately 6 days
until the recharge from the river segment has reached 50% of the well discharge
and 55 days until it has reached 80%. In the absence of any other aquifer features,
it is expected that the induced recharge will eventually be equal to the discharge
of the well. The induced recharge has only reached 96% of the well discharge
after 100 years of pumping. It needs to be realized, however, that only part of the
river is simulated in the model (the north–south length is 900 m). At the end of the
simulation, the first and last line-sink of the string start to supply water to the aquifer.
The remaining 4% of water is supplied by parts of the river or other hydrogeologic
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features that are not in the model and is supplied in TTim through the release of
storage. The omission of these distant features has a minor effect on the solution at
later time only.

5.13 Conclusions and Future Direction

An analytic element approach was presented for the modeling of transient flow
in multilayer systems. The approach is based on the Laplace-transform analytic
element method and may be applied to simulate transient flow in multilayer systems
consisting of an arbitrary number of layers while taking storage within both aquifer
layers and leaky layers into account. Analytic element solutions are computed in the
Laplace domain while the solution in the physical domain is obtained numerically
through application of the algorithm by De Hoog et al. (1982). This algorithm
may be applied to obtain an accurate solution for one log cycle of time using
a single set of ∼ 40 complex Laplace parameters, which allows for the efficient
computation of analytic element solutions including boundary conditions that vary
stepwise through time. Benchmark problems were presented for three-dimensional
flow to a fully penetrating well in an unconfined aquifer and for a periodic well in a
three-aquifer system. An example was shown for a multilayer well near a partially
penetrating meandering stream. The example consists of five aquifer layers with
different properties. The delayed response of the water table was simulated and the
stream depletion was computed. The presented approach is implemented in the free
and open-source computer program TTim (ttim.googlecode.com).

Application of the approach will benefit from development of analytic elements
for impermeable or leaky walls, infiltration areas, inhomogeneities, lakes or other
surface water features with a leaky bed, and vertical faults with different types of
boundary conditions. These elements have all been developed for steady multi-
aquifer flow (Bakker 2006, 2007; Anderson and Bakker 2008) and may be modified
for transient flow. Application of an integrated flux boundary condition, using
the approach of Strack (2009), and applied by Gusyev and Haitjema (2011) may
improve performance of some of these new elements.

Extension of the presented approach to nonlinear systems such as ephemeral
streams, drains, or aquifer layers that dry up may not be feasible. Some of these
problems may be simulated semi-analytically using, for example, the approach of
Strack (2006) or Fitts (2010). Strack (2009) presented an approach that allows for
analytic element modeling of flow in aquifers with continuously varying properties,
which has the potential to rival grid-based methods where a cell-by-cell variation of
aquifer properties is trivial.

Analytic element modeling of transient multi-aquifer flow is attractive, as
the input files are short and easy, and no grid, time-stepping, or closed model
boundaries are needed. Analytic element models are inherently parallel, so that
models with large numbers of analytic elements may be run on computer clusters

ttim.googlecode.com
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(Janković et al. 2006). The one-to-one correspondence between analytic elements
and hydrogeologic features naturally allow for step-wise modeling to gain insight in
the flow system.
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Janković I, Fiori A, Dagan G (2006) Modeling flow and transport in highly heterogeneous
three-dimensional aquifers: Ergodicity, gaussianity, and anomalous behavior—1. Conceptual
issues and numerical simulations. Water Resour Res 42(6):1–9

Kuhlman KL, Neuman SP (2009) Laplace-transform analytic-element method for transient porous-
media flow. J Eng Math 64(2):113–130

Louwyck A, Vandenbohede A, Bakker M, Lebbe L (2011) Simulation of axi-symmetric flow
towards wells: A finite-difference approach. Comput Geosci 44:136–145

Maas C (1986) The use of matrix differential calculus in problems of multiple-aquifer flow.
J Hydrol 88:43–67

Neuman SP (1972) Theory of flow in unconfined aquifers considering delayed response of the
water table. Water Resour Res 8(4):1031–1045

Nordbotten J, Celia MA, Bachu S (2004) Analytical solutions for leakage rates through abandoned
wells. Water Resour Res 40(4):1–10

Oliphant TE (2007) Python for scientific computing. Comput Sci Eng 9(3):10–20
Pérez F, Granger BE, Hunter JD (2011) Python: an ecosystem for scientific computing. Comput

Sci Eng 13(2):13–21
Schapery RA (1962) Approximate methods of transform inversion for viscoelastic stress analysis.

Proc 4th U.S. Natl Congr Appl Mech 2:1075–1085
Sneddon IN (1972) The use of integral transforms. McGraw-Hill, New York
Stehfest H (1970) Algorithm 368, numerical inversion of Laplace transforms. Comm ACM

13(1):47–49
Strack ODL (1984) Three-dimensional streamlines in dupuit-forchheimer models. Water Resour

Res 20(7):812–822
Strack ODL (1989) Groundwater mechanics. Prentice Hall, Englewood Cliffs, NJ
Strack ODL (2003) Theory and applications of the analytic element method. Rev Geophys 41(2):

1–16
Strack ODL (2006) The development of new analytic elements for transient flow and multiaquifer

flow. Ground Water 44(1):91–98
Strack ODL (2009) The generating analytic element approach with application to the modified

Helmholtz equation. J Eng Math 64(2):163–191
Veling EJM, Maas C (2009) Strategy for solving semi-analytically three-dimensional transient flow

in a coupled n-layer aquifer system. J Eng Math 64(2):145–161



Chapter 6
Tortuosity and Archie’s Law

Yuan Liu and Peter K. Kitanidis

Abstract Despite the popularity of Archie’s Law, parameterizing bulk electrical
conductivity as a power-law function of porosity seems to lack support from first
principles. In this chapter, we renew the discussion on improving the way to upscale
electrical current in porous media. We notice that in a solute diffusion problem
(without advection), which is mathematically equivalent to the electrical current
problem at the pore scale, bulk diffusivity is upscaled to be a linear function
of porosity. The paradox of this upscaling problem results from the difficulty in
quantifying the effects of the twisted and windings paths of transport in porous
media, and from the ambiguous correlation between tortuosity and porosity. We
argue that tortuosity is not well defined at the microscale; it is a macroscopic
property. We show that the intuitive definition of tortuosity from an effective
length is not a fruitful approach in terms of rigorous quantitative analysis, even
for simple tubes with non-uniform cross-sectional area. Moreover, even though
empirical relationships between tortuosity and porosity widely exist in the literature,
our numerical study of electrical current in 3-D porous media demonstrates that
tortuosity does not have to exhibit intrinsic correlation with porosity. Furthermore,
we show that as a macroscopic parameter to capture the overall impediment that
soil grains have on solute diffusion or electric current, the tortuosity is a tensorial
property (i.e., directionally dependent), and cannot be predicted from porosity.

6.1 Introduction

The electrical resistivity log is widely used to estimate the characteristics of porous
media (Archie 1942; Dalla et al. 2004). The most extensively applied relationship
to interpret electrical resistivity in terms of porosity or moisture content is Archie’s
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Law (Archie 1942). For a fully saturated porous block, Archie’s Law can be
written as

Rb = Rwθ−m, (6.1)

where Rb is the electrical resistivity of the block (Ω·m), Rw is the resistivity of the
aqueous phase (Ω·m), θ is the porosity (−), and m is known as the cementation
exponent (−). Here, Archie introduced the formation resistivity factor (−) as

F =
Rb

Rw
= θ−m. (6.2)

The cementation exponent m is obtained as the slope of the F − θ plot in a log-
log plot. Typical values of m range from 1.3 to 2.0 (Archie 1942; Haro 2006). A
significant future of transport in a porous medium, other than in a free open space,
is that a particle should follow a longer and twisted path rather than a straight
line, because of the obstruction caused by soil grains. To accommodate for this
tortuous property of a porous medium, Archie’s Law was later generalized to include
tortuosity as (e.g., Bussian 1982)

F =
Rb

Rw
=

a
θ m , (6.3)

where a is the tortuosity (−). Although widely applied, Archie’s Law is generally
treated as an empirical law. Many studies have tried to explore the physical basis
of the above relationship and the physical meaning of a and m (Schwartz 1987;
Ehrlich et al. 1991; Herrick 1994; Shang et al. 2003; Haro 2006). However, beyond
the recognition that a represents the elongation of flow paths and m is affected by
porous medium cementation, there is no general agreement on how to quantify these
two parameters other than fitting the F − θ plot of data. On the other hand, solute
diffusion studies (solute transport in porous media without advection, which we
call pure diffusion in this chapter) are mathematically equivalent to the electrical
current problem at the pore scale, generally describe macroscopic diffusion coef-
ficient without applying a cementation exponent. It appears paradoxical that the
macroscopic diffusion coefficient or electrical conductivity can be parameterized as
either a linear function or a power-law function of the porosity. The key point to this
problem is tortuosity. Despite its wide application in flow and transport problems
in porous media, tortuosity is not a well-defined concept at the microscale. Even if
the geometry of a porous medium is described in full detail, the tortuosity cannot be
calculated directly from the geometrical information without fully accounting for
the equations of transport. Therefore, understanding the physics and complexity of
tortuosity is a significant step to solve the parameterization paradox.

This study renews the discussion on the parameterization of macroscopic
electrical conductivity and the definition of tortuosity. From the literature, we
recognize that the paradox of parameterizing Archie’s Law is due to the difficulty
in quantifying the tortuosity and an ambiguous correlation between the tortuosity
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and porosity. Even though the tortuous effect of porous media is easily observed
and tortuosity is widely applied to account for the obstruction caused by soil
grains, the essence of what tortuosity is and how it behaves is not well understood.
In this chapter, we discuss how to better define tortuosity and the limitation of
its intuitive definition from the concept of an effective path length. Based on
numerical simulation of electrical current in three-dimensional porous media, we
investigate the properties of tortuosity in different pore structures and carefully
examine whether tortuosity is correlated to porosity or not. The results improve
the understanding of the complexity of tortuosity in both isotropic and anisotropic
porous media.

6.2 Governing Equations of Pure Diffusion and Electrical
Current Problems

Despite different parameterizations at the macroscale, pure diffusion (i.e., molecular
diffusion in the absence of advection) and electrical current in porous media are
described by the same mathematical expressions at the microscale. When soil grains
are not conductive, steady-state electrical current follows the governing equation,
derived from Ohm’s Law:

∇ · (σw∇V ) = 0, (6.4)

where V is the electrical potential (V) and σw is the electrical conductivity of the
aqueous phase (S/m), σw = 1/Rw.

For a pure diffusion problem under steady conditions, the governing equation for
solute concentration derived from Fick’s Law is

∇ · (Dw∇c) = 0, (6.5)

where c is solute concentration of the aqueous phase (mol/m3) and Dw is the
molecular diffusion coefficient (m2/s). In a solute diffusion problem, there is
typically no flux through soil grains; this is not an essential assumption in the
electrical current problem. However, to keep them equivalent, we focus on the
electrical current through a porous medium with nonconductive soil grains.

The electrical potential V in (6.4) is analogous to the concentration c in
the diffusion problem, and the electrical conductivity σw is analogous to the
molecular diffusion coefficient Dw. Archie’s Law incorporates both the tortuosity
and cementation exponent, but the macroscopic diffusion coefficient is generally
expressed as (Delgado 2005)

Db =
θ
τ

Dw, (6.6)

where Db is the macroscopic diffusion coefficient of the block (m2/s) and τ is the
tortuosity (−) when Db is linearly dependent on θ . Instead of fitting two parameters
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in Archie’s Law, (6.6) considers the reduction of available space through the
porosity θ , which can be directly measured for a porous medium, and uses τ as the
only additional parameter to account for all the other effects that cannot be directly
determined from the geometry. Compared to the difficulty of quantifying a and m,
making the tortuosity τ the only fitting parameter is physically straightforward, and
also not necessarily less accurate than Archie’s Law.

In practical applications, both (6.3) and (6.6) can be used to interpret field
and experimental data. However, because the tortuosity and cementation exponent
cannot be independently determined without using measured Db or σb, these two
parameters cannot avoid being empirical fitting parameters. A possible solution is
to define tortuosity at the microscale, so pore-scale models can be used to investigate
whether the macroscopic electrical conductivity is a linear function or a power-law
function of porosity. In the next section, we will revisit the definition of tortuosity
at the microscale and try to make it more than a macroscopic fitting parameter.

6.3 Quantification of Tortuosity

The quantification of tortuous effects in porous media has not yet been satisfactorily
resolved. Intuitively, the tortuosity is defined as the ratio of the effective length of the
tortuous paths, which particles follow at the pore scale, to the straight-line distance
of the ends (e.g., Bear 1972),

τ = Le/L, (6.7)

where Le is the effective length of the flow path (m) and L is the straight-line distance
between the two ends (m). Sometimes, tortuosity is also defined as (Bear 1972)

τ = (Le/L)2. (6.8)

However, the concept of effective length is not clearly defined. Yu and Li (2004)
and Yun et al. (2005) calculated Le as the average length of different types of
streamlines in particular pore-scale geometries. In reality, the geometry of a porous
medium is more complicated, and the real tortuosity is not necessarily close to the
one calculated from a simple geometry. In addition, although Yu and Li (2004) and
Yun et al. (2005) took an arithmetic mean of different streamlines, Koponen et al.
(1996) also proposed a weighted average by fluid velocity.

We will focus on a simple case where the pore space can be treated as a set of
parallel streamtubes. We explore the meaning of effective length and its connection
to tortuosity. We study electrical current in porous media with nonconductive
soil grains; the pure diffusion problem is mathematically equivalent. In the ith
streamtube, the electrical current is driven by a potential energy loss:

fi =
σiAi

Lei
ΔV, (6.9)
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where fi is the electrical current (A) through the ith streamtube, σi is the electrical
conductivity (S/m) of the aqueous phase, Ai is the cross-sectional area (m2), ΔV
is the drop in electrical potential (V), and Lei is the curve length of the ith
streamtube (m). Since each streamtube contains the same fluid, σi’s are equal to the
electrical conductivity of the aqueous phase, σw. At the macroscale, a bulk electrical
conductivity is found so that the total electrical current is

f = ∑
i

fi =
σbA

L
ΔV, (6.10)

where A is the cross-sectional area of the block (m2) and σb is the electrical
conductivity of the block (S/m). To simplify (6.9), the pore space is subdivided
into streamtubes with equivalent cross-sectional area, i.e., Ai =

Ae
n , where Ae is

the effective cross-sectional area and n is the total number of the streamtubes.
Substituting (6.9) into (6.10), we obtain the bulk electrical conductivity

σb

σw
=

Ae

A
L
n ∑

i

1
Lei

. (6.11)

If the effective cross-sectional area can be simply recognized as the void area (i.e.,
Ae = Aθ ), (6.11) becomes

σb

σw
=

θ
τ
, (6.12)

which is the same form as (6.6). The tortuosity τ is intuitively defined as (6.7), with
the effective path length calculated as a harmonic mean:

Le =
n

∑
i

1
Lei

. (6.13)

Nevertheless, when the effective cross-sectional area Ae is smaller than Aθ due
to the existence of pore throats and dead-end pores, (6.13) is no longer applicable.
We assume that

Ae = ηAθ , (6.14)

where η is smaller than 1 and represents the ratio of the effective cross-sectional
area to the total void area (−). Therefore, (6.12) is valid only when the tortuosity is
adjusted with η as

τ =
η

L
n ∑

i

1
Lei

. (6.15)

In this chapter, we study η in tubes with variable width, as shown in Fig. 6.1. The
straight-line distance between the ends is 2.1×10−3 m. The size of a pore throat can
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Fig. 6.1 Tube with variable
width (d1 is the smallest
width, and d2 is the largest
width of the tube)

0.25 0.5 0.75 1
0.8

0.9

1

 (−
)

(−)

Fig. 6.2 The effect of pore
throat characteristic δ on
effective cross-sectional area
(δ = d1/d2, see Fig. 6.1; η is
the ratio of the effective
cross-sectional area to the
total void area, defined in
(6.16))

be quantified as the ratio of the smallest width d1 and the largest width d2, δ = d1/d2

(−), where d1 = 1×10−4 m. With a constant electrical potential difference between
the inlet and outlet boundaries, the electrical density field is solved via COMSOL
Multiphysics 4.2a (a commercial finite element code). The streamlines of electrical
current can be obtained to calculate the effective length Le via (6.13), which then
allows the calculation of η from the electrical current as

η =
f Le

ΔVσw
· 1

d̄
, (6.16)

where d̄ is the average width of the tube (m) and is calculated as d̄ =
∫ Le

0 d dl
Le

.
Fig. 6.2 demonstrates the change of η under the pore throat effect. When the width
of the tube is uniform (δ = 1), the effective cross-sectional width of the tube is
equal to d̄ (i.e., η = 1), and the intuitive definition of the tortuosity is valid with the
effective length defined as the harmonic mean. However, when the width of the tube
is nonuniform, the tortuosity with the intuitive definition can no longer capture the
macroscopic sinuous effect. In this case, the adjusted definition as (6.15) is applied.
When the effect of pore throats becomes significant, η declines nonlinearly as δ
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decreases. In the previous work of Adisoemarta et al. (2000), where the tortuosity
is not adjusted to account for the effect of pore throats, a cementation exponent
(m >1) appears to introduce an effective cross-sectional area Ae = Aθ m < Aθ
(θ <1). However, there is no physical basis to support the power-law dependence
on porosity.

Above all, the intuitive definition of tortuosity as the ratio of the effective
length to the straight-line distance comes from the analysis in tubes with uniform
width. However, additional adjustment is necessary for more complex geometries.
Practically, it is impossible to calculate η or the tortuosity directly from the
geometry of a porous medium, even for a structure as simple as a width-varying
tube. In real porous media, streamlines are twisted with complex paths, and the
total cross-sectional area can vary dramatically. Under this complexity, neither
the effective length nor the effective cross-sectional area can be determined from
the geometry. Moreover, some parameters, although traditionally considered as
intrinsic properties, are dependent on particular transport processes. Neuman (2005)
concluded that advective porosity, which relates advective velocity to Darcy flux, is
directionally dependent and smaller than the interconnected porosity as a result of
incomplete mixing. Similarly, tortuosity is not only a function of geometry, because
particle paths depend on a particular transport problem (Pisani 2011; Valdes-Parada
et al. 2010). Overall, defining tortuosity at the microscale is difficult and vague.
It is better to treat the tortuosity as a macroscopic correction coefficient, which not
only accounts for the elongation of paths but also the effects of cementation and
geometrical complexity in porous media. Macroscopically, it can be calculated from
the bulk electrical conductivity as

τ =
θ

σb/σw
. (6.17)

6.4 The Correlation Between Tortuosity and Porosity

In this section, we further explore the properties of the tortuosity as a macroscopic
parameter, especially its correlation with porosity. Since porosity is a well-defined
concept and can be measured, in practical applications tortuosity is often calculated
from empirical relationships with porosity. For example, the appearance of a power-
law relationship between the electrical conductivity and porosity in Archie’s Law
(6.1) can also be explained as

τ = θ 1−m. (6.18)

Boudreau (1996) investigated tortuosity and porosity data from several sources,
developing the empirical relationship,

τ = 1− ln(θ 2). (6.19)

Based on lattice-gas simulations, Koponen et al. (1996) obtained
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Fig. 6.3 Geometric profile of 3-D unit cells: (a) isotropic (spherical grains); (b) anisotropic
(elliptical grains)

τ = 0.8(1−θ )+ 1. (6.20)

Similar relationships describing tortuosity as a linear function, power-law function,
or logarithmic function of porosity exist in the literature. A summary of these
relationships can be found in Boudreau (1996).

In this work, based on pore-scale simulation, we further study the correlation
between tortuosity and porosity in three-dimensional cells with spherical (isotropic)
and elliptical (anisotropic) grains. The size of the isotropic unit cell with spherical
grains (Fig. 6.3a) is (2×10−3)3 m3, and the radius of corner grains is 10−3 m. The
porosity is changed by varying the size of the middle grain. When there is no grain
in the middle, the unit cell has cubic packing, with a porosity of 47.7%; When the
radius of the middle grain is 7.32×10−4 m, the unit cell has rhombohedral packing,
with a porosity of 27.3%. The anisotropic porous medium (Fig. 6.3b) is composed
of elliptical grains, whose major radius is in the x1 direction. The anisotropy ratio
of the porous medium (λ ) is defined as the ratio of the major and minor radii of the
elliptical grains.

The electrical field is numerically solved using COMSOL. We impose a constant
electrical potential ΔV at the boundaries to obtain the macroscopic electrical current
f and the bulk electrical conductivity σb. As discussed in Sect. 6.3, the tortuosity is
treated as the only correction coefficient to account for the obstacles of grains and
is calculated from σb via (6.17).

As shown on Fig. 6.4, in the isotropic porous medium, the tortuosity monoton-
ically declines as the porosity increases. Herrick (1994) explained that a smaller
porosity is generally associated with more tortuous pores. In this porous medium,
as the size of the middle grain increases, the overall obstruction on electrical current
also increases, which results in a larger tortuosity. The tortuosity data in Fig. 6.4 can
be fitted with a power-law function of porosity as described in Archie’s Law

τ = θ 1−m + 0.15, (6.21)

where m in this case is estimated as 1.28.
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Fig. 6.4 The dependency of
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Fig. 6.5 The tortuosity of the
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However, the above correlation between the porosity and tortuosity is not valid
universally. In the anisotropic porous media with elliptical grains (λ = 2), Fig. 6.5
demonstrates that the tortuosity not only changes with the porosity but also with
the direction. Because the obstruction in the x2 direction is larger than that in the
x1 direction, the tortuosity in the x2 direction (τ2) is larger than that in the x1

direction (τ1). Moreover, the tortuosities in the two directions behave differently
as the porosity changes. Similar to the tortuosity in the isotropic porous medium,
the tortuosity in the x2 direction decreases monotonically as the porosity increases.
On the other hand, the tortuosity in the x1 direction decreases at low porosity but
increases at high porosity. For this particular porous medium, the minimum value
of the tortuosity is reached at θ = 0.37, which we call the critical porosity, θ cr. This
increasing tortuosity with the porosity is contradictory to the intuitive definition of
tortuosity, because the effective path is expected to be shorter when the size of the
middle grain decreases and the porosity increases, which would result in a smaller
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tortuosity according to the intuitive definition. However, as a macroscopic parameter
defined in (6.17), the variation of τ is not necessarily related to the effective path
length, but instead is determined by the relative change of dimensionless bulk
electrical conductivity (σb/σw) with respect to the porosity. In Fig. 6.6, as the size
of the middle grain decreases, the porosity increases faster than the dimensionless
bulk electrical conductivity at θ > θ cr. Because the obstacle to the electrical current
is less significant in the x1 direction, the middle grain has a larger effect on the void
volume than on the macroscopic electrical conductivity at θ > θ cr, which results
in an increasing tortuosity as the porosity increases. Even though the small grain in
the middle of the unit cell reduces the total electrical current, the average electrical
current per unit volume increases, increasing the efficiency.

We also investigate τ1 in porous media with different anisotropy ratios. Fig. 6.7
indicates that a smaller tortuosity is observed for a porous medium with stronger
anisotropy, because the obstacle to electrical current in the x1 direction decreases as
λ increases. In addition, an increasing tortuosity with increasing porosity becomes
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more notable as the anisotropy ratio of a porous medium increases. The critical
porosity, θ cr, at which the tortuosity in the x1 direction reaches its minimum,
depends on the anisotropy ratio and the pore-scale geometry.

These results suggest that tortuosity is a complex property that cannot be simply
determined from porosity. As the geometric profile changes, the tortuosity has
different correlations with respect to the porosity and varies for different directions
in anisotropic porous media. In practical applications, it is better to calculate these
two parameters separately.

6.5 Conclusions

Although Archie’s Law is widely applied to analyze the data of electrical resistivity
in porous media, it is an empirical law because there is no solid physical foundation
for a power-law relationship between the bulk electrical conductivity and porosity.
On the other hand, the macroscopic diffusion coefficient, which is mathematically
analogous to the electrical conductivity, is generally upscaled as a linear function
of porosity. A paradox of different parameterizations results from the difficulty in
quantifying tortuosity. Even though the intuitive definition of the tortuosity (6.7)
is widely accepted, we demonstrate that this intuitive definition is based on an
oversimplified geometrical structure and is not applicable when the pore structure
becomes realistically complex. Overall, tortuosity is a macroscopic property that
cannot be well defined at the microscale. It means that we cannot calculate the
tortuosity directly from the geometry of a porous medium. In reality, it is better to
treat the tortuosity as a correction coefficient that captures all the effects that cause
the reduction of diffusivity or electrical conductivity in porous media compared to
a free open space.

Based on three-dimensional simulations of an electrical field at the pore scale,
this study further explores the properties of tortuosity in both isotropic and
anisotropic porous media. Although empirical relationships between the tortuosity
and porosity are developed in previous studies, we show that these two properties
are intrinsically independent. In an isotropic porous medium, the tortuosity demon-
strates an apparent power-law correlation with the porosity, similar to Archie’s
Law. However, in an anisotropic porous medium, the tortuosity is also directionally
dependent. In the direction with less impediments to electrical current, the tortuosity
does not decrease monotonically as the porosity increases; here, a power-law
relationship clearly does not exist. For a certain porosity, tortuosity can be different
values, depending on the geometrical profile of the porous medium.

Above all, because of the complex dependency of tortuosity on geometry,
direction, and transport processes, developing an easy and accurate approach for
tortuosity estimation is still a challenging problem in practical applications. Topics
that need future studies include the following: what are the properties of tortuosity
in randomly packed porous media, how is tortuosity affected by heterogeneity
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at different scales, how tortuosity and porosity may be affected by geological
processes, and how tortuosity changes for different transport processes in the same
system.
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Chapter 7
Measurement of Streaming Potentials Generated
During Laboratory Simulations of Unconfined
Aquifer Pumping Tests

Bwalya Malama

Abstract The streaming potential method has emerged as a promising
hydrogeophysical technique for indirect acquisition of spatially dense measure-
ments of the hydraulic response of aquifers to pumping or other system forcings.
The method relies on measurements of electric potentials generated by groundwater
flow. They arise due to the existence of the electric double layer at the rock–
water interface. Mathematical solutions describing the transient electric potentials
associated with pumping tests conducted in confined and unconfined aquifers
have been recently developed and demonstrated to yield reasonable estimates of
hydraulic parameters when applied to tests conducted at the field-scale. We present
results of laboratory experiments conducted to investigate the applicability of the
unconfined aquifer model under controlled conditions in a sand tank instrumented
with pressure transducers for direct measurement of the hydraulic system state,
and nonpolarizable electrodes for measurement of the associated electric field.
Measurements show unambiguous transient streaming potential responses to
groundwater flow in a bounded cylindrical system. Parameters estimated from
streaming potential data are compared to those from drawdown data.

7.1 Introduction

The subsurface through which groundwater flows and contaminants are transported
is inherently heterogeneous, making the problem of quantitatively describing this
flow and transport challenging. This problem of describing flow and transport,
when the physical properties of the heterogeneous subsurface are known exactly,
is referred to as the forward problem. However, these physical properties of the
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processes, and solid arrows indicate possible computations. System inference is in direction of
stronger process coupling

subsurface are rarely known exactly at every spatial position in the flow and
transport domain. They are typically determined either by (1) taking samples of
the subsurface on which standard laboratory tests are conducted to estimate the
physical parameters or (2) by performing field-scale tests in which spatiotemporal
measurements of system state response to a known perturbation are obtained and
used to solve the so-called inverse problem. Sampling the subsurface material and
in situ measurement of system state by traditional methods of hydrology require
drilling and coring into the formation (Rubin et al. 1992; Butler Jr. 2005), which is
laborious and expensive, and can only yield spatially sparse data. Hence, a major
limitation of these approaches is that samples of the subsurface and spatiotemporal
measurements of subsurface system state cannot be obtained everywhere and at
appropriate scales of the subsurface. Thus, there are always information gaps that
must be filled in by invoking some upscaling and/or interpolation scheme in order
to solve the forward (prediction) problem.

The field of hydrogeophysics has emerged in the attempt to provide comple-
mentary datasets and fill these information gaps in space with spatially dense
“measurements” of subsurface hydraulic properties or system state using nonin-
vasive geophysics techniques (Hubbard and Rubin 2005). A natural dichotomy
has developed in hydrogeophysics between methods that are based on the use
of petrophysical transforms and those based on measurement of system state of
processes that are directly coupled with groundwater flow (see Fig. 7.1). The former
approach, which is the more common in the hydrogeophysics literature/community,
involves determination of a physical property, (e.g., electrical resistivity) that
controls some geophysical process (electricity flow) in the subsurface and relating
it, via petrophysical transforms, to physical properties (e.g., hydraulic conductivity)
that are required to solve flow and transport problems (Knight et al. 2010). Typically,
the physical properties determined by geophysics techniques are easier to measure at
appropriate scales and spatial resolution than the hydraulic and transport properties.
Petrophysical transforms are empirical functions that are used to relate parameters
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of (typically uncoupled) physical processes that occur in the subsurface (Kirsch
2009). For instance, an empirical relation can be developed between a parameter
that controls the propagation of electromagnetic waves in the subsurface and
hydraulic parameters even though there is no obvious direct relation between flow
of groundwater and propagation of EM waves; EM methods, though sensitive
to the presence of water in the subsurface under various saturation conditions,
cannot distinguish between static and flowing groundwater. Knight et al. (2010)
and Kirsch (2009) provide detailed discussion of some of the most commonly used
petrophysical transforms in the hydrogeophysics literature.

An alternative to the petrophysical transform approach is the use of techniques
that rely on geophysical processes that are directly coupled to groundwater flow,
with a view to using measurements of the geophysical system state to infer
the hydraulic system state or to directly estimate hydraulic parameters. Such an
approach would be most advantageous if the geophysical system state can be
measured noninvasively at greater spatial resolution than the hydraulic state. An
example of a geophysical process that is directly coupled to groundwater flow is the
electrokinetic phenomenon that gives rise to streaming potentials (SP) (Ishido and
Mizutani 1981; Sill 1983). Groundwater flow in porous media is known to yield an
electric field in the media due to the existence of the electric double layer (EDL) at
the water–rock interface. Measurements of the electric potentials associated with
this field can be used to infer the hydraulic system state or to directly estimate
hydraulic parameters. Jouniaux et al. (2009) provide a review of the SP method.
Nuclear magnetic resonance sounding (NMR) has also emerged as an example of
method that could be placed in this category (Weichman et al. 2000; Lubczynski
and Roy 2004). Though it is primarily an imaging technique used groundwater
detection (Goldman et al. 1994; Gev et al. 1996), it can be used to obtain estimates
of hydraulic properties (Shushakov 1996; Legchenko and Shushakov 1998).

In this work, the focus is on the SP method, particularly as it pertains to pumping
tests used in traditional aquifer characterization. Bogoslovsky and Ogilvy (1973)
were among the first to measure SP anomalies associated pumping tests conducted
in an aquifer and to relate them to the drawdown cone of depression. They concluded
empirically that one can estimate the radial extent of the cone of depression in
the vicinity of a pumping well from the SP anomaly measured at the surface
without installing piezometers or observation wells. Darnet et al. (2007) developed
a solution for the steady-state problem describing the relation between drawdown
and the associated SP anomaly for an unconfined aquifer and were able to fit their
model to the SP profile data of Bogoslovsky and Ogilvy (1973). Additionally, they
were able to obtain estimates of hydraulic conductivity directly from SP data.

Bogoslovsky and Ogilvy (1973) presented their SP and head data in graphical
form and did not provide such details as the thickness of the aquifer and the pumping
rate needed to obtain meaningful estimates of hydraulic parameters. A more
complete data set was needed to provide firm estimates of hydraulic parameters
from drawdown data for comparison to estimates from SP data. Such a data was
obtained by Rizzo et al. (2004) who reported results of a constant-rate pumping test
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conducted in a 37 m thick confined aquifer in the Calabria region of Southern Italy.
They developed a model to describe the SP response under (pseudo) steady-state
flow conditions and invoked linearity to obtain an expression for the transient SP
signal observed during the recovery period of the field test. While head data were
recorded during both the pumping and recovery phase, the SP response was only
monitored during the final 20 min of the pumping phase and continued for most of
the recovery phase. This was due to the fact that the model available to Rizzo et al.
(2004) was only suited for steady-state and recovery-phase flow analysis.

A more complete model for transient SP response to confined aquifer pumping
was developed by Malama et al. (2009a) and was used to invert the data of Rizzo
et al. (2004) for hydraulic conductivity and specific storage, the two pertinent
hydraulic parameters. Since no transient pumping-phase SP data were collected in
the field tests of Rizzo et al. (2004), additional field tests were needed. Such a test
was performed at the Boise Hydrogeophysical Research Site (BHRS) in 2007 where
a shallow unconfined aquifer is present. Malama et al. (2009b) developed a semi-
analytical model for SP associated with pumping tests conducted in an unconfined
aquifer and use it to analyze transient SP data collected during the 2007 BHRS field
tests. The data were successfully inverted for hydraulic conductivity, anisotropy
ratio, specific storage, and specific yield. Estimated values of these parameters were
found to compare well to those obtained from drawdown data. This demonstrated
that pumping-phase transient SP data can be used to directly estimate hydraulic
parameters. Maineult et al. (2008) also demonstrated this with data from periodic
pumping tests conducted in a confined aquifer.

SP signals associated with groundwater flow are typically small (a few to tens
of millivolts) and vulnerable to corruption by noise from other sources of self-
potentials in field applications. In an attempt to better understand the physics of
SP generation in noise-free environments, a few workers have performed laboratory
experiments under controlled conditions to simulate groundwater flow conditions
that are realized during field tests. For instance, Suski et al. (2004) performed
laboratory simulations of unconfined aquifer pumping tests in a rectangular 2×
6× 0.5 m3 Plexiglas tank, in which hydraulic head and streaming potentials were
monitored during the tests. They used tap water with pH=8.3, which can change
the surface charges at the rock–water interface. They also used a peristaltic pump,
which contaminated the pumping-phase SP responses with harmonic fluctuations
and forced the workers to only analyze recovery-phase SP data. Straface et al.
(2011) reported results of unconfined aquifer pumping test simulations performed in
a large rectangular 10×7×3 m3 sand tank where they monitored hydraulic head and
SP. They obtained very clear transient SP responses during both the pumping and
recovery phases, but used a steady-state model to estimate hydraulic conductivity
from SP data.

In this work, we report results of unconfined aquifer pumping test simulations
performed in a cylindrical sand tank bounded by a water-filled annulus to main-
tain a constant-head (Dirichlet) boundary condition along its circumference. This
configuration conforms more to the radial flow pattern that is realized during
aquifer pumping tests than the rectangular domain of Straface et al. (2011).
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Drawdown and SP data measured in this laboratory model are analyzed separately to
estimate hydraulic conductivity, anisotropy, specific storage, and specific yield. The
hydraulic conductivity estimated in this manner is compared to that determined in
falling-head permeameter tests, which were also used to estimate the electrokinetic
coupling coefficient of the saturated sand in the sand tank. SP data are also used
to estimate the formation factor and electrokinetic coupling coefficient of the
flow domain. The coupling coefficient estimated in this manner is compared to
that obtained from falling-head permeameter tests. The analysis presented herein
demonstrates repeatability of results obtained at the field-scale and clearly shows
that hydraulic parameters are directly estimable from SP data. The SP signals are
strongly impacted by the chemistry of the electrolyte (groundwater), and this can
lead to signals that are not analyzable without use of exotic filtering techniques.
Research is ongoing to understand how electrolyte chemistry affects the SP signals
measured at the surface during pumping tests.

7.2 Electrokinetic Theory and Groundwater Flow

In porous media where the rock matrix is siliceous, the interaction of water and
the rock surface gives rise to a negatively charged rock surface at electrolyte pH <
7.0, due to silica protonation. This charge leads to the development of the EDL,
which, in its simplest form, consists of an immobile layer of charges that are strongly
“adsorbed” to the mineral grain surface and a mobile diffuse layer of charges near
the grain surface (see Fig. 7.2). Groundwater flow has the effect of mechanically
forcing movement of the ions in the diffuse layer generating a streaming current
and a corresponding electric field in the flow domain. The electric field is governed
by Revil et al. (2003)

∇ · j = 0 (7.1)

where j is the electric current density (A/m2). Revil et al. (2003) and references
therein have shown that

j = σE+ j f , (7.2)

where σ is the electrical conductivity of the porous medium (S/m), E = −∇φ is
the electric field (V/m), φ = ϕ −ϕ0 is the electric potential change (V) from some
initial state ϕ0, and j f is the electric current density due to fluid flow and is given by
(e.g., Sailhac and Marquis 2001, Malama et al. 2009a)

j f = σC�K
−1q (7.3)

where C� = −∂φ/∂h is the electrokinetic coupling coefficient (V/m), K is the
hydraulic conductivity tensor, q = −K∇h is the Darcy fluid flux (m/s), and h is
hydraulic head (m). C� is a physical parameter defined as the electric potential drop
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Fig. 7.2 Schematic
illustrating the EDL in an
idealized water-filled pore at
the silica–water interface

across a unit length of a porous medium due to fluid flow generated by a unit
hydraulic head differential across that length. No attempt is made in this work to
relate it, via petrophysical transforms to hydraulic parameters.

Groundwater flow is governed by the well-known mass continuity equation

−∇ ·q = Ss
∂h
∂ t

(7.4)

where Ss is specific storage (m−1). Equations (7.1) and (7.4) constitute the system
of equations that describes the coupled processes of fluid flow and generation of
streaming potentials. In principle, when q is known from measurements of hydraulic
head (h), the total current density j can be determined. The converse is also true
in principle, when j is known from measurements of electric potentials φ . This is
the system inference problem and requires knowledge of system parameters K, Ss,
σ , and C�. If these parameters are unknown, they can be estimated directly from
spatiotemporal measurements of φ and/or h. This is the inverse problem. Inferring
the hydraulic system state from measurements of φ is easier than the converse, since
it is easier to obtain high-resolution measurements of φ than h. It should be noted
that no attempt is made to develop a set of petrophysical transforms that relate the
hydraulic parameters K and Ss to the electrical parameters C� and σ .
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7.2.1 Recent Advances: Transient Theory of SP

Malama et al. (2009a,b) recently developed solutions to the coupled problem
described by Eqs. (7.1) and (7.4) in cylindrical coordinates (see Appendix A), which
solutions are uniquely suited to modeling transient SP responses observed during
pumping tests conducted in confined (Malama et al. 2009a) and unconfined aquifers
(Malama et al. 2009b).

7.2.1.1 Confined Aquifer Solution

For a confined aquifer Malama et al. (2009a) developed the exact solution for SP
response in the aquifer and the confining units using zero-order Hankel and Laplace
transforms. All reference hereafter to the Hankel transform implies the zero-order
transform. A schematic of the conceptual model used in their work is shown in
Fig. 7.3. The solution is based on all the classical assumptions of the Theis solution,
namely (Theis 1935),

1. Aquifer is isotropic, homogeneous, and radially infinite.
2. Aquifer is bounded above and below by horizontal boundaries.
3. Pumping well is a line sink (vanishingly small radius) and is fully penetrating.
4. Initial drawdown is zero.

Additional assumptions, which are inherent in the development of the Theis
solution, that are explicitly required to solve SP problem are:

1. No flow in the units above and below the aquifer.
2. Quasi-static limit satisfied at all times.
3. Initial potential is zero everywhere in the domain relative to some reference.
4. Homogeneous and isotropic electrical conductivity and coupling coefficient.
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They showed that inverse Laplace transform of the resulting solution can be
obtained analytically, leading to the following expression for the dimensionless
streaming potential, φD,i, in the ith

φD,i =

⎧
⎨

⎩

sD,c(u)−H−1
0

{
s∗D,cw∗

D

}
i = 2

H−1
0

{
s∗D,cv∗D,i

}
i = 1,3

, (7.5)

where i = 1,3 are the upper and lower confining units, respectively, i = 2 is the
aquifer,

H−1
0 {s∗D,cw∗

D}=
∫ ∞

0
s∗Dw∗

DaJ0(arD)da, (7.6)

and

H−1
0 {s∗Dv∗D,i}=

∫ ∞

0
s∗Dv∗D,iaJ0(arD)da, (7.7)

where H−1
0 {} denotes the inverse Hankel transform, f ∗(a) denotes Hankel trans-

form of f (rD), a is the Hankel transform parameter, rD = r/b2, and J0() is the
zero-order Bessel function of the first kind. The function sD,c(x) = E1(x) is the
dimensionless drawdown in the aquifer, s∗D,c is its Hankel transform, E1(x) is
the exponential integral (Abramowitz and Stegun 1972), and x is the similarity
(Boltzmann) transform defined as x = r2/(4αt). It can be shown that

s∗D,c =
2
a2

[
1− exp(−a2tD)

]
, (7.8)

where tD = αt/b2
2. The improper integrals in Eqs. (7.6) and (7.7) can be evaluated

numerically. The functions w∗
D and v∗D,i were derived by Malama et al. (2009a), and

their equivalent forms are summarized in Appendix B. They capture the interaction
between the aquifer and the confining units. The solution indicates that the SP signal
in the confined aquifer (i = 2) is proportional to the drawdown and includes a space
convolution of drawdown and the function w∗

D. The SP signal in the confining units
(i = 1,3) is simply a space convolution of drawdown and the function v∗D,i.

The solution for φD,1 given in Eq. (7.5) provides a means to estimate hydraulic
parameters from SP measurements obtained at land surface. Malama et al. (2009a)
also showed that the SP signal measured in the upper confining unit could be
approximated by

φ1(t,r,z)≈ A(r,z)− C�

σD,1 +σD,3

Q
4πb2K

ln(u) (7.9)

for large t, where A is some arbitrary electric potential at the observation point. This
is a Jacob–Cooper-type approximation for SP. Thus, if the coupling coefficient and
the electrical conductivities of the three layers are known, this equation can be used
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to estimate hydraulic conductivity from the slope of semilog plots of late-time SP
data measured at or near land surface. Figure 7.4 illustrates the relation given in
Eq. (7.9).

7.2.1.2 Unconfined Aquifer Solution

The solution to the unconfined aquifer SP problem in a cylindrical domain of
infinite radial extent was developed by Malama et al. (2009b) and is summarized
in Appendix B. A schematic of the conceptual model used in their work is shown in
Fig. 7.5. The solution is based on the assumption that the flow problem is described
according to Neuman (1972), which is based on the following assumptions:

1. Aquifer is homogeneous but anisotropic (Kr �= Kz).
2. Pumping well is a fully penetrating line sink.
3. Water release is due to medium and water compressibility and gravity drainage

associated with water-table displacement.
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4. Water-table is a material boundary that physically separates the saturated and
unsaturated zones.

5. Water-table kinematic condition linearized in the manner of Dagan (1964).
6. No flow in the unsaturated zone and in the unit underlying the aquifer.

It was further assumed that the electrical conductivities of the unsaturated zone, the
aquifer, and the underlying unit are homogeneous, isotropic, and constant in time.
As in the confined case, it was also assumed that the initial potential everywhere in
the problem domain is zero relative to some reference.

At land surface the solution of Malama et al. (2009b) reduces to

φ ∗
D,1(p,a,1) =

1
ξ1,1

cosh(a)φ∗
D,2|zD=1 (7.10)

where φ∗
D,i(p,a,zD) is the Laplace–Hankel transform of the dimensionless SP

response in layer i, f (p) is the Laplace transform of f (tD), and

φ∗
D,2(p,a,1) = s∗D,u +w∗

D,u (7.11)

where a and p are the Hankel and Laplace transform parameters, respectively, ξ1,1 =
cosh(abD,1), and w∗

D,u is defined in Appendix B. The function s∗D,u is the Laplace–
Hankel transform of unconfined aquifer drawdown and is given by Neuman (1972)

s∗D,u(a,zD, p) =
2

p(p+ a2)

[
1− cosh(ηzD)

Δ1

]
, (7.12)

where η2 = (p+ a2)/κ and

Δ1 = cosh(η)+
ηαD

p
sinh(η) (7.13)

for the classical linearized kinematic condition at the water-table. The other
functions in Eq. (7.10) are defined in Appendix B. Equations (7.10) and (7.11),
which are in Laplace–Hankel transform space, can be inverted numerically to space–
time. Equation (7.10) is useful for analyzing SP data collected at or near land
surface during unconfined aquifer pumping tests. It describes the transient streaming
potential field generated by pumping water from an unconfined aquifer and can
be used to estimate aquifer hydraulic parameters from measurements of streaming
potentials at ground surface.

7.2.1.3 Application to Field Data

The confined and unconfined aquifer solutions have been applied to data collected
in aquifer pumping tests yielding good model fits to data and parameter estimates
that compare well with those obtained from drawdown data. Malama et al. (2009a)
applied the confined aquifer model to SP data collected during the recovery phase
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Fig. 7.6 Model fits to recovery-phase data (after Rizzo et al. 2004) obtained during a confined
aquifer pumping test near Montalto Uffugo, Italy (after Malama et al. 2009a)

of a pumping test conducted at a site located near Montalto Uffugo, in the region
of Calabria in Southern Italy and reported in Rizzo et al. (2004). The aquifer is
a silty sand layer with an average thickness of 44 m and is bounded above by a
shale formation that is overlain with a layer of gravels and silty sand. A shale
substratum lies below the aquifer formation. Additional details of the geology of
the site, and on monitoring of the hydraulic and streaming potential responses, may
be found in Rizzo et al. (2004). The estimated value of the hydraulic conductivity
K = 2.2×10−6 m/s was found to be comparable to the value of K = 2.8×10−6 m/s
estimated from hydraulic head data by Rizzo et al. (2004). However, Rizzo et al.
(2004) obtained a value of 1.1× 10−4 m−1 for the specific storage using head data,
whereas Malama et al. (2009a) obtained a value of 4.7× 10−7 m−1 from SP data.
Examples of model fits to recovery-phase data of Rizzo et al. (2004) are shown in
Fig. 7.6.

Malama et al. (2009b) analyzed unconfined aquifer test SP data obtained during
tests conducted in the summer of 2007 at the Boise Hydrogeophysical Research Site
(BHRS) that were monitored with pressure transducers in observation wells and
two electrode arrays for SP and electrical resistivity (ER) tomography (Jardani et al.
2009). The aquifer at the BHRS consists of an unsaturated zone with an average
thickness of about 3m and an unconfined aquifer underlain by a clay layer (Barrash
and Reboulet 2004). The shallow unsaturated zone and unconfined aquifer at the
site, which has a vertical extent not exceeding 20m, consist of unconsolidated cobble
and sand fluvial deposits (Barrash and Reboulet 2004). It is bounded to the west by
the Boise River. Ten dipole tests, in which water was pumped from one well and
injected into another, were conducted in June 2007 at the BHRS. Malama et al.
(2009b) analyzed data from one of these dipole tests. The SP data were collected
with a Keithley high-impedance voltmeter and 80 nonpolarizing Pb/PbCl2 (Petiau)
electrodes (Jardani et al. 2009).

The model was found to fit the field data well, and hydraulic conductivities
estimated from transient SP data were of the same order of magnitude as those
obtained directly from head data collected during pumping tests conducted at the
research site. For instance, Barrash et al. (2006) report aquifer hydraulic conduc-
tivities averaging about Kr = 7× 10−4 m/s and Kz = 3× 10−4 m/s, and Malama
et al. (2009b) and Malama (2011) report average values of Kr = 4.6× 10−4 m/s
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Fig. 7.7 Model fits to transient pumping-phase SP data obtained during an unconfined aquifer
pumping test at the BHRS near Boise, Idaho (after Malama et al. 2009b)

and Kz = 6.5×10−4 m/s from traditional drawdown analyses. The values estimated
here from SP data average Kr = 2×10−4 m/s and Kz = 3×10−4 m/s (Malama et al.
2009b). The values of the specific storage estimated from SP data (∼ 10−3 m−1)
were on average found to be larger than those estimated from traditional drawdown
analyses (∼ 10−4 m−1). Malama et al. (2009b) attributed these large values of
specific storage to the fact that flow in the unsaturated zone above the water-table is
neglected in their model. Unsaturated flow above the water-table requires spatially
(and temporally) variable unsaturated zone coupling coefficient and electrical
conductivity. In the model used by Malama et al. (2009b), these parameters are
assumed to be constant, and this appears to affect estimated values of specific
storage. Since the SP response is measured in the unsaturated zone, it is more
sensitive to unsaturated zone flow than the measured drawdown response. Figure 7.7
shows examples of model fits obtained by Malama et al. (2009b) during parameter
estimation from transient SP data.

7.2.1.4 Finite cylindrical Domain

The solutions given above can be adapted to the case of a cylindrical domain of
finite radial extent by use of the finite Hankel transform or by invoking linear
superposition. Domains of finite radial or lateral extent are encountered in nature
near rivers, lakes, impermeable faults, and as islands. They are also suited for
analyzing data collected in laboratory models built to simulate pumping tests. The
drawdown s f (t,r,z) due to flow to a constant rate pumping well at the center (r = 0)
of a radially finite cylindrical domain where a homogeneous Dirichlet boundary
condition of s f (t,r = R,z) = 0 is imposed at r = R can be obtained by linear
superposition of the infinite domain solution, s(t,r,z), namely,

s f (t,r,z) = s(t,r,z)− s(t,r = R,z). (7.14)
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The same is true for the SP response in the ith layer of a finite cylindrical domain
with φ f ,i(t,r = R,z) = 0, i.e.,

φ f ,i(t,r,z) = φi(t,r,z)−φi(t,r = R,z), (7.15)

where φi(t,r,z) is the solution on a radially infinite domain.
However, since the inversion of two infinite Hankel transforms is required when

linear superposition is used, it is more computationally efficient to use the finite
Hankel transform approach. Equivalent forms of the solutions for the finite domain
are obtainable using the finite Hankel transform. The finite Hankel transform f ∗(a)
of the function f (r) is given by Miles (1971) as

f ∗(a) =
∫ R

0
f (r)J0(ar)rdr (7.16)

and its inverse by

f (r) =
2

R2 ∑
a

f ∗(a)J0(ar)

J2
1 (aR)

. (7.17)

The sequence a1,a2, . . . is determined by

J0(aR) = 0 (7.18)

with (0 < a1 < a2 < .. .).
Hence, for the confined case, Eqs. (7.6) and (7.7), valid for the radially infinite

domain, are replaced with

Ĥ−1
0 {s∗Dw∗

D}=
2

R2 ∑
a

s∗Dw∗
DJ0(arD)

J2
1 (aR)

, (7.19)

and

Ĥ−1
0 {s∗Dv∗D,i}=

2
R2 ∑

a

s∗D,cv∗D,iJ0(arD)

J2
1(aR)

, (7.20)

where Ĥ−1
0 {} denotes the inverse finite Hankel transform, and the functions s∗D,

v∗D,i, and w∗
D are now finite Hankel transforms of sD, vD,i, and wD, respectively.

Equation (7.5) can then be used with Eqs. (7.19) and (7.20) to compute the confined
aquifer response in a finite domain. The procedure is the same for the unconfined
aquifer problem.

The dimensionless SP response predicted by this solution for different values
of the storage ratio θ = Sy/S is shown in Fig. 7.8. The figure shows the influence
of water-table kinematics of the SP signal at land surface. In general, the response
shows three distinct phases: an early-time phase where the SP response decreases
from its initial value of zero and attains some minimum level, followed by an



140 B. Malama

−2

−1

0

1

2

3

4

10−2 10−1 100 101 102 103 104 105 106

φ D
,1

(x
,z

D
)

1/x (= 4αt /r2)

θ = 2500
θ = 250

θ = 25
θ = 2.5
θ = 0.0

Fig. 7.8 Model-predicted
dimensionless SP response at
land surface (zD = 0) for
different values of the storage
ratio θ = Sy/S, with κ = 1.0,
σD,1 = 0.5, and σD,3 = 10

−3

−2

−1

0

1

2

3

4

10−3 10−2 10−1 100 101 102 103 104 105 106 107

κ = 10.0
κ = 2.0
κ = 1.0
κ = 0.5

φ D
,1

(x
,z

D
)

1/x (= 4αt /r 2)

Fig. 7.9 Model-predicted
dimensionless SP response at
land surface for different
values of the anisotropy ratio
κ = Kz/Kr , with
θ = 2.5×103, σD,1 = 0.5,
and σD,3 = 10

intermediate-time phase during which the SP signal is monotonically increasing and
approaching a late-time steady-state phase. Understanding the occurrence of these
phases is important since a prolonged stay in the early-time phase could easily be
confused with attainment of steady state and could lead to premature termination of
a test. The early-time phase diminishes with decreasing values of θ and disappears
altogether for θ = 0, which corresponds to a confined aquifer response, or to the
case of S � Sy. The value of the late-time steady-state SP signal is independent of
the parameter θ but is attained at increasing later times as θ increases.

Figure 7.9 shows the effect of the anisotropy ratio on the model-predicted
dimensionless SP response at zD = 0. Decreasing values of κ accentuate the
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early-time decrease in SP from the initial zero value and lead to an increase in
the absolute value of the minimum SP value attained during the early-time phase.
For the cases of κ > 1.0, the effect of the water-table would be to delay the time
at which SP values that are significantly larger than the initial zero value are
observable. Figure 7.10 shows the effect of (a) the relative electrical conductivity
of the unsaturated zone to the saturated zone, σD,1 and (b) that of the saturated
zone to the underlying confining unit, σD,3. Typical physical requirements are such
that σD,1 ≤ 1.0, whereas σD,3 ∈ [0,∞), since the underlying confining unit can be
anything from a clay layer to unfractured bedrock. The results indicate decreasing
late-time SP signal strength at land surface with increasing electrical conductivity
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of the saturated zone relative to the unsaturated zone and the underlying confining
unit. Beyond some lower limit of these parameters (σD,1 and σD,3), there is minimal
further decrease in signal strength.

7.3 Laboratory Pumping Test Simulations

7.3.1 Experimental Setup and Materials

The experiments reported herein were conducted in a sand tank constructed from
two concentric plastic cylinders of diameters 1.70 and 2.44 m, respectively, for the
inner and outer tanks. The annulus between the outer and inner tanks was filled with
water to simulate a Dirichlet (constant-head) boundary condition at r = R for the
flow problem. The inner tank served as the housing for the sand and simulated an
aquifer of finite radial extent. It contains a 12 cm layer of gravel overlaid with an
8 cm layer of bentonite that simulates a realistic confining unit. The bentonite layer
is overlaid with a 52 cm thick layer of Mescalero sand obtained from desert near
Carlsbad, New Mexico. Mescalero sand is fine-grained sand from surficial aeolian
deposits in SE New Mexico. The particle size distribution of this sand given in
Fig. 7.11 indicates a well-sorted fine-grained sand with an effective particle size
of d10 = 120 μm. The porosity of the sand determined by the gravimetric method is
n= 0.38. Hydraulic conductivity estimates obtained from falling-head permeameter
tests performed on samples of the Mescalero sand averaged K = 6.8× 10−5 m/s.
The sand is known to contain salt precipitates that dissolve when deionized water
is added to the sand, giving the saturated sand an electrical conductivity of ∼ 1.0
mS/cm.
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Fig. 7.12 Sand tank used in bench-scale unconfined aquifer pumping test simulations with head
and SP measurements of system response

A 1.0 inch PVC tubing with perforations in lower 20 cm serves as a partially
penetrating pumping well. At present, the model for the SP response assumes a
fully penetrating pumping well. A pump is attached to this PVC tube, and water
that is pumped through the center perforated PVC tubing was recirculated into
the annulus via a fluid reservoir (see Fig. 7.12). The sand tank is instrumented
with nonpolarizable Petiau (Pb/PbCl2) and biomedical electrodes (Ag/AgCl) at
various radial distances from the center and depths below the sand surface. Two
reference electrodes, one for Petiau and the other for the biomedical electrodes, were
installed in screened PVC tubes filled with sand and placed in fluid-filled annulus.
The electrodes were installed above the water-table. All SP measurements in the
tank are relative to these reference electrodes in the annulus. Atmospheric pressure,
annulus water pressure, and saturated zone fluid pressure were measured with Druck
transducers. Fluid pressures in saturated sand were monitored in piezometers at
radial distances of 20, 41, and 61 cm from the center of the tank and at a depth
of 40 cm below the sand surface.

The sand tank was initially saturated with tap water, which has a relatively high
dissolved solid content and hardness. The tank was filled to a level such that the
water-table was 12 cm below the sand surface. Owing to the fine-grained nature
of the sand, the capillary fringe extends from the water-table to the sand surface,
leading to a fully saturated zone above the water-table with negative fluid pressure.
For an effective pore size of d10 = 120 μm, Young’s equation predicts a capillary
rise of the order of 1 m. Hence, to achieve truly unsaturated conditions above the
water-table, one would need a tank larger than that used in this work.

7.3.2 Experimental Procedure

To conduct a pumping test simulation, water is drained from the sand tank through
the perforated PVC tubing at the center of the tank at constant rate using a pump
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Fig. 7.14 (a) Raw and (b) corrected pressure response data obtained during a laboratory-scale
pumping test simulation. Pressures at r = {20,41,61} cm are measured at the same depth in the
saturated zone. Data in (b) were obtained by subtracting the annulus pressure

(see schematic in Fig. 7.12). A flowmeter is attached to the drain pipe and flow
rate data are recorded automatically at 10 s intervals with a data logger. Two valves
are used to regulate the rate of discharge from the tank. Pumping test simulations
reported in this work were conducted at a constant flow rate of 3.33 mL/s. Pumping
rate data are shown in Fig. 7.13 and show that a fairly constant rate was achieved
during the test. The pumping started about 20 min after onset of data acquisition
and continued for about two hours. Pressure data were collected during (pumping
phase) and after cessation (recovery phase) of pumping.

7.3.3 Results and Observations

Raw pressure responses recorded from transducers in the saturated zone of the
sand tank during the pumping test simulation are shown in Fig. 7.14a, where the
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atmospheric and annulus pressures are also shown for reference. The pressure
responses are superposed on a quasi-linear barometric trend that is clearly evident
in the atmospheric and annulus fluid pressures. Figure 7.14b shows the corrected
pressured obtained by subtracting the annulus pressure from the three saturated
zone pressures. The onsets of pumping and recovery phases are indicated by
ton and toff, respectively. The annulus data clearly indicate no effect of pumping
on annulus pressure. Hence, when data are corrected for the quasi-linear trend,
the annulus serves as a reasonable constant-head (zero drawdown) boundary
condition. Drawdown responses corresponding to these pressure changes are shown
in Fig. 7.15. The drawdown responses are as one would expect showing all three
(early-, intermediate- and late-time) phases that are characteristic of unconfined
aquifer responses. Hence, it can be stated that the laboratory-scale model behaves
as an unconfined aquifer.

The raw SP responses measured with nonpolarizable electrodes are presented
in Fig. 7.16, where (a) and (b) are plots data collected with Petiau (Pb/PbCl2)
electrodes, and (c) and (d) are data collected with biomedical (Ag/AgCl) electrodes.
The onset of the pumping and recovery phases are indicated by ton and toff,
respectively, and are clearly evident in most of the SP data. Hence, the SP response
can be positively attributed to flow during pumping. The responses measured
with Petiau electrodes appear to be less consistent than those measured with
the biomedical electrodes. They also contain an underlying trend (most evident
in recovery data) on which the SP response to pumping is superposed. Petiau
electrodes respond by ion exchange by diffusion between the electrolyte within
the electrode and groundwater (Petiau 2000). Hence, significant chemical gradients
between these electrolytes can lead to the observed SP trend that is not due to
pumping. Note that this SP trend cannot be attributed to the quasi-linear barometric
trend discussed above since the latter does not induce net groundwater flow.
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Fig. 7.16 Raw transient streaming potential data measured with (a,b) Pb/PbCl2 (Petiau) and (c,d)
Ag/AgCl (biomedical) nonpolarizable electrodes during laboratory simulation of a pumping test.
Data shows the response during pumping (starting at ton) and recovery (starting at toff) phases

The data in Fig. 7.16c are on a radial profile at a fixed depth from the surface,
whereas those in (d) are in a vertical profile at a fixed radial distance from the center.
Electrodes e021–e027 are all located in the unsaturated zone (capillary fringe) above
the water-table, and e028–e031 are in the saturated sand layer with e028 being
almost at the water-table and e030 very close to the sand–bentonite interface.

7.3.4 Model Application to Data

The unconfined flow model of Neuman (1972), adapted to a cylindrical domain
of finite radius, was used to invert the drawdown data for hydraulic parameters,
yielding values of Kr = 8.8 × 10−5 m/s, Ss = 7.7 × 10−2 m−1, Sy = 0.29 and
κ = 0.21. Model fits to the data are shown in Fig. 7.15. The model of Neuman (1972)
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Table 7.1 Model parameters estimated from SP data for Mescalero sand. C� was obtained from
SP versus time data and C∗

� from SP versus head data

Kr Ss Sy σ2 C�

Electrode r (cm) z (cm) (10−5 m/s) κ (10−2 m−1) (%) (10−2 S/m) (mV/m)

e023 26.7 7.6 3.3 4.2 1.7 10 3.9 16.6
e025 52.1 7.6 2.7 3.9 1.7 15 4.6 11.6
e028 30.5 15.2 2.6 3.9 1.7 21 6.4 6.2
e029 30.5 30.5 3.0 4.1 1.7 10 3.5 20.5

was used since it is the flow model used in the solution of the SP problem. The
hydraulic conductivity estimated in this manner compares well to the value of Kr =
6.8×10−5 m/s obtained in falling-head permeameter tests conducted on samples of
Mescalero sand. The estimated specific storage is much larger than expected and
may be due to the low consolidation of the sand in the laboratory model. The
sand was allowed to settle under its own weight with no additional mechanical
compaction. The sand, however, did settle in layers leading to hydraulic anisotropy
reflected in the estimated κ-value of 0.21. The vertical hydraulic conductivity
estimated from drawdown data is appreciably smaller than the radial value. The
specific yield of Sy = 0.29 estimated from the data is slightly smaller than the
measured total porosity of the sand of 0.38. This is to be expected since Sy is a
measure of drainable porosity under the action of gravity alone.

The SP model for unconfined aquifer flow in a radially bounded cylindrical
domain was used to invert measured transient SP data obtained during a laboratory
simulation of a pumping test for hydraulic parameters. In addition to hydraulic
parameters, the model was used to estimate the coupling term �, which was then used
electrokinetic coupling coefficient using C� = γ�/σ2, and the electrical conductivity,
σ2, of the saturated layer. The electrical conductivity ratios σD,1 and σD,2 were fixed
at 0.8 and 103, respectively. These ratios could be estimated directly but were fixed
to improve identifiability of the hydraulic parameters. Only data from the Ag/AgCl
electrodes were analyzed as they did not require significant preprocessing to yield
an analyzable signal. The data sets were analyzed separately for each electrode,
and only the pumping-phase data were considered. A summary of all the estimated
parameter values is given in Table 7.1.

Model fits to the data at parameter estimation optimality are shown in Fig. 7.17
for four select electrodes. Though model fits do not match measured data perfectly,
they yield parameter values that are similar to those obtained from drawdown data.
The radial hydraulic conductivity and specific storage values estimated from SP
data have average values of Kr = 2.9× 10−5 m/s and Ss = 1.7× 10−2 m−1. These
values are in good (order-of-magnitude) agreement with those estimated by the
traditional drawdown data analysis. The anisotropy ratio estimated from SP data
is significantly larger than, and appears to be the reciprocal of, that from drawdown
data. The specific yield estimate is much smaller than that from drawdown data.
Estimates of the C� and σ2 are comparable to “measured” values. Measured values
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Fig. 7.17 Model fits to transient SP data obtained in laboratory simulations of unconfined aquifer
pumping tests

of C� were obtained through a series of falling-head permeameter test, averaging
20 mV/m. Values of σ2 were obtained by measurement of electrolyte values, σ f ,
using a standard YSI conductivity meter, and are of the order of 0.1 S/m. These are
related to σ2 by σ2 =Fσ f , where F < 1.0 is the so-called formation factor. Values of
σ2 estimated from SP data suggest a formation factor of F ∼ 0.5. There is minimal
variability in the values of the parameters Kr, κ , and Ss among the four electrodes
analyzed here. The greatest variability is in the estimated values of the electrokinetic
coupling coefficient, with values ranging from 6.2 to 20.5 mV/m.

The temporal variation of the sensitivity coefficients of SP with respect to
hydraulic parameters Kr, κ , Ss, and Sy is shown in Fig. 7.18. Sensitivity coefficients
provide a measure of the sensitivity of the model-predicted SP response to the
respective parameter. The sensitivity coefficients associated with the parameter
Kr are largest and increase monotonically with time. Hence, the radial hydraulic
conductivity is more easily estimable from transient SP data than the other three
parameters. The sensitivity coefficient with respect to the anisotropy ratio, κ , has
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Fig. 7.18 Temporal variation of the sensitivity coefficients of SP with respect to (a) Kr and κ and
(b) Ss and Sy

a peak value in the intermediate-time range of the hydraulic response, after which
it decays with time. Hence, the most useful SP data for estimating κ are in the
intermediate-time range. The sensitivity coefficients with respect to Ss and Sy

are largest at early-time, monotonically decay with time, and show strong linear
correlation. This indicates that the sensitivity coefficients with respect to Ss and Sy

are not linearly independent for significant portions of the measurement time scale,
making their concomitant estimation from SP data difficult and highly uncertain.
Similar linear dependence was found to exist between the parameters σ2 and the
coupling term �. The computed sensitivity coefficients with respect to these two
parameters were found satisfy

∂φi

∂σ2
≈−∂φi

∂�
. (7.21)

These results suggest that, for the data analyzed here, one can only estimate four of
six parameters Kr, κ , Ss and Sy, σ2, and �. Hence, it may be best to estimate σ2 and
� using alternative techniques and then estimating the hydraulic parameters from
pumping test SP data.

7.4 Discussion and Future Directions

Laboratory and field measurement and analyses of transient SP data suggest that
hydraulic parameters can be estimated from these data. This has been demonstrated
at the field-scale in confined (Malama et al. 2009a) and unconfined (Malama et al.
2009b) flow and herein using laboratory-scale simulations of unconfined aquifer
flow. The SP method has potential to be used as nonintrusive interrogation method
for the subsurface during pumping tests to yield aquifer hydraulic parameters.



150 B. Malama

As way of validating the approach, parameter values estimated in this manner have
been shown to compare favorably to those estimated by the traditional method of
drawdown analysis.

Below is a list, which is not meant to be exhaustive, of some future advances
that can, in the opinion of the authors, move the SP method into the purview of the
broader hydrogeology field:

• Effects of partial penetration and leakage: As already mentioned elsewhere in
this work, laboratory experiments reported herein were performed in a laboratory
model with a partially penetrating well, but the analyses of the test results were
performed with a mathematical model assuming a fully penetrating line sink. In
aquifers of infinite radial extent, effects of partial penetration become negligible
at radii satisfying the condition r > 1.5b

√
κ , which can be realized in the

laboratory-scale model used in this work if κ ∼ 0.2. However, for κ ≥ 1.0, this
condition is not achievable in our lab-scale model. Hence, an obvious near-future
advance would be to incorporate effects of partial penetration (and pumping
wellbore storage) in the SP model.

• Unsaturated zone inclusion: It has long been recognized by several investi-
gators (Neuman 1972, and references therein) that flow in the unsaturated
zone above the water-table could affect the drawdown response of unconfined
aquifers during pumping tests. Early attempts to explicitly incorporate effects
of unsaturated zone flow were through coupled saturated-unsaturated numerical
flow models (Rubin 1968; Freeze 1971; Cooley 1971). These works, however,
did not demonstrate conclusively that the observed delay mechanism in uncon-
fined aquifer drawdown response could be attributed to water release from the
unsaturated zone (Neuman 1972, 1979). However, based on field observations
and numerical modeling, Nwankwor et al. (1984, 1992) and Akindunni and
Gillham (1992) argued that neglecting unsaturated zone flow would lead to
overestimation of specific storage and an underestimation of specific yield, the
latter of which is commonly the case with the model of Neuman (1972, 1974).
Recently, Tartakovsky and Neuman (2007), and Mishra and Neuman (2010) have
developed semi-analytical model that explicitly account for unsaturated flow, the
electrokinetic constitutive relations of which have been discussed by Jackson
(2010) and others, through a linearized version of the Richards’ equation. Hence,
a logical future advance would be to incorporate effects of unsaturated zone flow
into the SP model using the approach of Mishra and Neuman (2010).

• Other future directions would involve investigating the exact nature of the
boundary condition for the SP problem at the interface between a sandy aquifer
and a clayey confining unit, conducting additional field tests in varied environ-
ments with electrode installation with direct-push techniques to achieve greater
depths of interrogation, measurement SP signals with microvolt sensitivity, and
extension of current models to heterogeneous subsurface systems.
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7.5 Notation

r Radial distance from pumping well [L]
z Vertical distance from aquifer base [L]
t Time since start of pumping [T]
h Hydraulic head in aquifer [L]
s Drawdown in aquifer [L]
Kr Radial hydraulic conductivity of aquifer [L/T]
Kz Vertical hydraulic conductivity of aquifer [L/T]
κ = Kz/Kr Hydraulic anisotropy
Ss Specific storage of aquifer [1/L]
S = bSs Storativity
Sy Specific yield of aquifer
θ = Sy/S Specific yield to storativity ratio
Q Pumping rate [L3/T]
bi Thickness of ith layer [L]
α Hydraulic diffusivity of aquifer [L2/T]
q Darcy flux in ith layer [L/T]
j Total electric current density [A/L2]

j f Electric current density due to fluid flow [A/L2]

σi Electrical conductivity of ith layer [S/L]
E Electric field [V/L3]

ϕi Electric potential in ith layer [V]

φi Electric potential change from initial state in ith layer [V]

γ Specific weight of water, ρg [N/L2]

�i Streaming current coupling coefficient of ith layer [L2/VT]
C� Electrokinetic coupling coefficient [V/L]
p Laplace transform parameter
a Hankel transform parameter
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Appendix A: Governing Equations for Coupled Flow and SP

In cylindrical coordinates with no tangential flow, Eq. (7.4) can be written, for
flow in a radially infinite aquifer and in nondimensional, form as (Malama et al.
2009a,b)
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∂ sD

∂ tD
=

1
rD

∂
∂ rD

(
rD

∂ sD

∂ rD

)
+ δκ

∂ 2sD

∂ z2
D

, (A.1)

where sD = s/Hc is dimensionless aquifer drawdown; s = h(r,z,0)− h(r,z, t) is
drawdown (m), rD = r/b2, zD = z/b2, tD = αrt/b2

2; r is radial distance from the
pumping well (m); z is vertical position from the base of the aquifer (m); t is elapsed
time since onset of pumping (s); κ = Kz/Kr is the anisotropy ratio; αr = Kr/Ss

is radial hydraulic diffusivity (m2/s); Kr and Kz are radial and vertical hydraulic
conductivities (m/s), respectively; Ss is specific storage (m−1); b2 is aquifer or initial
saturated thickness (m); Hc = Q/(4πb2Kr) is system characteristic head (m); and Q
is the volumetric pumping rate (m3/s). The dimensionless parameter δ is zero for
confined aquifers, where flow is entirely radial, and unity for unconfined aquifers,
where vertical flow is significant.

For confined aquifer flow, Eq. (A.1) is solved subject to the initial condition

sD(rD, tD = 0) = 0, (A.2)

a Dirichlet far-field boundary condition

lim
rD→∞

sD(rD, tD) = 0, (A.3)

and a Neumann boundary line-sink condition at the well

lim
rD→0

rD
∂ sD

∂ rD
=−2. (A.4)

For unconfined aquifer flow, two additional boundary conditions are needed
because of vertical flow. At the base of the aquifer, a homogeneous (zero-flux)
Neumann boundary condition is imposed, namely

∂ sD

∂ zD

∣
∣
∣
∣
zD=0

= 0. (A.5)

The linearized kinematic condition of Neuman (1972) is imposed at the water-table,
namely,

− ∂ sD

∂ zD

∣
∣
∣
∣
zD=1

=
1

αD

∂ sD

∂ tD

∣
∣
∣
∣
zD=1

, (A.6)

where αD = κ/ϑ , ϑ = Sy/(b2Ss), and Sy is specific yield or drainable porosity,
which is a measure of the fraction of the bulk volume a saturated porous medium
would yield when the water is allowed to drain out under the action of gravity.

Solving the flow problem yields sD,c = E1(x), which is the solution of Theis
(1935) for confined aquifer flow. Solving the unconfined flow problem yields the
solution of Neuman (1972) given in Eq. (7.12). It should be noted that the flow
problem is solved without consideration of the SP problem. This is due to a weaker
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dependence of fluid flow on electric potential differentials; i.e., the Darcy (pressure
gradient) flux term is much greater than the flux term due to the electric field (Ishido
and Mizutani 1981; Sill 1983). For the SP problem, however, the current density due
pressure differentials (Darcian component) is of comparable magnitude to that due
to electric potential differentials (the Ohmic component).

Hence, Eq. (7.1) can be written in nondimensional cylindrical form as (Malama
et al. 2009a,b)

1
rD

∂
∂ rD

(
rD

∂φD,2

∂ rD

)
+

∂ 2φD,2

∂ z2
D

−
[

1
rD

∂
∂ rD

(
rD

∂ sD

∂ rD

)
+ δ

∂ 2sD

∂ z2
D

]
= 0, (A.7)

for the aquifer, with δ = 0 for confined and δ = 1 for unconfined flow. For the upper
unit, which is confining in the confined aquifer case, but corresponds to the vadose
(unsaturated) zone for the unconfined case, the SP problem is given by

1
rD

∂
∂ rD

(
rD

∂φD,i

∂ rD

)
+

∂ 2φD,i

∂ z2
D

= 0, (A.8)

where i= 1 for the upper unit and i= 3 for the lower unit, φD,i = φi/Φc for i= 1,2,3,
and Φc = (γ�2/σ2)Hc. Note that the Darcian component of the current density (term
is square brackets in Eq. (A.7)) does not appear in Eq. (A.8) because it is assumed
(Malama et al. 2009a,b) that there is no fluid flow in layers 1 and 3. Additionally,
it should be noted that only vertical fluid flow is neglected in the confined case; the
electric field, on the other hand, has vertical components, which make it possible for
the SP signal to be measured at land surface.

The SP problem is solved subject to the initial condition

φD,i|tD=0 = 0, (A.9)

the homogeneous Dirichlet boundary condition at the far-field in all layers,

lim
rD→∞

φD,i = 0, (A.10)

the homogeneous Neumann (insulating condition) boundary conditions at ground
surface

∂φD,1

∂ zD

∣
∣
∣
∣
zD=1+bD,1

= 0 (A.11)

and at the base of layer 3

∂φD,3

∂ zD

∣
∣
∣
∣
zD=−bD,3

= 0, (A.12)

where bD,1 = b1/b2 and bD,3 = b3/b2 are the normalized thicknesses of layers 1
and 3. Note that the insulating condition in Eq. (A.12) is applied at the contact
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between layer 3 and an underlying highly resistive layer (zD = 1+bD,3). It has been
shown in Malama et al. (2009a) that the line-sink condition at the pumping well can
be written as

lim
rD→0

rD
∂φD,i

∂ rD
=

{
0 i = 1,3
−2 i = 2

. (A.13)

Additionally, continuity conditions are imposed at the upper and lower boundaries
of the aquifer, namely,

φD,1|zD=1 = φD,2|zD=1 , (A.14)

φD,3|zD=0 = φD,2|zD=0 , (A.15)

σD,1
∂φD,1

∂ zD

∣
∣∣
∣
zD=1

=
∂φD,2

∂ zD

∣
∣∣
∣
zD=1

, (A.16)

σD,3
∂φD,3

∂ zD

∣
∣
∣
∣
zD=0

=
∂φD,2

∂ zD

∣
∣
∣
∣
zD=0

(A.17)

where σD,i = σi/σ2, the electrical conductivity of the ith layer normalized by that
of layer i = 2. Malama et al. (2009a,b) developed the analytical solutions to the
confined and unconfined SP problems. These are repeated here for completeness
(and in a notation that is consistent for the confined and unconfined aquifer
problems) in Appendix B.

Appendix B: Analytical SP Solutions

For a confined aquifer, Malama et al. (2009a) derived the exact solution for SP
response in the aquifer and the confining units, in double Hankel–Laplace transform
space. The details of the derivation, including the appropriate governing equations
and initial and boundary conditions, can be found in that work. When derived in
the same coordinate system as the unconfined SP solution, the confined SP solution
becomes

φ ∗
D,i(p,a,zD) = s∗D,c(p,a)v∗D,i(a,zD) (B.1)

where i = 1 for the upper confining unit, i = 2 for the aquifer, i = 3 for the
lower confining unit, a and p are the Hankel and Laplace transform parameters,
respectively and s∗D,c(p,a) is the Hankel–Laplace transform of the Theis solution

v∗D,i(p,a,zD) =

⎧
⎪⎪⎨

⎪⎪⎩

1
ξ1,1

cosh[a(bD,1 + z′D)]v∗D,2|zD=1 i = 1,

1+w∗
D(a,zD) i = 2,

1
ξ3,1

cosh[a(bD,3 + zD)]v∗D,2|zD=0 i = 3,

(B.2)

w∗
D(a,zD) =

1
Δ2

[ξ3,2g1(zD)+ ξ1,2g3(zD)] (B.3)
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where z′D = 1− zD,

ξ1,1 = cosh(abD,1) (B.4)

ξ3,1 = cosh(abD,3) (B.5)

ξ1,2 = σD,1 sinh(abD,1) (B.6)

ξ3,2 = σD,3 sinh(abD,3) (B.7)

Δ2 = |A1 sinh(a)+A2 cosh(a)| (B.8)

A1 = ξ1,2ξ3,2 + ξ1,1ξ3,1 (B.9)

A2 = ξ1,2ξ3,1 + ξ1,1ξ3,2 (B.10)

g1 = ξ1,1 cosh(az′D)+ ξ1,2 sinh(az′D) (B.11)

g3 = ξ3,1 cosh(azD)+ ξ3,2 sinh(azD). (B.12)

The unconfined aquifer solution obtained by Malama et al. (2009b) is given by

φ ∗
D,i(p,a,zD) =

⎧
⎪⎪⎨

⎪⎪⎩

1
ξ1,1

cosh[a(bD,1 + z′D)]φ
∗
D,2|zD=1 i = 1

s∗D,u +w∗
D,u(p,a,zD) i = 2

1
ξ3,1

cosh[a(bD,3 + zD)]φ
∗
D,2|zD=0 i = 3

(B.13)

w∗
D,u(p,a,zD) =

1
Δ2

[(
ξ1,2 − pθ

aκ
ξ1,1

)
g3(zD)s

∗
D,u|zD=1 + ξ3,2g1(zD)s

∗
D,u|zD=0)

]

(B.14)

where the various functions and parameters are the same as those given above and
s∗D,u is the Laplace–Hankel transform of unconfined aquifer drawdown. The inverse
transforms were obtained numerically.
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Chapter 8
Description, Analysis, and Interpretation
of an Infiltration Experiment in a Semiarid Deep
Vadose Zone

Marcel G. Schaap

Abstract Over the past 15 years, the University of Arizona has carried out four
controlled infiltration experiments in a 3,600 m2, 15 m deep vadose zone during
which the evolution of moisture content and matric potential was monitored and the
subsurface stratigraphy, texture, and bulk density were characterized. This chapter
will first provide a brief overview of the site characteristics and the available data.
Subsequently a geospatial analysis using old and recently acquired data will be
carried out to demonstrate that a vertical domain trend due to alluvial layering must
be accounted for. The resulting model for subsurface texture is used to reanalyze a
neutron probe calibration set, such that unbiased texture-dependent estimates of soil
moisture become possible. The resulting models are applied to the third infiltration
experiment conducted at the site (January 2001 to February 2002) and interpreted
with moment analysis based on depth-mean moisture contents. The work presented
here is a first step towards a full reanalysis of the site’s data, which in future
publications will also include flow and transport modeling and an assessment how
much data and of what kind are needed to build an acceptable vadose zone model.

8.1 Introduction

Our ability to quantify water flow and solute transport through the vadose zone is
essential for understanding, mediating, and managing a wide range of agricultural,
environmental, and water resource management activities. Movement of soil water
and transport of dissolved constituents in the vadose zone is typically complex,
nonlinear, and not easily measured. This is especially the case for stratigraphically
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complex deep vadose zones found in sedimentary basins throughout the (semi-)
arid western US, some of which have critical contamination problems. A prime
example is the Hanford reserve in the state of Washington where large quantities of
mobile uranium and technetium (among a host of other, less mobile, radioactive,
or chemical contaminants) pose a significant risk to the local groundwater and
ultimately the Columbia River system (DOE 2010). A significant amount of
subsurface characterization and geostatistics and vadose zone modeling has been
carried out for parts of the “Hanford” site (e.g., Gee et al. 2007), yet, to date the
complexities of flow and transport at the site have defied a definitive remediation
strategy (DOE 2010). Other well-known deep vadose zone sites with significant
vadose zone flow and transport-related risks include the Yucca mountain site for
a long-term high-level radioactive waste repository (DOE 2002) and the Idaho
National Engineering and Environmental Laboratory which has historic waste
repositories with transuranic elements (e.g., Mattson et al. 2004).

Very few well-documented deep vadose zone sites exist that have sufficient data
to permit detailed analysis of the effect of subsurface structure on flow and transport
processes. One such site is the informally known “Sisson and Lu” infiltration site in
the Hanford 200-East area (Sisson and Lu 1984; Gee and Ward 2001) which had led
to a range of publications (e.g., Ward et al. 2006, Ye et al. 2007, Deng et al. 2009).
Another vadose zone site is the “Las Cruces Trench Site” (Wierenga et al. 1989,
1990) which, although not particularly deep (6 m), has facilitated many vadose zone
studies. Here we report on a deep vadose zone experimental site in Maricopa, Ari-
zona. Work at this site was initially funded by the Nuclear Regulatory Commission
(NRC), primarily to investigate the suitability of a variety of instrumentation for
vadose zone monitoring, including installation techniques, instrument performance,
and their appropriateness for field-scale monitoring (Young et al. 1999). In 2004,
the National Science Foundation (NSF) funded additional site characterization
to support improved vadose zone modeling studies, including characterization of
sources of uncertainty.

The major focus points of the “Maricopa” project were four infiltration and
drainage experiments conducted from 1997 to 2004, during which moisture was
tracked with neutron thermalization and a variety of other instruments. During
two of the experiments, a bromide tracer was released to characterize chemical
transport. Over the past 15 years, an array of publications (thesis, dissertation,
report style, and peer-reviewed literature) has come forth from the project. Young
et al. (1999) provided the most comprehensive description to date on the first phase
of the project (Experiments 1 and 2; little has been published on Experiments 3
and 4), in particular on the suitability of specific types of instrumentation for deep
vadose zone monitoring. Fleming (2001) used a series of laboratory procedures
to determine soil hydraulic properties from cores collected along a 1.5 m deep
transect at the site, while Graham (2004) conducted an instantaneous profile analysis
using moisture and tensiometer data. Wang (2002) carried out a geospatial analysis
of the shallow subsurface texture and parameterized flow a transport models for
the site. Thomasson and Wierenga (2003) analyzed data from a tracer study from
Experiment 1. Yao et al. (2004) conducted an in situ field neutron probe calibration



8 Description, Analysis, and Interpretation of an Infiltration Experiment. . . 161

that yielded four textural class-specific calibration relations. Because the textural
distribution at depths > 2.5m was still largely unknown at the time of publication,
Yao et al. (2004) extended these relations by mapping dry profile neutron count
ratios and corresponding textural classes found at the top 2.5 m to those at greater
depths. A substantial effort in terms of 1D, 2D, and 3D vadose zone modeling
using the data from experiments 1 and 2 was performed by Thomasson and
Wierenga (2003) and Wang et al. (2003). They found that simulations based on
unsaturated hydraulic properties estimated with a variety of pedotransfer functions
that used off-site data did not fit the observed time series of water contents very well.
Wang et al. (2003) were able to improve substantially on these results by conducting
inverse analyses of temporal water content variations in 1D and 2D sections. Finally,
Fang (2009) found that inversion using a site-specific pedotransfer function led
to generally better parameter identification that inversions based on layer-specific
optimizations.

The above publications provide passing snapshots about what was known or had
been measured up to date. In 2005, during the NSF phase of the project, a more
complete characterization with regard to texture and some deep hydraulic property
samples was conducted. With this new data, it becomes possible to construct a more
complete geospatial model for the entire site than Wang et al. (2003) were able
to do. As we will show, a better geospatial model of subsurface stratigraphy and
texture also makes it possible to reanalyze the neutron calibration conducted by Yao
et al. (2004) to produce unbiased estimates of subsurface water content dynamics.
As a result of a better geospatial model and a more reliable neutron calibration,
it will also become possible to conduct more sophisticated forward and inverse
modeling that make it possible to answer important questions about what kind of
(and how much) data is needed to characterize the site and to quantify the effects
of the various sources of uncertainty on model results. The material presented in
this chapter will be limited to: (a) brief description of the Maricopa infiltration
site and the data collected, (b) characterization of the three-dimensional subsurface
structure using geospatial techniques, (c) a selection of the most appropriate neutron
thermalization calibration, and finally, (d) a brief evaluation of Experiment 3 in
terms of mass recovery and moment analysis. Future work with regards to additional
instrumental data and modeling will be based on the analysis methods and results
reported here.

8.2 Materials and Methods

8.2.1 Site Description

The infiltration site is located at University of Arizona’s Maricopa Agricultural
Center (latitude 33.0695N, longitude 111.9737W, field F-115), between the cities
of Phoenix and Tucson. The site is located in a broad alluvial valley with thick



162 M.G. Schaap

and generally horizontal deposits that vary between gravel and clay; the surface
soil is characterized as a fine-loamy mixed, hyperthermic Typic Natrargid (Post
et al. 1988; Young et al. 1999). The primary site itself is 60 by 60 m and aligned
with the cardinal directions with a relative origin of x = 0, y = 0 at the southwestern
point. As described by Young et al. (1999) a cover (0.8 mm Hypalon pond liner)
was used to prevent evaporation from the surface. Notable other features in the
surrounding area are two irrigation return canals to the south and east with adjacent
access roads. Directly west, a service area of approximately 40 × 60m2 in size
without cover was available for the duration of the experiments. To the north, a
flood-irrigated alfalfa field was present that may occasionally have contributed water
to the site by means of subsurface lateral drainage. Irrigation water was applied
to the central 50× 50m2 area of the site with 50 m long drip lines running under
the cover in the west to east direction (starting at x = 5m and ending at x = 55m,
thus allowing for a 5 m nonirrigated but covered border around the site). The 164
drip lines (Netafim Techline, Fresno, CA) were 30 cm apart and had emitters every
30 cm with a rated discharge of 2.27 l/h each. In this work we report on Experiment
3 which started on January 17, 2001 (day of year, DOY, 17), and ended on January
28, 2002 (DOY 393).

After an extensive 800-day drainage period since the previous experiment,
irrigation for Experiment 3 started at noon, April 24, 2001 (DOY 114.5), and ended
at noon, May 22 (DOY 142.5). Irrigation occurred ten times daily for periods of
6 min. A small amount of irrigation was applied in the weeks before the formal
start of the irrigation phase (15 mm total) for system testing. A flow interruption
occurred around DOY 119, making the infiltration deviate from a uniform target of
26.6 mm/day. The cumulative infiltration amount at DOY 142.5 was 764 mm, which
is more than 3 times the mean annual rainfall in this region of Arizona. No formal
accuracy is available for the total applied amount, but it is estimated to be 2% (cf.
Young et al. 1999, p. 73). In the remainder of this work, it is assumed that water is
applied uniformly in space even though Young et al. (1999, p. 55) show that it is
possible that somewhat higher rates are present near the water distribution points on
the western end of the site.

8.2.2 Instrumentation

The site features nine access wells intended for neutron thermalization (see Fig. 8.1).
Throughout this chapter we maintain the historic well numbering (402, 403, 405,
etc. in Fig. 8.1) to avoid confusion with future publications and the eventual
release of the data. Each of the nine wells was 15 m deep and consisted of a
5 cm inner diameter PVC tube; shallower wells are also present at the site (see
Young et al. 1999 for details), but these were not used in Experiment 3 and are
not depicted in Fig. 8.1. Neutron thermalization counts (over 16-second periods)
in 0.25 m increments were available for each well on 41 dates for Experiment 3.
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Fig. 8.1 Oblique views to the north–north west from 96 m above (top) and 12 m below the surface.
The square on top is the 60×60m impermeable cover with the 50×50×15m cube underneath to
delineate the flow domain (drip lines on top are not shown for clarity). Wide vertical cylinders
depict the location of the nine neutron wells (numbered, 402, 403, etc.). Adjacent narrower
cylinders indicate the position of the tensiometers (3, 5, and 10 m depth). Spheres indicate the
position of the 1,042 samples for particle size; note that there are two groups of particle size
samples outside the flow domain. Short dark cylinders (often overlapping) indicate the position of
250 samples for bulk density. The gray area near the bottom of the domain indicates the position
of a perched groundwater table at 13 m. Individual objects are not sized to scale: all PSD and BD
samples were drawn with a size of 0.4 m; the neutron wells were drawn with a diameter of 20 cm
(5.08 cm diameter in reality); while the tensiometers were drawn with a diameter of 10 cm (2.54 cm
in reality)
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In total, 19,488 true measurements were performed, while 740 measurements were
inferred because data were missing or unreliable due to neutron probe malfunction,
operator error, or time constraints. The inferred measurements were generally
derived by interpolation or extrapolation using data from observation dates before
and/or after the missing date for the same well and depth. Most of the inferred
data are present on DOY 17 and 47 when data for several wells are missing, and
DOY 114.5 (start of irrigation) when no measurements were performed at depths
greater than 5 m. No measurements were performed below the water table if present
in the wells. The deepest recorded data were at depth z = 14.25m (wells 405 and
425), and the shallowest well was 445 with a maximum measured depth of 13 m. In
many cases observations deeper than 12.5 m are missing, and in order to consider
a consistent depth range, we will therefore primarily focus on data from depths
between 0 and 12.5 m. Anomalous neutron readings were found for large parts of
well 405, presumably because of large air pockets around the PVC tube. Neutron
count data for well 405 was therefore excluded from further analysis in this chapter.
Four hundred usable neutron observations are available on each date (8 wells times
50 observation depths); the total number of useful neutron observations is 16,400
(41 dates times 400 observations). As described by Yao et al. (2004), the neutron
data are available as count ratio (CR), which is the 16-second neutron count for each
well and depth, normalized with a date-specific reference count.

In the following we will assume that each neutron measurement provides a
volume average CR for depth increments of 0.25 m, which implicitly also defines
our smallest scale of interest. This means that the neutron measurement at a
nominal depth of 0.25 m senses moisture in a depth range between 0.125 and
0.375 m, while the measurement at 0.5 m senses moisture between 0.375 and
0.625 m, etc. It should be noted that while we assume a uniform depth weighting
over each increment, measurements in reality are more sensitive to water near
each nominal depth. In fact, the sensed thermalized volume becomes smaller at
increased moisture contents. Guidelines given in Hignett and Evett (2002, p. 502)
indicate that the sensed spherical radius was likely larger than 0.125 m under most
conditions, indicating that consecutive neutron observations should exhibit some
vertical correlation (and thus smoothing). In this work we did not take volume
weighting nor spatial correlations of the neutron probe moisture observations into
account. No observations are available for z = 0 for experimental, regulatory, and
operator safety reasons; no moisture data are therefore available for the 0–0.125 m
layer.

Visible in Fig. 8.1, but not analyzed in this work, are 27 deep tensiometers (see
Young et al. 1999) adjacent to each well at depths of 3, 5, and 10 m. Future work will
combine water contents derived from the neutron probe CR and the tensiometers
into field moisture release curves. The tensiometers were located about 1 m to the
south of each neutron well which ensures that the water present in these instruments
does not interfere with the neutron thermalization measurements.
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8.2.3 Particle Size and Bulk Density

During the course of the project, a large number of samples were collected to
support measurements with specific instrumentation (cf. Young et al. 1999) or to
characterize the subsurface stratigraphy. During Experiments 1 and 2, 520 samples
for texture were available which were later used by Wang (2002) to conduct
geospatial analysis. Some of the data were taken up to 25 m to the west of the site
(Fig. 8.1). One hundred and twenty-nine bulk density samples were also available
from this phase of the project. Many of these samples were taken in a narrow trench
that runs north to south in the middle of the site (Fig. 8.1). Later in the project,
Yao et al. (2004) collected an additional 124 core samples between z = 0 and 2.5 m
near the neutron wells for neutron probe calibration; particle size and volumetric
water contents were also determined. No reliable bulk density data is available
below 5 m, as greater depths could only be accessed with destructive methods,
such as split spoon sampling. In the spring of 2005, an NSF-funded effort was
undertaken to characterize the site’s texture down to a depth of 15 m. To this end, a
total of 401 disturbed samples were collected with and measured in ten particle size
classes (all previous samples were typically characterized with three classes: sand,
silt, and clay percentages). All wells were typically sampled at 0.25 m increments
down to approximately 10 m, except for well 423 in the middle of the site, which
was sampled down to 15 m. The sampling was typically done within 1 m from
each neutron well. Unfortunately, the exact position relative to each well was not
recorded, leading to some positional uncertainty. Most vertical sample depths do
not coincide with the nominal depth of the neutron probe observations but are offset
by 0.125 m. Some kind of interpolation method is therefore needed to estimate the
particle size and bulk density at each neutron well observation depth. After some
quality checks, 1,042 and 250 samples remained for particle size and bulk density,
respectively.

Figure 8.1 displays the locations of the particle size (spheres) and bulk density
samples (cylinders) within the domain. To distinguish samples from the well tubes
particle size samples taken at the neutron wells were offset 0.25 m to the east, and
those for bulk density were offset by 0.5 m. It should be noted that some samples
depicted in Fig. 8.1 appear to overlap and that most samples are located at shallow
depth, especially for bulk density. This latter issue is also evident in Fig. 8.2 and will
be revisited later on in this chapter.

8.2.4 Data Management and Analysis Software

The analysis conducted in this chapter makes extensive use of the open-source
scriptable statistical package R (version 2.13.1, Ihaka and Gentleman 1996; R
Development Core Team 2005) to perform most of the analysis and produce all
graphs (with the exception of Fig. 8.1, which was constructed in Blender v. 2.62,
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Fig. 8.2 Textural triangle for observed particle size data (symbols). Large dots indicate samples
taken in the vicinity of the nine wells (used to derive the domain trends); small dots indicate
samples taken elsewhere in the domain (cf. Fig. 8.1). The three shaded areas indicate the part of
the distribution spanned by samples taken for neutron calibration, estimated vertical texture trend,
and kriged values. Also shown (top right) are the direction and relative sizes of the first and second
principal components offset from their origin, which is at the center of the triangle

www.blender.org). Of particular importance in the analysis with R was the package
“gstat” (Pebesma 2004) which was used to perform the spatial analysis such as
calculation of experimental variograms, variogram model fitting, and point kriging.
The R function “loess” (Cleveland et al. 1992) was also widely used in this work
to smooth noisy data, extract vertical trends in texture and bulk density, and for
graphing purposes (Figs. 8.3 and 8.5). A particular advantage of “loess” and other
geospatial or regression models in R is that they can be saved as objects and be
used later to make estimates on new data or be distributed when the data of this
project is released. The R scripts extracted and stored data using Standard Query
Language (SQL) statements that queried a MySQL database. SQL statements were
particularly useful for selecting, combining, and summarizing data, as well as outlier
analysis for quality control. The effectiveness of R combined with an SQL-type
database made it possible to quickly and effectively analyze the data, something
not easily possible with other software systems such as spreadsheets. An extensive
analysis was conducted and only a fraction of the results appear here. We attempted
to keep the analysis and the models as simple as reasonable and we will state the
assumptions needed to bring the analysis forward.
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8.3 Data Analysis and Results

8.3.1 Textural Distribution and Its Principal Components

Figure 8.2 is the textural triangle of all 1042 particle size samples, illustrating that
the subsurface consists primarily of sand, loamy sand, and sandy loam textural
classes, with a minority in the loam, clay loam, sandy clay loam, and silt loam
classes. From the clustered and elongated distribution of the samples, it is also clear
that there is a rough correlation between sand and clay percentages, which is caused
partly by the fact that sand, silt, and clay percentages for each sample must sum
up to 100%, and partly by the alluvial sedimentary regime and subsequent soil
formation. Correlated distributions are often found, even in the largest datasets; see,
for example, Fig. 8.2 in Schaap et al. (2004) that shows a prominent linear clustering
of samples extending from the sand through silty clay loam classes for a database of
more than 47,000 samples. Rather than analyzing the particle size data in terms of
sand, silt, and clay percentages, it is more effective and convenient to first transform
the particle size data into their principal components. No information is lost in such a
principal component analysis because this is just a rotation of the coordinate system
such that the resulting variables are linearly independent.

The principal components were determined on a subset of the data: 520 samples
that were collected in the later part of the project to more fully characterize the
subsurface stratigraphy. These data were taken near each of the nine wells and have
an almost uniform distribution with depth and do not have a substantial bias towards
the surface. The R routine “princomp” was used to generate the principal component
vectors. Table 8.1 shows that the first principal component, PC1, carries 92% of the
variance in the textural triangle and is most sensitive to the sand fraction (see the
vectors in Fig. 8.2 which are drawn with a length proportional to the square root of
the variance). The clay fraction contributes most strongly to the principal component
(PC2), which carries the remaining 8% of the variance. The third component (PC3)
is essentially a constant that carries no information. In essence, PC1 measures the
coarseness of the soil similar to that of sand, and PC2 represents the presence of fine
material within the coarse matrix. PC1 and PC2 formally have percentage units, but
because the origin of the new coordinate system is in the center of the triangle, both
can have negative values.

Table 8.1 Normalized orthogonal vectors and cumulative variance for
the three principal components of texture

PC1 PC2 PC3

Sand 0.808 −0.119 −0.577
Silt −0.507 −0.640 −0.577
Clay −0.301 0.759 −0.577
Cumulative proportion

of variance
0.920 1.000 1.000
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Fig. 8.3 Distribution principal components (a: PC1 and b: PC2) and bulk density (c) with depth.
The estimated trends for all three variables are shown, as well as their 96% confidence intervals.
The graphs for PC1 and PC2 also show the trend estimate using data for well 423 which was used
for depths greater than 10 m for which other wells have scarce or no data (cf. Fig. 8.1). In the
case of bulk density, no reliable data are available for depths greater than 5 m. For depths greater
than 5 m, we assumed a uniform bulk density of 1.8g/cm3 and a one standard error uncertainty of
0.1cm3/cm3

8.3.2 Stratigraphic Trends in Texture and Bulk Density

Figure 8.3a and b present the same data as Fig. 8.2, now expressed as PC1 and PC2
versus depth; Fig. 8.3c shows a similar graph for bulk density. From these graphs,
it is clear that although all three data types exhibit considerable scatter with depth,
they also exhibit individual trends that are indicative of the horizontal sedimentary
layering that is consistent throughout the site. Despite the scatter in each of the
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Table 8.2 Pearson correlation coefficients between domain trends and
measured particle size (“domain”) and kriged results and measured
particle size (“kriged”) for PC1 and PC2 at each of the nine wells

PC1 PC2

Well Domain Kriged Domain Kriged

402 0.75 0.90 0.69 0.77
403 0.79 0.90 0.85 0.90
405 0.74 0.85 0.82 0.92
422 0.87 0.94 0.81 0.88
423 0.72 0.91 0.84 0.90
425 0.72 0.92 0.65 0.70
442 0.60 0.87 0.79 0.85
443 0.79 0.89 0.86 0.89
445 0.59 0.88 0.84 0.87

datasets it is possible to extract common trends (“domain trends”) of PC1, PC2, and
bulk density versus depth. To this end we used the R function “loess” (Cleveland
et al. 1992) which performs a local polynomial regression against depth and is able
to provide a mean as well as a standard error for each depth. In the case of PC1
and PC2, we assumed Gaussian deviates from the trend and 24 degrees of freedom
on the 520 uniformly distributed points (black data points and gray data points are
the remaining 522 texture samples). The domain trends shown in Fig. 8.3a and b
are actually a hybrid of two such loess models: one for all wells down to a depth
of 10 m, and one for data from well 423 only, which was the only well that had
data beyond 10 m. The 96% confidence intervals for the standard error of the trend
lines are also shown. From the domain trends, it is evident that prominent coarse
layers are present around 3 and 5 m and between 8 and 13 m. Fine textured layers
are situated around 1, 4.5, 7, and 13.5 m.

Table 8.2 shows that individual well data exhibited correlation coefficients
between 0.59 (well 442) and 0.87 (well 422) for the domain trend of PC1, the
correlations for PC2 were between 0.65 (well 423) and 0.86 (well 443). These
correlation coefficients and the loess interpolators for well 423 shown in Fig. 8.3a
and b demonstrate that the domain trend is a reasonable characterization for the
entire site, even though local departures from the overall trend occur (e.g., between
0.5 and 1.5 m for PC1 of well 423 in Fig. 8.3a). By evaluating the domain trend
models for PC1 and PC2 for every depth with neutron probe observations and
characterizing the resulting bivariate distribution as a convex hull (“chull” in R),
we can demonstrate that while the domain trends capture a substantial part of
the observed textural distribution (gray area in Fig. 8.2), they do not capture all
variability present at the site. This is because the domain trends established here
are only capturing dominant vertical variability (consistent layering) and not other,
random, variability.

In the case of bulk density (Fig. 8.3c), the loess function was established for
all available data and 12 degrees of freedom and considered valid until a depth
of 5 m, beyond which we somewhat arbitrarily assumed a uniform bulk density



170 M.G. Schaap

of 1.8g/cm3 because this value connects to the domain trend at 5 m depth; we
assumed an associated one standard error uncertainty of 0.1g/cm3. The bulk density
increases with depth, but a local minimum appears to be present at 2 m. However,
no clear reason was found for the presence of this minimum. We found that bulk
density was poorly correlated with texture, and all attempts to extend it to greater
depth with regression models failed (not shown).

8.3.3 Geospatial Model

Previously, Wang (2002) determined vertical and omnidirectional horizontal var-
iograms using a subset of the data collected in the first phase of the project.
Based on analysis of neutron probe data, Wang (2002) stratified the data 0.3 m
thick layers between 0 and 1.8 m and fitted mostly spherical variograms for the
horizontal direction with ranges generally between 20 and 25 m. Wang (2002) did
not calculate horizontal variograms for deeper layers. Wang (2002) also calculated
vertical variograms and concluded that the vertical correlation scale was about 2 m.
Vertical variability was treated as random about a constant mean, and the analysis
did not explicitly consider the consistent layering that is present in particle size data
as well as neutron observations. Here we present a new spatial analysis using all
currently available data and demonstrate that it is essential to carry out analysis on
the residual variograms (i.e., variograms calculated on data with trend removed).

Figure 8.4a–f provides the omnidirectional horizontal and vertical semi-
variograms for PC1, PC2, and bulk density, experimental (lines with symbols)
and fitted (thick lines) variograms are shown. Also shown are the number of point
pairs (thin gray line in Fig. 8.4b, c, e, and f) and the number of samples per depth
increment (0.25 m) versus depth in the vertical direction (dashed line in Fig. 8.4e
and f). The lag distance bins used were 0.25 and 2.5 m for PC1 and PC2 in the
vertical and horizontal directions, respectively, and 0.25 and 5 m for bulk density.
The relatively large lag increments in the horizontal direction were used not only to
create an appreciable number of samples per lag but also to mask the fact that there
is considerable positional uncertainty (∼1 m) in the horizontal direction.

The two experimental variograms in each graph show the effect of the removal
of the vertical domain trend (i.e., the residual variogram). As expected, the domain
trend correction has a much stronger effect in the vertical variograms (right-hand
column) than in the horizontal variograms (left-hand column), simply because
the trend caused by consistent layering is removed. The vertical variograms
without trend correction in Fig. 8.4d and e show strong “hole effect” (Deutsch and
Journel 1998) due to the presence of layering. Also notice that these effects are out
of phase for PC1 and PC2. The effect of domain trend correction is minor for the
horizontal directions and exists only in these graphs because we used a tolerance
angle (see Pebesma 2004) of 3 degrees from horizontal to allow samples that were
almost at the same depths to form pairs. However, even here it is evident that domain
trend correction leads to a reduction in semivariance, especially at the longer lags.
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Table 8.3 Fitted variogram models and their parameters. The long-range semivariance is equal
to the nugget plus sill, the cross-validation error was computed as the square root of the mean
cross-validation variance (see Pebesma 2004)

Variable Model Nugget Sill
Range
xy.(m)

Range
z. (m)

Cross-validation
error

PC1 Gaussian 54.7%2 84.82%2 13.1 0.28 10.66%

PC2 Gaussian 7.87%2 5.74%2 5.6 0.85 3.35%

Bulk Gaussian 9.61×10−4 1.02×10−2 7.7 0.02∗ 0.11g/cm3

density (g/cm3)2 (g/cm3)2

∗assumed value, smaller than the scale of interest

A variety of analyses with regard to alternative lag distances as well as data
stratification (top soil, subsurface) and anisotropy tests were carried out; however,
none of these tests provided a more consistent spatial description. It was, therefore,
assumed that the experimental residual variograms shown in Fig. 8.4 apply to the
entire domain. However, it should be realized that since most samples are located
near the top 2.5 m of the domain, the vertical variograms are potentially biased to
the near surface. Similarly, few short distance sample pairs are available in the
horizontal direction (especially for bulk density) and many of these are near the
surface and predominantly in the central north-south trench (Fig. 8.1), making the
horizontal variogram ranges uncertain and biased to the top of the domain. For
reference, a uniform distribution of the 1,042 samples throughout the site would
have required 100 wells (with a spacing of ∼5 m) and samples taken every ∼1.5 m
depth increment (down to 15 m). The drilling costs associated with such a sampling
scheme would have been prohibitive.

Table 8.3 provides the parameters of the variogram models that were fitted to the
experimental residual variograms. The variograms were fitted using weights that
varied with the number of samples divided by the squared distance (Pebesma 2004),
thus making the model fits relatively insensitive to the longer lag distances. In
the course of our geospatial analysis, we tested a number of different variogram
models (linear, spherical, and exponential) and found by cross validation that the
Gaussian model performed marginally better than the other models. Nuggets, sills,
and ranges were fitted for the horizontal variograms (see also Fig. 8.3a on how we
define nugget and sill). In the case of the vertical variograms, we only fitted the range
and assumed that the horizontal nugget and sill applied to the vertical direction. The
fitted variograms in Fig. 8.4 shows that these assumptions are reasonable. However,
we should also note that the experimental residual variograms and fitted results are
not completely independent from the domain trends. Choosing a different value for
the degrees of freedom will lead to somewhat different domain trends and therefore
somewhat different residual variograms. The chosen values (24 for PC1 and PC2)
were determined after substantial analysis that showed that values between 16 and
30 yielded rather similar results. In addition, we should also mention that the local
polynomial regression used by the “loess” function is unable to deal with discrete
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boundaries (i.e., sudden changes in texture). This may actually impart short-range
spatial correlation that is not present. We are currently exploring alternative ways in
dealing with drift, as published by Neuman and Jacobson (1984).

Table 8.3 shows the horizontal range for PC1 (13.1 m) is larger than that of
PC2 (5.6 m). No acceptable variogram fits were obtained if a common range
was attempted. Conversely, the vertical range of PC2 is longer (0.85 m) than that
of PC1 (0.28 m). Because the results for PC1 and PC2 are based on the exact
same 1,042 texture samples, we can ignore statistical sampling effects to explain
these differences. Our best explanation is that PC1 (being a predominantly coarse
component of texture) is determined mostly by the alluvial depositional regime,
while PC2 is determined by subsequent soil formation with vertical clay transport
that would increase the vertical range and possibly decrease the horizontal range
if soil formation is horizontally heterogeneous. Further note that the sill of PC2
is smaller than the nugget, indicating that this variable is, in fact, mostly spatially
uncorrelated.

The fitted horizontal range for bulk density was found to be 7.7 m, but this value
is rather uncertain (not shown) because the lags shorter than this distance (nominally
2.5 and 7.5 m) contain very few sample pairs (5 and 55, respectively), relative
to larger lags (>1,000; see also Fig. 8.4e). Because of the absence of a vertical
correlation, no reliable vertical variogram model could be fitted for bulk density. We
were unable to define a pure nugget effect in the vertical direction in the anisotropic
variogram model, we therefore assumed a range of 0.02 m in this direction, which
is smaller than a typical core sample and much smaller than our scale of interest
(0.25 m or greater).

Cross-validation (R, gstat: krige.cv) errors shown in Table 8.3 were computed as
the root mean square residuals and show considerable errors (10.66 and 3.35% for
PC1 and PC2, respectively). The % units of the errors in Table 8.3 refer to the units
of particle size and not to a fraction of the variable range. Finally, the convex hulls
of the kriged PC1 and PC2 values for all wells are displayed in Fig. 8.2 as a cross-
hatched area. This area expands upon that of the domain trends, demonstrating that
the kriging procedure is capable of capturing more of the site textural variability.
However, it is also clear that kriging is unable to honor all of the existing textural
variability as evidenced by the points outside the convex hull for kriging. In this
work we will be unable to answer whether this unresolved variability is indeed
important to capture the site’s hydrological dynamics.

8.3.4 Neutron Probe Calibration

Yao et al. (2004) carried out a neutron probe calibration and derived texture class-
specific calibration equations for sand, loamy sand, sandy loam, and one for a
textural boundary layer (based on a total of 106 samples taken from the top 2.5 m;
see also Fig. 8.4 and Table 8.3 in Yao et al. 2004) that improved upon calibrations
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performed by Young et al. (1999) and Thomasson (2001). The calibration equations
use a simple linear form:

θ = a+ b ·CR (8.1)

where θ is the volumetric water content, CR is the count ratio, and a and b
are regression parameters. Table 8.3 in Yao shows that the four equations exhibit
rather different offsets and slopes, where the slope appears to become larger with
finer textures and the intercepts smaller (more negative). Although these equations
worked well for the purposes of Yao et al. (2004), resulting water contents are
ambiguous if the textural distribution of a soil horizon is right at the boundary
of two textural classes (i.e., two calibration equations apply). For example, a soil
horizon with a count ratio of 1.2 and a particle size distribution that would place
it right at the boundary between a sandy loam and loamy sand would have a
water content of 0.198cm3/cm3 if it was classified as a sandy loam (a = −0.146,
b = 0.287) but a water content of only 0.145cm3/cm3 if it were a loamy sand
(a =−0.095, b = 0.200). Unphysical discrete jumps in water content will therefore
result for minor variation in soil texture. Instead of stratifying the site according to
textural classes, it is clear that the particle size distribution should be included as a
continuous variable which we will do by using PC1 and PC2.

One more characteristic of the Yao et al. (2004) neutron calibration data set
should be highlighted. In addition to the convex hulls for the domain trends and
the kriging estimates for PC1 and PC2, Fig. 8.2 also shows the convex hull of the
neutron calibration data set (horizontal hatching). This area only partly overlaps
with that of the kriged results (diagonal hatching) we intend to use for our new
calibration equations. A Kolmogorov–Smirnov test (R: “kstest”) indeed confirms
that the distributions of neutron calibration data and kriged data are different (at
p < 10−6). This implies that any neutron calibration including texture is potentially
biased towards the characteristics of the top 2.5 m which may subsequently lead
to incorrect estimates of water content at deeper layers. The solution to this
problem is to correct the statistical distribution of the neutron calibration sample
textures towards that of the kriging estimates. To this end, we established smoothed
distributions (not shown here but using R’s “density” function with a bandwidth of
5.0) for both the neutron and kriged data and computed the ratio of these functions
for each neutron calibration sample. This ratio was then used to weigh the data
points in the regression while ensuring that the mean weight remained 1.0. Only
PC1 was used for the calculation of weights because during the data analysis, it was
evident that PC2 only had a minor effect on the calibration results. The minimum
and maximum weights were 0.12 and 2.43, respectively.

Five neutron calibration model models (model 0 as a model without texture and
A through D with terms that factor in texture) will be shown here, without and
with weighting for the distribution of PC1 (a “w” subscript indicates weighting).
Many more models were considered using stepwise regression with R’s “lm” and
“step” functions and showed that bulk density was not a significant factor in any
of the models, while higher-order terms with count ratio were routinely ruled
out. Table 8.4 shows the model coefficients, significance codes of the regression
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coefficients, and some basic model statistics (root mean square error, RMSE, and
adjusted correlation coefficients, Radj). It is clear that some measure of texture must
be factored into the equation: Model 0 and 0w clearly perform worse than any of the
other models. The model statistics are rather similar for all other the models: RMSE
vary between 0.0270 (model Dw) and 0.0317 (model B) and Radj range between
0.757 and 0.829. Weighted models appear to perform slightly better than models
without weighting. Given these results, it cannot be immediately claimed that model
Dw is truly superior. In fact, a case could be made to select either model Aw or Bw,
which do not have the PC12 or PC1∗CR terms which seem to increase the fit of the
models only in a minor way. At the same time, we note that all coefficients in Dw

have a significance of p < 0.05, whereas this is not the case for the other models.
A further test of the models can be made by applying these to the field data

and test for negative water contents: none of the models should yield such values.
However, column N− in Table 8.4 indicates that all models, except model Dw and
the original Yao calibration, have a varying number of negative water contents for
the observational period.

To illustrate how differently each model performs in terms of mass of water
present in the subsurface, we computed the depth-integrated water contents for
March 8 (DOY 67.5, drained state) and May 22 (DOY142.5, wet state) and
calculated their differences (see also the section on moment analysis). The last
column in Table 8.4 shows that model 0 and 0w produce the largest amounts of
water (∼1 m, which is much more than the applied irrigation amount, 0.764 m).
All other models, including the Yao et al. (2004) calibration, provide much lower
values between 0.516 and 0.695 m. Except for model Dw, each weighted model
provided ∼0.1 m less water than the unweighted equivalent; D and Dw differed
by only 0.03 m. The differences among the models are surprisingly large and it is
clearly critical to select the correct neutron calibration model because mass balance
errors would propagate throughout any subsequent analysis and bias results. Given
the results in Table 8.4, and the stratified nature of the Yao et al. (2004) model as
discussed before, it appears that model Dw is the most appropriate choice for further
analysis.

8.3.5 Temporal Patterns of Moisture Content

Having chosen model Dw as the most suitable means to interpret count ratios and
PC1 into moisture contents, it is now possible to investigate the temporal patterns of
moisture content with depth. In the following, we will provide some results for the
mean behavior of the site by determining the mean moisture content against depth
and time:

θ̂ (t,z) =
1
8 ∑
∀w∈W

θw(t,z) (8.2)
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where θ̂ (t,z) is the mean site moisture content for observation date t and depth z
and w is a well present in the set W = {402,403,422,423,425,442,443,445}. An
analogous equation is used for differential moisture contents (θ̂d), relative to the
observations on DOY 67.5.

In order to visualize the resulting 2,050 values (50 depths and 41 irregularly
spaced dates), we again apply R’s loess interpolating/smoothing function to the
observations for each of the 50 depths (loess parameters: 15 degrees of freedom,
second-order polynomial, Gaussian deviates). Instead of plotting the observations
directly, we evaluate the 50 interpolators for each date between DOY 17 and DOY
393 (begin and end of Experiment 3) and represent the resulting moisture content
(or moisture differentials) as a grayscale image, as well as with contour lines.
The results can be found in Fig. 8.5a and b for water contents and water content
differentials, respectively.

The moisture contents in Fig. 8.5a show the distinct effect of the site’s stratigra-
phy (texture differences) in the dry period (prior to the vertical line at DOY 114.5)
and the subsequent irrigation and drainage phase. To aid the eye with regard to
stratigraphy, we also graphed the domain trend for PC1 on the left-hand side of
the diagram with a separate partial horizontal axis on top. Minimum water contents
at the site were slightly below 0.05cm3/cm3 and correlate with high PC1 values,
maximum water contents were slightly above 0.25cm3/cm3 and correspond to low
PC1 values.

The differential moisture contents in Fig. 8.5b provide a clearer picture of the
actual infiltration and redistribution phase. The progression of the mean infiltration
front is clearly visible after DOY 114.5 (the contours just prior to DOY 114.5
between z = 0 and 1 m are an artifact of the loess interpolation). The front appears
to become more diffuse (wider spaced contours) around DOY 130 when the front
reaches the coarse layer at z = 8m; by the end of the irrigation period the mean
front appears to reach the full depth (12.5 m). Water content differentials reach
maximum values of slightly over 0.06cm3/cm3 at z = 5m and 0.05cm3/cm3 at
z = 7.5m. These maximums correlate with finer to coarser transitions with depth
(again see PC1 graph on left-hand side) and may be a result of capillary barrier
effects. Of note is that these particular maximums persist for a long time during the
drainage phase. Other less extreme maximums in moisture content differentials are
present at other depths. Slight negative differentials exist near the surface, especially
after DOY 200, probably because of evaporation and loss or redistribution of water
caused by transfer of heat from the black cover under the Arizona sun.

8.3.6 Moment Analysis

We further interpret the data in Fig. 8.5b with moment analysis (Freyberg 1986).
In the following, we will calculate the discrete zeroth, first, and second moments
to measure the total amount of water added to the site, the mean depth of the
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Fig. 8.5 (a) Water content versus time. Contours and gray scale indicate the volumetric water
content in cm3/cm3 estimated with model Dw. Vertical dashed lines indicate the start and end
of the infiltration period. Thick line on the left-hand side indicates the trend for PC1. High water
contents are associated with lower values of PC1. (b) Gray scale and contours provide the change
in water content relative to day 67.5 (noon on March 8, 2001). Thick line after day 100 indicates
the evolution of M1 (depth of the center of mass). Dotted line indicates day 67.5 which was used
as a reference water content. (c) The cumulative infiltration (gray line) and the three moments M0,
M1, and M2. Symbols indicate the moments calculated using actual observation dates. The lines
provide the moments for all days, using the loess interpolator based on the average domain water
content differences (b). For clarity, the dashed line in c is identical to the solid line in b

added water, and the depth variance around the mean depth. The zeroth moment,
M0, which gives the total volume increment in meters of water since DOY 67.5 is
calculated as

M0(t) =
12.5

∑
z=0.25

θ̂d(t,z)Δz (8.3)
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where Δz is 0.25 m. Without vertical or horizontal drainage losses, M0 should
closely track the cumulative amount of irrigation water.

The first moment gives the mean depth of the center of the infiltrated water in
meters and is calculated as

M1(t) =
1

M0

12.5

∑
z=0.25

θ̂d(t,z)zΔz (8.4)

M1 is especially meaningful if M0 is able to close the mass balance, i.e., when no
drainage occurs. With drainage, M1 no longer provides the true center of mass of the
infiltrating water, but rather the center of mass of the water remaining above 12.5 m.
Irrespective of whether drainage occurs, M1 should increase (become deeper) over
time, because of the dissipation of gravitational energy.

The second moment provides the variance around the center of mass and is
calculated as follows:

M2(t) =
1

M0

12.5

∑
z=0.25

θ̂d(t,z)z
2Δz−M12 (8.5)

Again, M2 can only readily be interpreted if M0 tracks the cumulative infiltration
and M1 provides the actual center of mass; it should increase over time because
of the diffusive-convective nature of the infiltration process. When drainage occurs
at z = 12.5m, M2 will decrease because the vertical distribution of θd is truncated
beyond this depth.

Figure 8.5c shows M0 and cumulative infiltration (left-hand axis) and M1
and M2 (right-hand axis). The symbols denote the moments associated with the
observed moisture content differentials (available for 41 observation dates), the lines
correspond to the interpolated moisture content differentials, which are available for
each day between DOY 17 and DOY 393. M0 tracks the cumulative infiltration well
until about DOY 130, after which water is lost from the domain, most likely due
to vertical drainage below 12.5 m. The M0 values before the reference date (DOY
67.5) are somewhat lower than 0, probably because these dates (DOY 17 and 47)
had several missing wells each. The M0 value at DOY 108 (the last observation
before the start of the irrigation) is also lower than zero, which could be due to
some residual drainage occurring in the profile. However, some small amounts of
irrigation were applied before this date that does not show up in the observations.
We therefore treat the data collected at DOY 108 as suspect. The final M0 value
at DOY 393.5 (0.01 m) is very close to 0, making it plausible that the drainage
process has nearly completed (albeit that some residual moisture lingers at z = 5m
and the profile is drying out near the top; cf. Fig. 8.5b). The M0 values based on the
interpolation procedure (line) track the observations very well, indicating that the
interpolated results could be used for further analysis, for example, if equidistant
values in time are needed.
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M1 is plotted only for DOY > 105 in Fig. 8.5c to remove some scattered data
prior to this date. The symbols and line indicate that the mean center of mass
progresses first rapidly to about 4 m around DOY 130 (when the mean front reaches
8m), after which the center of mass slows down to about DOY 144 when it appears
to stall until DOY 170. Later the center of mass slowly moves down to greater
depths. It is likely that moisture content maxima associated with the fine layers
at 5 and 7.5 m limit the internal drainage of water deeper down into the profile.
A complicating factor is that after DOY 130 drainage happens below 12.5 m,
thus keeping M1 artificially shallow as the drained water is not factored into the
calculation for M1. For comparison, M1 is also plotted in vertically inverted form in
Fig. 8.5b, showing that M1 restarts its descent after DOY 170 when the maximum
moisture differentials at 5 and 7.5 m are partially depleted by internal drainage.

After a noisy start during the first third of the infiltration period, M2 shows an
almost linear increase during the remainder of the infiltration period, after which
there is a gradual decrease in variance to about DOY 250. This pattern is caused by
the spreading of moisture along the entire 12.5 m length of the profile at the end of
the infiltration period. Internal drainage and subsequent flow out of the domain [and
therefore out of scope for Eq. (8.5)] then cause a reduction in variance. M2 becomes
negative after DOY 300 because M1 increases [see second term in Eq. (8.5)].

8.4 Summary and Conclusion

The present study is part of a larger effort to document and interpret the available
data for Experiments 1–4 and make these available to the vadose zone research
community. As such, the material presented here is only a fraction of the available
moisture dynamics data (Experiment 3 only), and most of the analysis here was
focused on establishing reliable geostatistical model that accounts for the subsurface
structure of particle size and bulk density and an unbiased texture-dependent model
for the neutron thermalization measurements. Because the work reported here had
access to more data, the results presented here are substantially different than the
geospatial analysis published by Wang (2002) and the neutron calibration presented
by Yao et al. (2004).

In general, we find shorter horizontal correlation ranges than Wang (2002)
who typically found values in between 20 and 25 m for gravel + sand, silt, and
clay fractions. After applying principal component analysis to sand, silt, and clay
fractions, we found a range of 13.1 m for PC1 and 5.6 m for PC2; Wang (2002) did
not find shorter ranges for the clay fraction (which roughly corresponds to PC2).
Our vertical variogram ranges were much smaller than those found by Wang (2002)
because our analysis is based on a residual variogram (the estimated trend of texture
with depth is subtracted from the data before variogram analysis), whereas the
analysis of Wang (2002) is not. We believe that the current analysis provides a
complimentary subsurface model for texture (essentially a depth trend with an
added anisotropic spatially correlated component) upon other analyses can be based.
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Even so, we should note that the model is probably more reliable towards the
surface, simply because most of the texture and bulk density samples are located
there (see Figs. 8.1 and 8.2). Cross-validation analysis showed that PC1 and PC2
can be estimated with an accuracy of 10.66 and 3.35%, respectively. These values
roughly correspond to similar errors for the sand and clay fractions, indicating that
substantial uncertainty exists in the actual texture at any point throughout the site,
even with 1,042 texture samples.

The geospatial model was used to reinterpret the neutron probe calibration
carried out by Yao et al. (2004). Instead of stratifying the neutron calibration data
and the subsurface by textural class, we used PC1 as a regression variable. After
investigating an extensive range of models with and without weighting for the
distribution of PC1, we arrived at one model (Dw) which had the lowest root mean
square error, produced no negative water contents when applied to neutron count
observations, and was able to track the infiltration process more accurately than
the other models investigated. Assuming that the (statistical) model Dw represents
physical reality, substantial mass balance errors result if other calibration models
were chosen. Such errors would propagate through any subsequent analyses and
may lead to different conclusions about flow and transport dynamics.

Moment analysis (zeroth, first, and second moments) was used to interpret the
infiltration and drainage process. Together with a graphical depiction of the depth-
mean moisture content versus time, this analysis shows that several zones exist at
the site that control the internal drainage of water. It took approximately 250 days
of drainage (after 0.764 m of infiltration) to bring the site back to its initial state.

The analysis reported here will not only be instrumental in interpreting the other
infiltration experiments but also greatly assist dynamical modeling of subsurface
flow and transport. Important questions currently being addressed are the following:
what is the effect of the various sources of uncertainty (geospatial uncertainty,
neutron calibration parametric uncertainty) on model outcomes? How much data
is truly needed to correctly parameterize the subsurface for flow modeling? Is the
infiltration process fundamentally a 1D process (as assumed in Fig. 8.5), or are
2D or 3D approaches needed as found in an earlier study by Wang et al. (2003)?
The availability of nine replicated wells (rather than the mean behavior presented
here) will allow us to more completely understand the relation between subsurface
variability and infiltration dynamics and allow us to make an assessment how
well models and observations can represent deep vadose zone flow and transport
dynamics.

Interested readers can contact the author for data and analysis code (in R, suitable
for research and advanced educational use). After completion of the data analysis,
the data and models will be made available free of charge on a publicly available
website.
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Chapter 9
Unconfined Aquifer Flow Theory: From Dupuit
to Present

Phoolendra K. Mishra and Kristopher L. Kuhlman

Abstract Analytic and semi-analytic solution are often used by researchers and
practitioners to estimate aquifer parameters from unconfined aquifer pumping tests.
The nonlinearities associated with unconfined (i.e., water table) aquifer tests make
their analysis more complex than confined tests. Although analytical solutions for
unconfined flow began in the mid-1800s with Dupuit, Thiem was possibly the first
to use them to estimate aquifer parameters from pumping tests in the early 1900s.
In the 1950s, Boulton developed the first transient well test solution specialized
to unconfined flow. By the 1970s, Neuman had developed solutions considering
both primary transient storage mechanisms (confined storage and delayed yield)
without nonphysical fitting parameters. In the last decade, research into developing
unconfined aquifer test solutions has mostly focused on explicitly coupling the
aquifer with the linearized vadose zone. Despite the many advanced solution
methods available, there still exists a need for realism to accurately simulate real-
world aquifer tests.

9.1 Introduction

Pumping tests are widely used to obtain estimates of hydraulic parameters charac-
terizing flow and transport processes in subsurface (e.g., Kruseman and de Ridder
1990; Batu 1998). Hydraulic parameter estimates are often used in planning
or engineering applications to predict flow and design of aquifer extraction or
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recharge systems. During a typical pumping test in a horizontally extensive aquifer,
a well is pumped at constant volumetric flow rate, and head observations are
made through time at one or more locations. Pumping test data are presented as
time-drawdown or distance-drawdown curves, which are fitted to idealized models
to estimate aquifer hydraulic properties. For unconfined aquifers, properties of
interest include hydraulic conductivity, specific storage, specific yield, and possibly
unsaturated flow parameters. When estimating aquifer properties using pumping
test drawdown data, one can use a variety of analytical solutions involving different
conceptualizations and simplifying assumptions. Analytical solutions are impacted
by their simplifying assumptions, which limit their applicability to characterize
certain types of unconfined aquifers. This chapter presents the historical evolution
of the scientific and engineering thoughts concerning groundwater flow toward
a pumping well in unconfined aquifers (also referred to variously as gravity,
phreatic, or water table aquifers) from the steady-state solutions of Dupuit to the
recent coupled transient saturated–unsaturated solutions. Although it is sometimes
necessary to simulation using gridded numerical models in highly irregular or
heterogeneous systems, here we limit our consideration to analytically derived
solutions.

9.2 Early Well Test Solutions

9.2.1 Dupuit’s Steady-State Finite-Domain Solutions

Dupuit (1857) considered steady-state radial flow to a well pumping at constant
volumetric flow rate Q [L3/T] in a horizontal homogeneous confined aquifer of
thickness b [L]. He used Darcy’s law (Darcy 1856) to express the velocity of
groundwater flow u [L/T] in terms of radial hydraulic head gradient (∂h/∂ r) as

u = K
∂h
∂ r

, (9.1)

where K = kg/ν is hydraulic conductivity [L/T], k is formation permeability [L2], g
is the gravitational constant [L/T2], ν is fluid kinematic viscosity [L2/T], h = ψ + z
is hydraulic head [L], ψ is gage pressure head [L], and z is elevation above an
arbitrary datum [L]. Darcy derived a form equivalent to (9.1) for one-dimensional
flow through sand-packed pipes. Dupuit was the first to apply (9.1) converging flow
by combining it with mass conservation Q = (2πrb)u across a cylindrical shell
concentric with the well, leading to

Q = K (2πrb)
∂h
∂ r

. (9.2)
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Integrating (9.2) between two radial distances r1 and r2 from the pumping well,
Dupuit evaluated the confined steady-state head difference between the two points as

h(r2)− h(r1) =
Q

2πKb
log

(
r2

r1

)
. (9.3)

This is the solution for flow to a well at the center of a circular island, where a
constant head condition is applied at the edge of the island (r2).

Dupuit (1857) also derived a radial flow solution for unconfined aquifers by
neglecting the vertical flow component. Following a similar approach to confined
aquifers, Dupuit (1857) estimated the steady-state head difference between two
distances from the pumping well for unconfined aquifers as

h2(r2)− h2(r1) =
Q

πK
log

(
r2

r1

)
. (9.4)

These two solutions are only strictly valid for finite domains; when applied to
domains without a physical boundary at r2, the outer radius essentially becomes
a fitting parameter. The solutions are also used in radially infinite systems under
pseudo-static conditions, when the shape of the water table does not change with
time.

Equations (9.3) and (9.4) are equivalent when b in (9.3) is average head
(h(r1)+ h(r2))/2. In developing (9.4), Dupuit (1857) used the following assump-
tions (now commonly called the Dupuit assumptions) in context of unconfined
aquifers:

• The aquifer bottom is a horizontal plane.
• Groundwater flow toward the pumping wells is horizontal with no vertical

hydraulic gradient component.
• The horizontal component of the hydraulic gradient is constant with depth and

equal to the water table slope.
• There is no seepage face at the borehole.

These assumptions are one of the main approaches to simplifying the unconfined
flow problem and making it analytically tractable. In the unconfined flow problem,
both the head and the location of the water table are unknowns; the Dupuit
assumptions eliminate one of the unknowns.

9.2.2 Historical Developments After Dupuit

Narasimhan (1998) and de Vries (2007) give detailed historical accounts of ground-
water hydrology and soil mechanics; only history relevant to well test analysis
is given here. Forchheimer (1886) first recognized the Laplace equation ∇2h = 0
governed two-dimensional steady confined groundwater flow (to which (9.3) is a
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solution), allowing analogies to be drawn between groundwater flow and steady-
state heat conduction, including the first application of conformal mapping to solve
a groundwater flow problem. Slichter (1898) also arrived at the Laplace equation
for groundwater flow and was the first to account for a vertical flow component.
Utilizing Dupuit’s assumptions, Forchheimer (1898) developed the steady-state
unconfined differential equation (to which (9.4) is a solution), ∇2h2 = 0. Boussinesq
(1904) first gave the transient version of the confined groundwater flow equation
αs∇2h = ∂h/∂ t (where αs = K/Ss is hydraulic diffusivity [L2/T] and Ss is specific
storage [1/L]), based upon analogy with transient heat conduction.

In Prague, Thiem (1906) was possibly the first to use (9.3) for estimating K from
pumping tests with multiple observation wells (Simmons 2008). Equation (9.3)
(commonly called the Thiem equation) was tested in the 1930s both in the field
(Wenzel (1932) performed a 48-h pumping test with 80 observation wells in Grand
Island, Nebraska) and in the laboratory (Wyckoff et al. (1932) developed a 15-degree
unconfined wedge sand tank to simulate converging flow). Both found the steady-
state solution lacking in ability to consistently estimate aquifer parameters. Wenzel
(1942) developed several complex averaging approaches (e.g., the “limiting” and
“gradient” formulas) to attempt to consistently estimate K using steady-state
confined equations for a finite system from transient unconfined data. Muskat (1932)
considered partial-penetration effects in steady-state flow to wells, discussing the
nature of errors associated with assumption of uniform flux across the well screen
in a partially penetrating well. Muskat’s textbook on porous media flow (Muskat
1937) summarized much of what was known in hydrology and petroleum reservoir
engineering around the time of the next major advance in well test solutions
by Theis.

9.2.3 Confined Transient Flow

Theis (1935) utilized the analogy between transient groundwater flow and heat
conduction to develop an analytical solution for confined transient flow to a pumping
well (see Fig. 9.1). He initially applied his solution to unconfined flow, assuming
instantaneous drainage due to water table movement. The analytical solution was
based on a Green’s function heat conduction solution in an infinite axisymmetric
slab due to an instantaneous line heat source or sink (Carslaw 1921). With the aid
of mathematician Clarence Lubin, Theis extended the heat conduction solution to a
continuous source, motivated to better explain the results of pumping tests like the
1931 test in Grand Island. Theis (1935) gave an expression for drawdown due to
pumping a well at rate Q in a homogeneous, isotropic confined aquifer of infinite
radial extent as an exponential integral

s(r, t) =
Q

4πT

∫ ∞

r2/(4αst)

e−u

u
du, (9.5)



9 Unconfined Aquifer Flow Theory: From Dupuit to Present 189

Fig. 9.1 Unconfined well
test diagram

where s = h0(r)− h(t,r) is drawdown, h0 is pretest hydraulic head, T = Kb is
transmissivity, and S = Ssb is storativity. Equation (9.5) is a solution to the diffusion
equation, with zero-drawdown initial and far-field conditions:

s(r, t = 0) = s(r → ∞, t) = 0. (9.6)

The pumping well was approximated by a line sink (zero radius), and the source
term assigned there was based upon (9.2):

lim
r→0

r
∂ s
∂ r

=− Q
2πT

. (9.7)

Although the transient governing equation was known through analogy with heat
conduction, the transient storage mechanism (analogous to specific heat capacity)
was not completely understood. Unconfined aquifer tests were known to experience
slower drawdown than confined tests, due to water supplied by dewatering the zone
near the water table, which is related to the formation specific yield (porosity less
residual water). Muskat (1934) and Hurst (1934) derived solutions to confined tran-
sient radial flow problems for finite domains but attributed transient storage solely to
fluid compressibility. Jacob (1940) derived the diffusion equation for groundwater
flow in compressible elastic confined aquifers, using mass conservation and Darcy’s
law, without recourse to analogy with heat conduction. Terzaghi (1923) developed a
one-dimensional consolidation theory which only considered the compressibility of
the soil (in his case a clay), unknown at the time to most hydrologists (Batu 1998).
Meinzer (1928) studied regional drawdown in North Dakota, proposing the modern
storage mechanism related to both aquifer compaction and the compressibility of
water. Jacob (1940) formally showed Ss = ρwg(βp + nβw), where ρw and βw are
fluid density [M/L3] and compressibility [LT2/M], n is dimensionless porosity, and
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βp is formation bulk compressibility. The axisymmetric diffusion equation in radial
coordinates is

∂ 2s
∂ r2 +

1
r

∂ s
∂ r

=
1
αs

∂ s
∂ t

. (9.8)

When deriving analytical expressions, the governing equation is commonly made
dimensionless to simplify presentation of results. For flow to a pumping well, it is
convenient to use LC = b as a characteristic length, TC = Sb2/T as a characteristic
time, and HC = Q/(4πT ) as a characteristic head. The dimensionless diffusion
equation is

∂ 2sD

∂ r2
D

+
1
rD

∂ sD

∂ rD
=

∂ sD

∂ tD
, (9.9)

where rD = r/LC, sD = s/Hc and tD = t/TC are scaled by characteristic quantities.
The Theis (1935) solution was developed for field application to estimate aquifer

hydraulic properties, but it saw limited use because at the time it was difficult to
compute the exponential integral for arbitrary inputs. Wenzel (1942) proposed a
type-curve method that enabled graphical application of the Theis (1935) solution
to field data. Cooper and Jacob (1946) suggested for large values of tD (tD ≥ 25),
the infinite integral in the Theis (1935) solution can be approximated as

sD(tD,rD) =

∫ ∞

r2/(4αst)

e−u

u
du ≈ loge

(
4Tt
r2S

)
− γ (9.10)

where γ ≈ 0.57722 is the Euler–Mascheroni constant. This leads to Jacob and
Cooper’s straight-line simplification

Δs ≈ 2.3
Q

4πT
(9.11)

where Δs is the drawdown over one log-cycle (base 10) of time. The intercept of
the straight-line approximation is related to S through (9.10). This approximation
made estimating hydraulic parameters much simpler at large tD. Hantush (1961)
later extended Theis’ confined solution for partially penetrating wells.

9.2.4 Observed Time-Drawdown Curve

Before the time-dependent solution of Theis (1935), distance drawdown was the
diagnostic plot for aquifer test data. Detailed distance-drawdown plots require many
observation locations (e.g., the 80 observation wells of Wenzel 1936). Reanalyzing
results of the unconfined pumping test in Grand Island, Wenzel (1942) noticed that
the Theis (1935) solution gave inconsistent estimates of Ss and K, attributed to the
delay in the yield of water from storage as the water table fell. The Theis (1935)
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Fig. 9.2 Drawdown data
from Cape Cod (Moench
et al. 2001), observation well
F377–037. Upper dashed
curve is confined model of
Hantush (1961) with S = Ssb,
lower dotted curve is same
with S = Ssb+Sy. Solid curve
is unconfined model of
Neuman (1974) using
Sy = 0.23

solution corresponds to the Dupuit assumptions for unconfined flow and can only
recreate the a portion of observed unconfined time-drawdown profiles (either late or
early). The effect of the water table must be taken into account through a boundary
condition or source term in the governing equation to reproduce observed behavior
in unconfined pumping tests.

Walton (1960) recognized three distinct segments characterizing different release
mechanisms on time-drawdown curve under water table conditions (see Fig. 9.2).
A log–log time-drawdown plot in an unconfined aquifer has a characteristic shape
consisting of a steep early-time segment, a flatter intermediate segment, and a
steeper late-time segment. The early segment behaves like the Theis (1935) solution
with S = Ssb (water release due to bulk medium relaxation), the late segment
behaves like the Theis (1935) solution with S = Ssb+ Sy (Gambolati 1976) (water
release due to water table drop), and the intermediate segment represents a transition
between the two. Distance-drawdown plots from unconfined aquifer tests do not
show a similar inflection or change in slope and do not produce good estimates of
storage parameters.

9.3 Early Unconfined Well Test Solutions

9.3.1 Moving Water Table Solutions Without Confine
Storage

The Theis (1935) solution for confined aquifers can only reproduce either the early
or late segments of the unconfined time-drawdown curve (see Fig. 9.2). Boulton
(1954a) suggested it is theoretically unsound to use the Theis (1935) solution for
unconfined flow because it does not account for vertical flow to the pumping well.



192 P.K. Mishra and K.L. Kuhlman

He proposed a new mechanism for flow toward a fully penetrating pumping well
under unconfined conditions. His formulation assumed flow is governed by ∇2s = 0,
with transient effects incorporated through the water table boundary condition.
He treated the water table (where ψ = 0, located at z = ξ above the base of the
aquifer) as a moving material boundary subject to the condition h(r,z = ξ , t) = z.
He considered the water table without recharge to be comprised of a constant set of
particles, leading to the kinematic boundary condition

D
Dt

(h− z) = 0 (9.12)

which is a statement of conservation of mass for an incompressible fluid. Boulton
(1954a) considered the Darcy velocity of the water table as uz = −Kz

Sy

∂h
∂ z and

ur =−Kr
Sy

∂h
∂ r and expressed the total derivative as

D
Dt

=
∂
∂ t

− Kr

Sy

∂h
∂ r

∂
∂ r

− Kz

Sy

∂h
∂ z

∂
∂ z

, (9.13)

where Kr and Kz are radial and vertical hydraulic conductivity components. Using
(9.13), the kinematic boundary condition (9.12) in terms of drawdown is

∂ s
∂ t

− Kr

Sy

(
∂ s
∂ r

)2

− Kz

Sy

(
∂ s
∂ z

)2

=−Kz

Sy

∂ s
∂ z

. (9.14)

Boulton (1954a) utilized the wellbore and far-field boundary conditions of Theis
(1935). He also considered the aquifer rests on an impermeable flat horizontal
boundary ∂h/∂ z|z=0 = 0; this was also inferred by Theis (1935) because of his
two-dimensional radial flow assumption. Dagan (1967) extended Boulton’s water
table solution to the partially penetrating case by replacing the wellbore boundary
condition with

lim
r→0

r
∂ s
∂ r

=

{
Q

2πK(�−d) b− � < z < b− d

0 otherwise
, (9.15)

where � and d are the upper and lower boundaries of the pumping well screen, as
measured from the initial top of the aquifer (Fig. 9.1).

The two sources of nonlinearity in the unconfined problem are the following:
(1) the boundary condition is applied at the water table, the location of which is
unknown a priori, and (2) the boundary condition applied on the water table includes
s2 terms.

In order to solve this nonlinear problem, both Boulton and Dagan linearized it by
disregarding second-order components in the free-surface boundary condition (9.14)
and forcing the free surface to stay at its initial position, yielding
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∂ s
∂ t

=−Kz

Sy

∂ s
∂ z

z = h0, (9.16)

which now has no horizontal flux component after neglecting second-order terms.
Equation (9.16) can be written in nondimensional form as

∂ sD

∂ tD
=−KDσ∗ ∂ sD

∂ zD
zD = 1, (9.17)

where KD = Kz/Kr is the dimensionless anisotropy ratio and σ∗ = S/Sy is the
dimensionless storage ratio.

Both Boulton (1954a) and Dagan (1967) solutions reproduce the intermediate
and late segments of the typical unconfined time-drawdown curve, but neither of
them reproduces the early segment of the curve. Both are solutions to the Laplace
equation and therefore disregard confined aquifer storage, causing pressure pulses
to propagate instantaneously through the saturated zone. Both solutions exhibit an
instantaneous step-like increase in drawdown when pumping starts.

9.3.2 Delayed Yield Unconfined Response

Boulton (1954b) extended Theis’ transient confined theory to include the effect of
delayed yield due to movement of the water table in unconfined aquifers. Boulton’s
proposed solutions (1954b; 1963) reproduce all three segments of the unconfined
time-drawdown curve. In his formulation of delayed yield, he assumed as the water
table falls, water is released from storage (through drainage) gradually, rather than
instantaneously as in the free-surface solutions of Boulton (1954a) and Dagan
(1967). This approach yielded an integrodifferential flow equation in terms of
vertically averaged drawdown s∗ as

∂ 2s∗

∂ r2 +
1
r

∂ s∗

∂ r
=

[
S
T

∂ s∗

∂ t

]
+

{
αSy

∫ t

0

∂ s∗

∂τ
e−α(t−τ) dτ

}
(9.18)

which Boulton linearized by treating T as constant. The term in square brackets
is instantaneous confined storage, and the term in braces is a convolution integral
representing storage released gradually since pumping began, due to water table
decline. Boulton (1963) showed the time when delayed yield effects become
negligible is approximately equal to 1

α , leading to the term “delay index.” Prickett
(1965) used this concept, and through analysis of large amount of field drawdown
data with Boulton (1963) solution, he established an empirical relationship between
the delay index and physical aquifer properties. Prickett proposed a methodology
for estimation of S, Sy, K, and α of unconfined aquifers by analyzing pumping tests
with the Boulton (1963) solution.
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Although Boulton’s model was able to reproduce all three segment of the
unconfined time-drawdown curve, it failed to explain the physical mechanism of
the delayed yield process because of the nonphysical nature of the “delay index” in
the Boulton (1963) solution.

Streltsova (1972a) developed an approximate solution for the decline of the water
table and s∗ in fully penetrating pumping and observation wells. Like Boulton
(1954b), she treated the water table as a sharp material boundary, writing the
two-dimensional depth-averaged flow equation as

∂ 2s∗

∂ r2 +
1
r

∂ s∗

∂ r
=

S
T

(
∂ s∗

∂ t
− ∂ξ

∂ t

)
. (9.19)

The rate of water table decline was assumed to be linearly proportional to the
difference between the water table elevation ξ and the vertically averaged head
b− s∗,

∂ξ
∂ t

=
Kz

Sybz
(s∗ − b+ ξ ) (9.20)

where bz = b/3 is an effective aquifer thickness over which water table recharge is
distributed into the deep aquifer. Equation (9.20) can be viewed as an approximation
to the zero-order linearized free-surface boundary condition (9.16) of Boulton
(1954a) and Dagan (1967). Streltsova considered the initial condition ξ (r, t = 0) = b
and used the same boundary condition at the pumping well and the outer boundary
(r → ∞) used by Theis (1935) and Boulton (1963). Equation (9.19) has the solution
(Streltsova 1972b)

∂ξ
∂ t

=−αT

∫ t

0
e−αT (t−τ) ∂ s∗

∂τ
dτ (9.21)

where αT = Kz/(Sybz). Substituting (9.21) into (9.20) produces solution (9.18) of
Boulton (1954b, 1963); the two solutions are equivalent. Boulton’s delayed yield
theory (like that of Streltsova) does not account for flow in unsaturated zone but
instead treats water table as material boundary moving vertically downward under
influence of gravity. Streltsova (1973) used field data collected by Meyer (1962)
to demonstrate unsaturated flow had virtually no impact on the observed delayed
process. Although Streltsova’s solution related Boulton’s delay index to physical
aquifer properties, it was later found to be a function of r (Neuman 1975; Herrera
et al. 1978). The delayed yield solutions of Boulton and Streltsova do not account for
vertical flow within the unconfined aquifer through simplifying assumptions; they
cannot be extended to account for partially penetrating pumping and observation
wells.

Prickett’s pumping test in the vicinity of Lawrenceville, Illinois (Prickett 1965),
showed that specific storage in unconfined aquifers can be much greater than
typically observed values in confined aquifers—possibly due to entrapped air
bubbles or poorly consolidated shallow sediments. It is clear the elastic properties
of unconfined aquifers are too important to be disregarded.
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9.3.3 Delayed Water Table Unconfined Response

Boulton’s (1954b; 1963) models encountered conceptual difficulty explaining the
physical mechanism of water release from storage in unconfined aquifers. Neuman
(1972) presented a physically based mathematical model that treated the unconfined
aquifer as compressible (like Boulton 1954b, 1963 and Streltsova 1972a,b) and the
water table as a moving material boundary (like Boulton 1954a and Dagan 1967).
In Neuman’s approach, aquifer delayed response was caused by physical water
table movement, and he therefore proposed to replace the phrase “delayed yield”
by “delayed water table response.”

Neuman (1972) replaced the Laplace equation of Boulton (1954a) and Dagan
(1967) by the diffusion equation; in dimensionless form, it is

∂ 2sD

∂ r2
D

+
1
rD

∂ sD

∂ rD
+KD

∂ 2sD

∂ z2
D

=
∂ sD

∂ tD
. (9.22)

Like Boulton (1954a) and Dagan (1967), Neuman treated the water table as a
moving material boundary, linearized it (using (9.17)), and treated the anisotropic
aquifer as three-dimensional axisymmetric. Like Dagan (1967), Neuman (1974)
accounted for partial penetration. By including confined storage in the governing
equation (9.22), Neuman was able to reproduce all three parts of the observed
unconfined time-drawdown curve and produce parameter estimates (including the
ability to estimate Kz) very similar to the delayed yield models.

Compared to the delay index models, Neuman’s solution produced similar fits to
data (often underestimating Sy, though), but Neuman (1975, 1979) questioned the
physical nature of Boulton’s delay index. He performed a regression fit between the
Boulton (1954b) and Neuman (1972) solutions, resulting in the relationship

α =
Kz

Syb

[
3.063− 0.567log

(
KDr2

b2

)]
(9.23)

demonstrating α decreases linearly with logr and is therefore not a characteristic
aquifer constant. When ignoring the logarithmic term in (9.23), the relationship α =
3Kz/(Syb) proposed by Streltsova (1972a) is approximately recovered.

After comparative analysis of various methods for determination of specific
yield, Neuman (1987) concluded the water table response to pumping is a much
faster phenomenon than drainage in the unsaturated zone above it.

Malama (2011) recently proposed an alternative linearization of (9.14), approx-
imately including the effects of the neglected second-order terms, leading to the
alternative water table boundary condition of

Sy
∂ s
∂ t

=−Kz

(
∂ s
∂ z

+β
∂ 2s
∂ z2

)
z = h0 (9.24)
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where β is a linearization coefficient [L]. The parameter β provides additional
adjustment of the shape of the intermediate portion of the time-drawdown curve
(beyond adjustments possible with KD and σ∗ alone), leading to improved estimates
of Sy. When β = 0, (9.24) simplifies to (9.16).

9.3.4 Hybrid Water Table Boundary Condition

The solution of Neuman (1972, 1974) was accepted by many hydrologists “as
the preferred model ostensibly because it appears to make the fewest simplifying
assumptions” (Moench et al. 2001). Despite acceptance, Nwankwor et al. (1984)
and Moench (1995) pointed out that significant difference might exist between
measured and model-predicted drawdowns, especially at locations near the water
table, leading to significantly underestimated Sy using Neuman’s models (e.g.,
see Fig. 9.2). Moench (1995) attributed the inability of Neuman’s models to give
reasonable estimates of Sy and capture this observed behavior near the water table
due to the later’s disregard of “gradual drainage.” In an attempt to resolve this
problem, Moench (1995) replaced the instantaneous moving water table boundary
condition used by Neuman with one containing a Boulton (1954b) delayed yield
convolution integral:

∫ t

0

∂ s
∂τ

M

∑
m=1

αme−αm(t−τ) dτ =−Kz

Sy

∂ s
∂ z

(9.25)

This hybrid boundary condition (M = 1 in Moench (1995)) included the convolution
source term Boulton (1954b, 1963) and Streltsova (1972a,b) used in their depth-
averaged governing flow equations. In addition to this new boundary condition,
Moench (1995) included a finite radius pumping well with wellbore storage,
conceptually similar to how Papadopulos and Cooper Jr. (1967) modified the
solution of Theis (1935). In all other respects, his definition of the problem was
similar to Neuman (1974).

Moench’s solution resulted in improved fits to experimental data and produced
more realistic estimates of specific yield (Moench et al. 2001), including the use
of multiple delay parameters αm (Moench 2003). Moench et al. (2001) used (9.25)
with M = 3 to estimate hydraulic parameters in the unconfined aquifer at Cape Cod.
They showed that M = 3 enabled a better fit to the observed drawdown data than
obtained by M < 3 or the model of Neuman (1974). Similar to the parameter α in
Boulton’s model, the physical meaning of αm is not clear.
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9.4 Unconfined Solutions Considering Unsaturated Flow

As an alternative to linearizing the water table condition of Boulton (1954a), the
unsaturated zone can be explicitly included. The nonlinearity of unsaturated flow is
substituted for the nonlinearity of (9.14). By considering the vadose zone, the water
table is internal to the domain, rather than a boundary condition. The model-data
misfit in Fig. 9.2 at “late intermediate” time is one of the motivations for considering
the mechanisms of delayed yield and the effects of the unsaturated zone.

9.4.1 Unsaturated Flow Without Confined Aquifer Storage

Kroszynski and Dagan (1975) were the first to account analytically for the effect
of the unsaturated zone on aquifer drawdown. They extended the solution of
Dagan (1967) by accounting for unsaturated flow above the water table. They
used Richards’ equation for axisymmetric unsaturated flow in a vadose zone of
thickness L

Kr
1
r

∂
∂ r

(
k(ψ)r

∂σ
∂ r

)
+Kz

∂
∂ z

(
k(ψ)

∂σ
∂ z

)
=C(ψ)

∂σ
∂ t

ξ < z < b+L (9.26)

where σ = b+ψa − h is unsaturated zone drawdown [L], ψa is air-entry pressure
head [L], 0 ≤ k(ψ) ≤ 1 is dimensionless relative hydraulic conductivity, C(ψ) =
dθ/dψ is the moisture retention curve [1/L], and θ is dimensionless volumetric
water content (see inset in Fig. 9.1). They assumed flow in the underlying saturated
zone was governed by the Laplace equation (like Dagan (1967)). The saturated and
unsaturated flow equations were coupled through interface conditions at the water
table expressing continuity of hydraulic heads and normal groundwater fluxes,

s = σ ∇s ·n = ∇σ ·n z = ξ (9.27)

where n is the unit vector perpendicular to the water table.
To solve the unsaturated flow equation (9.26), Kroszynski and Dagan (1975)

linearized (9.26) by adopting the Gardner (1958) exponential model for the relative
hydraulic conductivity, k(ψ) = eκa(ψ−ψa), where κa is the sorptive number [1/L]
(related to pore size). They adopted the same exponential form for the moisture
capacity model, θ (ψ) = eκk(ψ−ψk), where ψk is the pressure at which k(ψ) = 1,
κa = κk, and ψa = ψk, leading to the simplified form C(ψ) = Syκaeκa(ψ−ψa). In
the limit as κk = κa → ∞, their solution reduces to that of Dagan (1967). The
relationship between pressure head and water content is a step function. Kroszynski
and Dagan (1975) took unsaturated flow above the water table into account but
ignored the effects of confined aquifer storage, leading to early-time step-change
behavior similar to Boulton (1954a) and Dagan (1967).
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9.4.2 Increasingly Realistic Saturated–Unsaturated
Well Test Models

Mathias and Butler (2006) combined the confined aquifer flow equation (9.22) with
a one-dimensional linearized version of (9.26) for a vadose zone of finite thickness.
Their water table was treated as a fixed boundary with known flow conditions,
decoupling the unsaturated and saturated solutions at the water table. Although they
only considered a one-dimensional unsaturated zone, they included the additional
flexibility provided by different exponents (κa �= κk). Mathias and Butler (2006)
did not consider a partially penetrating well, but they did note the possibility of
accounting for it in principle by incorporating their uncoupled drainage function in
the solution of Moench (1997), which considers a partially penetrating well of finite
radius.

Tartakovsky and Neuman (2007) similarly combined the confined aquifer flow
equation (9.22), but with the original axisymmetric form of (9.26) considered by
Kroszynski and Dagan (1975). Also like Kroszynski and Dagan (1975), their unsat-
urated zone was characterized by a single exponent κa = κk and reference pressure
head ψa =ψk. Unlike Kroszynski and Dagan (1975) and Mathias and Butler (2006),
Tartakovsky and Neuman (2007) assumed an infinitely thick unsaturated zone.

Tartakovsky and Neuman (2007) demonstrated flow in the unsaturated zone is
not strictly vertical. Numerical simulations by Moench (2008) showed groundwater
movement in the capillary fringe is more horizontal than vertical. Mathias and Butler
(2006) and Moench (2008) showed using the same exponents and reference pressure
heads for effective saturation and relative permeability decreases model flexibility
and underestimates Sy. Moench (2008) predicted an extended form of Tartakovsky
and Neuman (2007) with two separate exponents, a finite unsaturated zone, and
wellbore storage would likely produce more physically realistic estimates of Sy.

Mishra and Neuman (2010) developed a new generalization of the solution of
Tartakovsky and Neuman (2007) that characterized relative hydraulic conductivity
and water content using κa �= κk, ψa �= ψk and a finitely thick unsaturated zone.
Mishra and Neuman (2010) validated their solution against numerical simulations
of drawdown in a synthetic aquifer with unsaturated properties given by the model
of van Genuchten (1980). They also estimated aquifer parameters from Cape Cod
drawdown data (Moench et al. 2001), comparing estimated van Genuchten (1980)
parameters with laboratory values (Mace et al. 1998).

Mishra and Neuman (2011) further extended their 2010 solution to include a
finite-diameter pumping well with storage. Mishra and Neuman (2010, 2011) were
the first to estimate non-exponential model unsaturated aquifer properties from
pumping test data, by curve-fitting the exponential model to the van Genuchten
(1980) model. Analyzing pumping test data of Moench et al. (2001) (Cape Cod,
Massachusetts) and Nwankwor et al. (1984, 1992) (Borden, Canada), they estimated
unsaturated flow parameters similar to laboratory-estimated values for the same
soils.
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9.5 Future Challenges

The conceptualization of groundwater flow during unconfined pumping tests has
been a challenging task that has spurred substantial theoretical research in the field
hydrogeology for decades. Unconfined flow to a well is nonlinear in multiple ways,
and the application of analytical solutions has required utilization of advanced
mathematical tools. There are still many additional challenges to be addressed
related to unconfined aquifer pumping tests, including:

• Hysteretic effects of unsaturated flow. Different exponents and reference pres-
sures are needed during drainage and recharge events, complicating simple
superposition needed to handle multiple pumping wells, variable pumping rates,
or analysis of recovery data.

• Collecting different data types. Validation of existing models and motivating
development of more realistic ones depends on more than just saturated zone
head data. Other data types include vadose zone water content (Meyer 1962) and
hydrogeophysical data like microgravity (Damiata and Lee 2006) or streaming
potentials (Malama et al. 2009).

• Moving water table position. All solutions since Boulton (1954a) assume the
water table is fixed horizontal ξ (r, t) = h0 during the entire test, even close to
the pumping well where large drawdown is often observed. Iterative numerical
solutions can accommodate this, but this has not been included in an analytical
solution.

• Physically realistic partial penetration. Well test solutions suffer from the
complication related to the unknown distribution of flux across the well screen.
Commonly, the flux distribution is simply assumed constant, but it is known that
flux will be higher near the ends of the screened interval that are not coincident
with the aquifer boundaries.

• Dynamic water table boundary condition. A large increase in complexity comes
from explicitly including unsaturated flow in unconfined solutions. The kine-
matic boundary condition expresses mass conservation due to water table decline.
Including an analogous dynamic boundary condition based on a force balance
(capillarity vs. gravity) may include sufficient effects of unsaturated flow, without
the complexity associated with the complete unsaturated zone solution.

• Heterogeneity. In real-world tests, heterogeneity is present at multiple scales.
Large-scale heterogeneity (e.g., faults or rivers) can sometimes be accounted in
analytical solutions using the method of images or other types of superposition.
A stochastic approach (Neuman et al. 2004) could alternatively be developed to
estimate random unconfined aquifer parameter distribution parameters.

Despite advances in considering physically realistic unconfined flow, most real-
world unconfined tests (e.g., Wenzel 1942, Nwankwor et al. 1984, 1992, or Moench
et al. 2001) exhibit nonclassical behavior that deviates from the early–intermediate–
late behavior predicted by the models summarized here. We must continue to strive
to include physically relevant processes and representatively linearize nonlinear
phenomena, to better understand, simulate, and predict unconfined flow processes.
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